
Università degli Studi di Bologna

FACOLTÀ DI INGEGNERIA

Dottorato di Ricerca in Ingegneria Elettronica,
Informatica e delle Telecomunicazioni

XX Ciclo

ING-INF/01

Exploration of Communication

Strategies for Computation

Intensive Systems-On-Chip

Tesi di Dottorato di Relatore

Antonio Deledda Chiar. mo Prof. Roberto Guerrieri

Coordinatore

Chiar. mo Prof. Paolo Bassi

Anno Accademico 2006-2007

Keywords:

Reconfigurable architectures

Heterogeneous MPSoC

MORPHEUS

Network On Chip

Digital Signal Processing

 CONTENTS

 i

Contents

List of Figures .. v

List of Tables... ix

Introduction ... 1

Chapter 1 Multiprocessing and Reconfigurable Computing 5

1.1 MPSoC state of the art... 7

1.1.1 TI OMAPTM... 8

1.1.2 ST NomadikTM .. 9

1.1.3 Philips NexperiaTM .. 10

1.2 Reconfigurable computing .. 12

1.2.1 Run-time reconfigurable instruction set processors 14

1.2.2 Coarse grained reconfigurable processors............................... 20

1.3 Interconnection Strategies ... 24

1.4 General Outline of the MORPHEUS solution 26

Chapter 2 The MORPHEUS Design.. 31

2.1 The MORPHEUS Reference Architecture.................................. 31

2.1.1 ARM926EJ-S Embedded processor .. 34

2.1.2 Multi-Layer AMBA bus system.. 36

2.1.3 DesignWare DW_ahb_dmac DMA Controller 38

2.1.4 Interrupt Controller.. 41

2.1.5 MORPHEUS IO Peripheral Set .. 42

2.1.6 MPMC PL175 Memory Controller ... 43

2.2 Reconfigurable Engines .. 45

 CONTENTS

 ii

2.2.1 XPP..45

2.2.2 PiCoGA ...62

2.2.3 Embedded FPGA...75

Chapter 3 Memory Subsystem Definition ...87

3.1 Level 3: Off-Chip Memory..90

3.2 Level 2: On-Chip Memory ..92

3.3 Level 1: Data/configuration exchange buffer..............................96

3.3.1 PiCoGA integration: The DREAM Architecture98

3.3.2 M2000 Integration ...106

Chapter 4 Interconnect strategy...117

4.1 Handling of micro-operands: local HRE interconnect strategy

deployment ..118

4.2 Handling of Macro-operands: Global Interconnect strategy

deployment ..120

4.3 Chip level Interconnect strategy deployment122

4.4 Communication Kernel (Network-on-chip)122

4.4.1 Communication infrastructure...124

4.4.2 The “load-α store-β” communication pattern125

4.4.3 Communication granularity...127

4.4.4 Chip level Interconnect strategy deployment128

4.4.5 Programming NoC Transfers: ...130

4.4.6 Programming NoC Space address ...138

4.5 Results and Bandwidth Estimation..141

4.5.1 Bandwidth Analysis...142

4.5.2 Conclusion...145

Chapter 5 Overall Implementation Results ..147

5.1 Overall Chip description..150

5.2 Processor Based Infrastructure ..154

5.2.1 ARM Core ...154

 CONTENTS

 iii

5.2.2 AMBA Subsystem... 155

5.3 Hardware Services... 157

5.3.1 The Predictive Configuration Manager block 157

5.3.2 The CMC DDRAM Memory Controller............................... 158

5.4 The Data Interconnect Infrastructure .. 159

5.5 Heterogeneous Reconfigurable Engines (HREs) 164

5.5.1 DREAM... 164

5.5.2 M2000 ... 167

5.5.3 Pact XPP.. 169

5.6 Padframe.. 171

5.7 Final Consideration ... 172

Conclusion.. 175

Bibliography... 177

 CONTENTS

 iv

 LIST OF FIGURES

 v

List of Figures

Figure 1: Computational requirements vs. Moore’s law and battery

storage.. 2

Figure 2: MPSoC trends .. 5

Figure 3: TI OMAP 3430 block diagram .. 8

Figure 4: ST Nomadik multimedia processor architecture............................ 9

Figure 5: Philips Nexperia PNX1500 block diagram.................................. 11

Figure 6: P-RISC Architecture .. 15

Figure 7 :GARP Architecture .. 16

Figure 8: MOLEN Architecture... 18

Figure 9: PACT Archiecture.. 22

Figure 10: Morphosys Architecture... 23

Figure 11: Architecture of a Heterogeneous reconfigurable device............ 27

Figure 12: Morpheus Overall Architecture.. 32

Figure 13: ARM926EJ-S block diagram ... 35

Figure 14: MORPHEUS multilayer bus hierarchy...................................... 37

Figure 15: Scheme of a cross-layer DMA transfer...................................... 39

Figure 16: DMA transfer hierarchy ... 40

Figure 17: An XPP array with 6x5 ALU-PAEs .. 46

Figure 18: FNC-PAE ... 48

Figure 19: A sample XPP -array (6x5 ALU PAEs)..................................... 49

Figure 20: ALU PAE objects... 50

Figure 21: RAM PAE objects with I/O ... 51

Figure 22: XPP I/O in Streaming mode & RAM mode............................... 52

Figure 23: FNC-PAE overview the ALU data-path 53

Figure 24: Configuration chain.. 56

Figure 25: Flow-graph of a complex multiplication and spatial

mapping ... 59

Figure 26: Simplified PiCoGA Architecture ... 63

 LIST OF FIGURES

 vi

Figure 27: Pipelined DFG in PiCoGA... 65

Figure 28: Example of PGAOP mapping on PiCoGA 67

Figure 29: Reconfigurable Logic Cell: simplified architecture 68

Figure 30: Pipeline management using RCUs... 71

Figure 31: Basic operations in Griffy-C .. 73

Figure 32: FlexEOS macro block diagram .. 76

Figure 33: MFC schematic .. 78

Figure 34: MAC schematic.. 81

Figure 35: Full crossbar switch.. 82

Figure 36: FlexEOS core architecture ... 83

Figure 37: MORPHEUS SoC architecture .. 87

Figure 38: Data Storage Hierarchy .. 96

Figure 39. DREAM architecture.. 98

Figure 40. RLC in the DREAM reconfigurable data path. 101

Figure 41. Integration of the address generators in DREAM

architecture... 103

Figure 42. Classification of the available data patterns. 103

Figure 43. Throughput vs interleaving factor. ... 105

Figure 44: M2000 HRE sub-block as inserted in the top design 106

Figure 45: M2000 sub-block memory maps.. 107

Figure 46: DEB I/O signals ... 108

Figure 47: DEB Control Registers... 109

Figure 48: M2000 input/output pad distribution.. 110

Figure 49: Proposed NoC Topology.. 123

Figure 50: HRE and Target Network interfaces .. 126

Figure 51: Multi-block Transfer with Source and Destination Address

Auto-reloaded .. 135

Figure 52: NoC Programming Space address.. 139

Figure 53: Throughput in MByte/s in a best case scenario........................ 144

Figure 54: Overall description of the Morpheus chip architecture............ 153

 LIST OF FIGURES

 vii

Figure 55: Schematic description of the MORPHEUS communication

infrastructure.. 159

Figure 56: Description of the DREAM Architecture 164

Figure 57: Block diagram of the M2000 HRE .. 167

Figure 58: Description of the XPP HRE ... 169

 LIST OF FIGURES

 viii

 LIST OF TABLES

 ix

List of Tables

Table 1: DesignWare DMA Bandwidth estimation.................................... 40

Table 2: XPP-III array preliminary characteristics...................................... 57

Table 3: XPP-III array hardware IP parameters .. 58

Table 4: eDRAM size and configuration options .. 80

Table 5: FlexEOS 4K-MFC features and size ... 84

Table 6: Example of design mapping results... 85

Table 7: Distribution of data flows inside MORPHEUS architecture......... 89

Table 8: DREAM Application Program Interface....................................... 99

Table 9: Programming Registers for NoC Transfers................................. 131

Table 10: Interrupt Register connection scheme 140

Table 11: Application Bandwidth Requirements 142

Table 12: Bandwidth estimation (MB/s) ... 143

Table 13: Top Entity Pinout .. 152

Table 14: Area of the ARM component .. 154

Table 15: Rough Power Consumption estimations for the ARM926

core .. 155

Table 16: Gate Count for the AMBA subsystem components 155

Table 17: Gate Count for the AMBA subsystem components 156

Table 18: Area occupation of memory cuts included in the AMBA bus

system design... 156

Table 19: Rough Power Consumption estimations for the AMBA

Subsystem.. 156

Table 20: Area occupation for the PCM.. 157

Table 21: Rough Power Consumption estimations for the PCM 157

Table 22: Main Building blocks of the CMC controller............................ 158

Table 23: Area occupation of the CMC... 158

Table 24: Consumption estimations for the CMC..................................... 158

 LIST OF TABLES

 x

Table 25: Area occupation of main blocks composing the

communication infrastructure .. 162

Table 26: Area occupation of STNoC IPs .. 162

Table 27: Gate count of the main RTL sub-blocks composing DREAM.. 165

Table 28: Area of the hard macro blocks composing DREAM................. 165

Table 29: Main contributions to the estimated Power consumption of

DREAM ... 166

Table 30: Gate count of the main RTL sub-blocks composing the

M2000 HRE... 168

Table 31: Area of the hard macro blocks composing the M2000 HRE..... 168

Table 32: Main contributions to the estimated power consumption of

the M2000 HRE ... 169

Table 33: Area estimations of the main blocks connecting the XPP

Macro to the Morpheus System ... 170

Table 34: Rough power consumption evaluations for the

XPP/Morpheus connection .. 170

Table 35: Estimation of the area occupation of the main blocks

composing the XPP.. 171

Table 36: Rough power consumption estimation for the IO Ring............. 172

Table 37: Main contributions to overall chip area..................................... 173

Introduction

 1

Introduction

Data intensive processing in embedded systems is receiving relevant

attention, due to rapid advancements in multimedia computing and high-speed

telecommunications. Applications demand high performance under realtime

requirements, and computation power appetite soars faster than Moore’s law

(see Figure 1, [13]). Processor efficiency is impaired by the memory bandwidth

problem of traditional Von Neumann architectures. On the other hand, the

conventional way to boost performance through Application Specific

Integrated Circuits (ASIC) suffers from sky-rocketing manufacturing costs and

long design development cycles. This results in an increasing need of post-

fabrication programmability at both software and hardware level. Field

Programmable Gate Arrays (FPGA) bring maximum flexibility with their fine

grain architecture, but imply severe overheads in timing, area and

consumption. Word or sub-word oriented Run-time Reconfigurable

Architectures (RAs) [1] offer highly parallel, scalable solutions combining

hardware performance with software flexibility. Their coarser granularity

reduces area, delay, power consumption and reconfiguration time, but

introduces tradeoffs in the design of the processing elements, that need to be

tailored for a given application domain.

A possible way to mitigate this aspect for building a flexible yet efficient

signal processor is to substitute each ASIC accelerator with a specific domain

oriented RAs, inducing a graceful shift of SoCs from application specific

circuits to domain oriented platforms, where different flavors of reconfigurable

hardware, each more suited to a given application environment, are merged

with ASIC and general purpose processors to provide ideal tradeoff between

performance and post-fabrication programmability. The immediate advantage

is that the higher computational density of RAs allows to build networks

composed of a significantly smaller number of nodes. The immediate

drawback is the need to synchronize units that are intrinsically different and

Introduction

 2

Figure 1: Computational requirements vs. Moore’s law and battery storage

provide independent application mapping styles and entry languages. In this

context, critical issues are related to the definition of

• a toolset that must be capable to hide RA heterogeneity and

hardware details providing a consistent and homogeneous

programming model to the end user

• a data interconnect infrastructure, that must sustain the bandwidth

requirements of the computation units while retaining a sufficient

level of programmability to be adapted to all the different data flows

defined over the architecture in its lifetime.

These aspects are strictly correlated and their combination, together with the

strategy deployed for RA computation synchronization represents the signal

processor interface toward the end-user. In particular, the architecture view

shall be abstracted as much as possible for the user, providing a programming

Introduction

 3

model looking like purely functional code. Program parts requiring

acceleration on RAs should be identifiable in the easiest possible way. A

toolset can then handle and program the code corresponding to data

movements and reconfigurations related to these accelerating parts.

In this context not only computation but also communication aspects must

indeed be considered. This will enable performance optimization by masking

communication time by computation time through a “pipelined” behavior. The

scheduling of these accelerating parts among each other, including loading

configuration and execution, may be managed at compilation time based on

RTOS-oriented services.

This thesis presents the definition and the design of a heterogeneous

reconfigurable SoC platform, where state-of-the-art RAs of different size and

nature are grouped together in a processor-controlled system. In particular, this

work aims at describing the most significant challenges and design choices that

have been faced in the deployment of a well known NoC infrastructure (the ST

Spidergon NoC approach [2]) and the consequent impact on the architecture

and toolset definition. I believe that the most relevant innovation aspects of this

work are:

1. A significant milestone in the field of Heterogeneous-MultiCore

SoCs;

2. The first design-case challenging the deployment of the NoC

concept to a network of high-bandwidth computation intensive RAs.

The rest of this thesis is organized as follow. In Chapter 1, the terminology and

basic foundation of Computation Intensive System-on-Chips are revisited to

pave way to the rest of the thesis. An overview of the European project, where

this work was done, is also given. Chapter 2 presents the defined architecture

for the MORPHEUS project. Chapter 3 and 4 details the main choices given in

the definition of the memory hierarchy and the adopted communication

Introduction

 4

infrastructure. The last chapter presents design and performance results

achieved in the frame of this project.

Multiprocessing and Reconfigurable Computing

 5

Chapter 1 Multiprocessing and

Reconfigurable Computing

Up to the 1990s processor designers mainly focused their work on boosting

single processor performance. This evolution was conducted constantly

increasing clock rates extending instruction-level parallelism (ILP). This was

made possible by technology scaling which reduced physical delays and device

sizes allowing for a larger area to be utilized by new logic. The result is a

variety of superscalar architectures employing different hardware solutions to

concurrently process different instructions. Performance of future embedded

systems, according to the ITRS estimation shown in figure 1.1, will require the

execution of an increasing number of instructions per clock cycle, but the cost

of extracting such parallelism from a single thread is becoming prohibitive

both in terms of area and energy consumption.

Figure 2: MPSoC trends

Multiprocessing and Reconfigurable Computing

 6

It has nevertheless been stated that trying to further increase ILP is not the

best choice as explained by D. Patterson in [17]. As an alternative to

superscalar architectures, processor designers and researchers are proposing a

different approaches based on Tread Level Parallelism (also named Task Level

Parallelism, TLP) that seem to enable significant speed-up and proves more

flexible than ILP.

From an architecture point of view, we can distinguish MPSoC architectures

in two main classes:

1. Homogeneous MPSoC, where all the processing elements are

usually identical or at least share a common ISA,

2. Heterogeneous MPSoC, characterized by the integration of different

computational core: i.e. processor with different ISAs, several

ASICs or DSPs, etc.

One of the main aspects in heterogeneous MPSoC is that software modules

have to interrelate with hardware modules. In [18] the authors show the use of

an high level programming approach for the abstraction of HW-SW interfaces.

The proposed programming model is based on a set of functions (primitives)

that can be used by the SW engineer to interact with HW modules. In the

reconfigurable computing domain, alternative approaches have also been

investigated; in [19] a scalable programming model (named SCORE) is

presented and used for a homogeneous scalable reconfigurable architecture.

The model allows indifferently computing a set of tasks in time or in space,

following the resources available: the advantage is that software is reusable for

any generation of component based on that model.

From the memory point o view we can investigate two main programming

models:

1. SMP (Symmetric Multi Processing) where all the processors have

a global vision of the memory (shared memory) and

Multiprocessing and Reconfigurable Computing

 7

2. AMP (Asymmetric Multi Processing) where the processors are

loosely coupled and have generally dedicated local memory

resources.

Task control management is also an issue to consider. Threads can be

handled at execution time (dynamically on a single processor) by an operating

system or at design time (statically) by complex scheduling techniques. A part

of the MP-SOC community focuses on static task placement and scheduling in

MP-SOC. Indeed, having a complex operating system in memory taking care

of run-time mapping is often not feasible for a SOC, because of the restricted

memory resources and associated performance overhead. Moreover, these

systems are often heterogeneous and dedicated to a few tasks, and a single but

efficient scheduling of tasks may be more adapted. For instance in [20], the

authors summarize the existing techniques (ILP based or heuristics) and have

developed a new framework based on ILP solvers and constraint programming

to solve at design time the task allocation/scheduling problem.

1.1 MPSoC state of the art

Multiprocessor systems-on-chip are mostly suitable for high-volume

products with stringent constraints in terms of performance, power

consumption and cost. Many application domains are covered by these

features, including multimedia, communications, automotive and networking.

This section, referring to a survey proposed by Wolf [16], describes some state-

of-the-art MPSoCs, suitable for different application domains. A common

feature of all the analyzed architectures resides in the integration of a standard

processor which operates as the main system controller. This choice generally

simplifies system programmability allowing multiple processing elements and

customized ASIC blocks to be programmed as co-processors, maintaining a

central control task on the control processor.

Multiprocessing and Reconfigurable Computing

 8

1.1.1 TI OMAPTM

The Open Multimedia Application Platform (OMAP) [21][22] proposed by

Texas Instruments is a combined RISC/DSP architecture targeted to 3G

wireless applications. The platform supports mainly baseband processing and

voice services, in addition multimedia, gaming and other application at user

level.

Figure 3: TI OMAP 3430 block diagram

Figure 3 shows the architecture overview of the TI OMAP 3430. The

inclusion of a standard ARM Cortex A8 processor ensures the compatibility

with different commercial operating systems, while the additional DSPs

provide the platform with additional computational power to process the

previously cited applications. The ARM core and the DSP use a shared

external DRAM interface, while a consistent amount of SRAM are internally

integrated. A complete set of peripherals is also included (USB, I2C, UARTs,

GPIOs). Outstanding gaming capabilities will also be possible, thanks to

ARM’s integrated vector floating-point acceleration working with a dedicated

2D/3D graphics hardware accelerator.

Multiprocessing and Reconfigurable Computing

 9

To simplify software development on the heterogeneous multi-core

architecture, the RISC is defined as the system master and a DSP resource

manager runs on the ARM. Tasks executed on the DSP are controlled through

a DSP/BIOSTM bridge which adds support for inter-processor communication,

based upon the mailbox mechanism. The DSP/BIOS allows the ARM to

initiate DSP tasks, to exchange messages and data streams with the DSP and to

control the DSP status. This hardware support simplifies system

programmability treating the DSP and the accelerators as system co-processors.

1.1.2 ST NomadikTM

STMicroelectronics Nomadik platform [23] is designed for 2.5G/3G mobile

phones, personal digital assistants (PDAs) and, more in general, portable

wireless products with multimedia capabilities. The architecture is focused at

delivering ultra low power consumption enabling audio and video applications.

The result is a 20mW typical power consumption with the computational

power required by MPEG-4 encoding and decoding with display sizes ranging

from 160x160 pixels to 640x480 pixels.

Figure 4: ST Nomadik multimedia processor architecture

Again, the architecture is based on a standard ARM926E-JS processor. This

32-bit processor core supports 32-bit ARM and 16-bit Thumb instruction sets,

Multiprocessing and Reconfigurable Computing

 10

enabling the user to trade off between high performance and high code density.

The cached ARM CPU features a memory management unit (MMU) and is

clocked at a frequency up to 350 MHz. It has a 16-Kbyte instruction cache, a

16-Kbyte data cache, and a 128-Kbyte level 2 cache, and supports the Jazelle™

extensions for Java acceleration.

In addition to the ARM core a series of accelerators are included for

dedicated task:

• smart video accelerator for SDTV video encoding and decoding,

with MIPI and SMIA camera interfaces.

• smart audio accelerator containing a comprehensive set of digital

audio decoders and encoders, and offering a large number of 3-D

surround effects.

• A smart imaging accelerator, providing real-time, programmable

image reconstruction engine.

• A smart graphics accelerator

A multi-layer AMBA crossbar interconnect for optimized data transfers

between the CPU, accelerators, memory devices and peripherals is also

integrated. A set of hardware semaphores for flexible inter-process

management is used. A wide range of peripheral interfaces (GPIO, USB-OTG

high speed, UART, I²C, FIrDA, SD/high-speed MMC/Memory Stick Pro, fast

serial ports, TV output, color LCD and camera interfaces, scroll-key encoder,

key-pad scanner) is available.

1.1.3 Philips NexperiaTM

The Nexperia NXP1500 [24] is a MPSoC architecture developed by Philips

Semiconductors and designed for digital video applications, including digital

television, home gateway and networking, and set-top box applications.

Multiprocessing and Reconfigurable Computing

 11

At the heart of all PNX1500 processors is a TriMedia TM3260 CPU core

delivering top performance through the implementation of a very-long

instruction word (VLIW) architecture. Five issue slots enable up to five

simultaneous RISC-like operations to be scheduled into only one VLIW

instruction. These operations can simultaneously run on five of the CPU’s 31

pipelined functional units within one clock cycle.

Figure 5: Philips Nexperia PNX1500 block diagram

In addition to the Trimedia core a set of specific accelerators are integrated.

A video input processor (VIP) captures and processes digital video for use by

on-chip units. During capture of a continuous stream of data, the VIP unit can

Multiprocessing and Reconfigurable Computing

 12

crop, horizontally down-scale, or convert the YUV video to one of many

standard pixel formats as needed before writing data to memory. An additional

versatile, programmable memory-based scaler unit applies a wide variety of

image size, color, and format manipulations to improve video quality and

prepare it for display.

A set of Audio input/output programmable device are also integrated. Audio

units provide all signals needed to read and write digital audio datastreams

from/to most high-quality, low-cost serial audio oversampling A/D and D/A

converters and codecs. The AI unit supports capture of up to eight channels of

stereo audio. The AO unit outputs up to eight channels and directly drives up to

four external, stereo I2S or similar D/A converters or highly integrated PC

codecs. Additional On-chip hardware accelerators are targeted to 2D and 3D

graphics processing, MPEG decoding, image scaling and filtering, and display

channel composition. All coprocessors read input and write results to memory.

A PNX1500’s CPU and processing units access external memory through

an internal bus system comprising separate 64-bit data and 32-bit address

buses. Arbitrated by the MMI unit (Main Memory Interface), the internal buses

maintain real-time responsiveness in a variety of applications. The system also

includes an external DRAM interface, a DMA for each processor and several

I/O interfaces.

1.2 Reconfigurable computing

The first idea of a reconfigurable computing machine was conceived by

Gerald Estrin in the early 1960s [30] when he presented the “fixed plus

variable structure computer” [31]. It would consist of a standard processor,

augmented by an array of reconfigurable hardware blocks controlled by the

main processor. The reconfigurable hardware could be programmed to perform

a specific task with performance comparable to a dedicated hardware block.

Once the task was performed, the reconfigurable unit could be set up again to

Multiprocessing and Reconfigurable Computing

 13

perform a new different task. This first example of hybrid computer,

combining the flexibility of a software programmable processor core with the

performance of dedicated hardware, failed to become an interesting solution

for commercial products. For many years, in fact, microprocessors combined

with Application Specific Integrated Circuits (ASICs) have represented a state

of the art solution able to meet application requirements when stand alone

processor computational power was not adequate.

The combination of higher silicon integration degree and the need of

flexibility imposed by the continuous algorithmic innovation, has generated a

tremendous attention on the reconfigurable computing. The term

Reconfigurable Computing (RC) is broadly intended as the capability to couple

software based programmability with dynamic hardware programmability. The

most common devices utilized as reconfigurable units are the Field

Programmable Gate Arrays (FPGAs), but current scenario of reconfigurable

devices is being crowded by a variety of reconfigurable architectures, with

different reconfiguration granularities (coarse/fine/mixed grain fabrics), VLIW

processing, systolic arrays, processor networks and so on. RC has long been

considered [27][28][29][32][33][34][35][36] a feasible alternative to tackle the

requirements described before. As shown in [28][29][36][37][38],

reconfigurable architectures are classified depending on their grain, intended as

the bitwidth of their interconnect structure and the complexity of their

reconfigurable processing elements (PEs). Field Programmable Gate Arrays

(FPGAs) are typically regular architectures where PEs are based on lookup

tables (LUTs) and merged in a bit-oriented interconnect infrastructure.

Featuring small LUT cells and 1-bit interconnect FPGAs are typically

described as fine-grained. Their very symmetrical and distributed nature makes

FPGAs very flexible and general purpose, and they can be used to tackle both

computation-intensive and control-oriented tasks, to the point that large

commercial FPGAs are often used to build complete Systems-On-

Programmable-Chip (SoPCs) [39]. Arithmetic-oriented datapaths feature

regular structures, so when targeting computation intensive applications it is

Multiprocessing and Reconfigurable Computing

 14

possible to achieve higher efficiency designing PEs composed of hardwired

operators such as ALUs, multipliers or multiplexers. Such kind of archietcture

are usually defined coarse-grained. These devices trade part of the flexibility

of FPGAs in order to provide higher performance for specific computations.

There exist also a set of devices that fall in between the above two

classifications, featuring bit widths of 2 or 4 bits, and small computational

blocks that are either large LUTS or small arithmetic blocks as 4-bits ALUs.

These can be classified as medium-grained.

All this broad category of digital architectures fall under the cumulative

name of “Reconfigurable Architectures” (RAs), underlining their capability to

reconfigure at execution time part of their hardware structure to support more

efficiently the running application. In this broad domain, we use the definition

“Reconfigurable Instruction Set Processor (RISP)” for those reconfigurable

architectures that are tightly integrated in order to compute as a single adaptive

processing unit according to the Athanas/Silverman paradigm [25] regardless

of their hybrid nature. The next two sections will describe the evolution of the

reconfigurable processor concept in the last 10 years, through the description of

several significant contributions in the field by both industry and academia.

1.2.1 Run-time reconfigurable instruction set processors

The first significant attempt at deploying instruction set metamorphosis to

embedded systems taking advantage of run-time configurable hardware is P-

RISC (PRogrammable Instruction Set Computer), proposed by Razdan/Smith

in 1994 [26]. The architecture is depicted in Figure 9.3.

The PRISC micro-architecture is composed of a fixed RISC (a MIPS core)

extended by instructions mapped on a standard FPGA embedded in the core

and defined as a PFU (Programmable Function Unit). An efficient interface

between the core and the PFU aims to fit the PFU into the core pipeline.

Multiprocessing and Reconfigurable Computing

 15

Figure 6: P-RISC Architecture

A compilation model for the ISA extension, starting from C specification is

also proposed. To ease the physical interface between core and extension and

to define a clear programming pattern for the compiler-based extraction of

“interesting” extensions each PFU can handle 2-inputs 1-output functions. The

most interesting concept of this architecture is that the PFU is considered as a

function unit of the datapath, similar to an additional ALU, and PFU operands

are read and written through the core register file providing a tightly coupled

model. This is very friendly from the compiler and programmer point of view.

A significant novel step is represented by the “GARP” processor, which is

shown in Figure 9.4. GARP [40] couples a MIPS core with a custom designed

reconfigurable unit, connected as a coprocessor and addressed with explicit

Move instructions while specific assembly instructions are implemented to

trigger the configuration and computation on the reconfigurable unit. Unlike in

the architecture P-RISC, the granularity of tasks mapped on the unit is quite

coarse, to fully exploit the potentiality of the space-based computation

approach. Another main difference respect the previous approach is that the

coprocessor features direct access to memory allowing a larger data bandwidth

Multiprocessing and Reconfigurable Computing

 16

to the extension unit than that allowed by the core register file, although it

raises relevant issues regarding memory access coherency.

Figure 7 :GARP Architecture

The GARP reconfigurable unit is composed of an array of 24 rows of 32

LUT-based logic elements. Fast carry chains are implemented row-wide to

provide efficient 32-bit arithmetical/logical operations on a single row. Each

row can be approximated to a 32-bit ALU and an embedded hardware

sequencer is added to the unit, in order to activate operators (one for each row)

with appropriate timing to build a customized pipeline. Candidate kernels are

described at C-level and decomposed in Data-Flow-Graphs (DFG),

determining elementary operators and their data dependencies, and then

mapped over the existing LUT resources. The sequencer embedded in the

configurable hardware allows for an imperative computing pattern that matches

Multiprocessing and Reconfigurable Computing

 17

very well with C language and the GARP C compiler, thus easing a lot the gap

between software and hardware programming indicated by Athanas/Silverman

as the key issue in the deployment of instruction set adaptivity.

The MOLEN polymorphic processor [41] can be considered another

important example of the reconfigurable instruction set processor paradigm. It

has been implemented on a Xilinx Virtex-II FPGA coupling the on-chip

PowerPC microprocessor with the Xilinx reconfigurable fabric, but the

approach is quite independent from the device used to prove its feasibility. The

significant contribution of MOLEN does not reside in its physical

implementation, but in the theoretical approach to HW/SW co-processing and

micro-architecture definition. The MOLEN contribution can be described as

• A microcode-based approach to the reconfigurable processor

microarchitecture

• A novel processor organization and programming paradigm

• A compiler methodology for code optimization

A significant difference with all previously described architectures is that

MOLEN does not attempt to propose a mean for “hardware/software co-

compilation”. Tasks to be mapped on the programmable hardware unit are

considered as atomic tasks, primitive operations Microcoded in the processor

architecture. Instruction set extensions are defined separately as libraries with

an orthogonal HDL-based flow. Designing microcode for the adaptive

extensions (_µ-code) consists in HDL design, synthesis and place & route of

the extension functionality over third-party tools without any assistance from

the reconfigurable processor compilation environment. This could raise issues

for algorithmic developers not proficient with hardware design. On the other

hand, this choice allows a large degree of freedom in the implementation

allowing to extend the basic concepts to any technology. Also, as described in

[41], the microcoded approach allows MOLEN-based RISPs to achieve

speedups that are almost 100% of the theoretically achievable speedup

Multiprocessing and Reconfigurable Computing

 18

according to Amdahl’s law, much higher than speedups achieved by hybrid

compilation.

Figure 8: MOLEN Architecture

The MOLEN micro-architecture, shown in Figure 9.5., is organized as

follows: instructions are decoded by an arbiter determining which unit is

targeted. “Standard” instructions are computed by the Core Processor while

instructions targeting the reconfigurable hardware are computed on the

Reconfigurable Processor which is composed of a computational unit called

Custom Configured Unit and a reconfigurable microcode control unit. The

control unit allows partial reconfiguration. Exchange of data between the

reconfigurable unit and the main processor is performed via specific exchange

registers (XREGs).

Multiprocessing and Reconfigurable Computing

 19

As shown in the GARP design, in order to guarantee enough data

bandwidth direct access from the extension segments to data memory is

allowed, although there is no specific handling for multiple access consistency

with respect to the core processor.

Although P-RISC, GARP and MOLEN represent from a theoretical

standpoint the milestones that have brought to the formalization of the

Reconfigurable Instruction Set Processor (RISP) concept, from the physical

implementation side, an interesting attempt is described in [42][43] where the

XiRisc architecture is introduced. XiRisc can be considered the first silicon

implementation of a custom designed embedded reconfigurable instruction set

processor. The design was performed at circuit level both for what concerns the

core and the reconfigurable unit. XiRisc couples a Very Long instruction Word

(VLIW) core, based on a five-stage pipeline, with an additional pipelined run-

time configurable datapath (defined PiCoGA, see 2.2.2) acting as adaptive

repository of application-specific functional units. While the VLIW core

determines two symmetrical separate execution flows, the reconfigurable

engine dynamically implements a third concurrent flow, extending the

processor instruction set with multi-cycle pipelined functionalities of variable

latency, according to the instruction set metamorphosis pattern.

Similar to P-RISC, extension segments are tightly integrated in the

processor core receiving inputs and writing back results from/to the register file

and direct access to memory is not allowed. In order to provide sufficient data

bandwidth to the extension segments, PiCoGA features four source and two

destination registers for each issued computation. Moreover, it can hold an

internal state across several computations, thus reducing the pressure on

connection to the register file.

Multiprocessing and Reconfigurable Computing

 20

1.2.2 Coarse grained reconfigurable processors

FPGAs have historically been used as programmable computing platforms,

in order to provide high performance solutions to challenge NRE costs and

time-to-market issues in the implementation of computationally intensive tasks.

Even if in a first attempt, FPGA fabrics have been the immediate choice for

implementation of reconfigurable hardware extensions, quite soon, it appeared

evident that reconfigurable processors required computational features

different from standard FPGAs. In several case application-specific logic such

as hardwired multipliers has been utilize to achieve the necessary performance.

When extension segments are very arithmetic-oriented, and bit-level

computation is not necessary, the traditional LUT-based approach of standard

FPGA can, as an extremes approach, be removed. Having in mind these

concepts we can define Reconfigurable Processors (RPs) based on coarse

grained hardwired operators rather than on fine grained LUTs as coarse

grained reconfigurable processors. A significant benefit of this approach is the

reduction of complexity in the place and route step, as well as the massive

reduction of configuration memory and configuration time. The obvious

drawback is that algorithm mapping is necessarily non-standard, and

architecture-specific.

Shifting towards coarser grained Reconfigurable Architectures the definition

of the PE internal structure becomes the most critical step in the design of the

RP. It is obvious that the design of the PE has to be driven by an application

domain in order to define the best trade-off between hardware

complexity/features and application requirements. As a consequence,

performance in that application field will be very impressive, but RPs will not

scale well to different application environments. Coarse grained RPs will then

be no more general purpose, as it was the case for the fine-grained architectures

described earlier, but rather domain oriented.

PipeRench [44] is one of the first and more original run-time reconfigurable

datapaths appearing in literature. It is composed by a set of configurable

Multiprocessing and Reconfigurable Computing

 21

blocks also called “stripes”. Each stripe maps a pipeline stage of the required

computation, and is composed by an interconnect network and a set of PEs. In

turn each PE contains one arithmetic logic unit and a pass register file that is

used to implement the pipeline. ALUs are composed of lookup tables (LUTs)

plus specific circuitry for carry chains while multipliers are built out of

multiple adder instances. Each stripe can perform a different functionality per

each cycle, thus providing an efficient time-multiplexing in the usage of each

resource. The granularity of the computation fabric is parametric, but best

performance results are obtained with 16 instances of 4- or 8-bit PEs per

stripe, so that we can define the datapath as average grained.

A simplified format of C, defined Dataflow Intermediate Language (DIL),

is used as entry language for the PipeRench programming environment. As in

the case of XiRisc, operators to be mapped on the fabric are described at Data

Flow Graph (DFG) level by a single-assignment C-based format, where

variable size can be specified by the programmer, and then translated on one or

more PEs on the stripe after an automated Instruction Level Parallelism (ILP)

extraction.

Another interesting example of coarse grain reconfigurable architecture is

the PACT XPP digital signal processor [46]. It is composed by an array of

heterogeneous Processing Array Elements (PAEs) and a low level

Configuration Manager (CM). Configuration Managers are organized in a

hierarchical tree that handles the bit-stream loading mechanism.

Communication between PAEs is handled by a packet-oriented interconnect

network. Each PAE has 16-bit granularity and is composed by synchronization

register and arithmetical/logical operations, including multiplication. Data

exchange is performed by transmission of packets through the communication

network, while I/O is handled by specific ports located at the four corners of

the array. The PACT XPP architecture is depicted in Figure 9.7, a detailed

description is presented in 2.2.1.

Multiprocessing and Reconfigurable Computing

 22

Figure 9: PACT Architecture

More or less both PACT and PipeRench explicitly propose to replace the

concept of instruction sequencing (that is, cycle per cycle instruction fetching)

by configuration sequencing (that is, spatial distribution, dynamically pipelined

or not, of configuration bits) and they process data streams instead of single

random accessed memory words. This concept of communication centric

distributed computation is similar in principle to Transport Triggered

Architectures (TTAs) [47], and it is indeed quite promising when applied to

reconfigurable hardware because this micro-architectural paradigm, compared

to the Von Neumann paradigm, appears more suitable to support a scalable

number of function units, each with scalable latency and throughput. On the

other hand, this promising approach has three main open issues:

• The communication infrastructure needs to be large yet flexible

enough to allow the necessary throughput between the different

function units (PEs).

• Tools and programming languages need also to describe

synchronization between operators, and this requires structures and

tools often unfamiliar to application developers.

• Lack of a memory addressing scheme: not all computation kernels in

the embedded domain can be challenged with a streaming paradigm,

Multiprocessing and Reconfigurable Computing

 23

and for many cases it appears impossible to renounce to the

addressing flexibility offered by standard cores.

Other coarse-grained devices are based on the concept of instruction set

Metamorphosis introduced above, only utilizing a different architectural

support for mapping extension segments: Morphosys [37], also shown in

Figure 10, is a very successful RP that also been the base for a few successful

commercial implementations.

Figure 10: Morphosys Architecture

It is composed by a small 32-bit RISC core (TinyRisc), coupled to a so-

called Reconfigurable cell Array composed of an 8x8 array of identical

Reconfigurable Cells (RCs). Each cell is able to computes 16-bit words and

contains multiplier, ALU, shifter, a small local register file and an input

multiplexing logic. In order to minimize reconfiguration penalty, the

architecture comprises a multi-context configuration memory, that is capable to

overlap computation and configuration.

Multiprocessing and Reconfigurable Computing

 24

The array computation is organized in this way: all cells belonging to the

same row receive the same control word and compute the same calculation

over extended 128-bit words (8 x 16bit) as a purely Single Instruction Multiple

Data (SIMD). Taking in account the array organization it’s clear as the

proposed architecture is characterized from a much higher area efficiency with

respect to FPGA-based solutions described earlier, but it is also rather domain

oriented: the machine is conceived for applications with relevant data

parallelism, high regularity, and high throughput requirements such as video

compression, graphics and image processing, data encryption and DSP

transforms.

1.3 Interconnection Strategies

As shown above, Reconfigurable Instruction Set Processors have evolved

from the mapping of combinatorial, single cycle functional extension of PRISC

up to the very intensive hyper-parallel SIMD computational pattern of

Morphosys-like architectures, but indeed the micro-architectural concept has

remained more or less unchanged. The only aspect that has really changed is

the computational grain of the ISA extension segments.

As a consequence of this shift, one architectural issue that is becoming more

and more critical is the connection between reconfigurable units and the system

memory in order to provide enough data to exploit the extension segment

potential. Most coarse-grained datapaths such as PACT XPP or PipeRench do

not actively intervene on the data layout: they simply consume data streams,

provided by standard external sources or appropriately formatted by the RISC

core or by specific DMA logic. Morphosys is only slightly more sophisticated,

featuring a dedicated frame buffer in order to overlap data computation and

transfers over orthogonal chunks of variable width. RPs based on FPGA

fabrics, such as MOLEN, could map memory addressing as part of the

microcoded extension segments, but this option could be costly in terms of

resources and will make any kind of co-compilation impossible creating two

different and separate compilation domains.

Multiprocessing and Reconfigurable Computing

 25

An interesting solution is that of ADRES (Architecture for Dynamically

Reconfigurable Embedded systems) [50]. ADRES exploits a RFU similar to

that of Morphosys, based on very coarse grained (32-bit) PEs implementing

Arithmetical/Logical operations or Multiplications. Differently from

Morphosys, the ADRES RFU is used as function unit in the frame of a VLIW

processor. Data exchange with external memory is through the default path of

the VLIW processor, and data exchanges take place on the main register file, as

it was the case for the XiRisc processor described in section 4. The

programming model is simplified because both processor and RFU share the

same memory access. Even though the RFU has a grain comparable to PACT

XPP or Morphosys, data feed is random accessed and very flexible, and it is

not limited to data streaming. Still, the VLIW register file remains a severe

bottleneck for RFU data access. A different solution is provided by Montium

[51][52] a coarse grained reconfigurable processor composed of a scalable set

of Tile Processors (TP). A TP is essentially composed by a set of 5 16-bit

ALUs, controlled by a specific hardwired sequencer. Each TP is provided with

10 1Kbytes RAM buffers, feeding each ALU input; buffers are driven by a

configurable Address Generation Unit (ATU). Montium can be seen rather as a

flexible VLIW than a RP in the context described in this work, but it is affected

by the same bottleneck shared by most RP overviewed above: in order to

exploit its computational density, it needs to fetch from a repository several

operands per clock, and possibly each of them featuring an independent, if

regular, addressing pattern. In this respect, automated addressing generation

based on regular patterns could be an interesting option: most applications that

benefit from hardware mapping are based on loops, and addressing is more

often than not generated and incremented with regularity as part of the loop.

Automated addressing FSMs could add a new level of configurability to RPs,

providing an adaptive addressing mechanism for adaptive units, enhancing

potential exploitation of inherent parallelism. As it is the case with adaptive

computation, automated addressing can be considered an option only if

supported by solid compilation tools that could spare the end user from manual

Multiprocessing and Reconfigurable Computing

 26

programming. In fact, it appears theoretically possible to automatically extract

from a high level (typically C/C++) specification of the algorithm regular

addressing patterns to be applied to automated addressing FSM: the same issue

has long been discussed for high-end Digital Signal Processors [53] and it is an

open research field also for massively parallel systems based on discrete

FPGAs [54]. These aspects are only very recently being evaluated in RP

architectures.

DREAM [12][Section 3.3.1] is an example of reconfigurable processor that

feeds its RFU through automated address generation. DREAM is an adaptive

DSP based on a medium grained reconfigurable unit. Program control is

performed by a standard 32-bit embedded core. Kernel computation is

implemented on the RFU, composed of a hardware sequencer and an array of

24x16 4-bit PEs. The RFU accepts up to 12 32-bit inputs and provides 4 32-bit

outputs per clock, thus making it impractical to access data on the core register

file. For this reason, DREAM is provided with 16 memory banks similar to

those of Montium. On the RFU side, an address generator (AG) is connected to

each bank. Address Generation parameters are set by specific control

instructions, and addresses are incremented automatically at each issue of an

RFU instruction for all the duration of the kernel. AGs provide standard STEP

and STRIDE [53] capabilities to achieve non continuous vectorized addressing,

and a specific MASK functionality allows power-of-2 modulo addressing in

order to realize variable size circular buffers with programmable start point.

1.4 General Outline of the MORPHEUS solution

The large-scale deployment of Embedded Systems is indeed raising new

demanding requirements in terms of computing performance, cost-efficient

development, low power, functional flexibility and sustainability. This results

in an increasing complexity of the platforms and an enlarging design

Multiprocessing and Reconfigurable Computing

 27

productivity gap: current solutions are out of breath while current development

and programming tools do not support the time-to-market needs.

MORPHEUS copes with these challenges by developing a global solution

based on a modular heterogeneous SoC platform providing the disruptive

technology of dynamically reconfigurable computing completed by a software

oriented design flow and a consistent toolset. These "Soft Hardware"

architectures will enable huge computing density improvements (GOPS/Watt,

Giga Operations Per Second per Watt) by a factor of x100, reuse capabilities

by x5, flexibility by more than 100 and time to market divided by 2 thanks to a

convenient programming toolset.

Figure 11: Architecture of a Heterogeneous reconfigurable device

Unless in some specific and very simple situations, today’s reconfigurable

computing platforms cannot be used as the sole computing resources in a given

system. In general, reconfigurable resources are used in combination with

standard computing resources and other devices in a system that resembles the

sketch drawn on Figure 11. The MORPHEUS architecture target, as far as it

has to comply with a broad range of applications, is intended to be a complete

Multiprocessing and Reconfigurable Computing

 28

and heterogeneous platform. Typically such a platform consists of a hardware

system architecture and design tools including methodologies which allow

application engineers totalize the hardware architecture [3].

The MORPHEUS hardware architecture i.e. the MORPHEUS SoC is

centered on three heterogeneous reconfigurable engines (HREs) targeting

different types of computation:

• The PACT XPP is a coarse grain reconfigurable array primarily

targeting algorithms with huge computational demands but mostly

deterministic control- and dataflow. Further enhancements based on

multiple, instruction set programmable, VLIW controlled cores

featuring multiple asynchronously clustered ALUs also allow

efficient inherently sequential bitstream-processing.

• The PiCoGA core is a medium-grained reconfigurable array

consisting of 4-bit oriented ALUs. Up to four configurations may be

kept concurrently in shadow registers. The architecture is mostly

targeting instruction level parallelism, which can be automatically

extracted from a C-subset language called Griffy-C.

• The M2000 is a lookup table based fine grain reconfigurable device

– also known as embedded Field Programmable Gate Array

(eFPGA). As any FPGA, it is capable to map arbitrary logic up to a

certain complexity provided register and memory resources are

matching the specifics of the implemented logic. The M2000 may

be scaled over a wide range of parameters. The internals of a

reconfigurable logic block may be modified to a certain degree

according to the requirements. Flexibility demands may favour the

implementation of multiple smaller M2000 eFPGAs instead of a

single large IP.

All control, synchronization and housekeeping is handled by an ARM 9<

embedded RISC processor. As dynamic reconfiguration might impose a

Multiprocessing and Reconfigurable Computing

 29

significant performance demand for the ARM processor, a dedicated

reconfiguration control unit is foreseen to serve as a respective off-load-engine.

Multiprocessing and Reconfigurable Computing

 30

The Morpheus Design

 31

Chapter 2 The MORPHEUS Design

2.1 The MORPHEUS Reference Architecture

Figure 12 describes a block diagram of the MORPHEUS architecture. The

SoC architecture is organized in 3 main logic sub-blocks, which reflect the SoC

programming model: a control and synchronization block centered on the

ARM9 processor core, a computational intensive region formed by 3 separate

computational engines defined Heterogeneous Computational Engines (HRE),

and a data movement block composed by a multi-layered AMBA bus

architecture and a Network-on-chip (NoC) infrastructure. The SoC

programming model mirrors the physical architecture of the chip.

The end user interfaces with the ARM-centered region, handling the SoC as

a single processor entity and making use of the standard state-of-art facilities

offered by the processor–based environment that will be described in detail in

the following. The innovative concepts and the heterogeneity of the

computation and data movement regions are hidden by software libraries and

hardware synchronization features as described by the Molen programming

paradigm: the user works at high level of abstraction utilizing data chunks

(streams) as operands and reconfigurable hardware operations as operators.

The ARM processor handles computation and data transfer commands as

“microcoded” instructions (defined as accelerated operations) that are then

translated into bit-streams for reconfigurable hardware and Bus/NoC control

statements for data transfers.

Other basic features of the toolset concept include the utilization of a Real-

Time operating system (RTOS), that is strictly integrated with hardware

services such as DMA control, interrupt management and hardware

Configuration Manager (CM) to provide HRE/Data communication control and

synchronization, and fast and smart handling of reconfiguration (bit-stream

loading over HREs).

The Morpheus Design

 32

ARMARM

AMBA AHB MAIN BUS

AMBA AHB Configuration BUS

DI

ITCM DTCM

ON-CHIP
MEM

ON-CHIP
MEM

A
M

B
A

 A
P

B
 B

U
S

UARTUART

GPIOGPIO

TimerTimer

IEEE 1284IEEE 1284

Main DMAMain DMA

CONFIG
MEM

CONFIG
MEM

Configuration

Manager

Configuration
Manager Conf DMAConf DMA AHB2AHB

BRIDGE

AHB2AHB
BRIDGE

DREAMDREAM M2000M2000 XPPXPP

AHB2APB
BRIDGE

AHB2APB
BRIDGE

CMC DDRAM

Controller

CMC DDRAM

Controller

MPMC SRAM
Controller

MPMC SRAM
Controller

NoCNoC DomainDomain

DNA

Controller

AHB2NoC

Bridge

VIC Interrupt
Controller

VIC Interrupt
Controller

Figure 12: Morpheus Overall Architecture

To ensure ideal working frequency to all computational engines (that could

also be dependent on the mapped application), HREs are integrated as

independent clock islands. Local HRE buffer memories (Data Exchange

Buffers, or DEBs) as used as a mean to propagate data across clock domains.

Specific Configuration Exchange Buffers (CEBs) are used to propagate

configuration bitstreams across clock domains (for details on DEBs and their

connection to HREs see Section 3.3).

In this context, the design of the ARM-centered system infrastructure is a

very critical step. ARM will be the main driver for most programming and

control actions on all services offered by the Morpheus chip. Its criticality thus

reside in the fact that in must be rock-stable, easy to use, easy to debug and

well known and accepted both in terms of architecture and related tools. The

usage of an unstable or not well known processor core could compromise the

usability and user-friendliness of the whole system.

The Morpheus Design

 33

On the other hand, the innovation content of the overall system does not

reside in this part, being rather centered on the computation engines and the

relative data storage and transfer infrastructure. It is thus perfectly acceptable

to make extensive use of state-of-art IP components and methodology. On the

contrary, being this region the part of the system that is more closely interfaced

with the off-chip world and the user point of view, it is mandatory to provide

all the communication means, interfaces, and user utilities that may allow an

easy, simple and efficient interface to the external word from the following

points of view, roughly displayed in order of importance:

1. Application development, program compilation, RTOS utilization

2. Chip integration in a larger system to deploy peak computation

efficiency

3. Chip utilization, test and verification

4. Clear Measurement of the chip performance

Figure 4 describes the MORPHEUS chip infrastructure, with detail on the

ARM centered system control and user interface facilities; the infrastructure is

composed by:

• One instance of ARM926EJS processor core

• A multilayered AMBA bus system

• A programmable DMA controller infrastructure

• An interrupt controller

• A set of IO peripherals to ease system control, communication,

debug and test. They are not intended for fast communication

during peak computation

• An external memory controller for off-chip communication

The reference architecture reflects the toolset organization specified based

on the C language utilization and the Molen paradigm as a programming model

The Morpheus Design

 34

for the overall system organization. Through its bus architecture, exchange

registers, and configuration and data exchange buffers (XR, CEB, DEB) the

ARM core is capable to drive and controller for all hardware services and

computational units in the SoC, including all data and configuration transfers,

so that the RTOS is put in condition to control and synchronize data

movementation and configuration and computation on the HREs. Through the

specific configuration bus, DMA and connection through external memory it

provide the means for the Dynamic configuration handling.

The following section will briefly describe the components outlined above,

their configuration in the MORPHEUS architecture and the motivations that

drove their selection.

2.1.1 ARM926EJ-S Embedded processor

The ARM926EJ-S processor is a member of the ARM9 family of general-

purpose microprocessors. The ARM926EJ-S processor is targeted at multi-

tasking applications. The main features that make it suitable to the

MORPHEUS context are full memory management, high performance, low die

size, and low power consumption.

ARM926EJ-S supports the 32-bit ARM and 16-bit Thumb instruction sets,

enabling the user to trade off between high performance and high code density.

The processor features a standard load/store RISC Harvard cached architecture

and provides a complete processor subsystem, including:

• an ARM9EJ-S integer core

• a Memory Management Unit (MMU)

• separate instruction and data AMBA AHB bus interfaces

• separate instruction and data Tightly coupled memories

The Morpheus Design

 35

The ARM926EJ-S processor implements ARM architecture version 5TEJ.

The TCM interfaces enable nonzero wait state memory to be attached, as well

as providing a mechanism for supporting DMA access for fast reloading.

 Figure 13: ARM926EJ-S block diagram

 Figure 13 shows a block diagram of the ARM926EJ-S macrocell. Most

important, the ARM926EJ-S supports the ARM debug architecture and

includes logic to assist in both hardware and software debug through a specific

JTAG connection. It will be thus possible to perform in-circuit source line

debugging on the whole MORPHEUS system controlling the final board from

a ARM debugger window. The device testability is enhanced by the ETM9

interface, which allows the user easy tracing of the code executed by the core

in a specified timing window.

The Morpheus Design

 36

2.1.2 Multi-Layer AMBA bus system

Figure 14 describes the MORPHEUS bus system excluding the Network on

Chip infrastructure. The bus architecture is based on the following

layers/busses:

1. A main AMBA AHB bus controlled by the ARM processor,

featuring a specific DMA controller. This bus is used by ARM for

data and instructions (mostly ARM will work on caches and tightly

coupled memories, so the impact of this transfers on the bus at peak

computation will be negligible). Moreover, the main bus may

access to HRE local memories for control and debug purposes. This

bus is also used for all memory mapped control registers present in

the system: HRE exchange registers, DMA control registers,

Network-on-chip control registers, Configuration Manager control

registers. Through bridges, this bus acts as a master on all

secondary bus layers in the system. The main bus also features a

dedicated access to the external memory controller.

2. A configuration AMBA AHB bus controlled by the Configuration

Manager, featuring a second specific DMA controller. The bus will

control all configuration ports relative to HREs, and have a

dedicated access to the external memory controller to provide fast

access to off-chip configuration repositories.

3. An AMBA APB bus driving chip peripherals, described in Section

2.1.5.

In the design of the MORPHEUS system, the bus architecture cannot be

considered as an element of innovation; high speed, innovative interconnect

strategies are implemented in the Network-on-chip design. The specifications

for the bus are to provide necessary performance, and most of all to guarantee a

low risk margin and offer good flexibility and programmability to the user.

The Morpheus Design

 37

External

Memory

Controller

External

Memory

Controller

On-chip

SRAM

On-chip

SRAM

ARM9
Core

ARM9
Core

Main Bus
DMA

Main Bus
DMA

Main AMBA AHB Bus

TIC

Controller

TIC

Controller

HREs

Configuration AHB Bus

Configuration

Manager

Configuration

Manager
Configuration

DMA

Configuration

DMA

AHB Slave to

Master Bridge

AHB Slave to

Master Bridge

On-chip

SRAM

On-chip

SRAM

AHB to

APB Bridge

AHB to

APB Bridge

APB Peripheral Bus

UART GPIO I2CTimers

Figure 14: MORPHEUS multilayer bus hierarchy

The AMBA bus protocol, initially developed by ARM, is considered as

state-of-the-art by most SoC developers both in industry and academia, and is

present in a very wide range of SoC products in the market landscape. In the

MORPHEUS context, it provides two essential advantages:

• The ARM processor, its MMU, and various peripherals distributed

by ARM provide native support for the AMBA protocol.

• A lot of bus components, peripherals and utilities are distributed as

pre-verified IP blocks both in the open-source world and in the IP

market, not only in terms of HDL code for silicon implementation

but also in terms of SystemC library for design exploration and

system simulation

To minimize risk margin and to provide a state-of-art solution, the

MORPHEUS bus architecture was built utilizing Synopsys DesignWare IP

The Morpheus Design

 38

components to implement both the bus architecture itself and the DMA

controller (Section 2.1.3).

2.1.3 DesignWare DW_ahb_dmac DMA Controller

In order to implement an high level programming pattern where the

MORPHEUS user handles macro-operations and data chunks and/or streams, it

is necessary to relieve the ARM processor, that represents the user interface

towards to MORPHEUS system, of the task of transferring data through the

interconnect resources and in between the memory hierarchy and from/to the

different HREs.

For this reason, programmable DMA controllers will be utilized for

implementing data transfers both on the main bus and on the configuration bus.

As described in Section 4.4 the network-on-chip architecture will provide the

same application program interface (API) of the DMAs in order to offer

homogeneous access to data transfers.

In order to profit from a well-known and “safe” architecture and minimize

integration risk it was decided to utilize an IP library as DMA controller: the

Synopsys DesignWare AHB DMAC. The main features of the controller are

the following:

• AMBA AHB based DMA Controller core that transfers data from a

source peripheral to a destination peripheral

• Supports multi-layer DMA transfers when the source and

destination peripherals are on different AMBA layers (Figure 15)

• Multi-context: supports up to 8 concurrent channels

(source/destination pairs). Channels are unidirectional (data

transfers in one direction only)

• Programmable channel priority

The Morpheus Design

 39

• Channel buffering: one FIFO per channel, Configurable FIFO

depth, Automatic data packing or unpacking to fit FIFO width

Figure 15: Scheme of a cross-layer DMA transfer

Figure 16 describes the hierarchy of any DMA transfer. Software

programming by ARM controls the number of blocks in a given transfer. Once

the DMA transfer has completed, the controller disables the channel and

generates an interrupt to signal the DMA transfer completion. The amount of

blocks and the block length is determined by the flow controller, an FSM

integrated in the DMA unit that partition the overall transfer required by the

driving processor in a suitable collection of partial transfers. For transfers

between the DW_ahb_dmac and memory, a block is broken directly into a

sequence of AMBA bursts and AMBA single transfers.

The Morpheus Design

 40

The DMA controller is provided with a set of software libraries that are used

to hide details and provide high-level functionality to the user.

Figure 16: DMA transfer hierarchy

The DW_ahb_dmac is natively designed to support the AMBA AHB bus

architecture. It is capable to exploit all transaction mechanisms featured by the

protocol, thus ensuring the ideal utilization of efficient burst transfers.

Moreover, the multi-layer support offered by this DMA controller is very

useful in the context of the MORPHEUS architecture, i.e. to allow fast

transfers between the main data bus and configuration data bus (this option

may be used for testability to read-back the configuration memories of HREs,

or to explicitly utilize the ARM core as configuration manager in some specific

application or, again, for testability purposes).

Transfer type Bandwidth
(Mbit/sec)

Single layer transfer 1950

Dual layer transfer using different memory
banks
(2 master ports & 2 layers involved)

2700

Two independent transfers using two channels
with different layers and memory blocks
(4 master ports & 4 layers involved)

5250

Table 1: DesignWare DMA Bandwidth estimation

The Morpheus Design

 41

The previous table describes the bandwidth achieved by the DW_ahb_dmac,

with a reference speed of 200MHZ, single block transfers of 1KB (256 words)

between memory addresses, no other master device accessing the bus.

2.1.4 Interrupt Controller

The inclusion of an interrupt controller appears mandatory in the

MORPHEUS architecture. On one hand, the flexibility offered by the ARM9

core in the interrupt handling is limited to two interrupt pins, one fast and one

slow interrupt request. On the other hand, the MORPHEUS programming

pattern relies a lot on interrupt handling for the synchronization of

“microcoded” instructions, that is data chunk/stream transfers (macro-operands

handling) and operation on HREs (macro-operations triggering).

The evaluations performed above on the convenience of utilizing pre-

verified IP components are very much applicable also to the Interrupt

controller selection. As part of the MORPHEUS reference architecture, it is

made available the PrimeCell Vectored Interrupt Controller (PL190) by ARM.

As it is the case for the PL175 PrimeCell described in Section 2.1.3, this

block is developed and distributed by ARM Ltd and it is especially designed to

work with the ARM processor. Moreover, it is distributed as a pre-verified

block for inclusion in SoC design. Moreover, PL190 has been used in many

commercial products to support ARM-based real time operating systems.

The most relevant features of the PL190 are:

• Compliant to the AMBA bus protocol specification

• Control and status registers mapped on AHB for fast interrupt

response

• Support for 32 standard interrupts, 16 vectored IRQ interrupts

• Hardware interrupt priority

The Morpheus Design

 42

• Software interrupt generation

• Interrupt masking, privileged mode support

• Vector interrupt controller daisy-chaining support

The PL190 provides essentially a software interface to the interrupt system.

Through memory mapped register access to the interrupt controller, software

(user routines/libraries/RTOS) can determine the source that is requesting

service and where its service routine is loaded. It supplies the starting address,

or vector address, of the service routine corresponding to the highest priority

requesting interrupt source.

There are 32 interrupt lines. The PL190 controller uses a bit position for

each different interrupt source. The software can control each request line to

generate software interrupts.

2.1.5 MORPHEUS IO Peripheral Set

The main AMBA AHB bus matrix is provided with a bridge to an APB

(Advanced Peripheral Bus) that will feature a set of IO peripherals for

enhancing the chip observability and debugging. The APB bus can be driven

by any master of the AMBA bus, so it will normally be ARM, but can be

driven by DMA for chunk transfers or by TIC protocol for testability purposes.

These peripherals include:

• A UART port for the implementation of a serial transmission

protocol. This connection is used by the ARM processor to realize

an external virtual terminal on a host test processor for easy remote

control of the chip. This feature is particularly useful in the

preliminary testing phase and to implement interactive

demonstrations of the chip/board.

The Morpheus Design

 43

• An I2C connection that can be used to provide on-board connection

between multiple instances of the MORPHEUS chip to build

composite high performance systems.

• A set of programmable timers normally used to implement timeouts

and watchdogs and to allow multithreaded elaboration by the

Operating System.

• A set of general Purpose IO register multiplexed on a set of output

pins, normally used to drive 7-segments or LCD displays to ease

testability and verification of the architecture.

It should be noted that most of the described features are potentially suitable

for a mapping on the eFPGA fabric rather than on std-cell technology. This

would give an added-value to the demonstration of the flexibility of the

MORPHEUS approach.

The eFPGA fabric will be provided with access to a set of IO Pads to

support this design option.

2.1.6 MPMC PL175 Memory Controller

Note: The PL175 memory controller is part of the “MORPHEUS reference

architecture”, and is intended as a proposal reference at this stage of the

project, but it could be substituted by different design option if a more suitable

solution becomes available in the following course of the project.

The PrimeCell MPMC is an Advanced Microcontroller Bus Architecture

(AMBA) compliant System-on-Chip (SoC) peripheral that is developed, tested

and licensed by ARM Limited. The PrimeCell MPMC offers:

• AMBA 32-bit AHB compliancy

• Dynamic memory interface supports SDRAM, DDR-SDRAM and

low-power variants

The Morpheus Design

 44

• Asynchronous static memory device support including RAM , ROM

and Flash, with or without asynchronous page mode

• Read and Write buffer to reduce latency and to improve

performance

• Eight AHB interfaces for accessing external memory with

programmable priority mechanism

• 8-bit, 16-bit and 32-bit wide static memory support

• 16-bit and 32-bit wide databus SDRAM and SyncFlash memory

support. 16-bit wide databus DDR-SDRAM support

• Separate AHB interface for programming the MPMC control

registers

• Locked AHB transactions supported, Support for all AHB burst

types

• Support for the External Bus Interface (EBI) that enables the

memory controller pads to be shared

• Integrated Test Interface Controller (TIC) for monitoring bus

activity on the internal MORPHEUS AMBA architecture

In the context of this section, the main features that suggest the utilization of

the PL175 are its native compliancy with the ARM AMBA bus architecture,

the bus monitoring and debug facility offered by the TIC test protocol an the

large number of available channels with programmable priority. Moreover,

being a pre-defined component distributed by ARM, and integrated in many

existing products on the market in the technology targeted by MORPHEUS, it

has a low integration risk margin that could be beneficial.

The Morpheus Design

 45

2.2 Reconfigurable Engines

2.2.1 XPP

The XPP array is a coarse grained reconfigurable tile, specialized for data

flow type of algorithms. The following section provides a rough overview

about XPP array. In the second part the Function PAEs and their integration

into the XPP array are described. The XPP IP is scalable in terms of array size

and routing capabilities. The available parameters are summarized in Table 3.

The XPP architecture provides parallel processing power combined with

fast reconfiguration. The last version which is named XPP-III is currently

under development and integrates the new Function PAEs (FNC-PAE) which

extend the application space of the XPP also towards high performance control

flow oriented applications.

XPP is a coarse-grained scalable architecture designed not only to provide

maximum performance combined with low power consumption but also to

simplify algorithm design and programming tasks. The XPP can process both

basic categories of application software: data-flow oriented sections and

control-flow oriented sections. The sections are handled by two basic types of

processing resources:

1. The reconfigurable course grained XPP-array processes the data-

flow sections of the application: Configurable Processing Array

Elements (ALU-PAEs and RAM-PAEs) are arranged in an array

and communicate via point-to point communication links; Programs

are mapped as flow graphs to the array of ALUs and RAMs;

Communication is packet-oriented with auto-synchronization;

Control of programs is handled by an independent event network;

The array provides fast dynamic reconfiguration; I/O supports

streaming and memory mapped I/O.

The Morpheus Design

 46

2. The FNC-PAEs process the Control-Flow sections of the

application: VLIW-type PAEs are tightly integrated into the XPP-

array; Data exchange with the XPP-array is data-flow synchronized;

The FNC-PAEs may steer the reconfiguration sequencing of the

XPP-array; FNC-PAEs I/O may use the XPP-array streaming I/O

and shared external memory.

2.2.1.1 The XPP-Array Overview

Figure 17 shows an array with 5 x 8 ALU-PAEs, 2x8 RAM-PAEs and 8

FNC-PAEs. The array-I/O is integrated in the RAM-PAEs at the four corners

of the array. In the following sections the fabric which is built from RAM-

PAEs and ALU-PAEs is named the "XPP-array".

Figure 17: An XPP array with 6x5 ALU-PAEs

Arithmetic and logical operations are executed in the ALU-PAEs; data can

be stored locally in the RAM-PAEs. Communication is done by transmission

The Morpheus Design

 47

of data packets through the configured communication network. A

configuration specifies the communication paths between the PAEs, the

function of the ALUs and initial values of registers and RAMs. The

configuration is not changed as long as data flows through the network. Data

I/O to the array is performed by means of the ports at the corners of the array.

The FNC-PAEs may access the outside world via direct access to the external

memory hierarchy or through the streaming ports.

2.2.1.2 Function PAE Overview

The Function PAEs (FNC-PAE) which are tightly coupled to the

reconfigurable XPP-array are sequential 16-bit cores which are optimized for

algorithms requiring a large amount of conditions and branches. One FNC-

PAE comprises two columns of four small non-pipelined 16-bit ALUs1. This is

on the first view similar to VLIW DSPs. However there are substantial

differences which enhance the condition and branch performance. First of all,

any ALU can access results of the rows above and the register file within a

single clock cycle. Based on results, subsequent ALUs in a column can be

disabled conditionally. This allows conditional operations and branching to

different targets to be evaluated within the current clock cycle. In parallel, the

Special Function Unit (SFU) comprises a parallel multiplier and bit-field

operations. Code is stored in a small local associative Instruction Cache. Data

is stored in a fast tightly coupled local RAM and the large external System

RAM2. Both are accessed through a 32-bit address generator (AG) comprising

stack and pointer arithmetic.

1 ALU operations: boolean, add/sub, barrel shift, branching etc.

2 The System RAM is SoC specific and shared by the Function PAEs.

The Morpheus Design

 48

REGs RAM

(TCM)

Instr.

Cache

AG*

FNC-PAE

SFUI/O

Figure 18: FNC-PAE

The communication with the XPP-array (Figure 18 left ports) is data flow

synchronized: a port suspends its operation until data can be transferred. Thus

programs running on the XPP array and the FNC-PAEs are implicitly data

synchronized. Furthermore, FNC-PAEs may exchange data through vertical

data flow busses. Synchronization on operating system level (e.g. loading a

new XPP configuration) can be achieved with XPP events and FNC-PAE

interrupts.

2.2.1.3 XPP- III Third Generation Core Details

As outlined in the previous overview, the XPP is built in a scalable and

modular way. The following section describes roughly the concept and

elements of the XPP technology. The XPP–III IP comprises

• the XPP-array

• the Function PAEs.

The XPP-III array uses only a handful different functional blocks: ALU-

PAEs (processing array elements) perform the basic calculations, RAM-PAEs

provide a static RAM together with an ALU and I/O interfaces. In addition,

FNC-PAEs provide sequential processing capabilities. Each PAE contains

several "objects". All objects are integrated with the communication channels

The Morpheus Design

 49

of the array, providing point-to-point connections. The configuration of the

array is done by a pipelined bus-system.

Figure 19: A sample XPP -array (6x5 ALU PAEs)

The XPP-III core is built from a rectangular array of ALU-PAEs, RAM-

PAEs at the left and right side of the array. At the bottom line specialized PAEs

(BL-ALU-PAE, BL-RAM-PAE) provide routing channels beneath the PAEs.

Figure 19 shows a sample array with 30 ALU-PAEs, 10 RAM-PAEs, and I/O.

Only the I/O of the RAM-PAEs at the corners of the array is used. The data

word size is 16 bit.

ALU-PAEs comprise three objects and a connection-matrix. ALU-PAEs

enclose an ALU-object featuring a typical DSP-command-set including

multiplication. The BackRegister-object (BREG) is used for routing from

bottom to top, for arithmetic and normalization. The ForwardRegister-object

(FREG) provides routing channels from top to bottom and a specialized unit

with data-flow operators. The objects have input registers and a one-stage

transparent FIFO which can be preloaded during configuration. The output

The Morpheus Design

 50

Register (DF Register) is able to buffer one packet if the transfer to the next

connected object stalls.

Vertically, each object can be connected to one or more horizontal busses.

Configurable registered switch-objects are used for segmenting the

communication lines horizontally to the neighboring PAEs. In parallel to the

data connections, the similarly designed independent event-network (dotted

connections in Figure 20) enables the transfer of status information from the

ALUs. Events can be used to steer the data flow or to control the operation of

ALU-opcodes. The BREG provides a look-up table for manipulation of several

event streams.

Figure 20: ALU PAE objects

RAM-PAEs are similar to ALU-PAEs, merely the ALU object is replaced

by a RAM-object and the I/O Element is integrated.

The dual-ported RAM-object has two independent ports enabling

simultaneous read and write operations. As with all XPP objects, the RAM

offers packet-oriented data handling. To read from a RAM-object, a data

The Morpheus Design

 51

packet must be sent to its address input. As a result, the RAM-object generates

an output packet with the content of the addressed RAM cell. Similarly, writing

to RAM requires sending data packets to the address-inputs and the data-inputs

of the write port. If the RAM is configured in FIFO-mode, no addressing is

required and the FIFO generates output packets as long as packets are stored.

RAMs and FIFOs can be preloaded during configuration. This allows using

them as look-up tables or for storing coefficients and initialized parameters.

Events may control read and write operations and inform about the status of the

RAM-objects if they are concatenated to larger capacity RAMs.

Figure 21: RAM PAE objects with I/O

Figure 22 shows the general structure of an I/O Interface in streaming mode.

The I/O interface provides two data channels and two single bit event signal

channels. All four channels can operate independently using an identical

streaming protocol. Alternatively, the data channels can be combined to

support external RAMs. This mode allows directly addressing an external

memory module. Such memory can be used as larger external buffer RAM and

for exchanging data blocks (scratch-pad). The RAM mode interface is mainly

intended for algorithms which require random access to the storage repository

or where the memory's FSM does not provide the required access pattern.

The Morpheus Design

 52

Figure 22: XPP I/O in Streaming mode & RAM mode

2.2.1.4 XPP III Function PAE Details

This section provides some details of the Function PAEs which handle the

control-flow part of algorithms.

The FNC-PAE is based on a load/store VLIW architecture. Unlike VLIW

processors, it comprises implicit conditional operation as well as sequential and

parallel operation of ALUs within the same clock cycle. Program code is stored

in a local cache which can be locked. Data is stored in a local tightly coupled

memory (D-MEM) and (optionally) external RAM.

The ALU data-path comprises eight 16-bit wide integer ALUs arranged in

four rows by two columns. Data processing in the left or right ALU column

(path) occurs strictly from top to bottom. This is an important fact since

conditional operation may disable the subsequent ALUs of the left or right

path. The complete ALU datapath is executed within one clock cycle. The final

result is written to the register file or other target registers within the very same

clock cycle. Status flags of the ALUs are fed into the next row of ALUs. The

status flags of the bottom ALUs are stored in the status register. Flags from the

status register are used by the ALUs of the first row and the instruction decoder

to steer conditional operations. This model enables the efficient execution of

The Morpheus Design

 53

highly sequential algorithms in which each operation depends on the result of

the previous one.

Figure 23: FNC-PAE overview the ALU data-path

The Morpheus Design

 54

All ALUs have access to the 16-bit register file. Additionally each ALU has

access to the previously processed results of all ALUs above. In order to

achieve low latencies within the ALU data-path, the ALUs support a restricted

set of operations: addition, subtraction, compare, barrel shifting, and boolean

functions as well as jumps. More complex operations are implemented

separately as SFU functions. Most ALU instructions3 are available for all

ALUs, however some of them are restricted to specific rows of ALUs.

Conditional Operation and Branching

Many ALU instructions support conditional execution, depending on the

results of the previous ALU operations, either from the ALU status flags of the

row above or – for the first ALU row - the status register, which holds the

status of the ALUs of row 3 from results of the previous clock cycle. When a

condition is FALSE, the instruction with the condition and all subsequent

instructions in the same ALU column are deactivated for this cycle. A

deactivated ALU column can be reactivated again.

Three pointers are used for branching based on conditions. Without a

condition, one pointer points to the next opcode. It is possible to select one of

the three pointers based on results of a condition for relative branch targets

between +-31. Long jumps are possible with dedicated ALU instructions or

using a special register (lnk).

Multiple types of jump instructions are supported:

• Opcode implicit program pointer modifiers using the program

pointers

• Long jump Instruction with immediate or register offset

• Subroutine calls and return with immediate or register offset

(stack)

The Morpheus Design

 55

• Jumps via the 32-bit lnk register for subroutine call w.o. delay and

stack operations

• Interrupt calls and return via intlnk register

Memory Hierarchy

The FNC-local memories D-MEM and I-MEM provide the first level of the

memory hierarchy. Time critical sections of algorithms should be executed

using only those local resources. The I-MEM is organized as a 4-way set

associative cache (4 x 64 * 256 bit). The sets can be locked and pre-fetched

under program control. The D-MEM is organized as a linear 1024 x16 bits.

The access to the external memory hierarchy depends on the overall SoC

design.

Since several FNC-PAEs will access the memory, an arbiter is required.

However, most inner loops will be executed from the local I-MEM, thus only

minimal external code access is expected. Local variables should be stored in

the local D-MEM.

2.2.1.5 XPP Interfacing

XPP-arrays interface to external devices and the FNC-PAEs with:

• Data streaming channels with one processor word by means of a

hardware handshake protocol that maintains the stream-

synchronization capabilities also to the outside world (i.e. SoC

Busses, AMBA, NoC and FNC-PAEs).

• The array I/O interface can alternatively be configured to provide

addresses and data for connection to external RAMs (not to FNC-

PAEs)

• Event streaming ports transfer one-bit information similarly to the

data channels

The Morpheus Design

 56

• The Reconfiguration Port provides a streaming interface that allows

sequential loading of configuration into the array. Typically an

external DMA controller may performs this task.

Protocol wrappers can adapt the streaming channels to any SoC

infrastructure.

Configuration Interface

A pipelined configuration bus configures the objects within the PAEs.

Figure 24 shows the configuration chain in the above-mentioned XPP-array.

Figure 24: Configuration chain

Tokens with address and data are shifted pipelined through the array. Each

configuration register has a unique address. The word width of the

Configuration Bus is 43-bits. Thus, an external wrapper must adapt e.g. 32-bit

DMA transfers to the required 43-bit words.

One should note that the configuration only programs the XPP-array and the

horizontal busses which go to the FNC-PAEs (not shown in Figure 24). The

The Morpheus Design

 57

FNC-PAEs and their vertical dataflow busses are controlled by the FNC-PAEs

itself by means of the FNC-I/O Bus.

Characteristics of the XPP-III IP

The following characteristics are derived from Synopsis tools. For the

power estimation typical applications have been performed (i.e. MPEG2

inverse quantization and MPEG4 quarter pixel reconstruction) on an XPP

40.16.0. The algorithms are applied on a 16x16 pixel macro block and deliver

one result / cycle.

The figures are intended to give a rough estimate about the required area

and power budget. One should note that after backend processing more area

will be required and the maximum frequency will drop.

XPP-III Array Technical Data (Synthesis)

XPP 40.8.0
dynamic & typical
values

Technology

area
for
100
MHz
design f max

power
@100
MHz

energy/
cycle

 [mm2] [MHz] [mW] [nJ]

GPLVT - 90nm, low
treshold 11,7 400,0 88,0 0,88

Table 2: XPP-III array preliminary characteristics

The Morpheus Design

 58

The XPP-III hardware IP can be scaled by a number of parameters, which

are defined in the following table.

Item Parameter Description Range

General structure of XPP array and word width

PAE_COLUMN Number of PAE
columns per PAC
(includes RAM PAEs)

>= 6

PAE_ROW Number of PAE rows.
Specifies also the
number of FNC-PAEs.

>= 2

DATA_CH Number of Data
Channels per PAE for
each direction
Full featured I/O
requires 6 or more

2 .. 8

XPP-core
structure

EVENT_CH Number of Event
Channels per PAE for
each direction
Full featured I/O
requires 6 or more

2 .. 8

Internal RAM Object, RAM and FIFO Mode

IRAM_ADR_MASK Address_mask_range
: Address masking
bits of the address
mask

4

RAM
Object

IRAM_ADR_WIDTH Number of address
bits

8

Vertical bottom-up routing, Event Processing and special
ALU

BREG_DATA_PORTS Data routing ports
(for BREG-ALU two
routing ports are
utilised)

2 .. 4

BREG
Object

BREG_EVENT_PORTS Event routing ports 4 .. 5

Vertical top -down routing, Event Processing and special
ALU fro dataflow steering

FREG_DATA_PORTS Data routing ports
(for FREG-ALU two
routing ports are
utilized)

2 .. 4

FREG
Object

FREG_EVENT_PORTS Event routing ports 4 .. 5

Table 3: XPP-III array hardware IP parameters

The Morpheus Design

 59

2.2.1.6 Mapping of Algorithms to the XPP-array

The algorithm is defined by means of a flow graph, which is statically

mapped (spatial mapping) onto the array during one configuration.

Figure 25: Flow-graph of a complex multiplication and spatial

mapping

Figure 25 shows the flow-graph of a complex multiplication. With XPP,

each operator (MULT, ADD, SUB) is mapped onto an ALU-PAE and the

connections between the PAEs are statically wired. Data flows pipelined

through this network, which is not changed until a certain amount of data has

been processed and - optionally - has been buffered in the RAM. After

execution, the PAEs are released and can be used for the next configuration,

which performs the next step of the computation.

This strategy is efficient for algorithms, where a large number of data must

be processed in a relatively uniform way. Since the reconfiguration of the array

requires several hundred clock cycles and extra energy, a single configuration

should be active for a certain amount of processed data. Most multimedia and

wireless applications process data streams and require lots of processing power

exactly for this type of algorithms.

2.2.1.7 Data and Event Streams

In XPP, a data stream is a sequence of single data packets traveling through

the flow-graph that defines the algorithm. A data packet is a single machine

The Morpheus Design

 60

word (e.g. 16 or 24 bit). Streams can, for example, originate from natural

streaming sources such as A/D converters. When data is located in a RAM, the

XPP may generate packets that address the RAM producing a data stream of

the addressed RAM-content. Similarly, calculated data can be sent to streaming

destinations, such as D/A converters or to integrated or external RAMs.

In addition to data packets, state information packets are transmitted via an

independent event network. Event packets contain one bit of information and

are used to control the execution of the processing nodes and may synchronize

external devices.

The XPP network enables automatic synchronization of packets. An object

(e.g. ALU) operates and produces an output-packet only when all input data

and event packets are available. The benefit of this auto-synchronizing network

is that only the number and order of packets traveling through a graph is

important – there is no need for the programmer or compiler to care about

absolute timing of the pipelines during operation. This hardware feature

provides an important abstraction layer allowing compilers to effectively map

programs to the array.

2.2.1.8 Development tools

Due to the fact that XPP array is not a standard sequential processor and

also no fine-grained FPGA, specialized development tools are provided. A tool

suite is available which allows describing the algorithm as flow graph. The

tools feature automatic place and route, clock accurate simulation and an API

that allows the integration into System-C based simulations. A vectorizing C-

compiler simplifies porting of sequential algorithms to the XPP array.

The FNC-PAEs can be programmed in assembler language and/or with

ANSI C. The tools provide Co-simulation and debugging features for programs

utilizing both, the XPP-array and programs running on several Function PAEs.

The simulation is cycle accurate within the XPP-array. Access to the external

The Morpheus Design

 61

Memory hierarchy which is required for the FNC-PAEs is performed by means

of a simplified memory model.

The Morpheus Design

 62

2.2.2 PiCoGA

The PiCoGA is a programmable gate array especially designed to

implement high-performance algorithms described in C language. The focus of

the PiCoGA is to exploit the Instruction Level Parallelism (ILP) present in the

innermost loops of a wide spectrum of applications (e.g. multimedia,

telecommunication and data encryption). From a structural point of view, the

PiCoGA is composed of 24 rows, each implementing a possible stage of a

customized pipeline. Each row is composed of 16 Reconfigurable Logic Cells

(RLC) and a configurable horizontal interconnect channel. Each RLC includes

a 4-bit ALU, that allows to efficiently implement 4-bitwise arithmetic/logic

operations, and a 64-bit look-up table in order to handle small hash-tables and

irregular operations hardly describable in C and that traditionally benefit from

bit-level synthesis. Each RLC is capable of holding an internal state (e.g. the

result of an accumulation), and provides fast carry chain propagation through a

PiCoGA row. In order to improve the throughput, the PiCoGA supports the

direct implementation of Pipelined Data-Flow Graphs (PDFGs), thus allowing

to overlap the execution of successive instances of the same PGAOP (where a

PGAOP is a generic operation implemented on the PiCoGA). Flexibility and

performance requirements are accomplished handling the pipeline evolution

through a dynamic data-dependency check performed by a dedicated Control

Unit.

Summarizing, with respect to a traditional embedded FPGAs featuring an

homogeneous island-style architecture, the PiCoGA is composed of three main

sub-parts, highlighted in Figure 26:

• An homogeneous array of 16x24 RLCs with 4-bit granularity

(capable of performing operations e.g. between two 4-bitwise

variables) and connected through a switch-based 2-bitwise

interconnect matrix

The Morpheus Design

 63

• A dedicated Control Unit which is responsible to enable the

execution of RLCs under a dataflow paradigm

• A PiCoGA Interface which handles the communication from and to

the system (e.g. data availability, stall generation, etc.)

In terms of I/O channels, the PiCoGA features 12 32-bit inputs and 4 32-bit

outputs, thus allowing for each PGAOP to read up to 384 bits and to write 128

bits.

The PiCoGA is a 4-context reconfigurable functional unit capable of

loading up to 4 PGAOPs for each configuration layer. PGAOPs loaded in the

same layer can be executed concurrently, but a stall occurs when a context

switch is performed.

Figure 26: Simplified PiCoGA Architecture

If we exclude the interface block, the PiCoGA is a custom designed array,

thus scalability and modularity is limited and requires additional work. In fact,

the PiCoGA is a fixed-size architecture but more than one PiCoGA instances

can be considered for the MORPHEUS design in order to further improve the

RLC

The Morpheus Design

 64

overall computational power. The PiCoGA interface supports the propagation

of the dataflow paradigm used inside the PiCoGA at an instance level, thus

obtaining a hierarchical pipeline.

2.2.2.1 PiCoGA Architecture

The main features of the PiCoGA architecture are:

• A fine-grained configurable matrix of 16x24 RLCs

• A reconfigurable Control Unit, based on 24 Row Control Units

(RCUs) that handle the matrix as a datapath (see Figure 26).

• 12 primary 32-bit inputs and 4 primary 32-bit outputs

• 4 configuration contexts are provided as a first-level configuration

cache; only 2 clock cycles are required to change the active context

(context switch) and 1 configuration context can be active at a time.

• Up to 4 independent PiCoGA operations can be loaded in each

context, featuring partial run-time reconfiguration

Each RLC can compute algebraic and/or logic operations on 2 operands of 4

bits each, producing a carry-out/overflow signal and a 4-bit result. As a

consequence, each row can provide a 64-bit operation or 2 32-bit operations (or

4 16-bit, 8 8-bit operations, and so on). The cells communicate through an

interconnection architecture with a granularity of 2 bits.

Each task mapped on the PiCoGA is defined PGAOP. The granularity of a

PGAOP is typically equivalent to some tens of assembly operations. Each

PGAOP is composed by a set of elementary operators (logic or arithmetic

operations), that are mapped on the array cell.

Each PiCoGA cell also contains a storage element (FF) that samples each

operation output. This storage element cannot be bypassed cascading different

cells. Thus PiCoGA can be considered a pipelined structure where each

elementary operator composes a stage. Computation on the array is controlled

by a RCU which triggers the elementary operations composing the array. Each

The Morpheus Design

 65

elementary operation will occupy at most a clock cycle. A set of concurrent

(parallel) operations forms a pipeline stage. Figure 27 shows an example of

pipelined DFG mapped onto PiCoGA.

Figure 27: Pipelined DFG in PiCoGA

The set of elementary operations composing a PGAOP and their data

dependencies are described by a DFG (Data Flow Graph). PiCoGA is

programmed using Griffy-C. Griffy-C is a subset of the C language that is used

to specify a set of operations that describe the DFG. Automated tools (Griffy-C

compiler) are used to:

1. Analyze all elementary operations described in the Griffy-C

code composing the DFG, determining the bit-width and their

dependencies. Elementary operations are also called DFG nodes

2. Determine the intrinsic ILP (Instruction Level Parallelism)

between operations (nodes).

3. Map the logic operands on the hardware resources of the

PiCoGA cells (a cell is formed by a Lookup Table, an ALU, and

some additional multiplexing and computational logic). Each

cell features a register that is used to implement pipelined

The Morpheus Design

 66

computation. Operations can not be cascaded over two different

rows. Figure 28 shows a typical mapping on PiCoGA.

4. Route the required interconnections between RLCs using the

PiCoGA interconnection channels.

5. Provide the bitstream (in the form of a C vector) to be loaded in

the PiCoGA in order to configure both the array and the control

unit (the PiCoGA Interface does not require a specific

configuration bitstream). Configurations are relocable, thus they

can be loaded in any configuration layer starting from any

available row.

Figure 28 represents a typical example of mapping onto PiCoGA. As

explained in previous sections, after a data-dependency analysis, the DFG is

arranged in a set of pipeline stages (thus obtaining the Pipelined DFG). Each of

pipeline stage is placed in a set of rows (typically they are contiguous rows, but

this is not mandatory).

In Figure 28, different colors represent different pipeline stages. Depending

on the row-level granularity of the PiCoGA Control Unit, one row can be

assigned only to one single pipeline stage, and it cannot be shared among

different pipeline stages.

The Morpheus Design

 67

Figure 28: Example of PGAOP mapping on PiCoGA

The Morpheus Design

 68

Reconfigurable Logic Cell Architecture

Figure 29: Reconfigurable Logic Cell: simplified architecture

The internal architecture of the Reconfigurable Logic Cell is depicted in

Figure 29. Three different structures can be identified:

1. The input pre-processing logic, which is responsible to internally

route inputs to the ALU or the LUT and to mask them when a

constant input is needed

2. The elaboration block (ALU & LUT), which performs the real

computation based on the operation selected by the RLC-op block

3. The output manager, which can select outputs from the ALU, the

LUT, and eventually from the Carry-Chain and synchronize them

through Flip-Flops. The output block samples when enabled by the

Row Execution Enable signal provided by the control unit.

Therefore the control unit is responsible for the overall data

consistency as well as the pipeline evolution.

4
Output

The Morpheus Design

 69

Operations implemented in the “ALU&LUT” block are:

• 4-bitwise arithmetic/logical operations eventually propagating a

carry to the adjacent RLC (e.g. add, sub)

• 64-bit lookup tables organized as:

o 1-bit output 4/5/6-bit inputs

o 2-bit outputs 4/5-bit inputs

o 4-bit outputs 4-bit inputs

o a couple of independent lookup tables featuring:

1-bit output/4-bit inputs or 2-bit outputs/4-bit inputs

• Up to 256-bit configurable memory module. Each configuration

context provides 64-bit LUTs (see previous point) and this special

memory module can be implemented flattening in a single-context

configuration the memory amount of all the LUTs. This special

memory configuration can be applied for every RLC in the array,

and the addressing is internal, and performed through other RLCs.

• 4-bit Multiplier module; more in detail, it is a multiplier module

with 10-bit (in case of A * B. 6 bit are for the operand A and 4 bit

for the operand B) of inputs and 5-bit output, including 12 Carry

Select Adder and specifically designed to efficiently implement

small/medium multiplier on PiCoGA resource.

• 4-bit Galois Field Multiplier – GF(2
4
)

Furthermore, lookup tables can be used to implement operations that require

carry propagation, such as the comparison between two variables. LUTs can be

programmed to use the carry chain while the carry-out can be re-directed to

standards outputs.

The Morpheus Design

 70

While standard RLC inputs (A, B in Figure 29) are 4-bitwise (compliant

with the cell granularity), the F inputs are 2 additional bits, that are used only

when the multiplier module or some customized configuration is used.

PiCoGA Control Unit

The PiCoGA Control Unit handles the pipeline evolution, triggering the

execution of a pipeline stage (implemented as a set of rows) when:

• input data are available

• output data can be overwritten

• writeback channels are available

A data-flow graph directly represents dependencies among computational

nodes through the data dependency graph, and it is possible to check both

forward and feedback arcs to handle an optimal pipelined execution.

A pipelined data-flow computation can be modeled using timed Petri-Nets

associating an inverse data arc and a placeholder to each data arc (representing

a data dependency). Each node computation is “taken” when all input arcs have

a token in the placeholder and it produces a token for each output arc. The

activation of each node, or transition in terms of Petri Nets specific language,

depends on each preceding node completion and on each successive node

availability through a producer/consumer paradigm.

Under this pattern, the dedicated programmable control unit can be used to

handle the pipeline activity, to start new PGAOPs or to stall them when

requested resources are not available yet (e.g when writeback channels are

already used by another PGAOP).

To save area, the dedicated control unit works with a granularity of one

array row, thus 16 RLCs are the minimum number of active cells. More than

one PiCoGA row can be used to build a wider pipeline stage, but, in order to

The Morpheus Design

 71

maintain a fixed clock frequency cascaded RLCs are better mapped on

different pipeline stages.

When a pipeline stage computes, it produces a “token” which is sent to

preceding and successive nodes through a dedicated programmable

interconnection channel. Each RCU receives “tokens” from the preceding and

successive connected nodes which represent placeholders of the equivalent

timed Petri Net that manages the pipelined DFG computation. Under this

pattern, we schedule computational nodes to build pipeline stages, according

with the earliest firing rule, and then we map pipeline stages on a contiguous

set of rows.

30 shows a possible pipelined data-flow graph and the corresponding

simplified control unit configuration.

Figure 30: Pipeline management using RCUs

2.2.2.2 PiCoGA Programming Approach

The language used to configure the PiCoGA in order to efficiently

implement pipelined DFG is called Griffy-C. Griffy-C is based on a restricted

subset of ANSI C syntax enhanced with some extensions to handle variable

The Morpheus Design

 72

resizing and register allocation inside the PiCoGA: differences with other

approaches reside primarily in the fact that Griffy is aimed at the extraction of

a pipelined DFG from standard C to be mapped over a gate-array that is also

pipelined by explicit stage enable signals. The fundamental feature of Griffy-

based algorithm implementation is that Data Flow Control is not synthesized

on the array cells but it is handled separately by the hardwired control unit,

thus allowing a much smaller resource utilization and easing the mapping

phase. This also greatly enhances the placing regularity.

Griffy-C is used as a friendly format in order to configure the PiCoGA using

hand-written behavioral descriptions of DFGs, but can also be used as an

intermediate representation (IR) automatically generated from high-level

compilers. It is thus possible to provide different entry points for the compiling

flow: high-level C descriptions, pre-processed by compiler front-end into

Griffy-C, behavioural descriptions (using hand-written Griffy-C) and gate level

descriptions, obtained by logical synthesis and again described at LUT level.

Restrictions essentially refer to supported operators (only operators that are

significant and can benefit from hardware implementation are supported) and

semantic rules introduced to simplify the mapping into the gate-array.

Three basic hypotheses are assumed:

• DFG-based description: no control flow statements (if, loops or

function calls) are supported, as data flow control is managed by the

embedded control unit. Conditional assignments (? :) are

implemented on standard multiplexers.

• Single assignment: each variable is assigned only once, avoiding

hardware connection ambiguity.

• Manual dismantling: only single operator expressions are allowed

(similarly to intermediate representation or assembly code).

Basic Griffy-C operators are summarized in Figure 31, while special

intrinsic functions are provided in the Griffy-C environment in order to allow

The Morpheus Design

 73

the user to instance non-standard operations, such as for example the

“multiplier module”

Figure 31: Basic operations in Griffy-C

Native supported variable types are signed/unsigned int (32-bit), short int

(16-bit) and char (8-bit). Width of variables can be defined at bit level using

#pragma directives. Operator width is automatically derived from the operand

sizes. Variables defined as static are used to allocate static registers inside the

PiCoGA, which is registers whose value is maintained across successive

PGAOP calls (i.e. to implement accumulations). All other variables are

considered “local” to the operation and are not visible to successive PGAOP

calls.

Once critical computation kernels are identified through a code profiling

step in the source code, they are rewritten using Griffy-C and can be included

in the original C sources as atomic PiCoGA operations. #pragma PiCoGA

directives are used to retarget the compiling flow from standard assembly code

to the reconfigurable device.

Starting from the Griffy-C description, DFGs are placed and routed into the

PiCoGA, while the array control unit is programmed in order to perform a

pipelined execution. Hardware configuration is obtained by direct mapping of

The Morpheus Design

 74

predefined Griffy-C library operators. Thanks to this library-based approach,

specific gate-array resources can be exploited for special calculations, such as a

fast carry chain, in order to efficiently implement arithmetic or comparison

operators. Logic synthesis is kept to a minimum, implementing only constant

folding (and propagation) and routing-only operand extraction such as constant

shifts: those operations are implemented collapsing constants into destination

cells, as library macros have soft-boundaries and can be manipulated during the

synthesis process.

2.2.2.3 Validation of PGAOPs

The functional validation of a PGAOP is carried out in a standard C

environment. The functional validation allows the user to debug a PGAOP in

order to verify the correctness of the code. The PGAOP, described as usual in

Griffy-C, is compiled by PiCoGA tools that provide an ANSI C emulation.

The emulation is functionally equivalent to Griffy-C, taking into account

both standard operations and instruction set extension, such as direct LUT

specification or multiplier modules. Furthermore, the emulation takes into

account the scheduling performed by the compiler when pipeline stages are

built.

Debugging is facilitated by a Graphical User Interface (GUI) that can be

associated to a standard debugging tool in order to provide an easy way to

inspect intermediate results in the Griffy-C part. While the standard C code can

be suspended through breakpoint, the execution on the PiCoGA is emulated as

if it was an atomic instruction (it is a functional model).

The Morpheus Design

 75

2.2.3 Embedded FPGA

This section describes the different features and architectural options for the

fine grained eFPGA block of the MORPHEUS SoC. This makes it possible to

choose different architectural options for the MORPHEUS SoC design.

FlexEOS macros are SRAM-based, re-programmable logic cores to be

integrated into SoC designs. The logic function of the core can be re-

configured simply by downloading a new bitstream file. FlexEOS is available

in different capacities and multiple macro instances can be implemented in one

device to achieve the required configurability while accommodating area and

performance constraints.

2.2.3.1 Overview of the FlexEOS product

A FlexEOS macro is an FPGA to be embedded in a SoC design. The

FlexEOS package contains a hard macro of the FPGA core, plus the software

necessary to configure the FPGA core with the required functionality.

Each FlexEOS package contains the following items:

• A hard macro, the so-called macro core, which is the actual re-

configurable core to be included in a SoC design.

• A soft block which is the synthesizable RTL description of the

‘Loader’, a controller which manages the interface between the

macro core and rest of the SoC. Multiple macro instances in one

device require multiple Loaders, one per macro. The main functions

of the Loader are to:

o load the configuration bitstream, and verify its integrity at

any time

o simplify the silicon test procedure

• A software tool suite to create

The Morpheus Design

 76

o files required during the integration of the macro into the

SoC design,

o a bitstream file to configure the hard macro for a particular

application.

2.2.3.2 FlexEOS Macro block diagram

Figure 32: FlexEOS macro block diagram

Figure 32 shows a block diagram of a FlexEOS macro when embedded in a

SoC, and its interfaces to the rest of the system. It has to be noted that each

FlexEOS macro contains a macro core and a Loader. Furthermore, the control

interface in Figure 32 is only used for accessing the system functions of the

FlexEOS macro, i.e. for writing commands and configuration words to the

Loader and reading back status information from the macro core. The user

The Morpheus Design

 77

interface signals correspond to the macro core input and output signals, and are

the only ports which can be instantiated by a design mapped into the core

during run-time.

Loader

The FlexEOS macro is a LUT-based FPGA technology which needs to be

re-configured with a design each time the power is turned on, or each time the

application requires a change of its functionality.

The Loader ensures the proper loading of a configuration bitstream. Its

design is optimized to simplify the interactions between the rest of the SoC and

the macro core, and to allow predictable and reliable control of the core

configuration and operation modes. It verifies the integrity of the bitstream

while it is being loaded by computing a CRC signature which is checked

against a reference CRC previously calculated by the FlexEOS compilation

software. The CRC signature of the loaded configuration is also continuously

computed when the application is running, so that if an error occurs in the

eFPGA configuration, the SoC controller can be interrupted to reload the

bitstream and re-initialize the related system functions. The time required for a

CRC signature computation is about 2 ms for a 4K-MFC macro, depending on

the Loader clock frequency.

A typical example for a bitstream corruption during application run-time is a

software error. Thereby, one or more configuration memory bit-cells may

switch to their respective opposite value due to surrounding noise. The

functionality mapped to the eFPGA is then modified and not predictable.

In addition to handling the configuration, the Loader includes specific

functions which speed up the silicon test time. The FlexEOS architecture is

highly parallel, so only a minimal set of configuration and test vectors are

needed to test each unique internal structure. The Loader uses this information

to test any similar structure by simultaneously replicating a basic set of

configuration and test vectors for the whole core. It then analyzes the result of

all the tests in parallel and stores the result in its own status register. The

The Morpheus Design

 78

external controller, which in this case should be the tester, can read this status

register back at the end of each test sequence to find out if it failed or passed.

The Loader is delivered as a synthesizable VHDL design, which requires

between 10k and 20k ASIC gates, depending on the customer implementation

flow and target manufacturing technology. Its typical operating frequency is

100MHz and below.

2.2.3.3 Architecture

FlexEOS uses a highly scalable architecture which permits gate capacities

from a few thousands to multiple millions.

A possible option for the MORPHEUS SoC is the FlexEOS 4K macro

which includes 4096 MFCs (Multi-Function logic Cells). Furthermore, it can

also optionally include the following:

• 8 DPRAM blocks (either 4K bits or 8K bits)

• 32 MACs; 128 x 8 bit adders

The MFC

The basic FlexEOS building block is the MFC which is a programmable

structure with 7 inputs and 1 output. It combines a 4 input LUT (Look-Up

Table) and a D flip-flop (see Figure 33).

Figure 33: MFC schematic

The Morpheus Design

 79

The storage element has clock, clock enable, and reset input signals. The

clock signal always comes from the system clock tree, and can be inverted,

whereas the clock enable and reset signals can either come from the

interconnect network via a regular signal input or from the system interconnect

network. The FlexEOS compilation software selects the appropriate source

according to the nature of the design to be implemented.

The MFCs are organized by groups of 16 and are all located at one

hierarchical level in the core architecture.

A FlexEOS macro with 4K MFCs has an equivalent ASIC gate capacity of

up to 40,000 gates. The design configuration file (bitstream) size is 36Kbytes,

and the loading time is around the range of 600µs when the FlexEOS Loader

operates at 100 MHz. The data bus interface is 32-bits wide.

Carry-chain block

Most control designs and all signal processing designs use classic arithmetic

operators such as add, subtract, increment, decrement, equal to, inferior to and

superior to. By default, they can be mapped to classic structures such as “carry

propagate” or “carry look-ahead”. The first is more compact and uses fewer

MFCs, whereas the second shows better timing performance but poor MFC

mapping efficiency. In many cases, the carry chains are part of longer logic

paths (critical paths), which results in slower maximum operating frequency

for the whole design, especially if the chain is 8+ bits long.

The FlexEOS architecture can optionally include optimized 8-bit carry-

chain operators (one per group of MFCs). They provide:

• better timing performance (comparable to ASIC design),

• optimal mapping efficiency (requires 1 MFC per operator bit)

It has to be noted that a partial utilization of a carry-chain block is possible.

Thereby, the range from 1 to 8 bits can be used, while the others are ignored

and not connected to the interconnect network. Furthermore, carry-chain

blocks are automatically chained by the FlexEOS compilation software using

The Morpheus Design

 80

dedicated interconnect resources located between the blocks. As a

consequence, the timing delay remains minimal and optimal.

Third party FPGA synthesis software can automatically infer the carry

chains with the proper functionality from an RTL description. Nevertheless, the

designer can manually instantiate such operators if necessary.

The embedded DPRAM

Two sizes of synchronous true dual-port RAM block are available for

FlexEOS cores:

• 4K-bit block

• 8K-bit block

Each port has its own control signals (clock, enable, write) so that it can be

read or written independently from the other port at anytime. This means that

the ports operate asynchronously from each other. The input and output data

bus width must be the same for a given port, but can be different from the other

port (see Table 4 for the different options depending on the memory block

size).

Each port can be independently clocked and independently controlled. They

can be configured as shown in

4K 8K

256 words x 16 bits 512 words x 16 bits

512 words x 8 bits 1024 words x 8 bits

1024 words x 4 bits 2048 words x 4 bits

Table 4: eDRAM size and configuration options

The MAC

The MAC block is a basic multiply/accumulate operator with the following

features:

• 16x16-bit signed/unsigned multiplier with registered/non-registered

inputs

The Morpheus Design

 81

• 32-bit adder

• 32-bit accumulation register

• 32-bit registered/non-registered input to the adder if the

accumulator feedback loop is not used

• synchronous reset in accumulation mode.

As shown in Figure 34, the output accumulation register can be bypassed in

order to connect the adder output directly to the MAC output bus. It has to be

pointed out that only the accumulation register is connected to the reset signal.

Figure 34: MAC schematic

Interconnect network

FlexEOS eFPGA technology is based on a multi-level, hierarchical

interconnect network which is a key differentiation factor in terms of density

The Morpheus Design

 82

and performance when compared to other LUT-based FPGA technologies. The

interconnect resources are based on a full crossbar switch concept (see Figure

35), which provides equivalent routing properties to any element inside the

macro and gives more freedom for placing and routing a given design to the

FlexEOS compilation software. The interconnect network can only be

configured statically, meaning that the clock must be stopped.

Figure 35: Full crossbar switch

Figure 36 shows the organization of the macro with the different building

blocks. It also shows the symmetry of the architecture which provides more

flexibility for mapping and placing a design. Each computing element of the

macro can either be connected to its neighbor by using a local interconnect

resource, or to another element via several interconnect resources.

The Morpheus Design

 83

Figure 36: FlexEOS core architecture

In addition to the regular interconnect network, a low-skew low-insertion-

delay buffer tree network (system interconnect network) starts from 8

dedicated user input ports (SYS_IN) and connects to all the synchronous cells.

Its usage is recommended for high fanout signals such as reset signals, or high

speed signals such as clock signals.

If parts of the system interconnect network is not used by the design, the

FlexEOS compilation software automatically uses portions of it to improve the

final design mapping and performance.

User I/O Interface

At any level of the hierarchy, the interconnect resources are unidirectional,

including the user I/O interface signals. The standard 4K-MFC macro block

includes 512 input ports and 512 output ports. Each of them is connected in the

same way to the interconnect network, which gives the following properties:

• Any input port can access a given computing resource inside the

core

• Any input port can be used as a system signal such as clock or reset

• Any output port can be reached by a computing resource

The Morpheus Design

 84

These three points are meaningful when considering the integration of the

eFPGA macro into a SoC architecture and defining the physical

implementation constraints.

During the SoC design phase, several potential applications should be

mapped to the eFPGA to:

• Evaluate the system constraints of the IP

• Refine the different parameters of the IP (number of MFCs and

I/Os, need for carry chains, memory blocks, MACs)

• Evaluate its connectivity to the rest of the system. This is made

easier by the flexibility of the eFPGA interconnect network and its

I/O port properties: the FlexEOS macro does not add any routing

constraints on SoC signals connected to the user I/Os as they can

reach any resource inside the macro core.

Size and Technology

Table 5 shows the dimensions of a 4K FlexEOS macro in 90nm CMOS

technology with 7 metal layers.

Equivalent ASIC gates 40,000 (estimated when
considering MFCs only)

LUTs/DFFs (MFCs) 4096

I/Os 504 x IN, 512 x OUT, 8 x
SYS_IN

Silicon area for 4K MFCs only 2.97 mm2 (CMOS 90nm)

Size of bitstream
configuration file

36 Kbytes (4K-MFC only block)

Silicon area for 4K MFCs + 8
x 8Kbytes RAM + 32 MACs +
128 x 8-bit carry-chains

4.5mm2 (CMOS 90nm)

Size of bitstream
configuration file

Apx. 60 KBytes (4K-MFC +
features)

Table 5: FlexEOS 4K-MFC features and size

The Morpheus Design

 85

Table 6 shows several design examples mapped onto the FlexEOS eFPGA

macros. It also provides the correspondence between the ASIC gate count

derived from Synopsys Design Compiler and the MFC capacity required

mapping the same designs onto a FlexEOS macro.

 ASIC

Gates

Equivalent

MFCs
(LUT + FF)

FlexEOS

eFPGA
macro size

granularity

160 x 16 bit

counters

29742 3982 4096 MFCs

UART 16550 8096 1459 1536 MFCs

Viterbi Decoder 10028 2245 3072 MFCs

Dynamic

synchronous cross-

bar bus

5788 1431 1536 MFCs

Ethernet MAC 20587 3995 4096 MFCs

Table 6: Example of design mapping results

It should be highlighted that FlexEOS macros can be ported to any standard

CMOS process. Even multiple identical macros can be implemented in one

SoC.

The Morpheus Design

 86

Memory Subsystem Definition

 87

Chapter 3 Memory Subsystem

Definition

The MORPHEUS paradigm lies in assembling of three heterogeneous

reconfigurable engines (HREs) under the control of a general-purpose

processor (see 1.4). HREs serve for the intensive computation of data, in order

to obtain high performance with different kind of computations for different

application (e.g. with different granularities). As a consequence, the integration

of heterogeneous engines in the same system allows the designer to cover a

large number of different software tasks as the ones required in the context of

this project.

Figure 37: MORPHEUS SoC architecture

Alongside with the intensive computational data flow, the HREs are

designed to support a dynamic reconfiguration. This feature is proposed in the

today’s architectures in order to increase the computational power of the

system. Usually, reconfigurations are performed concurrently with

Memory Subsystem Definition

 88

computations in order to mask reconfiguration overhead as much as possible (a

sort of configuration pre-fetching), and configuration bandwidth requirements

are typically more relaxed with respect to the ones of the computational data.

Therefore, it is essential that these two flows would never interfere among each

other (concurrency requirement). For this purpose, an embedded ARM9 RISC

processor realizes a system control mechanism that coordinates the functioning

of the HREs. ARM9 assigns the tasks to each HREs, handles the interrupts,

distributes the data among the components, and so on. Task triggering is

performed according to Molen paradigm by means of specific exchange

registers (XRs). Moreover, a dedicated state-of-the-art interrupt controller (IC)

provides a general interrupt handling from both the HREs and the other system

components. State-of-the-art programmable DMAs help the efficient data

distribution from the ARM9 to the remaining system. Since the dynamic

reconfiguration might impose a significant performance demand for the ARM9

processor, an additional dedicated configuration manager (CM) can be used.

Whereas the ARM9 processor usually controls both the computation data flows

and the triggering of HREs, CM handles the configuration data flow. ARM9

processor still keeps the possibility of directly controlling the configuration

process for testing purposes.

Off-chip communication is realized by means of a state-of-the-art multi-port

memory controller (MPMC), supporting most of the fastest today’s external

memory devices (Flash, SRAM, DRAM, DDR, etc.) and several parallel data

channels for higher data parallelization. For even higher data rates, a custom

DDR-SDRAM controller was designed to access SDRAM and bypass the

slower MPMC. Thanks to this flexibility provided by both controllers, they

can be reprogrammed for different functional scenarios, like that ones proposed

for the multi-purposing of MORPHEUS.

On-chip communication among computation islands, such as HREs,

requires exchanging streams of data under weighty bandwidth requirements,

usually dependent on the set of tasks and/or application kernels. Therefore,

Memory Subsystem Definition

 89

MORPHEUS architecture includes a very flexible and powerful

interconnection infrastructure, based on the combination of the state-of-the-art

AMBA bus (for testing and basic controls) with a network-on-chip (NoC),

providing to the system the necessary modularity and throughput required. In

order to reduce/avoid any eventual communication bottlenecks among the

different data flows, it is important to separate them physically from each other

in such a way that computational and control data share one AHB bus, while

configuration data are routed to the system using dedicated path. In this way,

the interconnection infrastructure is designed to provide an optimal

communication strategy between the main storage subsystem and the

computational engines, as well as among the different computational engines.

Each computational engine (or HRE) is provided of local storage, as the Data

Exchange Buffer (DEB, see Section 3.3), that can be reused for the local

computation (if required) in order to maximize the data locality and to reduce

the overall system traffic.

Data flows Functional units Storage units Communication
means

Computational HREs, ARM, main
DMA, MPMC

DEBs, main on-
chip memory,
external memory

NoC, main
AMBA AHB (for
testability)

Configuration HREs, CM, ARM,
configuration
DMA, MPMC

CEBs,
configuration on-
chip memory,
external memory

Configuration
AMBA AHB

Control ARM, IC, XRs main on-chip
memory,
external memory

Main AMBA
AHB

External MPMC, ARM, CM,
DMAs

main on-chip
memory,
configuration on-
chip memory,
external memory

AMBA AHBs,
NoC

Table 7: Distribution of data flows inside MORPHEUS

architecture.

Memory Subsystem Definition

 90

A hierarchical structure of the memory subsystem can be outlined by means

of the main role played by the memory in the overall system. Three main

memory levels can be identified:

• Level 3: Off-chip memory. It provides the mass storage subsystem,

shared by all the components

• Level 2: On-chip memory. This memory layer include the memory

storage required for the ARM9 code, the RTOS, and can be also

used as a temporary repository of block of data read/write from/to

the off-chip memory and sent/received to/from the computational

islands. On this level, configurations are strictly separated from the

other data types.

• Level 1: dedicated data/configuration exchange buffer (DEB/CEB).

Level 1 is tightly coupled with each HRE (and usually designed around

the main features of each HRE) and is responsible of three main

actions:

• to store the data currently processed by the HRE

• to store the temporary data of the HRE computation

• to separate HRE clock domain from the system clock domain

The following sections give more detailed description of the memory

subsystem providing quantitative specifications.

3.1 Level 3: Off-Chip Memory

Off-chip memory sub-system serves as mass-storage support. Today’s off-

chip solutions support already up to few gigabytes of the storage size, however

their bandwidth is about one order of magnitude smaller comparing to the

memories implemented inside a SoC. Huge sizes of the storage blocks make

them also much more complex, therefore a special memory controller is used

Memory Subsystem Definition

 91

to manage an access to the external data. Memory controllers contain the logic

necessary to read and write dynamic RAM, and to "refresh" the DRAM by

sending current through the entire device. Without constant refreshes, DRAM

will lose the data written to it as the capacitors leak their current within a

number of milliseconds (64 milliseconds according to JEDEC standards). Bus

width is the measure of how many parallel lanes of traffic are available to

communicate with the memory cell. Memory controllers’ bus width ranges

from 8-bit in earlier systems, to 256-bit in more complicated systems and video

cards (typically implemented as four, 64-bit simultaneous memory controllers

operating in parallel, though some are designed to operate in "gang mode"

where two 64-bit memory controllers can be used to access a 128-bit memory

device).

As already indicated in Section 2.1.6 the MORPHEUS architecture contains

one ARM PrimeCell Multi-Port Memory Controller (MPMC) PL175. A choice

of the given device rides on the following main features of MPMC:

• AMBA AHB 32-bit compliancy.

• Dynamic memory interface supports DDR-SDRAM, SDRAM, and

low-power memories.

• Asynchronous static memory interface supports RAM, ROM, and

Flash with or without asynchronous page mode.

• Designed to work with non-critical word first and critical word first

processors, such as the ARM926EJ-S.

• Read and write buffers to reduce latency and to increase

performance.

• 6 AHB interfaces (+2 optional) for accessing external memory.

• 16-bit and 32-bit wide data-bus SDRAM and SyncFlash memory

support. 16-bit wide DDR-SDRAM memory data support.

Memory Subsystem Definition

 92

• chip-selects for synchronous memory and 4 chip-selects for static

memory devices.

• Power saving modes dynamic control.

• A separate AHB interface for programming the MPMC registers.

• Support for all AHB burst types.

• Integrated Test Interface Controller (TIC), etc.

Due to the large bandwidth requirements of the HD digital film application

in development to prove the efficiency of the reference architecture a custom

controller with support for large data rates well beyond that of the MPMC was

developed for access to external DDR-SDRAM.

3.2 Level 2: On-Chip Memory

On-chip memory contains the programs/tasks that are currently running (or

will be run early) and the respective data. In MORPHEUS, main memory

acquires more significance, since, together with the data for the central

processor, it can contain temporary data currently used by HREs. These data

usually show bigger size and different structure if compared to the basic ARM

data-set. Moreover, the main system storage is physically separated in two

parts: computational/control data, and configuration data.

On-chip memory organization usually depends on target applications and in

many cases defines the performance of the whole system. We can consider all

applications running on reconfigurable platforms from two points of view:

• throughput intensive processing

• reconfiguration intensive processing

The kind of processing approach is taken at the end of a design space

exploration phase, investigating together the platform architecture

functionalities and the requirements of the target application. For that, it is

Memory Subsystem Definition

 93

required to support both the approaches, thus, investigating the two extreme

sides of software processing, in order to determine memory specifications and

their respective trade-offs.

As an example of application, one can consider the implementation of HD

media digital technology, since it appear as the most memory demanding with

respect to the other applications, especially for the main on-chip memory

subsystem. The processing of an image requires usually the application of more

than one basic operator (e.g. different filtering engines). It is thus possible to

choose two main approaches: in the first, one can sequentially apply each

operator to the whole image or, on the contrary, one can split the whole image

in chunks (or windows) applying all the required operators for each chunk and

then change the chunk under elaboration. From a computational point of view,

there are two main scenarios:

• In the first case, throughput intensive, the full image is processed by

the first operator and the result is stored in an external memory. The

external memory is considered, since a whole image cannot be

stored internally. Then, the result of each processing is directly read

from the external memory and processed by the next operator.

• In the second case, reconfiguration intensive, only a sub-window of

the image is processed by a first operator and the result is stored in

on-chip memory. The size of the window is chosen as a trade-off

between the number of iterations required to process the whole

image by each operator and the computational power provided by

each HRE and the memory storage (global/local resource) available.

In this scenario, the result of each elaboration is read from the

internal memory and then processed by the next operator. Only at

the end of the elaboration the result is stored in the external

memory.

As an example of the trade-off occurring between throughput intensive and

reconfiguration intensive approaches it can be considered an algorithm where

Memory Subsystem Definition

 94

20 successive operators have to be applied on one image and a split factor of

one hundred is considered. Hence it is possible to evaluate a lower bound of

on-chip data and configuration memories. Considering the image size required

for grain noise reduction for HDTV the following parameters must be

considered:

• Pixel resolution:

o color channels for color images

o 16 bits per color channel

• Image size:

o 1920x1080 for HDTV

• Frame rate

o 24 fps

In this case, the minimum on-chip memory size required for this application

under is described by the next equations:

ARMHREsdata DNWS +×=min_ , (1)

100FW = , depthch ChNsF ××= Re ,

()2000___min_ 2 MconfPiCoGAconfPACTconfconf SSSS ++×= , (2)

where

• min_dataS - a minimum on-chip data memory size

• W - a size of window

• HREsN - a number of HREs in the system

• ARMD - a size of program and data used by ARM

• F - a size of image

• sRe - an image resolution for HDTV

Memory Subsystem Definition

 95

• chN - a number of color channels

• depthCh - a color channel depth

• min_confS - a minimum on-chip configuration memory size which is

able to store two configurations for each HRE

• PACTconfS _ - PACT configuration size

• PiCoGAconfS _ - PiCoGA configuration size

• 2000_ MconfS - M2000 configuration size

Consequently, on-chip memory size selection strategy is presented as

follows:

• On-chip data memory:

o Lower bound:

MBMbitsbitsF 129516310801920 ≈=×××= ,

KBMBW 12010012 == ,

ARMARMdata DKBDKBS +=+×= 3603120min_ , refer to (1).

ARMD depends on the exact software and may vary from

tens to hundreds kilobytes. Area occupation around 8 mm
2
.

o Upper bound: depends on the available area.

• On-chip configuration memory:

o Lower bound:

() KBKBKBKBSconf 2566064722min_ =++×= , refer to

equation (2) and D3.1, section 5.1, table 10. Area occupation

around 4 mm
2
.

o Upper border: depends on the available area.

Memory Subsystem Definition

 96

3.3 Level 1: Data/configuration exchange buffer

Internally to each separate clock island, each reconfigurable IP has visibility

and access only to its own synchronization registers (XRs) for control and local

memories (DEBs and CEBs) for data and configuration.

Each HRE DEB consists of a dual-port, dual-clock memory device. The

“system-port” is connected to the ARM clock domain, and is accessed from the

AMBA bus (or the NoC Interface). This port is used by the ARM and/or DMA

unit(s) to store/retrieve data to/from the IP. The “IP-port” is connected to the

HRE clock domain. It is utilized by the IP to access data for the local

computation.

Figure 38: Data Storage Hierarchy

Thus, each local memory provides a uniform mean for the system to feed

inputs to and load results from the computational blocks hiding the

heterogeneity of each HRE own frequency domain and internal architecture.

Data consistency and access synchronization on the DEB is handled by

software and is based on a programmable exclusive access policy (portions of

Memory Subsystem Definition

 97

the DEB are dynamically reserved for external access and some others to

internal access, and this allocation is switched by explicit commands issued by

the ARM9 processor).

In the HRE internal clock domain, DEBs are seen as an addressing space

where computation inputs and outputs and temporary variables reside.

According to the HRE features, two access models can be utilized.

1. Processor-oriented computation: If the HRE is capable of acting as

MASTER, it independently will access the DEB “IP-Port” (on the

regions indicated as safe by the ARM core). When results are

available, the IP will notify the occurrence to ARM, and the portion

of memory holding results will be then accessed by core/DMA/NoC

and become unavailable for the IP. This configuration is more

suitable for applications where the addressing pattern is depending

on the processed data. This approach is fully explained in Section

3.3.1 there the DREAM integration scheme is presented and Section

3.3.2 where M2K is described.

2. Stream-oriented computation: If the addressing pattern for the input

data contained in the DEB is regular, it is possible to obtain higher

performance relieving the IP from the addressing burden,

configuring the same IP to perform computation as a data-crunching

SLAVE without addressing capabilities.

Coming down to implementation details, this paradigm has been

implemented on Morpheus in different manners for each HRE. In the next

sections will be introduced the integration of each IP in the MORPHEUS SoC

and in particular the interfacing to the memory sub-system. Depending on the

features of the reconfigurable device a specific local memory topology and

global memory connection will be considered.

Memory Subsystem Definition

 98

3.3.1 PiCoGA integration: The DREAM Architecture

This Section describes the DREAM concept of the PiCoGA integration into

MORPHEUS platform. DREAM architecture is a dynamically reconfigurable

platform coupling the PiCoGA reconfigurable device with a RISC processor

using a loosely-coupled co-processor scheme. A high bandwidth memory sub-

system provides data communication with PiCoGA enabling high throughput

and direct interface of the DREAM architecture with external computational

blocks.

The DREAM is composed of three main entities: Control Unit,

Reconfigurable Data Path, and Memory Access Block (see Section 2.2.2). Data

transfers between DREAM and the host system are realized through exchange

buffers, that also act as local repositories for data (DEBs, Data Exchange

Buffers) and program code/configuration (CEBs, Configuration Exchange

Buffers).

Instr
Mem

Dual port Adaptor

Dual port Adaptor

Instr
Mem

Dual port Adaptor

Dual port Adaptor

Data
Mem

Dual port Adaptor

Dual port Adaptor

Data
Mem

Dual port Adaptor

Dual port Adaptor

AMBA BUS (Master bus)AMBA BUS (Master bus)

AMBA slave Interface

16 Banks memory

Dual-port Dual clock
Memory Buffer

AMBA slave Interface

16 Banks memory

Dual-port Dual clock
Memory Buffer

Data Feed Device

AMBA BUS (Configuration bus)

Conf
Mem

Dual port Adaptor

Dual port Adaptor
PiCoGA

1
2

 In
p

u
t

in
te

rfa
c

e

4
 o

u
tp

u
t

in
te

rfa
c

e

P
iC

o
G

A
 I

n
te

rf
a

c
e

PiCoGA

1
2

 In
p

u
t

in
te

rfa
c

e

4
 o

u
tp

u
t

in
te

rfa
c

e

P
iC

o
G

A
 I

n
te

rf
a

c
e

ARM clock domainARM clock domain

PiCoGA clock PiCoGA clock

domaindomain

Configuration Configuration

clock domainclock domain

DataData

InstrInstr

QRisc

PiCoGA controlPiCoGA control

DataData

InstrInstr

QRisc

PiCoGA controlPiCoGA control

Exchange

register

Address Generator (x16)Address Generator (x16)

Internal
Register File

(16 x 32 bit)

16

Internal
Register File

(16 x 32 bit)

16

Figure 39. DREAM architecture.

Memory Subsystem Definition

 99

3.3.1.1 Control Unit

The DREAM control unit is based on a 32-bit RISC processor, rather than a

custom FSM, mainly because of the programmability, flexibility and

reusability advantages provided by the state-of-the-art device. This unit is in

charge for fetching instructions, handling program flow and providing

appropriate control signals to the other blocks. The control signals are

generated by specific coprocessor operations. Available operations that can be

triggered by the control processor on the reconfigurable data path are listed in

the Table 8.

Table 8: DREAM Application Program Interface

The processor occupies relatively small area: 20K gates of logic plus a

dedicated memory module, which serves as an embedded 32-cell register file.

It features arithmetical-logical operations, 32-bit shifts and a small embedded

multiplier. Processor code and data, as well as the configuration bit-stream for

the embedded data path are considered as part of the DREAM program code,

and are loaded by the host system on the CEBs, implemented on dual port, dual

clock memories. The addressing space of the control processor is configurable

at design time, and in the current implementation is composed of 4KB of

processor code and 4KB of data memory, plus 36KB of configuration memory

for the reconfigurable data path. Input data and computation results are

exchanged with the host system through a coarse-grained handshake

mechanism on DEBs (also defined as ping-pong buffering).

Memory Subsystem Definition

 100

Integration of a general-purpose processor gives to the user advantages of

exploiting a sophisticated program control flow mechanism, writing commands

in ANSI-C and utilizing a reliable compiler to optimize code and schedule task

efficiently. Computation kernels are re-written as a library of macro-

instructions and mapped on the reconfigurable engine as concurrent, pipelined

function units. Computation is handled by the control processor in a fashion

similar to the Molen paradigm, i.e. the core explicitly triggers the configuration

of a given macro-instruction over a specific region of the data path, and when

the loading of the configuration is complete it may run any desired issue of the

same functionality in a pipelined pattern. Up to four macro-instructions can be

loaded on each of the four available contexts. Contexts can not be computed

concurrently but context switch requires only one cycle. A sophisticated stall

and control mechanism ensures that only correctly configured operations can

be computed on the array, and manages context switches. Besides the control

functionality, the processor can also act as a computation engine in parallel

with the reconfigurable data path.

3.3.1.2 Reconfigurable Data Path

The DREAM data path is composed by an array of RLCs. Each cell may

compute two 4-bit inputs and provide a 4-bit result. RLC structure is described

in Figure 40: it is composed of a 64-bit LUT, a 4-bit ALU, a 4-bit multiplier

slice and a Galois Field multiplier over GF(2
4
). A carry chain logic is provided

row-wise allowing fast 8-, 16- and 32-bit arithmetic.

The ideal balancing between the need for high parallelism and the severe

constraints in size and energy consumption suggested a size of 16x24 RLCs,

and an IO bandwidth of 384 inputs (twelve 32-bit words) inputs and 128

outputs (four 32-bit words). This choice was mainly driven by the targeted

MORPHEUS applications. The routing architecture features a 2-bit granularity,

and is organized in three levels hierarchical levels: 1) global vertical lines carry

only data path inputs and outputs; 2) horizontal global lines may transfer

temporal signals (i.e. implementing shifts without logic occupation); and 3)

Memory Subsystem Definition

 101

local segmented lines (three RLC per segment) handle local routing, while

direct local connections are available between neighboring cells belonging to

the same column.

Figure 40. RLC in the DREAM reconfigurable data path.

The gate-array is coupled to an embedded programmable control unit, which

provides synchronous computation enable signals to each row, or set of rows of

the array, in order to provide a pipelined data-flow according to the data

dependencies in the source data-flow graph. Due to its medium-grain and

multi-context structure the DREAM data path provides a good trade-off

between gate density (3Kgates/mm
2
 per each context) and flexibility. Its deep

pipelined nature allows very efficient resource utilization ratio (on average,

more than 50% of the available resources per clock cycle) with respect to

devices such as embedded FPGAs that need to map on reconfigurable fabrics

the control logic of the algorithm. The full configuration of each context of the

array is composed of 2Kb, which can be loaded in 300 clock cycles, besides

each operation can be loaded and erased from the data path separately. To do

Memory Subsystem Definition

 102

this, the reconfigurable unit is organized in 4 contexts; one context can be

programmed while another is computing. An on-board configuration cache

(36Kb in DREAM) and an high bandwidth configuration bus (288 bit/cycle)

are used in order to hide the reconfiguration process of one context in the time

consumed by computation on different contexts.

3.3.1.3 Computation and configuration data storage

In order to allow DREAM to function closer to its ideal frequency,

regardless limitations imposed by the host system, dual clock embedded

memory modules were chosen as physical support for DEBs and CEBs. This

caused a 5% overhead in timing, 40% in area and 20% in power consumption,

comparing to the single port solution. Such price is justified by the absence of

multiplexing logic that would be required by the use of single port memories.

This choice also implies a very straightforward physical implementation of the

overall system, without need for explicit synchronization mechanisms. DEBs

are composed by 16 dual port memory banks 4KB each. They are accessed as a

single 32-bit memory device from the host system side and can provide parallel

16x32-bit bandwidth to/from the data path.

Due to their small granularity, DREAM macro-instructions often exchange

information between successive issues, in form of temporary results or control

information. For this reason a specific 16-cell multi-port register file (12

inputs, 4 outputs) was included as local data repository. As macro instructions

feature variable latency, a specific hardware register locking logic was added to

preserve access consistency, generating stalls to preserve the correct program

flow.

Address generators

On the reconfigurable data path side, an address generator (AG) is

connected to each DEB bank (see Figure 41). Addresses are incremented

automatically at each cycle for all the duration of the kernel according to the

programmed data pattern.

Memory Subsystem Definition

 103

Interconnection Matrix

Address Generator (x16)Address Generator (x16)

Internal

Register Files

16

to 16 DpDclk Memory Buffer

Item 16..31

from PiCoGA (4 Output)to PiCoGA (12 Input)

Figure 41. Integration of the address generators in DREAM

architecture.

AGs provide standard STEP and STRIDE capabilities to achieve non-

continuous parallel vector addressing. A specific MASK functionality allows

power-of-2 modulo addressing in order to realize circular buffers of variable

size with programmable start point.









≥

Ν∈

=

.

,

,1

countstride

count

step









<

Ν∈

=

.

,

,1

countstride

count

step









⋅≥

Ν∈

>

.

,

,1

stepcountstride

count

step









⋅<

Ν∈

>

.

,

,1

stepcountstride

count

step

Figure 42. Classification of the available data patterns.

Memory Subsystem Definition

 104

Address generation parameters are set by specific control instruction,

enabling various types of memory access, which are classified on Figure 42.

Such kind of data distribution is very often found in multimedia applications,

being targeted by MORPHEUS. Thus, AGs provide stream data flow to the

data path even for non-continuous vectors with regular pattern.

3.3.1.4 Integration overheads

The DREAM processor will be implemented for 90 nm CMOS technology

process. The maximal operating frequency in the Morpheus context is

200MHz. The reconfigurable data path was designed with a mixed

custom/semi-custom design flow, while the control and memory addressing

sections were designed in HDL and mapped on standard cells libraries.

Processor efficiency was measured on a set of computational kernels, oriented

toward multimedia and communication applications. In particular, there we

selected four highly-parallel kernels from the open-source H.264 coding

standard, an OFDM Constellation Encoder or Mapper (implemented at three

levels of unfolding), and well-known symmetric-key cipher AES with 128 key

size. Performances were evaluated at 200MHz, and are parameterized with

respect to the interleaving factor, intended as the number of data blocks

concurrently elaborated. In fact, most of multimedia and communication

kernels feature thread-level parallelism (i.e. image processing transforms show

no correlation across macro-blocks), and interleaving of the elaboration of

more than one block allows deeper level of pipelining in computation. The

interleaving factor applicable depends also on the available DEB memory

budget. All the benchmarks reach a saturation point, where further computation

unfolding is made impossible by lack of storage capacity on local memory.

Figure 43 describes DREAM performance in terms of processed bits per

second. For example, a single ARM-926EJ-S processor in the same technology

node, according to the vendor data sheets, would provide up to 0.5 GOPS, 0.32

GOPS/mm
2
, and 3.5-7.1 MOPS/mW. Neglecting overheads due to

synchronization, it would thus be necessary to provide up to 60 ordinary

Memory Subsystem Definition

 105

processors (thus much higher energy and silicon area) to match the

performance delivered by DREAM on computation intensive kernels.

Figure 43. Throughput vs interleaving factor.

Memory Subsystem Definition

 106

3.3.2 M2000 Integration

Figure 44 gives an overview over the M2000 sub-block in the top design.

Internal Data Bus

Loader

Loader2AHB
Interface

Exchange
Registers

DEB DEB DEB DEB DEB DEB DEB DEB

IRQ(0)

Resetter

M2K_INTERRUPT Conf. AHB Slave

64 bit UNICAD Memory Interface

In
te

rn
a
l
C

o
n
fi
g

u
ra

tio
n
 B

u
s

PLL

IO_ERROR

PLL prog.

Exported
Pads
(40)

MCLK RESETn

M2000 Macro Core

Control
Interface

32 bit UNICAD
Interface

Internal Data Bus

Loader

Loader2AHB
Interface

Exchange
Registers

DEB DEB DEB DEB DEB DEB DEB DEB

IRQ(0)

Resetter

M2K_INTERRUPT Conf. AHB Slave

64 bit UNICAD Memory Interface

In
te

rn
a
l
C

o
n
fi
g

u
ra

tio
n
 B

u
s

PLL

IO_ERROR

PLL prog.

Exported
Pads
(40)

MCLK RESETn

M2000 Macro Core

Control
Interface

32 bit UNICAD
Interface

Figure 44: M2000 HRE sub-block as inserted in the top design

As shown in the figure, the sub-block is communicating with the system

over several interfaces. A data interface mainly implemented via 8 32-bit dual

port memories and a configuration and control interfaces wrapped via a

standard AHB protocol. In the next chapters, the interconnection schemes for

configuration control and data will be explained further in detail. Figure 45

lists the memory maps for the diverse interfaces of the M2000 sub-block:

• A 64-bit Data Interface that directly connect the M2000 HRE to the

NoC communication engine via a dedicated port.

• A 32-bit AMBA Slave port connected to the Configuration Bus to

manage the bitstream loading phase.

• A 32-bit AMBA Slave port connected to the Main Bus used by

ARM to configure the Data Interconnection Interface.

Memory Subsystem Definition

 107

Figure 45: M2000 sub-block memory maps

3.3.2.1 Configuration Interconnection Scheme

The configuration bitstream is loaded by using the loader interface. All the

loader registers can be directly accessed via the configuration AHB bus (base

address 0x800A0000).

The bitstream is loaded using the following sequence[55]:

• configuring the loader in load mode by setting several parameters

via a dedicated register (set Power = ‘1’, Write Access = ‘1’, Access

Type = ‘00’, Increment Mode = ‘001’).

• storing the configuration words in alternation on the data_32L and

data_32H registers, or in sequence on the data_x64 register. Both

can be done by using the Configuration DMA.

• An interrupt request (m2k irq 0) is set as soon as the upload is

finished, but it is also possible to poll the dne or loader status

register (bit 1) to detect this event.

• To verify if the bitstream has been uploaded correctly, a CRC check

can be performed by storing the CRC integer provided by the

FlexEOS tool into the crc_ref register. Upon completion of the

Memory Subsystem Definition

 108

upload (dne = ‘1’), the crc bit of the status register (bit 2) must be

‘1’ as well.

• The loader can now be set to run mode (set Power = ‘1’, Run = ‘1’,

Write Access = ‘1’, Activate Macro = ‘1’) to start the application.

The busy register indicates that the loader is busy storing a configuration

word, however, a wait state is inserted into the bus transfer automatically by

the AHB wrapper, so the application designer does not need to take care of

this.

3.3.2.2 Data Interconnection Scheme

Due to its bit-level programmability, M2000 has the greatest flexibility of

all HREs inside the MORPHEUS SoC. This means that the data interface must

be adaptable to a wide range of possible applications with different needs

concerning the data exchange. Similar to DREAM and PACT, M2000 is

connected to the chip infrastructure using a range of data exchange buffers

(DEBs) based on dual-port dual-clock memories, in this case 8 cuts of 1024 32-

bit words (see Figure 44). However, the DEBs also feature a programmable

control logic that allows for different means of data buffering.

DEB

HRE_WRITE HRE_WDATA

READ RDATA

HRE_READ HRE_RDATA

WRITE WDATA

HRE_READY

IO_ERROR

Ctrl

Port

HRE_ADDR

ADDR

DEB

HRE_WRITE HRE_WDATA

READ RDATA

HRE_READ HRE_RDATA

WRITE WDATA

HRE_READY

IO_ERROR

Ctrl

Port

HRE_ADDR

ADDR

Figure 46: DEB I/O signals

Memory Subsystem Definition

 109

The DEB interface signals of both the system and HRE side is shown in

Figure 46. The HRE side ports are connected directly to the pads of the eFPGA

core, while the system side ports can be driven by either the AHB bus (for

debug purpose) or the NoC. From the addressing point of view, the DEBs are

coupled to pairs of two to match 64-bit width of the NoC (see Figure 45).

Each DEB can be configured individually via the control port (mapped on

the main bus at the address: 0xC0011000) providing access to the internal

registers shown in Figure 47. The base addresses for each control port are listed

in Figure 45.

WORDS CURRENTLY IN FIFO

PREVIOUS ERRORS FLAG

RESET FIFO DATA POINTER

DATA_VALID MODE DIRECTION 0x0

0x4

0x8

0xC

Internal Registers (ctrl port)

DEACTIVATE

WORDS CURRENTLY IN FIFO

PREVIOUS ERRORS FLAG

RESET FIFO DATA POINTER

DATA_VALID MODE DIRECTION 0x0

0x4

0x8

0xC

0x0

0x4

0x8

0xC

Internal Registers (ctrl port)

DEACTIVATE

Figure 47: DEB Control Registers

Two operation modes are eligible:

1. FIFO mode (mode register = 0). Data streams are FIFO-buffered in

the direction specified in the “direction” register. If data is buffered

from the system to the HRE (direction = 1), HRE_READY

indicates to the M2000 application that there is data available on the

DEB, while IO_ERROR indicates push errors to the system. If data

is buffered from the HRE to the system (direction = 0),

HRE_READY indicates that there is space available while

IO_ERROR indicates pop errors

2. Direct addressing mode (mode register = 1). In this case the DEB

works as a normal dual port memory, either to buffer data exchange

with external address generation or to serve as a local tightly

Memory Subsystem Definition

 110

coupled memory for the application mapped on M2000. The

HRE_READY signal is driven by the “data valid” register as an

additional method of synchronization.

The FPGA macro core is connected to the outside world over 496 input and

512 output pads. For each one of the eight DEBs, 33 input pads and 44 output

pads are assigned. 40 input and 80 output pads are used to directly drive

bidirectional I/O pins of the chip, with M2000 as a reconfigurable I/O device in

mind. In addition, 32 input and 31 output pads are used for interrupt and

synchronization exchange registers. Clock inputs and reset signals are

connected to the low-skew, low-insertion-delay buffer tree networks that start

from the eight dedicated SYS inputs of the macro core.

arm2hreIP[320-335]

pending irqsIP[304-319]

PINIP[264-303]

DEB7IP[231-263]

DEB6IP[198-293]

DEB5IP[165-197]

DEB4IP[132-164]

DEB3IP[99-131]

DEB2IP[66-98]

DEB1IP[33-65]

DEB0IP[0-32]

arm2hreIP[320-335]

pending irqsIP[304-319]

PINIP[264-303]

DEB7IP[231-263]

DEB6IP[198-293]

DEB5IP[165-197]

DEB4IP[132-164]

DEB3IP[99-131]

DEB2IP[66-98]

DEB1IP[33-65]

DEB0IP[0-32]

POUTOP[352-391]

hre2armOP[447-462]

Irqs[1-15]OP[432-446]

PDIROP[392-431]

DEB7OP[308-351]

DEB6OP[264-307]

DEB5OP[220-263]

DEB4OP[176-219]

DEB3OP[132-175]

DEB2OP[88-131]

DEB1OP[44-87]

DEB0OP[0-43]

POUTOP[352-391]

hre2armOP[447-462]

Irqs[1-15]OP[432-446]

PDIROP[392-431]

DEB7OP[308-351]

DEB6OP[264-307]

DEB5OP[220-263]

DEB4OP[176-219]

DEB3OP[132-175]

DEB2OP[88-131]

DEB1OP[44-87]

DEB0OP[0-43]

Figure 48: M2000 input/output pad distribution

Memory Subsystem Definition

 111

3.3.2.3 Application Development Example

The current section describes the deployment of a simple example that can

be considered a nice introduction to application deployment on the M2000

HRE.

In order to run an application into the M2K RA three main steps are

required:

1. A global configuration step to activate the macro and to configure

the interconnection infrastructure.

2. Program the configuration infrastructure in order lo load the

bitstream and configure the M2K Macro.

3. Activate the Macro and program the data communication engine

(NoC or AMBA based) to feed data in the input ports of the

reconfigurable engine and read the results stored in the output ports.

Global configuration

In order to activate the macro the clock need to be activated via a store

operation through the exchange register infrastructure. The reset is also

deactivated and a dedicated function is executed:

m2k_XR->clock_mode = global_clock;

m2k_XR->resetn1 = 1;

m2k_power_on();

As shown in Section 3.3.2.1 the data interconnection scheme is based on 8

configurable DEBs. In the default configuration the first 4 DEBs are

configured as input FIFO mode (SYSTEM � HRE) while the others as output

FIFO (HRE � SYSTEM). In order to manually program such parameters a

simple function is available in the drivers:

Memory Subsystem Definition

 112

m2k_XR->deb[0].direction = 1; /* Input direction */

m2k_XR->deb[1].direction = 1; /* Input direction */

m2k_XR->deb[2].direction = 1; /* Input direction */

m2k_XR->deb[3].direction = 1; /* Input direction */

m2k_XR->deb[4].direction = 0; /* Output direction */

m2k_XR->deb[5].direction = 0; /* Output direction */

m2k_XR->deb[6].direction = 0; /* Output direction */

m2k_XR->deb[7].direction = 0; /* Output direction */

Moreover all DEBs can be programmed as standard memory deactivating

the implemented FIFO controller:

for(i=0;i<8;i++)

(m2k_XR->deb[i]).dontusefifo = 1; */FIFO Deactivated*/

In this configuration the direction doesn’t have any sense. DEBs in fact are

implemented using a Dual Port Dual Clock memory, so parallel access can be

performed form both side.

Macro configuration

In order to load the bitstream into the M2K RA a pre-built function is

available. The functionality of this routine is to program the configuration

DMA:

load_m2k_bitstream((unsigned int*)bitstream);

Memory Subsystem Definition

 113

where bitstream is a 32 pointer of the bitstream stored in the on-chip or

off-chip configuration memory.

In order to manage the loading procedure of the bitstream, the length of the

bitstream is not required cause the macro is itself able to raise a DNE signal

when a new configuration is fully stored and recognized. An interrupt bit on

the Interrupt Register is reserved to manage the end of the loading procedure.

In order to unmask such interrupt at the beginning of the configuration step a

dedicated function need to be executed:

 m2k_XR->irq_enable = 0x1; /* Interrupt 0 unmasked */

When the interrupt is recognized by ARM a dedicated routine is executed in

order to deactivate the DMA transaction.

If necessary, all interrupt sources can be unmasked by programming the

interrupt register in this way:

m2k_XR->irq_enable = 0xFFFF; Interrupt 0-15 unmasked */

Upon completion of the upload (DNE is raised), the loading procedure

needs to be concluded and the application needs to be initiated. This means that

the DMA transfer is stopped, the application is reset and the output pads of the

eFPGA are activated. This is done by the following functions:

• m2k_conclude_confload(void);

• m2k_execute_app(void);

It might be a good idea to have those functions executed by the interrupt

subroutine linked to the m2k irq 0. After this, the application is running.

Memory Subsystem Definition

 114

Data Exchange and Synchronization

As displayed in Figure 45, the DEBs are coupled to pairs to fit the 64-bit

width of the bus. Yet they these pairs consist of two independent 32-bit

memories. While this is transparent as long as they, a little care must be taken

in FIFO mode as both are controlled by separate FIFO controllers. To perform

a push or pop operation from a single DEB, any 32-bit position inside the

DEBs addressing space has to be addressed while performing a write or read

access. However, it is also possible to access two FIFOs simultaneously by

using a 64-bit access, but care has to be taken not to do so unintentionally.

Lets assume that the application receives four 32-bit input values from

DEB0 and returns four results to DEB5:

/* Address low-word of DEB pair 01 */

(volatile int)(m2k_debs->pair01) = x0;

(volatile int)(m2k_debs->pair01) = x1;

(volatile int)(m2k_debs->pair01) = x2;

(volatile int)(m2k_debs->pair01) = x3;

/* wait for results to arrive on DEB5 */

while (m2k_XR->deb[5].wordsinfifo < 4) {};

/* Address high-word(!) of DEB pair 45 */

y0 = *((volatile int*)(m2k_debs->pair45)+1);

y1 = *((volatile int*)(m2k_debs->pair45)+1);

y2 = *((volatile int*)(m2k_debs->pair45)+1);

y3 = *((volatile int*)(m2k_debs->pair45)+1);

Memory Subsystem Definition

 115

Of course the word count can only be read in FIFO mode, but it is also

possible to use the arm2hre and hre2arm registers for synchronization:

/* (write some input data) */

(...)

/* set synchronization bit 5 */

m2k_XR->arm2hre |= 0x0040;

/* wait for computation to finish */

while (m2k_XR->hre2arm & 0x0040 == 0) {};

/* (read results) */

(...)

/* remove synchronization bit when input data is out of date */

m2k_XR->arm2hre &= ~0x0040;

On top of this, interrupts can be used for synchronization.

Memory Subsystem Definition

 116

Interconnection Strategy

 117

Chapter 4 Interconnect strategy

The aim of Morpheus is to exploit the available elaboration units (HREs-

Heterogeneous Reconfigurable Engines) to provide a stream-oriented

computation pattern that can be fully tailored, before and during the

computation, to the requirements of the running application (or set of

applications).

The interface between the user and the Morpheus hardware facilities is the

ARM processor, and all hardware services are required and synchronized by

software routines running on the ARM. From the hardware point of view this

can be done in the same way by manual programming or RTOS.

The Morpheus programming model is based on to the Molen paradigm.

Morpheus should be considered as a signal processor, where HREs are

computation units providing instruction set extension, and tasks running on the

HRE extensions should be seen as micro-operators of the processor. HREs are

seen as the signal processor function units, Bit-streams represents the HRE

instruction micro-code and the compiler’s work is to schedule tasks in order to

optimize the computation and ensure a familiar programming model to the

user.

According to this paradigm, increasing the granularity of operators from

ALU-like instructions to task running on HREs, we are forced to increase

accordingly the granularity of the operands. Operands can not be any more

scalar C-type operand data but become structured data chunks, referenced

through their addressing pattern, be it simple (a share of the addressing space)

or complex (vectorized and/or circular addressing based on multi-dimensional

step/stride/mask parameters). Also operands can be of unknown or virtually

infinite length, thus introducing the concept of stream-based computation.

Interconnection Strategy

 118

From the architectural point of view we can then describe Morpheus

handling of operands, [source, destination and temporary data] at two levels:

a) Macro-Operand, is the granularity handled by extension

instructions, transferred by ARM and controlled by the end user

through its “main” program written in C (possibly with the

assistance of an RTOS). Macro-operands can be data streams,

image frames, or different types of data chunks whose nature and

size depends largely on the application.

b) Micro-Operands are the native types used in the description of the

extension instruction, and tend to comply to the native data-types of

the specific extension entry language that is C and GriffyC for

DREAM, HDL for M2000, NML and FNCPAE-Assembly for XPP.

Those micro-operands will only be handled when programming the

extensions, or macro-operators, so they are meant to be handled by

the user only when for optimization reason he will program

manually extension operations on HREs. Otherwise will be handled

by the Morpheus toolset.

Coming down to implementation details, this paradigm has been

implemented on Morpheus at two levels:

4.1 Handling of micro-operands: local HRE

interconnect strategy deployment

It was deemed as essential to provide locally to HREs a flexible addressing

mechanism, especially for processing units that are not oriented to stream

processing and make intensive use of temporary local data storage such as

PiCoGA and M2000. This explains the tight interaction between the local

memory hierarchy (DEB-based) and interconnect strategy. Local interconnect

is the most critical aspect of data transfer and it has been given absolute

Interconnection Strategy

 119

priority in the work partitioning and organization. In fact, the aim of the local

interconnect definition is to provide the abstraction between micro-operands

and macro-operands thus is instrumental to the deployment of the

homogeneous programming model. The deployed strategy is three-fold, as it

was considered that the different specific nature of the three HREs required

specific handling of local data transfers.

1. For PiCoGA, a set of hardwired programmable address generators

was added on the HRE side of the DEBs (see Section 3.3.1.3). The

AGs are programmed (in C language) by the embedded processor

core, whose code is part of the overall PiCoGA bit-stream. Details

of the programming model for the AGs are tightly integrated with

the programming model of PiCoGA itself and as described as part

of the PicoGA programming. It should be noted note that this

interconnect aspect can not be programmed at ARM level but is

always part of the bit-stream specification.

2. For M2000, it was decided to capitalize on the HDL-oriented nature

of the M2000 programming model. Address generator libraries

similar to the ones described above are available, but are designed

to be mapped on the M2000 fabric (see Section 3.3.2.2). Again,

their specification is part of the M2000 bit-stream and is deployed

as part of the application specification, where the DEB is seen as a

SRAM memory macro resource “embedded” in the HRE. In

alternative, it is possible to configure via ARM the DEBs in FIFO

mode, and compute data in a stream-oriented pattern. Details on

FIFO depth, and the number of available memory bits/fifo channel

is maintained design-time configurable.

3. While DREAM is seen from Morpheus as a random access storage

unit, M2000 is programmable between a RAM access and a

streaming access, according to the HRE features for XPP it was

Interconnection Strategy

 120

chosen to utilize pure data streaming. XPP was connected on a

purely streaming pattern with four 1Kx16-bit input and four 1Kx16-

bit output FIFO channels. Advanced data addressing patterns are

handled internally in the XPP proprietary caching hierarchy, so

similarly to the cases described above local interconnect is defined

as part of the HRE programming.

4.2 Handling of Macro-operands: Global Interconnect

strategy deployment

The organization of chip level data transactions is structured as a direct

consequence of the theoretical approach outlined in Section XXX: the PN/KPN

formalism and the Molen programming paradigm are applied to Morpheus so

that applications are tackled by the ARM core instantiating a collection of

coarse-grained Macro-Operators that are represented as micro-coded extension

instructions whose microcode is the bit-stream itself. The handling of C-level

operands and their interconnect local to the HRE, is embedded in the

microcode of the instruction itself, much like the routing of single bits is

embedded in the microcode of a shift or an add operation in a conventional 32-

bit processor. In order to implement this pattern, macro-operands need to be

referenced when calling macro-operations upon them. The flexibility in local

addressing inside the HREs relaxes a lot the constraints on the macro-operator

definition. In fact, a possible option could be to reference macro-operands only

by (base_address, size) thus assuming the utilization of contiguous data

chunks, leaving implementation of sophisticated addressing patterns to the

HRE/DEB level. But this may not be feasible to all applications, and it is at

odd with the scalability/flexibility required to Morpheus. The definition of the

chip-level interconnect strategy face the following constraints:

1. Data-flow control is strongly processor-centered, HRE computation

is seen as an extension of the Instruction Set of the controlling

Interconnection Strategy

 121

processor. All transfers should be “initiated” by the main core,

either explicitly or running a specific extension instruction. HREs

may be capable to access memory independently, but in that case

the HRE programmer must ensure consistency. Of course, a given

transfer can be iteratively repeated to describe circular addressing

and this may require only very sparse iteration with ARM.

2. The Interconnect mechanism should match the architectural

scalability. One test chip is being produced, but that is only one

possible instance of the architectural template. Interconnect should

not be optimized on the test-chip parameters but must provide an

infrastructure that can scale to different HREs configurations

without compromising neither its performance nor, most important,

its programming model. Also, the interconnect concept must be

capable to scale between very different bandwidth requirements

without changing the architectural template.

3. The Interconnect must provide a level of abstraction that matches

the grain, the representation and the required flexibility of the

macro-operands as described above. This level of abstraction (that

represents the API towards the Morpheus toolset) must be described

at C level to be fit in the Molen paradigm and Morpheus

programming model.

In particular regarding point 1, it was established to limit HRE memory

access only to DEBs, in order to allow the description of the HRE bit-streams

as reusable macros. In order to provide a safe and consistent data transfer

hierarchy, only ARM is capable to trigger transfer to and from DEBs, while

HREs work on “locked” sections of the DEBs. The locking and unlocking of

the DEBs is negotiated through an handshake mechanism implemented through

the Exchange Registers between HREs and ARM.

Interconnection Strategy

 122

4.3 Chip level Interconnect strategy deployment

The Interconnect mechanism should match the architectural scalability. One

test chip is being produced, but that is only one possible instance of the

architectural template. Interconnect should not be optimized on the test-chip

parameters but must provide an infrastructure that can scale to different HREs

configurations without compromising neither its performance nor, most

important, its programming model. Also, the interconnect concept must be

capable to scale between very different bandwidth requirements without

changing the architectural template excluded the utilization of standard bus

architectures, and suggested the utilization of a Network-on-Chip. The

STNoC/Spidergon concept was adopted.

As a consequence of these design constraints the chip level Interconnect

strategy was organized in the following components:

• A communication kernel implementing physical transfers between

the interconnect nodes

• A communication infrastructure that is utilized to provide

communication/synchronization towards the processor core (and

thus the end user) and to inject/extract data to/from the

communication kernel

4.4 Communication Kernel (Network-on-chip)

To ease the deployment of the Spidergon topology on the physical

implementation of the Network-on-Chip ST will allow to Morpheus the

utilization of the STNoC IP components, composed by the following entities:

• Router

• Target NI (Network Interface)

• Initiator NI (Network Interface)

Interconnection Strategy

 123

Whenever possible the components will be distributed as pre-layouted

macros. In other cases, similarly to IPs distributed by Synopsys DesignWare

(such as the AMBA bus utilized in Morpheus) they are distributed through the

Synopsys CoreConsultant tool that is generating gate-level net-lists. Those

components are strictly confidential and functional details will not be

distributed to the consortium partners.

A 10-nodes logic topology has been proposed to fit bandwidth requirement

raised by the mapping of the target application on the referce design. Area

issues may lead to the provision of a shrunk 8-nodes version as a possible

backup solution. Of course, the NoC structure is specifically designed to hide

such implementation details to architectural users, so that a consistent

programming model can be developed without considering the above

mentioned architectural issues. In particular, whole the number of nodes is

fixed the number of routers in the topology will totally depend on the chip

floor-plan and on timing analysis. This aspect is completely dependent on

implementation issues but has no impact on the programming model and a

marginal impact on performance.

ARM

CMC

PORT1

CMC

PORT2

M2KDREAM

ON CHIP

MEM
PACT IN

PACT OUT

ARM

CMC

PORT1

CMC

PORT2

M2KDREAM

ON CHIP

MEM
PACT IN

PACT OUT

Figure 49: Proposed NoC Topology

Interconnection Strategy

 124

4.4.1 Communication infrastructure

A flow of data in the Morpheus architecture can be described as a set of

subsequent synchronized data transfers from IO, through the DEBs of the

various HREs, possibly through on-chip memory, and finally to IO again. As

described in Section 1.4, the available physical means for data transfer are

• A multi-layer AMBA bus hierarchy, that must be used for all

control, synchronization and configuration of all system

components but can also be used for transferring data at low

bandwidth.

• A communication infrastructure based on the described Network-

on-Chip.

According to the PN/KPN concept each node in the computation network

must be provided with the means of forwarding its result to the following node,

possibly in a concurrent way in order to avoid bottlenecks and exploiting

parallelism. For this reason every HRE Network Interface (HRE-NI) and

Target Network Interface (Target-NI) also named MU-NI (Purely memory unit

NI) is provided with an embedded DMA-like data transfer engine. These

modifications are mostly related to the interface between memory hierarchy

and Interconnect. No modification was performed on the STNoC standard

components, in order to minimize risks and ensure high performance.

The user can design a given data flow according to 3 different approaches:

1. ARM can act as “full-time” traffic controller. In this case the code

running on ARM monitor the status of each HRE through the

exchange registers (XRs) and triggers the required transfers over the

HRE-NIs in order to maintain the desired stream through the

system. This is very useful in the first stages of application

deployment, to evaluate the cost of each step in the computation,

maintain full programmability, and check for bottlenecks.

Interconnection Strategy

 125

2. ARM can act as “batch” controller and enabler. After a

“configuration” phase in which ARM configures all HREs and

relative transfers on the HRE-NIs, it remains waiting for interrupts.

This approach is necessary in case of a controlled computation

network (application that requires dynamic reconfiguration to

schedule different PN nodes over the same HRE) or in any case the

user may prefer to deploy a PN, that is a event controlled network

with respect to a KPN.

3. The deployed network can be self-synchronized: ARM only

provides the initial configuration phase, and after that the HRE-NI

will iterate over circular buffer addressing implementing a fixed

data-flow through the system. This can be deployed for static

applications or, most likely, for a limited time-share of the

application as a second level KPN included in a larger PN network.

4.4.2 The “load-α store-β” communication pattern

The proposed architecture required a processor-centered approach and a

flexible referencing mechanism for macro-operands. In particular, spec 1

required a slight refinement of the NoC concept: a NoC is by definition a

distributed communication platform with a set of initiator nodes (e.g. processor

cores) issuing transfers and a set of target nodes providing information storage

(e.g. memory units) and responding to the transfer request. In Morpheus, all

transfers are supposed to be initiated (implicitly or explicitly) by Arm as

macro-operands for a given macro-operation, much like the assembly for a

standard processor is initiating transfers from the register file for an ALU

operation. This is implemented through a “distributed DMA” pattern also

defined “Load-α Store-β”, where α, β are intended as Morpheus macro-

operands (data-chunks): each HRE node Network Interface in the NoC is

enhanced with a local, NoC-compatible data-transfer engine defined Local

DMA. Local DMAs also provide the NI with very flexible addressing patterns

that include 2D step/stride and circular buffer functionality. NIs “load” data

Interconnection Strategy

 126

chunks from HREs and “store” them through the NoC to the target repository

and vice-versa. From the core/user point of view the “Load-α Store-β” pattern

describes the NoC as an enlarged and highly parallel DMA architecture. The

user can than handle computation on HREs as C-level functions mapped on a

specific processing unit. Operands for this function are referenced by their

DMA transfer information, composed by base address and addressing pattern

details.

Figure 50: HRE and Target Network interfaces

4.4.2.1 The HRE Network interface

From the NoC point of view, HREs represent peculiar nodes: they should

both be NoC initiators (require transfers from some storage units such as on-

chip or off-chip RAM), or targets (process external requests such as a transfer

request from another HRE or ARM). To deal with these design requirements,

the standard Initiator interface was modified providing a “HRE-NI”. This

enhanced NI provides an initiator NI with the embedded Local DMA, as well

Interconnection Strategy

 127

as a target NI multiplexed over the HRE DEBs (see). With this design option

the ARM can require any transfer between HREs, as well as from any HRE to

any storage unit (on-chip memory, Memory controller) according to the

PN/KPN formalism.

Data Transfers are initiated by ARM programming specific configuration

registers on the HRE network interface. This configuration is performed

through on a specific NI configuration channel reaching all HRE NIs. This

configuration channel is mapped as slave on the AMBA bus. The HRE NIs can

support multi-channel transfers with variable priority scheme, also

programmed through the same configuration channel. End-of-transfer

notification for each channel in the HRE NI can be read both as a status

register or handled as interrupt by the core.

In order to increase the bandwidth and homogenize the “NoC programming

model” a solution based only on store transaction is under investigation. In this

scenario NOC Initiator always send data trough the NoC to a destination

resource. This approach require to extend the usage of the modified HRE-NI

interconnection scheme to several memory unit nodes (on-chip memories, off-

chip memories) but permits to remove all the logic required to send load

transaction trough the NoC without impacting the total area requirement.

4.4.2.2 The Target Network interface (MU-NI)

Similarly to what implemented for the HRE-NI, the memory unit interface

has been implemented with a multiplexed solution (see) in order to manage

parallel access from AMBA as well as from the NoC Target Interface.

4.4.3 Communication granularity

Bandwidth evaluations have suggested that the ideal granularity for the

communication infrastructure is 64-bit. On the other hand, each HRE features a

specific granularity: XPP has 16-bit IO granularity, DREAM 32-bits, while

Interconnection Strategy

 128

M2000 IO granularity is not strictly related to the eFPGA structure but M2K

DEBs have been fixed at 32-bits.

As a consequence, there might be some data reordering issues when

organizing a stream of communication/computation requests. Of course, the

communication infrastructure is capable to carry lower granularity data, but

that comes at the price of a lower bandwidth. This effect can be mitigated with

operands packing, but that will come at a cost. Very often, the unpacking cost

is not significant on the HRE side, especially for PiCoGA and M2000, but on

the processor side may become an issue especially if the data layout of

inputs/outputs has specific application-related constraints. In the

communication infrastructure, data granularity information is transferred in

the form of byte enable specification signals.

The data granularity issue becomes particularly critical when dealing with

FIFO oriented communication over HREs. In this case, the byte enable

information must be used to trigger the FIFO read / FIFO write signals

otherwise unwanted parasitic r/w operation may alter the HRE status. Another

significant issue may arise when the organization of I/O buffers in the HRE do

not match the NoC granularity. As an example, an application running on

DREAM may require to fill only one 32-bit DEB, as the IO organization of the

operation on PiCoGA is built as such. In this case, the DEB could not be filled

at full granularity, and the bandwidth would necessarily decrease.

4.4.4 Chip level Interconnect strategy deployment

The Communication infrastructure is seen from ARM as a set of nodes.

Through IO mapped commands (see following sections), ARM can issue

transfer instances between nodes.

Each transfer features an initiator node and a target node. This definition

does not describe the direction of the transfer (r/w) but the ownership: the

Interconnection Strategy

 129

initiator is the entity that describes the addressing pattern and the transfer

width.

The communication infrastructure is composed by:

• 3 HRE Nodes (Initiator and Target): XPP_out, M2K, DREAM.

HRE Nodes can be programmed to issue transfers between any

node to any other, so that these Nodes can either be transfer

initiators

• 3 Memory Node wrapped as HRE-NI Nodes (Initiator and Target):

On-chip memory, CMC Controller1, CMC Controller2. Target

nodes can be programmed as Initiator in order to send chunk of data

to a NoC Target port (all HRE input DEBS, and all memory in the

system if necessary).

• 1 Initiator Node, connected to the AMBA bus. Issuing AMBA

transfers, ARM or the Main AMBA DMA can initiate transfers on

the communication infrastructure. This facility is only provided for

test/verification

• 1 Target Node: XPP_in; This node can only be programmed as

target.

There are two possible types of transfers over the communication

infrastructure:

1. Data Chunk Regular Transfers

2. Single 32-bit ARM-induced transfers

Transfers of type (2) are only used for debugging/test purposes, and are

performed by the user with simple IO access. The Morpheus data addressing

space is replicated, so that the addresses [0X00000000] and [0x40000000]

points to the same location, but in the first case accessed through the Bus

hierarchy and in the second case through the NoC facilities. It is then sufficient

Interconnection Strategy

 130

to trigger a bus operation in the second set of addresses to provide access ARM

access through the NoC. It should be underlined that as ARM handles 32-bit

data any ARM access will only utilize half of the NoC bandwidth but this is

not significant for debug accesses.

Transfers of type (1) are regular Morpheus transfers utilized during peak

computation. They are always triggered programming a set of control registers

on each programmable HRE Network Interfaces. This programming action is

performed through the specific NoC configuration bus that is mapped on the

ARM addressing space (base address: 0x0xC0300000) and can be performed

either by the user via ARM (Software Control) or by the DNA Controller

(Stream-oriented automated control) according to a pre-defined pattern.

4.4.5 Programming NoC Transfers:

A regular NoC transfer requires an initiator and a target. Each initiator

(HRE acting as Initiator and Memory unit acting as initiator) can program

several write transfers from the local DEB/FIFO to any target. The HRE-NI

allow the utilization of up to 2 write channels except the HRE-NI connected to

the on-chip memory that is able to manage up to 4 write parallel channels. For

each channel the data transfer is configured describing by the following set of

parameters:

Name Description
Address
Offset

Bit
Width Reset Value

SAR
Source
Address

0x000 64 0x0

DAR
Destination
Address

0x008 64 0x0

CTL
Control
Register

0x018 64 0x0

CFG
Configuration
Register

0x040 64 0x0

SGR Source 0x048 64 0x0

Interconnection Strategy

 131

Gather
Register

DSR
Destination
Scatter
Register

0x050 64 0x0

Table 9: Programming Registers for NoC Transfers

In order to program the distributed engines integrated in the NoC with an

appropriate SW abstraction level, C-based drivers have been implemented. The

implemented drivers support single transfers as well as multi block transfer for

stream access as below:

• Auto-reload Multi-Block transfer

• Auto-reload Multi-Block transfer with contiguous Source address

• Auto-reload Multi-Block transfer with contiguous Destination

address

A channel is selected programmed using two C structure called respectively

config and lli. For each one several parameters are defined. The subsections

below describe how to program the local DMA engine of an HRE-NI for a

single block transfer and a multi block transfer with auto reload.

4.4.5.1 Single Block NoC Transfer

First of all several parameters of the config and lli structures need to be

initialized. Source address and Destination address, as well as the programmed

channel can be specified:

//defined variables:

struct config channel_cfg;

struct lli channel_lli;

//part of code:

channel_cfg.cfgl = 0;

channel_cfg.cfgh = 0;

Interconnection Strategy

 132

channel_cfg.sstatar = 0;

channel_cfg.dstatar = 0;

channel_cfg.sgr = 0;

channel_cfg.dsr = 0;

channel_cfg.channel = #_channel;

channel_lli.sar = source_address;

channel_lli.dar = destination_address;

channel_lli.ctll = 0;

channel_lli.ctlh = 0;

channel_lli.sstat = 0;

channel_lli.dstat = 0;

The transfer size (defined in byte) for the selected channel is configured

changing the field ctlh of the lli structure instance (channel_lli), representing

the channel control register (CTLx[43:32]).

//part of code:

changeBits(&channel_lli.ctlh, BLOCK_TS, BLOCK_TS_S, 1024);

The burst transaction length both for source and destination ports must be

defined changing the corresponding bits in the channel control register

(CTLx[16:14] and CTLx[13:11]). Table 11 on page 104 of the DMA databook

explains hot to set this field.

//part of code:

changeBits(&channel_lli.ctll,SRC_MSIZE,SRC_MSIZE_S,2);

changeBits(&channel_lli.ctll,DST_MSIZE,DST_MSIZE_S,2);

Interconnection Strategy

 133

The transfer data width both for source and destination data must be defined

changing the corresponding bits in the channel control register (CTLx[6:4] and

CTLx[3:1]). Table 12 on page 105 of the DMA databook explains how to set

this field.

//part of code:

changeBits(&channel_lli.ctll,SRC_TR_WIDTH,SRC_TR_WIDTH_S,2);

changeBits(&channel_lli.ctll,DST_TR_WIDTH,DST_TR_WIDTH_S,2);

In the Morpheus context, in order to increase the available bandwidth, local

DMAs are generated with two master ports (two layers), one directly

connected to the DEBs or memory units, while the other acts as Initiator of the

NoC. Whit a multi layer configuration for each channel, source and destination

layer must be defined. SMS (source master select) identifies the Master

Interface layer from which the source device is accessed. DMS (destination

master select) identifies the Master Interface layer from which the destination

device is accessed. In the Morpheus configuration, where only write channel

are used, SMS identifies always the Master interfaces connected to the local

storage unit, while the DMS the Master Interface connected to the NoC

Initiator port. In order to set the correct layer the channel control register

(CTLx[26:25] and CTLx[24:23]) must be programmed:

//part of code:

changeBits(&channel_lli.ctll, SMS, SMS_S, 1);

changeBits(&channel_lli.ctll, DMS, DMS_S, 0);

Interconnection Strategy

 134

With all configurations set, it is possible to request the transfer. The

function transfer can be used, setting the type of transfer (SB, for simple-block

transfer), the configuration structure address and the linked list item address. It

returns OK if the transmission is correctly requested, or an error code

(CH_BUSY, DMA_DISABLED, INVALID_DMA_NUM,

UNKNOWN_TYPE).

//part of code:

while (e != OK)

e = transfer(SB, &channel_cfg, &channel_lli);

When the block transfer has completed. Hardware disables the channel. If

interrupt are activated and unmasked the DMA engine sets the block-complete

interrupt and the transfer-complete interrupt. In order to activate the interrupt

generation CTLx[0] must be set and the unmasking procedures need to be

executed:

//part of code:

setBits(&channel_lli.ctll, INT_EN);

maskInt(DMA_engine_ID, I_BLOCK, 0, TRUE);

maskInt(DMA_engine_ID, I_TFR, 0, TRUE);

These instruction must be executed before the transfer function is called and

the DMA is activated.

4.4.5.2 Auto Reload Multi Block NoC Transfer

In order to manage a streaming pattern access an Auto Reload mechanism

combined with interrupt generation can be used:

Interconnection Strategy

 135

Figure 51: Multi-block Transfer with Source and Destination

Address Auto-reloaded

During auto–reloading, the channel registers are reloaded with their initial

values at the completion of each block. If the Contiguous Source address

programming pattern is chosen only the DAR is reloaded while the SAR is

contiguously incremented between sequential block. Same rules are used in the

case of a Contiguous Destination address access.

As shown in the previous paragraph several parameters of the config and lli

structures need to be initialized. Source address and Destination address, as

well as the programmed channel can be specified:

//defined variables:

struct config channel_cfg;

struct lli channel_lli;

//part of code:

channel_cfg.cfgl = 0;

channel_cfg.cfgh = 0;

Interconnection Strategy

 136

channel_cfg.sstatar = 0;

channel_cfg.dstatar = 0;

channel_cfg.sgr = 0;

channel_cfg.dsr = 0;

channel_cfg.channel = #_channel;

channel_lli.sar = source_address;

channel_lli.dar = destination_address;

channel_lli.ctll = 0;

channel_lli.ctlh = 0;

channel_lli.sstat = 0;

channel_lli.dstat = 0;

The transfer size (defined in byte) for the selected channel is configured

changing the field ctlh of the lli structure instance (channel_lli), representing

the channel control register (CTLx[43:32]).

//part of code:

changeBits(&channel_lli.ctlh,BLOCK_TS,BLOCK_TS_S,1024);

The burst transaction length both for source and destination ports must be

defined changing the corresponding bits in the channel control register

(CTLx[16:14] and CTLx[13:11]). Table 11 on page 104 of the DMA manual

explains how to set this field.

//part of code:

changeBits(&channel_lli.ctll,SRC_MSIZE,SRC_MSIZE_S,2);

changeBits(&channel_lli.ctll,DST_MSIZE,DST_MSIZE_S,2);

Interconnection Strategy

 137

The transfer data width both for source and destination data must be defined

changing the corresponding bits in the channel control register (CTLx[6:4] and

CTLx[3:1]). Table 12 on page 105 of the DMA manual explains how to set this

field.

//part of code:

changeBits(&channel_lli.ctll,SRC_TR_WIDTH,SRC_TR_WIDTH_S, 2);

changeBits(&channel_lli.ctll,DST_TR_WIDTH,DST_TR_WIDTH_S, 2);

In the Morpheus context, in order to increase the available bandwidth, local

DMAs are generated with two master ports (two layers), one directly

connected to the DEBs or memory units, while the other acts as Initiator of the

NoC. Whit a multi layer configuration for each channel, source and destination

layer must be defined. SMS (source master select) identifies the Master

Interface layer from which the source device is accessed. DMS (destination

master select) identifies the Master Interface layer from which the destination

device is accessed. In the Morpheus configuration, where only write channel

are used, SMS identifies always the Master interfaces connected to the local

storage unit, while the DMS the Master Interface connected to the NoC

Initiator port. In order to set the correct layer the channel control register

(CTLx[26:25] and CTLx[24:23]) must be programmed:

//part of code:

changeBits(&channel_lli.ctll, SMS, SMS_S, 1);

changeBits(&channel_lli.ctll, DMS, DMS_S, 0);

Interconnection Strategy

 138

With all configurations set, it is possible to request the transfer. The

function transfer can be used, setting the type of transfer (SB, for simple-block

transfer), the configuration structure address and the linked list item address. It

returns OK if the transmission is correctly requested, or an error code

(CH_BUSY, DMA_DISABLED, INVALID_DMA_NUM,

UNKNOWN_TYPE).

//part of code:

while (e != OK)

e = transfer(AR_MB, &channel_cfg, &channel_lli);

When the block transfer has completed, the local DMA reloads the SARx,

DARx, and CFGx registers. If interrupts are enabled, which can be done by

setting bit zero of the CFG register to ‘1’, and the block-complete interrupt is

un-masked hardware sets the block-complete interrupt when the block transfer

has completed. It then stalls until the block-complete interrupt is cleared by

software. If interrupts are disabled or the block-complete interrupt is masked

(the MASKBLOCK[channel] = ‘1’), then hardware does not stall until it

detects a write to the block-complete interrupt clear register; instead, it

immediately starts the next block transfer. In this case, software must clear the

reload bits in the Configuration register.

4.4.6 Programming NoC Space address

The figure below represent the NoC programming space address.

Interconnection Strategy

 139

HRE Configuration Bus (AHB)

0x00000000

0x000FFFFF

HRE NI

ONCHIP

Conf Port

HRE NI

PACTOUT

Conf Port

HRE NI
M2000

Conf Port

HRE NI

CMC PORT1

Conf Port

HRE NI

CMC PORT2

Conf Port

HRE NI

PICOGA

Conf Port

0x00000000

0x000003FF

0x00010000

0x000103FF

0x00020000

0x000203FF

0x00030000

0x000303FF

0x00040000

0x000403FF

0x00050000

0x000503FF

0x00060000

0x0006DFFF

Interrupt REG

0x00070000

0x00070003

STNoC Configuration Bus (T1)

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

HRE Configuration Bus (AHB)

0x00000000

0x000FFFFF

HRE NI

ONCHIP

Conf Port

HRE NI

PACTOUT

Conf Port

HRE NI
M2000

Conf Port

HRE NI

CMC PORT1

Conf Port

HRE NI

CMC PORT2

Conf Port

HRE NI

PICOGA

Conf Port

0x00000000

0x000003FF

0x00010000

0x000103FF

0x00020000

0x000203FF

0x00030000

0x000303FF

0x00040000

0x000403FF

0x00050000

0x000503FF

0x00060000

0x0006DFFF

Interrupt REG

0x00070000

0x00070003

STNoC Configuration Bus (T1)

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

NoC

NI

Conf Port

Figure 52: NoC Programming Space address

Each local DMA has a dedicated 128 byte space address. A dedicated

STBUS T1 is directly connected to the HRE Configuration bus via a AMBA to

T1 Bridge to set during the boot procedure some configurable parameters for

each standard Network Interface.

In order to have a global accessible pointer to the interrupt status of the NoC

an AMBA mapped 32-bit Interrupt register has been Implemented.

Alternatively all the interrupt sources connected to this register are directly

exported to the NoC Top in order to allow the designer to connect each source

to a dedicated engine as a standard interrupt controller. Table 10: Interrupt

Register connection scheme shows how all interrupt sources are connected to

the Global NoC Interrupt Register.

Bit Details

[0 .. 3] On-Chip MEM local DMA: Transfer channel Interrupt [ch0 .. ch3]

[4 .. 7] On-Chip MEM local DMA: Block channel Interrupt [ch0 .. ch3]

[8 .. 9] PACT Out local DMA: Transfer channel Interrupt [ch0 .. ch1]

[10 .. 11] PACT Out local DMA: Block channel Interrupt [ch0 .. ch1]

Interconnection Strategy

 140

[12 .. 13] M2K local DMA: Transfer channel Interrupt [ch0 .. ch1]

[14 .. 15] M2K local DMA: Block channel Interrupt [ch0 .. ch1]

[16 .. 17] DREAM local DMA: Transfer channel Interrupt [ch0 .. ch1]

[18 .. 19] DREAM local DMA: Block channel Interrupt [ch0 .. ch1]

[20 .. 21] CMC Port 1 local DMA: Transfer channel Interrupt [ch0 .. ch1]

[22 .. 23] CMC Port 1 local DMA: Block channel Interrupt [ch0 .. ch1]

[24 .. 25] CMC Port 2 local DMA: Transfer channel Interrupt [ch0 .. ch1]

[26 .. 27] CMC Port 2 local DMA: Block channel Interrupt [ch0 .. ch1]

Table 10: Interrupt Register connection scheme

Interconnection Strategy

 141

4.5 Results and Bandwidth Estimation

In this Charter several results of the NoC-based interconnection engine will

be presented in order to show how the implementation choose of integrating

the STNoC in the context of this design perfectly match with the application

requirements of the target applications of the project. The main scope of this

section is to introduce a quantitative study of the achieved bandwidth for

several data transfer paths between HREs (HRE DEB to HRE DEB) and

between HREs and on-chip/off-chip memories (HRE DEB to MEM). In order

to have a complete overview of the performance of the communication engine

a detailed analysis has been done considering data chunk of different size,

starting from very small block of 64 bit to bigger block of 4KByte.

To activate a data transaction in the NoC a first programming phase is

required to instruct the DMAs engine with the basic information required to

control the transaction. Optionally a zero-overhead initialization phase to feed

the memory is also necessary in order to verify the correctness of the

transaction itself.

In order to validate the proposed approach several applications were

investigated, as shown in Table 11:

• OUT-K frame processing, used for network routing application

• IEEE 802.11j, a well known wireless telecommunication protocol

• A Motion Detection algorithm used in High Definition Television

protocols

Their dataflows were mapped on the described architecture, considering to

implement critical kernels in the most appropriate RA. Each column of Table

11 represents the total bandwidth required for each physical link.

Interconnection Strategy

 142

Apps M2K/

OnChip

Ram

DREAM/

OnChip

RAM

M2K/

DDRAM

XXP/

DDRAM

DREAM/

DDRAM

XPP/

DREAM

XPP/

M2K

Dream/

M2K

OUT-K

Frame
10Mb/s 10Mb/s

IEEE

802.11j
 312Mb/s 7Mb/s 288Mb/s 390Mb/s 24Mb/s

Motion
Detection

 124Mb/s 3.34Gb/s 1.73Gb/s

Table 11: Application Bandwidth Requirements

4.5.1 Bandwidth Analysis

To analyze the achieved bandwidth the interrupt controller has been

deactivated. In fact in this context the usage of an interrupt routine to trigger

several data transfer introduce an overhead that cannot be attribute to the

communication engine but to the Operative System. For our simulation a

simple polling procedure has been implemented thanks to the integration fo a

global interrupt register (see Table 1). In order to initialize all the memories of

the system two different approach are possible:

1. All the data memories are connected to the NoC, and an Initiator

test port has been implemented and connected to ARM in order to

have a centralized test interface during the test chip phase. Thanks

to this interface (see Figure 49) ARM is able to access each

memories using the global space address shifted of a fixed quantity

(0x4000 0000).

2. A second test mechanism has been implemented based on AMBA.

Each modified NI in fact contains a bus-based bridge in order to

connect each memory directly to the NoC and to the main system

bus (see Figure 50).

The bandwidth estimation has been done programming several transfers

single-channel and single-block. Each DMA engine integrated int the modified

Initiator NI in fact can support up 2 concurrent channel (4 in the case of the on-

chip memory NI) and each channel can manage single or multi block transfer.

Interconnection Strategy

 143

In the case of a multi-block transfer the DMA automatically restarts the

transfer of a second data chunk when the first is finished recalculating the

source and destination address with different pattern based on the kind of

parameter used to set the multi-block transfer. In this context 11 significant

transfers has been analyzed:

• 8 write transfers (an Initiator trigger a write request in the NoC)

• 3 read transfers (an Initiator trigger a read request in the NoC)

In order to have a consistent number of bandwidth and analyze the achieved

bandwidth I ripest of the data chunk size each transaction has been repeated

several times with different data chunk size (8, 16, 32, 64, 1024, 2048, 4096

Byte). Table 12 summarized the achieved result for different pattern:

Source Dest. WR/RD 8 16 32 64 1024 2048 4096

M2K DEB
OnChip
RAM

write 250 500 1000 1941 3385 4826 5872

BREAM
DEB

OnChip
RAM

write 350 696 1356 2712 3828 5260 6057

M2K DEB DDRAM write 365 731 1463 2438 4196 5277 6431
PACTIN
DEB

DDRAM write 345 689 1379 2758 3986 4728 6332

DREAM
DEB

DDRAM write 353 706 1412 2824 4055 5185 6326

PACTIN
DEB

BREAM
DEB

write 346 692 1384 2767 3996 5136 6332

PACTOUT
DEB

M2K
DEB

write 365 731 1463 2438 4196 5277 6425

DREAM
DEB

M2K
DEB

write 349 699 1398 2347 4035 5168 6314

PACTIN
DEB

BREAM
DEB

read 328 656 1113 1699 1988 2351 2529

PACTOUT
DEB

M2K
DEB

read 349 699 1174 1769 2371 2598 2859

DREAM
DEB

M2K
DEB

read 338 676 1135 1725 2330 2574 2849

Table 12: Bandwidth estimation (MB/s)

 In order to better analyze this table it is necessary to take in account that the

data base of the NoC is 64-bit and the operative condition should be 200 MHz.

In an ideal scenario, where no programming step are required, o clock latency

transfer, no traffic in the NoC, a maximum bandwidth of 12 Gb/s can be

reached. Table 12 shows that programming the NoC to work with very small

data chunk the achieved bandwidth is significantly reduced cause the overhead

introduced by the programming phase cannot be neglected. Increasing the total

Interconnection Strategy

 144

size of the transaction up to 4KByte it is possible to reach a maximum

bandwidth of 6,5 Gb/s that is more than the half of the maximum ideal

bandwidth (these numbers take in account of the possible traffic and conflicts

that occurs in the NoC during the transfer of several blocks).

On the contrary best case scenarios occur if no interleaving of traffic is

happening. Here one router is only responsible for one request. In the same

way, one link is only used by one transfer. For simulation, the network has

been set up with a source – destination distance of one (one hop) that means

that the source node wants to send its data to the memory that is connected to

the neighbor router. Also, only one channel is occupied, so that no interfering

requests derange the results. Therefore, the bandwidth that is obtained here, is

the maximal one that is possible in any case. Figure 53 illustrates the result of

this simulation. The x-axis denotes the number of packets, where the y-axis

shows the index of the packet size (form 2 to 64 Bytes).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2

16
0

200

400

600

800

1000

1200
throughput in

MByte/s

number of packets

packet size in Byte

Scenario: single channel, single hop

1000-1200

800-1000

600-800

400-600

200-400

0-200

Figure 53: Throughput in MByte/s in a best case scenario

It can be seen from Figure 53 an exemplary maximal total throughput in the

NoC of approximately 6200MByte/s for eight 16*32byte transfers and

8300Mbyte/s for eight 16*64byte transfers respectively. Still remember, that

Interconnection Strategy

 145

no interference of data takes place here. Therefore this resembles the best case

for an single channel scenario.

4.5.2 Conclusion

At the end of this chapter we can compare the result obtained by the

simulation of several pattern transfers summarized in Table 12 and the

bandwidth requirement presented in Table 11 for several applications that will

mapped on the shown architecture.

The less bandwidth hungry application is the OUT-K frame processing

used in routing protocol. In this case the implemented communication engine is

able to cover the bandwidth requirements even in the case small amount of

successive chunk of data are required. The peak bandwidth requirement is

more or less 10 MByte/s fort eh two main communication path. As shown in

Table 12 (rows 1 and 2) both communication pattern can be covered with each

size of data chunk without compromise the application requirement.

Concerning the IEEE 802.11j, the analysis is a little bit more complex cause

up to 5 parallel path are required. In any case the peak bandwidths are not very

high and the communication engine is able to cover all the path with a

minimum chunk size of 128-256 Kbytes.

The most bandwidth hungry application is the Motion Detection used in

High Definition TV protocols. In this case in order to satisfy the bandwidth

requirement of this application the maximum data chunk size is required and a

dual port external memory interface is also necessary.

Interconnection Strategy

 146

Overall Implementation Results

 147

Chapter 5 Overall Implementation

Results

This chapter represents a quantitative resource budgeting of the HDL

database of the Morpheus chip RTL at the end of the functional specification

phase.

The document refers to the schematic description of the logic hierarchy of

the HDL database provided in the previous chapters and describes the expected

timing performance, area occupation, and a rough power consumption

estimation of the database.

The aim of this section is to provide a quantitative evaluation of the metrics

on which the Morpheus prototype can be evaluated. As it is provided during

the Front-End design phase, when designers have no knowledge of the

technology support, they are bound to be inaccurate especially for what

concerns dynamic power estimation. Moreover, feedback from technology

implementation and bug fixing may induce slight changes on the results.

Nevertheless, this quantitative evaluation effort represents a first valuable

reference to estimate the potentialities of the Morpheus architectural design.

Area, timing and power estimations of the RTL code blocks were generated

with Synopsys Design_Compiler v.2005.09. It should be considered that

depending on the RTL database size and complexity, a degradation of around

20/40% could be introduced by the implementation phase on timing results. In

turn, this figure heavily depends on the standard cell density ratio that normally

ranges on 70/50% much depending on the design complexity and

specifications.

Rough estimation of power consumptions have also been provided, making

use of Switching Activity files annotation (SAIF) and the Synopsys Power

Compiler tool, but it should be underlined that such evaluations are at Gate-

level only, and do not take into account physical wire loads but generic wire

Overall Implementation Results

 148

load models. They are thus bound to be strongly inaccurate. Leakage values

for standard cells are less prone to variations, but it should be considered that

the Morpheus design targets a technology that allow different threshold levels

for std cells depending on the timing specifications of the relative paths, so that

floor-planning related issues during P&R may significantly alter the so-called

“threshold cocktail”, with relevant impact on the final leakage figures.

Where applicable, power measurements for silicon proven macros have

been provided.

• Timing evaluations are provided in Worst Case Commercial

conditions, 0.9 V, 125C

• Power evaluations are provided in Nominal conditions, 1 V, 25C

The present chapter describes a quantitative resource budgeting of the

Morpheus architecture and its RTL database at the end of the Front End phase.

The status of the design at this point is after final functionality specification,

but prior to P&R feedback, memory sizes and HRE size fine-tuning, and final

bug fixing after verification.

Timing: At the current status of the design, the target frequency for the

processor based infrastructure for all design components is greater than the

250MHZ mark in worst case conditions (WCCOM 125C 0.9V) after logic

synthesis. This is a viable prerequisite for closing the implementation phase at

a target of 200MHZ, although the large area of the chip and the presence of IPs

featuring large size may lead to floor-planning issues that may impact on final

timing. Computational engines in the chip (Heterogeneous Reconfigurable

Engines – HRE) as shown in Chapter 3 are independent asynchronous clock

islands. Their speed and consequently power consumption depends heavily on

the mapped application. For this reason, each clock island features a software-

programmable PLL to dynamically adapt HRE computation speed to the

application specs and constraints.

Overall Implementation Results

 149

Area: The current area estimations suggest a chip size of ~100 mm
2
,

including Pads. HREs will occupy around 60 to 70% of the overall area, the

rest being divided between processor, communication infrastructure, on-chip

memories and IO pads. This figure appears relevant in itself, but appears

justified when compared to the overall computational power delivered by the

Morpheus architecture. Further re-spins of the same architectural templates

may offer space for optimization on timing [e.g. biasing threshold distribution

according to feedbacks from measurements], whereas an optimization of the

overall area above ~5/10% appears difficult without significantly impacting

architectural choices or performance constraints.

Power Consumption: Power consumption estimation at this design stage

(Gate-level netlist) is necessarily very inaccurate, especially for RTL logic, and

floorplan-related IPs. Also, the selection of relevant application test-cases for

power measurements is very difficult at half-way through the project.

Preliminary evaluations show how leakage power for the chip should revolve

around the 100 mW mark. This value may be significantly altered due to

changes in threshold distribution in case the timing specs would prove very

aggressive and timing closure for the architectural infrastructure or for the

HREs would require massive use of low threshold logic. Any evaluation on

dynamic power consumption is necessarily related to floor-plan choices and in

particular mode on the selection of a relevant application test-bench. This

would have such a large impact on overall consumption, to the point that it

would be more significant to evaluate separate power profiles for different

application domains. A significant contribution to overall dynamic

consumption would also come from the chosen IO strategy: the inclusion of a

high-speed large bandwidth memory controller will add a large overhead to the

core power consumption that at the moment revolves around the 1.5 mW mark.

Overall Implementation Results

 150

5.1 Overall Chip description

Table 13, from deliverable D4.5.1 [67], represents the top level pin-out of

the Morpheus chip.

Pin Name Direction Functionality

HRESETn IN (Active Low) Overall System Reset

EOC OUT (Active Hi) Normally connected to external
LED

End of Computation: Control Signal that is
triggered by the software routine exit() and

signals the computation of a given
software task

TEST_MODE[3 : 0] IN If != “0000” overrides the MPMC_data

signal to produce some relevant debug
signals from the internal bus architecture.

It is normally connected on the test board

to a set of switches.

VINIT_HI IN Selects boot type:

‘0’ => ROM Boot through Parallel Port
Interface

‘1’ => RAM Boot: The RAM must be pre-

loaded through TIC or JTAG connection.

PLL_CLKIN IN (Schmitt triggered) Normally connected to

board oscillator

Main Input signal for clock circuitry,
receives external clock from board (range

0-80 MHZ)

PLL_ENABLE IN (Active Hi) Normally connected to External

Switch or software-driven

‘0’ : Utilize external PLL_CLKIN input as
system Clock

‘1’ : Utilize Main PLL output as system
Clock

PLL_PD IN (Active Hi) Normally connected to External

Switch or software-driven

‘0’ : Power Down Main PLL to avoid

unnecessary power consumption or to

change PLL programming

‘1’ : Power on Main PLL. In this case PLL is

not operative until PLL_LOCK=’1’, which
should take ~400 µs

PLL_LOCK OUT (Active Hi) Normally connected to external

Overall Implementation Results

 151

LED

‘0’ : PLL is powered down or has not locked
yet, it can not be used

‘1’ : PLL is active and locked and can be
used to drive system clock

PLL_MULFACT [1 : 0] IN Normally connected to external Switch

Multiplication factor for Main PLL:

“00” : PLL_CLKIN*

“01” : PLL_CLKIN*

“10” : PLL_CLKIN*

“11” : PLL_CLKIN*

PLL_CLKOUT OUT Leaf of the System Clock Tree that is
carried to output for testability purposes

(Due to the Pad features this signal is

filtered at ~180MHZ and is not significant
above that figure)

ARM_nTRST IN (Active Lo) Test Reset Signal

ARM_TCK IN Test Clock Signal (Used for Jtag
connection)

ARM_RTCK OUT Returned TCK, used to synchronize the

Multi-ice controller

ARM_TMS IN JTAG Mode Select

ARM_TDI IN JTAG Serial Input

ARM_TDO OUT JTAG Serial Output

PP_DATA [7 : 0) INOUT Parallel Port (IEEE1284) bidirectional Data
bus

PP_CONTROL [3 : 0] IN Parallel port (IEEE1284) Control bus

PP_DIRECTION IN Parallel Port Direction Signal (Schmitt
triggered)

PP_NACKOUT_NSTROBEOUT OUT

PP_NACKIN_NSTROBEIN IN

Parallel Port Asynchronous handshake

signals

UART_RX_DATA IN RS232 Serial port rx signal

UART_TX_DATA OUT RS232 Serial port tx signal

M2K_IO [39 : 0] INOUT M2K Generic Bidirectional IO Signals

(Direction is programmed via software)

MPMC_TESTIN IN TIC Test Mode Select:

Note TIC is a synchronous, parallel, 32-bit

wide methodology for on-chip bus
verification that is part of the AMBA 2.0

bus protocol. Through the TREQa/TREQb
control signals it is possible to take control

Overall Implementation Results

 152

of the onchip bus as bus master and thus

access all devices (Memories, Peripherals
etc) connected to the onchip bus. Address,

Data Read and Data Write values are
transmitted, according to the TIC protocol,

through the TIC_DATA signals that in this

case is multiplexed over the MPMC_DATA
bus

MPMC_TREQA,

MPMC_TREQB

IN TIC control signals

MPMC_nBLSOUT[3 : 0] OUT MPMC Static Memory controller Byte Lane

Select

MPMC_nWEOUT OUT (Active Lo) MPMC Static Memory controller
Write enable. When TIC is active this signal

behaves as TIC ACK

MPMC_nOEOUT OUT (Active Lo) MPMC Static Memory controller
Output enable

MPMC_nSTCSOUT [3 : 0] OUT (Active Lo) MPMC Static Memory controller
Chip (Bank) select

MPMC_ADDROUT [23 : 0] OUT MPMC Static memory controller Address

out

MPMC_DATA INOUT MPMC Static memory controller Data bus

SD_CLK, SD_CLKN OUT (High speed differential dual Pad)

CMC SDRAM Controller Differential Clock

SD_CLKE OUT CMC SDRAM Controller Clock enable

SD_WEn OUT (Active Lo) CMC SDRAM controller Write

Enable

SD_RASn OUT (Active Lo) CMC SDRAM Controller Row
Address Strobe

SD_CASn OUT CMC SDRAM controller Column Address

Strobe

SD_CSn [1 : 0] OUT (Active Lo) CMC SDRAM controller Chip

Select

SD_BANK [1 : 0] OUT CMC SDRAM Controller Bank Address

SD_ADDR [13 : 0] OUT CMC SDRAM Controller Address Bus

SD_DQM[7 : 0] OUT CMC SDRAM Controller Data Mask

SD_DQS[7 : 0] OUT CMC SDRAM Controller Data Strobe

SD_DQ[63 : 0] INOUT CMC SDRAM Controller Bidirectional Data
Bus

Table 13: Top Entity Pinout

Overall Implementation Results

 153

Figure 54 describes the overall structure of the Morpheus Chip, as described

already in Chapter 2 and deliverables D3.1 and D3.2 [64][65].

Figure 54: Overall description of the Morpheus chip architecture

The present section will provide performance estimations for each of the

main Morpheus component blocks, following the organization outlined in the

figure:

• ARM Processor Core, that is the main “interface” towards the end

user and the overall system control and synchronization engine

• AMBA subsystem, comprising an AHB data bus (also utilized as

control bus), an AHB configuration bus, an APB peripheral bus,

two embedded DMAs (one per each AHB bus), bridges, a GPIO

controller, a Timer, a IEEE1284 interface, an UART interface, a

main onchip memory, configuration memory, interrupt handling

system based on the ARM pl190 VIC vectorized interrupt

controller, and a multi-port SRAM memory controller and TIC test

engine based on the ARM pl175 MPMC

Overall Implementation Results

 154

• Data communication infrastructure, composed of the NoC IPs

(Network Interfaces + routers), a set of data transfer engines that

collectively implement a distributed DMA structure, a traffic

controller, multiplexing logic between AMBA and NoC-based

access.

• Predictive configuration manager

• High speed, large bandwidth DDRAM memory controller

• Pact XPP HRE

• DREAM (PiCoGA-based HRE)

• M2000 FlexEOs-based HRE

5.2 Processor Based Infrastructure

5.2.1 ARM Core

The ARM A926EJS Core is a hard macro provided as layout library by ST.

The macro contains the ARM 926EJS core running at the frequency of 380

MHZ@wc_0.9V_125C, the memory management unit, 16K+16K data and

instruction caches, cache management logic. The macro is tightly coupled to

two separate scratchpad memory modules (DTCM and ITCM) that provide

single cycle fast access to the core. TCMs are not included in the macro but are

instantiated at design time in the RTL database.

Block Area (mm2)

ARM core Macro including caches 2.11

16Kbytes ITCM 0.19

16Kbytes DTCM 0.19

Total 2.5

Table 14: Area of the ARM component

Overall Implementation Results

 155

Block Dynamic Power(µW/MHZ) Leakage Power

(mW)

ARM core Macro + caches 244.1 2.2

16Kbytes SP ITCM 20.2 0.76

16Kbytes SP DTCM 15.8 0.76

Total 280 3.72

Table 15: Rough Power Consumption estimations for the ARM926 core

5.2.2 AMBA Subsystem

Most of the AMBA bus system is composed by a gate-level Verilog library

by Synopsys Design_Ware, so the following results will be estimations derived

after logic synthesis: external components added to the design are two RTL IPs

from ARM (the PL175 MPMC SRAM controller, and the PL190 VIC interrupt

controller) and some small complementary components (on-chip memory

interface, IEEE1284 interface) are distributed as open-source by ARCES under

the GPL license.

Being the whole block with the only exception of memory cuts a soft IP

synthesized on standard cells the Kgates metric has been considered more

relevant than cell area. A rough evaluation of possible area after P&R is only

provided on the Total figure. The same approach was maintained for all blocks

designed at RTL level in the following sections of this document.

Table 16: Gate Count for the AMBA subsystem components

Block Area (Kgates)

AHB Main Bus 2.5

Main bus DMA 43.8

Mpmc PL175 25.8

Vic PL190 13.2

System ROM 2

AHB2AHB bridge 1.3

AHB Conf Bus 0.9

Overall Implementation Results

 156

Conf Bus DMA 41

APB Peripheral Bus 2

GPIO 0.8

Timer 2.2

IEEE 1284 Interface 0.2

Uart RS-232 2

Total 140

Estimated Area (70% Density) 0.9 mm2

Table 17: Gate Count for the AMBA subsystem components

The AHB Subsystem also includes on-chip memories, whose area

occupation is described below:

Block Area (mm2)

4x64K bytes Main Memory 3

4x64K bytes Configuration Memory 3

Total 6 mm2

Table 18: Area occupation of memory cuts included in the AMBA bus system design

The AMBA Subsystem is able to run up to 290 MHZ@wc_0.9V_125C. The

critical path of the overall logic resides in the Main_AHB_DMA block, due to

the address generation and channel resolution mechanism in the DW_DMAC

IP. Given the specifications, this delay was considered acceptable.

Block Dynamic

Power(µW/MHZ)

Leakage Power

(mW)

Std Cells Logic 170 1.8

256K bytes Main Memory 120 10.4

256K bytes Configuration Memory 120 10.4

Total 410 22.6

Table 19: Rough Power Consumption estimations for the AMBA Subsystem

Note: The 64K bytes cut is the biggest memory model available. It is

possible that larger memories will be necessary for both main and

configuration bus (memory sizes will be fixed at M21. The current proposal is

256K for both main and configuration bus but overall chip area evaluations

Overall Implementation Results

 157

may impose smaller figures) but in this case it will be necessary to join more

cuts in the same memory block.

5.3 Hardware Services

5.3.1 The Predictive Configuration Manager block

The Predictive Configuration Manager (PCM) is an IP provided by CEA-

List. By default, the component is off and does not issue interrupts nor does it

access the configuration bus. The component wakes up after proper

initialization procedure done by software on the ARM processor. The AHB

slave interface has an addressing space of 64Kbytes. The Overall Area

Estimation is around 160 Kgates.

The number of memory cuts is dependent on the number of memory ports

utilized in the design. One buffer is required per each read port and write port.

In the current configuration only 2 ports are used, thus 4 cuts are included. The

Predictive Configuration Manager is targeted to run up to 350

MHZ@wc_0.9_125C.

Block Area (mm2)

Std Cells Logic (160Kg, 70% density) 1.05

14 SP/DP Memory Cuts 0.52

Total 1.57 mm2

Table 20: Area occupation for the PCM

Block Dynamic
Power(µW/MHZ)

Leakage Power
(mW)

Std Cells Logic 100 1

14 SP/DP memory cuts 62 0.71

Total 162 1.71

Table 21: Rough Power Consumption estimations for the PCM

Overall Implementation Results

 158

5.3.2 The CMC DDRAM Memory Controller

The CMC is a high bandwidth dynamic memory controller that has been

added to the Morpheus design to provide high bandwidth data access for

stream-oriented applications. Since at the moment of writing all the results are

relative to the closure of RTL functionality specification, all information

reported here will be focused on the functional behavior of the CMC.

Area/speed evaluations related to the design of the off-chip interface and data

synchronization are not reported here as such details will be available only

after the implementation phase. The CMC is designed to run up to 250

MHZ@wc_0.9_125C.

Block Area (Kgates)

Cmc core 75.4

Configspace_top 1

Noc2cmc (2 instances) 2*26K = 52K

Total 128.4 Kgates

Area Occupation (70% density) 0.80 mm2

Table 22: Main Building blocks of the CMC controller

Block Area (mm2)

2x(512x64) Read Buffer DP Memory 2x0.130629 = 0.261

2x(512x65) Write buffer DP Memory 2x0.132496 = 0.265

StdCells logic 0.80

Total CMC Area estimation 1.32 mm2

Table 23: Area occupation of the CMC

Block Dynamic
Power(µW/MHZ)

Leakage Power
(mW)

Std Cells Logic 113 1.07

Read Buffer Memories 2x(38.41)=76.82 0.897

Write buffer memories 2x(39.07)=78.14 0.905

Total 267.96 2.872

Table 24: Consumption estimations for the CMC

Overall Implementation Results

 159

5.4 The Data Interconnect Infrastructure

Figure 55: Schematic description of the MORPHEUS communication infrastructure

As explained in D4.5.1 [66], the specifications for the MORPHEUS

communication infrastructure are

• Scalability, that is the possibility to add/remove nodes (HREs or

storage units) in the system without affecting performance or

programming model

• Performance, that is the capability to ensure the necessary bandwidth

for relevant links between the nodes.

• In order to ensure testability and run-time verification the

interconnect mechanism must provide low speed, standard AMBA-

AHB access to all resources

As described in detail in [66] these specs, and in particular the scalability

issue, suggested the utilization of a Network-on-chip oriented approach rather

than a bus-based methodology. The STNoC “Spidergon” topology described in

Overall Implementation Results

 160

Chapter 4 was chosen as reference for the NoC deployment and predefined

NoC building blocks provided by ST (Initiator Network Interface, Target

network interface, Router) were thus adopted as reusable IPs. In order to

exploit the potentiality of the NoC approach, some modifications were

performed in the HRE structure; these modifications are related to the interface

between memory hierarchy and Interconnect, while no modification was

performed on the STNoC standard components, in order to minimize risks and

ensure high performance.

A Network-on-Chip is by definition a distributed communication platform

where a set of independent initiator nodes (e.g. processor cores) issue transfers

and a set of target nodes provide information storage (e.g. memory units) and

respond to the transfer requests. On the contrary, in MORPHEUS, all transfers

are supposed to be initiated (implicitly or explicitly) by ARM as macro-

operands for a given macro-operation, much like the assembly for a standard

processor is initiating transfers from the register file for an ALU operation.

This centralized communication scheme is implemented through a “distributed

DMA” pattern: each HRE node in the NoC is enhanced with a local data-

transfer engine defined Streamer. Streamers also provide the HRE with very

flexible addressing patterns that include 2D step/stride and circular buffer

functionality. HREs “load” data chunks from DEBs and “store” them through

the NoC to the target repository and vice-versa. From the core/user point of

view this pattern describes the NoC as an enlarged and highly parallel DMA

architecture. The user can than handle computation on HREs as C-level

functions mapped on a specific processing unit. Operands for this function are

referenced by their DMA transfer information, composed by base address and

addressing pattern details. Figure 55 describes the communication

infrastructure. The encircled section represents the set of IPs provided by ST,

and blue boxes represent IP target and initiator NIs. Routers are not depicted

because their number and organization will totally depend on the physical

topology of the chip which is not defined at this stage. From the NoC point of

view, HREs represent peculiar nodes: they can both be NoC initiators (require

Overall Implementation Results

 161

transfers from some storage units such as on-chip or off-chip RAM), or targets

(process external requests such as a transfer request from another HRE or

ARM). For this reason, the HRE Network interface is composed by the

initiator NI connection (depicted in purple), the embedded DMA engine, as

well as the target NI connection (pink) and the AMBA connection (blue)

multiplexed over the HRE DEBs. ARM can require any transfer between

HREs, as well as from any HRE to any storage unit (Onchip memory, Memory

controller): transfers are initiated by programming specific configuration

registers on the HRE network interface through a so-called network

configuration bus (gray). This configuration is performed through a specific

configuration channel reaching all HREs, mapped as slave on the AMBA bus.

During the verification phase all transfers can be issued by the ARM core.

ARM is also connected as initiator to the Network-on-chip so it has full

visibility of all network resources. During the computation phase, depending

on the chosen programming pattern, the programmer may prefer to handle each

data transfer configuration from the side of the driving processor. This is a

more flexible approach, and safer as it allows a run-time programmable control

of the operands flow in the application. During peak computation, in some

cases, this may result in an excessive complexity form the user point of view or

in an unnecessary demand for services from the side of the ARM core,

especially for applications where a continuous flow of information needs to be

implemented though the interconnect infrastructure. To provide a further level

of automation in the deployment of the interconnect strategy a specific DNA

(Data Network Access) controller is under design. This block will be used to

handle end-of transfer notification automatically, issuing new transfers (when

based on a regular pattern) without the need to resort to the core for handling

each end-of-transfer request. In this way, it is possible to provide a regular

streaming transfer, or a regular ping-pong buffering handshake in an automated

pattern.

Overall Implementation Results

 162

Block Area (Kg) Instances Total Area (Kg)

DNA Controller 50 1 50

HRE Network Interface 100 6 600

Total 650

Estimated Area (70% Density) 3.7 mm2

Table 25: Area occupation of main blocks composing the communication infrastructure

Block Area (Kg) Instances Total Area (Kg)

Router 14.3 16 228,8

NI 10 7+7 144

Total 372.8

Estimated Area (70% Density) 2.12 mm2

Table 26: Area occupation of STNoC IPs

Speed performance of the main blocks:

• The DNA controller currently performs at 160 MHZ but fixes is

being upgraded to reach the target value of 250 MHZ

• Router, NI can be synthesized up to 800 MHZ, but the configuration

chosen in the context of the Morpheus is of 250MHZ. Evaluations

related to implementation issues may impose further speculations.

• The embedded DNA engine and glue/control logic can be

synthesized up to 400 MHZ, but same considerations as above apply

One point emerging from this analysis is that the total Kgates count is

relatively high, but composed by several instances of the same few blocks. A

convenient option to mitigate P&R complexity would be to perform

hierarchical P&R on the building blocks and reuse them at top level, although

this option may be more resource-intensive.

Overall Implementation Results

 163

It important to consider that of all components in the design, the

communication infrastructure is the one that is more sensible to floor-planning

issues that affect wire loads. Consequently, except where evaluating a self

contained logic block whose communication is restricted at neighboring

entities as is the case with the Streamers or the DNA controller, the FE

dynamic power evaluations provided at this design stages are not reliable. In

any case, a rough and very conservative estimation can range around 200/250

uW/MHZ dynamic power and 2/3 mW static power. When more stable, these

figures should be added to the values described in the table above (as

everywhere in this document leakage is estimated in nominal conditions).

Overall Implementation Results

 164

5.5 Heterogeneous Reconfigurable Engines (HREs)

5.5.1 DREAM

Figure 56: Description of the DREAM Architecture

As described in Figure 56, the PiCoGA-based HRE features a sophisticated

communication and memory hierarchy that was designed, in the context of the

Morpheus Project, to sustain the reconfigurable unit computation with the

required data bandwidth and communication flexibility.

The main elements composing DREAM (see also 3.3.1) are the STxP70

Risc processor core (Control engine), the PiCoGA gate-array (Computation

engine), a set of 16 dual port memory cuts, a set of address generators for

supporting concurrent access to the 16 buffers, and an interconnect Matrix that

provide programmable connection between the PiCoGA IO ports and the

buffers.

From a technology point of view, thus, the DREAM HRE is a mix between

custom layout circuits (the PiCoGA gate-array, custom memory cuts, PLL) and

Overall Implementation Results

 165

RTL logic. In the following, area occupation figures will be described

accordingly to the nature of each block

Block Area (Kgates)

STxp70 Processor 40

PiCoGA Interface (Stall handling, configuration
control, context switch)

50

Address Generators 12 (16*0.7)

Interconnect Matrix 45

Others 13

Total 170

Estimated Area (70% Density) ~1.1 mm2

Table 27: Gate count of the main RTL sub-blocks composing DREAM

Block Area (mm2)

PiCoGA Gate-array (24x16 cells) 7.6

16x(1Kx32) DP Data Buffers (DEBs) 2.03 (16*0.127)

11x(1Kx32) DP Configuration Buffers (CEBs) 1.4 (11*0.127)

PLL 0.16

Total 10.2 mm

Overall DREAM Estimation(1) 11.4 mm2

Table 28: Area of the hard macro blocks composing DREAM

Timing performance of the DREAM clock domain after logic synthesis are

300 MHZ @ wc_0.9V_125C. The critical path of the block is due to the

interconnect matrix that connects the data buffers (DEBs) output ports with the

PiCoGA inputs. The matrix provides full connectivity requiring 12x32 32:1

multiplexers on input signals, which impose a significant burden both in terms

of timing and area occupation A more aggressive performance could be

achieved renouncing to full connectivity, but it has been evaluated that the cost

from the point of view of algorithm development would be unacceptable.

A second evaluated solution was that of pipelining the interconnect

structure, but that would add to the latency of each PiCoGA operation and that

also has been considered not convenient for application mapping.

Overall Implementation Results

 166

Note: The size of the PiCoGA macro is significant, and its shape a relevant

factor in the definition of the DREAM floor-plan. Also the 27 memory cuts

used in the architecture impose restrictions on the floor-planning style. This

evaluation and layout trials show that the FE estimation is not realistic and it

would not be possible to meet the required timing constraint with an area value

that matches the FE estimation. It should be thus considered that the area

required by the DREAM IP will revolve around 14/16 mm
2
.

Power estimations for the DREAM HRE are shown in the table below:

Block Dynamic (µW/MHZ) Leakage (mW)

STxp70 Processor 30 0.4

PiCoGA Interface 40 0.6

AG and Interconnect Matrix 70 0.8

Data Memory Buffers (DP, 64Kb) 212 5.92

Configuration Memory (DP, 44Kb) 3.2 4.07

PiCoGA Gate Array (24x16 cells) 300(1) 15

Total 655.2 26.8

Table 29: Main contributions to the estimated Power consumption of DREAM

The dynamic power consumption of PiCoGA has been measured from

prototypes. The reference value is 25 µW/MHZ per each Row that is

effectively computing. The ratio of active rows/MHZ depends strongly on the

deployed application. For a very generic estimation it has been suggested here

a ratio of 50%, that is 12 rows on the total 24 active per cycle, taking into

account peak kernel computation (~24/24 active rows) and idle time.

Overall Implementation Results

 167

5.5.2 M2000

Figure 57: Block diagram of the M2000 HRE

The M2000 block is a computation engine centered on the M2000 FlexEOS

FPGA. Similarly to the DREAM and XPP HREs, this HRE contains a data

interconnect and communication logic aimed at providing flexibility and

bandwidth for sustaining the IP computation capability.

Figure 57 describes the M2000 HRE: as it is the case for all Morpheus

HREs clock domain crossing and local data storage is implemented on a set of

buffers, DEBs. Address generation for concurrent DEB access can be

performed according to two alternative patterns: either with a (asynchronous)

FIFO paradigm for stream oriented applications, or generating DEB access

directly on the eFPGA. For what concerns the configuration interface, the

FlexEOS product features a memory mapped loader, described as a RTL IP.

The loader is mapped on the configuration bus and works at the same

frequency.

Overall Implementation Results

 168

Block Area (Kgates)

FIFO Controller (8 instances) 12

HRE Control and Synchronization 15

FlexEOS Loader 20

Total 57

Estimated Area (70% Density) ~0.4 mm2

Table 30: Gate count of the main RTL sub-blocks composing the M2000 HRE

Block Area (mm2)

FlexEOS eFPGA Macro (4K cells) 2.9

Data Buffers (DEBs) 8x(1Kx32) DP 0.85

PLL 0.16

Overall M2000 HRE Estimation 4.55 mm2

Table 31: Area of the hard macro blocks composing the M2000 HRE

Front end estimations for the maximum achievable performance are:

• M2000 Loader (Residing on configuration bus) -> 180 MHZ

• Data Interface (Residing on main AHB bus) -> 250 MHZ

As for power consumption, it is very difficult to estimate figures for the

dynamic consumption of the FlexEOS HRE as this would strongly depend on

mapped applications. In Table 32 an exemplar design was utilized to estimate

such figures: an AES (Advanced Encryption Standard) application running on

80% of available cells. AES can be considered a good example of an energy-

demanding application. Smaller applications would proportionally require a

more reduced consumption.

Differently from XPP and DREAM M2000, being an eFPGA device, may

feature working frequencies which are quite different from those of the

Morpheus infrastructure. For this reason dynamic consumption contributions

have been divided according to the relative clock domain:

• APP => Application frequency, in the range 40:120 MHZ

• CORE => Core frequency, set at 250MHZ (FE estimation)

Overall Implementation Results

 169

Block Dynamic (µW/MHZ) Leakage (mW)

FlexEOS eFPGA Macro

(20K cells cut) (1)
6170 @APP 30

Data Buffers (DEBs) 8x4K bytes DP 119.6@APP + 1.7@CORE 1.5

Std Cells logic 22@APP + 0.1@CORE 0.47

Total 6311@APP + 2.5@CORE 33.23

Table 32: Main contributions to the estimated power consumption of the M2000 HRE

5.5.3 Pact XPP

Figure 58: Description of the XPP HRE

Figure 58 (from [67]) describes the XPP HRE. The XPP HRE is a

computation engine centered on the Pact XPP embedded signal processor. As

XPP is oriented at streaming computation, this block contains the logic aimed

at providing stream-based connection towards the system-level communication

interface (FIFOs) for sustaining the IP computation capability.

Overall Implementation Results

 170

Since the HDL coding of the Pact XPP is still under definition significant

adjustment of the figures provided below are still possible.

5.5.3.1 XPP/System connection

XPP is connected to the Morpheus system via a set of DEBs used as mono-

directional FIFOs to/from the XPP macro. The overhead due to this logic

consists in 20Kgates for FIFO control and synchronization, plus 2 Kbytes

DEBs and 64 Kbytes CEBs.

Block Area (mm2)

Data Buffers (DEBs) 8x(1Kx16) DP 0.85

Configuration Buffers 1x(8Kx64) DP 1.451

FIFO Control and synchronization (20Kg, 70%

density)

0.125

PLL 0.16

Total 2.84

Table 33: Area estimations of the main blocks connecting the XPP Macro to the

Morpheus System

Block Dynamic (µW/MHZ) Leakage (mW)

Data Buffers (DEBs) 8x(1Kx16) DP 168 0.802

Configuration Buffers 1x(8Kx64) DP 1.24 1.54

FIFO Control and synchronization 28.71 0.23

Overall XPP HRE Estimation 197.95 2.572

Table 34: Rough power consumption evaluations for the XPP/Morpheus connection

5.5.3.2 XPP core macro

As it is the case with the ARM Core, the PiCoGA gate-array array and the

M2000 FlexEOS eFPGA, due to its relevant complexity, area occupation, and

to the peculiar features of its design Pact XPP will be imported on the

Morpheus design as a layout macro.

Overall Implementation Results

 171

The estimation of area requirements of the XPP array are based on a trial

layout which was done with 30 ALU-PAEs and 12 RAM-PAEs and 2 FNC-

PAEs. Bottom line ALU and RAM PAEs has been included.

Block Area (mm2)

RAM PAE (x12) 0.60 (x12)

ALU PAE (x30) 0.41 (x30)

BL RAM PAE (x2) 0.33 (x2)

BL ALU PAE (x12) 0.22 (x12)

Total Array interconnection overhead 1.1

FNC PAE (x2) 2.72 (x2)

Reference Design ~8.26

Total 37.6

Table 35: Estimation of the area occupation of the main blocks composing the XPP

5.6 Padframe

The padframe is of course very liable to modifications due to

implementation issues: at the current design stage, as described in Table 13 the

design includes 249 signal pads, of which 104 optimized for high speed for

supporting the CMC controller.

The design is not pad limited, featuring an area in the range of 90/100 mm
2
.

The contribution of the Padframe to the overall chip area can be roughly

estimated as follows: supposing that the chip floorplan should be more or less

regular in size (Chip height ~ Chip length) we have

Padframe Area ≈ Pad height * SQRT(Area) *4 ≈ 4.5 mm
2

(Note: Corners are included twice in this estimation, but that is done on

purpose to ensure some flexibility for defining a padframe not perfectly square

to accommodate large macros placement)

Overall Implementation Results

 172

The Core reference voltage is 1V, the IO Ring reference voltage 3.3V . An

analog voltage regulator is added to the design to provide stable reference

voltage and minimize IR-Drop effects (given the chip area and the high

consumption of particular chip regions such as the HRE, IR-Drop will have to

be taken into account anyway in the course of the design.).

The number of power pads will be defined when more detailed power

estimations will be possible. A theoretical reference value for the moment is

~150 voltage feed pads. The chosen IO package may impose restrictions on

these number, although it is possible to bond two voltage feed pads to the same

package pin.

Entity Instances Dynamic 1V

(µW/MHZ)

Dynamic 3V3

(µW/MHZ)

Leakage (mW)

Power

feed

~150 n.a. n.a. ~0.2

Signal
Pads

(~20
MHZ)

145

(21in, 39 out, 84

inout)

21*.3 +
39*.14 +

84*.4= 45

 21*10 + 39*60
+ 84*90=

10110

(200 mW)

102*.095=9.6

High

Speed
Pads

(200
MHZ)

104 (32 out, 72

inout)

39*.14 +

72*.4= 28.8

32*60+72*90

= 8400

(1600 mW)

104*.23= 23.9

Overall

Padframe
~400 70 µW/MHZ,

1.4 mW

1800 mW 35 mW

Table 36: Rough power consumption estimation for the IO Ring

It should be noted that most Pads are control signals that do not commute

regularly in the chip lifetime, excluded memory controller pads.

5.7 Final Consideration

In this final section overall estimations will be described for the whole chip.

In order to ease the readability of this final report, the Morpheus database has

been divided in 5 logic components: the 3 separated HREs described as

Overall Implementation Results

 173

independent clock island, the data communication infrastructure, the processor-

based subsystem (ARM core, AHB bus hierarchy, peripherals, on-chip

memories and external memory controllers) and the Padframe.

Block Area
Estimation

(mm2)

Kgate (where
applicable)

Kbytes (where
applicable)

Macro Area
(mm2)

ARM+AMBA

Interconnect

Infrastructure

3.5 AMBA (140) 64 Kb (SP) ARM (2.11)

Memory

(0.4)

NoC Based

Interconnect +

DNA

7 DNA (50)

DMAs (270)

STNoC NIs
(140)

DREAM clock
island

18 170 132 KB (DP) PiCoGA
(10.2)

Memory

(3.92)

M2000 clock

island

6.2 Loader +

Control (57)

32 KB (DP) M2K (2.9)

Memory

(0.85)

XPP clock island 36 Reference
Design (350)

64 Kb (SP)

64 Kb (DP)

Array (24)

Memory

(2.5)

System Memory 7.5 512Kb (SP) Memory
(7.5)

PCM 2.2 160 14Kb (DP)

22Kb (SP)

Memory

(0.7)

CMC 2 125 24 Kb (DP) Memory
(0.7)

PAD Ring + PLL 6.1

Total 92

Table 37: Main contributions to overall chip area

Note: To All area figures described in previous tables it has been added a

slight overhead to take into account routing congestion due to the presence of

large hard macro blocks

Overall Implementation Results

 174

Conclusion

 175

Conclusion

Many issues of current embedded systems design have been investigated in

this work, and, having in mind the template of a Multi Processor System-on-

Chip, different steps of architectural exploration and design were presented to

eventually approach to a novel heterogeneous multiprocessor architecture,

combining the advantages deriving from reconfigurable hardware, state of the

art Network-on-Chip and parallel processing.

The known density advantage of reconfigurable hardware over standard

processors has been extended by coupling a standard ARM RISC processor to

several reconfigurable engines, achieving an improved flexibility and

programmability compared to ASIC based platforms. The results described in

this thesis have been validated by a complete design flow aimed to integrate

the described concept in a silicon prototype.

Step by step, each chapter of this thesis presents different contributes

integrated in the design of the proposed architecture. Chapter 1, which is

dedicated to introduction, state of the art overview and general concepts on

reconfigurable computing, multiprocessor architectures and onchip

communication, is excluded from this summary,.

In chapter 2, we introduced the general outlines of the proposed SoC

architecture, based on the integration of several reconfigurable architectures

characterized by a different grain. The system is based on an ARM core, a

complete hierarchy of AMBA busses for testing purposes and configuration

management, and also features a set of standard memories including cache

memories, on-chip memory and a dedicated external memory controller to

integrate SRAM/FLASH memories. A set of different peripherals is also

integrated.

In chapter 3, we gave a complete explanation of the main concepts adopted

to define the complete memory hierarchy. Different Reconfigurable

Architecture are characterized by different I/O interfaces, as well as different

Conclusion

 176

working clock frequencies. In order to hide the heterogeneity of each block, a

dedicated interface based on the usage of dual port dual clock memories has

been adopted.

In chapter 4, we explained some details of the communication strategies

adopted in the design of this architecture. A set of bus solutions is used to

provide a secure and familiar medium for debugging and to manage the

configuration transfer of the reconfigurable engines. On top of this, a novel

approach based on the Spidergon NoC engine is adopted to manage high

bandwidth data transfer paths between the reconfigurable unit and the on/off-

chip memories. Finally, to provide the end user a single homogeneous interface

when describing data transfers, the HREs have been equipped with local DMA-

like data transfer engines, programmed and controlled at system level through

the toolset. Communication synchronization and control may be handled in this

way by software routines running on the main processor.

The work led to the implementation of a silicon prototype in 0.090µm

technology provided by STMicroelectronics.. In Chapter 5, we present the

implementation results achieved during the design of the MORPHEUS

architecture. The chip aims to fit in a 90mm2 die.

BIBLIOGRAPHY

 177

Bibliography

[1] R. Hartenstein, “A decade of Reconfigurable Computing: a visionary

Retrospective”, Proceedings DATE 2001.

[2] M. Coppola et al, “Spidergon: a novel on-chip communication network”,

IEEE SOC 2004.

[3] The MORPHEUS reference website: http://www.morpheus-ist.org.

[4] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, R. Guerrieri, “A

VLIW processor with reconfigurable instruction set for embedded

applications”, IEEE Journal of Solid-State Circuit, Nov. 2003.

[5] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De

Bartolomeis, L. Ciccarelli, R. Giansante, A. Deledda, F. Campi, M. Toma

and R. Guerrieri, “XiSystem: a XiRisc-based SoC with a Reconfigurable IO

module”, IEEE Journal of Solid-State Circuit (JSSC), Jan. 2006.

[6] M. Bocchi, C. De Bartolomeis, C. Mucci, F. Campi, A. Lodi, M. Toma, R.

Canegallo, R. Guerrieri, “A XiRisc-based SoC for Embedded DSP

Applications”, IEEE Custom Integrated Circuits Conferences (CICC’04),

Oct. 2004

[7] A. Lodi, M. Toma, F. Campi, “A Pipelined Configurable Gate Array for

Embedded Processors”, Proceeding on FPGA 2003.

[8] A. Cappelli, A. Lodi, C. Mucci, M. Toma, F. Campi, “A Dataflow Control

Unit for C-to-Configurable Pipelines Compilation Flow”, IEEE

Symposium on FCCM, Apr. 2004.

[9] C. Mucci, C. Chiesa, A. Lodi, M. Toma, F. Campi, “A C-based Algorithm

Development Flow for a Reconfigurable Processor Architecture”, IEEE

International Symposium on System on Chip, November 2003.

[10] C. Mucci, F. Campi, A. Deledda, A. Fazzi, M. Ferri, M. Bocchi, “A

cycle-accurate ISS for a dynamically reconfigurable processor

BIBLIOGRAPHY

 178

architecture”, IEEE Reconfigurable Architecture Workshop (RAW), Apr.

2005.

[11] C. Mucci, M. Bocchi, P. Gagliardi, L. Ciccarelli, A. Lodi, M. Toma, F.

Campi, “A Case-Study on Multimedia Applications for the XiRisc

Reconfigurable Processor”, Proceedings on IEEE Int’l Symposium on

Circuits and Systems (ISCAS), May 2006.

[12] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, C. Mucci, A. Lodi, A.

Vitkovski, L. Vanzolini, P. Rolandi, “A dynamically adaptive DSP for

heterogeneous reconfigurable platforms”, Proceedings on IEEE/ACM

DATE 2007.

[13] Moore GE (1965), “Cramming More Components onto Integrated

Circuits”, Electronics, April 19, pp114-117.

[14] International Technology Roadmap for Semiconductors (2005) ITRS.

Available at http://www.itrs.net.

[15] S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A

Tutorial”, IEEE Design Test f Computers, 1996, 13(2):42-57.

[16] W. Wolf, “FPGA-Based System Design”, Prentice Hall 2004, Upper

Saddle River, NJ.

[17] David A. Patterson, “Future of Computer Architectures”, Berkeley

EECS Annual Research Symposium (BEARS), College of Engineering,

UC Berkeley, US, February 23 2006.

[18] Ahmed A. Jerraya, Aimen Bouchhima, Frédéric Pétrot, “Programming

Models and HW-SW Interfaces Abstraction for Multi-Processor SoC”,

Proceedings of the 43
rd

 annual conference on Design automation, San

Francisco, USA, 2006.

[19] Caspi E., Chu M., Huang R., Weaver N., Yeh J., Wawrzynek J., and A.

DeHon, “Stream Computations Organized for Reconfigurable Execution

(SCORE)”, FPL’2000, LNCS 1896, pp. 605-614, 2000.

BIBLIOGRAPHY

 179

[20] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti and M.Milano,

“Communication-Aware Allocation and Scheduling Framework for

Stream-Oriented Multi-Processor Systems-on-Chip”, IEEE Design

Automation and Test in Europe, Munich, Germany, March 2006.

[21] J. Chaoui, K. Cyr, S. de Gregorio, J. P. Giacalone, J. Webb, and Y.

Masse, “Open multimedia application platform: enabling multimedia

applications in third generation wireless terminals through a combined

RISC/DSP architecture” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP2001),

vol. 2, Salt Lake City, UT, 2001, pp. 1009–1012.

[22] OMAP 3 family of multimedia application processors. [Online].

Available at: http://focus.ti.com/pdfs/wtbu/tu_omap3family.pdf

[23] Mobile multimedia application processor. [Online].

Available at: http://www.st.com/stonline/products/literature/bd/14379.pdf

[24] Nexperia PNX1500 family of connected media processors. [Online].

Available at: http://www.nxp.com/acrobat_download/9397/75015926.pdf

[25] Athanas R., Silvermann H. (1993) “Processor Configuration Through

Instruction Set Metamorphosis”. IEEE Computer, 26(3): pp. 11-18.

[26] Razdan R, Smith M (1994) “A High Performance Microarchitecture

with Hardware-Programmable Functional Units”. Proc. Microarchitecture

(MICRO-27), 1994. pp- 172-180.

[27] Rabaey JM (2000) “Silicon Platforms for the next generation wireless

systems what role does reconfigurable hardware play?”, Proc. Field

Programmable Logic and Applications Conference (FPL), pp 277-285.

[28] Mangione-Smith WH, Hutchings B, Andrews D, DeHon A, Ebeling C,

Hartenstein R, Mencer O, Morris J, Palem K, Prasanna VK, Spaanenburg

HAE (1997) “Seeking solutions in configurable computing”, IEEE

Computer, 30(12):38-43.

BIBLIOGRAPHY

 180

[29] Hartenstein R (1997) “The Microprocessor is no more general

purpose”, Invited Paper, Proc. the international conference on Innovative

Systems in Silicon, October 1997.

[30] G. Estrin, “Reconfigurable computer origins: the UCLA fixed-

plusvariable (f+v) structure computer” IEEE Annals of the History of

Computing, vol. 24, no. 4, pp. 3–9, 2002.

[31] G. Estrin , “Organization of computer systems-The fixed plus variable

structure computer,” in Proceedings of the Western Joint Computer

Conference, New York, 1960, pp. 33–40.

[32] DeHon A (2000) “The Density advantage of reconfigurable

computing”, IEEE Computer, Vol 33, Issue 4, April 2000, pp 41 – 49.

[33] Bondalapati K, Prasanna VK (2002) “Reconfigurable Computing

Systems”, Proceedings of the IEEE, Vol 90, Issue 7, July 2002 , pp 1201-

1217.

[34] DeHon A, Wawrzynek J (1999) “Reconfigurable Computing: What,

Why and Implications for Design Automation”, Proc. DAC, 1999, pp 610-

615.

[35] Wong S, Vassiliadis S, Cotofana S (2002) “Future Directions of

(Programmable and Reconfigurable) Embedded Processors”, Proc. the 2
nd

Workshop on System Architecture MOdeling and Simulation (SAMOS).

[36] Barat F, Lauwereins R, Deconinck G (2002) “Reconfigurable

instruction set processors from a hardware/software perspective”, IEEE

Transactions on Software Engineering, 28(9):847-862.

[37] Singh H, Lee MH, Lu G, Kurdahi FJ, Bagherzadeh N, Chaves Filho

EM (2000) “MorphoSys: An Integrated Reconfigurable System for Data-

Parallel and Computation-Intensive Applications”, IEEE Transactions on

Computers, 49(5):465-481.

BIBLIOGRAPHY

 181

[38] Hartenstein R (2001) “A decade of Reconfigurable Computing: a

visionary Retrospective”. In Proc. DATE, pp 642-649.

[39] Bolsen I (2002) “Challenges and opportunities of FPGA platforms”,

Proc. FPL, pp 391-392.

[40] Callahan T, Hauser JR, Wawrzynek J (2000). “The Garp Architecture

and C Compiler”, IEEE Computer, 33(4):62–69.

[41] Vassiliadis S, Wong S, Gaydadjiev G, Bertels K, Kuzmanov G,

Panainte EM (2004) “The MOLEN Polymorphic Processor. In: IEEE

Transactions on Computers”, Vol 53, no. 11, Nov 2004, pp 1363 – 1375.

[42] Campi F, Toma M, Lodi A, Cappelli A, Canegallo R, Guerrieri R

(2003) “A VLIW Processor with Reconfigurable Instruction Set for

Embedded Applications”, ISSCC Digest of Technical Papers, pp 250–251.

[43] Lodi A, Campi F, Toma M, Cappelli A, Canegallo R, Guerrieri R

(2003) “A VLIW processor with reconfigurable instruction set for

embedded applications”, IEEE Journal of Solid-State Circuits (JSSC),

38(11):1876-1886.

[44] Goldstein SC, Schmit H, Budiu M, Cadambi S, Moe M, Taylor RR

(2000) PipeRench: A Reconfigurable Architecture and Compiler. In IEEE

Computer, April 2000, pp 70-77.

[45] Wilson R et al. (1994) “SUIF: An Infrastructure for Research on

Parallelizing and Optimizing Compiler”. SIGPLAN Notices, page 31, Dec

1994.

[46] Vorbach M, Becker J (2003) “Reconfigurable processor architectures

for mobile phones”, Proc. the Int’l Parallel and Distributed Processing

Symposium, April 2003.

[47] Corporaal H (1998) “Microprocessor Architectures: From VLIW to

TTA”, John Wiley & Sons, Chichester.

BIBLIOGRAPHY

 182

[48] Arnold JM (2005) “S5: the architecture and development flow of a

software configurable processor”, In Proc. IEEE International Conference

on Field-Programmable Technology, pp 121-128.

[49] Sato T, Watanabe H, Shiba K (2005) “Implementation of dynamically

reconfigurable processor DAPDNA-2”. In Proc. IEEE VLSI-TSA

International Symposium VLSI Design, Automation and Test, pp 323-324.

[50] Mei B, Vernalde S, Verkest D, DeMan H, Lauwereins R (2003)

“ADRES: An Architecture with Tightly coupled VLIW Processor and

Corse-Grained Reconfigurable Matrix”. In Proc.FPL, pp 61-70.

[51] Rivaton A, Quevremont J, Zhang Q, Wolkotte P, Smit G (2005)

“Implementing non power-of-two FFTs on Coarse-Grain Reconfigurable

Architectures”. Proc. Int’l Symposium on SOC, pp 74-77.

[52] Smit G, Heysters P, Rosien M, Molenkamp B (2004) “Lessons Learned

from Designing the Montium, a Coarse grained Reconfigurable Processing

Tile”. In Proc. International Symposium on SoC, pp 29 – 32.

[53] Ciricescu S, Essick R, Lucas B, May P, Moat K, Norris J, Schuette M,

Saidi A (2003) “The Reconfigurable Streaming Vector Processor”. In

Proc. Intl Symposium on Microarchitectures (MICRO-36), pp 141-150.

[54] Dezan C, Jegot C, Pottier B, Gouyen C, Lagadec L (2006) “The case

study of block turbo decoders on a framework for portable synthesis on

FPGA”. In Proc. Hawaii International Conference on System Sciences.

[55] M2000 manual : “The FlexEoS Loader”. Available at:

http://www.m2000.com

[56] ARM ltd: “ARM926EJS Technical Reference Manual” Rev r1p5

[57] ARM ltd: “AMBA Specification” Rev 2.0

[58] ARM ltd: “PrimeCell Multi-Port Memory Controller” Rev r1p2

[59] Synopsys: “DesignWare DW_ahb Databook” Version 2.04a

BIBLIOGRAPHY

 183

[60] Synopsys: “DesignWare DW_apb Databook” Version 1.02b

[61] Synopsys: “DesignWare DW_ahb_dmac” Version 1.04c

[62] Synopsys: “DesignWare DW_apb_gpio Databook” Version 2.04

[63] Synopsys: “DesignWare DW_apb_uart Databook” Version 3.02a

[64] MORPHEUS, Deliverable D3.1: “Preliminary architecture definition”

[65] MORPHEUS, Deliverable D3.2: “Report on subtask specifications of

WP3”

[66] MORPHEUS, Deliverable D3.4: “Architectural Metrics for

Communication”

[67] Morpheus, Deliverable D4.5.1: “Report on HDL database after

functional RTL description”

[68] MORPHEUS, Deliverable D5.1: “Specification of application test

cases”

[69] MORPHEUS, Deliverable D5.2: “Definition of reference baselines and

evaluation metrics”

