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ABSTRACT 

 

R-loops are non-canonical DNA structures consisting of a DNA-RNA hybrid and a displaced 

ssDNA. R-loops can be structurally compatible with G-quadruplexes, that are secondary DNA 

structures composed by three stacked tetrads of guanosine. G4s stabilization and R-loops 

accumulation in cells have been associated with genomic instability and DNA damage. Here, 

through bioinformatic analysis of genomic R-loop maps and the development of a specific tool 

to better annotate R-loop regions to gene, we propose that stabilization of G4 structures with 

specific ligands leads to accumulation of DNA damage and genome instability in cancer cells 

and that this process is mediated by R-loop stabilization. Moreover, we found that G4 ligand 

pyridostatin stimulates formation of micronuclei, a hallmark of genome instability. 

Micronuclei accumulation has been associated with innate immune response triggering 

through cGAS/STING pathway activation. Activation of this pathway leads to the expression 

of cytokines, interferons and interferon-stimulated genes. Innate immune system modulation 

has been proposed as a promising therapeutic strategy for cancer treatment. Here, through 

analysis of RNA-seq data, we demonstrate that pyridostatin may induce an innate immune 

stimulation through micronuclei induction in cancer cells. Moreover, to clarify the role of 

cGAS/STING pathway and the effects of its perturbation in human tumor tissues, we analyzed 

mutations and expression levels of genes involved in this pathway across 31 cancer types and 

~7800 tumor samples from The Cancer Genome Atlas (TCGA). Alterations in mutation status 

or expression in these genes have been related with innate immune response activation and 

patient survival and other immune tumor microenvironment features. Our findings indicate 

that these genes are rarely mutated in human cancers, while their expression may affect the 

interaction of the tumor with host immune cells affecting disease progression and patient 

survival. 
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1. INTRODUCTION 

 

1.1 Non-B DNA structures: 

 

The canonical right-handed, double helical form of deoxyribonucleic acid (DNA), known as 

B-DNA, is the most common DNA secondary structure found in cells. After the discovery of 

this structure (Watson and Crick, 1953), many other DNA conformations were characterized 

in a biological relevant context, such as G-quadruplexes (Gellert, Lipsett, & Davies, 1962) and 

R-loop (Richardson, 1975), highlighting that nucleic acids can form highly dynamic secondary 

structures, which might have a role in cellular processes. 

 

1.1.1 R-loop 

 

R-loops are composed by a DNA:RNA hybrid duplex and a displaced single DNA strand 

(Reaban et al., 1994) (Figure 1-1). R-loops are a mainly co-transcriptional event and the 

mechanism of their formation is explained through the “thread-back” model: during 

transcription, DNA:RNA hybrid formation is due to the re-annealing of nascent RNA on 

template DNA. This model is consistent with crystallographic and biochemical evidence 

showing that RNA polymerases actively separate the template DNA strand from the nascent 

RNA, which exit from the RNA polymerase through two distinct channels (Westover, 2004). 

 

 

Figure 1-1 Schematic representation of R-loop structure. Image licensed under the Creative Commons 

Attribution 3.0 Unported license. 
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Over the years, many studies explained that R-loop structures forms with different 

efficiency depending on:  

a. DNA topology: one of the major favouring event of R-loop formation is the 

negative supercoiling of DNA that occurs behind the elongating RNA 

polymerase (Drolet et al., 1994). In fact, DNA topoisomerase activity, which 

resolves the negative supercoiling of DNA, can prevent R-loop formation as 

demonstrated in vitro and in E. coli (Phoenix et al., 1997). Recent studies in 

human cancer and yeast cells highlight how eukaryotic DNA topoisomerase I 

can regulate R-loop dynamics depending on the genomic context of R-loop 

formation(El Hage et al., 2014; Manzo et al., 2018). 

b. Sequence composition: it has been reported in in vitro studies how the 

presence of guanosine clusters in the starting region of R-loop results in a highly 

efficient production of this structure (Roy and Lieber, 2009). This is due to the 

fact that G-rich-RNA:DNA hybrids are more stable than DNA:DNA duplexes with 

the same sequence (Ratmeyer et al., 1994). More recently, it was reported that 

CpG islands, which are the most common mammalian class II promoters and 

can have an asymmetry in the distribution of guanine and cytosines between 

the two strands (property known as “GC-skew”), are more prone to form R-

loop (Ginno et al., 2012). 

These findings are consistent with the fact that R-loop structures form prevalently at 

transcription start and termination sites of active genes, characterized by high GC-skew (Ginno 

et al., 2013). 

Several factors can regulate R-loops, in particular helicases, such as Bloom, Senataxin and 

Acquarius, are known to resolve the hybrid duplex of R-loops (Chang et al., 2017; Skourti-

Stathaki et al., 2011; Sollier et al., 2014). In addition, R-loop hybrid structure can be degraded 

by the action of RNAseH enzymes (Wahba et al., 2011), which are nucleases specific for RNAs 

annealed to a DNA strand. In human, two such RNases exist: RNaseH1 and RNaseH2, which 

can both resolve R-loop hybrids (Wahba et al., 2011). Unscheduled R-loop formation can 

indeed be rescued by overexpressing RNAseH1 in mammalian cells (Domínguez-Sánchez et al., 

2011). 
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1.1.1.1 R-loops as transcriptional regulator 

 

While for many years R-loops were considered by-products of the transcription process, 

many evidences of their involvement in different cellular processes have been reported. Since 

gene promoters and terminators are a hotspot of R-loop formation, their involvement in 

transcriptional regulation was then easily hypothesized. In fact, R-loops can favour 

transcription through protecting promoters from methylation (Grunseich et al., 2018) or 

preventing transcriptional repressor binding (Chen et al., 2015). Furthermore, a role for R-

loops in transcription termination has been demonstrated (Skourti-Stathaki et al., 2011). R-

loop formation in G-rich regions in proximity of the poly(A) signal causes RNA polymerase II 

pausing, whereas R-loop resolution by senataxin and RNA degradation by Xrn2 exonuclease 

allow RNAPolII transcription termination. Moreover, at transcription terminator sites of some 

genes, R-loop formation can induce repressive chromatin remodelling that favours RNA PolII 

pausing and transcription termination (Skourti-Stathaki et al., 2014). 

 

1.1.1.2 R-loops as genomic threat  

 

While in determined circumstances R-loops have an important role in mediating 

physiological processes, on the other hand their unscheduled formation can be a source of 

DNA damage and genome instability. One of the main example of mechanisms of DNA damage 

in which R-loops are involved is the “transcription-replication conflict”, which occurs when the 

transcription machinery collides with a replication fork. In fact, it has been demonstrated, in 

bacteria, in yeast and in human cell lines, that R-loop mediated genome instability can occur 

during S phase (Gan et al., 2011; Wellinger et al., 2006). Moreover, it was observed that the 

severity of damage caused by transcription replication conflicts depends on their orientation: 

while “head-on” conflicts favour R-loop formation and lead to more severe genomic 

instability, co-directional conflicts are resolved by replicative helicases that remove R-loop 

structures (Hamperl et al., 2017) (Figure 1-2). These two types of conflicts can specifically 

activate DNA damage responses mediated by either ATM or ATR kinases. 
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Figure 1-2 Schematic representation of R-Loop involvement in Transcription-Replication Conflicts. 

Adapted from Crossley et al., 2019. Image licensed by Elsevier and Copyright Clearance Center (License 

n. 4698220460707).  

 

While, as reported previously, R-loop presence may favour transcription event in 

particular promoter condition, it has also been reported that in particular condition R-loop 

may repress transcription (Bonnet et al., 2017; Hamperl et al., 2017). 

Unscheduled formation of R-loop has been associated with a large number of pathologies. 

Often, the loss of genes the function of which helps to prevent or resolve R-loop structures, 

like BRCA2 (Shivji et al., 2018), senataxin (Becherel et al., 2015), TDP1 (Cristini et al., 2019), 

TREX1 and RNaseH2 (Lim et al., 2015), TDRD3-TOP3B complex (Yang et al., 2014) causes 

different diseases such as cancer, neurodegeneration and immune related syndromes. 

 

1.1.1.3 R-loop detection 

 

Genomic R-loop detection is usually obtained through S9.6 antibody that specifically 

recognizes DNA:RNA hybrids (Boguslawski et al., 1986). This antibody can be used for both 

immunofluorescence microscopy and immunoprecipitation, a technique known as DNA:RNA 
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ImmunoPrecipitation or DRIP (Ginno et al., 2012). One of the first genome-wide R-loop 

detection method (DRIP-seq), which is still broadly used, is based on the DRIP protocol 

followed by next generation sequencing (Ginno et al., 2012). In recent years, many variant 

techniques were derived from the original DRIP to map genomic R-loops. Most of these 

variants have improved the first protocol, such as S1-DRIP-seq (Wahba et al., 2016), RDIP-seq 

(Nadel et al., 2015), ssDRIP-seq (Xu et al., 2017). Other methods are based on potassium 

permanganate footprinting (Kouzine et al., 2017) cytosine deamination by bisulphite or a 

catalytically inactive RNAseH to recognize the RNA:DNA hybrid. 

The most relevant techniques are: 

• DRIP-seq (Ginno et al., 2012): as already said, this technique uses S9.6 antibody 

to immunoprecipitate DNA:RNA hybrids regions. Before immunoprecipitation 

genomic DNA is gently extracted from cells, to avoid, R-loop disruption and 

fragmented through restriction enzyme digestion. After immunoprecipitation 

recovered DNA is sequenced (Figure 1-3). The principal disadvantages of DRIP-

seq are the lack of R-loop strandness information and the low resolution 

(usually kilobases) of R-loop signal compared to other techniques. A close 

variant of the DRIP protocol, which includes a sonication step of genomic DNA 

instead of a restriction enzyme digestion (Halász et al., 2017), has an improved 

resolution of R loop peak. 

• DRIPc-seq (Sanz et al., 2016): this technique is an improvement of the DRIP-seq 

protocol in which after DNA:RNA immunoprecipitation, RNA strand is 

recovered, retrotranscribed and sequenced. Although the protocol is more 

complex compared to DRIP-seq protocol, this method provides a higher 

resolution signal, and the strandness information of the R-loop.  

• Bis-DRIP-seq (Dumelie and Jaffrey, 2017): bisulphite-DNA-RNA 

immunoprecipitation sequencing is another improvement of DRIP-seq protocol 

in which bisulphite is used to convert cytosine to uracil residues in single strand 

DNA of the R-loop. This allow to recognize R-loops region with strand 

specificity. 
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• DRIVE-seq (Ginno et al., 2012): DNA:RNA in vitro enrichment (DRIVE) 

sequencing was the first method that does not rely on S9.6 capture of R-loop. 

This technique uses a catalytically inactive RNASEH1 that binds to DNA:RNA 

hybrid structure to perform an in vitro pull-down assay. This method can be 

useful as to validate S9.6-captured R-loops, since it is based on a different 

isolation approach. 

• R-ChIP-seq (Chen et al., 2017): This method uses the catalytically inactive 

RNASEH1 to recognize R-loops, but differently from DRIVE-seq, this enzyme is 

expressed in cells to allow the in vivo capture of R-loop and then a chromatin 

immunoprecipitation is performed. 

 

 

Figure 1-3 Workflow of DRIP (DNA:RNA Immunoprecipitation) sequencing experiment. Image licensed 

under the Creative Commons Attribution-Share Alike 3.0 Unported license. 
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Despite of the variety of techniques to map R-loop over the years, DRIP-seq remains the most 

used in studies that involves genomic R-loop detection, due to the easier set up compared to 

other methods. 

 

1.1.2 G-quadruplexes 

 

Since R-loop formation is favoured by guanosine-rich regions, it was demonstrated in vitro 

that displaced DNA strands of R-loop can harbour G quadruplex structures (Duquette et al., 

2004). 

G-quadruplexes (G4s) are secondary DNA structure composed by three stacked tetrads of 

guanosines (Gellert et al., 1962) (Figure 1-4). While the most common G4 structure is 

composed by a single strand of DNA (intramolecular G4), they can also be formed by more 

than one strand of DNA (intermolecular) and even by an RNA and a DNA strands at the same 

time (Xiao et al., 2013). 

 

 

Figure 1-4 Schematic representation of a guanosine tetrads (left) and of a intramolecular G-quadruplex 

composed of three stacked tetrads (right). Image licensed under the Creative Commons Attribution-

Share Alike 2.5 Generic license. 
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1.1.2.1 G-quadruplex detection 

 

As G4 structures are highly polymorphic, depending mainly on the strand involved and the 

size of sequence loops between two quartet guanines (Kwok and Merrick, 2017), the 

prediction of G4 formation and stability in a given sequence is not straightforward and has 

been proven difficult. Nevertheless, based on a defined guanosine motif sequence, genomic 

regions with the potential to form G4s can be identified using in silico motif search algorithms. 

The defined generic G4 motif is formed by four stretches of 3-5 guanines separated by 1-7 

nucleotides:  

G(3−5)-N(1-7)-G(3−5)-N(1-7)-G(3−5)-N(1-7)-G(3−5) 

 

During the last years, other more refined sequence detection tool were developed, 

based on Markov window model, such as Quadparser (Huppert and Balasubramanian, 2005), 

or on other parameters like G-richness and G-skewness of the sequence, such as G4hunter 

(Bedrat et al., 2016). While the number of G4 promoting sequences on the human genome 

can vary on the base of the tool used, all the tools confirmed that G4s are not randomly 

distributed in mammalian genomes, and are particularly enriched at telomeres, promoters, 

transcription terminations and replication origins. 

To confirm all the in-silico findings, different methods were developed to recognize G4 

structures in vivo and genome-wide. In particular a specific antibody, called BG4, was 

developed (Biffi et al., 2013), which has been successfully used both for visualization of G4s 

by immunofluorescence microscopy and for determination of G4s along the genome by 

chromatin immunoprecipitation technique and next generation sequencing (Hänsel-Hertsch 

et al., 2016; Mao et al., 2018) (Figure 1-5). G4-ChIP data on human cell lines have allowed to 

get more insight on G4 localization along the genome, and suggested that G4s are localized in 

many regulatory elements, like highly expressed gene promoters, such us the proto-oncogene 

MYC (Hänsel-Hertsch et al., 2016; Sun and Hurley, 2009). 

Moreover, another genome-wide approach, based on the polymerase stop assay (a 

technique based on the inhibition of DNA polymerase activity by a stable secondary structure 

of the DNA template) and next-generation sequencing was developed and used to map G4 
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regions in genomic DNA in vitro (Chambers et al., 2015) (Figure 1-5). This technique allowed 

to identify G4s formed in human genome stabilized by either a cation (K+) or pyridostatin (a 

specific ligand of G4s). Data produced with this methodology, which has been further 

improved recently (Marsico et al., 2019), lead to the development of Quadron, a tool based 

on machine learning approach, that on the base of known G4 structure sequences, can predict 

G4 presence in any other DNA genomic sequence (Sahakyan et al., 2017). Combination of G4-

seq techniques and prediction tools allowed to determine G4 localization on genomic DNA of 

12 different species (Marsico et al., 2019). 

 

 

Figure 1-5 Schematic principle of G4-seq (left) based on DNA polymerase stalling at G4s, and G4 ChIP-

seq (right), that takes advantage of BG4 antibody to recognize G4 structures. Adapted from Hänsel-

Hertsch et al., 2017. Image licensed by Springer Nature and Copyright Clearance Center (License n. 

4698220569761). 

 

Thanks to these efforts, more than 700,000 G4 promoting regions were identified in the 

human genome. The determination of genomic localization of G4 structures allows to further 

investigate their interplay with other non-canonical structures (such as R-loops) and to 

characterize their role in genomic regulatory regions. 
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1.1.2.2 G-quadruplexes function 

 

In recent times, a growing interest has emerged on G4 dynamics and their involvement in 

cellular processes such as transcription and DNA replication. G4s were reported to be enriched 

upstream of many gene transcription start site and in nuclease hypersensitive regions 

(Huppert and Balasubramanian, 2007), suggesting a potential role in transcription regulation. 

Moreover, they have been associated with two transcription-associated helicases (XBP and 

XPD), the ability of which to bind and resolve G4s has been demonstrated (Gray et al., 2014). 

While G4s were reported to efficiently inhibit transcription at some loci (Figure 1-6), like in c-

Myc promoter (Siddiqui-Jain et al., 2002), more recently G4s were observed at highly 

transcribed gene promoters and their stabilization have been associated with increased 

transcriptional activity (Hänsel-Hertsch et al., 2016). Furthermore, their presence was 

correlated with CpG island hypomethylation through inhibition of DNMT1 (a DNA 

methyltransferase) activity (Mao et al., 2018) (Figure 1-6). 

 

 

Figure 1-6 schematic representation of G-quadruplex effects during replication and transcription. G4s 

are involved in polymerase stalling in replication forks. During transcription, G4s may have different 

roles depending on their localization. They can cause RNA polymerase stalling, leading to transcription 

block, or protect DNA from factors that methylate DNA, favouring gene expression. Adapted from 

(Maizels, 2015). Image licensed by John Wiley and Sons and Copyright Clearance Center (License n. 

4698220652919). 

 

Another process in which G4s are involved is DNA replication. As mentioned above, DNA 

polymerase stall at G4 structures, that can then cause replication arrest (Figure 1-6). Many 

helicases can resolve these structures to ensure proper replication fork progression. Two of 



14 
 

these, BLM and WRN, are involved in telomere maintenance. Mutations of these genes (which 

cause Bloom syndrome and Werner syndrome, respectively) lead to G4 accumulation at 

telomeres and genome instability (Crabbe et al., 2004; Drosopoulos et al., 2015; Sun et al., 

1998). Other helicases operate at internal genomic region, such as FANCJ, which mutations 

can cause chromosomal instability, Fanconi anaemia and some breast and ovarian cancer 

types (Brosh and Cantor, 2014). 

 

1.1.2.3 G-quadruplexes binders 
 

In the last 30 years, around 1000 different molecules that recognize and stabilize G4s were 

developed. Many of them were initially developed to target G4 structures at telomeres. 

Among all these compounds, one of the most used G4 binder is pyridostatin, or PDS (Rodriguez 

et al., 2008) (Figure 1-7). Reported effects of PDS treatment in cancer cell lines are DNA 

cleavage accumulation, cell cycle arrest and activation of DNA damage response (Rodriguez et 

al., 2012). Interestingly, long time treatment induces PARP1 cleavage and apoptosis of cancer 

cells. Moreover, in cancer cells lacking BRCA1, BRCA2 or RAD51 (involved in homologous 

recombination repair) researchers have observed an increased G4 formation, which is 

exacerbated by PDS suggesting its potential role in cancer therapy as a cytotoxic compound 

(Zimmer et al., 2016). 

 

 

Figure 1-7 Pyridostatin (4-(2-Aminoethoxy)-N2,N6-bis[4-(2-aminoethoxy)-2-quinolinyl]-2,6-pyridine-

dicarboxamide) chemical structure. 
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Another selective compound developed to specifically bind G4s is BRACO-19, designed 

to efficiently target G4s at telomeres and inhibit telomerase activity. Braco-19 derivatives 

have been proposed as potential anti-telomere agents in therapeutic approaches against 

human cancers (Read et al., 2001) (Figure 1-8). 

 

 

Figure 1-8 BRACO-19 (N,N′-(9-(4-(Dimethylamino)phenylamino)acridine-3,6-diyl)bis(3-(pyrrolidin-1-yl) 

propanamide)) chemical structure. 

 

At the University of Bologna, another G4 stabilizer, called FG (Figure 1-9), was recently 

developed along with several other analogues in a hydrazine series, which have been shown 

to specifically recognize and stabilise G4s in different human cancer cell lines (Amato et al., 

2016), suggesting a potential role in cancer therapy, as previously described compounds. 

 

 

Figure 1-9 FG ((2E,2'E)-2,2'-((2,8-diphenyldiimidazo[1,2-a:1',2'-c]pyrimidine-3,9-diyl)bis(methanylyli-

dene))bis(hydrazine-1-carboximidamide)) chemical structure. 
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1.2 Innate immune response in cancer 

 

Recently, the development of innovative therapeutic strategies for cancer treatment 

focused on promoting a systemic immune response against the tumour. Results of this 

emerging field lead to the introduction of clinically approved or potential “T-cell focused” 

therapies, like PD-1 targeting with antibodies that enhance T-cell response (Okazaki and 

Honjo, 2007), anticancer vaccines that recognizes neoantigens expressed by cancer cells 

(Hollingsworth and Jansen, 2019) or infusion of engineered T-cells with chimeric antigen 

receptors (CAR T-cells) to specifically recognize cancer cells (Kalos et al., 2011). 

However, successfully T-cells activation required a previous induction of innate immune 

response processes (Medzhitov and Janeway, 1999). Tumour cells recognition by the innate 

immune response machinery does not rely on anti-cancer specific sensors but makes use of 

pathways that are also used to recognize external pathogens, like bacteria and viruses. One of 

the main pathways involved in innate immunity, which is based on sensing cytoplasmatic 

nucleic acids, is the cGAS/STING pathway. 

 

1.2.1 cGAS/STING pathway 

 

The cGAS/STING pathway main actors are “Cyclic GMP-AMP synthase” (cGAS) (Sun et al., 

2013) and “Stimulator of Interferon Genes”(STING) genes. cGAS is a cytosolic DNA sensor, 

which catalyses the synthesis of Cyclic guanosine monophosphate–adenosine 

monophosphate (cGAMP) upon binding to cytosolic DNA. cGAMP is recognized and bound by 

STING, a transmembrane protein localized in the endoplasmic reticulum. This binding leads to 

STING activation and phosphorylation of TANK-binding kinase 1 (TBK1), which in turn 

phosphorylates Interferon regulatory factor 3 (IRF3), a transcription factor that after 

activation translocates into the nucleus inducing transcription of Type I interferons gene 

(Figure 1-10). 

The cGAS/STING pathway is required in immune response against tumours. It has been 

reported that this pathway is required to obtain T-cell recruitment in tumour environment 
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and that it can be activated by self-DNA derived by tumour cells (Woo et al., 2014). For this 

reason, boosting of this pathway is considered an interesting therapeutic approach as a 

coadjutant in cancer therapies. 

 

 

Figure 1-10 Schematic representation of cGAS/STING pathway activation. Image licensed under the 

Creative Commons Attribution-Share Alike 3.0 Unported license. 

 

1.2.2 Innate immune activation can be mediated by micronuclei 

 

Self-DNA is often present in cancer cell cytosol because of micronuclei formation. 

Micronuclei are chromatin fragments surrounded by a complete nuclear double-layer 

membrane that are generated because of a failure in chromosome segregation and cell 

cytokinesis at mitosis. Micronuclei formation in normal cells has been used as a marker of 

genotoxicity and genome instability caused by pollutants and toxin chemicals (Shelby, 1988). 
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Once micronuclei are formed, they can be removed by the autophagy pathway (Bartsch et 

al., 2017; Lan et al., 2014) or undergo disruption in cytoplasm (Hatch et al., 2013). Moreover, 

it was reported that micronuclei are not only a “side effect” of genome instability, but can also 

be trigger of further and peculiar genomic rearrangements of entire or large portions of single 

chromosomes, a phenomenon known as chromothripsis (Zhang et al., 2015).  

Recently, it has been reported that micronuclei can induce an innate immune response via 

the cGAS/STING pathway through binding of cGAS to micronuclear DNA (MacKenzie et al., 

2017). In another study (Harding et al., 2017), authors highlighted that inflammatory response 

mediated by radiation-induced micronuclei leads to a systemic response against the tumour 

through a paracrine signalling mechanism. Moreover, cGAS/STING activation mediated by 

micronuclei formation has been observed also in cells with BRCA2 deficiency (Heijink et al., 

2019) and in BLM helicase deficient cells (Gratia et al., 2019). These findings suggest that 

several types of DNA damage, may favour micronuclei formation and consequently innate 

immune response activation.  

However, it remains to be established whether DNA-damaging small molecules may 

promote an increase of cytosolic DNAs and may efficiently activate an innate immune 

response in human cancers. Such agents might then be used in clinical treatments of cancer 

patients as immunomodulators rather than cell killing drugs. 
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1.3 Aim of the project 

 

The first aim of the present PhD thesis was to understand, through bioinformatic analysis, 

how R-loop homeostasis changes in human cancer cells in presence of G4-binding compounds 

to characterize the mechanism of increased R-loop by G4-binders. In particular, using DRIP-

sequencing technique we produced R-loop maps in U2OS cancer cells treated with PDS, FG 

and BRACO-19 and in control conditions to study how R-loops alterations correlate with G4 

position in human genome. 

To perform this analysis, we have first addressed the problem of lack of strand information 

(required to better characterize the structural interplay between R-loops and G4s) using DRIP-

seq data. To do so, we developed a genome annotation tool, called DRIP-seq Optimized Peak 

Annotator (DROPA), that we used to predict R-loop strandness. 

The second aim was to establish whether G4 binders can activate an innate immune 

response in human cancer cells. To this end, we determined the transcriptome profiles in G4 

binder-treated and untreated cells by preparing RNA-seq libraries of human breast cancer 

MCF-7 cells. 

Lastly, in collaboration with Prof. Francesca Ciccarelli (The Francis Crick Institute, London, 

UK), in whose laboratory I spent four months as a visiting PhD student, we investigated 

publicly available genomic data (from The Cancer Genome Atlas) of human cancer and normal 

tissues to find cancer types showing significant mutations in genes of the innate immune 

response, in particular regarding the cGAS/STING pathway. 
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2. METHODS 

 

2.1 DRIP-sequencing data analysis 
 

We used DNA:RNA immunoprecipitation (DRIP) methodology to immunoprecipitate and 

isolate DNA:RNA duplexes from genomic DNA preparations by using S9.6 antibody and to map 

genome-wide R-loop structures. Full DRIP protocol is described in De Magis et al., 2019. 

DRIP immunoprecipitates obtained from 40 micrograms of digested genomic DNA were 

pooled together and sonicated. Ligation of Illumina Truseq adapters was performed according 

to manufacturer’s instructions. All DRIP-sequencing libraries produced by our laboratory were 

sequenced by Illumina HiSeq4000 platform (pair-end 2X150 bp) at Biodiversa S.r.l. 

(Rovereto,TN, Italy) 

 

2.1.1 DRIP-seq peak calling 

 

All the DRIP-seq libraries followed a standard peak calling workflow (Figure 2-1).  

 

Figure 2-1 Workflow of DRIP-seq peak calling. 

Quality check (FastQC)

Adapter trimming And Quality filtering

(Trimmomatic) 

Alignment to Human Genome – hg19

(BWA)

Sorting, Duplicates removing and
Blacklist regions filtering (Samtools)

Normalization (Downsampling) and 
indexing (Samtools)

Peak Calling

(MACS2)
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2.1.1.1 FastQC 

 

FastQC (version 0.11.8) is a tool that provide some quality control checks with summary 

graphs and tables on raw sequence data coming from high throughput sequencing platforms. 

The command line used for each sequencing library was in the format:  

> fastqc -o fastqc/folder -t 2 input.fastq 

Input.fastq is the fastq file. Quality control of reads is performed before and after trimming 

step. 

 

2.1.1.2 Trimmomatic 

 

Trimmomatic (version 0.33) is a tool that allow to remove adapters and low quality bases from 

sequenced reads (Bolger et al., 2014). The command line used for each pair of sequencing 

library was in the format:  

> java -jar trimmomatic-0.33.jar PE input_fwd.fq.gz input_rev.fq.gz 

output_fwd_paired.fq.gz output_fwd_unpaired.fq.gz 

output_rev_paired.fq.gz output_rev_unpaired.fq.gz 

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2 LEADING:20 TRAILING:20 MINLEN:25 

Where “input_fwd.fq.gz” and “input_rev.fq.gz” are the paired end input fastq files, 

“output_fwd_paired.fq.gz” and “output_rev _paired.fq.gz” are the paired end fastq files that 

passed the trimming process and “output_fwd_unpaired.fq.gz” and 

“output_rev_unpaired.fq.gz” are the reads that were discarded because of low quality score. 

“ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2” arguments regards the type of adapter that will be 

removed, “LEADING:20” and “TRAILING:20” arguments will allow to remove leading or trailing 

bases of each reads if they have a quality value below 20. “MINLEN:25” argument will remove 

every read that is below 25 bases long. 
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2.1.1.3 BWA 

 

Burrow-Wheeler Aligner (version 0.7.13) is a software that allows to map reads against a 

reference genome, such as the human genome. The genome reference used was the human 

genome hg19 version. The command line used for each pair of sequencing library was in the 

format: 

> bwa aln -n 2 -t 8 index.hg19 output_fwd_paired.fq.gz > for.sai 

> bwa aln -n 2 -t 8 index.hg19 output_fwd_paired.fq.gz > rev.sai 

> bwa sampe $IND for.sai rev.sai output_fwd_paired.fq.gz > 

output_fwd_paired.fq.gz > output.bwa.sam 

The first two commands align reads on human genome, while the last one creates the 

sequence alignment map (SAM) file. 

 

2.1.1.4 SAMtools 

 

Samtools (version 1.8) is a suite of tool for manipulating SAM file (Li et al., 2009). The 

command line used for SAM file was in the format: 

> samtools view -b -h -o output.bwa.bam output.bwa.sam  

> samtools sort -o output.bwa.bam -@ 8 output.sorted.bam 

> samtools rmdup output.sorted.bam output.rmdup.bam 

> samtools index output.rmdup.bam 

The command view was used to convert SAM files to BAM, filter blacklist regions, and 

downsample libraries to the smallest one. The command sort was used to sort alignment. The 

command rmdup was used to remove duplicated reads. The command index was used to index 

BAM files. 
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2.1.1.5 MACS2 

 

MACS2 (version 2.1.0) is a software designed to identify genomic regions (called peaks) in 

which there is a significative enrichment of read (Zhang et al., 2008). The command line used 

for SAM file was in the format: 

> macs2 callpeak -t output.rmdup.bam -c input.bam -f BAMPE --keep-dup 

all -g hs --outdir Sample -n Sample -B 

 

For each library we used a fragmented genomic DNA library as control, and we obtain a peak 

file in BED format. 

 

2.1.2 DRIP-seq peak processing 

 

DRIP seq libraries regrading pilot experiment (see section 3.1.1) were analysed with ODIN 

differential peak caller and PAVIS peak annotator. 

DRIP-seq libraries and peak data in section 3.1.2, since the presence of biological 

replicates and the development of optimized annotation tool, were analysed differently. 

Analysis involved the use of different tools to perform calculation of correlation between 

replicates, to assess peak consensus between replicates, to visualize data and to perform 

differential analysis of peak intensity or length. Firstly, tools used will be introduce. Last 

paragraph will illustrate how analysis was performed.  

 

2.1.2.1 ODIN 

 

ODIN (version 0.3.2) (Allhoff et al., 2014) is a Hidden Markov Model-based tool to call and 

analyse differential binding of peaks in pairs of ChIP-seq data without replicates. ODIN 

performs signal processing, peak calling and enrichment calculation. Standard command-line 

was used: 



24 
 

> rgt-ODIN -v -f 1.5 Control_library.bam Treated_library.bam 

~/rgtdata/hg19/genome.fa ~/rgtdata/hg19/chrom.sizes --input-

1=INPUT.bam --input-2=INPUT.bam --output-dir=outputodin 

 

2.1.2.2 PAVIS 

 

PAVIS (Huang et al., 2013) PAVIS is a web-based tool for peak annotation and visualization of 

ChIP-seq data. Furthermore, the annotation function reports relative enrichment levels of 

peaks in different genomic regions. It works with BED files. 

2.1.2.3 Deeptools 

 

Deeptools (version 3.0.1) is a suite of commands to manipulate and process BAM files 

(Ramírez et al., 2016). We used commands multiBamSummary and plotCorrelation to assess 

correlation between replicates of DRIP-seq libraries with the following standard command 

line: 

> multiBamSummary bins -b bamfiles.list -out correlationn.npz -p 8 --

centerReads 

> plotCorrelation -in correlationn.npz -o correlationn.svg -p 

scatterplot 

We further used BamCoverage command to create genomic signal profiles in BigWig format, 

with this command line: 

> BamCoverage -b output.rmdup.bam -o sample.bw -p 8 

 

2.1.2.4 Bedtools 

 

Bedtools (version 2.28.0) is a suite of tools used to manipulate BED files (e.g. output files of 

MACS2) (Quinlan and Hall, 2010). Bedtools commands that we used in our analysis were: 
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• Bedtools intersect was used to compute the overlap of 2 sets of peaks with the 

standard command line:  

> bedtools intersect -a peakfile1.bed -b peakfile2.bed 

• Bedtools merge was used to combine genomic regions into a unique one with the 

standard command line: 

> bedtools merge -i bedfile.list 

• Bedtools coverage was used to compute intensity of sequencing signal in specific 

genomic regions using the command line: 

> bedtools coverage -a signal.bam -b regions.bed 

• Bedtools shuffle was used to randomize peaks all over the genome or in specific 

genomic contexts to perform enrichment analysis. It was used with standard command 

line: 

> Bedtools shuffle -i region.bed -g genome.hg19  

where -g is the genome of interest. 

 

2.1.2.5 Integrative Genomics Viewer (IGV) 

 

Integrative Genomics Viewer (IGV) (version 2.0.1) is a visualization software for interactive 

exploration of la genomic libraries. It supports a wide variety of data types, including array-

based and next-generation sequence data, and genomic annotations (Robinson et al., 2011).  

 

2.1.2.6 SkewR 

 

SkewR is a tool that uses Hidden Markov Model (HMM) to identify GC skew regions in any 

genome based on trained StochHMM models (Ginno et al., 2012). We used it on human 

genome hg19 with the command line:  
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> Perl RunGC-Skew.pl -s hg19.fa -m GC_SKEW_7600.hmm -g 

hg19_genereference.bed -b hg19_cpg.bed -o Result 

 

2.1.2.7 EdgeR 

 

EdgeR (version 3.26.8) is an R/Bioconductor package used to perform differential analysis with 

different statistical methodologies. This tool was used to perform differential analysis of DRIP-

seq peak intensity and peak length between control and treatment condition. 

 

2.1.2.8 DRIP-peak data processing and differential analysis 

 

Analysis of correlation between DRIP-seq experiments replicates and the Pearson correlation 

coefficient computation was performed with Deeptools suite using multiBamSummary and 

plotCorrelation commands. Genomic signal tracks were built with Deeptools suite using 

bamCoverage command and visualized with Integrative Genomics Viewer.  

Peak consensus between DRIP-seq replicates was calculated using Bedtools intersect and 

merge commands. 

To annotate DRIP-seq peaks and to establish peaks strand we developed and used DROPA tool 

(see section 2.2 and 3.1.2). 

Signal plot over TSS were calculated using Bedtools coverage command. TSS regions were 

categorized in four different groups on the base of the gene expression level (top 10%, high 

expression; mid 57%, intermediate expression; low 33%, low expression; silent, no expression) 

as established by RNA-seq experiments (high expression, FPKM>57.5; intermediate 

expression, 5.5<FPKM<57.5; low expression, 1<FPKM<5.5; no expression, FPKM<1). 

Moreover, TSS groups were also categorized basing on the presence of a CpG island within 

4kb window and on the presence of GC skew in CpG island region. GC skew region were 

defined using SkewR tool with High threshold model set.  

Differential analysis of peak signal level was performed using Bedtools coverage command to 

determine peak read coverage and EdgeR. differential expressed peaks were selected with a 

p-value < 0.001 and a treated/control fold change > 1.5.  
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Differential analysis of peak length was performed selecting only peaks that were present both 

in control and treatment samples with bedtools intersect command. Then a differential length 

analysis was performed, and peaks were selected only with a treated/control size fold-change 

> 1.5 and a p-value < 0.05. 

To assess enrichment in G4 structures, each extended peak set was randomized, using 

bedtools shuffle command, on genomic regions containing expressed genes with a CpG island 

localized within 5 kb from Transcription start site. Matched unchanged peak sets were 

prepared choosing, for every extended peak, an unchanged peak with the same dimension 

and the same sub-genic localization (Upstream, Gene body, Downstream) using custom 

scripts. Randomization was performed in the same way of the extended peak sets. 

Intersection with G4 set were performed using bedtools intersect command. Statistical 

significance was determined with the Kolmogorov-Smirnov test. 

 

2.2 DROPA development and performance evaluation 

 

DROPA software was developed in Pyhon3 language and can be launched in UNIX 

environment from command-line. It is available at https://github.com/marcrusso/DROPA 

 

2.2.1 DROPA requirements 

 

To properly work, DROPA requires 7 python libraries  

• numpy (vers.  1.16.1) (Gold et al., 2015) is required to manage and process large 

matrices and arrays. 

• tqdm (version 4.31.1) (available at https://github.com/tqdm/tqdm/tree/v4.31.1) was 

used to provide a progress bar of DROPA analysis. 

• pandas (version. 0.24.1) (McKinney, 2010) is required to process large tables and to 

perform row or column operations 

• intervaltree (version 3.0.2) (available at https://github.com/chaimleib/intervaltree) 

was used to compute genomic overlap between query peaks and gene reference. 
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• upsetplot (version 0.2.1)(Lex et al., 2014) was used to create upset plot results. 

• matplotlib (version 3.0.3)(Hunter, 2007) was used to create plots like histograms and 

pie charts. 

• argparse (version 1.4.0) was used to create the command-line interface. 

Furthermore, to perform peak randomization, bedtools (see section 2.1.2.2) shuffle command 

is used. 

 

2.2.2 DROPA performance evaluation 

 

2.2.2.1 Influence of expression data metrics on DROPA 

 

To assess DROPA performance using different gene expression unit, an experimental set 

of DRIP-seq peak (both available at GEO: GSE115957) and correspondent RNA-seq library were 

used. TPM and FPKM were computed from RNA-seq data using human RefSeq gene reference. 

DROPA analysis was made two times with default settings using hg19_Refseq as gene 

reference and either TPM or FPKM unit for expression data. Results of annotation obtained 

with different gene expression unit were compared counting how many peaks were annotated 

in the same way in both cases. 

 

2.2.2.2 Assessment of DROPA performance 

 

To assess DROPA performance using stranded data a DRIPc-seq peak dataset and 

correspondent RNA-seq library (both available at GEO: GSE70189) were used. DROPA analysis 

was launched with default settings, using hg19_UCSCgenes as genome reference, without 

considering strand of DRIPc-seq peaks. Strand of these peaks predicted by DROPA was then 

compared with the one of the original set. 
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2.2.2.3 DROPA comparison with existing tools 

 

DROPA was compared with 3 broadly used peak annotation tool: PAVIS (Huang et al., 

2013), UROPA (Kondili et al., 2017) and HOMER (Heinz et al., 2010). In all 3 comparison a set 

of DRIP-seq peak (available at GEO: GSE115957) and correspondent RNA-seq library were 

used. As each different tool has different degree of customization (limited gene reference 

selection, uneditable upstream/downstream dimension, etc.), DROPA settings were adapted 

to the one of the tools in comparison.  

Comparing DROPA with HOMER, DROPA was launched with upstream/downstream 

region dimensions set to 1 kb and RefSeq gene reference. HOMER was launched with default 

settings. Comparing DROPA with PAVIS, DROPA was launched with default settings and 

UCSC_knowngene reference, while PAVIS was launched setting the Upstream/Downstream 

region to 5kb (same as DROPA default). Comparing DROPA with UROPA, DROPA was launched 

with default settings and Ensembl gene reference, UROPA was launched setting the 

Upstream/Downstream region to 5kb.  

For each comparison, peak annotation results were analysed counting the number of 

intergenic peaks in each condition and the number of annotated to the same gene. 

 

2.3 RNA-seq analysis 

 

For each library, total cellular RNA was purified with the acid phenol method, quantified by 

UV absorbance and quality controlled by electrophoresis. RNA was then depleted of rRNA by 

Ribo-zero rRNA Removal Kit (Illumina) and libraries prepared with NEBNext Ultra Directional 

RNA library prep Kit for Illumina (NEB #E7420S) following manufacturer instructions. 

All RNA-sequencing libraries produced by our laboratory were sequenced by Illumina 

HiSeq4000 platform (pair-end 2X150 bp) at Biodiversa S.r.l. (Rovereto,TN, Italy). 
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2.3.1 RNA-seq pipeline 

 

All the RNA-seq libraries followed a standard RNA-seq workflow (Figure 2-2). 

Quality checking, trimming and alignment sorting and indexing were performed in the 

same way as for DRIP-seq libraries (see section 2.1.1).  

 

 

Figure 2-2 Workflow of RNA-seq analysis. 

 

2.3.1.1 Hisat2 

 

Hisat2 (version 2.1.0) alignment software for mapping next-generation sequencing reads 

(both DNA and RNA) of human genome (Kim et al., 2019). For each pair of read libraries were 

aligned on human genome (hg19) using the command line: 

> hisat2 -p 8 --dta --fr -x indexes/hg19_UCSC/genome -1 

trimmed.for.fastq -2 trimmed.rev.fastq -S output.sam 

Quality check (FastQC)

Adapter Trimming And Quality
Filtering (Trimmomatic) 

Alignment to Human Genome –
hg19 (Hisat2)

Sorting and indexing

(Samtools)

Transcript quantification (Stringtie) 
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2.3.1.2 Stringtie 

 

Stringtie (version 1.3.6) is a software that performs a RNA-seq alignments assembling into 

transcripts, or to quantify transcript using a gene reference (Pertea et al., 2015). For each 

alignment we used Ensembl GRCh37.87 gene reference and launched the following command: 

> stringtie -B -e -G GRCh37.87.gtf -o library.gtf -A 

library.abundance library.bam 

where library.bam is the input alignment file and library.abundance is a table file containing 

gene quantification that will be used in differential expression analysis. 

 

2.3.2 RNA-seq differential analysis and enrichment analysis  

 

Differential expression analysis and gene set enrichment analysis were performed in R 

(version 3.5.3). 

Library used in these analyses were: 

• tximport (version 1.12.2) (Soneson et al., 2015): a R/Bioconductor package used to import 

reads count from Stringtie output 

• DESeq2 (version 1.24.0) (Love et al., 2014): a R/Bioconductor package used to detect 

differentially expressed genes.  

• tidyverse (version 1.2.1): a suite of R libraries that allow to manipulate large tables and 

matrices, compute row and column operations and create plots. 

• fgsea (version 1.10.1) (Sergushichev, 2016): a R/Bioconductor package that implements an 

algorithm for fast gene set enrichment analysis, similar to GSEA (Subramanian et al., 2005). 

• pathwiew (version 1.24.0) (Luo and Brouwer, 2013): A R/Bioconductor package used to 

map and render a RNA-seq data on relevant pathway graphs.  

Stringtie transcript estimations were imported in R and converted to read count using 

tximport library. Differential expression analysis, together with PCA analysis was performed 

using DESeq2 with default settings and for each contrast. Differentially expressed genes were 

selected by adjusted p-value <0.05.  



32 
 

Gene Set Enrichment analysis was performed using fgsea library and MSigDB gene set 

database (version 6.2) with default settings. As input, summary result table of DE genes 

obtained with DESeq2 were used. Comparison of GSEA results between different treatment 

condition and between different cell lines was performed using tydiverse library. 

Pathway visualization of RNA-seq data was performed using Pathview library with default 

settings. 

 

2.4 PanCancer analysis  

 

To analyse TCGA PanCancer data, in addition to libraries listed in 2.3.2, were used: 

• survminer (version 0.4.6) was used to create survival plots. 

• GSVA (version 1.32.0) (Hänzelmann et al., 2013) was used to perform single sample GSEA 

analysis. 

Pre-computed data about copy number variations (CNVs), mutations and gene expression 

were processed and maintained by the Ciccarelli group at The School of Cancer Studies of 

King's College London and The Francis Crick Institute, as part of the Network of Cancer Genes 

Database (Repana et al., 2019).  

To compute ratio of mutation for each query gene we used CNVs an mutation data and 

categorized mutations in five groups as reported in section 3.2.3. Computation of mutation 

rates and histogram plotting were performed using tidyverse and R base scripts. 

To compute gene expression alteration between cancer and matched normal tissues, gene 

expression data were used. For each cancer type, only samples which had expression data for 

both cancer and normal tissue were selected. Computation and boxplots plotting were 

performed using tidyverse and R base scripts. 

To compute survival analysis, we selected, for each cancer type, the 33% of samples with 

the higher and lower expression of the query gene. Survival plot and p-values were produced 

using survminer library. 
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To compute correlation between gene expression and enrichment scores, first we 

computed gene set enrichment score for each tumour sample using ssGSEA function from 

GSVA library. Then, for each query gene and for each cancer type, we computed spearman 

correlation and produced heatmaps using tidyverse and R base custom scripts. 
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3. RESULTS 

 

This chapter will be divided in two main sections.  

 

The first one will report on a study in which I have investigated R-loop dynamics in U2OS 

cancer cell lines treated with G4-binders and developed a new tool for annotation of R-loop 

peak allowing a finest gene annotation.  

 

The second part will report on a study in which using RNA-seq data, I have observed an 

innate immune response induction in MCF-7 cells caused by treatment with a specific G4 

binder, PDS. Moreover, the result of an analysis of cGAS/STING pathway genes expression in 

The Cancer Genome Atlas (TCGA) dataset and their correlation with immune response 

induction in tumour tissue will be reported as well. 

 

The main results of the first part (section 3.1) are included in two publications (De Magis 

et al., 2019, Annex 1; Russo et al., 2019, Annex 2) while the results of the second part (section 

3.2) are currently unpublished.  
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3.1 Part I: R-loop dynamics in U2OS cells treated with G4-binders 

 

3.1.1 A pilot experiment 

 

To test whether G4-binder treatments can affect R-loop formation in U2OS cancer cells 

we performed a pilot DRIP-seq sequencing experiment. The pilot data have not been 

published as they were intended only to get an evidence of G4 binder effects on R-loop levels 

and to define the analytic pipeline of DRIP-seq reads. The experimental design consisted of 

three DRIP-seq libraries representing three different experimental conditions:  

• U2OS cells treated with BRACO G4-binder for 5 minutes; 

• U2OS cells treated with FG G4-binder for 24 hours; 

• U2OS cells untreated as control condition; 

All three pair-end libraries were quality filtered and adapter trimmed using Trimmomatic 

tool and were aligned on the human genome (hg19 version) using BWA software. Next, by 

using Samtools suite, only uniquely mapped and properly paired reads were considered, and 

all the libraries were downsampled to the smallest one to normalize genomic signals. 

The results of the alignment (Table 3-1) show that rates of properly-mapped and paired 

reads range between 64% and 76%, due to the high number of duplicated reads. 

 

Library 
Library dimension 

(n. of reads) 

Mapped reads 

(% of total) 

Properly paired reads 

(% of total) 

BRACO-treated 47,441,573 66.93% 66.24% 

FG-treated 60,605,572 76.92% 76.36% 

Control 64,949,827 65.73% 64.56% 

Table 3-1 Results of library alignment on human genome(hg19) in the pilot experiment. 

 

Then, peak calling analysis was performed for each library using peak caller using 

default settings and a mock library of genomic DNA randomly fragmented as input control. 

This tool also performs a differential analysis of signal levels between treatment and control 

condition. 
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Results of peak calling (Table 3-2) show that, in both treatment conditions, a high 

number of peaks with a signal level ratio over 1.5X (gain peaks) under 0.66X (loss peaks) were 

identified, with a prevalent presence of loss regions. 

 

Condition N. DRIP-seq peaks Gain Peaks Loss peaks 

BRACO-treated vs. Control 86,506 12,546 40,267 

FG-treated vs. Control 106,378 16,543 31,842 

Table 3-2 Results of peak calling analysis using ODIN in the pilot experiment. 

 

Annotation of these peaks on the genome using PAVIS (Huang et al., 2013) shows that 

as expected most of these peaks are intragenic, and that loss peaks are particularly enriched 

in transcription start site region (Figure 3-1). 

 

-

 

Figure 3-1 Distribution of Total, gain and loss peaks over genic features using PAVIS in the pilot 

experiment. 

To investigate R-loop interaction with G4 structures, we compared our R-loop peaks 

to G4 structures determined by other labs. In particular, I used a genomic G4 structures 

dataset of 716,310 G4 loci derived with a polymerase stop assay and NGS using genomic DNA 

(Chambers et al., 2015). Although in vivo G4 datasets were available (Hänsel-Hertsch et al., 
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2016; Kouzine et al., 2017), we discarded these from the analysis since none of these dataset 

were related to our cell line. In fact, in vivo G4 datasets show a consistently lower number of 

structures compared to in vitro dataset. Since G4 loci mapped with G4-ChIP in two different 

cell lines showed a certain degree of tissue specificity, we opted for a less specific dataset 

which includes all possible G4 structures on the genome. 

I performed a colocalization analysis of G4 structures and R-loop peaks using ColoWeb 

tool. Results of this analysis (Figure 3-2) showed that there is a higher level of colocalization 

between R-loop regions and G4 loci than between G4 structures and R-loop peaks randomized 

all over the genome. 

While these preliminary findings were from a single pilot experiment, they were 

promising and suggested to perform a complete experiment with biological replicates. 

Furthermore, to fully investigate R-loop/G4 interaction, we need to consider R-loop 

strandness. Since DRIP-seq methodology does not provide this type of information, section 

3.1.2 will illustrate how to predict strandness of R-loop peaks using gene expression 

information. 

 

Figure 3-2 Distribution of G4 structures over R-loop peaks. For each R-loop peak, a window of 20kb is 

calculated from centre position. Shuffle category contains R-loop peaks randomized all over the 

genome. Green lines indicate estimation of normal variance above and below the background level. 
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3.1.2 DROPA: DRIP Optimized Peak Annotator 

 

DRIP-seq peaks often have a dimension in the order of kilobases. This means that these 

peaks in many cases may overlap more than one gene region or even different genes. 

Moreover, DRIP-seq peaks have no strand information. However, that is essential to assess 

the overlapping of R-loops with G4-structures as R-loop is constituted of a hybrid duplex 

involving one DNA strand leaving the other one in a single-stranded status. As a G4 structure 

in the latter strand only would be compatible with an R-loop in the same genomic region, 

therefore it is important to know which DNA strand is annealed to the RNA in the R-loop peak.  

Then, as R-loops are mainly co-transcriptional events, we developed a new tool for peak 

annotation optimized for DRIP-seq peaks, which uses gene expression information to perform 

a finest peak annotation considering the DNA strand of hybrid formation. 

DROPA (DRIP Optimized Peak Annotator) is a command line tool written in Python 

language. It requires three files as input: 

I. The query peak file with the result of peak calling in BED format; 

II. A gene reference folder that contains all the data about gene features (5’UTR, 3’UTR, 

exon, intron) in BED format. In the final version of this tool we added reference set for 

Homo sapiens (hg19) and for Mus musculus (mm9 and mm10), but they can be easily 

created for every genome of interest by the user; 

III. A 2-column table containing gene expression data with the name of each gene and its 

normalized expression value (FPKM, TPM, etc.); 

DROPA code is composed by six main scripts, as shown in Figure 3-3: 

1) PeakOverlap: the script performs an overlap analysis using query peak file and gene 

reference. As output it provides two BED files, one containing intergenic peaks that are 

excluded from further analysis and one reporting all the overlaps between a query 

peak and reference genes; 

2) CheckExpression: it represents the major change comparing to other peak annotation 

tools. It takes in account gene expression information to uniquely annotate each peak 

to a gene. When a query peak is overlapping only one gene it is easily assigned to it, 

while in case of 2 or more overlapping genes the most expressed one is chosen. In 

addition, to refine the annotation, an expression threshold can be set. In the extreme 
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case in which all the genes are not expressed or their expression is below threshold, 

query peak is assigned to the gene that has the higher overlap; 

3) FeatureAssign: it assigns a query peak to all the overlapped gene features 

(upstream/downstream region, intron, exon, UTR (Untranslated Region) regions); 

4) TableCreator: this script writes a summary table with an entry for each peak and all 

the information about annotated genes and gene features; 

5) RandPeak: it uses “shuffle” Bedtools command to perform query peaks randomization 

all over the genome and then relaunches 1) to 4) scripts. The output is used to perform 

enrichment score over randomized peaks; 

6) SummaryPlot: it uses all produced data to plot annotation results. 

 

 

Figure 3-3 Schematic representation of DROPA workflow. Adapted from Russo et al., 2019. 

 

To prove the efficiency of the new tool, I performed different tests. First, I assessed 

whether using different expression values (TPM or FPKKM) leads to different annotation 

results. The annotation analysis was performed with default settings using the same query 

peak dataset and relative RNA-seq data, which was used to compute expression level as TPM 

and FPKM. Results of this test were good as they demonstrated that 98.7% of query peaks 

were annotate to the same gene using either TPM or FPKM. Then, we assessed the efficiency 

of DROPA in annotating peaks using a stranded DRIPc-seq query peak dataset and his relative 
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RNA-seq data (Russo et al., 2019). In this analysis we compared how many DRIPc-seq peaks 

are annotated to the correct strand using DROPA. Results of this test show that most of the 

peaks (88.6%) are assigned correctly. Furthermore, of the remaining 11.4% of wrongly 

annotated peaks, 5.05% of them are localized in the opposite strand of the same locus of 

another DRIPc peak, while 3.53% are localized outside of the gene region but within 5000 

bases from transcription start site (TSS) end termination site (TTS). Since antisense 

transcription is known to occur at these sites, we hypothesized that most of wrongly assigned 

peaks are actually antisense R-loop, that cannot be recognized by DROPA. However, when we 

consider only transcribed regions of a gene, DROPA efficiency reaches 93.8%. 

Finally, we tested DROPA efficiency compared to 3 common annotation tools (HOMER, 

PAVIS and UROPA). Since each tool had a different degree of customization, DROPA was 

launched adapting his settings to the one each tool in analysis. Results of the analysis shows 

that DROPA annotates fewer peaks as intergenic than all the three tested tools. Furthermore, 

a high percentage of peaks are annotated to different genes by DROPA compared to each 

tested tool. As R-loop formation is mainly co-transcriptional, and DROPA is the only tool that 

perform annotation based on gene expression, we argue that DROPA performs a more robust 

annotation, with less false positives compared to other general standard tools. Further 

information on DROPA behaviour and his benchmark comparison have been published (Russo 

et al., 2019). Benchmark comparison showed that DROPA perform analysis in times that are 

comparable with those of other tools and without high system requirement. 

Since this tool was developed to perform a better annotation of DRIP-seq peaks, and its 

good performance was extensively demonstrated, I used it in subsequent analysis.  

 

3.1.3 DRIP-sequencing results of U2OS cells treated with G4-binders 

 

As the pilot data (section 3.1.1) lacked biological replicates but results about R-loop/G-

quadruplex interaction were promising, we repeated R-loop mapping via DRIP-seq with a new 

experimental design. Since we had experimental evidences by immunofluorescence 

microscopy of an increase of R-loop structures in U2OS cells (De Magis et al., 2019) using G4-

binders including FG and pyridostatin (PDS), DRIP-seq libraries were prepared from the 

following samples:  
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i. U2OS cells treated with FG (2 replicates) for 5 minutes. 

ii. U2OS cells treated with PDS (2 replicates) for 5 minutes. 

iii. U2OS cells untreated as control condition (2 replicates). 

For each condition, a negative control of DRIP library was prepared by treating genomic 

DNA with E.coli RNAseH, which specifically degrades RNAs annealed to DNA strands only, 

before immunoprecipitation with Ab S9.6. 

Following the analytic pipeline described in 3.1.1, reads were trimmed and quality filtered 

with Trimmomatic, aligned on hg19 reference genome with BWA, filtered for duplicates and 

downsampled with Samtools. 

The results of the alignment show that properly mapped and paired reads rate ranges 

between 63% and 73%, except for Control Rep.1 (43.82%) and FG-treated+RNAseH (49.06%) 

(Table 3-3). 

 

Library 
Library dimension 

(n. of reads) 

Mapped reads 

(% of total) 

Properly paired and 

filtered reads 

(% of total) 

Control Rep.1 113,248,498 76.41 43.82 

Control Rep.2 92,777,074 76.05 66.16 

Control + RNAseH 143,465,986 89.73 66.89 

FG-treated Rep.1 96,765,498 77.69 66.65 

FG-treated Rep.2 82,192,684 79.64 71.04 

FG-treated + RNAseH 103,419,848 87.59 49.06 

PDS-treated Rep.1 100,312,608 77.23 63.68 

PDS-treated Rep.2 83,977,062 81.98 73.84 

PDS-treated + RNAseH 91,652,406 88.75 70.86 

Table 3-3 Results of library alignment oh human genome(hg19). 

 

Using Deeptools suite, correlation between libraries was computed to assess the 

consistency of replicates. As shown in Figure 3-4, DRIP-seq libraries show a high correlation 

coefficient between replicates, as RNAseH treated libraries between them. DRIP-seq libraries 

show a high correlation coefficient also between different condition of treatment and control, 

suggesting that R-loop signal is generally localized in specific loci without no major changes 
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between the treatment condition. On the other hand, RNAseH treated samples show a 

sensibly lower level of correlation with DRIP-seq libraries, suggesting that R-loop signal was 

successfully suppressed. 

 

 

Figure 3-4 Scatter plot showing correlation between DRIP-seq libraries read counts. Each dot represents 

a 10 kilobases bin of human genome (hg19). Inside each box Pearson correlation coefficient is reported. 

 

3.1.4 DRIP-seq peaks are strongly induced in U2OS cells treated with G4-binders 

 

Peak calling was performed with MACS2 using default settings for each library, and then 

we selected for further analysis only peaks present in both replicates but absent in RNAseH-
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treated samples. To assess the consistency of data between replicates, we calculated 

correlation coefficients of such DRIP-seq peaks signal using Deeptools (Figure 3-5). The results 

showed a high correlation between each of two biological replicates but not with RNAseH 

treated negative control, supporting a high consistency of observed genomic R-loop peaks 

(Figure 3-5). 

 

 

Figure 3-5 Scatter plot showing correlation between DRIP-seq libraries read counts. Each dot represents 

a DRIP-seq peak. Inside each box Pearson correlation coefficient is reported. Adapted from De Magis et 

al., 2019. 

 

 

Figure 3-6 Genomic signal of DRIP-seq for control (red) FG-treatment (blue) and PDS (green) condition 

at TLE3 locus. Coloured bars indicate DRIP-seq peaks called by MACS2. Adapted from De Magis et al., 

2019. 

 

Results of peak calling (Table 3-4) show that in both FG an PDS-treated condition there is a 

strong increase of R-loop peaks in terms of number of peaks and genome covered. 
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Condition 
N. Consensus 

DRIP-seq peaks 

Covered genome 

(Mb) 

Covered genome 

(%) 

Control 18,262 77.564 2.5 

FG-treated 37,068 150.802 4.8 

PDS-treated 37,974 158.646 5.1 

Table 3-4 Results of peak calling analysis using MACS2. 

 

Then, I annotated R-loop peaks in sample using DROPA tool (section 3.1.2). As 

expected, R-loop peaks are mostly localized at genic level, with a consistent enrichment in 5’ 

and 3’ regions of genes compared randomized peaks.(Figure 3-7). 

 

 

Figure 3-7 Distribution of Control, FG and PDS DRIP peaks across the genic features. On the left, 

“shuffle” shows the distribution of randomly shuffled peaks over the entire genome. Adapted from De 

Magis et al., 2019. 

 

Since R-loop are also associated with transcription initiation event, we measured R-

loop signal level at promoter regions. Promoter regions were divided in four groups on the 

base of gene expression level (calculated using RNA-seq data). Results of this analysis (Figure 

3-8) showed that R-loop changes are positively correlated with gene expression level and the 

presence of CpG island, which are prevalent in highly expressed genes. 
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Figure 3-8 DRIP-seq read counts at active TSS level. Analysed regions are +-2,000 bp upstream and 

downstream from TSS. Genes are divided into four categories based on gene expression as established 

by RNA-seq data and indicated at the top of the graphs. As indicated below, TSS promoters with CG 

islands constitute 92.9, 90.6, 81.8, and 37.4% for the four gene sets from left to right, respectively. 

Statistical test: Kolmogorov–Smirnov test. **P < 0.01, ***P < 0.001, ****P < 0.0001. Adapted from De 

Magis et al., 2019. 

 

We observed spreading of R-loop peaks both in terms of elongation of pre-existent R-

loops and formation of new ones. To detect local changes of R-loop peaks intensity, a 

differential analysis of using edgeR was performed. Results (Table 3-5) showed that in both FG 

and PDS treatment there is a large number of regions in which there is an increase in R-loop 

signal (Gain peaks), and only few in which there is a lower R-loop signal (Loss peaks). Gain 

peak localization was particularly enriched at the 3’ regions of genes (Figure 3-9). However, 

we did not observe any specific correlation with G4 structures presence. 

 

Condition 
N. Gain 

DRIP-seq peaks 

N. Loss 

DRIP-seq peaks 

FG-treated 

vs. Control 
4,411 149 

PDS-treated 

vs. Control 
9,881 272 

Table 3-5 Results of differential binding analysis of DRIP-seq libraries. 
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Figure 3-9 Distribution of FG gain and PDS gain DRIP peaks across the genic features. On the left, 

“shuffle” shows the distribution of randomly shuffled peaks over the entire genome. Adapted from De 

Magis et al., 2019. 

 

Thus, we assessed whether the increase of the length of pre-existing R-loops was a 

significant event. We identified a high number of peaks that were present in both control and 

treated samples (13,539 and 13,316 common peaks for FG and PDS, respectively) mapping at 

the same genomic locus. Among these common peaks 1000 and 639 peaks, for FG and PDS, 

respectively, showed a statistical-significant increase of the length in the treated samples 

(Figure 3-10). 

 

 

Figure 3-10 Scatter plots of DRIP-seq peaks lengths of common peaks between control and treatment 

condition. Red asterisks highlight extended peaks with a length fold change >1.5 and P-val< 0.05. Tests 

used: moderated t test from the limma R package. Adapted from De Magis et al., 2019. 
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Interestingly, an annotation analysis of the G4-binder-extended peaks showed that 

they were particularly enriched at 3’-ends and in the body of genes (Figure 3-11). 

 

 

Figure 3-11 Distribution of FG and PDS extended DRIP peaks across the genic features. On the left, 

“shuffle” shows the distribution of randomly shuffled peaks over the entire genome. Adapted from De 

Magis et al., 2019. 

 

3.1.5 R-loop interplay with G4 structures in U2OS cells 

 

To investigate R-loop interactions with G4 structures, we used the same G4 structure 

dataset as in section 3.1.1. We observed a good overall correlation between the localisations 

of R-loop peaks and G4 structures in both control and treatment conditions (Figure 3-12), 

consistently with a potential structural co-existence of both structures at same loci. 

 

 

Figure 3-12 Representative distribution of DRIP-seq peaks and G4 loci across human chromosome 11. 

Only transcribed gene regions are considered. Pearson correlation coefficient between FG and PDS 
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peaks and G4 loci all over the genome is 0.60 and 0.53 respectively. Pearson correlation coefficient 

between FG and PDS peaks and Control peaks all over the genome is 0.81 and 0.78 respectively. 

Adapted from De Magis et al., 2019. 

 

Since DRIP-seq peaks have no strand information, we used the template strand of the 

gene annotated by DROPA as the strand forming the DNA:RNA hybrid duplex. This allowed to 

distinguish G4s on the base of their position relative to the hybrid of R-loops, splitting them in 

two groups: G4s that are localized in the displaced single DNA strand of the R-loop and G4s 

that are localized in the DNA strand forming the hybrid of the R-loop. Thus, the former G4s 

would be compatible with R loops, whereas the latter G4s were not structurally compatible 

with hybrid (R loop) formation. 

As we noticed that in many loci R-loop extensions co-occurred with G4 structures 

(Figure 3-13), we computed the enrichment of this co-occurrence versus the expected event 

calculated with the same number of observed R-loop peaks, randomized over genic regions 

and normalized for length and genic localization. 

 

 

Figure 3-13 Representative locus showing extended R-loop peak in control and FG treatment condition 

with G4 motif presence in the extended region of the peak. Snapshot taken with Integrative Genomics 

Viewer. 

 

Then, I compared the enrichment score of observed R-loop peaks with a “matched” 

peak set, which is composed of unchanged common R-loop peaks of similar sizes, randomly 

selected. The results show a significative enrichment of G4s at the displaced strand of the R-

loop for both FG and PDS, whereas no enrichment was detected for G4s s at the template DNA 

strand of the R-loop (Figure 3-14). In many cases G4s were present in both DNA strands of the 

R-loop, and a significant enrichment compared to matched was observed only for FG treated 

condition. 
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I also noticed that the absence of G4 structures within R-loop extensions showed no 

differences between extended and matched peak datasets for PDS condition, while in case of 

FG there is a significative depletion. The lack of significance of G4/R-loop association in certain 

cases (see PDS vs FG above) can be due to the tendency of physiological R-loops to form in 

regions with an high GC skew and G4-promoting sequences already, which therefore lead to 

a high overlapping rate of R-loops with G4 structures at basal levels. 

 

 

Figure 3-14 Enrichments over expected of G4 motifs in extended regions of extended peaks a set of 

unchanged peak, matched to extended ones. Only extended peaks in genic regions were considered for 

the analysis. Test used: Kolmogorov–Smirnov test. ***P < 0.001, ****P < 0.0001. Adapted from De 

Magis et al., 2019. 

 

The above findings, together with immunofluorescence experiments (De Magis et al., 

2019), demonstrate that G4-binder treatments induce an increase of R-loop structures in 

U2OS cells. Furthermore, bioinformatic analysis of DRIP-seq suggests that this increase can be 

at least partially explained by G4 structure presence at the displaced strand of the R-loop, 

likely serving as a stabilizing factor of the observed R-loop extensions. 
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3.2 Part II: Innate immune response induction in cancer cells and cGAS/STING pathway 

genes in cancer tissues 

 

3.2.1 Gene expression analysis of MCF7 cells treated with pyridostatin 

 

The bioinformatic analysis of R-loop/G4 interplay described in this Thesis has been part 

of a study that included also wet experimental findings(De Magis et al., 2019). In the study, 

we also found that one of the effects of pyridostatin in U2OS cells was the induction of 

micronuclei, which can be a source of cytosolic DNA triggering an innate immune response via 

the cGAS/STING pathway (see also Introduction). Since in U2OS cells, STING appears to be 

inactive (Deschamps and Kalamvoki, 2017), we then asked the question of whether PDS can 

induce an innate immune response via STING pathway in the breast cancer MCF-7 cell line, 

which expresses an active STING and produces micronuclei upon PDS treatments 

(unpublished). 

In order to establish if PDS can induce an immune response in cancer cells, we performed 

RNA-seq experiment in MCF-7 cells upon PDS treatment. Four biological replicates were 

prepared for each of the following samples and experimental conditions: 

• MCF-7 cells untreated (Control_t0) 

• MCF-7 cells treated with PDS + 4 days of recovery (PDS_t4) in drug free medium 

• MCF-7 cells untreated + 4 days in drug free medium (Control_t4) 

We obtained 12 RNA-seq libraries, that were processed for read trimming with 

Trimmomatic, and aligned on the human genome (hg 19 version) using Hisat2 software. 

Results of alignments (Table 3-6) showed a high percentage of properly paired reads in all 

libraries. 
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Library 
Library dimension 

(n. of reads) 

Mapped reads 

(% of total) 

Properly paired reads 

(% of total) 

Control_t0 Rep.1 102,619,128 98.72 95.07 

Control_t0 Rep.2 112,140,222 98.67 95.04 

Control_t0 Rep.3 102,051,560 98.73 94.80 

Control_t0 Rep.4 77,983,079 98.95 95.25 

Control_t4 Rep.1 102,056,415 98.68 94.93 

Control_t4 Rep.2 157,098,969 98.79 95.06 

Control_t4 Rep.3 70,821,281 98.77 94.90 

Control_t4 Rep.4 78,405,913 98.94 95.41 

PDS_t4 Rep.1 99,923,734 98.57 94.74 

PDS _t4 Rep.2 102,595,656 98.60 94.91 

PDS _t4 Rep.3 77,190,875 98.79 94.50 

PDS _t4 Rep.4 79,943,162 98.75 95.35 

Table 3-6 Results of RNA-seq libraries alignment oh human genome(hg19). 

 

Gene expression was quantified using Stringtie software, followed by a differential 

expression analysis performed using DEseq2 R package. Results of differential analysis showed 

many overexpressed genes (Table 3-7) in all the contrasts we have tested (PDS_t4 vs. 

Control_t4, PDS_t4 vs. Control_t0 and Control_t4 vs. Control_t0). Notably, while PDS_t4 vs. 

Control_t0 contrast has the highest number of differentially expressed genes, we also 

observed significant changes in expressed genes in the Control_t4 vs. Control_t0,, suggesting 

that some of the differences in gene expression that we observed in PDS-treated cells may not 

be due only to treatment with PDS. 

 

Condition 
N. overexpressed 

genes 

N. underexpressed 

genes 

PDS_t4 vs. Control_t4 189 81 

PDS_t4 vs. Control_t0 426 356 

Control_t4 vs. Control_t0 135 128 

Table 3-7 Results of DEseq2 differential expression analysis. 
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As shown in Figure 3-15, top 100 most significantly up- and downregulated genes show 

a good consistence between replicates. Notably, IFNB1 (Interferon beta gene) and other 

interferon induced genes (e.g. IFIT1 and IFIT3) show a specific expression in PDS treated 

samples only.  

 

 

Figure 3-15 Top 100 differentially expressed gens in PDS_t4 vs. Ctrl_t4 contrast and expression values 

for each library. Expression values are reported as Z-score. Blue = -3, Red =3. Red arrows highlight genes 

cited in the main text. 

 

Then, we performed gene set enrichment analysis (GSEA) to investigate if 

overexpressed genes where related to particular pathways. Results of GSEA showed that in 

PDS_t4 vs. Control_t4 condition (Figure 3-16), most upregulated MsigDB hallmark gene sets 

(Subramanian et al., 2005) are related to interferon and inflammatory response, suggesting 

that PDS treatment has an effective role in immune response induction. 

 On the other hand, most downregulated pathways are related to cell proliferation 

(Myc and E2F targets, G2/M checkpoint), underlying the DNA cleavage induction by PDS 

treatment. 
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Figure 3-16 Bar plot with GSEA analysis results of PDS_t4 vs. Ctrl_t4 using MsigDB hallmark gene sets. 

Only top 20 gene sets ranked by adjusted p-value are reported. 

 

Using the control at time 0 (Control t0 sample) as reference, we performed a 

comparison between the time-dependent effects of PDS-treated and untreated cells. 

Interestingly, the data showed that the most up-regulated gene sets are the interferon 

alpha and gamma response in both treated and untreated cells, however the normalized 

enrichment scores are higher in the PDS_t4 vs. Control_t0 contrast (3.38 and 3.12, 

respectively) than in Control_t4 vs. Control_t0 contrast (2.73 and 2.38, respectively) (Figure 

3-17). Most of downregulated pathway show the same result, with a lower normalized but 

still significant enrichment score in Control_t4 vs. Control_t0 contrast.  

 

Since Hallmark interferon alfa response (composed by 97 genes) share 73 genes with 

Hallmark interferon gamma response (composed by 200 genes), it is likely that the similar 

result between these two signatures is due to the high redundancy of genes. 
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Figure 3-17 Bar plot with GSEA analysis results of PDS_t4 vs. Ctrl_t0 (blue) and Ctrl_t4 vs. Ctrl_t0 

(orange) contrasts using MsigDB hallmark gene sets. Only Top13 gene sets ranked by adjusted p-value 

are reported. 

 

We further investigated the comparison between PDS-treated and untreated cells 

using MsigDB Reactome gene sets. The data showed a result in agreement with Hallmark 

dataset: most up-regulated pathways are related to interferon alpha/beta and interferon 

signalling and are significant for both conditions (Figure 3-18). Regarding down-regulated 

pathways, as in Hallmark dataset regards DNA replication and cell cycle progression (Figure 3-

18). 
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Figure 3-18 Bar plot with GSEA analysis results of PDS_t4 vs. Ctrl_t0 (blue) and Ctrl_t4 vs. Ctrl_t0 (orange) 
contrasts using MsigDB Realtime gene sets. Only Top12gene sets ranked by adjusted p-value are reported. 

 

Thus, we directly tested whether genes that belong to the “interferon alpha response” 

set showed a different expression level between PDS_t4 and Control_t4. Comparison of Wald 

statistic between PDS_t4 vs. Control_t0 and Control_t4 vs. Control_t0 contrasts showed that 

while many genes of the “interferon alpha response” gene set are indeed overexpressed in 

Control_t4 vs. Control_t0 contrast, the overexpression is significantly higher (p-val<10E-16, 

Kolmogorov Smirnov test) in the PDS_t4 vs. Control_t0 contrast (Figure 3-19). We observe the 

same effect whether we take in account other gene sets, such as 

“Reactome_Alpha_Beta_Signaling” (Figure 3-19). 

 

These findings are likely explained by the fact that we observe a small but consistent 

increase of micronuclei number after 4 days of cell growth in drug-free medium, even though 

the micronuclei number is indeed significantly higher in PDS treated cells at the same time of 

cell growth (unpublished data). This may probably explain the increase of interferon response 

genes in control, untreated cells during cell culture, which PDS treatment can significantly 

boost. 



56 
 

Notably, for some pathways, such as “ allmark_ RAS_Signaling_Down” which is 

positively enriched in both PDS-treated and control condition, we do not observe a significant 

higher overexpression in PDS cells (Figure 3-19). This means that its regulation is likely 

independent from PDS effect on MCF-7 cells. 

 

 

 

Figure 3-19 Scatterplots of Wald statistic for each gene of "Hallmark_interferon_alpha_response", 

“Reactome_Interferon_Alpha_Beta_Signaling” and “Hallmark_KRAS_signaling_down” gene sets. Each 

blue point represents a gene. Lines represent the bisector (black) and the regression line (blue). P-value 

of Kolmogorov-Smirnov test is reported in each scatterplot. 

 

Furthermore, we looked at single gene level to investigate if genes encoding for 

chemokines, interleukins and interferon beta are likely more up regulated in PDS_t4 vs. 

Control_t0 than in Control_t  vs. Control_t0 contrast. Using “cytokine-cytokine receptor 

interaction”  EGG pathway and Pathview R library, we observed that in many genes like 

IFNB1, chemokines like CXCL1, CXCL2, CXCL3, CXCL10, CXCL11, CXCL12 and many others we 

have an up-regulation only in PDS treated cells and not in untreated condition (Figure 3-20). 

 

Altogether, the data suggest that PDS can induce innate immune response in human 

cancer cells, via induction of micronuclei, which may then trigger the nucleic acid sensors 

(likely cGAS) and initiate the interferon stimulated response dependent on STING 

(unpublished data). 
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Figure 3-20 Schematic representation of cytokine-cytokine receptor interaction KEGG pathway. For 

each gene symbol is reported the Wald statistic of DEseq2 analysis for Ctrl_t4 vs. Ctrl_t0 (left) and 

PDS_t4 vs. Ctrl_t0 (right) contrasts. White boxes represent genes that are not expressed. Green (-3.5) 

to red (3.5) colour represent the Wald statistic value (as in legend). 

 

3.2.2 Comparison of gene expression patterns between MCF-7 and U2OS cells. 

 

We have also performed experiments to establish the gene expression profiles 

following PDS treatment in human sarcoma U2OS cells for a comparison with MCF-7 cells. In 

this case, we did two biological replicates and evaluated gene expression after 24 hours of 

PDS treatment. 

Two biological replicates of RNA-seq libraries were prepared for the following samples and 

conditions: 

• U2OS cells treated with PDS for 24 hours + 1 days of recovery in drug free medium 

(U2OS_PDS24) 

• U2OS cells untreated for 24 hours+ 1 days of recovery in drug free medium 

(U2OS_Ctrl24) 
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Libraries followed the same analysis pipeline as the MCF-7 samples: they were processed 

by reads trimming with Trimmomatic, aligned on human genome (hg 19 version) using Hisat2 

software and gene quantification was performed with Stringtie. As for MCF-7 samples, we 

have a high percentage of properly mapped reads (Table3-8). 

 

Library 
Library dimension 

(n. of reads) 

Mapped reads 

(% of total) 

Properly paired reads 

(% of total) 

U2OS_Ctrl24 Rep.1 53,342,828 97.64 94.68 

U2OS_Ctrl24 Rep.2 55,582,135 97.59 94.51 

U2OS_PDS24 Rep.1 64,202,747 97.63 94.75 

U2OS_PDS24 Rep.2 45,165,871 97.72 94.66 

Table 3-8 Results of RNA-seq libraries alignment oh human genome(hg19). 

 

Differential gene expression analysis with DEseq2 showed that 239 genes are 

significantly up-regulated in PDS-treated cells, while 100 genes are down-regulated. 

In contrast to MCF-7 cells, GSEA results showed that while PDS-treated U2OS cells have 

a significantly enrichment in inflammatory response regulation, there is no significative 

enrichment in interferon response (Figure 3-21). As interferon response is mainly regulated 

by cGAS/STING pathway that is likely impaired in U2OS cells due to absence of STING, the 

absence of interferon response in U2OS may be due to the inactivity of the cGAS/STING 

pathway.  

However, it is likely that in the absence of cGAS/STING pathway, other mechanisms of 

inflammatory response are induced by PDS in U2OS as inflammation response is unregulated 

(Figure 3-21). 

Interestingly, most downregulated pathways are related to cell proliferation in both 

cells, although some pathways (e.g. oxidative phosphorylation and DNA repair) are 

downregulated in MCF-7 cells but not in U2OS, suggesting that PDS treatment may affect not 

only innate immune response pathways, but also other pathways in a specific way depending 

on cell lines. 
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Figure 3-21 Bar plot with GSEA analysis results of PDS_t4 vs. Ctrl_t4 (in MCF7 ) and U2OS_PDS24 vs. 

U2OS_Ctrl24 contrasts using MsigDB hallmark gene sets. Only Top16 gene sets ranked by adjusted p-

value are reported. 
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3.2.3 Innate immune response genes in human tumours: a PanCancer survey. 

 

To evaluate the feasibility of using PDS as a potential immune response stimulator in 

cancer therapy, we aimed at understanding whether cGAS/STING pathway genes are mutated 

and how their expression is regulated in cancer tissues. 

To do this, we analysed copy number variations (CNVs), mutations and gene 

expression data of four most important genes involved in cGAS/STING pathway (cGAS, STING, 

TBK1 and IRF3) across 31 cancer types and ~7800 tumour samples from The Cancer Genome 

Atlas (TCGA) (Hoadley et al., 2018). The data used are part of the Network of Cancer Genes 

Database (Repana et al., 2019), maintained by the Ciccarelli group at The School of Cancer 

Studies of King's College London and The Francis Crick Institute. 

The role of these four genes in tumour biology was evaluated in terms of: 

i) mutation rates in each cancer type; 

ii) gene expression alterations between cancer and tumour samples; 

iii) survival rates of patients with different levels of cGAS/STING expression; 

iv) correlation of cGAS/STING expression and immune-related tumour 

microenvironment. 

To analyse mutation rate of cGAS/STING pathway genes, using copy number variations 

and mutations data, we distinguished 5 class of mutation based on the presence of copy 

number loss or amplification and of damaging mutations (defined as missense amino acid 

change as opposed to non-damaging mutations corresponding to nonsense mutations): 

• Strong loss mutation: gene with a homozygous CNV loss or heterozygous CNV loss plus 

a damaging mutation 

• Weak Loss mutation: gene with a heterozygous CNV loss or a damaging mutation 

• Normal: absence of CNVs or mutations 

• Weak Gain mutation: gene with a CNV amplification with copy number =3 

• Strong Gain mutation: gene with a CNV amplification with copy number >3 

Results of our analysis of mutations rates shows that CGAS/STING pathway genes are 

usually poorly mutated in cancer, with no homozygous loss-of-function mutations in almost 
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all cancer types. Most of the observed mutations are weak gene amplifications and 

heterozygous loss-of-function mutations (Figure 3-22). 

 

 

Figure 3-22 Proportion of samples for each cancer type with mutation in one of the CGAS/STING 

pathway genes. X-axis: proportion (%) of samples. Y-axis: TCGA cancer type. 

 

Regarding gene expression of cGAS/STING pathway genes, we compared gene 

expression in cancer tissues matching these data with normal tissue ones (when present). We 

detected an altered expression of these genes in many cancer types compared to matched 

normal tissues (Figure 3-23). In particular, cGAS gene is significantly overexpressed in 11 

cancer types out of the 22 for which we have expression data for both tumour and normal 

tissue. It shows a downregulation only in Kidney Chromophobe (KICH) and Prostate 
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adenocarcinoma (PRAD). STING gene is significantly overexpressed only in Kidney renal clear 

cell carcinoma (KIRC), Stomach adenocarcinoma (STAD) and Thyroid carcinoma (THCA), while 

it is underexpressed in Lung adenocarcinoma (LUAD) and Lung squamous cell carcinoma 

(LUSC). Two other key genes of this pathway, TBK1 and IRF3, are overexpressed in 10 and 12 

different cancer types, respectively. Notably, in KIRC, all the genes of the cGAS/STING 

pathways are overexpressed (Figure 3-23). 

 

 

Figure 3-23 Expression of cGAS, STING, TBK1, IRF3 in primary tumour samples (red) compared to normal 

tissue samples (blue) for each cancer type. Symbols on top indicates p-value of Wilcoxon test (ns: p-
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val>0.05, *: pval<0.05, **: pval<0.01, ***: pval<0.001, ****: pval<0.0001). Values into boxplot indicate 

number of samples. 

 

Then, we tested if cGAS/STING pathway overexpression can be a predictor of survival. 

For each cancer type, we distinguished 2 group of samples for each gene: one “ igh”, with the 

upper 33 percent of samples ranked by gene expression, and one “Low” with the lower 33 

percent. Among all the cancer types, we obtained significant result only with STING and IRF3 

(in only one cancer type) expression. Notably, STING overexpression leads to different 

outcome of survival, depending on cancer type (Figure 3-24). In particular, STING 

overexpression is a predictor of poor prognosis in Acute Myeloid Leukaemia (LAML), Uterine 

Corpus Endometrial Carcinoma (UCEC), Colon adenocarcinoma (COAD) and Rectum 

adenocarcinoma (READ), while in Brain Lower Grade Glioma (LGG), Skin Cutaneous Melanoma 

(SKCM) and THCA it is a predictor of better prognosis. Among the other cGAS/STING pathway 

genes, only IRF3 overexpression predicts a significant poor prognosis in LAML, as for STING. 

 

 

Figure 3-24 Overall Survival plot for STING expression in selected cancer types. Red line: High expression 

group (33th higher percentile of samples ranked by STING expression). Blue line: Low expression group 

(33th lower percentile of samples ranked by STING expression). 
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To elucidate the interplay of cGAS/STING pathway and tumour immune 

microenvironment, we correlated expression of this genes with leukocyte fraction, scores 

regarding signatures of immune cell infiltration in tumour samples and with gene set 

enrichment scores regarding the induction of innate immune response (Thorsson et al., 2018). 

Results of this analysis show that STING gene expression is positively correlated with 

immune cells infiltration and interferon response in almost all cancer types, underlining its 

role in innate immune response activation in cancer (Figure 3-25). CGAS gene expression is 

well correlated in many cancer types, in particular in KICH and LGG cancer types (Figure 3-25). 

On the other hand, TBK1 and IRF3 gene expression is correlated with immune cells presence 

and interferon response only in few specific cancer types (Figure 3-25). 

A possible explanation of this result is that TBK1 and IRF3 are usually expressed at a 

consistent level and that their activity is modulated by protein modifications. Notably, in LGG 

cancer type, CGAS, STING and IRF3 expression are strongly correlated with immune 

infiltration, underlining the importance of this pathway in innate immune response activation 

in this cancer type.  

 

Overall, the findings of the PanCancer survey showed that genes involved in 

cGAS/STING pathway are poorly mutated in most cancer types and that on the base of cancer 

type their expression can be sensibly altered if compared to normal tissue. Moreover, their 

expression positively correlates with immune infiltration and innate immune response 

activation, in particular for STING gene, the expression of which could be a predictor of survival 

in some cancer types. On the other hand, in some cases pathway overexpression is correlated 

with poor prognosis, suggesting that in some cancer types the activation of cGAS/STING might 

be deleterious.  

Notably, in LGG (Low Grade Glioblastoma) there is a strong correlation between this 

pathway expression and innate immune response activation and STING expression is also a 

predictor of good prognosis, suggesting that modulation of this pathway in this cancer type 

can be a promising therapeutic strategy. 
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Figure 3-25 Heatmaps showing spearman correlation between gene expression of cGAS, STING, TBK1 

and IRF3 and signature or enrichment score for each cancer type. Value of correlation is indicated in 

colour legend. Numbers within each cell indicate the p-value of correlation test. 
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4. DISCUSSION 

 

The first part of my PhD project focused the definition of R-loop dynamics in cancer 

cells exposed to PDS and FG, two unrelated G4 binders. Through analysis of DRIP-sequencing 

and immunofluorescence microscopy data (De Magis et al. 2019; De Magis 2016), we 

observed that in U2OS cells there is an increase of R-loop structure after 5 minutes of exposure 

to two different G4 binders, FG and PDS (Table 3-4). These R-loops are mainly localized at 

promoter and transcription termination regions and are positively correlated with gene 

expression and the presence of CpG islands, in agreement with previous studies on R-loop 

mapping (Ginno et al., 2013, 2012). One of the major effects was that in many loci (1000 for 

FG and 639 for PDS) R-loop increase was due to an extension of pre-existent R-loops (Figure 

3-10), prevalently at intronic regions and terminator regions (Figure 3-11). The data thus 

indicate that G4 binders induce unscheduled nuclear R-loops in U2OS cancer cells and that in 

many loci R-loop formation can be structurally compatible with binder stabilised G4 structures 

(section 3.1, Figure 4-1) (De Magis et al., 2019). 

 

As R-loop regions identified by DRIP-sequencing lack strand information, which is 

essential to better define the structural relation of R-loops with G4, annotation of R-loop to 

the correct gene became a crucial step in my analysis. I spent part of my PhD project on the 

development of a tool that can perform a better annotation of R-loop peaks comparing to 

other existing annotation tool. These efforts led to the release of a new annotation tool, 

DROPA (DRIP Optimized Peak Annotator) (Russo et al., 2019). The main improvement 

comparing to other broadly used tools relies on the possibility to annotate peaks on the base 

of gene expression. Since R-loops are mainly co-transcriptional, when DRIP-seq peaks overlap 

more than one gene, DROPA assigns the peak to the expressed (or most expressed) gene. 

DROPA was evaluated in terms of efficiency in annotating peaks to the correct gene using 

stranded R-loop datasets (obtained via DRIPc-seq technique), resulting in 93.8% of correct 

assignment (see section 3.1.2). I also performed a comparison with other broadly used tools, 

showing that DROPA performs a more robust and reliable annotation. Even though DROPA 

showed a good general efficiency in R-loop annotation, there are some conditions that can 

limit the proper assignment of R-loop peaks to the correct gene. The main one regards 
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antisense R-loop peaks (Sanz et al., 2016) that cannot be detected by DROPA. To compensate 

for this limitation, DROPA provides a list of peaks assigned only to the upstream/downstream 

region of expressed gene, where antisense transcripts can be present. A comparison of this 

information with genomic datasets of antisense transcripts can help the user for further 

analysis. Another limitation of DROPA regards the fact that in some cases RNA-seq 

methodology may not represent the nascent transcript levels level in the cell, leading to false 

positive annotation. This limitation can be overcome using, instead of RNA-seq gene 

expression data, nascent RNA data that can be obtained using GRO seq (Core et al., 2008), 

PRO-seq (Kwak et al., 2013) or TT-seq (Schwalb et al., 2016) methodologies. 

 

Thus, taking advantage of DROPA, we predicted strandness of DRIP-seq peaks and 

found that extended regions of R-loops were significantly enriched in G4 structures when the 

latter ones form on the displaced strand of the R-loop. These results are in agreement with 

Duquette et al. 2004 that showed a structural compatibility of R-loops with G-quadruplexes 

structures in vitro and in E.coli. These findings let us to propose a model in which the 

treatment of cancer cells with G4-binders leads to stabilization of G4s in open transcribed 

chromatin region, in agreement with other studies (Hänsel-Hertsch et al., 2016), and 

consequently R-loop structures are also stabilized, allowing the extension of DNA:RNA hybrids 

(Figure 4-1). 

 

Figure 4-1 Model of G4-binders activity in U2OS cells. Adapted from De Magis et al., 2019. 
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As presented in the introduction, a mechanistic link between unscheduled R-loop 

formation and DNA damage and genome instability has been shown in different studies 

(Crossley et al., 2019). We also found that PDS and FG can induce DNA double-strand breaks 

and DNA damage response (DDR) after few hours of exposure  to the tested G4 binders (Figure 

4-1). As DNA damage and DDR were abolished by overexpressing RNaseH1, our data strongly 

support that G4 binders promote DNA cleavage and DDR by increasing the levels of nuclear R 

loops (De Magis et al., 2019). 

In addition, we also found that PDS and FG showed different effect on U2OS cells: while 

FG showed a more cytotoxic effect, PDS was much less cytotoxic and induced micronuclei 

formation in a R-loop-dependent way (De Magis et al., 2019). We still do not know the 

mechanistic basis of this difference. However, we can speculate that it may be partially due to 

different G4 binding specificity of the two compounds, leading to stabilization of R-loop in 

different loci and consequently leading to diverse downstream effects. 

 

Since micronuclei, a well-known marker of genome instability (Hatch et al., 2013), were 

recently reported to be a source of cytosolic DNA and stimulate the cGAS/STING pathway and 

an innate immune response (Harding et al., 2017; MacKenzie et al., 2017), in the second part 

of my PhD project I assessed whether PDS can be an effective immune stimulator compound. 

In such case, G4 binders might be proposed in clinical settings as coadjutant agent in cancer 

immunotherapy instead of as cytotoxic compounds. As STING pathway has been shown to be 

impaired in U2OS cells (Deschamps and Kalamvoki, 2017), we decided to test PDS effects on 

MCF-7 breast and U2OS sarcoma cancer cell lines by determining gene expression profiles by 

Illumina RNA-seq analyses after G4 binder treatment. In MCF-7 cells treated with PDS, we 

observed a strong and clear increase of micronuclei formation (data not shown). Furthermore, 

through immunofluorescence experiments, we observed that micronuclei are recognized by 

cGAS, in agreement with previous studies (Harding et al., 2017; MacKenzie et al., 2017) (data 

not shown). Under similar conditions, RNA-seq data showed a significant upregulation of 

genes related to inflammation and type I interferon response. 

Since in our experimental design we included both a control condition after 4 days of 

recovery (as PDS treated cells) and one other control condition at time 0, we were able to 
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detect changes in gene expression that are independent from PDS. Interestingly, in untreated 

cells, after 4 days of recovery we observed a weaker but significant enrichment in type I 

interferon response (Fig 3-17). We then demonstrated that in PDS treated cells expression of 

genes belonging to interferon alpha response dataset are significantly more upregulated than 

control_t4 cells (Fig 3-18). Thus, as immunofluorescence microscopy data showed that 

micronuclei are also increased in untreated cells after 4-5 days in culture, although to a lower 

extent than in PDS-treated cells, the findings show that MCF-7 cells are likely characterized by 

genome instability leading to micronuclei formation and that treatment with PDS exacerbates 

the process and leads to a stronger type I interferon response. These evidences were validated 

via qPCR experiment on some representative genes (IFNB1, CXCL10, CCL5, IFIT1, IFI44, DDX60) 

and we observed that when STING activity is inhibited (using specific siRNAs or a chemical 

inhibitor) induction of these gene is abolished (data not shown). 

 

We then performed a comparison of the effects of PDS treatment on gene expression 

between MCF-7 and U2OS cells. Temporal sets were different between the cell lines as U2OS 

cells were collected after 1 day of recovery, while MCF-7 cells after 4 days. U2OS RNA-seq 

experiment was set mainly to evaluate the putative effects of G4 binders on transcription and 

has not been reported in our previous publication (De Magis et al., 2019). However, a 

comparison between U2OS and MCF-7 lines can provide some information on PDS biological 

effects. 

Interestingly, we observed marked differences between U2OS and MCF-7 cells in 

relation to gene expression profiles upon PDS treatment and micronuclei increase. First, no 

enrichment of type I interferon response genes was detected in U2OS cells (Figure 3-21). This 

finding may be due to the absence of STING expression as reported by others (Deschamps and 

Kalamvoki, 2017). Interestingly, U2OS cells showed an upregulated inflammatory response 

may be mediated by activation of alternative immune pathway (IL6/JAK/STAT3 and IL2/STAT5 

signalling). When considering the down regulated gene pathways, both U2OS and MCF-7 have 

a similar response in terms of cell proliferation inhibition and cell cycle arrest. The findings 

thus suggest that a properly working STING pathway is required to trigger a type I interferon 

response to PDS treatment in cancer cells. Nevertheless, other immune-related pathways 
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appear to be activated in cells treated with PDS that are independent from STING. These 

pathways remain to be characterised fully. 

 

In the last part of my PhD project, I investigated how cGAS/STING pathway genes are 

altered in human cancer tissues, in collaboration with Prof. Francesca Ciccarelli. By using TCGA 

data regarding 31 different cancer types, I showed that while cGAS/STING pathway genes are 

generally poorly mutated in human cancers, gene expression can be substantially altered in 

many cancer types. Except for STING gene that is downregulated in lung adenocarcinoma and 

lung squamous cell carcinoma (Figure 3-23), cGAS, TBK1 and IRF3 are upregulated in many 

cancer types. Furthermore, we observed that expression is correlated with immune cells 

infiltration and interferon response in most of cancer types. The highest correlation was found 

in case of STING expression and, to lower extent, for cGAS expression, suggesting that these 

two genes may be the main actor in innate immune response in human cancers.  

However, we found that cGAS/STING higher expression poorly correlate with better 

prognosis. In fact, only in Brain Lower Grade Glioma (LGG), Skin Cutaneous Melanoma (SKCM) 

and Thyroid carcinoma (THCA) STING overexpression is predictor of better prognosis, while in 

some cancer types (Acute Myeloid Leukaemia, Uterine Corpus Endometrial Carcinoma, Colon 

adenocarcinoma and Rectum adenocarcinoma ) STING is a predictor of poor prognosis (Figure 

3-24). As cGAS/STING pathway is reported as tumour suppressor, these findings may be 

surprising at first sight. However, recently it has been reported that a chronic activation of 

STING pathway due to accumulation of cytosolic DNA may lead to immune evasion of tumour, 

therapeutic resistance and metastasis development (Bakhoum et al. 2018). These findings, 

together with what we reported on STING pathway in PanCancer, suggest that the pathway 

may be a double-edged sword. When STING pathway is transiently stimulated by cytosolic 

DNA (e.g. via induction of micronuclei with specific treatments) type I interferon stimulation 

leads to a proinflammatory response, T-cell recruitment to tumour microenvironment and 

cancer cell senescence. On the other hand, when cancer cells accumulate DNA damage and 

persistent genome instability, they show a chronic activation of STING pathway, and 

interferon signalling is progressively downregulated leading to immune evasion and 

metastasis (Bakhoum and Cantley 2018). Therefore, STING pathway modulation may be a 

suitable therapeutic strategy for specific cancer patients only. 
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In conclusion, my project involved both bioinformatic analysis of genomic and 

transcriptomic data and development of a new in-silico tool to address a specific biological 

question. The first part of my project, together with the efforts of my collaborators, leads to 

the discovery of a mechanistic model of DNA damage in cancer cells mediated by R-loop 

stabilization after stabilization of G4 structures in the displaced strand using different G4-

binders (De Magis et al. 2019). Moreover, I developed a new peak annotation tool to annotate 

DRIP-seq peaks which was crucial in our work to investigate R-loop/G4s interplay and may be 

useful to scientific community in the analysis of DRIP-seq data (Russo et al. 2019). 

In the second part of my PhD project we investigated the feasibility of pyridostatin as 

potential anticancer drug able to elicit innate immune response in cancer cells. Our findings 

suggest that in cells in which cytosolic DNA sensor pathway (cGAS/STING) is functional (MCF-

7 cells), there is an effective stimulation of interferon response. Notably, in case of STING 

pathway impairment (in U2OS cells) interferon response may be replaced by other 

inflammatory signalling, mediated by interleukins (these results are part of a further 

publication, in preparation). Our data support a further investigation of pyridostatin ability to 

stimulate a proinflammatory tumour environment and to trigger T-cell recruitment in cancer 

tissues. However, as the stimulation of the cGAS/STING pathway may lead to opposite 

outcomes, depending on cancer type and stage, the data already indicate that a potential 

anticancer strategy using PDS as immune stimulator may be effective in certain cancer types 

but not in others depending on tumour microenvironment and existing immune activation. 
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G quadruplexes (G4s) and R loops are noncanonical DNA structures
that can regulate basic nuclear processes and trigger DNA damage,
genome instability, and cell killing. By different technical ap-
proaches, we here establish that specific G4 ligands stabilize
G4s and simultaneously increase R-loop levels within minutes in
human cancer cells. Genome-wide mapping of R loops showed
that the studied G4 ligands likely cause the spreading of R loops to
adjacent regions containing G4 structures, preferentially at 3′-end
regions of expressed genes, which are partially ligand-specific.
Overexpression of an exogenous human RNaseH1 rescued DNA
damage induced by G4 ligands in BRCA2-proficient and BRCA2-
silenced cancer cells. Moreover, even if the studied G4 ligands in-
creased noncanonical DNA structures at similar levels in nuclear
chromatin, their cellular effects were different in relation to cell-
killing activity and stimulation of micronuclei, a hallmark of ge-
nome instability. Our findings therefore establish that G4 ligands
can induce DNA damage by an R loop-dependent mechanism that
can eventually lead to different cellular consequences depending
on the chemical nature of the ligands.

R loop | G-quadruplex ligand | genome instability | DNA cleavage |
antitumor activity

Gquadruplexes (G4s) are noncanonical secondary DNA
structures constituted of two or more stacked guanine tetrads

held together by Hoogsteen hydrogen bonds and stabilized by
monovalent cations such as K+ and Na+ (1, 2). G4s can play a
regulatory role in basic nuclear functions such as replication and
transcription, and indeed G4-promoting sequences have been
mapped at key regulatory genomic sites, notably oncogene pro-
moters, untranslated exonic regions, replication origins, and telo-
meres (1, 2). In the past years, several specific G4 ligands have
been developed targeting telomeres or oncogene promoters, as
G4s are considered promising targets of effective anticancer drugs
(1, 2). Nevertheless, despite the high number of G4 ligands in the
literature, few have entered early phases of clinical trials and none
has shown efficacy in cancer patients (1–3).
An intriguing effect of G4 ligands is the induction of DNA

damage and genome instability. In particular, pyridostatin (PDS)
(SI Appendix, Fig. S1A), a well-known G4 ligand (1, 4), induces
DNA damage as shown by formation of γH2AX foci (5), a
marker of double-stranded DNA breakage (DSB). The com-
pound triggers the activation of the DNA damage response
(DDR) pathway, as determined by phosphorylation of ATM,
DNA-PKcs, Chk1, and other factors and by cell-cycle arrest at
G2/M phase (5). G4 ligands, including PDS, were recently shown
to be more active in reducing the proliferation of BRCA1/2-de-
ficient cancer cells by accumulating DNA damage, chromosomal
aberrations, and persistent checkpoint activation (6, 7). These
findings are consistent with a critical role of the homologous
recombination repair (HRR) pathway in protecting cancer cells
from genome instability triggered by G4 ligand activity. Consis-
tently, G4 structures can lead to instability of the CEB1 minis-
atellite in pifΔ Saccharomyces cerevisiae cells in a manner
dependent on HRR (8). G4 ligands can also induce genome

instability showing specific gene interactions in different cell
systems. For instance, the compound TMPyP4, known to bind to
telomere G4s, has been shown to enhance murine telomere
fragility in the absence of RTEL1, a factor regulating the dis-
assembly of telomeric T loops (a lasso-like telomere organiza-
tion) (9). Recent work has shown that G4 structures can cause a
high rate of sister chromatid exchange in Bloom helicase (BLM)-
mutated cells derived from Bloom syndrome patients (10). The
authors proposed that BLM preserves genome stability by re-
solving G4 structures and suppressing recombination at tran-
scribed genomic loci. Thus, stabilization of G4s by specific
ligands or genetic defects can lead to genome instability through
the induction of DSB and/or activation of recombination repair
pathways. Nevertheless, the mechanism of DSB formation and
genome instability by G4 ligands is unknown.
A G4 can be structurally compatible with an R loop, which is

another noncanonical secondary DNA structure wherein the two
strands of a DNA duplex are separated and one of them is annealed
to an RNA, forming a DNA:RNA hybrid (11–14). G4s were shown
to form in the displaced strand of an R loop, forming a G loop,
depending on high transcription rate and negative supercoiling of
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the DNA template (15). The structural compatibility of G4s and R
loops is consistent with the knowledge that the formation of both
G4s and R loops is favored by similar DNA structural aspects, such
as G richness of displaced strands and negative torsional tension,
which are common features of active gene promoters (16–18). In-
terestingly, R loops play a role in several physiological functions of
cells; however, unscheduled R loops can lead to DSB, genome in-
stability, and cell killing (12, 13, 19).
Thus, we have here investigated the effects of G4 ligands on

R-loop formation and genome integrity in human cancer cells.
By studying three structurally unrelated G4 ligands and an in-
active analog, our findings establish that G4 ligands induce an
immediate increase of nuclear R loops that mediate the forma-
tion of DSB. We also discovered that G4 ligands cause the
generation of micronuclei at later times in an R loop-mediated
manner, particularly in BRCA2-depleted cancer cells. Our find-
ings establish a mechanistic role for R loops in mediating the
cellular effects of G4 ligands, and open unexpected lines of in-
vestigation and development of new anticancer strategies.

Results
G4 Ligands Induce an Increase of Nuclear DNA:RNA Hybrid Structures.
We set out to define the interactions of G4s with R-loop struc-
tures in relation to genome integrity in human U2OS cancer
cells. We first determined with immunofluorescence microscopy

(IF) the induction of DNA:RNA hybrids by three established and
structurally different G4 ligands: pyridostatin (2), Braco-19 (2), and
FG (compound 1 in refs. 20 and 21) (SI Appendix, Fig. S1A). Nuclear
G4s and hybrids were visualized with BG4 and S9.6 antibodies, re-
spectively, validated previously (21) or with specific assays (SI Ap-
pendix, Fig. S1 B–G). In particular, our high-stringency buffer
conditions prevented the binding of S9.6 Ab to the cytoplasm, as we
rarely detected cytoplasmic signals (Fig. 1; see also SI Appendix, Figs.
S1, S3, and S4). G4 ligands robustly increased the number of nuclear
G4s and hybrid foci between 2 and 10 min in U2OS cells, whereas
they dropped close to baseline levels or lower at later times (30 to
60 min; Fig. 1 A and B). The kinetics of hybrid and G4 formation
paralleled each other closely (Fig. 1B), and increased hybrids were
located in the nucleoplasm, clearly outside the nucleolus, as visualized
with nucleolin staining, indicating that they were not restricted to
highly transcribed ribosomal RNA genes (Fig. 1A). The transient
increase of G4s and hybrids at short times was specific, as an FG
analog, FA (SI Appendix, Fig. S1A), which did not stabilize G4s in
vitro and in living cells (compound 3 in ref. 20 and compound 14a in
ref. 21), did not increase hybrids either (Fig. 1 A and B). We must
note that FA is more cytotoxic than FG (21) (see below), and thus the
mechanism of action of the former is likely different from the latter.
As G4 focus stabilization by specific ligands was often repor-

ted to occur after 24 h (1, 2), we also tested these conditions and
showed that PDS and FG, but not FA, also induced both G4 and
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Fig. 1. G4 binders induce nuclear DNA:RNA hybrids overlapping G4 foci. (A) Human U2OS cells were treated with PDS, FG, FA (10 μM), or Braco-19 (15 μM) for
the indicated times. IF images were analyzed after labeling G4s, hybrids, and nucleolin with BG4, S9.6, and AB22758 antibodies, respectively (as indicated by
color). White lines indicate nuclei. (B) Hybrid and G4 levels were determined by fluorescence intensity (FI) of cells treated as in A. FI of the nucleoplasmic
compartment was calculated by subtracting the nucleolar signal from total nuclear FI. The graphs show FI levels normalized over untreated cells of two
biological replicates, and numbers indicate analyzed nuclei. Boxplots are as detailed in SI Appendix, Methods; horizontal lines and plus signs are median and
mean values, respectively. Asterisks indicate statistical significance in comparison with untreated cells by the Kolmogorov–Smirnov parametric test. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001. (C) G4 foci and hybrid signals induced by 24-h treatments with 10 μM PDS, FG, or FA. U2OS cells were stained as in A.
Hybrid and G4 levels are shown in SI Appendix, Fig. S2C. (D) Colocalization of hybrid signals with G4 foci. Cells were treated as in A for 5 min and then stained
with BG4 (green) and S9.6 (red) antibodies. (E) Colocalization of hybrid signals with G4 foci as in D, but cells were treated for 24 h. (Scale bars, 10 μm.)
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hybrid foci at 24 h (Fig. 1C). As we reported that the topoisomerase
I (Top1) poison camptothecin can transiently enhance nuclear
DNA:RNA hybrids at short times in cancer cells (22), we wondered
whether FG and PDS can also poison Top1. We then measured
Top1–DNA cleavage complexes in U2OS cells, as described (23).
The results showed that PDS and FG are not Top1 poisons (SI
Appendix, Fig. S2A), thus excluding the possibility that Top1 poi-
soning accounts for the increase of hybrids by the studied ligands. In
addition, FG and FA were previously shown to have negligible
binding activity toward DNA duplexes (20, 21). Thus, the cellular
effects of the studied G4 ligands on hybrid induction are likely due
to their specific G4 binding activity. In addition, while FG was as
effective as PDS in increasing hybrid foci in the nucleoplasm (Fig. 1
B and C), PDS increased hybrid signals at nucleoli more than FG
and Braco-19 (SI Appendix, Fig. S2 B and C). These observations
therefore suggest that PDS, Braco-19, and FGmay differently affect
R loops along the genome of U2OS cells, likely due to binding to
different sets of G4 targets.
Further investigations of the kinetics and dose dependence of

hybrid and G4 formation by PDS, Braco-19, and FG showed that
the increase of hybrids observed from 2 to 10 min was followed
by several hours (0.5 to 6) with no induction, and then by a
second increase at 18 to 24 h (SI Appendix, Fig. S3 A–E). In
addition, hybrid induction was clearly dose-dependent for PDS
and Braco-19 (SI Appendix, Fig. S3 F and G). We noted, how-
ever, that Braco-19 had somewhat different kinetics at 18 to 24 h
in comparison with PDS and FG (SI Appendix, Fig. S3 B and E),
suggesting different cellular outcomes among the compounds.
As the induction of hybrids was always coupled to increased

G4 foci, our IF data are consistent with a direct effect of ligand-
stabilized G4s on R-loop formation and/or stability. Moreover, the
observed biphasic kinetics supports that nuclear R loops are highly
dynamic structures (24), likely regulated by homeostatic mecha-
nisms. In this context, G4 stabilization may act as a favoring factor
that would, however, stimulate a counterbalancing factor that will
then reduce R-loop levels. For instance, unscheduled R loops are
expected to inhibit transcription, which would then disfavor the
formation of G4s and R loops after the initial increase. Thus, we
wondered whether G4s and R loops were localized in the same
chromatin domain, and then performed colabeling confocal IF
experiments with BG4 and S9.6 antibodies. Interestingly, hybrid
signals significantly overlapped with G4 foci in cells treated for
short (5 min) or long times (24 h) with PDS, Braco-19, and FG
(Fig. 1 D and E). It must also be noted that several G4 foci did not
overlap with hybrids (Fig. 1 D and E). Within the resolution limits
of IF, these observations showed that G4 ligands may stimulate
both hybrid and G4 foci at the same or very close chromatin do-
mains and that stabilized G4s may favor a nearby R loop.
Next, we wondered whether G4 ligands can increase R-loop

levels in other human cell lines. Since PDS has been shown to be
less effective in G4 stabilization in normal cells (1, 25), we also
determined G4 ligand effects either in normal human WI-38 and
IMR-90 lung fibroblasts or HeLa cancer cells. Interestingly, PDS
and FG did not increase G4s nor hybrids at detectable levels in
normal WI-38 and IMR-90 fibroblasts at all time points, whereas
the ligands increased G4 foci and hybrid signals in HeLa cells
after 5-min and 24-h treatments (SI Appendix, Fig. S4). Thus, the
data may suggest that the studied cancer cells may suffer from a
loss of function(s) resulting in a defect in the removal of
G4 structures and hence in detectable IF signals. Altogether, our
results show that the studied G4 ligands can induce the simul-
taneous formation of G4 and DNA:RNA hybrid structures at
close chromatin domains in the studied human cancer cells.

G4 Ligands Induce R-Loop Spreading into Adjacent Regions Containing
Experimentally Observed G4 Structures. To gain insights into the
mechanism of R-loop induction by G4 ligands, we wondered whether
genomic locations of R loops overlapped with G4 structures, as

previously established in human genomic DNA in the presence of
PDS with a polymerase-stop assay (26). Thus, we focused on two
G4 ligands, PDS and FG, and determined genomic R-loop maps
by DRIP-seq (DNA:RNA immunoprecipitation-using sequencing)
(18, 27) in U2OS cells treated for 5 min with the compounds to
identify the genomic sites of affected R loops. Two biological
replicates were performed for untreated and treated cells. To
identify specifically the hybrids, we sequenced recovered DNAs
from those cell samples that had been left untreated or treated
with Escherichia coli RNaseH after restriction enzyme digestion
and before immunoprecipitation with S9.6 (Fig. 2A; see also SI
Appendix,Methods). R-loop peaks were then identified only if they
were consistently observed in both replicates and absent in the
RNaseH-treated samples. Fig. 2A shows a representative gene,
TLE3 (Transducin-Like Enhancer of Split 3), which encodes a
transcriptional corepressor protein. With these stringent criteria,
we obtained thousands of R-loop peaks in control and treated
cells covering from 2.5 to 5.1% of the genome (SI Appendix, Fig.
S5A), and each pair of biological replicates showed high correla-
tion coefficients (SI Appendix, Fig. S5B). R-loop peaks were
consistently found in gene regions and were highly enriched at 5′-
and 3′-end gene regions (SI Appendix, Fig. S5C), in agreement
with previous findings (18, 24, 27–30). We observed that the
profiles of R-loop peaks were highly correlated with each other,
and genomic peak distributions were very similar between control
and treated cells (SI Appendix, Fig. S5 D and E). However, the
peak number and genome coverage were higher for treated than
control cells (SI Appendix, Fig. S5A), suggesting an increase of R
loops by the two ligands without alterations of global patterns of
genomic R loops.
As the observed genomic increase can be due to higher R-loop

levels at specific regions or to the spreading of preexisting peaks,
we then investigated both possibilities. A direct comparison of
peak intensity showed a high number (97%) of increased peaks
(gain), whereas decreased peaks (loss) were only few (FG: 4,411 gain
and 149 loss; PDS: 9,881 gain and 272 loss). Gain peaks were par-
ticularly enriched at the 3′ end of genes (Fig. 2B), but we did not
observe a significant enrichment of experimentally observed G4
motifs (26) with gain peaks compared with unchanged peaks.
However, as R loops and G4s have been associated with active
transcription and promoters (18, 27, 28, 31), we then measured
gene expression levels in control cells by RNA-seq to determine
transcription-dependent effects of G4 ligands on R-loop levels.
Then, we divided genes into four classes depending on tran-
scription levels, and calculated the increase of DRIP sequence
reads induced (as Δ reads) by PDS and FG at their transcrip-
tion start sites for each expression category (Fig. 2C). The re-
sults show that the increase of DRIP reads is highly correlated
with transcription levels and the presence of CpG islands, thus
suggesting that both transcription and guanine-rich sequences
can favor the increase of R loops, likely due to a prompt
binding of the ligands to their targets at active and accessible
promoters. Moreover, we wondered whether GC skew (G
richness on the nontranscribed strand) could affect R-loop in-
crease by the studied G4 ligands. The data show that the
studied ligands increased DRIP reads at higher levels in actively
transcribed CpG-island promoters with GC skew than in those
without GC skew (SI Appendix, Fig. S5F), further supporting a
critical role for ligand binding to G4 targets at active promoters.
Next, as we noticed that R-loop peaks were often shared be-

tween control and G4 ligand-treated cells (see instances in Fig.
2A), we wondered whether gains were due to extended R loops
more than to higher peak intensity. Thus, we analyzed the length
of common peaks (more than 13,000 for each compound) and
found that a significant number of them were extended by PDS
and FG (Fig. 3A). Interestingly, extended peaks were enriched
particularly at gene 3′ ends for both G4 ligands (Fig. 3B). This
indicated that G4 ligands could frequently induce R-loop
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spreading to adjacent regions. Thus, to understand whether
R-loop spreading was associated with nearby G4s, we de-
termined the overlapping between extended peak regions
and experimentally observed G4 structures (26), focusing
on extended peaks with a fold change >1.5 and P < 0.05
(1,000 and 619 for FG and PDS, respectively; red aster-
isks, Fig. 3A). To take into consideration the strand forming
the G4 or the hybrid, we considered that the observed
G4 dataset is constituted by over 700,000 G4 sequences
assigned to one of the two genomic strands (26). Then, we
assigned DNA:RNA hybrids mapped at transcribed genes to

the template strand of genes (SI Appendix, Methods). As R-loop
peaks are frequent in GC-rich sequences (Fig. 2C), we also se-
lected peaks not extended by G4 ligands (unchanged; blue dots,
Fig. 3A) and matched to extended peaks for length and gene lo-
calization to be compared with extended peaks. Then, we calcu-
lated the enrichment of observed G4s at extended and unchanged
peaks relative to random peaks (SI Appendix,Methods). The results
showed that G4s in the displaced strand of R loops were more
enriched in extended peaks than unchanged peaks (darker vs.
lighter colors, Fig. 3C) for both PDS and FG, whereas G4s in the
template strand were not enriched (Fig. 3C). Interestingly, FG-
extended peaks show a significant depletion of extensions with-
out any G4 (Fig. 3C). Thus, the statistical analyses suggest that
G4 ligands can induce R-loop spreading when G4 structures are
present in the displaced strand of adjacent regions. A comparison
of extended peaks by FG and PDS showed that 248 peaks only
were in common between the two ligands, while a large fraction
of them were ligand-specific (57 to 74%; Fig. 3D), supporting a
degree of ligand binding specificity to distinct genomic sets of
G4 targets. To validate the bioinformatic analyses and R-loop
spreading, we performed DRIP-qPCR determinations of R-loop
levels at 15 extended peaks in cells treated with PDS and FG for
5 min. All of the tested regions with one exception (VSIG8 gene for
PDS) showed an increase of R-loop levels by the two ligands (Fig.
3E). Thus, altogether, these findings provide evidence that a
G4 structure in the displaced strand of an R loop can likely sta-
bilize and extend the overall structure when bound by specific li-
gands in cancer cells.

G4 Ligand-Induced DNA Damage Is Mediated by R Loops.As the studied
G4 ligands can stabilize G4s along with R loops in nuclear chro-
matin of human cancer cells, we next investigated the biological
consequences of R-loop induction. In particular, as G4 ligands are
known to induce DNA damage and genome instability (1, 2), we
asked whether this is due to increased levels of R loops.
First, we assessed the induction of DNA damage by PDS and FG

in U2OS cells. Following 24 h of treatment, the two ligands induced
an increase of S139-phosphorylated histone H2AX (γH2AX) foci
(Fig. 4A) and of G2/M cells (SI Appendix, Fig. S6A), which are both
hallmarks of genomic DSB and DDR. Moreover, we detected a
marked increase of foci of 53BP1 (p53-binding protein 1) and
S1778-phosphorylated 53BP1 (p53BP1; a specific marker of DSB
and DDR activation) in cells treated with PDS for 24 h (Fig. 4 B
and C and SI Appendix, Fig. S6B). Interestingly, p53BP1 foci
showed a nearly perfect colocalization with γH2AX foci (Fig. 4B).
DNA damage checkpoint activation was also assessed by measuring
the induction of pATM (S1981-phosphorylated ATM; a marker of
DDR activation) by PDS after 24-h treatments (Fig. 4 B–D and SI
Appendix, Fig. S6C). Interestingly, pATM foci fully colocalized with
γH2AX foci (Fig. 4B), indicating ATM recruitment to chromatin
sites of DSB. FG and FA have minor effects on the levels of
p53BP1 and pATM foci at 24 h (Fig. 4D, Left and SI Appendix, Fig.
S6 B–E). However, the ratio pATM/ATM was increased by PDS
and FG, but not FA, after 24 h (Fig. 4D, Right), suggesting that
DDR is activated after 24 h with PDS as well as FG.
Then, as G4 ligands increased hybrid levels after 2 to 10 min

(see above), we measured γH2AX focus levels at shorter times.
γH2AX foci were consistently increased around twofold by PDS
and FG after 1 to 4 h of treatment (Fig. 4E), in agreement with a
published report on PDS (5), showing that the increase of un-
scheduled R loops preceded γH2AX focus formation. In-
terestingly, the γH2AX kinetics of PDS was markedly different
from that of FG (Fig. 4E). In response to PDS, γH2AX focus
number increased progressively over 24 h whereas, in response to
FG, γH2AX foci reached a plateau after 2 to 4 h and then de-
creased somewhat after 20 to 24 h (Fig. 4E). FA, which did not
induce G4s and R loops (see above), was slightly effective at
inducing γH2AX, but less than FG (Fig. 4 A, D, and E). Braco-19
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along with an RNaseH-treated sample. Control cells are red; cells were
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also increased γH2AX foci, with a kinetics similar to that of PDS
(SI Appendix, Fig. S6F). As G4 ligands did not stabilize G4s and
hybrids in normal WI-38 fibroblasts (SI Appendix, Fig. S4), we
also determined γH2AX levels in these cells. Consistently,
G4 ligands did not induce γH2AX in WI-38 fibroblasts (SI Ap-
pendix, Fig. S6G).
Next, we asked whether DSB induced by G4 ligands is mediated

by unscheduled R loops. To this end, we used a U2OS cell line
which has stably been transfected with a vector expressing an
mCherry-RNaseH1 under the control of a doxycycline (Doxy)-
inducible Tet promoter (SI Appendix, Fig. S7A) (32). PDS induced
a 1.8- to 2.1-fold increase of γH2AX foci in cells not expressing the
enzyme, whereas PDS induced a 0.83-fold change in cells over-
expressing mCherry-RNaseH1 (Fig. 4 F and G). The results dem-
onstrate that RNaseH1 overexpression fully prevented the induction
of γH2AX foci by PDS. Interestingly, PDS and FG induced low
levels of G4 foci in cells overexpressing mCherry-RNaseH1 at short
times, suggesting that RNaseH1 overexpression can prevent a
full stabilization of G4 structures by the studied ligands (SI
Appendix, Fig. S7B). Altogether, the results thus support that
G4 ligand-induced DNA damage is mediated by unscheduled
G4/R-loop structures.
To understand whether R-loop induction has any consequence

on cell death induced by the studied G4 ligands, we determined
the cytotoxic activity of PDS, FG, and FA in U2OS and
U2OS_RH cells, the latter being a cell line stably transfected
with a FLAG-tagged human RNaseH1 gene under a doxycycline-
inducible Tet promoter (SI Appendix, Fig. S8A). Cell-killing ac-
tivity of FG was reduced in U2OS_RH cells compared with
U2OS cells, and the reduction was stronger when RNaseH1 was
overexpressed by doxycycline, whereas cell-killing activity of FA
was essentially unaffected (Table 1). PDS data were not mean-

ingful, as it was poorly cytotoxic (Table 1). As FA did not in-
crease G4s and R loops (Fig. 1) and is even more cytotoxic than
FG, its mechanism of action is independent of the studied
noncanonical DNA structures. Thus, overall, the findings sup-
port a main role for R loops in the induction of DNA damage
and cell killing by the studied G4 ligands in human cancer cells.

G4 Ligand-Induced DNA Damage Is Mediated by R Loops in BRCA2-
Depleted Cancer Cells. As G4 ligand-induced DSB can be repaired
by HRR mechanisms and BRCA2-deficient cells are more sensitive
to G4 ligands (6, 7), we wondered whether the hypersensitivity of
HRR-deficient cells to G4 ligands was dependent on R loops.
Therefore, we first determined whether the HRR pathway is ac-
tivated in U2OS cancer cells by assessing foci formation of Rad51,
a factor involved in the essential strand-invasion step of the HRR
pathway (33, 34). IF results showed a consistent increase of Rad51
foci by 24-h treatments with PDS and FG, but not FA, to a very
similar extent (Fig. 4H and SI Appendix, Fig. S8B), indicating an
activated HRR in U2OS cells. Then, to establish the role of R
loops in HRR-deficient cells, we silenced the BRCA2 gene with
siRNA in both U2OS and U2OS_RH cell lines (Fig. 5A and SI
Appendix, Fig. S8C) and determined the number of γH2AX foci
induced by PDS and FG with or without RNaseH1 overexpression.
Surprisingly, the effects of BRCA2 silencing were somewhat

different between FG and PDS. In BRCA2-silenced U2OS cells,
γH2AX focus levels by PDS were increased at early times com-
pared with WT cells (from 1.26 to 1.54 fold change at 1 h, and
from 1.98 to 2.69 fold change at 4 h) (Fig. 5B and SI Appendix, Fig.
S9A). In contrast, the kinetics of γH2AX by FG was not altered
and the levels of γH2AX foci were even somewhat reduced by
BRCA2 silencing (Fig. 5C and SI Appendix, Fig. S9B). Next, as
γH2AX foci were increased at early times, we determined the
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induction of γH2AX foci following a 4-h treatment with the
studied G4 ligands in U2OS_RH cells upon RNaseH1 expression
by doxycycline. Similar results were observed in BRCA2-silenced
and WT U2OS_RH cells in the absence of doxycycline (Fig. 5D,
from 1.36 to 1.53 fold change; Fig. 5E, from 3.44 to 1.34 fold
change), further supporting a difference in γH2AX induction

between the two G4 ligands. However, exogenous RNaseH1
expression abolished the induction of γH2AX foci by either
G4 ligands in BRCA2-silenced or WT cells (Fig. 5 D and E, +
Doxy), showing a complete rescue of DSB. Thus, the findings
strongly support that R loops play a main role in DSB induction
by PDS and FG also in BRCA2-silenced cells regardless of any
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different molecular activity of the two ligands. In addition, the data
suggest that the reported hypersensitivity of HRR-deficient cells to
G4 ligands (6, 7) may be due to unscheduled R-loop formation.

PDS Induces Micronuclei Mediated by R-Loop Formation. During the
course of this work, we observed that the studied G4 ligands
could increase micronuclei, a clear hallmark of genome in-
stability (35). As genome instability has been linked to impaired
regulation of G4 structures in living cells (1, 8, 10, 36), we then
asked whether micronucleus induction was mediated by DNA
damage and R-loop/G4 structures. First, we investigated micro-
nucleus induction in U2OS cells, showing that PDS increased the
fraction of cells with micronuclei to a greater extent in BRCA2-
silenced than BRCA2 WT cells (Fig. 5H and SI Appendix, Fig.
S9C), suggesting that the observed increase of DSB at early times
(Fig. 5B) may lead to enhanced formation of micronucleated
cells at later times. PDS-induced micronuclei were of different
size (SI Appendix, Fig. S9 C and D), found in cytoplasmic regions
close to the nucleus, and often showing IF signals of γH2AX (Fig.
5G), similar to recent reports using ionizing radiation (37–39). To
better characterize micronucleus generation, we performed a
cotreatment of PDS with a DNA-PK inhibitor, which fully abol-
ished micronucleated BRCA2-silenced and WT U2OS cells (SI
Appendix, Fig. S9 E and F) while maintaining a high level of
γH2AX foci (SI Appendix, Fig. S9G), consistent with a strong
inhibition of DNA repair. In agreement with previous reports (37–
39), as the DNA-PK inhibitor can potentiate a cell-cycle G2/M
arrest due to DNA-repair inhibition, the results showed that PDS
can trigger micronuclei when PDS-induced DSB fails to be properly
repaired and cells transit through mitosis.
We then determined whether micronucleus generation was re-

lated to unscheduled R loops. Interestingly, RNaseH1 over-
expression in U2OS_RH cells abolished PDS induction of
micronuclei in WT cells (from 1.57- to 0.74-fold; Fig. 5I) while
reducing it in BRCA2-silenced cells (from 2.23- to 1.59-fold; Fig.
5I). Therefore, RNaseH1 could fully rescue micronucleus forma-
tion by PDS inWT cells but only partially in BRCA2-silenced cells.
However, we noted that BRCA2 silencing itself increased micro-
nucleated cells (for instance, from 10.4 to 22.4% in untreated
U2OS_RH cells without Doxy; Fig. 5I), and RNaseH1 over-
expression somewhat affected micronucleus numbers as well (Fig.
5I). These observations may suggest that DNA repair or mitotic
mechanisms of micronucleus generation may involve DNA:RNA
hybrid formation, the removal of which might have an opposite
effect on PDS-triggered micronuclei.
In contrast to PDS, FG increased the number of cells with

micronuclei only slightly (SI Appendix, Fig. S10), suggesting that
FG-induced DSB largely leads to a different molecular outcome
such as cell-killing activity (Table 1). In addition, the slight in-
duction of micronuclei did not allow establishing a clear effect by
RNaseH1 overexpression on FG-induced micronuclei (SI Ap-
pendix, Fig. S10). Thus, the results show that PDS-induced DNA
breaks are particularly prone to trigger micronuclei in a manner

dependent on unscheduled R loops and G4 structures in BRCA2
WT and, partially, in BRCA2-depleted cancer cells.

Discussion
R loops form abundantly in mammalian genomes and have been
associated with different outcomes such as chromatin patterning,
Ig gene recombination, DNA DSB, and genome instability (12,
13, 18, 24, 40, 41). However, how R-loop metabolism is regulated
is still largely unknown. The present work provides experimental
evidence that G4 structures can modulate the formation of R
loops at active genes in eukaryotes. We here demonstrate that
the studied G4 ligands induce unscheduled R-loop/G4 structures
in human U2OS cancer cells likely by extending cotranscriptional
R loops, which mediate the cellular activity of the studied
compounds. Interestingly, even though PDS and FG can both
increase R loops with similar kinetics, the biological outcome is
partially different, in terms of DSB kinetics, genome instability,
and cell-killing activity. In addition, we discovered that PDS can
promote micronucleus generation in cancer cells in a manner
dependent on unscheduled R loops. Our findings establish a
molecular mechanism of G4 ligands with the potential to open
new perspectives for the discovery and development of effective
anticancer ligands.
Immediately upon cell exposure, G4 ligands increase R-loop

levels and G4 foci, with a maximum at 2 to 10 min, after which R
loops decline to undetectable levels for several hours. This im-
mediate occurrence is likely due to the specific action of the
compounds, namely stabilization of G4 structures through direct
binding (Fig. 6). Thus, the simultaneous and rapid biphasic ki-
netics are a specific outcome of the studied G4 ligands in U2OS
cells, likely due to a dynamic balance under homeostatic control
of G4/R-loop levels. The immediate and rapid kinetics of R-
loop/G4 structures may be due to a topological effect of G4
stabilization, as noncanonical DNA structures and DNA-duplex
torsional stress may affect each other (16). On the other hand,
the subsequent rapid reduction could result from transcription
inhibition caused by increased R-loop levels and extensions
(Figs. 2 and 3), and/or by active R-loop/G4 structure removal by
repair mechanisms or specific helicases (1, 12, 14, 28). However,
the mechanistic nature of the observed dynamic balance needs to
be established in future work. Genomic maps showed that
G4 ligands mainly induced R-loop gains at highly expressed
genes, in particular at 5′- and 3′-end gene regions, after 5 min of
treatment. The results are consistent with the findings that
G4 structures are more often found at open chromatin sites of
active genes in untreated cells (42). The reported genomic anal-
yses suggest that PDS and FG can likely extend preexisting R
loops to adjacent regions that are enriched for G4-promoting
sequences in the displaced, but not template, strand of R loops.
As our data are not at single-molecule levels but derive from
statistical analyses of several genomic regions, we cannot exclude
that increased (extended) R loops may be instead distinct R-loop
structures. However, a likely hypothesis is that G4 ligands affect
preexisting R loops within minutes of cell treatment, mainly at
transcribed regions that are in an open chromatin conformation,
in agreement with G4 structures present at these regions in un-
treated cells (42). Thus, G4 ligands may stabilize preexisting
G4 structures in the displaced strand of R loops, in turn stabilizing
DNA:RNA hybrids and increasing its length as proposed in our
model (Fig. 6), in agreement with the G-loop model shown in E.
coli (15). However, we believe that distinct mechanisms may be
operative at functionally different chromatin regions, leading to
reciprocal stabilization of R-loop/G4 structures. Thus, future
studies will establish the precise mechanism at specific chromatin
regions in living cells.
The increase of unscheduled R-loop/G4 structures can occur

at different sets of transcribed genes depending on the specific
ligand (Fig. 3D). Therefore, although the mechanistic model of

Table 1. Exogenous RNaseH1 overexpression reduces cell-
killing activity of FG but not FA

Compound

IC50, μM*

U2OS U2OS_RH U2OS_RH + Doxy

FG 15.9 ± 1.2 52.8 ± 1.1 92.8 ± 1.1
FA 6.77 ± 1.4 7.10 ± 1.3 7.12 ± 1.3
PDS >50 >50 >50

*Compound concentration inhibiting 50% of cell growth (see SI Appendix,
Methods). Cells were exposed to the indicated compound for 24 h, and cell
survival was determined after a further 48 h in drug-free medium. Numbers
are means ± SD of two biological replicates, each performed in triplicate.
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R-loop increase by PDS and FG can be similar, the cellular and
molecular outcomes can be different depending on the genomic
and chromatin context of the increased R loops (Fig. 6). We
indeed report a number of differences between PDS and FG,
mainly for γH2AX focus kinetics, BRCA2 silencing effects, mi-
cronucleus formation, and cell killing. As we used equimolar

doses of the studied compounds, resulting in similar cellular
levels of R loops (Fig. 1) and γH2AX foci (Fig. 4 A and E) in
U2OS cells, the results show that G4 ligands can have specific
molecular effects. Although the findings establish that DSB
triggered by PDS and FG is mediated by R loops to a large ex-
tent, the described differences suggest that the mechanisms of
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Fig. 5. DNA damage and genome instability are mediated by R loops in BRCA2-depleted cancer cells. (A) BRCA2 levels in the indicated cells following
treatment with the specific siRNA against BRCA2 (siBRCA2) or scrambled siRNA (siSc) for 48 h (full membranes are shown in SI Appendix, Fig. S8C). (B) γH2AX
levels in BRCA2-silenced or WT U2OS cells treated with PDS for the indicated times. (C) Same as in B but cells were treated with FG. (D) PDS-induced γH2AX
foci in BRCA2-silenced cells expressing an exogenous RNaseH1. RNaseH1-expressing vector stably transfected U2OS_RH cells were treated with siBRCA2 or siSc,
and then with 10 μM PDS for 24 h with or without doxycycline to activate RNaseH1 expression. RNaseH1 was fused to a FLAG tag to detect the enzyme (SI
Appendix, Fig. S8A). (E) Same as in D but cells were treated with FG. (F) Micronuclei induced in U2OS_RH cells transfected with scrambled siRNA or siRNA
against BRCA2, and then treated with PDS for 24 h. Small red arrows indicate single micronuclei. (G) Enlargement of a cell in the yellow square in F. The image
shows a micronucleus positive for γH2AX labeling. (H) Fractions of U2OS cells with micronuclei with and without BRCA2 silencing and 24-h treatments with
PDS. (I) Fractions of U2OS_RH cells with micronuclei with and without BRCA2 silencing, doxycycline, and PDS treatments as indicated. (Scale bars, 10 μm.) Bars
show mean values ± SEM. Fold-increase values are reported above the bars and represent treated/control ratios. Data in all panels are from at least two
biological replicates, and in each experiment an average of 250 cells per sample was determined. Statistical significance was determined with the Kolmo-
gorov–Smirnov test performed on the full cell populations. *P < 0.05, **P < 0.01, ****P < 0.0001.
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DNA damage and/or repair may be, at least partially, different.
One possibility is that HRR and other DNA repair mechanisms
are activated with different strengths and/or chromatin localiza-
tion of DSB is different for the two studied ligands. Interestingly,
active transcription and histone modifications were proposed to
regulate DSB repair pathway choice (43, 44). In addition, we
cannot completely exclude more selective R loop-independent
mechanisms of DNA damage induced by G4 ligands. For in-
stance, the stabilization of G4s in template DNA strands may
arrest DNA polymerases triggering replication stress and DNA
damage, which may then be resolved by distinct molecular path-
ways (45). Therefore, it will be interesting to establish in future
studies the specificity of DNA damage and repair pathways acti-
vated by diverse G4 ligands in relation to stabilized G4s and un-
scheduled R loops at functionally distinct chromatin sites.
Cooperative interactions between G4s and R loops were pre-

viously proposed to occur in E. coli and S. cerevisiae (15, 36, 46). In
particular, the genome instability of a G-rich murine Ig Sμ se-
quence in yeast was shown to be due to simultaneous formation of
G4/R-loop structures under high levels of transcription (36, 46).
High transcription levels of the Ig Sμ sequence are required for
murine class-switch recombination of Ig genes to likely allow
noncanonical DNA structures to form (47). In our study, we found
that G4 ligands could trigger cell killing and genome instability
with different efficiency. FG was more cytotoxic than PDS,
whereas PDS consistently induced micronuclei to a greater extent
than FG, particularly in BRCA2-depleted cancer cells, with a
mechanism involving unscheduled R-loop/G4s and DSB forma-
tion (Fig. 6). Micronucleus formation depends on a failure of
proper chromosomal DSB repair and requires cell passage

through mitosis (35, 37, 38). Interestingly, micronuclei can be a
source of cytoplasmic genomic DNA that can activate the STING
(stimulator of interferon genes) proinflammation response, even-
tually leading to activation of the innate immune system (37, 38,
48, 49). Of note, a high frequency of micronucleation was reported in
mouse embryonic fibroblasts lacking RNaseH2, a model of mono-
genic autoinflammation diseases (37, 50). RNaseH2 is an RNaseH
enzyme present in mammalian cells, which is involved in ribonucleo-
tide excision repair (51, 52) and can also resolve R loops (11–14).
Thus, unscheduled R loops may trigger micronucleus generation in
different cell types, and our findings suggest that micronuclei induced
by PDS, and to a lesser extent by FG, might lead to an immunosti-
mulatory response in human cancer cells.
Therefore, we have uncovered an R loop-dependent mech-

anism of DSB accumulation and genome instability caused by
the studied G4 ligands in human cancer cells. The mechanistic
role played by unscheduled R loops/G4s in the ligand activity
can be exploited to discover new anticancer compounds. In
addition, our findings foresee the potential of anticancer thera-
pies based on the combination of immunotherapy with G4-
targeting small molecules able to elicit an effective innate immune
response.

Methods
Compounds. FG and FA were synthesized as described previously (53); IR, 1H
NMR, 13C NMR, mass spectral data, and elemental analyses are reported in SI
Appendix, Methods. Pyridostatin and Braco-19 were purchased from Merck.
Chemical reagents were from Merck if not otherwise indicated and were
used as indicated in SI Appendix, Methods.

Cell Lines. The human U2OS cell line was purchased from ATCC (LGC Stan-
dards). Human WI-38 fibroblasts, immortalized with hTERT (54), were kindly
obtained from C. Mann (CEA, Gif-sur-Yvette, France) and E. Nicolas (Université
de Toulouse). U2OS_T-Rex_RH (expressing an mCherry-tagged RNaseH1) and
U2OS_T-Rex cell lines were a kind gift from P. Calsou (IPBS, Toulouse, France),
as described already (32). We generated the human U2OS_RH cell line as
follows: U2OS cells were first transfected with a pLVX-EF1α-Tet3G-Hygro Tet
transactivator-expressing vector and selected with 500 μg/mL hygromycin B.
Then, hygromycin-resistant cells were transfected with a pLVX-Tight-Puro
vector expressing a FLAG-tagged truncated version of human RNaseH1
(pLVX-Tight-Puro-RH-Flag) and selected with 1.5 μg/mL puromycin. Plasmid
vectors were kindly obtained from K. Cimprich (Stanford University, Stan-
ford, CA) (55). All cell lines were routinely tested for mycoplasma (Sigma-
Aldrich; MP0035), and cell identity was confirmed with an STR (short tandem
repeat) assay at the start and end of the experimental work by BMR Ge-
nomics. Cell-culture conditions, cell treatments, and BRCA2 gene silencing
are described in SI Appendix, Methods.

Immunofluorescence Microscopy. Slides were visualized at room temperature
by using a fluorescence microscope (Eclipse 90i; Nikon) or high-content im-
aging system (Operetta; PerkinElmer). Cell seeding was performed on a 35-
mm dish, 4-well Nunc Lab-Tek II Chamber Slide System (Nalge Nunc; 154526),
or 96-well plate (CellCarrier; PerkinElmer) for Operetta massive cell analysis.
Plates were coated or not with poly-L-lysine solution (Merck; P4707). After
24 h from seeding, cells were treated with 10 μM PDS, FG, or FA or 15 μM
Braco-19 for the indicated time. For high-throughput cell-image analysis, 96-
well plates were scanned using the Operetta High-Content Imaging System
(Harmony Imaging 4.1; PerkinElmer). After data acquisition, nuclear foci
detection and subsequent analyses were performed with Columbus
2.5.0 software (PerkinElmer). For graphical representation of focus distri-
bution, we used box-and-whisker plots using GraphPad Prism 6 software
with the following settings: boxes: 25 to 75 percentile range; whiskers: 10 to
90 percentile range; horizontal bars: median number of foci; “+”: mean
number of foci. Purification and validation of S9.6 and BG4 antibodies are
reported in SI Appendix, Methods. Detailed protocols of cell fixation and
staining for each antibody and cell-image analyses are reported in SI
Appendix, Methods.

Genome R-Loop Mapping. We used DNA:RNA immunoprecipitation method-
ologies to immunoprecipitate and isolate DNA:RNA duplexes from genomic
DNA preparations by using S9.6 antibody and to map genome-wide R-loop
structures, as described previously (18, 27). A detailed DRIP protocol is

G-quadruplex

RNA Pol II dsDNA

PDS or FG

DNA/RNA hybrid

DNA double-strand breaks

Genome instability
Cell killing

Cell killing
Genome instability

Fig. 6. Molecular model of PDS and FG activity in cancer cells. Ligand-
stabilized G4s can cause R-loop spreading at transcribed genes, which re-
sults in the accumulation of DNA DSB. DNA breaks can activate molecular
pathways leading to either cell killing or micronucleus generation (genome
instability).

824 | www.pnas.org/cgi/doi/10.1073/pnas.1810409116 De Magis et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810409116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1810409116


reported in SI Appendix, Methods. RNA-seq protocols and bioinformatic
tools and procedures of genomic R-loop maps are reported in SI Appendix,
Methods.

Other Methods and Data Availability. Other standard methods [Western blots,
cytofluorimetry, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) proliferation assay, quantitative PCR] and primer sequences are
reported in SI Appendix, Methods. Sequence DRIP reads are available at the
Gene Expression Omnibus database (56).
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DROPA: DRIP-seq optimized peak annotator
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Abstract

Background: R-loops are three-stranded nucleic acid structures that usually form during transcription and that may
lead to gene regulation or genome instability. DRIP (DNA:RNA Immunoprecipitation)-seq techniques are widely
used to map R-loops genome-wide providing insights into R-loop biology. However, annotation of DRIP-seq peaks
to genes can be a tricky step, due to the lack of strand information when using the common basic DRIP technique.

Results: Here, we introduce DRIP-seq Optimized Peak Annotator (DROPA), a new tool for gene annotation of R-
loop peaks based on gene expression information. DROPA allows a full customization of annotation options, ranging
from the choice of reference datasets to gene feature definitions. DROPA allows to assign R-loop peaks to the DNA
template strand in gene body with a false positive rate of less than 7%. A comparison of DROPA performance with
three widely used annotation tools show that it identifies less false positive annotations than the others.

Conclusions: DROPA is a fully customizable peak-annotation tool optimized for co-transcriptional DRIP-seq peaks,
which allows a finest gene annotation based on gene expression information. Its output can easily be integrated into
pipelines to perform downstream analyses, while useful and informative summary plots and statistical enrichment tests
can be produced.

Keywords: R-loop, Non-canonical DNA structures, Genome annotation, Next-generation sequencing

Background
R-loops are three stranded nucleic acid structures com-
posed by a DNA:RNA hybrid duplex and a displaced
ssDNA (single strand DNA) strand. R-loops form co-tran-
scriptionally when nascent RNAs anneal back to DNA
template strand [1, 2]. R-loops have been shown to be in-
volved in many nuclear processes such as transcription
regulation, DNA methylation modulation and DNA repair
mechanisms. However unscheduled R-loop formation is as-
sociated with DNA damage accumulation, genome instabil-
ity and genetic diseases [3].
Genome-wide maps of these peculiar nucleic acid struc-

tures have boosted our understanding of R-loop biology
[1]. Immunoprecipitation-based techniques, generally
known as DRIP (DNA:RNA Immunoprecipitation),
coupled with parallel sequencing (DRIP-seq), are widely
used to maps R-loops genome-wide [4, 5] and several DRIP
variants have been developed with the intent to improve
the identification of genomic R-loops [3]. However, the

most common technique (DRIP) allows the detection of R-
loop regions without providing the strand information of
the DNA:RNA hybrid. Understanding the DNA strand
forming the hybrid is essential to investigate the dynamic
interplay of R-loops with other nucleic acid structure (e.g.
G-quadruplexes) [6] or with basic directional mechanisms
such as replication and transcription [7].
Moreover, DRIP-seq data are commonly analyzed with

standard peak callers, such as MACS (Model-based Ana-
lysis of ChIP-Seq) [8], to identify regions with above-thresh-
old coverage signals, usually called “peaks”. Nevertheless,
DRIP peaks are markedly different from traditional ChIP
(Chromatin Immunoprecipitation) peaks of transcription
factors as the former peaks are usually much longer than
the latter ones, spanning across several genes features or
different genes. As R-loops can span several gene features
(REFs), the assignment of R-loop peaks to a unique feature
may not be appropriate.
To overcome these issues, we have developed a new

software, named DROPA (DRIP-seq Optimized Peak
Annotator), which makes use of gene expression data to
annotate R-loop peaks to strand templates and expressed
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genes. Thus, DROPA allows the identification of the
DNA strand annealed to the RNA and annotates R-loop.

Implementation
Program architecture and design
DROPA is a command-line tool, developed in Python,
and it can be launched in Unix environment (Linux,
MacOS, Windows Subsystem for Linux).
DROPA consists of six Python scripts, PeakOverlap,

CheckExpression, FeatureAssign, TableCreator, Rand-
Peak, and SummaryPlot (Fig. 1).

� PeakOverlap searches for genes overlapping R-loop
peaks. Two BED (Browser Extensible Data) files
are produced as output: one lists peaks with
corresponding overlapping genes and the other
lists intergenic peaks without overlapping genes.
Notwithstanding there are some libraries in R
(e.g. GenomicRanges [9]) that can perform this
step, however we wrote PeakOverlap in Python to
be consistent with the next scripts.

� CheckExpression introduces the main novelty of
DROPA as compared with common peak
annotation tools, as it considers gene expression
levels in order to assign each R-loop peak to a given
gene. It considers all overlapping genes of a peak
and, if only one gene overlaps with the query peak,
then that gene is assigned to the peak. In case of
multiple genes overlapping to the same peak,
CheckExpression evaluates their transcription levels
and selects the gene with the highest level.

Background levels can be set providing a threshold.
If expression levels are below thresholds, they are
the same for all overlapping genes, or if expression
data are not provided, then the function selects the
gene with the largest overlap with the query peak.
Gene expression data can be in TPM (Transcripts
Per Million), FPKM (Fragments Per Kilobase
Million) or any other normalized values.

� FeatureAssign identifies all gene regions (upstream/
downstream region, intron, exon, UTR (Untranslated
Region) regions) overlapping to the peak.

� TableCreator returns a table that reports relevant
information of annotated genes (name, template
strand and other features) for each peak.

� RandPeak (optional) performs analyses of random
R-loop peaks to calculate gene feature enrichment
scores. The script takes the query peaks coordinates
and returns randomly shuffled peaks all over the
genome using BEDtools shuffle tool [10]. Then, it
launches the 1 to 4 scripts of DROPA analyses for
the random peaks.

� Once all the steps are performed, SummaryPlot is
used to plot results.

Input data
DROPA requires three input data, which are:

� A file containing query peak locations in BED
format;

� A reference set folder containing information about
genes features (5’UTR, 3’UTR, exon, intron) in BED

Fig. 1 Overview of DROPA workflow
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format and a gene reference in BED12. We provide
many ready-to-use reference set for Homo sapiens
(hg19) and for Mus musculus (mm9 and mm10). Gene
reference can be easily generated for every genome of
interest, and also custom gene reference can be used.

� A 2-column gene expression table containing the
name of each gene and its normalized expression
value (FPKM, TPM, etc.). This table can be optional.

Besides the three input data, other custom parameters
can be provided:

� The size of upstream and downstream regions.
� The gene expression threshold to consider a gene as

expressed.
� The number of shuffle samples to perform the

randomization analysis.

Output data format
DROPA output consists of a folder containing table and
image files.
The main table file result is the “annotation.table” that

contains, for every annotated peak:

� Peak coordinates: chromosome, peak start, peak end;
� Peak name, as in the input file;
� Name of the gene, his strand and his expression

value, as in the reference;
� Which features of the gene are covered by the peak

(Upstream, 5’UTR, Exon, Intron, 3’UTR, Downstream).
� A warning flag if the peak is localized in a region in

which antisense R-loops can form.

DROPA provides other secondary table files, such as
the list of intergenic peaks and summary tables used to
create plot figures. Figures and the annotation.table are
provided in three version: the “expressed” in which are
reported results for peaks annotated to genes with ex-
pression value above the threshold, the “unexpressed” in
which are reported the ones annotated to genes with ex-
pression value below the threshold, and the “merged”
which reports the aggregation of the previous two.
DROPA produces many informative summary plots,

regarding the percentage of peaks overlapping each
genic feature (Fig. 2a), or their proportion as a pie chart
(Fig. 2b). Furthermore, since many peaks usually overlap
more than one feature, DROPA provides a plot in which
is shown the number of peaks that overlap each combin-
ation of feature (Fig. 2c). Finally, if enrichment analysis
is performed, it is provided a histogram (Fig. 2d) with
standard deviations bars and p-value of a chi-squared
contingency test, showing the fold enrichment for each
gene feature, calculated as the ratio between the number

of query peaks that overlap a feature and the mean num-
ber of randomly shuffled peaks.

Availability
DROPA package can be downloaded from https://
github.com/marcrusso/DROPA.

Installation
Detailed installation guide for DROPA and all python li-
braries required is available at https://github.com/mar-
crusso/DROPA. (see also Additional file 1 for DROPA
requirements)

Launching
To launch DROPA with default settings this command
can be used:
python3 DROPA_v1.0.0.py -ref GeneReference/GeneR-

eferenceSet/ -o OutputFolderName QueryPeak.bed

Results
Influence of expression data metrics on DROPA
As the main feature of DROPA is peak annotation using
expression levels, we tested whether different expression
metrics (TPM and FPKM) lead to different annotation
output. In this analysis, the same default settings were
used. The comparison showed that using TPMs more
peaks (212, 1.3%) were assigned to expressed genes.
However, all other peaks (15,872, 98.7%) were assigned
to the same gene using FPKM or TPM values (see Add-
itional file 1: Table S1). Overall the results show that
using TPM or FPKM substantially leads to very similar
overall peak annotation.

Assessment of DROPA performance
To assess the correct annotation rate of DROPA, we de-
termined the correct assignment of a query dataset of
DRIPc-seq peaks [11] to the DNA template strand.
DRIPc is a DRIP technique variant that maintains the
strand information of DNA:RNA hybrid peaks. Our
comparison shows that, when DROPA assigns peaks
based on gene expression (76,526 peaks, see Additional
file 1: Table S2), 88.6% (67,796) of them are assigned
correctly (see Additional file 1: Table S3). Among the
11.4% (8730) of peaks with wrong annotation, we no-
ticed that 5.05% (3871) are in the same position of an-
other DRIPc peaks but in the opposite strand, and
another 3.53% (2707) are mapped within 5000 bp up-
stream or downstream to expressed genes (see Add-
itional file 1: Figure S1). As antisense transcription is
known in particular at 5′ and 3′ ends of expressed
genes, these analyses suggest that many peaks assigned
to the wrong strand are potential antisense R-loops [11].
Therefore, if we consider only the transcribed regions of
a gene, DROPA efficiency is 93.8% (see Additional file 1:
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Figure S1). In order to warn the user about peaks that
can be ambiguously assigned as they map in regions
where antisense R-loop can form, we provide: i) specific
output tables of these peaks and ii) warning flags to
these peaks in the main output tables, leaving therefore
the user the option to exclude them for further analysis.

DROPA comparison with existing tools
To assess DROPA performance, we compared it with
three widely used or recent annotation tools: HOMER
[12], PAVIS [13] and UROPA [14], which are based on dif-
ferent algorithms. PAVIS and HOMER annotate peaks
based on the nearest TSS (Transcription Start Site), while
UROPA allows to choose between the nearest start, end
or center of the reference region. DROPA annotates all
gene features (UTR regions, exons, introns, etc.) overlap-
ping to peaks, while HOMER and PAVIS select one gene
feature only. This may limit the biologically relevant

information of HOMER and PAVIS output data when
query peaks have a size larger than the gene features.
DROPA is highly flexible and customizable. DROPA,

PAVIS and Homer have default gene reference sets that
make these tools ready-to-use: DROPA has human (hg19)
and mouse (mm9, mm10) genome as default, while PAVIS
has gene sets of many organisms and genome assemblies.
However, DROPA allows the choice of any custom gene
set. Among the others, only PAVIS does not allow the use
of a custom gene reference set. HOMER does not allow to
set the size of upstream and downstream gene regions,
which is useful while working on peaks that can form kilo-
bases far from a gene, and it is instead customizable with
DROPA, PAVIS and UROPA.
DROPA lacks a Graphical User Interface (GUI), how-

ever it is easy to use thanks to few and fully described
command flags, which make it easily integrable into pipe-
lines. PAVIS, a web-based tool, offers a GUI and requires

A B

C D

Fig. 2 a Histogram showing the percentage (and the number in legend) of peaks that overlap each feature. b Pie chart showing the proportion
of peak that overlap each feature (and the number in legend). c Upset plot showing how many peaks overlap more than one feature. d Histogram
showing the fold enrichment between the number of peaks annotated to each feature and number of peaks shuffled over the genome
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an Internet connection, while UROPA offers both a com-
mand-line tool and a web-based GUI. HOMER is available
only as command-line tool.
Although all four tools produce a full annotation table

for every query peak, DROPA also produces summary ta-
bles and many other plots of peak distribution or enrich-
ment over specific gene features. PAVIS produces a
summary table and a pie chart of peak annotations,
HOMER provides no plots but only a summary table,
while UROPA also produces a summary report with plots.
Feature comparison summary is reported in Table 1.
We compared the four tools output using an ex-

perimental set of R-loops peaks determined by DRIP-
seq in human cells [6]. Peak calling was performed
using MACS and comparisons were carried out using
the same gene reference and the same upstream/
downstream dimension. Briefly, DROPA gives differ-
ent annotation results in comparison with all three
tools in analysis. A full description of annotation re-
sult is reported in Additional file 1.
Intergenic peaks in DROPA data are always fewer

compared to HOMER (10.8% of total query peaks
versus 17.9% in HOMER), PAVIS (5.7% versus 12.1%)
and UROPA (3.3% versus 11.2%). This is mainly due
to the fact that DROPA does not take in account only
the center of the query peak (that for peaks that have
a dimension of kilobases can be far from the gene re-
gion) for annotation, but both the start and end
point. About 10, 20 and 22% of query peaks are an-
notated with different genes by DROPA with respect
to HOMER, PAVIS and UROPA, respectively.
As R-loop formation is mainly a co-transcriptional

phenomenon and PAVIS and HOMER primarily rely on
closest TSS, we can argue that DROPA identifies less
false positive annotations as compared to PAVIS and
HOMER due to the use of expression data (see Add-
itional file 1: Figures S2 and S3). Although UROPA an-
notation does not rely on closest TSS search but rather
on overlap, its annotation approach still gives a result
clearly different from DROPA one (see Additional
file 1: Figure S4), which, is optimized using gene
expression data.

Limitations
Even though DROPA can define and assign co-transcrip-
tional peaks in the body of expressed genes with good effi-
ciency, its main limitation is the detection and correct
assignment of antisense R-loop peaks. To compensate for
this limitation, DROPA provides a list of peaks assigned
only to the upstream/downstream region of expressed gene,
where antisense transcripts can be present. Moreover, in
the main annotation table a warning flag indicates either
peaks in upstream/downstream regions and peaks located
at overlapping expressed genes. A comparison of this infor-
mation with genomic datasets of antisense transcripts can
help the user for further analysis.

Conclusions
DROPA is a full customizable peak annotation tool opti-
mized for co-transcriptional DRIP-seq peaks, allowing a
finest gene annotation based on gene expression infor-
mation. Since the expression data table is optional, this
tool can be used with other sequencing data regarding
genomic features that are not strictly associated with
TSS (for which tools like PAVIS and HOMER are devel-
oped) and that are characterized by broad peak dimen-
sion, such as Histone marks IP-seq, DNAse-seq and
FAIRE-seq. Using DROPA, users can take advantage
from its alternative annotation algorithm, based on
largest overlap with the query peak, the multi-feature
annotation and the informative summary plots.

Methods
In the following evaluation, DROPA was tested on a ma-
chine running Ubuntu OS (vers. 16.04 LTS) with 8 CPU
cores and 16 GB of RAM.

Influence of expression data metrics on DROPA
To perform evaluation of DROPA results using different
gene expression values we used an experimental set of
DRIP-seq peak (available at GEO: GSE115957) and his
relative RNA-seq data. Using Stringtie (REF), TPM and
FPKM were computed using RNA-seq data using RefSeq
gene reference. Peak dataset and gene expression table
are available in DROPA repository as Test_hg19_DRIP_

Table 1 Feature comparison between DROPA and PAVIS, HOMER and UROPA

DROPA PAVIS HOMER UROPA

Offline Usage ✓ ✗ ✓ ✓

Pipeline integration ✓ ✗ ✓ ✓

Reference gene set customization ✓ ✗ ✓ ✓

Upstream/downstream region definition ✓ ✓ ✗ ✓

Multiple gene feature annotation ✓ ✗ ✗ ✗

Statistical enrichment over gene feature ✓ ✓ ✓ ✗

Summary plot Results ✓ ✓ ✗ ✓

Russo et al. BMC Bioinformatics          (2019) 20:414 Page 5 of 7



peaks.bed. DROPA was launched two times with default
settings using TPM or FPKM table as expression data
and hg19_Refseq as gene reference. Results of annota-
tion were compared counting how many peaks were an-
notated as intergenic and how many peaks were
annotated to the same gene.

Assessment of DROPA performance
To perform evaluation of DROPA using stranded data
we downloaded a DRIPc-seq peak dataset and relative
RNA-seq data (available at GEO: GSE70189). Peak data-
set and gene expression table are available in DROPA re-
pository. DROPA was launched with default settings
using as input the peak dataset, the gene expression
table and the gene reference hg19_UCSCgenes. Then
strandness of peaks annotated on expressed genes was
compared with the one of the original dataset.

DROPA comparison with existing tools
In all 3 comparison we used an experimental set of DRIP-
seq peak (available at GEO: GSE115957) and his relative
RNA-seq data. Peak dataset and gene expression table are
available in DROPA repository as Test_hg19_DRIP_
peaks.bed and Test_hg19_RefSeq_Expression. Since each
tool has different degree of customization (fixed up-
stream/downstream dimension, gene reference selection,
etc.), we adapted DROPA settings to the one of the tool in
analysis. In comparison with HOMER, DROPA was
launched with upstream/downstream region dimensions
set to 1 kb and RefSeq gene reference. HOMER was
launched with default settings. In comparison with PAVIS,
DROPA was launched with default settings and UCSCk-
nown gene reference, while PAVIS was launched setting
the Upstream/Downstream region to 5 kb (same as
DROPA default). In comparison with UROPA, DROPA
was launched with default settings and Ensembl gene ref-
erence, while UROPA was launched setting the Upstream/
Downstream region to 5 kb. In all three comparison, after
peak annotation, results were compared counting how
many peaks were annotated as intergenic and how many
peaks were annotated to the same gene.

Availability and requirements
Project name: DROPA
Project home page: Source code on https://github.

com/marcrusso/DROPA
Operating system: Unix (Linux or Mac OS or Win-

dows Subsystem for Linux)
Programming language: Python3
Other requirements: All Python libraries require-

ments are listed in Supplementary. Bedtools software is
required for peak randomization.
License: MIT license
Any restrictions to use by non-academics: None.

Additional file

Additional file 1: Supplementary file containing DROPA requirements,
summary tables and figures ragarding comparison results and a
benchmark section. (DOCX 734 kb)
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