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Abstract 

 

The present thesis focuses on the on-fault slip distribution of large earthquakes in the framework of 

tsunami hazard assessment and tsunami warning improvement. It is widely known that ruptures on 

seismic faults are strongly heterogeneous. In the case of tsunamigenic earthquakes, the slip 

heterogeneity strongly influences the spatial distribution of the largest tsunami effects along the 

nearest coastlines. Unfortunately, after an earthquake occurs, the so-called finite-fault models (FFM) 

describing the coseismic on-fault slip pattern becomes available over time scales that are incompatible 

with early tsunami warning purposes, especially in the near-field. 

Our work aims to characterize the slip heterogeneity in a fast, but still suitable way.  

 Using finite-fault models to build a starting dataset of seismic events, the characteristics of the fault 

planes are studied with respect to the magnitude. The patterns of the slip distribution on the rupture 

plane, analysed with a cluster identification algorithm, reveal a preferential single-asperity 

representation that can be approximated by a two-dimensional Gaussian slip distribution (2D GD). 

The goodness of the 2D GD model is compared to other distributions used in literature and its ability 

to represent the slip heterogeneity in the form of the main asperity is proven. The magnitude 

dependence of the 2D GD parameters is investigated and turns out to be of primary importance from 

an early warning perspective. 

The Gaussian model is applied to the 16 September 2015 Illapel, Chile, earthquake and used to 

compute early tsunami predictions that are satisfactorily compared with the available observations. 

The fast computation of the 2D GD and its suitability in representing the slip complexity of the 

seismic source make it a useful tool for the tsunami early warning assessments, especially for what 

concerns the near field. 
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1 Introduction 

 

This PhD thesis investigates the heterogeneity of the coseismic slip on the fault and its modelling in 

the context of tsunamigenesis. It is known that the slip distribution on the earthquake fault plane is 

not homogeneous. Nevertheless, a homogeneous slip is adopted in several applications including the 

modelling of tsunamis induced by earthquakes. 

The objective of this study is to provide a strategy for obtaining a seismic source model that: 

- can be derived in a very short time after the earthquake occurs; 

- considers the slip heterogeneity on the fault surface; 

- is not overly complicated, but is sophisticated enough to allow for a satisfactory 

approximation of the generated tsunami. 

To achieve this goal, the thesis is structured in the following main steps: 

1) to build a dataset of finite fault models (FFM), a procedure outlined in Chapter 2; 

2) to derive the rupture dimensions and the main features of the FFMs (Chapter 3); 

3) to find the slip distribution characterizing the on-fault slip heterogeneity using the FFMs 

(Chapter 4); 

4) to apply the characteristic distribution model derived from reference FFMs to a real 

tsunamigenic earthquake (the 2015 Illapel, Chile earthquake) and to study its performance on 

tsunami calculations (Chapter 5)  

5) to obtain the characteristic distribution model for the same earthquake in an alternative way, 

more adequate for tsunami early warning applications, that is to derive it from suitable scaling 

laws by using information such as earthquake location and magnitude that are available soon 

after the event (Chapter 6). 

 

 

1.1 The collection of finite fault models 

The data used for this study are the finite-fault models (FFM) of recent (after 1990) large earthquakes 

(magnitude larger than 6), present in the SRCMOD online database (http://equake-

rc.info/SRCMOD/). 

These slip models were obtained by using different data sources (geodetic, strong motion, teleseismic, 

local P waves, inSAR, tsunami, and, in the best cases, a combination of two or more of them), and 

http://equake-rc.info/SRCMOD/
http://equake-rc.info/SRCMOD/
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different crustal models, and by different inversion techniques and stabilization methods, and 

different spatial sampling (Manighetti et al., 2005). 

 

1.2 The scaling laws 

Starting from the chosen FFM dataset, scaling laws between the geometrical properties of the fault 

and the magnitude are obtained. Several studies have investigated earthquake source-scaling 

properties, differing as regards the amount of data, the classifications (fault slip type, tectonic regions, 

tsunamigenic and non-tsunamigenic, etc.), the regression techniques. Nevertheless, the epistemic 

uncertainty in regression formulation is very large, and preferred methods have not yet been defined 

in the international seismological community (Stirling et al. 2013). In this thesis, the scaling laws 

derived from the FFMs are treated only for the sake of completeness, but they will not play any role 

in the development of our strategy.  

Parallel to the FFM regressions of fault length, width, area, aspect ratio, and average and maximum 

slip against the magnitude, also analogous laws concerning the relative positions of the hypocentre 

and the maximum displacement on the fault are investigated. 

  

1.3 The on-fault slip distribution 

The distribution of the slip over the fault has been the object of numerous studies especially in the 

last decades, thanks to the source-inversion methods and the rapid growth of the available amount of 

data.  

The study of the slip heterogeneity spans different fields of investigation, from a more theoretical to 

a more empirical one. The starting point of the modern fault slip theory can be attributed to Haskell 

(1964), who introduced a fault model as a rupture that propagates over a finite section of a fault, 

providing analytical formulas for the radiated elastic waves. The Haskell model presents a uniform 

release of displacement and stress on the fault surface. The author identified this as a deficiency, 

suggesting that some form of heterogeneity in the slip distribution was required either in space or 

time. 

Thatcher (1990), with the aim of relating long wavelength features of the slip space distribution to 

observations and to models of earthquake recurrence, suggested that earthquake recurrence is more 

likely to be controlled by the maximum rather than the average fault slip. Further, he affirmed that 

the pattern of earthquake slip is typically very irregular, as indicated by slip seismologic 

determinations or by seismic moment release distribution. 
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Mai and Beroza (2000) identified a stochastic characterisation of earthquake slip complexity, 

modelling the slip as a Von Karman autocorrelation function (ACF) model, with parameters 

depending on the source dimensions. They suggested the use of their stochastic slip model to generate 

realizations of scenario earthquakes for near-source ground motion simulations. 

Somerville et al. (1999), examined systematic features of slip models summarised by Mendoza and 

Hartzell (1988b) and Heaton (1990). From a rectangular representation of the fault rupture, they 

delineated the concept of asperity as a region on the fault rupture surface having large slip relative to 

the average slip. They proposed slip heterogeneity characterisation through rectangular asperities. 

The importance of asperities, as zones of large and concentrated seismic displacement, is one of the 

key features to describe slip heterogeneities, and represents our starting point to develop a simple but 

not uniform characterization of the slip on the fault. 

The concept of asperity is often associated with the stress on the fault and widely studied for the fault 

dynamical processes. Although our study concentrates more on static displacement fields, 

nevertheless we will mention some examples. 

Myatake (1992) reconstructed the dynamic rupture process of four large Japanese earthquakes 

exploiting the concept of “weak” and “strong” asperities, considering the strength excess 

characterising the stress drop regions on the fault planes. 

Johnson and Nadeau (2002) developed an earthquake asperity model, based on the concept of small 

strong asperities that resist the motion on the fault. They justify the accumulation of significant 

tectonic displacement before failure occurs in terms of interaction between close asperities. One of 

the main characteristics of their asperity model is that the occurrence of an earthquake is driven by 

stress concentrations that can be several orders of magnitude larger than the average stress on the 

fault. Hence, they pointed out how interpretations founded on this feature of a heterogeneous stress 

field may help explain certain aspects difficult to be explained in terms of homogeneous average 

stress. 

Dragoni and Lorenzano (2017) modelled the fault as a discrete dynamical system, whose state is 

described by two variables expressing the slip deficits of two asperities, describing in a unique frame 

both seismic and aseismic slip on a fault. They applied their model to the fault of the 2011 Tohoku-

Oki earthquake. They found that the amount of after-slip is found to be proportional to the seismic 

slip of the asperity, with a proportionality factor depending on the geometry of the fault and on the 

velocity of tectonic motion. 
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Our interest in the slip distribution leads us to privilege the definition of asperity as a region with 

intense value of slip, in particular with respect to its maximum value on the fault plane. We have 

therefore developed a single asperity model which identifies the main asperity slip pattern with a 

bivariate Gaussian distribution (hereafter called 2D GD). 

 

1.4 Source slip distribution and tsunami hazard assessment 

The interest in the modelling of slip on the fault is mainly motivated, in this research work, in terms 

of its direct influence on the tsunami field produced by a strong earthquake. 

Very often, especially in tsunami warning operations, the assumption is made that the slip is uniform 

over the entire rupture plane, but, as modern teleseismic and geodetic inversion techniques have 

confirmed, this assumption is invalid and may lead to unsatisfactory estimations of the tsunami waves 

height at the coast. Indeed, the ground motion and tsunami heights associated with large earthquakes 

are controlled by the size and distribution of asperities. Therefore, an understanding of the scaling 

relations between the parameters characterising big earthquakes is essential for an accurate 

assessment of future earthquake hazards (Murotani et al. 2013). 

Despite scaling relationships evaluating length and width of the fault plane as a function of moment 

magnitude are sufficient to determine the basic geometry of an earthquake rupture, the randomness 

and heterogeneity of spatial source slip distribution have major influence on tsunami hazard 

assessment. This fact is now documented by several studies. 

Variations in the local tsunami wave field in relation to heterogeneous slip distributions were the 

object of study by Geist and Dmowska (1999). They reported that, in most cases, the assumption of 

uniform slip in dip direction leads to a significant underestimation of the maximum amplitude and 

leading wave steepness of the local tsunami. Geist (2002), investigating the effect of rupture 

complexity on the local tsunami wave field, pointed out that the variability in local tsunami runup 

scaling can be ascribed to tsunami source parameters that are independent of seismic moment. Among 

the latter, the complexity of the heterogeneous slip distribution patterns results of considerable 

importance. 

Løvholt et al. (2012), with the aim of quantifying the effects of the non-uniform coseismic slip in the 

dip direction on stochastic tsunami runup variability, investigated how heterogeneous coseismic slip 

affects the initial water surface elevation and the subsequent tsunami runup occurring along a 

coastline in the near field for a hundreds of stochastic slip realizations. Exploring the correlations 

between the maximum runup with the different seabed displacements induced by the slip 
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distributions, they found, as most relevant parameters, the scaled seabed volume displaced per unit 

length and the maximum peak-to-peak vertical seabed displacement. 

 

These studies received considerable attention after the great Sumatra-Andaman earthquake of the 26 

December 2004. The 2004 earthquake (MW > 9), indeed, was the first event to be recorded by a global 

network of broadband seismic stations and regional GPS networks and plays a role of historical 

importance in the field of tsunami hazard and forecasting.  

Alongside the factors affecting the distribution of tsunami heights, great importance was also given 

to time needed to provide a possible tsunami scenario. Geist et al. (2006) compared different measures 

of tsunami generation for the Sumatra earthquakes of December 2004 and March 2005 (MW = 8.7) 

with the aim of determining which information about the earthquake is needed to rapidly assess 

tsunami generation and local tsunami severity. The authors affirmed that many of the differences 

between the two tsunamis relate to slip distribution patterns for the two earthquakes. Indeed, while 

point- and line-source parameterization of the earthquake can accurately predict far-field tsunami 

amplitudes, local tsunami runup is dependent on propagation paths from localized regions of seafloor 

displacement, arising from earthquake rupture complexity: this fact introduces significant uncertainty 

in local tsunami warning systems (Geist et al. 2006). The study underlined also that determining 

reliable finite fault solutions within the time tsunamis take to arrive at shore is extremely difficult 

with the current state of knowledge and technology. The accuracy that can derive from seismic 

inversions of slip distributions must inevitably clash with the time required to obtain them. 

Always referring to the 2004 Sumatra-Andaman earthquake, Sobolev et al. (2007) demonstrated that 

two earthquakes with the same magnitude, location and fault geometry but different distribution of 

slip may generate tsunami waves with drastically different impacts on the coast (Padang coast, West 

Sumatra, in particular). They found that the presence of islands between the trench and the Sumatran 

coast makes earthquake-induced tsunamis especially sensitive to the slip distribution on the rupture 

plane. The authors highlighted also the fact that for local tsunamis the near-field tsunami heights are 

controlled by the slip variability rather than by the seismic moment. 

However, events like the 2004 Sumatra earthquake should be treated cautiously in terms of source 

and tsunami modelling, being these models at the upper bound of the known scaling relationships and 

due to the fact that mega-thrust subduction earthquakes may have very long fault rupture zones, 

exceeding 1000 km (Goda et al., 2016). 
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The 11 March 2011 Tohoku earthquake, differently from the Sumatra one, was characterised by a 

small rupture area compared to its magnitude, while the estimated maximum on fault displacement 

reached extremely high values (about 50 metres). Also in this case, a heterogeneous source model is 

essential to simulate the observed distribution of the runup correctly, as reported by Løhvolt et al. 

(2012).  

Using the aforementioned Von Karman ACF model, Goda et al. (2014) developed stochastic 

earthquake slip models for the 2011 Tohoku and evaluated the impact of earthquake slip and fault 

geometry on tsunami simulation results in terms of near-shore sea surface profiles and inundation 

height. Their results highlighted strong sensitivity of tsunami wave heights to site location and slip 

characteristics, and also to variations in dip. The authors, moreover, affirmed that future 

investigations should assess the influence of earthquake slip distributions and fault geometry when 

quantifying the variability of impact assessments for tsunami hazards. 

 

Other tsunamigenic earthquakes object of numerous studies are those characterizing the Pacific coast 

of Chile, where the Nazca plate subducts beneath the South American plate. The largest modern event 

was the 22 May 1960 (Mw=9.5) earthquake. Considering the last decade, the 27 February 2010 Maule 

earthquake (Mw 8.8), the 1 April 2014 Iquique earthquake (Mw 8.1) and the 16 September 2015 

Illapel earthquake (Mw 8.3) are noteworthy. In particular, the 16 September 2015 Illapel earthquake 

is the one selected to exemplify our idea of simplified and fast model of slip distribution to compute 

early tsunami predictions. 

Overcoming the temporal obstacle that affects seismic source inversion, a 2D GD slip pattern is easily 

derived directly from standard earthquake parameters like magnitude and hypocentre location. The 

impact of our model on tsunami simulations is evaluated in terms of tsunami waveforms and run-ups. 

We will show that the 2D GD is a reliable representation of the seismic source that can be obtained 

in a time interval compatible with timely tsunami early warning assessments. 
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2 The dataset 

 

In this chapter we give a brief description of the database we used in the analyses described in the 

following chapters. In particular, we illustrate the procedure adopted to build a unique and 

homogeneous database of earthquake events and show some simple statistics on the earthquakes with 

magnitude larger than 6 occurred over the last 30 years. We restrict statistics to those events for which 

Finite-Fault Models (FFMs) are available, which turns out to be a rather small, but still significant, 

percentage of the total number of worldwide earthquakes. 

 

2.1 Data collection 

The first step of the present thesis consisted in the collection of the available FFMs. These can be 

found in published papers or in specific databases, the latter alternative being preferable for a PhD 

thesis work since the former one requires a long time for data mining, i.e. for finding and 

homogenizing a sufficient amount of data. The FFMs considered here were taken from the SRCMOD 

database (http://equake-rc.info/SRCMOD/). 

Finite-fault inversions have become a topic of increasing interest in seismological research, since they 

allow a better understanding of the rupture mechanism and rupture evolution on the seismic fault. 

The data used in inversions can be of different types. They may be geodetic data of final deformation, 

in which case source inversions put constraints on the fault geometry and on the static slip distribution 

(i.e. the final displacements over the fault surface) (Mai and Thingbaijam, 2014).  

Often, joint inversions that combine available geodetic, seismic, tectonic (and when it is the case also 

tsunami) data are conducted to match all, or most of, the observations and provide a more detailed 

representation of the rupture process. Some joint inversions use all data simultaneously. Others, 

instead, follow an iterative approach where one set of observations is used to build an initial model 

to be used in following inversions where other available data are considered. The field of finite-fault 

inversion was pioneered in the early 1980s (see Olson and Apsel, 1982; Hartzell and Heaton, 1983). 

Subsequently, the method has been applied to numerous earthquakes (e.g., Hartzell, 1989; Hartzell et 

al., 1991; Wald et al., 1991; Hartzell and Langer, 1993;Wald et al., 1993; Wald and Somerville, 1995), 

while additional source-inversion strategies were developed and applied (e.g., Beroza and Spudich, 

1988; Beroza, 1991; Hartzell and Lui, 1995; Hartzell et al., 1996; Zeng and Anderson, 1996). 

http://equake-rc.info/SRCMOD/
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Finite-fault source inversions highlight the complexity of the earthquake rupture process. The source 

images obtained give useful information, although with a restricted spatial resolution, on the 

earthquake slip at depth, and potentially also on the temporal rupture evolution. Therefore, they are 

of paramount importance for works on the mechanics and kinematics of earthquake rupture processes 

and play an important role in our comprehension of earthquake source dynamics. 

It is beyond the scope of this thesis to treat and discuss source-inversion methods that are the basis of 

the FFMs we use. In the next sub-sections we delineate the data source from which these models were 

taken.   

 

2.1.1 SRCMOD 

The SRCMOD website is an online database of finite-fault rupture models of past earthquakes. These 

earthquake source models are obtained from inversion or modelling of seismic, geodetic and other 

geophysical data, and characterize the space-time distribution of kinematic rupture parameters (from 

http://equake-rc.info/SRCMOD/). 

The current version of the SRCMOD dataset provides earthquake scientists, source modellers, and 

any interested users with open access to more than 300 earthquake rupture models corresponding to 

about 100 earthquakes, in a unified representation, published over the last 30 years. The website is 

built on a three-tier architecture, which comprises client-side software (data presentation), server-side 

coding (data processing), and the back-end data storage. 

Three are the file formats used to store the primary data for the source models: 1) MATLAB 

(http://it.mathworks.com/products/matlab) structures (.mat files), 2) ASCII files containing finite-

source parameters (.fsp files), and 3) ASCII files containing a comprehensive slip model (.slp files). 

We actually focus our attention on the last data-file type. 

The entire database represents an inhomogeneous global collection of earthquake rupture models. 

Inhomogeneous in the sense of: 

- faulting type 

- location of the earthquake and, consequently 

- tectonic province (interplate, intraplate, subduction) 

- data and observations used in the source inversion 

- inversion techniques applied 

- available rupture-model information provided by the authors 

- model parameterizations selected and modelling choices made by the modellers.  
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A finite-fault (also known as kinematic) rupture model typically comprises several parameters, which 

include the seismic slip, rise time (local duration of the slipping process), rupture-onset time, and rake 

(angle of slip direction) (Mai and Thingbaijam, 2014). The source studies do not always invert for all 

these parameters. Some of them could have been fixed/assumed in advance, depending on data and 

the used inversion technique. The parameters may vary spatially: they are defined at node points or 

subfaults that constitute the rupture surface. In case of inversions using seismic data, the source time 

function describes the temporal slip evolution on each point of the fault and is typically chosen using 

either a simple parametric shape or a linear combination of a number of elementary slip functions 

(so-called multi time-window inversions) (Mai and Thingbaijam, 2014). 

The spatial resolution of the model is defined by the size of the subfaults (or spacing of node points); 

typically, the details of the rupture process are resolved at a larger scale as a result of the chosen 

smoothing constraints or of the regularization method (to handle ill-posed inversion problems) and 

of the trade-off between parameters (Mai et al., 2007; Monelli et al., 2009). 

Thanks to the increased availability of seismic and geodetic networks, the FFMs of recent earthquakes 

are more detailed comparing to those of the previous decades. The number of available source models 

is also affected by the contribution of fast FFMs, generated from the so-called fast finite-fault 

inversions in a semi-automatic way within days of a sizeable earthquake and then published online 

on institutional web pages. But more accurate models are available with some delay, typically after 

several months. 

The variability in rupture models is due to the variety of source-inversion methods and available data. 

In the current SRCMOD database several earthquakes have more than two rupture models. There can 

be a significant difference between different source models for the same event. Multiple models are 

available, for example, to name a few, for the 1992 Landers, the 1995 Kobe, the 1999 İzmit, the 2004 

Sumatra, the 2008 Wenchuan and the 2011 Tohoku earthquakes. However, the nominal uncertainties 

of each of the source inversions are not well known. This has been pointed out previously (e.g., 

Beresnev, 2003) and can be understood in the context of the data used, the model parameterizations 

chosen, and the inversion techniques applied in such studies (Cohee and Beroza, 1994; Das and 

Suhadolc, 1996; Henry et al., 2000; Graves and Wald, 2001; Yokota et al., 2001; Delouis et al., 2002).  

Regarding the characteristics reported for every event, the earthquake source dimensions (i.e. length, 

width or area) are generally estimated prior to the inversion from the spatial distribution of 

aftershocks. Regarding the rupture width, the thickness of the seismogenic crust is often used to 

constrain it. In other cases, the fault plane size is estimated using source-scaling relationships. 
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However, the inversion procedures commonly assume conservatively large source dimensions, so 

that the entire rupture can be accommodated, which leads to an overestimation of the rupture sizes 

with small (even zero) displacements at the fault boundaries. Thus, it is necessary to trim the rupture 

model faults by eliminating superfluous small slips at the fault edges (Mai and Thingbaijam, 2014). 

In the following sections we will discuss about this procedure. 

 

As already pointed out in this section the main analyses carried out in this thesis work are based on 

FFMs of the SRCMOD database. The main reason is that SRCMOD is a collector of models also 

from other databases, that are incorporated after accurate quality check. Moreover, it is a user-friendly 

online platform, easy to use. 

 

2.2 Fault size 

Establishing the rupture size of a fault (fault length or fault width) may be problematic and represents 

a sensitive issue. Different criteria can be used to determine the involved parameters.  

In case of surface rupture occurrence, the fault length can be derived from the visible surface-rupture 

length LS. The uncertainties in the measurement of LS can derive from: 

- incomplete field surveys and studies of the broken fault area; 

- outcrops deficiency at some localities; 

- uncertain interpretation of properties and numbers of surface ruptures by different scientists; 

- different reported values of observable values by different field workers. 

 

Alternatively, it can be estimated from the spatial extent of early aftershocks. But these two 

approaches can give substantially different results (Wells and Coppersmith, 1994). 

In addition, since many aftershocks occur on sub-faults rather than on the main fault as a result of 

stress diffusion, the fault area estimated from the aftershock area could be biased and larger than the 

real one. 

 

As for the width, the determination of the fault width relies on aftershocks only, or, which is the case 

for large strike-slip earthquakes, on the thickness of the seismogenic layer (Scholz, 1994). 

Hence, the main errors in the evaluation of the fault dimension parameters can be found in the 

temporal evolution of the aftershock zone, in the accuracy of aftershock locations in 3D, in the 

interpretation of the initial extent of the aftershock sequence, in the reliability of the model. 
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Typically, the overall dimension of the fault area to be discretized is pre-assigned based on some 

accepted criterion, such as general scaling laws relating earthquake magnitude and total fault area. It 

may happen that the predefined fault area is larger than needed. 

Hence, depending on the inversion algorithm accuracy and on the quantity, quality and spatial 

distribution of the data to be inverted, the resulting slip matrix, that is the variable slip over the 

discretized rupture plane, may exhibit rows and/or columns full of zeroes along the edges. In those 

cases, the rupture length and width reported by the FFMs overestimate the true dimensions. 

 

2.3 Fault size correction and events removal 

In order to get an image of the fault area affected by the seismic dislocation, we operated directly on 

the slip matrix with the criterion that, if there is an empty (i.e. full of zero slip values) row and/or 

column along the edges of the rupture plane, this is removed from the original source model. 

The removal of part of the fault plane from the FFM implies a corresponding update of the fault 

dimensions and a change of the aspect ratio (defined as the ratio between length and width of the 

fault). The strike-slip events are those with the lowest average width (24 km), and consequently the 

largest average aspect ratio (4.60), while dip-slip events present the lowest values (1.81). The dip-

slip events (normal and reverse) are the most affected by the trimming procedure with the down-dip 

dimension more altered than the along-strike one. Indeed, the recalculated aspect ratio for dip-slip 

events reveals to be higher than the original one. For the strike-slip earthquakes the opposite happens: 

the final average aspect ratio is smaller than the original one. 

 

Table 2.1: Earthquakes' source average geometric characteristics after the trimming procedure (schematized in Figure 2.1) for 

different slip-types. 

 Strike-slip  Normal  Reverse  Oblique  All 

Minimum aspect ratio 1.07 0.89 0.74 0.95 0.74 

Average aspect ratio 4.60 2.15 1.81 2.00 2.5 

Minimum Area (km2) 150.0 150.0 411.25 90.0 90.0 

Average Area (km2) 4205 3370 34500 13670 16365 

Minimum Length (km) 14 15 17 10 10 

Average Length (km) 124 72 211 127 143 

Minimum Width (km) 10 10 18 9 9 

Average Width (km) 24 33 104 66 64 

Minimum mean slip (m) 0.144 0.136 0.120 0.068 0.068 
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Average mean slip (m) 1.45 1.03 1.07 1.35 1.24 

 

The procedure of deleting the empty rows and columns on the edges does not exclude the possibility 

for some solutions to have many empty cells on the fault’s plane or to present some very small values 

on the edges that do not permit to remove the edge itself. This led us to an additional control. For 

each model the percentage of zero (PZ) slip values in the slip matrix has been computed and, when 

higher than 50%, has been taken as an index of a possible anomaly that required an individual 

checking. Usually, these anomalous events are characterised by some isolated cells with small slip 

values that are on the edge of the fault. Killing these cells has the effect that a full row or a full column 

turns out to be empty and can be removed. If this “blanking” procedure produces a fault model with 

an empty cell percentage that is still too high (larger than 50 %), the fault is removed from the 

database, otherwise it is kept. 

 

 

Figure 2.1 Scheme followed to check the SRCMOD FFMs. 

 

2.4 Events with more than one solution 

Some of the events considered have more than just one FFM, which poses a problem of selection. 

Generally, we have selected the most recent solution, but sometimes, after cross-checking different 

fault representations, we have made a different choice. With events with a high number of solutions, 

such as the 11 March 2011 Tohoku, Japan, those models that presented solutions very different from 

the average have been rejected. 

Analysed
SRCMOD FFMs

Trimming 
Procedure

Check on the zero 
values percentage

Corrected FFMs

PZ ≥ 50%

Small 
values on 
the edges
replaced 

with ZERO
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Often, one of the discriminating criteria was the degree of fullness of the FFM slip matrix. In 

particular, for the event of 15 August 2007 in Peru, we noticed the lack of slip values different from 

zero in a significant portion of the matrix (Figure 2.2, left image) only after we made the visual 

control. So the FFM was removed from our database and an alternative model was included. The two 

models are shown, one next to the other, in Figure 2.2. 

 

Figure 2.2 FFMs of the 15 August 2007 Peru earthquake by two different authors. On the left, the discarded model; on the right, 

the chosen model. 

 

 

2.5 The selected FFMs models 

The set of the earthquakes we select for the present analysis is summarised in Table 2.1. Their total 

number resulted to be 105. An Identification Number (I.N.) is reported for each model as well as: 

date, slip type, magnitude, seismic moment, hypocentre depth, rupture dimensions, fault area, 

maximum and average displacement. In the last column of the Table the author/authors of the FFM 

are also given. 
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The next two graphs (Figure 2.3, Figure 2.4) show the distribution of the selected 105 FFMs per 

magnitude and slip type. The majority of the earthquakes fall in the range 7 ≤ MW ≤ 8 with a peak of 

16 events centred in 7.3, while 17 events have magnitude larger than 8. 

 

 

Figure 2.3 Number of FFMs per classes of Magnitude (step = 0.2 Mw). The dashed blue line represents the mean value and the 

green one the median value. 
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Figure 2.4 Magnitude distribution of FFMs (step = 0.2 Mw) distinguished per focal mechanism type. The dashed blue line 

represents the mean value and the green one the median value. 

 

Figure 2.4 shows how many models fall in the defined slip-type categories: 15 normal, 22 strike-slip, 

31 reverse and 37 oblique events. The categories are defined here according to the slip rake. An 

earthquake with slip rake falling in a 20°-interval centred on 90° (-90°) is considered a reverse 

(normal) event. Further, an earthquake with slip rake falling in a 20°-interval centred either on 0° or 

on 180° is considered a strike-slip event. The “oblique” category includes all the events that do not 

belong to the other categories.  
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Table 2.1 . Finite-Fault Models used in this study ( ST: Slip-Type, MD: Maximum Displacement, AD: Average Displacement). 

I. N. Location Date (m/d/y) ST Mw Mo 

(Nm) 

Depth 

(km) 

Length 

(km) 

Width 

(km) 

Area 

(km2) 

MD 

(m) 

AD 

(m) 

References 

1 Joshua Tree (Calif.) 04/23/1992 SS 6.2 2.70E+18 12.5 28 20 560 0.84 0.14 Bennet et al. (1995) 

2 Landers (Calif.) 06/28/1992 SS 7.2 7.20E+19 7 76 15 1140 6.77 1.91 Zeng and Anderson (2000) 

3 Tibet, Pumqu-

Xainza 

03/20/1993 O 6.3 2.97E+18 8.25 30 22 660 0.52 0.14 Wang et al. (2014) 

4 Hokkaido-nansei-
oki (Japan) 

07/12/1993 R 7.6 2.85E+20 20 200 70 14000 4.36 0.62 Mendoza and Fukuyama (1996)  

5 Northridge (Calif.) 01/17/1994 R 6.7 1.30E+19 17.5 17.5 23.5 412 4.14 0.76 Zeng and Anderson (2000) 

6 Sanrikuki (Japan) 12/28/1994 R 7.7 3.99E+20 10 110 140 15400 4.03 0.71 Nagai et al. (2001) 

7 Kobe (Japan) 01/16/1995 SS 6.8 1.76E+19 14 52 20 1040 2.75 0.50 Cho and Nakanishi (2000) 

8 Colima (Mexico) 10/09/1995 R 8.0 9.67E+20 16.55 200 100 20000 4.77 1.18 Mendoza and Hartzell (1999) 

9 Tibet, Pumqu-

Xainza 

07/03/1996 O 6.1 1.49E+18 8.25 25 18 450 0.45 0.10 Wang et al. (2014) 

10 Hyuga-nada1 

(Japan) 

10/19/1996 R 6.8 1.84E+19 11.6 32.12 32.12 1032 2.92 0.54 Yagi et al. (1999) 

11 Nazca Ridge (Peru) 11/12/1996 O 7.8 6.57E+20 21 180 120 21600 4.37 0.49 Salichon et al. (2003) 

12 Hyuga-nada2 

(Japan) 

12/02/1996 R 6.7 1.19E+19 20.4 29.2 29.2 853 1.65 0.42 Yagi et al. (1999) 

13 Kagoshimaen-

hoku-seibu (Japan) 

03/26/1997 SS 6.1 1.50E+18 7.6 15 10 150 0.87 0.34 Horikawa (2001) 

14 Kagoshimaen-
hoku-seibu (Japan) 

05/13/1997 SS 6.0 1.16E+18 7.7 17 10 170 0.41 0.21 Horikawa (2001) 

15 Antarctica (Strike-

Slip Segment) 

03/25/1998 SS 8.0 1.07E+21 12 290 35 10150 35.16 3.14 Antolik et al. (2000) 

16 Antarctica 03/25/1998 O 7.8 4.85E+20 12 90 60 5400 21.10 2.83 Antolik et al. (2000) 

17 Tibet, Pumqu-

Xainza 

08/25/1998 O 6.2 1.91E+18 8.25 38 23 874 0.20 0.07 Wang et al. (2014) 

18 Iwate (Japan) 09/03/1998 O 6.3 3.20E+18 3 10 9 90 1.40 0.44 Nakahara et al. (2002) 

19 Izmit (Turkey) 08/17/1999 SS 7.5 1.77E+20 16 160 28 4480 5.51 1.30 Cakir et al. (2004) 

20 ChiChi (Taiwan) 09/20/1999 O 7.6 3.11E+20 7 78 39 3042 11.90 3.75 Sekiguchi et al. (2002) 

21 Oaxaca (Mexico) 09/30/1999 N 7.5 1.82E+20 39.7 90 45 4050 2.46 0.64 Hernandez et al. (2001) 

22 Hector Mine 

(Calif.) 

10/16/1999 SS 7.1 5.82E+19 7.5 54 18 972 9.46 1.81 Salichon et al. (2004) 

23 Duzce (Turkey) 11/12/1999 SS 6.7 1.28E+19 10 40.95 12.6 516 5.09 0.93 Birgoren et al. (2004) 

24 Tottori (Japan) 10/06/2000 SS 6.7 1.40E+19 14.5 32 20 640 3.21 0.62 Semmane et al. (2005)a 

25 Bhuj (India) 01/26/2001 R 7.4 1.33E+20 20 60 35 2100 12.44 1.51 Antolik and Dreger (2003) 

26 Geiyo  (Japan) 03/24/2001 R 6.7 1.19E+19 46.46 30 18 540 2.40 0.67 Kakehi (2004) 
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27 Denali (Alaska) 11/03/2002 SS 7.9 7.08E+20 6 292.5 18 5265 10.57 4.25 Asano et al. (2005) 

28 Colima (Mexico) 01/22/2003 R 7.5 2.30E+20 20 70 85 5950 3.14 0.61 Yagi et al. (2004 

29 Boumerdes 

(Algeria) 

05/21/2003 R 7.3 8.40E+19 16 64 32 2048 3.52 1.24 Semmane et al. (2005) 

30 Carlsberg Ridge 07/15/2003 SS 7.6 2.82E+20 11.32 320 36 11520 3.16 0.55 Wei (Caltech, Carlsberg 2003) 

31 Miyagi-hokubu  

(Japan) 

07/25/2003 SS 6.1 1.80E+18 6.5 18 10 180 1.03 0.31 Hikima and Koketsu (2004) 

32 Tokachi-oki  

(Japan) 

09/25/2003 R 8.2 2.36E+21 25 120 100 12000 7.06 3.11 Koketsu et al. (2004) 

33 Bam, Iran 12/26/2003 O 6.5 7.30E+18 8 25 20 500 1.62 0.48 Poiata et al. (2012a) 

34 Irian-Jaya, 
indonesia 

02/07/2004 SS 7.2 7.08E+19 11.23 100 28 2800 3.37 1.03 Wei (Caltech, Irian-Jaya 2004) 

35 Zhongba, Tibet 07/11/2004 N 6.2 2.24E+18 10 20 22.27 445 0.69 0.16 Elliott et al. (2010) 

36 Parkfield (Calif.) 09/28/2004 O 6.1 1.36E+18 8.26 36.1 11.9 430 0.52 0.10 Custodio et al. (2005) 

37 Niigata-Ken 

Chuetsu, Japan 

10/23/2004 R 6.6 1.07E+19 10.6 28 18 504 3.08 0.67 Asano and Iwata (2009) 

38 Sumatra 12/26/2004 R 9.1 6.50E+22 35 1480 224 331520 11.43 2.94 Ammon et al. (2005) 

39 Fukuoka (Japan) 03/20/2005 SS 6.6 1.15E+19 14 26 18 468 2.67 0.68 Asano and Iwata (2006) 

40 Sumatra 03/28/2005 O 8.7 1.17E+22 25.69 380 260 98800 12.50 2.56 Shao and Ji (UCSB, Sumatra 2005) 

41 Zhongba, Tibet 04/07/2005 O 6.2 2.24E+18 5.98 28 18.72 524 1.29 0.19 Elliott et al. (2010) 

42 Northern California 06/15/2005 SS 7.2 7.08E+19 9.003 102 35 3570 2.96 0.67 Shao and Ji (UCSB, Northern California 2005) 

43 Honshu, Japan 08/16/2005 R 7.5 2.00E+20 34.49 96 56 5376 1.32 0.22 Shao and Ji (UCSB, Honshu 2005) 

44 Kashmir, Pakistan 10/08/2005 O 7.6 2.82E+20 10.51 126 54 6804 6.37 1.75 Shao and Ji (UCSB,Kashmir 2005) 

45 Kuril Islands 11/15/2006 R 8.3 3.16E+21 25.85 400 137.5 55000 8.93 1.69 Ji (UCSB, Kuril 2006) 

46 Kuril Islands 01/13/2007 O 8.1 1.58E+21 18.15 200 35 7000 20.25 7.02 Ji (UCSB, Kuril 2007) 

47 Noto Hanto, Japan 03/25/2007 O 6.7 1.57E+19 9.62 30 16 480 5.07 1.09 Asano and Iwata (2011) 

48 Solomon islands 04/01/2007 R 8.1 1.58E+21 11.6 300 80 24000 3.73 1.47 Ji (UCSB, Solomon Islands 2007) 

49 Pisco, peru 08/15/2007 O 8.0 1.12E+21 29.41 192 108 20736 8.21 1.63 Ji and Zeng (Peru 2007) 

50 Niigata-ken 

Chuetsu-oki 

08/17/2007 N 6.6 1.60E+19 8.9 33.25 29.75 990 2.58 0.32 Cirella et al. (2008) 

51 Bengkulu, 

indonesia 

09/12/2007 R 8.5 6.70E+21 21.23 400 250 100000 5.22 1.21 Gusman et al. (2010) 

52 Tocopilla, Chile 11/14/2007 R 7.8 5.82E+20 36.95 375 200 75000 2.99 0.22 Ji (UCSB, Tocopilla 2007) 

53 Gerze, Tibet 01/09/2008 O 6.4 4.47E+18 7.5 20 19.65 393 1.96 0.37 Elliott et al. (2010) 

54 Gerze, Tibet 01/16/2008 N 5.9 7.94E+17 4 15 10 150 0.88 0.20 Elliott et al. (2010) 

55 Simeulue, 

Indonesia 

02/20/2008 R 7.4 1.41E+20 24.8 152 112 17024 1.08 0.15 Sladen (Caltech, Simeulue 2008)  

56 Yutian, Tibet 03/20/2008 N 7.1 5.01E+19 4.104 54 19.05 1029 5.14 1.50 Elliott et al. (2010) 

57 Wenchuan, China 05/12/2008 O 8.0 1.41E+21 16 320 60 19200 8.01 3.21 Yagi et al. (2012) 

58 Iwate Miyagi 
Nairiku 

06/13/2008 N 7.0 3.65E+19 6.5 42.66 17.38 741 6.36 1.82 Cultrera et al. (2013) 

59 Zhongba, Tibet 08/25/2008 O 6.7 1.26E+19 7.626 30 30.4 912 1.54 0.25 Elliott et al. (2010) 
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60 Kermedac Islands, 

new Zealand 

09/29/2008 R 7.0 3.55E+19 39.5 70 70 4900 0.98 0.14 Hayes (NEIC, New Zealand 2008) 

61 Sulawesi, 

Indonesia 

11/16/2008 R 7.3 1.00E+20 25.5 120 56 6720 2.33 0.45 Sladen (Caltech, Sulawesi 2008) 

62 Papua 01/03/2009 O 7.6 2.82E+20 34.59 120 96 11520 4.96 0.59 Hayes (NEIC, Papua 2009) 

63 L'Aquila, Italy 04/06/2009 N 6.3 3.13E+18 8.639 30 22 660 1.36 0.19 Gualandi et al. (2013) 

64 Offshore Honduras 05/28/2009 O 7.3 1.00E+20 13.51 180 36 6480 3.09 0.58 Hayes and Ji (Offshore Honduras 2009) 

65 Fiordland, New 

Zealand 

07/15/2009 O 7.6 2.82E+20 24.14 160 96 15360 5.57 0.63 Hayes (NEIC, New Zealand 2009) 

66 Java, Indonesia 07/17/2006 R 7.8 6.77E+20 15 250 140 35000 2.12 0.66 Yagi and Fukahata (2011) 

67 Gulf of California 08/03/2009 SS 6.9 2.51E+19 9.163 108 20.8 2246 2.32 0.31 Hayes (NEIC, Gulf of California 2009) 

68 Samoa 09/29/2009 N 8.0 1.12E+21 16.85 180 49.08 8834 14.92 3.33 Hayes (NEIC, Samoa 2009) 

69 Padang, Indonesia 09/30/2009 O 7.6 2.82E+20 80 54 45 2430 5.60 1.78 Sladen (Caltech, Padang 2009) 

70 Vanuatu 10/07/2009 O 7.6 2.82E+20 35 91 60 5460 2.93 0.87 Sladen (Caltech, Vanuatu 2009) 

71 Haiti 01/12/2010 O 7.0 3.55E+19 11 45 22.5 1013 3.72 1.45 Sladen (Caltech, Haiti 2010) 

72 Maule, Chile 02/27/2010 O 8.9 2.51E+22 37 600 187 112200 12.90 4.05 Shao et al. (UCSB, Maule 2010) 

73 El Mayor-Cucapah, 
Mexico 

04/04/2010 SS 7.4 1.20E+20 10 120 16 1920 9.25 1.89 Mendoza and Hartzell (2013) 

74 Northern Sumatra 04/06/2010 R 7.8 5.62E+20 30.64 240 216 51840 3.17 0.22 Hayes (USGS, Northern Sumatra 2010) 

75 Northern Sumatra 05/09/2010 R 7.2 7.08E+19 44.63 90 90 8100 1.13 0.18 Hayes (NEIC, Northern Sumatra 2010) 

76 Darfield, South 

Island New 

Zealand 

09/03/2010 O 7.0 3.80E+19 10.83 80 26 2080 3.51 0.60 Hayes (NEIC, Darfield 2010) 

77 Sumatra 10/25/2010 R 7.7 3.98E+20 17.43 375 196 73500 1.20 0.12 Hayes (NEIC, Southern Sumatra 2010) 

78 Bonin Islands 12/21/2010 O 7.4 1.41E+20 17.77 110 42 4620 3.71 0.53 Hayes (NEIC, Bonin Islands 2010) 

79 Vanuatu 12/25/2010 N 7.3 1.00E+20 15.17 90 42 3780 2.82 0.44 Hayes (NEIC, Vanuatu 2010) 

80 Pakistan 01/18/2011 N 7.2 7.08E+19 66.79 60 60 3600 3.49 0.33 Hayes (NEIC, Pakistan 2011)a 

81 Offshore Honshu, 
Japan 

03/09/2011 R 7.3 1.00E+20 20.72 126 126 15876 1.35 0.19 Hayes (NEIC, Offshore Honshu 2011) 

82 Tohoku-Oki, japan 03/11/2011 R 9.1 5.50E+22 21 525 260 136500 48.00 9.55 Wei et al. (2012) 

83 Kermadec Islands 07/06/2011 N 7.3 1.00E+20 19.04 216 72 15552 4.62 0.34 Hayes (USGS, Kermadec Islands 2011) 

84 Vanuatu 08/20/2011 R 7.3 1.00E+20 31.42 102 90 9180 0.93 0.12 Hayes (NEIC, Vanuatu 2011) 

85 Kermadec Islands 10/21/2011 O 7.4 1.41E+20 32.1 90 90 8100 3.19 0.28 Hayes (NEIC, Kermadec Islands 2011) 

86 Van,Turkey 10/23/2011 R 7.1 5.01E+19 19 95 40 3800 4.65 0.50 Konca (2015) 

87 Sumatra 01/10/2012 SS 7.2 7.08E+19 18.37 90 21 1890 6.71 1.29 Hayes (NEIC, Sumatra 2012) 

88 Oaxaca, Mexico 03/20/2012 R 7.4 1.41E+20 19.74 126 108 13608 4.53 0.28 Hayes (NEIC, Oaxaca 2012) 

89 Sumatra 04/11/2012 SS 8.6 8.90E+21 22 384 60 23040 34.00 8.72 Wei (Caltech, Sumatra 2012) 

90 Offshore El 

Salvador 

08/27/2012 O 7.3 1.00E+20 19.85 210 128 26880 1.06 0.09 Hayes (NEIC, Offshore El Salvador 2012) 

91 East of Sulangan, 

Philippines 

08/31/2012 O 7.6 2.72E+20 34.04 128 90 11520 3.14 0.42 Hayes (USGS, Philippines 2012) 
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92 Costa Rica 09/05/2012 R 7.6 2.54E+20 39.32 150 120 18000 3.05 0.29 Hayes (NEIC, Costa Rica 2012) 

93 Masset,Canada 10/28/2012 R 7.8 7.00E+20 17 210 90 18900 3.16 0.60 Wei (Caltech, Masset 2012) 

94 Santa Cruz islands 06/02/2013 O 8.1 1.54E+21 12.7 144 90 12960 12.70 2.86 Lay et al. (2013) 

95 Scotia Sea 11/17/2013 SS 7.7 8.94E+20 10.72 392 50 19600 4.40 0.83 Hayes (USGS, Scotia Sea 2013) 

96 Iquique, Chile 04/01/2014 O 8.1 1.58E+21 21.54 285 160 45600 4.21 0.67 Wei (Caltech, Iquique 2014) 

97 Gorkha, Nepal 04/25/2015 O 7.9 9.09E+20 15 160 88 14080 7.53 2.48 Yagi and Okuwaki (2015) 

98 Alaska 01/24/2016 O 7.1 6.22e+19 15 50 52.5 2625 3.02 0.35 Hayes (NEIC, Alaska South 2014) 

99 Kumamoto, Japan 04/14/2016 SS 6.1 2.04e+18 15 14 13 182 1.16 0.36 Asano and Iwata (2016) 

100 Kumamoto, Japan 04/15/2016 O 7.1 5.12e+19 15 56 20 1120 5.66 1.64 Yagi et al. (2016) 

101 Amatrice 08/24/2016 N 6.2 2.6e+18 15 36 12 432 0.50 0.19 Pizzi et al. (2017) 

102 Ussita 10/26/2016 N 6.1 1.76e+18 15 30 13 390 0.40 0.14 Pizzi et al. (2017) 

103 Norcia 10/30/2016 N 6.5 7.1e+18 15 36 13 468 2.85 0.45 Pizzi et al. (2017) 

104 Chiapas, Mexico 09/08/2017 N 8.1 1.88e+21 15 145 65 9425 18.64 5.39 Okuwaki and Yagi (2017) 

105 Illapel, Chile 09/16/2015 O 8.3 3.33e+21 15 190 130 24700 10.43 3.65 Okuwaki et al. (2016) 
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3 Regression laws and hypocentre location 

 

Analysing the set of the selected FFMs we have obtained a number of scaling relations 

linking the geometrical properties of the seismic fault with the magnitude. Such relations, 

often used by seismologists and engineers in seismic hazard and risk assessments, could 

be useful in the frame of tsunami hazard studies, and even in the common tsunami early 

warning practice, where typically from earthquake location and magnitude (available in 

a few minutes after the quake) one makes real-time assessment on the generated tsunami 

size. More precisely, in this section we analyse the scaling laws relating the magnitude 

(MW) on one side, to some of the main fault properties, such as rupture length (Length), 

rupture width (Width), rupture area (Area), maximum displacement (MD) and average 

displacement (AD). 

As earthquake source-scaling properties are found to depend on the seismotectonic 

regime and faulting style (Stirling et al., 2013), rupture models have been grouped 

according to the fault mechanism. 

 

In addition, we have explored the position of the hypocentre with respect to the location 

of slip peak and the areas of maximum displacement, since this can be one more key to 

understand, roughly but quickly, how the rupture evolved on the fault. Knowing in a short 

time where the slip was more or less intense allows one to get a better characterization of 

the potential tsunami. 

Indeed, this is not a secondary feature, because in the very near field of large earthquakes, 

ground motions are strongly dependent on "local" directivity effects, that is, on the 

relative position of the hypocentre with respect to regions of high slip (Mai, 2001; 

Guatteri et al., 2003).  

These regions are known as asperities. The criterion to define an asperity is not unique. 

Somerville et al. (1999) define an asperity as a connected region whose average slip is 

1.5 or more times larger than the average displacement over the entire fault. Alternatively, 

Mai et al. (2005) define asperities with respect to the maximum displacement (MD), in 

order to distinguish between events with rather smooth slip distributions and ruptures 

with complex slip distribution presenting locally very high slip values. Hence, they define 
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as large asperities the regions where slip takes values between 1/3 and 2/3 of MD; and 

very large asperities the regions where the slip takes values larger than 2/3 of MD. 

The rupture nucleation point is of great importance in the definition of the finite-fault 

inverse problem, because it is very important in spontaneous dynamic rupture modelling. 

The starting region of an earthquake strongly influences whether the rupture will actually 

propagate spontaneously or not, for some given initial stress distribution. Indeed, 

knowing in advance the probable rupture nucleation point for a set of initial conditions 

will permit to better compute the dynamic rupture process, avoiding, or at least reducing, 

the inconvenient and frequent trouble of rupture calculations that abort before rupturing 

the desired earthquake size. In finite source inversions, the rupture nucleation point is 

determined by waveform modelling and, hence, may differ from the actual location owing 

to differences between the dynamic range and the frequency passbands of the 

accelerometers and of the typical high-gain seismic network stations (Mai et al. 2005). 

 

3.1 Source scaling relationships 

In the SCRMOD database every model provides the geographical coordinates of the 

epicentre, the hypocentre depth, the rupture width and length, the seismic moment, the 

magnitude. The spatial variations of the on-fault slip along the strike and down-dip 

directions are also provided. The slip values are assigned over a matrix of sub-faults, with 

assigned number of rows (Nx) and columns (Nz). The dimensions (inDx, inDz) of the 

rectangle covering the entire fault are also given. 

In Table 3.1 the regression formulas computed in this study for maximum slip (MD), 

average slip (AD), fault length (Length), fault width (Width) and fault area (Area) vs. 

moment magnitude (MW) are listed, divided into 5 categories: strike-slip events (SS), 

reverse (R) events, normal (N) events, oblique events, all events (2nd column). As reported 

by Blaser et al., 2010, the scaling relations can differ significantly for different slip types. 

Differently from other studies, such as Thinggbaijam et. al., 2017, we do not distinguish 

between shallow crustal and subduction-interface events, but we group them together in 

the reverse-faulting category. The scaling relationships are log-linear in the form:  

Log 𝐷 = 𝑞 + 𝑚 ∙ 𝑀𝑊 
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The number of data points used in each case is shown in the 3rd column of Table 3.1. The 

best estimates for the coefficients m and q (calculated by least-squares method) are listed 

in the 4th and 5th columns, followed by the correlation coefficients r. 

For the calculations and the regressions, the magnitude values are taken with two decimal 

figures. However, when taken individually as estimates of the moment magnitude, they 

are considered significant only to one decimal figure. 

 

 

Table 3.1 Regressions between rupture dimensions (Length, Width), rupture area (Area), maximum displacement 

(MD), average displacement (AD), and moment magnitude (MW); r is the correlation coefficient. 

Equation Slip 

Type 

Number 

of events 

q m r 

Log(L) =q + m MW 

SS 

N 

R 

Oblique 

All 

22 

15 

31 

37 

105 

-2.82 

-1.40 

-2.56 

-1.70 

-2.05 

0.67 

0.45 

0.62 

0.50 

0.55 

0.95 

0.91 

0.90 

0.90 

0.91 

Log(W) =q + m MW 

SS 

N 

R 

Oblique 

All 

22 

15 

31 

37 

105 

-0.51 

-0.98 

-1.36 

-1.42 

-1.55 

0.26 

0.35 

0.43 

0.42 

0.43 

0.81 

0.83 

0.81 

0.86 

0.82 

Log(A) = q + m MW 

SS 

N 

R 

Oblique 

All 

22 

15 

31 

37 

105 

-3.33 

-2.38 

-3.92 

-3.12 

-3.61 

0.92 

0.80 

1.05 

0.92 

0.99 

0.94 

0.91 

0.89 

0.91 

0.91 

Log(MD) = q + m MW 

SS 

N 

R 

Oblique 

All 

22 

15 

31 

37 

105 

-3.90 

-4.01 

-2.11 

-3.39 

-2.90 

0.64 

0.64 

0.35 

0.54 

0.47 

0.89 

0.89 

0.62 

0.83 

0.76 
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Equation Slip 

Type 

Number 

of events 

q m r 

Log(AD) = q + m MW 

SS 

N 

R 

Oblique 

All 

22 

15 

31 

37 

105 

-3.94 

-4.46 

-3.24 

-4.15 

-3.46 

0.55 

0.61 

0.40 

0.55 

0.45 

0.86 

0.84 

0.57 

0.75 

0.68 

 

 

Let us consider the relationships between the fault dimensions and the magnitude. The 

length of the fault plane (see Figure 3.1) is highly correlated with the magnitude, and the 

highest value of the correlation coefficient is found for the strike-slip events. They present 

the largest length for a given magnitude, which is in agreement with the rupture 

mechanism. The same behaviour is reported by Thingbaijam et al., 2017, with a slope of 

0.7, really close to our m = 0.67. 

The fault width-magnitude laws present instead a lower slope. The largest values of width 

are seen for the reverse events. Contrary to the length-magnitude laws, strike-slip events 

have slope lower than all other categories, confirming an easier rupture propagation along 

the strike direction for these events. In addition to that, as reported by Thingbaijam et al., 

2017, strike-slip events on quasi-vertical faults are strongly affected by the finite width 

of the seismogenic layer. From Figure 3.2 it is possible to notice the dominant behaviour 

of the reverse-faulting events, and further that there are no strike-slip and normal-faulting 

events for which W exceeds the value of 102 km. 

The fact that length L grows more rapidly with magnitude compared to W is highlighted 

also by Thingbaijam et al., 2017. They also confirm the different behaviour of W for the 

different focal mechanisms, stating that subduction-interface earthquakes have 

significantly higher W compared to other faulting regimes. 

Indeed, strike-slip events are the only ones showing a correlation between the aspect ratio 

and the earthquake magnitude: this relationship results instead meaningless for the other 

rupture mechanisms (see Figure 3.3). 
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Figure 3.1 Regression law of rupture length vs. magnitude. The different colours and data symbols are related to 

different focal mechanisms: red circles represent the strike-slip events (SS), blue squares the normal events (N), 

green triangles the reverse events (R), black stars the oblique-type events (O). 

 

 

Figure 3.2 Regression law of rupture width vs. magnitude. See caption of Figure 3.1 for details. 
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Figure 3.3 Regression law of aspect ratio vs. magnitude. See caption of Figure 3.1 for details. 

 

The area of the fault (see Figure 3.4) also increases with the magnitude, with higher values 

and slopes for reverse earthquakes. Together with the length, this parameter is the one 

showing the best correlation with the magnitude. 

 

 

Figure 3.4 Regression law of fault area vs. magnitude. See caption of Figure 3.1 for details. 
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Considering the maximum displacement MD one observes (see Figure 3.5) that it 

increases with the magnitude, but the correlation coefficient is not that high. The strike-

slip events, for which the correlation coefficient has the highest value (comparable with 

the one computed for normal events), generally exhibit a larger peak of slip, for a given 

magnitude, with respect to the other mechanisms. Reverse earthquakes, instead, present 

the lowest value of slip peak. The same consideration holds when one considers the 

average displacement AD as visible from Figure 3.6. 

 

 

Figure 3.5 Regression law of maximum displacement vs. magnitude. See caption of Figure 3.1 for details. 
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Figure 3.6 Regression law of average displacement  vs. magnitude. See caption of Figure 3.1 for details. 

 

 

Taking into account that the most widely used scaling relations are those derived by Wells 

and Coppersmith (1994), it is interesting to make some comparisons with their results. 

They considered a larger number of events, with magnitude also smaller than 5 and 

distinguished between surface and subsurface rupture length. The surface lengths are 

obtained thanks to ground-surface outcrops, whereas subsurface estimates derive 

generally from aftershocks analyses. They showed that relations differ for these two 

categories, with the latter being more appropriate for a comparison, since we worked 

considering subsurface lengths. 

 

Table 3.2 Regression laws by Wells and Coppersmith (1994) 

Equation Slip 

Type 

Number 

of events 

a b r 

Log(L) = a + b MW 

SS 

R 

N 

All 

93 

50 

24 

167 

-2.57 

-2.42 

-1.88 

-2.44 

0.62 

0.58 

0.50 

0.59 

0.96 

0.93 

0.88 

0.94 
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Equation Slip 

Type 

Number 

of events 

a b r 

Log(W) = a + b MW 

SS 

R 

N 

All 

87 

43 

23 

153 

-0.76 

-1.61 

-1.14 

-1.01 

0.27 

0.41 

0.35 

0.32 

0.84 

0.90 

0.86 

0.84 

Log(A) = a + b MW 

SS 

R 

N 

All 

83 

43 

22 

148 

-3.42 

-3.99 

-2.87 

-3.49 

0.90 

0.98 

0.82 

0.91 

0.96 

0.94 

0.92 

0.95 

 

Comparing Table 3.1 and Table 3.2 we notice that our laws are somewhat different from 

Wells and Coppersmith’s, and generally, our relations lead to higher values of length and 

width for the same magnitude. An example is given in Table 3.3 where we show size 

estimates obtained by means of our and Wells and Coppersmith (1994) laws for a strong 

earthquake (MW = 7.5), that is however on the lower side of the tsunamigenic shock 

category. 

 

Table 3.3 Comparison on the length and width values predicted for an MW = 7.5 earthquake 

Calculated value Slip Type Wells and Coppersmith This study 

L (km, MW = 7.5)  

SS 

R 

N 

All 

120  

85 

74 

97 

160 

123 

94 

119 

W (km, MW = 7.5)  

SS 

R 

N 

All 

18 

29 

31 

25 

28 

73 

44 

55 

 

 

Notice that our regression laws that hold for earthquakes with MW ≥ 6 give larger rupture 

length for every slip type, especially for those characterized by strike-slip mechanism.  
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Figure 3.7 shows the relationship between seismic moment and magnitude of the 

earthquakes of our database, which is a subset of the SRCMOD database. The two are 

perfectly correlated, which suggests that in building SRCMOD the two quantities have 

been analytically derived one from the other according to the Hanks and Kanamori’s law 

(1979). If one wants to link the source dimensions with the seismic moment, rather than 

the moment magnitude, one can simply proceed following the reasoning explained below. 

Calling D the generic source dimension one has: 

log10𝐷 = 𝑎𝑑 + 𝑏𝑑 ∙ 𝑀𝑊 

and accepting that 

𝑀𝑊 = 𝑎𝑀 + 𝑏𝑀 ∙ log10𝑀0 

where the coefficient values are those given by the Hanks and Kanamori’s law (1979), 

one can conclude that: 

log10𝐷 = (𝑎𝑑 + 𝑎𝑀𝑏𝑑) + 𝑏𝑀𝑏𝑑 log10𝑀0 

𝐷 ∝  𝑀0
𝑏𝑑𝑏𝑀   ⟹  𝑀0 ∝ 𝐷

1
𝑏𝑑𝑏𝑀  

Following this elementary algebraic strategy, we obtain from our regression laws: 

𝐿 ∝  𝑀0
0.36    ⟹   𝑀0 ∝  𝐿

2.75

  𝑊 ∝  𝑀0
0.29   ⟹   𝑀0 ∝ 𝑊

3.44

𝐴 ∝  𝑀0
0.65    ⟹ 𝑀0 ∝  𝐴

1.53

 

𝑀𝐷 ∝ 𝑀0
0.31  ⟹  𝑀0 ∝ (𝑀𝐷)

3.22

𝐴𝐷 ∝ 𝑀0
0.30  ⟹  𝑀0 ∝ (𝐴𝐷)

3.37
 

The relationships obtained here are in good agreement with those calculated by Mai and 

Beroza (2000), i.e.: 

𝐿 ∝ 𝑀0
0.39 

  𝑊 ∝ 𝑀0
0.32

𝐴 ∝ 𝑀0
0.72

 

𝐴𝐷 ∝  𝑀0
0.29 

 

We remark further that these relationships can be seen also as an indicative support of the 

principle of self-similarity. This latter states that any change in M0 implies appropriate 

changes in L, W, and AD (Kanamori and Anderson, 1975), and if one assumes a constant 

fault aspect-ratio (L/W), the above laws take on the form: 

𝐿 ∝ 𝑀0

1
3       𝑊 ∝ 𝑀0

1
3      𝐴 ∝ 𝑀0

2
3      𝐴𝐷 ∝ 𝑀0

1
3   
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This scaling behaviour is associated with scale-invariant stress-drop (Thingbaijam et al., 

2017). However, our relations do not fit perfectly the fault dimensions L and W, and hence 

highlight how the aspect ratio is not independent from magnitude (or seismic moment) 

changes. Indeed, in agreement with our results, several studies reported that L grows 

faster with increasing magnitude (M0 > 6) compared to the growth of W (e.g., Mai and 

Beroza, 2000; Blaser et al., 2010; Leonard, 2010). Regarding particularly the aspect ratio, 

Blaser et al., 2010, underlined that it changes with magnitude, and moreover, it changes 

differently for different slip types. 

 

 

Figure 3.7 Regression law of magnitude (Mw) vs. seismic moment (Mo). See caption of Figure 3.1 for details. 

 

3.2 Hypocentre and maximum slip 

We have explored the relation between the positions of the hypocentre and of the slip 

peak and have summarised our results in the graphs of Figure 3.8. 

The nucleation point is almost never coincident with the maximum displacement point. 

The distance between the two points tends to increase along with the magnitude, which 

suggests us to try to derive scaling laws of the same type of the ones obtained in the 

previous section. Figure 3.8 shows the correlation between the distance and the moment 
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magnitude, where correlation coefficients vary between 0.64 (for reverse-faulting events) 

and 0.8 (for strike-slip and oblique events). 

Strike-slip earthquakes exhibit the largest distance between hypocentre and maximum 

displacement for a fixed magnitude and the highest slope coefficient. Normal-faulting 

earthquakes are characterized by the lowest slope. This behaviour follows what was seen 

for the length vs. the magnitude. 

This immediate conclusion is in agreement with previous studies regarding the 

hypocentre position. Manighetti et al. (2005) found that earthquakes nucleate at a finite 

distance from the zone of maximum slip. They found that this distance falls on average 

between 20% and 30% of the total largest asperity length. The results of Mai et al. (2005) 

confirmed this finding. Distinguishing between large asperities (1/3 MD ≤ D ≤ 2/3) and 

very large asperities (D ≥ 2/3 MD), they found that ruptures start close to large-asperities 

and have to encounter a very-large-slip asperity within the first half of the rupture distance 

to be able to grow larger than the nucleation zone. They justify this behaviour with an 

energy balance reasoning. An earthquake can only grow in size, potentially becoming a 

large earthquake, if the energy absorbed to create new crack surface (fracture energy) 

balances the available elastostatic energy and the energy radiated by seismic waves 

(Husseini et al. 1975; Husseini, 1977; Madariaga and Olsen, 2000; Favreau and 

Archuleta, 2003). According to this view, if the rupture nucleation point is located in 

regions of small stress drop (meaning in a low-slip area), and far from any point of 

significant stress drop, the fracture energy will soon be too large to maintain further crack 

propagation, and the rupture will stop prematurely (Mai et al., 2005). 

Instead of the geometrical on-fault distance between the hypocentre and the MD position, 

one can consider the horizontal and the vertical distances (Figure 3.9, Figure 3.10). From 

the latter Figure one can see that the hypocentre is almost always deeper than point of slip 

peak. For only 24 cases over 105 the opposite is true. Contrary to the down-dip direction, 

there is no such a significant difference in the along-strike direction (Figure 3.9), 

underlining a symmetry in the horizontal direction. The down-dip distance is correlated 

also vs. the aspect ratio (Figure 3.11), and from this last relation it is possible to notice 

that most of the events for which the maximum slip is deeper than the hypocentre stay in 

the window marked by a low aspect ratio and are reverse-mechanism earthquakes. For 

strike slip events, the maximum displacement never lies deeper than the hypocentre. 
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All these observations confirm the conclusion by Mai et al. (2005) that hypocentres are 

not randomly located on a fault. 

 

 

Figure 3.8 Regression law of the MD-Hypocentre distance vs. the magnitude Mw. 
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Figure 3.9 Along-strike distance between the point of maximum displacement (MD) and the hypocentre vs. the 

magnitude.  

 

Figure 3.10 Along-dip between the point of maximum displacement (MD) and the hypocentre vs. the magnitude.  
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Figure 3.11 Along-dip distance between the point of maximum displacement (MD) and the hypocentre vs. the 

aspect ratio. 

 

 

We have also considered the ratios dHM/D, dHM/L, XHM/L, YHM/W, |YHM/W| where: 

- XHM and YHM are the along-strike and along-dip distance of the maximum slip 

from the hypocentre; 

- L and W are the length and the width of the fault plane; 

- dHM and D are: 

𝑑𝐻𝑀 = √𝑋𝐻𝑀
2 + 𝑌𝐻𝑀

2   ;         𝐷 = √𝐿2 +𝑊2             

Tables 3.4 -3.6 summarize some interesting results regarding these parameters, taking 

into account respectively the average values (Table 3.4), the 90th percentiles (Table 3.5) 

and the largest values (Table 3.6). 

Table 3.4 shows that strike-slip earthquakes exhibit the largest average values for the 

normalised distance between hypocentre and maximum displacement, both in strike and 

dip directions. They are the only ones presenting the position of the maximum 

displacement always shallower than the hypocentre, and consequently the value YHM/W 

practically coincident with |YHM/W|. Normal and oblique events are those immediately 
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following. Reverse earthquakes are the only ones showing a negative value of YHM/W: 

for most of these then the maximum displacement position tends to be deeper than the 

hypocentre. 

Strike-slip events are also those presenting the highest maximum ratio (about 0.6) for 

both strike and dip directions, indicating that the distance dHM exceeds the half of the main 

rupture dimension along the related axis. 

 

Table 3.4 Average values of  XHM/L, YHM/W, |YHM/W|, dHM/D,  dHM/L  for the different focal mechanisms 

 XHM/L YHM/W |YHM/W| dHM/D dHM/L 

Strike-slip 0.153 0.251 0.251 0.194 0.208 

Normal 0.174 0.063 0.184 0.188 0.215 

Reverse 0.127 -0.004 0.143 0.149 0.190 

Oblique 0.154 0.108 0.174 0.173 0.207 

All 0.149 0.099 0.182 0.172 0.203 

 

Table 3.5 Thresholds of  XHM/L, YHM/W, |YHM/W|, dHM/D,  dHM/L  under which one finds the 90% (the 90th percentile) 

of the  values for the different focal mechanisms 

 XHM/L  YHM/W |YHM/W| dHM/D dHM/L 

Strike-slip 0.308 0.498 0.498 0.346 0.382 

Normal 0.377 0.286 0.286 0.310 0.388 

Reverse 0.250 0.231 0.357 0.342 0.401 

Oblique 0.447 0.321 0.321 0.395 0.471 

All 0.366 0.345 0.370 0.350 0.421 

 

Table 3.6 Maximum values of  XHM/L, YHM/W, |YHM/W|, dHM/D,  dHM/L  for the different focal mechanisms 

 XHM/L  YHM/W |YHM/W| dHM/D dHM/L 

Strike-slip 0.594 0.600 0.600 0.590 0.594 

Normal 0.458 0.462 0.462 0.425 0.475 

Reverse 0.586 0.364 0.429 0.452 0.604 

Oblique 0.561 0.500 0.500 0.475 0.571 

All 0.594 0.600 0.600 0.590 0.604 
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The 90th percentile ratios given in Table 3.5 show that strike-slip and reverse-faulting 

earthquakes present the highest values in the down-dip direction, with the distinction 

however that for the strike-slip events the slip peak is found always above the hypocentre, 

whereas in reverse ruptures the cases in which the maximum is below the hypocentre are 

preponderant. For the along-strike direction the behaviour is however different: strike-

slip and reverse-faulting mechanisms present low ratios, suggesting that along the 

horizontal direction the maximum slip tends to remain closer to the hypocentre. 

Considering the ratio dHM/D, the 90th percentile falls in the interval [0.3, 0.4] for all the 

different focal mechanisms, which can also be rephrased with the statement that 

hypocentres are located in the window [0.0, 0.4] for the 90% of all ruptures, or 

equivalently that in the 90% of the rupture models the nucleation point “encounters” the 

maximum slip within the first half of the main rupture distance D.  

If one considers the maximum values for all the different focal mechanisms (see Table 

3.6), dHM/D stays in the window [0.4, 0.6]. 

 

As mentioned above, Mai et al. 2005 have investigated the relationship between the 

hypocentre and the closest asperity, having this issue important implications for the 

generation of near-source ground motion. In agreement with our results, they found no 

dependence between moment magnitude MW and the normalized distances, where the 

normalisation value was the distance to the farthest point of the fault plane (Rmax in their 

notation). However, they pointed out that the ranges of normalized distances to the closest 

large-slip and to the very-large-slip asperities are rather limited. They stated that, in the 

48% of all the source models they investigated, the earthquake nucleated outside an 

asperity, 35% started within a large-slip asperity, and 16% within a very-large-slip 

asperity. From their analysis, hypocentres are located in the interval 0.0 < D ≤ 0.4Rmax 

for about 95% of all ruptures that did not start within a very-large-slip region, and never 

within a distance lower than 0.04Rmax. For none of the ruptures they found R > 0.6 Rmax. 

They concluded that ruptures generally nucleate close to large-slip asperities (about 0.15 

Rmax) and encounter a very-large-slip asperity within the first half of the total rupture 

distance. Similarly, Manighetti et al. (2005) found that ruptures start at a finite distance 

from the zone of maximum displacement, quantifying their statement in terms of 
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asperities dimension dA. They asserted that distance between hypocentre and the zone of 

maximum slip averages between 20% and 30% of dA. 

 

3.2.1 Position of the hypocentre with respect to the fault plane 

 

The analysis of the position of the nucleation point on the rupture plane could reveal 

features relevant especially when a fast determination of the fault geometry is important: 

the higher the magnitude, the larger is expected to be the variability of the hypocentre 

with respect to the fault plane, or equivalently of the fault placement with reference to the 

hypocentre. Mai et al. (2005) found that small earthquakes (MW < 6) tend to rupture in 

the centre of the fault plane. Our database does not include events with moment 

magnitude lower than 6. We investigated the position of the nucleation point in the fault 

plane. The results are well represented in Figure 3.12 Figure 3.13, Figure 3.14, where 

the distance of the hypocentre from the fault plane centre (dH-FC) and its along-strike and 

along-dip components are plotted in a logarithmic scale versus the moment magnitude. 

Even if the correlation coefficients are not that high (varying in the window [0.64, 0.8]), 

the increasing of the distance dH-FC with the magnitude is evident. The events most 

exhibiting this trend are the strike-slip events with a slope coefficient of 0.69 and a 

correlation coefficient of 0.8. On the other hand, normal-faulting events are the ones for 

which growth is more inhibited. This is a further indicator of the different evolution of 

the rupture for different fault mechanisms.  

The regressions reported in Figure 3.13 and Figure 3.14 refer respectively to the along-

strike XH-FC and along dip ZH-FC components of the distance dH-FC, and are plotted to test 

the existence of a dominant direction.  XH-FC presents almost the same value as above for 

the correlation coefficient (varying in [0.66, 0.7]) and a slope coefficient comprised 

between 0.6 and 0.7 with the exception of the reverse-faulting earthquakes characterized 

by a value of 0.76.  

Differently, the along-dip component ZH-FC shows a significant correlation coefficient 

only in the case of normal and reverse faulting events, with a slope lower than the one 

characterizing the along-strike direction. 
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Figure 3.12: Regression of the distance between the hypocentre and the fault centre vs. magnitude. 

 

 

Figure 3.13 Regression of the along-strike distance between the hypocentre and the fault centre vs. magnitude. 
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Figure 3.14 Regression of the along-dip distance between the hypocentre and the fault centre vs. magnitude. 

 

3.2.2 Position of the slip peak 

We analysed also the position of the maximum displacement on the fault plane. Looking 

at the regression law in Figure 3.15 it is noticeable that the peak of slip tends to move 

away from the fault centre as the magnitude increases. This distance growth seems to be 

larger, for the same magnitude values, for strike-slip earthquakes. 
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Figure 3.15 Regression of the distance between the point of maximum displacement and the fault centre vs. 

magnitude. 

 

The question may arise whether this correlation is attributable to the horizontal or to the 

vertical components of the distance vector or to both. To provide an answer, the single 

components (along-strike and down-dip) have been plotted vs. magnitude. From Figure 

3.16 and Figure 3.17 one can observe that the correlation between the vertical component 

and magnitude is higher than the one involving the horizontal component. Strike-slip 

events are those that, reasonably, exhibit the highest slope in the along-strike component 

plot: this agrees with the natural evolution of the rupture for such events. 
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Figure 3.16   Regression of the along-strike component of the distance between the position of the maximum slip 

and the fault centre vs. magnitude. 

 

 

Figure 3.17 Regression of the along-dip component of the distance between the position of the maximum slip and 

the fault centre vs. magnitude. 
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3.3 Conclusions  

From the above analysis one can draw some interesting considerations, synthesised in the 

following. 

The quantities that best correlate with magnitude are the rupture length (0.90 ≤ r ≤  0.95)  

and the rupture area (0.89 ≤ r ≤ 0.94), followed by the rupture width (0.81 ≤ r ≤  0.86). 

The slip presents a weaker correlation than the fault dimensions with the magnitude. The 

strike-slip events are those with the best correlation coefficients among the derived 

scaling laws (0.83 ≤ r ≤ 0.95). They are also the only ones that show a good correlation 

between the aspect ratio and the magnitude (see Figure 3.3), with r = 0.86. 

The reverse events are characterized by the highest values of rupture width and area for 

an assigned magnitude. 

The hypocentre rarely coincides with the position of the peak of slip, and often lies at 

larger depth.  

Regarding the position of the slip peak, this generally does not fall near the fault centre, 

with distance increasing with the earthquake magnitude, and more quickly for strike-slip 

events. 
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4 The 2D Gaussian Distribution 

In this chapter we focus our attention on the distribution of the slip over the fault plane, 

which plays an important role in seismic studies. It is known that the propagation pattern 

and the frequency content of the seismic waves radiating from the source, as well as the 

permanent deformation field produced by the dislocation in the surrounding medium, 

heavily depend on slip heterogeneities. Moreover, keeping an eye on tsunami generation 

by earthquakes, it can be pointed out that the fault plane slip distribution affects 

remarkably, together with other factors, the geographical pattern of the maximum heights 

of the tsunami waves on the coast. Hence, setting up tools allowing to obtain reliable on-

fault slip distributions from a few seismic parameters (such as the earthquake magnitude) 

would ensure improvements in the response of tsunami warning systems especially in 

areas where tsunamigenic sources are often located a few kilometres or a few tens of 

kilometres away from the coast. One could state that a better knowledge of the co-seismic 

slip distribution could improve the so-called “decision support chain” as part of the 

tsunami early warning systems. 

Considering the four elements of systematic people-centred early warning systems 

(Basher et al., 2006; UN/ISDR, 2006): 

- the risk knowledge,  

- the monitoring and warning service,  

- the dissemination and communication of the warnings,  

- the response capability,  

a better definition of the source could be of significant importance in the first two 

elements of the system.  

As a matter of fact, a relevant problem for the tsunami warning centres in all cases where 

the tsunami leading time is short is that the decision whether issuing or not an alert after 

a potentially tsunamigenic earthquake, has to be made in real-time operations with a lack 

of information on the earthquake source. The focal mechanism is one of the main 

discriminants concerning the earthquake’s ability to generate tsunami waves. Nowadays, 

the focal mechanism information is available relatively late (namely after some tens of 

minutes), being based on the inversion of seismic data, and even later (from hours to days) 

one gets a full model (FFM) of the slip distribution. 
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Getting a fast and acceptable estimate of the slip distribution based on earthquake 

magnitude could improve the performance of the tsunami warning centres procedures, 

especially for what concerns the near field region. 

 

4.1 Identification of asperities 

In this study, as a starting point, we have restricted our attention to those events that 

exhibit a clear single asperity. Indeed, as reported by Manighetti et al. (2005), typically 

slip distributions are dominated by only one zone of large slip, whose rupture accounts 

for most of the moment release. 

As already outlined in the previous chapter, there are different definitions of an asperity. 

Here, we privilege the one adopted by Mai et al. (2005), who consider high-level 

asperity/asperities as region/regions where the slip takes on values larger than 2/3 of the 

peak value, and low-level asperity/asperities as region/regions where the slip is comprised 

between 1/3 and 2/3. Low-level asperities could be either connected to the high-level 

ones, in which case they form a peripheral extension, or disconnected, therefore forming 

a separate large slip area.  

In this study we concentrate on high-level asperities only and the procedure used to 

identify the number of such asperities on a given rupture plane is a clustering method 

based on the so-called mean shift algorithm (Comaniciu and Meer, 2002) implemented in 

a Python framework. 

More specifically, we have considered the two-dimensional space represented by the 

centres of the subfaults on the rupture plane. Over this domain, the data points selected 

for the cluster recognition are those exceeding a slip value threshold: 

𝑥 ∶             𝑢(𝑥) ≥
2

3
𝑢𝑚𝑎𝑥 (4.1) 

where 𝑥 denotes the generic point on the fault plane. Let’s call with S the set of subfaults 

fulfilling the above inequality. The mean shift method is an iterative procedure that starts 

with an initial estimate 𝑥0 and with its neighbourhood 𝑁(𝑥0) defined through a kernel 

function K(x) and that computes the density as well as the weighted mean (or centroid) 

𝑚(𝑥) of the points within 𝑁(𝑥0) according to the expression: 

𝑚(𝑥) =
∑ 𝐾(𝑥𝑖 − 𝑥0)𝑥𝑖𝑥𝑖∈𝑁(𝑥0)

∑ 𝐾(𝑥𝑖 − 𝑥0)𝑥𝑖∈𝑁(𝑥0)
 (4.2) 
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The algorithm involves shifting this kernel iteratively to a higher density region until 

convergence. Every shift is defined by the mean shift vector, that always points toward 

the direction of the maximum increase in the density. At every iteration the kernel is 

shifted to the centroid or the mean of the points within it. At convergence, there will be 

no direction at which a shift can accommodate more points inside the kernel. Practically, 

it is a centroid based algorithm, which works by updating candidates for centroids to be 

the mean of the points within a given region. At the end, one finds a candidate cluster for 

each selected starting point 𝑥0. These candidates have to be filtered in a post-processing 

stage to eliminate near-duplicates to form the final set of centroids. 

In our case, we have selected a procedure using a flat kernel involving a fraction of the 

characteristic rupture distance √(𝐿2 +𝑊2), where L and W are the length and width of 

the fault respectively, and have taken as 𝑥0 all the subfaults belonging to S. The final 

stage has recognised that the obtained clusters are mostly duplicates of one or two 

independent clusters or asperities. Figure 4.1 illustrates the initial set S and the final 

asperity for the FFM of the 16 September 2015 Illapel Chile earthquake (I.N. 105 of Table 

2.1) obtained by applying the mean shift algorithm inclusive of the final filtering 

selection.  

The application of the clustering algorithm to the dataset of 105 earthquakes recognises 

that 72 events have a single asperity slip distribution. In the following we will restrict our 

analysis to this subset. The list of their identification numbers is given in the first column 

of  Table 4.1 later on in this chapter. 
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Figure 4.1 Example of filtered fault plane resulting from the mean shift clustering procedure. Above, the original 

SRCMOD FFM for the 16 September 2015 Illapel Chile earthquake (by Okuwaki et al., 2016). Below, the asperity 

identified by the method. 

 

Parallel to the Gaussian modelling of single asperity events based on using the definition 

of asperities mentioned above, we have also investigated the relationship between the slip 

and area that characterise the asperities, following the work by Lee et al. (2016). The 

scaling of heterogeneous slips with the fault surface can provide a basis for ground motion 

simulation for earthquake scenarios, particularly in the near-fault region and is relevant 

also for tsunami generation and hazard assessment. We observe however that this topic 

does not change the general strategy of this thesis and is treated only for the sake of 

completeness. Details are reported in Appendix E. 

 

4.2 The 2D Gaussian Distribution 

Focusing on the new subset of events characterized by a single asperity, we can fit the 

on-fault slip through a distribution with a bi-dimensional Gaussian shape, hereafter 

denoted with 2D GD. The 2D GD, centred on the FFM subfault with maximum slip, has 

an elliptical  distribution field, depending on four parameters, namely the standard 

deviations (1, 2) along two perpendicular axes over the fault plane, the angle   between 
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the along-strike axis and the major axis (1), and the amplitude factor characterising the 

peak value (umax) of the distribution (see Appendix A for graphic examples). In such a 

field the magnitude of the slip at the generic point (𝑥, 𝑦) of the fault plane has the 

expression given below: 

𝑢(𝑥, 𝑦) =  𝑢𝑚𝑎𝑥 ⋅ 𝑒
−[𝑎(𝑥−𝑥0)

2+2𝑏(𝑥−𝑥0)(𝑦−𝑦0)+𝑐(𝑦−𝑦0)
2] (4.3) 

where umax is the magnitude of the slip peak, and (x0, y0) are the coordinates of the peak 

position. The coefficients a, b and c are given by the formulas: 

𝑎 =
cos2 𝜃

2𝜎1
2 +

sin2 𝜃

2𝜎2
2  ;         𝑏 =

sin 2𝜃

4𝜎1
2 −

sin 2𝜃

4𝜎2
2 ;          𝑐 =

sin2 𝜃

2𝜎1
2 +

cos2 𝜃

2𝜎2
2  

 

The optimal parameters have been determined by a least-squares fitting procedure applied 

over the parameter space scanned at regular steps. 

Different optimizations have been conducted, varying the number of free parameters or 

their variability domain. The tested configurations are: 

1) 1, 2, , umax free parameters; 

2) 1, 2,  free parameters (umax = MD); 

3) 1, 2, umax free parameters ( = 0); 

4) 1, 2, free parameters (umax = MD,  = 0) 

5) 1, 2, free parameters ( = 0, umax is fixed to the value obtained from the 

regression law) 

In the following we will denote with 2D GDi (i=1,2,…,5) the distributions obtained 

through the above optimization procedures. 

 

4.3 Optimal 2D GD for tsunamigenic earthquakes 

Fitting least-squares procedures can be targeted in different ways depending on the 

objective of fitting. In this study we have special interest for tsunamigenic earthquakes.  

We point out that for earthquakes occurring off-shore or near to the coast and having the 

potential to be tsunamigenic, what matters is the seafloor vertical-displacement field 

pattern since it constitutes the real tsunami hydrodynamic source. As a consequence, the 

free surface displacement field induced by a prescribed slip distribution on the fault at 

depth will be used as the natural metric to compare different slip patterns. More precisely, 

for any given earthquake, we compare the co-seismic vertical-component displacements 
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corresponding to the SRCMOD FFM, taken as the reference case, with the same 

displacement fields computed from the following alternative slip distributions: 

- a homogeneous fault model; 

- a “Smooth Closure Condition” distribution (hereafter SCC), in which the 

heterogeneity depends only on depth; it was originally introduced by Freund and 

Barnett (1976) (see e.g. Geist and Dmowska, 1999 for details, see also Appendix 

B); 

- the best-fitting 2D GDs, i.e. 2D GDi (i=1,2,…5). 

 

The choice of the first type of models is dictated by the observation that it is a widely 

used option in many studies dealing, for example, with the deformation fields induced by 

earthquakes, with earthquake hazard assessment, with the simulation of earthquake-

induced tsunamis, with tsunami hazard assessment and tsunami early warning, while the 

second option is sometimes taken into account in the literature (see e.g. Geist and 

Dmowska, 1999; Tinti et al., 2005; Gutscher et al. 2006; Babeyko et al., 2010; Tonini et 

al., 2011, and many others). 

For a given FFM, the surface displacement field, and in particular its vertical component, 

is computed here by means of the analytical formulas by Okada (1992), in which a 

rectangular fault is buried in a perfectly elastic, homogeneous and isotropic elastic half-

space. A heterogeneous slip distribution is obtained by linearly superposing all 

contributions coming from the homogeneous-slip sub-faults. 

For each of the 72 events of the single-asperity database, we started from the SRCMOD 

FFM reference case (hereafter FFMREF). We adopted the same Cartesian reference frame 

and the same sub-fault tessellation of the fault plane as proposed in FFMREF. More 

precisely, the basic geometric and focal properties of the fault (total and subfaults’ length, 

total and subfaults’ width, average strike, average dip, average rake, subfault positions) 

have been taken from FFMREF and used for all other cases. The only varying parameter 

is the slip amount on each subfault, computed as follows: 

- for FFMREF, it is simply retrieved from the database; 

- for the homogeneous slip distribution case, it is the average slip computed over 

FFMREF and assigned to all subfaults; 

- for the SSC case, see Appendix A; 
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- for the five 2D GDs, it is the slip matrix obtained by means of the least-squares   

algorithm. 

The vertical surface displacements were computed over a flat domain corresponding to 

the altitude z = 0. The computational domain is centred in the mid-point of the surface 

projection of the FFMREF fault plane, and its extension is twice the total length of the fault 

in both the strike and normal directions. The domain has been discretized with a grid of 

100 x 100 nodes. As the domain extension varies for the different considered events, the 

same happens also for the grid steps.  

 

4.4 Misfit 

For each of the comparison mentioned above, the goodness of the fitting to the reference 

SRCMOD case is measured by computing the following misfit value: 

𝑚𝑠𝑓 = √
∑ (𝑈𝑧𝑖 − 𝑢𝑧𝑖 )2
𝑛
𝑖=1

∑ (𝑈𝑧𝑖)2
𝑛
𝑖=1

 (4.4) 

where Uz is the free-surface vertical displacement of the reference field and uz is the 

corresponding value of one of the considered fields, and the sum is extended over all 

nodes of the computational domain. 

The misfit values resulting from the different comparisons are reported in Table 4.1, 

where they are calculated for all the single-asperity events identified through the mean 

shift clustering procedure.  

Table 4.2 summarizes the minimum, maximum and average values for all the slip 

distributions. For all the 2D GD distributions the mean value of the misfit is lower than 

both the Uniform and SCC mean values. Among all the Gaussian optimizations, the best 

behaviour is given by the 2D GD1 (mean misfit = 0.350) and by the 2D GD3 distributions 

(mean misfit = 0.352). 

 

Table 4.1 Misfit between the vertical-displacement fields calculated for the reference FFM events and the 

corresponding fields for each of the tested slip distributions. The total number of events in the Table is 72. 

Identification numbers in the first column (I.N.) are the ones given in Table 2.1. 

I.N. Uniform SCC 2D GD1 2D GD2 2D GD3 2D GD4 2D GD5 

1 0.770 0.671 0.181 0.183 0.184 0.171 0.277 

3 0.500 0.431 0.356 0.388 0.344 0.374 0.495 

4 0.603 0.751 0.659 0.760 0.675 0.760 0.729 
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6 0.855 0.623 0.380 0.381 0.436 0.429 0.500 

7 0.821 0.802 0.492 0.419 0.419 0.419 0.428 

9 0.469 0.371 0.260 0.275 0.223 0.248 0.308 

10 0.668 0.658 0.424 0.525 0.422 0.532 0.462 

11 0.621 0.463 0.445 0.865 0.445 0.865 1.636 

12 0.550 0.537 0.422 0.679 0.409 0.679 0.700 

13 0.397 0.344 0.142 0.178 0.142 0.178 0.243 

15 0.832 0.819 0.851 0.877 0.767 0.776 0.765 

16 0.835 0.748 0.381 0.470 0.383 0.490 0.610 

17 0.420 0.328 0.213 0.229 0.288 0.333 0.896 

18 0.555 0.503 0.195 0.209 0.201 0.209 0.237 

20 0.485 0.525 0.551 0.734 0.551 0.688 0.600 

22 0.791 0.789 0.508 0.509 0.508 0.509 0.515 

25 0.446 0.551 0.641 0.659 0.641 0.659 0.598 

30 0.771 0.787 0.421 0.421 0.489 0.489 0.760 

31 0.424 0.482 0.296 0.533 0.296 0.518 0.494 

32 0.184 0.342 0.141 0.170 0.141 0.170 0.139 

33 0.605 0.428 0.169 0.267 0.169 0.267 0.173 

35 0.507 0.324 0.163 0.223 0.146 0.128 0.145 

37 0.315 0.292 0.286 0.593 0.286 0.593 0.237 

40 0.908 0.835 0.692 0.707 0.692 0.738 0.870 

41 0.696 0.549 0.448 0.449 0.455 0.438 0.444 

42 0.959 0.953 0.352 0.342 0.352 0.342 1.001 

43 0.236 0.207 0.326 0.326 0.244 0.218 0.378 

44 0.730 0.702 0.304 0.304 0.304 0.304 0.320 

45 0.828 0.782 0.360 0.400 0.360 0.400 0.391 

46 0.421 0.444 0.204 0.263 0.255 0.322 0.409 

47 0.311 0.375 0.349 0.587 0.349 0.581 0.374 

49 0.689 0.781 0.382 0.418 0.376 0.436 0.447 

51 0.883 0.642 0.434 0.471 0.434 0.471 0.655 

52 0.811 0.727 0.434 0.566 0.453 0.597 0.601 

53 0.576 0.420 0.138 0.149 0.138 0.149 0.265 

54 0.554 0.421 0.196 0.184 0.159 0.159 0.245 

55 0.774 0.657 0.238 0.265 0.238 0.265 0.466 

59 0.637 0.490 0.214 0.246 0.260 0.246 0.282 

60 0.376 0.163 0.264 0.217 0.199 0.247 0.544 

61 0.697 0.540 0.177 0.237 0.182 0.167 0.209 

62 0.548 0.470 0.333 0.421 0.333 0.447 0.440 

63 0.617 0.543 0.407 0.553 0.428 0.545 0.519 

65 0.863 0.824 0.267 0.277 0.267 0.277 0.265 

66 0.552 0.662 0.500 0.888 0.492 0.883 0.869 
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67 0.839 0.833 0.493 0.492 0.493 0.492 0.520 

68 0.655 0.649 0.457 0.479 0.458 0.481 0.466 

69 0.131 0.091 0.037 0.077 0.042 0.080 0.028 

71 0.401 0.442 0.282 0.262 0.282 0.262 0.301 

74 0.889 0.844 0.695 0.845 0.697 0.838 0.928 

77 0.960 0.833 0.473 0.570 0.483 0.570 1.150 

78 0.614 0.653 0.464 0.449 0.464 0.449 0.509 

80 0.129 0.138 0.262 0.262 0.260 0.260 0.168 

81 0.827 0.558 0.397 0.509 0.397 0.509 0.621 

82 0.958 0.707 0.446 0.485 0.446 0.485 0.708 

84 0.590 0.334 0.385 0.470 0.295 0.470 0.505 

85 0.602 0.419 0.148 0.148 0.148 0.148 0.169 

86 0.625 0.543 0.289 0.361 0.289 0.361 0.296 

87 0.872 0.869 0.305 0.353 0.305 0.353 0.351 

88 0.868 0.754 0.446 0.500 0.446 0.500 0.436 

89 0.731 0.705 0.495 0.538 0.495 0.538 0.543 

90 0.860 0.882 0.601 0.725 0.602 0.725 1.631 

91 0.642 0.566 0.365 0.365 0.333 0.317 0.436 

92 0.625 0.511 0.315 0.315 0.377 0.377 0.344 

93 0.700 0.563 0.557 0.701 0.569 0.701 0.728 

96 0.692 0.673 0.472 0.496 0.506 0.575 0.673 

97 0.650 0.602 0.262 0.328 0.262 0.328 0.327 

98 0.065 0.022 0.066 0.044 0.066 0.044 0.044 

100 0.625 0.626 0.230 0.265 0.243 0.280 0.569 

102 0.909 0.402 0.092 0.092 0.076 0.076 0.268 

103 0.831 0.492 0.159 0.156 0.213 0.238 0.282 

104 0.411 0.401 0.096 0.110 0.110 0.110 0.097 

105 0.595 0.759 0.288 0.330 0.478 0.478 0.498 

 

 

Table 4.2 Minimum, maximum and average values of the misfit for each type of slip distribution. 

Slip distribution Min Misfit Max Misfit Mean Misfit 

Uniform 0.065 0.960 0.630 

SCC 0.022 0.953 0.564 

2D GD1 0.037 0.851 0.350 

2D GD2 0.044 0.888 0.410 

2D GD3 0.042 0.767 0.352 

2D GD4 0.044 0.883 0.413 
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2D GD5 0.028 1.636 0.494 

 

We notice that the different 2D GD optimizations are obtained by letting varying a 

different number of parameters. A way to judge the significance of the resulting fitting is 

provided by the Bayesan Information Criterion (BIC) based on the formula: 

 

𝐵𝐼𝐶 = 𝑛 ∙ ln(𝑅2) + 𝑘 ∙ ln(𝑛) (4.5) 

 

where:  

- n is the samples number; 

- R is the misfit value; 

- k is the number of free parameters to be estimated. 

The BIC is an increasing function of R and an increasing function of k. The lowest BIC 

value indicates the preferred model, penalising models with larger number of free 

parameters.  

We adopt the BIC formulation in (4.5), even if it is often reported as: 

 

𝐵𝐼𝐶0 = 𝑛 ∙ ln(𝜎𝑒
2) + 𝑘 ∙ ln(𝑛) 

with: 𝜎𝑒
2 =

1

𝑛
∑ (𝑈𝑧

𝑖 − 𝑢𝑧
𝑖 )
2𝑛

𝑖=1  

Now, the expression (4.5) can be rewritten using the misfit definition (4.4): 

𝐵𝐼𝐶 = 𝑛 ∙ ln (
∑ (𝑈𝑧

𝑖 − 𝑢𝑧
𝑖 )
2𝑛

𝑖=1

∑ (𝑈𝑧𝑖)2
𝑛
𝑖=1

) + 𝑘 ∙ ln(𝑛) 

With some basic algebra the expression assumes the form: 

𝐵𝐼𝐶 = 𝑛 ∙ ln (
∑ (𝑈𝑧

𝑖 − 𝑢𝑧
𝑖 )
2𝑛

𝑖=1

𝑛
) + 𝑘 ∙ ln(𝑛) + 𝑛 ∙ ln(𝑛) − 𝑛 ∙ ln (∑ (𝑈𝑧

𝑖)
2𝑛

𝑖=1
) 

and can be rewritten as: 

𝐵𝐼𝐶 = 𝑛 ∙ ln(𝜎𝑒
2) + 𝑘 ∙ ln(𝑛) + 𝐶 with 𝐶 =  𝑛 ∙ ln(𝑛) − 𝑛 ∙ ln (∑ (𝑈𝑧

𝑖)
2𝑛

𝑖=1 ) 

Hence:      

𝐵𝐼𝐶 = 𝐵𝐼𝐶0 + 𝐶 

The two expressions for BIC and BIC0 differ just for the constant term C. 
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Table 4.3 includes the BIC values for all the events and all the slip distributions, whereas 

Table 4.4 summarizes the minimum, maximum and average values of BIC. One can 

observe that for all the 2D GDs the mean value of BIC is lower than the Uniform and 

SCC mean values. Among all the 2D Gaussian optimizations, the best behaviour is given 

by the 2D GD1 (mean BIC = -23.6  103) and by the 2D GD3 (mean BIC = -23.5  103). 

Taking advantage from this result and observing that the difference between the two mean 

values is very small, so that the two approximation methods may be considered 

equivalent, in the following we will privilege the 2D GD3 fitting, that differs from 2D 

GD1 in that the angle of the major axis of the Gaussian ellipse is assumed to be fixed and 

equal to zero (see Section 4.2). 

 

 
Table 4.3 BIC values of the 7 tested slip distributions. The total number of events in the Table is 72. Identification 

numbers in the first column (I.N.) are the ones given in Table 2.1. 

I.N. Uniform 

(103) 

SCC 

(103) 

2D GD1 

(103) 

2D GD2 

(103) 

2D GD3 

(103) 

2D GD4 

(103) 

2D GD5 

(103) 

1 -5.2 -8.0 -34.1 -34.0 -33.9 -35.3 -25.7 

3 -13.9 -16.8 -20.6 -18.9 -21.3 -19.6 -14.0 

4 -10.1 -5.7 -8.3 -5.5 -7.8 -5.5 -6.3 

6 -3.1 -9.4 -19.3 -19.3 -16.6 -16.9 -13.9 

7 -3.9 -4.4 -14.1 -17.4 -17.4 -17.4 -16.9 

9 -15.1 -19.8 -26.9 -25.8 -30.0 -27.9 -23.6 

10 -8.0 -8.4 -17.1 -12.9 -17.2 -12.6 -15.4 

11 -9.5 -15.4 -16.2 -2.9 -16.2 -2.9 9.9 

12 -11.9 -12.4 -17.2 -7.7 -17.9 -7.7 -7.1 

13 -18.5 -21.3 -39.0 -34.5 -39.0 -34.6 -28.3 

15 -3.7 -4.0 -3.2 -2.6 -5.3 -5.1 -5.3 

16 -3.6 -5.8 -19.3 -15.1 -19.2 -14.2 -9.9 

17 -17.3 -22.3 -30.9 -29.5 -24.8 -22.0 -2.2 

18 -11.8 -13.7 -32.7 -31.3 -32.0 -31.3 -28.8 

20 -14.5 -12.9 -11.9 -6.1 -11.9 -7.5 -10.2 

22 -4.7 -4.7 -13.5 -13.5 -13.5 -13.5 -13.2 

25 -16.1 -11.9 -8.9 -8.3 -8.9 -8.3 -10.3 

30 -5.2 -4.8 -17.3 -17.3 -14.3 -14.3 -5.5 

31 -17.2 -14.6 -24.3 -12.5 -24.3 -13.2 -14.1 

32 -33.9 -21.5 -39.1 -35.5 -39.1 -35.5 -39.4 

33 -10.0 -17.0 -35.5 -26.4 -35.5 -26.4 -35.0 
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35 -13.6 -22.5 -36.3 -30.0 -38.5 -41.2 -38.5 

37 -23.1 -24.6 -25.0 -10.4 -25.0 -10.4 -28.8 

40 -1.9 -3.6 -7.3 -6.9 -7.3 -6.1 -2.8 

41 -7.2 -12.0 -16.0 -16.0 -15.7 -16.5 -16.2 

42 -0.8 -0.9 -20.8 -21.4 -20.8 -21.5 0.0 

43 -28.9 -31.5 -22.4 -22.4 -28.2 -30.4 -19.5 

44 -6.3 -7.1 -23.8 -23.8 -23.8 -23.8 -22.7 

45 -3.8 -4.9 -20.4 -18.3 -20.4 -18.3 -18.8 

46 -17.3 -16.2 -31.8 -26.7 -27.3 -22.6 -17.8 

47 -23.4 -19.6 -21.0 -10.6 -21.0 -10.8 -19.6 

49 -7.4 -4.9 -19.2 -17.4 -19.5 -16.6 -16.1 

51 -2.5 -8.8 -16.6 -15.0 -16.7 -15.0 -8.4 

52 -4.2 -6.4 -16.7 -11.4 -15.8 -10.3 -10.2 

53 -11.0 -17.3 -39.5 -38.0 -39.5 -38.0 -26.6 

54 -11.8 -17.3 -32.6 -33.9 -36.7 -36.7 -28.1 

55 -5.1 -8.4 -28.7 -26.5 -28.7 -26.5 -15.3 

59 -9.0 -14.3 -30.8 -28.1 -26.9 -28.1 -25.3 

60 -19.5 -36.2 -26.6 -30.6 -32.2 -28.0 -12.2 

61 -7.2 -12.3 -34.6 -28.8 -34.0 -35.8 -31.3 

62 -12.0 -15.1 -22.0 -17.3 -22.0 -16.1 -16.4 

63 -9.6 -12.2 -17.9 -11.8 -16.9 -12.1 -13.1 

65 -2.9 -3.9 -26.4 -25.6 -26.4 -25.7 -26.5 

66 -11.9 -8.2 -13.8 -2.3 -14.2 -2.5 -2.8 

67 -3.5 -3.6 -14.1 -14.2 -14.1 -14.2 -13.1 

68 -8.4 -8.6 -15.6 -14.7 -15.6 -14.6 -15.2 

69 -40.6 -47.9 -66.0 -51.3 -63.6 -50.6 -71.4 

71 -18.3 -16.3 -25.3 -26.7 -25.3 -26.8 -24.0 

74 -2.4 -3.4 -7.2 -3.3 -7.2 -3.5 -1.5 

77 -0.8 -3.6 -14.9 -11.2 -14.5 -11.2 2.8 

78 -9.8 -8.5 -15.3 -16.0 -15.3 -16.0 -13.5 

80 -41.0 -39.6 -26.8 -26.8 -26.9 -26.9 -35.7 

81 -3.8 -11.7 -18.4 -13.5 -18.5 -13.5 -9.5 

82 -0.9 -6.9 -16.1 -14.4 -16.1 -14.4 -6.9 

84 -10.5 -21.9 -19.1 -15.1 -24.4 -15.1 -13.7 

85 -10.1 -17.4 -38.2 -38.2 -38.2 -38.2 -35.5 

86 -9.4 -12.2 -24.8 -20.3 -24.8 -20.4 -24.4 

87 -2.7 -2.8 -23.7 -20.8 -23.7 -20.8 -20.9 

88 -2.8 -5.6 -16.1 -13.8 -16.1 -13.8 -16.6 

89 -6.2 -7.0 -14.0 -12.4 -14.0 -12.4 -12.2 

90 -3.0 -2.5 -10.1 -6.4 -10.1 -6.4 9.8 

91 -8.9 -11.4 -20.1 -20.1 -22.0 -23.0 -16.6 
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92 -9.4 -13.4 -23.1 -23.1 -19.5 -19.5 -21.3 

93 -7.1 -11.5 -11.7 -7.1 -11.3 -7.1 -6.3 

96 -7.4 -7.9 -15.0 -14.0 -13.6 -11.0 -7.9 

97 -8.6 -10.1 -26.7 -22.3 -26.8 -22.3 -22.4 

98 -54.7 -76.0 -54.3 -62.4 -54.3 -62.5 -62.3 

100 -9.4 -9.4 -29.4 -26.6 -28.3 -25.5 -11.2 

102 -1.9 -18.2 -47.7 -47.7 -51.4 -51.4 -26.3 

103 -3.7 -14.2 -36.7 -37.1 -30.9 -28.7 -25.3 

104 -17.8 -18.2 -46.8 -44.2 -44.2 -44.2 -46.6 

105 -10.4 -5.5 -24.9 -22.1 -14.7 -14.8 -13.9 

 

 

 

Table 4.4 Minimum, maximum and average values of the BIC for each type of slip distribution. 

Slip distribution Min BIC  

( 103) 

Max BIC  

( 103) 

Mean BIC  

( 103) 

Uniform -54.7 -0.8 -11.0 

SCC -76.0 -0.9 -13.6 

2D GD1 -66.0 -3.2 -23.6 

2D GD2 -62.4 -2.3 -20.8 

2D GD3 -63.6 -5.3 -23.5 

2D GD4 -62.5 -2.5 -20.7 

2D GD5 -71.4 9.9 -18.0 

 

 

4.5 Regression laws of the 2D GD parameters 

In analogy with regression laws linking focal and slip parameters with magnitude, one 

can establish scaling laws including the Gaussian Distribution parameters. For the reason 

explained in the previous section, we restrict our analysis to the 2D GD3 fitting 

optimizations. Accordingly, the parameters to be taken into account are the standard 

deviations along horizontal and down-dip axis 1 and 2 and the maximum displacement 

MD. 

One finding is that both the along-strike and down-dip standard deviations seem to 

correlate with the magnitude (see Figure 4.2 and Figure 4.3). In both cases, reverse 



64 

earthquakes present the largest slope coefficient and the highest values of 1 and 2 for 

an assigned moment magnitude MW. Concerning 1 (along-strike), the lowest values of 

1 and the lowest slope coefficients are found for earthquakes characterized by normal 

focal mechanism. Instead, 2 (down-dip) has its lowest values for strike-slip earthquakes, 

which underlines once more the natural evolution of the rupture process in the along-

strike direction. Plots of 2 show a larger spread in the slope values of the different focal 

mechanisms laws than plots of 1. This fact can suggest a higher sensitivity of the down-

dip standard deviation to rupture mechanism.  

 

Figure 4.2 Regression law of along-strike standard deviation 1 vs. magnitude. 
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Figure 4.3 Regression law of down-dip standard deviation 2 vs. magnitude. 

 

It is interesting to analyse the trend of the standard deviations in relation to the rupture 

dimensions as portrayed in Figure 4.4 and Figure 4.5. In this case, a linear regression is 

effective in describing the correlation between the Gaussian parameters 1 and 2 on one 

side, and the rupture length and width on the other. Remarkably, with the exception of 

the strike-slip events, the slope coefficient is almost the same for all the earthquakes, 

which indicates a homogeneous regularity in the increasing of the asperity size with 

rupture dimensions. From our results, we can conclude that the standard deviations of the 

slip distribution increase with the rate of 1/5 of the source size along the relative direction. 

The correlation coefficient is particularly good for the down-dip direction. 
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Figure 4.4 Linear regression law of the along-strike standard deviation 1 vs. rupture length. 

 

 

Figure 4.5 Linear regression law of the down-dip standard deviation 2 vs. rupture width. 

 

The other parameter taken into account is the maximum displacement of the 2D GD 

centre value (see Figure 4.6). It is not surprising that the correlations we find here are not 

so different from the ones involving the MD values of the FFM, since the Gaussian peak 

MD2DGD is found through a minimization process exploring a space window around the 
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FFM MD. In both cases the best correlation is obtained for the strike-slip and normal 

earthquakes, and for the Gaussian parameter the correlation coefficient is even higher (r 

= 0.93, r = 0.96 for strike-slip and normal shocks, respectively). 

 

 

Figure 4.6 Regression law of the 2D GD maximum displacement MD vs. magnitude. 

 

4.6 The slip in the hypocentre for distributions of the type 2D GD3 

Considering the relation between the magnitude of the slip in the hypocentre and the peak 

value for the Gaussian distributions is an additional way to analyse the relation between 

the hypocentre and the main fault asperity. 

Let us consider the 2D GD slip expression given by the formula (4.3) in Section 4.2. If 

we deal with the 2D GD3, then  =0, hence: 

𝑎 =
1

2𝜎1
2  ;         𝑏 = 0;          𝑐 =

1

2𝜎2
2 

If we call the coordinates of the hypocentre with (xH, yH) over the fault plane, the value 

assumed by the slip in correspondence with the hypocentre is: 

 

𝑢𝐻 =  𝑢𝑚𝑎𝑥 ⋅ 𝑒
−[
(𝑥𝐻−𝑥0)

2

2𝜎1
2   + 

(𝑦𝐻−𝑦0)
2

2𝜎2
2 ]

 

 



68 

The histogram in Figure 4.7 shows the number of events for different intervals of the ratio 

uH/umax. The average value of this ratio is 0.555. 

There are 16 cases in which the ratio is smaller than 0.2, which indicates that the 

hypocentre lies far from the main asperity. 

Considering the histograms for different focal mechanisms it is possible to observe that 

the strike-slip events are those with the smallest average value (0.355) while other 

mechanisms show an average value larger than 0.5. Reverse earthquakes are those with 

the highest one (0.642).  

Table 4.5 shows, together with the averages, different percentile values for the ratio 

uH/umax. Looking at the medians, with the exception of the strike-slip mechanisms, one 

sees that its upper limit is larger than 0.62 and that the maximum is reached by normal 

events, presenting a median of 0.713. Taking into account the 10th percentile, one can 

observe the peculiar behaviour of the strike-slip events.  

 

Table 4.5 Mean value and five different percentile values (10th, 25th, 50th, 75th, 90th ) of the ratio uH/umax for different 

focal mechanisms. 

 Mean 10th  25th  Median 

(50th) 

75th 90th  

Strike-slip 0.355 0.0 0.018 0.233 0.734 0.795 

Normal 0.574 0.132 0.178 0.713 0.902 0.926 

Reverse 0.642 0.224 0.466 0.693 0.868 0.988 

Oblique 0.557 0.111 0.259 0.627 0.776 0.950 

All 0.555 0.063 0.228 0.657 0.802 0.945 
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Figure 4.7 Histogram of the hypocentre slip value (uH) normalized to the 2D GD3 maximum displacement (umax). 

 

 

Figure 4.8 Histograms of the uH/umax ratios for the different focal mechanisms. 
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The slip value at the hypocentre uH has been analyzed also in relation to the average slip 

umean characterizing the slip distribution. 

Table 4.6 summarizes some characteristic values of the ratio uH/umean in a way similar to 

what was done above for uH/umax. The Table suggests some observations. Reverse-

faulting earthquakes are those showing the highest uH/umean average ratio (4.509), 

followed by normal, oblique, and finally strike-slip events (1.416). For reverse, normal 

and oblique ruptures, moreover, 90% of cases present the hypocentral slip value definitely 

larger than the 50% of the average slip over fault plane. For strike-slip events the 75% of 

the ruptures are characterized by uH larger than 17.5% of umean. 

 

Table 4.6 Mean value and five different percentile values (10th, 25th, 50th, 75th, 90th )  of the ratio uH/umean for the 

different focal mechanisms. 

 Mean 10th  25th  Median 

(50th) 

75th 90th  

Strike-slip 1.416 0.001 0.175 1.416 2.294 2.847 

Normal 3.352 0.608 0.767 3.352 3.677 6.296 

Reverse 4.509 0.919 1.758 4.509 6.777 10.747 

Oblique 2.619 0.766 1.332 2.619 3.099 5.359 

All 3.120 0.345 1.181 2.146 3.677 7.077 

 

The analysis reported in the above tables and figures highlights some peculiarities of the 

relative position between the main asperity and the nucleation point. Indeed, while in the 

previous chapter we have considered the relation between hypocentre and maximum slip 

locations in terms of distances, here we have directly taken into account the slip value 

assumed in the hypocentre, following our 2D GD distribution. Generally, it is possible to 

conclude that hypocentres are preferentially located in regions with significant amount of 

slip. The only faulting mechanisms for which this trend is not true are the strike-slip 

ruptures. 

These results agree with findings by Manighetti et al. (2005) and Mai et al. (2005), but 

are better highlighted and quantified here. 
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5 The 2015 Illapel earthquake, Chile 

 

By taking advantage from the analysis on the slip distributions carried out in the previous 

chapters, here we study the 16 September 2015 Illapel earthquake, Chile.  

There are several reasons inducing us to consider this event, in particular: 

- it generated a tsunami; 

- there is an FFM in the database, more precisely the event with I.N.105 in Table 

2.1; 

- being a recent event, a lot of data from observations and studies are available. 

The Illapel earthquake occurred in a seismic region that was the scene of other major 

earthquakes. As the consequence of the subduction of the Nazca plate beneath the South 

American plate many great earthquakes repeatedly occur offshore Chile. We cite, as 

recent example, the Maule earthquake of 27 February 2010, MW = 8.9 (I.N. = 72 in Table 

2.1), the Iquique earthquake on April 1st 2014, MW = 8.1 (I.N. = 96 in Table 2.1). 

The Illapel event in particular, is considered to be a re-rupture of the 1943 earthquake 

(Mw 7.9, Beck et al. 1998), whose related tsunami was recorded in Japan with height of 

10 cm in Hanasaki and 25 cm in Kushimoto (Hatori 1968; Watanabe 1998). 

As a matter of fact, many of the offshore Chilean earthquakes generated tsunamis, causing 

damage not only on the Chilean coast but also across the Pacific Ocean. As regards for 

instance the famous earthquake of 1960 (22 May, Mw=9.5, Barrientos and Ward, 1990), 

the largest in the South America seismic history, its tsunami caused the death of about 

2000 people on the Chilean coast (Atwater et al. 1999), plus 61 and 142 fatalities in 

Hawaii and Japan, respectively (Atwater et al. 1999; Watanabe 1998). Regarding the 2010 

Maule earthquake, its tsunami had a run-up exceeding 15 m on the Chilean coast, and the 

total fatalities were 156; tsunami waves reached 2 m height on the Japanese coast, still 

causing some property damage (Fujii and Satake, 2013). 

The 2015 Illapel earthquake triggered a tsunami that reached the nearest coastal areas 

very fast, within few minutes of the earthquake initiation. According to some eyewitness 

accounts the tsunami attacked one coastal village immediately after the earthquake. A 

tsunami threat message from the Pacific Tsunami Warning Center (PTWC) was issued 7 

min after the main shock and the National Hydrographic and Oceanic Service (SHOA), 
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the organization in charge of the Chile’s National Tsunami Warning System, issued a 

tsunami alarm message 8 min after the earthquake (SHOA, 2015a). A preventive 

evacuation status for the entire Chilean Coast was declared by the National Emergency 

Office (ONEMI) 11 min after the earthquake (ONEMI, 2015). Unfortunately, despite the 

quick evacuation, the tsunami caused the death of 8 people (ONEMI, 2015). 

A number of post-tsunami field surveys measured tsunami heights on the Chilean coast 

(Aranguiz et al. 2016; Contreras Lopez et al. 2016). The maximum runup heights were 

reported as 10.8 m at the Totoral fishing village (30.37°S) by Aranguiz et al. (2016), and 

as 13.6 m at La Cebada (30.97°S), by Contreras-Lopez et al. (2016). Aranguiz et al. 

(2016) attributes the high runup at Totoral to the deep offshore bathymetry and the pocket 

beach morphology that funneled tsunami waves ashore. Except for the two anomalous 

locations mentioned above, tsunami heights were up to 9 m on the coast between 29°S 

and 32°S, and smaller farther south and north (Satake and Heidarzadeh 2017). 

The tsunami was also recorded on coastal tide gauges (Aranguiz et al. 2016; Heidarzadeh 

et al. 2016) located in places shown in Figure 5.1(a). The earliest measured tsunami 

arrival of ≈ 15 min with zero-to-peak amplitude of ≈ 2 m was recorded at the Pichidangui 

tide-gauge station, just south of the epicentre. To the north, at the Coquimbo tide-gauge 

station, the first arrival was at 23 min with ≈1 m amplitude, but the largest tsunami 

amplitude of 4.7 m was recorded ≈1.5 h after the earthquake.  

The tide-gauge tsunami amplitudes vary in the range 1–2 m with a maximum value of 4.7 

m. Instead, runup heights vary in the range 3–6 m with a peak of ≈ 11–13.6 m (Satake 

and Heidarzadeh, 2017). One can state that tsunami runup heights were approximately up 

to three times the tide-gauge amplitudes along the Chilean coast. 

Thanks to the NOAA Global Historical Tsunami Database one can get a picture of the 

tsunami heights across the Pacific Ocean: 1.37 m in Marquesas Islands, 0.83 m in Hawaii 

(Hilo), 0.52 m in New Zealand (Chatham), and 0.10 m in Australia (Port Kembla). In 

Japan, the Japan Meteorological Agency issued tsunami advisory approximately 19 h 

after the earthquake and 3 h before the first tsunami arrival at Japan, with expected 

tsunami heights of ≈ 1 m: the largest observed tsunami amplitude was 0.78 m on the Kuji 

GPS buoy. 
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5.1 The slip models 

The slip distribution of the 2015 Illapel earthquake was studied by several researchers, 

using various observation data, including geodetic data, teleseismic waveforms, near-

field seismic data, and tsunami waveforms. 

The model reported in the SRCMOD database is the one by Okuwaki et al. (2016) who 

made a hybrid inversion of teleseismic waveforms and backprojection data. 

They adopted the Yagi and Fukahata’s (2011) inversion method, that can mitigate the 

effect of uncertainties in the Green’s function, that is known to be a major source of 

modeling errors in waveform inversion procedures and that resulted in the non-

uniqueness of seismic source models for the same earthquake by different researchers 

(e.g. Beresnev, 2003). The fault geometry was built with the constant strike and dip angles 

being 2.7° and 15.0°, respectively. 

The initial rupture point (assumed hypocentre) was the CSN (Centro Sismologico 

Nacional, Universidad de Chile) determined location (31.637°S, 71.741°W, 25 km 

depth). The rake angle on each source node was assumed a pure thrust motion relative to 

the plate motion direction, in agreement with the MORVEL model (Demets et al. 2010).  

Large slip was found in the shallow up-dip portion of the fault plane where a large-slip 

patch was centered 72 km northwest of the epicentre. The total seismic moment release 

was calculated to be 3.3 1021 Nm (MW 8.3). Okuwaki et al. (2016) assert that the slight 

difference in the seismic moment wrt. other studies (e.g. 2.67  1021 Nm, Ye et al., 2016) 

may derive from differences in fault geometry and slip locations along the dip direction 

since the seismic moment depends on assumed rigidity and this latter increases with 

depth. 

The final slip map obtained by Okuwaki et al. (2016) is portrayed in Figure 5.1(b). It is 

the result of two distinct episodes of rupture propagation near the hypocentre and near the 

north of it, characterized by variable rupture front velocities. 
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Figure 5.1 Illapel earthquake. Fault model by Okuwaki et al., 2016. (a) Fault plane along the Chilean coast. Star: 

epicentre, Yellow triangles: tide-gauge stations, Red Triangle: offshore DART buoy. The reference system used 

for this map and for the following ones is the WGS84, with UTM projection (18th zone, southern hemisphere). (b) 

Slip map obtained by Okuwaki et al., included in the SRCMOD database (Star: hypocentre).  

 

5.2 Slip distributions and tsunami simulations 

Starting from the reference SRCMOD slip map we have calculated the seven on-fault slip 

distributions corresponding to the types illustrated in the previous chapter, namely: 

- the homogeneous distribution; 

- the SCC distribution; 

- the five best fitting 2D GDs. 

In this study we will compare the tsunami resulting from the various models We abstain 

from considering how well the calculated tsunamis match the real data here, since  

minimizing the discrepancy wrt the experimental data, though a relevant factor, is not the 

goal of the analysis carried out in this chapter. Indeed, expectedly the performance of all 

the derived models is linked to the performance of the reference model.  

Tsunami simulations have been carried out by solving linear shallow-water (LSW) 

equations by means of the UBO-TSUFD model (Tinti and Tonini, 2013), that is a 

numerical code developed and maintained by the Tsunami Research Team (TMT) of the 

University of Bologna. It has been run on a coarse resolution bathymetric grid (900 m) 
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built on GEBCO_2014 data. Since coseismic deformations occur on the fault in a very 

short time, i.e. in a time so short that tsunami waves can travel only a very short distance 

before the rupture process ends, we assume the following initial conditions for the 

tsunami simulations that are quite typical in tsunami modelling: 

- the initial vertical displacement of the sea surface is equal to the vertical 

displacement of the sea bottom: 

- the initial horizontal velocity of the sea water is zero everywhere. 

The coastal boundary has been treated as a vertical wall where pure wave reflection 

occurs. We have therefore not considered inundation effects, and technically we have not 

calculated runup heights. Nevertheless, since usually runup data are well correlated with 

coastal tsunami heights, we consider that a tsunami linear model with fixed coastal 

boundary is able to provide results sufficiently good for our goal, that is to compare 

tsunamis from different slip distributions.    

The simulated tsunami data of interest for our analysis are: 

- extreme (maxima and minima) water elevations along the 10-m isobaths. 

- synthetic water-level time series at one offshore DART station and at four coastal 

tide-gauge stations. 

 

5.2.1 Observed data 

 

The instrumental data of the DART buoy (Station 32402) have been retrieved from the 

site  https://www.ndbc.noaa.gov/station_page managed by the NOAA National Centers 

for Environmental Information, while tide-gauge data have been downloaded from the 

site http://www.ioc-sealevelmonitoring.org/ developed and maintained by the VLIZ 

(Vlaams Instituut voor de Zee, Ostenda, Belgium) under IOC mandate. The Chilean 

stations from North to South are Caldera (station code: cald2), Coquimbo (station code: 

coqu2), Valparaiso (station code: valp and valp2) and Talcahuano (station code: valp and 

valp2).   

These time series have been cleaned from the ocean tide, filtered from high frequencies, 

and temporarily shifted in such a way that their origin time coincides with the origin time 

of the earthquake (namely 22:54:33 UTC, 16 September 2015). After processing, the time 

series rate is 1 sample per minute. 

https://www.ndbc.noaa.gov/station_page
http://www.ioc-sealevelmonitoring.org/
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Runup height is defined as the maximum ground elevation reached by the tsunami on a 

sloping shoreline. Runup measurements have been obtained from the Global Historical 

Tsunami Database maintained by the NGDC/WDS National Geophysical Data Center / 

World Data Service, that is part of the NOAA structure of the National Centers for 

Environmental Information, doi:10.7289/V5PN93H7 [last access date 26 June 2019]. 

 

5.2.2 Synthetic data 

 

Figure 5.2 and Figure 5.3 show the vertical co-seismic displacement fields induced by the 

considered slip distributions. The corresponding misfit data are all reported in the last row 

of Table 4.1. Because the fields of 2D GD3 and 2D GD4 happen to be quite similar for 

this particular case we display the outputs only for the 2D GD3. All fields have to be 

compared against the Okuwaki et al. model, taken as reference and portrayed in Figures 

5.2- 5.3. Looking at fields of Figure 5.2, it is immediate to notice that the one computed 

through the 2D GD1 (d) reproduces the shape of the displacement more faithfully than the 

uniform (b) and SCC (c) source distributions. 

 

 

 

Figure 5.2 Vertical co-seismic displacement fields obtained by applying Okada's formulas to the slip distributions 

under study. (a): The reference SRCMOD model by Okuwaki et al. (O). (b), (c), (d) The uniform (Uni), SCC and 

a) b) c) d)O Uni SCC 2D-GD1
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2D GD1 slip distributions, respectively. The five triangles in each map identify the four coastal stations and the 

DART buoy. The rectangle highlights the seismic fault. The white star is the epicentre. 

 

 

Figure 5.3 Vertical co-seismic displacement field from the reference model and from the other Gaussian slip 

distributions, namely  Okuwaki et al.’s reference model  (a), 2D GD2 (b), 2D GD3 (c), 2D GD5 (d). For further 

details, see Figure 5.2. 

 

5.2.3 Maxima and minima water elevations 

 

The good behaviour of the Gaussian distributions is also confirmed by the maximum 

(Figures 5.4 -  5.5) and minimum (Figures 5.6 -  5.7) water elevation fields obtained from 

the tsunami simulations, that have been conducted for the first 10 hours after the 

earthquake started. The shape of the field is better reproduced by the 2D GDs and do not 

underestimate the analogue results from SRCMOD model, which could be an important 

feature from the tsunami alert point of view.   

 

a) b) c) d)O 2D-GD52D-GD32D-GD2
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Figure 5.4 Maximum water elevation fields produced by the different sea-bottom displacements. O (a), uniform 

(b), SCC (c), 2D GD1 (d). For further details, see Figure 5.2. 

 

 

Figure 5.5 Maximum water elevation fields produced by the different sea-bottom displacements. O (a), 2D GD2 

(b), 2D GD3 (c), 2D GD5 (d). For further details, see Figure 5.2. 

 

a) b) c) d)O Uni SCC 2D-GD1

a) b) c) d)O 2D-GD52D-GD32D-GD2
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Figure 5.6 Minimum water elevation fields produced by the different sea-bottom displacements. O (a), uniform 

(b), SCC (c), 2D GD1 (d). For further details, see Figure 5.2. 

 

 

Figure 5.7 Minimum water elevation fields produced by the different sea-bottom displacements. O (a), 2D GD2 

(b), 2D GD3 (c), 2D GD5 (d). For further details, see Figure 5.2. 

 

 

 

 

a) b) c) d)O Uni SCC 2D-GD1

a) b) c) d)O 2D-GD52D-GD32D-GD2



80 

5.1 Analysis of the waveform signals 

 

In this subsection we focus on the marigrams obtained in the four coastal station of 

Caldera (cald2), Coquimbo (coqu2), Valparaiso (valp/valp2), Talcahuano (talc/talc2) and 

in the offshore DART buoy station 32402 (180 nautical miles west of Caldera, Chile).  

We present the results of the quantitative analyses performed over the waveforms signals 

obtained. These analyses aim at quantifying the degree of similarity between the signals 

produced by the different slip distributions (Uni, SCC and the 2D-GDs) and the signal 

produced by the reference slip model (the O model). The signals are taken in the time 

window [0, 36000] s (the first 10 hours after the rupture occurred), with a time step of 

one minute between one measure and the adjacent one. 

 

Figures 5.8 - 5.12 report, for each station, the waveforms calculated through the 

simulations, overlapped to the observed signal (dashed line). For each station, it is 

reported the time from which the comparison analyses have been started (the blue dotted 

line in the figures). The starting time ti differs from station to station due to the different 

tsunami arrival time at the stations, that is clearly related to the distance of the stations 

from the source. Removing the zero-part of the signals is important to perform a better 

comparison between the major oscillations of the waveforms. 

The starting time is taken coincident with the earthquake rupture time (hence ti=0 s) for 

the closer stations of Coquimbo and Valparaiso. For the station of Caldera and 

Talcahuano are respectively 20 min and 60 min. For the DART buoy, the starting time is 

settled at 25 min to exclude the part of the record due to the seismic signal, since we are 

interested in the analysis of the signal that refers to the tsunami evolution.  
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Figure 5.8 Marigrams obtained at the station of Caldera for (from top-right to bottom-right) the O, Uni, SCC, 2D 

GD1, 2D GD2, 2D GD3, 2D GD5 distributions. The black dashed signal refers to the observed one. The vertical 

blue dotted line indicates the starting time related to the station. 

 

 

Figure 5.9 Marigrams obtained at the station of Coquimbo. For further details, see Figure 5.8. 

 

 

Figure 5.10 Marigrams obtained at the station of Valparaiso. For further details, see Figure 5.8. 

 

Caldera

Coquimbo

Valparaiso
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Figure 5.11 Marigrams obtained at the station of Talcahuano. For further details, see Figure 5.8. 

 

 

Figure 5.12 Marigrams obtained at the buoy DART station 32402. For further details, see Figure 5.8. 

 

5.1.1 Time-shifting procedure 

 

Considering the reported marigrams for each station, a time mismatch is often found 

between the observed and modelled tsunami waveforms, with the latter arriving generally 

earlier. 

This fact is in agreement with other studies (e.g. Heidarzadeh et al., 2016). As reported 

by Romano et al., 2017, these early arrivals of the synthetic waveforms are mainly due to 

the inaccurate or too coarse bathymetric models, or to unknown or unaccounted for 

instrumental responses, and possible unknown clock errors of old instruments. In order 

to model these effects properly, a high-resolution bathymetric grid around the instrument 

location would be necessary, but such data are not always publicly available. In the source 

inversion optics, this time mismatch may affect the tsunami source model inferred by data 

Talcahuano

DART
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inversion, for example the earthquake slip distribution. But this is not our case, because 

we are directly deriving the tsunami waveforms from a fault slip model, and not the 

opposite. Moreover, we are interested in reproducing the main waveforms rather than 

finding the exact time of the first arrival. 

Hence, the synthetic signal has been time shifted by a time 𝜏 such that the cross-

correlation: 

 (𝑓 ∗ 𝑔)[𝜏] =∑𝑓[𝑡]𝑔[𝑡 + 𝜏]

𝑡

 (5.1) 

assumes its maximum value within  the first 1 hour of signal from the starting time ti. 

 

The cross-correlation of two continuous functions f and g is defined as:  

 
(𝑓 ∗ 𝑔)(𝜏) =  ∫ 𝑓∗(𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡

∞

−∞

 (5.2) 

where f*(t) denotes the complex 

conjugate of f(t).   

For two real discrete functions 

(which is our case) the cross-

correlation is defined by the 

equation (5.1), where t is the 

discrete index varying through the 

signals and 𝜏 represents the 

discrete shift between the two 

signals. In our computations, the 

temporal shift applied to the 

synthetic waveforms corresponds 

to the value of 𝜏 that maximizes 

the value expressed by the (5.1). 

Figure 5.13 permits to visualize 

the procedure, applied to the 2D GD3 signals at the tide-gage station of Caldera: it is 

evident how the shifted signal is better superimposed over the observed signal. 

 

3 min

Figure 5.13 Example of waveforms taken from the set used for 

the analyses. Top graph: the 2D GD3 signal at the Caldera 

station for the first 1 hour. Bottom graph: the signal shifted by 

the time maximizing the cross-correlation (180 s) The blue 

vertical lines highlight the temporal shift between the top and 

bottom signals. 
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Table 5.1 reports the time shifts that maximize the cross-correlation between synthetic 

and the observed signals for all the distributions during the first hour of recording. For all 

the stations the shift is never higher than 5 minutes.  

The Coquimbo station is the only one for which the synthetic signals should be back 

shifted (by 1 minute), meaning that the synthetic waveforms tend to lag behind the 

observed signal. For all the other stations the modeled tsunami waveforms tend to arrive 

earlier than the observed ones. However, this does not represent a significant difference, 

since the delay times are much less than the average periods of the oscillations. 

 

Table 5.1 Time-shift values that maximize the cross-correlation between the synthetic signals and the observed 

one in the first record hour for all the considered stations. 

 Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

O 2 -1 0 0 2 

Uni 5 4 0 0 3 

SCC 5 3 1 0 4 

2D-GD1 3 -1 0 0 2 

2D-GD2 3 -1 0 0 2 

2D-GD3 3 -1 0 0 3 

2D-GD5 3 -1 0 0 3 

 

 

After the above mentioned preliminary procedures, we compare each synthetic signal w(t) 

with the observed one w0(t). The measures assumed to quantify the goodness of this 

comparison are: 

- the misfit:  

 𝑚𝑖𝑠𝑓𝑖𝑡 = √
∑ (𝑤[𝑛] − 𝑤0[𝑛])

2
𝑛

∑ (𝑤0[𝑛])
2

𝑛
 (5.3) 

 

- the Pearson correlation coefficient:  

 𝑅 =
∑ (𝑤[𝑛] − 𝑤)𝑛 (𝑤0[𝑛] − 𝑤0)

√∑ (𝑤[𝑛] − 𝑤)2𝑛 ∑ (𝑤0[𝑛] − 𝑤0)
2

𝑛

 (5.4) 
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The two indexes have been calculated for the shifted signals. The results are reported in 

Figure 5.14. For each station, the two values are shown graphically, with different color 

referring to different slip distribution signal. 

 

 

Figure 5.14 Misfits (top graphs) and correlation coefficients (bottom graphs) obtained for the different 

distributions. The values refer to the shifted waveforms. 

 

The misfit values grow fast after the first 1-2 hours. The lower limits are still quite high 

(going below 0.20 only for the Talcahuano station).  

The same applies to the correlation coefficient R, whose value decreases rapidly after the 

first main tsunami oscillations. 

It is interesting to notice how the misfit of the reference model O (marked by the blue 

color) is never the lowest one. This peculiarity is confirmed by the trends of the 

correlation coefficient R: the reference model value is never the best one. The highest R 

values, for the first 2 hours of signal analysis, are always attained by the 2D GDs, with 

the exception of the Talcahuano station, for which all the slip distributions reproduce the 

first arrival well, as can be easily seen from Figure 5.11. With greater prominence from 

the R graphs, it can be seen how the values relative to the 2D GDs follow the trend of the 

reference model.  

From these considerations, we can deduce that: 

- all the models reproduce the first major oscillations of the tsunami; 

- the reference model O is not so suitable to reproduce the observed signal; 

- the 2D GDs are good substitutes for a heterogeneous slip model. 
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This last point suggests us to evaluate the comparison between the reference model O and 

the other slip distributions to better quantify the fit of the 2D Gaussian function.  

 

Hence, we repeat the same procedures (time-shifting and computation of the indexes 

chosen for the comparison) but with respect to the signal produced by the reference model 

O, and not to the observed one. Table 5.2 summarizes the time shifts characterizing each 

slip distribution for every station. It is immediate to notice how, for the 2D Gaussian 

distributions the cross-correlation is already at its maximum value without the need for a 

temporal translation, with the exception of the Caldera station, whose shift is however 

only one minute (hence one time-step). Uniform and SCC distributions present, on the 

other hand, a zero-time-shift value just for the station of Valparaiso. The uniform source 

signals reached a 5-minute time shift value for the Coquimbo station, while the SCC 

waveforms present a 3-minute shift for the Caldera and Coquimbo stations. 

Figure 5.15 shows the misfits and correlation coefficients for the shifted waveforms. 

These graphs show very well how the fit of the 2D Gaussians signals is far better than 

those of the uniform and of the SCC distributions. Regarding the 2D GDs, for the first 

three hours, the misfit is always lower than 0.40 and the correlation coefficient R is always 

larger than 0.92. Taking into consideration only the first hour of the signals, the 2D GDs 

misfit goes under 0.20 for the Caldera (min = 0.15), the Coquimbo (min = 0.11), the 

Valparaiso (min = 0.19) and the Talcahuano (min = 0.07) stations, while the misfit is 

always very close to 1. The difference shown vs. the uniform and SCC distributions is 

high: they are not as suitable to replace the heterogeneous slip reference model. 

 

Table 5.2 Time shift values that maximize the cross-correlation between the synthetic signals produced by the slip 

distributions and the signal produced by the reference in the first hour of records  for all the considered stations. 

 Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

Uni 2 5 0 -1 1 

SCC 3 3 0 -1 1 

2D-GD1 1 0 0 0 0 

2D-GD2 1 0 0 0 0 

2D-GD3 1 0 0 0 0 

2D-GD5 1 0 0 0 0 
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Figure 5.15 Misfits (top graphs) and correlation coefficients (bottom graphs) obtained for the different 

distributions with respect to the reference model O. The values refer to the shifted waveforms. 

  

5.1.2 Water elevations and runup 

 

For each distribution, the maximum water elevation along the 10-meter isobath has been 

also extracted. The results are plotted together with the experimental data, that refer to 

the maximum heights along the coast (taken from the NOAA website). The comparison 

is pure qualitative, due to the difference existing between the two measures. All the plots 

(Figures 5.16 - 5.17) present the water heights obtained for a particular distribution next 

to the water heights related to the reference case. The water height plots are placed next 

to the map with the northing aligned and with the same scale of the map. The observed 

runup heights are also reported for a qualitative comparison.  

The 2D GD distribution (see Figure 5.16) fit better the maximum runup at the epicentre 

latitude, immediately followed by the reference SRCMOD model. SCC and uniform 

water heights tend, on the other hand, to underestimate the maxim runup measured in the 

coastal areas close to the epicentre. The focused profile behaviour of the Gaussian 

distribution could represent an important feature in the optics of tsunami early warning 

and of the estimation of the worst scenarios. 
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Figure 5.16 Maximum water heights along the 10-m isobath. The four plots at the right of the map refer to the 

reference case O (blue line), the uniform distribution (magenta line), the SCC distribution (green line) and the 2D 

GD1 (red line). The observed runup heights are reported with red diamonds. 

 

 

Figure 5.17 Maximum water heights along the 10-m isobath corresponding to the different sources: O, 2D GD2, 

2D GD3, 2D GD5. 

 

All these results indicate the potential of the 2D GDs in reproducing the observations if 

the starting model is a faithful representation of the real seismic source. This is the reason 

that led us to repeat the above strategy,y but applied to another finite fault model. 

 

5.2 The model by Heidarzadeh et al. (2016) 

As already mentioned in the previous sections, the Illapel earthquake is well documented 

and several fault models have been obtained by different authors by means of different 

techniques. In inversion procedures, tsunami waveforms and tide gauge records can be 

used to study earthquake source processes, as reported by Satake and Kanamori (1991). 

Indeed, being the bathymetry better known than seismic velocity structure in the Earth, it 

is possible to accurately evaluate the tsunami propagation. Tsunami data can be used 

alone to determine the tsunami source or jointly with other kind of geophysical data, 

which allows one to enrich the knowledge concerning the original cause. 
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A model obtained by a joint inversion technique is the one by Heidarzadeh et al. (2016). 

They proposed a source model obtained using teleseismic and tsunami data. 

In this section we are going to present our Gaussian distributions applied to their finite 

fault model, following the same procedure used for the Okuwaki et al. model. 

The work by Heidarzadeh et al. was driven by two main reasons: 

- furnishing a source model consistent with both seismic and tsunami data; 

- investigate potential relationship between the 2015 Illapel and 2010 Maule 

earthquakes. 

We are interested in the first item. The combination of teleseismc inversions and forward 

tsunami simulations permits one to get stable results in the time- (thanks to seismic data) 

and in the space-domain (thanks to tsunami data). This occurs because seismic waves 

travel much faster than tsunami waves (Satake, 1987). The data used for the inversions 

by Heidarzadeh et al. (2016) consisted of 62 teleseismic records and 33 tsunami records 

(the latter ones with a sampling interval of 1 min). They used a total number of 96 

subfaults (12 along-strike, 8 along-dip) with dimension 20 km  20 km. They conducted 

numerical simulations of tsunami propagation applying the numerical model by Satake 

(2005), based on linear shallow-water equations, using a single uniform grid. They also 

calculated the initial seafloor deformation through the Okada’s formulas (1992). 

The final slip model presents a large-slip area of 80 km (along strike)  100 km (along 

dip) located 70 km to the northwest of the epicentre. This large asperity represents the 

20% of the total rupture area (considering the non-zero slip subfaults) and the slip patch 

to be substituted by our 2D GDs. The slip map by Heidarzadeh et al. 2016 (“H” model 

hereafter) is reported in Figure 5.18(b). The rectangular plane reveals to be larger than 

the fault plane by Okuwaki et al., with a lower maximum slip value. 

The H slip map presents different dip and rake values from subfault to subfault, and it has 

been used for the following analyses in its original form. In order to model it with our 2D 

GD distributions, however, a simplified model has been obtained, with the same number 

of subfaults, each presenting the same values of dip and rake (taken as the average value). 

Hence, the slip distributions considered for the analyses are the reference H model, the H 

simplified model (HS), the uniform distribution, the SCC distribution and the five 2D 

GDs. As the modeling for the different 2D GDs provides similar outputs, in this section 



90 

we are going to present the graphs related only to the distribution 2D GD3, which is fully 

sufficient to emphasize the difference against the other slip distributions. 

 

 

Figure 5.18 Illapel earthquake. Fault model by Heidarzadeh et al., 2016. (a) Fault plane along the Chilean coast. 

Star: epicentre, Yellow triangles: tide-gauge stations, Red triangle: offshore DART buoy (b) Slip map obtained by 

Heidarzadeh et al. (Star: hypocentre).  

 

We calculated the vertical coseismic displacement fields induced by the cited slip 

distributions. Figure 5.19 shows these fields for the H, HS, Uniform, SCC, 2D GD3 

distributions. The displacement patterns appear to be a little bit more extended than that 

produced by the Okuwaki et al. model, which is in agreement with what just said for the 

on-fault slip characterizing the two different models.  

Considering instead the similarity between the vertical displacement induced by the 2D 

GD3 and the one induced by the original model H, the shapes appear more different than 

what was found for the Okuwaki et al. model. This also holds for the Uniform and the 

SCC slip distributions. A more due judgement can be however given after the analysis of 

the waveforms.  
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Figure 5.19 Vertical co-seismic displacement fields obtained by applying Okada's formulas to the slip distributions 

under study. (a): The reference model by Heidarzadeh et al. (H). (b), (c), (d), (e) the simplified model (HS), Uniform 

(Uni), SCC and 2D GD3 slip distributions, respectively. The five triangles in each map identify the four coastal 

stations and the DART buoy. The rectangle highlights the seismic fault. The white star is the epicentre. 

 

The maximum and minimum water elevation fields have been extracted over the 10 hours 

of tsunami evolution. Figures 5.20 - 5.21 represent respectively the maxima and minima 

for the five slip distributions considered. Looking at the maxima the better similarity 

between the 2D GD and the Heidarzadeh models with respect to the Uniform and SCC 

distributions is evident. The graphs point out how the water elevations reach their highest 

value in the region north-west with to the epicentre, in accordance with the sea-surface 

vertical displacement behaviour, and along the coasts. 

The minima do not highlight this difference probably due to the choice of the color scale, 

made to be consistent over all the graphs reported in this study (including models 

discussed in this and in the following Chapter). 

 

a) b) c) e)H HS Uni SCC 2D-GD3d)
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Figure 5.20 Maximum water elevation fields produced by the different sea-bottom displacements. H (a), HS (b), 

Uniform (c), SCC (d), 2D GD3 (e). For further details, see Figure 5.19. 

 

 

Figure 5.21 Minimum water elevation fields produced by the different sea-bottom displacements. H (a), HS (b), 

Uniform (c), SCC (d), 2D-GD3 (e). For further details, see Figure 5.19. 

 

 

5.2.1 Analysis of the waveform signals (second FFM)  

 

Tsunami waveforms have been calculated for the four stations of Caldera, Coquimbo, 

Valparaiso and Talcahuano and for the DART buoy station. Synthetic and observed 

(dashed line) records of the first 10 hours after the earthquake are reported in Figures 5.22 

-  5.26. The waveforms show how the H, HS and 2D GD3 reproduce better the observed 

signal, especially for the first oscillations of the records. The discrepancy between the 

a) b) c) d) e)H HS Uni SCC 2D-GD3

a) b) c) e)H HS Uni SCC 2D-GD3d)
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Uniform and the SCC waveforms with the observed signals regarding the first tsunami 

arrival is particularly evident at the station of Caldera, Coquimbo and the DART buoy.  

While the Okuwaki et al. waveforms tended to overestimate the observed signals,  

especially for the stations of Caldera, Coquimbo and for the offshore buoy station, the 

signals derived from the Heidarzadeh et al. model turn out to be a little weaker and more 

faithful to the observed marigrams. This is not surprising considering that the H model is 

obtained also using tsunami waveform data. 

 

 

Figure 5.22 Marigrams calculated at the station of Caldera for (from top-right to bottom-right) the H, HS, Uni, 

SCC, 2D GD1, 2D GD2, 2D GD3, 2D GD4, 2D GD5 distributions. The black dashed signal refers to the observed 

one. The vertical blue dotted line indicates the starting time related to the station. 

 

Caldera
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Figure 5.23 Marigrams obtained at the station of Coquimbo. For further details, see Figure 5.22. 

 

 

Figure 5.24 Marigrams obtained at the station of Valparaiso. For further details, see Figure 5.22. 

 

Coquimbo

Valparaiso
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Figure 5.25 Marigrams obtained at the station of Talcahuano. For further details, see Figure 5.22. 

 

 

Figure 5.26 Marigrams obtained at the buoy DART station 32402. For further details, see Figure 5.22. 

 

 

Synthetic signals, as in the previous case, do not exactly match the first arrival of the 

tsunami. This fact agrees with what noted by Heidarzadeh et al. 2016, according to whom 

a tsunami travel time difference of up to 5 minutes was reported for coastal tide gauges 

between simulations using coarse and using high-resolution bathymetry. After applying 

the the time shifting procedure on the first recording hour illustrated in the first sections 

of this Chapter, we obtain the results summarized in Table 5.3. 

Talcahuano

DART
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It is immediate to notice that the 2D GDs present the lowest values of time-shift, 

especially for the four coastal stations: the 2D GD distributions take the first oscillations 

in a much better way. For the Gaussian distributions, values of time shift never exceed 

the 3 minutes. The SCC and the Uniform slip distribution results to be the ones with the 

highest time shift values. 

The three stations of Caldera, Coquimbo and Valparaiso present at least a 2-minute 

difference between the time shifts characterizing the Gaussians and those calculated for 

the Uniform and SCC. The situation is different for the Talcahuano station, for which the 

first hour is dominated by the first main oscillation, taken quite well by all the 

distributions. 

For all the stations, except Coquimbo, the synthetic waveforms tend to anticipate the 

observed signal, in agreement with what said in the previous section. As already pointed 

out, we are not interested in tsunami source inversions, but in reproducing, as faithfully 

as possible, the observed waveforms. 

 

Table 5.3 Time shift values that maximize the cross-correlation between the synthetic signals and the observed 

ones in the first hour of records  for all the considered stations. 

 Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

H 4 2 0 1 3 

HS 3 0 0 1 3 

Uni 5 4 5 2 3 

SCC 5 5 5 2 4 

2D GD1 3 0 0 1 2 

2D GD2 3 -1 0 1 3 

2D GD3 3 -1 0 1 3 

2D GD4 3 -1 0 1 3 

2D GD5 3 -1 0 1 3 

 

 

The following graphs (Figure 5.27) display the behaviour of the indices for the model by 

Heidarzadeh et al.. It is immediate to observe how the indices show values that are by far 

better than those obtained for the Okuwaki et al. model simulations.  
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The misfits emphasize the best behaviour of the H, HS and 2D GDs in reproducing the 

first hours of the tsunami evolution. The same observation can be made for the correlation 

coefficient, for which the 2D GDs values are always larger than those characterizing the 

Uniform and the SCC distributions.  

We stress once more that the better behaviour of the H model with respect to the O model 

is not surprising, since the former was obtained by inverting also the tsunami waveforms.  

Hence, reproducing the H source model with a heterogeneous slip distribution like the 2D 

GDs can lead us closer to reproducing better the observed data. 

 

 

Figure 5.27 Misfits (top graphs) and correlation coefficients (bottom graphs) obtained for the different 

distributions. The values refer to the shifted waveforms. 

 

We evaluate the misfits and correlation coefficients with respect to the reference model 

H. Table 5.4 displays the time shift values maximizing the cross-correlation between the 

signals produced by the different slip distributions and the signal produced by the 

reference model H. With the exception of the Coquimbo station, there is an accurate time 

alignment of the HS and of 2D GDs waveforms with the reference H signal. Instead, the 

Uniform and the SCC waveforms always tend to anticipate the reference one (only for 

the SCC distribution at the Valparaiso station the time shift is zero). 

Misfits and correlation coefficients of the shifted signals are reported in Figure 5.28. One 

can notice that the 2D GDs (and the HS) misfit values are always lower than those 

obtained from the Uniform and SCC source models, with the exception of the first hour 

of the Coquimbo station (where the lowest misfit is the Uniform source one), and of the 

Talcahuano station, for which both the Uniform and the SCC distributions present the 

best misfits, but they lose the primacy already at the second hour of records. If one 
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considers the first 2-3 hours of records, the best behaviour of the 2D GDs waveforms is 

unquestionable. Therefore, we can conclude that the 2D Gaussian distributions are better 

substitutes for a heterogeneous slip pattern compared to the Uniform and the SCC slip 

distributions. 

 

Table 5.4 Time shift values that maximize the cross-correlation between the synthetic signals produced by the 

different slip distributions and the signals produced by the reference one (H) in the first hour of records. 

 Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

HS 0 1 0 0 0 

Uni 2 2 2 1 1 

SCC 2 3 0 1 1 

2D GD1 0 2 0 0 0 

2D GD2 0 2 0 0 0 

2D GD3 0 2 0 0 0 

2D GD4 0 2 0 0 0 

2D GD5 0 2 0 0 0 

 

 

 

Figure 5.28 Misfits (top graphs) and correlation coefficients (bottom graphs) obtained for the different 

distributions with respect to the reference model H. The values refer to the shifted waveforms. 

 

5.2.2 Water elevations and runup (second FFM) 

 

In this sub-section we report the maximum water elevation along the 10-meter isobath. 

The results are plotted together with the experimental run-up data taken from the NOAA 
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website. For the Gaussian distributions, like for the coseismic and water elevation fields, 

only the 2D GD3 results are shown.  

One may observe that the maximum elevations derived from the H slip models are lower 

than those obtained from the O model. We note also the gap between the calculated 

elevations and the observed run-ups. However, the Gaussian function is the one that gives 

the highest results, especially in the epicentral area, marking a further advantage point in 

using it in terms of early warnings, a topic that will be addressed in the next Chapter. 

 

 

Figure 5.29 Maximum water heights along the 10-m isobath. The five plots at the right of the map refer to the 

reference case H (green line), the reference simplified HS (dark green line), the Uniform distribution (magenta 

line), the SCC distribution (light green line) and the 2D GD3 (red line). The observed runup heights are reported 

with red diamonds. 

 

5.1 Conclusions 

Starting from an application to a real case (the earthquake of Illapel, 16 September 2015) 

we derived the Uniform, the SCC, and the 2D GDs source slip models referring to two 

different finite fault model: the Okuwaki et al. model (2016), denoted as O model, and 

the Heidarzadeh et al. model (2016), designated by H model. Though it is not the focus 

of this analysis to find which one is better than the other, it is clear that since the 

earthquake caused a tsunami and the H model was obtained by inverting also near-field 

and far-field tsunami data, this has to be preferred especially if one is interested in tsunami 

modelling. Our point however was different. We have compared tsunamis produced by 

different slip distributions derived from the finite-fault models, and we have been able to 

show that for both cases (that is for the O and H models) the tsunamis corresponding to 

the heterogeneous, though simple, sources like the 2D GDs are preferable than the 

tsunamis computed from the Uniform and from the SCC sources in terms of relevant 

goodness indicators of the waveforms, such as the misfit and the correlation coefficients.   
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We will exploit this advantage to envisage a strategy for the tsunami early warning where 

2D GD sources can be fast derived and utilised for quick tsunami predictions. This will 

be the topic of Chapter 6.  

As a final consideration of this Chapter, we can add that we have found no significant 

difference in the waveforms resulting from the 5 2D Gaussian optimizations we used. 

This fact is reported in Appendix B. 
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6 The case of the Illapel earthquake from an early warning 

perspective 

 

In the previous chapters, our analysis moved from an earthquake, for which one FFM 

(model O) was taken from the SRCMOD and one FFM (model H) was taken from the 

literature. From this information, we derived the Gaussian distributions best fitting the 

FFM slip heterogeneity where the best fit was measured in terms of the Earth’s surface 

vertical co-seismic displacement field. 

In this chapter, we change our perspective focusing on the early warning problem. When 

an earthquake occurs, the only information that becomes available after a few minutes 

concerns the location of the earthquake and its magnitude. The first finite-fault models, 

based on seismic/geodetic data inversion, become available much later, say several 

hours/days after the earthquake origin time. And in the case of tsunamigenic earthquakes, 

tsunami waveforms useful for inversion become available after the tsunami passage at the 

recording stations. From the warning perspective, usually, the time to get FFM 

representations is therefore too long for the near-source coastal areas, and sometimes even 

for the most distance coasts. We already know that slip heterogeneity influences 

significantly the distribution of tsunami run-ups, especially for near-field areas. Hence, if 

we knew the on-fault slip-distribution in quasi-real-time, we could build a more realistic 

tsunami scenario and activate a more accurate and focussed warning procedure. 

We can take advantage of what we saw in the previous chapters to devise a strategy that 

allows us, once the hypocentre position and magnitude are known, to immediately derive 

an earthquake fault model where the heterogeneity is in the form of a Gaussian slip 

distribution and hence to provide very quickly a forecast of the tsunami maximum heights 

distribution pattern. 

Throughout this chapter, we are going to present the main steps of the method and 

quantify its reliability using the indexes described in the previous chapter. In this thesis 

we test the strategy on the Illapel earthquake case in order to allow a direct comparison 

with the previously obtained results. 
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6.1 The strategy 

Let us imagine we have to provide a tsunami warning and a real-time forecast of the 

expected tsunami effects immediately after the outbreak of the 16 September 2015 

earthquake.  

Realistically, the hypocentre location and the magnitude of the event with a good degree 

of approximation can be available within two-three minutes. Knowing the hypocentre 

location permits us to place the fault plane in a definite geographical reference, while the 

knowledge of magnitude allows us to derive the parameters characterizing the fault 

dimension, and those related to the slip distribution adopted (homogeneous, Gaussian, or 

other). 

Actually, the mere knowledge of the hypocentre is not enough to correctly arrange the 

fault in the 3D space, since in principle the rupture can propagate in any direction, 

allowing infinite possible choices of the final extension of the fault rectangle with respect 

to the hypocentre position. Moreover, the information on magnitude alone cannot tell 

anything about the preferential slip mechanism, since this information is known only once 

the focal parameters (strike, dip, rake) have been obtained. 

However, usually, focal parameters can be safely derived from seismological databases, 

knowing the tectonic region and the seismic history characterizing the interested area. In 

our case, considering the seismotectonic features of the source area, we assume that the 

Illapel shock was a reverse-type earthquake. 

Here, we have taken, as starting experiment, the focal parameters provided by the USGS 

catalogue (https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/moment-

tensor): they are summarized in Table 6.1.  

 

Table 6.1 Seismic parameters characterizing the Illapel earthquake, 16/09/2015. 

Lat (°S) Lon (°W) Depth (m) Mw Strike (°) Dip (°) Rake (°) 

31.573 71.674 22400 8.3 353 19 83 

 

The on-fault slip distributions adopted in this chapter are: 

1) A uniform slip distribution whose length L, width W and mean slip û are obtained 

through the empirical source-scaling laws by Thingbaijam et al. 2017 (hereafter 

called T model); 

https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/moment-tensor
https://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a/moment-tensor
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2) A uniform slip distribution whose length L, width W and mean slip û are obtained 

through the regression laws by Goda et al. 2016 (hereafter called G model); 

3) A uniform slip distribution with L, W, and û obtained through our regression laws 

characterising “All” the events, reported in section 3.1 (model UniA); 

4) A uniform slip distribution with L, W, and û obtained through our regression laws 

characterising the “Reverse” events, reported in section 3.1 (model UniR);  

5) A 2D-GD3 slip distribution, where L, W are obtained through the regression laws 

characterising “All” the events, reported in section 3.1 and the maximum slip umax, 

the two standard deviations 1, 2 are derived from the regression laws 

characterising “All” the events, reported in section 4.5 (2D-GDA); 

6) A 2D-GD3 slip distribution, where L, W are obtained through the regression laws 

characterising the “Reverse” events, reported in section 3.1 and the maximum slip 

umax, the two standard deviations 1, 2 are derived from the regression laws 

characterising the “Reverse” events, reported in section 4.5 (2D-GDR).  

Notice that the Gaussian distributions of cases 5) and 6) can be derived without making 

recourse to any specific FFM, but using the regression laws that have been established 

from the SRCMOD dataset. The choice of the 2D GD3 among the possible 2D GDi 

(i=1,2…5) has been made because it was proven to be a good compromised between the 

fitting performance and the number of free parameters. 

Length and width have been rounded to get an integer number of sub-faults of size 20 km 

 20 km. The characteristics of each on-fault slip distributions are reported in Table 6.2 

(for uniform slip distributions) and Table 6.3 (for 2D GD3 slip distributions). 

 

Table 6.2 Number of subfaults, rupture dimensions and mean slip values for uniform slip distributions. 

 Nstrike Ndip Length (km) Width (km)  û (m) 

T 13 4 260 80 3.87 

G 12 6 240 120 2.32 

UNIA 16 6 320 120 1.88 

UNIR 19 8 380 160 1.20 
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Table 6.3 Number of subfaults, rupture dimensions and Gaussian parameters for the 2D GD distributions. 

 Nstrike Ndip Length (km) Width (km)  umax (m) 1 (km) 2 (km) 

2D-GDA 19 6 320 120 7.89 48.97 26.06 

2D-GDR 12 6 380 160 5.19 61.80 35.56 

 

 

 

From Table 6.2 it is evident how our scaling laws tend to overestimate the fault 

dimensions, mostly the length, especially in the case of reverse-faulting regression. On 

the other hand, they provide a lower value of average slip. This result is probably due to 

the way the fault patterns have been cleaned up (as reported in section 2.3), where only 

zero-slip sub-faults rows/columns on the edge have been deleted. However, this fact does 

not represent a particular problem for our purposes, due to the peaked profile of the 

function characterizing the 2D GD with respect to a homogeneous model. Indeed, the 

inclusion of our uniform models is more for completeness than an actual novelty, since 

our attention is mainly focused on Gaussian distribution models and their direct 

application. 

 

6.1.1 The relative position between the fault plane and the hypocentre 

As observed in section 3.2.1, the fault plane is not necessarily centered at the earthquake 

hypocentre. To take this uncertainty into account, we decided, as a first approach, to 

consider not one but three faults for each of the distributions mentioned above.   

The three fault planes are: 

1- a plane centered on the hypocentre, hereafter called “mid” source;   

2- a fault shifted northwards, having the hypocentre in the central point of the 

southern edge of the rectangular plane, hereafter called “north” source; 

3- a fault shifted southwards, having the hypocentre in the central point of the 

northern edge of the rectangular plane, hereafter called “south” source. 

To provide a more complete scenario it might be useful to consider other faults of 

intermediate position and, perhaps, of different depth. In this chapter we have just 

considered the faults with the maximum possible shift where the hypocentre is moved to 

the maximum distance from the fault centre. 
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Figure 6.1 shows the arrangement of the four mid faults derived through the different 

regressions in the geographical reference system. North and South faults are reported only 

for the source derived from the Thingbaijam et al. (2017) scaling laws, to illustrate the 

distinction between North, Mid and South faults.  

The shown source rectangles are only four because for the Uniform and Gaussian 

distributions obtained from our regression laws that is the values of Lengths and Width 

are the same: more specifically cases 3) and 5) provide the values inferred from the 

regression of type “All” and cases 4) and 6) provide the values obtained from the 

regressions of type “Reverse”. 

 

 

Figure 6.1 Mid fault planes obtained from regressions by Thingbaijam et al. 2017 (a), Goda et al. 2016 (b), our 

“All” case (c), our “Reverse” case (d). North (top left) and South (bottom left) fault planes for the seismic source 

obtained from regressions by Thingbaijam et al. (2017) are reported in the leftmost panels. The yellow star 

represents the epicentre location. Yellow triangles indicate the four coastal stations and the red triangle the DART 

buoy station. 

 

6.2 The tsunami simulations 

Once defined the seismic sources, we can calculate the initial conditions for the tsunami 

propagation, which is the vertical co-seismic displacement fields induced by the different 

slip distributions. 

The co-seismic fields are obtained thanks to the Okada’s formulas (1992) and their 

representations for all of the Mid faults are reported in Figure 6.2. 
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Fields obtained for the North and South faults are not shown because they have, more or 

less, the same structure as those obtained from the Mid faults, simply translated along the 

strike direction. Among the uniform models, the one showing the most concentrated and 

intense vertical displacement is the T model, followed by the G model and then our UniA. 

The UniR, instead, shows a more extended and less peaked pattern. The fields derived 

from the Gaussian distributions are, as expected, the most focused.  

The differences with the fields obtained from the two FFMs in the previous Chapter is 

unavoidable. The FFMs were both characterized by fault plane extended primarily north 

to the hypocentre, while the Mid faults are centered within the nucleation point.  

Furthermore, the difference in strike values inevitably alters the directivity of the field. 

To be consistent with the previous chapter, the maxima and minima water elevation fields 

on the first 10 hours of tsunami simulation were also extracted (Figures 6.3- 6.4).  These 

are more similar to the Heidarzadeh et al. model than to the Okuwaki et al. one as far as 

the magnitude of the water levels is concerned. The Gaussian models exhibit a more 

focused profile, while uniform models show the tendency to over-flatten the elevation 

field. 

 

 

 

Figure 6.2 Vertical co-seismic displacement fields induced by the Mid faults of the slip distributions considered. 

(a) Thingbaijam et al. (2017) regression, (b) Goda et al. (2016) regression, (c) UNIA, (d) 2D-GDA, (e) UNIR, (f) 

2D-GDR. 
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Figure 6.3 Maxima water elevation fields induced by the Mid faults of the slip distributions considered. See Figure 

6.2 for further details. 

 

 

Figure 6.4 Minima water elevation fields induced by the Mid faults of the slip distributions considered. See Figure 

6.2 for the further details. 

 

 

6.2.1 Analysis of the waveform signals 

 

To quantify the goodness of these models, we obtained from magnitude and hypocentre 

coordinates, we proceed according to the method illustrated in Chapter 5. Tables 6.4, 6.5, 

6.6 summarize the time shifts for the mid, north and south faults respectively.  

The mid faults present time-shift values within 8 minutes, with the exception of the 

Valparaiso station, for which there is a significant time difference between the calculated 

first arrival and the registered one. Regarding the uniform slip distribution, the calculated 

signals anticipate the observed one by a time interval that goes from 14 (G model) to 25 
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(UniR) minutes. The Gaussian distributions, on the other hand, maintain a time 

anticipation not exceeding 7 minutes. 

Quite different are the time-shift values for the faults translated with respect to the 

hypocentre. For the north faults, the synthetic arrivals at the Caldera station anticipate the 

observed signal, a fact which is not surprising since this station is the northernmost of 

those considered. Also for the station of Coquimbo and the DART 32402 all synthetic 

arrivals have to be shifted forward, but by a smaller amount than those calculated at 

Caldera. For the station of Valparaiso, the synthetic waveforms have to be anticipated to 

better correlate with the first observed tsunami oscillations, with larger shifts for the 

Gaussian functions. 

The south faults, as expected, present the opposite behaviour. The synthetic waveforms 

arrive with delay at the northern coastal station of Caldera and Coquimbo and at the 

DART buoy station. Instead, they arrive earlier at the southern stations of Valparaiso and 

Talcahuano. 

 

Table 6.4 Time shift values that maximize the cross-correlation between the synthetic signal produced by the mid 

faults slip distributions and the observed signal on 1 hour of records  for all the considered stations. 

Mid faults Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

T 1 -2 16 6 -4 

G -1 -3 14 7 -5 

UniA 4 1 18 7 2 

UniR 7 4 25 8 2 

2D-GDA -5 -6 6 6 -5 

2D-GDR -4 -5 7 6 -5 
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Table 6.5 Time shift values that maximize the cross-correlation between the synthetic signal produced by the north 

faults slip distributions and the observed signal on 1 hour of records  for all the considered stations. 

North faults Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

T 13 4 -1 1 4 

G 11 5 0 1 7 

UniA 17 4 0 -3 4 

UniR 19 3 0 -3 4 

2D-GDA 11 4 -9 -4 7 

2D-GDR 14 4 -10 -5 11 

 

 

Table 6.6 Time shift values that maximize the cross-correlation between the synthetic signal produced by the south 

faults slip distributions and the observed signal on 1 hour of records  for all the considered stations. 

South faults Caldera  

(min) 

Coquimbo 

(min) 

Valparaiso 

(min) 

Talcahuano 

(min) 

DART  

(min) 

T -12 -13 21 12 -15 

G -12 -13 20 13 -15 

UniA -12 -13 20 13 -15 

UniR -12 -13 20 15 -15 

2D-GDA -19 -20 24 13 -23 

2D-GDR -20 -21 24 15 -25 

 

 

As we have considered the extreme cases of fault translation, with the intention of 

underlining the problem deriving from the uncertainty in the relative position between the 

hypocentre and the fault plane, it is reasonable that the results in terms of misfits and 

correlation coefficients are not significant. Moreover, in the configuration adopted for 

this particular case, the south faults result to be, for a significant portion, in-land. The 

same reasoning holds for the co-seismic field induced by the latter faults: and this alters 

the propagation of the tsunami, since its initial condition (given by the off-shore/coastal 

vertical displacement field) is reduced. 

For this reason, regarding the comparison between the synthetic waveforms and the 

observed ones, we focus on the results obtained only for the mid faults, that are shown in 
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Figure 6.5. The misfits of the first hour, with the exception of Coquimbo and Valparaiso 

stations, show the lowest values for the Gaussian distributions. However, for the 

Valparaiso station it is necessary to consider the fact that uniform distributions have been 

translated by a time that is not at all negligible, at least twice the shift value of the 

Gaussians: hence, the behaviour of the uniform indexes for the Valparaiso station should 

be treated carefully, since they derive from signals that fail to reach the first arrival by 

more than a quarter of an hour. 

 

Figure 6.5 Misfits (top graphs) and correlation coefficients (bottom graphs) obtained for the different slip 

distributions on the mid faults. The values refer to the shifted waveforms. 

 

6.2.1 Water elevations and runup 

 

Concerning the maximum water elevation along the 10-meter isobath, we decided to 

show the results for all three source configurations examined. Figures 6.6 -  6.7 -  6.8 

show the water elevations obtained for the north, mid, south faults respectively. Even if 

the comparison with the runup values (small red diamonds in figures) is purely 

qualitative, it is possible to draw interesting inferences. 

Starting from the mid faults, the best behaviour in reproducing the experimental data in 

the epicentral zone is given by the 2D GDA. This is due to the peculiarity of the Gaussian 

distributions that naturally represent the main asperity rather than the entire fault plane. 

And the main asperity, as we have pointed out several times, has the greatest influence 

on the co-seismic field and on the distribution of heights along the coast. 

Among the homogeneous slip model, the T model is the one that produces the greatest 

heights, due to the fact that it is characterized by the greater average on-fault slip. For the 

same reason the UniA and the UniR are those exhibiting the lowest heights. 
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The same comments can be repeated for north faults. In this case, the privileged area is 

the one at the Coquimbo latitude, where, once again, the Gaussian functions reproduce 

better the trend of the run-ups. 

For the south faults, all the results appear smaller. This because, in such configuration, 

the non-negligible onshore components of the co-seismic deformations greatly reduce the 

initial tsunami source area. 
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Figure 6.6 Maximum water heights along the 10-m isobath for the north faults. 

 
Figure 6.7 Maximum water heights along the 10-m isobath for the mid faults. 

 
Figure 6.8 Maximum water heights along the 10-m isobath for the south faults. 



113 

6.1 The final comparison 

 

As a final step in this chapter, it is our intention to compare the Gaussian distribution slip 

patterns obtained directly from magnitude and the finite fault models that derive from 

inversions of seismic and tsunami data. 

We summarize in this final section the waveforms analysis results for: 

- The Okuwaki et al. model: [O]. 

- The 2D GD3 obtained from [O]: [2D GDO]. 

- The Heidarzadeh et al. model: [H]. 

- The 2D GD3 obtained from [H]: [2D GDH]. 

- The 2D GDA. 

- The 2D GDR. 

 

The next list of figures (6.9 - 6.13) displays, for each station the trend of the misfits and 

correlation coefficients (a) and the tsunami waveforms calculated for the first 5 hours (b). 

All the graphs refer to the shifted synthetic signals. The misfits and the correlation 

coefficients are calculated with respect to the observed waveforms.  

It is possible to deduce several interesting conclusions from the graphs.  

First of all, the direct comparison between the two FFMs (O and H) highlights the best 

behaviour of the Heidarzadeh model and, consequently, of the Gaussian function obtained 

from it. 

Moreover, and this is the most important point for our results, the 2D GDs obtained from 

magnitude regressions present misfit values that are always lower or equal (in Coquimbo 

station), at least for the first recording hour, than those referring to the O model. 

The comparison over several hours of recording becomes in any case less significant, 

since the values of misfit rise dramatically for all distributions. Furthermore, with a view 

to early warning, it is precisely the first series of oscillations that interest most. With 

reference to this, it is possible to draw some observations, looking directly at the tsunami 

waveforms and focusing on the trends of the H and 2D GDA/R models. Indeed, despite the 

indices prefer the FFM, the synthetic waveforms (b) of the 2D GDA/R turn out to 

reproduce the first oscillation sufficiently well. Furthermore, considering as an example 

the station of Talcahuano (Figure 6.12 b), even if the time of the second main wave is not 
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perfectly coincident with the observed one (which also applies to the other models), the 

shape and magnitude of the oscillation is very satisfactorily respected. 

 

 

Figure 6.9 a):Misfits (top graph) and correlation coefficients (bottom graph) calculated for the different shifted 

waveforms; b): Marigrams (with shifted synthetic waveforms) obtained at the station of Caldera. The black dashed 

line refers to the observed signal. The vertical blue dotted line indicates the starting time related to the station. 
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Figure 6.10 a):Misfits (top graph) and correlation coefficients (bottom graph);  b): Marigrams obtained at the 

station of Coquimbo. For further details, see Figure 6.9. 

 

Figure 6.11 a):Misfits (top graph) and correlation coefficients (bottom graph);  b): Marigrams obtained at the 

station of Valparaiso. For further details, see Figure 6.9. 
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Figure 6.12 a):Misfits (top graph) and correlation coefficients (bottom graph);  b): Marigrams obtained at the 

station of Talcahuano. For further details, see Figure 6.9. 

 

 

Figure 6.13 a):Misfits (top graph) and correlation coefficients (bottom graph);  b): Marigrams obtained at the 

buoy DART station 32402. For further details, see Figure 6.9. 
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6.1.1 Timing considerations and early warning implications 

 

The marigrams listed above show a good agreement both by the FFM H and by the 

Gaussians derived from the hypocentre location and magnitude. However, as quantified 

by the misfit and the correlation coefficients, the faithfulness of the model H model to the 

observed data is greater.  

Nevertheless, there is an important and fundamental distinction between the two 

distributions. The H model was obtained a posteriori, by inversion of seismic data and 

tsunami waveforms. The 2D GDA/R are obtained directly from the magnitude and location 

of the earthquake, which is a much simpler and quicker procedure. 

Let us try to make a rough estimate of the time-line involved in these processes, starting 

from the computation of the source model H by Heidarzadeh et al. 2016. The model is 

contained in a manuscript received by the Geophysical Research Letters on the 4 

December 2015, and then published on the 23 January 2016. The time elapsed since the 

outbreak of the earthquake to the day on which the work was presented is therefore 

approximately 3 months. Potentially, a first version of this FFM obtained by also 

exploiting tsunami data could be obtained several hours after the tsunami has impacted 

the coasts (that is as soon as the tide-gauge data were available). 

If instead we consider a source model that can be derived directly from the magnitude 

(like the 2D GDs), then the time to obtain them is comparatively extremely lower.  Taking 

the case under study, since it was a great earthquake there were several warnings launched 

by the warning operational centers. For example, let's consider the bulletins launched by 

the Pacific Tsunami Warning Centre (PTWC, https://ptwc.weather.gov/ptwc).  

The time the earthquake originated was 22:54:32 (UTC). At 23.01 (7 min after the main 

shock) the first tsunami threat message was issued from the PTWC. The message 

contained the following earthquake information: 

- MAGNITUDE 7.9; 

- ORIGIN TIME    22:55 UTC SEP 16 2015; 

- COORDINATES    31.5 SOUTH, 71.9 WEST; 

- DEPTH          33 KM / 20 MILES; 

- LOCATION       NEAR THE COAST OF CENTRAL CHILE. 
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The message contained also the estimated times of arrival (eta) of the initial tsunami wave 

for places with a potential tsunami threat as well as for other places having an eta within 

the following six hours. 

At 23.23 (29 minutes after the main shock), a second threat message was issued, with 

some updates and a new value of the magnitude (8.3). 

The issuing time of the first alert bulletin can be taken as the upper limit for the time 

necessary to know magnitude and hypocentre position, that are thus potentially estimated, 

in the first instance, only a few minutes after the event.  

This is a topic that makes the 2D Gaussian models extremely interesting for early 

warning. It means that potentially, a few minutes after the main shock of a dangerous 

earthquake it is possible to get a first asperity model of the event. 

The first arrival of the tsunami at the considered stations was of about 40, 20, 24, 90 

minutes for Caldera, Coquimbo, Valparaiso, Talcahuano respectively and about 30 

minutes for the buoy DART 32402. 

This means that the availability in a few minutes of the finite heterogeneous slip model 

can be sufficiently prompt. To make tsunami predictions even faster one can pre-compute 

tsunami Green’s functions, which can result in launching alerts in a sufficiently short time 

and with details better than a less realistic uniform model. As reported by Ohta et al., 

2012, using pre-computed tsunami Green’s functions, tsunami simulations can be 

accomplished in approximately 1 min. Realistically, adding the tsunami computation time 

to the time needed to get the relevant earthquake information on the magnitude and 

location of the event, it takes about 5 minutes and certainly less than 10 minutes for the 

total computation of the on-fault slip and of the tsunami heights. Moreover, the multi-

faults (north, mid, south) solution, presented here only as seminal method, can be a useful 

tool to provide conservative values of coastal heights.
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7 Discussion and Conclusions 

This thesis dealt with the characterization of the slip distribution on the faults responsible 

for the largest magnitude earthquakes oriented to tsunamigenesis characterisation.  

Starting from a dataset of 105 events extracted from the SRCMOD database 

(http://equake-rc.info/SRCMOD/) occurred after 1990 and with moment magnitude equal 

or larger than 6, a first step consisted in the computation of regression laws between the 

geometrical properties of the fault and the moment magnitude. Although there are several 

studies of this kind existing in the literature, we wanted to build our own set of support 

laws for the next step, that is, to find a simple, yet realistic, representation of the 

heterogeneous distribution of slip on the fault. 

The analysis has been performed considering the entire dataset of finite fault models 

(FFM) as well as distinct types of focal mechanisms. 

The studied parameters included the rupture area, length, width aspect ratio, maximum 

and average slip. The best correlation with magnitude is shown by the area and the length 

of the fault. Strike-slip events are those showing the best correlations, and furthermore 

the only category for which the aspect ratio shows a satisfactory level of correlation. 

We also investigated relative positions of the hypocentre and of the maximum 

displacement MD and also their positions with respect to the fault plane centre. The 

distance to the fault centre of the hypocentre and of MD tends to increase with magnitude.  

Moreover, for smaller magnitudes, it is often close to the centre of the fault. The 

hypocentre rarely lies close to the fault centre or to the peak of slip. 

 

As second main step, a method to characterize the slip heterogeneity on the fault has been 

devised. We consider high-level asperity/asperities as region/regions where the slip takes 

on values larger than 2/3 of the peak value. For each event of the database, the number of 

asperities has been identified through a clustering algorithm called mean shift method. 

This latter has been applied to the two-dimensional space represented by the centres of 

the subfaults on the rupture plane. The application of the clustering algorithm to the 

dataset of 105 earthquakes recognises that as many as 72 events exhibit a single asperity 

slip distribution. Then, we have best-fitted these 72 FFMs by means of 2D Gaussian 

distributions (2D GD). The optimal parameters characterising the 2D GD have been 

http://equake-rc.info/SRCMOD/
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determined by a least-squares procedure applied over the entire multi-parameter space 

scanned by regular steps. Five different optimizations have been conducted, varying the 

number of free parameters and/or their variability domain. 

To quantify how well these distributions are able to mimic the original slip heterogeneity, 

they have been compared to a uniform-slip model (Uni) and a depth-dependent slip model 

(SCC), that is to models assumed in many tsunami hazard analyses found in the literature 

and in Tsunami Warning System forecasts. As a performance matrix, the co-seismic 

vertical surface displacements have been taken. This choice has been driven by the fact 

that, in the perspective of tsunami generation, the vertical seafloor deformation is used as 

the initial condition for the tsunami propagation. The vertical displacements at the Earth’s 

surface field induced by the FFM slip have been assumed to be the real ones and taken as 

reference cases in the comparisons. The comparisons have been quantified by a misfit 

value and a BIC value. Results show that the best results are obtained with 2D GDs, in 

particular the 2D GD1 (1, 2, , umax free parameters) and the 2D GD3 (1, 2, umax free 

parameters).  

For the three main parameters characterising the 2D DGs, i.e. 1, 2, umax, scaling laws 

with moment magnitude have been derived, in analogy with what is commonly done for 

the fault geometry parameters. The two standard deviations 1, 2 also correlate well to 

the length and width of the fault plane respectively.  

Furthermore, considering the position of the hypocentre, this has been studied on the fault 

planes characterized by the 2D Gaussian slip distributions. It results that hypocentres are 

preferentially located in regions with significant amount of slip. The only faulting 

mechanisms for which this trend is not true are the strike-slip ruptures. Focusing our 

attention to our “one asperity” model, it is possible to conclude that hypocentre often lies 

on the edge of the asperity. 

 

The third main step of the study consisted in the application of the 2D GD slip models to 

the real case represented by the 16 September 2015 Illapel (Chile) tsunamigenic 

earthquake (Mw=8.3).  

Two different FFMs have been considered: 

-  the Okuwaki et al. (2016) model (O model) included in the SRCMOD database, 

obtained by seismic data inversion; 
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- the Heidarzadeh et al. (2016) model (H model), obtained by seismic and tsunami 

data inversion. 

The comparison among the different on-fault slip distributions highlighted that the 2D 

GDs are found to mimic the maximum elevations and waveforms obtained starting from 

the reference FFM slip models much more closely than the SCC and uniform 

distributions. We may draw the conclusion that the 2D GD solution is a very good 

representation of the “true” slip model, while being much “easier” and “faster” to be 

computed. 

 

Considering again the Illapel earthquake, we derive slip models only knowing the 

magnitude and the location of the hypocentre, which is the most important result of the 

thesis. Among these models, the best behaviour, in terms of tsunami waveforms and 

maximum elevations is represented by the 2D GDs, whose tsunami waveforms are even 

better than the FFM model obtained by seismic inversion (Okuwaki et al. 2016). 

The FFM by Heidarzadeh et al. 2016 is yet the best, but only slightly better than the 

considered 2D GD. However, it has been obtained by tsunami waveform inversions, and 

hence it can be potentially computed only several hours after the tsunami hits the coasts. 

Moreover, the idea of multi-faults solution presented in the previous Chapter, derived 

from the investigated uncertainty on the mutual relation between the hypocentre location 

and the fault plane, may represent an interesting aspect to optimize the maximization of 

tsunami heights to the coast.  

 

We can conclude that the 2D Gaussian distribution is a simple representation of the 

seismic source, that however takes into account the slip heterogeneity, effectively 

replacing the main asperity, and takes a very short time to be derived. One of the winning 

features of the Gaussian modelling consists precisely in reproducing the asperity (main 

cause of the effects characterizing the tsunami) rather than the fault plane, property that 

also makes the 2D GD less dependent on the size of the fault plane on which it is 

superimposed. We believe the presented 2D GD method permits to produce reliable real-

time tsunami simulations very quickly and can be used as an experimental procedure in 

the frame of operational tsunami warning systems. Hence, its possible application in the 

tsunami warning context deserves further attention and research. 
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In this thesis we have restricted our attention to the single-asperity earthquakes and shown 

that the 2D Gaussian distribution models provide good approximations of the on-fault 

seismic slip and can be used for tsunami modelling. Our choice neglects all those 

earthquakes that do not fit a single-asperity representation. To evaluate how critical is this 

restriction that excludes 33 events out of the 105 earthquakes of the SRCMOD database 

we decided to extend the 2D-GD3 parametrization to all the 105 FFMs and calculated 

how much the misfit values relative to the induced coseismic vertical displacement vary. 

The results are reported in Appendix D, summarized in Table D.1 and provide some hint 

on the uncertainty introduced by applying the single-asperity method.  

 

Another source of uncertainty is related to the focal characterisation of the seismic source, 

which is known to depend heavily on the seismic region. Some considerations can help 

to elucidate this issue. The estimation of the focal parameters characterizing a seismic 

event in quasi-real-time inevitably implies a certain degree of uncertainty, that can be 

quantified if one adopts a probabilistic approach. As reported by several studies that 

investigate tsunami hazard (Gonzalez et al. 2009, Burbidge et al. 2009, Grezio et al. 2017) 

in regions where long-term tsunami hazard is dominated by subduction sources, one can 

establish sound seismotectonic models that restrict the variability of focal mechanisms as 

well as rupture location and orientation. Consider further that subduction zones account 

for the vast majority of tsunamigenic earthquakes worldwide (Grezio et al. 2017). 

Differently, in some specific tectonic contexts (e.g. Caribbean and Mediterranean) 

dominated by a large number of crustal faults with different orientations and focal 

mechanisms, earthquake parameters can be characterized by a higher degree of 

variability. Selva et al. (2016) proposed a method to include the “background” seismicity 

(a term used by the authors to indicate seismicity not occurring on a subduction slab) and 

its variability in hazard quantification. Using a logic tree structure, they define several 

parameters for the background seismicity (such as fault geometry and earthquake 

mechanism, that is strike, dip and average rake (s, d, r)) and establish a corresponding 

joint discrete Probability Density Function (dPDF). For the Mediterranean region, for 

instance, this joint dPDF can be constrained by focal mechanism catalogues, such as 

AllCMT, which merges data from the Global Centroid Moment Tensor (GCMT) 

catalogue (Dziewonski et al, 1981; Ekström et al, 2012) and the Regional Centroid 
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Moment Tensor (RCMT) catalogue (Pondrelli et al, 2011) and the Earthquakes 

Mechanisms of the Mediterranean Area (EMMA) database (Vannucci and Gasperini, 

2004), which collects the focal solutions in published literature over the period 1905-

2014. Besides, also data on sufficiently well-known local faults can be used. It is worthy 

of mention that the method proposed by Selva et al. (2016) is adopted in the framework 

of the Probabilistic TSUnami Hazard MAPS for the NEAM Region (TSUMAPS-

NEAM), http://www.tsumaps-am.eu/wpcontent/uploads/2019/09/NEAMTHM18. 

 

    

 

http://www.tsumaps-am.eu/wpcontent/uploads/2019/09/NEAMTHM18
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Appendix A 

Graphic examples of the 2D GD functions 

 

We present the 2D GD function expressed by the Eq. 4.3 in Section 4.2 for four different 

configurations, letting the angle  vary. Placing umax = 0.15, 1 = 1.5, 2 = 0.5, the four 

configurations reported in Figure A.1 correspond to: 

a)  = 0°; 

b)  = 30°; 

c)  = 90°; 

d)  = 150°. 

 

 

Figure A.1 Plots of the 2D GD functions for  = 0° (a),  = 30° (b),  = 90° (c),  = 150° (d). 
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Appendix B 

Tsunami waveforms produced by the different 2D GD functions 

 

Considering the specific case of the Illapel, 16th September 2015 earthquake, there is no 

great difference in terms of tsunami waveforms produced by the different Gaussian 

optimizations we have used.  

The graphs reported in Figure B.1- Figure B.5 show, in the same plot for each considered 

stations, the marigrams obtained with the five Gaussian optimizations. The differences 

are negligible. The largest discrepancies are found for the station of Coquimbo, where the 

2D-GD1 appears to have slightly weaker peaks and the 2D-GD4 presents the maximum 

value of water elevations. However, in the context of this study, these subtle differences 

are of little significance and do not affect the result of the work. 

 

 

Figure B.1 Marigrams obtained from the 2D-GD optimizations at the Caldera station. 
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Figure B.2 Marigrams obtained from the 2D-GD optimizations at the Coquimbo station. 

 

 

 
Figure B.3 Marigrams obtained from the 2D-GD optimizations at the Valparaiso station. 

 



139 

 
Figure B.4 Marigrams obtained from the 2D-GD optimizations at the Talcahuano station. 

 

 
Figure B.5 Marigrams obtained from the 2D-GD optimizations at the DART station 32402. 
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Appendix C 

Computation of the SCC on-fault slip 

 

If we consider a fault with a normalised width W ranging from 0 to 1, we can express the 

position of the slip peak by a parameter q ranging as well from 0 to 1.  In the Smooth 

Closure Condition (SCC) algorithm the function that expresses the slip at the depth z is 

the following:  

 𝑓(𝑧, 𝑞) =

{
 
 

 
 2

𝑧2

𝑞2
(3 − 2

𝑧

𝑞
)                                                                     , 𝑧 < 𝑞

2 +
4(𝑧3 − 𝑞3) + 12𝑞(𝑧 − 𝑞) − 6(1 + 𝑞)(𝑧2 − 𝑞2)

(1 − 𝑞)3
, 𝑧 ≥ 𝑞

 

where a distinction is made between the slip above and below the peak. Since there is no 

dependence from the along-strike coordinate, the slip distribution is depth dependent but 

laterally homogeneous. In this thesis, an SCC slip distribution is obtained by assigning to 

the generic fault cell (ix,iz) the slip given by:  

𝑠(𝑖𝑥, 𝑖𝑧) = 𝑓(𝑧, 𝑞) ∙
𝐴𝐷

𝐴𝐷𝑆𝐶𝐶
 

where AD is the average FFM displacement and ADSCC is the average of the function 

f(z,q) over all the cells.  

Figure C.1 shows trends of the function f(z,q) for different values of q. 
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Figure C.1 Plot of the SCC function for different values of q. 
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Appendix D 

Misfit values for all the 105 FFMs of the database 

  

In this Appendix, the misfits of the 2D Gaussian models for the one-asperity subset (72 

cases) and the full set (105 cases) of FFMs will be compared, and this can provide a clue 

to estimate the error brought by assuming a 2D Gaussian distribution a priori. 

In Figure D.1 the misfits related to the 72 single-asperity models selected with the mean-

shift algorithm are reported in red, while the misfits of the remaining 33 events are 

reported in blue. It is evident that the multi-asperity events worsen the misfit performance 

since they are shifted towards the high-misfit region of the frequency plot. The misfit 

value marking approximately the boundary between single- and multi-asperity events is 

about 0.77, which is the value of the 95th percentile of the misfit distribution, considering 

all the events. Looking more carefully at the percentile values, one can notice that, in any 

case, 75% of all the events present a misfit value lower than 0.5.  

The misfit trends for the Uniform (Figure D.2) and SCC (Figure D.3) distributions are 

definitely worse because the 75th percentile is 0.81 and 0.75 for the former and for the 

latter. Notice further that in these two cases, the addition of the 33 events does not change 

the general character of the distribution, which confirms that these distributions are less 

performant than the 2D Gaussian distributions for all cases (single- and multi-asperity 

slip fields).  

 

Table D.1 Minimum, maximum and average values of the misfit for each type of slip distribution (105 models). 

Slip distribution Min Misfit Max Misfit Mean Misfit 

Uniform 0.065 1.066 0.628 

SCC 0.022 1.121 0.578 

2D GD3 0.042 1.064 0.413 
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Figure D.1 Distribution of the 2D-GD3 misfit values for all the 105 events of the database. In red: the single 

asperity models (72) selected by the mean shift algorithm. In blue: the multi-asperity models (33). 

 

 

Figure D.2 Distribution of the Uniform misfit values for all the 105 events of the database.  

 



145 

 

Figure D.3 Distribution of the SCC misfit values for all the 105 events of the database. 
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Appendix E 

Scaling between the slip and area characterising the asperities 

  

The concept of asperities is of great relevance in the framework of seismological studies 

and tsunami hazard assessment. Among the several studies concerning this topic, we 

consider the work proposed by Lee et al. (2016). Examining 41 earthquakes in the 

magnitude range Mw=4.6-8.9, the authors found that the fault slip exhibited fractal 

scaling between the rupture slip and area. They consider the slip ratio Rd between the slip 

above a certain threshold d and the average slip, and the average area ratio Rs between 

the area characterised by slip equal to, or larger than, d and the total rupture area. The 

scaling relationship found is of the form: 

𝑅𝑠 = 10𝑎−𝑛(𝑅𝑑) (E.1) 

Examining this relationship for different values of the ratio Rd and different magnitude 

intervals, the authors found a self-similarity in the heterogeneity in slip distribution over 

the fault. The self-similar scaling exponent indicates the degree of fractal dimension in 

the fault slip system according to Lee et al. (2016). They affirm that spatial slip 

distribution for large earthquakes (Mw > 7) tends to have a more homogeneous slip 

distribution compared to the moderate events. 

Equation (E.1) can be written as: 

𝐿𝑜𝑔(𝑅𝑠) = 𝑎 − 𝑛 ∙ 𝑅𝑑 (E.2) 

Applying the equation to our 105 FFMs, we investigated the relationship between the slip 

ratio that characterizes our asperities and their area ratio. Having defined our asperities 

with respect to the maximum slip and not to the average one, the ratio Rd characterizing 

our events is not fixed. Lee et al., instead, analyse the scaling behaviour for different fixed 

values of the slip ratio.  

The plot in Figure E.1 displays our results: the scaling behaviour appears to be confirmed 

with a correlation coefficient modulus equal to or larger than 0.7 for all the focal 

mechanisms, except for reverse events (|r| = 0.56). The parameter values differ from those 

obtained by Lee et al. (2016), but this difference can easily be attributed to the different 

subcategories considered, to the different adopted ratio Rd, and to the different magnitude 

intervals considered.  
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Despite these factors, the general trend of the area ratio as a function of the slip that 

characterizes the asperity respects the trend suggested by Lee et al. (2016) and, as reported 

by them, the scaling relationship for the slip partition in a finite-fault provides an 

important basis for ground motion prediction, which is particularly crucial in assessing 

seismic and tsunami hazards and simulated earthquake and tsunami scenarios. 

 

 

Figure E.1 Scaling law between area and slip ratios (respectively Rs and Rd) that characterise the asperities of 

this study. 
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