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Introduction 

Data intensive processing in embedded systems is receiving relevant 

attention, due to rapid advancements in multimedia computing and high-speed 

telecommunications. Applications demand high performance under realtime 

requirements, and computation power appetite soars faster than Moore’s law 

(see Figure 1, [13]). Processor efficiency is impaired by the memory bandwidth 

problem of traditional Von Neumann architectures. On the other hand, the 

conventional way to boost performance through Application Specific 

Integrated Circuits (ASIC) suffers from sky-rocketing manufacturing costs and 

long design development cycles. This results in an increasing need of post-

fabrication programmability at both software and hardware level. Field 

Programmable Gate Arrays (FPGA) bring maximum flexibility with their fine 

grain architecture, but imply severe overheads in timing, area and 

consumption. Word or sub-word oriented Run-time Reconfigurable 

Architectures (RAs) [1] offer highly parallel, scalable solutions combining 

hardware performance with software flexibility. Their coarser granularity 

reduces area, delay, power consumption and reconfiguration time, but 

introduces tradeoffs in the design of the processing elements, that need to be 

tailored for a given application domain.  

A possible way to mitigate this aspect for building a flexible yet efficient 

signal processor is to substitute each ASIC accelerator with a specific domain 

oriented RAs, inducing a graceful shift of SoCs from application specific 

circuits to domain oriented platforms, where different flavors of reconfigurable 

hardware, each more suited to a given application environment, are merged 

with ASIC and general purpose processors to provide ideal tradeoff between 

performance and post-fabrication programmability. The immediate advantage 

is that the higher computational density of RAs allows to build networks 

composed of a significantly smaller number of nodes. The immediate 

drawback is the need to synchronize units that are intrinsically different and  
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Figure 1: Computational requirements vs. Moore’s law and battery storage 

provide independent application mapping styles and entry languages. In this 

context, critical issues are related to the definition of  

• a toolset that must be capable to hide RA heterogeneity and 

hardware details providing a consistent and homogeneous 

programming model to the end user  

• a data interconnect infrastructure, that must sustain the bandwidth 

requirements of the computation units while retaining a sufficient 

level of programmability to be adapted to all the different data flows 

defined over the architecture in its lifetime.  

These aspects are strictly correlated and their combination, together with the 

strategy deployed for RA computation synchronization represents the signal 

processor interface toward the end-user. In particular, the architecture view 

shall be abstracted as much as possible for the user, providing a programming 
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model looking like purely functional code. Program parts requiring 

acceleration on RAs should be identifiable in the easiest possible way. A 

toolset can then handle and program the code corresponding to data 

movements and reconfigurations related to these accelerating parts.  

In this context not only computation but also communication aspects must 

indeed be considered. This will enable performance optimization by masking 

communication time by computation time through a “pipelined” behavior. The 

scheduling of these accelerating parts among each other, including loading 

configuration and execution, may be managed at compilation time based on 

RTOS-oriented services.  

This thesis presents the definition and the design of a heterogeneous 

reconfigurable SoC platform, where state-of-the-art RAs of different size and 

nature are grouped together in a processor-controlled system. In particular, this 

work aims at describing the most significant challenges and design choices that 

have been faced in the deployment of a well known NoC infrastructure (the ST 

Spidergon NoC approach [2]) and the consequent impact on the architecture 

and toolset definition. I believe that the most relevant innovation aspects of this 

work are: 

1. A significant milestone in the field of Heterogeneous-MultiCore 

SoCs;  

2. The first design-case challenging the deployment of the NoC 

concept to a network of high-bandwidth computation intensive RAs. 

The rest of this thesis is organized as follow. In Chapter 1, the terminology and 

basic foundation of Computation Intensive System-on-Chips are revisited to 

pave way to the rest of the thesis. An overview of the European  project, where 

this work was done, is also given. Chapter 2 presents the defined  architecture 

for the MORPHEUS project. Chapter 3 and 4 details the main choices given in 

the definition of the memory hierarchy and the adopted communication 
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infrastructure. The last chapter presents design and performance results 

achieved in the frame of this project. 
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Chapter 1 Multiprocessing and 

Reconfigurable Computing 

Up to the 1990s processor designers mainly focused their work on boosting 

single processor performance. This evolution was conducted constantly 

increasing clock rates extending instruction-level parallelism (ILP). This was 

made possible by technology scaling which reduced physical delays and device 

sizes allowing for a larger area to be utilized by new logic. The result is a 

variety of superscalar architectures employing different hardware solutions to 

concurrently process different instructions. Performance of future embedded 

systems, according to the ITRS estimation shown in figure 1.1, will require the 

execution of an increasing number of instructions per clock cycle, but the cost 

of extracting such parallelism from a single thread is becoming prohibitive 

both in terms of area and energy consumption.  

 

Figure 2: MPSoC trends 
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It has nevertheless been stated that trying to further increase ILP is not the 

best choice as explained by D. Patterson in [17]. As an alternative to 

superscalar architectures, processor designers and researchers are proposing a 

different approaches based on Tread Level Parallelism (also named Task Level 

Parallelism, TLP) that seem to enable significant speed-up and proves more 

flexible than ILP. 

From an architecture point of view, we can distinguish MPSoC architectures 

in two main classes: 

1. Homogeneous MPSoC, where all the processing elements are 

usually identical or at least share a common ISA,  

2. Heterogeneous MPSoC, characterized by the integration of different 

computational core: i.e. processor with different ISAs, several 

ASICs or DSPs, etc. 

One of the main aspects in heterogeneous MPSoC is that software modules 

have to interrelate with hardware modules. In [18] the authors show the use of 

an high level programming approach for the abstraction of HW-SW interfaces. 

The proposed programming model is based on a set of functions (primitives) 

that can be used by the SW engineer to interact with HW modules. In the 

reconfigurable computing domain, alternative approaches have also been 

investigated; in [19] a scalable programming model (named SCORE) is 

presented and used for a homogeneous scalable reconfigurable architecture. 

The model allows indifferently computing a set of tasks in time or in space, 

following the resources available: the advantage is that software is reusable for 

any generation of component based on that model. 

From the memory point o view we can investigate two main programming 

models:  

1. SMP (Symmetric Multi Processing) where all the processors have 

a global vision of the memory (shared memory) and  
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2. AMP (Asymmetric Multi Processing) where the processors are 

loosely coupled and have generally dedicated local memory 

resources.  

Task control management is also an issue to consider. Threads can be 

handled at execution time (dynamically on a single processor) by an operating 

system or at design time (statically) by complex scheduling techniques. A part 

of the MP-SOC community focuses on static task placement and scheduling in 

MP-SOC. Indeed, having a complex operating system in memory taking care 

of run-time mapping is often not feasible for a SOC, because of the restricted 

memory resources and associated performance overhead. Moreover, these 

systems are often heterogeneous and dedicated to a few tasks, and a single but 

efficient scheduling of tasks may be more adapted. For instance in [20], the 

authors summarize the existing techniques (ILP based or heuristics) and have 

developed a new framework based on ILP solvers and constraint programming 

to solve at design time the task allocation/scheduling problem. 

 

1.1 MPSoC state of the art 

Multiprocessor systems-on-chip are mostly suitable for high-volume 

products with stringent constraints in terms of performance, power 

consumption and cost. Many application domains are covered by these 

features, including multimedia, communications, automotive and networking. 

This section, referring to a survey proposed by Wolf [16], describes some state-

of-the-art MPSoCs, suitable for different application domains. A common 

feature of all the analyzed architectures resides in the integration of a standard 

processor which operates as the main system controller. This choice generally 

simplifies system programmability allowing multiple processing elements and 

customized ASIC blocks to be programmed as co-processors, maintaining a 

central control task on the control processor. 



Multiprocessing and Reconfigurable Computing 

 8 

1.1.1 TI OMAPTM 

The Open Multimedia Application Platform (OMAP) [21][22] proposed by 

Texas Instruments is a combined RISC/DSP architecture targeted to 3G 

wireless applications. The platform supports mainly baseband processing and 

voice services, in addition multimedia, gaming and other application at user 

level. 

 

Figure 3: TI OMAP 3430 block diagram 

Figure 3 shows the architecture overview of the TI OMAP 3430. The 

inclusion of a standard ARM Cortex A8 processor ensures the compatibility 

with different commercial operating systems, while the additional DSPs 

provide the platform with additional computational power to process the 

previously cited applications. The ARM core and the DSP use a shared 

external DRAM interface, while a consistent amount of SRAM are internally 

integrated. A complete set of peripherals is also included (USB, I2C, UARTs, 

GPIOs). Outstanding gaming capabilities will also be possible, thanks to 

ARM’s integrated vector floating-point acceleration working with a dedicated 

2D/3D graphics hardware accelerator. 
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To simplify software development on the heterogeneous multi-core 

architecture, the RISC is defined as the system master and a DSP resource 

manager runs on the ARM. Tasks executed on the DSP are controlled through 

a DSP/BIOSTM bridge which adds support for inter-processor communication, 

based upon the mailbox mechanism. The DSP/BIOS allows the ARM to 

initiate DSP tasks, to exchange messages and data streams with the DSP and to 

control the DSP status. This hardware support simplifies system 

programmability treating the DSP and the accelerators as system co-processors. 

 

1.1.2 ST NomadikTM 

STMicroelectronics Nomadik platform [23] is designed for 2.5G/3G mobile 

phones, personal digital assistants (PDAs) and, more in general, portable 

wireless products with multimedia capabilities. The architecture is focused at 

delivering ultra low power consumption enabling audio and video applications. 

The result is a 20mW typical power consumption with the computational 

power required by MPEG-4 encoding and decoding with display sizes ranging 

from 160x160 pixels to 640x480 pixels.  

 

Figure 4: ST Nomadik multimedia processor architecture 

Again, the architecture is based on a standard ARM926E-JS processor. This 

32-bit processor core supports 32-bit ARM and 16-bit Thumb instruction sets, 
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enabling the user to trade off between high performance and high code density. 

The cached ARM CPU features a memory management unit (MMU) and is 

clocked at a frequency up to 350 MHz. It has a 16-Kbyte instruction cache, a 

16-Kbyte data cache, and a 128-Kbyte level 2 cache, and supports the Jazelle™ 

extensions for Java acceleration.  

In addition to the ARM core a series of accelerators are included for 

dedicated task: 

• smart video accelerator for SDTV video encoding and decoding, 

with MIPI and SMIA camera interfaces. 

• smart audio accelerator containing a comprehensive set of digital 

audio decoders and encoders, and offering a large number of 3-D 

surround effects.  

• A smart imaging accelerator, providing real-time, programmable 

image reconstruction engine. 

• A smart graphics accelerator 

A multi-layer AMBA crossbar interconnect for optimized data transfers 

between the CPU, accelerators, memory devices and peripherals is also 

integrated. A set of hardware semaphores for flexible inter-process 

management is used. A wide range of peripheral interfaces (GPIO, USB-OTG 

high speed, UART, I²C, FIrDA, SD/high-speed MMC/Memory Stick Pro, fast 

serial ports, TV output, color LCD and camera interfaces, scroll-key encoder, 

key-pad scanner) is available. 

 

1.1.3 Philips NexperiaTM 

The Nexperia NXP1500 [24] is a MPSoC architecture developed by Philips 

Semiconductors and designed for digital video applications, including digital 

television, home gateway and networking, and set-top box applications.  
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At the heart of all PNX1500 processors is a TriMedia TM3260 CPU core 

delivering top performance through the implementation of a very-long 

instruction word (VLIW) architecture. Five issue slots enable up to five 

simultaneous RISC-like operations to be scheduled into only one VLIW 

instruction. These operations can simultaneously run on five of the CPU’s 31 

pipelined functional units within one clock cycle. 

 

Figure 5: Philips Nexperia PNX1500 block diagram 

In addition to the Trimedia core a set of specific accelerators are integrated. 

A video input processor (VIP) captures and processes digital video for use by 

on-chip units. During capture of a continuous stream of data, the VIP unit can 
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crop, horizontally down-scale, or convert the YUV video to one of many 

standard pixel formats as needed before writing data to memory. An additional 

versatile, programmable memory-based scaler unit applies a wide variety of 

image size, color, and format manipulations to improve video quality and 

prepare it for display. 

A set of Audio input/output programmable device are also integrated. Audio 

units provide all signals needed to read and write digital audio datastreams 

from/to most high-quality, low-cost serial audio oversampling A/D and D/A 

converters and codecs. The AI unit supports capture of up to eight channels of 

stereo audio. The AO unit outputs up to eight channels and directly drives up to 

four external, stereo I2S or similar D/A converters or highly integrated PC 

codecs. Additional On-chip hardware accelerators are targeted to 2D and 3D 

graphics processing, MPEG decoding, image scaling and filtering, and display 

channel composition. All coprocessors read input and write results to memory. 

A PNX1500’s CPU and processing units access external memory through 

an internal bus system comprising separate 64-bit data and 32-bit address 

buses. Arbitrated by the MMI unit (Main Memory Interface), the internal buses 

maintain real-time responsiveness in a variety of applications. The system also 

includes an external DRAM interface, a DMA for each processor and several 

I/O interfaces. 

 

1.2 Reconfigurable computing 

The first idea of a reconfigurable computing machine was conceived by 

Gerald Estrin in the early 1960s [30] when he presented the “fixed plus 

variable structure computer” [31]. It would consist of a standard processor, 

augmented by an array of reconfigurable hardware blocks controlled by the 

main processor. The reconfigurable hardware could be programmed to perform 

a specific task with performance comparable to a dedicated hardware block. 

Once the task was performed, the reconfigurable unit could be set up again to 
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perform a new different task. This first example of hybrid computer, 

combining the flexibility of a software programmable processor core with the 

performance of dedicated hardware, failed to become an interesting solution 

for commercial products. For many years, in fact, microprocessors combined 

with Application Specific Integrated Circuits (ASICs) have represented a state 

of the art solution able to meet application requirements when stand alone 

processor computational power was not adequate.  

The combination of higher silicon integration degree and the need of 

flexibility imposed by the continuous algorithmic innovation, has generated a 

tremendous attention on the reconfigurable computing. The term 

Reconfigurable Computing (RC) is broadly intended as the capability to couple 

software based programmability with dynamic hardware programmability. The 

most common devices utilized as reconfigurable units are the Field 

Programmable Gate Arrays (FPGAs), but current scenario of reconfigurable 

devices is being crowded by a variety of reconfigurable architectures, with 

different reconfiguration granularities (coarse/fine/mixed grain fabrics), VLIW 

processing, systolic arrays, processor networks and so on. RC has long been 

considered [27][28][29][32][33][34][35][36] a feasible alternative to tackle the 

requirements described before. As shown in [28][29][36][37][38], 

reconfigurable architectures are classified depending on their grain, intended as 

the bitwidth of their interconnect structure and the complexity of their 

reconfigurable processing elements (PEs). Field Programmable Gate Arrays 

(FPGAs) are typically regular architectures where PEs are based on lookup 

tables (LUTs) and merged in a bit-oriented interconnect infrastructure. 

Featuring small LUT cells and 1-bit interconnect FPGAs are typically 

described as fine-grained. Their very symmetrical and distributed nature makes 

FPGAs very flexible and general purpose, and they can be used to tackle both 

computation-intensive and control-oriented tasks, to the point that large 

commercial FPGAs are often used to build complete Systems-On-

Programmable-Chip (SoPCs) [39]. Arithmetic-oriented datapaths feature 

regular structures, so when targeting computation intensive applications it is 
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possible to achieve higher efficiency designing PEs composed of hardwired 

operators such as ALUs, multipliers or multiplexers. Such kind of archietcture 

are usually defined coarse-grained. These devices trade part of the flexibility 

of FPGAs in order to provide higher performance for specific computations. 

There exist also a set of devices that fall in between the above two 

classifications, featuring bit widths of 2 or 4 bits, and small computational 

blocks that are either large LUTS or small arithmetic blocks as 4-bits ALUs. 

These can be classified as medium-grained. 

All this broad category of digital architectures fall under the cumulative 

name of “Reconfigurable Architectures” (RAs), underlining their capability to 

reconfigure at execution time part of their hardware structure to support more 

efficiently the running application. In this broad domain, we use the definition 

“Reconfigurable Instruction Set Processor (RISP)” for those reconfigurable 

architectures that are tightly integrated in order to compute as a single adaptive 

processing unit according to the Athanas/Silverman paradigm [25] regardless 

of their hybrid nature. The next two sections will describe the evolution of the 

reconfigurable processor concept in the last 10 years, through the description of 

several significant contributions in the field by both industry and academia. 

1.2.1 Run-time reconfigurable instruction set processors 

The first significant attempt at deploying instruction set metamorphosis to 

embedded systems taking advantage of run-time configurable hardware is P-

RISC (PRogrammable Instruction Set Computer), proposed by Razdan/Smith 

in 1994 [26]. The architecture is depicted in Figure 9.3.  

The PRISC micro-architecture is composed of a fixed RISC (a MIPS core) 

extended by instructions mapped on a standard FPGA embedded in the core 

and defined as a PFU (Programmable Function Unit). An efficient interface 

between the core and the PFU aims to fit the PFU into the core pipeline. 
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Figure 6: P-RISC Architecture 

A  compilation model for the ISA extension, starting from C specification is 

also proposed. To ease the physical interface between core and extension and 

to define a clear programming pattern for the compiler-based extraction of 

“interesting” extensions each PFU can handle 2-inputs 1-output functions. The 

most interesting concept of this architecture is that the PFU is considered as a 

function unit of the datapath, similar to an additional ALU, and PFU operands 

are read and written through the core register file providing a tightly coupled 

model. This is very friendly from the compiler and programmer point of view. 

A significant novel step is represented by the “GARP” processor, which is 

shown in Figure 9.4. GARP [40] couples a MIPS core with a custom designed 

reconfigurable unit, connected as a coprocessor and addressed with explicit 

Move instructions while specific assembly instructions are implemented to 

trigger the configuration and computation on the reconfigurable unit. Unlike in 

the architecture P-RISC, the granularity of tasks mapped on the unit is quite 

coarse, to fully exploit the potentiality of the space-based computation 

approach. Another main difference respect the previous approach is that the 

coprocessor features direct access to memory allowing a larger data bandwidth 
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to the extension unit than that allowed by the core register file, although it 

raises relevant issues regarding memory access coherency. 

 

Figure 7 :GARP Architecture 

The GARP reconfigurable unit is composed of an array of 24 rows of 32 

LUT-based logic elements. Fast carry chains are implemented row-wide to 

provide efficient 32-bit arithmetical/logical operations on a single row. Each 

row can be approximated to a 32-bit ALU and an embedded hardware 

sequencer is added to the unit, in order to activate operators (one for each row) 

with appropriate timing to build a customized pipeline. Candidate kernels are 

described at C-level and decomposed in Data-Flow-Graphs (DFG), 

determining elementary operators and their data dependencies, and then 

mapped over the existing LUT resources. The sequencer embedded in the 

configurable hardware allows for an imperative computing pattern that matches 
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very well with C language and the GARP C compiler, thus easing a lot the gap 

between software and hardware programming indicated by Athanas/Silverman 

as the key issue in the deployment of instruction set adaptivity. 

The MOLEN polymorphic processor [41] can be considered another 

important example of  the reconfigurable instruction set processor paradigm. It 

has been implemented on a Xilinx Virtex-II FPGA coupling the on-chip 

PowerPC microprocessor with the Xilinx reconfigurable fabric, but the 

approach is quite independent from the device used to prove its feasibility. The 

significant contribution of MOLEN does not reside in its physical 

implementation, but in the theoretical approach to HW/SW co-processing and 

micro-architecture definition. The MOLEN contribution can be described as  

• A microcode-based approach to the reconfigurable processor 

microarchitecture 

• A novel processor organization and programming paradigm 

• A compiler methodology for code optimization  

A significant difference with all previously described architectures is that 

MOLEN does not attempt to propose a mean for “hardware/software co-

compilation”. Tasks to be mapped on the programmable hardware unit are 

considered as atomic tasks, primitive operations Microcoded in the processor 

architecture. Instruction set extensions are defined separately as libraries with 

an orthogonal HDL-based flow. Designing microcode for the adaptive 

extensions (_µ-code) consists in HDL design, synthesis and place & route of 

the extension functionality over third-party tools without any assistance from 

the reconfigurable processor compilation environment. This could raise issues 

for algorithmic developers not proficient with hardware design. On the other 

hand, this choice allows a large degree of freedom in the implementation 

allowing to extend the basic concepts to any technology. Also, as described in 

[41], the microcoded approach allows MOLEN-based RISPs to achieve 

speedups that are almost 100% of the theoretically achievable speedup 
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according to Amdahl’s law, much higher than speedups achieved by hybrid 

compilation. 

 

Figure 8: MOLEN Architecture 

The MOLEN micro-architecture, shown in Figure 9.5., is organized as 

follows: instructions are decoded by an arbiter determining which unit is 

targeted. “Standard” instructions are computed by the Core Processor while 

instructions targeting the reconfigurable hardware are computed on the 

Reconfigurable Processor which is composed of a computational unit called 

Custom Configured Unit and a reconfigurable microcode control unit. The 

control unit allows partial reconfiguration. Exchange of data between the 

reconfigurable unit and the main processor is performed via specific exchange 

registers (XREGs). 
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As shown in  the GARP design, in order to guarantee enough data 

bandwidth direct access from the extension segments to data memory is 

allowed, although there is no specific handling for multiple access consistency 

with respect to the core processor. 

Although P-RISC, GARP and MOLEN represent from a theoretical 

standpoint the milestones that have brought to the formalization of the 

Reconfigurable Instruction Set Processor (RISP) concept, from the physical 

implementation side, an interesting attempt is described in [42][43] where the 

XiRisc architecture is introduced. XiRisc can be considered the first silicon 

implementation of a custom designed embedded reconfigurable instruction set 

processor. The design was performed at circuit level both for what concerns the 

core and the reconfigurable unit. XiRisc couples a Very Long instruction Word 

(VLIW) core, based on a five-stage pipeline, with an additional pipelined run-

time configurable datapath (defined PiCoGA, see 2.2.2) acting as adaptive 

repository of application-specific functional units. While the VLIW core 

determines two symmetrical separate execution flows, the reconfigurable 

engine dynamically implements a third concurrent flow, extending the 

processor instruction set with multi-cycle pipelined functionalities of variable 

latency, according to the instruction set metamorphosis pattern. 

Similar to P-RISC, extension segments are tightly integrated in the 

processor core receiving inputs and writing back results from/to the register file 

and  direct access to memory is not allowed. In order to provide sufficient data 

bandwidth to the extension segments, PiCoGA features four source and two 

destination registers for each issued computation. Moreover, it can hold an 

internal state across several computations, thus reducing the pressure on 

connection to the register file. 
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1.2.2 Coarse grained reconfigurable processors 

FPGAs have historically been used as programmable computing platforms, 

in order to provide high performance solutions to challenge NRE costs and 

time-to-market issues in the implementation of computationally intensive tasks. 

Even if in a first attempt, FPGA fabrics have been the immediate choice for 

implementation of reconfigurable hardware extensions, quite soon, it appeared 

evident that reconfigurable processors required computational features 

different from standard FPGAs. In several case application-specific logic such 

as hardwired multipliers has been utilize to achieve the necessary performance. 

When extension segments are very arithmetic-oriented, and bit-level 

computation is not necessary, the traditional LUT-based approach of standard 

FPGA can, as an extremes approach, be removed. Having in mind these 

concepts we can define Reconfigurable Processors (RPs) based on coarse 

grained hardwired operators rather than on fine grained LUTs as coarse 

grained reconfigurable processors. A significant benefit of this approach is the 

reduction of complexity in the place and route step, as well as the massive 

reduction of configuration memory and configuration time. The obvious 

drawback is that algorithm mapping is necessarily non-standard, and 

architecture-specific.  

Shifting towards coarser grained Reconfigurable Architectures the definition 

of the PE internal structure becomes the most critical step in the design of the 

RP. It is obvious that the design of the PE has to be driven by an application 

domain in order to define the best trade-off between hardware 

complexity/features and application requirements. As a consequence, 

performance in that application field will be very impressive, but RPs will not 

scale well to different application environments. Coarse grained RPs will then 

be no more general purpose, as it was the case for the fine-grained architectures 

described earlier, but rather domain oriented. 

PipeRench [44] is one of the first and more original run-time reconfigurable 

datapaths appearing in literature. It is composed by a set of configurable  
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blocks also called “stripes”. Each stripe maps a pipeline stage of the required 

computation, and is composed by an interconnect network and a set of PEs. In 

turn each PE contains one arithmetic logic unit and a pass register file that is 

used to implement the pipeline. ALUs are composed of lookup tables (LUTs) 

plus specific circuitry for carry chains while multipliers are built out of 

multiple adder instances. Each stripe can perform a different functionality per 

each cycle, thus providing an efficient time-multiplexing in the usage of each 

resource. The granularity of the computation fabric is parametric, but best 

performance results are obtained with 16 instances of  4- or 8-bit PEs per 

stripe, so that we can define the datapath as average grained.  

A simplified format of C, defined Dataflow Intermediate Language (DIL), 

is used as entry language for the PipeRench programming environment. As in 

the case of XiRisc, operators to be mapped on the fabric are described at Data 

Flow Graph (DFG) level by a single-assignment C-based format, where 

variable size can be specified by the programmer, and then translated on one or 

more PEs on the stripe after an automated Instruction Level Parallelism (ILP) 

extraction. 

Another interesting example of coarse grain reconfigurable architecture is 

the PACT XPP digital signal processor [46]. It is composed by an array of 

heterogeneous Processing Array Elements (PAEs) and a low level 

Configuration Manager (CM). Configuration Managers are organized in a 

hierarchical tree that handles the bit-stream loading mechanism. 

Communication between PAEs is handled by a packet-oriented interconnect 

network. Each PAE has 16-bit granularity and is composed by synchronization 

register and arithmetical/logical operations, including multiplication. Data 

exchange is performed by transmission of packets through the communication 

network, while I/O is handled by specific ports located at the four corners of 

the array. The PACT XPP architecture is depicted in Figure 9.7, a detailed 

description is presented in 2.2.1. 
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Figure 9: PACT Architecture 

More or less both PACT and PipeRench explicitly propose to replace the 

concept of instruction sequencing (that is, cycle per cycle instruction fetching) 

by configuration sequencing (that is, spatial distribution, dynamically pipelined 

or not, of configuration bits) and they process data streams instead of single 

random accessed memory words. This concept of communication centric 

distributed computation is similar in principle to Transport Triggered 

Architectures (TTAs) [47], and it is indeed quite promising when applied to 

reconfigurable hardware because this micro-architectural paradigm, compared 

to the Von Neumann paradigm, appears more suitable to support a scalable 

number of function units, each with scalable latency and throughput. On the 

other hand, this promising approach has three main open issues:  

• The communication infrastructure needs to be large yet flexible 

enough to allow the necessary throughput between the different 

function units (PEs).  

• Tools and programming languages need also to describe 

synchronization between operators, and this requires structures and 

tools often unfamiliar to application developers.  

• Lack of a memory addressing scheme: not all computation kernels in 

the embedded domain can be challenged with a streaming paradigm, 
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and for many cases it appears impossible to renounce to the 

addressing flexibility offered by standard cores.  

Other coarse-grained devices are based on the concept of instruction set 

Metamorphosis introduced above, only utilizing a different architectural 

support for mapping extension segments: Morphosys [37], also shown in 

Figure 10, is a very successful RP that also been the base for a few successful 

commercial implementations.  

 

Figure 10: Morphosys Architecture 

It is composed by a small 32-bit RISC core (TinyRisc), coupled to a so-

called Reconfigurable cell Array composed of an 8x8 array of identical 

Reconfigurable Cells (RCs). Each cell is able to computes 16-bit words and 

contains multiplier, ALU, shifter, a small local register file and an input 

multiplexing logic. In order to minimize reconfiguration penalty, the 

architecture comprises a multi-context configuration memory, that is capable to 

overlap computation and configuration. 
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The array computation is organized in this way: all cells belonging to the 

same row receive the same control word and compute the same calculation 

over extended 128-bit words (8 x 16bit) as a purely Single Instruction Multiple 

Data (SIMD). Taking in account the array organization it’s clear as the 

proposed architecture is characterized from a much higher area efficiency with 

respect to FPGA-based solutions described earlier, but it is also rather domain 

oriented: the machine is conceived for applications with relevant data 

parallelism, high regularity, and high throughput requirements such as video 

compression, graphics and image processing, data encryption and DSP 

transforms. 

1.3 Interconnection Strategies 

As shown above, Reconfigurable Instruction Set Processors have evolved 

from the mapping of combinatorial, single cycle functional extension of PRISC 

up to the very intensive hyper-parallel SIMD computational pattern of 

Morphosys-like architectures, but indeed the micro-architectural concept has 

remained more or less unchanged. The only aspect that has really changed is 

the computational grain of the ISA extension segments.  

As a consequence of this shift, one architectural issue that is becoming more 

and more critical is the connection between reconfigurable units and the system 

memory in order to provide enough data to exploit the extension segment 

potential. Most coarse-grained datapaths such as PACT XPP or PipeRench do 

not actively intervene on the data layout: they simply consume data streams, 

provided by standard external sources or appropriately formatted by the RISC 

core or by specific DMA logic. Morphosys is only slightly more sophisticated, 

featuring a dedicated frame buffer in order to overlap data computation and 

transfers over orthogonal chunks of variable width. RPs based on FPGA 

fabrics, such as MOLEN, could map memory addressing as part of the 

microcoded extension segments, but this option could be costly in terms of 

resources and will make any kind of co-compilation impossible creating two 

different and separate compilation domains. 
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An interesting solution is that of ADRES (Architecture for Dynamically 

Reconfigurable Embedded systems) [50]. ADRES exploits a RFU similar to 

that of Morphosys, based on very coarse grained (32-bit) PEs implementing 

Arithmetical/Logical operations or Multiplications. Differently from 

Morphosys, the ADRES RFU is used as function unit in the frame of a VLIW 

processor. Data exchange with external memory is through the default path of 

the VLIW processor, and data exchanges take place on the main register file, as 

it was the case for the XiRisc processor described in section 4. The 

programming model is simplified because both processor and RFU share the 

same memory access. Even though the RFU has a grain comparable to PACT 

XPP or Morphosys, data feed is random accessed and very flexible, and it is 

not limited to data streaming. Still, the VLIW register file remains a severe 

bottleneck for RFU data access. A different solution is provided by Montium 

[51][52] a coarse grained reconfigurable processor composed of a scalable set 

of Tile Processors (TP). A TP is essentially composed by a set of 5 16-bit 

ALUs, controlled by a specific hardwired sequencer. Each TP is provided with 

10 1Kbytes RAM buffers, feeding each ALU input; buffers are driven by a 

configurable Address Generation Unit (ATU). Montium can be seen rather as a 

flexible VLIW than a RP in the context described in this work, but it is affected 

by the same bottleneck shared by most RP overviewed above: in order to 

exploit its computational density, it needs to fetch from a repository several 

operands per clock, and possibly each of them featuring an independent, if 

regular, addressing pattern. In this respect, automated addressing generation 

based on regular patterns could be an interesting option: most applications that 

benefit from hardware mapping are based on loops, and addressing is more 

often than not generated and incremented with regularity as part of the loop. 

Automated addressing FSMs could add a new level of configurability to RPs, 

providing an adaptive addressing mechanism for adaptive units, enhancing 

potential exploitation of inherent parallelism. As it is the case with adaptive 

computation, automated addressing can be considered an option only if 

supported by solid compilation tools that could spare the end user from manual 
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programming. In fact, it appears theoretically possible to automatically extract 

from a high level (typically C/C++) specification of the algorithm regular 

addressing patterns to be applied to automated addressing FSM: the same issue 

has long been discussed for high-end Digital Signal Processors [53] and it is an 

open research field also for massively parallel systems based on discrete 

FPGAs [54]. These aspects are only very recently being evaluated in RP 

architectures. 

DREAM [12][Section 3.3.1] is an example of reconfigurable processor that 

feeds its RFU through automated address generation. DREAM is an adaptive 

DSP based on a medium grained reconfigurable unit. Program control is 

performed by a standard 32-bit embedded core. Kernel computation is 

implemented on the RFU, composed of a hardware sequencer and an array of 

24x16 4-bit PEs. The RFU accepts up to 12 32-bit inputs and provides 4 32-bit 

outputs per clock, thus making it impractical to access data on the core register 

file. For this reason, DREAM is provided with 16 memory banks similar to 

those of Montium. On the RFU side, an address generator (AG) is connected to 

each bank. Address Generation parameters are set by specific control 

instructions, and addresses are incremented automatically at each issue of an 

RFU instruction for all the duration of the kernel. AGs provide standard STEP 

and STRIDE [53] capabilities to achieve non continuous vectorized addressing, 

and a specific MASK functionality allows power-of-2 modulo addressing in 

order to realize variable size circular buffers with programmable start point. 

 

1.4 General Outline of the MORPHEUS solution 

The large-scale deployment of Embedded Systems is indeed raising new 

demanding requirements in terms of computing performance, cost-efficient 

development, low power, functional flexibility and sustainability. This results 

in an increasing complexity of the platforms and an enlarging design 
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productivity gap: current solutions are out of breath while current development 

and programming tools do not support the time-to-market needs. 

MORPHEUS copes with these challenges by developing a global solution 

based on a modular heterogeneous SoC platform providing the disruptive 

technology of dynamically reconfigurable computing completed by a software 

oriented design flow and a consistent toolset. These "Soft Hardware" 

architectures will enable huge computing density improvements (GOPS/Watt, 

Giga Operations Per Second per Watt) by a factor of x100, reuse capabilities 

by x5, flexibility by more than 100 and time to market divided by 2 thanks to a 

convenient programming toolset.  

 

Figure 11: Architecture of a Heterogeneous reconfigurable device 

Unless in some specific and very simple situations, today’s reconfigurable 

computing platforms cannot be used as the sole computing resources in a given 

system. In general, reconfigurable resources are used in combination with 

standard computing resources and other devices in a system that resembles the 

sketch drawn on  Figure 11. The MORPHEUS architecture target, as far as it 

has to comply with a broad range of applications, is intended to be a complete 
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and heterogeneous platform. Typically such a platform consists of a hardware 

system architecture and design tools including methodologies which allow 

application engineers totalize the hardware architecture [3]. 

The MORPHEUS hardware architecture i.e. the MORPHEUS SoC is 

centered on three heterogeneous reconfigurable engines (HREs) targeting 

different types of computation: 

• The PACT XPP is a coarse grain reconfigurable array primarily 

targeting algorithms with huge computational demands but mostly 

deterministic control- and dataflow. Further enhancements based on 

multiple, instruction set programmable, VLIW controlled cores 

featuring multiple asynchronously clustered ALUs also allow 

efficient inherently sequential bitstream-processing. 

• The PiCoGA core is a medium-grained reconfigurable array 

consisting of 4-bit oriented ALUs. Up to four configurations may be 

kept concurrently in shadow registers. The architecture is mostly 

targeting instruction level parallelism, which can be automatically 

extracted from a C-subset language called Griffy-C. 

• The M2000 is a lookup table based fine grain reconfigurable device 

– also known as embedded Field Programmable Gate Array 

(eFPGA). As any FPGA, it is capable to map arbitrary logic up to a 

certain complexity provided register and memory resources are 

matching the specifics of the implemented logic. The M2000 may 

be scaled over a wide range of parameters. The internals of a 

reconfigurable logic block may be modified to a certain degree 

according to the requirements. Flexibility demands may favour the 

implementation of multiple smaller M2000 eFPGAs instead of a 

single large IP.  

All control, synchronization and housekeeping is handled by an ARM 9< 

embedded RISC processor. As dynamic reconfiguration might impose a 
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significant performance demand for the ARM processor, a dedicated 

reconfiguration control unit is foreseen to serve as a respective off-load-engine. 
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Chapter 2 The MORPHEUS Design 

2.1 The MORPHEUS Reference Architecture 

Figure 12 describes a block diagram of the MORPHEUS architecture. The 

SoC architecture is organized in 3 main logic sub-blocks, which reflect the SoC 

programming model: a control and synchronization block centered on the 

ARM9 processor core, a computational intensive region formed by 3 separate 

computational engines defined Heterogeneous Computational Engines (HRE), 

and a data movement block composed by a multi-layered AMBA bus 

architecture and a Network-on-chip (NoC) infrastructure. The SoC 

programming model mirrors the physical architecture of the chip.  

The end user interfaces with the ARM-centered region, handling the SoC as 

a single processor entity and making use of the standard state-of-art facilities 

offered by the processor–based environment that will be described in detail in 

the following. The innovative concepts and the heterogeneity of the 

computation and data movement regions are hidden by software libraries and 

hardware synchronization features as described by the Molen programming 

paradigm: the user works at high level of abstraction utilizing data chunks 

(streams) as operands and reconfigurable hardware operations as operators. 

The ARM processor handles computation and data transfer commands as 

“microcoded” instructions (defined as accelerated operations) that are then 

translated into bit-streams for reconfigurable hardware and Bus/NoC control 

statements for data transfers. 

Other basic features of the toolset concept include the utilization of a Real-

Time operating system (RTOS), that is strictly integrated with hardware 

services such as DMA control, interrupt management and hardware 

Configuration Manager (CM) to provide HRE/Data communication control and 

synchronization, and fast and smart handling of reconfiguration (bit-stream 

loading over HREs). 
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Figure 12: Morpheus Overall Architecture 

To ensure ideal working frequency to all computational engines (that could 

also be dependent on the mapped application), HREs are integrated as 

independent clock islands. Local HRE buffer memories (Data Exchange 

Buffers, or DEBs) as used as a mean to propagate data across clock domains. 

Specific Configuration Exchange Buffers (CEBs) are used to propagate 

configuration bitstreams across clock domains (for details on DEBs and their 

connection to HREs see Section 3.3). 

In this context, the design of the ARM-centered system infrastructure is a 

very critical step. ARM will be the main driver for most programming and 

control actions on all services offered by the Morpheus chip. Its criticality thus 

reside in the fact that in must be rock-stable, easy to use, easy to debug and 

well known and accepted both in terms of architecture and related tools. The 

usage of an unstable or not well known processor core could compromise the 

usability and user-friendliness of the whole system. 
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On the other hand, the innovation content of the overall system does not 

reside in this part, being rather centered on the computation engines and the 

relative data storage and transfer infrastructure. It is thus perfectly acceptable 

to make extensive use of state-of-art IP components and methodology. On the 

contrary, being this region the part of the system that is more closely interfaced 

with the off-chip world and the user point of view, it is mandatory to provide 

all the communication means, interfaces, and user utilities that may allow an 

easy, simple and efficient interface to the external word from the following 

points of view, roughly displayed in order of importance: 

1. Application development, program compilation, RTOS utilization 

2. Chip integration in a larger system to deploy peak computation 

efficiency 

3. Chip utilization, test and verification 

4. Clear Measurement of the chip performance 

Figure 4 describes the MORPHEUS chip infrastructure, with detail on the 

ARM centered system control and user interface facilities; the infrastructure is 

composed by: 

• One instance of ARM926EJS processor core 

• A multilayered AMBA bus system 

• A programmable DMA controller infrastructure 

• An interrupt controller 

• A set of IO peripherals to ease system control, communication, 

debug and test. They are not intended for fast communication 

during peak computation 

• An external memory controller for off-chip communication 

The reference architecture reflects the toolset organization specified based 

on the C language utilization and the Molen paradigm as a programming model 
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for the overall system organization. Through its bus architecture, exchange 

registers, and configuration and data exchange buffers (XR, CEB, DEB) the 

ARM core is capable to drive and controller for all hardware services and 

computational units in the SoC, including all data and configuration transfers, 

so that the RTOS is put in condition to control and synchronize data 

movementation and configuration and computation on the HREs. Through the 

specific configuration bus, DMA and connection through external memory it 

provide the means for the Dynamic configuration handling. 

The following section will briefly describe the components outlined above, 

their configuration in the MORPHEUS architecture and the motivations that 

drove their selection. 

 

2.1.1 ARM926EJ-S Embedded processor 

The ARM926EJ-S processor is a member of the ARM9 family of general-

purpose microprocessors. The ARM926EJ-S processor is targeted at multi-

tasking applications. The main features that make it suitable to the 

MORPHEUS context are full memory management, high performance, low die 

size, and low power consumption. 

ARM926EJ-S supports the 32-bit ARM and 16-bit Thumb instruction sets, 

enabling the user to trade off between high performance and high code density. 

The processor features a standard load/store RISC Harvard cached architecture 

and provides a complete processor subsystem, including: 

• an ARM9EJ-S integer core 

• a Memory Management Unit (MMU) 

• separate instruction and data AMBA AHB bus interfaces 

• separate instruction and data Tightly coupled memories 
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The ARM926EJ-S processor implements ARM architecture version 5TEJ. 

The TCM interfaces enable nonzero wait state memory to be attached, as well 

as providing a mechanism for supporting DMA access for fast reloading.  

 

 Figure 13: ARM926EJ-S block diagram  

 Figure 13 shows a block diagram of the ARM926EJ-S macrocell. Most 

important, the ARM926EJ-S supports the ARM debug architecture and 

includes logic to assist in both hardware and software debug through a specific 

JTAG connection. It will be thus possible to perform in-circuit source line 

debugging on the whole MORPHEUS system controlling the final board from 

a ARM debugger window. The device testability is enhanced by the ETM9 

interface, which allows the user easy tracing of the code executed by the core 

in a specified timing window. 
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2.1.2 Multi-Layer AMBA bus system 

Figure 14 describes the MORPHEUS bus system excluding the Network on 

Chip infrastructure. The bus architecture is based on the following 

layers/busses:  

1. A main AMBA AHB bus controlled by the ARM processor, 

featuring a specific DMA controller. This bus is used by ARM for 

data and instructions (mostly ARM will work on caches and tightly 

coupled memories, so the impact of this transfers on the bus at peak 

computation will be negligible). Moreover, the main bus may 

access to HRE local memories for control and debug purposes. This 

bus is also used for all memory mapped control registers present in 

the system: HRE exchange registers, DMA control registers, 

Network-on-chip control registers, Configuration Manager control 

registers. Through bridges, this bus acts as a master on all 

secondary bus layers in the system. The main bus also features a 

dedicated access to the external memory controller. 

2. A configuration AMBA AHB bus controlled by the Configuration 

Manager, featuring a second specific DMA controller. The bus will 

control all configuration ports relative to HREs, and have a 

dedicated access to the external memory controller to provide fast 

access to off-chip configuration repositories. 

3. An AMBA APB bus driving chip peripherals, described in Section 

2.1.5. 

In the design of the MORPHEUS system, the bus architecture cannot be 

considered as an element of innovation; high speed, innovative interconnect 

strategies are implemented in the Network-on-chip design. The specifications 

for the bus are to provide necessary performance, and most of all to guarantee a 

low risk margin and offer good flexibility and programmability to the user. 
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Figure 14: MORPHEUS multilayer bus hierarchy 

The AMBA bus protocol, initially developed by ARM, is considered as 

state-of-the-art by most SoC developers both in industry and academia, and is 

present in a very wide range of SoC products in the market landscape. In the 

MORPHEUS context, it provides two essential advantages: 

• The ARM processor, its MMU, and various peripherals distributed 

by ARM provide native support for the AMBA protocol. 

• A lot of bus components, peripherals and utilities are distributed as 

pre-verified IP blocks both in the open-source world and in the IP 

market, not only in terms of HDL code for silicon implementation 

but also in terms of SystemC library for design exploration and 

system simulation 

To minimize risk margin and to provide a state-of-art solution, the 

MORPHEUS bus architecture was built utilizing Synopsys DesignWare IP 
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components to implement both the bus architecture itself and the DMA 

controller (Section 2.1.3). 

 

2.1.3 DesignWare DW_ahb_dmac DMA Controller 

In order to implement an high level programming pattern where the 

MORPHEUS user handles macro-operations and data chunks and/or streams, it 

is necessary to relieve the ARM processor, that represents the user interface 

towards to MORPHEUS system, of the task of transferring data through the 

interconnect resources and in between the memory hierarchy and from/to the 

different HREs. 

For this reason, programmable DMA controllers will be utilized for 

implementing data transfers both on the main bus and on the configuration bus. 

As described in Section 4.4 the network-on-chip architecture will provide the 

same application program interface (API) of the DMAs in order to offer 

homogeneous access to data transfers.  

In order to profit from a well-known and “safe” architecture and minimize 

integration risk it was decided to utilize an IP library as DMA controller: the 

Synopsys DesignWare AHB DMAC. The main features of the controller are 

the following: 

• AMBA AHB based DMA Controller core that transfers data from a 

source peripheral to a destination peripheral 

• Supports multi-layer DMA transfers when the source and 

destination peripherals are on different AMBA layers (Figure 15) 

• Multi-context: supports up to 8 concurrent channels 

(source/destination pairs). Channels are unidirectional (data 

transfers in one direction only) 

• Programmable channel priority 
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• Channel buffering: one FIFO per channel, Configurable FIFO 

depth, Automatic data packing or unpacking to fit FIFO width 

 

Figure 15: Scheme of a cross-layer DMA transfer 

Figure 16 describes the hierarchy of any DMA transfer. Software 

programming by ARM controls the number of blocks in a given transfer. Once 

the DMA transfer has completed, the controller disables the channel and 

generates an interrupt to signal the DMA transfer completion. The amount of 

blocks and the block length is determined by the flow controller, an FSM 

integrated in the DMA unit that partition the overall transfer required by the 

driving processor in a suitable collection of partial transfers. For transfers 

between the DW_ahb_dmac and memory, a block is broken directly into a 

sequence of AMBA bursts and AMBA single transfers.  
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The DMA controller is provided with a set of software libraries that are used 

to hide details and provide high-level functionality to the user.  

 

Figure 16: DMA transfer hierarchy 

The DW_ahb_dmac is natively designed to support the AMBA AHB bus 

architecture. It is capable to exploit all transaction mechanisms featured by the 

protocol, thus ensuring the ideal utilization of efficient burst transfers. 

Moreover, the multi-layer support offered by this DMA controller is very 

useful in the context of the MORPHEUS architecture, i.e. to allow fast 

transfers between the main data bus and configuration data bus (this option 

may be used for testability to read-back the configuration memories of HREs, 

or to explicitly utilize the ARM core as configuration manager in some specific 

application or, again, for testability purposes). 

Transfer type Bandwidth 
(Mbit/sec) 

Single layer transfer 1950 

Dual layer transfer using different memory 
banks 
(2 master ports & 2 layers involved) 

2700 

Two independent transfers using two channels 
with different layers and memory blocks 
(4 master ports & 4 layers involved) 

5250 

Table 1: DesignWare DMA Bandwidth  estimation 
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The previous table describes the bandwidth achieved by the DW_ahb_dmac, 

with a reference speed of 200MHZ, single block transfers of 1KB (256 words) 

between memory addresses, no other master device accessing the bus. 

 

2.1.4 Interrupt Controller 

The inclusion of an interrupt controller appears mandatory in the 

MORPHEUS architecture. On one hand, the flexibility offered by the ARM9 

core in the interrupt handling is limited to two interrupt pins, one fast and one 

slow interrupt request. On the other hand, the MORPHEUS programming 

pattern relies a lot on interrupt handling for the synchronization of 

“microcoded” instructions, that is data chunk/stream transfers (macro-operands 

handling) and operation on HREs (macro-operations triggering). 

The evaluations performed above on the convenience of utilizing pre-

verified IP components are very much applicable also to the Interrupt 

controller selection. As part of the MORPHEUS reference architecture, it is 

made available the PrimeCell Vectored Interrupt Controller (PL190) by ARM. 

As it is the case for the PL175 PrimeCell described in Section 2.1.3, this 

block is developed and distributed by ARM Ltd and it is especially designed to 

work with the ARM processor. Moreover, it is distributed as a pre-verified 

block for inclusion in SoC design. Moreover, PL190 has been used in many 

commercial products to support ARM-based real time operating systems. 

The most relevant features of the PL190 are: 

• Compliant to the AMBA bus protocol specification 

• Control and status registers mapped on AHB for fast interrupt 

response 

• Support for 32 standard interrupts, 16 vectored IRQ interrupts 

• Hardware interrupt priority 
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• Software interrupt generation 

• Interrupt masking, privileged mode support 

• Vector interrupt controller daisy-chaining support 

The PL190 provides essentially a software interface to the interrupt system. 

Through memory mapped register access to the interrupt controller, software 

(user routines/libraries/RTOS) can determine the source that is requesting 

service and where its service routine is loaded. It supplies the starting address, 

or vector address, of the service routine corresponding to the highest priority 

requesting interrupt source. 

There are 32 interrupt lines. The PL190 controller uses a bit position for 

each different interrupt source. The software can control each request line to 

generate software interrupts. 

 

2.1.5 MORPHEUS IO Peripheral Set 

The main AMBA AHB bus matrix is provided with a bridge to an APB 

(Advanced Peripheral Bus) that will feature a set of IO peripherals for 

enhancing the chip observability and debugging. The APB bus can be driven 

by any master of the AMBA bus, so it will normally be ARM, but can be 

driven by DMA for chunk transfers or by TIC protocol for testability purposes. 

These peripherals include: 

• A UART port for the implementation of a serial transmission 

protocol. This connection is used by the ARM processor to realize 

an external virtual terminal on a host test processor for easy remote 

control of the chip. This feature is particularly useful in the 

preliminary testing phase and to implement interactive 

demonstrations of the chip/board. 
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• An I2C connection that can be used to provide on-board connection 

between multiple instances of the MORPHEUS chip to build 

composite high performance systems. 

• A set of programmable timers normally used to implement timeouts 

and watchdogs and to allow multithreaded elaboration by the 

Operating System. 

• A set of general Purpose IO register multiplexed on a set of output 

pins, normally used to drive 7-segments or LCD displays to ease 

testability and verification of the architecture. 

It should be noted that most of the described features are potentially suitable 

for a mapping on the eFPGA fabric rather than on std-cell technology. This 

would give an added-value to the demonstration of the flexibility of the 

MORPHEUS approach. 

The eFPGA fabric will be provided with access to a set of IO Pads to 

support this design option. 

 

2.1.6 MPMC PL175 Memory Controller 

Note: The PL175 memory controller is part of the “MORPHEUS reference 

architecture”, and is intended as a proposal reference at this stage of the 

project, but it could be substituted by different design option if a more suitable 

solution becomes available in the following course of the project. 

The PrimeCell MPMC is an Advanced Microcontroller Bus Architecture 

(AMBA) compliant System-on-Chip (SoC) peripheral that is developed, tested 

and licensed by ARM Limited. The PrimeCell MPMC offers: 

• AMBA 32-bit AHB compliancy 

• Dynamic memory interface supports SDRAM, DDR-SDRAM and 

low-power variants 
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• Asynchronous static memory device support including RAM , ROM 

and Flash, with or without asynchronous page mode 

• Read and Write buffer to reduce latency and to improve 

performance 

• Eight AHB interfaces for accessing external memory with 

programmable priority mechanism 

• 8-bit, 16-bit and 32-bit wide static memory support 

• 16-bit and 32-bit wide databus SDRAM and SyncFlash memory 

support. 16-bit wide databus DDR-SDRAM support 

• Separate AHB interface for programming the MPMC control 

registers 

• Locked AHB transactions supported, Support for all AHB burst 

types 

• Support for the External Bus Interface (EBI) that enables the 

memory controller pads to be shared 

• Integrated Test Interface Controller (TIC) for monitoring bus 

activity on the internal MORPHEUS AMBA architecture 

In the context of this section, the main features that suggest the utilization of 

the PL175 are its native compliancy with the ARM AMBA bus architecture, 

the bus monitoring and debug facility offered by the TIC test protocol an the 

large number of available channels with programmable priority. Moreover, 

being a pre-defined component distributed by ARM, and integrated in many 

existing products on the market in the technology targeted by MORPHEUS, it 

has a low integration risk margin that could be beneficial. 
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2.2 Reconfigurable Engines 

2.2.1 XPP 

The XPP array is a coarse grained reconfigurable tile, specialized for data 

flow type of algorithms. The following section provides a rough overview 

about XPP array. In the second part the Function PAEs and their integration 

into the XPP array are described. The XPP IP is scalable in terms of array size 

and routing capabilities. The available parameters are summarized in Table 3. 

The XPP architecture provides parallel processing power combined with 

fast reconfiguration. The last version which is named XPP-III is currently 

under development and integrates the new Function PAEs (FNC-PAE) which 

extend the application space of the XPP also towards high performance control 

flow oriented applications. 

XPP is a coarse-grained scalable architecture designed not only to provide 

maximum performance combined with low power consumption but also to 

simplify algorithm design and programming tasks. The XPP can process both 

basic categories of application software: data-flow oriented sections and 

control-flow oriented sections. The sections are handled by two basic types of 

processing resources: 

1. The reconfigurable course grained XPP-array processes the data-

flow sections of the application: Configurable Processing Array 

Elements (ALU-PAEs and RAM-PAEs) are arranged in an array 

and communicate via point-to point communication links; Programs 

are mapped as flow graphs to the array of ALUs and RAMs; 

Communication is packet-oriented with auto-synchronization; 

Control of programs is handled by an independent event network; 

The array provides fast dynamic reconfiguration; I/O supports 

streaming and memory mapped I/O. 
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2. The FNC-PAEs process the Control-Flow sections of the 

application: VLIW-type PAEs are tightly integrated into the XPP-

array; Data exchange with the XPP-array is data-flow synchronized; 

The FNC-PAEs may steer the reconfiguration sequencing of the 

XPP-array; FNC-PAEs I/O may use the XPP-array streaming I/O 

and shared external memory. 

2.2.1.1 The XPP-Array Overview 

Figure 17 shows an array with 5 x 8 ALU-PAEs, 2x8 RAM-PAEs and 8 

FNC-PAEs. The array-I/O is integrated in the RAM-PAEs at the four corners 

of the array. In the following sections the fabric which is built from RAM-

PAEs and ALU-PAEs is named the "XPP-array".  

 

Figure 17: An XPP array with 6x5 ALU-PAEs 

Arithmetic and logical operations are executed in the ALU-PAEs; data can 

be stored locally in the RAM-PAEs. Communication is done by transmission 
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of data packets through the configured communication network. A 

configuration specifies the communication paths between the PAEs, the 

function of the ALUs and initial values of registers and RAMs. The 

configuration is not changed as long as data flows through the network. Data 

I/O to the array is performed by means of the ports at the corners of the array. 

The FNC-PAEs may access the outside world via direct access to the external 

memory hierarchy or through the streaming ports. 

2.2.1.2 Function PAE Overview 

The Function PAEs (FNC-PAE) which are tightly coupled to the 

reconfigurable XPP-array are sequential 16-bit cores which are optimized for 

algorithms requiring a large amount of conditions and branches. One FNC-

PAE comprises two columns of four small non-pipelined 16-bit ALUs1. This is 

on the first view similar to VLIW DSPs. However there are substantial 

differences which enhance the condition and branch performance. First of all, 

any ALU can access results of the rows above and the register file within a 

single clock cycle. Based on results, subsequent ALUs in a column can be 

disabled conditionally. This allows conditional operations and branching to 

different targets to be evaluated within the current clock cycle. In parallel, the 

Special Function Unit (SFU) comprises a parallel multiplier and bit-field 

operations. Code is stored in a small local associative Instruction Cache. Data 

is stored in a fast tightly coupled local RAM and the large external System 

RAM2. Both are accessed through a 32-bit address generator (AG) comprising 

stack and pointer arithmetic. 

                                                 

 

1 ALU operations: boolean, add/sub, barrel shift, branching etc. 

2 The System RAM is SoC specific and shared by the Function PAEs. 
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Figure 18: FNC-PAE 

The communication with the XPP-array (Figure 18 left ports) is data flow 

synchronized: a port suspends its operation until data can be transferred. Thus 

programs running on the XPP array and the FNC-PAEs are implicitly data 

synchronized. Furthermore, FNC-PAEs may exchange data through vertical 

data flow busses. Synchronization on operating system level (e.g. loading a 

new XPP configuration) can be achieved with XPP events and FNC-PAE 

interrupts. 

2.2.1.3 XPP- III Third Generation Core Details 

As outlined in the previous overview, the XPP is built in a scalable and 

modular way. The following section describes roughly the concept and 

elements of the XPP technology. The XPP–III IP comprises  

• the XPP-array  

• the Function PAEs. 

The XPP-III array uses only a handful different functional blocks: ALU-

PAEs (processing array elements) perform the basic calculations, RAM-PAEs 

provide a static RAM together with an ALU and I/O interfaces. In addition, 

FNC-PAEs provide sequential processing capabilities. Each PAE contains 

several "objects". All objects are integrated with the communication channels 
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of the array, providing point-to-point connections. The configuration of the 

array is done by a pipelined bus-system. 

 

Figure 19: A sample XPP -array (6x5 ALU PAEs) 

The XPP-III core is built from a rectangular array of ALU-PAEs, RAM-

PAEs at the left and right side of the array. At the bottom line specialized PAEs 

(BL-ALU-PAE, BL-RAM-PAE) provide routing channels beneath the PAEs. 

Figure 19 shows a sample array with 30 ALU-PAEs, 10 RAM-PAEs, and I/O. 

Only the I/O of the RAM-PAEs at the corners of the array is used. The data 

word size is 16 bit.  

ALU-PAEs comprise three objects and a connection-matrix. ALU-PAEs 

enclose an ALU-object featuring a typical DSP-command-set including 

multiplication. The BackRegister-object (BREG) is used for routing from 

bottom to top, for arithmetic and normalization. The ForwardRegister-object 

(FREG) provides routing channels from top to bottom and a specialized unit 

with data-flow operators. The objects have input registers and a one-stage 

transparent FIFO which can be preloaded during configuration. The output 
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Register (DF Register) is able to buffer one packet if the transfer to the next 

connected object stalls.  

Vertically, each object can be connected to one or more horizontal busses. 

Configurable registered switch-objects are used for segmenting the 

communication lines horizontally to the neighboring PAEs. In parallel to the 

data connections, the similarly designed independent event-network (dotted 

connections in Figure 20) enables the transfer of status information from the 

ALUs. Events can be used to steer the data flow or to control the operation of 

ALU-opcodes. The BREG provides a look-up table for manipulation of several 

event streams. 

 

Figure 20: ALU PAE objects 

RAM-PAEs are similar to ALU-PAEs, merely the ALU object is replaced 

by a RAM-object and the I/O Element is integrated. 

The dual-ported RAM-object has two independent ports enabling 

simultaneous read and write operations. As with all XPP objects, the RAM 

offers packet-oriented data handling. To read from a RAM-object, a data 
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packet must be sent to its address input. As a result, the RAM-object generates 

an output packet with the content of the addressed RAM cell. Similarly, writing 

to RAM requires sending data packets to the address-inputs and the data-inputs 

of the write port. If the RAM is configured in FIFO-mode, no addressing is 

required and the FIFO generates output packets as long as packets are stored. 

RAMs and FIFOs can be preloaded during configuration. This allows using 

them as look-up tables or for storing coefficients and initialized parameters. 

Events may control read and write operations and inform about the status of the 

RAM-objects if they are concatenated to larger capacity RAMs. 

 

Figure 21: RAM PAE objects with I/O 

Figure 22 shows the general structure of an I/O Interface in streaming mode. 

The I/O interface provides two data channels and two single bit event signal 

channels. All four channels can operate independently using an identical 

streaming protocol. Alternatively, the data channels can be combined to 

support external RAMs. This mode allows directly addressing an external 

memory module. Such memory can be used as larger external buffer RAM and 

for exchanging data blocks (scratch-pad). The RAM mode interface is mainly 

intended for algorithms which require random access to the storage repository 

or where the memory's FSM does not provide the required access pattern.   
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Figure 22: XPP I/O in Streaming mode & RAM mode 

2.2.1.4 XPP III Function PAE Details 

This section provides some details of the Function PAEs which handle the 

control-flow part of algorithms. 

The FNC-PAE is based on a load/store VLIW architecture. Unlike VLIW 

processors, it comprises implicit conditional operation as well as sequential and 

parallel operation of ALUs within the same clock cycle. Program code is stored 

in a local cache which can be locked. Data is stored in a local tightly coupled 

memory (D-MEM) and (optionally) external RAM. 

The ALU data-path comprises eight 16-bit wide integer ALUs arranged in 

four rows by two columns. Data processing in the left or right ALU column 

(path) occurs strictly from top to bottom. This is an important fact since 

conditional operation may disable the subsequent ALUs of the left or right 

path. The complete ALU datapath is executed within one clock cycle. The final 

result is written to the register file or other target registers within the very same 

clock cycle. Status flags of the ALUs are fed into the next row of ALUs. The 

status flags of the bottom ALUs are stored in the status register. Flags from the 

status register are used by the ALUs of the first row and the instruction decoder 

to steer conditional operations. This model enables the efficient execution of 
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highly sequential algorithms in which each operation depends on the result of 

the previous one. 

 

Figure 23: FNC-PAE overview the ALU data-path 
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All ALUs have access to the 16-bit register file. Additionally each ALU has 

access to the previously processed results of all ALUs above. In order to 

achieve low latencies within the ALU data-path, the ALUs support a restricted 

set of operations: addition, subtraction, compare, barrel shifting, and boolean 

functions as well as jumps. More complex operations are implemented 

separately as SFU functions. Most ALU instructions3 are available for all 

ALUs, however some of them are restricted to specific rows of ALUs. 

Conditional Operation and Branching 

Many ALU instructions support conditional execution, depending on the 

results of the previous ALU operations, either from the ALU status flags of the 

row above or – for the first ALU row - the status register, which holds the 

status of the ALUs of row 3 from results of the previous clock cycle. When a 

condition is FALSE, the instruction with the condition and all subsequent 

instructions in the same ALU column are deactivated for this cycle. A 

deactivated ALU column can be reactivated again. 

Three pointers are used for branching based on conditions. Without a 

condition, one pointer points to the next opcode. It is possible to select one of 

the three pointers based on results of a condition for relative branch targets 

between +-31. Long jumps are possible with dedicated ALU instructions or 

using a special register (lnk). 

Multiple types of jump instructions are supported: 

• Opcode implicit program pointer modifiers using the program 

pointers 

• Long jump Instruction with  immediate or register offset 

• Subroutine calls and return  with  immediate or register offset 

(stack) 
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• Jumps via the 32-bit lnk register for subroutine call w.o. delay and 

stack operations 

• Interrupt calls and return via intlnk register 

Memory Hierarchy 

The FNC-local memories D-MEM and I-MEM provide the first level of the 

memory hierarchy. Time critical sections of algorithms should be executed 

using only those local resources. The I-MEM is organized as a 4-way set 

associative cache (4 x 64 * 256 bit). The sets can be locked and pre-fetched 

under program control. The D-MEM is organized as a linear 1024 x16 bits. 

The access to the external memory hierarchy depends on the overall SoC 

design.  

Since several FNC-PAEs will access the memory, an arbiter is required. 

However, most inner loops will be executed from the local I-MEM, thus only 

minimal external code access is expected. Local variables should be stored in 

the local D-MEM. 

2.2.1.5 XPP Interfacing 

XPP-arrays interface to external devices and the FNC-PAEs with:  

• Data streaming channels with one processor word by means of a 

hardware handshake protocol that maintains the stream-

synchronization capabilities also to the outside world (i.e. SoC 

Busses, AMBA, NoC and FNC-PAEs).  

• The array I/O interface can alternatively be configured to provide 

addresses and data for connection to external RAMs (not to FNC-

PAEs) 

• Event streaming ports transfer one-bit information similarly to the 

data channels 
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• The Reconfiguration Port provides a streaming interface that allows 

sequential loading of configuration into the array. Typically an 

external DMA controller may performs this task. 

Protocol wrappers can adapt the streaming channels to any SoC 

infrastructure.  

Configuration Interface 

A pipelined configuration bus configures the objects within the PAEs. 

Figure 24 shows the configuration chain in the above-mentioned XPP-array. 

 

Figure 24: Configuration chain 

Tokens with address and data are shifted pipelined through the array. Each 

configuration register has a unique address. The word width of the 

Configuration Bus is 43-bits. Thus, an external wrapper must adapt e.g. 32-bit 

DMA transfers to the required 43-bit words. 

One should note that the configuration only programs the XPP-array and the 

horizontal busses which go to the FNC-PAEs (not shown in Figure 24). The 
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FNC-PAEs and their vertical dataflow busses are controlled by the FNC-PAEs 

itself by means of the FNC-I/O Bus. 

Characteristics of the XPP-III IP 

The following characteristics are derived from Synopsis tools. For the 

power estimation typical applications have been performed (i.e. MPEG2 

inverse quantization and MPEG4 quarter pixel reconstruction) on an XPP 

40.16.0. The algorithms are applied on a 16x16 pixel macro block and deliver 

one result / cycle. 

The figures are intended to give a rough estimate about the required area 

and power budget. One should note that after backend processing more area 

will be required and the maximum frequency will drop. 

XPP-III Array  Technical Data (Synthesis) 

XPP 40.8.0     
dynamic & typical 
values 

Technology 

area 
for 
100 
MHz 
design f max 

power 
@100 
MHz 

energy/ 
cycle 

  [mm2] [MHz] [mW] [nJ] 

GPLVT - 90nm, low 
treshold 11,7 400,0 88,0 0,88 

Table 2: XPP-III array preliminary characteristics 
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The XPP-III hardware IP can be scaled by a number of parameters, which 

are defined in the following table. 

Item Parameter Description Range 

General structure of XPP array and word width 

PAE_COLUMN Number of PAE 
columns per PAC 
(includes RAM PAEs) 

>= 6 

PAE_ROW Number of PAE rows. 
Specifies also the 
number of FNC-PAEs.  

>= 2 

DATA_CH Number of Data 
Channels per PAE for 
each direction  
Full featured I/O 
requires 6 or more 

2 .. 8  
 

XPP-core 
structure 
 

EVENT_CH Number of Event 
Channels per PAE for 
each direction 
Full featured I/O 
requires 6 or more 

2 .. 8 
 

Internal RAM Object, RAM and FIFO Mode 

IRAM_ADR_MASK Address_mask_range
: Address masking 
bits of the  address 
mask 

4 

RAM 
Object 
 
 

IRAM_ADR_WIDTH Number of address 
bits 

8 

Vertical bottom-up routing, Event Processing and special 
ALU 

BREG_DATA_PORTS Data routing ports 
(for BREG-ALU two 
routing ports are 
utilised) 

2 .. 4 

BREG 
Object 
 

BREG_EVENT_PORTS  Event routing ports  4 .. 5 

Vertical top -down routing, Event Processing and special 
ALU fro dataflow steering 

FREG_DATA_PORTS Data routing ports 
(for FREG-ALU two 
routing ports are 
utilized) 

2 .. 4 

FREG 
Object 
 

FREG_EVENT_PORTS  Event routing ports  4 .. 5 

Table 3: XPP-III array hardware IP parameters 
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2.2.1.6 Mapping of Algorithms to the XPP-array  

The algorithm is defined by means of a flow graph, which is statically 

mapped (spatial mapping) onto the array during one configuration. 

 

Figure 25: Flow-graph of a complex multiplication and spatial 

mapping 

Figure 25 shows the flow-graph of a complex multiplication. With XPP, 

each operator (MULT, ADD, SUB) is mapped onto an ALU-PAE and the 

connections between the PAEs are statically wired. Data flows pipelined 

through this network, which is not changed until a certain amount of data has 

been processed and - optionally - has been buffered in the RAM. After 

execution, the PAEs are released and can be used for the next configuration, 

which performs the next step of the computation. 

This strategy is efficient for algorithms, where a large number of data must 

be processed in a relatively uniform way. Since the reconfiguration of the array 

requires several hundred clock cycles and extra energy, a single configuration 

should be active for a certain amount of processed data. Most multimedia and 

wireless applications process data streams and require lots of processing power 

exactly for this type of algorithms. 

2.2.1.7 Data and Event Streams 

In XPP, a data stream is a sequence of single data packets traveling through 

the flow-graph that defines the algorithm. A data packet is a single machine 
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word (e.g. 16 or 24 bit). Streams can, for example, originate from natural 

streaming sources such as A/D converters. When data is located in a RAM, the 

XPP may generate packets that address the RAM producing a data stream of 

the addressed RAM-content. Similarly, calculated data can be sent to streaming 

destinations, such as D/A converters or to integrated or external RAMs. 

In addition to data packets, state information packets are transmitted via an 

independent event network. Event packets contain one bit of information and 

are used to control the execution of the processing nodes and may synchronize 

external devices.  

The XPP network enables automatic synchronization of packets. An object 

(e.g. ALU) operates and produces an output-packet only when all input data 

and event packets are available. The benefit of this auto-synchronizing network 

is that only the number and order of packets traveling through a graph is 

important – there is no need for the programmer or compiler to care about 

absolute timing of the pipelines during operation. This hardware feature 

provides an important abstraction layer allowing compilers to effectively map 

programs to the array.  

2.2.1.8 Development tools 

Due to the fact that XPP array is not a standard sequential processor and 

also no fine-grained FPGA, specialized development tools are provided. A tool 

suite is available which allows describing the algorithm as flow graph. The 

tools feature automatic place and route, clock accurate simulation and an API 

that allows the integration into System-C based simulations. A vectorizing C-

compiler simplifies porting of sequential algorithms to the XPP array.  

The FNC-PAEs can be programmed in assembler language and/or with 

ANSI C. The tools provide Co-simulation and debugging features for programs 

utilizing both, the XPP-array and programs running on several Function PAEs. 

The simulation is cycle accurate within the XPP-array. Access to the external 
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Memory hierarchy which is required for the FNC-PAEs is performed by means 

of a simplified memory model. 
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2.2.2 PiCoGA 

The PiCoGA is a programmable gate array especially designed to 

implement high-performance algorithms described in C language. The focus of 

the PiCoGA is to exploit the Instruction Level Parallelism (ILP) present in the 

innermost loops of a wide spectrum of applications (e.g. multimedia, 

telecommunication and data encryption). From a structural point of view, the 

PiCoGA is composed of 24 rows, each implementing a possible stage of a 

customized pipeline. Each row is composed of 16 Reconfigurable Logic Cells 

(RLC) and a configurable horizontal interconnect channel. Each RLC includes 

a 4-bit ALU, that allows to efficiently implement 4-bitwise arithmetic/logic 

operations, and a 64-bit look-up table in order to handle small hash-tables and 

irregular operations hardly describable in C and that traditionally benefit from 

bit-level synthesis. Each RLC is capable of holding an internal state (e.g. the 

result of an accumulation), and provides fast carry chain propagation through a 

PiCoGA row. In order to improve the throughput, the PiCoGA supports the 

direct implementation of Pipelined Data-Flow Graphs (PDFGs), thus allowing 

to overlap the execution of successive instances of the same PGAOP (where a 

PGAOP is a generic operation implemented on the PiCoGA). Flexibility and 

performance requirements are accomplished handling the pipeline evolution 

through a dynamic data-dependency check performed by a dedicated Control 

Unit. 

Summarizing, with respect to a traditional embedded FPGAs featuring an 

homogeneous island-style architecture, the PiCoGA is composed of three main 

sub-parts, highlighted in Figure 26: 

• An homogeneous array of 16x24 RLCs with 4-bit granularity 

(capable of performing operations e.g. between two 4-bitwise 

variables) and connected through a switch-based 2-bitwise 

interconnect matrix 
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• A dedicated Control Unit which is responsible to enable the 

execution of RLCs under a dataflow paradigm 

• A PiCoGA Interface which handles the communication from and to 

the system (e.g. data availability, stall generation, etc.) 

In terms of I/O channels, the PiCoGA features 12 32-bit inputs and 4 32-bit 

outputs, thus allowing for each PGAOP to read up to 384 bits and to write 128 

bits. 

The PiCoGA is a 4-context reconfigurable functional unit capable of 

loading up to 4 PGAOPs for each configuration layer. PGAOPs loaded in the 

same layer can be executed concurrently, but a stall occurs when a context 

switch is performed. 

 

Figure 26: Simplified PiCoGA Architecture 

If we exclude the interface block, the PiCoGA is a custom designed array, 

thus scalability and modularity is limited and requires additional work. In fact, 

the PiCoGA is a fixed-size architecture but more than one PiCoGA instances 

can be considered for the MORPHEUS design in order to further improve the 

RLC 
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overall computational power. The PiCoGA interface supports the propagation 

of the dataflow paradigm used inside the PiCoGA at an instance level, thus 

obtaining a hierarchical pipeline. 

2.2.2.1 PiCoGA Architecture 

The main features of the PiCoGA architecture are: 

• A fine-grained configurable matrix of 16x24 RLCs 

• A reconfigurable Control Unit, based on 24 Row Control Units 

(RCUs) that handle the matrix as a datapath (see Figure 26). 

• 12 primary 32-bit inputs and 4 primary 32-bit outputs 

• 4 configuration contexts are provided as a first-level configuration 

cache; only 2 clock cycles are required to change the active context 

(context switch) and 1 configuration context can be active at a time. 

• Up to 4 independent PiCoGA operations can be loaded in each 

context, featuring partial run-time reconfiguration 

Each RLC can compute algebraic and/or logic operations on 2 operands of 4 

bits each, producing a carry-out/overflow signal and a 4-bit result. As a 

consequence, each row can provide a 64-bit operation or 2 32-bit operations (or 

4 16-bit, 8 8-bit operations, and so on). The cells communicate through an 

interconnection architecture with a granularity of 2 bits. 

Each task mapped on the PiCoGA is defined PGAOP. The granularity of a 

PGAOP is typically equivalent to some tens of assembly operations. Each 

PGAOP is composed by a set of elementary operators (logic or arithmetic 

operations), that are mapped on the array cell. 

Each PiCoGA cell also contains a storage element (FF) that samples each 

operation output. This storage element cannot be bypassed cascading different 

cells. Thus PiCoGA can be considered a pipelined structure where each 

elementary operator composes a stage. Computation on the array is controlled 

by a RCU which triggers the elementary operations composing the array. Each 
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elementary operation will occupy at most a clock cycle. A set of concurrent 

(parallel) operations forms a pipeline stage. Figure 27 shows an example of 

pipelined DFG mapped onto PiCoGA. 

 

Figure 27: Pipelined DFG in PiCoGA 

The set of elementary operations composing a PGAOP and their data 

dependencies are described by a DFG (Data Flow Graph). PiCoGA is 

programmed using Griffy-C. Griffy-C is a subset of the C language that is used 

to specify a set of operations that describe the DFG. Automated tools (Griffy-C 

compiler) are used to: 

1. Analyze all elementary operations described in the Griffy-C 

code composing the DFG, determining the bit-width and their 

dependencies. Elementary operations are also called DFG nodes 

2. Determine the intrinsic ILP (Instruction Level Parallelism) 

between operations (nodes).  

3. Map the logic operands on the hardware resources of the 

PiCoGA cells (a cell is formed by a Lookup Table, an ALU, and 

some additional multiplexing and computational logic). Each 

cell features a register that is used to implement pipelined 
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computation. Operations can not be cascaded over two different 

rows. Figure 28 shows a typical mapping on PiCoGA. 

4. Route the required interconnections between RLCs using the 

PiCoGA interconnection channels. 

5. Provide the bitstream (in the form of a C vector) to be loaded in 

the PiCoGA in order to configure both the array and the control 

unit (the PiCoGA Interface does not require a specific 

configuration bitstream). Configurations are relocable, thus they 

can be loaded in any configuration layer starting from any 

available row. 

Figure 28 represents a typical example of mapping onto PiCoGA. As 

explained in previous sections, after a data-dependency analysis, the DFG is 

arranged in a set of pipeline stages (thus obtaining the Pipelined DFG). Each of 

pipeline stage is placed in a set of rows (typically they are contiguous rows, but 

this is not mandatory). 

In Figure 28, different colors represent different pipeline stages. Depending 

on the row-level granularity of the PiCoGA Control Unit, one row can be 

assigned only to one single pipeline stage, and it cannot be shared among 

different pipeline stages. 
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Figure 28: Example of PGAOP mapping on PiCoGA 
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Reconfigurable Logic Cell Architecture  

 

 

Figure 29: Reconfigurable Logic Cell: simplified architecture 

The internal architecture of the Reconfigurable Logic Cell is depicted in 

Figure 29. Three different structures can be identified: 

1. The input pre-processing logic, which is responsible to internally 

route inputs to the ALU or the LUT and to mask them when a 

constant input is needed 

2. The elaboration block (ALU & LUT), which performs the real 

computation based on the operation selected by the RLC-op block 

3. The output manager, which can select outputs from the ALU, the 

LUT, and eventually from the Carry-Chain and synchronize them 

through Flip-Flops. The output block samples when enabled by the 

Row Execution Enable signal provided by the control unit. 

Therefore the control unit is responsible for the overall data 

consistency as well as the pipeline evolution. 

4 
Output 
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Operations implemented in the “ALU&LUT” block are: 

• 4-bitwise arithmetic/logical operations eventually propagating a 

carry to the adjacent RLC (e.g. add, sub) 

• 64-bit lookup tables organized as: 

o 1-bit output 4/5/6-bit inputs 

o 2-bit outputs 4/5-bit inputs 

o 4-bit outputs 4-bit inputs 

o a couple of independent lookup tables featuring:  

1-bit output/4-bit inputs or 2-bit outputs/4-bit inputs 

• Up to 256-bit configurable memory module. Each configuration 

context provides 64-bit LUTs (see previous point) and this special 

memory module can be implemented flattening in a single-context 

configuration the memory amount of all the LUTs. This special 

memory configuration can be applied for every RLC in the array, 

and the addressing is internal, and performed through other RLCs. 

• 4-bit Multiplier module; more in detail, it is a multiplier module 

with 10-bit (in case of A * B. 6 bit are for the operand A and 4 bit 

for the operand B) of inputs and 5-bit output, including 12 Carry 

Select Adder and specifically designed to efficiently implement 

small/medium multiplier on PiCoGA resource. 

• 4-bit Galois Field Multiplier – GF(2
4
) 

Furthermore, lookup tables can be used to implement operations that require 

carry propagation, such as the comparison between two variables. LUTs can be 

programmed to use the carry chain while the carry-out can be re-directed to 

standards outputs. 
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While standard RLC inputs (A, B in Figure 29) are 4-bitwise (compliant 

with the cell granularity), the F inputs are 2 additional bits, that are used only 

when the multiplier module or some customized configuration is used. 

 

PiCoGA Control Unit 

The PiCoGA Control Unit handles the pipeline evolution, triggering the 

execution of a pipeline stage (implemented as a set of rows) when: 

• input data are available 

• output data can be overwritten 

• writeback channels are available 

A data-flow graph directly represents dependencies among computational 

nodes through the data dependency graph, and it is possible to check both 

forward and feedback arcs to handle an optimal pipelined execution.  

A pipelined data-flow computation can be modeled using timed Petri-Nets 

associating an inverse data arc and a placeholder to each data arc (representing 

a data dependency). Each node computation is “taken” when all input arcs have 

a token in the placeholder and it produces a token for each output arc. The 

activation of each node, or transition in terms of Petri Nets specific language, 

depends on each preceding node completion and on each successive node 

availability through a producer/consumer paradigm.  

Under this pattern, the dedicated programmable control unit can be used to 

handle the pipeline activity, to start new PGAOPs or to stall them when 

requested resources are not available yet (e.g when writeback channels are 

already used by another PGAOP).  

To save area, the dedicated control unit works with a granularity of one 

array row, thus 16 RLCs are the minimum number of active cells. More than 

one PiCoGA row can be used to build a wider pipeline stage, but, in order to 
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maintain a fixed clock frequency cascaded RLCs are better mapped on 

different pipeline stages.  

When a pipeline stage computes, it produces a “token” which is sent to 

preceding and successive nodes through a dedicated programmable 

interconnection channel. Each RCU receives “tokens” from the preceding and 

successive connected nodes which represent placeholders of the equivalent 

timed Petri Net that manages the pipelined DFG computation. Under this 

pattern, we schedule computational nodes to build pipeline stages, according 

with the earliest firing rule, and then we map pipeline stages on a contiguous 

set of rows. 

30 shows a possible pipelined data-flow graph and the corresponding 

simplified control unit configuration. 

 

Figure 30: Pipeline management using RCUs 

2.2.2.2 PiCoGA Programming Approach 

The language used to configure the PiCoGA in order to efficiently 

implement pipelined DFG is called Griffy-C. Griffy-C is based on a restricted 

subset of ANSI C syntax enhanced with some extensions to handle variable 
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resizing and register allocation inside the PiCoGA: differences with other 

approaches reside primarily in the fact that Griffy is aimed at the extraction of 

a pipelined DFG from standard C to be mapped over a gate-array that is also 

pipelined by explicit stage enable signals. The fundamental feature of Griffy-

based algorithm implementation is that Data Flow Control is not synthesized 

on the array cells but it is handled separately by the hardwired control unit, 

thus allowing a much smaller resource utilization and easing the mapping 

phase. This also greatly enhances the placing regularity. 

Griffy-C is used as a friendly format in order to configure the PiCoGA using 

hand-written behavioral descriptions of DFGs, but can also be used as an 

intermediate representation (IR) automatically generated from high-level 

compilers. It is thus possible to provide different entry points for the compiling 

flow: high-level C descriptions, pre-processed by compiler front-end into 

Griffy-C, behavioural descriptions (using hand-written Griffy-C) and gate level 

descriptions, obtained by logical synthesis and again described at LUT level. 

Restrictions essentially refer to supported operators (only operators that are 

significant and can benefit from hardware implementation are supported) and 

semantic rules introduced to simplify the mapping into the gate-array.  

Three basic hypotheses are assumed: 

• DFG-based description: no control flow statements (if, loops or 

function calls) are supported, as data flow control is managed by the 

embedded control unit. Conditional assignments (? :) are 

implemented on standard multiplexers. 

• Single assignment: each variable is assigned only once, avoiding 

hardware connection ambiguity. 

• Manual dismantling: only single operator expressions are allowed 

(similarly to intermediate representation or assembly code). 

Basic Griffy-C operators are summarized in Figure 31, while special 

intrinsic functions are provided in the Griffy-C environment in order to allow 
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the user to instance non-standard operations, such as for example the 

“multiplier module”  

 

Figure 31: Basic operations in Griffy-C 

Native supported variable types are signed/unsigned int (32-bit), short int 

(16-bit) and char (8-bit). Width of variables can be defined at bit level using 

#pragma directives. Operator width is automatically derived from the operand 

sizes. Variables defined as static are used to allocate static registers inside the 

PiCoGA, which is registers whose value is maintained across successive 

PGAOP calls (i.e. to implement accumulations). All other variables are 

considered “local” to the operation and are not visible to successive PGAOP 

calls.  

Once critical computation kernels are identified through a code profiling 

step in the source code, they are rewritten using Griffy-C and can be included 

in the original C sources as atomic PiCoGA operations. #pragma PiCoGA 

directives are used to retarget the compiling flow from standard assembly code 

to the reconfigurable device. 

Starting from the Griffy-C description, DFGs are placed and routed into the 

PiCoGA, while the array control unit is programmed in order to perform a 

pipelined execution. Hardware configuration is obtained by direct mapping of 
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predefined Griffy-C library operators. Thanks to this library-based approach, 

specific gate-array resources can be exploited for special calculations, such as a 

fast carry chain, in order to efficiently implement arithmetic or comparison 

operators. Logic synthesis is kept to a minimum, implementing only constant 

folding (and propagation) and routing-only operand extraction such as constant 

shifts: those operations are implemented collapsing constants into destination 

cells, as library macros have soft-boundaries and can be manipulated during the 

synthesis process. 

2.2.2.3 Validation of PGAOPs 

The functional validation of a PGAOP is carried out in a standard C 

environment. The functional validation allows the user to debug a PGAOP in 

order to verify the correctness of the code. The PGAOP, described as usual in 

Griffy-C, is compiled by PiCoGA tools that provide an ANSI C emulation. 

The emulation is functionally equivalent to Griffy-C, taking into account 

both standard operations and instruction set extension, such as direct LUT 

specification or multiplier modules. Furthermore, the emulation takes into 

account the scheduling performed by the compiler when pipeline stages are 

built. 

Debugging is facilitated by a Graphical User Interface (GUI) that can be 

associated to a standard debugging tool in order to provide an easy way to 

inspect intermediate results in the Griffy-C part. While the standard C code can 

be suspended through breakpoint, the execution on the PiCoGA is emulated as 

if it was an atomic instruction (it is a functional model). 
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2.2.3 Embedded FPGA 

This section describes the different features and architectural options for the 

fine grained eFPGA block of the MORPHEUS SoC. This makes it possible to 

choose different architectural options for the MORPHEUS SoC design. 

FlexEOS macros are SRAM-based, re-programmable logic cores to be 

integrated into SoC designs. The logic function of the core can be re-

configured simply by downloading a new bitstream file. FlexEOS is available 

in different capacities and multiple macro instances can be implemented in one 

device to achieve the required configurability while accommodating area and 

performance constraints. 

2.2.3.1 Overview of the FlexEOS product 

A FlexEOS macro is an FPGA to be embedded in a SoC design. The 

FlexEOS package contains a hard macro of the FPGA core, plus the software 

necessary to configure the FPGA core with the required functionality. 

Each FlexEOS package contains the following items: 

• A hard macro, the so-called macro core, which is the actual re-

configurable core to be included in a SoC design. 

• A soft block which is the synthesizable RTL description of the 

‘Loader’, a controller which manages the interface between the 

macro core and rest of the SoC. Multiple macro instances in one 

device require multiple Loaders, one per macro. The main functions 

of the Loader are to:  

o load the configuration bitstream, and verify its integrity at 

any time 

o simplify the silicon test procedure 

• A software tool suite to create 
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o files required during the integration of the macro into the 

SoC design, 

o a bitstream file to configure the hard macro for a particular 

application. 

2.2.3.2 FlexEOS Macro block diagram 

 

 

Figure 32: FlexEOS macro block diagram 

Figure 32 shows a block diagram of a FlexEOS macro when embedded in a 

SoC, and its interfaces to the rest of the system. It has to be noted that each 

FlexEOS macro contains a macro core and a Loader. Furthermore, the control 

interface in Figure 32 is only used for accessing the system functions of the 

FlexEOS macro, i.e. for writing commands and configuration words to the 

Loader and reading back status information from the macro core. The user 



The Morpheus Design 

 77 

interface signals correspond to the macro core input and output signals, and are 

the only ports which can be instantiated by a design mapped into the core 

during run-time.  

Loader 

The FlexEOS macro is a LUT-based FPGA technology which needs to be 

re-configured with a design each time the power is turned on, or each time the 

application requires a change of its functionality.  

The Loader ensures the proper loading of a configuration bitstream. Its 

design is optimized to simplify the interactions between the rest of the SoC and 

the macro core, and to allow predictable and reliable control of the core 

configuration and operation modes. It verifies the integrity of the bitstream 

while it is being loaded by computing a CRC signature which is checked 

against a reference CRC previously calculated by the FlexEOS compilation 

software. The CRC signature of the loaded configuration is also continuously 

computed when the application is running, so that if an error occurs in the 

eFPGA configuration, the SoC controller can be interrupted to reload the 

bitstream and re-initialize the related system functions. The time required for a 

CRC signature computation is about 2 ms for a 4K-MFC macro, depending on 

the Loader clock frequency. 

A typical example for a bitstream corruption during application run-time is a 

software error. Thereby, one or more configuration memory bit-cells may 

switch to their respective opposite value due to surrounding noise. The 

functionality mapped to the eFPGA is then modified and not predictable. 

In addition to handling the configuration, the Loader includes specific 

functions which speed up the silicon test time. The FlexEOS architecture is 

highly parallel, so only a minimal set of configuration and test vectors are 

needed to test each unique internal structure. The Loader uses this information 

to test any similar structure by simultaneously replicating a basic set of 

configuration and test vectors for the whole core. It then analyzes the result of 

all the tests in parallel and stores the result in its own status register. The 
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external controller, which in this case should be the tester, can read this status 

register back at the end of each test sequence to find out if it failed or passed. 

The Loader is delivered as a synthesizable VHDL design, which requires 

between 10k and 20k ASIC gates, depending on the customer implementation 

flow and target manufacturing technology. Its typical operating frequency is 

100MHz and below. 

2.2.3.3 Architecture 

FlexEOS uses a highly scalable architecture which permits gate capacities 

from a few thousands to multiple millions.  

A possible option for the MORPHEUS SoC is the FlexEOS 4K macro 

which includes 4096 MFCs (Multi-Function logic Cells). Furthermore, it can 

also optionally include the following: 

• 8 DPRAM blocks (either 4K bits or 8K bits) 

• 32 MACs; 128 x 8 bit adders 

The MFC 

The basic FlexEOS building block is the MFC which is a programmable 

structure with 7 inputs and 1 output. It combines a 4 input LUT (Look-Up 

Table) and a D flip-flop (see Figure 33). 

 

Figure 33: MFC schematic 
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The storage element has clock, clock enable, and reset input signals. The 

clock signal always comes from the system clock tree, and can be inverted, 

whereas the clock enable and reset signals can either come from the 

interconnect network via a regular signal input or from the system interconnect 

network. The FlexEOS compilation software selects the appropriate source 

according to the nature of the design to be implemented. 

The MFCs are organized by groups of 16 and are all located at one 

hierarchical level in the core architecture. 

A FlexEOS macro with 4K MFCs has an equivalent ASIC gate capacity of 

up to 40,000 gates. The design configuration file (bitstream) size is 36Kbytes, 

and the loading time is around the range of 600µs when the FlexEOS Loader 

operates at 100 MHz. The data bus interface is 32-bits wide. 

Carry-chain block 

Most control designs and all signal processing designs use classic arithmetic 

operators such as add, subtract, increment, decrement, equal to, inferior to and 

superior to. By default, they can be mapped to classic structures such as “carry 

propagate” or “carry look-ahead”. The first is more compact and uses fewer 

MFCs, whereas the second shows better timing performance but poor MFC 

mapping efficiency. In many cases, the carry chains are part of longer logic 

paths (critical paths), which results in slower maximum operating frequency 

for the whole design, especially if the chain is 8+ bits long. 

The FlexEOS architecture can optionally include optimized 8-bit carry-

chain operators (one per group of MFCs). They provide: 

• better timing performance (comparable to ASIC design), 

• optimal mapping efficiency (requires 1 MFC per operator bit) 

It has to be noted that a partial utilization of a carry-chain block is possible. 

Thereby, the range from 1 to 8 bits can be used, while the others are ignored 

and not connected to the interconnect network. Furthermore, carry-chain 

blocks are automatically chained by the FlexEOS compilation software using 
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dedicated interconnect resources located between the blocks. As a 

consequence, the timing delay remains minimal and optimal. 

Third party FPGA synthesis software can automatically infer the carry 

chains with the proper functionality from an RTL description. Nevertheless, the 

designer can manually instantiate such operators if necessary. 

The embedded DPRAM 

Two sizes of synchronous true dual-port RAM block are available for 

FlexEOS cores: 

• 4K-bit block 

• 8K-bit block 

Each port has its own control signals (clock, enable, write) so that it can be 

read or written independently from the other port at anytime. This means that 

the ports operate asynchronously from each other. The input and output data 

bus width must be the same for a given port, but can be different from the other 

port (see Table 4 for the different options depending on the memory block 

size). 

Each port can be independently clocked and independently controlled. They 

can be configured as shown in  

4K 8K 

256 words x  16 bits 512 words x 16 bits 

512 words x  8 bits 1024 words x 8 bits 

1024 words x 4 bits 2048 words x 4 bits 

Table 4: eDRAM size and configuration options 

The MAC 

The MAC block is a basic multiply/accumulate operator with the following 

features: 

• 16x16-bit signed/unsigned multiplier with registered/non-registered 

inputs 
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• 32-bit adder 

• 32-bit accumulation register 

• 32-bit registered/non-registered input to the adder if the 

accumulator feedback loop is not used 

• synchronous reset in accumulation mode. 

As shown in Figure 34, the output accumulation register can be bypassed in 

order to connect the adder output directly to the MAC output bus. It has to be 

pointed out that only the accumulation register is connected to the reset signal. 

 

Figure 34: MAC schematic 

Interconnect network 

FlexEOS eFPGA technology is based on a multi-level, hierarchical 

interconnect network which is a key differentiation factor in terms of density 
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and performance when compared to other LUT-based FPGA technologies. The 

interconnect resources are based on a full crossbar switch concept (see Figure 

35), which provides equivalent routing properties to any element inside the 

macro and gives more freedom for placing and routing a given design to the 

FlexEOS compilation software. The interconnect network can only be 

configured statically, meaning that the clock must be stopped. 

 

Figure 35: Full crossbar switch 

Figure 36 shows the organization of the macro with the different building 

blocks. It also shows the symmetry of the architecture which provides more 

flexibility for mapping and placing a design. Each computing element of the 

macro can either be connected to its neighbor by using a local interconnect 

resource, or to another element via several interconnect resources. 
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Figure 36: FlexEOS core architecture 

In addition to the regular interconnect network, a low-skew low-insertion-

delay buffer tree network (system interconnect network) starts from 8 

dedicated user input ports (SYS_IN) and connects to all the synchronous cells. 

Its usage is recommended for high fanout signals such as reset signals, or high 

speed signals such as clock signals.  

If parts of the system interconnect network is not used by the design, the 

FlexEOS compilation software automatically uses portions of it to improve the 

final design mapping and performance. 

User I/O Interface 

At any level of the hierarchy, the interconnect resources are unidirectional, 

including the user I/O interface signals. The standard 4K-MFC macro block 

includes 512 input ports and 512 output ports. Each of them is connected in the 

same way to the interconnect network, which gives the following properties: 

• Any input port can access a given computing resource inside the 

core 

• Any input port can be used as a system signal such as clock or reset 

• Any output port can be reached by a computing resource 
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These three points are meaningful when considering the integration of the 

eFPGA macro into a SoC architecture and defining the physical 

implementation constraints.  

During the SoC design phase, several potential applications should be 

mapped to the eFPGA to: 

• Evaluate the system constraints of the IP 

• Refine the different parameters of the IP (number of MFCs and 

I/Os, need for carry chains, memory blocks, MACs)  

• Evaluate its connectivity to the rest of the system. This is made 

easier by the flexibility of the eFPGA interconnect network and its 

I/O port properties: the FlexEOS macro does not add any routing 

constraints on SoC signals connected to the user I/Os as they can 

reach any resource inside the macro core. 

Size and Technology 

Table 5 shows the dimensions of a 4K FlexEOS macro in 90nm CMOS 

technology with 7 metal layers. 

Equivalent ASIC gates 40,000 (estimated when 
considering MFCs only) 

LUTs/DFFs (MFCs) 4096 

I/Os 504 x IN, 512 x OUT, 8 x 
SYS_IN 

Silicon area for 4K MFCs only 2.97 mm2 (CMOS 90nm) 

Size of bitstream 
configuration file 

36 Kbytes (4K-MFC only block) 

Silicon area for 4K MFCs + 8 
x 8Kbytes RAM + 32 MACs + 
128 x 8-bit carry-chains 

4.5mm2 (CMOS 90nm) 

Size of bitstream 
configuration file 

Apx. 60 KBytes (4K-MFC + 
features) 

Table 5: FlexEOS 4K-MFC features and size 
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Table 6 shows several design examples mapped onto the FlexEOS eFPGA 

macros. It also provides the correspondence between the ASIC gate count 

derived from Synopsys Design Compiler and the MFC capacity required 

mapping the same designs onto a FlexEOS macro. 

 ASIC 

Gates 

Equivalent 

MFCs  
(LUT + FF) 

FlexEOS 

eFPGA  
macro size  

granularity 

160 x 16 bit 

counters 

29742 3982 4096 MFCs 

UART 16550 8096 1459 1536 MFCs 

Viterbi Decoder 10028 2245 3072 MFCs 

Dynamic 

synchronous cross-

bar bus 

5788 1431 1536 MFCs 

Ethernet MAC 20587 3995 4096 MFCs 

Table 6: Example of design mapping results 

It should be highlighted that FlexEOS macros can be ported to any standard 

CMOS process. Even multiple identical macros can be implemented in one 

SoC. 
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Chapter 3 Memory Subsystem 

Definition 

The MORPHEUS paradigm lies in assembling of three heterogeneous 

reconfigurable engines (HREs) under the control of a general-purpose 

processor (see 1.4). HREs serve for the intensive computation of data, in order 

to obtain high performance with different kind of computations for different 

application (e.g. with different granularities). As a consequence, the integration 

of heterogeneous engines in the same system allows the designer to cover a 

large number of different software tasks as the ones required in the context of 

this project. 

 

Figure 37: MORPHEUS SoC architecture 

Alongside with the intensive computational data flow, the HREs are 

designed to support a dynamic reconfiguration. This feature is proposed in the 

today’s architectures in order to increase the computational power of the 

system. Usually, reconfigurations are performed concurrently with 
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computations in order to mask reconfiguration overhead as much as possible (a 

sort of configuration pre-fetching), and configuration bandwidth requirements 

are typically more relaxed with respect to the ones of the computational data. 

Therefore, it is essential that these two flows would never interfere among each 

other (concurrency requirement). For this purpose, an embedded ARM9 RISC 

processor realizes a system control mechanism that coordinates the functioning 

of the HREs. ARM9 assigns the tasks to each HREs, handles the interrupts, 

distributes the data among the components, and so on. Task triggering is 

performed according to Molen paradigm by means of specific exchange 

registers (XRs). Moreover, a dedicated state-of-the-art interrupt controller (IC) 

provides a general interrupt handling from both the HREs and the other system 

components. State-of-the-art programmable DMAs help the efficient data 

distribution from the ARM9 to the remaining system. Since the dynamic 

reconfiguration might impose a significant performance demand for the ARM9 

processor, an additional dedicated configuration manager (CM) can be used. 

Whereas the ARM9 processor usually controls both the computation data flows 

and the triggering of HREs, CM handles the configuration data flow. ARM9 

processor still keeps the possibility of directly controlling the configuration 

process for testing purposes. 

Off-chip communication is realized by means of a state-of-the-art multi-port 

memory controller (MPMC), supporting most of the fastest today’s external 

memory devices (Flash, SRAM, DRAM, DDR, etc.) and several parallel data 

channels for higher data parallelization. For even higher data rates, a custom 

DDR-SDRAM controller was designed to access SDRAM and bypass the 

slower MPMC.  Thanks to this flexibility provided by both controllers, they 

can be reprogrammed for different functional scenarios, like that ones proposed 

for the multi-purposing of MORPHEUS. 

On-chip communication among computation islands, such as HREs, 

requires exchanging streams of data under weighty bandwidth requirements, 

usually dependent on the set of tasks and/or application kernels. Therefore, 
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MORPHEUS architecture includes a very flexible and powerful 

interconnection infrastructure, based on the combination of the state-of-the-art 

AMBA bus (for testing and basic controls) with a network-on-chip (NoC), 

providing to the system the necessary modularity and throughput required. In 

order to reduce/avoid any eventual communication bottlenecks among the 

different data flows, it is important to separate them physically from each other 

in such a way that computational and control data share one AHB bus, while 

configuration data are routed to the system using dedicated path. In this way, 

the interconnection infrastructure is designed to provide an optimal 

communication strategy between the main storage subsystem and the 

computational engines, as well as among the different computational engines. 

Each computational engine (or HRE) is provided of local storage, as the Data 

Exchange Buffer (DEB, see Section 3.3), that can be reused for the local 

computation (if required) in order to maximize the data locality and to reduce 

the overall system traffic. 

Data flows Functional units Storage units Communication 
means 

Computational HREs, ARM, main 
DMA, MPMC 

DEBs, main on-
chip memory, 
external memory 

NoC, main 
AMBA AHB (for 
testability) 

Configuration HREs, CM, ARM, 
configuration 
DMA, MPMC 

CEBs, 
configuration on-
chip memory, 
external memory 

Configuration 
AMBA AHB 

Control ARM, IC, XRs main on-chip 
memory, 
external memory 

Main AMBA 
AHB 

External MPMC, ARM, CM, 
DMAs 

main on-chip 
memory, 
configuration on-
chip memory, 
external memory 

AMBA AHBs, 
NoC 

Table 7: Distribution of data flows inside MORPHEUS 

architecture. 



Memory Subsystem Definition 

 90 

A hierarchical structure of the memory subsystem can be outlined by means 

of the main role played by the memory in the overall system. Three main 

memory levels can be identified: 

• Level 3: Off-chip memory. It provides the mass storage subsystem, 

shared by all the components 

• Level 2: On-chip memory. This memory layer include the memory 

storage required for the ARM9 code, the RTOS, and can be also 

used as a temporary repository of block of data read/write from/to 

the off-chip memory and sent/received to/from the computational 

islands. On this level, configurations are strictly separated from the 

other data types. 

• Level 1: dedicated data/configuration exchange buffer (DEB/CEB).  

Level 1 is tightly coupled with each HRE (and usually designed around 

the main features of each HRE) and is responsible of three main 

actions: 

• to store the data currently processed by the HRE 

• to store the temporary data of the HRE computation 

• to separate HRE clock domain from the system clock domain 

The following sections give more detailed description of the memory 

subsystem providing quantitative specifications. 

 

3.1 Level 3: Off-Chip Memory 

Off-chip memory sub-system serves as mass-storage support. Today’s off-

chip solutions support already up to few gigabytes of the storage size, however 

their bandwidth is about one order of magnitude smaller comparing to the 

memories implemented inside a SoC. Huge sizes of the storage blocks make 

them also much more complex, therefore a special memory controller is used 
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to manage an access to the external data. Memory controllers contain the logic 

necessary to read and write dynamic RAM, and to "refresh" the DRAM by 

sending current through the entire device. Without constant refreshes, DRAM 

will lose the data written to it as the capacitors leak their current within a 

number of milliseconds (64 milliseconds according to JEDEC standards). Bus 

width is the measure of how many parallel lanes of traffic are available to 

communicate with the memory cell. Memory controllers’ bus width ranges 

from 8-bit in earlier systems, to 256-bit in more complicated systems and video 

cards (typically implemented as four, 64-bit simultaneous memory controllers 

operating in parallel, though some are designed to operate in "gang mode" 

where two 64-bit memory controllers can be used to access a 128-bit memory 

device). 

As already indicated in Section 2.1.6 the MORPHEUS architecture contains 

one ARM PrimeCell Multi-Port Memory Controller (MPMC) PL175. A choice 

of the given device rides on the following main features of MPMC: 

• AMBA AHB 32-bit compliancy. 

• Dynamic memory interface supports DDR-SDRAM, SDRAM, and 

low-power memories. 

• Asynchronous static memory interface supports RAM, ROM, and 

Flash with or without asynchronous page mode. 

• Designed to work with non-critical word first and critical word first 

processors, such as the ARM926EJ-S. 

• Read and write buffers to reduce latency and to increase 

performance. 

• 6 AHB interfaces (+2 optional) for accessing external memory. 

• 16-bit and 32-bit wide data-bus SDRAM and SyncFlash memory 

support. 16-bit wide DDR-SDRAM memory data support. 
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• chip-selects for synchronous memory and 4 chip-selects for static 

memory devices. 

• Power saving modes dynamic control. 

• A separate AHB interface for programming the MPMC registers. 

• Support for all AHB burst types. 

• Integrated Test Interface Controller (TIC), etc. 

Due to the large bandwidth requirements of the HD digital film application 

in development to prove the efficiency of the reference architecture a custom 

controller with support for large data rates well beyond that of the MPMC was 

developed for access to external DDR-SDRAM.  

 

3.2 Level 2: On-Chip Memory 

On-chip memory contains the programs/tasks that are currently running (or 

will be run early) and the respective data. In MORPHEUS, main memory 

acquires more significance, since, together with the data for the central 

processor, it can contain temporary data currently used by HREs. These data 

usually show bigger size and different structure if compared to the basic ARM 

data-set. Moreover, the main system storage is physically separated in two 

parts: computational/control data, and configuration data. 

On-chip memory organization usually depends on target applications and in 

many cases defines the performance of the whole system. We can consider all 

applications running on reconfigurable platforms from two points of view: 

• throughput intensive processing 

• reconfiguration intensive processing 

The kind of processing approach is taken at the end of a design space 

exploration phase, investigating together the platform architecture 

functionalities and the requirements of the target application. For that, it is 
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required to support both the approaches, thus, investigating the two extreme 

sides of software processing, in order to determine memory specifications and 

their respective trade-offs. 

As an example of application, one can consider the implementation of HD 

media digital technology, since it appear as the most memory demanding with 

respect to the other applications, especially for the main on-chip memory 

subsystem. The processing of an image requires usually the application of more 

than one basic operator (e.g. different filtering engines). It is thus possible to 

choose two main approaches: in the first, one can sequentially apply each 

operator to the whole image or, on the contrary, one can split the whole image 

in chunks (or windows) applying all the required operators for each chunk and 

then change the chunk under elaboration. From a computational point of view, 

there are two main scenarios: 

• In the first case, throughput intensive, the full image is processed by 

the first operator and the result is stored in an external memory. The 

external memory is considered, since a whole image cannot be 

stored internally. Then, the result of each processing is directly read 

from the external memory and processed by the next operator. 

• In the second case, reconfiguration intensive, only a sub-window of 

the image is processed by a first operator and the result is stored in 

on-chip memory. The size of the window is chosen as a trade-off 

between the number of iterations required to process the whole 

image by each operator and the computational power provided by 

each HRE and the memory storage (global/local resource) available. 

In this scenario, the result of each elaboration is read from the 

internal memory and then processed by the next operator. Only at 

the end of the elaboration the result is stored in the external 

memory. 

As an example of the trade-off occurring between throughput intensive and 

reconfiguration intensive approaches it can be considered an algorithm where 
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20 successive operators have to be applied on one image and a split factor of 

one hundred is considered. Hence it is possible to evaluate a lower bound of 

on-chip data and configuration memories. Considering the image size required 

for grain noise reduction for HDTV the following parameters must be 

considered: 

• Pixel resolution: 

o color channels for color images 

o 16 bits per color channel 

• Image size: 

o 1920x1080 for HDTV 

• Frame rate 

o 24 fps 

In this case, the minimum on-chip memory size required for this application 

under is described by the next equations: 

ARMHREsdata DNWS +×=min_ , (1) 

100FW = , depthch ChNsF ××= Re ,  

( )2000___min_ 2 MconfPiCoGAconfPACTconfconf SSSS ++×= , (2) 

 

where  

• min_dataS  - a minimum on-chip data memory size 

• W  - a size of window 

• HREsN  - a number of HREs in the system 

• ARMD  - a size of program and data used by ARM 

• F  - a size of image 

• sRe  - an image resolution for HDTV 
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• chN  - a number of color channels 

• depthCh  - a color channel depth 

• min_confS  - a minimum on-chip configuration memory size which is 

able to store two configurations for each HRE 

• PACTconfS _  - PACT configuration size 

• PiCoGAconfS _  - PiCoGA configuration size 

• 2000_ MconfS  - M2000 configuration size 

Consequently, on-chip memory size selection strategy is presented as 

follows: 

• On-chip data memory: 

o Lower bound: 

MBMbitsbitsF 129516310801920 ≈=×××= , 

KBMBW 12010012 == , 

ARMARMdata DKBDKBS +=+×= 3603120min_ , refer to (1). 

ARMD  depends on the exact software and may vary from 

tens to hundreds kilobytes. Area occupation around 8 mm
2
. 

o Upper bound: depends on the available area. 

• On-chip configuration memory: 

o Lower bound: 

( ) KBKBKBKBSconf 2566064722min_ =++×= , refer to 

equation (2) and D3.1, section 5.1, table 10. Area occupation 

around 4 mm
2
. 

o Upper border: depends on the available area. 
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3.3 Level 1: Data/configuration exchange buffer 

Internally to each separate clock island, each reconfigurable IP has visibility 

and access only to its own synchronization registers (XRs) for control and local 

memories (DEBs and CEBs) for data and configuration. 

Each HRE DEB consists of a dual-port, dual-clock memory device. The 

“system-port” is connected to the ARM clock domain, and is accessed from the 

AMBA bus (or the NoC Interface). This port is used by the ARM and/or DMA 

unit(s) to store/retrieve data to/from the IP. The “IP-port” is connected to the 

HRE clock domain. It is utilized by the IP to access data for the local 

computation. 

 

Figure 38: Data Storage Hierarchy 

Thus, each local memory provides a uniform mean for the system to feed 

inputs to and load results from the computational blocks hiding the 

heterogeneity of each HRE own frequency domain and internal architecture. 

Data consistency and access synchronization on the DEB is handled by 

software and is based on a programmable exclusive access policy (portions of 
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the DEB are dynamically reserved for external access and some others to 

internal access, and this allocation is switched by explicit commands issued by 

the ARM9 processor). 

In the HRE internal clock domain, DEBs are seen as an addressing space 

where computation inputs and outputs and temporary variables reside. 

According to the HRE features, two access models can be utilized. 

1. Processor-oriented computation: If the HRE is capable of acting as 

MASTER, it independently will access the DEB “IP-Port” (on the 

regions indicated as safe by the ARM core). When results are 

available, the IP will notify the occurrence to ARM, and the portion 

of memory holding results will be then accessed by core/DMA/NoC 

and become unavailable for the IP. This configuration is more 

suitable for applications where the addressing pattern is depending 

on the processed data. This approach is fully explained in Section 

3.3.1 there the DREAM integration scheme is presented and Section 

3.3.2 where M2K is described. 

2. Stream-oriented computation: If the addressing pattern for the input 

data contained in the DEB is regular, it is possible to obtain higher 

performance relieving the IP from the addressing burden, 

configuring the same IP to perform computation as a data-crunching 

SLAVE without addressing capabilities. 

Coming down to implementation details, this paradigm has been 

implemented on Morpheus in different manners for each HRE. In the next 

sections will be introduced the integration of each IP in the MORPHEUS SoC 

and in particular the interfacing to the memory sub-system. Depending on the 

features of the reconfigurable device a specific local memory topology and 

global memory connection will be considered.  
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3.3.1 PiCoGA integration: The DREAM Architecture 

This Section describes the DREAM concept of the PiCoGA integration into 

MORPHEUS platform. DREAM architecture is a dynamically reconfigurable 

platform coupling the PiCoGA reconfigurable device with a RISC processor 

using a loosely-coupled co-processor scheme. A high bandwidth memory sub-

system provides data communication with PiCoGA enabling high throughput 

and direct interface of the DREAM architecture with external computational 

blocks. 

The DREAM is composed of three main entities: Control Unit, 

Reconfigurable Data Path, and Memory Access Block (see Section 2.2.2). Data 

transfers between DREAM and the host system are realized through exchange 

buffers, that also act as local repositories for data (DEBs, Data Exchange 

Buffers) and program code/configuration (CEBs, Configuration Exchange 

Buffers). 
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Figure 39. DREAM architecture. 
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3.3.1.1 Control Unit  

The DREAM control unit is based on a 32-bit RISC processor, rather than a 

custom FSM, mainly because of the programmability, flexibility and 

reusability advantages provided by the state-of-the-art device. This unit is in 

charge for fetching instructions, handling program flow and providing 

appropriate control signals to the other blocks. The control signals are 

generated by specific coprocessor operations. Available operations that can be 

triggered by the control processor on the reconfigurable data path are listed in 

the Table 8.  

 

Table 8: DREAM Application Program Interface 

The processor occupies relatively small area: 20K gates of logic plus a 

dedicated memory module, which serves as an embedded 32-cell register file. 

It features arithmetical-logical operations, 32-bit shifts and a small embedded 

multiplier. Processor code and data, as well as the configuration bit-stream for 

the embedded data path are considered as part of the DREAM program code, 

and are loaded by the host system on the CEBs, implemented on dual port, dual 

clock memories. The addressing space of the control processor is configurable 

at design time, and in the current implementation is composed of 4KB of 

processor code and 4KB of data memory, plus 36KB of configuration memory 

for the reconfigurable data path. Input data and computation results are 

exchanged with the host system through a coarse-grained handshake 

mechanism on DEBs (also defined as ping-pong buffering). 
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Integration of a general-purpose processor gives to the user advantages of 

exploiting a sophisticated program control flow mechanism, writing commands 

in ANSI-C and utilizing a reliable compiler to optimize code and schedule task 

efficiently. Computation kernels are re-written as a library of macro-

instructions and mapped on the reconfigurable engine as concurrent, pipelined 

function units. Computation is handled by the control processor in a fashion 

similar to the Molen paradigm, i.e. the core explicitly triggers the configuration 

of a given macro-instruction over a specific region of the data path, and when 

the loading of the configuration is complete it may run any desired issue of the 

same functionality in a pipelined pattern. Up to four macro-instructions can be 

loaded on each of the four available contexts. Contexts can not be computed 

concurrently but context switch requires only one cycle. A sophisticated stall 

and control mechanism ensures that only correctly configured operations can 

be computed on the array, and manages context switches. Besides the control 

functionality, the processor can also act as a computation engine in parallel 

with the reconfigurable data path. 

3.3.1.2 Reconfigurable Data Path 

The DREAM data path is composed by an array of RLCs. Each cell may 

compute two 4-bit inputs and provide a 4-bit result. RLC structure is described 

in Figure 40: it is composed of a 64-bit LUT, a 4-bit ALU, a 4-bit multiplier 

slice and a Galois Field multiplier over GF(2
4
). A carry chain logic is provided 

row-wise allowing fast 8-, 16- and 32-bit arithmetic.  

The ideal balancing between the need for high parallelism and the severe 

constraints in size and energy consumption suggested a size of 16x24 RLCs, 

and an IO bandwidth of 384 inputs (twelve 32-bit words) inputs and 128 

outputs (four 32-bit words). This choice was mainly driven by the targeted 

MORPHEUS applications. The routing architecture features a 2-bit granularity, 

and is organized in three levels hierarchical levels: 1) global vertical lines carry 

only data path inputs and outputs; 2) horizontal global lines may transfer 

temporal signals (i.e. implementing shifts without logic occupation); and 3) 
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local segmented lines (three RLC per segment) handle local routing, while 

direct local connections are available between neighboring cells belonging to 

the same column.  

 

Figure 40. RLC in the DREAM reconfigurable data path. 

The gate-array is coupled to an embedded programmable control unit, which 

provides synchronous computation enable signals to each row, or set of rows of 

the array, in order to provide a pipelined data-flow according to the data 

dependencies in the source data-flow graph. Due to its medium-grain and 

multi-context structure the DREAM data path provides a good trade-off 

between gate density (3Kgates/mm
2
 per each context) and flexibility. Its deep 

pipelined nature allows very efficient resource utilization ratio (on average, 

more than 50% of the available resources per clock cycle) with respect to 

devices such as embedded FPGAs that need to map on reconfigurable fabrics 

the control logic of the algorithm. The full configuration of each context of the 

array is composed of 2Kb, which can be loaded in 300 clock cycles, besides 

each operation can be loaded and erased from the data path separately. To do 
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this, the reconfigurable unit is organized in 4 contexts; one context can be 

programmed while another is computing. An on-board configuration cache 

(36Kb in DREAM) and an high bandwidth configuration bus (288 bit/cycle) 

are used in order to hide the reconfiguration process of one context in the time 

consumed by computation on different contexts. 

3.3.1.3 Computation and configuration data storage 

In order to allow DREAM to function closer to its ideal frequency, 

regardless limitations imposed by the host system, dual clock embedded 

memory modules were chosen as physical support for DEBs and CEBs. This 

caused a 5% overhead in timing, 40% in area and 20% in power consumption, 

comparing to the single port solution. Such price is justified by the absence of 

multiplexing logic that would be required by the use of single port memories. 

This choice also implies a very straightforward physical implementation of the 

overall system, without need for explicit synchronization mechanisms. DEBs 

are composed by 16 dual port memory banks 4KB each. They are accessed as a 

single 32-bit memory device from the host system side and can provide parallel 

16x32-bit bandwidth to/from the data path. 

Due to their small granularity, DREAM macro-instructions often exchange 

information between successive issues, in form of temporary results or control 

information. For this reason a specific 16-cell multi-port register file (12 

inputs, 4 outputs) was included as local data repository. As macro instructions 

feature variable latency, a specific hardware register locking logic was added to 

preserve access consistency, generating stalls to preserve the correct program 

flow. 

Address generators 

On the reconfigurable data path side, an address generator (AG) is 

connected to each DEB bank (see Figure 41). Addresses are incremented 

automatically at each cycle for all the duration of the kernel according to the 

programmed data pattern.  
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Interconnection Matrix

Address Generator (x16)Address Generator (x16)

Internal 

Register Files

16

to 16 DpDclk Memory Buffer

Item 16..31

from PiCoGA (4 Output)to PiCoGA (12 Input)  

Figure 41. Integration of the address generators in DREAM 

architecture. 

AGs provide standard STEP and STRIDE capabilities to achieve non-

continuous parallel vector addressing. A specific MASK functionality allows 

power-of-2 modulo addressing in order to realize circular buffers of variable 

size with programmable start point. 
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Figure 42. Classification of the available data patterns. 
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Address generation parameters are set by specific control instruction, 

enabling various types of memory access, which are classified on Figure 42. 

Such kind of data distribution is very often found in multimedia applications, 

being targeted by MORPHEUS. Thus, AGs provide stream data flow to the 

data path even for non-continuous vectors with regular pattern. 

3.3.1.4 Integration overheads 

The DREAM processor will be implemented for 90 nm CMOS technology 

process. The maximal operating frequency in the Morpheus context is 

200MHz. The reconfigurable data path was designed with a mixed 

custom/semi-custom design flow, while the control and memory addressing 

sections were designed in HDL and mapped on standard cells libraries. 

Processor efficiency was measured on a set of computational kernels, oriented 

toward multimedia and communication applications. In particular, there we 

selected four highly-parallel kernels from the open-source H.264 coding 

standard, an OFDM Constellation Encoder or Mapper (implemented at three 

levels of unfolding), and well-known symmetric-key cipher AES with 128 key 

size. Performances were evaluated at 200MHz, and are parameterized with 

respect to the interleaving factor, intended as the number of data blocks 

concurrently elaborated. In fact, most of multimedia and communication 

kernels feature thread-level parallelism (i.e. image processing transforms show 

no correlation across macro-blocks), and interleaving of the elaboration of 

more than one block allows deeper level of pipelining in computation. The 

interleaving factor applicable depends also on the available DEB memory 

budget. All the benchmarks reach a saturation point, where further computation 

unfolding is made impossible by lack of storage capacity on local memory.  

Figure 43 describes DREAM performance in terms of processed bits per 

second. For example, a single ARM-926EJ-S processor in the same technology 

node, according to the vendor data sheets, would provide up to 0.5 GOPS, 0.32 

GOPS/mm
2
, and 3.5-7.1 MOPS/mW. Neglecting overheads due to 

synchronization, it would thus be necessary to provide up to 60 ordinary 
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processors (thus much higher energy and silicon area) to match the 

performance delivered by DREAM on computation intensive kernels. 

 

 

Figure 43. Throughput vs interleaving factor. 
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3.3.2 M2000 Integration 

Figure 44 gives an overview over the M2000 sub-block in the top design. 
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Figure 44: M2000 HRE sub-block as inserted in the top design 

As shown in the figure, the sub-block is communicating with the system 

over several interfaces. A data interface mainly implemented via 8 32-bit dual 

port memories and a configuration and control interfaces wrapped via a 

standard AHB protocol. In the next chapters, the interconnection schemes for 

configuration control and data will be explained further in detail. Figure 45 

lists the memory maps for the diverse interfaces of the M2000 sub-block: 

• A 64-bit Data Interface that directly connect the M2000 HRE to the 

NoC communication engine via a dedicated port. 

• A 32-bit AMBA Slave port connected to the Configuration Bus to 

manage the bitstream loading phase. 

• A 32-bit  AMBA Slave port connected to the Main Bus used by 

ARM to configure the Data Interconnection Interface. 



Memory Subsystem Definition 

 107 

 

Figure 45: M2000 sub-block memory maps 

3.3.2.1 Configuration Interconnection Scheme 

The configuration bitstream is loaded by using the loader interface. All the 

loader registers can be directly accessed via the configuration AHB bus (base 

address 0x800A0000).  

The bitstream is loaded using the following sequence[55]: 

• configuring the loader in load mode by setting several parameters 

via a dedicated register (set Power = ‘1’, Write Access = ‘1’, Access 

Type = ‘00’, Increment Mode = ‘001’). 

• storing the configuration words in alternation on the data_32L and 

data_32H registers, or in sequence on the data_x64 register. Both 

can be done by using the Configuration DMA.  

• An interrupt request (m2k irq 0) is set as soon as the upload is 

finished, but it is also possible to poll the dne or loader status 

register (bit 1) to detect this event. 

• To verify if the bitstream has been uploaded correctly, a CRC check 

can be performed by storing the CRC integer provided by the 

FlexEOS tool into the crc_ref register. Upon completion of the 
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upload (dne = ‘1’), the crc bit of the status register (bit 2) must be 

‘1’ as well. 

• The loader can now be set to run mode (set Power = ‘1’, Run = ‘1’, 

Write Access = ‘1’, Activate Macro = ‘1’) to start the application.  

The busy register indicates that the loader is busy storing a configuration 

word, however, a wait state is inserted into the bus transfer automatically by 

the AHB wrapper, so the application designer does not need to take care of 

this. 

3.3.2.2 Data Interconnection Scheme 

Due to its bit-level programmability, M2000 has the greatest flexibility of 

all HREs inside the MORPHEUS SoC. This means that the data interface must 

be adaptable to a wide range of possible applications with different needs 

concerning the data exchange. Similar to DREAM and PACT, M2000 is 

connected to the chip infrastructure using a range of data exchange buffers 

(DEBs) based on dual-port dual-clock memories, in this case 8 cuts of 1024 32-

bit words (see Figure 44). However, the DEBs also feature a programmable 

control logic that allows for different means of data buffering. 

DEB

HRE_WRITE HRE_WDATA

READ RDATA

HRE_READ HRE_RDATA

WRITE WDATA

HRE_READY

IO_ERROR

Ctrl 

Port

HRE_ADDR

ADDR

DEB

HRE_WRITE HRE_WDATA

READ RDATA

HRE_READ HRE_RDATA

WRITE WDATA

HRE_READY

IO_ERROR

Ctrl 

Port

HRE_ADDR

ADDR

 

Figure 46: DEB I/O signals 



Memory Subsystem Definition 

 109 

The DEB interface signals of both the system and HRE side is shown in 

Figure 46. The HRE side ports are connected directly to the pads of the eFPGA 

core, while the system side ports can be driven by either the AHB bus (for 

debug purpose) or the NoC. From the addressing point of view, the DEBs are 

coupled to pairs of two to match 64-bit width of the NoC (see Figure 45).  

Each DEB can be configured individually via the control port (mapped on 

the main bus at the address: 0xC0011000) providing access to the internal 

registers shown in Figure 47. The base addresses for each control port are listed 

in Figure 45. 

WORDS CURRENTLY IN FIFO

PREVIOUS ERRORS FLAG

RESET FIFO DATA POINTER

DATA_VALID MODE DIRECTION 0x0

0x4

0x8

0xC

Internal Registers (ctrl port)

DEACTIVATE

WORDS CURRENTLY IN FIFO

PREVIOUS ERRORS FLAG

RESET FIFO DATA POINTER

DATA_VALID MODE DIRECTION 0x0

0x4

0x8

0xC

0x0

0x4

0x8

0xC

Internal Registers (ctrl port)

DEACTIVATE

 

Figure 47: DEB Control Registers 

Two operation modes are eligible: 

1. FIFO mode (mode register = 0). Data streams are FIFO-buffered in 

the direction specified in the “direction” register. If data is buffered 

from the system to the HRE (direction = 1), HRE_READY 

indicates to the M2000 application that there is data available on the 

DEB, while IO_ERROR indicates push errors to the system. If data 

is buffered from the HRE to the system (direction = 0), 

HRE_READY indicates that there is space available while 

IO_ERROR indicates pop errors 

2. Direct addressing mode (mode register = 1). In this case the DEB 

works as a normal dual port memory, either to buffer data exchange 

with external address generation or to serve as a local tightly 
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coupled memory for the application mapped on M2000. The 

HRE_READY signal is driven by the “data valid” register as an 

additional method of synchronization. 

 

The FPGA macro core is connected to the outside world over 496 input and 

512 output pads. For each one of the eight DEBs, 33 input pads and 44 output 

pads are assigned. 40 input and 80 output pads are used to directly drive 

bidirectional I/O pins of the chip, with M2000 as a reconfigurable I/O device in 

mind. In addition, 32 input and 31 output pads are used for interrupt and 

synchronization exchange registers. Clock inputs and reset signals are 

connected to the low-skew, low-insertion-delay buffer tree networks that start 

from the eight dedicated SYS inputs of the macro core. 
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PINIP[264-303]
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DEB6IP[198-293]
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DEB3IP[99-131]

DEB2IP[66-98]
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Figure 48: M2000 input/output pad distribution 
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3.3.2.3 Application Development Example 

The current section describes the deployment of a simple example that can 

be considered a nice introduction to application deployment on the M2000 

HRE. 

In order to run an application into the M2K RA three main steps are 

required: 

1. A global configuration step to activate the macro and to configure 

the interconnection infrastructure.   

2. Program the configuration infrastructure in order lo load the 

bitstream and configure the M2K Macro. 

3. Activate the Macro and program the data communication engine 

(NoC or AMBA based) to feed data in the input ports of the 

reconfigurable engine and read the results stored in the output ports.  

Global configuration 

In order to activate the macro the clock need to be activated via a store 

operation through the exchange register infrastructure. The reset is also 

deactivated and a dedicated function is executed:  

 

m2k_XR->clock_mode = global_clock; 

m2k_XR->resetn1 = 1; 

m2k_power_on(); 

 

As shown in Section 3.3.2.1 the data interconnection scheme is based on 8 

configurable  DEBs. In the default configuration the first 4 DEBs are 

configured as input FIFO mode (SYSTEM � HRE) while the others as output 

FIFO (HRE � SYSTEM). In order to manually program such parameters a 

simple function is available in the drivers: 
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m2k_XR->deb[0].direction = 1; /* Input direction */ 

m2k_XR->deb[1].direction = 1; /* Input direction */ 

m2k_XR->deb[2].direction = 1; /* Input direction */ 

m2k_XR->deb[3].direction = 1; /* Input direction */ 

m2k_XR->deb[4].direction = 0; /* Output direction */ 

m2k_XR->deb[5].direction = 0; /* Output direction */ 

m2k_XR->deb[6].direction = 0; /* Output direction */ 

m2k_XR->deb[7].direction = 0; /* Output direction */ 

 

Moreover all DEBs can be programmed as standard memory deactivating 

the implemented FIFO controller: 

 

for(i=0;i<8;i++) 

(m2k_XR->deb[i]).dontusefifo = 1; */FIFO Deactivated*/ 

 

In this configuration the direction doesn’t have any sense. DEBs in fact are 

implemented using a Dual Port Dual Clock memory, so parallel access can be 

performed form both side.  

Macro configuration 

In order to load the bitstream into the M2K RA a pre-built function is 

available. The functionality of this routine is to program the configuration 

DMA: 

load_m2k_bitstream((unsigned int*)bitstream); 
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where bitstream is a 32  pointer of the bitstream stored in the on-chip or 

off-chip configuration memory. 

In order to manage the loading procedure of the bitstream, the length of the 

bitstream is not required cause the macro is itself able to raise a DNE signal 

when a new configuration is fully stored and recognized. An interrupt bit on 

the Interrupt Register is reserved to manage the end of the loading procedure. 

In order to unmask such interrupt at the beginning of the configuration step a 

dedicated function need to be executed: 

 

 m2k_XR->irq_enable = 0x1; /* Interrupt 0 unmasked */ 

 

When the interrupt is recognized by ARM a dedicated routine is executed in 

order to deactivate the DMA transaction. 

If necessary, all interrupt sources can be unmasked by programming the 

interrupt register in this way: 

 

m2k_XR->irq_enable = 0xFFFF; Interrupt 0-15 unmasked */ 

 

Upon completion of the upload (DNE is raised), the loading procedure 

needs to be concluded and the application needs to be initiated. This means that 

the DMA transfer is stopped, the application is reset and the output pads of the 

eFPGA are activated. This is done by the following functions: 

• m2k_conclude_confload(void); 

• m2k_execute_app(void); 

It might be a good idea to have those functions executed by the interrupt 

subroutine linked to the m2k irq 0. After this, the application is running. 
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Data Exchange and Synchronization 

As displayed in Figure 45, the DEBs are coupled to pairs to fit the 64-bit 

width of the bus. Yet they these pairs consist of two independent 32-bit 

memories. While this is transparent as long as they, a little care must be taken 

in FIFO mode as both are controlled by separate FIFO controllers. To perform 

a push or pop operation from a single DEB, any 32-bit position inside the 

DEBs addressing space has to be addressed while performing a write or read 

access. However, it is also possible to access two FIFOs simultaneously by 

using a 64-bit access, but care has to be taken not to do so unintentionally. 

Lets assume that the application receives four 32-bit input values from 

DEB0 and returns four results to DEB5: 

 

/* Address low-word of DEB pair 01 */ 

*(volatile int*)(m2k_debs->pair01) = x0; 

*(volatile int*)(m2k_debs->pair01) = x1;  

*(volatile int*)(m2k_debs->pair01) = x2; 

*(volatile int*)(m2k_debs->pair01) = x3; 

 

/* wait for results to arrive on DEB5 */ 

while (m2k_XR->deb[5].wordsinfifo < 4) {}; 

 

/* Address high-word(!) of DEB pair 45 */ 

y0 = *((volatile int*)(m2k_debs->pair45)+1); 

y1 = *((volatile int*)(m2k_debs->pair45)+1); 

y2 = *((volatile int*)(m2k_debs->pair45)+1); 

y3 = *((volatile int*)(m2k_debs->pair45)+1); 
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Of course the word count can only be read in FIFO mode, but it is also 

possible to use the arm2hre and hre2arm registers for synchronization: 

 

/* (write some input data) */ 

(...) 

/* set synchronization bit 5 */ 

m2k_XR->arm2hre |= 0x0040; 

 

/* wait for computation to finish */ 

while (m2k_XR->hre2arm & 0x0040 == 0) {}; 

 

/* (read results) */ 

(...) 

/* remove synchronization bit when input data is out of date */ 

m2k_XR->arm2hre &= ~0x0040; 

 

On top of this, interrupts can be used for synchronization. 
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Chapter 4 Interconnect strategy 

 

The aim of Morpheus is to exploit the available elaboration units (HREs-

Heterogeneous Reconfigurable Engines) to provide a stream-oriented 

computation pattern that can be fully tailored, before and during the 

computation, to the requirements of the running application (or set of 

applications). 

The interface between the user and the Morpheus hardware facilities is the 

ARM processor, and all hardware services are required and synchronized by 

software routines running on the ARM. From the hardware point of view this 

can be done in the same way by manual programming or RTOS. 

The Morpheus programming model is based on to the Molen paradigm. 

Morpheus should be considered as a signal processor, where HREs are 

computation units providing instruction set extension, and tasks running on the 

HRE extensions should be seen as micro-operators of the processor. HREs are 

seen as the signal processor function units, Bit-streams represents the HRE 

instruction micro-code and the compiler’s work is to schedule tasks in order to 

optimize the computation and ensure a familiar programming model to the 

user. 

According to this paradigm, increasing the granularity of operators from 

ALU-like instructions to task running on HREs, we are forced to increase 

accordingly the granularity of the operands. Operands can not be any more 

scalar C-type operand data but become structured data chunks, referenced 

through their addressing pattern, be it simple (a share of the addressing space) 

or complex (vectorized and/or circular addressing based on multi-dimensional 

step/stride/mask parameters). Also operands can be of unknown or virtually 

infinite length, thus introducing the concept of stream-based computation.  
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From the architectural point of view we can then describe Morpheus 

handling of operands, [source, destination and temporary data] at two levels:  

a) Macro-Operand, is the granularity handled by extension 

instructions, transferred by ARM and controlled by the end user 

through its “main” program written in C (possibly with the 

assistance of an RTOS). Macro-operands can be data streams, 

image frames, or different types of data chunks whose nature and 

size depends largely on the application. 

b) Micro-Operands are the native types used in the description of the 

extension instruction, and tend to comply to the native data-types of 

the specific extension entry language that is C and GriffyC for 

DREAM, HDL for M2000, NML and FNCPAE-Assembly for XPP. 

Those micro-operands will only be handled when programming the 

extensions, or macro-operators, so they are meant to be handled by 

the user only when for optimization reason he will program 

manually extension operations on HREs.  Otherwise will be handled 

by the Morpheus toolset. 

Coming down to implementation details, this paradigm has been 

implemented on Morpheus at two levels: 

 

4.1 Handling of micro-operands: local HRE 

interconnect strategy deployment 

It was deemed as essential to provide locally to HREs a flexible addressing 

mechanism, especially for processing units that are not oriented to stream 

processing and make intensive use of temporary local data storage such as 

PiCoGA and M2000. This explains the tight interaction between the local 

memory hierarchy (DEB-based) and interconnect strategy. Local interconnect 

is the most critical aspect of data transfer and it has been given absolute 
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priority in the work partitioning and organization. In fact, the aim of the local 

interconnect definition is to provide the abstraction between micro-operands 

and macro-operands thus is instrumental to the deployment of the 

homogeneous programming model. The deployed strategy is three-fold, as it 

was considered that the different specific nature of the three HREs required 

specific handling of local data transfers. 

 

1. For PiCoGA, a set of hardwired programmable address generators 

was added on the HRE side of the DEBs (see Section 3.3.1.3). The 

AGs are programmed (in C language) by the embedded processor 

core, whose code is part of the overall PiCoGA bit-stream. Details 

of the programming model for the AGs are tightly integrated with 

the programming model of PiCoGA itself and as described as part 

of the PicoGA programming. It should be noted note that this 

interconnect aspect can not be programmed at ARM level but is 

always part of the bit-stream specification.  

2. For M2000, it was decided to capitalize on the HDL-oriented nature 

of the M2000 programming model. Address generator libraries 

similar to the ones described above are available, but are designed 

to be mapped on the M2000 fabric (see Section 3.3.2.2). Again, 

their specification is part of the M2000 bit-stream and is deployed 

as part of the application specification, where the DEB is seen as a 

SRAM memory macro resource “embedded” in the HRE. In 

alternative, it is possible to configure via ARM the DEBs in FIFO 

mode, and compute data in a stream-oriented pattern. Details on 

FIFO depth, and the number of available memory bits/fifo channel 

is maintained design-time configurable.  

3. While DREAM is seen from Morpheus as a random access storage 

unit, M2000 is programmable between a RAM access and a 

streaming access, according to the HRE features for XPP it was 
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chosen to utilize pure data streaming. XPP was connected on a 

purely streaming pattern with four 1Kx16-bit input and four 1Kx16-

bit output FIFO channels.  Advanced data addressing patterns are 

handled internally in the XPP proprietary caching hierarchy, so 

similarly to the cases described above local interconnect is defined 

as part of the HRE programming.  

 

4.2 Handling of Macro-operands: Global Interconnect 

strategy deployment 

The organization of chip level data transactions is structured as a direct 

consequence of the theoretical approach outlined in Section XXX: the PN/KPN 

formalism and the Molen programming paradigm are applied to Morpheus so 

that applications are tackled by the ARM core instantiating a collection of 

coarse-grained Macro-Operators that are represented as micro-coded extension 

instructions whose microcode is the bit-stream itself. The handling of C-level 

operands and their interconnect local to the HRE, is embedded in the 

microcode of the instruction itself, much like the routing of single bits is 

embedded in the microcode of a shift or an add operation in a conventional 32-

bit processor. In order to implement this pattern, macro-operands need to be 

referenced when calling macro-operations upon them.  The flexibility in local 

addressing inside the HREs relaxes a lot the constraints on the macro-operator 

definition. In fact, a possible option could be to reference macro-operands only 

by (base_address, size) thus assuming the utilization of contiguous data 

chunks, leaving implementation of sophisticated addressing patterns to the 

HRE/DEB level. But this may not be feasible to all applications, and it is at 

odd with the scalability/flexibility required to Morpheus. The definition of the 

chip-level interconnect strategy face the following constraints: 

1. Data-flow control is strongly processor-centered, HRE computation 

is seen as an extension of the Instruction Set of the controlling 
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processor. All transfers should be “initiated” by the main core, 

either explicitly or running a specific extension instruction. HREs 

may be capable to access memory independently, but in that case 

the HRE programmer must ensure consistency.  Of course, a given 

transfer can be iteratively repeated to describe circular addressing 

and this may require only very sparse iteration with ARM. 

2. The Interconnect mechanism should match the architectural 

scalability. One test chip is being produced, but that is only one 

possible instance of the architectural template. Interconnect should 

not be optimized on the test-chip parameters but must provide an 

infrastructure that can scale to different HREs configurations 

without compromising neither its performance nor, most important, 

its programming model. Also, the interconnect concept must be 

capable to scale between very different bandwidth requirements 

without changing the architectural template.  

3. The Interconnect must provide a level of abstraction that matches 

the grain, the representation and the required flexibility of the 

macro-operands as described above. This level of abstraction (that 

represents the API towards the Morpheus toolset) must be described 

at C level to be fit in the Molen paradigm and Morpheus 

programming model. 

 

In particular regarding point 1, it was established to limit HRE memory 

access only to DEBs, in order to allow the description of the HRE bit-streams 

as reusable macros. In order to provide a safe and consistent data transfer 

hierarchy, only ARM is capable to trigger transfer to and from DEBs, while 

HREs work on “locked” sections of the DEBs. The locking and unlocking of 

the DEBs is negotiated through an handshake mechanism implemented through 

the Exchange Registers between HREs and ARM. 
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4.3 Chip level Interconnect strategy deployment 

The Interconnect mechanism should match the architectural scalability. One 

test chip is being produced, but that is only one possible instance of the 

architectural template. Interconnect should not be optimized on the test-chip 

parameters but must provide an infrastructure that can scale to different HREs 

configurations without compromising neither its performance nor, most 

important, its programming model. Also, the interconnect concept must be 

capable to scale between very different bandwidth requirements without 

changing the architectural template excluded the utilization of standard bus 

architectures, and suggested the utilization of a Network-on-Chip. The 

STNoC/Spidergon concept was adopted.  

As a consequence of these design constraints the chip level Interconnect 

strategy was organized in the following components:   

• A communication kernel implementing physical transfers between 

the interconnect nodes  

• A communication infrastructure that is utilized to provide 

communication/synchronization towards the processor core (and 

thus the end user) and to inject/extract data to/from the 

communication kernel 

  

4.4 Communication Kernel (Network-on-chip) 

To ease the deployment of the Spidergon topology on the physical 

implementation of the Network-on-Chip ST will allow to Morpheus the 

utilization of the STNoC IP components, composed by the following entities:  

• Router 

• Target NI (Network Interface) 

• Initiator NI (Network Interface) 
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Whenever possible the components will be distributed as pre-layouted 

macros. In other cases, similarly to IPs distributed by Synopsys DesignWare 

(such as the AMBA bus utilized in Morpheus) they are distributed through the 

Synopsys CoreConsultant tool that is generating gate-level net-lists. Those 

components are strictly confidential and functional details will not be 

distributed to the consortium partners.  

A 10-nodes logic topology has been proposed to fit bandwidth requirement 

raised by the mapping of the target application on the referce design. Area 

issues may lead to the provision of a shrunk 8-nodes version as a possible 

backup solution. Of course, the NoC structure is specifically designed to hide 

such implementation details to architectural users, so that a consistent 

programming model can be developed without considering the above 

mentioned architectural issues. In particular, whole the number of nodes is 

fixed the number of routers in the topology will totally depend on the chip 

floor-plan and on timing analysis. This aspect is completely dependent on 

implementation issues but has no impact on the programming model and a 

marginal impact on performance. 
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Figure 49: Proposed NoC Topology 
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4.4.1 Communication infrastructure 

A flow of data in the Morpheus architecture can be described as a set of 

subsequent synchronized data transfers from IO, through the DEBs of the 

various HREs, possibly through on-chip memory, and finally to IO again. As 

described in Section 1.4, the available physical means for data transfer are  

• A multi-layer AMBA bus hierarchy, that must be used for all 

control, synchronization and configuration of all system 

components but can also be used for transferring data at low 

bandwidth. 

• A communication infrastructure based on the described Network-

on-Chip.  

According to the PN/KPN concept each node in the computation network 

must be provided with the means of forwarding its result to the following node, 

possibly in a concurrent way in order to avoid bottlenecks and exploiting 

parallelism. For this reason every HRE Network Interface (HRE-NI) and 

Target Network Interface (Target-NI) also named MU-NI (Purely memory unit 

NI) is provided with an embedded DMA-like data transfer engine. These 

modifications are mostly related to the interface between memory hierarchy 

and Interconnect. No modification was performed on the STNoC standard 

components, in order to minimize risks and ensure high performance. 

The user can design a given data flow according to 3 different approaches: 

1. ARM can act as “full-time” traffic controller. In this case the code 

running on ARM monitor the status of each HRE through the 

exchange registers (XRs) and triggers the required transfers over the 

HRE-NIs in order to maintain the desired stream through the 

system. This is very useful in the first stages of application 

deployment, to evaluate the cost of each step in the computation, 

maintain full programmability, and check for bottlenecks. 
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2. ARM can act as “batch” controller and enabler. After a 

“configuration” phase in which ARM configures all HREs and 

relative transfers on the HRE-NIs, it remains waiting for interrupts. 

This approach is necessary in case of a controlled computation 

network (application that requires dynamic reconfiguration to 

schedule different PN nodes over the same HRE) or in any case the 

user may prefer to deploy a PN, that is a event controlled network 

with respect to a KPN. 

3. The deployed network can be self-synchronized: ARM only 

provides the initial configuration phase, and after that the HRE-NI 

will iterate over circular buffer addressing implementing a fixed 

data-flow through the system. This can be deployed for static 

applications or, most likely, for a limited time-share of the 

application as a second level KPN  included in a larger PN network. 

4.4.2 The “load-α store-β” communication pattern 

The proposed architecture required a processor-centered approach and a 

flexible referencing mechanism for macro-operands. In particular, spec 1 

required a slight refinement of the NoC concept: a NoC is by definition a 

distributed communication platform with a set of initiator nodes (e.g. processor 

cores) issuing transfers and a set of target nodes providing information storage 

(e.g. memory units) and responding to the transfer request. In Morpheus, all 

transfers are supposed to be initiated (implicitly or explicitly) by Arm as 

macro-operands for a given macro-operation, much like the assembly for a 

standard processor is initiating transfers from the register file for an ALU 

operation. This is implemented through a “distributed DMA” pattern also 

defined “Load-α Store-β”, where α, β are intended as Morpheus macro-

operands (data-chunks): each HRE node Network Interface in the NoC is 

enhanced with a local, NoC-compatible data-transfer engine defined Local 

DMA.  Local DMAs also provide the NI with very flexible addressing patterns 

that include 2D step/stride and circular buffer functionality. NIs “load” data 
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chunks from HREs and “store” them through the NoC to the target repository 

and vice-versa. From the core/user point of view the “Load-α Store-β” pattern 

describes the NoC as an enlarged and highly parallel DMA architecture. The 

user can than handle computation on HREs as C-level functions mapped on a 

specific processing unit. Operands for this function are referenced by their 

DMA transfer information, composed by base address and addressing pattern 

details. 

 

Figure 50: HRE and Target Network interfaces 

4.4.2.1 The HRE Network interface 

From the NoC point of view, HREs represent peculiar nodes: they should 

both be NoC initiators (require transfers from some storage units such as on-

chip or off-chip RAM), or targets (process external requests such as a transfer 

request from another HRE or ARM). To deal with these design requirements, 

the standard Initiator interface was modified providing a “HRE-NI”. This 

enhanced NI provides an initiator NI with the embedded Local DMA, as well 
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as a target NI multiplexed over the HRE DEBs (see). With this design option 

the ARM can require any transfer between HREs, as well as from any HRE to 

any storage unit (on-chip memory, Memory controller) according to the 

PN/KPN formalism.  

Data Transfers are initiated by ARM programming specific configuration 

registers on the HRE network interface. This configuration is performed 

through on a specific NI configuration channel reaching all HRE NIs. This 

configuration channel is mapped as slave on the AMBA bus. The HRE NIs can 

support multi-channel transfers with variable priority scheme, also 

programmed through the same configuration channel. End-of-transfer 

notification for each channel in the HRE NI can be read both as a status 

register or handled as interrupt by the core. 

In order to increase the bandwidth and homogenize the “NoC programming 

model” a solution based only on store transaction is under investigation. In this 

scenario NOC Initiator always send data trough the NoC to a destination 

resource. This approach require to extend the usage of the modified HRE-NI 

interconnection scheme to several memory unit nodes (on-chip memories, off-

chip memories) but permits to remove all the logic required to send load 

transaction trough the NoC without impacting the total area requirement.         

4.4.2.2 The Target  Network interface (MU-NI) 

Similarly to what implemented for the HRE-NI, the memory unit interface 

has been implemented with a multiplexed solution (see) in order to manage 

parallel access from AMBA as well as from the NoC Target Interface.    

 

4.4.3 Communication granularity 

Bandwidth evaluations have suggested that the ideal granularity for the 

communication infrastructure is 64-bit. On the other hand, each HRE features a 

specific granularity: XPP has 16-bit IO granularity, DREAM 32-bits, while 
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M2000 IO granularity is not strictly related to the eFPGA structure but M2K 

DEBs have been fixed at 32-bits. 

As a consequence, there might be some data reordering issues when 

organizing a stream of communication/computation requests. Of course, the 

communication infrastructure is capable to carry lower granularity data, but 

that comes at the price of a lower bandwidth. This effect can be mitigated with 

operands packing, but that will come at a cost. Very often, the unpacking cost 

is not significant on the HRE side, especially for PiCoGA and M2000, but on 

the processor side may become an issue especially if the data layout of 

inputs/outputs has specific application-related constraints. In the 

communication infrastructure, data granularity information is transferred in 

the form of byte enable specification signals. 

The data granularity issue becomes particularly critical when dealing with 

FIFO oriented communication over HREs. In this case, the byte enable 

information must be used to trigger the FIFO read / FIFO write signals 

otherwise unwanted parasitic r/w operation may alter the HRE status. Another 

significant issue may arise when the organization of I/O buffers in the HRE do 

not match the NoC granularity. As an example, an application running on 

DREAM may require to fill only one 32-bit DEB, as the IO organization of the 

operation on PiCoGA is built as such. In this case, the DEB could not be filled 

at full granularity, and the bandwidth would necessarily decrease. 

 

4.4.4 Chip level Interconnect strategy deployment 

The Communication infrastructure is seen from ARM as a set of nodes. 

Through IO mapped commands (see following sections), ARM can issue 

transfer instances between nodes. 

Each transfer features an initiator node and a target node. This definition 

does not describe the direction of the transfer (r/w) but the ownership: the 
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initiator is the entity that describes the addressing pattern and the transfer 

width. 

The communication infrastructure is composed by:  

• 3 HRE Nodes (Initiator and Target): XPP_out, M2K, DREAM. 

HRE Nodes can be programmed to issue transfers between any 

node to any other, so that these Nodes can either be transfer 

initiators   

• 3 Memory Node wrapped as HRE-NI Nodes (Initiator and Target): 

On-chip memory, CMC Controller1, CMC Controller2. Target 

nodes can be programmed as Initiator in order to send chunk of data 

to a NoC Target port (all HRE input DEBS, and all memory in the 

system if necessary). 

• 1 Initiator Node, connected to the AMBA bus. Issuing AMBA 

transfers, ARM or the Main AMBA DMA can initiate transfers on 

the communication infrastructure. This facility is only provided for 

test/verification 

• 1 Target Node: XPP_in; This node can only be programmed as 

target. 

 

There are two possible types of transfers over the communication 

infrastructure:  

1. Data Chunk Regular Transfers 

2. Single 32-bit ARM-induced transfers 

Transfers of type (2) are only used for debugging/test purposes, and are 

performed by the user with simple IO access. The Morpheus data addressing 

space is replicated, so that the addresses [0X00000000] and [0x40000000] 

points to the same location, but in the first case accessed through the Bus 

hierarchy and in the second case through the NoC facilities. It is then sufficient 
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to trigger a bus operation in the second set of addresses to provide access ARM 

access through the NoC. It should be underlined that as ARM handles 32-bit 

data any ARM access will only utilize half of the NoC bandwidth but this is 

not significant for debug accesses. 

Transfers of type (1) are regular Morpheus transfers utilized during peak 

computation. They are always triggered programming a set of control registers 

on each programmable HRE Network Interfaces. This programming action is 

performed through the specific NoC configuration bus that is mapped on the 

ARM addressing space (base address: 0x0xC0300000) and can be performed 

either by the user via ARM (Software Control) or by the DNA Controller 

(Stream-oriented automated control) according to a pre-defined pattern. 

 

4.4.5 Programming NoC Transfers:  

A regular NoC transfer requires an initiator and a target. Each initiator 

(HRE acting as Initiator and Memory unit acting as initiator) can program 

several write transfers from the local DEB/FIFO to any target. The HRE-NI 

allow the utilization of up to 2 write channels except the HRE-NI connected to 

the on-chip memory that is able to manage up to 4 write parallel channels. For 

each channel the data transfer is configured describing by the following set of 

parameters: 

Name Description 
Address 
Offset 

Bit 
Width Reset Value 

SAR  
Source 
Address 

0x000 64 0x0 

DAR  
Destination 
Address 

0x008 64 0x0 

CTL 
Control 
Register 

0x018 64 0x0 

CFG 
Configuration 
Register 

0x040 64 0x0 

SGR Source 0x048 64 0x0 
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Gather  
Register 

DSR 
Destination 
Scatter 
Register 

0x050 64 0x0 

Table 9: Programming Registers for NoC Transfers 

In order to program the distributed engines integrated in the NoC with an 

appropriate SW abstraction level, C-based drivers have been implemented. The 

implemented drivers support single transfers as well as multi block transfer for 

stream access as below: 

• Auto-reload Multi-Block transfer  

• Auto-reload Multi-Block transfer with contiguous Source address 

• Auto-reload Multi-Block transfer with contiguous Destination 

address 

A channel is selected programmed using two C structure called respectively 

config and lli. For each one several parameters are defined. The subsections 

below describe how to program the local DMA engine of an HRE-NI for a 

single block transfer and a multi block transfer with auto reload. 

4.4.5.1 Single Block NoC Transfer  

First of all several parameters of the config and lli structures need to be 

initialized. Source address and Destination address, as well as the programmed 

channel can be specified: 

//defined variables: 

struct config channel_cfg; 

struct lli    channel_lli; 

 

//part of code: 

channel_cfg.cfgl    = 0; 

channel_cfg.cfgh    = 0; 
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channel_cfg.sstatar = 0; 

channel_cfg.dstatar = 0;  

channel_cfg.sgr     = 0; 

channel_cfg.dsr     = 0; 

channel_cfg.channel = #_channel; 

  

channel_lli.sar   = source_address; 

channel_lli.dar   = destination_address; 

channel_lli.ctll  = 0; 

channel_lli.ctlh  = 0; 

channel_lli.sstat = 0; 

channel_lli.dstat = 0; 

 

The transfer size (defined in byte) for the selected channel is configured 

changing the field ctlh of the lli structure instance (channel_lli), representing 

the channel control register (CTLx[43:32]).  

 

//part of code: 

changeBits(&channel_lli.ctlh, BLOCK_TS, BLOCK_TS_S, 1024); 

 

The burst transaction length both for source and destination ports must be 

defined changing the corresponding bits in the channel control register 

(CTLx[16:14] and CTLx[13:11]). Table 11 on page 104 of the DMA databook 

explains hot to set this field. 

 

//part of code: 

changeBits(&channel_lli.ctll,SRC_MSIZE,SRC_MSIZE_S,2); 

changeBits(&channel_lli.ctll,DST_MSIZE,DST_MSIZE_S,2); 
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The transfer data width both for source and destination data must be defined 

changing the corresponding bits in the channel control register (CTLx[6:4] and 

CTLx[3:1]). Table 12 on page 105 of the DMA databook explains how to set 

this field. 

 

//part of code: 

changeBits(&channel_lli.ctll,SRC_TR_WIDTH,SRC_TR_WIDTH_S,2); 

changeBits(&channel_lli.ctll,DST_TR_WIDTH,DST_TR_WIDTH_S,2); 

 

In the Morpheus context, in order to increase the available bandwidth, local 

DMAs are generated with two master ports ( two layers), one directly 

connected to the DEBs or memory units, while the other acts as Initiator of the 

NoC. Whit a multi layer configuration for each channel, source and destination 

layer must be defined. SMS (source master select) identifies the Master 

Interface layer from which the source device is accessed. DMS (destination 

master select) identifies the Master Interface layer from which the destination 

device is accessed. In the Morpheus configuration, where only write channel 

are used, SMS identifies always the Master interfaces connected to the local 

storage unit, while the DMS the Master Interface connected to the NoC 

Initiator port. In order to set the correct layer the channel control register 

(CTLx[26:25] and CTLx[24:23]) must be programmed: 

 

//part of code: 

changeBits(&channel_lli.ctll, SMS, SMS_S, 1); 

changeBits(&channel_lli.ctll, DMS, DMS_S, 0); 
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With all configurations set, it is possible to request the transfer. The 

function transfer can be used, setting the type of transfer (SB, for simple-block 

transfer), the configuration structure address and the linked list item address. It 

returns OK if the transmission is correctly requested, or an error code 

(CH_BUSY, DMA_DISABLED, INVALID_DMA_NUM, 

UNKNOWN_TYPE). 

 

//part of code: 

while (e != OK) 

e = transfer(SB, &channel_cfg, &channel_lli); 

 

When the block transfer has completed. Hardware disables the channel. If 

interrupt are activated and unmasked the DMA engine sets the block-complete 

interrupt and the transfer-complete interrupt. In order to activate the interrupt 

generation CTLx[0] must be set and the unmasking procedures need to be 

executed: 

 

//part of code: 

setBits(&channel_lli.ctll, INT_EN);  

maskInt(DMA_engine_ID, I_BLOCK, 0, TRUE); 

maskInt(DMA_engine_ID, I_TFR, 0, TRUE); 

 

These instruction must be executed before the transfer function is called and 

the DMA is activated. 

4.4.5.2 Auto Reload Multi Block NoC Transfer  

In order to manage a streaming pattern access an Auto Reload mechanism 

combined with interrupt generation can be used: 
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Figure 51: Multi-block  Transfer with Source and Destination 

Address Auto-reloaded 

During auto–reloading, the channel registers are reloaded with their initial 

values at the completion of each block. If the Contiguous Source address 

programming pattern is chosen only the DAR is reloaded while the SAR is 

contiguously incremented between sequential block. Same rules are used in the 

case of a  Contiguous Destination address access.  

As shown in the previous paragraph several parameters of the config and lli 

structures need to be initialized. Source address and Destination address, as 

well as the programmed channel can be specified: 

 

//defined variables: 

struct config channel_cfg; 

struct lli    channel_lli; 

 

//part of code: 

channel_cfg.cfgl    = 0; 

channel_cfg.cfgh    = 0; 
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channel_cfg.sstatar = 0; 

channel_cfg.dstatar = 0;  

channel_cfg.sgr     = 0; 

channel_cfg.dsr     = 0; 

channel_cfg.channel = #_channel; 

  

channel_lli.sar   = source_address; 

channel_lli.dar   = destination_address; 

channel_lli.ctll  = 0; 

channel_lli.ctlh  = 0; 

channel_lli.sstat = 0; 

channel_lli.dstat = 0; 

 

The transfer size (defined in byte) for the selected channel is configured 

changing the field ctlh of the lli structure instance (channel_lli), representing 

the channel control register (CTLx[43:32]).  

 

//part of code: 

changeBits(&channel_lli.ctlh,BLOCK_TS,BLOCK_TS_S,1024); 

 

The burst transaction length both for source and destination ports must be 

defined changing the corresponding bits in the channel control register 

(CTLx[16:14] and CTLx[13:11]). Table 11 on page 104 of the DMA manual 

explains how to set this field. 

 

//part of code: 

changeBits(&channel_lli.ctll,SRC_MSIZE,SRC_MSIZE_S,2); 

changeBits(&channel_lli.ctll,DST_MSIZE,DST_MSIZE_S,2); 
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The transfer data width both for source and destination data must be defined 

changing the corresponding bits in the channel control register (CTLx[6:4] and 

CTLx[3:1]). Table 12 on page 105 of the DMA manual explains how to set this 

field. 

 

//part of code: 

changeBits(&channel_lli.ctll,SRC_TR_WIDTH,SRC_TR_WIDTH_S, 2); 

changeBits(&channel_lli.ctll,DST_TR_WIDTH,DST_TR_WIDTH_S, 2); 

 

In the Morpheus context, in order to increase the available bandwidth, local 

DMAs are generated with two master ports ( two layers), one directly 

connected to the DEBs or memory units, while the other acts as Initiator of the 

NoC. Whit a multi layer configuration for each channel, source and destination 

layer must be defined. SMS (source master select) identifies the Master 

Interface layer from which the source device is accessed. DMS (destination 

master select) identifies the Master Interface layer from which the destination 

device is accessed. In the Morpheus configuration, where only write channel 

are used, SMS identifies always the Master interfaces connected to the local 

storage unit, while the DMS the Master Interface connected to the NoC 

Initiator port. In order to set the correct layer the channel control register 

(CTLx[26:25] and CTLx[24:23]) must be programmed: 

 

//part of code: 

changeBits(&channel_lli.ctll, SMS, SMS_S, 1); 

changeBits(&channel_lli.ctll, DMS, DMS_S, 0); 
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With all configurations set, it is possible to request the transfer. The 

function transfer can be used, setting the type of transfer (SB, for simple-block 

transfer), the configuration structure address and the linked list item address. It 

returns OK if the transmission is correctly requested, or an error code 

(CH_BUSY, DMA_DISABLED, INVALID_DMA_NUM, 

UNKNOWN_TYPE). 

 

//part of code: 

while (e != OK) 

e = transfer(AR_MB, &channel_cfg, &channel_lli); 

 

When the block transfer has completed, the local DMA reloads the SARx, 

DARx, and CFGx registers. If interrupts are enabled, which can be done by 

setting bit zero of the CFG register to ‘1’, and the block-complete interrupt is 

un-masked hardware sets the block-complete interrupt when the block transfer 

has completed. It then stalls until the block-complete interrupt is cleared by 

software. If interrupts are disabled or the block-complete interrupt is masked 

(the MASKBLOCK[channel] = ‘1’), then hardware does not stall until it 

detects a write to the block-complete interrupt clear register; instead, it 

immediately starts the next block transfer. In this case, software must clear the 

reload bits in the Configuration register. 

 

4.4.6 Programming NoC Space address 

The figure below represent the NoC programming space address.  
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Figure 52: NoC Programming Space address 

Each local DMA has a dedicated 128 byte space address. A dedicated 

STBUS T1 is directly connected to the HRE Configuration bus via a AMBA to 

T1 Bridge to set during the boot procedure some configurable parameters for 

each standard Network Interface. 

In order to have a global accessible pointer to the interrupt status of the NoC 

an AMBA mapped 32-bit Interrupt register has been Implemented. 

Alternatively all the interrupt sources connected to this register are directly 

exported to the NoC Top in order to allow the designer to connect each source 

to a dedicated engine as a standard interrupt controller. Table 10: Interrupt 

Register connection scheme shows how all interrupt sources are connected to 

the Global NoC Interrupt Register. 

Bit Details 

[0 .. 3] On-Chip MEM local DMA: Transfer channel Interrupt [ch0 .. ch3]  

[4 .. 7] On-Chip MEM local DMA: Block channel Interrupt [ch0 .. ch3]  

[8 .. 9] PACT Out local DMA: Transfer channel Interrupt [ch0 .. ch1]  

[10 .. 11] PACT Out local DMA: Block channel Interrupt [ch0 .. ch1]  
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[12 .. 13] M2K local DMA: Transfer channel Interrupt [ch0 .. ch1]  

[14 .. 15] M2K local DMA: Block channel Interrupt [ch0 .. ch1]  

[16 .. 17] DREAM local DMA: Transfer channel Interrupt [ch0 .. ch1]  

[18 .. 19] DREAM local DMA: Block channel Interrupt [ch0 .. ch1]  

[20 .. 21] CMC Port 1 local DMA: Transfer channel Interrupt [ch0 .. ch1]  

[22 .. 23] CMC Port 1 local DMA: Block channel Interrupt [ch0 .. ch1]  

[24 .. 25] CMC Port 2 local DMA: Transfer channel Interrupt [ch0 .. ch1]  

[26 .. 27] CMC Port 2 local DMA: Block channel Interrupt [ch0 .. ch1]  

Table 10: Interrupt Register connection scheme 
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4.5 Results and Bandwidth Estimation 

In this Charter several results of the NoC-based interconnection engine will 

be presented in order to show how the implementation choose of integrating 

the STNoC in the context of this design perfectly match with the application 

requirements of the target applications of the project. The main scope of this 

section is to introduce a quantitative study of the achieved bandwidth for 

several data transfer paths between HREs (HRE DEB to HRE DEB) and 

between HREs and on-chip/off-chip memories (HRE DEB to MEM). In order 

to have a complete overview of the performance of the communication engine 

a detailed analysis has been done considering data chunk of different size, 

starting from very small block of 64 bit to bigger block of 4KByte. 

To activate a data transaction in the NoC a first programming phase is 

required to instruct the DMAs engine with the basic information required to 

control the transaction. Optionally a zero-overhead initialization phase to feed 

the memory is also necessary in order to verify the correctness of the 

transaction itself. 

In order to validate the proposed approach several applications were 

investigated, as shown in Table 11: 

• OUT-K frame processing, used for network routing application 

• IEEE 802.11j, a well known wireless telecommunication protocol 

• A Motion Detection algorithm used in High Definition Television 

protocols  

Their dataflows were mapped on the described architecture, considering to 

implement critical kernels in the most appropriate RA. Each column of Table 

11 represents the total bandwidth required for each physical link. 
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Apps M2K/ 

OnChip 

Ram 

DREAM/ 

OnChip 

RAM 

M2K/ 

DDRAM 

XXP/ 

DDRAM 

DREAM/ 

DDRAM 

XPP/ 

DREAM 

XPP/ 

M2K 

Dream/ 

M2K 

OUT-K 

Frame 
10Mb/s 10Mb/s       

IEEE 

802.11j 
 312Mb/s 7Mb/s   288Mb/s 390Mb/s 24Mb/s 

Motion 
Detection 

 124Mb/s  3.34Gb/s 1.73Gb/s    

Table 11: Application Bandwidth Requirements 

4.5.1 Bandwidth Analysis 

To analyze the achieved bandwidth the interrupt controller has been 

deactivated. In fact in this context the usage of an interrupt routine to trigger 

several data transfer introduce an overhead that cannot be attribute to the 

communication engine but to the Operative System. For our simulation a 

simple polling procedure has been implemented thanks to the integration fo a 

global interrupt register (see Table 1). In order to initialize all the memories of 

the system two different approach are possible: 

1. All the data memories are connected to the NoC, and an Initiator 

test port has been implemented and connected to ARM in order to 

have a centralized test interface during the test chip phase. Thanks 

to this interface (see Figure 49) ARM is able to access each 

memories using the global space address shifted of a fixed quantity 

(0x4000 0000). 

2. A second test mechanism has been implemented based on AMBA. 

Each modified NI in fact contains a bus-based bridge in order to 

connect each memory directly to the NoC and to the main system 

bus (see Figure 50).   

The bandwidth estimation has been done programming several transfers 

single-channel and single-block. Each DMA engine integrated int the modified 

Initiator NI in fact can support up 2 concurrent channel (4 in the case of the on-

chip memory NI) and each channel can manage single or multi block transfer. 
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In the case of a multi-block transfer the DMA automatically restarts the 

transfer of a second data chunk when the first is finished recalculating the 

source and destination address with different pattern based on the kind of 

parameter used to set the multi-block transfer. In this context 11 significant 

transfers has been analyzed: 

• 8 write transfers (an Initiator trigger a write request in the NoC) 

• 3 read transfers (an Initiator trigger a read request in the NoC)  

In order to have a consistent number of bandwidth and analyze the achieved 

bandwidth I ripest of the data chunk size each transaction has been repeated 

several times with different data chunk size (8, 16, 32, 64, 1024, 2048, 4096 

Byte). Table 12 summarized the achieved result for different pattern: 

Source Dest. WR/RD 8 16 32 64 1024 2048 4096 

M2K DEB 
OnChip 
RAM 

write 250 500 1000 1941 3385 4826 5872 

BREAM 
DEB 

OnChip 
RAM 

write 350 696 1356 2712 3828 5260 6057 

M2K DEB DDRAM write 365 731 1463 2438 4196 5277 6431 
PACTIN 
DEB 

DDRAM write 345 689 1379 2758 3986 4728 6332 

DREAM 
DEB 

DDRAM write 353 706 1412 2824 4055 5185 6326 

PACTIN 
DEB 

BREAM 
DEB 

write 346 692 1384 2767 3996 5136 6332 

PACTOUT 
DEB 

M2K 
DEB 

write 365 731 1463 2438 4196 5277 6425 

DREAM 
DEB 

M2K 
DEB 

write 349 699 1398 2347 4035 5168 6314 

PACTIN 
DEB 

BREAM 
DEB 

read 328 656 1113 1699 1988 2351 2529 

PACTOUT 
DEB 

M2K 
DEB 

read 349 699 1174 1769 2371 2598 2859 

DREAM 
DEB 

M2K 
DEB 

read 338 676 1135 1725 2330 2574 2849 

Table 12: Bandwidth estimation (MB/s)   

 In order to better analyze this table it is necessary to take in account that the 

data base of the NoC is 64-bit and the operative condition should be 200 MHz. 

In an ideal scenario, where no programming step are required, o clock latency 

transfer, no traffic in the NoC, a maximum bandwidth of 12 Gb/s can be 

reached. Table 12 shows that programming the NoC to work with very small 

data chunk the achieved bandwidth is significantly reduced cause the overhead 

introduced by the programming phase cannot be neglected. Increasing the total 
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size of the transaction up to 4KByte it is possible to reach a maximum 

bandwidth of 6,5 Gb/s that is more than the half of the maximum ideal 

bandwidth (these numbers take in account of the possible traffic and conflicts 

that occurs in the NoC during the transfer of several blocks). 

On the contrary best case scenarios occur if no interleaving of traffic is 

happening. Here one router is only responsible for one request. In the same 

way, one link is only used by one transfer. For simulation, the network has 

been set up with a source – destination distance of one (one hop) that means 

that the source node wants to send its data to the memory that is connected to 

the neighbor router. Also, only one channel is occupied, so that no interfering 

requests derange the results. Therefore, the bandwidth that is obtained here, is 

the maximal one that is possible in any case. Figure 53 illustrates the result of 

this simulation. The x-axis denotes the number of packets, where the y-axis 

shows the index of the packet size (form 2 to 64 Bytes).   
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Figure 53: Throughput in MByte/s in a best case scenario 

It can be seen from Figure 53 an exemplary maximal total throughput in the 

NoC of approximately 6200MByte/s for eight 16*32byte transfers and 

8300Mbyte/s for eight 16*64byte transfers respectively. Still remember, that 
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no interference of data takes place here. Therefore this resembles the best case 

for an single channel scenario. 

4.5.2 Conclusion  

At the end of this chapter we can compare the result obtained by the 

simulation of several pattern transfers summarized in Table 12 and the 

bandwidth requirement presented in Table 11 for several applications that will 

mapped on the shown architecture. 

The less bandwidth hungry application is  the OUT-K frame processing 

used in routing protocol. In this case the implemented communication engine is 

able to cover the bandwidth requirements even in the case small amount of 

successive chunk of data are required. The peak bandwidth requirement is 

more or less 10 MByte/s  fort eh two main communication path. As shown in 

Table 12 (rows 1 and 2) both communication pattern can be covered with each 

size of data chunk without compromise the application requirement. 

Concerning the IEEE 802.11j, the analysis is a little bit more complex cause 

up to 5 parallel path are required. In any case the peak bandwidths are not very 

high and the communication engine is able to cover all the path with a 

minimum chunk size of 128-256 Kbytes. 

The most  bandwidth hungry application is the Motion Detection used in 

High Definition TV protocols. In this case in order to satisfy the bandwidth 

requirement of this application the maximum data chunk size is required and a 

dual port external memory interface  is also necessary. 
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Chapter 5 Overall Implementation 

Results 

This chapter represents a quantitative resource budgeting of the HDL 

database of the Morpheus chip RTL at the end of the functional specification 

phase. 

The document refers to the schematic description of the logic hierarchy of 

the HDL database provided in the previous chapters and describes the expected 

timing performance, area occupation, and a rough power consumption 

estimation of the database.  

The aim of this section is to provide a quantitative evaluation of the metrics 

on which the Morpheus prototype can be evaluated. As it is provided during 

the Front-End design phase, when designers have no knowledge of the 

technology support, they are bound to be inaccurate especially for what 

concerns dynamic power estimation. Moreover, feedback from technology 

implementation and bug fixing may induce slight changes on the results. 

Nevertheless, this quantitative evaluation effort represents a first valuable 

reference to estimate the potentialities of the Morpheus architectural design. 

Area, timing and power estimations of the RTL code blocks were generated 

with Synopsys Design_Compiler v.2005.09. It should be considered that 

depending on the RTL database size and complexity, a degradation of around 

20/40% could be introduced by the implementation phase on timing results. In 

turn, this figure heavily depends on the standard cell density ratio that normally 

ranges on 70/50% much depending on the design complexity and 

specifications.  

Rough estimation of power consumptions have also been provided, making 

use of Switching Activity files annotation (SAIF) and the Synopsys Power 

Compiler tool, but it should be underlined that such evaluations are at Gate-

level only, and do not take into account physical wire loads but generic wire 
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load models. They are thus bound to be strongly inaccurate.  Leakage values 

for standard cells are less prone to variations, but it should be considered that 

the Morpheus design targets a technology that allow different threshold levels 

for std cells depending on the timing specifications of the relative paths, so that 

floor-planning related issues during P&R may significantly alter the so-called 

“threshold cocktail”, with relevant impact on the final leakage figures. 

Where applicable, power measurements for silicon proven macros have 

been provided. 

• Timing evaluations are provided in Worst Case Commercial 

conditions, 0.9 V, 125C 

• Power evaluations are provided in Nominal conditions, 1 V, 25C 

 

The present chapter describes a quantitative resource budgeting of the 

Morpheus architecture and its RTL database at the end of the Front End phase. 

The status of the design at this point is after final functionality specification, 

but prior to P&R feedback, memory sizes and HRE size fine-tuning, and final 

bug fixing after verification. 

Timing: At the current status of the design, the target frequency for the 

processor based infrastructure for all design components is greater than the 

250MHZ mark in worst case conditions (WCCOM 125C 0.9V) after logic 

synthesis. This is a viable prerequisite for closing the implementation phase at 

a target of 200MHZ, although the large area of the chip and the presence of IPs 

featuring large size may lead to floor-planning issues that may impact on final 

timing.  Computational engines in the chip (Heterogeneous Reconfigurable 

Engines – HRE) as shown in Chapter 3 are independent asynchronous clock 

islands. Their speed and consequently power consumption depends heavily on 

the mapped application. For this reason, each clock island features a software-

programmable PLL to dynamically adapt HRE computation speed to the 

application specs and constraints. 
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Area: The current area estimations suggest a chip size of ~100 mm
2
, 

including Pads.  HREs will occupy around 60 to 70% of the overall area, the 

rest being divided between processor, communication infrastructure, on-chip 

memories and IO pads. This figure appears relevant in itself, but appears 

justified when compared to the overall computational power delivered by the 

Morpheus architecture. Further re-spins of the same architectural templates 

may offer space for optimization on timing [e.g. biasing threshold distribution 

according to feedbacks from measurements], whereas an optimization of the 

overall area above ~5/10% appears difficult without significantly impacting 

architectural choices or performance constraints. 

Power Consumption: Power consumption estimation at this design stage 

(Gate-level netlist) is necessarily very inaccurate, especially for RTL logic, and 

floorplan-related IPs. Also, the selection of relevant application test-cases for 

power measurements is very difficult at half-way through the project.  

Preliminary evaluations show how leakage power for the chip should revolve 

around the 100 mW mark. This value may be significantly altered due to 

changes in threshold distribution in case the timing specs would prove very 

aggressive and timing closure for the architectural infrastructure or for the 

HREs would require massive use of low threshold logic. Any evaluation on 

dynamic power consumption is necessarily related to floor-plan choices and in 

particular mode on the selection of a relevant application test-bench. This 

would have such a large impact on overall consumption, to the point that it 

would be more significant to evaluate separate power profiles for different 

application domains. A significant contribution to overall dynamic 

consumption would also come from the chosen IO strategy: the inclusion of a 

high-speed large bandwidth memory controller will add a large overhead to the 

core power consumption that at the moment revolves around the 1.5 mW mark. 



Overall Implementation Results 

 150 

5.1 Overall Chip description 

Table 13, from deliverable D4.5.1 [67], represents the top level pin-out of 

the Morpheus chip. 

 

Pin Name Direction Functionality 

HRESETn IN (Active Low) Overall System Reset 

EOC OUT (Active Hi) Normally connected to external 
LED 

End of Computation: Control Signal that is 
triggered by the software routine exit() and 

signals the computation of a given 
software task 

TEST_MODE[3 : 0] IN If != “0000” overrides the MPMC_data 

signal to produce some relevant debug 
signals from the internal bus architecture. 

It is normally connected on the test board 

to a set of switches. 

VINIT_HI IN Selects boot type:  

‘0’ => ROM Boot through Parallel Port 
Interface 

‘1’ => RAM Boot: The RAM must be pre-

loaded through TIC or JTAG connection. 

PLL_CLKIN IN (Schmitt triggered) Normally connected to 

board oscillator 

Main Input signal for clock circuitry, 
receives external clock from board (range 

0-80 MHZ) 

PLL_ENABLE IN (Active Hi) Normally connected to External 

Switch or software-driven 

‘0’ : Utilize external PLL_CLKIN input as 
system Clock 

‘1’ : Utilize Main PLL output as system 
Clock 

PLL_PD IN (Active Hi) Normally connected to External 

Switch or software-driven 

‘0’ : Power Down Main PLL to avoid 

unnecessary power consumption or to 

change PLL programming 

‘1’ : Power on Main PLL. In this case PLL is 

not operative until PLL_LOCK=’1’, which 
should take ~400 µs 

PLL_LOCK OUT (Active Hi) Normally connected to external 
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LED 

‘0’ : PLL is powered down or has not locked 
yet, it can not be used 

‘1’ : PLL is active and locked and can be 
used to drive system clock 

PLL_MULFACT [1 : 0] IN Normally connected to external Switch 

Multiplication factor for Main PLL: 

“00” : PLL_CLKIN* 

“01” : PLL_CLKIN* 

“10” : PLL_CLKIN* 

“11” : PLL_CLKIN* 

PLL_CLKOUT OUT Leaf of the System Clock Tree that is 
carried to output for testability purposes 

(Due to the Pad features this signal is 

filtered at ~180MHZ and is not significant 
above that figure) 

ARM_nTRST IN (Active Lo) Test Reset Signal 

ARM_TCK IN Test Clock Signal (Used for Jtag 
connection) 

ARM_RTCK OUT Returned TCK, used to synchronize the 

Multi-ice controller 

ARM_TMS IN JTAG Mode Select  

ARM_TDI IN JTAG Serial Input 

ARM_TDO OUT JTAG Serial Output 

PP_DATA [7 : 0)  INOUT Parallel Port (IEEE1284) bidirectional Data 
bus  

PP_CONTROL [3 : 0] IN Parallel port (IEEE1284) Control bus 

PP_DIRECTION IN Parallel Port Direction Signal (Schmitt 
triggered) 

PP_NACKOUT_NSTROBEOUT OUT 

PP_NACKIN_NSTROBEIN IN 

Parallel Port Asynchronous handshake 

signals 

UART_RX_DATA IN RS232 Serial port rx signal 

UART_TX_DATA OUT RS232 Serial port tx signal 

M2K_IO [39 : 0] INOUT M2K Generic Bidirectional IO Signals 

(Direction is programmed via software)  

MPMC_TESTIN IN TIC Test Mode Select:  

Note TIC is a synchronous, parallel, 32-bit 

wide methodology for on-chip bus 
verification that is part of the AMBA 2.0 

bus protocol. Through the TREQa/TREQb 
control signals it is possible to take control 
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of the onchip bus as bus master and thus 

access all devices (Memories, Peripherals 
etc) connected to the onchip bus. Address, 

Data Read and Data Write values are 
transmitted, according to the TIC protocol, 

through the TIC_DATA signals that in this 

case is multiplexed over the MPMC_DATA 
bus 

MPMC_TREQA, 

MPMC_TREQB 

IN TIC control signals 

MPMC_nBLSOUT[3 : 0] OUT MPMC Static Memory controller Byte Lane 

Select 

MPMC_nWEOUT OUT (Active Lo) MPMC Static Memory controller 
Write enable. When TIC is active this signal 

behaves as TIC ACK 

MPMC_nOEOUT OUT (Active Lo) MPMC Static Memory controller 
Output enable 

MPMC_nSTCSOUT [3 : 0] OUT (Active Lo) MPMC Static Memory controller 
Chip (Bank) select 

MPMC_ADDROUT [23 : 0] OUT MPMC Static memory controller Address 

out 

MPMC_DATA INOUT MPMC Static memory controller Data bus 

SD_CLK, SD_CLKN OUT (High speed differential dual Pad) 

CMC SDRAM Controller Differential Clock 

SD_CLKE OUT CMC SDRAM Controller Clock enable 

SD_WEn OUT (Active Lo)  CMC SDRAM controller Write 

Enable 

SD_RASn OUT (Active Lo) CMC SDRAM Controller Row 
Address Strobe 

SD_CASn OUT CMC SDRAM controller Column Address 

Strobe 

SD_CSn [1 : 0] OUT (Active Lo) CMC SDRAM controller Chip 

Select 

SD_BANK [1 : 0] OUT CMC SDRAM Controller Bank Address 

SD_ADDR [13 : 0] OUT CMC SDRAM Controller Address Bus 

SD_DQM[7 : 0] OUT CMC SDRAM Controller Data Mask 

SD_DQS[7 : 0] OUT CMC SDRAM Controller Data Strobe 

SD_DQ[63 : 0] INOUT CMC SDRAM Controller Bidirectional Data 
Bus 

 

Table 13: Top Entity Pinout 
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Figure 54 describes the overall structure of the Morpheus Chip, as described 

already in Chapter 2 and deliverables D3.1 and D3.2 [64][65].   

 

Figure 54: Overall description of the Morpheus chip architecture 

The present section will provide performance estimations for each of the 

main Morpheus component blocks, following the organization outlined in the 

figure: 

• ARM Processor Core, that is the main “interface” towards the end 

user and the overall system control and synchronization engine 

• AMBA subsystem, comprising an AHB data bus (also utilized as 

control bus), an AHB configuration bus, an APB  peripheral bus, 

two embedded DMAs (one per each AHB bus), bridges, a GPIO 

controller, a Timer, a IEEE1284 interface, an UART interface, a 

main onchip memory, configuration memory, interrupt handling 

system based on the  ARM pl190 VIC vectorized interrupt 

controller, and a multi-port SRAM memory controller and TIC test 

engine based on the ARM pl175 MPMC  
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• Data communication infrastructure, composed of the NoC IPs 

(Network Interfaces + routers), a set of data transfer engines that 

collectively implement a distributed DMA structure, a traffic 

controller, multiplexing logic between AMBA and NoC-based 

access.  

• Predictive configuration manager 

• High speed, large bandwidth DDRAM memory controller 

• Pact XPP HRE 

• DREAM (PiCoGA-based HRE) 

• M2000 FlexEOs-based HRE 

 

5.2 Processor Based Infrastructure 

5.2.1 ARM Core 

The ARM A926EJS Core is a hard macro provided as layout library by ST. 

The macro contains the ARM 926EJS core running at the frequency of 380 

MHZ@wc_0.9V_125C, the memory management unit, 16K+16K data and 

instruction caches, cache management logic. The macro is tightly coupled to 

two separate scratchpad memory modules (DTCM and ITCM) that provide 

single cycle fast access to the core. TCMs are not included in the macro but are 

instantiated at design time in the RTL database. 

Block Area (mm2) 

ARM core Macro including caches 2.11  

16Kbytes ITCM 0.19 

16Kbytes DTCM  0.19 

Total 2.5  

Table 14: Area of the ARM component 
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Block Dynamic Power(µW/MHZ) Leakage Power 

(mW) 

ARM core Macro + caches 244.1 2.2 

16Kbytes SP ITCM 20.2 0.76 

16Kbytes SP DTCM  15.8 0.76 

Total 280 3.72 

Table 15: Rough Power Consumption estimations for the ARM926 core 

 

5.2.2 AMBA Subsystem 

Most of the AMBA bus system is composed by a gate-level Verilog library 

by Synopsys Design_Ware, so the following results will be estimations derived 

after logic synthesis: external components added to the design are two RTL IPs 

from ARM (the PL175 MPMC SRAM controller, and the PL190 VIC interrupt 

controller) and some small complementary components (on-chip memory 

interface, IEEE1284 interface) are distributed as open-source by ARCES under 

the GPL license. 

Being the whole block with the only exception of memory cuts a soft IP 

synthesized on standard cells the Kgates metric has been considered more 

relevant than cell area. A rough evaluation of possible area after P&R is only 

provided on the Total figure. The same approach was maintained for all blocks 

designed at RTL level in the following sections of this document. 

Table 16: Gate Count for the AMBA subsystem components 

Block Area (Kgates) 

AHB Main Bus  2.5 

Main bus DMA 43.8 

Mpmc PL175 25.8 

Vic PL190 13.2 

System ROM 2 

AHB2AHB bridge 1.3 

AHB Conf Bus 0.9 
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Conf Bus DMA 41 

APB Peripheral Bus 2 

GPIO 0.8 

Timer 2.2 

IEEE 1284 Interface 0.2 

Uart RS-232 2 

Total 140  

Estimated Area (70% Density) 0.9 mm2 

Table 17: Gate Count for the AMBA subsystem components 

The AHB Subsystem also includes on-chip memories, whose area 

occupation is described below: 

Block Area (mm2) 

4x64K bytes Main Memory  3 

4x64K bytes Configuration Memory 3 

Total 6 mm2 

Table 18: Area occupation of memory cuts included in the AMBA bus system design 

The AMBA Subsystem is able to run up to 290 MHZ@wc_0.9V_125C. The 

critical path of the overall logic resides in the Main_AHB_DMA block, due to 

the address generation and channel resolution mechanism in the DW_DMAC 

IP. Given the specifications, this delay was considered acceptable.  

Block Dynamic 

Power(µW/MHZ) 

Leakage Power 

(mW) 

Std Cells Logic 170 1.8 

256K bytes Main Memory 120 10.4 

256K bytes Configuration Memory 120 10.4 

Total 410 22.6 

Table 19: Rough Power Consumption estimations for the AMBA Subsystem 

Note: The 64K bytes cut is the biggest memory model available. It is 

possible that larger memories will be necessary for both main and 

configuration bus (memory sizes will be fixed at M21. The current proposal is 

256K for both main and configuration bus but overall chip area evaluations 
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may impose smaller figures) but in this case it will be necessary to join more 

cuts in the same memory block.  

 

5.3 Hardware Services 

5.3.1 The Predictive Configuration Manager block 

The Predictive Configuration Manager (PCM) is an IP provided by CEA-

List. By default, the component is off and does not issue interrupts nor does it 

access the configuration bus. The component wakes up after proper 

initialization procedure done by software on the ARM processor.  The AHB 

slave interface has an addressing space of 64Kbytes. The Overall Area 

Estimation is around 160 Kgates. 

The number of memory cuts is dependent on the number of memory ports 

utilized in the design. One buffer is required per each read port and write port.  

In the current configuration only 2 ports are used, thus 4 cuts are included. The 

Predictive Configuration Manager is targeted to run up to 350 

MHZ@wc_0.9_125C. 

Block Area (mm2) 

Std Cells Logic  (160Kg, 70% density) 1.05 

14 SP/DP Memory Cuts 0.52 

Total 1.57 mm2 

Table 20: Area occupation for the PCM 

Block Dynamic 
Power(µW/MHZ) 

Leakage Power 
(mW) 

Std Cells Logic 100 1 

14 SP/DP memory cuts 62 0.71 

Total 162 1.71 

Table 21: Rough Power Consumption estimations for the PCM 
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5.3.2 The CMC DDRAM Memory Controller 

The CMC is a high bandwidth dynamic memory controller that has been 

added to the Morpheus design to provide high bandwidth data access for 

stream-oriented applications. Since at the moment of writing all the results are 

relative to the closure of RTL functionality specification, all information 

reported here will be focused on the functional behavior of the CMC. 

Area/speed evaluations related to the design of the off-chip interface and data 

synchronization are not reported here as such details will be available only 

after the implementation phase. The CMC is designed to run up to 250 

MHZ@wc_0.9_125C. 

Block Area (Kgates) 

Cmc core 75.4 

Configspace_top 1 

Noc2cmc (2 instances) 2*26K = 52K 

Total 128.4 Kgates 

Area Occupation (70% density) 0.80 mm2 

Table 22: Main Building blocks of the CMC controller 

Block Area (mm2) 

2x(512x64) Read Buffer DP Memory  2x0.130629 = 0.261 

2x(512x65) Write buffer DP Memory 2x0.132496 = 0.265 

StdCells logic  0.80 

Total CMC Area estimation 1.32 mm2 

Table 23: Area occupation of the CMC 

Block Dynamic 
Power(µW/MHZ) 

Leakage Power 
(mW) 

Std Cells Logic 113 1.07 

Read Buffer Memories 2x(38.41)=76.82 0.897 

Write buffer memories 2x(39.07)=78.14 0.905 

Total 267.96 2.872  

Table 24: Consumption estimations for the CMC 
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5.4 The Data Interconnect Infrastructure 

 

Figure 55: Schematic description of the MORPHEUS communication infrastructure 

As explained in D4.5.1 [66], the specifications for the MORPHEUS 

communication infrastructure are  

• Scalability, that is the possibility to add/remove nodes (HREs or 

storage units) in the system without affecting performance or 

programming model 

• Performance, that is the capability to ensure the necessary bandwidth 

for relevant links between the nodes. 

• In order to ensure testability and run-time verification the 

interconnect mechanism must provide low speed, standard AMBA-

AHB access to all resources 

As described in detail in [66] these specs, and in particular the scalability 

issue, suggested the utilization of a Network-on-chip oriented approach rather 

than a bus-based methodology. The STNoC “Spidergon” topology described in 
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Chapter 4 was chosen as reference for the NoC deployment and predefined 

NoC building blocks provided by ST (Initiator Network Interface, Target 

network interface, Router) were thus adopted as reusable IPs. In order to 

exploit the potentiality of the NoC approach, some modifications were 

performed in the HRE structure; these modifications are related to the interface 

between memory hierarchy and Interconnect, while no modification was 

performed on the STNoC standard components, in order to minimize risks and 

ensure high performance.  

A Network-on-Chip is by definition a distributed communication platform 

where a set of independent initiator nodes (e.g. processor cores) issue transfers 

and a set of target nodes provide information storage (e.g. memory units) and 

respond to the transfer requests. On the contrary, in MORPHEUS, all transfers 

are supposed to be initiated (implicitly or explicitly) by ARM as macro-

operands for a given macro-operation, much like the assembly for a standard 

processor is initiating transfers from the register file for an ALU operation. 

This centralized communication scheme is implemented through a “distributed 

DMA” pattern: each HRE node in the NoC is enhanced with a local data-

transfer engine defined Streamer.  Streamers also provide the HRE with very 

flexible addressing patterns that include 2D step/stride and circular buffer 

functionality. HREs “load” data chunks from DEBs and “store” them through 

the NoC to the target repository and vice-versa. From the core/user point of 

view this pattern describes the NoC as an enlarged and highly parallel DMA 

architecture. The user can than handle computation on HREs as C-level 

functions mapped on a specific processing unit. Operands for this function are 

referenced by their DMA transfer information, composed by base address and 

addressing pattern details. Figure 55 describes the communication 

infrastructure. The encircled section represents the set of IPs provided by ST, 

and blue boxes represent IP target and initiator NIs. Routers are not depicted 

because their number and organization will totally depend on the physical 

topology of the chip which is not defined at this stage.  From the NoC point of 

view, HREs represent peculiar nodes: they can both be NoC initiators (require 
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transfers from some storage units such as on-chip or off-chip RAM), or targets 

(process external requests such as a transfer request from another HRE or 

ARM).  For this reason, the HRE Network interface is composed by the 

initiator NI connection (depicted in purple), the embedded DMA engine, as 

well as the target NI connection (pink) and the AMBA connection (blue) 

multiplexed over the HRE DEBs. ARM can require any transfer between 

HREs, as well as from any HRE to any storage unit (Onchip memory, Memory 

controller): transfers are initiated by programming specific configuration 

registers on the HRE network interface through a so-called network 

configuration bus (gray). This configuration is performed through a specific 

configuration channel reaching all HREs, mapped as slave on the AMBA bus. 

During the verification phase all transfers can be issued by the ARM core. 

ARM is also connected as initiator to the Network-on-chip so it has full 

visibility of all network resources. During the computation phase, depending 

on the chosen programming pattern, the programmer may prefer to handle each 

data transfer configuration from the side of the driving processor. This is a 

more flexible approach, and safer as it allows a run-time programmable control 

of the operands flow in the application. During peak computation, in some 

cases, this may result in an excessive complexity form the user point of view or 

in an unnecessary demand for services from the side of the ARM core, 

especially for applications where a continuous flow of information needs to be 

implemented though the interconnect infrastructure.  To provide a further level 

of automation in the deployment of the interconnect strategy a specific DNA 

(Data Network Access) controller is under design. This block will be used to 

handle end-of transfer notification automatically, issuing new transfers (when 

based on a regular pattern) without the need to resort to the core for handling 

each end-of-transfer request. In this way, it is possible to provide a regular 

streaming transfer, or a regular ping-pong buffering handshake in an automated 

pattern.  
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Block Area (Kg) Instances Total Area (Kg) 

DNA Controller 50 1 50 

HRE Network Interface  100 6 600 

Total   650 

Estimated Area (70% Density)   3.7 mm2 

Table 25: Area occupation of main blocks composing the communication infrastructure 

Block Area (Kg) Instances Total Area (Kg) 

Router 14.3 16 228,8 

NI 10 7+7 144 

Total   372.8 

Estimated Area (70% Density)   2.12 mm2 

Table 26: Area occupation of  STNoC IPs 

 

Speed performance of the main blocks: 

• The DNA controller currently performs at 160 MHZ but fixes is 

being upgraded to reach the target value of 250 MHZ 

• Router, NI can be synthesized up to 800 MHZ, but the configuration 

chosen in the context of the Morpheus is of 250MHZ. Evaluations 

related to implementation issues may impose further speculations. 

• The embedded DNA engine and glue/control logic can be 

synthesized up to 400 MHZ, but same considerations as above apply 

 

One point emerging from this analysis is that the total Kgates count is 

relatively high, but composed by several instances of the same few blocks. A 

convenient option to mitigate P&R complexity would be to perform 

hierarchical P&R on the building blocks and reuse them at top level, although 

this option may be more resource-intensive. 
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It important to consider that of all components in the design, the 

communication infrastructure is the one that is more sensible to floor-planning 

issues that affect wire loads. Consequently, except where evaluating a self 

contained logic block whose communication is restricted at neighboring 

entities as is the case with the Streamers or the DNA controller, the FE 

dynamic power evaluations provided at this design stages are not reliable. In 

any case, a rough and very conservative estimation can range around 200/250 

uW/MHZ dynamic power and 2/3 mW static power. When more stable, these 

figures should be added to the values described in the table above (as 

everywhere in this document leakage is estimated in nominal conditions). 
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5.5 Heterogeneous Reconfigurable Engines (HREs) 

5.5.1 DREAM 

 

Figure 56: Description of the DREAM Architecture 

As described in Figure 56, the PiCoGA-based HRE features a sophisticated 

communication and memory hierarchy that was designed, in the context of the 

Morpheus Project, to sustain the reconfigurable  unit computation with the 

required data bandwidth and communication flexibility. 

The main elements composing DREAM (see also 3.3.1) are the STxP70 

Risc processor core (Control engine), the PiCoGA gate-array (Computation 

engine), a set of 16 dual port memory cuts, a set of address generators for 

supporting concurrent access to the 16 buffers, and an interconnect Matrix that 

provide programmable connection between the PiCoGA IO ports and the 

buffers.  

From a technology point of view, thus, the DREAM HRE is a mix between 

custom layout circuits (the PiCoGA gate-array, custom memory cuts, PLL) and 
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RTL logic. In the following, area occupation figures will be described 

accordingly to the nature of each block 

Block Area (Kgates) 

STxp70 Processor  40 

PiCoGA Interface (Stall handling, configuration 
control, context switch) 

50 

Address Generators 12 (16*0.7) 

Interconnect Matrix 45 

Others  13 

Total 170  

Estimated Area (70% Density) ~1.1 mm2 

Table 27: Gate count of the main RTL sub-blocks composing DREAM 

Block Area (mm2) 

PiCoGA Gate-array (24x16 cells) 7.6 

16x(1Kx32) DP Data Buffers (DEBs) 2.03  (16*0.127) 

11x(1Kx32) DP Configuration Buffers (CEBs) 1.4    (11*0.127) 

PLL 0.16 

Total  10.2 mm 

Overall DREAM Estimation(1) 11.4 mm2 

Table 28: Area of the hard macro blocks composing DREAM 

Timing performance of the DREAM clock domain after logic synthesis are 

300 MHZ @ wc_0.9V_125C. The critical path of the block is due to the 

interconnect matrix that connects the data buffers (DEBs) output ports with the 

PiCoGA inputs. The matrix provides full connectivity requiring 12x32 32:1 

multiplexers on input signals, which impose a significant burden both in terms 

of timing and area occupation A more aggressive performance could be 

achieved renouncing to full connectivity, but it has been evaluated that the cost 

from the point of view of algorithm development would be unacceptable. 

A second evaluated solution was that of pipelining the interconnect 

structure, but that would add to the latency of each PiCoGA operation and that 

also has been considered not convenient for application mapping. 
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Note: The size of the PiCoGA macro is significant, and its shape a relevant 

factor in the definition of the DREAM floor-plan. Also the 27 memory cuts 

used in the architecture impose restrictions on the floor-planning style. This 

evaluation and layout trials show that the FE estimation is not realistic and it 

would not be possible to meet the required timing constraint with an area value 

that matches the FE estimation. It should be thus considered that the area 

required by the DREAM IP will revolve around 14/16 mm
2
. 

Power estimations for the DREAM HRE  are shown in the table below: 

Block Dynamic (µW/MHZ) Leakage (mW) 

STxp70 Processor  30 0.4 

PiCoGA Interface  40 0.6 

AG and Interconnect Matrix 70 0.8 

Data Memory Buffers (DP, 64Kb) 212 5.92 

Configuration Memory (DP, 44Kb) 3.2 4.07 

PiCoGA Gate Array (24x16 cells) 300(1) 15 

Total 655.2 26.8 

Table 29: Main contributions to the estimated Power consumption of DREAM  

The dynamic power consumption of PiCoGA has been measured from 

prototypes. The reference value is 25 µW/MHZ per each Row that is 

effectively computing. The ratio of active rows/MHZ depends strongly on the 

deployed application. For a very generic estimation it has been suggested here 

a ratio of 50%, that is 12 rows on the total 24 active per cycle, taking into 

account peak kernel computation (~24/24 active rows) and idle time. 
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5.5.2 M2000 

 

Figure 57: Block diagram of the M2000 HRE 

The M2000 block is a computation engine centered on the M2000 FlexEOS 

FPGA. Similarly to the DREAM and XPP HREs, this HRE contains a data 

interconnect and communication logic aimed at providing flexibility and 

bandwidth for sustaining the IP computation capability.  

Figure 57 describes the M2000 HRE: as it is the case for all Morpheus 

HREs clock domain crossing and local data storage is implemented on a set of 

buffers, DEBs. Address generation for concurrent DEB access can be 

performed according to two alternative patterns: either with a (asynchronous) 

FIFO paradigm for stream oriented applications, or generating DEB access 

directly on the eFPGA. For what concerns the configuration interface, the 

FlexEOS product features a memory mapped loader, described as a RTL IP. 

The loader is mapped on the configuration bus and works at the same 

frequency. 
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Block Area (Kgates) 

FIFO Controller (8 instances)  12 

HRE Control and Synchronization 15 

FlexEOS Loader 20 

Total 57 

Estimated Area (70% Density) ~0.4 mm2 

Table 30: Gate count of the main RTL sub-blocks composing the M2000 HRE 

Block Area (mm2) 

FlexEOS eFPGA Macro (4K cells)  2.9 

Data Buffers (DEBs) 8x(1Kx32) DP 0.85 

PLL 0.16 

Overall M2000 HRE Estimation 4.55 mm2 

Table 31: Area of the hard macro blocks composing the M2000 HRE 

Front end estimations for the maximum achievable performance are: 

• M2000 Loader (Residing on configuration bus) -> 180 MHZ 

• Data Interface (Residing on main AHB bus) -> 250 MHZ 

As for power consumption, it is very difficult to estimate figures for the 

dynamic consumption of the FlexEOS HRE as this would strongly depend on 

mapped applications. In Table 32 an exemplar design was utilized to estimate 

such figures: an AES (Advanced Encryption Standard) application running on 

80% of available cells. AES can be considered a good example of an energy-

demanding application. Smaller applications would proportionally require a 

more reduced consumption. 

Differently from XPP and DREAM M2000, being an eFPGA device, may 

feature working frequencies which are quite different from those of the 

Morpheus infrastructure. For this reason dynamic consumption contributions 

have been divided according to the relative clock domain: 

• APP => Application frequency, in the range 40:120 MHZ 

• CORE => Core frequency, set at 250MHZ (FE estimation) 
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Block Dynamic (µW/MHZ) Leakage (mW) 

FlexEOS eFPGA Macro  

(20K cells cut) (1) 
6170 @APP 30 

Data Buffers (DEBs) 8x4K bytes DP 119.6@APP + 1.7@CORE 1.5 

Std Cells logic 22@APP + 0.1@CORE  0.47 

Total 6311@APP + 2.5@CORE  33.23 

Table 32: Main contributions to the estimated power consumption of the M2000 HRE 

 

5.5.3 Pact XPP 

 

Figure 58: Description of the XPP HRE 

Figure 58 (from [67]) describes the XPP HRE. The XPP HRE is a 

computation engine centered on the Pact XPP embedded signal processor. As 

XPP is oriented at streaming computation, this block contains the logic aimed 

at providing stream-based connection towards the system-level communication 

interface (FIFOs) for sustaining the IP computation capability.  
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Since the HDL coding of the Pact XPP is still under definition significant 

adjustment of the figures provided below are still possible. 

5.5.3.1 XPP/System connection 

XPP is connected to the Morpheus system via a set of DEBs used as mono-

directional FIFOs to/from the XPP macro. The overhead due to this logic 

consists in 20Kgates for FIFO control and synchronization, plus 2 Kbytes 

DEBs and 64 Kbytes CEBs. 

 

Block Area (mm2) 

Data Buffers (DEBs) 8x(1Kx16) DP 0.85 

Configuration Buffers 1x(8Kx64) DP 1.451 

FIFO Control and synchronization (20Kg, 70% 

density) 

0.125 

PLL 0.16 

Total 2.84 

Table 33: Area estimations of the main blocks connecting the XPP Macro to the 

Morpheus System 

Block Dynamic (µW/MHZ) Leakage (mW) 

Data Buffers (DEBs) 8x(1Kx16) DP 168 0.802 

Configuration Buffers 1x(8Kx64) DP 1.24 1.54 

FIFO Control and synchronization  28.71 0.23 

Overall XPP HRE Estimation 197.95 2.572 

Table 34: Rough power consumption evaluations for the XPP/Morpheus connection 

 

5.5.3.2 XPP core macro 

As it is the case with the ARM Core, the PiCoGA gate-array array and the 

M2000 FlexEOS eFPGA, due to its relevant complexity, area occupation, and 

to the peculiar features of its design Pact XPP will be imported on the 

Morpheus design as a layout macro.  
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The estimation of area requirements of the XPP array are based on a trial 

layout which was done with 30 ALU-PAEs and 12 RAM-PAEs and 2 FNC-

PAEs. Bottom line ALU and RAM PAEs has been included. 

Block Area (mm2) 

RAM PAE (x12) 0.60 (x12) 

ALU PAE (x30) 0.41 (x30) 

BL RAM PAE (x2) 0.33 (x2) 

BL ALU PAE (x12) 0.22 (x12) 

Total Array interconnection overhead 1.1 

FNC PAE (x2) 2.72 (x2) 

Reference Design ~8.26 

Total  37.6 

Table 35: Estimation of the area occupation of the main blocks composing the XPP 

 

 

5.6 Padframe 

The padframe is of course very liable to modifications due to 

implementation issues: at the current design stage, as described in Table 13 the 

design includes 249 signal pads, of which 104 optimized for high speed for 

supporting the CMC controller. 

The design is not pad limited, featuring an area in the range of 90/100 mm
2
. 

The contribution of the Padframe to the overall chip area can be roughly 

estimated as follows: supposing that the chip floorplan should be more or less 

regular in size (Chip height ~ Chip length) we have   

Padframe Area ≈ Pad height * SQRT(Area) *4 ≈ 4.5 mm
2 

(Note: Corners are included twice in this estimation, but that is done on 

purpose to ensure some flexibility for defining a padframe not perfectly square 

to accommodate large macros placement) 
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The Core reference voltage is 1V, the IO Ring reference voltage 3.3V . An 

analog voltage regulator is added to the design to provide stable reference 

voltage and minimize IR-Drop effects (given the chip area and the high 

consumption of particular chip regions such as the HRE, IR-Drop will have to 

be taken into account anyway in the course of the design.). 

The number of power pads will be defined when more detailed power 

estimations will be possible. A theoretical reference value for the moment is 

~150 voltage feed pads. The chosen IO package may impose restrictions on 

these number, although it is possible to bond two voltage feed pads to the same 

package pin. 

Entity Instances Dynamic 1V 

(µW/MHZ) 

Dynamic 3V3 

(µW/MHZ) 

Leakage (mW) 

Power 

feed 

~150 n.a. n.a.  ~0.2 

Signal 
Pads 

(~20 
MHZ) 

145  

(21in, 39 out, 84 

inout) 

21*.3 + 
39*.14 + 

84*.4= 45 

 21*10 + 39*60 
+ 84*90= 

10110 

(200 mW) 

102*.095=9.6 

High 

Speed 
Pads 

(200 
MHZ) 

104 (32 out, 72 

inout) 

39*.14 + 

72*.4= 28.8 

32*60+72*90 

= 8400 

(1600 mW) 

104*.23= 23.9 

Overall 

Padframe 
~400 70 µW/MHZ, 

1.4 mW 

1800 mW 35 mW 

Table 36: Rough power consumption estimation for the IO Ring 

It should be noted that most Pads are control signals that do not commute 

regularly in the chip lifetime, excluded memory controller pads. 

 

5.7 Final Consideration 

In this final section overall estimations will be described for the whole chip. 

In order to ease the readability of this final report, the Morpheus database has 

been divided in 5 logic components: the 3 separated HREs described as 
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independent clock island, the data communication infrastructure, the processor-

based subsystem (ARM core, AHB bus hierarchy, peripherals, on-chip 

memories and external memory controllers) and the Padframe. 

  

Block Area 
Estimation 

(mm2) 

Kgate (where 
applicable) 

Kbytes (where 
applicable) 

Macro Area 
(mm2)  

ARM+AMBA  

Interconnect 

Infrastructure 

3.5 AMBA (140) 64 Kb (SP) ARM (2.11) 

Memory 

(0.4) 

NoC Based 

Interconnect + 

DNA 

7 DNA (50) 

DMAs (270) 

STNoC NIs  
(140) 

  

DREAM clock 
island 

18 170 132 KB (DP) PiCoGA 
(10.2) 

Memory 

(3.92) 

M2000 clock 

island 

6.2 Loader + 

Control (57) 

32 KB (DP) M2K (2.9) 

Memory 

(0.85) 

 

XPP clock island 36 Reference 
Design (350) 

64 Kb (SP) 

64 Kb (DP) 

Array (24) 

Memory 

(2.5) 

System Memory 7.5  512Kb (SP) Memory 
(7.5)  

PCM 2.2 160 14Kb (DP) 

22Kb (SP) 

Memory 

(0.7) 

CMC 2 125 24 Kb (DP) Memory 
(0.7) 

PAD Ring + PLL 6.1    

Total 92    

Table 37: Main contributions to overall chip area  

Note: To All area figures described in previous tables it has been added a 

slight overhead to take into account routing congestion due to the presence of 

large hard macro blocks 
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Conclusion 

Many issues of current embedded systems design have been investigated in 

this work, and, having in mind the template of a Multi Processor System-on-

Chip, different steps of architectural exploration and design were presented to 

eventually approach to a novel  heterogeneous multiprocessor architecture, 

combining the advantages deriving from reconfigurable hardware, state of the 

art Network-on-Chip and parallel processing. 

The known density advantage of reconfigurable hardware over standard 

processors has been extended by coupling a standard ARM RISC processor to 

several reconfigurable engines, achieving an improved flexibility and 

programmability compared to ASIC based platforms. The results described in 

this thesis have been validated by a complete design flow aimed to integrate 

the described concept in a  silicon prototype.  

Step by step, each chapter of this thesis presents different contributes 

integrated in the design of the proposed architecture. Chapter 1, which is 

dedicated to introduction, state of the art overview and general concepts on 

reconfigurable computing, multiprocessor architectures and onchip 

communication, is excluded from this summary,. 

In chapter 2, we introduced the general outlines of the proposed SoC 

architecture, based on the integration of several reconfigurable architectures 

characterized by  a different grain. The system is based on an ARM core, a 

complete hierarchy of AMBA busses for testing purposes and configuration 

management, and also features a set of standard memories including cache 

memories, on-chip memory and a dedicated external memory controller to 

integrate SRAM/FLASH memories. A set of different peripherals is also 

integrated. 

In chapter 3, we gave a complete explanation of the main concepts adopted 

to define the complete memory hierarchy. Different Reconfigurable 

Architecture are characterized by different I/O interfaces, as well as different  
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working clock frequencies. In order to hide the heterogeneity of each block, a 

dedicated interface based on the usage of dual port dual clock memories has 

been adopted.  

In chapter 4, we explained some details of the communication strategies 

adopted in the design of this architecture. A set of bus solutions is used to 

provide a secure and familiar medium for debugging and to manage the 

configuration transfer of the reconfigurable engines. On top of this, a novel 

approach based on the Spidergon NoC engine is adopted to manage high 

bandwidth data transfer paths between the reconfigurable unit and the on/off-

chip memories. Finally, to provide the end user a single homogeneous interface 

when describing data transfers, the HREs have been equipped with local DMA-

like data transfer engines, programmed and controlled at system level through 

the toolset. Communication synchronization and control may be handled in this 

way by software routines running on the main processor. 

The work led to the implementation of a silicon prototype in 0.090µm 

technology provided by STMicroelectronics.. In Chapter 5, we present the 

implementation results achieved during the design of the MORPHEUS  

architecture. The chip aims to fit in a 90mm2 die. 
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