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Abstract

Simulating quantum mechanical systems is still today a very challenging issue
due to the high computational costs. The main reason for this is related to
the dimension of the Hilbert space that grows exponentially with the number
of degrees of freedom, making an exact implementation impossible even for
the most powerful today’s supercomputers.
In order to circumvent these difficulties classical approximation methods have
been developed over the last fifty years. These methods, however, do not al-
ways provide acceptable accuracy for strongly correlated fermionic models in
condensed matter physics, and for fermionic quantum field theories in finite-
density regimes, especially when the number of degrees of freedom becomes
very large.
On this ground it appears clear the need of a new simulation method, i.e.
quantum simulation. The general idea is very simple: using a controllable
quantum system, called quantum simulator, to emulate and to analyze an-
other quantum system that usually results less controllable or accessible.
Quantum simulation is currently a growing and multidisciplinary physical
area that involves theoretical and experimental research. From the theoret-
ical side, the main focus is on the study of simulation-models that create a
mapping between the target physics and the simulator.
In the first and in the second part of this thesis, we explore these ideas
by studying the ground-state properties and the real-time dynamics of a
class of Zn lattice gauge theories in 1+1 dimensions, in which the gauge
fields are coupled to spinless fermionic matter. These models can be consid-
ered as quantum simulation-models of lattice 1+1 Quantum Electrodynamics
(QED), known in literature as the Schwinger model, which is possibly the sim-
plest gauge theory that shows non-trivial phenomena, like confinement, that
are also observed in more complicated gauge theories, such as 3+1 Quantum
Chromodynamics (QCD).
In the third part of this thesis, we unveil an interesting interplay of sym-
metry and topology by demonstrating the existence of symmetry-protected
topological (SPT) phases in the presence of gauge interactions and initiat-
ing a systematic study into a wider class of such systems. More specifically,
we introduce an alternative discretization of the continuum Schwinger model
leading to the topological Schwinger model. We use bosonization and Density-
Matrix Renormalization Group (DMRG) techniques to analyze the rich phase
diagram of the model in great detail, opening an interesting route to study
topological phases of matter in the context of gauge theories.
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Introduction

An excellent starting point to approach the concept of quantum simulation is
represented by these memorable words: "Nature isn’t classical, dammit, and
if you want to make a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem, because it doesn’t look so
easy" (R. P. Feynman, 1982).

More than thirty years later, simulating quantum mechanical systems is
still a very challenging issue. The main reason for this is the following: let
us consider a generic quantum system with N degrees of freedom (e.g. the
number of particles in the system or the system size) and with a Hamiltonian
H. It follows from the postulates of quantum mechanics that the dimension
of the Hilbert space of the system grows exponentially with the number of
degrees of freedom, i.e. dimH ∝ aN . So, in order to perform a numerical
analysis of the system on a computer, we must store in memory a vector
of length aN for the quantum state of the system and an aN × aN -matrix
for each observable. To have a concrete idea of the problem, just think
that to store in a memory a single state of a spin-1/2 chain of length N =
40, about 4 terabytes are required. This results completely inefficient from
a computational point of view and imposes significant limitations even for
today’s most powerful supercomputers in calculating the static properties or
the real-time evolution of realistic systems with many degrees of freedom.

In order to circumvent these difficulties classical stochastic approxima-
tion methods, e.g. Monte Carlo, have been developed over the last fifty
years: these algorithms evaluate the phase space of the system and the inte-
grals defined on it (for instance, mean values of the observables, correlators,
partition functions) in a polynomial time with respect to the number of com-
ponents of the system. However, these methods provide remarkable accu-
racy only when the functions within integrals vary slowly and do not change
sign. In general, this does not occur in many quantum systems, especially for
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Figure 1: The quantum simulation scheme as explained in [3]: correspondence
between the quantum states of the simulator and the simulated system.

strongly correlated fermionic systems in condensed matter physics, e.g. Hub-
bard model, and for fermionic quantum field theories in finite-density regimes
such as quantum chromodynamics. Thus, in this sense, classical simulations
are severely limited by this problem, which is known in literature as the sign
problem [1].

On this ground it appears clear the need of a new simulation method, i.e.
quantum simulation. As proposed by Feynman [2], the general idea is very
simple: using a controllable quantum system, called quantum simulator, to
emulate and to analyze another quantum system that usually results less con-
trollable or accessible. In this framework, a controllable system is such that
the initial state |ψ(0)〉 can be prepared, the unitary evolution U ′ = e−iHqst/~,
through a suitable Hamiltonian of the simulator Hqs, can be enginereed, and
the final state |ψ(t)〉 can be measured, as shown in Fig. 1 from [3].

Let us denote with Hs the Hamiltonian of the original quantum system
that we want to analyze, with U = e−iHst/~ its unitary evolution and with
|φ(0)〉 and |φ(t)〉 the states at different times. It is clear that the quan-
tum simulator has to take into account a mapping of the initial system,
i.e. |φ(0)〉 ↔ |ψ(0)〉, |φ(t)〉 ↔ |ψ(t)〉, Hs ↔ Hqs, U ↔ U

′ , so that a mea-
surement on the simulator provides information about the properties of the
simulated system. Compared to classic simulation, the key element here is
that the simulator, being intrinsically quantum, has the capacity to contain

8



an exponentially large amount of information without using an exponentially
large amount of physical resources, thus making it a natural tool to perform
the simulation of a quantum system even with a large number of degrees of
freedom.

Quantum simulation is currently a growing and multidisciplinary physical
area that involves theoretical and experimental research. From the theoret-
ical side, the main focus is on the study of simulation-models that create a
mapping between the target physics and the simulator: it is very important
to analyze these models numerically in order to check their capabilities in
reproducing the features of the target system. On the other side, the ex-
perimental research focuses on engineering quantum systems with accurate
interaction and control at the single quantum level. These systems, which are
exploitable as quantum simulators in table-top experiments, usually consist
of ultracold atoms in optical lattices [4], trapped ions [5], superconducting
circuits [6] or photonic setups [7].

The aim of such quantum simulation models and platforms is to shed light
on difficult quantum many-body problems, especially those so complex that
they cannot be solved even on most powerful classical supercomputers. In
particular, there is the intriguing possibility to explore lattice gauge theories
(LGTs) [8, 9], i.e. quantum field theories with local symmetries on a space-
time discretized into a lattice. LGTs represent a fundamental tool for the
numerical study of gauge models, such as quantum electrodynamics (QED)
and quantum chromodynamics (QCD), which are in the core of contempo-
rary particle physics. Thus, the study of such lattice theories is of paramount
importance for understanding non-perturbative phenomena of the Standard
Model, such as the confinement of quarks or the hadron spectrum, and rep-
resents a complex and historical problem, that was investigated by a number
of outstanding physicists over the last fifty years. In 1974 Wilson proposed
a method to regularize a quantum field theory with gauge symmetries on
a discrete lattice [10]. In this formulation the lattice is composed by sites
separated by distance a and connected by links: fermion fields are defined at
lattice sites while the gauge fields are defined on the links. In 1975 Kogut and
Susskind obtained a Hamiltonian formulation of these LGTs preserving the
local gauge-invariance on the lattice [11]. These approaches make possible
the numerical calculation of many important quantities and phenomena of
gauge theories, mainly using Monte Carlo classical simulation methods. Such
calculations are often extremely computationally intensive, and can require
the use of the largest supercomputers especially for extrapolating the contin-
uum limit of the theory. Several and significant results have been obtained
from these studies, such as the low-energy spectrum of QCD, some proper-
ties of the quark-gluon plasma and the deconfinement phase transition at
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finite temperature [12]. Nevertheless, due to the aforementioned sign prob-
lem, these classical simulations are severely limited in the regime of finite
chemical potential or in calculating the real-time dynamics of the particles
and field.

Thus, the possibility of using quantum simulators to tackle these prob-
lems has become extremely attractive and has been made possible by recent
developments in low-temperature physics and atomic control techniques in
optical lattices [14–17]. Many proposals have been put forward in the litera-
ture to use ultra-cold atomic optical lattice systems to simulate Abelian and
non-Abelian lattice gauge theories [18–26] and in particular quantum electro-
dynamics in 1+1 dimensions (known in literature as the Schwinger model),
that appears as a realizable option in the not-too-distant future [27–30].
This model is possibly the simplest gauge theory, based on the Abelian gauge
group U(1), that incorporates quantum matter and quantum gauge fields and
its lattice formulation shows non-trivial phenomena, like confinement, that
are also observed in more complicated gauge theories, such as 3+1 QCD.
The peculiarity of 1+1 QED comes from the fact that in one spatial dimen-
sion the Coulomb potential between opposite charges increases linearly with
their distance and thus prevents them from becoming free. Therefore the
Schwinger model is considered a paradigm for the confinement of charges
and represents an ideal benchmark model for applying quantum simulation
methods to LGTs.

For the latter purpose, the key idea is that cold-atom quantum simulators
make possible the implementation of matter fields in presence of artificially
designed gauge fields by suitably identifying the gauge degrees of freedom
with the internal (for example spin) states of the atom. The first experi-
ments with fermions in presence of such “synthetic” fields have already been
proposed and performed, offering very promising perspectives [31–35]. Also,
an experiment reproducing 1+1 QED with few qubits has been reported [36]:
in this study the experimental setup for the simulation consists of a linear
Paul trap, where a string of four 40Ca+ ions is confined. The electronic
states of each ion encode a spin up or down state that can be manipulated
using laser beams. By using this setup, it was possible to analyze the real-
time evolution of the Schwinger mechanism describing the instability of the
vacuum due to quantum fluctuations, which manifests itself in the sponta-
neous creation of electron-positron pairs. This implementation represent the
first experimental demonstration of quantum simulation of a lattice gauge
theory on a few-qubit trapped-ion quantum simulator and can be considered
as a first step towards quantum simulating high-energy theories with atomic
physics experiments.

In parallel with experimental efforts, the numerical study of quantum sim-
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ulation models of LGTs is of paramount importance to determine their effec-
tiveness in reproducing the main features and phenomenology of the target
theory. Novel quantum-inspired numerical techniques, such as DMRG- and
MPS-based algorithms [37, 38], fully exploit the entanglement of the states
that contribute to the static and dynamical properties of the model, and are
able to reduce the computational cost by suitably tailoring the relevant (ef-
fective) subspaces in the Hilbert space. From the theoretical point of view,
an approach based on quantum simulation models of LGTs paves the way to-
wards a number of problems that were traditionally very difficult to analyze
in the context of gauge theories, such as the investigation of possible phase
transitions, non-perturbative phenomena and real-time dynamics [22,39–45].

In first part of this work, we will explore these possibilities by study-
ing the ground-state properties of a class of Zn lattice gauge theories in
1+1 dimensions, in which the gauge fields are coupled to spinless fermionic
matter. These models, stemming from discrete representations of the Weyl
commutator for the U(1) group, preserve the unitary character of the min-
imal coupling, and have therefore the property of formally approximating
lattice QED in one spatial dimension in the large-n limit. In particular,
by using a Density-Matrix Renormalization Group (DMRG) algorithm that
we developed to incorporate both matter and gauge degrees of freedom, we
will unveil the presence of phase transitions. Although the details of these
transitions depend on n, their universality class, as well as some of their
main features, are n-independent, so that by looking at the large n limit,
in which Zn → U(1), one can establish the presence of a phase transition
for one-dimensional lattice QED, adding novel rigorous results in the field of
quantum simulations of gauge theories.

In the second part of this work, by exploiting the same simulation scheme
of the Zn models, we will tackle the problem of out-of-equilibrium real-time
dynamics of 1+1 dimensional QED. In particular, we will study the stability
of the Dirac vacuum with respect to the production of virtual particle/anti-
particle pairs induced by quantum fluctuations, and dynamical effects of con-
finement, such as the string breaking mechanism, which is strictly connected
to the question of asymptotic freedom of quarks [46]. We will see that both
these phenomena depend on the values of the two parameters of the models,
i.e. the fermionic mass and the gauge coupling. In particular we will show
that, in the strong coupling regime, the dynamical behaviour of the models
strongly deviates from the usual thermalization and relaxation properties [47]
which are expected to be found in a many-body non-integrable system, re-
sulting in stable or recurrent evolution of interesting physical quantities. This
shows that confinement is not a specific feature of the U(1) Schwinger model,
but of the whole class of discrete lattice models we consider, which might be
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relevant for the description of future experiments with Rydberg atoms.

It is well known that many efforts in condensed-matter physics are cur-
rently devoted to understanding how order can be realized when a very large
number of simple and elementary constituents, such as spins, ions, electrons,
magnetic moments interact with each other. For a long time, it was thought
that all phases of matter were described by Ginzburg-Landau’s symmetry-
breaking theory, and the transitions between them were described by abrupt
changes of the underlying symmetry orders: an ordered state usually ap-
pears at low temperature when the system spontaneously loses one of the
symmetries present at high temperature (for instance, solid crystals break
the translational symmetries of the liquid phases). In this framework, one of
the greatest achievements of condensed-matter physics of the last century has
been the classification of states of matter by this phenomenon of spontaneous
symmetry breaking [48]. This has lead to a universal description of a wide
variety of quantum states of matter, and phase transitions thereof, through
the identification of effective field theories involving local order parameters,
e.g. the magnetization order parameter in a Ising-like system. These order
parameters characterize the order (or its absence) in a wide variety of phases
of matter and are crucial for understanding the emergence of a rich array of
collective phenomena originating from any given microscopic model [49].

However, after the discovery of integer Quantum Hall States (QHS) [52,
53], in which electrons confined to a plane in a strong magnetic field show
different quantized plateaus in the Hall conductance, it was soon realized that
important quantum phases that are not contained in the Ginzburg-Landau
symmetry breaking paradigm can exist. In particular, the description of
these new states of matter requires the introduction of non-local order pa-
rameters, and the interplay of certain mathematical tools of topology, such
as topological invariants, with global protecting symmetries of the micro-
scopic models. Two states that show different topological invariants cannot
be adiabatically connected (i.e. it is not possible to deform one state into the
other by varying the parameters in the Hamiltonian, without going through
some singular point), even if they share the same symmetry. Instead, quan-
tum phase transitions induced by symmetry-preserving couplings can occur,
which cannot be accounted for by the symmetry-breaking principle. These
so-called symmetry-protected topological (SPT) phases display an interesting
bulk-edge correspondence, since a non-vanishing bulk topological invariant is
associated to the presence of edge states that are localized at the boundary of
the system, and are responsible for a low-energy response (e.g. conduction)
that is robust against symmetry-preserving perturbations. Two condensed-
matter models play an important role in the field: the Haldane model [50]
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on the honeycomb lattice is the first example of systems including topologi-
cal phases of matter without external fields. This model shows that the key
element to obtain a quantized Hall conductance, as observed in QHS, is the
breaking of the so called time-reversal symmetry, i.e. symmetry under the
inversion of the arrow of time. The second model of inetrest is the Kane-Mele
model [51], which shows that the introduction of the spin-orbit coupling may
lead to non-trivial topological phases of matter that keep intact the time-
reversal symmetry, showing an insulating behavior in the bulk and robust,
conducting, gapless edge states on the boundaries.

Since these pioneering works, a variety of SPT phases beyond the inte-
ger quantum Hall effect have been identified in different symmetry classes
and dimensionalities, such as the so-called topological insulators and su-
perconductors [54, 55], several of which have already been experimentally
realized [56].

In analogy to the integer quantum Hall effect, where the introduction
of inter-particle interactions leads to strongly-correlated phases with exotic
properties, e.g. excitations with fractional statistics [57, 58], a problem of
current and active interest in the community is to understand the fate of
this variety of SPT phases in the presence of interactions [59]. So far, the
typical models considered have focused on instantaneous interactions involv-
ing action at a distance (e.g. screened Coulomb interactions and truncated
versions thereof yielding Hubbard-type couplings). The more fundamental
situation of strongly-correlated SPT phases where interactions are carried by
bosons, and dictated by local gauge symmetries, remains largely unexplored.

From a fundamental perspective, studying a gauge field theory that in-
corporates SPT phases would extend the interest of SPT phases towards the
high-energy physics domain, possibly giving rise to a rich playground where
topological effects coexist with interesting high-energy physics phenomena
such as confinement and charge shielding, string breaking, quantum anoma-
lies, or chiral symmetry breaking.

In the last part of this work, in connection with the Zn lattice gauge the-
ories we have previously considered, we will unveil an interesting interplay of
symmetry and topology by demonstrating the existence of SPT phases in the
presence of gauge interactions and initiating a systematic study into a wider
class of such systems. More specifically, we will introduce an alternative
discretization of the continuum Schwinger model leading to the topological
Schwinger model: an Abelian gauge theory that regularizes quantum electro-
dynamics in (1+1) dimensions and describes the coupling of the electric field
to a fermionic SPT matter sector. In contrast to the standard discretization
of the massive Dirac fields, where one explicitly breaks translational invari-
ance by using a staggered mass [11], we will chose to break the symmetry
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by a dimerized tunnelling. In the continuum limit, such a tunnelling leads
to Dirac fermions with a topological mass, and a matter sector that can be
described as a fermionic SPT phase with a non-vanishing topological invari-
ant and localised edge states. In particular, we will show that the underlying
topology promotes the so-called vacuum θ angle, a constant parameter in the
standard Schwinger model that plays an important role also in the context
of QCD [60], into a dynamical quantum-mechanical operator with its own
dynamics depending on the density of the topological edge states. We will
use bosonization [61] and DMRG techniques to study the rich phase diagram
of the model in great detail, opening an interesting route to study topological
phases of matter in the context of gauge theories.

The results of this thesis have been collected in four papers and have been
published during the PhD. The first part (Chapter 1) can be found in

• E. Ercolessi, P. Facchi, G. Magnifico, S. Pascazio, F. V. Pepe, Phase
transitions in Zn gauge models: Towards quantum simulations of the
Schwinger-Weyl QED, Phys. Rev. D 98, 074503 (2018).

The second part (Chapter 2) can be found in

• G. Magnifico, P. Facchi, S. Pascazio, F. V. Pepe, E. Ercolessi, Real Time
Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for
1+1 QED, arXiv:1909.04821 (in publication on Quantum Journal).

The third part (Chapter 3) can be found in

• G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M. Müller, and
A. Bermudez, Symmetry-protected topological phases in lattice gauge
theories: Topological QED2, Phys. Rev. D 99, 014503 (2019).

• G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M. Müller, and A.
Bermudez, ZN gauge theories coupled to topological fermions: QED2

with a quantum-mechanical θ angle, Phys. Rev. B 100, 115152 (2019).

In addition to the previous papers which represent the core of this PhD
thesis, other results have been obtained in the context of quantum many-
body systems, entanglement and topological phases of matter. They can be
found in

• G. Giudici, A. Angelone, G. Magnifico, Z. Zeng, G. Giudice, T. Mendes-
Santos, and M. Dalmonte, Diagnosing Potts criticality and two-stage
melting in one-dimensional hard-core boson models, Phys. Rev. B 99,
094434 (2019).
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Chapter 1

Phase Transitions in Zn Gauge Models:

Towards Quantum Simulations of the
Schwinger-Weyl QED

This chapter is organized as follows. In Section 1.1, we introduce the massive
Schwinger model in 1 + 1 dimensions and discuss the paths to discretization
of space and gauge degrees of freedom. Section 1.2 includes the definition of
Zn gauge models and the presentation of their general features and scaling
properties. In Section 1.4 we study in detail the case n = 3, characterizing
its ground state properties and the quantum phase transition at a negative
critical mass, in absence of background field. Section 1.5 is devoted to a
presentation of the results obtained in all cases n = 2 ÷ 8, n 6= 3, focusing
on the different phenomenology of the even and odd cases, while the details
of the numerical results of all these cases are given in the Appendix A. In
Section 1.6 we summarize our results and recover the U(1) model in the limit
of large n. In section 1.7, we comment on a possible implementation of the
proposed class of models in a cold atomic platform. We finally draw our
conclusions in Section 1.8.

1.1 Discretization of one-dimensional QED

Quantum Electrodynamics in one spatial dimension is a U(1) gauge theory,
describing the interaction of a charged particle (“electron”), represented by
a spinor field ψ(t, x), and the electromagnetic field Fµν = ∂µAν − ∂νAµ,
associated to the potential Aµ, with µ, ν = 0, 1. The classical Lagrangian
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density is determined by the minimal coupling prescription:

L = ψ†γ0 [γµ(i∂µ + gAµ)−m]ψ − 1

4
FµνF

µν , (1.1)

wherem and g are the electron mass and charge, respectively, and {γµ, γν} =
2ηµν with η = diag(1,−1). The properties of the theory are strongly char-
acterized by the absence of transverse degrees of freedom: the electron, de-
scribed by a two-component spinor, is spinless, and the only independent
component of the electromagnetic tensor is the electric field E = F01. While
quantization of the spinor field is determined by the canonical equal-time
anticommutators

{ψ(t, x), ψ(t, x′)} = 0, (1.2)
{ψ(t, x), ψ†(t, x′)} = δ(x− x′), (1.3)

a gauge choice is necessary to quantize the electromagnetic potential. In the
canonical gauge, the temporal component A0 is set to zero, while the spatial
component A := A1 is taken as the conjugate variable to E:

[E(t, x), A(t, x′)] = iδ(x− x′). (1.4)

This choice, leading to the Hamiltonian

H =

∫
dx

{
ψ†γ0

[
−γ1(i∂1 + gA) +m

]
ψ +

E2

2

}
, (1.5)

does not allow one to enforce Gauss’ law G(x) = 0, with

G(x) = ∂1E(x)− gψ†(x)ψ(x), (1.6)

as an operator constraint. However, since [G(x), G(x′)] = 0 and [G(x), H] =
0 due to (1.4), it is possible to select the physical subspace of states |ψ〉 for
which G(x)|ψ〉 = 0, which will be denoted by

G(x) ≈ 0, (1.7)

at all space points.
In the following, we will consider two kinds of discretization, towards

classical and quantum simulations of the model. The first one is spatial
discretization: the continuum model will be replaced by an approximation
on a linear lattice of points with spacing a, making the continuous space
variable x ∈ R discrete: x ∈ Z. The second one is the approximation of the
gauge group U(1) with a finite group, which is essential if one wants to work
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n
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E
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Figure 1.1: Discretization of the Schwinger model. Fermionic matter lives on sites
x ∈ Z. Electric field E(n)

x,x+1 lives on links between adjacent sites and takes discrete

values, ek =
√

2π
n (k − n−1

2 ), with k ∈ Zn = {0, 1, · · · , n− 1}.

with a finite number of local degrees of freedom in the gauge variables (i.e.
a finite number of electric field states). This can be done essentially in two
ways, based on the generalization of the commutation relation [E,U ] = ηU ,
where E and A are two conjugated operators ([E,A] = i), U = e−iηA is
the gauge comparator and η ∈ R is a constant with the same dimensions
as E. One option is to focus on the preservation of the above commutator.
This is the approach taken, for example, in quantum link models [62–65],
in which the operators E and U are replaced with spin variables: in this
case one obtains a finite dimensional (but nonunitary) representations of the
canonical commutation relations. Another option is to require that the group
commutator eiξEe−iηA = eiηξe−iηAeiξE, which is equivalent to the previous one
in the U(1) case, be satisfied by unitary operators for discrete values of η
and ξ [29]. We will follow the latter strategy, that entails the reduction of
gauge invariance to a finite group Zn. A pictorial representation of the gauge
degrees of freedom is shown in Fig. 1.1.

In this way, we obtain an exact finite implementation of the gauge group
commutator at the Hamiltonian level.

1.2 Lattice Zn-QED model

The Schwinger model (1.5) described in the previous section can be dis-
cretized on a one-dimensional lattice. For convenience, we shall first rede-
fine, the vector potential A → A/g and the electric field E → gE. With
this transformation, that leaves the commutation relation (1.4) unchanged,
the charge is absorbed in the minimal coupling, to reappear in the energy
density of the free electric field. Correspondingly, we redefine the parameters
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in the one parameters groups U(η), V (ξ) by η → η/g, ξ → gξ.
The lattice Hamiltonian reads [9, 65, 66]

H =− 1

2a

∑

x

(
ψ†xUx,x+1ψx+1 + H.c.

)

+m
∑

x

(−1)xψ†xψx +
g2a

2

∑

x

E2
x,x+1, (1.8)

with x labelling the sites of a one-dimensional lattice of spacing a. Here:
i) fermionic matter is represented by one-component creation/annihilation
spinor operators ψ†x, ψx, defined on each site x, so that

∑
x ψ
†
xψx represents

the total number of fermions in the system;
ii) a staggered mass (−1)xm is introduced, so that the positive- and negative-
mass components of the Dirac spinor live respectively at even and odd lattice
sites, avoiding in this way the fermion-doubling problem [8,9, 11, 13];
iii) gauge fields are defined on the links (x, x+1) of the lattice through the pair
of variables Ex,x+1 (electric field) and Ax,x+1 (vector potential) or equivalently
the comparators Ux,x+1(η) = e−iηAx,x+1 and Vx,x+1(ξ) = e+iξEx,x+1 , commuting
at different sites, and satisfying the group canonical commutation relations:

Vx,x+1(ξ)Ux,x+1(η) = eiηξUx,x+1(η) Vx,x+1(ξ), (1.9)

for ξ, η ∈ R, which are equivalent exponentiated versions of the (algebra)
canonical commutation relations [Ex,x+1, Ax,x+1] = i.
Notice that in (1.8), the coupling constants m and g are the same as in the
continuum, both with the dimensions of energy, while all the field operators
are dimensionless.

In analogy to what is done in fermionic lattice models that are usually
used to describe condensed matter systems and for reasons that will become
clear in the next section, in the following we will actually use a slightly
modified Hamiltonian by introducing an additional dimensionless parameters
t in front of the first, kinetic, term so to write the dimensionless Hamiltonian

ht =
2

g2a
Ht = − t

g2a2

∑

x

(
ψ†xUx,x+1ψx+1 + H.c.

)

+
2m

g2a

∑

x

(−1)xψ†xψx +
∑

x

E2
x,x+1 , (1.10)

proportional to the Hamiltonian density. We can also see from this expression
that the coefficient g2a/2 fixes the scale of the mass, while the coefficient
g2a2 the one of the parameter t. Thus, the numerical simulations described
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in Sections 1.4 and 1.5 will be performed by setting g2a/2 = 1 and g2a2 = 1.
The standard lattice Schwinger model is then recovered for t = 1.

In addition, the theory must respect Gauss’ law, encoding the U(1) gauge
symmetry of the model, that reads

Gx ≡ ψ†xψx +
1

2
[(−1)x − 1]− (Ex,x+1 − Ex−1,x) ≈ 0. (1.11)

The Hamiltonian (1.8) is invariant under C and P symmetries that for stag-
gered fermions read (assuming an infinite lattice or setting −x ≡ 2L−x for a
finite lattice with an even number N = 2L of sites, labeled from 0 to 2L−1):

P :

{
ψx → ψ−x, ψ†x → ψ†−x,

Ex,x+1 → E−(x+1),−x, Ux,x+1 → U †−(x+1),−x,
(1.12)

C :

{
ψx → (−1)x+1ψ†x+1, ψ†x → (−1)x+1ψx+1,

Ex,x+1 → −Ex+1,x+2, Ux,x+1 → U †x+1,x+2.
(1.13)

The Hamiltonian (1.8) can be approximated via a discrete Abelian Zn-
gauge model [29], that can be obtained from a finite dimensional representa-
tion of the two-parameter projective unitaryWeyl [67] group

{
ei(ξEx,x+1−ηAx,x+1)

}
ξ,η∈R.

For the two particular cases (ξ, η) = (0,
√

2π/n) and (ξ, η) = (
√

2π/n, 0) one
gets the two operators Ux,x+1 = e−i

√
2π
n
Ax,x+1 and Vx,x+1 = ei

√
2π
n
Ex,x+1 , that

satisfy the commutation relations

U `
x,x+1V

k
x,x+1 = ei 2π

n
k` V k

x,x+1U
`
x,x+1 with k, ` ∈ Zn. (1.14)

which is a discrete Zn version of (1.9). This representation can be imple-
mented by considering an n-dimensional Hilbert space Hn defined on each
link, and choosing an orthonormal basis {|vk〉}0≤k≤n−1. Dropping the link
index, we consider the diagonal operator V acting as

V |vk〉 = e−i2πk/n|vk〉. (1.15)

The operator U is instead defined as that operator that performs a cyclic
permutation of the basis states:

U |vk〉 = |vk+1〉 for k < n− 1, U |vn−1〉 = |v0〉. (1.16)

Some simple algebra shows that these operators do indeed satisfy the Schwinger-
Weyl commutation relations (1.14). Let us remark that this representation
exactly implements the unitarity of both operators.
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Thus the dynamics of the Zn-model is determined by the Hamiltonian (1.8),
where the discrete version of the electric field Ex,x+1 is given by the Hermitian
operator that is diagonal in the {|vk〉} basis, with eigenvalues

ek =

√
2π

n

(
k − n− 1

2
+ φ

)
. (1.17)

In all cases, the eigenvalues of the electric field are symmetric around zero,
with a maximum value Emax =

√
2π/n(n − 1 + φ)/2. We notice that, for

φ = 0, it is possible to have zero electric field only if n is odd. A value φ 6= 0
corresponds to adding a background field that can be obtained by placing
charges at the boundaries of the chain, thus yielding different charge sectors,
that are known to be super-selected. It is indeed known that this model
displays θ-vacua [68] , which can be related to the axial anomaly [69] via the
spectral flow of the Hamiltonian operator (when imposing periodic bound-
ary conditions) or to unusual twisted boundary conditions for the fermionic
field [70]. In this case the P and C symmetries are explicitly broken. In
the case of even n, the minimum eigenvalues (1.17) are doubly degenerate
for φ = 0. As a consequence, in the strong-coupling limit, in which the
U -dependent terms in (1.8) are neglected, the energetic cost of creating a
fermion-antifermion pair from the vacuum vanishes: this feature is typical of
theories with θ = π [68].

1.3 Scaling properties of the Hamiltonian

Before starting to numerically investigate the Hamiltonian, some comments
are in order to establish the correctness of Eq. (1.10) to suitability represent a
quantum simulator for one-dimensional QED. Being in particular interested
in its critical properties, our analysis needs to contain a careful check of the
scaling properties of the discretized Hamiltonian as we change the different
parameters that appear in it, including the a → 0 limit (continuum limit),
the N → ∞ limit (infinite volume limit), the n → ∞ limit (U(1)-limit).
Close to a critical point, at which physical constants and observables are
functionally related by universal laws, it is very hard to control these different
cases independently, both from an analytical and a numerical point of view.
However, we can resort to well-known techniques based on a finite-size scaling
analysis guided by universal scaling properties. We have chosen to perform
this study in two steps: first, we consider a particular Zn-model, by keeping n
fixed, and perform a finite-size scaling in the dimension of the spatial lattice;
second, we let n increase and analyze the large-n limit.
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To this end, we first notice that the parameter t can be used to understand
critical properties of the model. Let us suppose that the system undergoes
a phase transition for a critical value of the mass, mc(t), which may depend
on t. At this particular point the dimensonless Hamiltonian (1.10) should be
scale invariant. The coefficient t can be absorbed in a re-scaling of the lattice
spacing, a→ ã = a/

√
t, and:

hc =− 1

g2ã2

∑

x

(
ψ†xUx,x+1ψx+1 + H.c.

)

+
2mc(t)√
t g2ã

∑

x

(−1)xψ†xψx +
∑

x

E2
x,x+1 , (1.18)

In a mean-field approach, in which possible anomalous dimensions of the
field are neglected, the coefficient in front of the second addend must be
independent of t. In other words, the critical value of the mass scales like

mc(t) = α
√
t, (1.19)

where α ≡ mc(t = 1). We will examine accurately how the critical value
of the mass depends on t in the numerical simulations of the next sections,
where we will see that its behaviour does not significantly deviates from the
one predicted here. Therefore we will obtain the continuum limit critical
mass mc by setting: mc = mc(t = 1) = α.

Incidentally, let us remark that the limit t→∞ is not equivalent to the
limit a → 0, since the coefficient t weights the kinetic term differently with
respect to the mass and the electric energy terms; in particular, in the t = 0
case we recover a classical limit which can be exactly solved, while in the
large t → ∞ limit we deal with a pure kinetic Hamiltonian which cannot
display any phase transition.

Second, we want to study the large-n limit. It is important to notice
that, as shown in [29], the scaling of the eigenvalues of the electric field with
n as given in Eq. (1.17) is fixed by requiring that the U(1)-limit is recovered
when n → +∞. Also, recalling that two consecutive values of the electric
field differ by

√
2π/n, it is convenient to collect such a factor and work with

the dimensionless Hamiltonian

h
(n)
t =

2

g2
na
H

(n)
t = − t

g2
na

2

∑

x

(
ψ†xUx,x+1ψx+1 + H.c.

)

+
2m

g2
na

∑

x

(−1)xψ†xψx +
∑

x

Ẽ2
x,x+1 , (1.20)
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where now Ẽx,x+1 has eigenvalues (k−(n−1)/2+φ) with unit spacing (hence,
independent of n), and

gn = g
√

2π/n. (1.21)

In the same spirit as before, we can conclude that now (with a slight abuse
of notation)

mc(t) = αn
√
t. (1.22)

Comparing the Hamiltonian density (1.20) to (1.18) in the limit n → ∞,
we can conclude that the asymptotic value of αng/gn must approach the
coefficient α appearing in Eq. (1.19), namely

α = lim
n→∞

αn
√
n/2π. (1.23)

In the following, to perform numerical calculations, we will consider the
Hamiltonian (1.20) defined on a lattice of size N = 2L with open boundary
conditions. We will work in the sector with one fermion for each “physical
site”, i.e. with Npart = N/2 = L particles. Also, as explained above, we will
set g2a/2 = 1 (which sets the units of energy) and g2a2 = 1 (which sets the
units of t).

We will first present the Z3-model, in order to illustrate all the details of
our treatment. We will then discuss the general Zn-model, for both odd and
even n. As we will see, these two cases need to be considered separately.

1.4 Lattice Z3-QED model

1.4.1 Hilbert space and gauge-invariant subspace

As mentioned in Sec. 1.2, in the Schwinger model each “physical fermion”
is represented by a pair of staggered fermions sitting in nearby sites, with
even/odd sites occupied by positive/negative mass particles. Thus the vac-
uum state (Dirac sea) is obtained by leaving the even sites empty and oc-
cupying the odd ones. The presence/absence of a fermion in an even/odd
site is interpreted as the presence of a quark/anti-quark, while a meson is
a configuration made up of a quark and an anti-quark. This is shown in
Fig. 1.2(a). On each link (x, x+ 1), the electric field can only assume one of
the three values E =

√
2π/3(k − 1), with k ∈ Z3 = {0, 1, 2}, which will be

represented as an arrow pointing left, an un-oriented segment, and an arrow
pointing left, respectively, as shown in Fig. 1.2(b).

Thus the total Hilbert space associated with an even site, together with
its two adjacent links, is 2× 3× 3 = 18 dimensional. But Gauss’ law forces
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(a) (b)

Figure 1.2: Z3-model. Local Hilbert space for (a) staggered fermions; (b) electric
field.

the physical states to belong to an invariant subspace which is constructed
out of those states for which the value of the electric field kr at the right
link is either kr = kl, if the site is empty, or kr = kl + 1(mod 3) if the site
between links is occupied by a (positive mass) fermion. The situation is
similar for odd sites, for which Gauss’ law constrains physical states to have
either kr = kl − 1(mod 3), if the site between links is empty, or kr = kl if the
site is occupied by a (negative mass) fermion. This is displayed in Fig. 1.3(a).
Notice that we have 2× 3 = 6 independent configurations for each site. The
gauge invariant states of a “physical site” are obtained by gluing together an
even and an odd site that share a common value for the electric field in the
link between them, obtaining 2× 6 = 12 possible configurations, as shown in
Fig. 1.3(b).

It is easy to see that, for a chain with N sites (with open boundary
conditions), the dimension of the gauge-invariant subspace is 2N × 3. Some
notable examples of gauge-invariant states in a chain are shown in Fig. 1.4.

The ground state of the Hamiltonian (1.8) will be given by the com-
pletely filled Dirac sea (see Fig. 1.5(a)) for large positive m, while for large
negative m the system will tend to choose between the two states shown in
Fig. 1.5(b), where mesons/antimesons have formed. Notice that the Dirac
sea is invariant under both parity and charge conjugation, while P and C
map the mesonic and antimesonic states into each other. These two cases
are clearly distinguished by the mean value of the electric field operator

Σ =
1

N

∑

x

〈Ex,x+1〉 (1.24)

that we will use as a kind of order parameter, since it vanishes for the Dirac
sea and takes the values ±π/3 for the mesonic/antimesonic states. An abrupt
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(a)

(b)

Figure 1.3: Z3-model. (a) Gauge-invariant Hilbert space associated with even/odd
sites; (b) Gauge-invariant Hilbert space associated with a pair of even/odd sites,
i.e. a “physical site”.
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vacuum

meson

antimeson

string

antistring

quark

antiquark

Figure 1.4: Z3-model. Some notable gauge invariant configurations.

(a)

(b)

Figure 1.5: Z3-model. (a) Dirac sea; (b) Mesonic (top) and antimesonic (bottom)
states.
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change of this quantity signals the existence of a possible phase transition,
whose existence has to be confirmed by looking at the appropriate scaling of
observables and thermodynamical quantities.

1.4.2 Numerical investigation of the critical point with
no background field

We perform numerical calculations by means of a finite-size DMRG code [71]
in which gauge invariance is exactly enforced. This is obtained by using a
unit cell given by a pair of nearby (even and odd) sites, whose local Hilbert
space is the span of the 12 gauge-invariant states described in Fig. 1.3. This
is implemented at each step of the algorithm, with a twofold advantage:
decreasing the computing time by working in a restricted space, and avoiding
transitions out of the gauge-invariant subspace. We work with up to N = 80
sites (L = 40 pairs), while keeping 1000 DMRG states at most. These values
are large enough to ensure stability of our findings and small errors.

We first numerically study the Hamiltonian (1.20) at the CP -invariant
point, i.e. in absence of a background field: Ẽx,x+1 ∈ {−1, 0,+1}. We start
by choosing t = 2π/3 so as to work with the operator

h
(3)

t= 2π
3

=−
∑

x

(
ψ†xUx,x+1ψx+1 + H.c.

)

+
3

2π
m
∑

x

(−1)xψ†xψx +
∑

x

Ẽ2
x,x+1. (1.25)

Notice that, here and in the following sections, mass is expressed in units of
g2a/2. The behavior of the observable Σ as a function of m is displayed in
Fig. 1.6(a) for different system sizes, ranging from L = 12 to L = 40. We see
that, as expected, Σ essentially vanishes at large positive m and tends to the
value

√
2π/3/2 ' 0.724 for large negative m.

In Fig. 1.6(b) we zoom on the central region, showing a steeper transition
as the system size increases. This strongly suggests that we are in presence
of a phase transition, at a critical value of the mass which corresponds to
the point where all curves intersect. We can estimate this value if we make a
hypothesis about the nature of the phase transition: indeed, if we know the
critical exponents, we can calculate mc by using the fact that Σ should scale
with the system size N according to the finite-size scaling formula [72]

Σ = N−
β
ν λ
(
N

1
ν (m−mc)

)
(1.26)

where λ is a universal function. By taking into account suggestions from the
continuum limit [68] and the symmetries of the model, we anticipate that the
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Figure 1.6: Z3-model. (a) Order parameter Σ as a function of m, for different
system size L; (b) Same plot as in (a), in the vicinity of the phase transition.
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Figure 1.7: Z3-model. Scaling of λ(x) for different system size L.

phase transition is of the Ising-type, so that β = 1/8 and ν = 1. A fit of the
data yields then mc = −1.948±0.025, where the error has been estimated as
the semi-interval between the numerical points. We now have to look at the
numerical curves given by N

β
νΣ versus N

1
ν (m−mc), for different N , which

should all collapse onto the same universal curve λ(x). This behaviour is
clearly seen in Fig. 1.7.

Once we have an estimate for the critical mass, we can confirm the validity
of our hypothesis by calculating other quantities. Figure 1.8 displays the
entanglement entropy of a subsystem of size L/2 at the critical point, which—
according to conformal field theory [73]—should scale logarithmically with
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Figure 1.8: Z3-model. Entanglement entropy SL(L/2) versus system size L.

the system size according to the law

SL

(
L

2

)
=
c

6
log2(L) + s0, (1.27)

where s0 is a constant (which can depend on the boundary conditions and
other details of the model) while c is the central charge. The fit yields
c = 0.51 ± 0.01, in perfect agreement with the central charge of the Ising
model, c = 1/2.

Additional information can be obtained by looking at the scaling of ex-
cited states with the size of the system: Figures 1.9(a) and 1.9(b) display the
behaviour of the gaps ∆ and Γ of the first two excited states, which—again
according to conformal field theory [74]—should obey

∆ = ε1(N)− ε0 = πvsxs
N2 , (1.28)

Γ = ε2(N)− ε0 = πvs(xs+1)
N2 , (1.29)

ε0 being the ground state energy density, vs a speed, and xs the surface
critical exponent, which is equal to 2 for the Ising model with open boundary
conditions. We numerically find

∆

Γ
=

xs
xs + 1

= 0.6671± 0.0008⇒ xs = 2.004± 0.007. (1.30)

Plugging this result back into Eq. (1.28) we can also estimate the speed vs,
obtaining

vs = 1.56± 0.08 (1.31)

(a number very close to π/2). We remark that surface exponents are found for
states that can be obtained from the ground state by changing from periodic
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Figure 1.9: Z3-model. (a) Gap ∆ of the first excited state versus system size
N = 2L; fit according to Eq. (1.28). (b) Gap Γ of the second excited state versus
system size N = 2L; fit according to Eq. (1.29).

to anti-periodic boundary conditions. The system here shows spontaneous
symmetry breaking to one of the two degenerate polarized states and thus the
first excited state can be represented as a kink-like solution which interpolates
between these two degenerate polarized minima, in agreement with what is
found in the continuum [68]. These results are also fully compatible with
recent [45, 75] and less recent [76] numerical results. Interestingly, similar
conclusions hold also at finite temperature [77].

For t = 0, the system undergoes a (first order) phase transition between
the Dirac sea, depicted in Fig. 1.5(a), with an energy per pair EDirac/L = −m,
and the mesonic state in Fig. 1.5(b), with energy per pair Emeson/L = m +

2π/3. The critical value of the mass m(3)
0 = −π/3 ' −1.047 is obtained at

Emeson = EDirac.
In order to test the validity of Eq. (1.23), we have repeated this procedure

for several values of t, checking that the Ising transition is always present and
calculating numerically mc(t). Our numerical findings for mc(t) as a function
of t, as well as other useful information, are given in Appendix A.

A numerical fit of the form

mc(t) = m
(n)
0 + αn

√
t+ βnt (1.32)

yields the values

m
(3)
0 = −1.0472± 0.0001, (1.33)

α3 = −0.603± 0.001, (1.34)
β3 = −0.02± 0.01. (1.35)
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Let us notice that, as expected from the predicted behaviour (1.23), the
coefficient of the linear term is much smaller than the one of the square-root
term, thus yielding a negligible correction, at least for not too large values
of t. This will also be apparent in Fig. 1.15 (green points and green fitting
curve).

1.4.3 Numerical investigation of the critical point in
presence of a background field

It is known [68] that the Schwinger model should exhibit a phase transition
only at the CP -invariant point. In order to check if this is the case also in
our model, we have scrutinized the effects of a constant background field.
We present here just one representative example, by considering an electric
field

Ẽx,x+1 = k + 1/3, k ∈ {−1, 0,+1} (1.36)

in the Hamiltonian (1.25).
As shown in Fig. 1.10(a), the observable Σ still shows a very sharp tran-

sition between a negative and a positive value. But we are now in presence
of a cross-over, rather than a phase transition, as it can be inferred by per-
forming a scaling analysis. Indeed, the function λ in Eq. (1.26) changes for
different system size N and does not have a universal character, as one can
infer from Fig. 1.10(b). Also, the entanglement entropy SL(l) does not scale
with the size l of the interval, as predicted by conformal field theory [73], but
is rather constant, except for some small edge effects, also at the crossing
point m∗ = −0.325 (see Fig. 1.11(a)). These results suggest that, in pres-
ence of a background field, the gap never closes, as the numerics confirms
(see Fig. 1.11(b), red dots).

Finally, we also checked the case of a background electric field which is
halfway between two integer values:

Ẽx,x+1 = k + 1/2, k ∈ {−1, 0,+1}. (1.37)

Also in this case the model is gapped for any value of the mass, as shown in
Fig. 1.11(b) (green dots). At a first sight, this situations looks very similar
to the case of even n with no background field, when the possible spectrum
of the electric field does not include zero, being still invariant under a sign
change. However, the two cases are very different, since, as we will discuss in
the next section, the Zn-model with even n and no background field, which
is CP -invariant, still exhibits a phase transition.

31



−4 −2 0 2 4 6
m

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Σ

L = 20

L = 22

L = 24

L = 26

L = 28

L = 30

L = 32

L = 34

L = 36

L = 38

L = 40

(a)

−80 −60 −40 −20 0 20 40 60 80

N
1
ν (m−mc)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

N
β ν
Σ

L = 20

L = 22

L = 24

L = 26

L = 28

L = 30

L = 32

L = 34

L = 36

L = 38

L = 40

(b)

Figure 1.10: Z3-model. (a) Observable Σ as a function of m in presence of a
background electric field; (b) Non-universal scaling of the function λ(x).
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Figure 1.11: Z3-model. (a) Entanglement entropy SL(l) of an interval of size l, in
presence of a background electric field; (b) Gap ∆ with (red and green dots) and
without background field (blue dots).
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1.5 Lattice Zn-QED model for other values of
n

The analysis performed in the previous section for the Z3-model can be re-
peated for all values of n. In the following we will consider only the case with
no background field. The dimension of the gauge-invariant Hilbert subspace
for a chain with N sites is 2N × n, increasing only linearly with n, since the
electric field can now take the n values −

√
2π
n
n−1

2
, · · · ,+

√
2π
n
n−1

2
. Similarly

to what was done for the Z3 case, we rescale the electric field as: Ex,x+1 =√
2π/nẼx,x+1 and study the Hamiltonian (1.20), with g2a2 = g2a/2 = 1.

One must consider odd and even n separately.

1.5.1 Odd n

As for the case n = 3 presented in the previous section, if n is odd we
anticipate a phase transition from a phase where the ground state is the
Dirac sea for large positive m, to a phase in which the ground state is a
meson/antimeson state for large negative m. At t = 0, there is a first-order
phase transition between these two states, at a critical mass m(n)

0 that can be
easily found by comparing the energy of these two states, given respectivley
by EDirac/L = −m and Emeson/L = m+2π/n, thus yielding the critical value

m
(n)
0 = −π/n. (1.38)

Fot t 6= 0 we must resort to our DMRG code and perform an analysis iden-
tical to the one presented for the Z3-model, assuming again that the phase
transition falls in the Ising universality class. As an example, in Fig. 1.12
we show the behaviour of the function λ of Eq. (1.26) for different system
size in the Z5-model and for t = 2π/5, proving its universality in this case as
well. We have performed an exhaustive analysis of the Z5- and Z7-models,
obtaining the value of mc(t) as function of t in both cases, as summarized in
the Appendix A and in Fig. 1.15.

We can now fit these data with the formula (1.32) to get an estimate of the
coefficients αn, βn with n = 5 and 7. The numerical results are summarized
in Table 1.1 and show an excellent agreement with the theoretically predicted
value m(n)

0 = −π/n. Also, as for the n = 3 case, the coefficient of the linear
term is much smaller than the one of the square-root term.
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Figure 1.12: Z5-model. Universal scaling function λ(x) close to the transition point
(t = 2π/5).

1.5.2 Even n

Even-n models are different from odd-n ones since the electric field cannot
take the value zero, still being CP -invariant. This means that we are working
in a different super-selection sector corresponding to a different total charge
at the boundary.

Let us first consider the case n = 2. This is a very small (in fact, the
smallest non-trivial) value, and one may expect some peculiarities, due to the
fact that the scaling arguments in Eqs. (1.18)-(1.19) do not apply. Actually,
since the electric field Hamiltonian becomes trivial for φ = 0, the presence of
a phase transition only depends on the ratio of the coefficients of the hopping
term and the mass term. Hence, the critical mass would be linear in t. The
gauge-invariant Hilbert subspace for a pair of sites is 8-dimensional and a
basis is shown in Fig. 1.13(a). The electric field can assume the two values
−√π/2,+√π/2. The transition is from a phase where the ground state is
the uniformly polarized vacuum, for large positive m, to a ground state in
which the electric field has alternating signs on links, for large negative m.
These states are shown in Fig. 1.13(b).

For t = 0 the energy per pair of these two states can be calculated exactly:

Epolarized

L
= m+ 2

(π
4

)
, (1.39)

while
Ealternating

L
= −m+ 2

(π
2

)
. (1.40)

Thus a first order phase transitions occurs at m(2)
0 = 0. For t 6= 0 we

look for the phase transition by numerically calculating the observable Σ as
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Figure 1.13: Z2-model. (a) Basis of the gauge-invariant Hilbert subspace; (b)
ground states for large positive/negative m.

function of m and performing a finite-size scaling of the universal function
that describes the order parameter. Fig. 1.14(a) displays Σ for t = 2π/2 = π,
from which we can calculate the critical value mc = 0.016 ± 0.025, while
Fig. 1.14(b) shows the corresponding universal function.

As for the odd-n case, we can numerically evaluate the critical value of the
mass for different values of t and get the fit of the function mc(t) according
to Eq. (1.32)

m
(2)
0 = 0.004± 0.001, (1.41)

α2 = (8± 5) · 10−6, (1.42)
β2 = 0.0149± 0.0003. (1.43)

From these values, we can see that both coefficients are very small, the dom-
inant one being associated with the linear term. This is indeed one issue of
the Z2-model that, as we will presently see, is not shared by higher n-models.

Taking into account this peculiarity and considering that we want to
perform a large-n limit by using at least three different values of n both in
the even and odd case, we have performed a similar analysis for the Z4, Z6

and Z8-models, whose results are summarized in the Appendix A. By fitting
these data, we obtain the coefficients m(n)

0 , αn and βn of Eq. (1.32) as given
in Table 1.1. As for the odd case, we find an excellent agreement of the
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Figure 1.14: Z2-model. (a) Order parameter Σ as function of m, for different L;
(b) Scaling of λ(x) close to the transition point.

n m
(n)
0 αn βn

2 0.004± 0.001 (8± 5) · 10−6 0.0149± 0.0003
3 −1.0472± 0.0001 −0.603± 0.001 −0.02± 0.01
4 (−3± 1) · 10−7 0.626± 0.005 0.0290± 0.0006
5 −0.628± 0.001 −0.494± 0.004 −0.015± 0.001
6 (−7.2± 0.1) · 10−6 0.543± 0.005 0.026± 0.001
7 −0.448± 0.001 −0.435± 0.003 0.004± 0.001
8 (1.8± 0.1) · 10−7 0.503± 0.004 0.022± 0.001

Table 1.1: Parameters of the numerical fit of the critical mass as a function of
t, according to the formula mc(t) = m0 +α

√
t+β t, for the various Zn-models

with n = 2÷ 8.

numerical value for m(n)
0 with the theoretically predicted value, m0 = 0, and

confirm that the dominant term is the one containing
√
t, as expected from

Eq. (1.19).

1.6 Large-n limit

The values of mc(t) for n = 2÷ 8, are summarized in Table 1.1 and plotted
in Fig. 1.15. Leaving aside the peculiar n = 2 case, these data clearly show
that the critical mass actually shows a square-root dependence on t

mc(t) = m
(n)
0 + αn

√
t, (1.44)
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Figure 1.15: Plot of mc(t) for the various Zn-models. The points are the numerical
data of Table 1.1 while the fits (continuous lines) yield mc(t) = m

(n)
0 + αn

√
t.

where, for any n, the critical mass at t = 0 can be calculated analytically
(with g2a = 2) according to the formula

m
(n)
0 =

{
−π
n

n odd
0 n even

, (1.45)

and vanishes in the large-n limit. The coefficients αn can be read from the
third column of Table 1.1. As we can see from Fig. 1.16, they obey the scaling

αn ' b+ d/
√
n, (1.46)

d =

{
−0.83± 0.10 n odd
+0.84± 0.17 n even

(1.47)

and b = 0 within numerical error in both cases. Except for the different sign,
which is due to the fact that the even n-models do not admit a zero electric
field, these two values are the same.

Thus, combining (1.23) and (1.46), we conclude that the continuous U(1)
theory exhibits a phase transition at the critical mass (t = 1)

mc = α = lim
n→∞

αn

√
n

2π
=

d√
2π
' ±0.33, (1.48)

with the sign depending on the charge sector. This value is in very good
agreement with the estimates mc/g = 0.33(2), obtained by using a lattice
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Figure 1.16: Scaling with 1/
√
n of the coefficient αn, for (a) n = 3, 5, 7 and (b)

n = 4, 6, 8.

Hamiltonian approach [78], and mc/g = 0.3335(2), obtained by studying the
truncated Z-model (at most at the first five loop levels) [76].

1.7 Cold-atom simulator

The experimental implementation of the Zn models is complicated by the
presence of the correlated hopping terms, related to elementary processes
in which the hopping of a fermion to a nearest-neighboring site is always
associated to an action on the link between the sites, which amounts at
increasing the electric field in the case of hopping to the left, and decreasing
it if the fermion hops to the right. The accuracy of correlated hopping
terms is vital for any cold-atomic simulator of the described theories, since
it guarantees that, once the system starts in the physical subspace, in which
Gauss’ law is satisfied, it will not leave this subspace during the evolution.
However, in a quantum simulation, in which matter and gauge fields are
encoded in the external and (possibly) internal degrees of freedom of cold
atoms, Gauss’ law does not emerge as a natural property. Implementation
of correlated hopping and enforcement of Gauss’ law are therefore still open
problems. We can identify two possible ways to simulate the gauge variables
with cold atoms:

• Gauge variables can be encoded in the internal degrees of freedom of
single atoms trapped at intermediate positions between each couple of
adjacent sites. Hopping of a fermion induces transition towards differ-
ent states according to the hopping direction. This realization require
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a fine tuning of atomic transitions, as care must be taken in ensuring
that all the allowed transition amplitudes between states with given
fermion occupation numbers and electric field are equal. Moreover,
the pure-gauge term requires that the energy levels of the intermediate
atoms at a→∞ are quadratically spaced.

• Gauge variables can be encoded in an external, transverse degree of
freedom. A possible interesting implementation arises from the possi-
bility of trapping cold atoms in circular lattices, obtained by interac-
tion with Laguerre-Gauss laser modes [79]. The scheme is represented
in Figure 1.17, where the red spots represent the bottoms of poten-
tial wells in which the fermions are trapped, while the blue ones host
one particle per link (statistics is immaterial), which can hop through
neighboring sites of each circle (identified with eigenstates of the elec-
tric field), but cannot hop towards other links due to a large energy
barrier. The equal amplitude of hopping between sites on the circle
arises from a natural circular symmetry, and the pure-gauge term can
be implemented by adding an external potential that properly varies
along one of the transverse directions.

In both cases, the Gauss law could be implemented either by tailoring the
transition amplitudes in order to enhance correlated hopping and suppress
the forbidden terms, or by adding an energy or noise penalty to the states
that violate Gauss’ law [25, 39]. In the latter case, the desired interaction
Hamiltonian can emerge as a higher-order effective dynamics [29].

1.8 Conclusions

We have investigated discrete Zn models, that approximate QED in one di-
mension (Schwinger model). In these models the electric field can take a finite
number of values, and one important common feature is the preservation of
the unitarity of the comparator. Thus, we have put the large-n limit on a firm
mathematical ground, adding novel rigorous results in the field of quantum
simulations of gauge fields, that may soon find experimental verifications in
cold-atomic systems.

In particular, we have unveiled the presence of phase transitions, whose
features depend in an interesting way on whether n is even or odd. Although
the details of these transitions depend on n, their universality class, as well
as some of their main features, are n-independent, so that by looking at the
large n limit, in which Zn → U(1), one can establish the presence of a phase
transition for one-dimensional lattice QED, and extract crucial information.
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Figure 1.17: Scheme of the physical system on which the Zn models can be im-
plemented. Between each pair of neighboring fermion sites (red spots), a single
particle is bound to hop on a circlular lattice. In order to reproduce the gauge
Hamiltonian (1.5), hopping of fermions and of the particle on the link must be
correlated.

A possible implementation of Zn models on a cold-atom simulator, dis-
cussed in Section 1.7, relies on the identification of the discrete values taken
by the electric field with some suitable additional degrees of freedom of the
simulator [79]. A realization appears realistic and would be important to
elucidate some important features of one-dimensional QED. Clearly, 1 + 1-
dimensional models have to be considered as toy-models with respect to the
more realistic 3 + 1-dimensional ones, but the possibility of using quantum
simulators for the investigation of collective and non-perturbative features
of gauge theories would enable us to shed new light on old problems, and
provide new insights on crucial but still unsolved questions.
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Chapter 2

Real Time Dynamics and Confinement in the

Zn Schwinger-Weyl QED

This chapter is organized as follows. In Sec. 2.1, we review the discretized
version of the Schwinger model for 1+1 dimensional QED, that is accommo-
dated on a one-dimensional lattice and endowed with a Zn symmetry. As
we showed in Chapter 1, this model exhibits a quantum phase transition at
mc = −0.33, belonging the Ising universality class. For m > mc the ground
state of the model is in a confined phase, in which elementary excitations
above the Dirac sea vacuum are of mesonic type. In Sec. 2.2, we set up
the quench protocol to simulate spontaneous pair production, occurring in
absence of an external electric field. We analyze this phenomenon by look-
ing at the dynamical evolution of several physical quantities of interest, such
as particle density, entanglement entropy, density correlation functions. We
will see that, contrary to what is found in many other integrable and non-
integrable models, the production of correlated particle/antiparticle pairs is
strongly suppressed when we consider system parameters deep in the con-
fined phase. In Sec. 2.3, we examine the phenomenon of pair production
induced by the presence of an external electric field, finding an agreement
between our simulations and old predictions by Schwinger [93] for the rate
of pair production. Also, by examining the time evolution of entanglement,
we conclude that the formation of mesonic excitations is stimulated by a dy-
namical effect due to the presence of the external field, of a different nature
from the one emerging in the spontaneous case, examined in the Sec. 2.2.
Finally, in Sec. 2.4, we will consider the real time evolution of a string exci-
tation. We observe that the string breaks into mesons, thus giving rise to the
so-called string-breaking mechanism, only when interactions are sufficiently
weak. Vice versa, deep in the confined regime, the strings remain localized

41



and are apparently stable. We finally draw our conclusions in Section 2.5.

2.1 Brief review of the model

As we described in Sec. 1.1 and Sec. 1.2, the discretized Hamiltonian for the
Zn Schwinger-Weyl lattice model for 1+1 QED reads:

H = −
∑

x

(ψ†x+1Ux,x+1ψx + h.c.)

+ m
∑

x

(−1)xψ†xψx +
g2

2

∑

x

E2
x,x+1, (2.1)

with x labelling the sites of a one-dimensional lattice of spacing a = 1,
1 ≤ x ≤ N . Here, the one-component spinor is represented by the cre-
ation/annihilation operators ψ†x, ψx, defined on each site x and with a stag-
gered mass (−1)xm , while the gauge fields are defined on the links (x, x+ 1)
of the lattice through the couple of operators, Ex,x+1 and the unitary com-
parator Ux,x+1(η) = e−i

√
2π/nAx,x+1 satisfying the commutation relations

[Ex,x+1, Uy,y+1] =
√

2π/n δxy . (2.2)

They act on a finite dimensional Hilbert spaceHn defined on each link, which
is generated by the orthonormal basis {|vk〉}0≤k≤n−1 on which the electric field
operator is diagonal, with eigenvalues:

ek =

√
2π

n

(
k − n− 1

2
+ φ

)
, 0 ≤ k ≤ n− 1. (2.3)

Here a non-zero value of the angle φ corresponds to adding a constant back-
ground field, which in turn corresponds to placing a charge at the boundary
of the chain. The comparator operator U , instead, acts as a cyclic ladder
operator:

U |vk〉 = |vk+1〉 for k < n− 1, U |vn−1〉 = |v0〉. (2.4)

Also, Gauss law is implemented by requiring that the physical states belong
to the subspace on which the following operator is zero:

Gx ≡ ψ†xψx +
1

2
[(−1)x − 1]− (Ex,x+1 − Ex−1,x) ≈ 0. (2.5)

Let us remark that, in one spatial dimension, Gauss law is a local con-
straint, whose implementation implies that the fermionic density is com-
pletely fixed (up to a contant) by the electric field, or viceversa. Thus, one
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can proceed to integrate out the gauge field in order to write down a Hamil-
tonian Heff only in terms of fermionic degrees of freedom. In doing so, one
obtains a spin 1/2 model with long-range interactions [80]. On the contrary,
one can eliminate the fermionic field and write down an effective Hamilto-
nian Heff that contains only the variables Ex,x+1 and their conjugate ones
Ux,x+1 [81, 82].

In Sec. 1.5, we analyzed the phase diagram of the discretized Hamiltonian
(2.1) showing that, for any n, it exhibits a phase transition at a critical
value of the mass mc between a confined phase for m > mc, in which the
ground state is given by standard Dirac sea vacuum, and a deconfined one
for m < mc, in which the ground state is built up of meson/antimeson pairs.

In our representation, the Dirac sea vacuum is obtained by filling up all
odd sites (negative mass fermions) and leaving the even ones (positive mass
fermions) empty, as shown in the first line of Fig. 1.4. In this case, Gauss law
(2.5) is satisfied if the electric field is zero on any link, a fact that we represent
in the figure with an un-oriented link. A meson (antimeson) is obtained by
acting on the Dirac sea by moving one fermion on an odd site to the right
(to the left), as shown in the second (third) line of Fig. 1.4. Now Gauss
law requires that the electric field on the connecting link is different from
zero, and specifically equal to +

√
2π/n (−

√
2π/n), a fact that we represent

with an oriented link in the picture. In the fourth line of Fig. 1.4 we also
show another gauge invariant configuration, representing a so-called string,
in which the particle/antiparticle excitations building a meson have been
moved further away from each other, with an electric field between them
which is necessarily different from zero on all links.

The phase transition always belongs to the Ising universality class, with
the confined/deconfined cases corresponding respectively to the paramag-
netic/ferromagnetic phase of the Ising model in a transverse field. Here the
quantum phase transition is driven by changing the value of the fermionic
mass (instead of the external transverse magnetic field) and the role of the
order parameter (the magnetization in the Ising case) is played by the mean
value of the electric field operator:

Σ =
1

N

∑

x

〈Ex,x+1〉 (2.6)

or equivalently by the mean fermionic density:

ρ =
1

N

∑

x

〈1
2

[1− (−1)x] + (−1)xψ†xψx〉 (2.7)

which, in the thermodynamic limit, are different from zero only in the decon-
fined phase. As we have shown in Sec. 1.6, the actual value of mc depends

43



on the value of n that has been used to discretized the U(1) gauge group but
in the large-n limit it tends to mc ' −0.33. In addition, as expected in the
Ising model, close to the transition point the first excitation has conformal
dimension d = 2, corresponding to a kink-like (or domain wall) solution.

Let us remark that while the Ising model in a transverse field is integrable
for any value of the magnetic field, our model is more complicated and never
integrable (except for the trivial case g = 0), because of the gauge coupling
between fermionic matter and electric field. In the Ising case, integrability
is lost and effective interactions between domain-wall excitations are present
only if one adds the coupling with an external uniform longitudinal field [83],
that we can also mimic in our model by introducing a background constant
electric field.
The effects of such gauge-mediated interactions might be quite strong and
will be studied by looking at real-time dynamical properties of our model in
the next sections. The analysis will be performed by numerically studying
the Hamiltonian (2.1) with a time-Dependent Density-Matrix Renormaliza-
tion group (t-DMRG) algorithm, whose dynamical evolution is implemented
through the Runge-Kutta method. More details about the precision of our
algorithm are given in the Appendix B.

2.2 Pair production in absence of external field

In this section, we will examine the phenomenon of spontaneous pair pro-
duction in the Schwinger model for 1 + 1-dimensional QED, by simulating
with our model the real-time dynamics of the Dirac sea vacuum, in absence
of an external electric field. This effect has also been considered in other
approaches [42–45] and it has also been experimentally analyzed in a small
system (4 qubits) of trapped ions [36].

In order to test the stability of the Dirac vacuum with respect to sponta-
neous pair production, we prepare the system in the in the Dirac sea vacuum
ground state and then study its evolution under the action of the Hamiltonian
with different values of the coupling constants m, g, with either m/g > mc/g
and m/g < mc/g. For completeness, we will perform our analysis for all
values of m, both positive and negative, but we stress that the Dirac vacuum
we start from is a high excited state for m < mc, while it is very closed
to the true ground state in the confined phase and in particular when m is
large and positive. In the language of spin systems, this would be analogue
to prepare an Ising system in the ground state of the paramagnetic phase
(say setting the external transverse field h = 0) and then suddenly quench
the Hamiltonian to a different value of h, with h < 1 (staying inside the
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Figure 2.1: Time evolution of the Dirac sea vacuum for N = 4.

ferromagnetic phase) or with h > 1 f (quenching into the paramagnetic one),
as it has been considered in [84].

Let us first consider the Z3 case. To test the evolution of the Dirac sea
vacuum after the quench, we numerically calculate three different quantities.

1) The first quantity we consider is themean density of particles evaluated
on the evolved Dirac sea vacuum |Ψ0(t)〉, with |Ψ0(t = 0)〉 = |0〉Dirac:

ρ(t) =
1

N

∑

x

〈Ψ0(t)|1
2

[1− (−1)x] + (−1)xψ†xψx|Ψ0(t)〉. (2.8)

This quantity is exactly zero on the Dirac sea vacuum and exactly 1 on the
state with all mesons. Here |Ψ0(t)〉 = U(t)|Ψ0(t = 0)〉, with U(t) = exp(itH),
and times are measured in units of [energy−1] having set ~ ≡ 1.

To put our model to a first test, we calculate ρ(t) for a chain with N = 4
sites, after a quench to m = 0.5 and g =

√
6/2π, which correspond to the

parameters used in the eperimental set up of [36]. Figure 2.1 shows our result:
the density starts form zero to go very close to the value 1/2, corresponding
to the formation of one meson. After that, recombination effects bring the
value down again. This is in perfect agreement with the findings of [36].

More generally, we first set g =
√

6/2π and quench to different values of
m. The temporal evolution of ρ is shown in Fig. 2.2 for (a) large positive
values of the mass (m ≥ 1.0), (b) large negative values of the mass (m ≤
−1.0), (c) small absolute values of the mass (−1.0 < m < 1.0). We clearly
see that for very large values of the mass (both positive and negative), ρ(t)
oscillates periodically between zero and a rather small value, due to a small
rate of pair production and recombination effects: the Dirac sea vacuum
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Figure 2.2: Z3-model. Time evolution of the Dirac sea vacuum after a quench
to different values of large positive mass, at fixed g =

√
6/2π and N = 40: (a)

m ≥ 1.0, (b) m ≤ −1.0, (c) −1.0 < m < 1.0.

is essentially stable. On the contrary, for smaller values of |m|, the density
increases rapidly up to values close to 1 (corresponding to the mesonic ground
state), to start then oscillating because of recombination effects, but now
around a non-zero large value, showing that the Dirac sea vacuum is unstable.
This is particularly evident for quenches to values of the mass close to the
critical one, mc ∼ −0.33.

Let us analyse better the curves of Fig. 2.2 as a function of m. Figure
2.3(a) shows the maximum value of ρ(t) extrapolated form the first peak: it
is clear that the highest pair production occurs close to the phase transition.
In Fig. 2.3(b) we show instead the period T of the oscillations, for m > mc.
We see that the data are very well described by the continuous line, which
corresponds to a best fit with respect to a function of the form: T (m) ∝
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Figure 2.3: Analysis of the curves of Fig. 2.2. (a) Values of the first peak as
function of m. (b) Period of the oscillations, for m > mc.

1/(am + b), for constant a, b. This form is what is expected from a first-
order approximation, sccording to which the period might be evaluated as
the inverse of the energy difference between the energy of the Dirac sea
(EDirac/N = −m) and the energy of the mesonic state (Emesonic/N = m +
g2/2).

In the Appendix B, we give details on the finite size scaling analysis we
performed. To summarize our results we show in Fig. 2.4 the contour plot
of the density ρ∞(t) extrapolated for N → ∞, in the whole range of the
quenched mass m ∈ [−5,+5]. We can conclude that the Dirac sea vacuum
is unstable for values of the mass close to the critical value mc, whereas pair
production is strongly suppressed for large values of m.

2) The second quantity we calculated is the time evolution of half-chain
entanglement entropy:

SN/2(t) = −TrA {ρA(t)log2 [ρA(t)]} (2.9)

where the chain has been partitioned in the two subsytems A,B consisting of
the first/last N/2 sites of the chain. The initial Dirac sea vacuum is separable
and hence SN/2(t = 0) = 0.

Fig. 2.5(a) and Fig. 2.5(b) show some examples of SN/2(t) for large
values of m. We see that the entanglement entropy shows an oscillatory be-
haviour, reaching a maximum at small values (e.g. SmaxN/2 ∼ 0.5 for m = 2.0 or
m = −3.0) and again g =

√
6/2π. The period of these oscillations increase

as m decreases and, at the same time, the entropy reaches higher values, of
the order of unity or more for small m, as it can be seen from Fig. 2.5(c). For
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Figure 2.4: Contour plot of ρ∞(t) in the whole range of the quenched mass m ∈
[−5,+5].

m close to the critical value mc (see for example the data for m = 0.0,−0.5),
the entropy increases much faster and we see a monotonic behaviour. Thus,
we can conclude that when the phenomenon of pair production is dominant,
the quantum correlations of the two parts of the chain grow bigger due to
the fact that the entangled particle/antiparticle pairs that are spontaneously
created spread along the chain.
This effect is much studied in free fermionic [85] and/or integrable mod-
els [86], where entanglement can be shown to increase linearly with time,
at least as long as one can assume a maximum speed of propagation (the
Lieb-Robinson bound [87]). Not considering disorder and/or long-range in-
teractions, this behaviour has also been confirmed in several integrable mod-
els [86]. In [84], the time evolution of the half-chain entanglement entropy has
been studied for a non-integrable model, namely the Ising model with both
a transverse and a longitudinal field, which admits a confined phase [83],
showing that the growth of the entanglement entropy is strongly reduced
for quenches within the confined (ferromagnetic) phase. This is exactly [88]
what we observe in our model. The black dashed line in Fig. 2.5(c) shows
the linear behaviour of the entanglement entropy in the free case. For small
but non-zero values of m, we can clearly recognize a slow down of the growth
the entanglement entropy, which is now well described by a logarithm growth
in time: SN/2(t) ∝ log t. When the interaction is strong and we are deep in
the confined phase, the system seems not to evolve toward an equilibrium
situation, at least in the time scale to which we can perform our simula-
tions. Indeed entropy is strongly suppressed and shows revivals, similarly

48



to what happens in those models where the quantum scar phenomenon ap-
pears [89–91].

3) At a last indicator, we consider the time evolution of connected corre-
lation functions

G0(j − L/2)(t) = 〈nL/2(t)nj(t)〉 − 〈nL/2(t)〉〈nj(t)〉 (2.10)

which are shown in Fig. 2.6. For small values of m, the connected correlation
functions show the typical light-cone spreading of a conformal or integrable
theory, as predicted in [92]. But as we enter in the intermidiate and strong
coupling region, we observe a localization effect and an oscillatory behaviour,
indicating that particle/antiparticles pairs do not spread and recombine, in
a recursive manner. Similar behaviours has been observed in other models
[80,84].

2.3 Pair production in an external field

In the context of particle physics, pair production is often studied in presence
of an external electric field, from which the pair production rate is expected
to depend. For the Shchwinger model, the value Ec of the external electric
field for which one should observe a maximum in the e+e− production rate
is given by Ec = m2/g ≈ 1.32× 1018 V/m [93] (in natural units c = ~ = 1),
but this effect has never been observed experimentally since it is still out of
the range of even the most powerful lasers. In 1 + 1 dimensions, a formula
for the production rate has been proposed in [94,95]:

ρ̇ =
eE0

2π
exp

(
−πm

2

eE0

)
=
m2

2π
ε exp

(
−π
ε

)
(2.11)

where ρ̇ represents the time derivative of the total density of the chain in
the infinite length limit, while ε = E0/Ec, E0 being the value of the external
field. This formula predicts that the production rate increases linearly for
large values of ε and it is exponentially suppressed for ε� 1.

This formula can be checked in our simulations. We start by considering
the Z3-model. We choose values of m, g for which Dirac sea vacuum resulted
stable, according to previous analysis. At t = 0 we apply a constant uniform
magnetic field E0 along the whole chain and run the simulation to obtain
ρ(t) for the corresponding value of ε = E0/Ec, with Ec = m2/g. Fig. 2.7(a)
shows the results of our simulations for the case m = 4.5 and g =

√
6/(2π).

We observe that, for very small values of ε, the vacuum is stable, but for
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Figure 2.5: Z3-model. Time evolution of the half-chain entanglement SN/2(t) for:
(a)m ≥ 2.0; (b)m ≤ −2.0; (c) −2.0 < m < 2.0. For all the three cases g =

√
6/2π.

The black dashed line shows the free fermion case m = 0, g = 0.
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Figure 2.6: Z3-model. Contour plot of G0(j − L/2) for g =
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Figure 2.7: Z3-model. (a) Particle density ρ(t) as function of time for different
values of ε = E0/Ec. We have set: N = 50, m = 4.5 and g =

√
6/(2π). (b) Linear

fit for small values of ε to obtain ρ̇ and verify eq. (2.11).

some small oscillations. As we increase ε we start seeing a linear regime,
followed by a saturation effect, as predicted by eq. (2.11). Fig. 2.7(b) shows
the range in which we performed the linear fit in order to evaluate ρ̇ and
verify eq. (2.11).

Since we expect strong size effects, we have repeat the simulations for
various values of N , namely N = 50, 60, 70, 80, 90. Also, to check the large-n
limit to see if we can reasonably approximate the U(1) limit with our model,
we have preformed an analogous analysis for the Z5 and the Z7 models.
Our results, which are summarized in the Appendix B, show that the the
continuum limit is better and better approximated.

Finally, in order to get some additional insight on the phenomenon, we
have calculated the time evolution of the half-chain entropy, for different
values of the external magnetic field. A typical behaviour is shown in Fig.
2.8, which shows the data for m = 4.5 and g =

√
6/(2π). We notice that the

entropy always presents an oscillatory behaviour with not too large maximum
values. More interestingly, we observe that an increase of the external field
-which results in a rapid increase in particle pair production as shown in Fig.
2.7(a)- does not contribute at all to an increase of the entanglement and to
its spreading. Thus, we can postulate that the mechanism that dictates the
particle/antiparticle pair production is different with or without the external
field: in the former case pair formation is dictated by a rearranging of the
charges present in the system as an effect of the external field, while in the
latter entangled quark/antiquark pairs are spontaneously created out of the
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Dirac sea.

2.4 The string breaking mechanism

As recalled in the Introduction, the string breaking mechanism is a very in-
teresting phenomena that is expected to occur in theories, such as 1+1-QED
and 3 + 1-QCD, that admit confined phases, but it is also very hard to prove
either analytically or numerically since its effects are mainly dynamical.
In our approach we are able to investigate it, since we can simulate the real-
time dynamics of a generic initial state, which is then let to evolve with
the discretized Hamiltonian (2.1). In particular we prepare our system in
the string-excitation state shown in Fig. 1.4 (fourth line), where a parti-
cle/antiparticle couple at a distance l has been created over the Dirac sea
vacuum thus giving rise to a non-zero string of the electric field in between.
In the following we will consider the Z3 model and a chain of length N = 80.
We initialize our system in a string put at the center of the chain: the par-
ticle/antiparticle pair is put at a distance equal to 20 lattice sites so that
the electric field is different from zero (and equal to +

√
2π/3) only on the

19 central links of chain. The evolution of this state is followed by looking
at the value of the electric field Ex,x+1(t) on each link. Clearly, this process
is also effected by the instability of the Dirac sea vacuum that we studied
in the previous sections. We report the analysis of the real time dynamics
of such a string for three different values of (m, g) specifically corresponding
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to (a) weak interactions (m = 0.1, g = 0.1) , (b) intermediate interactions
(m = 0.3, g = 0.8), strong interactions (m = 3.0, g = 1.4). Clearly, the total
evolution is also affected by the instability of the Dirac sea vacuum that we
studied in the previous sections. Thus, to improve the interpretation of our
numerical results, we subtract from Ex,x+1(t) the value of the electric field
that would be obtained starting from the Dirac sea vacuum for the same
values of (m, g). The corrected data are shown in Fig. 2.9, which clearly
show three different situations:
a) for weak interactions, the string starts to spread and breaks into par-
ticle/antiparticle pairs (mesons) that, after a short time in which one can
notice a rich process of pair production and recombination, stabilize in a
configuration with two mesons localized at the edges of the string; the two
mesons are deconfined, since they move away one from the other at constant
speed;
b) for intermediate interactions, instead, the string does not spread; still it
breaks into particle/antiparticle pairs (mesons) that, as in the previous case,
quickly stabilize in a configuration where we can still distinguish two mesons
localized at the edges of the string; but now the two mesons are confined,
since they are kept at fixed distance one from the other;
c) for strong interactions, the string is completely stable: it does not spread
and it does not break into mesons.

The simulations which are reported in Fig. 2.9 can be repeated for any
couple of values (m, g). Our results are summarized in Fig. 2.10, where
we show the contour plot of the large-t (namely t = 4.0 in our units) total
value of the electric field at the center of the chain, defined as the sum of the
electric field on the 12 central links, as a function of the coupling constants
(m, g). The two white level curves correspond to a 10% (dotted line) and
to a 50% (solid line) of the initial value, respectively. From this picture,
the three regimes described above are clearly identified: (a) the lighter and
central part of the diagram corresponds to the breaking of the string into
two deconfined mesons; (b) the reddish part of the diagram to the breaking
of the string into two confined mesons; (c) the darker part to a stable string
configuration.

It is interesting to examine the string breaking phenomenon by looking
also at the time evolution of the half-chain entanglement entropy, for different
values of (m, g). Fig. 2.11 shows the behaviour of SN/2 evaluated on the time
evolution of the string state by first keeping g = 0.1 fixed and let m vary
(a) within positive values, (b) within negative values and then (c) keeping
m = 0.1 fixed and let g vary. These graphs confirm what found by looking at
the real time dynamics of the electric field configuration, showing a growth of
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Figure 2.9: Z3-model. Real-time dynamic of a string: evolution of the electric field
on the links, corrected with spontaneous pair production, for: (a) m = 0.1, g = 0.1,
(b) m = 0.3, g = 0.8, (c) m = 3.0, g = 1.42.
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entanglement entropy which is linear for weak interactions (small m and/or
small g), sublinear for intermediate interactions and suppressed (with small
oscillations) in the strong coupling regime.

2.5 Conclusions

We have investigated out-of-equilibrium properties of (1 + 1)-dimensional
QED, approximated via a Zn Schwinger model. By means of simulations of
the stability of the Dirac vacuum with respect to particle/antiparticle pair
production and of the string breaking mechanism, we have studied the effect
of confinement on the real time dynamics of the model.

We have found that confinement has a relevant effect on the dynami-
cal properties of the model, resulting in oscillatory behaviours and lack of
thermalization for pair production as well as in a total suppression of the
breaking and spreading of string excitations, with a perfect localization of
the latter.

Let us notice that such a reduction of entanglement and slow-down of
dynamics have been observed in other systems. This is the case of not only
of model with long-range interactions [96] but also of the Ising and Potts
models with both a transverse and a longitudinal magnetic fields [84, 97].
A similar behaviour has also be seen in constrained models which exhibit
quantum scar states [90, 91] or for spin-1/2 chain Hamiltonians that can be
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Figure 2.11: (a) Z3-model. Time evolution of the half-chain entropy SN/2(t) for:
(a) g = 0.1 and different positive values of m, (b) g = 0.1 and different negative
values of m, (c) m = 0.1 and different values of g.
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derived from Abelian gauge models in the quantum link approach [80]. It is
interesting to notice that, in the two latter cases, the physical states of the
system under consideration are constrained to lie in a restricted subspace of
the total Hilbert space, a fact that it is shared by our model where the role
of Gauss law constraint is crucial. This is also at the heart of the recent idea
to experimentally implement these Hamiltonian with Rydberg atom systems
in the Rydberg-blockade regime [98].
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Chapter 3

Symmetry-protected topological phases in

lattice gauge theories: Topological QED2

This chapter is organized as follows. In Sec. 3.1, we start by reviewing the
properties of the continuum massive Schwinger model and its standard lat-
tice discretization, and use it to introduce the alternative discretization that
substitutes the staggered mass by a topological mass that leads to the topo-
logical Schwinger model. In Sec. 3.2, we describe the continuum limit of
this model, topological QED2, and introduce a bosonization formalism that
gives a neat understanding of the interplay of symmetry-protected topolog-
ical phases (SPT) and lattice gauge theories (LGT) features. In particular,
we show that the underlying topology promotes the so-called vacuum θ an-
gle, a constant parameter in the standard Schwinger model, into a dynamical
quantum-mechanical operator that yields a notoriously different phase dia-
gram. In Sec. 3.3, we test these analytical predictions using the numerical
Density-Matrix Renormalization Group (DMRG) for a discrete version of
this topological Abelian LGT. We discuss various signatures that give com-
pelling evidence of a strongly-correlated SPT phase, such as the existence
of many-body edge states and degeneracies of the entanglement spectrum.
Moreover, we present finite-size scaling of two order parameters and block
entanglement entropies, providing accurate estimates of the critical lines, and
their universality classes. We finally draw our conclusions in Section 3.4.

3.1 Topological Schwinger model

In this section, we start by reviewing the continuum massive Schwinger
model [68,116], describing the interaction of a massive Dirac fermion interact-
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ing with the electromagnetic field in (1+1) dimensions. We first discuss the
standard discretization à la Kogut-Susskind [11], where the gauge field, de-
fined on the links of a one-dimensional chain, dresses the hopping of fermions
between neighboring lattice sites, and an alternating on-site potential leads
to a finite fermion mass. After reviewing some of the main features of this
model, which shares key features with higher-dimensional non-Abelian LGTs,
we introduce a simple modification of the lattice discretization that leads to
the model of interest of this chapter: the topological Schwinger model. Es-
sentially, we substitute the staggered mass by a topological mass that can
stabilize SPT phases, and yields a neat minimal scenario to study strong-
correlation effects brought up by the interaction with the gauge field.

We start by describing the continuum quantum field theory of a spinor
field Ψ(x) = (ψu(x), ψd(x))t describing the relativistic Dirac fermions of mass
m, and a gauge field Aµ(x) describing the electromagnetic field. In a (1+1)-
dimensional Minkowski spacetime with coordinates xµ, µ ∈ {0, 1} (i.e. x =
(t, x)), and after setting ~ = c = 1, the Lagrangian density that dictates the
dynamics of the fermionic and gauge fields is given by the so-called massive
Schwinger model

LmS = Ψ(iγµ(∂µ + igAµ)−m)Ψ− 1
4
F µνFµν , (3.1)

where ∂µ = ∂/∂xµ, Aµ(x) = ηµνA
ν(x), and we use the repeated-indexes

summation criterion with Minkowski’s metric η = diag(1,−1). In the ex-
pression above, we have introduced the Dirac matrices satisfying the anti-
commutation relations {γµ, γν} = 2ηµν , which can be represented in terms of
standard Pauli matrices in (1+1) dimensions. Here, we have also introduced
Ψ(x) = Ψ†(x)γ0, and the (bare) coupling g of the fermion current to the
gauge field with electromagnetic field tensor Fµν = ∂µAν − ∂νAµ. With this
notation, the fields have the classical mass (energy) dimensions dψ = 1/2 and
dAµ = 0, while the mass and gauge coupling have dm = dg = 1.

The Schwinger model is the simplest tractable QFT that captures some of
the most significant non-perturbative effects displayed by non-Abelian gauge
theories in higher dimensions. In the massless limit m = 0, it was solved
exactly by J. Schwinger [101], who showed that the spectrum can be described
by non-interacting bosons with a mass proportional to the coupling strength
(i.e. fermion-antifermion pairs are trapped in such a way that single-fermion
excitations do not appear in the spectrum [116]). Additionally, it yields a neat
scenario where to understand the consequences of the chiral anomaly [69],
and the origin of the degeneracy with respect to a background electric field
leading to the so-called vacuum θ angle [60, 102]. In the massive regime
m 6= 0, the Schwinger model can be used to understand charge shielding via
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Figure 3.1: Discretizations for standard and topological QED2: (a) Staggered-
fermion approach to the massive Schwinger model. The relativistic Dirac field is
discretized into spinless lattice fermions subjected to a staggered on-site energy
±ms, which are represented by filled/empty circles at sites of a 1D chain with
alternating heights. On the other hand, the gauge field is discretized into rotor-
angle operators that live on the links, which are represented by shaded ellipses
with various levels representing the electric flux eigenbasis. The gauge-invariant
tunneling c†nUncn+1 involves the tunneling of neighboring fermions, dressed by a
local excitation of the gauge field in the electric-flux basis Un|`〉 = |`+ 1〉, which
is represented by the zig-zag grey arrow joining two neighboring fermion sites, via
an excitation of the link electric-flux level. (b) Dimerized-tunneling approach to
the topological Schwinger model. The previous staggered mass is substituted by
a gauge-invariant tunneling with alternating strengths (1 − δn)c†nUncn+1, where
δn = 0,∆ for even/odd sites. This dimerization of the tunneling matrix elements
is represented by alternating big/small ellipses at the odd/even links.

the string tension between two separate probe charges (i.e. screening of the
long-range Coulomb force between static charges) [116], and string-breaking
phenomena as the distance between the charges is increased beyond a certain
value [103]. Moreover, the degeneracy with respect to the θ angle is lifted,
and one finds that for θ = π there is a continuous quantum phase transition
between the confined phase and a symmetry-broken phase with a fermion
condensate [68].

There are various numerical methods to unveil this non-perturbative phe-
nomenology, serving as a benchmark for theoretical approaches that could be
generalized to other situations of interest (e.g. quantum chromodynamics).
These methods typically rely on a discretization of the fields on a lattice, and
we shall focus on the Kogut-Susskind approach [11]. Here, only the spatial
coordinates are discretized into the sites of a chain Λ` = {x : x/a ∈ ZNs},
where a is the lattice spacing, and Ns is the number of lattice sites. By
writing x = na for n ∈ ZNs , the matter sector of Dirac fermions can
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be represented by the so-called staggered fermions defined on the lattice
sites Ψ(x),Ψ(x) → cn, c

†
n, such that {cn, c†m} = δn,m/a, which have an al-

ternating staggered mass ms (see Fig. 3.1(a)). The gauge field sector, in
the temporal gauge A0 = 0, can be represented by rotor-angle operators
(i.e. compact QED) living on the links, and fulfilling [Ln,Θm] = −iδn,m.
Here, the angle operators are related to the gauge field Θn = agA1(x) at
x = (n + 1

2
)a, while the rotors correspond to angular-momentum operators

related to the electric field Ln = E(x)/g = F01(x)/g. In this gauge, and
using Schwinger’s prescription for gauge-invariant point-split operators [104]
Ψ̄(x + ε)Ψ(x) → Ψ̄(x + ε)e−ig

∫ x+ε
x dxµAµ(x)Ψ(x), also known as the Peierls’

substitution in condensed matter, the continuous-time Hamiltonian LGT for
the standard massive Schwinger model becomes

HmS = a
Ns∑

n=1

(−1

2a

(
ic†nUncn+1 + H.c.

)
+ms(−1)nc†ncn +

g2

2
L2
n

)
. (3.2)

Here, we have introduced the link operators Un = eiΘn , which act as uni-
tary ladder operators Un|`〉 = |`+ 1〉 in the basis of electric-flux eigenstates
Ln|`〉 = `|`〉 for ` ∈ Z. Finally, we note that the aforementioned vacuum
angle can be introduced through a background electric field Eext by substi-
tuting Ln → Ln + θ/2π, where θ = 2πEext/g. With this notation, the lattice
fields have the classical mass (energy) dimensions dc = 1/2 and dL = 0, while
the mass and gauge coupling have dms = dg = 1, and the lattice constant
da = −1.

The universal properties of this LGT, which are recovered by making a
long-wavelength approximation in the continuum limit a → 0, lead to the
Hamiltonian field theory associated to Eq. (3.1). In this gauge, one obtains
HmS =

∫
dxHmS with

HmS = Ψ(x)
(
γ1(−i∂x − gA1(x)) +m

)
Ψ(x) + 1

2
E2(x), (3.3)

where the gamma matrices are γ0 = σx, γ1 = −iσy, and the Dirac mass
coincides with the staggered one m = ms. The corresponding components of
the Dirac spinor are

ψu(x) =
1√
Ls

∑

|k|<Λc

e−ikxck, ψd(x) =
1√
Ls

∑

|k|<Λc

e−ikxck+π
a
, (3.4)

where we have introduced the length of the chain Ls = Nsa, the fermionic
operators in the momentum representation ck, c

†
k, and used a cutoff Λc � π/a

to focus on the long-wavelength properties resembling the massive Dirac
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fermions. This discretized Schwinger model, with a well-defined continuum
limit (3.1), has served as a testbed of various numerical approaches, includ-
ing finite-lattice methods [78], exact diagonalization [105], Monte Carlo tech-
niques [106], density-matrix renormalization group (DMRG) [76] and, more
recently, a variational ansatz based on matrix-product states [43]. These nu-
merical results, together with subsequent works [81], have served to confirm
and extend the above theoretical predictions.

Let us now introduce an alternative discretization which will, at first sight,
yield the same gauge field theory in the continuum limit. Focusing on the
above lattice model (3.2), one notices that the staggered mass breaks explic-
itly the lattice translational invariance, such that the discretized model has a
two-site unit cell. A different discretization that maintains this property can
be obtained by dimerizing the tunneling strengths with a two-site periodicity.
This discretization will be referred to as the topological Schwinger model

HtS = a
Ns∑

n=1

(−1

a

(
i(1− δn)c†nUncn+1 + H.c.

)
+
g2

2
L2
n

)
, (3.5)

where the dimerization vanishes for even sites δ2n = 0, while it can be finite
for odd sites δ2n−1 = ∆ (see Fig. 3.1(b)). We note that the total number of
sites Ns should be even to respect inversion symmetry about the center of the
chain. For 0 < ∆ � 1, standard procedures show that the long-wavelength
properties of this lattice model coincide again with Eq. (3.1) for a different
choice of gamma matrices γ0 = σy, γ1 = iσz, and fermion mass m = −∆/a.
In this case, the Dirac spinor obtained is

ψu(x) =

√
2

Ls

∑

|k|<Λc

e−ikxak, ψd(x) =

√
2

Ls

∑

|k|<Λc

e−ikxbk, (3.6)

where ak, bk are momentum operators obtained from the odd- and even-site
fermionic operators, respectively.

As announced above, both discretizations seem to yield the same con-
tinuum limit (3.3), such that one would naively expect to recover the same
physics. In the following section, we show that the continuum limit of the
topological Schwinger model (3.5) must be considered more carefully, as it
can also host symmetry-protected topological phases. We will see that the
new discretization exchanges the trivial staggered mass for a topological mass,
which can stabilize strongly-correlated SPT phases where the fermions inter-
act via the gauge field.
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3.2 Topological QED2 via bosonization

3.2.1 Symmetry-protected topological (SPT) phases in
the non-interacting limit

In this subsection, we start by discussing the properties of the dimerized
LGT (3.5) in the non-interacting limit g = 0. This task is straightforward, as
the matter sector corresponds exactly with the so-called Su-Schrieffer-Heeger
(SSH) model of polyacetylene in the adiabatic limit for the lattice vibra-
tions [107, 108]. We now review these properties, placing a special emphasis
to the connection to one-dimensional topological insulators, a paradigmatic
example of an SPT phase.

For vanishing coupling g = 0, our model (3.5) reduces to HtS = HSSH +
a
∑

nE(x)2/2, such that the matter sector decouples from the gauge-field
sector and can be described by

HSSH = −i

Ns/2∑

n=1

(1−∆)a†nbn + b†nan+1 + H.c., (3.7)

where we have rewritten the even (odd) fermionic operators c2n (c2n−1) using
a two-site unit cell notation bn (an). By performing a Fourier transform for
periodic boundary conditions, one obtains HSSH =

∑
k∈BZ Ψ†kh(k)Ψk, where

h(k) = d(k) · σ is the single-particle Hamiltonian, and Ψk = (ak, bk)
t is

defined within the first Brillouin zone BZ = [−π/a, π/a). In this expression,
d(k) = (− sin ka, (1−∆− cos ka), 0)/a, and σ is the vector of all three Pauli
matrices σ = (σx, σy, σz). Note that the dimerization leads to a momentum-
dependent mass mt(k) = (1−∆−cos ka)/a, a so-called topological mass that
substitutes the previous staggered mass ms, and plays a crucial role in the
appearance of the SPT phase.

As announced in the previous section, a naïve long-wavelength approxi-
mation yields HSSH =

∫
dxHmD, where

HmD = Ψ(x)(−iγ1∂x +m)Ψ(x) (3.8)

is the Hamiltonian density for a massive Dirac field with γ0 = σy, γ1 = iσz,
and mass m = −∆/a for dimerizations ∆� 1.

Here, we have introduced the effective Dirac spinor Ψ(x) = (ψu(x), ψd(x))t

with components defined in Eq. (3.6) for a small region around the origin of
the Brillouin zone |k| < Λc. Therefore, this long-wavelength approximation
focuses on local aspects of the bands, and one might be loosing relevant infor-
mation about global topological features that would require the knowledge of
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the complete band structure. Indeed, one finds that the Berry connection for
the lowest-energy band A−(k) = 〈−εk|i∂k|−εk〉 of the full SSH model (3.7) is

A−(k) =
1− (1−∆) cos ka

2
(
1 + (1−∆)2 − 2(1−∆) cos ka

) . (3.9)

The ground-state of the SSH model at half filling |gs〉 = ⊗k∈BZ|−εk〉 displays
a polarization proportional to a non-trivial topological invariant [109]: the
so-called Zak’s phase [110]. This invariant is obtained by integrating the
Berry connection over all the occupied momenta

ϕZak =

∫

BZ

dkA−(k) = π
(
θ(∆)− θ(2−∆)

)
, (3.10)

where we have introduced Heaviside’s step function θ(x) = 1 for x > 0, and
zero otherwise. Therefore, this Zak’s phase can be associated to a gauge-
invariant topological Wilson loop W = eiϕZak , which becomes non-trivial
W = −1 when the dimerization lies in ∆ ∈ (0, 2). This is precisely the
region where the SSH model hosts an SPT phase, a topological insulator in
the BDI symmetry class: the ground-state is characterized by a non-vanishing
topological invariant respecting the symmetries of the underlying Hamilto-
nian. These correspond to time-reversal T σzh(−k)∗σz = h(k), particle-hole
C h(−k)∗ = −h(k), and sub-lattice S σzh(k)σz = −h(k) symmetry, such that
T2 = C2 = +1 [111].

As announced above, in order to capture the correct topological features,
one cannot naively restrict to long-wavelengths |k| < Λc (3.8), since the
information about the topological mass mt(k) at the borders of the Brillouin
zone |k − π/a| < Λc is also important. In the following section, we use
the bulk-boundary correspondence for such SPT phase to derive the correct
long-wavelength approximation. The goal of our work is to explore the fate
of this SPT phase as the coupling with the gauge field is switched on g > 0,
such that interactions in the matter sector are mediated by the gauge field,
and the above simple description of the topological phase is no longer valid.
Starting from the aforementioned correct long-wavelength approximation,
superseding Eq. (3.3), we will show how strong correlations in the SPT phase
can be brought by the coupling to the gauge field.

3.2.2 Continuum limit and topological QED2

In this subsection, we focus on the regime 0 < ∆ � 1, and derive an al-
ternative long-wavelength approximation to Eq. (3.3) that is valid for the
topological Schwinger model (3.5). We build on the bulk-edge correspon-
dence, which states that the non-vanishing bulk topological invariant of the
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Figure 3.2: Chiral modes for Dirichlet boundary conditions: For a finite open
chain, the right- and left-moving modes satisfying Ψ̃η(0) = Ψ̃η(Ls) = 0, must fulfill
Ψ̃R(x) = −Ψ̃L(x), such that one may study modes of a fixed chirality living in an
annulus, i.e. enlarged chain with periodic boundary conditions Ψ̃R(Ls) = Ψ̃R(−Ls).

previous section (3.10) is related to the presence of robust zero-energy modes
localized to the boundaries of the sample, the so-called topological edge states.
Our goal now is to revisit the continuum limit in a way that these edge states
appear naturally.

Instead of considering periodic boundary conditions as in the previous
subsections, we impose Dirichlet boundary conditions for an open finite chain.
In the continuum limit, where a → 0 and Ns → ∞ with a fixed length
Ls = Nsa, we can express the fermionic lattice operators as fields cn →
Ψ(x) =

√
2/Ls

∑
k sin(kx)ck, where k = π

Ls
j and j ∈ N. Such fields fulfill

directly the boundary conditions Ψ(0) = Ψ(Ls) = 0.

In order to unveil the low-energy excitations that resemble Dirac fermions,
the standard approach in one-dimensional models is to break the field opera-
tor into right- and left-moving components Ψ(x) = eikFxΨ̃R(x) + e−ikFxΨ̃L(x),
where {Ψ̃η(x)}η=R,L are slowly-varying envelopes that allow for a gradient
expansion [112]. For an open chain, however, these right- and left-moving
fields are not independent, but must instead fulfill Ψ̃L(−x) = −Ψ̃R(x) by
imposing the Dirichlet boundary conditions [113] (see Fig. 3.2). Accordingly,
the left-moving component can be obtained from the right-moving one, and
one can focus on the right movers in a doubled chain with periodic conditions
Ψ̃R(−Ls) = Ψ̃R(+Ls).

In the present case, we are interested in the universal properties of Eq. (3.5)
for 0 < ∆ � 1, which are obtained by making a long-wavelength approxi-
mation around kF = π/2a (i.e. wave-vector where the dispersion relation for
open boundary conditions crosses the zero of energies). We can then restrict
to momenta around the origin of the Brillouin zone |k − π/2a| < Λc � 1/a,
and perform a gradient expansion of the fermionic fields that yields a matter
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sector governed by

HSSH =

∫ Ls

0

dx
∑

η=L,R

sη

(
Ψ̃†η(x)i∂xΨ̃η(x) + imΨ̃†η(x)Ψ̃η̄(x)

)
, (3.11)

where we have introduced sη = (1 − 2δη,R), η̄ = L,R for η = R,L, and we
recall that m = −∆/a. Here, the right- and left-moving fermions can be re-
lated to the original spinor components as follows Ψ̃R = (Ψ̃u−Ψ̃d)/

√
2, Ψ̃L =

(Ψ̃u + Ψ̃d)/
√

2.
We can now use the condition Ψ̃L(−x) = −Ψ̃R(x) to get rid of the left-

moving fields, and obtain the following continuum field theory for the right
movers HSSH =

∫ +Ls
−Ls dxHtD, where

HtD = −Ψ̃†R(x)i∂xΨ̃R(x) + imsgn(x)Ψ̃†R(x)Ψ̃R(−x). (3.12)

Therefore, the naive continuum limit with massive Dirac fermions (3.8),
must be replaced by this effective Hamiltonian field theory where the Dirac
fermions display a non-local mass that changes sign at x = 0. This can be
interpreted as a non-local version of the Jackiw-Rebbi quantum field theory,
where fermionic zero-modes are localized within a kink excitation of a scalar
field, which effectively changes the sign of the local mass term [114]. In fact,
this continuum field theory (3.12) can be exactly diagonalized, and leads to
two types of solutions: (i) bulk energy levels with ε(k) = ±

√
m2 + k2, where

we recall that momentum is quantized k = πj/Ls with j ∈ N, such that
the solutions fulfill the Dirichlet boundary conditions. Accordingly, these
plane-wave solutions are delocalized within the bulk of the chain, and have
a relativistic dispersion relation: they correspond to the previous massive
Dirac field in the naive continuum limit (3.8) . Additionally, in the ther-
modynamic limit, we find (ii) a zero-energy mode localized at x = 0 with
wave-function χ̃0(x) ≈ Ce−|x|/ξ, where ξ = a/∆ � Ls → ∞ and C =

√
∆a.

Therefore, provided that ∆ > 0 (otherwise the solution is not normalizable),
we find a zero-mode exponentially localized to x = 0. This coincides precisely
with the topological edge state localized at the left boundary at x = 0, while
the remaining edge state at x = Ls can be recovered by means of inversion
symmetry.

After going back to the physical un-doubled chain, and introducing the
fast-oscillating terms components to these envelopes, the zero-energy solu-
tions εL = εR = 0 can be expressed as

χL(x) = Ce−
x
ξ sin(kFx), χR(x) = Ce−

(Ls−x)
ξ sin(kF(Ls − x)), (3.13)

which, in addition to the exponential decay from the boundaries, also show
an oscillating character sin(πj/2) (sin(π(N − j)/2)) such that the left-most
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(right-most) edge state only populates the even (odd) sites. As a consistency
check, we note that this exponential decay and alternating behavior has
been also found for the SSH model using completely different approaches
(see e.g. [115]).

With these results, the naive continuum limit for the SSH model in
Eq. (3.8) gets superseded by HSSH =

∫ Ls
0

dxHtD, where

HtD = Ψ(x)(−iγ1∂x + ∆/a)Ψ(x) +
∑

η=L,R

εη|χη(x)|2η̂†η̂, (3.14)

which is valid for for 0 < ∆ � 1. Here, in addition to the featureless
bulk Dirac fermions of mass ∆/a, we have also included the exponentially-
localized topological edge states created and annihilated by η̂† and η̂. This
forms the matter sector of the topological Schwinger model (3.5), which in
the Coulomb gauge A1 = 0 finds the following expression HtS =

∫
dxHtS,

where

HtS = HtD − gA0(x)Ψ(x)γ0Ψ(x) + 1
4
F µν(x)Fµν(x). (3.15)

The gauge field theory in Eqs. (3.14)-(3.15) can be interpreted as a new type
of topological QED in a (1+1)-dimensional space-time with boundaries. It
describes how both the bulk relativistic fermions, and the fermionic zero-
modes, interact with the gauge field preserving the U(1) local symmetry
characteristic of QED: topological QED2. Although the edge modes seem to
be decoupled from the gauge and Dirac fields, we discuss in the following
section how a careful account of Gauss’ law gives rise to such a coupling, and
can indeed be used as a starting point to understand correlation effects in
the SPT phase.

3.2.3 Bosonization and boundary Gauss’ law

The reason underlying the change of gauge in the last subsection, moving
from the temporal gauge of Eq. (3.3) to the Coulomb gauge of Eq. (3.15),
is that the latter allows for a neat application of the machinery of bosoniza-
tion [60,68,116]. In the context of the standard Schwinger model (3.1), this
technique gives a clear understanding of various phenomena. In particular, it
unveils the origin of the bosonic excitations of the massless Schwinger model,
which are described by a Klein-Gordon field theory of mass µ = g/

√
π. Ad-

ditionally, the bosonized lattice gauge theory gives a neat account of the
role of the vacuum θ angle [60]. We also mention that bosonization can be
used to understand charge shielding in the massive Schwinger model [116],
and it proved to be of the utmost importance to predict the existence of an
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Ising-type second-order quantum phase transition between a charge-shielded
phase and a symmetry-broken fermion condensate for θ = π [68]. We now
apply this machinery to the topological QED2 (3.15), and use it to predict
quantitative results about the underlying phase diagram, which will include
in addition to these two phases of matter, the SPT phase discussed above.

Following Coleman’s work [68], the bulk part of topological QED2 (3.15)
can be simplified into HtS = HtD + 1

2
E2(x), where the typical electric energy

appears directly in the Hamiltonian density. Although the matter and gauge-
field sectors seem to be decoupled, we recall that the Gauss’ law associated
to the local U(1) still needs to be imposed, and this will result in an effective
matter-field coupling.

Following the bosonization of the massive Schwinger model (3.1), we start
with the well-known relations between the bilinear operators formed by Dirac
spinors Ψ(x),Ψ(x), and the bosonic operators of a real scalar field φ(x),Π(x)
(i.e. bosonization dictionary), which in a (1+1) dimensions read

−i : Ψ(x)γ1∂xΨ(x) :∆ −→ : 1
2
Π2(x) + 1

2
(∂xφ(x))2 :µ,

: Ψ(x)Ψ(x) :∆ −−−−−→ − cµ : cos
(
2
√
πφ(x)

)
:µ,

: Ψ†(x)Ψ(x) :∆ −−−−−→ − ∂xφ/
√
π.

(3.16)

Here, we have introduced c = eγ/2π with Euler’s constant γ ≈ 0.5774, and
: ( ) :m denotes normal ordering of the Fermi or Bose fields with respect to the
fermion mass m, corresponding to ∆/a in the present case, and the bosonic
mass µ = g/

√
π, respectively. The first expression yields the bosonization

identity between a massless Dirac fermion and a massless scalar field, whereas
the second one relates the fermion mass to a cosine-type non-linearity of the
scalar field, which is a relevant perturbation of the resulting sine-Gordon
quantum field theory. Finally, the last expression can be used in conjunction
with Gauss’ law to bosonize also the gauge-field contribution to the Hamil-
tonian. For the bulk Dirac fermions, this parallels Coleman’s bosonization of
the massive Schwinger model ∂xEbulk(x) = g : Ψ†(x)Ψ(x) :∆, which directly
leads to

Ebulk(x) =
g√
π

(
φ(x) +

θ

2
√
π

)
, (3.17)

where one sees how the vacuum angle θ = 2πEext/g originates from a constant
field after the integration of Gauss’ law.

The novel ingredient that is required for the bosonization of topological
QED2 (3.15) is to consider the modification on Gauss’ law due to the existing
boundaries. In the SPT phase, these boundaries may actually contain charges
due to the population of the topological edge states (3.13). Focusing on the
regime 0 < ∆ � 1, where the edge-state localization length is very small

69



ξ � Ls, one can thus consider that the boundary charge only penetrates
into a small region close to the edges. Considering the boundary conditions
for the electromagnetic field across this region, which imply that the normal
component of the electric field must be discontinuous, we find that

Eedge(x) =
g

2

(
sign(x)L̂†L̂ + sign(x− Ls)R̂†R̂

)
. (3.18)

Essentially, the points that contain a charge contribute with a constant elec-
tric field of +g/2 to its right and −g/2 to its left, as is known already for 1D
classical electrodynamics [117].

Substituting the bosonized version of E(x) = Ebulk(x) +Eedge(x) into our
model (3.15), together with the remaining bosonization identities (3.16), we
find

HtS =
∑

η

εη|χη(x)|2η̂†η̂ + 1
2
Π2(x) + 1

2
(∂xφ(x))2

− cµ∆

a
cos
(
2
√
πφ(x)

)
+
g2

2π

(
φ(x) +

1

2
√
π
θ̂

)2

,

(3.19)

where normal ordering with respect to the mass µ is assumed. Here, the
vacuum angle has turned into a dynamical operator that depends, not only
on the constant external field via θ = 2πEext/g, but also on the population
of the edge states

θ̂ = θ + π
(
sign(x)L̂†L̂− sign(x− Ls)R̂†R̂

)
. (3.20)

Equations (3.19) and (3.20) are the main result of this subsection, encap-
sulating several novel features of topological QED2 in a succinct manner,
which we shall try to unveil in the following subsection. However, before
turning into that discussion, let us note that an interesting avenue for future
work would be to consider that the topological zero-modes states are not
bound to fixed boundaries, but instead localized to topological defects [118].
In this situation, these zero modes can be mobile as occurs for the Jackiw-
Rebbi model [114], and the effective vacuum angle will display interesting
dynamical effects on the gauge field that deserve further attention.

3.2.4 Phase diagram of topological QED2

In this subsection, we analyze the consequences of our bosonization results on
the properties of the topological Schwinger model, paying special attention
to θ = π. Let us comment, however, that even in the absence of an external
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electric field θ = 0, the new vacuum-angle operator (3.20) can indeed display
values of 〈θ̂〉gs = π when the half-filled ground-state lies in the SPT phase.
The appearance of an effective vacuum angle in a topological phase recalls the
situation found for 3D time-reversal topological insulators, where the bulk
topological invariant can be shown to play the role of an effective vacuum
angle. Such a vacuum angle modifies the response of the material to external
electromagnetic fields, and leads to the so-called axion electrodynamics [119].

In the present case of topological QED2, we have explicitly shown that the
vacuum angle is not simply a c-number, or an adiabatic classical field [119],
but that it becomes instead a quantum-mechanical operator with its own
dynamics depending on the density of the topological edge states (3.20).
Moreover, our theory incorporates the interplay of this operator with the
1D electromagnetic field, which is not an external field, but rather obeys its
own dynamics. As we show now, the combination of these ingredients can
lead to exotic situations in topological QED2 where non-perturbative effects
typical of higher-dimensional non-Abelian theories, such as charge shielding
and confinement, interplay with the topological features characteristic of SPT
phases.

Let us now focus on discussing the phase diagram of topological QED2

for θ = π and start by identifying the possible phases for limiting regions
of (∆, ga). First of all, we already know from Eq. (3.10) that there is an
SPT phase corresponding to the BDI topological insulator for g = 0, and
∆ ∈ (0, 2). In fact, all the phases should be symmetric about ∆ = 1, such
that one can focus on ∆ ≤ 1 and then extend to the whole parameter range.
The point ∆c = 0 = gc is a critical point that delimits the SPT region, and
corresponds to a massless Dirac fermion that shall interact with the gauge
field as soon as the coupling is switched on g > 0. As a consequence of
the lattice implementation, whereby chiral symmetry is explicitly broken,
the mass of the Dirac fermion will be renormalized due to the interactions.
Accordingly, the critical point will flow with the coupling g from the limiting
value ∆c = 0 to finite values ∆c(g) 6= 0, determining a critical line separating
the SPT phase from another non-topological phase.

To derive a quantitative prediction for this critical line, we focus on
the bosonized Hamiltonian (3.19). Expanding the term that contains the
vacuum-angle operator, one sees that the edge-state densities get coupled to
the bosonic scalar field via Yukawa-type couplings η̂†η̂φ(x). The resulting
Hamiltonian is an analogue of a quantum impurity model [120], where the
edge states play the role of the impurities, and the scalar field represents
the current-carrying excitations of the bulk band. Due to the Yukawa-type
couplings, the edge states will hybridize with the bulk excitations whenever
the bulk band has a finite density of states at their energy εR = εL = 0.
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Accordingly, when the renormalized mass of the scalar particles vanishes
µ = g/

√
π → µ(g,∆) = 0, the edge states will cease to be well-defined local-

ized zero modes, resulting in a topological quantum phase transition. The
solution of µ(g,∆) = 0 will thus determine the critical line ∆c,1(g), and the
region with the ground-state in the SPT phase ∆ ∈ (∆c,1(g), 2−∆c,1(g)).

By shifting the scalar field φ(x)→ φ(x)−〈θ̂〉gs/2
√
π, one finds an effective

potential

V (φ) =
g2

2π
φ2(x)− cµ∆

a
cos
(

2
√
πφ(x)− 〈θ̂〉gs

)
, (3.21)

Approaching the critical line from the SPT phase, the interplay of the ex-
ternal field and the edge states leads to a vacuum-angle operator fulfilling
〈θ̂〉gs = 0 (mod2π), which has no effect on the effective potential. In the limit
of small dimerization |∆| � ga, the sine-Gordon theory reduces to a massive
Klein-Gordon field theory with leading-order mass

µ(g,∆) =
g√
π

(
1 +

2
√
π∆

ga
eγ
)1

2

. (3.22)

According to this expression, the non-interacting critical point ∆c = 0 should
flow to negative values of the dimerization according to the following straight
line

∆c,1(g) = − ga

2
√
π

e−γ. (3.23)

To identify the nature of the phase for dimerizations below the critical
line ∆ < ∆c,1(g), note that the topological contribution to the vacuum angle
is absent since the edge zero modes have merged into the bulk bands. There-
fore, 〈θ̂〉gs = π, and the sign of the non-linearity in the effective potential is
reversed V (φ) = g2φ2(x)/2π + cµ∆ cos (2

√
πφ(x)) /a. Here, the discussion

parallels the treatment of the standard massive Schwinger model [68], and we
find that for dimerizations close to the critical line ∆ . ∆c,1(g), the quadratic
term dominates yielding a ground-state with 〈φ〉s = 0. This phase displays
fermion trapping (sometimes referred to as quark trapping or confinement),
as the spectrum does not display the original charged fermions, but is en-
tirely composed of massive bosonic excitations described by the scalar field
(sometimes referred to as mesons). These bosonic excitations can be under-
stood as bound fermion-antifermion pairs that cannot be widely separated,
and we will refer to this phase as the confined phase (C).

It is interesting to revisit the SPT phase at ∆ > ∆c,1(g) from this per-
spective. In this case, one finds that the spectrum contains states with the
original charged fermions (3.19), and not only the bosonic bulk excitations
interpreted as mesons. However, note that these excitations are not described
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by the fundamental Dirac fermions of the theory, but correspond instead to
the topological zero modes localized to the boundaries of the chain. From
this perspective, starting from a half-filled ground-state, one may create a
fermion and hole at the boundaries of the chain, which are closer in spirit
a pair of heavy probe charges separated by a large distance L. This prop-
erty is typically referred to as charge shielding, as the probe charges are not
subjected to the long-range Coulomb force, and is a different manifestation
of the quark trapping in the bulk [116]. It is intriguing that these analogue
probe charges are self-assembled in the SPT phase due to the energetics and
that, moreover, they do not need to be heavy static particles since the topo-
logical features of the SPT phase guarantees that they will be zero-energy
modes contributing to the vacuum angle.

Finally, well-below the critical line ∆ � ∆c,1(g), the non-linearity of
the potential dominates, yielding a ground-state with 〈φ〉s 6= 0 that sponta-
neously breaks a discrete Z2 symmetry φ(x) → −φ(x). Accordingly, there
should be another critical line ∆c,2(g), such that the ground-state corre-
sponds to the above confined phase for ∆c,2(g) < ∆ < ∆c,1(g), while it lies
in the symmetry-broken phase for ∆ < ∆c,2(g). According to the bosoniza-
tion dictionary, this symmetry-broken phase displays 〈E(x)〉 6= 0, but also
〈Ψ(x)iγ5Ψ(x)〉 6= 0, which is typically referred to as a fermion condensate
(FC). This phase also has a two-fold degeneracy, but it is caused by the
spontaneously broken Z2 symmetry, and not by the zero-energy edge modes
of the SPT phase. Indeed, since these zero modes disappeared already in the
SPT-C transition, the C-FC phase transition is completely analogous to the
phase transition in the massive Schwinger model for θ = π. Using the results
of this well-studied model [76], we conjecture that the second critical line of
the topological QED2 corresponds to

∆c,2(g) = −1

3
ga. (3.24)

Gathering all this information, and considering the symmetry about ∆ =
1, we can draw the qualitative phase diagram of topological QED2 repre-
sented in Fig. 3.3. From the weak coupling predictions, the width of the
region encompassing the non-interacting SPT phase increases as interactions
are switched on (indeed, one can find interaction-induced topological phase
transitions along the semi-transparent arrow of this figure). However, this be-
havior cannot be maintained indefinitely, since the phase should correspond
to the confined phase C at very strong couplings. Therefore, we conjecture
that the critical line ∆c,1(g) will eventually bend, and the SPT phase will
be contained in a finite lobe in parameter space. It would be very interest-
ing to understand if these predictions of the critical lines can be analytically
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Figure 3.3: Phase diagram of topological QED2: The bosonized model (3.19) allows
us to predict three distinct phases: a symmetry-protected topological (SPT) phase,
corresponding to a correlated BDI topological insulator, separated from a confined
phase (C) through a continuous quantum phase transition. This confined phase
is itself separated from a symmetry-broken fermion condensate (FC) by another
continuous phase transition.

recovered by a perturbative Kadanoff-Wilson renormalization group for the
bosonized massive sine-Gordon model [121] and, more interestingly, if they
can be extended to larger gauge couplings g in a systematic fashion that
allows to predict their curvature. We leave this for future, and focus below
on a different numerical approach also based on the renormalization group.

3.3 Topological QED2 via Density-Matrix Renor-
malization Group

3.3.1 ZN topological Schwinger model on the lattice

The goal of this section is to test numerically the above bosonization predic-
tions, exploring additional properties that can complement our understand-
ing of the topological Schwinger model. In order to do so, we will use the
same discretization presented in Sec. 1.2. Thus, we will analyze numerically
the model with a truncated Abelian gauge group to ZN , and extrapolate our
results to the U(1) case of interest by taking the large-N limit in a controlled
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manner.
Let us start by reviewing the Hamiltonian approach to lattice gauge the-

ories for the discrete Abelian gauge group ZN (presented in Sec. 1.2), which
gives access to the properties of compact QED in the large-N limit. For the
massive Schwinger model (3.1), this offers an alternative [29] to the Kogut-
Susskind approach (3.2) based on the Hamiltonian

HZN
mS = a

Ns∑

n=1

(−1

2a

(
ic†nŨncn+1 + H.c.

)
+ms(−1)nc†ncn

+ a(Ṽn + Ṽ †n − 2)
)
,

(3.25)

where we have introduced two types of unitary link operators Ũn, Ṽn that obey
the ZN algebra. Accordingly, instead of using the rotor-angle operators of the
Kogut-Susskind approach (3.2), one uses link operators fulfilling ŨN

n = Ṽ N
n =

I, and Ṽ †n ŨnṼn = ei2π/N Ũn. In analogy to the Kogut-Susskind approach, using
the electric-flux eigenbasis Ṽn|v〉 = v|v〉 with v ∈ ZN , the remaining link
operators act as ladder operators that raise the electric flux by one quantum
Ũn|v〉 = |v + 1〉. The main difference is that, in contrast to the Kogut-
Susskind approach, the ladder operators have a cyclic constraint Ũn|N〉 = |1〉.

We note that these link operators can be defined in terms of the vector
potential and the electric field Ũn = exp{iagAn}, Ṽn = exp{i2π

N
En
g
}. In

this way, the ZN algebra [Ũn, Ṽn] = ei2π/N can be satisfied by imposing the
usual canonical commutation relations [En, Am] = iδn,m/a, which have the
correct continuum limit [E(x), A(y)] = iδ(x− y). Note also that the gauge-
group condition ŨN

n = Ṽ N
n = I requires that the electric-flux eigenvalues of

L̃n = En/g should span σ(L̃n) = {−1
2
(N − 1), · · · , 1

2
(N − 1)}. This yields

σ(L̃n) → Z in the large-N limit, which corresponds to the spectrum of the
rotor operator Ln of the Kogut-Susskind approach. In the same manner,
the eigenvalues of the vector potential should lie in σ(agAn) = {−π(N −
1)/N, · · · , π(N − 1)/N} → [−π, π], corresponding to the basis of the angle
operator Θn in the Kogut-Susskind approach (3.2), and leading to compact
QED2. We remark that, as emphasized in [29], the electric-energy term in
Eq. (3.25) can be substituted by an arbitrary function (Vn + V †n − 2) →
f(Vn) = f †(Vn), and we will focus on f(Vn) = 1

2
g2L̃2

n. In this way the
Hamiltonian is totally equivalent to the model studied in Chapter 1.

In the following, we use this ZN approach to investigate numerically the
phase diagram of topological QED2 by using the density-matrix renormal-
ization group (DMRG) algorithm. In particular, we use it to explore the
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properties of the lattice Hamiltonian

HZN
tS = a

Ns∑

n=1

(−1

a

(
i(1− δn)c†nŨncn+1 + H.c.

)
+
g2

2
L̃2
n

)
, (3.26)

which is the discrete ZN version of the topological Schwinger model with
parameters introduced in Eq. (3.5). In order to take into account Gauss’s
law

Gn = c†ncn +
1

2a
[(−1)n − 1]− 1

a
(L̃n − L̃n−1). (3.27)

we follow the same construction presented in Sec. 1.4.1 for our numerical
implementation in the DMRG-algorithm. This is a very important constraint
that allows us to construct directly the physical Hilbert space of the ZN
model.

3.3.2 Phase diagram of the Z3 topological Schwinger
model on the lattice

SPT phase: order parameters, entanglement spectrum, and edge
states

The simplest non-trivial case studied in our work correspond to N = 3, and
yields the Z3 model (3.26) with three electric-flux levels on each link.

Let us start by introducing the relevant observables to unveil the phase
diagram of the model (3.26) numerically. As an informative case, we will
start by focusing on ∆ = 0.5 while varying the coupling constant g, after
setting a = 1. In order to understand the ground-state properties of our
model, we will study the behavior of the usual electric-field order parameter,
which can be defined as

Σ =
1

Ns

Ns∑

n=1

〈gs|En|gs〉, (3.28)

and of the staggered density, which can be written as

ρs =
1

2
+

1

Ns

Ns∑

n=1

〈gs|(−1)nc†ncn|gs〉. (3.29)

We obtain an approximation to the ground-state |gs〉 using our DMRG algo-
rithm for open boundary conditions, where we keep m = 1000 states in the
iterative diagonalization and coarse graining of a lattice with Ns = 80 sites.
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Figure 3.4: Observables for the Z3 topological Schwinger model: (a) Electric
field order parameter (3.28) as a function of the gauge coupling constant g, for a
dimerization of ∆ = 1

2 a lattice of Ns = 80 sites. (b) Same as (a), but for the
staggered density (3.29). (c) Same as (a), but for the topological correlator (3.30).

In Figs. 3.4(a) and 3.4(b), we represent the above observables for the DMRG
ground-state. As follows from these figures, at small g, the ground-state con-
sists of a superposition of the anti-meson state (with negative electric field
between couples) and the Dirac vacuum (see Fig. 1.4). As one increases the
coupling, the ground state becomes the standard Dirac sea without electric or
matter/antimatter excitations (Σ ≈ 0, ρs ≈ 0). This behavior points towards
a possible quantum phase transition between both ground-states, which will
be proved rigorously in the following sections by making a finite-size scal-
ing analysis of the electric-field order parameter. However, these observables
shed no light on the existence of the SPT phase discussed previously.

To investigate the topological properties of our model and, in particular,
to verify numerically the existence of the SPT phase, we now discuss an alter-
native observable recently introduced in the context of the SSH model [122].
By using the maximally-localized solutions of the fully-dimerized SSH model,
one can define a correlator that can be used to identify the topological phase
of the SSH model, i.e. topological correlator, namely

O
(j)
− =

3

2
〈gs|c†jcj+1 + c†j+1cj|gs〉+ ρj,j+1 −

1

2
(ρj + ρj+1), (3.30)

where ρj = 〈gs|c†jcj|gs〉 are fermion densities, ρj,j+1 = a〈gs|c†jcjc†j+1cj+1|gs〉
represents the density-density correlation, and the site index j must be odd.
By summing over all odd sites of our chain, one obtainsO− = 2

N

∑Ns/2
n=1 O

(2n−1)
− .

We now show that this topological correlator can identify the underlying
SPT phase of the topological Schwinger model. We now present the behavior
of O− for ∆ = 0.5, by varying the gauge coupling g (see Fig. 3.4(c)). This
figure shows a clear sign reversal of the correlator, a behavior that is qualita-
tively analogous to the transition from the topological phase (O− > 0) to the

77



lo
g

l i

�5

�25

�30

SPT C 

Figure 3.5: Entanglement spectrum for the Z3 topological Schwinger model: We
show the first eigenvalues of the reduced density matrix for parameters within the
(left) the symmetry-protected topological (SPT) phase (∆ = 0.5, g = 0.2), showing
an accurate double degeneracy, and (right) the confined (C) phase (∆ = 0.5, g =
5.0).

trivial one (O− < 0) in the non-interacting SSH model [122]. Accordingly,
the region where the ground state is dominated by anti-mesons of Figs. 3.4
(i.e. small g), coincides with an SPT phase, as predicted by our analytical
arguments of the topological Schwinger model in the previous sections (see
Fig. 3.3). As we will show in further subsections below, this topological cor-
relator can be used in combination to the electric-field order parameter to
perform a careful finite-size scaling, and provide a detailed estimate of the
different regions of the phase diagram.

In order to have an alternative confirmation of the topological nature
of this SPT phase, we now study the entanglement spectrum [123]. If we
consider the reduced density matrix of a partition A of our system, which
yields a reduced density matrix ρ̃A = TrB|gs〉〈gs|, where B is the complement
of A; the entanglement spectrum is defined as the set of the eigenvalues of
ρ̃A (in logarithmic scale). As pointed out in [124, 125], the entanglement
spectrum leads to a powerful tool to analyze topological phases, since there
must be an exact degeneracy of the eigenvalues for SPT phases. As shown in
the left panel of Fig. 3.5, for a small gauge couplings g, we find doublets in
this spectrum, thus confirming that our ground-state corresponds to an SPT
phase. On the contrary, this degeneracy is absent in the right panel for a
larger g, which should correspond to the non-topological confined phase (C)
of Fig. 3.3.

As discussed in the previous section, the SPT phase can also be charac-
terized by the presence of edge states. In fact, the two-fold degeneracy of the
entanglement spectrum is also related to the presence of zero-energy edge
modes [125], and the left panel of Fig. 3.5 can be considered as an indirect
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confirmation of the prediction of Sec 3.2.2. In order to have a more direct
numerical evidence, it is possible to extract the wave functions of the zero-
energy edge modes taking by using DMRG ground-states with a different
number of particles.

Let us start by considering the SPT phase in the non-interacting limit
g = 0, where two zero-energy edge modes are present. Since the Hamilto-
nian commutes with the number operator, the Hilbert space can be divided
into sectors with a fixed number of particles. Neglecting small finite-size
corrections to their energies, which will eventually disappear in the ther-
modynamic limit, there will be four degenerate states in the ground-state
manifold: |gsNs−1〉 in the sector with Ns − 1 particles, |ΦL〉, |ΦR〉 in the sec-
tor with Ns particles with the leftmost or rightmost edge modes populated,
and |ΦL,ΦR〉 in the sector with Ns + 1 particles hosting both populated edge
modes. Let now Φ†L represent the operator that excites the leftmost zero-
energy mode, i.e. Φ†L =

∑
n α

nc†n for some α < 1, and analogously for the
rightmost zero-energy mode Φ†R. Accordingly, we can obtain the ground-state
with Ns particles as |ΦL〉 = Φ†L|gsNs−1〉 (or equivalently |ΦR〉 = Φ†R|gsNs−1〉),
and the ground state with Ns + 1 particles as |ΦL,ΦR〉 = Φ†LΦ†R|gsNs−1〉. Us-
ing the DMRG algorithm, we can numerically target the lowest energy state
in sectors with a generic number of particles, and we can thus calculate the
following expectation value

Bn = 〈ΦL,ΦR|c†ncn|ΦL,ΦR〉. (3.31)

Note that in the non-interacting limit, by applying Wick’s theorem, this
observable becomes

Bn = |〈gsNs−1|cn|ΦL〉|2 + |〈gsNs−1|cn|ΦR〉|2 + 〈gsNs−1|c†ncn|gsNs−1〉. (3.32)

Interestingly, given the above expression of the edge operators, the first two
terms of the above expression contain the probabilities associated to the
edge-state wave-functions. These wave-functions can thus be obtained by
calculating numerically

ψ2
n = Bn − 〈gsN−1|c†ncn|gsN−1〉. (3.33)

Recalling that the operators ΦL (ΦR) has support only on even (odd) sites (3.13),
it is possible to reconstruct the amplitude of the left-most (right-most) edge
mode by plotting the quantity ψ2

n as a function of even (odd) n.
We expect that this behavior of the observable (3.31) should hold in

the interacting regime, giving us a method to study the many-body zero-
energy edge modes of the topological Schwinger model. In order to test
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Figure 3.6: Many-body edge states for the Z3 topological Schwinger model: (a)
(main panel) Probability of the wave function of the left-most edge mode for dif-
ferent values of ∆ in the SPT phase (ga = 0.2), extracted from Eq. (3.33) eval-
uated at even sites. (inset) Same for the right-most edge state, extracted from
Eq. (3.33) evaluated at odd sites. (b) Localization length ξ for the zero-energy
edge modes (3.13) as a function of ∆ in the SPT phase.

this conjecture, we explore different values of ∆ in the SPT phase for a
gauge coupling ga = 0.2, and obtain the plots in Fig. 3.6(a), where the
exponential decay from the boundary of the edge modes becomes readily
visible, in agreement with Eq. (3.13). We can fit this behavior with an
exponential function in order to extract the localization length ξ as a function
of ∆. As shown in Fig. 3.6(b) for different system sizes, this quantity is very
small deep into the topological phase, and grows as we approach the critical
points ∆c ≈ 0 and ∆c ≈ 2.

All these numerical results give compelling evidence for the existence of
SPT phases in the topological Schwinger model. Moreover, they also point
to the existence of quantum phase transitions to other possible phases with
different properties in the matter and gauge-field sectors. In the following
section, we build on this evidence, and introduce additional numerical finite-
size scaling studies that allow us to recover the full phase diagram of the
model, testing the predictions of Fig. 3.3.

Critical lines: scaling analysis, entanglement entropy, and central
charges

In order to determine properly the phase diagram of our Z3 model, we start
by performing a finite-size scaling of the SPT order parameter O−. In the
SSH model, the quantum phase transition has critical exponents β = 1/8
and ν = 1. Therefore, we can start to explore the critical behavior of the
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β/ν
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correlator (3.30), calculated for ∆ = 0.5 as a function of the gauge coupling for
various system sizes Ns ∈ {24, 28, 32, 36, 40} (top to bottom). The crossing point
of all curves yields a value of the critical point separating the SPT and C phases of
gca ≈ 1.384. (inset) Universal scaling of the topological correlator within the Ising
universality class ν = 1 and β = 1/8, i.e. data collapse of the curves Nβ/ν

s O−a as
function of N1/ν

s (g − gc)a displayed in the shaded region.

topological Schwinger model for finite gauge couplings by assuming these
values in the scaling relation

N
β
ν

s O− = λ
(
N

1
ν

s (g − gc)
)
. (3.34)

in which λ(x) is a universal function. Therefore, by fixing ∆ = 0.5 and
plotting the quantity Nβ/ν

s O− as a function of g for different values of Ns, we
obtain the behavior of Fig. 3.7.

We note that for g = gc, the value λ(0) becomes independent of the system
size. Therefore, one expects to find a crossing of the curves for different
lengths precisely at the critical point. This is exactly the behavior observed
in the main panel of Fig. 3.7, which allows us to predict a critical point at
gc ≈ 1.384/a. To check the initial hypothesis concerning the values of the
critical exponents β = 1/8 and ν = 1, we analyze the quantity Nβ/ν

s O− as
a function of the argument N1/ν

s (g − gc). In this case, for different system
sizes, we should observe a universal behavior when g ≈ gc (i.e. collapse of the
different curves into a single one). This is exactly what is observed in the inset
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Figure 3.8: Finite-size scaling for the electric order parameter of the Z3 topologi-
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s Σ/g for the electric-field order param-
eter (3.30), calculated for ga = 0.6 as a function of the dimerization for various
system sizes Ns ∈ {24, 28, 32, 36, 40} (top to bottom). The two crossing points
of all curves yield the values of the critical dimerizations of ∆Σ

c ≈ −0.215 and
∆Σ

c ≈ 2.216, showing the symmetry with respect to ∆ = 1.

of Fig. 3.7, confirming in this way the initial hypothesis about the universality
class of the SPT-C phase transition. In the same spirit, we can now fix a
particular value of g, and calculate the topological correlator by varying the
dimerization parameter ∆ (vertical lines in the plane ga − ∆). In contrast
to the previous case, we now extract two critical points ∆O−

c ≈ −0.162 and
∆O−

c ≈ 2.160 for ga = 0.6. As expected from our discussion of Sec. 3.2.4,
these points delimit the area of the SPT phase, and are expected to be
symmetrical with respect to ∆ = 1.

Let us remark that, according to our analytical calculations for the phase
diagram of Fig. 3.3, we expect a quantum phase transition from the fermion
condensate (FC) to the confined phase (C) as a function of ∆ in addition
to the transition SPT-C detected by the parameter O−. As conjectured in
Sec. 3.2.4, this transition should be analogous to the phase transition of the
standard massive Schwinger model. As we showed in Sec. 1.4.2, such a
transition can be numerically detected by the electric field order parameter
Σ (3.28). Thus, by studying the behavior of Σ for ga = 0.6, we obtain the plot
of Fig. 3.8, which shows that the ground state is dominated by mesons for
∆� 0 and ∆� 2 (positive electric flux), and by anti-mesons for ∆ ≈ [0, 2]
(negative electric flux, SPT phase). Following the scheme of the previous
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ga ∆Σ
c ∆Σ

c ∆O−
c ∆O−

c

0.01 0.008 1.995 0.009 1.994
0.05 −0.024 2.030 −0.022 2.028
0.10 −0.064 2.072 −0.062 2.069
0.20 −0.121 2.119 −0.120 2.118
0.60 −0.215 2.216 −0.162 2.160
1.00 −0.257 2.259 −0.051 2.052
3.00 −0.210 2.211 // //

Table 3.1: Critical values of ∆ (related to the two transitions FC-C and
SPT-C) obtained for different values of g. The numerical error is equal to
10−3.

transition SPT-C, we can perform a finite-size scaling analysis with

N
β
ν

s Σ = λ
(
N

1
ν

s (∆−∆c)
)
, (3.35)

where we use the universality class of the massive Schwinger model, which
is the 2D Ising class β = 1/8, ν = 1 [68, 76, 78]. Accordingly, we obtain the
plot in Fig. 3.8, which allows us to detect two critical points ∆Σ

c ≈ −0.215
and ∆Σ

c ≈ 2.216, again symmetrical with respect to the value ∆ = 1.
We can repeat this procedure, using both O− and Σ, to determine the

critical points related to the two transitions SPT-C and FC-C for different
values of g. The resulting values are shown Table 3.1. As can be observed in
the last line of this table, when the gauge coupling g is sufficiently large, we
still observe the FC-C transition, while the SPT-C transition is absent. This
means that the SPT phase disappears for large g, as conjectured in Sec. 3.2.4.

Another necessary ingredient for the universality class of the SPT-C
transition comes from the scaling of the entanglement entropy. In anal-
ogy with the entanglement spectrum, the entanglement entropy S(ρ̃A) =
−Tr [ρ̃A log2 (ρ̃A)] is defined for reduced density matrix of a partition A of
our system ρ̃A = TrB|gs〉〈gs|, where B is the complement of A. According
to conformal field theory (CFT) [73, 126], considering a subsystem A of size
l within the chain with Lc = Ns/2 couples of sites, we expect to observe a
logarithmic scaling of the block entanglement entropy if the system is at a
quantum critical point

SLc(l) =
c

6
log2

[
2Lc

π
sin

(
πl

Lc

)]
+ s0, (3.36)

where s0 is a non-universal constant. As shown in Fig. 3.9(a), we observe
such a scaling for ga = 0.6 and ∆O−

c = −0.162, from which it is possible
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Figure 3.9: Block entanglement entropy of the Z3 topological Schwinger model:
(a) Scaling of the entanglement entropy of a subsystem of size l on the critical
point ∆

O−
c = −0.162 and ga = 0.6. Through a logarithmic fit (3.36), it is possible

to extract the central charge c = 0.506. (b) Same as (a), but for g = ∆ = 0.

to extract the central charge through a logarithmic fit. We obtain the value
c = 0.506, in agreement with the central charge of 2D Ising universality class
c = 1

2
. Interestingly, by switching off the gauge coupling g = 0, we obtain the

entanglement entropy of Fig. 3.9(b) ∆O−
c = 0, which yields c = 1.059 through

the logarithmic fit. This result is in agreement with the expectation for the
critical point of the non-interacting SSH model, which can be described by
the CFT of a massless Dirac fermion with c = 1. Accordingly, the c = 1 CFT
of the non-interacting SSH model splits into a couple of CFTs with c = 1

2
,

each of which controls the criticality of the SPT-C and C-FC quantum phase
transitions.

Putting together all these numerical results, we obtain the phase diagram
of the Z3 topological Schwinger model shown in Fig. 3.10(a), which is in
qualitative agreement with the analytic predictions for topological QED2

described in Sec. 3.2, and encapsulated in the phase diagram of Fig. 3.3.
Such an agreement is quite remarkable given the fact that Z3 is still far from
the U(1) gauge group used to derive our predictions of topological QED2.
However, there are other situations where such small discrete Abelian gauge
groups have turned out to be relevant even for non-Abelian Yang-Mills gauge
theories [127]. In the following section, we will show that the resemblance
with the U(1) predictions is not only qualitative, but also quantitative as the
large-N limit is considered.
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Figure 3.10: Numerical phase diagram for ZN topological Schwinger models: (a)
Phase diagram of the Z3 topological Schwinger model, including the symmetry-
protected topological (SPT) phase, the confined (C) phase, and the fermion con-
densate (FC). We also depict the c = 1 central charge of the CFT for the non-
interacting critical point (orange circle), and its splitting into two c = 1

2 central
charges of the CFTs describing the long-wavelength behaviour in the SPT-C and
C-FC quantum phase transitions. (b) Phase diagrams of different ZN models: the
extension of the SPT phase grows as N is increased.

3.3.3 Large-N phase diagram and topological QED2

In order to access properly the large-N limit of the ZN topological Schwinger
model (3.26), we use the DMRG algorithm to analyze the Z5 and Z7 topo-
logical Schwinger models. We observe analogous phase transitions that lie
in the same universality class as the ones described for the Z3 case, albeit
taking place at different critical points. Repeating the same procedure car-
ried out for the Z3 case, we determine the critical points of the Z5 model
and the Z7 model, resulting in the phase diagrams of Fig. 3.10(b). Here,
one can observe that the extension of the SPT phase grows with N while,
simultaneously, the spacing between the critical lines becomes smaller.

We can quantify this effect by studying the scaling with N of the critical
points gc fixing ∆ = 1. By fitting the critical points with an exponential
function gc(N)a = Ae−B/N + C, as shown in Fig. 3.11, we obtain the fitting
parameters A ≈ 2.323, B ≈ 3.177, C ≈ 0.656. In this way, we can extract
a finite critical value in the N → ∞ limit gc(∞)a = A + C ≈ 2.979, which
shows that the SPT phase survives to considerably strong gauge inetractions.
Similarly, we can fit the critical points ∆O−

c fixing ga = 0.2 as a function of
N , considering the lower of the two symmetrical critical lines. In this case,
we obtain the extrapolation ∆c(∞) ≈ −0.033. In light of this result, we can
conclude that the SPT phase has a finite region of stability in the presence
of gauge couplings g > 0, which is in accordance to the analytical results
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Figure 3.11: Critical points gc(N) separating the SPT from the confined phases
for different values of N : the solid line represents the function Ae(−B/N) + C that
fits the points and gives a finite value of gc(∞)a ≈ 2.979 (marked with a red star)
in the limit N →∞ indicating the stability of the SPT phase.

obtain for the U(1) topological Schwinger model. In this sense, our numerical
results manifest the expectation that the ZN theory yields the U(1) LGT in
the limit N →∞, in which the electric field can assume any continuous value
(Zn → U(1)).

In order to take one step further in this comparison, and provide a quan-
titative benchmark of the analytic U(1) results of the previous section, we
now analyze the slope of the two critical lines (SPT-C and FC-C) for small g.
This will allow us to test the predictions for ∆c,1(g) and ∆c,2(g) of Sec. 3.2.4
based on bosonization (see Eqs. (3.23) and (3.24)). For each ZN model, we
have calculated the critical points ∆Σ

c and ∆O−
c for ga = 0.01, 0.05, 0.10, 0.20,

and performed a linear fit to extract the different slopes m(N). We obtain
the values in Table 3.2, which can be fitted to a function of N with an expo-
nential behavior of the form m(N) = ζe−(τ/N) + κ. This allows us to obtain
an extrapolation of the slopes of the two critical lines (SPT-C and FC-C) in
the limit N →∞

m1(∞) = ζ1 + κ1 = −0.1625

m2(∞) = ζ2 + κ2 = −0.3034.
(3.37)

These values are in remarkable agreement with the expected ones derived in
Sec. 3.2.4 for the U(1) limit (respectively −e−γ/(2√π) ≈ −0.1584 and −1/3).
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Z3 Z5 Z7

∆Σ
c −0.67475248 −0.54405941 −0.48118812

∆O−
c −0.66831683 −0.54158416 −0.46237624

Table 3.2: Different slopes for small g of the two critical lines.

This numerical results thus point to the general validity of the proposed
topological QED2 as the continuum model describing the role of SPT phases
in lattice gauge theories.

3.4 Conclusions

In this Chapter, we have explored the interplay of global and local sym-
metries, topology, and many-body effects in symmetry-protected topological
phases of matter that arise naturally in lattice gauge theories. In particular,
we have introduced an alternative discretization of the massive Schwinger
model that can host a correlated SPT ground-state, where the many-body
effects arise due to the interactions mediated by the gauge bosons. Using
bosonization, we have shown that the underlying topology of the SPT phase
can modify the vacuum θ angle, and thus lead to a richer phase diagram in
comparison to the standard Schwinger model. These bosonization predictions
have been carefully benchmarked by numerical DMRG, which has allowed
us to calculate relevant fingerprints of the correlated SPT phase, such as
the entanglement spectrum and many-body edge states. Moreover, we have
presented a thorough finite-size scaling analysis of the electric-field order pa-
rameter and a topological correlator, which yield concrete predictions of the
phase diagram that are in agreement with the bosonization results.

Our work opens an interesting route to study topological phases of matter
in gauge theories, either using some of the theoretical tools hereby developed,
or via cold-atom experiments. Hopefully, these results will stimulate further
work in this subject, exploring interesting questions such as the interplay of
topological features with non-perturbative effects in LGTs, such as screening,
confinement, and string-breaking.
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Chapter A

Additional information on the phase transition

We give here additional details on the phase transition, as well as numerical
figures, for different Zn-models.
Let us start with n = 3. For t = 0, the transition is sharp for every system
size, as can be seen in Fig. A.1. As explained at the end of Sec. 1.4.2, the
system undergoes here a first order phase transition between the Dirac sea
and the mesonic state shown in Figs. 1.5(a) and 1.5(b). Our numerical find-
ings for mc(t) as a function of t are summarized in Table A.1.
Our numerical findings for mc(t) for the Z5 and Z7-models are given in Ta-
bles A.2 and A.3, respectively. Those for the Z2, Z4, Z6 and Z8-models are
reported in Tables A.4, A.5, A.6, and A.7, respectively.
All the values given in the Tables are plotted in Fig. 1.15, to yield the fit in
Eq. (1.44).
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Figure A.1: Z3-model. Σ as function of m at t = 0, for different system size L.
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t 0.000 0.523 1.047 1.571 2.094 6.283 10.472 20.944 41.888 62.832 104.720
mc −1.047 −1.340 −1.571 −1.770 −1.948 −2.927 −3.596 −4.767 −6.329 −7.449 −9.115

Table A.1: Z3-model. Critical values mc(t) for different values of t. The error
is always 0.025.

t 0.000 1.257 2.513 3.769 5.026 15.080 25.133 50.265 100.531 150.796
mc −0.628 −1.181 −1.483 −1.734 −1.935 −3.171 −3.941 −5.298 −7.077 −8.309

Table A.2: Z5-model. Critical values mc(t) for different values of t.The error
is always 0.025.

t 0.000 8.078 24.235 40.392 80.784 161.568
mc −0.448 −1.971 −3.110 −3.797 −5.299 −6.883

Table A.3: Z7-model. Critical values mc(t) for different values of t. The error
is always 0.025.

t 0.000 0.196 0.392 0.589 0.785 2.356 3.927 7.854 15.708 23.562 39.269
mc 0.000 0.012 0.013 0.014 0.016 0.035 0.062 0.122 0.239 0.361 0.601

Table A.4: Z2-model. Critical values mc(t) for different values of t. The error
is always 0.025.

t 0.000 0.884 1.767 2.651 3.534 10.603 17.671 35.342 70.685 106.029
mc 0.000 0.491 0.795 1.039 1.233 2.403 3.244 4.887 7.439 9.581

Table A.5: Z4-model. Critical values mc(t) for different values of t. The error
is always 0.025..

t 0.000 1.636 4.909 6.545 19.635 32.725 65.449 130.889
mc 0.000 0.635 1.355 1.577 2.925 3.959 6.093 9.614

Table A.6: Z6-model. Critical values mc(t) for different values of t. The error
is always 0.025.

t 0.000 9.621 28.863 48.106 96.211
mc 0.000 1.809 3.309 4.541 7.062

Table A.7: Z8-model. Critical values mc(t) for different values of t. The error
is always 0.025.
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Chapter B

Finite size scaling and large-n limit

The question about how our lattice Zn model converges to the U(1) contin-
uum model was theoretically studied in [29] and then thoroughly checked via
numerical simulations in Sec. 1.6. There we noticed that indeed one recovers
the Schwinger model for QED in 1 + 1 dimensions, obtaining a good approx-
imation already for lattice sizes of order of about 50 sites and for n = 3. In
this appendix we give some additional details on the numerics and on the
finite-size and large-n analysis we have performed for the time-dependent
simulations.

Numerical precision. All simulations for the real-time dynamics have
been performed with a time-dependent DMRG (t-DMRG) code, which is a
well-established method for studying dynamical properties of quantum sys-
tems in one dimension [99]. The time-evolution is based on a Runge-Kutta
4th order scheme, with a time step of δ = 0.01. We implemented the initial
state for the time-evolution by calculating the ground-state of two different
Hamiltonians: i) for the pair production analysis, we obtained the vacuum
state (see Fig. 1.4) by using the Hamiltonian (2.1), setting t = 0 and large
values of m and g, i.e. m = 5, g = 3; ii) for the string breaking mechanism,
we added to the aforementioned Hamiltonian localized electric field terms
Ex,x+1 on each link in which we want to create the initial string. In our sim-
ulations, we used a variable number of DMRG-states, up to 1200, in order
to keep the truncation error below 10−6 at each time step.

Spontaneous pair production. To study finite size effects in simulating the
spontaneous pair production, we have repeated our simulations for different
chain sizes (N = 16, 20, 24, 28, 32, 36, 40), in order to extract the infinite size
limit of ρ(t). For example, Fig. B.1(a) shows the behaviour of ρ(t) close to
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Figure B.1: Z3-model. Finite size analysis of the particle density, for m = 2.0: (a)
behaviour of ρ(t) close to its first maximum; (b) scaling with the chain size N of
ρ(t0 = 0.52); (c) time evolution of ρ∞(t).
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Figure B.2: Contour plot of ρ∞(t) for (a) Z5-model and m ∈ [−5.0,+5.0], (b)
Z7-model and m ∈ [−2.0,+1.0]. Notice that in the latter case we have reduced the
range of the mass since numerical simulations are computationally cumbersome.

its first maximum, for m = 2.0 and different chain sizes. We find that, at all
instants of time t0, we can estrapolate its infinite size limit ρ∞(t0) according
to the following fit:

ρ(t = t0) = ρ∞(t0)− β(t0)

N
. (B.1)

An example, for m = 2.0 and t0 = 0.52 is shown in Fig. B.1(b), for which
we get ρ∞(t0) = 0.2175 ± 0.0001 and β(t0) = 0.1703 ± 0.0001. The time
evolution of ρ∞(t) is given in Fig. B.1(c).

Also, we have repeated the same simulations in the case of Z5 and Z7. In
Fig. B.2(a) and Fig. B.2(b) we show the contour of ρ∞(t) in the whole range
of the quenched mass m ∈ [−5,+5], similarly to what we have done in Fig.
2.4 for the Z3-model. We see a very similar behaviour.

Pair production in an external field. To evaluate finite-size effects in the
pair production rate with external field, we have repeated the simulations for
N = 50, 60, 70, 80, 90 while, to check the large-n limit to see if we can reason-
ably approximate the U(1) limit, we have performed simulations also for the
Z5 and the Z7 models. The results are shown and compared with Schwinger
formula in Fig. B.3(a) and Fig. B.3(b). Even if we pushed the simulations
to the maximum capability of our computers, it is evident that our numerics
still suffer from strong finte-size and finite-n corrections. However, the data
follow a pattern that is qualitatively in agreement with the predictions of the
continuum U(1)-model and shows the correct scaling. Thus we can conclude
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Figure B.3: (a) Numerical results for ρ̇ in the Z3 model as function of ε, for different
chain sizes N ; the continuous result of Eq. (2.11) is reported for comparison. (b)
Numerical results for ρ̇ as function of ε for different chain sizes Zn models (fixed
N = 90) and comparison with the continuous result of Eq. (2.11).

that indeed we are describing the physics of the Schwinger model.
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