Alma Mater Studiorum - Universita degli Studi di Bologna

Dottorato di Ricerca in
Ingegneria Elettronica, Informatica e delle Telecomunicazioni
Ciclo XX
ING-INF/05

Semantic-based Middleware Solutions
to Support Context-Aware Service Provisioning

in Pervasive Environments

Dissertazione presentata
da

Alessandra Toninelli

Coordinatore del Dottorato Relatore

Chiar.mo Prof. Ing. Paolo Bassi Chiar.mo Prof. Ing. Maurelio Boari

Esame Finale Anno 2008

ii

Author Thesis advisor

Alessandra Toninelli Chiar.mo Prof. Ing. Maurelio Boari

Title
Semantic-based Middleware Solutions
to Support Context-Aware Service Provisioning

in Pervasive Environments

Abstract
The dynamicity and heterogeneity that characterize pervasive environments raise new chal-
lenges in the design of mobile middleware. Pervasive environments are characterized by a
significant degree of heterogeneity, variability, and dynamicity that conventional middleware
solutions are not able to adequately manage. Originally designed for use in a relatively static
context, such middleware systems tend to hide low-level details to provide applications with
a transparent view on the underlying execution platform. In mobile environments, however,
the context is extremely dynamic and cannot be managed by a priori assumptions. Novel
middleware should therefore support mobile computing applications in the task of adapt-
ing their behavior to frequent changes in the execution context, that is, it should become

context-aware.

In particular, this thesis has identified the following key requirements for novel
context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions
should support interoperability between possibly unknown entities by providing expressive
representation models that allow to describe interacting entities, their operating conditions
and the surrounding world, i.e., their context, according to an unambiguous semantics.

(ii) Middleware solutions should support distributed applications in the task of reconfig-

iii

iv Abstract

uring and adapting their behavior/results to ongoing context changes. (iii) Context-aware
middleware support should be deployed on heterogeneous devices under variable operating
conditions, such as different user needs, application requirements, available connectivity
and device computational capabilities, as well as changing environmental conditions.

Our main claim is that the adoption of semantic metadata to represent context
information and context-dependent adaptation strategies allows to build context-aware mid-
dleware suitable for all dynamically available portable devices. Semantic metadata provide
powerful knowledge representation means to model even complex context information, and
allow to perform automated reasoning to infer additional and/or more complex knowledge
from available context data. In addition, we suggest that, by adopting proper configuration
and deployment strategies, semantic support features can be provided to differentiated users
and devices according to their specific needs and current context.

This thesis has investigated novel design guidelines and implementation options
for semantic-based context-aware middleware solutions targeted to pervasive environments.
These guidelines have been applied to different application areas within pervasive computing
that would particularly benefit from the exploitation of context. Common to all applications
is the key role of context in enabling mobile users to personalize applications based on their
needs and current situation.

The main contributions of this thesis are (i) the definition of a metadata model
to represent and reason about context, (ii) the definition of a model for the design and
development of context-aware middleware based on semantic metadata, (iii) the design of
three novel middleware architectures and the development of a prototypal implementation
for each of these architectures, and (iv) the proposal of a viable approach to portability

issues raised by the adoption of semantic support services in pervasive applications.

Contents

Abstract iii
List of Figures e ix
List of Tables X
Citations to Previously Published Work xi
Acknowledgments xiii
Dedication. e e e XV
1 Introduction 1
1.1 Background and Motivationo oo 1
1.2 Thesis Statement 5
1.3 Thesis Contribution Lo 7
1.4 Thesis Outline 9
2 Context-Aware Mobile Middleware 11
2.1 Design Requirements for Context-Aware Middleware 12
2.2 Context Models 14
2.2.1 Context Representation 15
2.2.2 Semantic Web Languages for Context Modeling 18
2.2.3 Context Information Management and Provisioning 23
2.3 Metadata-Based Context-Aware Middleware 31
2.3.1 Metadata Models 32
2.3.2 Metadata-Based Middleware 38

2.4 Alternative Design Guidelines for Context-Aware
Middleware L 41
2.4.1 Reflective Middleware 41
2.4.2 Aspect-Oriented Middleware 43
2.5 Chapter Summary 45
3 Towards Semantic-Enabled Context-Aware Middleware 47
3.1 Enhancing Mobile Middleware with Explicit Semantics 48
3.2 Personalizing Discovery of Pervasive Services 52
3.3 Controlling Access to Resources in Spontaneous Collaborations 55
3.4 Building Anywhere and Anytime Social Networks 58

vi Contents
3.5 Chapter Summary 61
4 The MIDAS Service Discovery Framework 63
4.1 Motivating Scenario 64
4.2 OVEIVIEW . . . o v o it e e e e e e e e e e e 66
4.3 Metadata Model L 67
4.3.1 Service Metadatao 69
4.3.2 User Metadata 71
4.3.3 Device Metadata Lo 72

4.4 Middleware Architecture 73
4.4.1 Discovery Management Services 73

4.5 Prototype Implementationo Lo 76
4.5.1 Naming and Registration Facilities 76
4.5.2 Context-Aware Discovery Facilities 7
4.5.3 Matching Algorithm oL 79

4.6 Case Studies 81
4.6.1 The Zefiro Deployment Scenario 82

4.7 Evaluation. 85
4.8 Related Work 88
4.9 Ongoing Work L 92
4.10 Chapter Summary e 92
5 The Proteus Access Control Framework 95
5.1 Motivating Scenario oL 96
5.2 OVEIVIEW e e e e e 100
5.3 Metadata Model 101
5.3.1 Context Model 102
5.3.2 Access Control Policy Model 106

5.4 Middleware Architecture L 111
5.5 Prototype Implementation oL 113
5.5.1 Implementation Details 113

5.6 Case Study 119
5.6.1 Deployment Setting 119
5.6.2 Policy Installation L. 120
5.6.3 Context-Aware Access Control Enforcement 122

5.7 Evaluation. e 123
5.8 Related Work 126
5.9 Ongoing Work 129
5.10 Chapter Summary oo e 129
6 The SAMOA Mobile Socially-Aware Framework 131
6.1 Motivating Scenario 132
6.2 OVErview e e e 136
6.3 Metadata Model 137

6.3.1 Social Network Management Model 137

Contents vii
6.3.2 Profiles Model 139

6.3.3 Social Network Extraction Model 140

6.4 Middleware Architecture 142
6.5 Prototype Implementation Lo oL 144
6.5.1 Basic Service Layer 144

6.5.2 Social Network Management Layer 145

6.5.3 Social Matchmaking Algorithms 146

6.6 Case Study e 148
6.6.1 Application Deployment L. 148

6.6.2 Social Network Extraction 150

6.7 Evaluation L 152
6.8 Related Work e 155
6.9 Ongoing Work 158
6.10 Chapter Summary e e 158

7 Conclusions 159
7.1 Thesis Summary 159
7.2 Thesis Contributions e 160
7.3 Discussion e 163
7.3.1 Lessons Learned 163

7.3.2 Openlssues 166

7.4 Future Research Directions 167
Bibliography 171
A List of Publications 181
A.1 Journals and Magazines Lo o 181
A.2 Chapters in International Books 182
A.3 Conference Proceedings 182
A.4 Workshop Proceedings 183

viii Contents

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Semantic Web layered framework. 20
RDF graph example. 21
Context-aware layered conceptual framework. 30

MIDAS user-centric service view based on user context and semantic metadata. 67

MIDAS service/user/device profiles. L. 71
MIDAS middleware architecture. 74
MIDAS semantic matching algorithm. 81
MIDAS tables for services included in/excluded from service view. 85
Proteus access control policy model.00 102
Proteus base context ontology. L Lo 103
Proteus context-aware policy model. 106
Proteus middleware architecture. 0oL 113
Proteus Reasoning Core main components. 114
Policy ontology parsing and loading in the Reasoning Core. 121
Reasoning time variation with TBox dimension. 126
Reasoning time variation with ABox dimension. 127
An example place mapping of SAMOA onto a mobile ad hoc network. . . . 138
SAMOA user profile example. L o 141
SAMOA profile-based social network extraction. 142
SAMOA middleware layered architecture. 143
SAMOA semantic matching algorithms. 147
Bookshop’s UP and DP and their use in social network extraction. 150
Interaction flow diagrams in the case study. 152

X

List of Tables

4.1
4.2

5.1
5.2
5.3

6.1
6.2

MIDAS semantic matching time performance. 88
Detailed time performance for a request with 4 restrictions. 89
Proteus protection context specification example. 104
Proteus policy specification example.o 108
Policy refinement example.o 111
Semantic model instantiation time. 153
Total execution time for semantic social matchmaking. 154

Citations to Previously Published Work

Large portions of Chapters 4, 5 and 6, as well as some of Chapter 3, have appeared in the
following papers:

Alessandra Toninelli, Antonio Corradi, and Rebecca Montanari.
Semantic-based discovery to support mobile context-aware service access.
Computer Communications Journal, Special Issue on Mobility Management and
Wireless Access, 31(5): 935-949. Elsevier, 2008.

Dario Bottazzi, Rebecca Montanari, and Alessandra Toninelli.

A Semantic Context-Aware Middleware Level Solution to Support Anytime and
Anywhere Social Networks.

IEEE Intelligent Systems, Special Issue on Social Computing, 22(5):23-31. IEEE
Computer Society Press, 2007.

Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and Alessandra Toninelli.
Context-Aware Semantic Middleware for Next Generation Mobile Systems.
IEEE Communications Magazine, Special Issue on Advances in Service Plat-
form Technologies, 44(9): 62-71, IEEE Communications Society, 2006.

Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila.

A Semantic Context-Aware Access Control Framework for Secure Collabora-
tions in Pervasive Computing Environments.

Proceedings of the Fifth International Semantic Web Conference (ISWC), LNCS
4273: 473-486. Springer, 2006.

Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila.
Proteus: A Semantic Context-Aware Adaptive Policy Model.

Proceedings of the IEEE 2007 International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY), pp. 129-140. IEEE Computer Soci-
ety Press, 2007.

The complete list of publications is included in Appendix A.

xi

xii

List of Tables

Acknowledgments

I would like to express my thanks to all the people who supported my research
activity during the last four years. Prof. Maurelio Boari and Prof. Antonio Corradi, for
guiding my doctorate with their knowledge and experience. Prof. Rebecca Montanari, who
has constantly encouraged and assisted me not only as a supervisor, but also as a friend.
Prof. Paolo Bellavista, for his valuable help and collaboration.

I also would like to thank Prof. Piero Bonatti, who gave me the chance to collab-
orate on his interesting research activity at the University of Naples.

I am particularly grateful to Ora Lassila for sharing with me his knowledge, friend-
ship and exciting research vision. My visit at NRC was a unique personal and professional
experience, and strongly motivated me to pursue research towards the realization of the
Semantic Web. Thanks to Deepali Khushraj, for the great time we had in Boston, both
inside and outside the office, and to Lalana Kagal, for offering me valuable help and advice
for my research- and many slices of cakes in our tea breaks at MIT, too.

My colleagues succeeded in making enjoyable every day I spent at the lab. I would
like to particularly thank Carlo Giannelli who has shared with me bad and good times,
including the great effort of writing this dissertation. Many thanks to all the friends who
encouraged and supported me throughout these years.

Finally, I would like to express my gratitude to my family, which has supported

me with love and patience: my mother, Elena and Nicola, without forgetting little Irene.

xiii

Xiv

Acknowledgments

To my niece Irene - the journey begins.

XV

xvi Acknowledgments

Chapter 1

Introduction

1.1 Background and Motivation

During the last three decades, the increase of network and application logic com-
plexity has significantly raised the demand for adequate middleware solutions. The term
middleware defines the set of (reusable) support services that facilitate the design, deploy-
ment and execution of a distributed application by handling the complexity of the underlying
networked system. In a distributed system, middleware is responsible for providing several
functionalities to support the development and execution of applications. In particular, the

following can be identified as primary objectives of a middleware infrastructure [108]:

e the interaction and/or integration of possibly heterogeneous systems (such as networks

and resource management systems);

e the abstraction of the underlying facilities in a way that hides network, operating

system and programming language heterogeneity;

e the implementation of these abstractions in transparent application programming in-

terfaces (APIs)

2 Chapter 1: Introduction

Design and implementation choices in middleware development are essentially driven by
the requirements of distributed systems the middleware is in charge of managing. As new
application scenarios enabled by improved connectivity technologies and more powerful
programming paradigms emerge, novel middleware solutions need to be designed and im-
plemented that are able to manage the distributed systems supporting those scenarios.
Therefore, methodological approaches to middleware design and development have been
evolving over time according to the changing characteristics of distributed systems, which

particularly concern two main directions:

e scale, i.e., the dimension and potential boundaries of the system;

e system complexity, in terms of both system components heterogeneity and their be-

havior dynamicity.

From the early 1970s, middleware solutions were developed according to the evolution of
programming paradigms, from early Remote Procedure Call (RPC)-based systems, to Ob-
ject Oriented (OO) systems, to Message-Oriented Middleware (MOM). These systems were
typically built within intra-organization boundaries following a client-server approach, with
fixed components whose behavior was completely predictable. Middleware targeted at this
kind of traditional distributed systems is also referred to as conventional middleware [79].
Due to the increasing diffusion of distributed systems, conventional middleware so-
lutions have proliferated. Several middleware support systems were developed, each defining
specific primitives and protocols based on the underlying network platform and operating
system. As soon as the need to integrate independently developed applications based on
different platforms arose, novel middleware solutions were required to handle this integra-
tion. Enterprise Application Integration middleware solutions, such as Message Brokers and

Workflow Management Systems, were thus developed to cope with the integration of exist-

Chapter 1: Introduction 3

ing applications rather than the creation of new applications from scratch, and to manage

the increasing complexity of the integration logic.

The need to integrate, however, is not limited to the systems within a single
company. Any middleware system often needs to interact with another middleware sys-
tems, where both support similar services and functionalities. Similar advantages can be
obtained from intra-enterprise as from inter-enterprise application integration, or business-
to-business (B2B) integration. With the widespread diffusion of the World Wide Web,
middleware solutions for B2B application integration were required to provide support for
the integration and deployment of loosely coupled, autonomous and independent software
building blocks over a huge-scale distributed platform, i.e., the Web. Application servers
and Web Services, which can be thought of as a Web-oriented implementation for a Service
Oriented Architecture (SOA), represent notable examples of what we can call Web-enabled

middleware.

With the advent of pervasive computing, the realm of distributed applications
moved from the virtual world of the Web to the physical world, where humans live and
operate. In pervasive environments, each user, equipped with a portable device, is able to
access all services in any way at any time anywhere, thanks to the connectivity powered
by modern network technologies [31]. Disconnections may frequently happen, either volun-
tarily, e.g., to save battery, or unexpectedly, e.g., due to a loss of signal. Portable devices
may significantly differ one from another with respect to their computational capabilities,
technical features and equipment, such as battery or screen resolution, communication abil-
ities, e.g., supported wireless protocols, size and dimension. Users, which typically exhibit
variable levels of technical expertise, might change their location at any time, even un-
predictably. Therefore, pervasive environments are characterized by a significant degree of

heterogeneity, variability and dynamicity that conventional middleware solutions are not

4 Chapter 1: Introduction

able to adequately manage. Originally designed for use in a relatively static context, such
middleware systems tend to hide low-level network details to provide applications with a
transparent view on the underlying execution platform. In mobile environments, though,
the context is extremely dynamic and cannot be managed by a prior: assumptions. Mobile
middleware should therefore support mobile computing applications in the task of adapting
their behavior to frequent changes in the execution context. In other words, middleware
should become context-aware [21]. This requirement is twofold: on the one hand, the mid-
dleware layer should collect and represent context information at a high level of abstraction,
and propagate its visibility up to the application level. On the other hand, it should pro-
vide powerful means to specify and enforce context-dependent adaptation strategies of the

application, without interfering nor modifying the application logic.

It is worth noting that the behavior of a mobile application will adapt to the cur-
rent context inasmuch as the needed context information and context-dependent behavior
strategies are represented in a both correct and effective manner. Therefore, a crucial issue
for the achievement of context-awareness is the ability of the middleware support to prop-
erly describe and interpret context information, such as the entities that characterize the
system, the interactions occurring between them and the operating conditions under which
such interactions occur, as well as context-driven adaptation directives. In addition, in order
to provide openness and interoperability, the semantics of those descriptions must be un-
ambiguously defined. Based on that information, disparate applications should be enabled
by the middleware platform to dynamically interoperate with minimal human intervention.
Describing system components’ characteristics and behavior strategies is, however, a very

demanding task.

We argue that the reason why this task is particularly difficult lies in the assump-

tion that the conceptual model underlying system description and management is essentially

Chapter 1: Introduction 5

implicit, i.e., it is only known to humans who develop the middleware platform (and possi-
bly encoded in natural language). The inability of the middleware platform to acquire and
process knowledge about the system it is supposed to manage has hindered until now the
achievement of seamless interoperability in pervasive environments. Web-enabled middle-
ware solutions suffer from a similar limitation since Web technologies only allow to describe

resources in a way that was primarily intended for human comprehension and exploitation.

1.2 Thesis Statement

The lack of explicit semantics in current middleware support for distributed en-
vironments has motivated us to explore new research directions towards novel, semantic-
enabled middleware solutions. In particular, we have identified the following key require-

ments for semantic-enabled middleware that existing middleware solutions do not fulfil yet.

o Middleware solutions should support interoperability between possibly unknown enti-
ties, by providing expressive representation models that allow to describe interacting
entities, their operating conditions and the surrounding world, i.e., their context, ac-
cording to an unambiguous semantics. Context is a complex notion that has many
definitions [91, 17]. Here we define context as any useful information to characterize
an entity and the world in which this entity operates. The explicit representation of
context information in a form that is automatically processable by a software compo-
nent allows possibly unknown entities to dynamically establish an interaction based

on the semantic information they can reciprocally exchange.

o Middleware solutions should support distributed applications in the task of reconfigur-
ing and adapting their behavior/results to ongoing context changes. The middleware

layer should therefore be able to collect, represent and reason about the context, and

6 Chapter 1: Introduction

to propagate this information up to the application level, i.e., it should provide the
application with context-awareness. Context-aware adaptation strategies should be
expressed at a high level of abstraction by cleanly separating application management
from application logic. This separation of concerns is crucial to reduce the complexity
of developing applications for pervasive environments and to favor rapid application

prototyping, runtime configuration, and maintenance.

o Context-aware middleware support should be deployed on heterogeneous devices under
variable operating conditions, such as different user needs and application require-
ments, device connectivity abilities and computational capabilities, as well as changing
environmental conditions. Since access terminals used by mobile users might signif-
icantly differ in resource capabilities, such as display size and resolution, computing
power, memory, network bandwidth and battery, and user application requirements
cannot a priori determined, a crucial issue in the design and development of context-
aware middleware solutions remains how to deploy middleware components on board

of resource-constrained mobile devices to operate in changing context conditions.

We claim that the adoption of semantic metadata to represent context information and
context-dependent adaptation strategies allows to build context-aware middleware suitable
for the provisioning to all the devices dynamically available.

Semantic metadata provide powerful knowledge representation means to model
even complex context information, and allow the dynamic extension of defined context
models with additional concepts and properties. As a key feature, semantic languages allow
the formal specification of context models whose underlying semantics is unambiguously
defined, thus facilitating the dynamic exchange of context knowledge between interacting

entities without loss of meaning. Semantic technologies also allow to perform automated

Chapter 1: Introduction 7

reasoning to infer additional and/or more complex knowledge from available context data.
The ability to reason over context knowledge can be successfully exploited to build middle-
ware solutions capable of recognizing context and taking appropriate management decisions
based on current context. Finally, as far as the third outlined requirement is concerned, we
suggest that, by adopting proper configuration and deployment strategies, semantic support
features can be provided to differentiated users and devices according to their specific needs
and current context.

In particular, this thesis has investigated novel design guidelines and implementa-

tion options for semantic-enabled middleware solutions targeted to pervasive environments.

1.3 Thesis Contribution

The main contributions of this thesis are:

e The complete definition of a model for the design and development of context-aware
middleware based on semantic metadata, where with complete we mean that the
model can precisely identify the types of semantic metadata required to describe the
context of an application and the needed context-dependent adaptation strategies,
can specify how to represent and express supported metadata, and can exploit them

to propagate context-awareness up to the application level.

e The identification of significant application areas in the field of pervasive computing,

where the demand for context-aware middleware support has not been fulfilled yet.

e The development of a set of context-aware middleware architecture prototypes tar-
geted to the identified application areas. These prototypes provide an implementa-
tion of the metadata-based model for context-aware middleware, offer a wide range of

mechanisms to collect and manage relevant context information, and propagate it up

8 Chapter 1: Introduction

to the application level. A key feature common to the developed middleware infras-
tructures is the exploitation of semantic technologies to represent and reason about

context information.

e The proposal of a viable approach to the issue of portability raised by the adoption

of semantic support services in pervasive applications.

With a finer degree of details, the thesis provides some novel contributions to
research in the field of middleware for pervasive environments along different directions. A
primary novel contribution is the exploitation of metadata to represent and reason about
context. Metadata describe the structure and meaning of the entities composing a system,
and the specification of management operations expressed at a high level of abstraction [77].
Among the different possible types of metadata, this thesis considers profiles and policies.
Profiles represent characteristics, capabilities and requirements of system components, such
as users, devices and services. Policies express the choices ruling system behavior, in terms
of the actions subjects can/must operate upon resources [90]. Profiles and policies are
maintained completely separated from system implementation details and are expressed at
a high level of abstraction, thus achieving the clean separation of concerns between context-

aware application management and application logic.

The effectiveness of metadata adoption depends on the characteristics of both the
chosen specification language and the middleware support infrastructure. A second research
contribution of this thesis is to suggest that semantic technologies represent a valid option
for metadata specification and management. Semantic languages permit to explicitly rep-
resent interacting entities at a high level of abstraction, such as services, resources and
users, and their context, such as current location of users/devices, state of resources, user

preferences, and device characteristics, while enabling automated reasoning about this rep-

Chapter 1: Introduction 9

resentation. This favors the dynamic interoperability and mutual comprehension between
entities sharing little or no prior knowledge about each other. In addition, the adoption of
semantic languages for metadata specification simplifies metadata reuse and facilitates the
analysis of potential conflicts and inconsistencies. In particular, we express semantic meta-
data using a Semantic Web standard language, i.e., the Web Ontology Language (OWL)
[20].

Finally, related to the issue of providing resource-constrained portable devices with
adequate context-aware middleware support, this thesis provides original results in applying
the proposed metadata model to properly configure semantic support on mobile devices.
In particular, we suggest that semantic support functionalities, mobile device properties, as
well as configuration strategies needed to deploy semantic support components on mobile
devices, can be represented by means of appropriate metadata. This allows to exploit the
same management and adaptation mechanisms developed for context-awareness to properly

configure semantic support based on mobile device properties.

1.4 Thesis Outline

This section presents the content of all remaining chapters. Chapter 2 in this the-
sis will provide, after a brief digression on the peculiarities of pervasive environments, an
overview of the guidelines for the design, implementation and deployment of context-aware
middleware solutions. The chapter will also review previous research work on context-
aware and mobile middleware that is relevant for the present thesis. Chapter 3 will provide
an overview of our approach to the design of semantic-enabled context-aware middleware,
and will introduce some relevant application areas we have chosen in the field of pervasive

computing to prove the usefulness and feasibility of our approach. Chapter from 4 to 6

10 Chapter 1: Introduction

will describe the semantic-enabled context-aware architectures we have designed and im-
plemented in those application areas. It will proceed by describing the semantic metadata
model and the middleware support services that compose the architecture in charge of pro-
viding a concrete deployment of the model. Each chapter from 4 to 6 will also provide
implementation details of the proposed architectures, experimental results to evaluate our
middleware prototypes, and an overview of related work in the specific application area.
Finally, Chapter 7 will be devoted to give a critical analysis of the work, will provide the

conclusions and outline future research works.

Chapter 2

Context-Aware Mobile Middleware

Metadata are data about data. Middleware is software about software.

Nick Gall

Telecommunication systems and the Internet are converging towards an integrated
pervasive scenario that permits users to access resources and applications anytime, anywhere
even when they are on the move. The diffusion of pervasive scenarios calls for appropriate
middleware support solutions that are able to adequately support the increased complexity
and dynamicity of emerging mobile applications. This chapter, after a brief introduction
to pervasive environments, surveys the management issues arising in mobile and perva-
sive applications and the consequent requirements for mobile middleware support solutions.
Then, the chapter presents those research efforts that we consider most significantly related
to this thesis work. In particular, it first describes different models for context representa-
tion. Then, it presents and classifies several approaches to context information provisioning
and management, and gives an overview of most relevant context-management infrastruc-

tures in the research literature. Finally, it outlines the main research directions in the design

11

12 Chapter 2: Context-Aware Mobile Middleware

of middleware solutions supporting context-aware applications for pervasive scenarios, and

presents significant examples for each of the defined research direction.

2.1 Design Requirements for Context-Aware Middleware

Compared to conventional distributed applications, pervasive computing environ-
ments are characterized by new issues that make service provisioning a rather demanding
task. Mobility of users and access devices is pushed to the extreme. Users can connect to
the network from ubiquitous points of attachment and wireless portable devices can roam
by maintaining continuous connectivity. Frequent disconnections of users/devices are rather
common operating modes that can occur either voluntarily to reduce connection costs and
to save battery power or accidentally due to the loss of wireless connectivity. In addition,
pervasive scenarios exhibit a high degree of heterogeneity of both access devices, in terms
of screen size/resolution, computing power, memory, operating system, and supported soft-
ware, and networking technologies, e.g., IEEE 802.11b/g, Bluetooth, GSM, GPRS, and

UMTS).

The distinctive features of pervasive computing pose new challenges in retrieving
and operating on distributed resources and undermine several assumptions of traditional
service provisioning scenarios. The main impact derives from the notion and the new
meaning of contert. Context is a complex concept that has been given several definitions
[41]. Hereinafter, at a high level, the term context is defined as any information that is
useful for characterizing the state or the activity of an entity or the world in which this

entity operates.

Conventional middleware relies on a relatively static characterization of the con-

text, where resource availability is independent of both the user current location and the

Chapter 2: Context-Aware Mobile Middleware 13

access device properties (location and heterogeneity transparency). Changes in the set of
accessible resources are relatively small, rare, or predictable. Originally designed for use
in such a static context, conventional middleware systems tend to hide low-level network
details to provide applications with a transparent view on the underlying execution plat-
form. In mobile environments, however, the context is extremely dynamic and cannot be
managed by a priori assumptions: context variations can be very frequent, especially when
using wireless portable devices.

Supporting mobile applications in pervasive environments thus requires to provide
context visibility, where context is represented not only by location information but also
by other system-level data, such as access device characteristics, environmental conditions,
e.g., time and temperature, and available resources’ state. This information should be prop-
agated up to the application level to dynamically determine each mobile user’s context and
to perform application adaptation accordingly. Due to the high level of variability and het-
erogeneity, pervasive application management is a very complex task, which requires novel
methodologies and tools to specify which management actions should be taken based on
context information and to promptly carry out the desired context-dependent application
adaptation. Context-aware behavior strategies should be expressed at a high level of ab-
straction by cleanly separating service management from service logic. This separation of
concerns is crucial to reduce the complexity of developing services for pervasive environ-
ments and to favor rapid application prototyping, runtime configuration, and maintenance.

The above considerations call for the design of novel middleware solutions to sup-

port the context-aware adaptation of pervasive applications. In particular:

e The middleware should be designed according to a cross-layer approach, where ap-
plication management layers interact with the underlying layers to collect relevant

information for context determination, e.g., current location of users/devices, state

14 Chapter 2: Context-Aware Mobile Middleware

of resources, user preferences, and device characteristics. Such cross-layer interaction
should enable the middleware to dynamically acquire, represent and process context

information, and propagate it up to the application level.

e The middleware should provide powerful means to represent and enforce context-
dependent adaptation strategies for mobile applications, without interfering nor mod-

ifying the application logic, according to a clean separation of concerns principle.

To address the above outlined requirements, different approaches to mobile mid-
dleware design and development have emerged in recent years. On the one hand, relevant
research works have tackled the issue of providing adequate means to represent, collect
and provide context information to applications. On the other hand, significant effort has
been spent to design novel middleware architectures that support context visibility at a
high level of abstraction and allow the context-dependent adaptation of mobile applica-
tions, while leaving the application logic intact. The following sections provide an overview
of emerging solutions for context information modeling and provisioning, and illustrate

significant approaches to the design of context-aware, adaptive middleware.

2.2 Context Models

Several research efforts have been directed in the last decade towards the design of
suitable models for context information management. While early models mainly addressed
the modeling of context with respect to one application or an application class, generic con-
text provisioning models soon became of interest since many different applications could
exploit them. First steps towards an agreed understanding of context have been taken,
mostly with respect to common information such as location, identity, and time. How-

ever, the notion of context still remains subject to many different interpretations and the

Chapter 2: Context-Aware Mobile Middleware 15

currently prevailing research approach is to define the concept of context as much generic
as possible, while leaving to applications the possibility to further refine the meaning of
context according to their specific purposes. The main objective of current research in the
area is therefore to develop uniform context representation models and query languages, as

well as reasoning algorithms that facilitate context sharing and application interoperability.

2.2.1 Context Representation

The definition of an adequate model for context representation represents a crucial
step in the process of designing context-aware applications. In the literature the term
context-aware first appeared in [41], where Dey and Abowd describe context as location,
identities of nearby people and objects and changes to those objects. One of the best topical
definitions is due again to the same authors, who defined context as ”any information that
can be used to characterize the situation of entities (i.e., whether a person, place or object)
that are considered relevant to the interaction between a user and an application, including
the user and the application themselves” [40]. Several alternate definitions of the term
context can be found in literature. A detailed discussion of the differences between them is
however out of the scope of this section. For a more comprehensive analysis of the topic we
refer the reader to [91].

Throughout this section we will survey the most relevant context modeling ap-
proaches, by classifying them based on the data structure scheme used to represent and

share contextual information in the systems where such models were defined.

e Key-value pairs. The model of key-value pairs is the simplest data structure for
modeling contextual information. Schilit et al. [88] used key-value pairs to model the
context by providing the value of a context information, e.g., location information,

to an application as an environment variable. The key-value modeling approach is

16

Chapter 2: Context-Aware Mobile Middleware

frequently used in distributed service frameworks, such as discovery frameworks, e.g.,
Jini [3] or SLP [9], where service functionalities are described with a list of simple
attribute-value pairs, and the discovery procedure operates an exact matching on
these attributes. Similarly to service attributes, in those systems context information
is described in terms of attribute-value pairs. Key-value pairs are easy to manage,
but lack capabilities for sophisticated structuring to enable efficient context retrieval

algorithms.

Markup scheme. This approach defines a hierarchical data structure consisting of
markup tags with attributes and content. In particular, the content of the markup tags
is often recursively defined by other markup tags. Markup-based context representa-
tions usually exploit a derived language of the Standard Generic Markup Language
(SGML) [7], the superclass of all markup languages, to serialize context information.
The most commonly adopted language is the eXtensbile Markup Language (XML) or
one of its vocabularies [29]. This kind of context modeling approach typically requires

the specification of profiles (for a detailed discussion on profiles, see Section 2.3.1).

Graphical model. A very well known general purpose modeling instrument is the
Unified Modeling Language (UML) which has a strong graphical orientation (UML
diagrams). Due to its generic structure, UML is also appropriate to model the con-
text. A relevant example is the graphic-oriented context model introduced in [54] by
Henricksen et al., which is a context extension of the Object-Role Modeling (ORM)
approach [53] according some contextual classification and description properties. A
graphical approach to context modeling is particularly suited to database-oriented ap-
plications, for example to derive Entity-Relationship (ER) context models and store

them into relational databases.

Chapter 2: Context-Aware Mobile Middleware 17

e Object-oriented model. Object-oriented approaches to context modeling aim at
exploiting the main benefits of this approach, namely encapsulation and reusability,
in the process of representing and accessing context in ubiquitous environments. By
relying on the abstraction of object, they encapsulate and hide from external access
the details about context collecting and processing, while providing contextual infor-
mation by means of interfaces. For example, the concept of cues developed within
the TEA project [89] provides an abstraction for physical and logical sensors: in par-
ticular, a cue represents a function, which takes as an input the value of a single
physical or logical sensor at a certain time, and provides as an output the symbolic

representation of a certain context.

e Logic-based models. In a logic-based context model, context is represented and
processed by means of facts, expressions and rules. Generally speaking, a logic defines
the conditions on which a concluding expression or fact may be derived (a process
known as reasoning or inferencing) from a set of other expressions or facts. To describe
these conditions, a set of rules a formal system is applied. Contextual information
is represented by means of logical expressions. It is added, updated and (possibly)
deleted from a logic based system in terms of facts, or inferred from appropriate
rules defined in the system. All logic based models share a rather high degree of
formality in context representation and processing. For example, the Sensed Context
Model proposed by Gray and Salber [50] exploits first-order predicate logic as a formal
representation of contextual propositions and relations. Another approach within
this category is the framework GAIA [83]. Other solutions adopt additional logics,
such as for instance fuzzy logic, to represent and reason about uncertain context
information or determine the quality of context information [24]. Let us note that

the exploitation of logics in context representation allows automated reasoning over

18 Chapter 2: Context-Aware Mobile Middleware

context information.

¢ Ontology-based models. According to Gruber’s definition, an ontology can be
defined as ”a formalization of a conceptualization” [51]. In a semantic approach, on-
tologies allow the description of context within specific knowledge domains by means
of explicit formalisms, which can be used to represent and reason about context infor-
mation. Semantic-based context models represent an emerging approach in context
representation since they support knowledge sharing and reuse, and logical inferencing
capabilities. Relevant examples include the CONON context modeling approach by
Wang et al. [105] and the SOUPA ontology developed within the CoBrA system [34].
These approaches will be discussed in more detail in the following section, which pro-
vides some insights on Semantic Web technologies and their exploitation for context

representation and reasoning.

2.2.2 Semantic Web Languages for Context Modeling

Semantic languages have gained considerable attention within the pervasive re-
search community as a suitable means to provide expressive context representation, query-
ing and reasoning support [34, 106, 73]. Compared to alternate representation models,
semantic-based approaches are emerging because of the several advantages they bring in
context modeling. Semantic languages permit to describe at a high level of abstraction the
structure and properties of the entities composing a pervasive system, e.g., users, devices and
resources, and the desired management operations to govern and control entity behavior.
These features appear to be particularly attractive in ubiquitous environments characterized
by constantly changing context conditions. The adoption of ontologies to describe context
in pervasive computing scenarios brings several advantages by allowing the exchange of se-

mantics about the described context, it enables mutual understanding between previously

Chapter 2: Context-Aware Mobile Middleware 19

unknown entities about their capabilities and the current execution context. Moreover,
Semantic Web languages enable expressive querying and automated reasoning over context
representation, to derive additional and/or higher level context information that can be
exploited by the application.

In this section, we first provide an overview of Semantic Web standard languages,
followed by a description of relevant existing work on ontology-based context representation

models.

Resource Description Framework

Semantic Web technologies can be thought as a layered framework, whose lower
layers provide data interchange formats, both syntactic and semantic, on top of which
ontologies can be build, queried and possibly supplemented by rules, as shown in Figure
2.1, In particular, the Resource Description Framework (RDF) is a language originally
created for representing information about resources in the World Wide Web [66]. By
generalizing the concept of a Web resource, RDF can also be used to represent information
about resources that cannot be directly retrieved on the Web, including user preferences,
mobile device properties and any other context information. It is worth noting that RDF
provides a common framework for expressing the semantics of this information so it can
be exchanged between applications without loss of meaning. RDF identifies things using
Web identifiers (called Uniform Resource Identifiers, or URIs), and describes resources
in terms of simple properties and property values. In particular, RDF represents simple
statements about resources as a graph of nodes and arcs representing the resources, and
their properties and values. For example, the statement ” Dave Beckett is the editor of the

resource http://www.w3.org/TR/rdf-syntax-grammar” can be represented by the graph

http:/ /www.w3.org/2007/03/sw

20 Chapter 2: Context-Aware Mobile Middleware

User Interface & Applications
Trust
Ontology:
Query: OWL Rule: 8
SPARQL RIF o
RDFS g
Data interchange:
RDF
XML |
URI/IRI |

Figure 2.1: Semantic Web layered framework.

depicted in Figure 2.22. To encode RDF statements in a machine-processable way, RDF

relies on a serialization based on the Extensible Markup Language (XML) [29].

RDF properties may be thought as attributes of resources, but may also represent
relationships between resources. RDF however, provides neither mechanisms for describing
these properties, nor does provide mechanisms for describing the relationships between these
properties and other resources. To overcome this limitation, some extensions such as the
RDF Schema (RDF-S), i.e., the RDF vocabulary description language, have been defined
[30]. RDF-S defines classes and properties that may be used to describe classes, properties
and other resources. RDF-S defines classes and properties that may be used to describe

classes, properties and other resources, such as the domains and ranges of properties.

*http://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax-node-property-elements

Chapter 2: Context-Aware Mobile Middleware

21

hittp:iwww.example.orgierms/edilor

hitppurl.org'de/slemants. 1/title

hitp:\'www.example.org/terms/homeFage

b
RDF/XML Syntax Specification (Revised)

hitp:ffwww.exampie.orgftermsifullName

*
Dave Becketl

Figure 2.2: RDF graph example.

Web Ontology Language

The first level above RDF required for the Semantic Web is an ontology language

that can formally describe the meaning of terminology used in ”Web resources”, as de-

scribed above. The Web Ontology Language (OWL) provides an expressive vocabulary

for describing properties and classes: among others, relationships between classes, such as

disjointness, cardinality, equality, richer typing of properties, characteristics of properties,

such as symmetry, and enumerated classes [20].

OWL provides three increasingly expressive sublanguages designed for use by spe-

cific communities of implementers and users.

e OWL Lite primarily supports classification hierarchy and simple constraints. For

example, while it supports cardinality constraints, it only permits cardinality values

of 0 or 1.

¢ OWL DL supports the maximum expressiveness while retaining computational com-

pleteness (all conclusions are guaranteed to be computable) and decidability (all com-

putations will finish in finite time). OWL DL includes all OWL language constructs,

but they can be used only under certain restrictions. OWL DL is so named due to its

22 Chapter 2: Context-Aware Mobile Middleware

correspondence with Description Logics.

e OWL Full exploits the maximum expressiveness and the syntactic freedom of RDF,

although it does not provide any computational guarantee.

Let us note that other languages have been proposed and used to define ontolo-
gies beyond Semantic Web languages. For example, it is possible to define ontologies by
means of well-established logic languages, such as Logic Programming languages as Prolog.
However, Semantic Web languages offer the great advantage of providing interoperability
and standardization, based on the XML format of serialized RDF or OWL documents. In
addition, their increasing success within the research community, both from academia and
industry, represents a promising step towards the reach of a shared agreement on semantic

interoperable standards.

Context Ontologies

In this section we present some relevant approaches to context modeling that are
based on ontologies.

A significant context modeling approach based on ontologies is the CoBrA system
[33]. The CoBrA system uses a broker-centric agent architecture to provide runtime support
for context-aware systems in ubiquitous computing environments, such as intelligent meeting
rooms. CoBrA relies on the SOUPA ontology, which provides a set of ontological concepts
to characterize entities such as persons, places or several other kinds of objects within their
contexts. SOUPA is developed in OWL.

Another interesting approach has been proposed as the Aspect-Scale-Context In-
formation model [92]. Differently from SOUPA, this model provides its own Context On-
tology Language (CoOL), which is supplemented by integration elements such as scheme

extensions for Web Services. The CoOL language is used to support context-awareness in

Chapter 2: Context-Aware Mobile Middleware 23

distributed service frameworks for various applications, like for example to check service
interoperability in terms of contextual compatibility.

The CONON context modeling approach aims at developing a context model based
on ontologies to exploit knowledge sharing, logic inferencing and knowledge reuse capabil-
ities [105]. Similarly to CoBrA, Wang et al. created an upper ontology which captures
general features of basic contextual entities and a collection of domain specific ontologies
and their features in each subdomain. The CONON ontologies are serialized in OWL-
DL. This allows for consistency checking and contextual reasoning using inference engines

developed for description logic-based languages.

2.2.3 Context Information Management and Provisioning

Several architectures have been developed to address the issue of collecting, man-
aging and distributing context information to interested applications. Different approaches
can be adopted depending on specific application requirements and scenarios, such as the
deployment of sensors, the number of potential system users, as well as the technical prop-
erties of used devices.

Until now, different categorizations of context management systems have been pro-
posed, none of them being exhaustive nor fully agreed on. The proposed classifications focus
on different issues related to context management, such as context acquisition, access and
sharing, as well as on architectural properties of the context management support system.
In the following we provide an overview of three relevant state-of-art proposals that classify
context management systems according to different criteria. It is worth noting that the
classification principles characterizing each proposal cannot be considered orthogonal nor
clearly distinguished. However, because of the lack of agreement on a common conceptual

classification, hereinafter we present them separately.

24

Chapter 2: Context-Aware Mobile Middleware

[33]:

As far as context acquisition is concerned, Chen presents three possible approaches

e Direct sensor access. This approach is often used in devices with locally built

in sensors. The client software gathers the desired information directly from these
sensors, which means that there is no additional layer for gaining and processing
sensor data. Sensor drivers are hardwired into the application. This tightly coupled
approach is not particularly well suited for distributed systems due to its lack of

flexibility and reusability.

Middleware. A middleware-based approach introduces a layered architecture in
the design of context-aware systems with the intention of hiding low-level sensing
details. The middleware is responsible for collecting context information from sensors,
storing and aggregating it, and distributing it to interested applications. Compared to
direct sensor access, this technique simplifies application development since the client
application code does not depend on specific sensors, and it favors the reusability of

sensing components that encapsulate sensors.

Context server. The presence of a server permits multiple clients access to possibly
remote context data sources. This distributed approach extends the middleware based
architecture by introducing a remotely accessible component, the so called context
server, which gathers sensor data and makes them available to client applications via
concurrent, multiple access. Beside the reuse of sensors, the usage of a context server
has the advantage of relieving clients from the burden of performing resource-intensive
operations. As a drawback, the design of a context-aware system based on client-server
requires to consider issues like communication protocols, network performance, quality

of service parameters, which characterize a client-server distributed system.

Chapter 2: Context-Aware Mobile Middleware 25

Another interesting classification of context management systems is to be found in [107],
where Winograd describes three different context management models for coordinating mul-
tiple processes and components. This classification is focused on context access and distri-

bution rather than context acquisition.

e Widgets. Derived from the homonymous graphical user interface elements, a widget
is a software component that provides a public interface for a hardware sensor [41].
Widgets hide low level details of sensing and ease application development due to
their reusability. Widgets are usually controlled by a manager. The tight coupling of
widgets with their managers increases efficiency, but leads to a lack of tolerance to

component failures.

e Networked services. This more flexible approach resembles the context server
architecture described above. Instead of a global widget manager, discovery techniques
are used to find networked services. This service based approach is not as efficient
as a widget architecture due to complex network based components, but provides

increased robustness and scalability.

e Blackboard model. In contrast to the process-centric view of the widget and the
service-oriented model, the blackboard model represents a data-centric view. In this
asymmetric approach, applications post messages to a shared media, the so called
blackboard, and subscribe to it to be notified when some specified event occurs. Ad-
vantages of this model are the simplicity of adding new context sources and the easy
configuration. Unfavorable is the need of a centralized server to host the blackboard

and the lack in communication efficiency as two hops per communication are needed.

Finally, Hong and Landay propose a classification for software systems to support context-

aware applications [56]. In this case, by focusing on the architectural properties of the

26 Chapter 2: Context-Aware Mobile Middleware

context management support, they outline four main categories.

e Libraries. A library is a generalized set of related algorithms. Libraries are mainly
developed to promote code reuse. For example, implementations of the JSR 179 Loca-
tion APIs for Java 2 Micro Edition include code for manipulating location information
within the Java framework [4]. Libraries are generally lightweight and easy to use.
However, they tend to be focused on low level context details and do not provide any

support for application design.

e Frameworks. With respect to libraries, a framework-based approach is more focused
on design reuse by providing a basic structure for a certain class of applications, which
can be customized according to the application requirements. A relevant example
falling into this category is the Java Context Aware Framework (JCAF), a Java-
based lightweight infrastructure and programming API, developed by Bardram et al.,
to support context-aware applications [19]. The aim of JCAF is to let programmers
focus on modeling and using context information specific for their application, while
relying on a basic infrastructure to handle the actual management and distribution of
this information. The main limitation of JCAF lies in the fact that it is bound to a
specific programming language and environment, i.e., J2ME, which is not supported
by most portable devices, and depends on pre-defined communication protocols that
cannot be altered, thus leading to a lack of flexibility in system implementation. In
addition, the framework defines its own high level model of context: on one side this
might help in the design of a context-aware application, on the other side it prevents

the design of possibly needed extensions to the context model itself.

e Toolkits. Toolkits are typically built on frameworks and offer a number of reusable

components each one addressing a specific functionality. For example, a toolkit might

Chapter 2: Context-Aware Mobile Middleware 27

offer reusable components for accessing sensors and aggregating context information,
such as in the case of the well known Context Toolkit from Dey and Abowd, the
first comprehensive support toolkit for context-aware applications development [41].
Toolkits represent a significant step towards the realization of reusable context man-
agement support systems. However, similarly to frameworks, they typically depend on
specific implementation platforms, operating systems and/or programming language.
The Context Toolkit already supports some kind of interoperability. The main limita-
tion of a toolkit is therefore its lack of network-based access: implemented as a single
application, a toolkit does not provide any support for distributed access and sharing

of context information.

e Infrastructures. An infrastructure represents a well-established, reliable and acces-
sible set of technologies acting as a foundational basis for other systems. In particular,
service infrastructures expose their capabilities as services, which can be generally de-
fined as logical units of functionality, usually accessible via a network. Let us note that
middleware support solutions are typically implemented as infrastructures. Several in-
frastructures have been proposed to support context-aware applications. Middleware
infrastructures are particularly well suited to support the development of context-

aware applications, as we will explain in the following section.

As stated before, the different categories defined in the above classifications might partially
overlap. For example, the concept of infrastructure, as described in [56], clearly resembles
the networked services defined by Winograd in [107]. In addition, some context acquisi-
tion and distribution models are naturally suited to be exploited within some architectural
approaches, such as in the case of widgets, which represent the basic components of the

Context Toolkit by Dey and Abowd [41].

28 Chapter 2: Context-Aware Mobile Middleware

In general, the choice of an adequate model for context acquisition and manage-
ment depends on specific application requirements and characteristics, However, we believe
that an infrastructure-based approach relying on the underlying network support for dis-
tributing and accessing context bring several advantages. First, by providing uniform ab-
stractions and reliable services for common operations, middleware infrastructures facilitate
the development of robust applications even on a diverse and changing set of devices and
sensors. In addition, they allow sharing and reuse of context information, while carrying
the burden of data acquisition, processing and interoperability on behalf of the application.
Finally, the modular nature of a middleware infrastructure allows to customize context
provisioning and management depending on the specific needs of the client application.

In the following section, we will describe some relevant existing solutions in the
area of middleware infrastructures for context provisioning. A more extensive description

can be found in [17].

Context Management Middleware Infrastructures

The most common design approach for distributed context management frame-
works is a hierarchical infrastructure with several components organized in a layered archi-
tecture, as depicted in Figure FIG-1-BALDAUF-LAYERED ARCH. In particular, the Raw
Data Retrieval layer collects data from sensors on the underlying layer. Let us note that a
sensor can be thought of as a programmatic interface that, when queried, returns an answer
about a specific context data. This means that, beyond physical sensors, e.g., light and
temperature sensors, software applications might also serve as sensors, such as in the case
of a user’s personal calendar providing information about the user’s current activity. The
Preprocessing layer includes any processing component that takes raw context as an input,

performs a data processing activity and provides processed data as an output. Example of

Chapter 2: Context-Aware Mobile Middleware 29

processing activities include context aggregation and verification, as well as inferring ad-
ditional context information from available data. Once processed, context information is
stored and managed by the dedicated layer for further retrieval and access by context-aware
applications, which are logically layered on top of the architecture and exploit the underly-
ing components to be provided with needed context information. Let us note that the same
logical architecture can be implemented and deployed according to different schemas, e.g.,
as a centralized server or a distributed system, thus achieving variable levels of efficiency

and scalability.

Despite being, strictly speaking, a toolkit, the Context Toolkit represents the first
relevant example of infrastructure-oriented support solution for context management [39].
Therefore, its proposed model exerted a prolonged influence on subsequent research in the
area of context-aware computing. The system is based on a centralized discovery server
where distributed sensor units (called widgets), interpreters and aggregators are registered
in order to be found by client applications. The toolkit also provides object-oriented APIs to
create instances of these components. These components and their respective functionalities
set a reference for further research and the layered architecture of Figure 2.3 was developed
based on this original model. The SOCAM (Service-Oriented Context-Aware Middleware)
project introduced by Gu et al. proposes an architecture for the building and the rapid
prototyping of context-aware mobile services [52]. It relies on a central server, called context
interpreter, which acquires context data through distributed context providers and provides

this information after some kind of processing to interested clients.

Another framework based on a layered architecture is presented in the Hydro-
gen project, whose context acquisition approach is targeted to mobile devices [55]. The
architecture consists of three layers: the adaptor layer, the management layer and the ap-

plication layer, with analogous functionalities to the ones described in the generic layered

30 Chapter 2: Context-Aware Mobile Middleware

Application

Storage - Management

Pre-processing

Raw Data Retrieval

Sensors

Figure 2.3: Context-aware layered conceptual framework.

architecture (see Figure 2.3). However, differently from most approaches, the Hydrogen
system tries to avoid the need to rely on a single centralized server for context acquisition
by distributing several context servers on different devices. Devices in physical proximity
are in fact enabled to share their contexts in a peer-to-peer manner by exploiting available
wireless connectivity options, e.g., 802.11 or Bluetooth. Hydrogen object-oriented context
model allows the addition of new context types by specializing the generic context super-
class. A notable characteristic of the system lies in the adoption of XML-based formats and
protocols for inter-layer communication, thus achieving a certain degree of platform and

language independency.

An interesting middleware support solution for distributed context management is
Contory [84]. Contory is a middleware specifically designed to accomplish efficient context
provisioning on mobile devices. To make context provisioning flexible and adaptive based on
dynamic operating conditions, Contory integrates multiple context provisioning strategies,
namely internal sensors-based, external infrastructure-based, and distributed provisioning

in ad hoc networks. This approach presents two advantages. First, arranging different

Chapter 2: Context-Aware Mobile Middleware 31

context strategies permits to compensate for the temporary unavailability of one mechanism
and coping with dynamic resource availability. In addition, combining results collected
through different context mechanisms allows the application to partly relieve the uncertainty
of a single context source and to more accurately infer higher-level context information.
Applications can request context information provided by Contory using a declarative query
language, which features on-demand, periodic, and event-based context queries.

In the previous sections we have shown how context information can be repre-
sented and managed according to different modeling and design criteria. However, realizing
context-aware applications for pervasive environments also requires to design novel middle-
ware solutions that are able to exploit and propagate up to the application level context
information, and allow the context-dependent adaptation of applications. The next sec-
tions will be therefore devoted to present emerging research guidelines to address the issue

of building context-aware middleware that supports application adaptation.

2.3 Metadata-Based Context-Aware Middleware

An emerging approach to support context awareness and to perform application
management accordingly is the adoption of metadata for representing both context infor-
mation and the choices in application behavior at a high-level of abstraction, with a clean
separation between application management and application logic. Metadata can describe
both the structure/meaning of the resources composing a system and the specification of
management operations expressed at a high level of abstraction [77].

The effectiveness of the metadata adoption depends on the characteristics of the
language used for metadata specification and of the runtime environment for the metadata

support. Metadata specification should exploit declarative languages to accommodate users

32 Chapter 2: Context-Aware Mobile Middleware

of different expertise, to simplify metadata reuse and modification, and to facilitate the anal-
ysis of potential conflicts and inconsistencies. Metadata runtime support should be respon-
sible for metadata distribution/update and for policy activation/deactivation/enforcement,
independently of application logic. The following sections will first provide an overview of
emerging metadata specification models, and will then present some relevant examples of
existing middleware solutions that exploit metadata to enable the context-aware adaptation

of mobile applications.

2.3.1 Metadata Models

Among the different possible types of metadata, profiles and policies are consid-
ered of increasing interest and start to be widely exploited in open and dynamic distributed
systems. Profiles represent characteristics, capabilities, and requirements of users, devices,
and service components. For example, markup scheme and ontology-based context rep-
resentation models described in Section 2.2.1 are typically encoded as profiles. Policies
express the choices ruling system behavior, in terms of the actions subjects can/must oper-
ate upon resources. Profiles and policies are maintained completely separated from system
implementation details and are expressed at a high level of abstraction to simplify their

specification by system administrators, service managers, and even final users.

Profile Modeling and Representation

Several research efforts are attempting to identify well accepted formats for the
most common access devices and spreading standard profile adoption for expressing user
needs/requirements. Profile standardization is in fact crucial for resource reusing and shar-
ing in pervasive environments. Most common examples of profiles include user and device

profiles. The former usually describe data about user preferences, interests and demograph-

Chapter 2: Context-Aware Mobile Middleware 33

ics, as well as behavior models. The latter generally contain technical data describing device
capabilities, such as available memory, screen resolution and installed software, as well as
device status parameters, e.g., battery level. Modeling the context of mobile applications
also requires to consider profiling parameters of the environment, such as properties of the
network connection between the user and the accessed service, and conditions of the user’s
environment, e.g., light, temperature and weather conditions. In addition, since most mo-
bile applications are designed according to a service-oriented approach, it is also necessary
to provide support for service profiling. [16]. We do not intend to provide here a com-
prehensive survey about the state-of-the-art profile modeling solutions, but to outline main

research directions and existing standards for profile specification.

Several research efforts and commercial solutions model and exploit user profiles.
According to [16], they can be classified by taking into account different dimensions, includ-
ing the modeling approach to user profiles, the richness and generality of user data included
in the model, and the method to acquire data from the user, e.g., by means of explicit user
input or by deriving information from user behavior. We do not focus here on the issue
of collecting information from the user, instead we refer to the case when information is
explicitly gathered from the user, e.g., by direct user input, and exploited to perform some
kind of tailoring of applications based on the defined profile. Several systems adopt XML-
compliant formats for user profile specification, while others define ontology-based user
profiles [34, 14, 22]. For example, the CARE framework, which originally supported only
CC/PP-compliant profile data, has been enhanced to allow the specification of ontology-
based profiles, encoded in OWL-DL [14]. This allows to choose the most suitable option for
profile representation, depending on whether the application needs more expressive power
(mainly provided by OWL) or efficiency (favored by the exploitation of a simpler format

like CC/PP). Most systems define their own model of user profiles, and a comprehensive

34 Chapter 2: Context-Aware Mobile Middleware

description of existing solutions is out of the scope of this section. Let us note that, although
those models tend to be similarly structured, until now no wide agreement on a common
standard for user profiling has been reached yet. Some promising solutions are emerging in
the field of Semantic Web, which characterize the user in terms of his social relations. For
example the Friend-of-a-Friend (FoaF) project describes a user’s social network by means

of a dedicated RDF ontology [2].

The most prominent solution in device profiling is the Composite Capability / Pref-
erence Profiles (CC/PP) standard, defined by the World Wide Web Consortium (W3C) [67].
CC/PP exploits the XML serialization of RDF (see Section 2.2.2) to allow the creation of
profiles describing the capabilities of a device and possibly the preference of its user. CC/PP
profiles are structured as sets of components that contain various attributes with associated
values. Components and their values are defined in CC/PP vocabularies, specified in RDF,
such as the UAProf vocabulary proposed by the Open Mobile Alliance for representing the
hardware, software and network capabilities of mobile devices [12]. Let us note that CC/PP,
whose first version was recommended as a W3C standard in 2004, is now in the process of
being upgraded to benefit from the functionalities of the newer version of RDF. The main
advantage offered by CC/PP lies in the great standardization effort that was undertaken
by several mobile device manufacturers to reach an agreement on a common format for
the representation of device characteristics. However, CC/PP does neither support user
nor environment profiling, which hinders its widespread adoption for context and metadata

representation.

As far as service profile modeling is concerned, significant efforts have been spent
both by academia and industry to define a common representation format for describing
services. In particular, the Web services community has been promoting XML-based stan-

dard profiles and protocols to describe, search and retrieve services on the Web. The Web

Chapter 2: Context-Aware Mobile Middleware 35

Service Description Language (WSDL), which is now a W3C standard, represents the most
significant solution for service profile specification and has been in fact adopted by many
companies to allow the development of Enterprise Application Integration solutions (see
Chapter 1) [35]. WSDL mainly describes a service in terms of expected input and output,
where inputs and outputs are represented by messages, and it also provides a reference,
the so-called grounding, to the concrete implementation of a service instance. To provide
more expressive representation models for services, several semantic-based languages for
service description have been proposed, such as OWL-S [44], WSMO [85] and Meteor-S
[102], which model both service interface (input/output) and service process workflow by

relying on service ontologies.

Policy Modeling and Representation

Policies, which constrain the behavior of system components, are becoming an
increasingly popular approach to dynamic adjustability of applications in academia and
industry. A policy-based approach to system design and management brings several ben-
efits, including reusability, efficiency, extensibility, context-sensitivity, verifiability, support
for both simple and sophisticated components, protection from poorly designed, buggy,
or malicious components, and reasoning about component behavior. Policy-based systems
generally distinguish two different kinds of policies [90]. Authorization policies specify the
actions subjects are allowed to perform on resources depending on various types of condi-
tions, e.g., subject identity and resource state; obligation policies define the actions subjects
must perform on resources when specified conditions occur. Over the last decade policies
have been applied to automate network administration tasks, such as configuration, secu-
rity, recovery, or quality of service (QoS). Multiple approaches for policy specification have

been proposed, ranging from interpretable policy languages to rule-based policy notations

36 Chapter 2: Context-Aware Mobile Middleware

(if-then-else), to the representation of policies as entries in a table consisting of multiple at-
tributes [98]. Beyond these traditional applications, new challenges for policy management
are emerging. The aim of this section is not to provide a general survey of the state-of-
the-art in policy representation, but to describe selected technical aspects of a few policy
approaches that have been specifically designed and extensively tested for management of
multi-agent and distributed systems in pervasive and mobile scenarios. A more detailed
description of relevant policy-based approaches, particularly in the area of security, will be

provided in Chapter 5.

Ponder is a declarative, object-oriented language that supports the specification of
several types of management policies for distributed object systems and provides structuring
techniques for policies to cater for the complexity of policy administration in large enterprise
information systems [38]. It has been widely deployed in many applications. A basic
Ponder policy is considered a rule governing the choices in system behavior and is specified
by a declaration between a set of subjects and a set of targets. These sets are used to
define the managed objects that the policy operates over. Ponder uses the term subject
to refer to users, principals, or automated manager components, which have management
responsibility (i.e., have the authority to initiate a management decision). A subject can
operate on target objects (resources or service providers) by invoking methods visible in the
target interface. The fundamental policy types in Ponder are obligations and authorizations.
Ponder policies also rely on the key concept of management domains. Domains provide a
means of grouping objects on which policies apply and can be used to partition the objects

in a large system as desired.

To deal with the dynamicity and heterogeneity of pervasive scenarios, novel policy-
based systems have emerged that propose a semantic approach to policy definition and

management. Semantic technologies permit to represent and reason about policies and

Chapter 2: Context-Aware Mobile Middleware 37

application domains, thus increasing flexibility in policy specification and expressiveness in
policy evaluation. A relevant example is the framework KAoS, which provides policy and do-
main management services for agent and other distributed computing platforms [100, 101].
KAoS has been deployed in a wide variety of multi-agent and distributed computing appli-
cations. KAoS policy services allow for the specification, management, conflict resolution
and enforcement of policies within agent domains. KAoS is based on an ontological ap-
proach to policy specification, which exploits OWL, i.e., description logic (DL), features to
describe and specify policies [20]. The KAoS policy ontologies distinguish between autho-
rizations and obligations: a policy constrains the actions that an agent is allowed or obliged
to perform in a given context. By relying on DL features, KAoS is able to classify and
reason about both domain and policy specification basing on ontological subsumption, and
to detect policy conflicts statically, i.e., at policy definition time. However, a pure OWL
approach encounters some difficulties with regard to the definition of some kinds of policies-
specifically those requiring the definition of variables. For this reason, KAoS developers
have introduced role-value maps as OWL extensions and implementing them within the

Java Theorem Prover, used by KAoS.

Rei is a policy framework that permits to specify, analyze and reason about declar-
ative policies defined as norms of behavior [60, 59]. Rei adopts a rule-based approach to
specify semantic policies. Rei policies restrict domain actions that an entity can/must per-
form on resources in the environment, allowing policies to be developed as contextually
constrained deontic concepts, i.e., right, prohibition, obligation and dispensation. The first
version of Rei (Rei 1.0) is defined entirely in first order logic with logical specifications for
introducing domain knowledge [60]. The current version of Rei (Rei 2.0) adopts OWL-Lite
to specify policies and can reason over any domain knowledge expressed in either RDF or

OWL [59]. Though represented in OWL-Lite, Rei still allows the definition of variables

38 Chapter 2: Context-Aware Mobile Middleware

that are used as placeholders as in Prolog. Therefore, Rei’s rule-based approach enables the
definition of policies that refer to a dynamically determined value, thus providing greater

expressiveness and flexibility to policy specification.

2.3.2 Metadata-Based Middleware

To support context awareness and to perform context-aware application adapta-
tion, the emerging research direction is the adoption of metadata for representing both the
context characteristics and the choices in service behavior at a high-level of abstraction,
with a clean separation between service management and service logic. Section 2.3.1 has
provided an overview of emerging models for metadata definition. This section presents sig-
nificant examples of middleware infrastructures supporting context-aware applications by
exploiting metadata. In particular, special attention is devoted to semantic metadata-based
middleware.

The GAIA project is a middleware infrastructure that enhances operating system
features to include context-awareness [83]. GAIA is built on a CORBA distributed sup-
port, but it provides additional features to enable context-awareness. In particular, GAIA
defines a common model of context, which all agents can use in dealing with context. This
model is based on a predicate model of context and has been supplemented with ontolo-
gies to define the semantics of various contexts. It also supports acquisition of contextual
information, reasoning about context and modifying agents behavior based on the current
context. The model of context and the middleware support the use of different reasoning
mechanisms, such as first order logic and temporal logic, to reason about context and decide
how to behave in different contexts. Agents can alternatively employ learning mechanisms
like Bayesian learning and reinforcement learning to learn different behaviors in different

contexts.

Chapter 2: Context-Aware Mobile Middleware 39

The Context Broker Architecture (CoBrA) is an agent-based architecture for sup-
porting context-aware computing in so-called smart spaces. Smart spaces are distributed
system that consist of communities of intelligent agents, services, devices, and sensors shar-
ing a common goal. For example, in the EasyMeeting application, a smart meeting room
is set up to provide relevant services and information to the meeting participants (e.g.,
speakers, audiences, and organizers) based on their situational conditions (or contexts)
[34]. CoBrA uses Semantic Web languages for representing context ontologies and for sup-
porting context reasoning, thus facilitating independently developed agents to share context
knowledge and minimizing the cost of context sensing. Central to CoBrA architecture is the
presence of a Context Broker, an intelligent agent that runs on a resource-rich stationary
computer in the space and gathers raw context data from sensors deployed in the envi-
ronment. The context broker is also responsible for reasoning about the information that
cannot be directly acquired from sensors, detecting and resolving inconsistent knowledge
that is stored in the shared model of context, and protecting user privacy by enforcing

policies (specified in the Rei language [60]).

Agostini et al. proposed the Context Aggregation and REasoning (CARE) mid-
dleware to support a set of requirements for context-awareness in distributed environments.
CARE has three major goals, namely: supporting the fusion and reconciliation of context
data obtained from distributed sources, supporting context dynamics through an efficient
form of reasoning, and capturing complex context data that go beyond simple attribute-
value pairs. CARE adopts profiles and policies to perform context-based tailoring of service
provision to mobile users. In particular, as described in Section 2.3.1, profiles are repre-
sented by using Composite Capability /Preference Profiles (CC/PP) [67]. Profiles include
both shallow context data and ontology-based context data which are expressed by means

of references to ontological classes and relations inserted in the CC/PP profile. The choice

40 Chapter 2: Context-Aware Mobile Middleware

of defining two different kinds of profiles is motivated by performance issues reported by the
authors in [15]. Each entity has a dedicated Profile Manager for handling its own context
data. Both the user and the service provider can declare policies in the form of rules over
profile data which guide the adaptation and final personalization of the service. The Con-
text Provider module is in charge of building the aggregated context information for the
application logic. In particular, it evaluates adaptation policies and solves possible conflicts

arising among context data and/or policies provided by different entities.

CARMEN is a middleware for context-aware resource management that supports
and facilitates the design, development, and deployment of context-dependent services for
the wireless Internet [22]. CARMEN allows service providers, system administrators, and
final users to specify different kinds of metadata in a declarative way at a high level of
abstraction. CARMEN metadata influence the dynamic determination of context and,
consequently, the context-based service provisioning, without any intervention on the appli-
cation logic, according to the design principle of separation of concerns. CARMEN exploits
two types of metadata: profiles to describe the characteristics of any resource modeled in the
system, and policies to manage migration, binding and access control. CARMEN adopts
XML-based standard formats for profile representation to deal with the Internet openness
and heterogeneity, such as CC/PP for user/device profiles [67] and WSDL for the service
component interface description [35]. In addition to profiles;, CARMEN expresses policies
as high-level declarative directives: access control policies to ensure secure resource usage
and mobility handling policies to guide the middleware decisions in response to context
variations at service provision time. Policies are specified in the Ponder policy language.
The CARMEN middleware is designed according to a layered architecture, where the higher
level layer is responsible for managing metadata and context, and the lower level layer is in

charge of providing common features for distributed service provisioning, e.g., support for

Chapter 2: Context-Aware Mobile Middleware 41

naming, event management and distributed communication. A peculiar feature of CAR-
MEN is the way it handles dynamic variations in service provisioning due to user mobility,
i.e, by exploiting mobile agents, called shadow proxies, that migrate across nodes on the

fixed network and act on behalf of mobile users.

2.4 Alternative Design Guidelines for Context-Aware

Middleware

Section 2.3 has focused on the emerging guideline of adopting metadata to specify
and enforce behavior adaptation in response to context variations. Alternative approaches
have been proposed to address the same issue, being the following the most significant
approaches: reflective middleware and middleware based on dynamic aspect-oriented pro-

gramming paradigm.

2.4.1 Reflective Middleware

To support adaptation features, several research efforts have proposed the adoption
of reflection techniques in mobile middleware design and development. Reflection is a design
and programming technique providing principled mechanisms to inspect the structure and
behavior of a system and make changes to both at run time [48]. For this purpose, a reflective
system maintains a representation of itself that is casually connected to the underlying
system it describes, the so called casually connected self-representation (CCSR) (citare 6 e
7 di [48]). CCSR is often referred to as the meta level, while the system itself is the base
level. Hence, any change made at the meta level via this self-representation are reflected in
the underlying base level, and vice versa. The process of making the base level tangible and

accessible at the meta level is known as reification, while operations to introspect and make

42 Chapter 2: Context-Aware Mobile Middleware

changes to the meta level are commonly referred to as the Meta Object Protocol (MOP).

Reflection has been predominantly applied to language design, thus leading to the
definition/extension of many languages, such as Sun’s Core Java Reflection library (citare
8 del capitolo) and OpenC++ (citare 10), and later to the field of operating systems (citare

78 di [72]. In this section, we focus on the use of reflection in middleware design.

Reflection has been applied to build traditional middleware, such as in the case
of OpenORB (22 di [72]), OpenCORBA (36 di [72]), and dynamicTAO (34 di [72]). More
recent approaches have investigated the use of reflection in the design of mobile middleware
solutions to achieve context-awareness and adaptation mechanisms [86]. In those systems,
reflection is used to make both the internal structure of the middleware and its behavior
visible, and to adapt the middleware behavior to changes in the execution context, e.g.,
available resources in the locality where a mobile device is currently attached and inter-
action protocols needed to cooperate with other middleware components. The latter is
particularly relevant to address interoperability issues arising from heterogeneous middle-
ware platforms that need to interact, such as in the scenarios targeted by the ReMMoC
framework [49]. ReMMoC is a reflective middleware framework that supports the capability
to develop applications independently of middleware implementation. The framework com-
bines the Lancaster approach of components, component frameworks and reflection with
a Web Services based abstraction. The CARISMA framework, developed at University
College London, is a peer-to-peer middleware for context-aware service provisioning [32].
CARISMA adopts a mixed approach, based both on reflective techniques and metadata.
Nodes can select services according to user and application context information, which is
represented by means of profiles and policies. In particular, different policies define how to
provide a specific service based on different context conditions, like for instance the variable

amount of network bandwidth. Reflection is used in CARISMA to inspect and adapt poli-

Chapter 2: Context-Aware Mobile Middleware 43

cies to the current context: for example, depending on available bandwidth, the middleware
selects and enforces the most appropriate policy to allow the transfer of a file. Another mid-
dleware for mobile environments that relies on a combination of reflection and metadata is
ALICE, developed at Trinity College Dublin [26]. ALICE supports network connectivity
in mobile environments by providing a range of client-server protocols and selecting the
most appropriate one to current context, i.e., network connectivity status, according to
configuration policies specified in the Chisel policy language.

Reflection represents an interesting design guideline to achieve context-awareness
in middleware solutions since it provides powerful dynamic adaptation features. However,
reflective middleware provides little support to adaptation control and management. This
is particularly important with respect to context-aware middleware since it is crucial to
clearly define, retrieve and classify adaptation strategies based on context variations. In
addition, the integration of reflective middleware with legacy systems that are typically
implemented in non-reflective programming languages poses significant limitations to the
widespread adoption of this middleware design approach.

Let us note that context metadata can be viewed as a form of structural reflec-
tion, providing additional (meta) information about the underlying system, e.g., physical

location, current battery levels, network bandwidth and performance) [48].

2.4.2 Aspect-Oriented Middleware

Aspect-oriented programming (AOP) is a software engineering approach designed
to support the implementation of cross-cutting concerns, i.e., system properties and func-
tions that cannot cleanly declared in terms of systems components since they must be scat-
tered or distributed across otherwise unrelated components [63]. Typical examples include

features such as security, persistence, logging and monitoring. In other design approaches

44 Chapter 2: Context-Aware Mobile Middleware

developers often implement these features in an ad-hoc manner across the system, thus
leading to increased system development, debugging and evaluation time. AOP supports
the concept of separation of concerns to counter this problem: instead of implementing
cross-cutting features within the base code, AOP models them as aspects, i.e., pieces of
code that can be woven into the base code at compile time. Dynamic AOP programming

provides even greater benefit since aspects can be woven into base code at run time.

Dynamic AOP techniques have been exploited in the design of mobile middleware
to achieve dynamic behavior adaptation [61]. For example, the MIDAS middleware, built on
top of the dynamic AOP-based framework PROSE, provides runtime extensions to mobile
applications that might need additional functionalities to adapt to different environment
conditions, such as encryption layers or billing modules [82]. Lasagne is an AOP frame-
work that supports the dynamic customization of middleware platforms and distributed
systems [99]. The aspect-oriented approach of Lasagne is based on eztensions, i.e., code
units that can be dynamically introduced in the system to update the behavior of multiple
components. The interesting feature of this framework is that extensions are selected based
on context information, where contextual properties are defined and attached to specific
service functionalities. This allows some kind of context-aware adaptation of the system’s

behavior.

Let us note that the AOP and the reflection-based approaches represent possible
solutions to the issue of adapting the middleware behavior by taking different perspectives.
AOP is basically a set of software engineering techniques, which allows the modeling of
the middleware structure at a high level of abstraction, based on the assumption that the
engineering of some ”aspects” of a system cannot be hard-coded into the application logic at
design time. On the contrary, reflection is a programming principle that enhances software

objects with the ability to inspect their own qualifying properties. Therefore, to a certain

Chapter 2: Context-Aware Mobile Middleware 45

extent, these two approaches might be considered complementary since the former pertains
to the engineering process and the latter to the programming phase.

Due to the ability of supporting dynamic behavior adaptation, dynamic AOP
appears to be a promising area of research for the design of context-aware mobile middle-
ware. Analogously to reflection, however, AOP methodologies lack a structured mechanism
to both specify the exact code location where adaptation is needed, and how adaptation
should be applied depending on user, application and environment context. Metadata-based
middleware solutions address this issue by specifying adaptation strategies using declarative

metadata.

2.5 Chapter Summary

In this chapter we have provided an overview of existing technologies and solutions
to (i) represent context information, (ii) collect, manage and distribute context information
to interested applications, and (iii) support adaptation of pervasive applications in response
to context changes. In particular, with regard to context representation, we have shown
the increased expressivity and flexibility offered by an ontology-based representation of
context, with special attention to Semantic Web standards. We have also explained the
advantages in terms of reusability and robustness brought by the adoption of a middleware
infrastructures for context management. Finally, we have discussed the emerging research
direction of adopting metadata in middleware design, which supports context-awareness
and application adaptation, while keeping a clean separation between application logic and

management.

46

Chapter 2: Context-Aware Mobile Middleware

Chapter 3

Towards Semantic-Enabled

Context-Aware Middleware

The purpose of a computer is to help you do something else.

Mark Weiser

The previous chapter has provided an overview of different approaches to the design of
context-aware middleware. This chapter will illustrate the main guidelines we have followed
in this thesis to design and develop novel context-aware middleware support solutions. In
particular, it will first show the limitations of existing solutions, thus providing motivations
for our choice of adopting semantic metadata to support context-awareness. Then, it will
present some relevant pervasive application areas, which would benefit from being enhanced
with support for context-awareness. These specific application areas have been selected be-
cause they represent crucial steps towards our envisioned pervasive scenarios, where mobile
users dynamically interact with each other, by exploiting available resources via possibly

heterogenous devices and under variable conditions. For each described application area, we

47

48 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

have designed and implemented a semantic-enabled context-aware middleware architecture,

as described in the next chapters.

3.1 Enhancing Mobile Middleware with Explicit Semantics

Pervasive applications are characterized by a dynamic and constantly changing
execution context. This raises new challenges for the design of mobile middleware solutions,
which should support mobile computing applications in the task of adapting their behavior
to frequent changes in the execution context, i.e., middleware should become context-aware.
Recalling Chapter 1, designing novel middleware solutions for pervasive environments is a

demanding task as it requires to address some crucial requirements. In particular:

o Middleware solutions should provide expressive representation models that allow to
describe interacting entities, their operating conditions and the surrounding world, i.e.,
their context, according to an unambiguous semantics. This allows interoperability
between possibly unknown entities wishing to dynamically establish an interaction,

although originally designed as parts of independently developed applications.

o Middleware solutions should support distributed applications in the task of reconfigur-
ing and adapting their behavior/results to ongoing context changes, by providing the
application with context-awareness. Context-aware adaptation strategies should be
expressed at a high level of abstraction by cleanly separating application management

from application logic.

As shown in the previous chapter, the adoption of metadata represents an emerging
approach to the design of context-aware middleware solutions. Metadata allow the repre-
sentation of both context information and choices in application behavior at a high-level of

abstraction, with a clean separation between application management and application logic.

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 49

This separation of concerns is crucial to reduce the complexity of developing applications for
pervasive environments and to favor rapid application prototyping, runtime configuration,
and maintenance. Metadata-based middleware solutions thus represent a promising option

to address the requirement of supporting context-aware applications.

The effectiveness of the metadata, however, largely depends on the characteris-
tics of chosen languages and tools for metadata specification and runtime exploitation. In
particular, a crucial issue to achieve of context-awareness is the ability of the middleware
support to properly describe and interpret context information, such as the entities that
characterize the system, the interactions occurring between them and the operating condi-
tions under which such interactions occur, as well as context-driven adaptation directives.
In addition, given the intrinsic openness of pervasive application scenarios, dynamic inter-
actions between entities sharing little or no prior knowledge about each other are extremely
likely to happen. This requires to unambiguously define the meaning, i.e. the semantics,
of used metadata: based on metadata information, independently developed applications
should be enabled by the middleware platform to dynamically interoperate with minimal

human intervention.

In most current middleware solutions, however, the meaning of used metadata
is only known to developers and/or system administrators: metadata are represented and
encoded in a form that is primarily intended for human comprehension and exploitation.
The shared assumption is that the conceptual model underlying context description and
management is essentially implicit, i.e., it is only known to humans who develop the mid-
dleware platform, and possibly encoded in natural language, which is clearly not machine-

understandable.

We believe that the inability of the middleware platform to automatically acquire

and process knowledge about the underlying system has hindered the full achievement of

50 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

context-awareness in pervasive applications. The first limitation regards the possibility to
automatically process metadata, including automated reasoning, to evaluate and make de-
cisions based on current context information. Automated reasoning over metadata defined
with unambiguous semantics might support the middleware in the task of managing system
entities according to the context information carried by metadata, while facilitating the
analysis of potential conflicts and inconsistencies. The second main limitation of current
metadata-based solutions regards cross-interoperability between different middleware plat-
forms. As long as metadata are represented according to models and formats that are only
understandable by human users, middleware platforms will not be able to exchange con-
text information outside their own boundaries. Therefore, we claim that novel middleware
should support context-awareness by exploiting semantic metadata, i.e., metadata whose
meaning is explicitly defined in a machine-understandable form and can thus be acquired

and processed by software applications.

Following the above considerations, we have derived two main guidelines for the

design and development of middleware supporting pervasive applications, namely:

1. Support for context-awareness. Novel mobile middleware solutions should support
context information representation and management, and propagate context visibility
up to the application level, while providing expressive and flexible means to specify

context-dependent adaptation strategies.

2. Adoption of semantic metadata, that is, metadata whose meaning is unambigu-
ously defined in a machine-processable form. Middleware should be enabled to reason
about metadata describing system entities and their context, to take appropriate

management decisions based on changing context conditions.

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 51

These guidelines have been applied to different application areas within pervasive
computing that would particularly benefit from the exploitation of context. Common to all
applications is the key role of context in enabling mobile users to personalize applications
based on their needs and current situation. In particular, our envisioned scenario is a per-
vasive environment, where mobile users dynamically interact with each other, by exploiting
available resources via possibly heterogenous devices and under variable conditions. To en-
able this kind of scenario, middleware support should be provided to address some crucial

issues, namely:

1. Service Discovery. Mobile users should be enabled to dynamically search and re-
trieve resources/services they need to accomplish their goals and activities. In a
pervasive environment, several services with different characteristics are offered to
mobile users via different connectivity options and heterogeneous devices. Mobile
users should be supported in the task of looking for only those services that are of
potential interest based on current context information, like for instance user interests

and preferences, device technical properties and service status.

2. Access Control. After retrieving needed services and resources, mobile users should
be supported in the task of properly access them. Let us note that in pervasive envi-
ronments mobile users can act not only as service clients, but also as service providers,
by making resources and/or functionalities hosted on board of their devices available
to other users. Given the high dynamicity of pervasive environments, adequate sup-
port should be provided to ensure control over service and resource access. Proper
access control permits the secure interaction of mobile users wishing to dynamically

interact by reciprocally sharing and exchanging resources.

3. Social Computing. Once empowered to securely discover and manage access to

52 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

each other’s resources, mobile users can exploit the full potential of pervasive appli-
cation scenarios. For example, by establishing impromptu collaborations users can
dynamically exchange knowledge and interact to achieve common objectives. It is
therefore necessary to provide support for social computing applications, such as the
creation and management of social networks based on user location, interests and

social activities, i.e., user context.

We have designed and implemented a semantic-enabled context-aware middleware
architecture targeted at each of the above described application area. In the following, we
show how our design guidelines, as defined above, can address the specific issues of each

application class.

3.2 Personalizing Discovery of Pervasive Services

In the emerging pervasive scenarios, mobile users are able to access several ser-
vices in any way at any time anywhere, by exploiting all connectivity capacities provided by
their portable devices. Therefore, to support mobile user activities, it is crucial to enable
the dynamic retrieval of available services in the neighborhood of the user current point of
attachment, while minimizing user involvement in service selection, configuration and bind-
ing. Service discovery in pervasive environments, however, is a complex task as it requires
to face several technical challenges at the state of the art, such as user/device mobility,
variations (possibly unpredictable) in service availability and environment conditions, and
terminal heterogeneity. Users might need to discover services whose names and specific
implementation attributes cannot be known in advance, while service providers need to
advertise services to clients whose technical capabilities and conditions at interaction time

might be mostly unpredictable beforehand. In addition, service providers cannot exactly

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 53

define and code at design time all possible configurations of devices accessing the service,

e.g., by including any possible discovery protocol and data format.

Most common discovery solutions have been designed for traditional distributed
enterprise/home environments and mobile computing scenarios. The shared underlying as-
sumption is that services can operate in dynamic heterogeneous environments with varying
users, devices, service components, and network conditions, but within well-defined bound-
aries under the management of system administrators. In particular, all existing solutions
implicitly define the boundaries of service discovery searching space (discovery scope), with
different approaches. One class of solutions, such as Intentional Naming System (INS) and
Bonjour, considers administrative domains as the implicit discovery scope: clients can search
only within the collection of services under the control and responsibility of their same ad-
ministrator. Another set of approaches adopts a network topology-based approach to fix
search boundaries, such as DEAPspace and BluetoothSDP that include services within a
single-hop wireless network range. Other discovery proposals, such as NinjaSDS, SLP, and
Jini, slightly extend the previous approaches with query services that allow users to specify
either their roles or physical locations to refine the discovery scope. However, different
nearby users have the same views of available services regardless other high-level attributes,

such as their specific preferences, temporal conditions, and on-going activities.

Ubiquitous computing environments are far more dynamic and heterogeneous than
traditional deployment scenarios, thus posing unique discovery challenges. Services can be
neither tailored in advance to answer all user needs nor statically configured to fit the
characteristics of all access devices. In addition, it is inappropriate to define discovery
scopes only on the basis of network topology or administrative domain criteria. Services
operate on multiple coexisting networks, which might be only temporary connected, and

in different administrative domains. It is also difficult to assume standardized naming

54 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

and attribute representations: services are typically administered by different entities, each
autonomously assigning its descriptions of service properties. For instance, let us imagine
a catering service and a boat maintenance one: while they probably share the concepts of
price and availability, they are likely to differently represent them, thus making difficult

traditional request/offer matching based on syntactic attribute comparison.

We claim that the specific characteristics of ubiquitous environments should affect
service discovery, especially discovery scope and retrieval. Primarily, there is the need
for a paradigm shift from network/administrative domain-centric to user context-centric
discovery. Network topology or administrative domain parameters are too coarse-grained
to properly define discovery scope boundaries and to automatically select retrieval results
in ubiquitous scenarios. The user and her context, as defined above, should be considered
central. Novel discovery solutions should fully exploit user context awareness, in an effective
and efficient way, to properly determine discovery results. This could also help clients in
saving time and efforts in discovered service selection: searching scopes should automatically

be limited to the only relevant targets depending on user context.

In addition, because of the impossibility to make a-priori assumptions about the
way user context and services are described in an open and dynamic deployment scenario,
the other emerging requirement is the adoption of semantic languages. The primary advan-
tage is that semantic technologies permit a formal representation of user context and service
properties at a high level of abstraction. On the one hand, that enables automated rea-
soning on context /service representations. On the other hand, it facilitates interoperability
between entities that may wish to interact even if statically unknown. In particular, ser-
vice retrieval can primarily benefit from a semantic-based approach: traditional discovery
queries based on simple naming templates are likely to fail in ubiquitous environments be-

cause users typically cannot have total/partial knowledge about needed service identifiers.

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 55

Moreover, discovery matchmaking approaches based on service attributes are insufficient
because they rely on the exact matching of patterns/keywords.

The lack of existing middleware discovery solutions addressing the aforementioned
issues have motivated us to design and implement a novel discovery framework, called
Middleware for Intelligent Discovery of context-Aware Services (MIDAS). MIDAS supports
user-centric discovery by providing mobile users with service views, i.e., set of accessible
services, that are personalized based on users’ current context. To achieve such context-
awareness, MIDAS relies on a semantic metadata representing the properties of interacting
entities, and it exploits automated reasoning to match user requests against service offers.

A detailed description of the MIDAS architecture is provided in Chapter 4.

3.3 Controlling Access to Resources in Spontaneous Collab-

orations

Pervasive computing scenarios enable mobile users in physical proximity of each
other to form ad-hoc networks for spontaneous collaborations and to engage in opportunis-
tic and temporary resource sharing without relying on the availability of a fixed network
infrastructure.

However, ad-hoc collaborations raise new security challenges with regard to the
retrieval and use of distributed resources, undermining several assumptions of traditional
access control solutions. Traditional access control solutions usually assign permissions to
principals depending on their identity/role. In the new pervasive scenario, however, users
typically share services with unknown entities and, more importantly, with entities whose
identity may not be sufficiently trustworthy. In addition, since spontaneous collaborations

are typically established in an impromptu and opportunistic fashion, it may not be possible

56 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

to rely on formal collaboration agreements to decide who can access which resources and
how, thus excluding the possibility to exploit access control policies defined on a contractual
basis as in medium or long-term inter-organizational coalitions. Access control in sponta-
neous coalitions is further complicated by the high dynamicity in resource availability. Each
collaborating entity may alternatively play the role of either a service client or provider or
both, depending on dynamic conditions and the current status of interaction. When playing
the service provider role, an entity may introduce new services into the environment, thus
changing the set of available resources. Variations in resource availability occur also because
of the transience of ad-hoc coalitions where entities-resource providers- leave and/or enter

a coalition, unpredictably, at any time.

Appropriate access control models are needed to enable resource sharing and access
in spontaneous coalition scenarios. It is crucial that the definition and enforcement of access
control policies take into account the heterogeneity and dynamicity of the environment in

terms of available services, computing devices, and user characteristics.

To address these issues, we advocate a paradigm shift from subject-centric access
control models to context-centric ones. Differently from subject-centric solutions where con-
text is an optional element of policy definition that is simply used to restrict the applicability
scope of the permissions assigned to the subject, in context-centric solutions, context is the
first-class principle that explicitly guides both policy specification and enforcement process
and it is not possible to define a policy without the explicit specification of the context
that makes that policy valid. Instead of assigning permissions directly to the subjects and
defining the contexts in which these permissions should be considered valid and applicable,
a system administrator defines for each resource the contextual conditions that enable one
to operate on it. When an entity operates in a specific context, she automatically acquires

the ability to perform the set of actions permitted in the current context.

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 57

In addition, we consider context crucial for enabling policy adaptation. In perva-
sive environments the conditions that characterize interactions between users and resources
may be largely unpredictable. Consequently, policies cannot all be specified a priori to
face any operative run-time situations, but may require dynamic adjustments to be able
to control access to resources. We use the term ”policy adaptation” to describe the abil-
ity of the policy-based management system to adjust policy specifications and evaluation
mechanisms in order to enable their enforcement in different, possibly unforeseen situations.
In this scope, it is crucial to be able to represent the various operative conditions under
which policies should be applied, i.e., the context, and to define the expected behavior of

the policy framework on the basis of such context variations.

We also claim that context-centric access control solutions need to adopt onto-
logical technologies as key building blocks for supporting expressive policy modeling and
reasoning. Semantically-rich policy representations permit description of policies at differ-
ent levels of abstraction and support reasoning about both the structure and properties
of the elements that constitute a pervasive system, i.e., the context and the management

policies, thus enabling policy analysis, conflict detection, and harmonization.

We have implemented these guidelines in the Proteus' policy framework that
exploits (i) context-awareness and (ii) semantic technologies for the specification and the
evaluation of access control policies. The Proteus access control framework and its prototype

implementation are presented and discussed in Chapter 5.

!Proteus is the name of a marine god of the ancient Greek mythology that was able to change his shape
into different forms.

58 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

3.4 Building Anywhere and Anytime Social Networks

Sociality characterizes an individual’s life: people go to bars and restaurants, study
together in schools, participate in art, music, and sport groups, form clubs and associations,
and work together in teams on production lines and in business. Everybody takes part and
plays a role within the framework of a social community. Social ties, such as friendship,
similarity of interests or professional activities, compose a web of social binds among in-
dividuals which is referred to as social network (SN) [36]. Since from early 1960s several
research efforts have been spent around the investigation of advanced collaborative systems
leveraging human’s connections and sociality. Internet-based SN computing solutions allow
to establish and maintain on-line virtual social communities of users grouped by common
relations, such as common music preferences or job connections. The underlying assump-
tion is that social relations can be established independently from physical places, and the

physical places and the social spaces where interactions occur can be maintained separate.

Technology advances in wireless networks and the increasing diffusion of portable/
wearable devices with both fixed and wireless connectivity offer a unique chance to further
improve social networking services and to extend their scope of applicability. The possibility
of ubiquitous computing of being connected anytime and anywhere enables serendipitous
social encounters between proximate users with common interests and the formation of
ad-hoc spontaneous SNs, anywhere and anytime [81, 46]. For example, users could exploit
their wireless-enabled portable devices to be informed about the availability of their friends
in the nearby. Users could also rely on their devices to gather information about people
they regularly observe and encounter while on the move, e.g., people who catch the same

train every morning, but who do not know yet, i.e., familiar strangers [58].

Ubiquitous computing technologies allow the design/development of novel social

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 59

networking services that permit users both to reinforce their existing social binds and to
establish new face-to-face ones. In particular, ubiquitous technologies promote a focus shift
from virtual to physical social spaces, re-establishing the connection of SNs to physical
spaces. This is a key opportunity considering that user proximity and physical places af-
fect and influence social behavior in many ways [58]. Physical proximity, in fact, increases
the likelihood of forming impromptu social relationships. In addition, physical places can
act as social filters for people; places like museums, discos, centered around specific activi-
ties, group together users who are likely to share common characteristics and preferences.
Several prototypes of social systems have recently emerged that exploit not only social
preferences, but also co-location and/or reciprocal proximity of individuals as key design
principle for guiding SN formation/management strategies and for restricting the scope of

user interactions [58, 36].

However, to realize the full potential of anywhere and anytime social computing
various technical challenges must be still addressed. Anytime and anywhere social comput-
ing requires several support mechanisms and tools, including location/proximity systems
that permit to identify where users are located and who are nearby, expressive represen-
tation models of physical place and user characteristics, support facilities for the retrieval
of the information characterizing places/users, and effective social matching algorithms
that exploit the visibility of user location/proximity and of place/user characteristics to
extract meaningful SNs. Moreover, because of the impromptu and transient nature of
ubiquitous interactions, another main challenge is to develop solutions able to extract SNs
autonomously and transparently from users by minimizing user intervention. Achieving
anytime and anywhere SN computing requires also shared and interoperable vocabularies
for modeling location/entity characteristics to avoid inconsistent interpretations typically

arising in open and heterogeneous ubiquitous environments.

60 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

Current state-of-the-art solutions tend to address only a subset of the above-
described social networking management aspects. In addition, the mostly adopted approach
in currently available social networking solutions is to embed into the application the han-
dling of location tracking, of relation extraction, and of visibility of SN members. This
significantly increases the complexity and the costs of designing, developing and deploy-
ing anytime and anywhere social networking services, thus slowing down their widespread

acceptance and diffusion.

We claim that the success of anytime and anywhere social computing depends
on the design and development of middleware-level solutions integrating within the same
framework all the basic facilities needed to support SN management. Anytime and anywhere
social services in different application deployment domains would all benefit from similar
sets of basic support functions. Middleware-level solutions promote clear separation between
SN management concerns and application requirements, thus simplifying social computing
application prototyping.

We also believe that context-awareness should guide the design of novel middleware-
level solutions for social computing. To support the creation of SNs that reflect the reality
of social interactions in ubiquitous environments, it is essential to take into account sev-
eral context information, such as user location and/or reciprocal proximity, user attributes,
motivations, attitudes, activities and social preferences. Toward this goal, middleware pro-
posals should provide integrated support for context modeling, acquisition, reasoning and

for context-aware SN extraction.

In particular, it is crucial to find adequate expressive means for rich and unam-
biguous representation of users, their contexts and the networks they participate in [93].
However, the impossibility to make a-priori assumptions about the way user contexts are

described in an open and dynamic deployment scenario, such as the ubiquitous one, compli-

Chapter 3: Towards Semantic-FEnabled Context-Aware Middleware 61

cates context modeling endeavors. Semantic languages seem to offer a promising solution to
the key issue of describing social contexts at the proper level of abstraction, while enabling
automated reasoning on context representations. In addition, emerging ontology standards,
such as RDF and OWL, allow interoperability between possibly unknown users that may

wish to establish a social interaction.

Based on the above guidelines, we have designed and implemented a middleware-
level solution, called Socially-Aware and MObile Architecture (SAMOA) for anytime and
anywhere social application provisioning that supports the creation and management of
social networks by taking into account users’ context, e.g., user preferences, location and
execution environments. A key feature of SAMOA is the adoption of a semantic-based
modeling approach to context information and a semantic-based social matching algorithm
to infer relations among co-located individuals. The SAMOA architecture and its prototype

implementation are described in Chapter 6.

3.5 Chapter Summary

In this chapter we have summarized the main guidelines that we have adopted
in this thesis to design and develop novel middleware solutions for supporting applications
in pervasive environments. In particular, these guidelines are the enhancement of mobile
middleware with support for context-awareness and the adoption of semantic technologies
to both represent and reason about context. We have also shown how to exploit these
ideas in different research areas to provide users with a personalized experience of pervasive
applications. In particular, we have implemented a set of middleware-level solutions to (i)
support mobile users in discovering services of interest, (ii) securely access those services and

resources, and (iii) build anytime anywhere social networks to allow dynamic collaboration

62 Chapter 8: Towards Semantic-Enabled Context-Aware Middleware

between mobile users based on their current context.

Chapter 4

The MIDAS Service Discovery

Framework

Calm technology increases our knowledge and our ability to act, without

increasing information overload.

Mark Weiser

This chapter presents our middleware-based approach to support semantic discovery of
context-aware services, called Middleware for Intelligent Discovery of context-Aware Ser-
vices (MIDAS). After a brief introduction to a real application scenario that motivated our
work, the chapter describes MIDAS metadata model and middleware architecture. Then,
it describes a prototype implementation of the system, discusses its usability through a
case study and provides experimental results to show the feasibility of our approach. The
chapter ends with an overview of relevant related work and providing some insights into

ongoing work.

63

64 Chapter 4: The MIDAS Service Discovery Framework

4.1 Motivating Scenario

To introduce some service retrieval /access issues for next generation mobile sys-
tems, let us start by considering the ubiquitous provisioning scenario of a harbor. During
high season, a harbor in a crowded vacation locality, such as one in the Tyrrhenian sea,
hosts hundreds of boats, leaving and entering the port, with tourists on board who may be
willing to access services offered by the harbor computing infrastructure from ubiquitous
attachment points (devices embedded into boat equipments, cellular phones, palmtops).
For instance, while approaching Capri port, Bob might need to access a booking service for
mooring or a route assistant service to safely drive his boat into its assigned place. Once
docked, he might benefit from info-stations with the list of all available marine facilities
or from tourist agency services to discover local tourist attractions. In addition, during
navigation, Bob’s boat should have the possibility to interact with other crossing-by ships
serving as both service clients and providers. For instance, while sailing toward Ischia, Bob
might cross a yacht along its route and desire to exchange tourist information about the
already visited marines (photos, suggestions for good restaurants and not crowded bays,
people from the same country met in other harbors). It is crucial that users can seam-
lessly discover all and only the available services of potential interest, by minimizing user

involvement in system configuration and service selection.

Service discovery is a complex task in dynamic heterogeneous environments and re-
quires facing several technical challenges at the state of the art: mobility, service availability

changes, user role variations, environment unpredictability, and terminal heterogeneity.

Boats move and frequently change their physical position, both with respect to
their piers and to other boats in the nearby, which could play the role of service clients/

providers. That implies that devices and services, either deployed over the craft or used

Chapter 4: The MIDAS Service Discovery Framework 65

by people on board, often experience variations in service availability due to disconnections
and reconnections to possibly heterogeneous wireless networks. New services may also be
frequently added in the harbor info-stations, especially in high season, as well as existing

ones may be removed, modified, or relocated.

In addition, it may happen that the same subject plays the role of either ser-
vice user or provider or both: roles are not always statically assigned and might change
depending on the current status of interaction. Service discovery is further complicated
by the impossibility to foresee not only all the possible interactions that may take place
among users and services, but also the environment situations where interactions might
happen. Let us consider, for instance, a service that provides incoming tourists with maps
of local attractions and instructions to reach them. The service provider cannot exactly
define and code at design time all possible configurations of devices that are going to access
the service, by including any supported discovery protocol and any possible format for the

provided geographic indications (map images, plain text, speech-based,).

Users need to discover services whose names and specific implementation attributes
cannot be known in advance, and providers need to advertise services to clients whose tech-
nical capabilities and interaction situations are mostly unpredict-able beforehand. Finally,
tourist characteristics, requirements, and preferences may be significantly heterogeneous,
as they might speak different languages and exhibit a variable degree of technical expertise.
Users may also access services in different ways, on the ground while walking around the
harbor, or from boats while engaged in other activities, e.g., while sailing or driving the
motorboat within the port area. This means that discovery often occurs in situations where
users cannot pay much attention to careful and long operations of service retrieval and selec-
tion. In addition, access terminals usually exhibit relevant differences in resource capabilities

(display size and resolution, computing power, memory, network bandwidth, battery). For

66 Chapter 4: The MIDAS Service Discovery Framework

instance, a yacht might be equipped with a global positioning system em-bedded within an
onboard personal computer, while a tourist traveling on a rented motorboat can rely only

on her limited smart phone capabilities.

4.2 Overview

To address the above issues, we have designed and implemented a context-aware se-
mantic discovery framework, called Middleware for Intelligent Discovery of context-Aware
Services (MIDAS)!.

As a key feature, MIDAS uses context awareness to personalize service discovery
along two different directions. On the one hand, upon explicit user requests, the mid-
dleware exploits user contexts to determine the applicable discovery scopes, thus creating
personalized lists of available services (service views, see Figure 4.1). On the other hand,
once determined initial service views, MIDAS exploits context awareness to autonomously
update views in an effective way, triggered by the only context changes of interest for the
currently supported views. View adaptation does not require any user involvement, thus
providing the additional value of updated perception of available services without any user
overhead [23].

To support context-aware semantic discovery, the two original and key aspects of
MIDAS are its full exploitation of semantic metadata and its context-aware facilities.

In designing our middleware, we have also considered the issue of making semantic-
based discovery facilities accessible to resource-constrained devices. To this purpose, we
have designed an extension of the MIDAS middleware architecture, called Adaptable Intelligent

Discovery of context-Aware Services (AIDAS), which integrates MIDAS discovery features

"http://www.lia.deis.unibo.it /research/MIDAS/

Chapter 4: The MIDAS Service Discovery Framework 67

time and
location

A5 /m W8/ Dm0

[V (V€ i 4

personalized @
service view - Ej

Figure 4.1: MIDAS user-centric service view based on user context and semantic metadata.

with support for the dynamic configuration of semantic facilities to fit the technical capa-
bilities of heterogeneous devices. In particular, AIDAS offers a wide set of mechanisms
middleware facilities capable of adapting semantic support to the different characteristics
of mobile devices and of providing mobile devices with visibility on semantic functionalities
hosted by nearby devices. Hereinafter we describe the MIDAS framework, while providing
some insights about the AIDAS extension only in Sections 4.4 and 4.5.2. More details on

the AIDAS system can be found in [95].

4.3 Metadata Model

In order to properly perform discovery activities, MIDAS adopts semantic-based
metadata (profiles) to describe the properties and characteristics of involved entities, i.e.,
services and clients. The model defines a service as a ”black box” that provides some
functionalities to the external world, according to a declarative, object-oriented approach.

With the concept of client, the model denotes any entity that exploits service functionalities

68 Chapter 4: The MIDAS Service Discovery Framework

to achieve some kind of result. A client may be a human user looking for a specific service
or a software component, like for instance a service broker, which searches appropriate
single services to compose them into a complex service. MIDAS associates each client with
a context including any information regarding the user that is relevant to the discovery
process. For example, a human user’s context may include the characteristics of the human
person, e.g., the languages she is able to speak, as well as the technical characteristics of

her device, e.g., 802.11b/g support.

MIDAS metadata model is designed to specifically support personalized user-
centric discovery. In particular, as shown in the following sections, the model focuses its
representation mainly on service/user/device capabilities and requirements. As a key fea-
ture, MIDAS metadata model provides fine-grained profile modularization to favor service
discovery and selection effectiveness: the comparison between a user service request and
service offers is not made over a complete service description, but over single service capa-
bilities of interests. Device profiles further refine the searching scopes in order to provide
users with only really usable and accessible services. Finally, MIDAS allows users to easily
express priority preferences on requested service capabilities and on how to relax some user’s
requirements in the case exactly compatible services are not found. Users define priority
preferences before service discovery is performed, to be relieved from the duty of manually
selecting and ordering compatible services once they have been discovered. Requirement
relaxation preferences can be optionally defined after discovery completion if no exactly
compatible services have found to allow users to eventually retrieve alternative services of
interests. Furthermore, in MIDAS preferences are explicitly collected from the user follow-
ing an intuitive and user-based pattern, and they appear as a first-class metadata to guide

service discovery.

Chapter 4: The MIDAS Service Discovery Framework 69

4.3.1 Service Metadata

A service is described by a static profile and a dynamic profile. The static profile
contains data that are relatively stable over time or do not depend on dynamic operating
conditions, such as service name and functions. On the other side, the dynamic profile

includes information that frequently change, e.g., location and state of the application.

Static Profile

The static profile consists of four sub-parts, namely: identification, service ca-
pabilities, service requirements, and service interface. Identification information provides
information to name a service and to identify its location. Service capabilities are used
to represent the functionalities a service provides and the way these functionalities are
achieved, like for instance supported interfaces and communication protocols. For exam-
ple, a service may exhibit the capability of performing software update via SSL from a
remote site. A capability basically represents a logical unit of service functionality. It can
be either a core capability, i.e., a functionality directly related to the service core activity,
or a functional capability, i.e., an ability concerning properties that are not bound to the
service activity, but describe how this activity is performed. For example, the remote up-
date service has the core capability of ”updating software” and the functional capability of
”communicating over SSL”. The latter is not specifically related to the service main activ-
ity since a software update service performs its task, i.e., updating software, independently
from the presence of a SSL support. A capability example providing booking facilities for
tourists is shown in Figure 4.2a. Service capabilities allow service providers or advertisers to
describe their services in terms of offered functionalities. Users express their service requests
in terms of desired service capabilities (see Figure 4.2b). To express service capabilities, we

adopt a semantic approach. Therefore, we have defined a basic capability ontology. This

70 Chapter 4: The MIDAS Service Discovery Framework

ontology needs to be integrated with the specific ontologies of the considered application,

such as the news ontology in our example. Ontologies are modeled using OWL-DL [20].

Service requirements represent conditions imposed by the service in order to be
accessed. In particular, a requirement is used to specify which capabilities a client wishing
to access the service must exhibit. For example, a remote software update service normally
requires that the client has a previous version of that software installed on her device. We
distinguish between hard and soft requirements. Hard requirements are mandatory, while
soft requirements may be described using a scoring function that determines the degree
of importance for the requirement to be satisfied. MIDAS provides a requirement base
ontology: specific requirement ontologies, such as a security ontology, have been developed
by extending base classes and properties?.

The third part of the static profile, i.e., the Service interface includes or points
to the information needed to invoke the service, such as input/output description or the
endpoint where to invoke the service. Let us note that such information might be provided
according to different specifications, depending on the interface implemented by the service,

like for example as a method signature for a Java object or as a WSDL profile.

Dynamic Profile

The dynamic profile describes service properties that might vary over time. In
particular, the dynamic profile includes information about the state of a service, which
represents the service operating conditions. Those conditions are dynamically retrieved via
external information sources that provide, for example, information about service availabil-

ity and load, or the average response time after service invocation.

2http://www.lia.deis.unibo.it /research/MIDAS/Ontologies/SecurityOntology.owl

Chapter 4: The MIDAS Service Discovery Framework

71

<profile:Service rdf:ID="IslandTourBooking">
<profile:hasProfile>
<profile:Profile rdf:ID="IslandTour_Profile”>

c
2
T
3}
=
=
[}
k=)

<profile:profile_dyn_cap>
<profile:DynamicCapBlock rdf:ID="DynamicCapBlock_1">
<profile:cond_capability>
<tourist_cap:BookingCapability rdf:ID="FunctionalCap
<tourist_cap:bookedEntity rdf:resource="&tourism-ont
<ltourist_cap:BookingCapability>
<Iprofile:cond_capability>
<profile:condition>
<time_cond:TimeCondition rdf:ID="Condition_1">
<time_cond:startsFrom rdf:resource="&time-ontJuly/
<time_cond:endsAt rdf:resource="&time-ont;August’/>
</time_cond:TimeCondition>
<Iprofile:condition>
</profile:DynamicCapBlock>
<Iprofile:profile_dyn_cap>

Capabilities

<profile:profile_dyn_req>
<profile:Dy qBlock rdf:ID="D
<profile:cond_requirement>

qBlock_1">

</profile:cond_requirement>
<profile:condition>

Requirements

<Iprofile:condition>
</profile:DynamicReqBlock>
</profile:profile_dyn_req>
<lprofile:Profile>
<Iprofile:hasProfile>
<lprofile:Service>

ability_1">
;LocalTour"/>

<profile:User rdf:D="RobertGreen">
<profile:hasProfile>
<profile:Profile rdf:ID="RobertGreen_Profile">

[}
B Dynamic Metadata

a)

<id:Location rdf:resource="&location-ont;DynamicLoc alization"/>
—— <Iprofile:profile_id>
o
)
z
<
=
<
(6]
2
=
<
=
g
=
=4
o
'3
<lprofile:Profile>
</profile:hasProfile>
</profile:User>
b)
<profile:Device rdf:ID="RobertGreen_Devicel">
<profile:hasProfile>
<profile:Profile rdf:ID="RGDevicel_Profile">
»
g
z
©
Q
<
o
— <profile:profile_dyn_req>
0 <profile:D ReqBlock rdf:ID="D; q _1">
c <profile:cond_requirement>
“E’ <io_cap:OutputCapability rdf:ID="OutputCapability_1" >
[<io_cap: rdf: & f it Text” >
= <lio_cap:OutputCapability>
s <Iprofile:cond_requirement>
@ <profile:condition>
. <device:BatteryCondition rdf:ID="&device-ont;LowBatt ery">

<Iprofile:condition>
</profile:DynamicReqBlock>
<Iprofile:profile_dyn_req>
<Iprofile:Profile>
</profile:hasProfile>
<lprofile:User>

c)

Figure 4.2:

4.3.2 User Metadata

MIDAS service/user/device profiles.

Clients are described in terms of profiles and preferences. We herein focus on user

profiles and preferences. The user profile is composed of dynamic and static metadata.

Dynamic properties include, for example, locality and state. The static part of the profile

contains three kinds of information: identity, capabilities and requirements. Identification

information is needed to identify the user and may be expressed in various ways, e.g., an

ID code, a string or an URL. Capabilities represent what the user is able to perform or

to provide, such as the ability to understand a language. User requirements are conditions

72 Chapter 4: The MIDAS Service Discovery Framework

imposed by the user that need to be always respected during service provisioning. Figure

4.2a shows an example of user profile.

Since a request for service may be expressed over several capabilities, and a capa-
bility might have multiple properties, we allow the user to establish a priority order among
the various capabilities/properties by means of priority preferences. Such a preference en-
ables to specify either an explicit priority index for capabilities/properties or to define a
binary relation between two capabilities/properties. For example, a user can state that for
a "newspapers online” capability it is more important that the ”language” preference is
respected rather than the ”topics” one. Hence, the first property to be tested for match-
ing will be ”language” and a service that exhibits a good value for this property will be

considered more compatible than another having a better value on the ”topics” capability.

4.3.3 Device Metadata

Device metadata describe the technical characteristics and operating conditions
of a user device. Similarly to service/user profile, the device profile includes static and
dynamic metadata, and is composed of the identification part, the capabilities part and
the requirement part. The identification part includes device category and type, as well as
names and parameters that allow device identification within a network, such as a MAC
address or a Bluetooth ID number. Device capabilities represent technical characteristics,
supported functions and resource state, such as memory storage capability, secure socket
layer support, and battery level. Finally, device requirements specify technical conditions
that must hold for the device to properly access services and interact with other devices. For
example, if a device is able to connect to another device only via Bluetooth, then Bluetooth

connectivity represents a requirement for that device.

Chapter 4: The MIDAS Service Discovery Framework 73

4.4 Middleware Architecture

The MIDAS architecture provides a a set of functionalities to support service
discovery and selection based on user context information and user preferences as expressed
in user queries. Figure 4.3 depicts MIDAS logical architecture, designed in two layers. The
lower layer provides core facilities for service naming and registration. The upper layer
components facilitate profile encoding, manage user contexts, identify proper discovery
scopes, and provide personalized service views depending on user context.

In the AIDAS extension, MIDAS support for discovery management has been
supplemented with an additional configuration management set of functionalities. In par-
ticular, those additional components provide needed facilities to allow each portable device
to advertise provided semantic functionalities to co-located devices, e.g., reasoners, to dis-
cover, if needed because of resource limitations, locally available discovery management
facilities, and to choose whether to download on-board or remotely access needed semantic
services depending on device properties. For a detailed description of AIDAS configuration

management features, we refer the reader to [95].

4.4.1 Discovery Management Services

The Metadata Manager (MM) provides support for the specification, modifi-
cation, checking for correctness, installation and evaluation of different types of semantic
metadata. MM provides templates to support the user in the task of specifying user/device/
service profiles. The use of templates allows to ensure that metadata are encoded in the
correct format, i.e., compliant to MIDAS profile ontology, while preserving non technical
users from the burden of dealing with profile specification. Let us note that MM does not
perform semantic reasoning, but only syntactic compliance checking.

The Discovery Manager (DM) is responsible for determining and maintaining

74 Chapter 4: The MIDAS Service Discovery Framework

/ MIDAS Upper Level Facilities \
Discovery Manager

| Discovery Scope Manager | | Service View Manager |

| Semantic Matching Engine | | Query Processor Manager |
\‘ M etadata Manager ‘ ‘ Context Manager ‘J
4 . N

MIDAS Lower Level Facilities

‘ Naming Facilities ‘ ‘ Registration Facilities ‘
)
[Java Virtual Machine]

Figure 4.3: MIDAS middleware architecture.

the list of all services in the user’s physical vicinity and of the specific services that are
visible/accessible to that user on the basis of her context. In particular, among all services
available in the user’s network locality, DM selects the ones whose profiles are semanti-
cally compatible with user/device profile. The degree of compatibility between service and
user/device profile is determined by applying the semantic matching algorithm implemented
by PME to service capabilities and user/device requirements. For example, let us consider
the case of a user that does not wish to use her credit card online. In this case, DM would
not include in the user personal view any service that requires credit card payment. It
may also happen the case of a user whose device does not support the Bluetooth protocol
and who is therefore not enabled to access services provided via Bluetooth. In this case,
DM would not include in the user service view Bluetooth-accessible services. The Context
Manager (CM) is responsible for creating user contexts when MIDAS users initiate their
discovery sessions, for monitoring changes in both created user contexts, e.g., in user pro-

files, and in relevant external environment conditions, e.g., the addition of new services, for

Chapter 4: The MIDAS Service Discovery Framework 75

notifying changes to interested entities, and for updating user contexts accordingly.

The Query Processor (QP) is in charge of collecting and processing user requests
for service. QP interacts with the user, via her User Proxy described in Section 3.2, to
determine the required service capabilities and user preferences. In particular, QP is in
charge of translated into a property restriction any value preference expressed by the user
at access request time. Let us note that QP can also express disjunctive queries, which are

specified by means of the OWL UnionOf construct.

The Profile Matching Engine(PME) is responsible for performing a matching
algorithm between user/device requirements and service capabilities, taking user preferences
into account. PME is requested to perform its algorithm in two cases, i.e., when DM needs
to determine the list of visible services for a user, i.e., the list of services whose profile is
compatible with user/device profile, and when QP needs to resolve a a specific user’s query.
In the first case, PME receives from CM user/device profiles and from DM the profiles of
all locally available services. In the second case, PME interacts with DM to be provided
with the list of user’s visible services along with their profiles. In both cases, the static
profile is used to perform direct matching, i.e., between user and device requirements and
service capabilities. In particular, for each capability required by the user, PME verifies if
the service profile contains one or more compatible capabilities. The matching algorithm is
described in detail in the next section. The same algorithm is re-applied to the output of
the direct matching to perform inverse matching, i.e., to match service requirements against

user/device capabilities.

When determining the list of user’s visible services, PME performs the matching
algorithm on all locally available service, as provided by DM. On the contrary, in case a
specific user request for service is being evaluated, PME can be differently configured. In

particular, PME may either stop executing the matching algorithm at the first occurrence

76 Chapter 4: The MIDAS Service Discovery Framework

of a compatible service, or perform the algorithm on each service visible to the user. In the
first case, PME returns to CM the reference to a single service, while in the latter case it

returns a list of services, ordered on the basis of the semantic compatibility results.

4.5 Prototype Implementation

We have developed a prototype implementation of the MIDAS middleware to be
deployed in a wireless Internet scenario, i.e., a computing environment where wireless solu-
tions extend the accessibility of the fixed Internet infrastructure via access points, working

as bridges between fixed and mobile devices.

4.5.1 Naming and Registration Facilities

Recalling Figure 4.3, MIDAS is designed as a a layered architecture, whose lower
layers provide core facilities for service naming and registration. In particular, MIDAS
identifies services with Uniform Resource Identifiers; services can follow both announcement-
based and pull-based approaches to advertise their availability; services can advertise their
profiles either to a distributed directory or directly to interested parties in response to
client requests. Naming and registration facilities have been implemented in two alternative
versions. In the Jini-based version, the prototype relies on the presence of at least one
centralized directory where providers can register their services to have them advertised via
the Jini lookup protocol [3]. In case there is no centralized directory, we have implemented
an alternative support based on the JXTA protocols to advertise and retrieve services within
a peer-to-peer network [5].

In the next sections we focus on the upper layer facilities, which implement MIDAS

key features.

Chapter 4: The MIDAS Service Discovery Framework 77

4.5.2 Context-Aware Discovery Facilities

The Discovery Manager is in charge of determining a personalized view on services
when a user starts her discovery session. DM includes a service registry component that
allows service providers to advertise their services and users to look for them on the basis of
a publish /subscribe mechanism. In particular, service providers can publish the description
of their services using service templates that are provided by a dedicated MM instance
integrated within DM. This MM instance only provides checking for syntactic correctness
and compliance to the MIDAS profile representation model. Static service profiles are stored
in the registry at start-up time and associated to a service identification code that permits
to other middleware components, e.g., CM and PME;, to reference them. Values of dynamic
properties describing service state are not stored in the registry, but they are dynamically
calculated at service access time by invoking appropriate methods on the service interface.
DM exploits PME matching to discard services semantically incompatible with the user
context, by exploiting context information. In particular, user/device requirements and
service capability metadata are first used as PME input parameters to reduce the set of
potentially compatible services. PME matching is re-applied to this subset of services with
service requirements and user/device capabilities as input parameters for further context-
based pruning. In addition, DM updates discovery scopes for on-going discovery sessions
when CM notifies that services in other user contexts are newly added or have changed their
profiles: DM applies PME matching again to those services to verify whether to include
them in discovery scopes.

The Context Manager (CM) is responsible for creating and managing user con-
texts. CM can update user contexts according to different strategies: at pre-defined time
intervals, or upon any context change detection, or upon explicit user request. The adopted

strategy is decided at middleware configuration time and depends on several factors, from

78 Chapter 4: The MIDAS Service Discovery Framework

user requirements to the desired trade-off between the need for fresh context information
and the limitation of update overhead. CM has been developed by exploiting the context-
awareness infrastructure and programming APIs of the Java Context Awareness Framework
[19]. The current CM prototype implementation fully supports acquisition and management
of static context information and of relatively simple dynamic information, e.g., time, loca-
tion, and standardized monitoring indicators about device state, while we are still working
on managing dynamic information harder to access in an open way, such as service load

and expected network bandwidth/jitter.

The Query Processor consists of two main sub-components: the Query Process-
ing Engine (QPE), i.e., the core processing module that performs the automatic translation
of user/service requirements into required capabilities that can be processed by the Profile
Matching Engine, and the Query Processing Interface (QPI), i.e., a user-oriented mod-
ule that interacts with the user to define her service request and collect her preferences.
QPI provides the user with a graphical interface to guide her during the specification of
required service capabilities and preferences. Once the user has specified her service request
and preferences, these data are forwarded to the QPE component, which translates them
into OWL-based required service capabilities and related preferences. Then, QPE forwards
these data to PME to be provided with (a list of) services that are semantically compatible

with the user request.

The Profile Matching Engine performs matchmaking between offered and requested
capabilities to determine the degree of semantic compatibility between user/device and ser-
vice profiles. The details of the matching algorithm are provided in the following section.
PME exploits the reasoning features of the DL-based reasoner Pellet [8] and the framework

Jena [13]to acquire and manage ontologies.

Chapter 4: The MIDAS Service Discovery Framework 79

4.5.3 Matching Algorithm

This section describes the matching algorithm we have implemented to perform

preference-driven semantic selection of services.

As shown in Figure 4.4, the algorithm takes an offered capability and required
capability and it returns the degree of semantic compatibility between them. Each capability
is characterized by its properties. Let us note that offered capabilities are individuals, i.e.,
specific instances of a class, whereas requested capabilities are classes defined by restrictions,
where restrictions on service properties are determined based on value preferences specified
by the user. The algorithm works on one capability at a time. For each required capability,
it is able to recognize three possible subsumption relations with the offered capability,
namely: the offered capability may be an instance of the requested capability class (case
exact), or an instance of a class that subsumes it (case subsumes) or an instance of a class
that is subsumed by it (case plug-in) [80]. These semantic relations are determined by
performing subsumptio