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ABSTRACT 

The historical and cultural heritage of historic buildings is very often the result of an 

uncontrolled urban growth, due to the need to fill all possible urban spaces. For this reason, 

aggregate masonry buildings have been generated over the years, allowing the interaction of 

different aggregated inhomogeneous structural units under seismic action. Therefore, the 

seismic analysis of the aggregate structures cannot ignore the inevitable interactions resulting 

from structural contiguity between adjacent buildings.  

The main goal of this thesis is the seismic vulnerability and fragility assessment of different 

classes of unreinforced masonry buildings, through the individuation of some prototypes 

having similar characteristics and representative of those classes of buildings, starting from 

the idea that buildings located in similar geotechnical conditions and with similar geometrical 

and structural properties are expected to have similar seismic performances. Thus, since the 

common simplification in civil engineering field to consider a building belonging to an 

aggregate structure as isolated, the selected classes of masonry buildings were at first 

considered as isolated structural units and then belonging to aggregations in row of those 

similar (or identical) structural units.  

The first part of this work is focused on the seismic vulnerability and fragility assessment of 

clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single 

isolated structural units. In order to account for some variabilities and uncertainties involved 

in the problem, the Response Surface statistical method is used, where the expected value of 

a response parameter (the peak ground acceleration (PGAC) corresponding to the attainment 

of the life safety limit state) is approximated through a polynomial function of a set of chosen 

variables. The Response Surface model is calibrated through numerical data obtained by non-

linear static analyses and used to determine the fragility curves, by applying full Monte Carlo 

simulations. The seismic action was defined by means of a group of selected registered 

accelerograms, in order to analyse the effect of the variability of the earthquakes, also 

considering two different and orthogonal directions of the seismic action.  

Identical structural units chosen by the Response Surface generated simulations are then 

aggregated in row, in order to compare the collapse PGA referred to the isolated structural 

unit and the one referred to the entire aggregate structure. 



 
 

Afterwards, this work aims to assess the seismic vulnerability and fragility of unreinforced 

masonry aggregates in row, considering structural units along the aggregate with geometrical 

differences each other, generated starting from the medium values of the variables used to 

study the masonry aggregates with identical structural units in row, following the rules of the 

Response Surface (RS) statistical method. The goal is to show how the relative differences 

between the structural units in row affect the seismic response and to compare their seismic 

behaviour with those obtained aggregating identical structural units in row.  

The second part of this thesis is focused on the seismic vulnerability and fragility assessment 

of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that 

used for the masonry buildings sited in Bologna. Since the availability of several information 

on the buildings present in the historic centre of Seixal, the analyses involved the assessment 

of the most prevalent structural typologies in the study area, considering the variability of a 

set of structural and geometrical parameters. The variation of such parameters has allowed 

the individuation of different structural configurations, whose seismic performance 

behaviours were studied by means of non-linear static analyses. Based on the seismic 

performance analysis, the PGA corresponding to the attainment of the life safety limit state 

were obtained, considering the variation of the seismic action referred to a group of selected 

registered accelerograms, representing previous earthquakes and the fragility curves were 

plotted. Furthermore, the seismic behaviour of these structural configurations, analysed as 

isolated structural units, is also compared with their structural performance when enclosed in 

aggregate. 

The results have highlighted the importance of the statistic procedures as method able to 

consider the variabilities and the uncertainties involved in the problem of the fragility of 

unreinforced masonry structures, in absence of accurate investigations on the structural 

typologies of the site, as in the Seixal case study. Furthermore, it was showed that the 

structural units along the unreinforced clay brick or stone masonry aggregates cannot be 

analysed as isolated, as they are affected by the effect of the aggregation with adjacent 

structural units, according to the different directions of the seismic action considered and to 

their different position along the row aggregate.  
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1.1 Motivation 

Among the actions soliciting the buildings during their nominal life, earthquakes are one of 

the most dangerous and devastating events in terms of number of victims and damages. The 

seismic actions determine dynamic stress regimes comparable to those generated by systems 

of horizontal forces, varying in time. The earthquakes, and in particular the assessment of the 

seismic vulnerability, represent a topic of particular relevance in the world scenario; Italy is 

one of the countries with the highest seismic risk in the Mediterranean area, due to the great 

occurrence frequency and intensity of the earthquakes (Barbieri et al., 2013). The historical 

and architectural heritage safeguard, aimed to preserve the buildings over the time, is 

therefore a necessary requirement for the preservation of the cultural identity of the places. 

The assessment of the seismic risk is very important to determine the safety level of the 

structures, both to perform studies at the territorial scale, identifying the buildings most at 

risk, and to direct the first aid after the seismic event to the most vulnerable areas. The seismic 

risk results from the combination of three components: the hazard, the exposure and the 

vulnerability (McGuire, 2004; Vicente et al., 2011). 

The seismic hazard indicates the quantitative estimate of the occurrence of earthquakes, in a 

given area. It represents the probability of exceeding a certain intensity of a seismic event and 

its evaluation is a prevision tool of the degree of severity of expected earthquakes. This 

severity can be measured using instrumental scales, providing objective measures of the 

seismic action, or macro-seismic scales, based on subjective measures of the effects produced 

by the earthquake. The seismic exposure indicates the value of what can be damaged due to 

a seismic event, i.e. people, buildings, infrastructures. The estimate of the exposure 

corresponds, therefore, to the quantification of those parameters, as well as to the evaluation 

of their reaction capacity. The seismic vulnerability is the propensity of a structure to suffer 

damages, modifications or losses, against a seismic event of a given intensity. 

In other words, the seismic risk is strongly influenced by the location, the quality and the 

value of the assets and activities present on the territory that can be directly or indirectly 

influenced by the seismic event (settlements, buildings, economic-productive activities, 

infrastructures, assets of historical and cultural value, population density). Any intervention 

aimed at the reduction of the risk should be carried out on the parameters just described. 

Actually, while the hazard is a value that cannot be modified, since it is a characteristic of the 
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territory subject to seismic events, and the exposure is a parameter that can only be modified 

with appropriate management policies, vulnerability is the parameter on which it is possible 

to intervene with greater incisiveness, according to the codes and undertaking structural or 

non-structural improvement interventions (Tyagunov et al., 2004; Birkmann, 2007; 

Hajibabaee et al., 2012). 

The assessment of the seismic vulnerability can be carried out at different levels of scale, from 

the territorial to the one of the block and the single building. Regarding the territorial analyses, 

it is necessary to identify some typological classes, referring to buildings characterized by 

similar behaviours under the action of an earthquake, to which associate vulnerability levels 

(Giovinazzi and Lagomarsino, 2001). Furthermore, it is necessary to take into account the 

extension and the consistency of the heritage to be assessed, as well as the economic and time 

effort, and the reliability of the information to be acquired through survey campaigns. This 

process involves greater difficulties, mostly linked to the big variety of the typologies, 

characterizing an entire municipal area (Borri et al., 2007; Ceroni et al., 2013). 

The most common methods of vulnerability assessment, proposed in the past, can be divided 

into three main categories: empirical/statistical methods, analytical/mechanical methods and 

methods based on the judgment of the experts (Calvi et al., 2006). 

The empirical or statistical methods represent the approach based on the statistical analysis 

of the damages of the earthquakes; usually, the buildings are classified according to the 

materials and the structural techniques and to the previous observed damages on buildings of 

the same typologies. These methods are based on information obtaining through quick survey 

procedures and on correlations between the typological characteristics and the expected 

damage in the presence of seismic events of predetermined intensity. The correlations 

between the structural typology and the damage are usually obtained from the statistical 

processing of the data obtained through survey sheets of the earthquake effects, providing as 

results the vulnerability index and the vulnerability class of the building. 

The analytical or mechanical methods use mechanical models reproducing the main 

characteristics of the buildings to be evaluated, on which the damages caused by simulated 

earthquakes are studied and evaluated completely in an analytical and mechanical way. 

Usually non-linear analyses of the structure are performed, referred to a set of samples, 

reduced with respect to the set of buildings whose vulnerability must be assessed. The damage 
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is associated to the attainment of a limit state, which can be identified by the achievement of 

a limit rotation or a collapse mechanism of the structure, while the seismic action is generally 

expressed in terms of spectral quantities, such as the PGA. 

The methods based on the judgment of the experts are based on expert judgments to assess 

the seismic behaviour and the vulnerability of some structural typologies, or to identify the 

factors influencing the seismic vulnerability of the buildings. 

The assessment of the seismic vulnerability, either through empirical approaches or through 

more accurate mechanical models, cannot ignore the knowledge, as accurate as possible, of 

the peculiar characteristics of the buildings, obtaining through survey campaigns. In 

particular, with regard to the seismic behaviour of the historic masonry buildings, there is a 

strong dependence on the structural details relating to vertical connections and to the 

connections between the slabs and the vertical panels, ensuring the box-like behaviour, which 

is an indispensable requirement for an effective limitation of the seismic vulnerability, and 

avoiding the activation of overturning mechanisms for out-of-plane actions. The absence of 

these precautions allows the activation of collapse mechanisms in the plane orthogonal to the 

individual panel; in this case, it would be necessary to perform analyses relating to the various 

structural elements with local models. 

A further complication is generated by the mutual interactions between the individual 

structural units that are generated when, as common in most of the buildings in the historic 

centres, the structure is located within a structural aggregate. The masonry aggregate 

buildings represent a considerably widespread structural typology in the Italian historical 

centres and they are often the result of an unplanned urban development (Formisano et al., 

2010). The research of the last twenty years has shown that the seismic analysis of these 

structural complexes cannot ignore the inevitable interactions deriving from the structural 

contiguity between adjacent buildings, connected or simply juxtaposed (Lagomarsino et al., 

2014). 

Sometimes, it is a common simplification in civil engineering practice to analyse the seismic 

behaviour of a building considering it as an isolated structural unit, even when it belongs to 

an aggregation of buildings. This simplification certainly leads to approximations and 

incorrect predictions of the seismic response, ignoring the interactions with the adjacent 

buildings. If an engineer has to perform a seismic analysis of a masonry structure enclose in 
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an aggregation of buildings, he cannot ignore the contribute of the adjacent structures, because 

all these buildings are part of a complex and each one of them concurs to the seismic response. 

The awareness of this common simplification in civil engineering is the main motivation that 

led to the study of the seismic vulnerability and fragility of masonry aggregate buildings, 

present in this thesis. 

1.2 Research problem: the aggregate buildings 

Masonry is the oldest and simplest building technique and it has a history as long as the history 

of constructions. The assessment of the structural safety of existing masonry buildings is a 

current and a critical issue; the situation is even more critical when dealing with old masonry 

constructions, either built without a proper seismic design or subjected to damages and 

degradation through years and, therefore, particularly vulnerable to horizontal actions. The 

safety assessment of historical constructions is affected by their geometrical complexity, the 

variability of materials and the building techniques adopted, the poor knowledge on past 

events which might have affected the current condition of the constructions and the lack of 

design codes. 

The majority of the masonry structures are unreinforced masonry (URM) and they not contain 

reinforcing (FEMA, 2009). The seismic response of URM buildings is mainly affected by the 

mechanical properties of the masonry, the geometry of the element, the type of slabs and roofs 

and the construction details (Lourenço et al. 2011; Cattari and Lagomarsino 2013; Penna et 

al. 2014). 

Usually, URM buildings present higher seismic vulnerability with respect to other structural 

typologies, but some precautions can ensure a global box-type behaviour, where the seismic 

response is mainly governed by the in-plane capacity of the walls and the in-plane stiffness 

of horizontal diaphragms. However, the lower mechanical properties, the presence of flexible 

diaphragms, the irregular distribution of mass and stiffness in plan and elevation, and the lack 

of proper connection between orthogonal walls and between walls and slabs/roofs are the 

reasons of a higher vulnerability, where the local seismic behaviour of the single walls can 

occur (Shawa et al., 2012; Prajapati et al., 2015).  

Masonry buildings in Italy represent the majority of the historical and cultural heritage and 

they are very often the result of an unbridled urban growth, carried out without accuracy in 

the design, filling all possible urban spaces. For this reason, aggregate masonry buildings 
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have been generated over the years, allowing the aggregations of different inhomogeneous 

buildings, arranged along the years and strictly linked to a historical planning system. They 

may be formed by one or more buildings, aggregated by means of a contact, or a link, more 

or less effective, between buildings with generally different constructive characteristics 

(Formisano et al., 2010; Lagomarsino et al., 2014). The buildings of the aggregate, which 

have been subjected to the generation process, interact between themselves under a seismic 

action or a general dynamic action, giving the aggregate different characteristics from the 

individual element components (Maio, 2013). 

An aggregate structure causes a series of problems: a) the non-homogeneity of the masonry 

bearing structures, as the result of the "assembly" process of different structural units 

interacting each others, b) the coexistence of different materials, often with very different 

stiffness and strengths properties and c) the correct and univocal knowledge of the structural 

model characterizing the masonry aggregate (Battaglia et al., 2019). 

Within the structural aggregates the buildings have to be identified, defined as homogeneous 

structural units from the bottom to the top, in general, distinguishable from the adjacent ones 

by at least one of the following characteristics that identifies a distinct dynamic behaviour: 

structural typology, differences in elevation, irregularity plan with some parts not effectively 

connected, age of construction, different heights of the slabs, renovation from the bottom to 

the top. Nevertheless, in the aggregates of the historical centres, complex situations are 

present and the identification of the structural units is not always univocal. 

Among the procedures of seismic vulnerability assessment, most used in the literature, there 

are the approaches outlined by the Italian codes, which have formalized some aspects related 

to aggregate buildings. Thus, the “Norme Tecniche per le Costruzioni” (NTC) in DM 

17.01.2018 (NTC, 2018) and, in particular, the commentary of the NTC, "Istruzioni per 

l’applicazione delle Norme Tecniche delle Costruzioni" (Commentary to the NTC 2018, 

2019) includes instructions which should be followed in the study of aggregate buildings. 

In particular, as it is shown in the NTC, it is preliminarily fundamental to determine the 

Structural Unit (S.U.) to consider in the study, namely those portions of the building to which 

corresponds a uniform behaviour. The entire aggregate should be analysed, identifying the 

fundamental spatial connections, with attention to overlapping and juxtaposition mechanisms, 

and taking into account that these aggregate portions must show an unified structural 
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behaviour against static and dynamic actions. The S.U. must have continuity from the summit 

to the base, both if it is composed of one or more building units, as regards the flow of the 

vertical loads and, normally, it can be delimited by open spaces, structural joints or contiguous 

buildings with different characteristics. 

The conservation and the renovation of ancient buildings belonging to the culture heritage, 

preserving their main architectural features, are becoming a very sensitive problem in Italy as 

in other Countries (Barbieri et al., 2013). Most of the historical heritage consists of masonry 

buildings and most of them are enclosed in aggregations. They are generally affected by a 

high seismic vulnerability in relation to the construction techniques developed over the years 

and to the frequent lack of an adequate structural conception, aimed to defend against the 

seismic action. In fact, masonry structures were generally built in times when the absence of 

codes, specific methodologies and calculation tools led to a design approach based more on 

intuition and experience than on a structural conception well defined and justified. 

Therefore, the vulnerability assessment of an aggregate should start from a first cognitive 

phase, necessary to develop the successive phases of analysis (Ramos and Lourenço, 2004). 

The cognitive process has as its fundamental presupposition the identification of the aggregate 

in the environmental and urban context in which it is located, in order to formulate hypotheses 

on its formation and evolution process and it is conducted through geometrical and structural 

surveys.  

The techniques that allow, from the data acquired in the first cognitive phase, the evaluation 

of the seismic safety and the possible design of the interventions will be then analysed. The 

analysis should be conducted examining the procedures for the global or local assessment of 

the vulnerability of the aggregate. In existing masonry buildings subjected to seismic actions, 

both global and local mechanisms can occur. The global mechanisms are those affecting the 

entire structure and involving the walls mainly in their plane. The global seismic analysis 

should consider, as far as possible, the real structural system of the construction, with 

particular attention to the stiffness and the strength of the floors and all the efficiency of the 

connections of the structural elements. With this kind of structures, the methods of general 

use verification for new buildings (linear analyses most of the times) may not be adequate. In 

the analyses (the most appropriate are the non-linear ones) of a building belonging to an 

aggregate, it will be necessary to take into account all the possible interactions deriving from 
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the structural contiguity with adjacent buildings. Therefore, the structural unit, object of the 

study, must be taken into consideration, highlighting the actions that can derive from the 

adjacent structural units (Commentary to the NTC 2018, 2019). 

However, the aggregate buildings of the historical centres often undergo transformations over 

time such as to make uncertain and inadequate an analysis conducted in terms of global 

response. In these buildings, it is necessary to consider the presence of the characteristic 

elements of vulnerability linked to: the quality of the connection between the walls and the 

slabs; the quality of the walls; the iterations with the other elements of the structure and with 

the adjacent buildings. Thus, it is possible to hypothesize, according to the knowledge of the 

seismic behaviour of analogous structures, the local mechanisms considered significant. The 

local mechanisms involve single walls or larger portions of the building and they are 

facilitated by the absence or the ineffectiveness of the connections between walls and slabs 

and in the intersections between the walls.  

The structural analysis of the entire aggregate, global or local, allows to define the structural 

seismic capacity that, compared with the seismic demand, allows to establish the vulnerability 

of the aggregate. The assessment of the vulnerability and of the fragility is defined relating to 

the limit states that can occur during the nominal life of the aggregate, in such a way to identify 

the performances to be guaranteed for different return periods of the earthquake, by means of 

structural analysis methods, at local or global level. 

1.3 Goals, methodology and outlines 

Since the common simplification in civil engineering to analyse a structure as isolated, even 

if it belongs to an aggregation of buildings, the starting point of this thesis is the study of the 

seismic vulnerability and fragility of a masonry structural unit, conceived as belonging to an 

aggregate but studied, at first, as isolated structural unit (ISU). The goal is to show that the 

seismic analysis cannot ignore the inevitable contribution of the adjacent structural units. 

The vulnerability assessment of the masonry buildings is carried out by means of the 

comparison between the seismic structural capacity and the seismic demand. But masonry 

structures can fail through a large variety of modes and their structural capacity is 

characterized by many structural and geometrical variabilities and uncertainties (Franchin et 

al., 2004). For this reason, it is convenient to use statistical and probabilistic approaches for 

the evaluation of the seismic structural capacity, not considering some characteristics of the 
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structure in a deterministic way, but as probabilistic variables in defined ranges. The statistical 

study allows to perform parametric analyses that, considering a certain number of variables 

and uncertainties, let to consider different simulations referred to different buildings, 

changing according to the choice of the variables. This leads to obtain results referring to 

different classes of buildings, subjected to studies of seismic fragility.  

Therefore, the first purpose of this thesis is to analyse a masonry single structural unit, taking 

into account some geometrical and structural variabilities and the uncertainties involved in 

the problem, using statistical methods, in order to highlight which are the mechanical and 

geometrical parameters most affecting the seismic response. The analysis of the single unit 

allows to face the main purpose of this thesis which is focused on the comparison between 

the isolated structural units and some aggregations of identical structural units in row.  

Since the lack of knowledge and past studies on the subject in the literature and considering 

the difficulty inherent in the study of the seismic vulnerability of this type of buildings, as a 

starting point, it is convenient to analyse one of the simplest kind of aggregate present in 

Italian territories: the masonry aggregates in row composed by identical structural units. 

The comparison should be carried out considering two orthogonal directions of the seismic 

action: the one following the development of the aggregate and the orthogonal one. This 

allows to evaluate all the possible advantages and disadvantages deriving from the 

aggregation process and the variation on the seismic behaviour when the single structural unit 

is located in different positions within the aggregate. The comparison in statistical terms 

allows to study the seismic vulnerability, deriving the fragility curves referred to the isolated 

structural units and to the aggregations of identical structural units in row, considering two 

different directions of the seismic action. 

The assessment of the seismic vulnerability and fragility, through the comparison between 

the single structural units and the row aggregations, is at first carried out on one of the most 

diffused typological masonry in northern Italy, the clay brick masonry and, in a second 

moment, on one of the most common typological masonry in the south of Portugal, the 

limestone masonry. 

A further objective of this thesis is to analyse aggregations of structural units in row, generated 

starting from the aggregates obtained considering the medium values of the considered 

variables and changing the values of those variables in predetermined ranges. 
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This approach lets to generate aggregates with different structural units, to compare them with 

the single structural units and with the aggregations of identical structural units and to analyse 

which variables, characterizing the differences within the aggregate, most influence the 

seismic response. 

The buildings object of this work are analysed with their global behaviour, assuming that the 

orthogonal masonry walls and the slabs and the walls are well-connected. As a first part of 

the study, the activation of local mechanisms is neglected and just the in plane behaviour of 

the masonry panels is considered.  

In order to achieve these objectives, the thesis is organized in eight Chapters and three 

Annexes. The main tasks and methodologies are described below:  

1. Introduction: this chapter presents the main motivations, the research problem object of 

this thesis, highlighting the goals, the methodologies and the outlines proposed to evaluate 

the seismic fragility and vulnerability of unreinforced masonry aggregate buildings. 

2. Seismic fragility: this chapter presents an introduction of the structural reliability problem, 

with particular focus on seismic reliability of structures. The analysis of the failure 

probability, by means of the fragility curves is then exanimated, presenting and discussing 

some different approaches present in the literature. 

3. Probability computation methods through simulations: this chapter gives the main 

simulation methods used to estimate the failure probability PF, focusing among them on the 

Response Surface statistical method, used in this thesis for the fragility analyses. The 

definition of the statistical model, the regression methods and the definition of the variables 

involved in the problem are detailed. 

4. Modelling and analysis of URM buildings: this chapter provides a general description of 

the crucial aspects characterizing the modelling and the seismic analysis of existing 

Unreinforced Masonry Buildings (URM), object of this thesis, detailing the out-of-plane and 

in-plane behaviour of their resisting walls, the main numerical modelling to be adopted for 

their complex structure, with particular focus on the macro-element modelling with TreMuri 

software adopted in this thesis, and the application of the non-linear static analysis as method 

to perform the structural capacity of these types of structures. 

5. Seismic fragility assessment of masonry structures: this chapter defines the general 

methodology applied to assess the seismic fragility of unreinforced clay brick (Bologna) and 
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stone (Seixal) masonry structures: starting from the selection of the parameters defining 

different structural models (representative of different classes of buildings) a set of non-linear 

static analyses was performed to obtain the structural capacities to be compared with the 

structural demands, defined by means of the variation of the seismic action in the site 

(different registered accelerograms), in order to plot the fragility curves.  

6. Seismic fragility of clay brick masonry structures: case studies in Bologna, Italy: in 

this Chapter the criteria to select the explicit and implicit variables defining the masonry 

structures, the numerical models used to perform the non-linear static analyses, the RS models 

and the fragility curves obtained are described, referring as first step, to the isolated structural 

units and then to aggregations of identical structural units in row, in order to analyse 

advantages and disadvantages obtained in the aggregation process. Finally, the seismic 

fragility of aggregate structures with geometrical differences between the structural units in 

row is compared with that referred to the previous aggregate structures with identical 

structural units. 

7. Seismic fragility of stone masonry structures: case studies in Seixal, Portugal: this 

Chapter aims to assess the seismic vulnerability and fragility of stone masonry structures sited 

in Seixal, a small city in the south of Lisbon, in Portugal. A methodology similar to those 

applied in Chapter 6 allowed to define the most prevalent structural typologies in the study 

area, considering the variability of a set of structural and geometrical properties and to 

perform a set of non-linear static analyses, in order to obtain the fragility curves referred to 

the selected structural typologies. This application also provided the comparison between the 

masonries as isolated structural units and as aggregations of identical structural units in row. 

8. Conclusions: the main conclusions from the work developed and the identification of the 

issues that need further future developments are herein presented.  

Appendix A: this Appendix gives two Tables showing all the data related to the recordings 

of the selected earthquakes for the site of Bologna and for the site of Seixal and all the plots 

of the two groups of accelerograms. 

Appendix B: this Appendix gives the 3 design matrices containing the definition of the 

simulations of the 3 Response Surface models defined in Chapter 6. 
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Appendix C: since in Chapter 7 only the results related to the application of the positive 

actions (+Fx and +Fy) of the seismic action are showed, this Appendix gives the results related 

to the negative actions (- Fx and - Fy) for the masonry buildings sited in Seixal. 
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2.1 Introduction 

The field of civil engineering is subjected to a large number of uncertainties and variabilities, 

especially when dealing with seismic engineering (Der Kiureghian, 1996). The evaluation of 

the structural reliability against earthquakes is one of the most studied topics in seismic 

engineering, especially in the research field (Wen, 2001). In order to take into account a set 

of uncertainties and to carry out quantitative assessments of structural safety, the use of 

probabilistic methods is recommended. They allow to consider, for example, the randomness 

of earthquake events, the great uncertainty in predicting the intensity of ground motions and 

the difficulty of accurately assessing the structural capacity of structures subjected to cyclic 

loads, such as earthquakes (Buratti, 2008).  

In the past, the main known types of uncertainties and variabilities in structural and seismic 

engineering were (Der Kiureghian, 1996): (1) the inherent randomness, related to the inherent 

variability in materials and in environmental effects, such as loads and support movements; 

(2) the statistical uncertainty, which occurs during the estimation of the parameters of 

probability distributions from observational samples of limited size; and (3) the model 

uncertainty, related to the imperfection of mathematical models used to describe complex 

physical phenomena, such as models describing loads and capacities of soils or structures. 

Only the uncertainty due to inherent randomness results to be irreducible, while the statistical 

uncertainty can be reduced by collecting a greater number of samples and model uncertainty 

by using more accurate models.  

Lately, a more detailed list of sources of uncertainties was proposed by Der Kiureghian and 

Ditlevsen (2009): (1) uncertainty intrinsic in the basic random variables, such as the 

uncertainty inherent in material property constants and load values, which can be directly 

measured; (2) uncertain model error resulting from selection of the form of the probabilistic 

sub-model used to describe the distribution of basic variables; (3) uncertain modelling errors 

resulting from selection of the physical sub-models used to describe the derived variables; (4) 

statistical uncertainty in the estimation of the parameters of the probabilistic sub-model; (5) 

statistical uncertainty in the estimation of the parameters of the physical sub-models; (6) 

uncertain errors involved in measuring of observations, including errors involved in indirect 

measurement; (7) uncertainty modelled by the random variables corresponding to the derived 
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variables, which may include, in addition to all the above uncertainties, uncertain errors 

resulting from computational errors, numerical approximations or truncations. 

The above list categorizes the sources of possible uncertainties, but the uncertainties 

themselves are distinguished into aleatory or epistemic (Casti, 1990). The aleatory uncertainty 

is due to the innate and intrinsic variability of some parts of the considered model or to the 

randomness and natural unpredictability of a phenomenon. The epistemic uncertainty is 

caused by lack of sufficient data to have a reliable knowledge, by imperfections in the data 

acquisition phase or imperfections in the process of knowledge. The epistemic uncertainty 

can be reduced by increasing the knowledge on the considered physical phenomenon, while 

the aleatory one can often be better characterized by additional studies allowing an estimate 

more accurate, but it is not reducible through acquisitions of new knowledge (Rathje et al., 

2010; Rodriguez-Marek et al., 2014). 

Therefore, it is convenient to introduce the categorization of uncertainties into aleatory and 

epistemic on the use of probabilistic models. The advantage of distinction of the uncertainties 

is the clarification on which uncertainties can be reduced and which uncertainties are less 

inclined to reduction. The categorization of uncertainties is a choice that must be made by the 

model builder, and generally depends on the context and application (Buratti, 2008). 

2.2 Failure probability 

The consideration of uncertainties and variabilities in seismic engineering studies is carried 

out by means of probabilistic methods. The starting point is the probability integral, 

representing the essence of the structural reliability problem (Der Kiureghian, 1996): 

          P ( ) x xF F
f d                                                 (2.1) 

where PF is the failure probability, f(x) is the probability density function (PDF) of a vector 

of random variables x, representing time-invariant uncertain quantities influencing the state 

of the structure under consideration and F is a subset of the outcome space where failure 

occurs. By failure, usually the exceedance of a prescribed serviceability or safety limit is 

implied. For mathematical analysis, it is necessary to describe the failure domain F in an 

analytical form. Usually this is done in terms of a performance function, i.e.: 

  : ( ) 0 x xF g   (2.2) 
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where g(x) is the limit state function. The boundary of F is defined by g(x) = 0 and it is known 

as the limit-state surface. The safe set is defined by g(x) > 0. 

A reliability problem is said to be time-variant when the limit-state function depends on time, 

t. One important case is when some of the uncertain variables are stochastic in nature, as in 

  x, yg t , where  ty  is a vector of stochastic processes. For example, x may be uncertain 

mass, stiffness, strength, uncertain on the geometry of the structure or uncertain on damping 

properties, which are usually time-invariant, and  y t  may denote ground acceleration 

processes at the support points of the structure. For this class of reliability problems, the 

failure event constitutes the out-crossing of the vector process  y t  through the limit-state 

surface   0x,yg  . Usually it is necessary to solve this problem by conditioning on x, i.e.: 

   
0
min ( , ( )) 0 ( )F

t T
P P g t f d

 
  x y  x x x  (2.3) 

where T represents the structure lifetime. The conditioned failure probability for given x is 

solved by the methods of stochastic process theory, evaluating the integral of the failure 

probability. Some of these methods, based on classical random approaches, are provided by 

Pinto et al. (2004). 

Among the procedures developed for the estimation of PF, the simulation methods are the 

most used. Further details on these methods can be found in Chapter 3. 

2.3 Evaluation of the seismic fragility 

The terms “fragility” means the probability of exceeding a given state of structural 

performance (for example a limit state) and it is usually evaluated as a function of parameters 

describing the intensity of the ground motion, generally the peak ground acceleration (PGA) 

corresponding to the attainment of a certain failure of the structure. 

In the field of seismic engineering the use of the limit state function allows to establish the 

probability of attainment defined failures and therefore to establish the fragility of the 

structures. Failures are generally established by the limit states. 

The limit state refers to specific requirements a structure has to respect to and it is defined as 

the state in which the structure is at the point of not satisfying those requirements; if the 

structure exceeds that state, it means that the requirements for which it was designed are no 
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longer respected. Generally, the requirements are defined using mathematical models 

describing the geometrical and mechanical properties of the structure. These properties can 

also be described using geometrical and structural variables and to each choice of variable 

values corresponds a uniquely defined structure with uniquely defined loads. This structure 

with its loads is a pure mathematical object that does or does not satisfy a given limit state 

requirement (Buratti, 2008).  

The most used is the life safety (LS) limit state, associated to the maximum value of the 

structural capacity or to other forms of structural failure endangering the safety of people. The 

LS limit state represents a situation where the structure is at the point of losing its integrity, 

passing into an irreversible state that may have a catastrophic nature and from which the 

structure only recovers by repair or reconstruction. 

The limit state identification requires a complete understanding of the behaviour of the safety 

of systems, especially for the role of structural components and systems in ensuring adequate  

behaviour of such systems (Wen et al., 2004).  

If the limit state (LS) is identified, its probability is defined as: 

    ( ) |P LS P LS IM im P IM im    (2.4) 

where IM is a random variable (or vector) describing the intensity of the demand (ground 

motion in this case) on the system, im is the value of the ground motion corresponding to the 

attainment of the LS,  |P LS IM im is the conditional limit state probability given that IM 

= im, and the summation is taken over all the possible values of IM. The conditional 

probability  | ( )LSP LS IM im F im   is the fragility. The probability  P IM im defines 

the hazard (in earthquake engineering, the seismic hazard is defined by the cumulative 

distribution function  P IM im ) (Buratti, 2008).  

In a seismic reliability framework, the seismic fragility function is defined as the probability 

of failure of a structure conditional to the ground-motion intensity. Considering the LS limit 

state, the structural failure is attained when the limit state function, defined as the difference 

between the structural capacity (C) and the demand (D), both dependent on a set x of random 

variables and time t, is less than or equal to zero (Buratti et al. , 2010): 

 min[C( , ) D( , )] 0
t

g t t  x x  (2.5) 
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In the field of seismic engineering, according to Casciati F. (1991) and Veneziano et al. 

(1983), in the definition of the limit state function in Equation 2.5, the explicit dependence on 

time is eliminated, because the minimum value over the entire ground-motion duration is 

taken.  

The studies of the seismic fragility is usually carried out using the spectral accelerations; in 

this contest the quantities C and D can be expressed in terms on spectral acceleration, 

corresponding to the first natural period of the structure, and therefore, the limit state function 

can be rewritten: 

 a,C a,D( ) xg S S  (2.6) 

where Sa,C is the capacity spectral acceleration and Sa,D is the demand spectral acceleration. 

Following this approach Sa,D is independent from the structural capacity, because the fragility 

is conditioned on this parameter, therefore it is independent from the selected variables x 

(Buratti et al., 2010). As known, the seismic demand corresponds to the seismic action the 

structure is subjected to, thus it does not depend on the characteristics of the structure. On the 

other hand, the seismic structural capacity corresponds to the seismic action for which the 

structure failure (for example the attainment of a limit state) is reached, thus it depends on the 

characteristics of the structure and therefore it is dependent on the selected variables x. 

The evaluation of the seismic fragility by means of the spectral accelerations and depending 

on a set on x variables, is the approach used in this thesis and depth in Chapter 6 and Chapter 

7. 

2.4 The fragility curves 

The most used tool to express the seismic fragility is represented by the fragility curves, 

relating the probability of exceedance of multiple damage states to a parameter of ground 

motion severity and can therefore be regarded as a graphical representation of the seismic 

risk. In the case of building populations, the use of the fragility curves leads to a prediction 

of the proportion of the exposed stock in each damage state after an earthquake that causes a 

certain spatial distribution of ground motion severity (Rossetto and Elnashai, 2003).  

In the literature, it is possible to find a high number of practical procedures and methods 

proposed for defining seismic fragility or to directly obtain failure probability. They can be 

classified in four group (Porter et al., 2007; Pitilakis et al., 2014): (1) empirical methods, 
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based on post-observations of damages caused by past earthquakes; (2) judgmental methods, 

based on the judgment of expert opinions; (3) simplified or detailed analytical methods, based 

on analytical simulations; (4) hybrid methods, derived from combinations of the previous. 

Empirical curves use the building damage distributions reported in post-earthquake surveys 

as their statistical basis. This approach was used, for example, by  Gülkan and Sözen (1999) 

and Yücemen et al., (2004), using some basic structural information (e.g., number of stories, 

structural system), material properties (e.g., in-situ concrete strength), apparent structural 

deficiencies (e.g., vertical and plan irregularities), and building site location were collected 

with damage data through a post-earthquake survey. This information was utilized to arrive 

at a rating score or index in which the numerical value usually determines whether the 

building is safe or unsafe, with respect to the traditional goal of assuring life safety. Other 

procedures utilized the collected information for developing seismic assessment tools in the 

form of fragility curves.  

These curves are highly specific to a particular seismo-tectonic, geotechnical and built-

environment (Rossetto and Elnashai, 2003). The reliability of these methods is achieved if the 

performance of a large number of structural systems is considered and if many reliable 

empirical data are used, considering a wide range of ground motions. Therefore, these results 

can only be achieved by combining data from different earthquakes and locations. However, 

the rare frequency of large seismic events on densely populated areas only allows the 

collection of scarce and concentrated observational data in the range of low seismic events, 

with low-damage and low-ground motion. The low level of refinement in terms of both 

structure and damage classification characterizing the statistics of post-earthquake surveys 

therefore represents a real obstacle to combining damage data for the populations of different 

composition. 

In the most recent scenario, there are several works aimed to estimate fragility curves for 

historic masonry buildings present in Italian historic centres with empirical methods. Between 

these, Rosti et al. (2019) developed empirical fragility curves for residential masonry 

buildings, by statistically processing post-earthquake damage data collected after Italian 

seismic events in the time span 1980-2009, distinguishing 5 levels of damage and evaluating 

the PGA from shakemaps. Once some vulnerability classes of decreasing vulnerability were 

defined, starting from the typological classification of the masonry building stock, 
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empirically-derived fragility curves were then obtained and implemented in the Italian 

national platform for evaluating seismic risk at territorial scale and applied to the Tuscany 

region, as an example.  

Furthermore, Cocco et al. (2019) proposed the application of two different seismic 

vulnerability methodologies on the historic centre of Campotosto, in Italy, which was hit by 

the last 2016 Central Italy earthquake. The first is an empirical method, applied considering 

a large stock of 130 buildings, which was calibrated by the authors after the 2009 L’Aquila 

earthquake for historical centres. The latter, is a method based on analytical formulations dealt 

with by the Vulnus software, developed at the University of Padua in Italy, which was used 

for evaluating the seismic vulnerability of an aggregate building, representative of the historic 

centre. Also Donà et al. (2019) used the Vulnus software to develop a methodology to 

estimate the fragility of the Italian masonry buildings stock grouped in macro-typologies 

ISTAT (National Institute of Statistics), i.e. defined by construction age and number of 

stories; judgments on the quality of information are also used to provide an upper and lower 

fragility limit. 

The judgmental methods provide expert opinions of civil engineers with experience in the 

field of seismic engineering, in order to estimate the probable distributions of damage within 

classes of populations subject to earthquakes of different intensity. Probability distribution 

functions are fit to the expert predictions to represent the range of damage estimates at each 

intensity level. The probability of a specified damage state is derived from the resulting 

distributions and plotted against the corresponding ground motion level to obtain a set of 

vulnerability curves, and associated uncertainty bounds (Rossetto and Elnashai, 2003). 

Experts are asked to provide estimates of damage, without limitations on the number of 

structural types, so the curves can be easily obtained by including all the factors influencing 

the seismic response of different structures. Clearly, the reliability of these methods is very 

low because it is strongly influenced by the individual experience of the consulted experts. 

One of the first applications of this method to civil infrastructures subject to earthquakes was 

the ATC relied on expert opinion with limited observational data from the 1971 San Fernando 

earthquake when preparing the ATC-13 report (ATC, 1985).  The reliability of the fragilities 

in ATC-13, which were identified in terms of damage state probability matrices, is 
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questionable in that the fragilities are subjective and the associated degree of conservatism is 

unknown (Rossetto and Elnashai, 2003). 

Moreover, the well-known loss estimation software package, HAZUS, developed under the 

sponsorship of FEMA (FEMA, 2003), is mainly based on expert opinion. HAZUS 

incorporates fragilities for 36 categories of building and 4 damage states, where the fragilities 

are modelled by lognormal distributions with the distribution parameters based primarily on 

expert opinion. The methodology classifies the buildings in terms of building type on the 

basis of their height and structural system and seismic design level on the basis of the seismic 

standard used in their design, the seismic zones in which they are built, their design vintage, 

and their use (Kircher et al., 1997a). Based on this classification, building capacity is 

represented by a non-linear static push-over curves in terms of base shear and roof 

displacement, and building response to an input scenario earthquake, considering the local 

site conditions, is determined with the capacity spectrum method. The building response is 

then entered into the associated built-in fragility curves defined at the thresholds of four 

discrete damage states (slight, moderate, extensive, and complete), defined separately for the 

structural system and for drift and acceleration sensitive non-structural components, to 

perform the loss estimation calculations given the occupancy class of the building (e.g., 

residential, commercial) (Kircher et al., 1997b). Whitman et al. (1997) observed that the 

losses estimated using HAZUS should be viewed with caution since they may be off by a 

factor of two. But the most significant limitation is that, HAZUS does not provide for the 

analysis or propagation of uncertainty (Celik, 2007). 

Analytical fragility curves adopt damage distributions simulated from the analyses of 

structural models with varying comprehensiveness, establishing the relation between 

structural response and earthquake ground motion intensity. Usually, these methods involve 

a considerable computational effort and present limitations in modelling capabilities. The 

choices made for the analysis method, structural idealisation, seismic hazard and damage 

models strongly influence the derived curves and have been seen to cause significant 

discrepancies in seismic risk assessments made by different authorities for the same location, 

structure type and seismicity (Priestley, 1998). Their application may therefore not be 

justified unless an appropriate degree of uncertainty in the structural models and ground 

motions are considered. 
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There are several methods available in the literature for the analytical derivation of fragility 

functions for building typologies.  

One of the first procedure to evaluate fragility curves taking into account uncertainties in both 

ground-motion and structure was proposed by Hwang and Jaw (1990). Following this method, 

the uncertainty in each parameter defining the earthquake-structure system is characterized 

by numerous characteristic values selected taking into account the range of uncertainty of the 

parameter. Samples of structures and earthquake motions are considered from the 

combination of these representative values, and then the latin hypercube sampling technique 

is used to construct the samples of earthquake structure system. For each sample, the non-

linear seismic analysis is performed to produce response data, analysed in a statistical way. 

Five limit states representing various degrees of structural damage are defined and the 

statistics of the structural capacity corresponding to each limit state can be established. The 

fragility curve is generated by evaluating the limit state probabilities at different levels of 

peak ground acceleration.  

Singhal and Kiremidjian (1996) used Monte Carlo simulations, considering the uncertainty 

in structural capacity and demand, to develop fragility curves for low-, mid-, and high-rise 

RC frames, designed using seismic provisions. They applied non-linear time history analyses 

to frame models randomly associated to simulated ground motion records. The so-called 

stripe analyses (i.e. incremental dynamic analyses with ground motions scaled to different 

intensity levels (Vamvatsikos and Cornell, 2002)) allowed to find the relationships between 

the structural demand and the seismic intensity. The structural demand at each seismic 

intensity level was assessed using ground motions scaled to that particular intensity level and 

was represented by a lognormal probability density function. The lognormal model of demand 

was then utilized to compute fragility estimates (for the performance limits considered) at that 

particular level. Finally, fragility curves were represented by lognormal cumulative 

distribution functions that were fit to individual fragility estimates, computed at several 

seismic intensity levels.  

Staying in the field of RC structures, Mosalam et al. (1997) developed fragility curves for RC 

frames with and without masonry infill walls. The models used single degree of freedom 

systems (SDOF) performing non-linear static push-over analyses of the frame models, which 

were generated using Monte Carlo simulations to take into account the uncertainty in 
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structural material properties. The structural responses of these SDOF models to each ground 

motion were used to determine the estimates of fragility and each model was paired with each 

ground motion rather than randomly. 

Further analytical methods were developed  using fragility curves obtained through a response 

surface with random block effects approach (Franchin et al., 2003a; Franchin et al., 2003b; 

Schotanus, et al., 2004). This procedure allows to take into account uncertainties in both 

ground-motion and structure and can be used in conjunction with finite element method 

(FEM) models. Structural capacity is approximated by a polynomial response surface as a 

function of the uncertain structural parameters. Uncertainty in ground-motion or other 

characteristics of the materials and the geometry are taken into account implicitly introducing 

random factors in the response surface model. Data required to calibrate the model are 

collected performing a set of non-linear incremental analysis planned according to the theory 

of the Design of Experiments (Buratti et al., 2006; Buratti et al., 2007). The response surface 

method with random block effects was also investigated by the author (Battaglia et al., 2018; 

Battaglia et al., 2019) and further details can be found in Chapter 3 and some case study 

applications in Chapter 6. 

Recently other methods were proposed to compute fragility function taking in account 

different aspects involved in the reliability problem: for example, the possibility of multiple 

failure modes to occur and their reciprocal interaction, the uncertainty in structural capacity, 

the influence on dynamic response of the variability of system parameters (Gardoni et al., 

2002; Gardoni et al., 2003; Lupoi et al., 2006). 

Several methods applied to masonry buildings were developed during the past years 

(Lagomarsino and Cattari, 2014). Erberik (2008) proposed the generation of fragility 

functions for the masonry typologies in Turkey, taking into account structural variations 

within each building typology (e.g. number of storeys, load-bearing wall material, regularity 

in plan and the arrangement of walls). The mechanical properties of masonry were considered 

as aleatory variables and treated by the Latin Hypercube Sampling Method. The buildings 

capacity curves were obtained through non-linear static analyses. (Rota et al., 2010) proposed 

a methodology for the derivation of fragility functions for masonry buildings based on the 

convolution between the probability density function of specified damage limit states, 

determined based on non-linear static analyses, and the probability distribution of the seismic 
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demand obtained from non-linear dynamic time-history analyses. In this case, the mechanical 

properties of masonry were considered as aleatory variables and treated by the Monte Carlo 

Method. 

Among the most recent analytical estimation of the fragility curves, several works developed 

fragility analyses on buildings sited in the Portuguese territory. Simões et al. (2015) derived 

fragility curves for four type of old masonry buildings in Lisbon, which are still used for 

housing and services: the buildings were modelled with the equivalent frame model approach 

and analysed with non-linear static analyses. Then, a probabilistic performance-based 

assessment was carried out and the fragility curves for each building type derived. 

Lamego et al. (2017) and Milošević et al. (2019) performed non-linear dynamic and static 

analyses, respectively, to evaluate the structural capacity of old building stocks, consisting of 

existing mixed masonry-reinforced concrete structures, with application to a neighbourhood 

in Lisbon, using the equivalent frame method. The main strength of these procedures is the 

ability to explicitly quantify the various contributions of uncertainty to the dispersion, 

associated to those on the structural capacity (taking into account both aleatory and epistemic 

sources) and on the seismic input. Finally, fragility curves were computed according to the 

HAZUS methodology, with the seismic intensity being expressed in terms of spectral 

displacement. 

Simões et al. (2019a and 2019b) derived fragility functions for unreinforced masonry 

buildings, with reference to a typical prototype building with five storeys high and to different 

classes of buildings, respectively, obtained starting from the prototype. Different approaches 

are considered for the generation of the corresponding fragility functions and for the 

evaluation of the propagation of uncertainties. The contributions for the dispersion of the 

fragility functions account for the variability in the definition of the capacity, the aleatory 

uncertainty in the definition of the seismic demand and the aleatory uncertainty in the 

definition of the modified/floor response spectrum, when the local mechanisms are located in 

the upper level of the building. In the end, the individual fragility curves are properly 

combined in order to define a single fragility curve for the class of buildings. 

The hybrid methods try to compensate for the scarcity of observational data, subjectivity of 

judgemental data and modelling deficiencies of analytical procedures by combining data from 

the different sources. Existing examples of hybrid curves typically involve the modification 
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of analytical or judgement-based relationships with observational data. However, in most 

cases the data deriving from the additional sources are very limited in quantity and scope. In 

some cases, these data are further supplemented with experimental test results. However, due 

to the cost and time required for full-scale testing and since small-scale testing is non 

definitive on similitude grounds, a very limited number of parameters can be investigated and 

parametric variations are not possible. Experimental data are therefore currently only used for 

verification purposes, rather than as an additional source of building damage statistics.  

The above motioned application ATC-13 and the ATC-40 (ATC-40, 1995), though based 

heavily on expert opinion, also incorporate limited observational data from the San Fernando 

earthquake on 1971 and Northridge earthquake on 1994, respectively. 

A further application by Singhal and Kiremidjian (1996) adopts a Bayesian technique to 

update analytical curves for low-rise frames with observational damage data from a tagging 

survey of only 84 buildings affected by the 1994 Northridge earthquake (Singhal and 

Kiremidjian, 1997). Observations taken from a single earthquake event will cover only a small 

range of ground motions. Nevertheless, their inclusion may have a significant influence on 

the vulnerability ant it can lead to a greater uncertainty. Hence, the consideration of multiple 

data sources is necessary for the correct determination of vulnerability curve reliability. 

Shinozuka et al. (2000) developed both empirical and analytical fragility curves for bridges. 

The empirical fragility curves are obtained using the observed bridge damage data from the 

1995 Kobe earthquake. On the contrary, the analytical fragility curves are developed by 

means of data that were simulated from the non-linear time history analyses of stochastically 

generated models of two bridges, considering the uncertainty in structural material properties. 

Both fragility curves were represented by lognormal distribution functions with the 

distribution parameters estimated using the maximum likelihood method.  

2.5 Damage levels 

The fragility curves provide the probability of a structural system, subject to an assigned 

seismic input, to overcome certain damage levels. A fundamental step in defining the curves 

is the identification of the damage thresholds, which define the different damage levels. There 

are many ways in which it is possible to define the damage thresholds and they are not often 

directly related each other (Hill and Rossetto, 2008). Certainly, for each identified damage 

level a different fragility curve is identified. One of the most common and most used 
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classification of damage levels is that referred to European Macroseismic Scale (EMS 98) 

(Grünthal, 1998), defining 5 increasing damage levels from 1 (no structural damage, slight 

non-structural damage) to damage 5 (total or near total collapse), plus zero damage (0).  

Since the way in which a building deforms under earthquake loading depends on the building 

type, the European Macroseismic Scale is distinguished between the case of masonry 

buildings and that of the reinforced concrete buildings. Table 2.1 shows the classification of 

the damage levels, defined in the European Macroseismic Scale, for masonry buildings, as in 

this work, the seismic fragility of unreinforced masonry buildings is investigated. 

In this thesis the fragility curves are related to the attainment of the damage level 5, as the 

goal is the evaluation of the seismic fragility of unreinforced masonry buildings at the collapse 

(total or near). 

Table 2.1: Classification of the damage levels referred to masonry buildings. 
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3.1 Introduction 

A large number of attempts to develop efficient algorithms for computing probability 

integrals in Equation 2.1 have been studied in these years by the researchers. A simple 

integration, analytic or numeric, usually is not possible because of the arbitrary nature of the 

integration domain and the typically high dimension of the problem. Often the size of x is 

large and, consequently, indirect approaches for the evaluation of the integral are essential. 

Most of these methods need modification of the random variables in the original space dx 

, where d is the dimension of the problem, into the standard normal space, du  , where each 

component of the vector u is associated to an independent central unit Gaussian standard 

distributions. The transformation, which is nonlinear for non-Gaussian random variables, is 

expressed as u = u(x), where u has the standard normal density. These transformations, u = 

Txu (x) and x = Tux (u), are established by applying for example the Rosenblatt’s or the Nataf’s 

transformation (Ditlevsen and Madsen, 1996; Pinto et al., 2004). 

Concerning the performance function gx, it can only be specified explicitly for simple and 

particular cases. However, in most cases of practical interest, the function gx is not known 

explicitly in terms on an analytically expression. In cases where a deterministic FEM analysis 

code is used to compute the structural response, the performance function is known only point 

wise, i.e. the performance gi = g(x(i)) can be computed for each vector x(i). Using the 

transformations mentioned above, the performance function  gu defined in the standard normal 

space, can be determined as follows: 

       u uxg g g T u x u  (3.1) 

In this way, the evaluation of the performance at a single point u(i) in the standard normal 

space requires a transformation into the original space, a complete run of the FEM model and 

the computation of the performance form the response. The computational cost of evaluating 

the failure probability is governed by the number of structural analyses that have to be carried 

out. Therefore, in view of practicability and efficiency Schuëller et al. (2004) suggested to 

determine the probability of failure within a specified confidence interval such that the 

number of required structural analyses is small, when the problem in structural reliability 

using deterministic FEM is studied. 
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3.2 Monte Carlo simulations 

A role of great importance on the estimation of the PF expressed in Equation 2.1 is held by 

the simulation methods and, among them, the ones based on traditional Monte Carlo sampling 

are the most used. 

The Monte Carlo method is a wide class of computational methods based on random sampling 

to obtain numerical results. The method is used to derive estimates through simulations. It is 

based on an algorithm generating a series of uncorrelated numbers, which follow the 

probability distribution that is supposed to have the phenomenon to be investigated. The 

Monte Carlo simulation calculates a series of possible realizations of the phenomenon under 

examination, with the weight of the probability of this eventuality, trying to explore in a dense 

way the whole space of the parameters of the phenomenon. Once the random sample has been 

calculated, the simulation performs measurements of the quantities of interest on this sample. 

The Monte Carlo simulation is well performed if the average value of these measures on the 

realizations of the system converges to the true value. 

For the estimate of the PF an indicator function I f (x) is introduced which assumes a value 

equal to 1 if x is in the failure domain and equal to 0 otherwise; thus, then the Integral in 

Equation 2.1 can be rewritten as follows: 

       F f fF S
P I f d E I


  x

x x x x  (3.2) 

where that failure probability is the expected value of the indicator function according to the 

probability density function fx (x). Therefore, in Monte Carlo simulation an estimator of the 

form expressed in Equation 3.3 is used: 

  
1

1
F

N
i

f
i

P I
N 

  ( )ˆ x  (3.3) 

where the samples i( )x  in Equation 3.3 are independently identically distributed according to 

f (x). It can be shown that the estimator in Equation 3.3 is unbiased (Pinto et al., 2004). The 

greatest advantage of Monte Carlo is its generality; in fact, it can be applied to almost any 

class of problems. Furthermore, in Monte Carlo simulation the convergence rate is 

independent of the dimensionality of the random vector x. Its main disadvantage is its 

inefficiency in estimating small failure probabilities PF due to the large number (proportional 
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to 1/ PF) of samples or equivalently system analyses needed to achieve an acceptable level of 

accuracy. Many variance reducing techniques have been proposed in the literature, e.g. 

importance sampling, directional sampling, importance sampling using design points, 

adaptive importance sampling, subset simulation, etc. (Buratti, 2008). It should be noted that 

some of these methods, directional simulation for example, are usually limited by the 

dimensionality of the problem. 

3.3 Response Surface method 

An alternative approach form computing probabilities of the type in Equation 2.1 is to 

substitute the integration boundary by an approximating response surface and then perform 

the integration by an appropriate means without engaging the actual limit state function. This 

approach is particularly useful when the limit state function is algorithmic and its gradient is 

difficult to compute. Typically, the response surface is constructed computing gxat a 

number of points and then a polynomial surface is fitted to the points by the least squares 

method. 

The use of the response surface methodology is strongly influenced by the selection of the 

experiment points, which can be obtained following the theory of Design of Experiments, 

explained in the following. According to this method, the number of simulations needed to 

calibrate the model grows as the number of variables in the model increases. Hence, the model 

is not computationally efficient in very high dimensions. Nevertheless, this problem can be 

solved using response surfaces with random effects (Faravelli, 1989) allowing to take into 

account the effects of some of the variables involved in the problem implicitly. In this way, it 

is possible to greatly increase the computational efficiency but, the accuracy is reduced. 

The Response Surface (RS) method is based on the definition of a statistical model expressing 

a structural response parameter as a function of a set of variables, called factors in the 

statistical language; the values assumed from the factors are called levels. The RS is typically 

based on a polynomial function, and it is possible to find many applications in different 

research fields (Box and Draper, 1987; Khuri and Cornell, 1996; Searle et al, 1992; 

Rajashekhar and Ellingwood, 1993). 
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3.3.1 Standard Response Surface 

The response variable is the measured quantity the value of which is assumed to be dependent 

upon the levels of the factors. The true value of the response corresponding to any particular 

combination of the factor levels and in the absence of experimental error of any kind is 

denoted by η. The dependence of η on the factors can be written as: 

 1 2( , ,... ) kx x x   (3.4) 

where  is an unknown function, called the true response function, and it is assumed to be 

continuous. Considering a Taylor series expansion as polynomial equation on the variables, 

the Equation 3.4 can be written as:   

 0
1 1 1

k k k

i i ij i j
i i j

x x x
  

        (3.5) 

where the coefficients i  are the values of the first order partial derivatives and the coefficients 

ij are the values of the second order partial derivatives. 

A statistical model of this kind is called fixed effect model because the effects are related to a 

finite set of levels of the factors. The model in Equation 3.5 is non-linear as far as the xi 

variables are concerned but is linear with regard to . The latter are called regression 

coefficients or parameters. The coefficients i are the values of the first order partial 

derivatives and are referred to as first-order effects. The coefficients ij are defined as the 

values of the second order partial derivatives and are called second-order effects. The 

structural form of η is usually unknown and therefore an approximation is used through a 

polynomial or some type of empirical model equation. Furthermore, as far as experimental 

data is concerned, the real value of the response is not known and it is substituted by the 

expected values of the response parameter E(y). The model in Eq. (3.5) can rewritten as 

(Searle et al., 1992; Khuri and Cornell, 1996): 

 ( ) ( )  f x TE y    (3.6) 

where ( )f x  is a vector of p monomials of x: 

   2 2
1 1 1 2 1 1 11                               

T

k k k k k kx x x x x x x x x x x x         f x  (3.7) 
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andβ is the vector of regression parameters: 

 
T

0 1 11 12 1 1                                    ,β k kk k k kβ β β β β β β β  (3.8) 

Considering n observations and the errors i of E(yi) respect to the observed response values: 

 T( ) ( ) ( 1,..., )i i i i iy E y y i N     f x β                   (3.9) 

Writing the equation of the model in matrix notation: 

 = +y Xβ   (3.10) 

where y is a 1 × n vector collecting the observed response values 

  T

1= ny yy  (3.11) 

X is a n × p matrix, called design matrix, whose i-th row is the vector of monomials T( )f x

referred to the values of the variables x at the i-th trial 
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T
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f n

 
 
 
 
 


(x )

X =

(x )

 (3.12) 

and is a 1 × n vector collecting the errors with respect to E(yi): 

  T

1ε ε ε n  (3.13) 

As an example, if 2 factors and 6 experiments are considered, the model in Equation 3.10 can 

be written as: 
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 (3.14) 

where xi,j is the j-th level of the i-th factor. 
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According to Khuri and Cornell (1996) Khuri and Searle et al. (1992) the errors are normally 

distributed with constant variance (
Usually, the regression parameters and the variance 


can be estimated by the ordinary least squares method (Buratti et al., 2010), described in 

the following paragraph. 

3.3.1.1 Ordinary least square method 

The ordinary least square method is one of the simplest in statistics and allows to estimate the 

regression coefficients, given a model in the form of Equation 3.10. 

About the errors ε, some assumptions have to be follow: 

1. Random errors have zero mean and common variance, σ2; 

2. Random errors εi are mutually independent in the statistical sense; 

3. Random errors εi are normally distributed. 

The method of least squares selects as estimates for the unknown parameters in Equation 3.10, 

some values, b0, b1, ..., bk, which minimize the quantity: 

      2

1

    β ε ε y Xβ y Xβ
n

TT
i

i

R ε  (3.15) 

Setting to zero the derivatives of (3.15) with respect to β is obtained as follows: 

 X Xβ-X y=0T T
 (3.16) 

from which the estimates of the least squares estimates of the elements of β can be obtained: 

   1
b X X X yT T  (3.17) 

It is noted that this method does not require the value of the variance of the error to be known. 

The statistical properties of the estimator b derive from the assumptions concerning the 

elements of ε. The expectation vector of b is: 

          1 1 1T T T T T TE E E E
              

b = X X X y = X X X Xβ ε β X X X ε β  (3.18) 

Thus, b is an unbiased estimator of β. The variance-covariance matrix of the vector of the 

estimates is: 
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          1 1 1
var var varT T T T T

bb =
   

  
C = b X X X y = X X X y X X X  (3.19) 

and, since the covariance matrix of the vector y can be written (accordingly to assumption 1) 

as follows: 

        2
εε εvar var σC = y y Xβ y Xβ εε ε C I

T T
YY n= E E            (3.20) 

the variance-covariance matrix of b can be rewritten as: 

     1 2

εvar σ


C = b X XT

bb =  (3.21) 

Along the main diagonal of the matrix Cbb, the ii-th element, is the variance of bi. The ij-th 

element of Cbb is the covariance between the elements bi and bj of b. If the errors are jointly 

normally distributed, then b is distributed as a normal multivariate: 

   1T 2
εσN

 
  

b β X X  (3.22) 

Another important property of the estimator b is that it produces the minimum variance 

estimates of the elements of β, therefore it is called best linear estimator of β. One of the 

purposes in obtaining a fitted model is to use the model for predicting response values at 

points throughout the experimental region. Let x denote a p×1 vector the elements of which 

correspond to the elements of a row of the matrix X in Equation 3.10. An expression for the 

predicted value of the response, at any point x in the experimental region is: 

  ˆ x xby   (3.23) 

A measure of the precision of the prediction  ˆ xy  is expressed as: 

        1 2
εvar var var σT T T Ty


    ˆ x f(x) b f(x) b f(x) f(x) X X f(x)  (3.24) 

The variance of the prediction depends on x, i.e. it is not constant throughout the experimental 

region. In Equation 3.19 for the variance-covariance matrix of b, as well as in Equation 3.24 

for the variance of  ˆ xy , the variance of errors
2
εσ  was assumed known. This assumption is 

seldom true and usually an estimate 
2
εσ  is needed. The estimate is obtained from the analysis 
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of the data values. For the general case where the fitted model contains p parameters and the 

total number of observations is n (n > p), the estimate, s2, is computed from: 

      2 2

1

1 1 1 1
y Xb y Xb b

n
T

i
i

s ε S SSE
n p n p n p n p

     
     (3.25) 

where SSE is the sum of squared residuals. The divisor n – p is the degrees of freedom of 

the estimator s2, which is an unbiased estimator of 2
εσ . 

3.3.2 Random block effects  

The standard formulation of RS cannot be used for applications in earthquake engineering 

because not all the random variables on which the structural behaviour depends can be 

expressed in explicit form as reported in Equation 3.10. In fact, the evaluation of the seismic 

fragility requires to take the variability of the seismic action and mechanical parameters over 

the structure into account. As for the first aspect, the earthquake ground-motion is a non-

stationary process, with amplitude and frequency content variable in time; therefore a fully 

probabilistic description of it would require a big amount of variables. 

The Response Surface method provides good results only if the number of the variables 

involved in the problem is low (6-8 variables), in fact it is a valid alternative to Monte Carlo 

method, regarding the computational effort (Franchin et al., 2003a; Schotanus et al., 2004). 

Whereas, if the number of variables is high, a large amount of simulations is needed. In order 

to reduce the number of variables, they are divided in explicit (xE), considered as random 

variables explicitly, and implicit (xI), considered implicitly (Veneziano et al., 1983; Faravelli, 

1989; Casciati and Faravelli, 1991). 

The formulation of the model given in the previous Sections needs to be extended, in order to 

take into account the differences between fixed and random factors. The statistical model that 

also takes into account implicit variables is called mixed model and the effects of random 

variables (xI) are considered in additive form (they do not interact with explicit variables) 

(Franchin et al., 2003b). Thus, according to Khuri and Cornell (1996) and Searle et al. (1992), 

the equation of the Response Surface is modified by adding the effect of the random implicit 

variables, through a set of random factors, j (j = 1, ... ,r) (Buratti et al., 2010). The generic 

observation can be expressed as: 
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     f β
r

T
j

j

y  (3.26) 

Moreover, the hypothesis that j are independent random variables normally distributed with 

zero mean and variance 
2
δσ

j
 was introduced (Franchin et al., 2003b). 

The N observations were divided in bj blocks, each corresponding to different values of the 

implicit variables j. The blocks are repeated nj times until the number of observations N is 

reached; whenever the block is repeated, a different value of the variable j is considered. 

Thus, Equation 3.26 can be written in matrix form: 

 = + +y Xβ Zδ   (3.27) 

where Tr 
TT contains as many vectors as the number (r) of random variables; each 

vector j is divided into blocks and each block corresponds to a different value of the variable 

j. 

Instead Z is a Boolean matrix (
1

r

jj
N b


 ), containing value 1 every time the corresponding 

block is associated with the considered observation, and 0 in the opposite case. Z can be 

considered as divided into r sub-matrices ( 1[ ... ]rZ Z Z ) where each jZ  is a jN b Boolean 

matrix. Thus, the term Z  can be written as: 

 
1

1
1

[ ... ]Z Z Z Z
r

r i i
i

r



 
   
  




 


 (3.28) 

Thus, Equation 3.27 can be rewritten as: 

 
1

= + +
r

i i
i
y Xβ Z    (3.29) 

As an example if 4 experiments and 2 random factor with 2 levels each are considered the 

vector δ and matrix Z can be written as: 

 
T

11 1 2 2 1 2 2δ δ δ δ  , , , ,δ =  (3.30) 
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 1 2

1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1
         

0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1

Z Z Z

     
     
       
     
     
     

 (3.31) 

3.3.3 Design of the experiments theory 

A set of numerical simulations is needed to obtain the data to calibrate the Response Surface; 

usually, in the seismic engineering field, each simulation corresponds to a different structural 

analysis; in this work, the simulations are non-linear static analyses of masonry structures 

subjected to seismic actions. 

The Design of Experiment Theory (Box and Draper, 1987; Khuri and Cornell, 1996) allows 

to define the criteria necessary to establish the number of simulations (each simulation is 

referred to a different analysis) and the region of interest for the explicit variables influencing 

the response, selecting the range of values and the number of the values of each variable. 

Typically, this region is cuboidal or spherical. All the variables are given by normal 

distributions, from which the values of the variables are defined.  

The use of coded variables in place of the input variables facilitates the construction of the 

experimental designs. Coding removes the units of measurements of the input variables and 

consequently the distances measured along the axes of the coded variables in a k-dimensional 

space are standardized. A convenient coding formula for defining the coded variables xi is 

(Box and Draper, 1987):  

 
2 ( )i iL iH

i
iH iL

X X X
x

X X

 



 (3.32) 

where iLX  and iHX  are the low and high levels of the factor iX , respectively. If only two 

levels are considered for a factor, Equation 3.32 gives the notation ±1. The region defined by 

those two levels is a cuboidal region in a k-dimensional space. Geometrically, the cuboidal 

region has 2k vertices where each vertex is defined by the coordinate ±1 settings in 1 2, , , kx x x

. When a factor has three levels and the mid-level is in the middle between the lower and 

upper levels, the coding formula in Equation 3.32 produces the coded levels xi = -1, 0, +1 

associated with the low, middle and high values of iX , respectively. When all factors have 
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three levels, again the region in the coded variables is a k-dimensional cuboidal region. 

However, the number of factor combinations is now 3k and 2k of the combinations are the 

vertices of the k-dimensional cuboidal region, the remaining 3k − 2k combinations define the 

centroids of all the lower dimensional boundaries of the k-dimensional cube along with the 

centroid, 0, of the cuboidal region. Figures 3.1(a) and (b) show two examples of designs with 

3 levels for 2 and 3 factors respectively. 

 
(a)                                                                                    (b) 

Figure 3.1: Design of experiment with (a) 2 variables and (b) 3 variables. 

The use of coded variables rather than the original input variables when fitting polynomial 

models allows to have computational ease and to increase the accuracy in estimating the 

model coefficients and to improve the interpretability of the coefficient estimates. 

3.3.3.1 Central composite design 

Box and Wilson (1951) introduced the class of central composite designs (CCD) for problems 

involving response surfaces. A central composite design consist of: 

• a 2k factorial design, where the factor levels are coded to the usual -1, +1 values. This 

is called factorial portion of the design; 

• n0 centre points; 

• two axial points on the axes of each design variable at a distance of α from the design 

centre. This is called axial portion of the design. 

A 2k factorial design consists of all the 2k points with levels    1 2, , , 1, 1, , 1kx x x       

where every possible combination of + and – signs is selected in turn. Table 3.1 shows an 
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example of factorial design with 3 variables (23 = 8 simulations), expressed both with their 

real values and the coded values (according to the Equation 3.32). 

Table 3.1: Example of a factorial design with 3 variables. 
Real values Coded values Response 

X1 X2 X3 x1 x2 x3 y 
200 32 10 -1 -1 -1 0.15 
150 32 10 1 -1 -1 0.23 
200 46 10 -1 1 -1 0.06 
150 46 10 1 1 -1 0.59 
200 32 30 -1 -1 1 0.86 
150 32 30 1 -1 1 0.78 
200 46 30 -1 1 1 0.19 
150 46 30 1 1 1 0.46 

 

Figure 3.1(b) represents the factorial design with coded variables described in Table 3.1. 

However, a factorial design does not suffice in order to estimate all the parameters of a 

complete polynomial response surface of second degree. For this reason, in CCD, centre 

points and axial points are added to the factorial design. Figure 3.2 shows the points added to 

the 2k factorial design. 

 
Figure 3.2: Example of a cuboidal region of the Central Composite Design. 

The total number of experiments to run is therefore N = 2k + 2k + n0. Usually the amount of 

the central points n0 is set equal to the number of the variables (3 in this case) and the value 

of α is greater than 1. As an example a design matrix with 3 (k) variables and N = 17 (2k = 8 

variables, n0 = 3 and 2k = 6 axial points with α = 1.4) has the form: 
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Table 3.2: Example of a central composite design with 17 simulations. 

 

3.3.3.2 Design for mixed model 

The central composite design, in its standard formulation, allows to take into account fixed 

effect only. For this reason, it needs to be modified in order to be used with mixed models. In 

fact, the central composite design must be partitioned in blocks to which different values of 

the random factors can be associated. A block is a homogenous group of simulations affected 

by the same value of the considered implicit variable. In order to ensure a good regression 

Box and Draper (1987) suggest some rules for the subdivision of the simulations into blocks. 

In general, it is convenient to distinguish the factorial part from the axial part.  

For example, it is possible to consider one implicit variable with 3 values (accordingly 3 

blocks are obtained). The general rule provides for the association of 2 blocks to the factorial 

part and 1 block to the axial part. Considering the example in Table 3.2, the associations of 

the blocks to the factorial part is such as to have one block (I) when the result of the product 

between the explicit variables is positive (+) and the other block (II) when the product is 

negative (-). The third block (III) is associated to the axial part and the central points are 

associated to all the 3 blocks (I, II, III), as shown in Table 3.3. 

Table 3.3: Example of a central composite design with 17 simulations and 3 blocks. 

 

Then the group of 17 simulations will be repeat, always maintaining the same values of the 

explicit variables, according to the choice of the implicit variables and to the division in 

blocks, in order to obtain n simulations. 

 

 

x1 -1 1 -1 1 -1 1 -1 1 1.4 -1.4 0 0 0 0 0 0 0 

x2 -1 -1 1 1 -1 -1 1 1 0 0 1.4 -1.4 0 0 0 0 0 

x3 -1 -1 -1 -1 1 1 1 1 0 0 0 0 -1.4 1.4 0 0 0 

x1 -1 1 -1 1 -1 1 -1 1 1.4 -1.4 0 0 0 0 0 0 0 

x2 -1 -1 1 1 -1 -1 1 1 0 0 1.4 -1.4 0 0 0 0 0 

x3 -1 -1 -1 -1 1 1 1 1 0 0 0 0 -1.4 1.4 0 0 0 

BLOCK II I I II I II II I III III III III III III I II III 
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4. MODELLING AND ANALYSIS OF URM BUILDINGS 
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4.1 Introduction 

Masonry buildings represent one of the most common building typology and one of the most 

vulnerable too (Lagomarsino and Magenes, 2006). They are typically complex structures and 

there is lack of knowledge and information concerning the behaviour of their structural 

systems, particularly in what regards their seismic response. The structure is made of natural 

or artificial elements (that can be stone, brick, adobe etc.) over one another and usually 

connected in different way by mortar. Typically, these structures are more massive than 

today’s structures and carry their actions primarily in compression.  

In the unreinforced masonry buildings (URM) the structure is composed of load-bearing 

exterior and interior walls mostly bearing the weight and additional vertical loads, as well as 

the horizontal loads. Floors and roof in this building type are usually made of light material 

like wood, and sometimes they are Reinforced Concrete (RC) slabs, acting as flexible and 

rigid diaphragms, respectively. The vertical and horizontal actions are transmitted to the load-

bearing walls by either floors/roof bond beams or contacting friction between the walls top 

surface and floors/roof components (i.e. without any additional connecting elements). 

The behaviour of URM buildings can be classified into two main categories: buildings with 

and without box-behaviour. The term box-behaviour refers to a global seismic response of 

URM buildings that prevents the out-of-plane mechanisms of the walls. In the case of a 

building with box-behaviour, if disintegration of the masonry walls is prevented, the in-plane 

behaviour governs the global building response, because the walls are well-connected to the 

adjacent walls and the floor diaphragms. In other words, the assumptions are that the local 

out-of-plane behaviour of the walls and the local floor flexural response are negligible with 

respect to the global seismic response of the structure. In this context, the response of the 

structure is mainly governed by the in-plane capacity of the walls and by the in-plane stiffness 

of horizontal diaphragms that rules the distribution of the horizontal loads between vertical 

structural elements. However, the presence of flexible horizontal diaphragms (timber floors 

and roof) provides lower degree of coupling between walls, compromising the activation of 

the global box-type behaviour. It is noted that a building without box-type behaviour can be 

retrofitted to provide a box-type behaviour, by providing adequate connections. 
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4.2 Mechanical behaviour of the masonry walls 

Masonry is a non-homogeneous, plastic and anisotropic material, characterized by high 

compressive strength and a very low tensile strength. It is usually described as a material 

exhibiting distinct directional properties due to the mortar joints, which act as planes of 

weakness (Lourenço, 1996). Clay bricks, stones, and mortar are quasi-brittle materials, which 

fail due to a process of progressive internal crack growth (Lourenço, 2014). The properties of 

the masonry walls depend on the inherent mechanical properties of the masonry materials, 

the geometry and the boundary condition of the walls, and the interaction between its different 

components (Lagomarsino, 2006). 

The identification of the masonry quality is of essential importance, especially when dealing 

with existing buildings, since it is strongly correlated to the mechanical behaviour of the 

structural elements. It should be gained by diagnostic analyses, in which the characteristics 

of the materials should be investigated, as well as the characteristics of the masonry typology. 

The poor quality of the masonry can strongly affect its structural behaviour leading to 

phenomena of disintegration of the masonry walls, caused by the type of the resisting 

elements, the shape and the dimensions of the resisting elements, the type of mortar, the 

characteristics of the texture and the cohesion between the elements composing the masonry. 

For these reasons, the identification of the masonry quality is the first requirement for safety, 

because the disintegration of the masonry walls, due to the poor quality of the masonry, can 

occur before the activation of in-plane or out-of-plane mechanisms.  

Figure 4.1 (Sorrentino et al., 2018) shows two examples of reinforced masonry with steel ties: 

it is possible to noticed that when masonry has such a low strength and poor quality, even the 

systematic use of steel ties is ineffective. When combined with a reasonable quality masonry, 

steel ties certainly contributed to preventing collapse. 
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                                               (a)                                                                                     (b) 

Figure 4.1: Collapse of a masonry building having steel ties combined to poor masonry (a) Amatrice, 
Petrana; (b) Arquata d/T, Piazza Umberto I (Sorrentino et al., 2018). 

4.2.1 Out-of-plane behaviour 

In the ancient masonry buildings some elements of connection between the walls, at level of 

the horizontal elements, are often absent; this implies possible local vulnerabilities, which 

may affect not only the collapse of individual walls out-of-plane, but larger parts of the 

building (overturning of entire walls not well-connected, overturning of summit walls in 

presence of buildings with different heights, partial collapses in the corner buildings of the 

building aggregates, etc.). The collapse mechanism of out-of-plane walls mainly depends on 

their boundary conditions, i.e. the connections between roof/floors diaphragms and the 

adjacent walls, or between orthogonal walls. Usually, as showed by the post-earthquake 

damage surveys, the local out-of-plane failure modes are the main sources of vulnerability for 

masonry structures (Magenes and Penna, 2009). Local mechanisms occur in masonry walls 

mainly for actions perpendicular to their plane and, in the case of systems of arches, also for 

actions in-plane. Due to the slenderness of the elements and the negligible tensile strength, 

the structures can lose static equilibrium for very low values of PGA. The out-of-plane 

behaviour is mainly related to the geometric stability of the part of the structure involved in 

the mechanism rather than to the strength of materials.  

A possible model for this type of evaluation is the limit analysis of the equilibrium of masonry 

structures, according to the cinematic approach, based on the choice of the local mechanisms 

considered significant for the structure and on the evaluation of the horizontal action 
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activating these mechanisms. The kinematic approach also allows to determine the 

progressive horizontal action the structure is able to resist to as the mechanism evolves 

(Doherty et al., 2002). The obtained curve is expressed through a multiplier α, ratio between 

the applied horizontal forces and the corresponding weights of the masses, represented as a 

function of the displacement of a reference point of the system; the curve is determined until 

the annulation of each resistance ability to the horizontal actions (α = 0). 

 
Figure 4.2: Typical out-of-plane local mechanisms (ReLUIS - Dipartimento di Protezione Civile, 2009). 
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4.2.2 In-plane behaviour 

If the box behaviour is ensured and the walls and the slabs are well-connected, the in-plane 

behaviour governs the global building response. Masonry piers subjected to in-plane loading 

typically show three types of mechanisms, summarized in Figure 4.3: flexural-rocking, 

sliding and diagonal cracking (Calderini et al., 2009; Magenes and Calvi, 1997). The response 

of the panels depends on the geometry, the boundary conditions, the axial load, the 

mechanical properties of masonry and the type of masonry. 

 
                  (a)                                                                (b)                                                            (c) 
Figure 4.3: Typical in-plane failure modes of masonry piers (Calderini et al., 2009): (a) flexural-rocking; (b) 

shear failure (sliding along the bed joints); (c) shear failure (diagonal cracking). 

The flexural behaviour of piers combines both rocking/bending and crushing/compression 

failure modes (Figure 4.3 (a)). In the former, under increasing displacement demand, the pier 

behaves as a nearly rigid body rotating around the toe, if the masonry compressive strength is 

high with respect to the induced vertical stresses: wide tensile flexural cracks develop at the 

corners of the pier. In the latter, usually after rocking deformations and under high levels of 

axial load, a compressive failure, called toe-crushing, with sub-vertical cracks occurs at the 

toe of the pier. Slender piers are generally prone to a predominant flexural-rocking behaviour. 

The flexural failure is described by the beam theory, following the common criteria proposed 

in the Italian code (Commentary to the NTC 2018, 2019) and defining a parabolic domain 

relating the axial compressive action and the ultimate bending moment (Figure 4.4). The 

ultimate bending moment, at the panel end section, is determined according to Equation 4.1, 

by neglecting the tensile strength of masonry and assuming a non-linear distribution of 

stresses at the compressed toe. 
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where l is the width of the panel, t is the thickness, N is the axial compressive action, 0 is the 

normal compressive stress on the whole area (0=N/lt) and fm is the average compressive 

strength. This approach is based on a no-tensile material where a non-linear reallocation of 

the stress is performed (rectangular stress-block with factor = 0.85).  

In existing buildings the compressive strength fm is to be divided by the “confidence factor” 

FC according to the structural knowledge level (further details can be found in the following 

paragraph 4.3).  

 
Figure 4.4: Parabolic domain relating the axial compressive action and the ultimate bending moment 

(adapted from Lagomarsino et al, 2008). 

The sliding failure takes place along a mortar joint, usually at the bottom of squat masonry 

piers subjected to low compressive stress. This causes the formation of sliding shear cracks 

in the bed joint, usually observed at the end of the pier (see Figure 4.3(b)). Due to increasing 

uncompressed length of the end joint, the friction of mortar joint usually contributes to this 

failure mode alone. The failure is attained in case of low vertical load levels and/or low 

friction coefficients of the mortar joint. 

The model describing the sliding failure is the Mohr-Coulomb’s model, in which the 

governing parameters of the phenomenon are the cohesion and the friction coefficient, 

according to the linear formulation: 

 c       (4.2) 
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where  is the shear strength, σ is the compressive stress, c is the cohesion and μ is the friction 

coefficient. These latter parameters can be determined from slightly-destructive tests in which 

the sliding along a mortar joint is investigated, as will be shown in the followings. These 

parameters are defined globally for a whole masonry pier rather than locally for mortar joints. 

The most well-known formulation using this concept was developed by Mann and Muller 

(1982): differently from the model in Equation 4.2, where masonry is assumed to be elastic, 

homogeneous and isotropic until failure, they analysed masonry as a composite material. 

Therefore, they considered the possibility for the crack to develop according to the features 

of the constituents, and not rigidly along a principal stress direction. 

The diagonal cracking failure mode, typical of moderately slender masonry panels with higher 

compressive stress applied, is characterized by the presence of diagonal cracks, generally 

developing from the centre of the panel and then propagating towards the corners. The failure 

criterion proposed for the interpretation of this mechanism is based on the assumption that 

the crack will appear in correspondence of the reaching of the masonry tensile strength in the 

centre of the panel, made of irregular units or characterized by not particularly resistant units. 

The shear behaviour may be governed by the diagonal cracking failure according to the 

criterion proposed by Turnšek and Čačovič (1971) and Turnšek and Sheppard (1980), 

defining a parabolic failure domain, in which the governing parameter is the diagonal tensile 

strength ft: 
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where ft is the tensile strength of masonry due to diagonal cracking,  0 is the equivalent shear 

strength of masonry, conventionally defined as  0 = ft /1.5, and b is a corrective factor related 

to the distribution of the loads in the element: 
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The shear strength can be obtained from the tests carried out on masonry wallets through 

diagonal compressive loading, which induces indirect tensile strength (Tomaževič, 1999). 

In general, flexural-rocking, bed joint sliding and diagonal cracking propagating through the 

mortar bed joints and head joints are the failure mechanisms with large deformation capacity. 

Thus, these mechanisms are the most common for a pier under seismic action. The flexural-

rocking failure mode has a ductile behaviour; on the contrary, the two failure modes of toe-

crushing and diagonal cracking propagating through the units represent a brittle behaviour in 

which the damage to the units causes rapid strength deterioration of the masonry piers (Yi, 

2004). 

The term “masonry spandrel” (or masonry beam) defines the portion of wall that links two 

adjacent piers across an opening. Masonry spandrels result often damaged during a seismic 

event and in general they usually are the first structural components that crack in unreinforced 

masonry (URM) buildings (Graziotti et al., 2012). Masonry spandrels contribute to the wall 

in-plane behaviour, resisting against the seismic loads together with the masonry piers. 

Spandrels have a significant contribution to the global in-plane behaviour of the wall, 

increasing its stiffness and affecting the boundary conditions of piers. Thus, recognizing that 

the masonry piers are the most important elements both for vertical load carrying capacity 

and for the resistance to seismic action, it is nevertheless not generally correct to neglect the 

presence of the spandrels and their role in increasing stiffness. Figure 4.5 shows that a 

different degree of coupling offered by the spandrels may introduce a completely different 

structural behaviour in terms of shear, moment diagrams and collapse mechanism. In 

particular, the Figure shows the two extreme ideal and non-realistic conditions of infinitely 

flexible (a) and infinitely stiff (c) spandrels, corresponding to cantilever (i.e. a global flexural-

rocking behaviour) and shear-type mechanisms, respectively. The most realistic situation 

appears to be in between these extreme conditions, as represented in the intermediate (b) 

configuration, in which the spandrel beams offer a limited degree of coupling to the vertical 

masonry piers (Graziotti et al., 2012). 
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                          (a)                                                            (b)                                                       (c) 

Figure 4.5: Different bending moment variation and failure mechanism due to different grades of coupling 
provided by the spandrels in masonry walls: weak (a), intermediate (b) and strong (c) spandrels (Graziotti et 

al., 2012). 

The most observed in-plane failure modes of spandrels during past earthquakes are almost 

similar to those of piers. The main difference is related to the spandrel axis, which is 

horizontal (i.e. parallel to the bed joints) and not vertical as that of the piers.  

The Italian Code (Commentary to the NTC 2019) defines the strength criterion to adopt for 

the masonry spandrels.  

For the evaluations relating to the flexure (coupled with the axial stress) in the spandrels, a 

critical aspect is related to the evaluation of the axial action, influenced by the interaction with 

the horizontal diaphragms (in some models assumed to be rigid) and by the kinematic 

interaction between rotation and axial deformation in the spandrels. If there are horizontal 

elements with tensile strength, coupled to the spandrel, it is possible to evaluate the maximum 

bending moment (Mu,spandrels) of the spandrels: 

 1
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where Hp is the minimum between the tensile strength of the horizontal element in the 

spandrels (for example a tie-road or tie-beam) and 0.4fhht, where fh is the compression strength 

of the masonry in the horizontal direction in the plane of the wall; h is the height and t is the 

thickness of the spandrel. 

Unlike the case of piers, the axial-bending strength domain for the spandrels can be 

determined taking into account the tensile strength (fftd) that is generated in the end sections, 

due to the effect of the toothing with the adjacent masonry portions. The failure mechanisms 

can involve the tensile strength fbtd of the blocks or occur by sliding along the horizontal joints; 

the horizontal tensile strength is, therefore, given by the expression: 
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where y is the medium normal stress on the horizontal joints in the end section; fv0d is the 

shear strength in the absence of normal stress;  is the local friction coefficient of the joint; 

 is the toothing coefficient. Without more accurate evaluations, y can be assumed equal to 

the half of the medium normal stress 0 on the adjacent piers. Once the tensile strength of the 

spandrel fft is evaluated, the domain M-N can be assumed with an adequate stress-deformation 

law. For compressive strength, it is necessary to evaluate that in the horizontal direction fh, 

usually lower than that in the vertical direction.  

For the evaluation related to the shear strength, both for the masonry piers and spandrels, the 

criteria to be adopted are the same explained above, following the Equations 4.2 or 4.3. 

4.3 Existing URM buildings 

The assessment of the seismic vulnerability on existing buildings is affected by a series of 

uncertainties and variabilities involving the knowledge of the building, leading to a great 

difficulty in the process of verification and, possibly, of the design of the strengthening 

interventions. The Eurocode 8, (2004) and NTC (2018) propose an approach of seismic 

vulnerability assessment based on the knowledge of the building under investigation.  

The uncertainties may concern the geometry, the structural elements, the construction details, 

the type of masonry, the state of damage, the quality of the materials; these parameters can 

also have considerable variability within the same structure, and cannot be imposed as design 

data to be achieved in phase constructive, as a new design building. On the other hand, a 

correct and accurate evaluation reduces the uncertainties that, in a new construction, are 

inherent in the passage from the project data to the realization. The best possible knowledge 

of the building, which is the essential requirement for any type of structural analysis and for 

the seismic vulnerability assessment of existing structures, can be achieved by means of 

historical analysis, survey operations and experimental investigations, with different levels of 

detail (Ferretti, 2018).  

In assessing the earthquake resistance of existing structures, the input data shall be collected 
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from a variety of sources, including: available documentation specific to the building in 

question, relevant generic data sources (e.g. contemporary codes and standards), field 

investigations and, in most cases, in-situ and laboratory tests.  

For this reason the code introduces a category of factors, the "confidence factors" (Table 4.1), 

according to the “knowledge levels” (limited, extensive, exhaustive) achieved in the cognitive 

surveys.  

Table 4.1: Knowledge levels and confidence factors. 

Knowledge level Confidence factor 
Limited knowledge (KL1) 1.35 

Extensive knowledge (KL2) 1.2 
Exhaustive knowledge (KL3) 1.0 

 
The confidence factors preliminary reduce the mechanical properties of the existing structure 

investigated, to derive the values to be adopted in the design or in the verification, and to be 

further reduced, when required, by the partial safety coefficients. 

Figure 4.6 shows the definition of the knowledge levels according to the geometry, the details 

and the materials and that lower knowledge levels are associated to higher values of the 

confidence factors. 

 
Figure 4.6: Definition of the knowledge levels according to the geometry, the details and the materials. 
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One of the most complex aspects concerns the evaluation of the mechanical characteristics of 

the masonry. The Italian code lists a series of tests that can be carried out on the masonry: 

non-destructive, slightly-destructive or destructive tests. However, the safeguarding of the 

building often leads to limitations on the number of tests to be carried out and therefore makes 

the mechanical characterization incomplete. 

Limited indications can be found in the Building Codes regarding the type and number of 

tests which should be executed in order to reach a certain Knowledge Level. Nevertheless, 

when destructive tests are not performed, which is common in the engineering practice, the 

Italian Code (Commentary to the NTC 2008, 2009) provides values of the mechanical 

properties for different masonry typologies to be used for the structural verifications (Table 

4.2). In particular, the values reported in Table 4.2 should be corrected with the coefficients 

of Table 4.3 if the characteristics of the investigated masonry are different from the ones to 

which Table 4.2 refers.  

It was decided to report the Tables of the Italian Code 2008, instead of those of the more 

recent Italian Code 2018, because in this thesis the modelling of the structures started when 

the previous Code (2008) was in force.  
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Table 4.2: Reference values of mechanical parameters (minimum and maximum) and mean self-weight for 
different masonry typologies, referred to weak mortar, uncoursed masonry, absent connections between wall 
leaves, texture following the “rule of the art” in case of regular elements: fm = mean compressive strength of 
masonry; τ0 = mean shear strength of masonry; E = mean value of the elastic modulus; G = mean value of 
the shear modulus; w = mean self-weight of masonry. (Commentary to the NTC 2008 – Table C8A.2.I). 

 
 

Table 4.3: Corrective coefficients of the mechanical parameters indicated in Table 4.2 to be applied in 
presence of: high-quality mortar, thin mortar joints, transversal connections between wall leaves, poor 

internal core, strengthening interventions such as mortar injections or reinforced plaster (Commentary to the 
NTC 2008 – Table C8A.2.2). 
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4.4 Numerical modelling 

For the purpose of masonry analysis and design, an operationally simple strength criterion is 

essential, taking into account the many uncertainties of the problem. Systematic experimental 

and analytical investigations on the response of masonry and its failure modes have been 

conducted in the last decades.  

Successful modelling of a masonry historical structure is a prerequisite for a reliable 

earthquake resistant design or assessment (Asteris et al., 2014). The main disadvantage of 

many existing criteria is that they ignore the distinct anisotropic nature of masonry and the 

problems arising from differences within its thickness. For modern structures, with new 

industrial materials (reinforced concrete, steel, etc.), the development of a reliable 

mathematical model is possible, due to the fact that materials and member characteristics are 

more uniform and mostly explicitly known. On the other hand, for the case of masonry, and 

especially for the traditional one, it seems that there is a lot to be done in this field, until 

engineers become more confident about the accuracy of the modelling. 

Masonry modelling, which represents the material numerically, can address different levels 

of complexity and accuracy: modelling the masonry as a composite material or modelling 

each constitutive component individually. In either case, since the material without 

reinforcement (URM) is characterized by low tensile strength, non-linear constitutive models 

are essential to be adopted for reproducing the real seismic behaviour (Lourenço, 2014). 

Masonry modelling strategies can be categorized as follows based on the level of complexity 

and accuracy desired (Figure 4.7) (Lourenço et al., 1995): 

- Detailed micro-modelling: continuum elements are adopted for the modelling of 

masonry units and mortar joints, whereas the masonry unit-mortar interface is 

modelled by discontinuous elements; 

- Simplified micro-modelling: on the basis of a discrete approach, masonry units are 

represented by continuum elements, while the behaviour of the mortar joints and unit-

mortar interface is lumped in discontinuous elements; 

- Macro-modelling: masonry units, mortar and unit-mortar interface are smeared out in 

the continuum. In other words, masonry is considered as a homogeneous 

isotropic/orthotropic material. 
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Figure 4.7: Masonry modelling strategies: (a) masonry sample; (b) detailed micro-modelling; (c) simplified 

micro-modelling; (d) macro-modelling (Lourenço, 1996).  

Micro-modelling strategies (detailed or simplified) present an accurate behaviour of URM 

buildings using an intensive computational process. For this reason, the strategies are proper 

for the analysis of small masonry structures or elements and especially for simulating the 

behaviour of the masonry unit-mortar interface. The macro-modelling strategy is identified 

as the faster and less accurate method than the others and it is used for the modelling of large 

masonry structures. However, the methodology is still complex due to the brittle behaviour 

of masonry.  

For the analysis of the complex masonry structures, a wide range of analytical models based 

on the aforementioned strategies are available in literature. The models having different levels 

of complexity can be summarized as follows (Lourenço, 2002). 

- The macro-modelling, based on the identification of macroscopic structural elements, 

is the simplest approach; it is defined from a geometrical and kinematic point of view through 

finite elements (solid, shell or frame) and described from a static point of view by their 

internal generalized forces (Lagomarsino et al., 2013). The two most used structural 

component models in literature are the ones using several macroblocks and interfaces and 

those using macro-elements. The former can simulate the out-of-plane failure modes of walls, 

whereas the latter is adequate for masonry buildings with box behaviour. 

The first type of structural component models is based on the assumption that the damaged 

URM building is composed by a number of discrete macroblocks and interfaces. The 
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macroblocks are infinitely rigid portions of the building with similar mechanical properties, 

while the interfaces are the failure lines representing the actual cracking pattern. The analysis 

is based on the equilibrium of the macroblocks through the limit analysis basic assumptions 

(Mendes, 2014) for analysing URM buildings as follows: masonry material has no tensile 

strength and infinitely compressive strength; sliding mechanism cannot happen; failure is 

exhibited under small displacements (Orduña, 2003).  

The macro-element model, as the second type of structural component models, is based on 

the use of 1D or 2D macro-elements with macroscopic behaviour to simulate the subdivided 

parts of a masonry wall (piers and spandrels). These rather simple models approximate the 

actual geometry of the building in a reliable way. The non-linear response of the building 

under static and dynamic loads can be reproduced by these models using different analysis 

methods. Moreover, the models are capable of predicting evolution of predefined failure 

mechanisms in each structural component and global collapse as well. 

- Finite Element (FE) structural models (macro and micro-modelling approach): these 

types of models refer to 2D or 3D finite element models with high accuracy, requiring higher 

computational effort rather than the structural component models. It makes the models ideal 

for a full (macro) or partial (micro-modelling) simulation of a masonry structure. 

- Discontinuous structural models not using finite elements (micro-modelling 

approach): these sophisticated models are appropriate for small structures due to the detailed 

representation of the masonry units and mortar joints. These models are typically studied 

using the Discrete Element (DE) method (Lemos, 2007) and limit analysis concept. 

Figure 4.8 shows an example of different analytical models for the seismic analysis of URM 

structures. 

 
Figure 4.8: Examples of analytical models for the seismic analysis of URM buildings: (a) FE model, macro-
modelling approach (Mendes, 2012); (b) DE model, micro-modelling approach (Alexandris et al., 2004); (c) 

structural component model by macroblocks (Orduña, 2003). 
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4.5 The macro-element modelling: TreMuri software 

In this thesis, the masonry buildings are modelled using TreMuri program (Lagomarsino et 

al., 2013). The commercial version of the program, 3Muri release 11.5.0.4 (S.T.A. DATA, 

2013), is used to generate the mesh of the elements, while the research version, 

TreMuriRicerca (Lagomarsino et al., 2008), is used to perform the non-linear analyses 

considering a more detailed force-deformation law for the characterization of the masonry 

elements. 

The reference model for the modelling is the box-type, corresponding to a three-dimensional 

equivalent frame, in which the walls are interconnected by horizontal diaphragms (slabs).  

The equivalent frame model approach comprehends the discretization of the masonry walls 

with openings into a set of panels (Figure 4.9): each wall of the building is subdivided into 

piers, which are the main vertical elements carrying both vertical and horizontal loads, and 

spandrels (modelled by non-linear beams), which are the horizontal elements coupling piers 

and limiting their end-rotations in case of horizontal loads, connected by rigid nodes 

(undamaged elements confined between piers and spandrels). Earthquake damage 

observations show, in fact, that only rarely (very irregular geometry or very small openings) 

cracks appear in these areas of the wall: because of this, the deformation of these regions is 

assumed to be negligible, relatively to the macro-element non-linear deformations governing 

the seismic response (Galasco et al., 2006). 

The geometry of these panels is defined by the distribution of openings and by the damage 

observations in URM buildings after past earthquakes and experimental tests. The height of 

interior piers corresponds to the height of the openings. The height of exterior piers is assumed 

as the average between the height of the opening and the inter-storey height, considering the 

possible development of inclined cracks starting from the opening corners (identified as Heff 

in Figure 4.9). The height and length of spandrels is defined by the vertical and horizontal 

alignment of openings. 
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Figure 4.9: URM wall idealization according to the equivalent frame models (adapted from Lagomarsino et 

al. (2013)). 

The 3-dimensional modelling of the whole URM buildings starts from some hypotheses on 

their structural and seismic behaviour: the bearing structure, both referring to vertical and 

horizontal loads, is identified with walls and floors (or vaults); the walls are the bearing 

elements, while the floors, apart from sharing vertical loads to the walls, are considered as 

planar stiffening elements (orthotropic 3-4 nodes membrane elements), on which the 

horizontal actions distribution between the walls depends; the local flexural behaviour of the 

floors and the wall out-of-plane response are not computed because they are considered 

negligible with respect to the global building response, which is governed by their in-plane 

behaviour (a global seismic response is possible only if vertical and horizontal elements are 

properly connected) (Galasco et al., 2006).  

A non-linear beam element model has been implemented in the TreMuri program in together 

with the macro-element with additional degrees of freedom, described by: 

1) initial stiffness given by elastic (cracked) properties; 

2) bilinear behaviour with maximum values of shear and bending moment as calculated in 

ultimate limit states; 

3) redistribution of the internal forces according to the element equilibrium; 

4) detection of damage limit states considering global and local damage parameters; 

5) stiffness degradation in plastic range; 

6) secant stiffness unloading; 

7) ductility control by definition of maximum drift (δu) (Equation 4.7) based on the failure 

mechanism, according to the Italian seismic code: 
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8) element expiration at ultimate drift without interruption of global analysis (Figure 4.10). 

 
Figure 4.10: Non-linear beam degrading behaviour (Lagomarsino et al., 2008). 

The elastic behaviour of this element is given by: 
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where: 
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and T, N, M are, respectively, the acting shear force, axial force and bending moment at the 

element end nodes i and j, E is the modulus of elasticity of masonry, J is the inertia of the 

element section, h is the height of the element, u, w and  are, respectively, the horizontal 

displacement, vertical displacement and rotation at the element end nodes i and j and G is the 

shear modulus of masonry. 
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The non-linear behaviour is activated when one of the nodal generalized forces reaches its 

maximum value estimated according to minimum of the strength criteria (flexural-rocking, 

shear-sliding or diagonal shear cracking), already explained in Section 4.2.2, related to the in-

plane behaviour of the masonry walls. 

4.6 Non-linear static analysis according to the Italian Code 

The Eurocode 8 (2004) and the NTC (2018) provide the possibility to perform two type of 

analyses: the linear ones (lateral force analysis and modal response spectrum analysis) and 

the non-linear ones (static push-over analysis and time-history dynamic analysis). 

URM structures exhibit inelastic deformations and dissipate high levels of energy under 

cyclic loading. This results in a significant reserve of non-linear capacity. Thus, linear analysis 

techniques are not adequate for evaluating their seismic response. The best approach to the 

seismic analysis of URM buildings (for design or assessment purposes) is a non-linear 

analytical approach, considering the material and the geometrical non-linearity of the 

buildings.  

The dynamic response of a system with multi degrees of freedoms (MDOF) can be described 

very accurately through the performing of non-linear dynamic analyses involving the direct 

integration of the equations of motion of the system, where a history of accelerations is 

applied to. However, this methodology presents several difficulties in its practical application, 

first of all the computational effort and therefore the time required to perform the analyses. It 

is also necessary to define, with accurate precision, a significant number of parameters, which 

are not easily estimable and regulating the hysteretic behaviour of materials and plasticization 

zones. The obtained dynamic response is also strongly dependent on the accelerogram, i.e. 

the earthquake chosen. To obtain reliable results it is therefore necessary to repeat the analyses 

for a number of accelerograms sufficiently representative of the seismicity of the site. 

An alternative and simpler application approach, which has become widespread in the most 

recent period, is represented by the possibility of performing a non-linear static analysis, 

which consists in the application of a monotonically increasing lateral force (or displacement) 

profile and monitoring the response of the structure through a simple force-displacement 

relation. Therefore, the non-linear, or push-over static analysis, consists of an iterative 

incremental analysis in which the structure is pushed to a predetermined threshold of 

displacement or until its ultimate deformation capacity is reached. 
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The most commonly monitored parameters during the analysis are the base shear of the 

building and the displacement of a control point, generally taken at the centre of gravity of 

the highest slabs. The representation of the curve base shear-displacement provides what is 

called “capacity curve” of the structure (Figure 4.11). 

 
Figure 4.11: Determination of the capacity curve. 

The push-over analysis is a simplification of the physical reality, constituted by a seismic 

phenomenon and therefore needs some applicative hypotheses to be able to be performed. In 

the first place, the structural seismic response is determined through a growing static 

application of a lateral force profile and therefore the effects due to the cyclical nature of the 

actions are disregarded. Secondly, the profile of the lateral forces should be proportional to 

the internal forces due to the effect of the seismic motion. 

In the most simple case it is assumed that the forces are proportional to the eigenvector 

associated with the first mode and, for this reason, it is representative of inertia forces of the 

“non-damaged” structure, i.e. elastic (triangular distribution). The second possibility, 

proposed by the code, is a distribution of the forces proportional to the masses: it is 

representative of the inertia forces of the damaged structure, i.e. when relevant inelastic 

deformations were developed. 

It is generally accepted that the real form of the distribution of the forces in each load phase 

is between the triangular one (typical of the equivalent static analysis) and the uniform one 

and that the verification of the displacement capacity in correspondence of these two limit 

distributions and in static conditions, is a guarantee of positive verification with respect to the 

actual forms of the force distributions. 
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4.7 The N2 method 

The final objective is the assessment of the seismic vulnerability, which can be express in 

terms of ratio between the displacement capacity (du) and the displacement demand (dmax):   

 u

max
d

d
μ

d
 . (4.10) 

According to the Italian Code (NTC, 2018) the capacity verification is satisfied when that 

ratio (expressing the structural ductility d) is greater than or equal to 0, i.e. when the 

displacement capacity is grater then the displacement demand. 

For the evaluation of the seismic displacement demand, the response spectra must necessarily 

be used. However, since these latter are defined starting from single degree of freedom 

(SDOF) systems, it is necessary that the response (capacity) obtained with the push-over 

analysis on an MDOF system is attributed to that of an equivalent SDOF system. Therefore, 

the verification of the displacement capacity is carried out by transforming the MDOF system 

into an equivalent SDOF system, using the properties of the response spectra. 

According to Fajfar (2000)  and the Codes (Eurocode 8, 2004; NTC, 2018) it is possible to 

determine the response in terms of base shear and top displacement starting from a MDOF 

system and then to relate them to a SDOF system, through the modal participation factor 

Equations 4.11 and 4.12)obtained in such as to normalize the eigenvector  according 

the distribution of the forces (Figure 4.12).    

 
Figure 4.12: Passage from the MDOF system to the SDOF system, through  
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Γ
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F   (4.11) 

 
Γ

* d
d  . (4.12) 

As an example, Figure 4.13(a) shows the generic capacity curve for an MDOF system, 

characterized by the maximum shear base Vbu and the maximum displacement on the top du. 

The capacity curve of the equivalent SDOF (Figure 4.13(b)) is obtained starting from this by 

applying the Equations 4.11 and 4.12. 

 
                                         (a)                                                                                (b)                                                        

Figure 4.13: (a) Capacity curve for the MDOF system; (b) capacity curve for the SDOF equivalent system. 

Since the objective is the assessment of the seismic vulnerability, it is possible to obtain the 

parameters to perform the capacity verification from the capacity curve of the SDOF system. 

It is necessary to identify the seismic demand, which depend on the seismicity of the site, but 

also on the mass and the stiffness of the system. 

To evaluate the initial stiffness of the SDOF system it is necessary to perform a bilinearization 

of the capacity curve, i.e. to transform the capacity curve of the SDOF into an equivalent 

bilateral curve (Figure 4.14). This bilinearization can be performed according to different 

criteria. What follows is the one defined by the NTC (2018). 
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Figure 4.14: Definition of the bilinear equivalent curve from the SDOF system. 

With reference to Figure 4.14, once the maximum value of the force associated to the SDOF 

system has been identified on the capacity curve, the first linear part intersects the capacity 

curve in the point characterized by the strength value equal to 0.6F*
bu. The value of the force 

F*
y, identifying the yield of the bilinear system, is determined in such a way to have the 

equality of the area subtended by the capacity curve and that subtended by the bilinear curve. 

The stiffness (k*) of the SDOF is given by the ratio between the yielding force of the bilinear 

curve and its associated displacement (d*
y): 

 
*

*
*

y

y

F
k

d
 . (4.13) 

The mass can be determined as: 

 *
1Φi im m  (4.14) 

and the associated period as: 

 
*

*
*

T 2
m

π
k

 . (4.15) 

Once the period referred to the SDOF equivalent system is found, it is possible to use the 

response spectra to obtain the displacement demand d*
max, using the relation between the 

acceleration spectra and the displacement spectra: 

 * * *2
Ae DeS (T ) S (T )   (4.16) 
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where SAe (T*) is the spectral acceleration, found using the acceleration spectra starting from 

the period T*, SDe (T*) is the spectral displacement and 2 is the square of the natural 

frequency of the SDOF equivalent system. Figure 4.15 shows the use of the displacement 

spectrum to find displacement demand d*
max. 

 
Figure 4.15: Use of the displacement spectrum to find the displacement demand d*

max. 

According to the Italian Code, the displacement demand depends on the value of the period 

T*; in particular if T*≥TC the displacement demand d*
max exactly corresponds to the elastic 

displacement demand, i.e. to the values of the spectral displacement SDe (T*): 

 * * * *
max ,max C(T )            T Te Ded d S   . (4.17) 

On the contrary, if T*<TC: 

 
*

,max* * *
max C* *
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( 1) 1 T T

T
e c

d
d q

q
      

 (4.18) 

where 
* * * *(T ) /Aeq m S F y . 

The Equations 4.17and 4.18 are also reported in the NTC (2018). They express the 

displacement required to the equivalent SDOF as a function of its period T* and of the factor 

q* from which it is characterized according to the rules of the criterion of equal energies and 

equal displacements. Figure 4.16 graphically exemplifies what is expressed in the Equations 

4.17 and 4.18. In particular, for periods greater than TC the displacement demand for the non-

linear system (inelastic demand) is equal to that would be required in the linear field if this 

were unlimitedly elastic (Figure 16(a)). For periods less than TC, the non-linear displacement 

demand is different from the elastic one and in particular the displacement demand is greater 
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than the elastic one (Figure 16(b)). This refers to the well-known criterion of equal energies 

and equal displacements between linear and non-linear SDOF systems. 

 
                                         (a)                                                                                    (b)                                                        

Figure 4.16: Definition of the displacement demand: (a) for T*≥TC; (b) for T*<TC (NTC, 2018). 

Finally, it is necessary to pass again from the SDOF system to the MDOF system: it is 

sufficient to multiply the obtained displacement demand d*
max, referred to the SDOF system, 

for the modal participation factor (defined in Figure 4.12)  

 
*

max maxΓd d . (4.19) 

The structural capacity is represented by the ultimate point of the push-over curve. The 

verification is satisfied if: 

 max  ud d . (4.20) 

 

  

Recent studies have shown some limitations on the application of the N2 method, showing 

alternative methods that highlight some differences in the results obtained. In particular, some 

limitations have been found by Guerrini et al. (2017) for very rigid structures with a short 

period and by Marino et al. (2019) for buildings with some sources of irregularity, as in plan, 

in elevation and related to the decrease in stiffness of diaphragms. In the latter case, the 

applicability of the non-linear static procedure for the seismic assessment of irregular URM 

buildings has been investigated by a systematic comparison with the results provided by the 
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non-linear dynamic analyses, assumed as reference solution, focusing on the global response 

of URM buildings, i.e. based only on the in-plane response of URM walls. It was shown that 

the procedures of the N2 method, currently adopted in the European and the Italian codes, do 

not provide conservative results with respect to that proposed by Marino et al. (2019). 

Since the several previous applications of the method in structures similar to those analysed 

in this thesis, the method is considered suitable for the study of seismic vulnerability and 

fragility of masonry aggregate buildings object of this study. 
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5.1 The methodology 

The development of detailed vulnerability models at territorial scale requires the identification 

of different building classes or typologies. This is supported on the idea that buildings with 

similar architectural and structural features and located in similar geotechnical conditions are 

expected to have similar seismic performances (Simões, 2018).  

The general objective of this thesis is the assessment of the seismic vulnerability and fragility 

of classes of unreinforced masonry buildings, through the individuation of some prototypes 

having similar characteristics and representative of those classes of buildings. Particularly, 

these classes have been individuated considering buildings, especially present in historical 

centres, enclosed in aggregates. The individuated structures were at first considered as 

isolated structural units (ISU) and then belonging to aggregations in row of those similar (or 

identical) structures, in order to compare the different seismic responses and to show as it is 

no possible to perform seismic analysis of buildings considered as isolated, if they are 

enclosed in aggregate structures (AS), because the interaction with adjacent buildings 

significantly affects the seismic behaviour (Figure 5.1). 

In this thesis, the aggregate masonry buildings are analysed considering the global behaviour: 

the local behaviour of the walls out-of-plane is not considered because it is considered 

negligible with respect to the global building response, which is governed by the in-plane 

behaviour of the masonry walls, in this type of structures. 

 
Figure 5.1: Comparison between the isolated structural unit considered as isolated and that enclosed in a row 

aggregate. 
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The first step is the definition of one (or more) class of buildings, in which it is possible to 

individuate some geometrical and structural similar characteristics. It is important to define 

which parameters characterize the different structural typologies of the class of buildings: the 

variation of these parameters in defined ranges allows the individuation of a set of different 

masonry buildings. 

Thus, a set of different structural models was defined using TreMuri software, according to 

the choice of the variation of the parameters. The structural capacity of each model was 

obtained by means of non-linear static analyses (push-over), considering two different and 

orthogonal directions of the seismic action.  

According to the Italian code (NTC, 2018), the seismic vulnerability is evaluated with the 

comparison between the structural capacity, in this case defined by the capacity curves, and 

the structural demand, defined by means of the definition of the seismic action soliciting the 

structures. In this work, the seismic action is defined through homogenous class of 

accelerograms, referred to previous earthquakes and representative of the possible variability 

of the seismic action in the considered site. For each accelerogram, the definition of the 

correspondent acceleration and displacement spectrum allows to obtain the seismic demand, 

in terms of acceleration and displacement, according to the intrinsic structural characteristics 

of the structures.  

The ratio between the structural capacity and the structural demand defines the vulnerability 

of the building and, in this work, it is evaluated in correspondence of the peak ground 

acceleration (collapse PGA) corresponding to the attainment of the life safety (LS) limit state.  

Finally, the definition of a set of collapse PGA allows to obtain the condition probability of 

the structural failure (attainment of the LS limit state) for different values of the seismic 

demand, plotting the fragility curves, by means of the limit state function (Equation 2.5).  

In this thesis, the explained methodology was applied in two different class of buildings: the 

first is related to clay brick masonry structures, sited in Bologna (Italy) and it is more detailed 

in Chapter 6; the second is related to stone masonry structures, sited in Seixal (Portugal) and 

it is more detailed in Chapter 7.  

Figure 5.2 shows the steps of the procedure applied, starting from the definition of the models 

to the plotting of the fragility curves. The pictures in the figure below are just some examples, 

not referred to the case studies of this work.  
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Figure 5.2: Steps of the applied procedure, starting from the definition of the models to the plotting of the 

fragility curves. 
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5.2 Selection of the parameters defining a set of different structural 
models 

One of the main difficulties when performing a seismic fragility analysis is related to the large 

number of variables required to describe the uncertainties affecting the structural behaviour 

and the complex modelling of the uncertainty related to the definition of the ground-motion.  

Thus, the first step concerns the definition of the models representing a class of buildings in 

the considered historic centre. This selection is made through the choice of the most 

significant geometrical and mechanical properties, also chosen according to the process of 

knowledge on the structural typologies or to data acquired from diagnostic investigations on 

the buildings. The definition of the variables involved in the problem can be made in a 

statistical or deterministic way. 

The first part of this work, focused on the study of clay brick masonry buildings (Chapter 6), 

provides for a choice of the considered variables according to preliminary sensitivity analyses 

to understand which could be the parameters most influencing the seismic response. This 

approach was adopted due to a limited availability of the mechanical and geometrical 

characteristics of the structures in question; thus, the analyses were carried out with statistical 

procedures, taking into account the variabilities and uncertainties involved in the problem. 

Particularly, the Response Surface (RS) statistical method (Section 3.3) was adopted. 

According to the RS approach, the variables can be explicit or implicit and they are defined 

by means of Gaussian distributions, chosen in such way to have reliable ranges of variation 

of the variables.  

In the second part of this work, focused on the study of stone masonry buildings (Chapter 7), 

the choice of the parameters, defining the different structural typologies, is based on 

deterministic data obtained from past investigative studies allowing a complete typological 

classification of the buildings in the historic centre of Seixal. Among the various classes of 

buildings identified, the most significant was chosen in this work, represented by a prototype 

model. According to the typological investigation in the historic centre, a set of different 

buildings is obtained through all the combinations of the chosen parameters.  Thus, in this 

case it was not necessary to adopt statistical methodologies, as information on the geometrical 

and mechanical characteristics of the examined buildings were already available.  
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As for the variation of the seismic action, the approach was the same in the two case studies. 

A group of accelerograms compatible with the Bologna spectrum, defined by the Italian code, 

was chosen for the first part of the study and considered as implicit variable: the 

accalerograms were distributed on the various models according to the definition of the 

simulations of the Response Surfaces. Similarly, a group of accelerograms compatible with 

the spectrum of Seixal, defined by the Portuguese code, was chosen for the second part of the 

study: this time, the group of accelerograms is applied to each defined model, i.e. for each 

model a number of the collapse PGA equal to the number of the considered accelerograms 

was obtained. 

5.3 Non-linear static analyses of the different structural models 

Once the values assumed by the variables are defined, the prototype buildings are modelled 

using the commercial version of 3Muri software (S.T.A. DATA, 2013) and the research 

version (Lagomarsino et al., 2008) allowed to automate the generation of all the models, 

according to the choice of the variables.  

For both case studies (Chapters 6 and 7) the structural capacity of the models is obtained by 

means of non-linear static analyses. The mechanical and geometrical characteristics are 

considered in the software based on the initial choice of the parameters, that can be defined 

with fixed or variable values. According to the Italian Code (NTC, 2018), the loads are 

considered with a seismic combination obtained multiplying both structural and non-

structural loads by 1 and the live loads by 0.3. Furthermore, a distribution of the forces 

proportional to the masses was applied, as it turns out to be more dangerous for the structure 

and because this distribution is more suitable for structures showing inelastic deformations. 

In both case studies, for each structure analysed, both isolated and aggregated, two different 

and orthogonal directions of the seismic action are considered, indicated as x and y.  

The analyses are carried out considering the in-plan behaviour of the masonry walls, 

neglecting the activation of out-of-plane mechanisms. The global behaviour of the masonry 

walls is governed by the criteria explained in Section 4: the ultimate bending moment is 

defined as in the Equation 4.1 and the shear failure as in the Equation 4.3 

The structures of the case studies have a plan shape similar to rectangular: referring to the 

isolated structural unit, the x-direction is the one assumed parallel to the shorter side of the 

rectangle, the y-direction is that parallel to the longer side of the rectangle. Without reference 
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to the structures object of the case studies, Figure 5.3 shows two examples of structures with 

rectangular plan, isolated structural unit and aggregation of identical structural units in a row, 

with the indication of the orthogonal axes: referring to the aggregate structure, the x-direction 

is that of extension of the aggregate, the y-direction is the perpendicular one.    

     
Figure 5.3: Example of an ISU and an AS with the considered reference axes. 

The capacity curves represent the results of the push-over analyses, reported in terms of 

displacement of a control point (generally chosen on the top of the building) in abscissa (d) 

and the total base shear in ordinate (V); in order to compare the capacities obtained for the 

different models, it is possible to make the shear dimensionless, dividing it by the total mass 

(V/M). As far as the displacement is concerned, in this work it was decided to return the 

average displacement, weighted on the masses, considering the nodes of the last floor of the 

building, so as to eliminate the dependence on the choice of the control point.  

According to the Italian Code, the analyses are stopped when a value equal to 80% of the 

maximum shear is reached (20% decrease): the last point of the push-over curve represents 

the ultimate structural capacity, defined as the attainment of the LS limit state. 

5.4 Definition of the seismic action 

In order to assess the seismic vulnerability and fragility, it is necessary to compare the seismic 

capacity with the seismic demand. To obtain the latter, the seismic action soliciting the 

structure has to be defined. The codes (Eurocode 8, 2004; NTC, 2018) define the elastic 

response spectrum to determine the seismic forces to apply, expressed in terms of vibration 

periods and spectral accelerations (or displacements) and having a regular shape: each 

spectrum interval (delimitated from two fixed period) is defined by means of an expression 

fixed by the code.  
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It is a simplified and conventional elastic response spectrum which encloses, in a simplified 

and precautionary way, the characteristics of the elastic response spectra of earthquakes that 

can occur in an assigned site.  

In this work, in order to consider the possible variability of the seismic action in a site and the 

uncertainty related to the definition of the ground motion, a group of registered accelerograms 

referred to past earthquakes was considered. The accelerograms were chosen based on the 

data referred to previous earthquakes present in the PEER Ground Motion Database 

(https://ngawest2.berkeley.edu), created in collaboration with the NGA project (Power et al., 

2006; Power et al., 2008). 

The two case studies of this work are related to buildings sited respectively in Bologna (Italy) 

and in Seixal (Portugal). Thus, two different groups of accelerograms were chosen to have a 

sufficient number to define a reliable variability of the seismic action in the two sites:  

- Bologna: 48 accelerograms; 

- Seixal: 50 accelerograms. 

With regard to the case studies in Bologna, the choice of the number of the accelerograms 

was affected by the Design of Experiments (Section 3.3.3) and the number of the simulations 

defined for the Response Surface models. However, the models referred to buildings sited in 

Seixal do not follow a particular definition of the simulations: each of the 50 accelerograms 

is considered for each defined model. The number 50 was just chosen to be comparable with 

the number of the accelerograms chosen for Bologna. In both cases the accelerograms were 

scaled to the same reference peak ground acceleration of the considered site (ag), imposing 

some limits to the scaling in such a way as to be compatible with the LS limit state spectrum 

in that site, in the range period between T = 0.1s and T = 1.0s, but also usable until T=3.0 s. 

Furthermore, the selection was done avoiding recordings with impulsive characteristics, 

considering fixed ranges of epicentral Joyner-Boore distance (distance between the 

considered point and the projection of the fault plane in the surface) and fixed ranges of the 

average shear wave velocity Vs30 (Eurocode 8, 2004; NTC, 2018) in such a way to make the 

selections compatible with the considered site. All the parameters defined for the selection of 

the two groups of accelerograms are listed in the following. 

The characteristics of the group of accelerograms referred to data of previous earthquakes in 

Bologna are showed in Table 5.1: 
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Table 5.1: Parameters defined the group of accelerograms in Bologna, Italy. 
BOLOGNA (Italy) 

n° Accelerograms 48 
ag (g) 0.166 

Moment magnitude 5 < Mw < 6.5 

Period of compatibility (s) 0.1 < T < 1.0 
Epicentral Joyner-Boore distance (km) 0 < DJB < 30 

vs,30 (m/s) 200 < vs,30 < 700 

Scaling limit 
MAX 4 
MIN 0.25 

 

All the selected accelerograms of Bologna and the information related to the registrations are 

reported in Appendix A. 

Figure 5.4 shows the scaling factors used to scale the accelerograms, in order to make them 

compatible with the code spectrum of Bologna. 

 
Figure 5.4: Scaling factors used to scale the accelerograms of Bologna. 

Starting from the accelerograms the correspondent spectra were obtained: Figure 5.5(a) shows 

the group of 48 acceleration scaled spectra and Figure 5.5(b) shows the group of 48 

displacement scaled spectra, obtained dividing the spectral accelerations for the frequency 

squared (2). In the figures the acceleration and displacement spectra defined by the Italian 

Code (NTC, 2018) are also reported.  
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                                              (a)                                                                                    (b)                                                        

Figure 5.5: (a) Group of 48 acceleration spectra and (b) displacement spectra for the site of Bologna. 

The characteristics of the group of accelerograms referred to data of previous earthquakes in 

Seixal are showed in Table 5.2, obtained according to the seismic hazard maps of Lisbon 

Metropolitan area (Carvalho et al., 2008; Laboratório Nacional de Engenharia Civil, 2012) 

and to the most recent geological maps of the area (https://www.lneg.pt). 

Table 5.2: Parameters defined the group of accelerograms in Seixal, Portugal. 
SEIXAL (Portugal) 

n° Accelerograms 50 
ag (g) 0.22 

Moment magnitude 6.5 < Mw < 7 

Period of compatibility (s) 0.1 < T < 1.0 
Epicentral Joyner-Boore distance (km) 0 < DJB < 60 

vs,30 (m/s) 350 < vs,30 < 750 

Scaling limit 
MAX 1.5 
MIN 0.5 

 

All the selected accelerograms of Seixal and the information related to the registrations are 

reported in Appendix A.  

Figure 5.6 shows the scaling factors used to scale the accelerograms, in order to make them 

compatible with the code spectrum of Seixal. 
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Figure 5.6: Scaling factors used to scale the accelerograms of Seixal. 

Starting from the accelerograms the correspondent spectra were obtained: Figure 5.7(a) shows 

the groups of 50 acceleration scaled spectra and Figure 5.7(b) shows the groups of 50 

displacement scaled spectra, obtained dividing the spectral accelerations for the frequency 

squared (2). In the figures the acceleration and displacement spectra defined by the 

Portuguese National Annex of Eurocode 8 (Eurocódigo 8, 2009) are also reported. According 

to this code two scenarios can be considered for the definition of the seismic action: (1) a 

scenario labelled “seismic action 1”, characterizing earthquakes with their epicentres mainly 

offshore (moderate magnitude earthquake at close distance) and (2) a scenario labelled 

“seismic action 2”, referring to events with their epicentres mainly inland (greater magnitude 

earthquake at longer distance) (Campos Costa et al, 2008). Since the scenario 2 is the most 

representative of the earthquakes occurred in Seixal, in this work the spectra generated using 

the “seismic action 2” are used. 

   
                                             (a)                                                                                     (b)                                                       

Figure 5.7: (a) Group of 50 acceleration spectra and (b) displacement spectra for the site of Seixal. 
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5.5 Evaluation of the peak ground acceleration corresponding to the 
structural failure 

In this work, the structural failure (structural capacity) of the structures is defined in terms of 

peak ground acceleration corresponding to the attainment of the LS limit state (PGAC). The 

procedure adopted to obtain the PGAC for each studied model is explained in the following. 

The defined spectra allow the determination of the seismic action to apply on the structures 

and to find the seismic demand, in terms of displacement. For each push-over curve obtained, 

the last point corresponds to the ultimate displacement (du) representing the structural 

capacity, i.e. the attainment of the LS limit state. The displacement capacity (du) has to be 

compared with the displacement demand (dmax), to be found using the spectra.  

As already explained in the Section 4.7, the spectra are defined starting from a SDOF system. 

Thus, each of the models (MDOF systems) has to be transformed in a SDOF system, from 

which each equivalent period (T*) is obtained, using Equation 4.15. 

Starting from the displacement spectra, the spectral displacements Sd(T*) were found, 

according to the values of the equivalent periods (T*). Figure 5.8(a) shows, as an example, 

the adopted procedure to obtain three spectral displacements in a structure with equivalent 

period T* = 0.45s and considering three different displacement spectra (i.e. three different 

seismic actions). The green and blue circles are related to two values of the spectral 

displacement demands less than the value of the spectral displacement capacity (black 

square), whereas the red circle indicates a value of the displacement demand greater than the 

value of the spectral displacement capacity.  

Each spectral displacement demand obtained allows to find the correspondent displacement 

demand (dmax), through the two relations 4.17 and 4.18 and according to the values of each 

equivalent period (T*) with respect to the defined value TC of the code spectrum.  

In order to find the PGAC, the ratio du/ dmax is used to scale the displacement and acceleration 

spectra (Figure 5.8(a) and Figure 5.9(a)), setting du = dmax. Figures 5.8(b) and Figure 5.9(b) 

show the displacement and acceleration spectra respectively, scaled of the ratio du/ dmax.  
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                                              (a)                                                                                  (b)                                                       

Figure 5.8: Example of three (a) displacement spectra and (b) displacement scaled spectra. 

 
                                              (a)                                                                                  (b)                                                       

Figure 5.9: Example of three (a) acceleration spectra and (b) acceleration scaled spectra. 

In these specific cases, since the values of the spectral demands (1) and (3)  are less than the 

value of spectral capacity, the spectra (1) and (3) are scaled of a factor (du/ dmax) greater than 

1; on the contrary, the spectrum (2) is scaled of a factor less than 1.  

Finally, the sought values of the collapse PGA (PGAC) are those represented by the squares 

in the axis of the ordinates in Figure 5.9(b): they can be obtained multiplying the value of the 

peak ground acceleration (ag) of the site for the ratio du/ dmax: 

 u
C g

max

d
PGA a

d
  (5.1) 
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5.6 Definition of the seismic fragility  

Once the structural capacities (PGAC) for each model are defined, it is possible to determine 

the seismic fragility, obtaining the probability of failure (Pf) for fixed values of the seismic 

acceleration demand (PGAD). This relation is figured through the plotting of the fragility 

curves.  

As already explained in Section 2.3, the fragility is found using the limit state function 

(Equation 2.5): considering the LS limit state, the structural failure is attained when the 

difference between the structural capacity (PGAC) and the structural demand (PGAD) is less 

than or equal to zero. 

In general, having a distribution of the PGAC and fixing some values of PGAD, the summation 

of the cases where the quantity (PGAC – PGAD) is less than or equal to zero represents the 

number of the failures. Thus, the probability of failure (Pf) is defined as the ratio between the 

number of the failures and the total number of the structural capacities (PGAC).  

In this thesis, each structural analysis leads to the determination of a PGAC, following the 

procedure explained in Section 5.5. The distribution of the obtained PGAC, for each different 

type of analysis, allows the plotting of fragility curves with a non-regular shape, because they 

were obtained considering the actual obtained values from the analyses. Figure 5.10 shows 

an example of non-regular shape of fragility curves. 

These non-regular curves were compared with those obtained using Monte Carlo simulations, 

leading to a more regular shape of the curves, because the number of the values of the 

generated PGAC is higher.  

 

 

 

 

 

 

Figure 5.10: Example of non-regular shape of the fragility curves. 
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As regard the case studies in Bologna, the collapse PGAC were obtained by means of the 

Response Surface simulations. Thus, to plot the fragility curves to compare with the non-

regular ones, Monte Carlo was used to obtain a set (n, usually grater then 103) of values from 

the normal distributions defined for the variables (both explicit and implicit). However, to 

avoid the prediction of negative values of the structural capacity, the log-normal distributions 

were obtained from the defined normal distributions of the variables and the natural logarithm 

of the PGAC (log(PGAC)) is used as response parameter. Hence, starting from the n obtained 

values of each variable from the log-normal distributions, a distribution of n PGAC, found 

with the polynomial function of the RS model with the obtained regression parameters, was 

used to plot the fragility curves, having a regular shape. As an example, the procedure to plot 

the fragility curves, using Monte Carlo simulations for the case studies in Bologna, is shown 

in Figure 5.11. 

 

 

 

 

 

 

 

 

Figure 5.11: Procedure to plot the fragility curves, using Monte Carlo simulations for the case studies in 
Bologna. 

As regard the case studies in Seixal, to each distribution of the PGAC obtained from the 

analyses, a log-normal distribution was associated according to the medium value and the 

standard deviation of the distributions. n different values of the PGAC were obtained using 

Monte Carlo, to plot the more regular fragility curves to be compared with the ones obtained 

using the actual values of the PGAC from the analyses. As an example, the procedure to plot 

the fragility curves, using Monte Carlo simulations for the case studies in Seixal, is shown in 

Figure 5.12. 
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Figure 5.12: Procedure to plot the fragility curves, using Monte Carlo simulations for the case studies in 
Seixal. 
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6. SEISMIC FRAGILITY OF CLAY BRICK MASONRY 
STRUCTURES: CASE STUDIES IN BOLOGNA, ITALY 
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6.1 Introduction 

In this Chapter the seismic fragility analysis of clay brick masonry structures sited in Bologna 

is studied. Section 6.2 is focused on the analysis of the selected masonry structure, considered 

as isolated structural unit (ISU), as first step. In order to take into account some geometrical 

and structural variabilities involved in the problem, the Response Surface (RS) statistical 

method is used, allowing to determine which are the parameters most influencing the seismic 

response. In Section 6.3 the same structure was analysed, considering a simplified model of 

the RS, as the purpose is to compare the seismic fragility of the building considered as isolated 

structural unit and the one of the same building, belonging to an aggregation of identical 

structural units in row. Finally, in order to consider some differences between the structural 

units aggregated in row, Section 6.4 is focused on the seismic fragility analysis of 

aggregations in row of structural units with geometrical differences each other, to show how 

the variability of some parameters between the structural units along the aggregate affects the 

seismic response. Afterwards, the seismic fragility of the aggregate structures with different 

structural units is compared with those referred to the isolated structural units and to the 

previous aggregate structures with identical structural units.  

The structures object of the study, the criteria to select the explicit and implicit variables, the 

numerical models used to perform the non-linear static analyses, the RS models and the 

fragility curves obtained are described in the following. 

6.2 The isolated structural units 

6.2.1 The structure 

The structure is selected as representative of a class of buildings existing in Bologna, in Italy. 

It is not referred to a real case, but it was selected according to some common geometrical 

and structural properties belonging to existing masonry buildings in Bologna. Figure 6.1(a) 

shows the architectural ground floor plan and Figure 6.1(b) two perpendicular sections, 

referred to the prototype structure, whose geometrical and structural properties are fixed to 

the main values in the ranges of the chosen variables. It is a three-storeis masonry building 

(plus the roof storey) and it has a rectangular non-regular shape plan. All the dimensions in 

Figure 6.1 are reported in meters (m).  
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                   (a)                                                                                   (b)                                                        

Figure 6.1: (a) Architectural ground floor plan and (b) sections of the prototype building.  

The building was modelled using 3Muri software. The external and internal walls are defined 

with the same properties: masonry clay brick walls, characterized by a thickness equal to 0.25 

m. The horizontal elements are selected as hollow-core concrete slabs, modelled considering 

reinforced concrete joists, alternated with perforated bricks and a continuous layer of concrete 

above and characterised by an equivalent thickness equal to 0.05 m, defined in the software. 

The load direction of the slabs is highlighted in Figure 6.2(a): they load the walls according 

that direction at 100%.  Whereas, the pitched roof is made by timber beams with cross section 

0.10 m x 0.10 m and spanned in 0.50 m, a timber plank above and it is covered by roof brick 

tiles. Figure 6.2(a) shows the plan of the structural ground floor and Figure 6.2(b) a tri-

dimensional view of the single structural unit. 

The structural properties of the masonry walls are chosen according to Table C8A.2.1 of the 

Italian Code (NTC, 2008): Table 6.1 gives the values of the compressive strength (fm), the 

shear strength (), the elastic (E) and shear (G) modulus and the self-weight (w) of the 

masonry walls. The value of the strengths reported in the Table 6.1 are already divided by the 

confidence factor (Section 4.3), set equal to 1.2 in this case. Table 6.2 gives the values of the 

main elastic modulus (E1), the secondary elastic modulus (E2) and the shear modulus (GS) of 

the diaphragms, chosen according to the common existing slabs and roofs in Bologna.  
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                                  (a)                                                                                             (b)                                                        
Figure 6.2: (a) Plan of the structural ground floor and (b) tri-dimensional view of the isolated structural unit. 

Table 6.1: Structural properties of the masonry walls. 

MASONRY WALLS 
fm  

(MPa) 


(MPa) 
E 

 (GPa) 
G  

(GPa) 
w  

(kN/m3) 

Clay brick walls 2.66 0.063 1.50 0.50 18.00 

 

Table 6.2: Structural properties of the diaphragms. 

DIAPHRAGMS 
E1  

(GPa) 
E2  

(GPa) 
GS  

(GPa) 
Hollow-core concrete slab 31.50 15.75 13.125 

Pitched timber roof 7.00 3.50 0.035 

 

6.2.2 Selection of the variables 

As already mentioned, this first part of the work was carried out by means of the Response 

Surface (RS) statistical method, detailed in Section 3.3, in order to take account some 

variabilities and uncertainties and to highlight which are the parameters most influencing the 

seismic behaviour. According to the RS method, the selected variables are divided in explicit 

and implicit. The former are accounted for explicitly as random variables in the RS model, 

allowing to define for each one a regression coefficient () expressing the relation with the 

response parameter; the latter are considered implicitly and their effect is assumed in additive 

form in the polynomial function of the RS model.  
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- Explicit variables 

According to the RS model, an explicit variable is defined starting from a selected normal 

distribution. As a first step, the choices of one explicit variable related to the structural 

properties of the walls, one to the structural properties of the slabs and one to the geometrical 

properties of the walls, were assumed. Thus, the three explicit variables chosen are: the mean 

masonry shear strength (the mean slab elastic modulus (E1), the mean distance between 

external walls in x-direction (d) (in Figure 6.1(a) the mean value of “d” is equal to 6.90 m). 

Their normal distributions are given in Figure 6.3. Table 6.3 gives the parameters defining 

the normal distributions for each variable, i.e. the mean value (), the coefficient of variation 

(COV) and the standard deviation (). 

                                                           
                          (a)                                                       (b)                                                       (c)                                               

Figure 6.3: Normal distributions adopted for the (a) variable , (b) variable E1 and (c) variable d. 

Table 6.3: Definition of the normal distributions adopted for the explicit variables. 

Variable (Xi) Distribution  COV  
 N MPa)  
E

1
 N 31.50 (GPa) 0.1 3.150 

d N 6.90 (m) 0.1 0.690 

The variation of the distance (d) is carried out maintaining the same ratio between the internal 

distances in x-direction. The other structural masonry properties (masonry compressive 

strength (fm), masonry elastic (E) and shear (G) modulus) are direct function of  according 

to the values reported in Table C8A.2.1 of the Italian Code. Thus, it is possible to find a 

relation between variable in this work) and the other three masonry properties, in such a 

way to make their variability direct function of As for the slab properties, E2 (secondary 
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slab elastic modulus) and GS (slab shear modulus) are direct function of E1. The adopted 

relations between the variables are shown in Table 6.4 and Table 6.5. 

Table 6.4: Relations between masonry properties and masonry shear strength (). 
 

 

 

 

Table 6.5: Relations between slab properties and slab elastic modulus (E1). 

 

 

 

As mentioned before, the variable values are selected following the Design of Experiment 

Theory (Section 3.3.3) to calibrate the RS model. Therefore, using Equation 3.32 and 

according to the Central Composite Design the simulations are defined as following: 

• 23 simulations, considering all the combinations of the three explicit coded variables 

(Xi =  ± 1.5   xi = ± 1); 

• 2 axial points for each variables (Xi =  ± 2   xi = ± 1.33); 

• 3 central points (Xi =    xi = 0). 

Thus, the total number of a group of simulations is 17; it is repeated several times, according 

to the definition of the blocks for the implicit variables. 

Tables 6.6 shows the values assumed by the variables (Xi) in the defined normal distributions 

according to the Design of Experiment rules.  

Table 6.6: Values assumed by the variable Xi in the defined normal distributions. 

Xi (MPa) E
1 (GPa) d (m) 

2 0.088 37.80 8.30 
1,5 0.082 36.22 7.95 
 0.063 31.50 6.90 

-1,5 0.044 26.77 5.85 
-2 0.038 25.20 5.50 

 
Table 6.7 gives the definition of the group of 17 simulations, setting the coded variables as x1 

= , x2 = E1, x3 = d and Figure 6.4 shows the cuboidal region of interest for the three selected 

coded variables. 

Masonry Property Relation with  

Compressive Strength (fm) m 50 0.5f    

Elastic Modulus  (E) E 11250 37.5   

Shear Modulus (G) G 3750 12.5   

Slab property Relation with E1 

Secondary Elastic Modulus (E2) 2 1E 0.5E  

Shear Modulus (GS) 1G 0.4166E  
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Table 6.7: Definition of the group of 17 simulations using the coded variables xi. 

 

 
Figure 6.4: Cuboidal region of interest for the 3 coded variables xi. 

In this thesis, it was decided to neglect the contribute of some variabilities related to the 

parameters of the analyses, such as the drift for piers and spandrels, as only the geometrical 

and mechanical properties of the masonry are varied in prescribed ranges.  Despite recent 

statistical elaborations of experimental data (Morandi et al. 2019; Vanin et al. 2017) show 

how the dispersion related to the drifts is significant, the maximum drifts in case of shear and 

flexural failure are fixed according to the Equation 4.7.  

- Implicit variables 

The choice of the implicit random variables is very important because it influences the 

partition in blocks. They are selected as normally distributed variables with zero mean. In this 

work, two implicit variables were chosen: the uncertainty of the seismic action (sis) and the 

uncertainty of some geometrical properties of the walls (geom). 

As far as sis is concerned, the group of 48 accelerograms defined in Section 5.4 was used in 

order to consider the variability of the seismic action. For each of the 17 simulations, 

according to the Design of Experiment Theory, 2 accelerograms were associated to the 

factorial region and 1 accelerogram was associated to the axial and central points. Thus, each 

x1 1 -1 -1 1 1 -1 1 -1 1.33 -1.33 0 0 0 0 0 0 0 

x2 1 -1 1 -1 1 -1 -1 1 0 0 1.33 -1.33 0 0 0 0 0 

x3 1 1 1 1 -1 -1 -1 -1 0 0 0 0 1.33 -1.33 0 0 0 
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group of 17 simulations is related to 3 blocks sis and it is repeated 16 times (the total number 

of blocks is 48). 

As for geom, two different uncertainties of geometrical properties were chosen: the variability 
of the thickness of all the walls (s) and the variability of the position of the central wall in x-

direction (d), with respect to the position of the parallels external walls. Both s and d  vary 

together in the same block. 8 blocks were chosen for geom: each block is associated to 34 
simulations (2 groups of 17 simulations).  

 

Figure 6.5: Definition of the implicit variable sis, by means of d and s. 

The values assumed for s and d change together, in such a way to have greater distances d 

with greater thicknesses s. Figure 6.5 shows the indication of the thickness of the walls s, 

assuming the 8 values reported in Table 6.8, and the variation of d, obtained moving the 

internal wall about 1.5% (on the right and on the left) of the medium distance d (red lines in 

Figure 6.5). The values of s in Table 6.8 were chosen according to realistic cases of clay brick 

wall thickness existing in the Italian historic centres; each values corresponds to a different 

block of the RS simulation. 

Table 6.8: Values assumed by the thickness of the walls s and correspondent blocks. 

s 0.125 m 0.15 m 0.20 m 0.25 m 0.30 m 0.375 m 0.40 m 0.50 m 

BLOCK 8 7 6 5 4 3 2 1 

 
Summarizing, the division in blocks for the implicit variables is obtained as following: 

• 48 blocks of sis, divided in 16 groups of 3 blocks for a set of 17 simulations; 

• 8 blocks of geom, divided in 8 groups of 1 block for a set of 34 (17x2) simulations. 

s 


d
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The partition in blocks, associated to the groups of explicit variables, generates 272 

simulations in total. Table B.1 in Appendix B gives the design matrix containing the 272 

simulations with the combinations of the explicit and implicit variables, according to the 

Design of Experiment Theory and the division in blocks.  

6.2.3 Push-over analyses 

Once the simulations are defined, the data required to calibrate the Response Surface models 

were obtained by means of non-linear static analyses (push-over), performed using TreMuri 

software, following the procedure in Section 5.3. 

Two orthogonal directions (x and y) of the seismic action are considered (Figure 5.3) and the 

distribution of the forces applied (proportional to the masses) was considered with both signs 

(+F and -F). Each of this case generates 272 capacity curves; the types of performed analyses 

for the masonry isolated structural units, object of this Section, are defined as follows: 

• 272 x-direction analyses with applied forces + Fx; 

• 272 x-direction analyses with applied forces - Fx; 

• 272 y-direction analyses with applied forces + Fy; 

• 272 y-direction analyses with applied forces - Fy. 

The results related to the two different directions are shown in the following. 

- x-direction 

Figures 6.6(a) and 6.6(b) show the capacity curves obtained from the analyses considering 

the x-direction with positive forces (+ Fx) and negative forces (- Fx) respectively.  

      
                                             (a)                                                                                     (b)                                                

Figure 6.6: Capacity curves from the analyses with (a) positive forces (+ Fx) and (b) negative forces (- Fx) 
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These curves highlight different behaviour of the structures when the seismic forces are 

considered with different sign (+ or -). Even if the curves (+ Fx) in Figure 6.6(a) show higher 

capacity with respect to those (- Fx) in Figure 6.6(b), the ultimate displacements reached are 

lower, because of the progressive decrement of the capacity in the case of positive forces (+ 

Fx). The loss of capacity is due to the configuration of the resisting masonry walls in x-

direction P1, P3, P6, P8, P10 (Figures 6.7(a) and 6.9(a)). To explain the differences, Figures 

6.7(b) and 6.8 and Figures 6.9(b) and 6.10 are referred to the model of the simulations 217, 

218, 219, 234, 235, 236 having the shear strength ( and the distance (d) fixed to the mean 

values and a thickness of the walls (s) equal to 0.15 m. Figures 6.8 and 6.10 show the failure 

mechanisms referred to the walls in x-direction, in correspondence of a displacement (d) equal 

to 0.011 m (Figures 6.7(b) and 6.9(b)), highlighting that the main failure mechanism in this 

direction is the flexural one. Looking at the geometrical configuration of the walls in Figures 

6.8 and 6.10, the left-sides are the weaker due to a greater presence of the openings (in 

particular for the panels P3, P8, P10). Thus, if the forces + Fx are considered those weaker 

portions of the walls are the most solicited, causing the progressive decrement of the total 

capacity of the building. On the contrary, if the forces - Fx are considered the most solicited 

portions of the walls are on the right-side, where the reduced presence of openings allows to 

experience a more gradual loss of capacity with the attainment of higher displacements 

(Figure 6.9(b)).  

The point of the capacity curve indicated in Figure 6.7(b) is related to the collapse of the 

spandrels E13 and E9 of the panel P3 (Figure 6.9); however, in correspondence of the same 

displacement reached considering the forces - Fx (Figure 6.9(b)), most of the piers and 

spandrels are still in the elastic or plastic phase.  

These results highlight how the geometrical configuration of the walls, in particular the 

presence of the openings, substantially affects the seismic response. In this specific case, the 

geometrical properties of the walls make the building weaker to the positive seismic action in 

x-direction (+ Fx). Thus, considering this latter case, lower values of the collapse PGA are 

expected, with respect to the negative seismic action in x-direction (- Fx), i.e. higher seismic 

fragility.  

In general, the showed seismic behaviour of the masonry panels has been found for all the 

272 simulations referred to different structural models.  
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(a)                                                                                                    (b) 

Figure 6.7: (a) Indication of the masonry walls in x-direction; (b) Point of the capacity curve (+ Fx) related to 
the collapse of the spandrels E13 and E9 of the panel P3. 

 
                  

                                                                           
 

                                                   
Figure 6.8: Failure mechanisms of the masonry walls considering a seismic action in x-direction (+ Fx). 
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                   (a)                                                                                                    (b) 

Figure 6.9: (a) Indication of the masonry walls in x-direction; (b) Point of the capacity curve (- Fx) in 
correspondence of the point in Figure 6.7(b). 
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Figure 6.10: Failure mechanisms of the masonry walls considering a seismic action in x-direction (- Fx). 
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 y-direction 

Figures 6.11(a) and (b) show the capacity curves obtained from the analyses considering the 

y-direction of the seismic action with positive (+ Fy) and negative forces (- Fy) respectively.  

   
                                             (a)                                                                                    (b)                                                
Figure 6.11: Capacity curves from the analyses with (a) positive forces (+ Fy) and (b) negative forces (- Fy). 

The same buildings referred to the 272 simulations exhibit greater capacity in y-direction, due 

to the arrangement and the geometry of the walls in this direction: they have a greater length 

and most of them are without openings. Also for the y-direction, the same model is used as 

an example to show the results. The indication of the resisting masonry walls in y-direction 

(P2, P4, P5, P7) is shown in Figures 6.12(a) and 6.14(a). Figures 6.13 and 6.15 show the 

failure mechanisms referred to the walls in y-direction, in correspondence of a displacement 

(d) equal to 0.018 m (Figures 6.12(b) and 6.14(b)), highlighting that the main collapse 

mechanism in this direction is the shear one. In this case, the two behaviours are very similar, 

due to the presence of the openings just in the panel P5. Considering the non-regularity in 

plan, the building results to be weaker to the negative seismic action in y-direction (- Fy), as 

the activation of flexural mechanisms in the spandrels of the panel P5 and in the ground-floor-

pier of the smaller panel P7, due to the torsional effects more accentuated in this case 

depending on the asymmetry resulted in the upper part (in plan) of the model. However, in 

correspondence of the same displacement reached considering the forces + Fy (Figure 

6.12(b)), most of the panels are still in the elastic or plastic phase. Thus, considering this latter 

case, higher values of the collapse PGA are expected, with respect to the negative seismic 

action in y-direction (- Fy), i.e. lower seismic fragility. 
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                   (a)                                                                                               (b) 
Figure 6.12: (a) Indication of the masonry walls in y-direction; (b) Point of the capacity curve (+ Fy) related 

to the same displacement in Figure 6.14(b). 
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Figure 6.13: Failure mechanisms of the masonry walls considering a seismic action in y-direction (+ Fy). 
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                     (a)                                                                                              (b) 
Figure 6.14: (a) Indication of the masonry walls in y-direction; (b) Point of the capacity curve (- Fy) related 

to the collapse of the panels P5 and P7. 
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Figure 6.15: Failure mechanisms of the masonry walls considering a seismic action in y-direction (- Fy). 
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6.2.4 Response Surface models 

The capacity curves represent the structural capacities of the models, from which the ultimate 

displacements (du) were obtained. Following the procedure in Section 5.5 the displacement 

demands (dmax), to be compared with du, were evaluating, in order to obtain all the PGA 

corresponding to the attainment of the LS limit state (PGAC), representing the response 

parameter used to calibrate the Response Surface (RS) models. However, since Monte Carlo 

was used (Section 3.2), in order to avoid the prediction of negative values of the variables 

from the distributions, the natural logarithm of PGAC (log(PGAC)) was used as response 

parameter for the calibration. Thus, the correspondent log-normal distributions were obtained 

from the selected normal distributions used for the variables (Section 6.2.2).  

A quadratic polynomial was then chosen for the RS, but with only one quadratic term 

producing significant effects in the response (x2
1). Thus, the equation describing the RS 

models used to study the clay brick isolated structural unit is set as: 

 2
C, , , 0 1 1, 2 2, 3 3, 4 1, , , , ,log(PGA )        i j k i i i i sis j geom k i j kx x x x  (6.1) 

where i stands for the i-th simulation, j for the j-th sis block, k for the k-th geom block and  

represents the errors. The regression is obtained through the Ordinary Least Squares method 

(Section 3.3.1.1), approximating the structural response by the polynomial function defined 

in Equation 6.1. 

In the following the results referred to the 4 seismic action cases (+ Fx, - Fx, + Fy, - Fy) are 

given. Since the contribute of the variable x2 = E1 is negligible, the RS models just show the 

relation of the response parameter (log(PGAC)) with the other two explicit variables  and d. 

The results of the RS allow to show how the parameters chosen as variables affect the seismic 

response of the selected masonry isolated structural units, also highlighting the differences 

considering two orthogonal directions of the seismic action.  

Tables 6.9, 6.10, 6.11 and 6.12 give the regression parameters obtained for each explicit 

variable (, E1,d, 2) and the standard deviations related to the implicit variables (sis, geom 

and the random error ). Regarding the x-direction, the regression parameters (i) related to 

the variables  and d are always positive: as expected, the value of the PGAC increases as the 

values of the two variables increase. The values of the regression parameters 1 and 4 

indicate that the shear strength () is the variable most influencing the response; the value of 
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the variable d (mean distance of the masonry walls in x-direction) is also affecting the PGAC, 

but through a smaller regression parameter 3. This latter parameter is positive as expected, 

because since the main failure mechanism is the flexural one (Section 6.2.3) if d increases, 

the length of the walls in x-direction increases, and the structure can better withstand the 

seismic action in x-direction.  

As for the y-direction, the RS indicates a qualitatively similar relationship between the 

response parameter and the explicit variables, except for the variable d: if d increases, the 

length of the wall in x-direction increases, implying an increment of the slab length in the 

same direction. As a consequence, the capacity of the walls in y-direction against a seismic 

action in y-direction decreases, leading to lower values of the PGAC.  

Figures 6.16, 6.18, 6.20 and 6.22 show the sections of the RS models obtained setting the 

distance d to the fixed values chosen to calibrate the RS (Table 6.6) and changing the values 

of the shear strength ; on the contrary, Figures 6.17, 6.19, 6.21 and 6.23 show the sections 

of the RS models obtained setting the shear strength  to the fixed values chosen to calibrate 

the RS (Table 6.6) and changing the values of the distance d. In these figures the sections are 

divided between the factorial values of the variable (pink and blue continuous lines) and the 

central and axial points (black, green and red continuous lines); the dashed lines (--) indicate 

the section models obtained adding and subtracting the RS variance 

2 2 2
sis geom      ; the points are those corresponding to the various simulations used 

to calibrate the RS models.  

The section of the RS models obtained varying both for x- and y-direction) have a greater 

slope because the shear strength is the variable most influencing the PGAC, but they are closer 

each other because they are referred to the five values of d, having reduced effect on the 

response. For this latter motivation, the section of the RS models obtained varying d both for 

x- and y-direction) have a minor slope, but they are more spaced each other because they are 

referred to the five values of , having a significant effect on the response.  

The results also confirm those obtained in terms of capacity: in x-direction the weaker 

direction is the positive (+ Fx), in y-direction is the negative one (- Fy). 

In the Figures below, representing the RS models, the values of the PGAC are reported in a 

logarithmic scale.  
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- x-direction (+ Fx) 

Table 6.9: Regression parameters and standard deviations of the isolated structural unit, considering the 
seismic forces + Fx. 

Variable i Variable  

x1 () 12.19 sis 0.1883 

x2 (E1) 0.0001667 geom 0.239 
x3 (d) 0.03705 

 0.2929 
x1 (2) 29.43 

 

 

 
                                               (a)                                                                                 (b)                                                
Figure 6.16: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying , considering the seismic forces + Fx. 

 

 
                                               (a)                                                                                  (b)                                            
Figure 6.17: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying d, considering the seismic forces + Fx. 
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- x-direction (- Fx) 

Table 6.10: Regression parameters and standard deviations of the isolated structural unit, considering the 
seismic forces - Fx. 

Variable i Variable  

x1 () 1.377 sis 0.2341 

x2 (E1) 0.0001444 geom 0.1565 
x3 (d) 0.07699 

 0.2527 
x1 (2) 46.28 

 

 

  
                                               (a)                                                                                 (b)                                                
Figure 6.18: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying , considering the seismic forces - Fx. 

 

 
                                               (a)                                                                                 (b)                                
Figure 6.19: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying d, considering the seismic forces - Fx. 
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 y-direction (+ Fy) 

Table 6.11: Regression parameters and standard deviations of the isolated structural unit, considering the 
seismic forces + Fy. 

Variable i Variable  

x1 () 4.19 sis 0.1649 

x2 (E1) 0.0004991 geom 0.1592 
x3 (d) -0.07605 

 0.1576 
x1 (2) 51.21 

 

 

  
                                               (a)                                                                                 (b)                                                
Figure 6.20: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying , considering the seismic forces + Fy. 

 

  
                                               (a)                                                                                 (b)                                                
Figure 6.21: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying d, considering the seismic forces + Fy. 
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- y-direction (- Fy) 

Table 6.12: Regression parameters and standard deviations of the isolated structural unit, considering the 
seismic forces – Fy. 

Variable i Variable  

x1 () 2.81 sis 0.1646 

x2 (E1) 0.0001477 geom 0.2166 
x3 (d) -0.06113 

 0.1832 
x1 (2) 78.37 

 

 

  
                                               (a)                                                                                 (b)                                                
Figure 6.22: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying , considering the seismic forces - Fy. 

 

 
                                               (a)                                                                                 (b)                                                
Figure 6.23: (a) Axial and central region and (b) factorial region of the isolated structural unit quadratic RS 

sections obtained varying d, considering the seismic forces - Fy. 
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Finally, the results are reported by means of the 3D Response Surfaces. Figures 6.24(a) and 

(b) show the 3D Response Surfaces referred to the positive (+ Fx) and negative (- Fx) x-

direction of the seismic action, respectively; Figures 6.25(a) and (b) show the 3D Response 

Surfaces referred to the positive (+ Fy) and negative (- Fy) y-direction of the seismic action, 

respectively. The black surfaces are obtained considering  and d as variables, with E1 fixed 

to its mean value; the grey surfaces are obtained adding and subtracting the RS variance 

2 2 2  sis geom    . 

 
                                       (a)                                                                                  (b)                                                

Figure 6.24: 3D Response Surfaces for (a) the positive (+ Fx) and (b) negative (- Fx) x-direction of the 
seismic action. 

 

 
                                     (a)                                                                                  (b)                                                

Figure 6.25: 3D Response Surfaces for (a) the positive (+ Fy) and (b) negative (- Fy) y-direction of the 
seismic action. 
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6.2.5 Fragility curves 

The obtained RS models were used to estimate the fragility curves of the masonry isolated 

structural units. The fragility analysis was assessed adopting the limit state function in 

Equation 2.5, rewritten in the form: 

                          
 E sis geom D C D

2
0 1 1 2 2 3 3 4 1 sis geom D

, , , | PGA log(PGA ) log(PGA )

log(PGA )

      

          

xg ,

x x x x
 (6.2) 

Four fragility curves were then obtained for seismic action in x- and y-direction (Figure 6.26). 

They give the conditional probability of the structural failure (Pf) for different values of the 

structural demand (PGAD). Thus, once obtained the collapse PGAC, fixed PGAD and being 

the behaviour of the structures non-linear, in order to solve the Equation 6.2, Monte Carlo 

method was used, as explained in Section 5.6.  

As expected, the fragility curves for the seismic action in x-direction reach higher values of 

the conditional probability of the structural failure (Pf) for smaller values of PGAD if 

compared to the seismic action in y-direction. These results confirm that the masonry 

structural units, object of study, is more vulnerable against the seismic action in x-direction 

because of the geometry, the number of openings and the arrangement of the resisting walls 

in the same direction. Instead, the resisting walls in y-direction have a considerable length and 

a reduced number of openings; thus, the values of the spectral acceleration corresponding to 

the attainment of the building failure (PGAC) are greater.  

Moreover, if the x-direction of the seismic action is considered, the differences between the 

fragility curve related to the application of the positive forces + Fx (continuous red line) and 

that related to the application of the negative forces - Fx (dash dot red line), are significant 

because of the consideration on the geometrical properties of the resisting walls in x-direction 

already explained in Section 6.2.3. In y-direction, the two blue curves give almost the same 

fragility, as the resisting walls in this direction do not exhibit substantial differences between 

the case of the application of positive forces + Fy (continuous blue line) and that related to the 

application of the negative forces – Fy (dash dot blue line), due to their geometrical 

configuration with a reduced presence of the openings, making them stockier. 
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Figure 6.26: Fragility curves obtained for the isolated structural units in x- and y-direction of the seismic 

action. 

6.3 Comparison between the isolated structural units and the 
aggregations of identical structural units in row 

6.3.1 Introduction 

The main purpose of this work is the seismic fragility assessment of the masonry aggregate 

buildings. Thus, once the masonry isolated structural unit (ISU) was studied to analyse which 

are the parameters most influencing the seismic response, in this Section it was compared 

with an aggregation in row of 5 structural units (AS). As a first step, in order to start from a 

simplified structure object of the study, it was decided to consider the structural units along 

the masonry aggregate identical each other. Moreover, it is very common to find aggregations 

of identical or similar structural units in the Italian historic centre, as very often they were 

built in the same historic period, characterized by the use of similar materials and construction 

techniques. 

Thus as a first step, the isolated structural unit studied in Section 6.2 was analysed with a 

simplified Response Surface, to compare its seismic behaviour with the one of an aggregation 

of the same identical structural units in row. The purpose is to show how a masonry structural 

unit cannot be studied as isolated if it belongs to an aggregation of structures, as the adjacent 

buildings affect its behaviour against the seismic action. 
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The comparison involves both x- and y-direction of the seismic action (Figure 5.3), to analyse 

the differences on the global seismic behaviour due to the different geometrical configurations 

of the resisting masonry walls in the two directions. Furthermore, the comparison was made 

considering the masonry structural units in different positions along the row aggregate, as 

differences in the seismic response are expected if the structural unit is externally located in 

the corners of the row or internally between adjacent structural units.   

6.3.2 The aggregation of identical structural units in row 

The modelling of the aggregation of identical structural units in row uses the same structural 

and geometrical properties of the model analysed in Section 6.2. Figure 6.27 shows a tri-

dimensional view of the masonry aggregate and Figure 6.28 shows the plan of the structural 

ground floor, referring to a model with all the medium values of the explicit variables (, E1, 

d) used for the RS model in Section 6.2 and with a thickness of the walls equal to 0.30 m, as 

an example. Even if it is not very common in existing masonry aggregates, the thickness of 

the common walls between two adjacent buildings is twice as that of the other walls, to ensure 

that the aggregate structure is a combination of identical structural units (Figure 6.28). 

Since the thickness of the adjacent walls is twice and the same orientation of the slabs was 

maintained, the masonry walls in y-direction are loaded in the same way than those of the 

isolated structural unit in the same direction. 

 
Figure 6.27: Model of the 3D masonry aggregate structure. 
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Figure 6.28: Plan of the structural ground floor of the masonry aggregate structure. 

6.3.3 Selection of the variables 

The variables are chosen according to the Response Surface model defined in Section 6.2.  

Since the purpose of this work is to compare the seismic fragility of the isolated structural 

unit to that of an aggregate structure, a reduced number of variables is first selected.  

- Explicit variables 

The thickness (s) of the resisting walls was chosen as explicit variable, as in the RS of the 

Section 6.2 it was considered as implicit variable: the assumption of s as explicit variable 

allows to obtain a direct relation with the collapse PGA (PGAC) referred to the attainment of 

the LS limit state, representing the response parameter used to calibrate the RS model. In this 

way, the RS is simplified, but a large number of simulations was considered, compared to that 

reported in Section 6.2.   

In order to consider realistic cases of thickness (s) of the walls in civil applications, 8 different 

values are selected, taking into account the most common typologies of masonry structures 

in the Italian historic cities, following the same choice showed in Section 6.2. In addition, 

following the RS rules (Section 3.3) in order to define the statistical properties, the values of 

the thickness (s) of the walls belong to a chosen normal distribution. Table 6.13 gives the 8 

wall thicknesses selected for the simulations, Figure 6.29 shows the Gaussian distribution 

chosen, with the indication of the selected values of the thickness (s) and Table 6.14 gives the 

parameters defining the normal distribution. 

Table 6.13: Values assumed by the thickness of the walls s. 

s 0.125 m 0.15 m 0.20 m 0.25 m 0.30 m 0.375 m 0.40 m 0.50 m 

x 

y 

1 2 3 4 5 



6 | Seismic fragility of clay brick masonry structures: case studies in Bologna, Italy 

111 
 

 
Figure 6.29: Normal distribution adopted for the variable s. 

Table 6.14: Definition of the normal distribution adopted for the explicit variable s. 

Variable (Xi) Distribution  COV  
s N m)  

 
Since the RS is simplified in this Section, the Design of Experiment Theory was not adopted 

for the definition of the region of interest of the variables. Thus, 8 different structural models 

are defined, as the unique explicit variable is the thickness s, defined with 8 selected values.  

-  Implicit variables 

As for the RS model adopted in Section 6.2, the uncertainty of the seismic action (sis) was 

chosen as implicit variable, using the same group of 48 accelerorams defined in Section 5.4. 

However, in this application the division in blocks allows to associate each of the 48 

accelerograms to each of the 8 simulations defined by the 8 values of the explicit variable s. 

Thus, the group of the 8 simulations is repeated 48 times, as the number of the selected 

accelerograms.  

Summarizing, the division in blocks for the implicit variables is obtained as following: 

• 48 blocks of sis, divided in 48 groups of 1 block for a set of 8 simulations. 

The partition in blocks, associated to the groups of the explicit variable s, generates 384 

simulations in total. Table B.2 in Appendix B gives the design matrix containing the 384 

simulations with the combinations of the explicit and implicit variables, according to the 

selection of the values of the explicit variable (s) and the division in blocks (sis).  
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6.3.4 Push-over analyses 

In this section the same procedure adopted in Section 6.2.3 was followed, performing non-

linear static analyses (push-over), using TreMuri software to obtain the data required to 

calibrate the Response Surface models.  

Two orthogonal directions (x and y) of the seismic action are considered (Figure 5.3) and the 

distribution of the forces applied (proportional to the masses) was considered with both signs 

(+F and -F), generating 384 capacity curves for each studied case. Since the analyses were 

performed both for the masonry isolated structural units and the row-aggregations of identical 

structural units, the number of the type of analyses doubles; furthermore, in y-direction the 

analyses over the attainment of the LS limit state were performed, to evaluate the collapse of 

the structural units in different positions along the aggregate (further details in the following). 

Thus, the type of performed analyses for the masonry isolated structural units and the 

aggregations of identical structural units in row, object of this Section, are listed as follows: 

• 768 in x-direction with applied forces + Fx (384 for the ISU and 384 for the AS); 

• 768 in x-direction with applied forces - Fx (384 for the ISU and 384 for the AS); 

• 1536 in y-direction with applied forces + Fy (384 for the ISU and 1152 for the AS); 

• 1536 in y-direction with applied forces - Fy (384 for the ISU and 1152 for the AS). 

The results related to the two different directions of the seismic action are shown in the 

following. 

- x-direction 

Figures 6.30(a) and (b) show the capacity curves obtained from the analyses considering the 

x-direction of the seismic action and referred to the isolated structural unit (ISU) and the 

aggregate structure (AS) respectively, showing the differences between the two cases in terms 

of capacity and ultimate displacements. The curves show a little increment of the capacity of 

the aggregate structures, as well as the attainment of larger ultimate displacements. Thus, 

since the length of the walls is about 5 times that of the walls of the isolated structural unit 

and the dominance of the flexure as main global failure mechanism (Figures 6.32 and 6.33), 

an increment of the collapse PGA is expected, if structural units in x-direction are aggregated. 

Furthermore, the curves in Figure 6.30 give the same differences between the seismic forces 

+ Fx and - Fx, confirming the results obtained in Section 6.2 and showing that the geometrical 
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configuration of the masonry walls in this direction makes the structures more vulnerable to 

the application of the seismic forces + Fx.  

As an example, Figure 6.31 gives the deformed configuration of the aggregate structure with 

0.30 m of thickness considering a seismic action + Fx, showing the rigid movement of the 

structure due to the presence of rigid hollow-core concrete slabs. The deformed configuration 

referred to the seismic action - Fx was not reported because it almost shows the same rigid 

movement in the opposite side.  

 
                                               (a)                                                                                  (b)                                                
Figure 6.30: Capacity curves from the analyses in x-direction: (a) isolated structural units and (b) aggregate 

structures. 

 
Figure 6.31: Deformed configuration of the model with s = 0.30 m, considering a seismic action in x-

direction (+ Fx). 

Referring to the same model, Figure 6.32 and 6.33 show the more significant mechanisms of 

the walls corresponding to the last point of the capacity curves, i.e. to the attainment of the 

1 2 3 4 5 

ISU AS 
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LS limit state, referring to the seismic action + Fx and – Fx respectively: the masonry panels 

are mainly solicited to flexure and most of the piers and spandrels reach the flexural collapse, 

some of them reach the shear collapse. 

 
 

 
  (a)              

 

          
              (b)              

 

                                                
                            (c)                                                              (d)                                                         (e)          

Figure 6.32: Mechanisms of the walls of the model with s = 0.30 m, considering a seismic action in x-
direction (+ Fx): (a) P3 and (b) P8; (c) P36 and (e) P37 Unit 1; (d) P35 Unit 2. 

x 

P8 

P36 P35 P37

Elastic phase              Shear plastic phase            Shear collapse                Flexural plastic phase               Flexural collapse             Tension 

x 

x 

P3 
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              (a)         

      

            
                  (b)         

 

                                                         
                                      (c)                                                              (d)                                                 (e)          

Figure 6.33: Mechanisms of the walls of the model with s = 0.30 m, considering a seismic action in x-
direction (- Fx): (a) P3 and (b) P8; (c) P36 and (e) P37 Unit 1; (d) P35 Unit 2. 

The masonry walls in Figure 6.33 results more damaged, but these failure mechanisms are 

reached for higher values of displacements (Figure 6.30(b)) with respect to the those attained 

considering the positive x-direction of the seismic action (+ Fx).  

Elastic phase              Shear plastic phase            Shear collapse                Flexural plastic phase               Flexural collapse             Tension 

x 

P3 

P8 

x 

x 

P36 P35 P37 
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- y-direction 

Figures 6.34(a) and (b) show the capacity curves obtained from the analyses considering 

the y-direction of the seismic action and referred to the isolated structural unit (ISU) and the 

aggregate structure (AS) respectively, showing the differences between the two cases in terms 

of capacity and ultimate displacements. The curves give the same differences between the 

seismic forces + Fy and - Fy, confirming the results obtained in Section 6.2 and showing that 

the geometrical configuration of the masonry walls in this direction makes the structures more 

vulnerable to the application of the seismic forces - Fy. Furthermore, due to the geometrical 

configuration and arrangement of the resisting walls in y-direction, the push-over curves in 

this direction exhibit higher capacity with respect to those in x-direction, as already shown in 

Section 6.2. 

In y-direction, the aggregation of structural units leads to a different geometrical 

configuration, which causes it to exhibit different levels of vulnerability due to the torsional 

effects mainly affected the external units: the y-direction walls do not increase their length, 

as for the x-direction aggregation, and their seismic behaviour is affected by the action of the 

adjacent buildings. Therefore, the total displacement attained by the aggregate structure is 

smaller than that of the isolated structural unit, if the LS limit state is considered as the limit 

for the global seismic response of the aggregate structure. Thus, contrary to what happens in 

x-direction, a decrement of the collapse PGA is expected if the global seismic behaviour of 

the aggregate structures is compared with those of the isolated structural units.  

As an example, Figure 6.35 shows the y-direction deformed configuration of the aggregate 

structure with s=0.30 m at the end of the push-over analysis, considering the seismic forces + 

Fy. The deformed configuration referred to the seismic action - Fy was not reported because 

it almost shows the same rotation movement in the opposite side. Due to the torsional effects, 

the external Units 1 and 2 reach larger displacements with respect to units 3, 4 and 5. 

Nevertheless, only the resisting walls of the external Units 1-2 fail for shear or flexure 

(Figures 6.36(a) and (b) and Figures 6.38(a) and (b)), with all other resisting walls still 

belonging to the plastic field (Figures 6.36 (c) and (d) and Figures 6.38(c) and (d) ). Thus, the 

displacement can still increase until the walls of the other structural units experience the 

failure for shear. For this reason, the analyses over the attainment of the LS limit state were 

performed, to allow the resisting walls in y-direction of the other Units (3, 4 and 5) to reach 
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the shear collapse. Therefore, continuing the analyses over the attainment of the LS limit state 

allows to evaluate the different vulnerabilities of the masonry structural units along the 

aggregate structure. Figure 6.37 and 6.39 highlight the points on the push-over curves (over 

the attainment of the LS limit state) corresponding to the failure of the various structural Units, 

considering both + Fy and - Fy directions of the seismic action, respectively: middle Units 3 

and 4 have larger values of displacement capacity, corresponding to the shear collapse of their 

masonry walls. The results referred to the external Unit 5 were neglected, as it is so stiff to 

reach values of ultimate displacements so large to make the results not reliable. For this 

reason, it was decided to preserve the reliability of the analyses. 

 
                                             (a)                                                                                  (b)                                                
Figure 6.34: Capacity curves from the analyses in y-direction: (a) isolated structural units and (b) aggregate 

structures. 

 
Figure 6.35: Deformed configuration of the model with s = 0.30 m, considering a seismic action in y-

direction (+ Fy). 

1 2 3 4 5 
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                                                                (a)                                                                               (b)                                                 

 

                                                                                      
                                                              (c)                                                                                  (d)                                                

Figure 6.36: Mechanisms of the walls of the model with s = 0.30 m, considering a seismic action in y-
direction (+ Fy): (a) P33 Unit 1; (b) P31 Unit 2; (c) P22 Unit 3 and (d) P21 Unit 4.  

      
 Figure 6.37: Capacity curves from the analyses in y-direction (+ Fy) over the attainment of the LS limit state. 
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(a) (b)                       

                           

                                   
                                                           (c)                                                                                (d)                                               

Figure 6.38: Mechanisms of the walls of the model with s = 0.30 m, considering a seismic action in y-
direction (- Fy): (a) P33 Unit 1; (b) P31 Unit 2; (c) P22 Unit 3 and (d) P21 Unit 4. 

 
Figure 6.39: Capacity curves from the analyses in y-direction (- Fy) over the attainment of the LS limit state. 
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6.3.5 Response Surface models 

Once all the collapse PGA (PGAC) for each of the 8 structural models are evaluated, to 

calibrate the RS models, a comparison between the values referred to the isolated structural 

units and those referred to the aggregate structures was made, expressing them in function of 

the thickness of the walls (s). In order to show the influence of the variability of the seismic 

action on the collapse PGA, Figures 6.40 and 6.41 show the relation between s and PGAC, 

obtained evaluating for each value of s the average of the PGAC found for 6 different 

accelerograms. Table 6.15 gives the group of 6 accelerograms used for each value of s and 

the correspondent simulations (Table B.2) from which the values of the PGAC are obtained. 

The results highlight for both x- and y-direction of the seismic action, that there is not a 

progressive increment of the PGAC if the value of the thickness of the walls s increases. This 

is due to the great variability of the earthquake considered, making the results different for 

each group of 6 different accelerograms. Furthermore, in this work real accelerograms are 

used and the spectra have an irregular shape: sometimes, the variation of the period may not 

correspond to the same variation (increase or decrease) of the PGAC, obtained with the N2 

method, that would occur with the use of the regular spectrum of the code. Thus, these 

motivations in some cases lead to a decrement of the value of PGAC with the increment of the 

thickness s, considering different accelerograms. 

Otherwise, Figures 6.42 and 6.43 show the relation between s and PGAC, obtained evaluating 

for each value of s the contribute of all the accelerograms considered in this study: thus, each 

point of the Figures corresponds to the average of the values of the PGAC obtained applying 

all the 48 seismic actions. The results highlight for both x- and y-direction of the seismic 

action, that there is a progressive increment of the PGAC if the value of the thickness of the 

walls s increases, as expected. This is due to the fact that the comparisons between PGAC 

corresponding to different thicknesses is made using the same groups of 48 accelerograms, 

differently from what has been done in the previous case. Furthermore, the results show that 

the aggregation of identical structural units in row leads to an increment of the PGAC if the x-

direction of the seismic action is considered and a decrement if the y-direction is considered, 

as expected from the consideration in terms of capacity discussed in Section 6.3.4. Moreover, 

considering this latter direction of the seismic action, the values of the collapse PGA increase 

if more internal structural units are considered (further details in the following).  
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Table 6.15: Groups of the 6 accelererograms and the correspondent simulations (Table B.2) for each of the 
thicknesses s. 

s Accelerograms Simulations 
0.50 1-2-3-4-5-6 1-9-17-25-33-41 
0.40 7-8-9-10-11-12 50-58-66-74-82-90 
0.375 13-14-15-16-17-18   99-107-115-123-131-139 

0.30 19-20-21-22-23-24  148-156-164-172-180-188 
0.25 25-26-27-28-29-30 197-205-213-221-229-237 
0.20 31-32-33-34-35-36 246-254-262-270-278-286 
0.15 37-38-39-40-41-42 295-303-311-319-327-335 
0.125 43-44-45-46-47-48 344-352-360-368-376-384 

 

 
                                               (a)                                                                                 (b)                                                 

Figure 6.40: Relation between s and PGAC, considering 6 different accelerograms for each value of s: (a) 
seismic forces + Fx and (b) seismic forces - Fx. 

  
          (a)                                                                                 (b) 

Figure 6.41: Relation between s and PGAC, considering 6 different accelerograms for each value of s: (a) 
seismic forces + Fy and (b) seismic forces - Fy. 
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          (a)                                                                                 (b) 

Figure 6.42: Relation between s and PGAC, considering all the accelerograms for each value of s: (a) seismic 
forces + Fx and (b) seismic forces - Fx. 

   

          (a)                                                                                 (b) 
Figure 6.43: Relation between s and PGAC, considering all the accelerograms for each value of s: (a) seismic 

forces + Fy and (b) seismic forces - Fy. 

The simulations of this second application allow to generate a simplified Response Surface, 

defined by means of a quadratic polynomial, whose equation used to study the clay brick 

isolated structural unit and aggregate structure is set as:   

 2
C, , 0 1 1, 2 1, , ,log(PGA )     i j i i sis j i jx x  (6.3) 

where x1 is the selected explicit variable (s), i stands for the i-th simulation, j for the j-th sis 

block and  represents the errors. The regression is obtained through the Ordinary Least 

Squares method (Section 3.3.1.1), approximating the structural response by the polynomial 

function defined in Equation 6.3. 
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In the following the results referred to the 4 seismic action cases (+ Fx, - Fx, + Fy, - Fy) are 

given. The RS models show the relation of the response parameter (log(PGAC)) with the 

selected explicit variables s. The following Tables give the regression parameters obtained 

for each explicit variable (s, s2) and the standard deviations related to the implicit variables 

(sis and the random error ). The following Figures show the sections of the RS models 

(continuous lines) obtained changing the values of the variable s and the sections (dashed 

lines) obtained adding and subtracting the RS variance 2 2  sis   ; the points are those 

corresponding to the various simulations used to calibrate the RS models.  

Regarding the x-direction, the regression parameters 1 (Tables 6.16 and 6.17) related to the 

variable s are positive, for both the ISU and the AS: as expected, the value of the PGAC 

increases as the values of the thickness of the walls increase. The comparison between the RS 

models referred to the ISU (Figures 6.44(a) and 6.45(a)) and those referred to the AS (Figure 

6.44(b) and 6.45(b)) shows that the aggregation of identical structural units in row leads to a 

decrease of the vulnerability, due to the consideration on the geometrical properties of the 

walls discussed in Section 6.3.4. 

For the seismic action in y-direction, the coefficients of the linear terms 1 are also positive 

(Tables 6.18, 6.19, 6,20 and 6.21). Figures 6.46(a) and 6.47(a) show the RS models obtained 

for the ISU and Figures 6.46(b) and 6.47(b) show those referred to the AS, which indicate a 

decrease of the collapse PGA, due to the torsional effects, when the aggregation is considered 

in y-direction. 

As mentioned before, the failure of the aggregate structure is due to the shear failure of the 

masonry walls of Units 1 and 2. Figures 6.48 and 6.49 show the RS models obtained 

continuing the analysis over the attainment of the LS limit state, allowing to reach larger 

values of displacement, corresponding to the failure of the central Unit 3 and Unit 4, which 

are associated to higher values of the collapse PGA.  

The results also confirm that the values of the collapse PGA for the y-direction are larger than 

those obtained for the x-direction, due to the different geometrical properties of the resisting 

walls in the two directions, and the results in terms of capacity are the same: in x-direction 

the weaker direction is the positive (+ Fx), in y-direction is the negative one (- Fy). 
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- x-direction 

Table 6.16: Regression parameters and standard deviations of the ISU and AS RS models, considering the 
seismic forces + Fx. 

Structure Variable i Variable  

ISU 
s 4.761 sis 0.235 

s2 -4.392  0.117 

AS 
s 3.355 sis 0.214 

s2 -3.011  0.102 

    

 
                                              (a)                                                                                   (b)                                                 

Figure 6.44: Response Surface sections for (a) the ISU and (b) the AS, considering the seismic forces + Fx. 

Table 6.17: Regression parameters and standard deviations of the ISU and AS RS models, considering the 
seismic forces - Fx. 

Structure Variable i Variable  

ISU 
s 2.853 sis 0.232 

s2 -2.118  0.076 

AS 
s 3.545 sis 0.230 

s2 -3.599  0.085 

 

  
                                              (a)                                                                                   (b)                                                 

Figure 6.45: Response Surface sections for (a) the ISU and (b) the AS, considering the seismic forces - Fx. 

ISU AS 

ISU AS 



6 | Seismic fragility of clay brick masonry structures: case studies in Bologna, Italy 

125 
 

- y-direction 

Table 6.18: Regression parameters and standard deviations of the ISU and AS RS models, considering the 
seismic forces + Fy. 

Structure Variable i Variable  

ISU 
s 2.514 sis 0.179 

s2 -2.731  0.130 

AS 
s 2.062 sis 0.180 

s2 -1.790  0.134 

 

  
                                               (a)                                                                                   (b)                                                 

Figure 6.46: Response Surface sections for (a) the ISU and (b) the AS, considering the seismic forces + Fy. 

Table 6.19: Regression parameters and standard deviations of the ISU and AS RS models, considering the 
seismic forces - Fy. 

Structure Variable i Variable  

ISU 
s 1.811 sis 0.173 

s2 -1.351  0.151 

AS 
s 2.164 sis 0.184 

s2 -1.590  0.150 

 

  
                                              (a)                                                                                   (b)                                                 

Figure 6.47: Response Surface sections for (a) the ISU and (b) the AS, considering the seismic forces - Fy. 

ISU AS 

ISU AS 
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- y-direction, over the attainment of the LS limit state 

Table 6.20: Regression parameters and standard deviations of the Unit 3 and Unit 4 RS models, considering 
the seismic forces + Fy. 

Structure Variable i Variable  

UNIT 3 
s 2.084 sis 0.199 

s2 -1.457  0.146 

UNIT 4 
s 1.702 sis 0.191 

s2 -1.257  0.139 

 

  
                                              (a)                                                                                  (b)                                                 

Figure 6.48: RS sections for (a) the Unit 3 and (b) the Unit 4, considering the seismic forces + Fy. 

Table 6.21: Regression parameters and standard deviations of the Unit 3 and Unit 4 RS models, considering 
the seismic forces - Fy. 

Structure Variable i Variable  

UNIT 3 
s 2.406 sis 0.189 

s2 -1.894  0.152 

UNIT 4 
s 2.097 sis 0.182 

s2 -1.799  0.147 

 

 
                                              (a)                                                                                 (b)                                                 

Figure 6.49: RS sections for (a) the Unit 3 and (b) the Unit 4, considering the seismic forces - Fy. 

UNIT 3 UNIT 4 

UNIT 3 UNIT 4 
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6.3.6 Fragility curves 

The obtained RS models were used to estimate the fragility curves of the masonry isolated 

structural units and the masonry aggregate structures. The fragility analysis was assessed 

adopting the limit state function in Equation 2.5, rewritten in the form: 

 2
1 i sis D C D 1 1 2 1 sis D( , , , | PGA ) log(PGA ) log(PGA ) log(PGA )         g x x x  (6.4) 

Four fragility curves were then obtained for the seismic action in x-direction (Figure 6.50 (a)) 

and eight for the y-direction (Figure 6.50 (b)), using the same procedure adopted in Section 

6.2.5. For each direction the fragility curves are shown distinguishing the positive (+ Fx and 

+ Fy) and negative (- Fx and - Fy) seismic actions, highlighting the same considerations on the 

geometrical properties of the walls discussed in Section 6.2.3.  

The curves indicate greater fragility for the seismic action in x-direction due to the geometry, 

the number of openings and the arrangement of the resisting walls in this direction. Moreover, 

in x-direction, aggregating identical structural units in a row decreases the fragility, compared 

with that of the isolated structural units. On the contrary, the fragility is higher in y-direction, 

due to the torsional effects affecting the external Unit 1 and Unit 2, decreasing the total 

collapse PGA, when referred to the first attainment of the displacement capacity. If, instead, 

higher values of the ultimate displacements are allowed, corresponding to the attainment of 

displacement capacity of the central Unit 3 and Unit 4, higher values of collapse PGA are 

obtained. In particular, a considerable difference it was found between Unit 4 and the other 

Units, due to the torsional effects more accentuated in the external Units (1-2-3): Figures 6.37 

and 6.39 show that the displacement of the Unit 4 is almost twice that of the Unit 3. 
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                                              (a)                                                                                  (b)                                                 

Figure 6.50: Fragility curves considering (a) the x-direction and (b) the y-direction of the seismic action. 

6.4 Aggregations of different structural units in row 

6.4.1 Introduction 

Once the seismic fragility analyses of identical structural units aggregated in row were carried 

out in Section 6.3, the aggregate structures object of the current Section consider different 

structural units each other, aggregated in row. It is very common to find aggregations of 

different, but similar, masonry structural units in row in the Italian historic centres, commonly 

due to the urban growth characterized by the development of similar construction techniques 

in the same historic period.  

Thus, this Section is focused on the study of unreinforced masonry aggregates in row, 

considering structural units differing each other along the aggregate structures, generated 

starting from the medium values of the variables used for RS models studied in Section 6.2 

and 6.3. The same methodology was applied: once the simulations of the RS model were 

defined, a set of non-linear static analyses was performed using TreMuri software, 

considering two orthogonal directions of the seismic action; afterwards, the data obtained 

from the analyses were used to plot the fragility curves. 

The purpose is to analyse how the considered differences affect the seismic response in the 

global behaviour of the aggregate structures, evaluating which are the parameters most 

influencing the seismic behaviour of the various structural units sited in different positions 

along the aggregates. 



6 | Seismic fragility of clay brick masonry structures: case studies in Bologna, Italy 

129 
 

6.4.2 RS model: definition of the structural units along the aggregates 

The masonry aggregate buildings object of this Section were generated starting from the same 

structural units analysed in Section 6.2 and 6.3: three-storeis masonry buildings, with clay 

brick walls, hollow-core concrete slabs and pitched roof made by timber beams. Figure 6.51 

shows a tri-dimensional view of the masonry aggregate and Figure 6.52 shows the structural 

plan of the ground floor, referring to a model chosen as example of one of the row-

aggregations of different structural units analysed in this Section. In Figure 6.52 the 

differences in terms of thickness of the walls and distance between the walls in x-direction 

are highlighted; as in Section 6.3 the thickness of the masonry walls between two adjacent 

buildings is equal to the summation of the two thicknesses, to ensure that the aggregate 

structure is a combination of the structural units. 

 
Figure 6.51: Model of the 3D masonry aggregate with different structural units. 
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Figure 6.52: Plan of the structural ground floor of the masonry aggregate with different structural units. 

As in the applications of the Sections 6.2 and 6.3, the definition of the simulations to calibrate 

the Response Surface model is carried out by means of the choice of the explicit and implicit 

variables. 

- Explicit variables 

In this application it was assumed the choice of the same explicit variables defined for the RS 

model in Section 6.2 (mean masonry shear strength (and mean distance between external 

walls in x-direction (d)), except forthe mean slab elastic modulus (E1), considered in this 

application in a deterministic way with a fixed value, as it was shown that it does not affect 

the seismic response. The two explicit variables ( and d) were defined with the same normal 

distributions (Figures 6.3(a) and 6.3(c)) and the same assumption of the values (Table 6.6) 

adopted in Section 6.2.  

As already mentioned, the variable values are selected following the Design of Experiment 

Theory (Section 3.3.3) to calibrate the RS model. Therefore, using Equation 3.32 and 

according to the Central Composite Design the simulations are defined as following: 

• 22 simulations, considering all the combinations of the two explicit coded variables (Xi 

=  ± 1.5   xi = ± 1); 

• 2 axial points for each variables (Xi =  ± 2   xi = ± 1.33); 

• 3 central points (Xi =    xi = 0). 

Thus, the total number of a group of simulations is 11; it is repeated several times, according 

to the definition of the blocks for the implicit variables. 

x 

y 

1 2 3 4 5 
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Table 6.22 gives the definition of the group of 11 simulations, setting the coded variables as 

x1 =  and x2 = d, and Figure 6.53 shows the region of interest for the two selected variables: 

since the variables are two, the region of interest is represented by 4 vertices defining a square. 

Table 6.22: Definition of the group of 11 simulations using the coded variables xi. 

 

 

 

 
Figure 6.53: Region of interest for the 2 coded variables xi. 

- Implicit variables 

In this application, three implicit variables were chosen: the uncertainty of the seismic action 

(sis), the uncertainty of the distance between the walls in x-direction (d) and the uncertainty 

of the thickness of the walls (s). 

As far as sis is concerned, the group of 48 accelerograms defined in Section 5.4 was used in 

order to consider the variability of the seismic action. For each of the 11 simulations, 

according to the Design of Experiment Theory, 2 accelerograms were associated to the 

factorial region and 1 accelerogram was associated to the axial and central points. Thus, each 

group of 11 simulations is related to 3 blocks sis and it is repeated 16 times (the total number 

of blocks is 48). 

d and s represent the implicit variables defining the different geometrical properties of the 

structural units along the aggregate. d is the uncertainty of the distance between the walls in 

x-direction (d) and it allows to define a different value of d for each structural unit along the 

x1 1 -1 1 -1 0 0 0 1.33 -1.33 0 0 

x2 1 1 -1 -1 0 0 0 0 0 1.33 -1.33 
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aggregates. For each of the 5 values of d (Table 6.6) a normal distribution was defined and 8 

groups of 5 values (5 as the number of the structural units in row) was randomly selected in 

the distributions: in total 40 groups d were selected, defining 40 different aggregate 

configurations. Figure 6.54 shows the 5 normal distributions used for each value of d. 

                   

            
Figure 6.54: Gaussian distributions defined for the 5 distances between walls in x-direction (d). 

As far as s is concerned, the thickness of the walls s was considered as implicit variable and 

the variation of its values depends on the variation of the values of the distance d: each 

aggregate configuration was generated in such a way as to have greater s with greater d. The 

values of the thickness s are the same used in Table 6.13: in this application they were divided 

in 5 groups of 3 values (Figure 6.55), from s1 to s5, and for each generated aggregate 

configuration 5 random values of s (5 as the number of the structural units in row) were 

obtained from the 5 groups of s. 

0.125 m 0.15 m 0.20 m 0.25 m 0.30 m 0.375 m 0.40 m 0.50 m 

 

 

Figure 6.55: Groups of s for the definition of the blocks s. 

s1 

s2 s4 

s5 

s3 
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Thus, each aggregate configuration was generated selecting every time 5 random different 

values of the distance (d) from the correspondent distribution of d and 5 random values of s 

from the correspondent group of s, in such a way as to have the correspondence between di 

and si (i assumes values from 1 to 5). Table 6.23 gives the definition of the 40 aggregate 

configurations, obtained with the selections of d and s for each structural unit (from US1 to 

US5) along the aggregate structures (Figure 6.56). Each aggregate configuration is 

represented by a block d and a block s (the numeration of the blocks is indicated between 

the brackets in the column of the blocks). The values of d and s in Table 6.23 are given in 

meters. 

Summarizing, the division in blocks for the implicit variables is obtained as following: 

• 48 blocks of sis, divided in 16 groups of 3 blocks for a set of 11 simulations; 

• 40 blocks of d, divided in 8 groups of 5 blocks for a set of 22 (11x2) simulations; 

• 40 blocks of s, divided in 8 groups of 5 blocks for a set of 22 (11x2) simulations. 

The partition in blocks, associated to the groups of explicit variables, generates 176 

simulations in total. Table B.3 in Appendix B gives the design matrix containing the 176 

simulations with the combinations of the explicit and implicit variables, according to the 

Design of Experiment Theory and the division in blocks.  

Following these criteria, the structural units along each aggregate configuration differ each 

other just in the geometrical properties (d and s); instead, the different aggregate 

configurations differ each other in both structural and geometrical properties (, d and s), 

according to the definition of the RS simulations. 

 
Figure 6.56: Numeration of the structural units along the aggregate. 

 

 

 

US 1 US 2 US 3 US 4 US 5 
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Table 6.23: Definition of the aggregate configurations. 
AGGREGATE 

CONFIGURATION 
BLOCK US 5 US 4 US 3 US 2 US 1 

1 
d1 (1) 5.11 5.89 5.76 5.35 5.50 

s1 (1) 0.2 0.2 0.125 0.15 0.125 

2 
d2 (2) 5.52 5.80 5.83 5.99 5.94 

s2 (2) 0.25 0.15 0.2 0.25 0.2 

3 
d3 (3) 7.59 7.04 7.25 6.91 5.95 

s3 (3) 0.2 0.3 0.3 0.2 0.25 

4 
d4 (4) 8.56 7.22 7.86 6.93 7.40 

s4 (4) 0.375 0.3 0.3 0.4 0.375 

5 
d5 (5) 8.24 8.27 7.62 8.36 7.59 

s5 (5) 0.375 0.5 0.5 0.5 0.4 

6 
d1 (6) 5.64 5.54 6.11 5.61 5.59 

s1 (6) 0.2 0.2 0.125 0.2 0.15 

7 
d2 (7) 5.99 6.21 5.27 5.86 6.30 

s2 (7) 0.25 0.15 0.15 0.25 0.15 

8 
d3 (8) 6.99 7.39 6.90 6.70 6.63 

s3 (8) 0.25 0.25 0.3 0.3 0.25 

9 
d4 (9) 7.17 7.69 8.84 7.82 7.45 

s4 (9) 0.375 0.375 0.4 0.375 0.4 

10 
d5 (10) 8.28 8.54 8.64 9.30 8.06 

s5 (10) 0.5 0.375 0.4 0.5 0.375 

11 
d1 (11) 5.79 5.25 6.31 5.63 5.32 

s1 (11) 0.15 0.125 0.2 0.2 0.15 

12 
d2 (12) 6.37 6.16 5.61 5.84 6.50 

s2 (12) 0.25 0.25 0.2 0.15 0.15 

13 
d3 (13) 6.93 6.44 6.45 6.55 7.49 

s3 (13) 0.2 0.2 0.25 0.2 0.2 

14 
d4 (14) 7.27 7.13 8.15 8.68 7.73 

s4 (14) 0.3 0.4 0.4 0.3 0.375 

15 
d5 (15) 8.43 7.79 8.33 9.49 8.93 

s5 (15) 0.4 0.5 0.375 0.375 0.5 

16 
d1 (16) 5.86 5.72 4.67 5.20 5.79 

s1 (16) 0.125 0.125 0.2 0.2 0.15 

17 
d2 (17) 5.64 6.03 6.00 5.85 5.41 

s2 (17) 0.15 0.25 0.2 0.15 0.15 

18 
d3 (18) 7.67 7.21 6.96 6.62 6.60 

s3 (18) 0.25 0.2 0.3 0.2 0.2 

19 
d4 (19) 8.11 8.00 7.61 8.37 8.36 

s4 (19) 0.375 0.4 0.375 0.375 0.4 

20 
d5 (20) 7.61 8.66 8.13 9.03 8.41 

s5 (20) 0.4 0.375 0.375 0.4 0.4 

21 
d1 (21) 5.50 5.29 4.72 5.14 5.60 

s1 (21) 0.15 0.125 0.2 0.125 0.2 

22 
d2 (22) 5.63 6.21 5.33 6.28 6.21 

s2 (22) 0.2 0.25 0.25 0.2 0.2 

23 
d3 (23) 5.92 7.71 7.01 6.42 7.88 

s3 (23) 0.2 0.2 0.3 0.3 0.25 

24 
d4 (24) 7.92 8.05 7.80 8.05 9.26 

s4 (24) 0.4 0.3 0.375 0.3 0.4 

25 
d5 (25) 8.65 8.05 7.94 8.08 8.46 

s5 (25) 0.375 0.4 0.5 0.375 0.4 
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26 
d1 (26) 5.40 5.60 5.09 5.85 5.41 

s1 (26) 0.15 0.2 0.125 0.2 0.15 

27 
d2 (27) 5.18 6.56 6.07 5.81 5.96 

s2 (27) 0.25 0.15 0.2 0.15 0.2 

28 
d3 (28) 7.08 6.43 6.65 6.33 6.47 

s3 (28) 0.2 0.25 0.25 0.3 0.25 

29 
d4 (29) 7.49 8.38 7.61 9.09 8.46 

s4 (29) 0.4 0.375 0.4 0.3 0.375 

30 
d5 (30) 6.83 7.20 9.41 7.91 9.05 

s5 (30) 0.4 0.5 0.375 0.5 0.375 

31 
d1 (31) 5.79 5.84 4.70 5.33 5.48 

s1 (31) 0.2 0.125 0.2 0.15 0.2 

32 
d2 (32) 5.39 6.12 6.00 4.61 5.75 

s2 (32) 0.2 0.15 0.15 0.25 0.2 

33 
d3 (33) 6.32 6.35 6.28 7.60 6.48 

s3 (33) 0.3 0.3 0.3 0.25 0.2 

34 
d4 (34) 8.16 7.26 8.87 7.58 7.27 

s4 (34) 0.375 0.4 0.4 0.4 0.3 

35 
d5 (35) 8.37 8.09 9.08 8.80 8.46 

s5 (35) 0.4 0.5 0.5 0.375 0.5 

36 
d1 (36) 6.36 5.91 5.34 4.90 5.70 

s1 (36) 0.125 0.2 0.15 0.2 0.125 

37 
d2 (37) 6.13 6.05 5.90 5.62 5.86 

s2 (37) 0.2 0.2 0.15 0.15 0.2 

38 
d3 (38) 6.54 6.89 7.14 6.77 6.33 

s3 (38) 0.3 0.2 0.2 0.25 0.3 

39 
d4 (39) 8.43 8.14 7.62 8.11 7.82 

s4 (39) 0.3 0.4 0.3 0.3 0.375 

40 
d5 (40) 8.59 7.89 8.17 7.73 7.54 

s5 (40) 0.375 0.5 0.5 0.4 0.5 

 

6.4.3 Push-over analyses 

The aggregate configurations obtained were analysed performing non-linear static analyses 

(push-over), using TreMuri software, to obtain the data required to calibrate the Response 

Surface models. Two orthogonal directions (x and y) of the seismic action are considered 

(Figure 5.3) and the distribution of the forces applied (proportional to the masses) was 

considered with both signs (+F and -F), generating 176 capacity curves for each studied case; 

furthermore, in the y-direction the analyses over the attainment of the LS limit state were 

performed, to evaluate the collapse of the structural units in different positions along the 

aggregate. 

- x-direction 

Figures 6.57(a) and (b) show the capacity curves obtained from the analyses in x-direction, 

considering the seismic forces + Fx and - Fx respectively. In terms of capacity and ductility, 



6 | Seismic fragility of clay brick masonry structures: case studies in Bologna, Italy 

136 
 

the curves confirm what already discussed in the previous Sections: the geometrical 

arrangement and configuration of the masonry walls in x-direction makes the masonry 

aggregate structures weaker to the application of the forces + Fx, being the main collapse 

mechanism the flexural one. The curves in Figure 6.57(a) show the achievement of lower 

ultimate displacements, corresponding to the attainment of the LS limit state, and a 

progressive decrement of the total capacity allowing to reach the collapse of the x-direction 

walls before than that related to the case - Fx. Thus, an increment of the collapse PGA is 

expected if the application of the seismic forces - Fx is considered. 

  
                                               (a)                                                                                  (b)                                                 

Figure 6.57: Capacity curves from the analyses in x-direction: seismic forces (a) + Fx and (b) - Fx. 

- y-direction 

Figures 6.58(a) and (b) show the capacity curves obtained from the analyses in y-direction, 

considering the seismic forces + Fy and - Fy respectively. The curves show higher capacity 

with respect to the x-direction, due to the geometrical configuration of the walls in y-

direction, being stocky and with a reduced quantity of openings. The seismic behaviours in 

terms of capacity and ductility are very similar and they are characterised by the shear failure 

mechanism; however, the aggregate structures show more weakness to the application of the 

seismic forces - Fy, due to the geometrical configuration of the walls making asymmetric the 

buildings and allowing the activation of torsional mechanisms, decreasing the total capacity. 

Thus, an increment of the collapse PGA is expected if the application of the seismic forces 

+ Fy is considered. 
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                                               (a)                                                                                   (b)                                                 

Figure 6.58: Capacity curves from the analyses in y-direction: seismic forces (a) + Fy and (b) - Fy. 

- y-direction, over the attainment of the LS limit state 

As for the application shown in Section 6.3, the analyses over the attainment of the LS limit 

state were carried out in this Section. If the LS limit state is considered as limit for the 

analyses, only the masonry walls belonging to the external Units 1 and 2 reach the collapse 

for shear, before than the walls of the other Units, due to the torsional effects affecting them. 

Thus, the analyses over the attainment of the LS limit state allowed the y-direction masonry 

walls to reach the collapse for shear and to define a hierarchy of collapse of the various 

structural Units along the aggregate structures, showed in Figures 6.59 (+ Fy) and 6.60 (- Fy). 

The curves in the Figures highlight different levels of vulnerability between the structural 

units: larger values of the collapse PGA are expected for the structural units occupying the 

internal positions along the aggregate, being affect by lower torsional effects and showing a 

greater stiffness against the seismic action in y-direction. 

 
Figure 6.59: Capacity curves from the analyses in y-direction (+ Fy) over the attainment of the LS limit state. 

UNITS 1 - 2 

UNIT 3 
UNIT 4 
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Figure 6.60: Capacity curves from the analyses in y-direction (- Fy) over the attainment of the LS limit state. 

6.4.4 Response Surface models 

The simulations of this application allow to calibrate the Response Surface models, defined 

by means of a quadratic polynomial, whose equation used to study the masonry aggregate 

structures with different structural units is set as: 

 2 2
C, , , , 0 1 1, 2 2, 3 1, 4 2, , d, , , , ,log(PGA )         i j k l i i i i sis j k s l i j k lx x x x  (6.5) 

where i stands for the i-th simulation, j for the j-th sis block, k for the k-th d block,  l for the 

l-th s block an represents the errors. The regression is obtained through the Ordinary Least 

Squares method (Section 3.3.1.1), approximating the structural response by the polynomial 

function defined in Equation 6.5. 

In the following the results referred to the various seismic action cases are given. The results 

of the RS allow to show how the parameters chosen as variables affect the seismic response 

of the selected masonry aggregate structures with different structural units, also highlighting 

the differences considering two orthogonal directions of the seismic action.  

Tables 6.24, 6.25, 6.26, 6.27, 6.28, 6.29, 6.30 and 6.31 give the regression parameters 

obtained for each explicit variable (, d, 2, d2) and the standard deviations related to the 

implicit variables (sis, d, s and the random error ). As for the x-direction, the regression 

parameters related to the variables  and d are always positive: as expected, the value of the 

PGAC increases as the values of the two variables increase, for the considerations already 

discussed in Section 6.2.  

UNITS 1 - 2 

UNIT 3 
UNIT 4 
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As for the y-direction, the RS indicates a qualitatively similar relationship between the 

response parameter and the explicit variables, also for the variable d, differently from what 

was shown in Section 6.2: in this application, if d increases the values of the PGAC increases, 

as well. This is due to the fact that the relation between d and PGAC is also influenced by the 

thickness of the walls (s), whose values increase as the values of the distance (d) increase. 

Conversely, in the definition of the RS of the Section 6.2 the association between d and s is 

more random and simulations with high values of d associated to low values of s, and vice 

versa, were obtained. Therefore, the trend to decrease of the PGAC, if d increases, is mitigated 

by the effect of the thickness of the walls (s), making the curves relating d and PGAC flatter. 

According to these motivations, the relation between d and PGAC depends on the ratio 

between the values of d and s, randomly selected to obtain the 40 aggregate configurations 

(Table 6.23). Figure 6.61 shows the 200 (5 structural units times the 40 aggregate 

configurations) relations between d and s, highlighting the trend to have greater values of d 

with greater values of s. In the Figure below the thicknesses s are divided according to the 

definition of the 5 groups of s, given in Figure 6.55. 

 
Figure 6.61: Relations between the 200 values of d and s, randomly selected. 
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Figures 6.62, 6.64, 6.66, 6.68, 6.70, 6.72, 6.74 and 6.76 show the sections of the RS models 

obtained setting the distance d to the fixed values chosen to calibrate the RS (Table 6.6) and 

changing the values of the shear strength ; on the contrary, Figures 6.63, 6.65, 6.67, 6.69, 

6.71, 6.73, 6.75, and 6.77 show the sections of the RS models obtained setting the shear 

strength  to the fixed values chosen to calibrate the RS (Table 6.6) and changing the values 

of the distance d. In these Figures the sections are divided between factorial values of the 

variable (pink and blue continuous lines) and central and axial points (black, green and red 

continuous lines); the dashed lines (--) indicate the section of the RS models obtained adding 

and subtracting the RS variance 2 2 2 2   sis d s     ; the points are those 

corresponding to the various simulations used to calibrate the RS models.  

The section of the RS models obtained varying  confirm that the shear strength is the variable 

most influencing the PGAC, having a greater slope and being closer each other because 

referred to the five values of d, having reduced effect on the response. For this latter 

motivation, the sections of the RS models obtained varying d have a minor slope, but they are 

more spaced each other because they are referred to the five values of , having a significant 

effect on the response. The results also confirm those obtained in terms of capacity: in x-

direction the weaker direction is the positive (+ Fx), in y-direction is the negative one (- Fy). 

Furthermore, in this application the RS sections referred to the analyses in y-direction over 

the attainment of the LS limit state are reported, confirming the greater vulnerability of the 

external Units 1 and 2 with respect to the internal Units 3 and 4. 
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- x-direction (+ Fx) 

Table 6.24: Regression parameters and standard deviations of the AS with different structural units, 
considering the seismic forces + Fx. 

Variable i Variable  

x1 () 30.806 sis 0.176 

x2 (d) 0.587 d 0.041 

x1 (2) -168.20 s 0.143 

x2 (d2) -0.029  0.220 

 

 

  
                                               (a)                                                                                 (b)                                                

Figure 6.62: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 

varying , considering the seismic forces + Fx. 

 

 
                                               (a)                                                                                  (b)                                                

Figure 6.63: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 
varying d, considering the seismic forces + Fx.   
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- x-direction (- Fx) 

Table 6.25: Regression parameters and standard deviations of the AS with different structural units, 
considering the seismic forces - Fx 

Variable i Variable  

x1 () 14.144 sis 0.202 

x2 (d) 0.394 d 0.019 

x1 (2) -61.625 s 0.010 

x2 (d2) -0.021  0.202 

 

 

   
                                               (a)                                                                                 (b)                                                

Figure 6.64: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 

varying , considering the seismic forces - Fx.   

 

  
                                               (a)                                                                                  (b)                                                

Figure 6.65: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 
varying d, considering the seismic forces - Fx.   
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- y-direction (+ Fy) 

Table 6.26: Regression parameters and standard deviations of the AS with different structural units, 
considering the seismic forces + Fy. 

Variable i Variable  

x1 () 14.229 sis 0.142 

x2 (d) 0.168 d 0.084 

x1 (2) -16.537 s 0.080 

x2 (d2) -0.010  0.193 

 

 

   
                                               (a)                                                                                 (b)                                                

Figure 6.66: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 

varying , considering the seismic forces + Fy.   

 

  
                                               (a)                                                                                  (b)                                                

Figure 6.67: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 
varying d, considering the seismic forces + Fy. 
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- y-direction (- Fy) 

Table 6.27: Regression parameters and standard deviations of the AS with different structural units, 
considering the seismic forces - Fy. 

Variable i Variable  

x1 () 8.056 sis 0.130 

x2 (d) 0.168 d 0.066 

x1 (2) 18.612 s 0.040 

x2 (d2) -0.010  0.175 

 

 

   
                                               (a)                                                                                 (b)                                                

Figure 6.68: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 

varying , considering the seismic forces - Fy. 

 

  
                                               (a)                                                                                  (b)                                                

Figure 6.69: (a) Axial and central region and (b) factorial region of the AS quadratic RS sections obtained 
varying d, considering the seismic forces - Fy.  
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- y-direction (+ Fy), over the attainment of the LS limit state (Unit 3) 

Table 6.28: Regression parameters and standard deviations of the Unit 3, considering the seismic forces + Fy, 
over the attainment of the LS limit state. 

Variable i Variable  

x1 () 3.689 sis 0.138 

x2 (d) 0.058 d 0.072 

x1 (2) 72.212 s 0.019 

x2 (d2) 0.003  0.181 

 

 

    
                                               (a)                                                                                 (b)                                                
Figure 6.70: (a) Axial and central region and (b) factorial region of the Unit 3 quadratic RS sections obtained 

varying , considering the seismic forces + Fy, over the attainment of the LS limit state. 

 

  
                                               (a)                                                                                  (b)                                                
Figure 6.71: (a) Axial and central region and (b) factorial region of the Unit 3 quadratic RS sections obtained 

varying d, considering the seismic forces + Fy, over the attainment of the LS limit state.     
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- y-direction (- Fy), over the attainment of the LS limit state (Unit 3) 

Table 6.29: Regression parameters and standard deviations of the Unit 3, considering the seismic forces - Fy, 
over the attainment of the LS limit state. 

Variable i Variable  

x1 () 5.738 sis 0.141 

x2 (d) 0.113 d 0.067 

x1 (2) 44.958 s 0.014 

x2 (d2) 0.013  0.182 

 

  

 
                                               (a)                                                                                 (b)                                                
Figure 6.72: (a) Axial and central region and (b) factorial region of the Unit 3 quadratic RS sections obtained 

varying , considering the seismic forces - Fy, over the attainment of the LS limit state. 

 

  
                                               (a)                                                                                  (b)                                                
Figure 6.73: (a) Axial and central region and (b) factorial region of the Unit 3 quadratic RS sections obtained 

varying d, considering the seismic forces - Fy, over the attainment of the LS limit state. 
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- y-direction (+ Fy), over the attainment of the LS limit state (Unit 4) 

Table 6.30: Regression parameters and standard deviations of the Unit 4, considering the seismic forces + Fy, 
over the attainment of the LS limit state. 

Variable i Variable  

x1 () 12.966 sis 0.138 

x2 (d) 0.378 d 0.006 

x1 (2) -19.642 s 0.095 

x2 (d2) -0.0211  0.180 

 

 

   
                                               (a)                                                                                 (b)                                                
Figure 6.74: (a) Axial and central region and (b) factorial region of the Unit 4 quadratic RS sections obtained 

varying , considering the seismic forces + Fy, over the attainment of the LS limit state. 

 

  
                                               (a)                                                                                  (b)                                                
Figure 6.75: (a) Axial and central region and (b) factorial region of the Unit 4 quadratic RS sections obtained 

varying d, considering the seismic forces + Fy, over the attainment of the LS limit state. 
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- y-direction (- Fy), over the attainment of the LS limit state (Unit 4) 

Table 6.31: Regression parameters and standard deviations of the Unit 4, considering the seismic forces - Fy, 
over the attainment of the LS limit state. 

Variable i Variable  

x1 () 4.532 sis 0.136 

x2 (d) 0.244 d 0.036 

x1 (2) 32.741 s 0.083 

x2 (d2) -0.015  0.178 

 

 

   
                                               (a)                                                                                 (b)                                                
Figure 6.76: (a) Axial and central region and (b) factorial region of the Unit 4 quadratic RS sections obtained 

varying , considering the seismic forces - Fy, over the attainment of the LS limit state. 

 

  
                                               (a)                                                                                  (b)                                                
Figure 6.77: (a) Axial and central region and (b) factorial region of the Unit 4 quadratic RS sections obtained 

varying d, considering the seismic forces - Fy, over the attainment of the LS limit state.  
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As in Section 6.2, the results are reported by means of the 3D Response Surfaces. Figures 

6.78(a) and (b) show the 3D Response Surfaces referred to the positive (+ Fx) and negative (- 

Fx) x-direction of the seismic action, respectively; Figures 6.79(a) and (b) show the 3D 

Response Surfaces referred to the positive (+ Fy) and negative (- Fy) y-direction of the seismic 

action, respectively. The black surfaces are obtained varying  and d, the grey surfaces are 

obtained adding and subtracting the RS variance 2 2 2 2       sis d s . 

 
                                       (a)                                                                                  (b)                                                

Figure 6.78: 3D Response Surfaces for the AS with different structural units, considering (a) the seismic 
forces + Fx and (b) the seismic forces - Fx. 

 
                                       (a)                                                                                  (b)                                                

Figure 6.79: 3D Response Surfaces for the AS with different structural units, considering (a) the seismic 
forces + Fy and (b) the seismic forces - Fy. 
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The analyses over the attainment of the LS limit state allowed to obtain the following 3D 

Response Surfaces, referring to the collapse of the Unit 3 (Figures 6.80(a) and (b)) and of the 

Unit 4 (Figures 6.81(a) and (b)), confirming the attainment of higher values of the PGAC if 

more internal structural units are considered. 

 
                                       (a)                                                                                  (b)                                                
Figure 6.80: 3D Response Surfaces for the Unit 3, considering (a) the seismic forces + Fy and (b) the seismic 

forces - Fy, over the attainment of the LS limit state. 

 
                                       (a)                                                                                  (b)                                                
Figure 6.81: 3D Response Surfaces for the Unit 4, considering (a) the seismic forces + Fy and (b) the seismic 

forces - Fy, over the attainment of the LS limit state. 

 

 

  



6 | Seismic fragility of clay brick masonry structures: case studies in Bologna, Italy 

151 
 

6.4.5 Fragility curves 

The obtained RS models were used to estimate the fragility curves of the masonry aggregate 

structures with different structural units in row. The fragility analysis was assessed using the 

same procedure of the previous Sections, adopting the limit state function in Equation 2.5, 

rewritten in the form: 

 E sis d D C D

2 2
0 1 1 2 2 3 1 4 2 sis d D

, , , , | PGA log(PGA ) log(PGA )

log(PGA )

       

         

x s

s

g ,

x x x x
                         (6.6) 

Eight fragility curves were obtained for seismic action in x- and y-direction (Figure 6.82). 

They give the conditional probability of the structural failure (Pf) for different values of the 

structural demand (PGAD). Thus, once obtained the collapse PGAC, fixed PGAD and being 

the behaviour of the structures non-linear, in order to solve the Equation 6.6, Monte Carlo 

method was used.  

These curves confirm that the masonry aggregate structures, object of this Section, are more 

vulnerable against the seismic action in x-direction (red curves) because of the geometrical 

properties, which have already been discussed in the previous Sections, with respect to the 

curves obtained for the y-direction (blue curves) showing the attainment of the Pf for higher 

values of PGAD. These latter curves give the fragility of the external Units 1 and 2, affecting 

by substantial torsional effects, decreasing the total PGAC, referring to the attainment of the 

LS limit state for the global aggregate structures. However, continuing the analyses to allow 

the other structural units to reach the shear failure, the green curves give the fragility of the 

internal Unit 3 and Unit 4, showing their higher stiffness against the seismic action in y-

direction, allowing them to attain the Pf for higher values of PGAD. 

In Figure 6.82 the continuous lines are related to the analyses carried out with the application 

of the positive seismic forces (+ Fx or + Fy), the dash dot lines to those with the application of 

the negative seismic forces (- Fx or - Fy), highlighting that the presence of the openings and 

their positions in the masonry walls make the aggregate structure more fragile against the 

positive forces in x-direction and against the negative forces in y-direction. 
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Figure 6.82: Fragility curves of the masonry aggregate structures with different structural units in 

row. 

6.4.6 Comparison between the aggregate with different structural units and the 
aggregate with identical structural units in row 

The fragility of the masonry aggregates with different structural units (AS - D) was compared 

with the one of the aggregates with identical structural units (AS - I) and of the isolated 

structural units (ISU), generated using the medium values of the distributions of the chosen 

variables. The comparisons allow to analyse how the differences between structural units 

along the aggregate affect the seismic response and to show how the fragility of the AS - D 

differs from the one of the AS - I.  

Since the simulations of the RS models are characterized by masonry aggregate structures 

with different structural and geometrical properties, the comparisons need to be make 

coherently. Thus, the aggregate structures with different structural units (AS - D) were 

compared with those with identical structural units (AS - I), having the same values of the 

shear strength () and the values of the geometrical properties (d and s) equal to the medium 

values of the distributions used to generate the AS - D (Section 6.4.2). Furthermore, the 

comparisons were carried out considering the same seismic action, i.e. the same accelerogram 

associated to each simulation of the RS model defined in this Section. Therefore, all the 48 

accelerograms were applied to each AS - I, object of the comparison, and the PGAC obtained 
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were compared with the correspondent PGAC of the RS model simulations, having the same 

accelerograms, the same  and the comparable geometrical properties.  

Figure 6.83 shows an example of comparison carried out in this application: the simulation 

11 (Table B.3), is associated to the aggregate configuration n°1 (Table 6.23) with explicit 

variables  = 0.063 MPa and d1 = 5.5 m, implicit variables defined by the blocks d1 and s1 

and whose PGAC was obtained applying the accelerogram n°3 (sis = 3). It was compared with 

the aggregate structure with identical structural units having the same values of the explicit 

variables ( and d1) for each structural unit and whose PGAC was obtained applying the same 

accelerogram n°3.  

SIMULATION 
EXPLICIT VARIABLES IMPLICIT VARIABLES AGGREGATE 

CONFIGURATION  d sis d s 

  0.063 d1 5.5 3 d1 (1) s1 (1) 1 

 

AGGREGATE 
CONFIGURATION 

BLOCK US 5 US 4 US 3 US 2 US 1 

1 
d1 (1) 5.11 5.89 5.76 5.35 5.50 

s1 (1) 0.2 0.2 0.125 0.15 0.125 

 

 

 

 

 

AGGREGATE 
CONFIGURATION 

BLOCK US 5 US 4 US 3 US 2 US 1 

IDENTICAL STRUCTURAL 
UNITS   d1 - s1 

d1 (1) 5.50 5.50 5.50 5.50 5.50 

s1 (1) 0.15 0.15 0.15 0.15 0.15 

Figure 6.83: Example of comparison between an AS - D and the correspondent AS - I. 

Since the aggregate configurations were divided in 5 groups (from d1-s1 to d5-s5), Table 6.32 

gives the 9 type of comparisons carried out between the AS - D and the AS - I, according to 

the definition of the associations of  and the groups d-s defined in the RS model. Moreover, 

the two types of aggregate structures were compared with the isolated structural units, 

modelled with the same mechanical and geometrical properties of those belonging to the AS 

- I, expecting the results already discusses in Section 6.3: the increment of the PGAC 

aggregating in x-direction and the decrement in y-direction. 

 

COMPARED WITH THE AGGREGATION OF IDENTICAL STRUCTURAL UNITS, WITH THE MEDIUM 
VALUES d1 AND s1, THE SAME  AND THE SAME ACCELEROGRAM 3 
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Table 6.32: 9 type of comparisons carried out between the AS - D and the AS - I. 
Shear 

strength AS - D AS - I 

1 group d3-s3 d3 = 6.9 m s3= 0.25 m 
2 group d2-s2 d2 = 5.85 m s2= 0.20 m 
2 group d4-s4 d4 = 7.95 m s4= 0.375 m 
3 group d1-s1 d1 = 5.5 m s1= 0.15 m 
3 group d3-s3 d3 = 6.9 m s3= 0.25 m 
3 group d5-s5 d5 = 8.3 m s5= 0.40 m 
4 group d2-s2 d2 = 5.85 m s2= 0.20 m 
4 group d4-s4 d4 = 7.95 m s4= 0.375 m 
5 group d3-s3 d3 = 6.9 m s3= 0.25 m 

 
The results of the comparisons, showed in the Figures below, highlight how the geometrical 

properties affect the variation of the PGAC between the AS - D and the AS - I. The regressions 

of the RS models showed that the increment of the values of d and s leads to an increment of 

the PGAC: it is expected that the PGAC increases as the ratio d/s decreases. Thus, this 

application provides a comparison between the AS - D and the AS - I, in terms of PGAC 

mainly depending on the ratio d/s, being the parameter determining the differences between 

the two types of aggregate structures. In the following it is showed how the PGAC referred to 

the AS - D varies with respect to that referred to the AS - I, highlighting that the general trend 

is characterized by an increment of the collapse PGAC if the average of the ratio d/s of the 

different structural units along the AS - D is less than the ratio d/s of the identical structural 

unit along the AS - I.  

Since in x-direction the global behaviour of the aggregates is studied, the ratio d/s is calculated 

considering the average of the 5 structural units; in y-direction, besides that of the 5 structural 

units, the ratio d/s considering only the average of the units involved in the collapse is 

calculated, since the local behaviour is considered. The cases taking into account the local 

behaviour of the various structural units along the aggregate in y-direction are listed in the 

following: 

- Units 1-2: average of the ratio d/s of the Units 1-2; 

- Unit 3: average of the ratio d/s of the Units 3-4-5 (as Units 1-2 are already collapsed); 

- Unit 4: average of the ratio d/s of the Units 4-5 (as Units 1-2-3 are already collapsed). 

Figure 6.84 gives an example of comparison between the aggregate configuration 1 and the 

correspondent aggregate with identical structural units.  
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AGGREGATE 
CONFIGURATION 

BLOCK US 5 US 4 US 3 US 2 US 1 

IDENTICAL STRUCTURAL 
UNITS   d1 - s1 

d1 (1) 5.50 5.50 5.50 5.50 5.50 

s1 (1) 0.15 0.15 0.15 0.15 0.15 

 
 

 

Figure 6.84: Example of comparison between the AS - D configuration 1 and the correspondent AS – I. 

Following the example, if all the 5 units are considered, the average of the ratio d/s decreases 

and an increment of the collapse PGAC is expected; if the Units 1-2 are considered for the y-

direction the ratio d/s increases and a decrement of the collapse PGAC is expected. 

As an example, Figures 6.85, 6.86, 6.87, 6.88, 6.89, 6.90, 6.91, 6.92 and 6.93 show the 9 

comparisons (Table 6.32), considering the seismic action in y-direction with negative forces 

(- Fy) and reporting the values of the collapse PGAC for each correspondent accelerogram 

applied. The dashed lines indicate the averages of the PGAC values (), for each case. The 

comparisons are carried out between the AS - D, the AS - I and the ISU. Tables 6.33, 6.34, 

6.35, 6.36, 6.37, 6.38, 6.39, 6.40 and 6.41 gives the comparisons between the expected 

behaviour of the variation of the PGAC and the actual behaviour obtained, considering the 

average of the PGAC related to the accelerograms applied to each aggregate configuration.  

 
Figure 6.85: Comparison between the AS - D, the AS - I and the ISU for the group 1-d3-s3. 

Table 6.33: Expected and the actual behaviours on the variation of the PGAC for the group 1-d3-s3. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
3- 6 3 decrement increment 

9 - 12 8 increment decrement 
15 -18 13 decrement decrement 
21 -24 18 decrement increment 
27 - 30 23 increment decrement 
33 - 36 28 increment increment 
39 -42 33 decrement decrement 
45 - 48 38 increment increment 
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1 = 0.038 MPa

AS - D (group d3 - s3) AS - I (d3 - s3) ISU (d3 - s3)

 = 0.299 g

 = 0.249 g
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AGGREGATE 
CONFIGURATION 

BLOCK US 5 US 4 US 3 US 2 US 1 

1 
d1 (1) 5.11 5.89 5.76 5.35 5.50 

s1 (1) 0.2 0.2 0.125 0.15 0.125 

d/s = 36.66  

d/s (average) = 36.16 
d/s (average US1 and US2) = 39.85 
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Figure 6.86: Comparison between the AS - D, the AS - I and the ISU for the group 2-d2-s2. 

Table 6.34: Expected and the actual behaviours on the variation of the PGAC for the group 2-d2-s2. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
1 - 4 2 increment increment 

7 – 10 7 decrement decrement 
13 – 16 12 decrement decrement 
19 – 22 17 decrement increment 
25 – 28 22 decrement increment 
31 -34  27 decrement decrement 
37 – 40 32 increment increment 
43 - 46 37 decrement increment 

 

 
Figure 6.87: Comparison between the AS - D, the AS - I and the ISU for the group 2-d4-s4. 

Table 6.35: Expected and the actual behaviours on the variation of the PGAC for the group 2-d4-s4. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
2 – 5 4 increment increment 

8 – 11 9 increment increment 
14 – 17 14 decrement decrement 
20 – 23 19 decrement decrement 
26 – 29 24 decrement decrement 
32 – 35 29 decrement decrement 
38 – 41 34 decrement decrement 
44 - 47 39 decrement decrement 
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Figure 6.88: Comparison between the AS - D, the AS - I and the ISU for the group 3-d1-s1. 

Table 6.36: Expected and the actual behaviours on the variation of the PGAC for the group 3-d1-s1. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
3- 6 1 decrement increment 

9 - 12 6 increment decrement 
15 -18 11 increment increment 
21 -24 16 increment increment 
27 - 30 21 decrement increment 
33 - 36 26 increment decrement 
39 -42 31 decrement increment 
45 - 48 36 increment increment 

 

 
Figure 6.89: Comparison between the AS - D, the AS - I and the ISU for the group 3-d3-s3. 

Table 6.37: Expected and the actual behaviours on the variation of the PGAC for the group 3-d3-s3. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
1 - 2 -3 - 4 -5 - 6 3 decrement increment 

7 - 8 - 9 - 10 - 11 - 12 8 increment increment 
13 - 14 - 15 - 16 - 17 - 18 13 decrement decrement 
19 - 20 - 21 - 22 - 23 - 24 18 decrement decrement 
25 - 26 - 27 - 28 - 29 - 30 23 increment decrement 
31 - 32 - 33 - 34 - 35 - 36 28 increment increment 
37 - 38 - 39 - 40 - 41 - 42 33 decrement decrement 
43 - 44 - 45 - 46 - 47 - 48 38 increment increment 
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Figure 6.90: Comparison between the AS - D, the AS - I and the ISU for the group 3-d5-s5. 

Table 6.38: Expected and the actual behaviours on the variation of the PGAC for the group 3-d5-s5. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
3- 6 5 increment increment 

9 - 12 10 increment increment 
15 -18 15 decrement decrement 
21 -24 20 decrement decrement 
27 - 30 25 decrement increment 
33 - 36 30 increment decrement 
39 -42 35 increment increment 
45 - 48 40 increment increment 

 

 
Figure 6.91: Comparison between the AS - D, the AS - I and the ISU for the group 4-d2-s2. 

Table 6.39: Expected and the actual behaviours on the variation of the PGAC for the group 4-d2-s2. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
2 – 5 2 increment decrement 

8 – 11 7 decrement decrement 
14 – 17 12 decrement decrement 
20 – 23 17 decrement decrement 
26 – 29 22 decrement increment 
32 – 35 27 decrement decrement 
38 – 41 32 increment increment 
44 - 47 37 decrement decrement 
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Figure 6.92: Comparison between the AS - D, the AS - I and the ISU for the group 4-d4-s4. 

Table 6.40: Expected and the actual behaviours on the variation of the PGAC for the group 3-d4-s4. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
1 - 4 4 increment decrement 

7 – 10 9 increment decrement 
13 – 16 14 decrement decrement 
19 – 22 19 decrement decrement 
25 – 28 24 decrement decrement 
31 -34  29 decrement decrement 
37 – 40 34 decrement decrement 
43 - 46 39 decrement decrement 

 

 
Figure 6.93: Comparison between the AS - D, the AS - I and the ISU for the group 5-d3-s3. 

Table 6.41: Expected and the actual behaviours on the variation of the PGAC for the group 5-d3-s3. 

ACCELEROGRAMS 
AGGREGATE 

CONFIGURATION 
EXPECTED 

BEHAVIOUR (PGAC) 
ACTUAL 

BEHAVIOUR (PGAC) 
3- 6 3 decrement increment 

9 - 12 8 increment increment 
15 -18 13 decrement decrement 
21 -24 18 decrement decrement 
27 - 30 23 increment decrement 
33 - 36 28 increment increment 
39 -42 33 decrement decrement 
45 - 48 38 increment decrement 
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In the Figures the average of the values of the PGAC () confirm that the aggregation of 

structural units in row in y-direction leads to a decrement of the vulnerability with respect to 

the isolated structural units (yellow lines) and that in most of the cases the AS - D models 

(blue lines) have an average of the PGAC () greater than that of the AS - I (orange lines). 

The results show that in the majority of the cases (50 on 72 total comparisons) the variation 

of the PGAC referred to the AS - D with respect to the AS - I follows the expectations. The 

same methodology was applied to each of the cases differing for direction of the seismic 

action (positive and negative), collecting in total 1008 (14x72) comparisons. Table 6.42 gives 

the data referred to these 14 comparisons, highlighting the number of the cases where the 

PGAC has a variation different from what is expected. With respect to the total comparisons, 

the cases with different behaviour are always under the 50%: the deviations from the 

expectative are, first of all, due to the variability of the seismic action and the irregular shape 

of the spectra, with respect to those of the code, but also is due to the fact that the ratio d/s, in 

this type of analyses, cannot be considered as the only parameters affecting the seismic 

response. 

Table 6.42: Number of the cases where the PGAC has a variation different from what is expected. 
SEISMIC 

DIRECTION 
TYPE OF COMPARISON 

TOTAL 
CASES 

DIFFERENT 
BEHAVIOUR 

x d/s as average of the 5 Units 72 24 
x (-) d/s as average of the 5 Units 72 29 

y 
d/s as average of the 5 Units 72 31 

d/s as average of the Units 1-2 72 19 

y (-) 
d/s as average of the 5 Units 72 26 

d/s as average of the Units 1-2 72 22 

y Unit 3 
d/s as average of the 5 Units 72 28 

d/s as average of the Units 3-4-5 72 31 

y (-) Unit 3 
d/s as average of the 5 Units 72 27 

d/s as average of the Units 3-4-5 72 33 

y Unit 4 
d/s as average of the 5 Units 72 33 

d/s as average of the Units 4-5 72 32 

y (-) Unit 4 
d/s as average of the 5 Units 72 33 

d/s as average of the Units 4-5 72 32 

 
Finally, the 9 comparisons showed in Table 6.32 were carried out in terms of fragility curves, 

considering the 4 case analyses performed  

- x-direction (Figures 6.94 and 6.95); 
- y-direction (Figures 6.96 and 6.97); 
- y-direction, over the attainment of the LS limit state for the Unit 3 (Figures 6.98 and 

6.99); 
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- y-direction, over the attainment of the LS limit state for the Unit 4 (Figures 6.100 and 
6.101). 

In the Figures below, the red curves are those obtained in Figure 6.82 for the aggregate 

structures with different structural units (AS - D), using the data of the RS models and 

applying Monte Carlo simulations and the grey curves were obtained using all the actual 

PGAC referred to the aggregate structures with identical structural units (AS - I). These latter 

curves group all the 9 coloured curves related to the 9 comparisons showed in Table 6.32, 

divided according the values of d, s and . In all the cases the blue curves, representing the 

group aggregates d3-s3-3, are in a median position between those having lower and higher 

values, respectively, of the parameters d, s, and .  

The curves showed that, for these specific aggregate configurations, the fragility of the AS - 

I is higher than the fragility of the AS - D. Of course, these cannot be considered as general 

results, because they are affected by the randomly selections of the geometric parameters (d 

and s), which led to generate aggregate structures with different structural units (AS - D) less 

fragile than those with identical structural units (AS - I). To confirm these results, all the 

values of d and s of the 200 structural units (5 units times 40 aggregate configurations) along 

the AS - D, were compared with the 40 values of d and s of the identical structural units along 

the AS - I. Table 6.43 shows that the aggregate configurations AS - D having structural units 

with d and s greater than those of the identical structural units along the AS - I are more than 

the 50% of the total cases. Since it was shown that greater values of d and s increase the 

collapse PGAC, these percentages can justify the greater fragility of the AS - I with respect to 

the AS - D, affected by the differences in the geometrical properties. 

Table 6.43: Comparison between the AS - D and the AS - I according to the variation of d and s between the 
structural units along the AS. 

UNITS ALONG 
THE AS 

AS - D THICKNESSES (s) GREATER 
THAN AS - I THICKNESS (s) 

AS - D DISTANCES (d) GREATER 
THAN AS - I DISTANCE (d) 

200 132 103 
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- x-direction 

 

 

 
                                             (a)                                                                                  (b)                                      
Figure 6.94: Fragility curves in x-direction (+ Fx): comparison between (a) the AS-D and the 9 AD-I groups 

and (b) the AS-D and the AS-I. 

 

 
                                            (a)                                                                                  (b)                                      
Figure 6.95: Fragility curves in x-direction (- Fx): comparison between (a) the AS-D and the 9 AD-I groups 

and (b) the AS-D and the AS-I. 
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- y-direction 

 

 

 
                                            (a)                                                                                  (b)                                      
Figure 6.96: Fragility curves in y-direction (+ Fy): comparison between (a) the AS-D and the 9 AD-I groups 

and (b) the AS-D and the AS-I. 

 

 
                                            (a)                                                                                  (b)                                      
Figure 6.97: Fragility curves in y-direction (- Fy): comparison between (a) the AS-D and the 9 AD-I groups 

and (b) the AS-D and the AS-I. 
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- y-direction, over the attainment of the LS limit state (Unit 3) 

 

 

 
                                            (a)                                                                                  (b)                                      

Figure 6.98: Fragility curves in y-direction (+ Fy) over the attainment of the LS limit state (Unit 3): 
comparison between (a) the AS-D and the 9 AD-I groups and (b) the AS-D and the AS-I. 

 

 
                                            (a)                                                                                  (b)                                      

Figure 6.99: Fragility curves in y-direction (- Fy) over the attainment of the LS limit state (Unit 3): 
comparison between (a) the AS-D and the 9 AD-I groups and (b) the AS-D and the AS-I. 
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- y-direction, over the attainment of the LS limit state (Unit 4) 

 

 

 
                                            (a)                                                                                  (b)                                      

Figure 6.100: Fragility curves in y-direction (+ Fy) over the attainment of the LS limit state (Unit 4): 
comparison between (a) the AS-D and the 9 AD-I groups and (b) the AS-D and the AS-I. 

 

 
                                            (a)                                                                                  (b)                                      

Figure 6.101: Fragility curves in y-direction (- Fy) over the attainment of the LS limit state (Unit 4): 
comparison between (a) the AS-D and the 9 AD-I groups and (b) the AS-D and the AS-I. 
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7. SEISMIC FRAGILITY OF STONE MASONRY 
STRUCTURES: CASE STUDIES IN SEIXAL, PORTUGAL 
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7.1 Introduction 

The second application of this thesis is focused on the seismic fragility assessment of stone 

masonry structures, carried out during my abroad period in Guimarães, Portugal, country 

where the masonry structures in aggregate represent a very common structural typology, as 

in Italy, and in some cases, the structural units along the aggregates are characterized by 

structural and geometrical heterogeneities (Bernardini et al., 2018).  

The study of masonry structures belonging to the old historic centres, in particular those 

enclosed in aggregates, is very often subjected to the consideration of all the possible 

variabilities and uncertainties involved in the problem. For this reason, this Section starts from 

a parametric study, considering some structural and geometrical variabilities, referred to some 

structural typologies sited in a village in the south of Portugal. 

The Portuguese historical centres are very often characterized by a big heterogeneous 

distribution of buildings, due to the unbridled urban growth and to the necessity to fill all the 

possible urban spaces. Sometimes, catastrophic events, like the earthquakes, lead to the need 

to requalify or to rebuild the historical centres. It is the case of the old city centre of Seixal, 

located about 25 km south of Lisbon, in Portugal, which was severely affected by the 1755 

Lisbon earthquake. Such an event was in the origin of a deep and long reconstruction process, 

which profoundly shaped the image of the city. This process led to the formation of a 

diversified urban centre characterized by a series of homogeneities and similarities related to 

the architectural arrangement, the structure and the materials used. Several studies focused on 

the constructive and structural characterization of the buildings in the old city centre of Seixal 

have been carried out in the last years (Ferreira et al., 2013; Santos et al., 2013; Ferreira et al., 

2016), allowing for the identification of the most prevalent structural typologies in the city. 

In particular, Santos et al. (2013) have identified four main building typologies, ordered from 

the most to the less representative: narrow front buildings, wide front buildings, row buildings 

and simple ground floor buildings.  

This Chapter aims to study the seismic vulnerability and fragility of the most representative 

one (the narrow front buildings). Thus, starting from the individuation of this building 

typology, a parametric study taking into account the uncertainty and the variation of some 

parameters is presented and discussed herein, allowing to define the variability of these 

buildings within the study area. Four different parameters - the number of floors, the inter-
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storey eight, the type of slabs and the type of internal walls - have been selected and combined 

in order to obtain 36 different structural typologies, which were subsequently analysed by 

means of non-linear static analyses with TreMuri software.  

It is noticed the presence of both isolated buildings and aggregate structures in Seixal (Vicente 

et al., 2010a), and, as already discussed in the previous Sections, it is a common simplification 

in civil engineering practice to analyse the seismic behaviour of a building considering it as 

an isolated structural unit, even when it belongs to an aggregation of buildings. For this 

reason, this work aims to analyse and compare the seismic response of the 36 obtained 

structural typologies as isolated units and that referred to the aggregations of identical 

structural units in row, allowing to show the differences in the seismic responses when the 

buildings are affected by the actions of the adjacent ones.  

Moreover, the comparison in terms of PGA corresponding to the attainment of the life safety 

limit state (PGAC) is also performed considering 50 different seismic actions for each of the 

36 structural typologies, derived from the 50 accelerograms referred to real earthquakes 

showed in Section 5.4. The actual obtained values of the PGA were used to obtain the fragility 

curves. A second set of fragility curves were further obtained and compared with the previous 

one, resorting to a statistical approach with Gaussian distributions, by means of Monte Carlo 

method (Section 5.6). 

7.2 Identification of the structural typologies 

As already mentioned, the structural typology used in this Section is based on the most 

representative of four building typologies previously identified and characterised by Santos 

et al. (2013). This typology, originally designated by the authors as “narrow front buildings”, 

presents a very simple, rectangular and small plan organised in a band layout, three vertical 

openings alignments are present in the main façade and the number of floors is not more than 

3. The structure is made by stone masonry; most of these buildings presents timber slabs and 

the roof structure is always pitched and made by timber (Ferreira et al., 2016).  

Figure 7.1 shows the architectural characteristics of some masonry structures, belonging to 

the “narrow front buildings” typology, individuated by the authors. 
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Figure 7.1: Architectural plans and front views of some “narrow front buildings” (adapted from Santos et al. 

(2013)). 

In this work, a building was modelled as prototype of the “narrow front buildings” typology, 

obtained according to the geometrical and structural characteristics observed in these type of 

buildings. The model object of the study is showed in Figure 7.2: since it represents a 

prototype, it was obtained trying to converge the main characteristics of different buildings 

in a unique model, representative of the “narrow front buildings”. 

 
                     (a)                                               (b)                                                              (c) 

Figure 7.2: (a) Architectural ground floor plan, (b) architectural first floor plan and (c) Section A-A’. 
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Therefore, in order to taking into account the variability of the building in the city, 4 different 

parameters were chosen: the number of floors, the inter-storey height, the type of the slabs 

and the type of the internal walls. The variations considered in each one of these parameters 

are presented in Table 7.1. 

Table 7.1: Variation considered for the structural and geometrical properties. 

 
From the variation and the combination of the parameters identified in Table 7.1 it was then 

possible to obtain 36 different structural typologies. Figure 7.5 illustrates the logic-tree 

diagram used to obtain the different structural typologies.  

The distribution of the parameters provides buildings with 1, 2 or 3 floors, each one of these 

with 3 different inter-storey heights (2.5 m, 2.7 m, 3.0 m), resulting in 9 buildings. In turn, 

based on Ferreira et al. (2016), each one of these can have either concrete slabs with tabique 

walls or clay brick walls, or timber slabs with tabique walls or clay brick walls.  

In Figure 7.5, each building is identified with an acronym, where the first symbol indicates 

the number of floors of the building (1, 2 or 3); the second symbol indicates the inter-storey 

height expressed in meters (2.5, 2.7 or 3.0); the third symbol indicates the type of slabs, where 

“C” stands for concrete slabs and “T” stands for timber slabs; and the forth symbol indicates 

the type of internal walls, where “T” stands for tabique walls and “B” stands for clay brick 

walls. 

According to Ferreira et al. (2016), most of the horizontal structures of these buildings are 

timber slabs composed by rectangular cross-section beams with around 0.10 m x 0.10 m and 

timber planks with a thickness of about 0.03 m. Despite not very common, it is possible to 

find some concrete slabs in the old city centre of Seixal, typically composed of classic hollow-

core structures, reason why they were also considered herein. As to the pitched roof structures, 

they were considered as being made of timber beams of around 0.10 m x 0.10 m cross section 

and a timber plank 0.03 m thick, covered by ceramic tiles. 

The external masonry walls were considered the same for all the buildings, being constituted 

by irregular fragments of limestone, randomly distributed and linked by lime mortar, sand 

and earth, with the thickness equal to 0.60 m (Figures 7.3(a) and (b)). The most common 

NUMBER OF 
FLOORS 

INTERSTOREY 
HEIGHT 

TYPE OF SLABS 
TYPE OF INTERNAL 

WALLS 

1 2 3 2.5 m 2.7 m 3.0 m 
Concrete 

slabs 
Timber 
slabs 

Clay brick 
walls 

“Tabique” 
walls 
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internal walls are the tabique walls, which are usually made of vertical timber boards with 

0.10 or 0.15 m of width and horizontal laths filled in the gaps by rubble masonry. With a total 

thickness of about 0.10 m, tabique walls may also present diagonal boards. Figure 7.4(a) 

shows an example of tabique wall present in a building in Seixal and Figure 7.4(b) shows an 

existing tabique wall present in one of the buildings constructed in Lisbon after the 1755 

earthquake, under the plan of the Marquis of Pombal, later known as “Pombalino” buildings 

(Appleton, 2003; Lopes et al., 2014). It was also considered the possibility of the internal 

walls be made of a single layer of clay bricks with a total thickness of 0.125 m, though less 

frequently seen in the old city centre of Seixal.  

         
                                        (a)                                                                                      (b)                                                            
Figure 7.3: External aspect of some of the most common limestone masonry walls in Seixal (Ferreira et al., 

2016). 

 

     
                                        (a)                                                                                      (b)                                                            

Figure 7.4: Internal masonry tabique walls: (a) “narrow front building” in Seixal (Ferreira et al., 2016) and 
(b) “Pombalino” building in Lisbon (Appleton, 2003; Lopes et al., 2014). 
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Figure 7.5:  Logic-tree diagram built used to obtain the 36 different structural typologies analysed. 
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7.3 Numerical modelling of the structures 

Since this work aims to compare the seismic fragility of isolated masonry buildings with the 

fragility of those enclosed in aggregate, both models are illustrated in Figures 7.6 and 7.7. As 

in the previous Sections, the structures were modelled with TreMuri software and using the 

same settings of analysis.  

As an example, Figures 7.6(a) and (b) show respectively the plan view of the structural ground 

floor and the 3D model of the isolated structural unit “2-2.7-T-B”, i.e., the structural typology 

with 2 floors, inter-storey height equal to 2.7 m, timbers slabs and tabique walls.  

                                   
                                        (a)                                                                                      (b)                                                            
Figure 7.6: (a) Structural ground floor plan of the model “2-2.7-T-B” and (b) 3D structure of the model “2-

2.7-T-B”. 

Similarly, Figures 7.7(a) and (b) present the plan view of the ground floor and the 3D model 

of the aggregate resulting from the association of the 5 structural units “2-2.7-T-B”. As can 

be seen in Figure 7.7(a), the single structural unit was aggregated in row and the common 

walls between adjacent buildings do not have a doubled thickness, because from the 

investigations on the building typologies in the city it was noticed the presence of aggregate 

structures with single thickness of adjacent walls. 
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(a) 

 
(b) 

Figure 7.7: (a) Structural ground floor plan of the aggregate model “2-2.7-T-B” and (b) 3D structure of the 
aggregate model “2-2.7-T-B”. 

7.3.1 Mechanical and geometrical properties of the masonry walls 

The mechanical and geometrical properties of the external walls were defined based on the 

results obtained from an experimental campaign carried out carried out by Vicente et al. 

(2010b), involving flat-jack and dynamic tests, which were crosschecked and validated from 

the comparison with other experimental tests performed in buildings with similar construction 

and structural characteristics, as well as from the values reported in the Italian Code (NTC, 

2008). 

Similarly, the mechanical properties of the clay brick internal walls were defined according 

to the Italian Code. In order to consider just one layer of bricks, the thickness of these walls 

1 2 3 4 5 
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was set equal to 0.125 m; the walls around the staircase are modelled as clay brick internal 

walls with 0.25 m (two layers of bricks) in all the 36 defined models, to make more rigid that 

part of the buildings. 

The timber tabique walls have 0.10 m of thickness. These walls are modelled in 

TreMuriRicerca (Lagomarsino et al., 2008) program following the equivalent frame model 

approach and considering an equivalent thickness of 0.04 m (Pires, 2013), corresponding to 

the average thickness of the vertical board. The behaviour of the panels is modelled by non-

linear beam elements with lumped (concentrated) inelasticity and by assuming a bi-linear 

force-deformation constitutive law. The elastic branch is directly determined by the shear and 

flexural stiffness, computed based on the geometric and mechanical properties of the element 

(as presented in Figure 4.10 for the case of masonry elements). Their behaviour is determined 

from the comparison between the acting shear force (V) and the ultimate shear force (Vu) 

considering only shear failure modes. The hypothesis of having flexural failure modes is 

disregarded taking into account that these walls were constructed directly on top of the timber 

floors (i.e. there is no continuity between floors). Despite these considerations, the tabique 

walls have been considered in the numerical models in order to have a comparable distribution 

of the vertical loads in the buildings. The tabique walls mechanical properties were defined 

according to the experimental results from compression and shear tests performed by Rebelo 

et al (2016) in typologically similar walls.   

The mechanical and geometrical properties of the three types of walls considered in the 

models, respectively the compressive strength (fm), the shear strength (), the elastic modulus 

(E), the shear modulus (G) and the thickness (s), are given in Table 7.2. 

Table 7.2: Mechanical and geometrical properties of the masonry walls. 

MASONRY WALLS 
fm 

 (MPa) 


(MPa) 
E  

(GPa) 
G  

(GPa) 
s   

(m) 

Limestone external walls 1.00 0.025 1.00 0.25 0.60 
Clay brick walls 2.40 0.06 1.20 0.40 0.125 
“Tabique” walls 0.56 0.01 0.13 0.002 0.04 

 

7.3.2 Mechanical and geometrical properties of the slabs 

The slabs were modelled as orthotropic membranes, with chosen equivalent thickness (t). 

The hollow-core concrete slabs were modelled considering reinforced concrete joists, 

alternated with perforated bricks and a continuous layer of concrete above. The total thickness 
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of the structural slabs is equal to 0.25 m. Since the concrete layer is fixed equal to 0.05 m, the 

software establish an equivalent thickness equal to 0.05 m. 

Main timber beams and a timber plank above make the timber slabs. Since the shortage of 

detailed information about the geometry of the structural elements, according to Maio et al. 

(2017) a similar timber slab was chosen, with a cross section of the main timber beams 0.10 

m x 0.10 m, spanned in 0.40 m. The timber plank above was chosen equal to 0.03 m. 

According to Maio et al. (2017) the equivalent thickness in the software was defined equal to 

0.05 m and the mechanical properties were chosen according to the New Zealand Guidelines 

(NZSEE, 2015). The structure of the roof is the same of the timber slabs: it is pitched and 

covered by roof brick tiles (Ferreira et al., 2016). 

The mechanical and geometrical properties of the slabs, respectively the main slab modulus 

of elasticity (E1), the secondary slab modulus of elasticity (E2), the slab shear modulus (G), 

the equivalent thickness (t), are given in Table 7.3. 

Table 7.3: Mechanical and geometrical properties of the slabs. 

SLABS 
E1 

 (GPa) 
E2  

(GPa) 
G 

 (GPa) 
t  

(m) 
Hollow-core concrete slab 30.00 15.00 12.50 0.05 

Timber slab 7.00 3.50 0.009 0.05 

 

7.4 Push-over analyses 

Several non-linear static analyses were performed in order to obtain the structural capacity 

for each of the 36 models (isolated structural units and aggregate structures), using TreMuri 

software. The two orthogonal directions of the seismic action were considered (x, y) and an 

uniform load pattern (i.e. proportional to mass) was assigned, because it resulted more 

conservative than the load pattern proportional to the first vibration mode. As presented in 

Figure 7.6(a), the x-direction is that parallel to the short side of the buildings, the y-direction 

is the perpendicular one, as in the previous Sections. Since according to the Italian code (NTC, 

2018) the LS limit state is reached when the maximum total shear of the model decreases of 

the 20%, the last points of the pushover curves are referred to this decrement. As shown in 

Figures 7.6 and 7.7 the buildings have a more regular plan shape and the distribution of the 

openings is more symmetric in the masonry panels, with respect to those sited in Bologna. 

Thus, since the results have shown differences not relevant, in the following only the capacity 
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curves related to the positive seismic actions (+Fx and + Fy) are reported. The results referred 

to the negative seismic actions (- Fx and - Fy) are given in Appendix C. 

- x-direction  

At first, the 36 models were considered as isolated structural units. Then, 36 aggregations of 

identical structural units were assembled in row and horizontal positive forces in x-direction 

(+ Fx) were applied. As an example, Figures 7.8(a) and (b) present respectively the curves 

related to the 6 isolated structural units (ISU) with 2 floors and timber slabs (“2-2.5-T-T”; “2-

2.7-T-T”; “2-3.0-T-T”; “2-2.5-T-B”; “2-2.7-T-B”; and “2-3.0-T-B”) and to the 6 aggregate 

structures (AS), with the same identical structural units, aggregated in row. Following the 

same logic, Figures 7.9(a) and (b) show respectively the curves related to the 6 isolated 

structural units with 2 floors and concrete slabs (“2-2.5-C-T”; “2-2.7-C-T”; “2-3.0-C-T”; “2-

2.5-C-B”; “2-2.7-C-B”; and “2-3.0-C-B”) and the 6 aggregations of the same identical 

structural units, aggregated in row. In all cases, the curves are reported in terms of total shear 

divided by the total mass (V/M) and the displacement obtained as average, weighted on the 

masses, of the node displacements in the top of the buildings (d). 

  
                                             (a)                                                                                   (b) 

Figure 7.8: x-direction push-over curves of the buildings with 2 floors and timber slabs: (a) Isolated 
structural units and (b) Aggregate structures. 

ISU AS 
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                                             (a)                                                                                   (b) 

Figure 7.9: x-direction push-over curves of the buildings with 2 floors and concrete slabs: (a) Isolated 
structural units and (b) Aggregate structures. 

Since the buildings with lower height are stiffer, the curves corresponding to the structural 

units with 2.5 m of inter-storey height present higher capacity than those with 2.7 m and 3.0 

m. Furthermore, the buildings with the same inter-storey height and the same type of slabs 

show different structural capacity depending on the type of internal walls. As can be seen in 

these Figures, the presence of tabique walls leads to a reduction in the capacity of the 

buildings. Moreover, considering the global behaviour of the structures, if the identical 

structural units are aggregated in row it is possible to observe an increment in terms of 

capacity, which can be explained by the fact that the aggregation process results in the 

increase of the walls alignment in x-direction. The curves also highlight the greater capacity 

of the buildings with concrete slabs, comparing with those with timber slabs: the orientation 

of the slabs in x-direction and the different way to transmit the loads lead to greater differences 

in terms of capacity in this direction, with respect to the y-direction, as shown in the following. 

As in the clay brick masonry buildings sited in Bologna, the geometrical configuration of the 

walls in x-direction, in particular the considerable presence of openings, make the flexural 

collapse the main failure mechanism of the masonry walls in this direction. Since the 

differences between buildings with timber and concrete slabs are significant, as an example 

Figures 7.11 and 7.13 give the failure mechanisms of the walls in x-direction of the isolated 

structural “2-2.7-T-B” and “2-2.7-C-B” models, respectively, referred to the points in the 

push-over curves corresponding to the same displacement (Figures 7.10(b) and 7.12(b)). 

ISU AS 
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            (a)                                                                                      (b) 
Figure 7.10: (a) Indication of the masonry walls in x-direction; (b) Point of the capacity curve (+ Fx) related 

to the collapse of the walls P5 and P7 for the “2-2.7-T-B” model. 

 

                                                      

 

                                               
Figure 7.11: Failure mechanisms of the masonry walls considering a seismic action in x-direction (+ Fx) 

for the “2-2.7-T-B” model. 
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     (a)                                                                                          (b) 
Figure 7.12: (a) Indication of the masonry walls in x-direction; (b) Point of the capacity curve (+ Fx) related 

to the collapse of the wall P2 for the “2-2.7-C-B” model. 

 

                                                      

 

                                               
Figure 7.13: Failure mechanisms of the masonry walls considering a seismic action in x-direction (+ Fx) for 

the “2-2.7-C-B” model. 
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The failure mechanisms confirm the lower capacity of the buildings with timber slabs, as the 

flexible slabs with a very low stiffness (Table 7.3) lead to a distribution of the forces 

proportional to the masses decreasing the total capacity. Thus, Figure 7.11 shows that the last 

point of the capacity curves corresponds to the flexural failure of the internal walls in x-

direction P5 and P7. Otherwise, Figure 7.13 shows that in correspondence of the point 

corresponding to the failure of the “2-2.7-T-B” model, the masonry walls of the “2-2.7-T-B” 

are still in the plastic field, except for the spandrels E3 and E4 of the wall P2, collapsing for 

greater values of the forces with respect to the “2-2.7-T-B” model. These comparisons 

highlight that the greater stiffness of the slabs allows to distribute the loads proportionally to 

the stiffness of the elements, contributing to increase the total capacity of the buildings. 

Figures 7.14(a) and 7.15(a) show all the 36 isolated structural unit models with timber and 

concrete slabs, respectively, distinguishing the buildings according the number of floors; 

Figures 7.14(b) and 7.15(b) are referred to the aggregations of identical structural units.  

The curves highlight the differences in terms of stiffness and ductility, if different number of 

floors are considered. Since the lowest height and the configuration of the resisting walls, the 

1-floor buildings are the most rigid: it is possible to notice that the slope of the curves 

increases with the increment of the number of floors, highlighting the decrement of the 

stiffness for the buildings with 2 and 3 floors, respectively. 

Otherwise, the ductility increases with the increment of the number of floors: the 3-floors 

buildings experience greater displacements, with respect to the 2-floors and the 1-floor 

buildings, due to the grater total eight.  

The curves highlight the decrement of the structural capacity with the increment of the number 

of floors and that the presence of timber slabs decreases the global capacity of the buildings, 

compared with the ones with concrete slabs. Thus, a decrement of the collapse PGA is 

expected if the total number of floors increases and if timber slabs are present. 

In Appendix C the curves related to the application of negative forces (- Fx) are reported, 

showing the slightly decrement of the vulnerability due to the asymmetry on the position of 

the openings in the masonry walls in x-direction (Figures 7.11 and 7.13), nevertheless being 

not so remarkable contrary to the case of the clay brick masonries sited in Bologna. 
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                                             (a)                                                                                   (b) 
Figure 7.14: x-direction push-over curves of the buildings with timber slabs: (a) Isolated structural units and 

(b) Aggregate structures. 
 

  
                                             (a)                                                                                   (b) 

Figure 7.15: x-direction push-over curves of the buildings with concrete slabs: (a) Isolated structural units 
and (b) Aggregate structures. 

- y-direction  

The same analyses referred to the 36 models were performed applying horizontal positive 

forces in y-direction (+ Fy). Also in this case, as an example, Figure 7.16(a) shows the curves 

related to the 6 isolated structural units with 2 floors and timber slabs (“2-2.5-T-T”; “2-2.7-

T-T”; “2-3.0-T-T”; “2-2.5-T-B”; “2-2.7-T-B”; and “2-3.0-T-B”) and the figure 7.16(b) shows 

the 6 aggregations of the same identical structural units in row. Figure 7.17(a) shows the 

curves related to the 6 isolated structural units with 2 floors and concrete slabs (“2-2.5-C-T”; 

“2-2.7-C-T”; “2-3.0-C-T”; “2-2.5-C-B”; “2-2.7-C-B”; and “2-3.0-C-B”) and Figure 7.17(b) 

shows the 6 aggregations of the same identical structural units in row. 

ISU AS 

ISU AS 
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                                             (a)                                                                                   (b) 

Figure 7.16: y-direction push-over curves of the buildings with 2 floors and timber slabs: (a) Isolated 
structural units and (b) Aggregate structures. 

 

 
                                             (a)                                                                                   (b) 

Figure 7.17: y-direction push-over curves of the buildings with 2 floors and concrete slabs: (a) Isolated 
structural units and (b) Aggregate structures. 

Figures 7.16 and 7.17 highlight the same results of the previous ones, but it is possible to 

notice that the same buildings exhibit greater capacity in y-direction, due to the arrangement 

and the geometry of the walls in this direction: they are longer and with a reduced presence 

of openings (Figures 7.19 and 7.21).  

The remarkable differences are noticed in the global behavior of the aggregate structures in 

y-direction: in this case, the aggregation of identical structural units leads to a different 

geometrical configuration, causing a decrement of the structural capacity: the walls in y-

direction are the same of the ones of the isolated structural units and they are in common with 

the adjacent buildings, receiving the load of the slabs by two different sides. Moreover, some 

ISU AS 

ISU AS 
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torsional effects, decreasing the structural capacity, affect the structures. As in the application 

to the clay brick buildings sited in Bologna, a decrement of the collapse PGA is expected if 

identical structural units are aggregated in row, considering the seismic action in y-direction. 

It is also possible to noticed that the differences between timber slabs and concrete slabs are 

not so remarkable in terms of capacity, as the case of the seismic action in x-direction, because 

in the y-direction the most contribute against the seismic action is due to the resisting walls 

in that direction: the contribute of the slabs is higher in x-direction, considering the orientation 

of the main beams of the slabs. The differences are more pronounced in terms of 

displacements, due to the presence of the rigid slabs allowing to distribute the forces in such 

a way to reach the failure of the walls for higher values of displacement.  

As in the application to the clay brick buildings sited in Bologna, the stocky masonry walls 

in y-direction with a reduced number of openings lead to the attainment of the shear failure 

as dominant failure mechanism. Figures 7.19 and 7.21 give the failure mechanisms of the 

walls in y-direction of the isolated structural “2-2.7-T-B” and “2-2.7-C-B” models, 

respectively, referred to the points in the push-over curves corresponding to the same 

displacement (Figures 7.18(b) and 7.20(b)). In y-direction the failure mechanisms confirm the 

lower capacity of the buildings with timber slabs, as well. Thus, Figure 7.18(b) shows that the 

last point of the capacity curve corresponds to the shear failure of the external wall in y-

direction P3. Otherwise, Figure 7.21 shows that in correspondence of the point corresponding 

to the failure of the “2-2.7-T-B” model, the masonry walls of the “2-2.7-C-B” are still in the 

plastic field, except for the little piers E33, E47 and E49, representing the weaker elements: 

the other piers reach the shear failure for higher values of displacements. Figures 7.18(b) and 

7.20(b) show that the curves are comparable in terms of maximum total shear, as the 

orientation of the slabs does not affect a lot the results, leaving the most contribute against the 

seismic action to the resisting walls in y-direction. 

In Appendix C the curves related to the application of negative forces (- Fy) are reported, 

showing that they are comparable with those related to the + Fy forces, leading to almost the 

same results, due to the limited presence of openings in the masonry walls in y-direction 

(Figures 7.19 and 7.21) and being not so remarkable, as in the case of the clay brick masonries 

sited in Bologna. 
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(a)                                                                                                    (b) 

Figure 7.18: (a) Indication of the masonry walls in y-direction; (b) Point of the capacity curve (+ Fy) related 
to the collapse of the wall P3 for the “2-2.7-T-B” model. 

 

       

 

     

Figure 7.19: Failure mechanisms of the masonry walls considering a seismic action in y-direction (+ Fy) for 
the “2-2.7-T-B” model. 
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  (a)                                                                                              (b) 

Figure 7.20: (a) Indication of the masonry walls in y-direction; (b) Point of the capacity curve (+ Fy) related 
to the collapse of the walls P6 and P8 for the “2-2.7-C-B” model.             

 

    

 

    

Figure 7.21: Failure mechanisms of the masonry walls considering a seismic action in y-direction (+ Fy) for 
the “2-2.7-C-B” model. 
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Figures 7.22(a) and 7.23(a) show all the 36 isolated structural unit models with timber and 

concrete slabs, respectively, distinguishing the buildings according the number of floors; 

Figures 7.22(b) and 7.23(b) are referred to the aggregations of identical structural units.  

The same considerations, in terms of stiffness and ductility, can be also done for the y-

direction; as well, the structural capacity increases as the number of floors decreases, 

considering the seismic action in y-direction. 

  
                                             (a)                                                                                   (b) 
Figure 7.22: y-direction push-over curves of the buildings with timber slabs: (a) Isolated structural units and 

(b) Aggregate structures. 
 

 
                                             (a)                                                                                   (b) 

Figure 7.23: y-direction push-over curves of the buildings with concrete slabs: (a) Isolated structural units 
and (b) Aggregate structures. 

 

 

 

ISU AS 

ISU AS 
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- y-direction, over the attainment of the LS limit state 

As in the application to the clay brick buildings sited in Bologna, the analyses over the 

attainment of the LS limit state were performed, in order to evaluate the seismic response of 

the various structural units, according to their relative position along the aggregate structure.  

The different geometrical configuration in y-direction allows to exhibit different levels of 

vulnerability of the different structural units along the aggregate structure and if the 

attainment of the life safety limit state is considered as limit for the analysis of the whole 

aggregate structure, not all the masonry walls of the structural units have reached the failure 

for shear and most of them are still in the plastic field. Therefore according to the procedure 

applied in the previous Sections, the analyses over the attainment of the life safety limit state 

were performed, to allow each structural unit to reach the failure for shear and to get a kind 

of vulnerability classification of the structural units that first attain the collapse for shear. 

 As it is recognized, the type of slabs has a direct influence on the attainment of the shear 

failure for the masonry walls of the different structural units. This is also observed in this 

analysis, where, as can be seen in Figure 7.24, the reinforced concrete slabs lead to a rigid 

deformation of the structure, which results in the early shear failure of the external Units 1-2 

due to the torsional effects. The last points of the push-over curves in Figure 7.23(b) are 

related to the attainment of the life safety limit state, corresponding to the shear failure of the 

walls belonging to the Unit 1 and Unit 2. Figure 7.24 shows the deformed configuration of 

the aggregated model “2-2.7-C-B”, confirming the same results obtained in the clay brick 

masonry structures sited in Bologna, having the same type of slabs and a similar distribution 

of the internal walls in plan. 

 
Figure 7.24: Deformed shape of the “2-2.7-C-B” aggregate model. 

1 2 3 4 5 
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Contrary to what happen with the reinforced concrete slabs, due to their low stiffness, the 

timber slabs lead to a distribution of the forces proportional to the masses, allowing a more 

flexible deformation of the structure. Figure 7.25 illustrates the deformed shape of the 

aggregate model “2-2.7-T-B”: due to the different distribution of the forces and according to 

the influence areas, the internal units are those experiencing larger displacements, with 

respect to the AS with concrete slabs. Thus, in this aggregate configuration the geometrical 

distribution of the masonry walls lead the internal Units 3 and 4 to early reach the collapse 

for shear. The last points of the push-over curves in Figure 7.22(b) are related to the attainment 

of the LS limit state, corresponding to the shear failure of the walls belonging to the Units 3 

and 4. 

 
Figure 7.25: Deformed shape of the “2-2.7-T-B” aggregate model. 

In order to allow each structural unit to reach the failure for shear, the analyses over the 

attainment of the LS limit state were performed. Figure 7.26 shows the push-over curves 

related to the buildings with concrete slabs, distinguished for the number of floors. As 

identified in this Figure, the first decrement of the shear corresponds to the failure of Unit 1 

and Unit 2, the decrement between 0.012 m and 0.02 m is related to the failure of Unit 3 and 

the last points to that of the Unit 4. Also in this case, it was decided to neglect the failure 

related to the Unit 5 because the displacements should be so larger to make the results not 

reliable. These results highlight the different levels of vulnerability referred to the structural 

units, depending on their position along the aggregate: the vulnerability decreases if more 

internal units are considering, due to the presence of the rigid slab and to the torsional effects 

mainly affecting the external Units 1 and 2. 

1 2 3 4 5 
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Figure 7.26: Pushover curves of the AS with concrete slabs: analyses over the attainment of the LS limit 

state. 

Figure 7.27 shows the push-over curves related to the buildings with timber slabs, 

distinguished from the number of floors. 

In order to evaluate the structural behaviour of the aggregate with timber floors, the analysis 

was kept beyond the stop criterion of the push-over analyses. From this analysis it was 

possible to observe that, in contrast to the other Units 1, 2 and 5, which exhibit very small 

displacements, Units 3 and 4 keep deforming. In fact, as can be observed in Figure 7.25, Units 

3 and 4 behave almost independently, after the achievement of the plastic field and, if the 

analysis over the attainment of the LS limit state is performed considering the whole 

aggregate, these two Units continue to move reaching larger values of displacements, with 

respect to Units 1, 2 and 5, maintaining very small displacements. For this reason, the 

aggregate structures were disaggregated into the three sub-models presented in Figure 7.28. 

Thus, the failure of the Units 3 and 4 was analysed considering the whole aggregate, whereas 

the failure of Units 1 and 2 was evaluated considering only two aggregated structural units (1 

and 2) and the failure of Unit 5 was evaluated considering the isolated structural unit. 

Following this, the final push-over curves given in Figure 7.27 were obtained from the 

envelopes related to the various failures of the structural units, obtained analysing the three 

sub-models over the attainment of the LS limit state. As can be seen in Figure 7.27, the first 

decrement of the shear corresponds to the failure of the Units 3 and 4, the decrement between 

0.01 m and 0.0175 m is related to the failure of the Unit 1 and 2 and the last points to that of 

the Unit 5. 

 

UNITS 1 - 2 

UNIT 3 UNIT 4 
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Figure 7.27: Pushover curves of the AS with timber slabs: analyses over the attainment of the LS limit state. 

  

                
Figure 7.28: Deformed shape of the “2-2.7-C-B” aggregate sub-models. 

7.5 Fragility curves 

As in the application to the clay brick masonries sited in Bologna, the analyses in this Section 

have as goal the assessment of the seismic fragility referred to the various models obtained. 

Since the RS statistical method was not applied in this application, all the 50 accelerograms 

obtained in Section 5.4 were considered for each of the 36 models. Thus, the 50 acceleration 

and displacement spectra (Figure 5.7) allowed to obtain the 1800 (50x36) PGAC, associated 

to each analysis case. Since both the isolated structural units and the aggregate structures were 

considered and both x- and y-directions of the seismic action were applied, 7200 PGAC were 

obtained, considering the attainment of the LS limit state as failure for the models.  

As already mentioned, the structural failure is reached when the difference between the 

structural capacity (C) and the structural demand (D) is less than or equal to zero. The limit 

state function (g), in Equation 7.1, expresses that difference:  

 C D= PGA -PGA 0g  (7.1) 

where PGAC is the spectral acceleration corresponding to the attainment of the LS limit state 

and PGAD is the spectral demand acceleration, as in the previous Sections.  

UNITS 1 - 2 

UNITS 3 - 4 

UNIT 5 
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The structural capacity is estimated by means of the non-linear static analyses performed in 

this Section, used to obtain the correspondent values of the PGAC and then compared with 

the PGAD values, to plot the fragility curves. 

The fragility curves were plotted herein considering all the distributions of the actual PGAC 

obtained from the previous analyses. These curves were compared with those obtained 

starting from the logarithmic Gaussian distributions, defined from the medium values and the 

standard deviations of each distribution of PGAC and using Monte Carlo method. The 

comparison allowed to observe that, although they are very similar, the curves obtained with 

Monte Carlo method presents a more regular shape, according to the considerations explained 

in Section 5.6. In the following paragraphs, the curves related to the x- and y-directions of the 

seismic action are given in terms of the conditional probability of the structural failure (Pf) 

and the spectral demand acceleration (PGAD). 

- x-direction  

The fragility curves for the x-direction reveal a high fragility of the buildings analysed, 

especially those with timber slabs. As can be observed in Figure 7.29(a), the buildings with 

concrete slabs are lower fragile than the buildings with timber slabs and the curves (blue and 

red) are considerably spaced due to the orientation of the slabs in x-direction and their 

different way to distribute the forces. The fragility curves also show that the aggregation of 

identical structural units in row in x-direction leads to a decrement in terms of fragility, 

confirming what it was expected from the results in terms of capacity. Figure 7.29(b) shows 

the curves obtained with Monte Carlo method; it is possible to notice that they are comparable. 

The continuous lines are referred to the isolated structural units (ISU) and the dashed lines to 

the aggregate structures (AS). 

The beneficial contribution of the aggregation in terms of PGAC is also evident in the fragility 

curves presented in Figure 7.30(a) where the buildings are distinguished according to the 

number of floors: the curves related to the buildings with just one floor show that their greater 

stiffness considerably decreases their fragility with respect to the higher buildings with two 

and three floors. Finally, Figure 7.30(b) distinguishes the buildings according the type of the 

internal walls, confirming as the presence of the clay brick internal walls contributes to 

decrease the total fragility. These latter Figures only show the curves obtained with Monte 
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Carlo method, considering that them and the ones obtained with the actual values of the PGAC 

are comparable showing the same results. 

 
                                             (a)                                                                                   (b) 

Figure 7.29: Fragility curves of all the models in x-direction, distinguished according the type of slabs: (a) 
actual PGA; (b) Monte Carlo method. 

 

  
                                             (a)                                                                                   (b) 

Figure 7.30: Fragility curves of all the models in x-direction using Monte Carlo method: (a) distinguished 
according the number of floors; (b) distinguished according the type of internal walls. 

- y-direction  

Following the same presentation and the analysis scheme, Figures 7.31(a) and (b) present the 

final fragility curves obtained for the y-direction, distinguished according to the type of slabs: 

the presence of the concrete slabs leads to a decrement of the fragility, but the differences 

with the timber slabs curves are not so remarkable as in x-direction, because of the orientation 

of the slabs. As can be observed in these Figures, when considering the y-direction, the 

fragility curves reveal less levels of fragility than those related to the seismic action in x-
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direction. This can be explained by the arrangement and the geometry of the walls in this 

direction: they are mainly stone resisting walls with the biggest thickness and the longest 

length and most of them are without openings. Like in the previous case, Figures 7.32(a) and 

(b) show the same comparisons in terms of number of floors and type of internal walls: the 

fragility increases as the number of the floors increases and it decreases with the presence of 

the clay brick walls instead of the tabique walls. As explained above, the aggregation leads 

to a decrement of the capacity in the y-direction and consequently to an increment of the 

fragility, due to the torsional effects and the contribution of the other adjacent structural units, 

affecting the global response against a seismic action in y-direction. 

 
                                            (a)                                                                                  (b) 

Figure 7.31: Fragility curves of all the models in y-direction, distinguished according the type of slabs: (a) 
actual PGA; (b) Monte Carlo method. 

 

 
                                             (a)                                                                                (b) 

Figure 7.32: Fragility curves of all the models in y-direction using Monte Carlo method: (a) distinguished 
according the number of floors; (b) distinguished according the type of internal walls. 
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- y-direction, over the attainment of the LS limit state 

The analysis over the attainment of the life safety limit state, considering a seismic action in 

y-direction, led to a differentiation between the aggregate structures with concrete slabs and 

the ones with timber slabs, because the stiffness and the distribution of the forces change 

according to the type of the slabs: different levels of vulnerability were found between the 

structural units, depending on their position along the aggregate structures. Figure 7.33(a) 

allows to obtain a hierarchy of failure of the various Units along the aggregate structures with 

concrete slabs. The curves confirm the results obtained by the non-linear analyses, 

highlighting how the presence of the rigid slab causes some torsional effects mainly affecting 

the external Units 1 and 2, whose walls are the first to reach the shear failure. Continuing the 

analyses over the attainment of the life safety limit state it is possible to allow the other units 

to reach the shear failure, experiencing larger displacements. The curves in Figure 7.33(a) 

show that the most fragile Units are the external ones 1 and 2 and that the fragility increases 

respectively in the Unit 3 and Unit 4. Figure 7.33(b) shows the fragility curves related to the 

aggregate structures with timber slabs: the presence of the flexible slabs leads to a different 

distribution of the forces, according to the influence areas and the distribution of the masses; 

the torsional effects are reduced and the forces allow the more central units (Unit 3 and 4) to 

exhibit larger displacements and their walls to first reach the shear failure. Continuing the 

analyses over the attainment of the LS limit state it was showed that the global structure model 

is not able to give the shear failure of the other Units along the aggregate. Thus, since the 

Units 3 and 4 behave almost independently, the model was disaggregated in three sub-models, 

allowing to obtain the shear collapse of the Units 1 and 2 (considering only 2 Units) and of 

the Unit 5 (considering the isolated structural unit), as already shown in Section 7.4. The 

curves in Figure 7.33(b) allows to obtain a hierarchy of failure of the various Units along the 

aggregate structures with timber slabs, showing that the most fragile Units are the 3 and 4, 

followed by the Unit 1 and 2 and finally by the Unit 5. 
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                                             (a)                                                                                (b) 

Figure 7.33: Fragility curves of the AS using Monte Carlo method: analyses over the LS limit state in 
buildings with (a) concrete slabs and (b) timber slabs. 
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8.1 Summary 

The research work presented in this thesis aimed to assess the seismic vulnerability and 

fragility of unreinforced masonry aggregate structures, sited in the historic centres. The 

analyses were focused on the comparison between the seismic behaviour of masonry 

structural units, considered at first as isolated, with that referred to aggregations in row of 

those similar or identical structural units. The main goal was to show the advantages and 

disadvantages the masonry structural unit obtains in the aggregation process, considering two 

different and orthogonal directions of the seismic action and the variation of its position along 

the aggregate structure.  

The first part of the work was focused on the seismic vulnerability and fragility assessment 

of clay brick masonry buildings, sited in Bologna, in Italy. Due to a limited availability of the 

mechanical and geometrical characteristics of the structures in question, the analyses were 

carried out with the Response Surface (RS) statistical method, taking into account the 

variabilities and uncertainties involved in the problem. At first, the selected clay brick 

masonry structure was considered as isolated, performing a set of non-linear static analyses 

whose data were used to calibrate the Response Surface model. The results of the RS allowed 

to obtain a relation between the chosen variables and the PGA corresponding to the attainment 

of the LS limit state, chosen as response parameter, also highlighting the differences 

considering two orthogonal directions of the seismic action. It was showed that the parameter 

most influencing the seismic response is the shear strength () of the resisting masonry walls, 

followed by the geometrical properties of the structure, showing as the arrangement and the 

geometry (mainly the thickness) of the masonry walls are determining factors in the seismic 

performance of unreinforced masonry buildings. Moreover, since in this type of analysis the 

seismic response is mainly governed by the in-plane behaviour of the walls in the considered 

direction of the seismic action, considerable differences were found between the two 

directions, due to the different configurations of the masonry walls. In particular, the x-

direction is the weaker, because of the several number of openings, allowing the prevalence 

of the flexure as main failure mechanism. In the orthogonal y-direction the masonry walls 

stockier and with a reduced presence of openings, allowing the prevalence of the shear as 

main failure mechanism, lead to the attainment of higher values of the collapse PGA and, 

consequently, to a lower fragility, showed in the plots of the fragility curves obtained. 
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Furthermore, the different disposition of the openings in the masonry walls makes some of 

their parts weaker against the seismic action, leading to different seismic performances if 

positive (+ Fx or +Fy) or negative (- Fx or - Fy) seismic forces are considered.  

Afterwards, identical structural units chosen by the Response Surface generated simulations 

are aggregated, in order to compare the fragility referred to the isolated structural unit and the 

one referred to the entire aggregate structure. The results showed an increment on the values 

of the collapse PGA, aggregating identical isolated structural units and considering the 

seismic action in x-direction: the length of the walls about 5 times that of the walls of the 

isolated structural unit and the dominance of the flexure as main global collapse mechanism 

lead to a decrement of the fragility. On the contrary, in y-direction the different geometrical 

properties of the resisting walls and the torsional effects deriving from the aggregation of 

structural units in row cause an increase of the vulnerability, because the external units are 

affected by torsional effects decreasing the values of the PGAC obtained. Higher values of the 

collapse PGA are associated to the internal structural units along the aggregate structure, 

obtained continuing the analyses over the attainment of the LS limit state and allowing the 

walls of the more internal units to reach the shear collapse. These analyses allowed to make 

a hierarchy of collapse of the various structural units along the aggregate, for the presence of 

the rigid slabs: the fragility curves show a decrement of the fragility if more internal units are 

considered.  

Finally, the fragility of the masonry aggregates with different structural units (AS - D) was 

compared with the one of the aggregates with identical structural units (AS - I), generated 

using the medium values of the distributions of the chosen variables. The comparison showed 

that it is not possible to define unique seismic behaviours because of the differences in the 

structural units; but, in general, the ratio between the distance of the masonry walls (d) and 

the thickness of the walls (s) of the various structural units is one of the parameters most 

influencing the differences in the seismic response, compared with the ratio referred to the 

walls of AS - I, having a unique values of d/s. The fragility curves obtained showed that, for 

these specific aggregate configurations, generated with randomly selections of the geometric 

parameters (d and s), the fragility of the AS - I is higher than the fragility of the AS - D. In 

fact, the cases of AS - D having structural units with d and s greater than those of the identical 
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structural units along the AS - I are more than the 50% of the total cases, justifying the greater 

fragility of the AS - I with respect to the AS - D. 

The second part of this work was focused on the seismic vulnerability and fragility assessment 

of a weaker type of structures: the unreinforced limestone masonries, sited in Seixal, in 

Portugal. In this case, it was not necessary to adopt statistical methodologies, as information 

on the geometrical and mechanical characteristics of the selected buildings were already 

available. The analysis involved the assessment of the most prevalent structural typologies 

individuated in the historic centre, considering the variability of a set of structural and 

geometrical parameters, individuating 36 different structural configurations, whose seismic 

performance behaviours were studied by means of non-linear static analyses. The 

methodology applied was then the same: the seismic behaviour of these structural 

configurations, analysed as isolated structural units, is compared with their structural 

performance when enclosed in aggregate, obtaining similar results, compared with the 

buildings in Bologna, in terms of fragility and considering two directions of the seismic 

action, due to the similar geometrical configuration of the masonry walls. The results also 

showed how the variation of the chosen structural and geometrical parameters greatly affects 

the seismic response. Thus, the fragility curves related to the buildings with just one floor 

showed that their greater stiffness considerably decreases their fragility with respect to the 

higher buildings with two and three floors and the fragility curves related to the type of the 

internal walls highlight as the presence of the tabique internal walls contributes to increase 

the total fragility. However, the presence of different type of slabs, concrete or timber, gives 

the greatest contribute on the differences in the seismic response: the presence of the concrete 

slabs confirms the results already discussed for the clay brick masonries sited in Bologna; 

otherwise, the different way to distribute the forces of the timber slabs greatly increases the 

fragility of the buildings, especially in x-direction, being the direction of orientation of the 

slabs. Furthermore, the presence of the timber slabs changes the hierarchy of collapse 

obtained for the various structural units along the aggregates with concrete slabs: the torsional 

effects are reduced and the distribution of the forces allows the more central units (Unit 3 and 

4) to exhibit larger displacements and their walls to first reach the shear failure, behaving 

almost independently. Disaggregating the whole aggregate in sub-models, it is possible to 
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obtain the shear collapse of the Units 1 and 2 (considering only 2 Units) followed by that of 

the Unit 5 (considering the isolated structural unit). 

8.2 Future works 

In future applications it is suggested to consider a greater and different variability between 

the masonry structural units along the row aggregates, taking also into account some 

mechanical differences, besides the geometrical ones. Moreover, among other types of 

geometrical differences, the consideration of different total heights and interstorey-heights 

between the structural units should be an interesting aspect to analyse, to show how the 

presence of slabs at different heights affects the seismic performances. 

Among the variabilities related to the parameters of the analyses, the limit thresholds of the 

drift for shear and flexure mechanism should have a considerable dispersion, influencing the 

results related to the evaluation of the ultimate displacement of unreinforced masonry 

structures. For this reason, it is expected to consider this uncertainty in the future analyses of 

seismic fragility assessment of these type of structures. 

Furthermore, since only the analysis of the in-plane masonry walls was carried out in this 

work, it is suggested to verify the activation of the possible local mechanisms, activating the 

out-of-plane behaviour of the masonry walls, with the selected seismic actions. 

Finally, it is suggested to perform more accurate non-linear dynamic analyses in order to 

validate the reliability of the methodology applied in this thesis on unreinforced masonry 

structures. 
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Appendix A 

In this work the data of the PEER Ground Motion Database (https://ngawest2.berkeley.edu) 

were used for the selection of the accelerograms. Table A.1 gives details related to the 

recordings of the earthquakes selected for the site of Bologna, Table A.2 for the site of Seixal. 

“Accelerogram Number” is used to indicate the accelerograms used in this work; “Record 

Sequence Number” (RSN) is a unique ID number used in the database; “HC” is the type of 

the horizontal component of the seismic action (H1 or H2); “MW”is the moment magnitude; 

“EJB”is the epicentral Joyner-Boore distance; “Vs30” is the shear wave velocity. Furthermore, 

the name of the Earthquake, the year and the name of the recording station are listed in Table 

A.1 and Table A.2. 

Figures from A.1.1 to A.1.48 show the accelerograms selected for the site of Bologna and 

Figures from A.2.1 to A.2.50 show the accelerograms selected for the site of Seixal. 

Table A.1: Ground-motion selections for the site of Bologna. 
Accelerogram 

Number 
RSN Earthquake Name Year Station Name HC MW 

EJB 
(km) 

Vs30 
(m/s) 

1 602 Whittier Narrows-01 1987 Burbank - N Buena Vista H1 5.99 20.37 271.4 
2 652 Whittier Narrows-01 1987 Lakewood - Del Amo Blvd H2 5.99 22.40 234.9 

3 543 Chalfant Valley-01 1986 Benton H2 5.77 24.25 271.4 
4 314 Westmorland 1981 Brawley Airport H1 5.90 15.28 208.7 
5 638 Whittier Narrows-01 1987 LA - N Westmoreland H1 5.99 15.34 315.1 

6 634 Whittier Narrows-01 1987 LA - Fletcher Dr H2 5.99 11.07 446.0 
7 547 Chalfant Valley-01 1986 Zack Brothers Ranch H1 5.77 6.07 271.4 
8 664 Whittier Narrows-01 1987 N Hollywood - Coldwater Can H2 5.99 28.37 446.0 

9 616 Whittier Narrows-01 1987 El Monte - Fairview Av H1 5.99 0.75 308.6 
10 133 Friuli, Italy-02 1976 San Rocco H1 5.91 14.37 659.6 
11 650 Whittier Narrows-01 1987 La Puente - Rimgrove Av H1 5.99 10.24 308.6 

12 683 Whittier Narrows-01 1987 Pasadena - Old House Rd H1 5.99 8.03 455.4 
13 649 Whittier Narrows-01 1987 La Habra - Briarcliff H1 5.99 14.17 361.2 
14 637 Whittier Narrows-01 1987 LA - N Figueroa St H1 5.99 6.00 405.2 

15 628 Whittier Narrows-01 1987 LA - Centinela St H2 5.99 28.00 234.9 
16 596 Whittier Narrows-01 1987 Beverly Hills - 12520 Mulhol H2 5.99 25.91 545.7 
17 620 Whittier Narrows-01 1987 Glendale - Las Palmas H1 5.99 14.68 446.0 

18 642 Whittier Narrows-01 1987 LA - W 70th St H2 5.99 16.77 294.2 
19 544 Chalfant Valley-01 1986 Bishop - LADWP South St H2 5.77 23.38 271.4 
20 632 Whittier Narrows-01 1987 LA - Cypress Ave H1 5.99 8.56 446.0 

21 641 Whittier Narrows-01 1987 LA - Saturn St H1 5.99 20.35 308.7 
22 614 Whittier Narrows-01 1987 Downey - Birchdale H1 5.99 14.90 245.1 
23 705 Whittier Narrows-01 1987 West Covina - S Orange Ave H1 5.99 6.42 308.6 

24 696 Whittier Narrows-01 1987 Sun Valley - Sunland H1 5.99 26.71 271.4 
25 640 Whittier Narrows-01 1987 LA - S Grand Ave H2 5.99 14.46 308.6 
26 697 Whittier Narrows-01 1987 Sunland - Mt Gleason Ave H1 5.99 24.82 446.0 

27 2390 Chi-Chi, Taiwan-02 1999 TCU078 H2 5.90 13.94 443.0 
28 136 Santa Barbara 1978 Santa Barbara Courthouse H1 5.92 0.00 515.0 
29 649 Whittier Narrows-01 1987 La Habra - Briarcliff H2 5.99 14.17 361.2 

30 544 Chalfant Valley-01 1986 Bishop - LADWP South St H1 5.77 23.38 271.4 
31 668 Whittier Narrows-01 1987 Norwalk - Imp Hwy, S Grnd H1 5.99 14.37 270.2 
32 632 Whittier Narrows-01 1987 LA - Cypress Ave H2 5.99 8.56 446.0 

33 594 Whittier Narrows-01 1987 Baldwin Park - N Holly H1 5.99 4.34 308.6 
34 147 Coyote Lake 1979 Gilroy Array #2 H2 5.74 8.47 270.8 
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35 633 Whittier Narrows-01 1987 LA - E Vernon Ave H1 5.99 10.50 308.6 
36 619 Whittier Narrows-01 1987 Garvey Res. - Control Bldg H1 5.99 0.36 468.2 

37 135 Santa Barbara 1978 Cachuma Dam Toe H1 5.92 23.75 438.3 
38 645 Whittier Narrows-01 1987 LB - Orange Ave H2 5.99 19.80 270.2 
39 694 Whittier Narrows-01 1987 Studio City - Coldwater Can H1 5.99 26.91 294.2 

40 626 Whittier Narrows-01 1987 LA - 116th St School H2 5.99 18.23 301.0 
41 706 Whittier Narrows-01 1987 Whittier Narrows Dam upstream H1 5.99 2.60 298.7 
42 154 Coyote Lake 1979 San Juan Bautista, 24 Polk St H2 5.74 19.46 370.8 

43 149 Coyote Lake 1979 Gilroy Array #4 H2 5.74 4.79 221.8 
44 633 Whittier Narrows-01 1987 LA - E Vernon Ave H2 5.99 10.50 308.6 
45 622 Whittier Narrows-01 1987 Hacienda Heights - Colima H1 5.99 9.60 337.0 

46 694 Whittier Narrows-01 1987 Studio City - Coldwater Can H2 5.99 26.91 294.2 
47 619 Whittier Narrows-01 1987 Garvey Res. - Control Bldg H2 5.99 0.36 468.2 
48 697 Whittier Narrows-01 1987 Sunland - Mt Gleason Ave H2 5.99 24.82 446.0 

 

 

 
Figure A.1.1: Accelerogram 1 – Bologna. 

 
Figure A.1.2: Accelerogram 2 – Bologna. 

 
Figure A.1.3: Accelerogram 3 – Bologna. 

 

 

 



Appendix A 

217 
 

 
Figure A.1.4: Accelerogram 4 – Bologna. 

 
Figure A.1.5: Accelerogram 5 – Bologna. 

 
Figure A.1.6: Accelerogram 6 – Bologna. 

 
Figure A.1.7: Accelerogram 7 – Bologna. 

 
Figure A.1.8: Accelerogram 8 – Bologna. 
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Figure A.1.9: Accelerogram 9 – Bologna. 

 
Figure A.1.10: Accelerogram 10 – Bologna. 

 
Figure A.1.11: Accelerogram 11 – Bologna. 

 
Figure A.1.12: Accelerogram 12 – Bologna. 

 
Figure A.1.13: Accelerogram 13 – Bologna. 
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Figure A.1.14: Accelerogram 14 – Bologna. 

 
Figure A.1.15: Accelerogram 15 – Bologna. 

 
Figure A.1.16: Accelerogram 16 – Bologna. 

 
Figure A.1.17: Accelerogram 17 – Bologna. 

 
Figure A.1.18: Accelerogram 18 – Bologna. 
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Figure A.1.19: Accelerogram 19 – Bologna. 

 
Figure A.1.20: Accelerogram 20 – Bologna. 

 
Figure A.1.21: Accelerogram 21 – Bologna. 

 
Figure A.1.22: Accelerogram 22 – Bologna. 

 
Figure A.1.23: Accelerogram 23 – Bologna. 
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Figure A.1.24: Accelerogram 24 – Bologna. 

 
Figure A.1.25: Accelerogram 25 – Bologna. 

 
Figure A.1.26: Accelerogram 26 – Bologna. 

 
Figure A.1.27: Accelerogram 27 – Bologna. 

 
Figure A.1.28: Accelerogram 28 – Bologna. 
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Figure A.1.29: Accelerogram 29 – Bologna. 

 
Figure A.1.30: Accelerogram 30 – Bologna. 

 
Figure A.1.31: Accelerogram 31 – Bologna. 

 
Figure A.1.32: Accelerogram 32 – Bologna. 

 
Figure A.1.33: Accelerogram 33 – Bologna. 
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Figure A.1.34: Accelerogram 34 – Bologna. 

 
Figure A.1.35: Accelerogram 35 – Bologna. 

 
Figure A.1.36: Accelerogram 36 – Bologna. 

 
Figure A.1.37: Accelerogram 37 – Bologna. 

 
Figure A.1.38: Accelerogram 38 – Bologna. 
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Figure A.1.39: Accelerogram 39 – Bologna. 

 
Figure A.1.40: Accelerogram 40 – Bologna. 

 
Figure A.1.41: Accelerogram 41 – Bologna. 

 
Figure A.1.42: Accelerogram 42 – Bologna. 

 
Figure A.1.43: Accelerogram 43 – Bologna. 
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Figure A.1.44: Accelerogram 44 – Bologna. 

 
Figure A.1.45: Accelerogram 45 – Bologna. 

 
Figure A.1.46: Accelerogram 46 – Bologna. 

 
Figure A.1.47: Accelerogram 47 – Bologna. 

 
Figure A.1.48: Accelerogram 48 – Bologna. 



Appendix A 
 

226 
 

Table A.2: Ground-motion selections for the site of Seixal. 
Accelerogram 

Number 
RSN Earthquake Name Year Station Name HC MW 

EJB 
(km) 

Vs30 
(m/s) 

1 1070 Northridge-01 1994 San Gabriel - E Grand Ave H2 6.69 38.86 401.4 
2 3549 Northridge-01 1994 Monte Nido Fire Station H1 6.69 15.46 659.6 
3 1007 Northridge-01 1994 LA - Univ. Hospital H2 6.69 32.39 376.1 

4 288 Irpinia, Italy-01 1980 Brienza H2 6.90 22.54 500.0 
5 3549 Northridge-01 1994 Monte Nido Fire Station H2 6.69 15.46 659.6 
6 1017 Northridge-01 1994 La Habra - Briarcliff H2 6.69 58.32 361.2 

7 1016 Northridge-01 1994 La Crescenta - New York H2 6.69 17.81 446.0 
8 125 Friuli, Italy-01 1976 Tolmezzo H1 6.50 14.97 424.8 
9 1078 Northridge-01 1994 Santa Susana Ground H2 6.69 1.69 715.1 

10 990 Northridge-01 1994 LA - City Terrace H1 6.69 35.03 365.2 
11 1089 Northridge-01 1994 Topanga - Fire Sta H1 6.69 10.31 376.1 
12 974 Northridge-01 1994 Glendale - Las Palmas H1 6.69 21.64 446.0 

13 974 Northridge-01 1994 Glendale - Las Palmas H2 6.69 21.64 446.0 
14 1010 Northridge-01 1994 LA - Wadsworth VA Hospital South H1 6.69 14.55 413.8 
15 990 Northridge-01 1994 LA - City Terrace H2 6.69 35.03 365.2 

16 1039 Northridge-01 1994 Moorpark - Fire Sta H2 6.69 16.92 405.2 
17 1049 Northridge-01 1994 Pacific Palisades - Sunset H2 6.69 13.34 446.0 
18 952 Northridge-01 1994 Beverly Hills - 12520 Mulhol H2 6.69 12.39 545.7 

19 763 Loma Prieta 1989 Gilroy - Gavilan Coll. H2 6.93 9.19 729.7 
20 1006 Northridge-01 1994 LA - UCLA Grounds H1 6.69 13.80 398.4 
21 288 Irpinia, Italy-01 1980 Brienza H1 6.90 22.54 500.0 

22 1020 Northridge-01 1994 Lake Hughes #12A H1 6.69 20.77 602.1 
23 773 Loma Prieta 1989 Hayward - BART Sta H2 6.93 54.01 370.8 
24 810 Loma Prieta 1989 UCSC Lick Observatory H1 6.93 12.04 714.0 

25 802 Loma Prieta 1989 Saratoga - Aloha Ave H2 6.93 7.58 370.8 
26 809 Loma Prieta 1989 UCSC H1 6.93 12.15 714.0 
27 1089 Northridge-01 1994 Topanga - Fire Sta H2 6.69 10.31 376.1 
28 809 Loma Prieta 1989 UCSC H2 6.93 12.15 714.0 

29 801 Loma Prieta 1989 San Jose - Santa Teresa Hills H1 6.93 14.18 671.8 
30 1009 Northridge-01 1994 LA - Wadsworth VA Hospital North H1 6.69 14.55 392.2 
31 1010 Northridge-01 1994 LA - Wadsworth VA Hospital South H2 6.69 14.55 413.8 

32 810 Loma Prieta 1989 UCSC Lick Observatory H2 6.93 12.04 714.0 
33 1009 Northridge-01 1994 LA - Wadsworth VA Hospital North H2 6.69 14.55 392.2 
34 763 Loma Prieta 1989 Gilroy - Gavilan Coll. H1 6.93 9.19 729.7 

35 1042 Northridge-01 1994 N Hollywood - Coldwater Can H1 6.69 7.89 446.0 
36 1023 Northridge-01 1994 Lake Hughes #9 H2 6.69 24.86 670.8 
37 1020 Northridge-01 1994 Lake Hughes #12A H2 6.69 20.77 602.1 

38 1023 Northridge-01 1994 Lake Hughes #9 H1 6.69 24.86 670.8 
39 1042 Northridge-01 1994 N Hollywood - Coldwater Can H2 6.69 7.89 446.0 
40 1035 Northridge-01 1994 Manhattan Beach - Manhattan H1 6.69 33.56 405.2 

41 190 Imperial Valley-06 1979 Superstition Mtn Camera H2 6.53 24.61 362.4 
42 769 Loma Prieta 1989 Gilroy Array #6 H2 6.93 17.92 663.3 
43 1008 Northridge-01 1994 LA - W 15th St H2 6.69 25.60 405.2 

44 1038 Northridge-01 1994 Montebello - Bluff Rd. H1 6.69 43.22 405.2 
45 1055 Northridge-01 1994 Pasadena - N Sierra Madre H2 6.69 35.77 455.4 
46 587 New Zealand-02 1987 Matahina Dam H1 6.60 16.09 424.8 

47 87 San Fernando 1971 Santa Anita Dam H2 6.61 30.70 684.9 
48 496 Nahanni, Canada 1985 Site 2 H2 6.76 0.00 659.6 
49 991 Northridge-01 1994 LA - Cypress Ave H1 6.69 28.98 446.0 

50 801 Loma Prieta 1989 San Jose - Santa Teresa Hills H2 6.93 14.18 671.8 
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Figure A.2.1: Accelerogram 1 – Seixal. 

 
Figure A.2.2: Accelerogram 2 – Seixal. 

 
Figure A.2.3: Accelerogram 3 – Seixal. 

 
Figure A.2.4: Accelerogram 4 – Seixal. 

 
Figure A.2.5: Accelerogram 5 – Seixal. 
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Figure A.2.6: Accelerogram 6 – Seixal. 

 
Figure A.2.7: Accelerogram 7 – Seixal. 

 
Figure A.2.8: Accelerogram 8 – Seixal. 

 
Figure A.2.9: Accelerogram 9 – Seixal. 

 
Figure A.2.10: Accelerogram 10 – Seixal. 
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Figure A.2.11: Accelerogram 11 – Seixal. 

 
Figure A.2.12: Accelerogram 12 – Seixal. 

 
Figure A.2.13: Accelerogram 13 – Seixal. 

 
Figure A.2.14: Accelerogram 14 – Seixal. 

 
Figure A.2.15: Accelerogram 15 – Seixal. 
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Figure A.2.16: Accelerogram 16 – Seixal. 

 
Figure A.2.17: Accelerogram 17 – Seixal. 

 
Figure A.2.18: Accelerogram 18 – Seixal. 

 
Figure A.2.19: Accelerogram 19 – Seixal. 

 
Figure A.2.20: Accelerogram 20 - Seixal 
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Figure A.2.21: Accelerogram 21 – Seixal. 

 
Figure A.2.22: Accelerogram 22 – Seixal. 

 
Figure A.2.23: Accelerogram 23 – Seixal. 

 
Figure A.2.24: Accelerogram 24 – Seixal. 

 
Figure A.2.25: Accelerogram 25 – Seixal. 
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Figure A.2.26: Accelerogram 26 – Seixal. 

 
Figure A.2.27: Accelerogram 27 – Seixal. 

 
Figure A.2.28: Accelerogram 28 – Seixal. 

 
Figure A.2.29: Accelerogram 29 – Seixal. 

 
Figure A.2.30: Accelerogram 30 – Seixal. 
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Figure A.2.31: Accelerogram 31 – Seixal. 

 
Figure A.2.32: Accelerogram 32 – Seixal. 

 
Figure A.2.33: Accelerogram 33 – Seixal. 

 
Figure A.2.34: Accelerogram 34 – Seixal. 

 
Figure A.2.35: Accelerogram 35 – Seixal. 
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Figure A.2.36: Accelerogram 36 – Seixal. 

 
Figure A.2.37: Accelerogram 37 – Seixal. 

 
Figure A.2.38: Accelerogram 38 – Seixal. 

 
Figure A.2.39: Accelerogram 39 – Seixal. 

 
Figure A.2.40: Accelerogram 40 – Seixal. 
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Figure A.2.41: Accelerogram 41 – Seixal. 

 
Figure A.2.42: Accelerogram 42 – Seixal. 

 
Figure A.2.43: Accelerogram 43 – Seixal. 

 
Figure A.2.44: Accelerogram 44 – Seixal. 

 
Figure A.2.45: Accelerogram 45 – Seixal. 
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Figure A.2.46: Accelerogram 46 – Seixal. 

 
Figure A.2.47: Accelerogram 47 – Seixal. 

 
Figure A.2.48: Accelerogram 48 – Seixal. 

 
Figure A.2.49: Accelerogram 49 – Seixal. 

 
Figure A.2.50: Accelerogram 50 – Seixal.
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Appendix B 

Table B.1 gives the design matrix containing the 272 simulations with the combination of the 

explicit and implicit variables, according to the Design of Experiment Theory and the division 

in blocks, referred to the Response Surface model in Section 6.2. The values of the explicit 

variables are reported as coded variables: masonry shear strength (x1 =  slab elastic 

modulus (x2 = E1), distance between external walls in x-direction (x3 = d). The implicit 

variables are given with the number of the blocks: 48 blocks (sis) for the uncertainty of the 

seismic action and 8 blocks (geom) for the uncertainty of the geometrical properties of the 

walls.  

Table B.1: Design matrix of the Isolated Structural Unit RS model in Section 6.2. 

Simulation x1 =  x2 = E1 x3 = d sis geom 
1 1 1 1 1 1 
2 -1 -1 1 1 1 
3 -1 1 1 2 1 
4 1 -1 1 2 1 
5 1 1 -1 2 1 
6 -1 -1 -1 2 1 
7 1 -1 -1 1 1 
8 -1 1 -1 1 1 
9 1.33 0 0 3 1 

10 -1.33 0 0 3 1 
11 0 1.33 0 3 1 
12 0 -1.33 0 3 1 
13 0 0 0 1 1 
14 0 0 0 2 1 
15 0 0 0 3 1 
16 0 0 1.33 3 1 
17 0 0 -1.33 3 1 
18 1 1 1 4 1 
19 -1 -1 1 4 1 
20 -1 1 1 5 1 
21 1 -1 1 5 1 
22 1 1 -1 5 1 
23 -1 -1 -1 5 1 
24 1 -1 -1 4 1 
25 -1 1 -1 4 1 
26 1.33 0 0 6 1 
27 -1.33 0 0 6 1 
28 0 1.33 0 6 1 
29 0 -1.33 0 6 1 
30 0 0 0 4 1 
31 0 0 0 5 1 
32 0 0 0 6 1 
33 0 0 1.33 6 1 
34 0 0 -1.33 6 1 
35 1 1 1 7 2 
36 -1 -1 1 7 2 
37 -1 1 1 8 2 
38 1 -1 1 8 2 
39 1 1 -1 8 2 
40 -1 -1 -1 8 2 
41 1 -1 -1 7 2 
42 -1 1 -1 7 2 
43 1.33 0 0 9 2 
44 -1.33 0 0 9 2 
45 0 1.33 0 9 2 
46 0 -1.33 0 9 2 
47 0 0 0 7 2 
48 0 0 0 8 2 



Appendix B 
 

238 
 

49 0 0 0 9 2 
50 0 0 1.33 9 2 
51 0 0 -1.33 9 2 
52 1 1 1 10 2 
53 -1 -1 1 10 2 
54 -1 1 1 11 2 
55 1 -1 1 11 2 
56 1 1 -1 11 2 
57 -1 -1 -1 11 2 
58 1 -1 -1 10 2 
59 -1 1 -1 10 2 
60 1.33 0 0 12 2 
61 -1.33 0 0 12 2 
62 0 1.33 0 12 2 
63 0 -1.33 0 12 2 
64 0 0 0 10 2 
65 0 0 0 11 2 
66 0 0 0 12 2 
67 0 0 1.33 12 2 
68 0 0 -1.33 12 2 
69 1 1 1 13 3 
70 -1 -1 1 13 3 
71 -1 1 1 14 3 
72 1 -1 1 14 3 
73 1 1 -1 14 3 
74 -1 -1 -1 14 3 
75 1 -1 -1 13 3 
76 -1 1 -1 13 3 
77 1.33 0 0 15 3 
78 -1.33 0 0 15 3 
79 0 1.33 0 15 3 
80 0 -1.33 0 15 3 
81 0 0 0 13 3 
82 0 0 0 14 3 
83 0 0 0 15 3 
84 0 0 1.33 15 3 
85 0 0 -1.33 15 3 
86 1 1 1 16 3 
87 -1 -1 1 16 3 
88 -1 1 1 17 3 
89 1 -1 1 17 3 
90 1 1 -1 17 3 
91 -1 -1 -1 17 3 
92 1 -1 -1 16 3 
93 -1 1 -1 16 3 
94 1.33 0 0 18 3 
95 -1.33 0 0 18 3 
96 0 1.33 0 18 3 
97 0 -1.33 0 18 3 
98 0 0 0 16 3 
99 0 0 0 17 3 

100 0 0 0 18 3 
101 0 0 1.33 18 3 
102 0 0 -1.33 18 3 
103 1 1 1 19 4 
104 -1 -1 1 19 4 
105 -1 1 1 20 4 
106 1 -1 1 20 4 
107 1 1 -1 20 4 
108 -1 -1 -1 20 4 
109 1 -1 -1 19 4 
110 -1 1 -1 19 4 
111 1.33 0 0 21 4 
112 -1.33 0 0 21 4 
113 0 1.33 0 21 4 
114 0 -1.33 0 21 4 
115 0 0 0 19 4 
116 0 0 0 20 4 
117 0 0 0 21 4 
118 0 0 1.33 21 4 
119 0 0 -1.33 21 4 
120 1 1 1 22 4 
121 -1 -1 1 22 4 
122 -1 1 1 23 4 
123 1 -1 1 23 4 
124 1 1 -1 23 4 
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125 -1 -1 -1 23 4 
126 1 -1 -1 22 4 
127 -1 1 -1 22 4 
128 1.33 0 0 24 4 
129 -1.33 0 0 24 4 
130 0 1.33 0 24 4 
131 0 -1.33 0 24 4 
132 0 0 0 22 4 
133 0 0 0 23 4 
134 0 0 0 24 4 
135 0 0 1.33 24 4 
136 0 0 -1.33 24 4 
137 1 1 1 25 5 
138 -1 -1 1 25 5 
139 -1 1 1 26 5 
140 1 -1 1 26 5 
141 1 1 -1 26 5 
142 -1 -1 -1 26 5 
143 1 -1 -1 25 5 
144 -1 1 -1 25 5 
145 1.33 0 0 27 5 
146 -1.33 0 0 27 5 
147 0 1.33 0 27 5 
148 0 -1.33 0 27 5 
149 0 0 0 25 5 
150 0 0 0 26 5 
151 0 0 0 27 5 
152 0 0 1.33 27 5 
153 0 0 -1.33 27 5 
154 1 1 1 28 5 
155 -1 -1 1 28 5 
156 -1 1 1 29 5 
157 1 -1 1 29 5 
158 1 1 -1 29 5 
159 -1 -1 -1 29 5 
160 1 -1 -1 28 5 
161 -1 1 -1 28 5 
162 1.33 0 0 30 5 
163 -1.33 0 0 30 5 
164 0 1.33 0 30 5 
165 0 -1.33 0 30 5 
166 0 0 0 28 5 
167 0 0 0 29 5 
168 0 0 0 30 5 
169 0 0 1.33 30 5 
170 0 0 -1.33 30 5 
171 1 1 1 31 6 
172 -1 -1 1 31 6 
173 -1 1 1 32 6 
174 1 -1 1 32 6 
175 1 1 -1 32 6 
176 -1 -1 -1 32 6 
177 1 -1 -1 31 6 
178 -1 1 -1 31 6 
179 1.33 0 0 33 6 
180 -1.33 0 0 33 6 
181 0 1.33 0 33 6 
182 0 -1.33 0 33 6 
183 0 0 0 31 6 
184 0 0 0 32 6 
185 0 0 0 33 6 
186 0 0 1.33 33 6 
187 0 0 -1.33 33 6 
188 1 1 1 34 6 
189 -1 -1 1 34 6 
190 -1 1 1 35 6 
191 1 -1 1 35 6 
192 1 1 -1 35 6 
193 -1 -1 -1 35 6 
194 1 -1 -1 34 6 
195 -1 1 -1 34 6 
196 1.33 0 0 36 6 
197 -1.33 0 0 36 6 
198 0 1.33 0 36 6 
199 0 -1.33 0 36 6 
200 0 0 0 34 6 
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201 0 0 0 35 6 
202 0 0 0 36 6 
203 0 0 1.33 36 6 
204 0 0 -1.33 36 6 
205 1 1 1 37 7 
206 -1 -1 1 37 7 
207 -1 1 1 38 7 
208 1 -1 1 38 7 
209 1 1 -1 38 7 
210 -1 -1 -1 38 7 
211 1 -1 -1 37 7 
212 -1 1 -1 37 7 
213 1.33 0 0 39 7 
214 -1.33 0 0 39 7 
215 0 1.33 0 39 7 
216 0 -1.33 0 39 7 
217 0 0 0 37 7 
218 0 0 0 38 7 
219 0 0 0 39 7 
220 0 0 1.33 39 7 
221 0 0 -1.33 39 7 
222 1 1 1 40 7 
223 -1 -1 1 40 7 
224 -1 1 1 41 7 
225 1 -1 1 41 7 
226 1 1 -1 41 7 
227 -1 -1 -1 41 7 
228 1 -1 -1 40 7 
229 -1 1 -1 40 7 
230 1.33 0 0 42 7 
231 -1.33 0 0 42 7 
232 0 1.33 0 42 7 
233 0 -1.33 0 42 7 
234 0 0 0 40 7 
235 0 0 0 41 7 
236 0 0 0 42 7 
237 0 0 1.33 42 7 
238 0 0 -1.33 42 7 
239 1 1 1 43 8 
240 -1 -1 1 43 8 
241 -1 1 1 44 8 
242 1 -1 1 44 8 
243 1 1 -1 44 8 
244 -1 -1 -1 44 8 
245 1 -1 -1 43 8 
246 -1 1 -1 43 8 
247 1.33 0 0 45 8 
248 -1.33 0 0 45 8 
249 0 1.33 0 45 8 
250 0 -1.33 0 45 8 
251 0 0 0 43 8 
252 0 0 0 44 8 
253 0 0 0 45 8 
254 0 0 1.33 45 8 
255 0 0 -1.33 45 8 
256 1 1 1 46 8 
257 -1 -1 1 46 8 
258 -1 1 1 47 8 
259 1 -1 1 47 8 
260 1 1 -1 47 8 
261 -1 -1 -1 47 8 
262 1 -1 -1 46 8 
263 -1 1 -1 46 8 
264 1.33 0 0 48 8 
265 -1.33 0 0 48 8 
266 0 1.33 0 48 8 
267 0 -1.33 0 48 8 
268 0 0 0 46 8 
269 0 0 0 47 8 
270 0 0 0 48 8 
271 0 0 1.33 48 8 
272 0 0 -1.33 48 8 
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Table B.2 gives the design matrix containing the 384 simulations with the combination of the 

explicit and implicit variables, according to the selection of the values of the explicit variable 

and the division in blocks, referred to the Response Surface model in Section 6.3. The values 

of the explicit variable s are given with the real assumed values (X1 = s); the implicit variable 

sis is given with the number of the blocks: 48 blocks (sis) for the uncertainty of the seismic 

action.   

Table B.2: Design matrix of the Response Surface models in Section 6.3. 

Simulation X1 = s sis 
1 0.50 1 
2 0.40 1 
3 0.375 1 
4 0.30 1 
5 0.25 1 
6 0.20 1 
7 0.15 1 
8 0.125 1 
9 0.50 2 

10 0.40 2 
11 0.375 2 
12 0.30 2 
13 0.25 2 
14 0.20 2 
15 0.15 2 
16 0.125 2 
17 0.50 3 
18 0.40 3 
19 0.375 3 
20 0.30 3 
21 0.25 3 
22 0.20 3 
23 0.15 3 
24 0.125 3 
25 0.50 4 
26 0.40 4 
27 0.375 4 
28 0.30 4 
29 0.25 4 
30 0.20 4 
31 0.15 4 
32 0.125 4 
33 0.50 5 
34 0.40 5 
35 0.375 5 
36 0.30 5 
37 0.25 5 
38 0.20 5 
39 0.15 5 
40 0.125 5 
41 0.50 6 
42 0.40 6 
43 0.375 6 
44 0.30 6 
45 0.25 6 
46 0.20 6 
47 0.15 6 
48 0.125 6 
49 0.50 7 
50 0.40 7 
51 0.375 7 
52 0.30 7 
53 0.25 7 
54 0.20 7 
55 0.15 7 
56 0.125 7 
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57 0.50 8 
58 0.40 8 
59 0.375 8 
60 0.30 8 
61 0.25 8 
62 0.20 8 
63 0.15 8 
64 0.125 8 
65 0.50 9 
66 0.40 9 
67 0.375 9 
68 0.30 9 
69 0.25 9 
70 0.20 9 
71 0.15 9 
72 0.125 9 
73 0.50 10 
74 0.40 10 
75 0.375 10 
76 0.30 10 
77 0.25 10 
78 0.20 10 
79 0.15 10 
80 0.125 10 
81 0.50 11 
82 0.40 11 
83 0.375 11 
84 0.30 11 
85 0.25 11 
86 0.20 11 
87 0.15 11 
88 0.125 11 
89 0.50 12 
90 0.40 12 
91 0.375 12 
92 0.30 12 
93 0.25 12 
94 0.20 12 
95 0.15 12 
96 0.125 12 
97 0.50 13 
98 0.40 13 
99 0.375 13 
100 0.30 13 
101 0.25 13 
102 0.20 13 
103 0.15 13 
104 0.125 13 
105 0.50 14 
106 0.40 14 
107 0.375 14 
108 0.30 14 
109 0.25 14 
110 0.20 14 
111 0.15 14 
112 0.125 14 
113 0.50 15 
114 0.40 15 
115 0.375 15 
116 0.30 15 
117 0.25 15 
118 0.20 15 
119 0.15 15 
120 0.125 15 
121 0.50 16 
122 0.40 16 
123 0.375 16 
124 0.30 16 
125 0.25 16 
126 0.20 16 
127 0.15 16 
128 0.125 16 
129 0.50 17 
130 0.40 17 
131 0.375 17 
132 0.30 17 
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133 0.25 17 
134 0.20 17 
135 0.15 17 
136 0.125 17 
137 0.50 18 
138 0.40 18 
139 0.375 18 
140 0.30 18 
141 0.25 18 
142 0.20 18 
143 0.15 18 
144 0.125 18 
145 0.50 19 
146 0.40 19 
147 0.375 19 
148 0.30 19 
149 0.25 19 
150 0.20 19 
151 0.15 19 
152 0.125 19 
153 0.50 20 
154 0.40 20 
155 0.375 20 
156 0.30 20 
157 0.25 20 
158 0.20 20 
159 0.15 20 
160 0.125 20 
161 0.50 21 
162 0.40 21 
163 0.375 21 
164 0.30 21 
165 0.25 21 
166 0.20 21 
167 0.15 21 
168 0.125 21 
169 0.50 22 
170 0.40 22 
171 0.375 22 
172 0.30 22 
173 0.25 22 
174 0.20 22 
175 0.15 22 
176 0.125 22 
177 0.50 23 
178 0.40 23 
179 0.375 23 
180 0.30 23 
181 0.25 23 
182 0.20 23 
183 0.15 23 
184 0.125 23 
185 0.50 24 
186 0.40 24 
187 0.375 24 
188 0.30 24 
189 0.25 24 
190 0.20 24 
191 0.15 24 
192 0.125 24 
193 0.50 25 
194 0.40 25 
195 0.375 25 
196 0.30 25 
197 0.25 25 
198 0.20 25 
199 0.15 25 
200 0.125 25 
201 0.50 26 
202 0.40 26 
203 0.375 26 
204 0.30 26 
205 0.25 26 
206 0.20 26 
207 0.15 26 
208 0.125 26 
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209 0.50 27 
210 0.40 27 
211 0.375 27 
212 0.30 27 
213 0.25 27 
214 0.20 27 
215 0.15 27 
216 0.125 27 
217 0.50 28 
218 0.40 28 
219 0.375 28 
220 0.30 28 
221 0.25 28 
222 0.20 28 
223 0.15 28 
224 0.125 28 
225 0.50 29 
226 0.40 29 
227 0.375 29 
228 0.30 29 
229 0.25 29 
230 0.20 29 
231 0.15 29 
232 0.125 29 
233 0.50 30 
234 0.40 30 
235 0.375 30 
236 0.30 30 
237 0.25 30 
238 0.20 30 
239 0.15 30 
240 0.125 30 
241 0.50 31 
242 0.40 31 
243 0.375 31 
244 0.30 31 
245 0.25 31 
246 0.20 31 
247 0.15 31 
248 0.125 31 
249 0.50 32 
250 0.40 32 
251 0.375 32 
252 0.30 32 
253 0.25 32 
254 0.20 32 
255 0.15 32 
256 0.125 32 
257 0.50 33 
258 0.40 33 
259 0.375 33 
260 0.30 33 
261 0.25 33 
262 0.20 33 
263 0.15 33 
264 0.125 33 
265 0.50 34 
266 0.40 34 
267 0.375 34 
268 0.30 34 
269 0.25 34 
270 0.20 34 
271 0.15 34 
272 0.125 34 
273 0.50 35 
274 0.40 35 
275 0.375 35 
276 0.30 35 
277 0.25 35 
278 0.20 35 
279 0.15 35 
280 0.125 35 
281 0.50 36 
282 0.40 36 
283 0.375 36 
284 0.30 36 
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285 0.25 36 
286 0.20 36 
287 0.15 36 
288 0.125 36 
289 0.50 37 
290 0.40 37 
291 0.375 37 
292 0.30 37 
293 0.25 37 
294 0.20 37 
295 0.15 37 
296 0.125 37 
297 0.50 38 
298 0.40 38 
299 0.375 38 
300 0.30 38 
301 0.25 38 
302 0.20 38 
303 0.15 38 
304 0.125 38 
305 0.50 39 
306 0.40 39 
307 0.375 39 
308 0.30 39 
309 0.25 39 
310 0.20 39 
311 0.15 39 
312 0.125 39 
313 0.50 40 
314 0.40 40 
315 0.375 40 
316 0.30 40 
317 0.25 40 
318 0.20 40 
319 0.15 40 
320 0.125 40 
321 0.50 41 
322 0.40 41 
323 0.375 41 
324 0.30 41 
325 0.25 41 
326 0.20 41 
327 0.15 41 
328 0.125 41 
329 0.50 42 
330 0.40 42 
331 0.375 42 
332 0.30 42 
333 0.25 42 
334 0.20 42 
335 0.15 42 
336 0.125 42 
337 0.50 43 
338 0.40 43 
339 0.375 43 
340 0.30 43 
341 0.25 43 
342 0.20 43 
343 0.15 43 
344 0.125 43 
345 0.50 44 
346 0.40 44 
347 0.375 44 
348 0.30 44 
349 0.25 44 
350 0.20 44 
351 0.15 44 
352 0.125 44 
353 0.50 45 
354 0.40 45 
355 0.375 45 
356 0.30 45 
357 0.25 45 
358 0.20 45 
359 0.15 45 
360 0.125 45 
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361 0.50 46 
362 0.40 46 
363 0.375 46 
364 0.30 46 
365 0.25 46 
366 0.20 46 
367 0.15 46 
368 0.125 46 
369 0.50 47 
370 0.40 47 
371 0.375 47 
372 0.30 47 
373 0.25 47 
374 0.20 47 
375 0.15 47 
376 0.125 47 
377 0.50 48 
378 0.40 48 
379 0.375 48 
380 0.30 48 
381 0.25 48 
382 0.20 48 
383 0.15 48 
384 0.125 48 

 
 
 
 
  



Appendix B 

247 
 

Table B.3 gives the design matrix containing the 176 simulations with the combination of the 

explicit and implicit variables, according to the Design of Experiment Theory and the division 

in blocks, referred to the Response Surface model in Section 6.4. The values of the explicit 

variables are reported as coded variables: masonry shear strength (x1 = anddistance 

between external walls in x-direction (x3 = d). The implicit variables are given with the 

number of the blocks: 48 blocks (sis) for the uncertainty of the seismic action, 40 blocks (d) 

for the uncertainty of the distance between the walls in x-direction and 40 blocks (s) for the 

uncertainty of the thickness of the walls. 

Table B.3: Design matrix of the Response Surface models in Section 6.3. 

Simulation x1 =  x2 = d sis d s
1 1 1 1 4 4 
2 -1 1 2 4 4 
3 1 -1 2 2 2 
4 -1 -1 1 2 2 
5 0 0 1 3 3 
6 0 0 2 3 3 
7 0 0 3 3 3 
8 1.33 0 3 3 3 
9 -1.33 0 3 3 3 

10 0 1.33 3 5 5 
11 0 -1.33 3 1 1 
12 1 1 4 4 4 
13 -1 1 5 4 4 
14 1 -1 5 2 2 
15 -1 -1 4 2 2 
16 0 0 4 3 3 
17 0 0 5 3 3 
18 0 0 6 3 3 
19 1.33 0 6 3 3 
20 -1.33 0 6 3 3 
21 0 1.33 6 5 5 
22 0 -1.33 6 1 1 
23 1 1 7 9 9 
24 -1 1 8 9 9 
25 1 -1 8 7 7 
26 -1 -1 7 7 7 
27 0 0 7 8 8 
28 0 0 8 8 8 
29 0 0 9 8 8 
30 1.33 0 9 8 8 
31 -1.33 0 9 8 8 
32 0 1.33 9 10 10 
33 0 -1.33 9 6 6 
34 1 1 10 9 9 
35 -1 1 11 9 9 
36 1 -1 11 7 7 
37 -1 -1 10 7 7 
38 0 0 10 8 8 
39 0 0 11 8 8 
40 0 0 12 8 8 
41 1.33 0 12 8 8 
42 -1.33 0 12 8 8 
43 0 1.33 12 10 10 
44 0 -1.33 12 6 6 
45 1 1 13 14 14 
46 -1 1 14 14 14 
47 1 -1 14 12 12 
48 -1 -1 13 12 12 
49 0 0 13 13 13 
50 0 0 14 13 13 
51 0 0 15 13 13 
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52 1.33 0 15 13 13 
53 -1.33 0 15 13 13 
54 0 1.33 15 15 15 
55 0 -1.33 15 11 11 
56 1 1 16 14 14 
57 -1 1 17 14 14 
58 1 -1 17 12 12 
59 -1 -1 16 12 12 
60 0 0 16 13 13 
61 0 0 17 13 13 
62 0 0 18 13 13 
63 1.33 0 18 13 13 
64 -1.33 0 18 13 13 
65 0 1.33 18 15 15 
66 0 -1.33 18 11 11 
67 1 1 19 19 19 
68 -1 1 20 19 19 
69 1 -1 20 17 17 
70 -1 -1 19 17 17 
71 0 0 19 18 18 
72 0 0 20 18 18 
73 0 0 21 18 18 
74 1.33 0 21 18 18 
75 -1.33 0 21 18 18 
76 0 1.33 21 20 20 
77 0 -1.33 21 16 16 
78 1 1 22 19 19 
79 -1 1 23 19 19 
80 1 -1 23 17 17 
81 -1 -1 22 17 17 
82 0 0 22 18 18 
83 0 0 23 18 18 
84 0 0 24 18 18 
85 1.33 0 24 18 18 
86 -1.33 0 24 18 18 
87 0 1.33 24 20 20 
88 0 -1.33 24 16 16 
89 1 1 25 24 24 
90 -1 1 26 24 24 
91 1 -1 26 22 22 
92 -1 -1 25 22 22 
93 0 0 25 23 23 
94 0 0 26 23 23 
95 0 0 27 23 23 
96 1.33 0 27 23 23 
97 -1.33 0 27 23 23 
98 0 1.33 27 25 25 
99 0 -1.33 27 21 21 

100 1 1 28 24 24 
101 -1 1 29 24 24 
102 1 -1 29 22 22 
103 -1 -1 28 22 22 
104 0 0 28 23 23 
105 0 0 29 23 23 
106 0 0 30 23 23 
107 1.33 0 30 23 23 
108 -1.33 0 30 23 23 
109 0 1.33 30 25 25 
110 0 -1.33 30 21 21 
111 1 1 31 29 29 
112 -1 1 32 29 29 
113 1 -1 32 27 27 
114 -1 -1 31 27 27 
115 0 0 31 28 28 
116 0 0 32 28 28 
117 0 0 33 28 28 
118 1.33 0 33 28 28 
119 -1.33 0 33 28 28 
120 0 1.33 33 30 30 
121 0 -1.33 33 26 26 
122 1 1 34 29 29 
123 -1 1 35 29 29 
124 1 -1 35 27 27 
125 -1 -1 34 27 27 
126 0 0 34 28 28 
127 0 0 35 28 28 
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128 0 0 36 28 28 
129 1.33 0 36 28 28 
130 -1.33 0 36 28 28 
131 0 1.33 36 30 30 
132 0 -1.33 36 26 26 
133 1 1 37 34 34 
134 -1 1 38 34 34 
135 1 -1 38 32 32 
136 -1 -1 37 32 32 
137 0 0 37 33 33 
138 0 0 38 33 33 
139 0 0 39 33 33 
140 1.33 0 39 33 33 
141 -1.33 0 39 33 33 
142 0 1.33 39 35 35 
143 0 -1.33 39 31 31 
144 1 1 40 34 34 
145 -1 1 41 34 34 
146 1 -1 41 32 32 
147 -1 -1 40 32 32 
148 0 0 40 33 33 
149 0 0 41 33 33 
150 0 0 42 33 33 
151 1.33 0 42 33 33 
152 -1.33 0 42 33 33 
153 0 1.33 42 35 35 
154 0 -1.33 42 31 31 
155 1 1 43 39 39 
156 -1 1 44 39 39 
157 1 -1 44 37 37 
158 -1 -1 43 37 37 
159 0 0 43 38 38 
160 0 0 44 38 38 
161 0 0 45 38 38 
162 1.33 0 45 38 38 
163 -1.33 0 45 38 38 
164 0 1.33 45 40 40 
165 0 -1.33 45 36 36 
166 1 1 46 39 39 
167 -1 1 47 39 39 
168 1 -1 47 37 37 
169 -1 -1 46 37 37 
170 0 0 46 38 38 
171 0 0 47 38 38 
172 0 0 48 38 38 
173 1.33 0 48 38 38 
174 -1.33 0 48 38 38 
175 0 1.33 48 40 40 
176 0 -1.33 48 36 36 
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Appendix C 

This appendix gives the results related to the analyses in the buildings sited in Seixal, object 

of the Chapter 7, considering the negative actions (- Fx and - Fy) of the seismic action. 

Push-over curves 

- Fx 

  
                                             (a)                                                                                   (b) 

Figure C.1: x-direction (- Fx) push-over curves of the buildings with 2 floors and timber slabs: (a) Isolated 
structural units and (b) Aggregate structures. 

 

 
                                             (a)                                                                                   (b) 
Figure C.2: x-direction (- Fx) push-over curves of the buildings with 2 floors and concrete slabs: (a) Isolated 

structural units and (b) Aggregate structures. 
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                                              (a)                                                                                  (b) 
Figure C.3: x-direction (- Fx) push-over curves of the buildings with timber slabs: (a) Isolated structural units 

and (b) Aggregate structures. 
 

 
                                             (a)                                                                                  (b) 

Figure C.4: x-direction (- Fx) push-over curves of the buildings with concrete slabs: (a) Isolated structural 
units and (b) Aggregate structures. 
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- Fy 

 
                                              (a)                                                                                  (b) 

Figure C.5: y-direction (- Fy) push-over curves of the buildings with 2 floors and timber slabs: (a) Isolated 
structural units and (b) Aggregate structures. 

 

 
                                              (a)                                                                                  (b) 
Figure C.6: y-direction (- Fy) push-over curves of the buildings with 2 floors and concrete slabs: (a) Isolated 

structural units and (b) Aggregate structures. 
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                                              (a)                                                                                  (b) 
Figure C.7: y-direction (- Fy) push-over curves of the buildings with timber slabs: (a) Isolated structural units 

and (b) Aggregate structures. 
 

 
                                              (a)                                                                                  (b) 

Figure C.8: y-direction (- Fy) push-over curves of the buildings with concrete slabs: (a) Isolated structural 
units and (b) Aggregate structures. 

 

 

 

 

 

 

 

 

 

ISU AS 

ISU AS 



 

255 
 

- Fy, over the attainment of the LS limit state 

 
Figure C.9: Pushover curves of the AS with concrete slabs: analyses over the attainment of the LS limit state 

(- Fy). 

 

 
Figure C.10: Pushover curves of the AS with timber slabs: analyses over the attainment of the LS limit state 

(- Fy). 
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Fragility curves  
 
- Fx 

 
                                              (a)                                                                                  (b) 
Figure C.11: Fragility curves of all the models in x-direction (- Fx), distinguished according the type of slabs: 

(a) actual PGA; (b) Monte Carlo method. 

 
                                              (a)                                                                                  (b) 

Figure C.12: Fragility curves of all the models in x-direction (- Fx) using Monte Carlo method: (a) 
distinguished according the number of floors; (b) distinguished according the type of internal walls. 
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- Fy 

 
                                              (a)                                                                                  (b) 
Figure C.13: Fragility curves of all the models in y-direction (- Fy), distinguished according the type of slabs: 

(a) actual PGA; (b) Monte Carlo method. 

 

 
                                              (a)                                                                                  (b) 

Figure C.14: Fragility curves of all the models in y-direction (- Fy) using Monte Carlo method: (a) 
distinguished according the number of floors; (b) distinguished according the type of internal walls. 
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- Fy, over the attainment of the LS limit state 

 
                                              (a)                                                                                  (b) 
Figure C.15: Fragility curves of the AS using Monte Carlo method: analyses (- Fy) over the LS limit state in 

buildings with (a) concrete slabs and (b) timber slabs. 


