Finocchiaro, Domenico
  
(2020)
Applications of metrological techniques for clinical implementation of dosimetry and radiobiology in molecular radiotherapy, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Fisica, 32 Ciclo. DOI 10.48676/unibo/amsdottorato/9250.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![PhD_Thesis_Finocchiaro.pdf [thumbnail of PhD_Thesis_Finocchiaro.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 Download (11MB)
 | 
        
      
    
  
  
    
      Abstract
      Molecular radiotherapy (MRT) is a fast developing and promising treatment for metastasised neuroendocrine tumours. Efficacy of MRT is based on the capability to selectively "deliver" radiation to tumour cells, minimizing administered dose to normal tissues. Outcome of MRT depends on the individual patient characteristics. For that reason, personalized treatment planning is important to improve outcomes of therapy. Dosimetry plays a key role in this setting, as it is the main physical quantity related to radiation effects on cells. Dosimetry in MRT consists in a complex series of procedures ranging from imaging quantification to dose calculation. This doctoral thesis focused on several aspects concerning the clinical implementation of absorbed dose calculations in MRT. Accuracy of SPECT/CT quantification was assessed in order to determine the optimal reconstruction parameters. A model of PVE correction was developed in order to improve the activity quantification in small volume, such us lesions in clinical patterns. Advanced dosimetric methods were compared with the aim of defining the most accurate modality, applicable in clinical routine. Also, for the first time on a large number of clinical cases, the overall uncertainty of tumour dose calculation was assessed. As part of the MRTDosimetry project, protocols for calibration of SPECT/CT systems and implementation of dosimetry were drawn up in order to provide standard guidelines to the clinics offering MRT. To estimate the risk of experiencing radio-toxicity side effects and the chance of inducing damage on neoplastic cells is crucial for patient selection and treatment planning. In this thesis, the NTCP and TCP models were derived based on clinical data as help to clinicians to decide the pharmaceutical dosage in relation to the therapy control and the limitation of damage to healthy tissues. Moreover, a model for tumour response prediction based on Machine Learning analysis was developed.
     
    
      Abstract
      Molecular radiotherapy (MRT) is a fast developing and promising treatment for metastasised neuroendocrine tumours. Efficacy of MRT is based on the capability to selectively "deliver" radiation to tumour cells, minimizing administered dose to normal tissues. Outcome of MRT depends on the individual patient characteristics. For that reason, personalized treatment planning is important to improve outcomes of therapy. Dosimetry plays a key role in this setting, as it is the main physical quantity related to radiation effects on cells. Dosimetry in MRT consists in a complex series of procedures ranging from imaging quantification to dose calculation. This doctoral thesis focused on several aspects concerning the clinical implementation of absorbed dose calculations in MRT. Accuracy of SPECT/CT quantification was assessed in order to determine the optimal reconstruction parameters. A model of PVE correction was developed in order to improve the activity quantification in small volume, such us lesions in clinical patterns. Advanced dosimetric methods were compared with the aim of defining the most accurate modality, applicable in clinical routine. Also, for the first time on a large number of clinical cases, the overall uncertainty of tumour dose calculation was assessed. As part of the MRTDosimetry project, protocols for calibration of SPECT/CT systems and implementation of dosimetry were drawn up in order to provide standard guidelines to the clinics offering MRT. To estimate the risk of experiencing radio-toxicity side effects and the chance of inducing damage on neoplastic cells is crucial for patient selection and treatment planning. In this thesis, the NTCP and TCP models were derived based on clinical data as help to clinicians to decide the pharmaceutical dosage in relation to the therapy control and the limitation of damage to healthy tissues. Moreover, a model for tumour response prediction based on Machine Learning analysis was developed.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Finocchiaro, Domenico
          
        
      
        
          Supervisore
          
          
        
      
        
          Co-supervisore
          
          
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          MRT, Radionuclide therapy, PRRT, Dosimetry, Radiobiology, Targated therapy, NTCP, TCP
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/9250
          
        
      
        
          Data di discussione
          16 Marzo 2020
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Finocchiaro, Domenico
          
        
      
        
          Supervisore
          
          
        
      
        
          Co-supervisore
          
          
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          MRT, Radionuclide therapy, PRRT, Dosimetry, Radiobiology, Targated therapy, NTCP, TCP
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/9250
          
        
      
        
          Data di discussione
          16 Marzo 2020
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        