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ABSTRACT 

This thesis was aimed to investigate the genetic response to abiotic and biotic stresses in 

durum wheat (Triticum turgidum L. var. durum), a cultivated tetraploid subspecies (AABB; 

2n = 28) used for the production of pasta, couscous and various types of bread. Two research 

areas were focused: i) the high-throughput phenotyping (HTP) to detect novel drought 

tolerance quantitative trait loci (QTL) clusters and ii) the Kompetitive Allele Specific 

Polymerase chain reaction (KASP) marker development for the genetic dissection of 

Furarium head blight (FHB) resistance. 

Concerning the first area, I investigated drought adaptive traits on durum wheat elite 

accessions (Durum Panel) in three consecutive years (2017-2019) at Maricopa Agricultural 

Center (University of Arizona, USA) which provided the experimental field and the high-

throughput phenotyping platforms (HTPP). The genome-wide association study (GWAS) 

results indicated the presence of thirty-one QTL clusters for two or more drought adaptive 

traits unrelated to the major loci responsible for phenology and plant height. Twelve of them 

overlapped with the major QTL for grain yield and related traits previously reported in studies 

carried out across a broad range of soil moisture availability and field drought conditions in 

wheat. 

Concerning the second area, I investigated two plant materials: i) 130 durum wheat accessions 

artificially inoculated with Fusarium culmorum (FC) and F. graminearum (FG) species and 

evaluated for incidence (INC), severity (SEV), FHB index, Fusarium-damaged kernels (FDK) 

and deoxynivalenol (DON) content; ii) 165 F6 recombinant inbred lines (RILs) from the cross 

between the cultivars Simeto (susceptible) and Levante (moderately resistant) evaluated for 

SEV using FG as inoculum. The genetic dissection led to sixteen QTL clusters, in part 

unrelated to the phenology and unknown in bread wheat, from which specific loci 
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(QFHB.ubo-1A.1, QFHB.ubo-1B.1 and QFHB.ubo-6A.1) significantly influenced DON 

content. The haplotype analysis allowed me to validate KASP Single Nucleotide 

Polymorphisms (SNPs) suitable for marker-assisted selection (MAS) programs, i.e., for the 

high-throughput screening of large populations as well as for the selection of cultivars by 

pyramiding loci for resistance/tolerance to DON content and other FHB traits. 
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GENERAL INTRODUCTION 

Durum wheat, Triticum turgidum L. ssp. durum, is a tetraploid species evolved from domesticated 

emmer wheat, T. turgidum ssp. dicoccum. It is mainly used for pasta production, couscous and 

various types of bread and planted annually on an estimated area of 18 million hectares, which 

represents approximately 8–10% of all the wheat-cultivated area in the world (De Vita and Taranto, 

2019).  

Biotic and abiotic stresses are major limiting factors for durum wheat productivity worldwide 

(Mohammadi et al. 2015) and the discovery of their genetic bases represents an essential priority 

(Wang et al. 2019) to perform marker-assisted selection (MAS), a highly efficient method to select 

resistance loci in breeding programs and particularly to pyramid multiple resistance genes in new 

varieties (Pei, 2019). Recently, an international consortium has generated a high quality reference 

sequence of the modern durum wheat cultivar Svevo (Maccaferri et al. 2019) in order to lead to the 

selection of new cultivars with higher quality, higher yield and more resistance to diseases.  

Objectives and outline of present thesis 

This thesis dissects the genetic bases of durum wheat responses to drought and Fusarium head 

blight (FHB) disease through the common approach of genome-wide association study (GWAS) 

(Zhu et al. 2008) using a high-density 90K wheat single nucleotide polymorphism (SNP) array 

(Wang et al. 2014). GWAS is optimal for examining multiple traits (Atwell et al. 2010) as well as 

suitable for phenotyping materials under multiple environments, thereby reducing environment-

induced errors and enhancing accuracy (Hall et al. 2010). 

Even though recurrent drought associated with climate change is among the principal constraints to 

global productivity of wheat (Mwadzingeni et al. 2016), yet, how it affects the vulnerability of 

wheat production in combination with several co-varying factors, i.e., agro-climatic regions, 
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phenological phases and soil texture, it remains unclear (Daryanto et al. 2016). For clarifying the 

role of drought, Chapter 1 focuses on emergent high-throughput phenotyping (HTP) approaches to 

genetically investigate difficult, time-sensitive drought adaptive traits in durum wheat, providing 

innovative opportunities to detect novel proxy traits governing the drought adaptive responses 

(Condorelli et al. 2018).  

FHB is a devastating fungal disease in wheat worldwide, and it results in yield losses and 

mycotoxin accumulation, such as deoxynivalenol (DON), in infected grains (He et al. 2018). Durum 

wheat is notorious for its higher susceptibility to FHB (Miedaner et al. 2017) in comparison to the 

hexaploid bread wheat, Triticum aestivum, due to a narrow genetic diversity (Giancaspro et al. 

2018; Rudd et al. 2001) and numerous small-effect resistance quantitative trait loci (QTL) which 

are difficult to be combined in selective breeding (Steiner et al. 2019). Chapter 2 reports the 

validation of Kompetitive Allele Specific Polymerase chain reaction (KASP) markers suitable for 

haplotype-based MAS programs, i.e., for the high-throughput screening of large populations as well 

as for the selection of durum wheat cultivars by pyramiding loci for resistance/tolerance to DON 

content and other FHB traits. 
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CHAPTER 1 

High-throughput phenotyping to detect novel drought tolerance QTL clusters in durum wheat 

 

INTRODUCTION 

Projected future effects of global climate change on agriculture indicate an increased frequency and 

severity of drought events (Luo et al. 2019) resulting in yield losses for many crops and threatening 

regional/global food security (Wang et al. 2018). Additionally, an estimated doubling in crop 

production is required for 2,050 year in response to the rapid growth human population (Tilman et 

al. 2011) and an approximate 38% increase in annual crop production rate is necessary (Sadeghi-

Tehran et al. 2017). In order to overcome these challenges, an important plant breeding approach is 

the better understanding of the genotype-phenotype relationship to unravel the genetic basis of 

complex traits (Sun et al. 2018; Knoch et al. 2019). In the last decade, the crop genetic 

improvement tools have benefited from rapid advances in the genomic sequencing but not from the 

throughput of the traditional plant phenotyping (Sadras and Lawson, 2011; Fahlgren et al. 2015; 

Araus et al. 2018) by inducing a shift of the research bottleneck in plant sciences from genotyping 

to phenotyping (Mir et al. 2019). 

For this purpose, the field-based high-throughput phenotyping (HTP) represents an emerging 

approach to quantify difficult, time-sensitive plant traits in limiting growing conditions (Thompson 

et al. 2018) providing innovative opportunities to detect novel proxies governing drought adaptive 

crop responses (Condorelli et al. 2018). Robotic field scanners as well as ground-based and 

Unmanned Aerial Vehicle (UAV) platforms provide unprecedented opportunities to accurately 

measure proxy traits in hundreds of plots (Pauli et al. 2016; Trapp et al. 2016; Duan et al. 2017; 

Shakoor et al. 2017; Shi et al. 2017) with dense temporal and spectral resolution (Virlet et al. 2017). 
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The objective of this work was to identify genetic determinants of durum wheat adaptation to 

drought. For detecting loci controlling adaptive traits, a panel of durum wheat elite accessions 

suitable for GWAS was field-evaluated in three years at University of Arizona (USA) under 

conditions of progressive drought severity as well as well-watered and water-limited treatments. 

Drone and ground-based platforms were employed for the acquisition of multiple drought sensitive 

traits, while a semi-automated robotic field phenotyping platform was employed for the acquisition 

of multispectral and hyperspectral data referring to the physiological response of plants subjected to 

water limiting growing conditions. In addition, traditional phenotyping protocols for plant 

metabolism reaction and for photosynthetic activity as result of adaptation/damage in water-limited 

conditions and under the “Rehydration method” were performed. Finally, the total biomass was 

evaluated at harvest to quantify the photosyntate loss due to the stress.  

A GWAS was performed including the Kinship and the genetic structure of the population, as well 

as the flowering time, as covariate. Twelve major QTL hotspots were identified for two or more 

Drought Resistance (DR) proxies, unrelated to the major loci responsible for phenology and 

overlapped with the major loci for grain yield and related traits previously reported in wheat.  

 

 

MATERIALS AND METHODS 

Plant material and field management 

The field trial was conducted at Maricopa Agricultural Center (MAC, 33.070° N, 111.974° W, 

elevation 360 m) on a Casa Grande soil (fine-loamy, mixed, superactive, hyperthermic Typic 

Natrargids) for three consecutive years (2017-19). In the first two, the plant material included 248 

durum wheat elite accessions in two replicates from the association mapping population UNIBO-

Durum Panel (hereafter referred to as “Durum Panel”) assembled at the University of Bologna 
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(UNIBO), representing a large portion of the genetic diversity present in the most important 

improved durum wheat gene pools (Figure 1).  The germplasm list is available through the 

following link: https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full. The Durum Panel 

was selected and released from breeding programs at the International Maize and Wheat 

Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry 

Areas (ICARDA), the National Institute for Agricultural Research (INRA, France) and the Institute 

of Agrifood Research and Technology (IRTA, Spain). Other accessions were released by public or 

private breeding programs in Australia, Italy, France, Northern Great Plains of the USA and Canada 

(North Dakota, Montana, Saskatchewan and Alberta) and Pacific Southwest of the US, commonly 

referred to as “Desert-Durum®”. According to a Randomized Complete Block Design (RCBD), the 

Durum Panel was planted on 20 December 2016 in the first year and on 28 November 2017 in the 

second year using Orita and Tiburon cultivars as border plots. Each accession was evaluated in two-

row plots (3.5 m long, 0.76 m apart) with a final density of 22 plants/m2. Before planting, nitrogen 

at 112 kg ha−1 and phosphorus (P205) at 56 kg ha−1 were incorporated into the soil and 28 days after 

sowing, irrigation was managed by a pressurized drip system using lines buried ~10 cm deep. The 

drip irrigation was stopped on 16 March (days after planting, DAP: 86) in the first year and 11 

March (DAP: 103) in the second year. A progressive drought stress was induced on plant material 

until the harvest on 3 April 2017 (DAP: 104) in the first year and 2 April 2018 (DAP: 125) in the 

second year. The harvest was carried out before the growth stage (GS) of ripening to allow for 

planting the next phenotyping experiment. Therefore, the dry biomass mentioned below indicates 

the status at a point in time rather than direct estimates of final yields. Disease and insect pest 

pressure were negligible throughout the crop.  

A subset of 215 elite accessions from Durum Panel was planted on 20 December 2018 in three 

replicates and using Orita and Tiburon cultivars as border plots. Each accession plot consisted in 

two-rows (3.5 m long, 0.76 m apart) of which the east one was well-watered (WW) and the west 

https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full
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one was water-limited from 6 March (75 DAP) to 8 April (107 DAP) when harvest was carried out 

to measure the dry biomass. Soil moisture data were collected for monitoring the water stress 

conditions using time domain reflectometry (TDR) probes spatially distributed across the 

experimental field and measure moisture time series at different depths throughout the durum wheat 

growth seasons. 

 

 

 

 

 

Figure 1 | The UNIBO-Durum Panel at Maricopa Agricultural Center. The pictures refer to three 

different days after planting (DAP) in 2017 (A), 2018 (B) and 2019 (C). 

 

Chlorophyll fluorescence imaging (CFI) by the “Lemnatec” field scanalyzer 

The Danforth Plant Science Center (St. Louis, Missouri, US) announced in 2015 a multi-

institutional $8 million grant from the U.S. Department of Energy ARPA–E TERRA division to 

support the building of a scanning robot “Lemnatec” field scanalyzer (LFS) assembled in 2016 at 

MAC-USDA Arid Land Research Station. The LFS is the largest field crop analytics robot in the 

world with 30-ton steel gantry that autonomously moves along two 200-meter steel rails. It includes 
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a diverse array of cameras which facilitates specific crop measurements with dense temporal and 

spectral resolution: chlorophyll fluorescence imaging (CFI) system, visible and near-infrared 

(VNIR), short-wave infrared (SWIR), forward-looking infrared (FLIR) and light detection and 

ranging (LiDAR). In three consecutive years, the LFS produced a big dataset of multispectral and 

hyperspectral imagery, even if the gigabytes of information are still processing by researchers of 

Danforth Plant Science Center with a view to producing plot means per genotype as essential step 

for GWAS. However, CFI data means were generated in the third year on four progressive days 

(DAP: 71, 97, 102 and 106) in darkness, since the plants were not subject to non-photochemical 

quenching (NPQ) mechanisms and quenched the light harvesting limits (Loriaux et al. 2013) 

(Figure 2). In detail, light-emitting diode (LED) bulbs generated flashes of red light (620 nm) for 

1400 ms to saturate the electron transfer in the plant photosystem II (PSII). The camera recorded the 

emitted fluorescence in 101 images over two seconds during and after the flash with an optimal 

distance between the camera and the canopy of 70 cm and a final view of 1.10 m. The R-project 

scripts were produced to generate Fq/Fm data means and estimate the efficiency at which light 

absorbed by PSII was used for primary electron acceptor (QA) reduction, according to the emitting 

local fluorescence (Fq) referring only to the reduction of QA and the maximum fluorescence (Fm). 
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Figure 2 | Light-emitting diode (LED) bulbs generated flashes of red light (620 nm) for 1400 ms to 

saturate the electron transfer in the plant photosystem II (PSII) and produced chlorophyll 

fluorescence imaging (CFI) data in darkness.  

 

NDVI and IRT values by UAV and ground-based platforms 

Two UAVs and a ground-based platform were used during the first year (2017) to measure the 

normalized difference vegetation index (NDVI) and infrared thermography (IRT) at midday on 

progressive DAP under well-watered and water-limited conditions (Figure 3). NDVI is an effective 

indicator of vegetation response to drought (Ji and Peters, 2003), based on the difference between 

the maximum absorption of radiation in the Red spectral region (from 620 to 690 nm) and the 

maximum reflectance in near infrared light (NIR, from 760 to 900 nm) as result of the leaf cellular 

structure (Tucker, 1979). Healthy and living canopies absorb most of the Red light by the 

photosynthetic pigments, while the NIR light is mostly reflected due to light scattering in leaf 

internal structure and canopy architecture (Tattaris et al. 2016; Yousfi et al. 2016). IRT is an 

effective indicator of the canopy temperature, a surrogate for stomatal conductance, used to 

investigate the plant water status and potential tool for phenotyping and irrigation scheduling 

(Prashar and Jones, 2016). NDVI and IRT were extracted from georeferenced orthomosaic 

GeoTIFFs generated from imagery captured using autopiloted flights of either a MicaSense 
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RedEdge multi-spectral camera (MicaSense, Seattle, WA) carried on a hexacopter, or a Parrot 

Sequoia (Parrot, Paris, France) multi-spectral camera carried on an eBee (SenseFly, Lausanne) 

fixed wing aircraft. The multispectral cameras showed dissimilar features in terms of band centers 

and bandwidths (Table 1).  

The flights were conducted at 40 - 42 m above ground level, resulting in ground sampling distances 

of ~3 cm/pixel for the RedEdge, and 4.4 cm/pixel for the Sequoia. Mission planning was done with 

UgCS (UgCS, Riga) for the RedEdge camera, and either eMotion 3 (senseFly, Lausanne) or Atlas 

Flight (MicaSense, Seattle, WA) for the Sequoia camera. All flights were planned for 80% image 

overlap along flight corridors. Both the Sequoia and RedEdge cameras use global shutters. 

Pix4DMapperPro desktop software (Pix4D SA, Switzerland, http://pix4d.com) was used to generate 

orthomosaics for each camera band. Six to eight ground control points (GCP) geolocated with Real 

Time Kinematic (RTK) survey precision were used to georeference the orthomosaics. Camera 

images were calibrated using manufactured supplied reflectance panels that were imaged at the 

beginning of each flight. The Pix4D processing options were essentially the same as those of 

Pix4D's “Ag Multispectral” template version 4.1.10, except that GeoTIFF tiles were merged to 

create the NDVI/IRT orthomosaic. Plot-level means from UAV were created in QGIS software 

version 2.18.3 (QGIS, US, http://www.qgis.org). Shape files containing annotated single plot 

polygons were generated with an R-project script. Shape files with GCPs as features (points) were 

also employed based on RTK survey grade measuring devices. For all flights, the GeoTIFF with the 

NDVI/IRT orthomosaic from Pix4D was combined with the plot polygon and GCP shape files in a 

single QGIS project. Confirmation of proper geolocations of the Pix4D orthomosaics was achieved 

by visually confirming alignment of the visible GCPs with the corresponding points in the feature 

shape file. The plot means were generated using the Zonal Statistics function in QGIS. The tractor-

based system was similar to that described by Andrade-Sanchez and Heun (2013) but carried five 

GreenSeeker spectral sensors (Table 1) and RT200 communication module (Trimble, Inc., 
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Sunnyvale, CA) mounted in a frame at the front of the vehicle. These active sensors were equipped 

with their own source of modulated white light, which was directed toward the top of the crop 

canopy with the platform in motion at an average speed of 0.84 m s−1. A portion of the sensor-

generated light reflects off the crop and was measured by Red and Near Infrared (NIR) wide-band 

filters located in the sensor head. The height position of the sensors was set to 1.32 m above ground 

in every event. Since the approximate view angle of this sensor model is 28°, the field-of-view 

(FOV) of each sensor was ~50-cm at the soil surface. The ground platform was retrofitted with an 

ultra-precise RTK Global Navigation Satellite System (GNSS) receiver, AgGPS332 (Trimble, Inc., 

Sunnyvale, CA) to generate positioning data via “GGA” National Marine Electronics Association 

(NMEA) messages. The data acquisition system used in the tractor platform was a CR3000 micro-

logger (Campbell Scientific, Logan, UT) programmed to record the NDVI/IRT output of all five 

spectral sensors plus latitude and longitude coordinates at a rate of 5 Hz. The combination of data 

sampling frequency and platform speed of operation produced an average of 20 data for each plot. 
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Table 1 | Properties of Sequoia, RedEdge and GreenSeeker sensors including type of recorded 

spectral band, bandcenter and bandwidth.  

a https://www.micasense.com/parrotsequoia/ 
b https://agriculture.trimble.com/precision-ag/products/greenseeker/  
c https://www.micasense.com/  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3 | High-throughput phenotyping at Maricopa Agricultural Center: A) “Lemnatec” field 

scanalyzer for multispectral and hyperspectral imagery at high spatial and temporal resolution, B) 

NDVI and IRT acquisition by UAV- and ground-based platforms and C) LIFT instrument on a 

manually pushed cart for ChlF investigation. 

Sensor Spectral Band Band center (nm) Band width (nm) 

UAV-Sequoia a 

 

Green 550 40 

Red 660 40 

RedEdge 735 10 

NIR 790 40 

Blue 475 20 

Tractor-GreenSeeker b 
Red 660 25 

NIR 770 25 

UAV-RedEdge c 

Green 560 20 

Red 668 10 

RedEdge 717 10 

NIR 840 40 

https://agriculture.trimble.com/precision-ag/products/greenseeker/
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Chlorophyll fluorescence (ChlF) by the manually pushed cart  

In the second year, chlorophyll fluorescence (ChlF) measurements were carried out in collaboration 

with the Institute of Bio- and Geosciences (IBG) in Jülich (Germany). Their researchers provided a 

light-induced fluorescence transient (LIFT) sensor mounted on a manually pushed cart at 60 cm 

distance from the canopy (Figure 3). A rapid and non-invasive characterization of the following 

photosynthetic traits was carried out after anthesis in sunny days (hours: 11-13 am) in well-watered 

(103 DAP) and water-limited (115 DAP) conditions: Fq’/Fm’ refers to the operating efficiency of 

PSII, while Fr1’/Fq’ and Fr2’/Fq’ to the re-oxidation efficiency of QA at 0.65 ms and 120 ms, 

respectively (Keller et al. 2019). The datasets were processed using R-project scripts as well as 

Genstat 19 software tools to produce plot means per genotype for GWAS. 

Physiological drought adaptive traits 

The carbon isotopic composition is an indicator of water-use efficiency in crops (Farquhar et al. 

1984; Dixon et al. 2019). During the photosynthetic CO2 fixation, healthy plants discriminate 

against the minor, naturally occurring stable isotope 13C (ca. 1.1149% in CO2 in air). In wheat, a C3 

species, the carbon isotope composition of plant material is primarily caused by the discrimination 

occurring during carboxylation by the rate-limiting enzyme ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco), and during the diffusion of CO2 from the atmosphere to the 

chloroplast (Caemmerer et al. 2014). In the first year, the Durum Panel was evaluated for stable 

carbon (δ13C = 13C/12C) isotope ratios using an elemental analyzer (Flash 1112 EA; Thermo 

Finnigan, Bremen, Germany) coupled with an isotope ratio mass spectrometer (Delta C IRMS, 

Thermo Finnigan), operating in a continuous flow mode. Flag leaf samples for each plot (about 1 

mg) were collected after anthesis at midday under well-watered (85 DAP, GS59) and drought (93 

DAP, GS71) conditions, then weighed into tin capsules, sealed and loaded into an automatic 

sampler (Thermo Finnigan) prior to EA-IRMS analyses, as described by Araus et al. (2013). The 
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measurements were carried out at the Scientific Facilities of the University of Barcelona. The 

13C/12C ratios were expressed in δ notation (Coplen et al. 2006): δ13C = (13C/12C) sample / (13C/12C) 

standard - 1 (Farquhar et al. 1989), where “sample” refers to plant material and ‘standard’ to Pee 

Dee Belemnite (PDB) calcium carbonate. 

The Durum Panel was evaluated for osmotic adjustment (OA) in flag leaves in two consecutive 

years (2018-19) as result of an active accumulation of low molecular weight organic solutes like 

soluble sugars (Munns and Weir, 1981; Blum, 2017) and proline (Johnson et al. 1984; Mattioni et 

al. 1997; Liang et al. 2013) in response to a leaf water potential reduction. In parallel, the relative 

water content (RWC) was evaluated in three consecutive years (2017-19) in flag leaves to measure 

the plant water status in terms of the physiological consequence of cellular water deficit. In 2018, 

the first sampling for OA and RWC was carried out in fully-irrigated conditions (104 DAP, awns 

visible on approximately 50% of the Durum Panel accessions) while the second sampling was 

carried out 15 days after under drought (119 DAP, most accessions were at early grain-filling). In 

2019, a single date of sampling (95 DAP) was carried out for accessions of the east rows (well-

watered) and west rows (water-limited) when awns were visible on approximately 50% of the 

Durum Panel.  

In both years, fully expanded flag leaves of eight different plants were sampled for each plot 

(experimental unit) at dawn from 6.00 to 7.00 a.m. Leaves were immediately placed in sealed 

plastic bags, stored in portable coolers (4 °C) to minimize water loss due to evaporation and 

transported to the lab where leaves were removed from the bags. After cutting the leaf tips (5 cm), 

the remaining leaf portion (average length 15 cm) was cut in the middle to obtain two homogeneous 

pieces of similar weight, then mixed and stored in Falcon 50 ml Conical Centrifuge Tubes. One 

batch was used to measure OA following the “Rehydration method” (Babu et al. 1998). Leaves 

were re-hydrated in distilled water to full turgor (4 hours), then dried and stored in freezer (-20 °C). 
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After thawing, the cell sap was collected using a garlic press and 10 µl were micropipetted and 

placed onto a paper sample disc covering the sampling cuvette of a vapor pressure osmometer 

(Wescor 5520) previously calibrated using the 290, 1000 and 100 mmol kg-1 standards. After each 

measurement, the osmometer cuvette was cleaned using deionized water. Finally, the resulting 

osmolality (mosmol kg-1) was converted to osmolarity (MPa) using the following formula: ψs 

(MPa) = - c (mosmol kg-1) × 2.58 × 10-3 (Bajji et al. 2001) and osmotic adjustment (OA) was 

evaluated as the difference between the ψs at full turgor in control and in stressed conditions: ψs 

(control) - ψs (stress). The other batch was used to measure RWC. Fresh leaves were weighed (FW) 

then submerged in distilled water in the Falcon tubes and stored at 4 °C for rehydration overnight 

(ten hours). Rehydrated leaves were wiped thoroughly with blotting paper and weighed (TW). Then 

leaves were oven-dried at 65 °C for three days prior to measuring the dry weight (DW). In the end, 

RWC values were computed as follows: [(FW-DW)/(TW-DW)] x 100 (Barrs, 1968) (Figure 4). 

 

 

 

 

Figure 4 | Major “Rehydration method” steps for osmotic adjustment (OA) and relative water 

content (RWC) in Maricopa Agricultural Center (MAC). A) Sampling of eight fully expanded 

homogeneous flag leaves before dawn for each replicate of the durum panel for OA and RWC 

measurements. B) Package of the leaves one over the others and cutting of the tips. The remaining 
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leaf parts (15 cm long) were cut in the middle to obtain two homogeneous pieces of similar weight, 

then mixed and inserted in Falcon 50 ml Conical Centrifuge Tubes. C) One of the three weight 

measurements of the leaf samples for RWC using precision balances. D) Collection of leaf cell sap 

for OA analysis using a garlic press. E) Calibration with sodium chloride solution of increasing 

concentration. F) Extraction of leaf cell sap (10 µl) using a pipette and insertion onto a paper disc 

placed on the sampling cuvette of the Wescor 5520 osmometer.  

 

Additional drought adaptive traits 

Leaf movements are common adaptive responses to drought stress in plants (Begg, 1980; Ehleringer 

and Forseth, 1980). Many species are able to reduce the quantity of radiation that they intercept 

when suffering from drought either by leaf folding (LF) or by leaf rolling (LR). In this study, LR 

was visually estimated under drought conditions in two years (2017-18). The evaluation was carried 

out at early milk (GS71) at midday with a score from 0 (no leaf rolling) to 9 (all leaves severely 

rolled) when the majority of the Durum Panel leaves showed a LR > 5.  

The accessions were investigated for the chlorophyll content under drought at GS71 for two 

consecutive years (2017-18) based on Soil-Plant Analysis Development (SPAD) estimates obtained 

with a non-destructive chlorophyll meter SPAD-502Plus (Konica Minolta Sensing, Inc., Japan) as 

an indicator of leaf chlorophyll content status.  

The cuticular wax phenotype on the flag leaves (WAXL) and spikes (WAXS) was estimated at 

GS71 under drought conditions in 2017 (100 DAP) and 2018 (120 DAP) in relation to the well-

known association with drought tolerance in wheat (Guo et al. 2016). The visual evaluation was 

carried out at midday using a score from 0 (wax absence) to 9 (wax accumulation).  
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Significant differences in phenological growth stages were detected among cultivars during the 

trials. Phenology was evaluated for three consecutive years (2017-19) using the Zadoks scale 

(Zadoks et al. 1974), from which flowering time (FT) scores were obtained and used to adjust the 

genetic analyses. In parallel, the plant height (PH) of the accessions was monitored constantly on 

progressive growing stages. 

Dry biomass 

At the end of the first two seasonal field trials (2017-18), the plots were harvested with a 

mechanical machine (Carter mfg equipment). A number of plants were manually collected and 

placed directly in a drying oven at 60 °C for dry biomass (DB) estimation (kg/ha). At the end of the 

third seasonal field trial (2019), the harvest was carried out including two replicates; three plants per 

genotype were manually collected for the east (WW) and west (WL) rows and transferred to an 

oven at 60 °C for DB estimation (g/m2). As mentioned before, the plants were harvested in advance 

(GS71) to allow for planting the next phenotyping experiment and therefore the dry biomass 

represented the status at a point in time rather than direct estimates of final yields. 

Statistical analysis 

Each of the investigated raw phenotypic data, mentioned above, was optimized using lme4 package 

(R-project) and custom R scripts to conduct a spatial adjustment analysis. A mixed procedure was 

carried out including row and column random effects and a moving mean of two. Heritability (h2) 

values were also calculated in R-project, while the Pearson correlation r coefficients as well as the 

normal distributions were generated using Genstat 19 software (Payne, 2009). 

Genetic analysis: SNP genotyping, population structure and GWAS model 

The Durum panel genomic DNA was extracted using the NucleoSpin® 8/96 Plant II Core Kit from 

Macherey Nagel and sent for SNP genotyping to TraitGenetics (http://www.traitgenetics.com/en/). 

http://www.traitgenetics.com/en/
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The Illumina iSelect 90K wheat SNP assay (Wang et al. 2014) was used and genotype calls were 

acquired as reported in Maccaferri et al. (2015b). Markers were assigned on the basis of the 

tetraploid wheat consensus map reported in Maccaferri et al. (2015a). Haploview 4.2. software 

(Barrett et al. 2005) was used to calculate the Linkage Disequilibrium (LD) among markers for A 

and B genomes and only Single Nucleotide Polymorphisms (SNPs) with minor allele frequency 

(MAF) > 0.05 were considered.  LD decay pattern as result of consensus genetic distances was 

inspected considering squared allele frequency correlation (r2) estimates from all pairwise 

comparisons among intra-chromosomal SNPs in TASSEL (Trait Analysis by aSSociation, 

Evolution and Linkage) software v. 5.2.37. The Hill and Weir formula (Hill and Weir, 1988) was 

used in R-project to define the confidence interval (CI) for QTL in accordance with the curve fit 

and the distance at which LD decays below r2 0.3 (Liu et al. 2017). 

Haploview 4.2 tagger function set to r2 < 1.0 was used to calculate a Kinship matrix (K) of genetic 

relationships among individual accessions of the durum panel with all non-redundant 7,723 SNP 

markers. Kinship based on Identity-by-State (IBS) among accessions was obtained in TASSEL. In 

addition, a subset of non-redundant 2,382 SNP markers (r2 < 0.5) was used to evaluate the 

population structure (Q) in STRUCTURE software 2.3.4. (Pritchard et al. 2000) using the 

corresponding tagger function in Haploview 4.2 (Barrett et al. 2005). Numbers of hypothetical 

subpopulations ranging from k = 2 to 10 were assessed using 50,000 burn-in iterations followed by 

100,000 recorded Markov-Chain iterations in five independent runs for each k in order to estimate 

the sampling variance (robustness) of population structure inference. Then the rate of change in the 

logarithm of the probability of likelihood [LnP(D)] value between successive k values  was 

considered (Δk statistics, Evanno et al. 2005) together with the rate of variation (decline) in number 

of accessions clearly attributed to subpopulations (accessions with Q membership’s coefficient ≥ 

0.5). Finally, the level of differentiation among subpopulations was measured using the Fixation 

Index (Fst) among all possible population pairwise combinations (Condorelli et al. 2018). 
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Subsequently, 17,721 SNP markers with MAF > 0.05, imputed with LinkImpute (LDkNNi) (Money 

et al. 2015), were used for GWAS-Mixed Linear Model (MLM) (Yu et al. 2006; Bradbury et al. 

2007) in TASSEL. MLM was specified as follows: y = Xβ + Zu + e (Zhang et al. 2010), where y is 

the phenotype value, β is the fixed effect due to marker and u is a vector of random effects not 

accounted for by the markers; X and Z are incidence matrices that related y to β and u while e is the 

unobserved vector of random residual. In this study, both Kinship matrix (K) and Structure 

Population (Q) were included as random effects in the model (MLM-Q+K) while flowering time 

was included as a covariate taking into account GWAS QQ-plot results. Then P values and R2 

effects were analyzed and QTL significance was determined as follows: “highly significant” for P 

value < 0.0001 and “significant” for P value < 0.001.  
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RESULTS 

Population Structure 

The Durum Panel showed a clear population genetic structure as reported in previous analyses 

(Maccaferri et al. 2011; Letta et al. 2013; Liu et al. 2017). I investigated the number of optimal k 

subpopulations, from two to eight, on 248 elite Durum Panel accessions. The analysis indicated an 

optimal number of eight (k = 8) subpopulations on the basis of pairwise comparisons among and 

within subgroups with 155 accessions (62.5%) clearly grouped into one of the eight main gene 

pools at a Q membership coefficient ≥ 0.5, while the remaining 93 were considered as admixed. 

Subgroup S1 corresponded to native Mediterranean and North African germplasm. Subgroup S2 

included germplasm specifically bred for dryland areas at ICARDA (Syria) from the early 1970s. 

Subgroup S3 included Spanish and Moroccan cultivars from early 1970s, and CIMMYT and 

ICARDA selections for temperate areas. Subgroup S4 mostly included ICARDA high-yielding 

lines/cultivars for temperate areas and contemporary (1970s) Italian accessions obtained from 

cultivar Creso, an important Italian founder also related to CIMMYT materials. Subgroup S5 

included accessions derived from widely adapted (photoperiod insensitive) CIMMYT germplasm 

released in the late 1970s to early 1980s. Subgroup S6 included accessions from the mid-1970s 

breeding program in Italy (Valnova group) while subgroup S7 included accessions from the high-

yielding CIMMYT germplasm released in the late 1980s to early 1990s (founders Altar84 and 

Gallareta). Finally, subgroup S8 (founders Edmore and Neodur) showed the widest within-group 

variation (40 accessions), as expected based on the concomitant presence within the same 

genetically highly homogeneous group of conventional plant height accessions from the Northern 

Plains of the US and Canada and semidwarf (RhtB1b) accessions from France and Australia. 

The division into eight subpopulations was supported by pairwise comparisons among and within 

subgroups based on the Fixation Index (Fst) which provides a measure of subpopulation diversity 
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and by Neighbor Joining tree (Saitou and Nei, 1987; Figure 5). High genetic diversity was detected 

between the old Italian cultivars (S1) and the modern French, North American, Canadian and 

Australian cultivars (S8), while a considerable admixture among subgroups characterized the 

ICARDA, CIMMYT, and Italian groups. As a further note, only a relatively small portion of the 

molecular variation was accounted for by the origin of the accessions, as expected based on the high 

exchange rate of germplasm among breeding programs. 

 

 

Figure 5 | Bar plot and Neighbor Joining tree show the eight (k = 8) subpopulations on the basis of 

pairwise comparisons among and within subgroups (S1-S8). A total of 155 accessions (62.5%) 

clearly grouped into one of the eight main gene pools at a Q membership coefficient ≥ 0.5, while 

the remaining 93 were considered as admixed. 

 

Chlorophyll fluorescence imaging (CFI) by the “Lemnatec” field scanalyzer 

The PSII values captured by LFS under progressive drought (71, 97, 102 and 106 DAP) were 

normally distributed and showed a heterogeneous heritability (h2) ranging from 0.00 (DAP: 97) to 

64.0 (DAP: 106) (Table 2). Additionally, a decreased trend of PSII values from 71 DAP to 106 

DAP was observed (Figure 6). Concerning the Pearson correlation coefficients (r) with other 
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drought adaptive traits, PSII (DAP: 106) significantly correlated with IRT (DAP: 91) (r = -0.37) 

and IRT (DAP: 98) (r = -0.34) acquired by UAV-RedEdge, contrary to IRT (DAP: 94) (r = -0.02) 

acquired by tractor. PSII (DAP: 102) and PSII (DAP: 106) were more positively correlated with 

NDVI (DAP: 91) by UAV-Sequoia (r = 0.31 and r = 0.46 respectively) than NDVI (DAP: 94) by 

tractor (r = 0.27 and r = 0.40 respectively). Moreover, PSII data showed a weak positive correlation 

with Fr1’/Fm’ (DAP: 115) (r = 0.11 and r = 0.15) and Fr2’/Fm’ (DAP: 115) (r = 0.10 and r = 0.19) 

acquired in light hours by the manually pushed cart. 

 

Table 2 | Summary statistics for the drought adaptive traits in 2019: photosystem II (PSII) data (71-

106), osmotic adjustment (OA), delta (Δ) for relative water content (RWC), dry biomass (DB) and 

plant height (PH) on different days after planting (DAP) in a panel of 215 durum wheat elite 

advanced lines and cultivars. 

 

Trait (2019) Min. Max. Average St.dev. h2 

PSII (DAP: 71) 0.00 0.04 0.03 0.00 17.0 

PSII (DAP: 97) 0.01 0.04 0.03 0.00 0.00 

PSII (DAP: 102) 0.01 0.04 0.02 0.00 36.0 

PSII (DAP: 106) 0.00 0.04 0.02 0.00 64.0 

OA (DAP: 95) 0.00 0.57 0.26 0.13 74.8 

Δ RWC (DAP: 95) 0.01 8.24 1.91 1.76 30.0 

Δ DB (g/m2) (DAP: 107) -45.92 348.5 124.1 71.99 15.0 

Δ PH (cm) (DAP: 102) 0.00 18.66 8.60 3.14 27.0 
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Figure 6 | The decreased trend of PSII values from 71 DAP to 106 DAP. The data were acquired in 

darkness under progressive drought by the “Lemnatec” field scanalyzer (LFS). 

 

NDVI and IRT values by UAV and ground-based platforms 

NDVI was captured in multiple dates: 55 and 77 DAP (pre-anthesis) as well as 83 and 91 DAP 

(post-anthesis) by UAV-Sequoia; 91 and 98 DAP (post-anthesis) by UAV-RedEdge; 58 and 76 

DAP (pre-anthesis) as well as 84 and 94 DAP (post-anthesis) by tractor-GreenSeeker. NDVI values 

were normally distributed and h2 ranged from 77.2 to 87.3 (UAV-Sequoia), 80.0 and 88.6 (UAV-

RedEdge) and 61.1 and 67.5 (tractor-GreenSeeker) (Table 3 and Figure 7). In addition, a temporal 
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trend of increased NDVI values was observed in response to the field conditions of progressive 

drought severity and phenological development. Concerning the Pearson correlation coefficients (r), 

NDVI by UAVs (91 DAP) positively correlated with NDVI by tractor (94 DAP) with r from 0.49 to 

0.60. In addition, OA and ΔRWC measured in 2018 more positively correlated with NDVI (DAP: 

91) by UAV-Sequoia (r = 0.37 and r = -0.40) than NDVI (DAP: 94) by tractor-GreenSeeker (r = 

0.25 and r = -0.31).  

As with NDVI, IRT was captured in multiple times: 91 and 98 DAP by UAV-RedEdge as well as  

58, 76, 84 and 94 DAP by tractor-GreenSeeker. IRT showed a progressive increased trend in 

response the progressive drought severity. The IRT values were normally distributed while h2 were 

higher using UAVs (72.2 < h2 < 77.3) than the tractor (25.8 < h2 < 47.0) (Table 3). Concerning the 

Pearson correlation coefficients (r), IRT by UAV (91 DAP) weakly correlated with IRT by tractor 

(94 DAP) with r of 0.19. In addition, IRT and NDVI by UAV-RedEdge (DAP: 91) were more 

negatively correlated (r = -0.57) than by tractor-GreenSeeker (DAP: 94) (r = -0.26).  

 

Table 3 | Summary statistics for the drought adaptive traits in 2017: normalized difference 

vegetation index (NDVI), infrared thermography (IRT), carbon isotope discrimination in well-

watered (δ13C-c) and water-limited (δ13C-s) conditions, leaf chlorophyll content (SPAD), leaf 

rolling (LR), wax leaf (WAXL), wax spike (WAXS) and dry biomass (DB) on different days after 

planting (DAP) in a panel of 248 durum wheat elite advanced lines and cultivars. 

 

Trait (2017) Min. Max. Average St.dev. h2 

NDVI-UAV/S (DAP: 55) 0.40 0.63 0.54 0.01 77.2 

NDVI-UAV/S (DAP: 77) 0.66 0.81 0.74 0.03 83.9 
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NDVI-UAV/S (DAP: 83) 0.64 0.79 0.71 0.03 88.5 

NDVI-UAV/S (DAP: 91) 0.84 0.91 0.87 0.03 87.3 

NDVI-UAV/RE (DAP: 91) 0.78 0.87 0.82 0.02 80.0 

NDVI-UAV/RE (DAP: 98) 0.64 0.84 0.77 0.03 88.6 

IRT-UAV/RE (DAP: 91) 36.6 41.96 40.0 0.86 72.2 

IRT-UAV/RE (DAP: 98) 28.5 32.27 30.6 0.69 77.3 

NDVI-tractor (DAP: 58) 0.30 0.42 0.36 0.02 61.1 

NDVI-tractor (DAP: 76) 0.54 0.70 0.64 0.02 66.3 

NDVI-tractor (DAP: 84) 0.63 0.75 0.69 0.03 66.9 

NDVI-tractor (DAP: 94) 0.58 0.73 0.66 0.02 67.5 

IRT-tractor (DAP: 58) 19.46 22.91 20.90 0.49 35.6 

IRT-tractor (DAP: 76) 20.36 22.39 21.22 0.35 28.0 

IRT-tractor (DAP: 84) 29.59 32.24 30.68 0.47 25.8 

IRT-tractor (DAP: 94) 25.42 28.92 26.99 0.54 47.0 

δ13C-c (DAP: 85) -2.00 1.20 -0.28 0.57 86.7 

δ13C-s (DAP: 93) -27.6 -24.7 -26.29 0.52 70.0 

SPAD (DAP: 100) 35.3 53.6 45.90 3.04 87.5 

LR (DAP: 100) 1.00 8.00 4.45 1.44 40.4 

WAXL (DAP:100) 0.00 8.00 5.66 1.18 71.5 

WAXS (DAP:100) 0.00 8.25 5.56 2.17 98.3 

DB (kg/ha) (DAP: 104) 1,887 3,697 2,674 285.4 63.5 

Stop irrigation (DAP: 86) 
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Figure 7 | The temporal trend of increased NDVI values captured on different days after planting 

(DAP) by UAV-Sequoia and tractor-GreenSeeker under field conditions of progressive drought 

severity.  

 

Chlorophyll fluorescence (ChlF) by the manually pushed cart 

In the second year, the LIFT sensor provided active chlorophyll fluorescence (ChlF) measurements 

(light hours) for the characterization of Fq’/Fm’ as well as Fr1’/Fm’ and Fr2’/Fm’ photosynthetic 

traits at post-anthesis under well-watered (DAP: 103) and water-limited (DAP: 115) conditions. All 

traits were normally distributed; Fq’/Fm’ showed a h2 ranged from 22.5 to 44.9, Fr1’/Fm’ from 

37.1 to 52.6 and Fr2’/Fm’ from 45.8 to 54.6. (Table 4). Fq’/Fm’ (DAP: 115) negatively correlated 

with Fr1’/Fm’ (DAP: 115) (r = -0.30) but not with Fr2’/Fm’ (0.03), while Fr1’/Fm’ and Fr2’/Fm’ 

positively correlated (r = 0.81). In addition, Fq’/Fm’ showed a weak positive correlation with OA (r 

= 0.18), ΔRWC (r = 0.25) and DB (r = 0.21) measured in 2018. Fr1’/Fm’ and Fr2’/Fm’ (DAP: 
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115) showed a weak negative correlation with DB (r = -0.28 and -0.26 respectively), but positive 

with NDVI by UAVs: r = 0.26 and 0.27 (RedEdge) and r = 0.21 and 0.22 (Sequoia) respectively. 

 

Table 4 | Summary statistics for the drought adaptive traits in 2018: Fq’/Fm’, Fr1’/Fm’ and 

Fr2’/Fm’ captured by a manually pushed cart, infrared thermography (IRT), osmotic adjustment 

(OA), relative water content in well-watered (RWC-c) and water-limited (RWC-s) conditions, leaf 

chlorophyll content (SPAD), leaf rolling (LR), plant height (PH), wax leaf (WAXL), wax spike 

(WAXS) and dry biomass (DB) on different days after planting (DAP) in a panel of 248 durum 

wheat elite advanced lines and cultivars. 

 

Trait (2018) Min. Max. Average St.dev. h2 

Fq’/Fm’ (DAP: 103) 0.39 0.58 0.50 0.03 44.9 

Fr1’/Fm’ (DAP: 103) 0.19 0.26 0.23 0.01 37.1 

Fr2’/Fm’ (DAP: 103) 0.57 0.67 0.63 0.01 45.8 

Fq’/Fm’ (DAP: 115) 0.19 0.43 0.31 0.04 22.5 

Fr1’/Fm’ (DAP: 115) 0.26 0.36 0.30 0.02 52.6 

Fr2’/Fm’ (DAP: 115) 0.59 0.74 0.68 0.02 54.6 

IRT (UAV) (DAP: 112) 32.7 37.5 35.1 0.78 55.0 

IRT (UAV) (DAP: 120) 38.4 41.8 40.0 0.65 52.9 

OA (DAP: 119) 0.38 1.49 0.95 0.22 72.3 

RWC-s (DAP: 119) 45.2 76.8 62.1 7.10 78.2 

RWC-c (DAP: 104) 89.9 101.3 95.6 1.56 28.7 

SPAD (DAP: 120) 31.9 48.8 42.0 3.21 75.7 

LR (DAP: 120) 2.86 9.60 6.13 1.52 83.5 
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PH (DAP: 120) 54.5 116 75.1 9.30 65.0 

WAXL (DAP: 120) 0.00 9.00 6.72 1.26 73.0 

WAXS (DAP: 120) 0.00 9.00 5.77 1.75 75.1 

DB (k/ha) (DAP: 125) 3,789 7,022 5,208 547.7 50.7 

Stop irrigation (DAP: 103) 

 

Physiological drought adaptive traits 

δ13C-c values (85 DAP, well-watered conditions) ranged from -2.00 to 1.20 with a h2 of 86.7, while 

δ13C-s values (93 DAP, drought) ranged from -26.6 to -24.7 with a h2 of 70.0. Concerning the 

Pearson correlation coefficients (r), δ13C-s more positively correlated with NDVI values by UAVs 

(0.19 < r < 0.38) than NDVI by GreenSeeker-Tractor (0.08 < r < 0.21) as well as with PSII data 

(0.07 < r < 0.36). 

In 2017, the cessation of irrigation resulted in a progressive lowering of the leaf RWC for the four 

tested varieties (Gallareta, Karim, Mexicali 75 and Svevo) from 94 DAP (68% < RWC < 77%) to 

101 DAP (50% < RWC < 62%). In 2018, the Durum Panel was totally investigated for OA (h2 = 

72.3), RWC-c (h2 = 28.7) and RWC-s (h2 = 78.2). OA values ranged from 0.38 to 1.49 MPa; RWC-

c values ranged from 89.9 to 100% while RWC-s values from 45.2 to 76.9% by indicating severe 

drought conditions. In 2019, OA values (h2 = 74.8) ranged from 0.0 to 0.57 MPa while ΔRWC 

values (h2 = 30.0) from 0.0 to 8.24% by indicating a moderate drought conversely to the first two 

years (2017-18).  

In 2018, the severe drought conditions induced a high positive correlation between OA and RWC-s 

(r = 0.78) due to the active physiological role of the osmolytes to maintain a more favorable water 

status and avoid the negative effects of water loss in stress (Figure 8). 
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Figure 8 | The scatter plot shows the positive correlation between OA and RWC-s (r = 0.78) due to 

the physiological capacity of the osmolytes to avoid the negative effects of water loss on flag leaves 

under drought. 

 

Additional drought adaptive traits 

LR measured in 2017 (h2 = 40.4) and 2018 (h2 = 83.5) years revealed a normal distribution and a 

significant positive relationship (r = 0.55). LR ranged from 1.00 to 8.00 in the first year, while 

ranged from 2.86 to 9.60 in the second year. A negative correlation was observed between LR and 

OA (r = -0.25) as well as RWC-s (r = -0.30) measured in 2018. 

Chlorophyll content (SPAD) measured in 2017 (h2 = 84.5) and 2018 (h2 = 75.7) years revealed a 

normal distribution and a significant relationship (r = 0.58). SPAD ranged from 35.3 to 53.6 in the 

first year, while ranged from 31.95 to 48.84 in the second year. Concerning the Pearson correlation 

coefficient (r), SPAD values positively correlated for both years (r = 0.58). WAXL measured in 

2017 (h2 = 71.5) and 2018 (h2 = 73.0) revealed a more significant relationship (r = 0.67) than 
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WAXS measured in 2017 (h2 = 98.3) and 2018 (h2 = 75.1) with a r of 0.54. Considering both traits, 

WAXL and WAXS were positively associated (r = 0.23) in 2017 and (r = 0.57) in 2018.  

Dry biomass 

The dry biomass (DB) values showed normal distributions in 2017 (h2 = 63.5) and 2018 (h2 = 50.7): 

DB ranged from 1887 to 3697 k/ha in the first year, while from 3789 to 7022 k/ha in the second 

year. Considering both years, DB revealed a positive relationship (r = 0.25). In 2019, ΔDB (h2 = 15) 

ranged from -45.2 to 348.5 g/m2 showing a normal distribution and a low association with DB 

values of the two years before (r = 0.14).  

In 2017, DB significantly correlated with NDVI (r = 0.25) and IRT (r = -0.34) by tractor on 94 

DAP (r = 0.25). In 2018, DB significantly correlated with photosynthetic traits: Fq’/Fm’ (r = 0.21), 

Fr1’/Fm’ (r = -0.28) and Fr2’/Fm’ (r = 0.25) and was influenced by flowering time (FT) with a r of 

-0.27. In 2019, Δ DB did not reveal significant relationships with the other investigated traits in 

moderate drought. 

Genetic analysis 

The QTL confidence interval (CI) was determined on the basis of the average genetic distance at 

which LD decayed below r2 of 0.3 (Hill and Weir, 1988). The inter-marker genetic distance of the 

Durum Panel corresponded to 2.12 cM (CI = ±1.06 cM) (Figure 9). The use of flowering time (FT) 

as covariate for the GWAS analysis reduced the genetic effects of the photoperiod/vernalization in 

durum wheat (Figure 10). 
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Figure 9 | The rate of linkage disequilibrium (LD) decay of the 248 durum wheat elite accessions 

(Durum Panel). The Hill and Weir formula (Hill and Weir, 1988) was used to describe the LD 

decay of r2. The LD among Single Nucleotide Polymorphism (SNP) markers in the panel was 

estimated using Haploview 4.2 (Barrett et al. 2005). The blue curve represents the model fit to LD 

decay (nonlinear regression of r2 on distance). A confidence interval of 2.12 cM for the quantitative 

trait loci (QTL) is showed when LD (r2) is 0.3 (red line). 
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Figure 10 | Manhattan plot of the GWAS analysis for one of the investigated drought adaptive 

traits, osmotic adjustment (OA), using two different Mixed Linear Models (MLM) approaches: A) 

MLM with K (Kinship matrix), B) MLM with K (Kinship matrix) and Q (Population structure) 

including flowering time (FT) as covariate. MLM-Q+K using FT reduced the effect of the 

photoperiod-response gene on chr. 2A. 
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Chlorophyll fluorescence imaging (CFI) by the “Lemnatec” field scanalyzer 

The GWAS detected thirteen PSII QTL by LFS under progressive moderate drought (71, 97, 102 

and 106 DAP). In detail, two loci were detected on 71 DAP on chromosome 1A (r2 = 5.4 and r2 = 

7.2). Three QTL were detected on 97 DAP on 1AL (r2 = 5.7), 3BL (r2 = 5.7) and 4BS (r2 = 5.0). 

Four QTL were detected on 102 DAP on 2AS (r2 = 4.3), 2BL (r2 = 3.3), 4BL (r2 = 4.3) and 7AS (r2 

= 3.2). Four QTL were detected on 106 DAP on 1BL (r2 = 3.1), 2AL (r2 = 3.9), 2BS (r2 = 2.9) and 

5AL (r2 = 3.0) (Table 5). 

 

Table 5 | List of QTL positions only for log P value > 3.00, for PSII traits on four different days 

after planting (71, 97, 102 and 106 DAP) according to the tetraploid consensus map of Maccaferri 

et al. (2015a). 

 

  

 

 

 

 

 

 

 

 2019 

TRAIT DAP Marker Chr. Pos. (cM) Log P value R2 Allele Effect 

PSII 2.03.2019 71 IWA60 1A 9.8 3.1 5.4 A/C -0.005 

  IWB72161 1A 120.0 4.0 7.2 A/G -000.2 

PSII 28.03.2019 97 IWB12579 1A 99.8 3.6 5.7 G/T 0.002 

  IWB8716 3B 87.1 3.6 5.7 C/T -0.004 

  IWB63894 4B 12.8 3.2 5.0 C/T -0.002 

PSII 02.04.2019 102 IWB40869 2A 21.9 3.4 4.3 C/T -0.004 

  IWB46532 2B 119.9 3.0 3.3 C/T 0.005 

  wPt-6209 4B 75.7 3.7 4.3 A/T 0.002 

  IWB319 7A 82.2 3.0 3.2 A/G -0.004 

PSII 06.04.2019 106 IWA1889 1B 79.2 3.2 3.1 A/G 0.003 

  IWB29388 2A 197.6 3.9 3.9 C/T 0.007 

  wPt-5513 2B 45.1 3.0 2.9 A/T -0.003 

  IWA6573 5A 101.9 3.0 3.0 C/T -0.006 
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NDVI and IRT values by UAV and ground-based platforms 

In the first year, the GWAS detected thirty-five NDVI QTL; eleven loci from UAV-Sequoia (77, 83 

and 91 DAP), eight loci from UAV-RedEdge (91 and 98 DAP) as well as sixteen loci from tractor-

GreenSeeker (76, 84 and 94 DAP). In total, nineteen QTL were identified exclusively with the 

UAV platforms while sixteen QTL were uniquely detected the tractor-mounted platform. Two 

major NDVI QTL consistently detected in drought from UAV-Sequoia (91 DAP) and -RedEdge (94 

DAP), mapped on short arm of chromosome 6A at 5.1 cM (3.36 < r2 < 6.81) and 21.4 cM (3.63 < r2 

< 3.66) on the tetraploid consensus map of Maccaferri et al. (2015a). An additional NDVI locus 

overlapped using UAV-RedEdge and tractor-GreenSeeker platforms on 6BS at 31.3 cM (2.89 < r2 < 

4.78). In total, the GWAS detected seventy-three IRT QTL. Three major loci were obtained from 

UAV platforms (91 and 98 DAP) and mapped on 2AS (4.41 < r2 < 6.51), 4BL (5.16 < r2 < 7.52) 

and 6BL (4.44 < r2 < 5.12). An overlapping was observed between a major locus consistently 

detected in drought from IRT-RedEdge (98 DAP) and IRT-GreenSeeker (94 DAP) which mapped 

on 4BS at 32.7 (6.27 < r2 < 9.64) (Table 6).  In the following year, five IRT QTL from UAV-

RedEdge platform were mapped on 1BS and 7BL (112 DAP) as well as 1BL, 5BS and 6BL (120 

DAP). The confidence interval of these loci did not overlap among them and among IRT QTL of 

the previous year. 
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Table 6 | List of QTL positions, only for log P value > 4.00, for IRT and NDVI by UAV- (UAVr: 

RedEdge) or ground-based platform (TRA) on different days after planting (DAP) according to the 

tetraploid consensus map of Maccaferri et al. (2015a). 

 

 2017 

TRAIT DAP Marker Chr. Pos. (cM) Log P value R2 Allele Effect 

IRT-TRA (24.03.2017) 94 IWB6937 4A 64.0 4.79 7.46 A/G -0.023 

  IWB7508 4B 32.7 4.13 6.27 C/T -0.347 

  IWB73541 5A 151.2 4.64 7.20 G/T -0.463 

  IWB10994 5B 10.1 5.16 8.15 C/T -0.329 

  IWA5784 5B 48.9 4.17 6.34 A/G -0.532 

  IWB2550 5B 60.1 4.07 6.17 C/T -0.552 

  IWA4641 5B 84.7 5.02 7.88 C/T 0.371 

IRT-UAVr (21.03.2017) 91 IWB1996 2A 46.6 4.25 6.51 A/G -0.731 

  IWB6062 3B 2.4 4.02 6.11 A/G -0.881 

  IWB1757 3B 32.0 4.24 6.49 A/C 0.583 

IRT-UAVr (28.03.2017) 98 IWB57483 1A 50.4 4.50 6.56 A/G 0.750 

  IWB14601 1A 70.7 5.15 7.68 A/G -0.865 

  IWA5273 2A 108.9 4.28 6.19 C/T 0.478 

  IWB32315 2B 5.90 4.63 6.78 A/G 0.581 

  IWB27825 3B 36.8 4.06 5.82 A/G 0.355 

  IWB8081 4A 88.1 6.98 10.9 C/T 1.015 

  IWB53822 4B 22.5 6.00 4.61 C/T 0.716 

  IWB7508 4B 32.7 6.25 9.64 C/T -0.530 

  IWB10342 4B 83.1 6.99 10.9 C/T 0.992 

  IWB72121 4B 92.9 5.06 7.52 C/T -0.585 

  IWB68679 5A 113.2 4.10 5.88 A/G -0.339 

  IWB26265 5A 147.1 4.13 5.92 C/T 0.672 
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  IWA4238 5A 178.3 7.73 12.3 A/C -0.795 

  IWB73979 5B 14.7 4.32 6.25 C/T 0.474 

  IWB44791 7A 59.8 4.41 6.41 A/C 0.351 

NDVI-TRA (06.03.2017) 76 IWB57438 2B 5.9 5.88 9.8 A/G -0.030 

NDVI-TRA (24.03.2017) 94 IWB73476 4A 22.2 4.08 5.28 C/T 0.013 

  IWB10727 5A 141.0 4.24 5.52 A/C 0.013 

NDVI-UAVr (21.03.2017) 91 IWA7288 6A 5.1 5.58 6.81 C/T 0.028 

  IWB66334 6A 72.4 4.42 5.19 A/C 0.014 

NDVI-UAVr (28.03.2017) 98 IWA7288 6A 5.1 4.45 3.67 C/T 0.037 

 

 

Chlorophyll fluorescence (ChlF) by the manually pushed cart 

Twenty-two QTL were identified for chlorophyll fluorescence (ChlF) using the LIFT sensor in the 

manually pushed cart. Two of these referred to Fq’/Fm’ (115 DAP), nine to Fr1’/Fm’ (103 and 115 

DAP) and eleven to Fr2’/Fm’ (103 and 115 DAP). In drought (115 DAP), a major Fq’/Fm’ locus 

was detected on 3BS (r2 = 6.05), two major Fr1’/Fm’ loci on 1BL (r2 = 4.85) and 2BS (r2 = 4.93) 

and a major Fr2’/Fm’ locus on 2AL (r2 = 4.91). In addition, a QTL overlapping was observed 

between Fr1’/Fm’ and Fr2’/Fm’ on 1BL (4.63 < r2 < 4.85) (Table 7). 
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Table 7 | List of QTL positions, only for log P value > 3.00, for Fq’/Fm’, Fr1’/Fm’ and Fr2’/Fm’ 

traits on two different days after planting (103 and 115 DAP) according to the tetraploid consensus 

map of Maccaferri et al. (2015a). 

 

 2018 

TRAIT DAP Marker Chr. Pos. (cM) Log P value R2 Allele Effect 

Fq’/Fm’ 23.03.2018 115 IWB61293 5A 96.6 3.1 4.99 A/G -0.032 

  IWB72397 7A 181.4 3.5 5.60 C/T 0.0062 

Fr1’/Fm’ 11.03.2018 103 IWB9420 1B 26.1 3.0 4.56 C/T 0.0091 

  IWB10653 3B 24.6 3.8 6.05 C/T -8.54E-03 

  IWA4842 6A 66.9 3.1 4.74 A/G -0.0151 

  IWB44978 7B 108.6 3.9 6.21 A/G -0.0120 

Fr1’/Fm’ 23.03.2018 115 IWB70974 1B 43.5 3.0 3.95 C/T 0.0060 

  IWB68093 1B 158.0 3.6 4.85 A/G -8.92E-03 

  IWB25893 2B 63.1 3.6 4.93 A/G 0.0121 

  IWB71083 6A 46.9 3.2 4.25 A/G 0.0066 

  IWB74123 7A 7.2 3.1 4.10 C/T -0.0178 

Fr2’/Fm’ 11.03.2018 103 IWB59502 3B 24.6 3.9 6.33 A/G -0.0114 

  IWB71510 3B 164.9 3.1 4.81 A/G -0.0108 

  IWB60379 6A 67.3 3.2 4.97 A/G -0.0203 

  IWB30094 3A 78.0 3.6 5.17 C/T 0.0396 

  IWB74726 5A 52.9 3.0 4.26 A/G -0.0129 

Fr2’/Fm’ 23.03.2018 115 IWB69550 1B 50.2 3.3 4.68 A/C -0.0064 

  IWB68093 1B 158.0 3.3 4.63 A/G -7.13E-03 

  IWB62501 2A 97.3 3.4 4.91 A/G -0.0129 

  IWB71795 3A 108.1 3.3 4.65 G/T -9.57E-03 

  IWB8426 3B 19.4 3.3 4.65 A/G -8.48E-03 

  IWB56589 5B 165.9 3.0 4.19 C/T 0.0087 
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Physiological drought adaptive traits 

A single QTL was identified for δ13C-c (85 DAP) on 1BS (r2 = 4.51) while nine QTL for δ13C-s 

(93 DAP) on 1BL (2), 2BL, 3AS, 4BL, 5AS (2), 6AS and 6BL. Two major δ13C-s loci mapped on 

5AS at 0.0 cM (r2 = 6.01) and 6BL at 65.9 cM (r2 = 4.72). 

In 2018, fifteen QTL were identified for OA on 1AL, 1BL, 2AS, 2AL, 2BL (2), 4AL (2), 4BS, 

5AL, 6AL (2), 6BS, 6BL and 7BS. In detail, three major loci mapped on 2BL at 185.8 cM (r2 = 

4.37), on 6AL at 91.2 cM (r2 = 4.23) and at 117.1 cM (r2 = 4.78) (Table 8). In the following year 

(2019), five QTL were identified for OA under moderate drought conditions (95 DAP). 

Specifically, two major loci mapped on 2BS at 8.3 cM (r2 = 6.27) and on 2BL at 172 cM (r2 = 6.05) 

(Table 9). The confidence interval of these OA loci did not overlap by comparing the two years. 

In 2018, fifteen QTL were identified for RWC and, specifically, nine of them under drought (RWC-

s, 119 DAP), while six under well-watered conditions (RWC-c, 104 DAP). In detail, two major 

QTL for RWC-s mapped on 4AL at 147.2 cM (r2 = 3.95) and at 156.9 cM (r2 = 3.84), while two 

major QTL for RWC-c mapped on 5BS at 7.2 (r2 = 5.85) and at 48.9 (r2 = 8.22) (Table 8). In the 

following year (2019), the GWAS detected five QTL for Δ RWC on 2AS, 4AS (2), 6BS and 7BL 

with a major locus on 6BS at 64.8 cM (r2 = 7.04) (Table 9). Comparing both years, a significant 

RWC-QTL shared the confidence interval on 2AS at 9.4 cM (2.86 < r2 < 5.45) in spite of the 

divergent drought severity conditions. 
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Table 8 | List of QTL positions, only for log P value > 3.00, for OA and RWC-s traits on 119 DAP 

(2018) according to the tetraploid consensus map of Maccaferri et al. (2015a). 

 2018 

TRAIT DAP Marker Chr. Pos. (cM) Log P value R2 Allele Effect 

OA 119 IWB27332 1A 88.3 3.07 3.10 C/T -1.55 

  IWB65251 1B 93.3 3.17 3.19 C/T -0.09 

  IWB34575 2A 46.6 3.11 3.11 A/G 0.12 

  IWB39807 2A 206.8 3.08 3.31 C/T 0.09 

  IWA2318 2B 133.0 3.89 4.07 C/T -0.11 

  WPT-0049 2B 185.8 4.13 4.37 A/T 0.14 

  wPt-7289 4A 136.8 3.15 3.17 A/T 0.09 

  IWB34029 4A 161.7 3.88 4.06 C/T 1.25 

  IWB72203 4B 28.8 3.00 2.48 A/C 0.07 

  IWB50381 5A 198.8 3.24 3.28 A/G 0.15 

  WPT-2014 6A 91.2 4.01 4.23 A/T 0.16 

  IWB70454 6A 117.1 4.45 4.78 C/T 0.18 

  IWB33826 6B 75.3 3.12 3.13 A/G -0.10 

  IWB71722 6B 114.3 3.21 3.24 A/G -0.08 

  WPT-3147 7B 3.7 3.13 3.14 A/T -0.09 

RWC-s 119 IWB461 1B 45.3 3.70 3.24 C/T -4.29 

  IWB22184 2A 9.4 3.33 2.86 A/G -4.25 

  IWB66212 4A 140.7 3.02 2.53 A/C 2.73 

  IWB56811 4A 147.2 4.83 3.95 C/T -5.51 

  IWB55093 4A 156.9 4.27 3.84 A/G 5.24 

  IWA3449 4A 161.7 3.90 3.45 C/T 4.66 

  IWA4603 6A 117.7 3.39 2.92 A/G 3.15 

  IWA7962 6B 78.8 3.04 2.56 A/G -6.92 

  IWB71722 6B 114.3 3.00 2.44 A/G -2.46 
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Table 9 | List of QTL positions, only for log P value > 3.00, for OA and Δ RWC traits on 95 DAP 

(2019) according to the tetraploid consensus map of Maccaferri et al. (2015a). 

 2019 

TRAIT DAP Marker Chr. Pos. (cM) Log P value R2 Allele Effect 

OA 95 IWB26593 2A 196.5 3.10 4.89 C/T 0.08 

  IWB51340 2A 211.5 3.28 5.93 C/T -0.06 

  IWB51601 2B 8.3 3.43 6.27 A/C -0.06 

  IWB5427 2B 172 3.70 6.05 A/C 0.20 

  IWA196 5B 170.7 3.44 5.55 C/T 2.80 

Δ RWC 95 IWB490 2A 9.4 3.08 5.45 A/G 1.71 

  IWB72314 4A 17.0 3.27 5.83 A/G 1.02 

  IWB24569 4B 85.2 3.15 5.59 C/T -1.47 

  IWA4823 6B 64.8 3.82 7.04 C/T 2.79 

  IWB2238 7B 189.3 3.66 6.67 A/G -1.25 
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Additional drought adaptive traits 

Three LR QTL were identified in 2017 (100 DAP). Two of these on 5BS at 63.2 cM (r2 =7.44) and 

at 72.9 cM (r2 = 4.70) and one on 6BS at 93.4 (r2 = 4.38) as well as in 2018 (120 DAP) on 1AS (r2 

= 16.60), 2BS (r2 = 13.30) and 3BL (r2 = 12.83). The confidence interval of these loci did not 

overlap for LR investigated in both years. 

Thirty-five SPAD QTL were identified in 2017 (100 DAP) and in 2018 (120 DAP). In detail, 

sixteen loci in the first year and twenty-nine in the second year. In 2017, three mayor QTL mapped 

on 1AS at 71.6 cM (r2 = 7.72), 5AL at 178.3 cM (r2 = 8.36) and 7AS at 82.2 cM (r2 = 11.44), while 

in 2018, three mayor QTL mapped on 1AS at 70.7 cM (r2 = 7.87), 4BS at 32.7 cM (r2 = 8.69) and 

5AL at 178.3 cM (r2 = 8.99). Comparing both years, two significant QTL overlaps were observed 

on 1AS (7.72 < r2 < 7.87) and on 3BS (3.66 < r2 < 4.30). 

Thirty WAXL QTL were identified in 2017 (100 DAP) and 2018 (120 DAP). A larger number of 

loci was observed in the first year (16) than the second year (14). In detail, three mayor QTL in 

2017 mapped on 1AS at 1.7 cM (r2 = 17.31), on 2AS at 8.6 cM (r2 = 13.75) and on 2BS at 4.1 cM  

(r2 = 12.78), while three major QTL in 2018 mapped on 1AS at 1.7 cM (r2 = 16.60), 2BS at 4.1 cM 

(r2 = 13.30) and 3BL at 157.8 cM (r2 = 12.83). Comparing both years, two significant QTL overlaps 

were observed on 1AS (16.60 < r2 < 17.31), 2BS (12.78 < r2 < 13.30) and 3BL (12.83 < r2 < 18.10). 

In addition, nineteen WAXS QTL were identified in 2017 (100 DAP) and 2018 (120 DAP). A 

larger number of loci was observed in the first year (14) than the second year (5). In detail, two 

mayor QTL in 2017 mapped on 2AS (r2 = 9.61) and on 7AS (r2 = 6.63), while two major QTL in 

2018 mapped on 6BL at 153.1 cM (r2 = 7.34) and 7BS at 29.9 cM (r2 = 5.74). Comparing both 

years, two significant QTL overlaps were observed on 1AS (16.60 < r2 < 17.31), 2BS (12.78 < r2 < 

13.30) and 3BL (12.83 < r2 < 18.10). Finally, two significant loci shared the confidence interval for 
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WAXL and WAXS (100 DAP) and mapped on 2AS (9.61 < r2 < 13.75) and 7AS (6.63 < r2 < 

10.11), while no QTL overlaps were observed for WAXL and WAXS (120 DAP). 

Ten major FT QTL were identified in 2018 on 1AL, 2AS (2), 2BS, 4AS, 4AL, 4BS, 5AL (2), 6BL 

with two significant loci on 4AS at 23.7 cM (r2 = 6.94) and 6BL at 71.9 (r2 = 6.90). In addition, 

twenty-six PH QTL were identified on 1AL (3), 1BL, 2AL (2), 2BS (2), 2BL (3), 3AL. 3BL, 4AS, 

4BS (2), 4BL (3), 5AL, 6AL, 6BL (3), 7AS and 7BS with two major loci on 4BS at 30.8 cM (r2 = 

10.68) and 5AL at 178.3 (r2 = 9.88). Comparing both traits (FT and PH), two significant QTL 

overlaps were observed on 2BS (4.98 < r2 < 6.75) and 4AS (5.95 < r2 < 6.22). 

Dry biomass 

Thirty-one DB QTL were mapped in 2017 (194 DAP) and 2018 (125 DAP) under conditions of 

severe drought. A larger number of these loci was observed in the second year (16) than the first 

year (15). In 2017, three major QTL mapped on 2BL at 160.6 cM (r2 = 7.59), 4BS (r2 = 7.79) and 

5A (r2 = 7.64) while in 2018, two major QTL mapped in 2018 on 1AS at 71.6 cM (r2 = 5.64) and 

7BS at 32.6 cM (r2 = 6.40). Comparing both years, four significant QTL overlaps were observed on 

4BS (5.16 < r2 < 7.79), 4BL (4.28< r2 < 6.34), 5AL (5.03 < r2 < 7.64) and 7AL (3.88 < r2 < 4.47). 

In 2019, five ΔBM-QTL were observed under moderate drought conditions on 2AS at 50.5 cM (r2 = 

5.86), 2BL at 131.2 cM (r2 = 6.59), 4BS at 14.4 cM (r2 = 7.59) and 27.6 cM (r2 = 5.39) and 7AS (r2 

= 5.86). The confidence interval of these DB loci did not overlap with those investigated in the two 

years before. 
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QTL clusters 

Based on the results reported herein, thirty-one QTL clusters were detected influencing two or more 

drought adaptive traits, unrelated to phenology (FT) and plant height (PH). They mapped on 1A 

(DR_QTLcluster#01), 1B (DR_QTLcluster#02, DR_QTLcluster#03, DR_QTLcluster#04), 2A 

(DR_QTLcluster#05, DR_QTLcluster#06, DR_QTLcluster#07, DR_QTLcluster#08), 2B 

(DR_QTLcluster#09), 3A (DR_QTLcluster#10), 3B (DR_QTLcluster#11, DR_QTLcluster#12, 

DR_QTLcluster#13, DR_QTLcluster#14 and DR_QTLcluster#15), 4A (DR_QTLcluster#16, 

DR_QTLcluster#17, DR_QTLcluster#18), 4B (DR_QTLcluster#19), 5A (DR_QTLcluster#20), 6A 

(DR_QTLcluster#21, DR_QTLcluster#22, DR_QTLcluster#23, DR_QTLcluster#24 and 

DR_QTLcluster#25), 6B (DR_QTLcluster#26, DR_QTLcluster#27, DR_QTLcluster#28, 

DR_QTLcluster#29) and 7A (DR_QTLcluster#30 and DR_QTLcluster#31). 

In detail, the DR_QTLcluster#01 (16.60 < r2 < 17.31) influenced the epicuticular wax content on 

flag leaves (WAXL) of the accessions planted in 2017 and 2018, while the DR_QTLcluster#02 

(3.22 < r2 < 5.48) affected IRT by UAV-RedEdge as well as the chlorophyll content by SPAD. The 

DR_QTLcluster#03 was associated with the accumulation of osmolytes (OA) as well as chlorophyll 

content (SPAD), while the DR_QTLcluster#04 and DR_QTLcluster#12 influenced the following 

photosynthetic traits: Fr1’/Fm’ and Fr2’/Fm’. The DR_QTLcluster#05 affected the wax 

accumulation on flag leaves (WAXL) and spikes (WAXS) as well as the relative water content 

(RWC) in drought. The DR_QTLcluster#06 (3.00 < r2 < 54.29) was associated with the internal 

temperature (IRT) of the accessions as well as the photosynthetic activity (PSII).  The 

DR_QTLcluster#07 influenced the wax content in the spikes (WAXS), the chlorophyll content 

(SPAD) and the re-oxidation efficiency of QA (Fr2’/Fm’). The DR_QTLcluster#08 was associated 

with the internal temperature (IRT) as well as the accumulation of osmolytes (OA), while the 

DR_QTLcluster#09 (4.07 < r2 < 6.59) with OA and the dry biomass. The DR_QTLcluster#10 

influenced the epicuticular wax content on flag leaves (WAXL) as well as the rolling on flag leaves 
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(LR) in response to drought. The DR_QTLcluster#10 and the DR_QTLcluster#11 were specific for 

the following photosynthetic traits: Fr1’/Fm’ and Fr2’/Fm’ and chlorophyll content by SPAD 

respectively. The DR_QTLcluster#13 (6.25 < r2 < 12.58) influenced the wax accumulation on flag 

leaves (WAXL) and spikes (WAXS), while DR_QTLcluster#14, together with QTLcluster#21 (3.36 

< r2 < 6.81), QTLcluster#22, DR_QTLcluster#26 and DR_QTLcluster#31, influenced the 

vegetation index (NDVI) in drought. The DR_QTLcluster#15 (4.44 < r2 < 5.50) influenced the 

internal temperature (IRT) and the wax accumulation on flag leaves (WAXL), while 

DR_QTLcluster#16 (4.26 < r2 < 10.90) influenced IRT and dry biomass. The DR_QTLcluster#17, 

together with DR_QTLcluster#18, DR_QTLcluster#25, DR_QTLcluster#28 and 

DR_QTLcluster#29, affected the accumulation of osmolytes as well as the relative water content in 

flag leaves (OA and RWC). The DR_QTLcluster#19 (2.48 < r2 < 5.39) influenced OA and the dry 

biomass, while the DR_QTLcluster#20 (3.02 < r2 < 4.99) influenced the photosynthetic activity in 

light (Fq’/Fm’) and in dark (PSII) hours. The DR_QTLcluster#23 and DR_QTLcluster#27 (4.72 < 

r2 < 7.04) especially influenced the carbon isotope discrimination in flag leaves (δ13C) under 

drought. Finally, the DR_QTLcluster#30 (3.71 < r2 < 11.44) was specific for the chlorophyll 

content (SPAD) in two consecutive years (Table 10 and Figure 11). 
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Table 10 | Chromosome position on the durum consensus map (Maccaferri et al. 2015a) of thirty-

one QTL clusters influencing two or more drought adaptive traits which unrelated to phenology 

(flowering time) and plant height. UAVse: UAV-Sequoia; UAVr: UAV-RedEdge; TRA: Tractor-

GreenSeeker. 

QTL CLUSTER Chr. Pos. (cM) R2 Trait 2017 Trait 2018 Trait 2019 

DR_QTLcluster#01 1A 1.7 16.60 < r2 < 17.31 WAXL WAXL - 

DR_QTLcluster#02 1B 54.3-54.8 3.22 < r2 < 5.48 IRT-UAVr SPAD - 

DR_QTLcluster#03 1B 93.3 2.60 < r2 < 3.19 - OA, SPAD - 

DR_QTLcluster#04 1B 158 4.63 < r2 < 4.85 - Fr1’/Fm’, Fr2’/Fm’ - 

DR_QTLcluster#05 2A 8.6-9.4 2.86 < r2 < 9.61 WAXL, WAXS RWC Δ RWC 

DR_QTLcluster#06 2A 21.9 3.00 < r2 < 4.29 IRT-UAVr - PSII 

DR_QTLcluster#07 2A 96-97.3 4.30 < r2 < 4.91 - Fr2’/Fm’, SPAD, WAXL - 

DR_QTLcluster#08 2A 206.8-208.4 3.16 < r2 < 3.31 IRT-TRA OA - 

DR_QTLcluster#09 2B 131.2-133 4.07 < r2 < 6.59 - OA Δ Biomass 

DR_QTLcluster#10 3A 59.1 3.68 < r2 < 4.90 WAXL LR - 

DR_QTLcluster#11 3B 6.5-7.4 3.66 < r2 < 4.30 SPAD SPAD - 

DR_QTLcluster#12 3B 24.6 6.05 < r2 < 6.33 - Fr1’/Fm’, Fr2’/Fm’ - 

DR_QTLcluster#13 3B 93.8 6.25 < r2 < 12.58 WAXL, WAXS - - 

DR_QTLcluster#14 3B 133.4 4.17 < r2 < 4.73 NDVI-UAVse, SPAD - - 

DR_QTLcluster#15 3B 209.1-209.6 3.44 < r2 < 5.50 IRT-UAVr, WAXL WAXL - 

DR_QTLcluster#16 4A 88.1 4.26 < r2 < 10.90 IRT-UAVr Biomass - 

DR_QTLcluster#17 4A 136.8-140-7 3.02 < r2 < 3.34 NDVI-UAVr OA, RWC - 

DR_QTLcluster#18 4A 161.7 3.00 < r2 < 3.90 - OA, RWC, SPAD - 

DR_QTLcluster#19 4B 27.6-28.8 2.48 < r2 < 5.39 - OA Δ Biomass 

DR_QTLcluster#20 5A 96.6-101.9 3.02 < r2 < 4.99 - Fq’/Fm’ PSII 

DR_QTLcluster#21 6A 5.1 3.36 < r2 < 6.81 NDVI-UAVr-se - - 

DR_QTLcluster#22 6A 21.4 3.00 < r2 < 3.66 NDVI-UAVr-se - - 

DR_QTLcluster#23 6A 44.1-45.9 3.20 < r2 < 5.29 NDVI-UAVr, δ13C-s Fr1’/Fm’, Biomass - 

DR_QTLcluster#24 6A 71.8-72.4 3.71 < r2 < 5.19 IRT-UAVr, NDVI-UAVr-se - - 

DR_QTLcluster#25 6A 117.1-117.7 2.92 < r2 < 4.78 - OA, RWC - 
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DR_QTLcluster#26 6B 31.3 3.64 < r2 < 3.75 NDVI-UAVr-se - - 

DR_QTLcluster#27 6B 64.8-65.9 4.72 < r2 < 7.04 δ13C-s WAXL Δ RWC 

DR_QTLcluster#28 6B 75.3-78.8 2.56 < r2 < 3.13 IRT-UAVr OA, RWC - 

DR_QTLcluster#29 6B 114.3-119.3 2.44 < r2 < 4.02 - OA, RWC, SPAD, WAXL - 

DR_QTLcluster#30 7A 82.2 3.71 < r2 < 11.44 SPAD SPAD - 

DR_QTLcluster#31 7A 131.3 3.75 < r2 < 5.58 NDVI-UAVse - - 
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Figure 11 | Chromosome position on the durum consensus map (Maccaferri et al. 2015a) of QTL 

clusters identified in this study. The QTL in the first year (2017) are highlighted with a light blue 

bar; the QTL in the second year (2018) are highlighted with a grey bar; the QTL in the third year 

(2019) are highlighted with a light red bar. The QTL hotspots were independent from the effects of 

the flowering time (FT) and plant height (PH) as well as from the loci relevant for phenology (PPD-

A1, PPD-B1, Rht-B1b and FT-7A-indel). 
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DISCUSSION 

Chlorophyll fluorescence imaging (CFI) by the “Lemnatec” field scanalyzer 

In the last years, high-throughput digital phenotyping methods have been proposed (Busemeyer et 

al. 2013; White and Conley, 2013; Andrade-Sanchez et al. 2014; Deery et al. 2016; Bai et al. 2016; 

Underwood et al. 2017; Jimenez-Berni et al. 2018) to alleviate the current phenotyping bottleneck 

within modern plant breeding programs (Cobb et al. 2013; Araus and Cairns, 2014). However, 

current approaches are laborious or permit the use of only a few sensors at a time. In an effort to 

overcome this, fully or semi-automated robotic field phenotyping could ease the continual and high-

throughput monitoring of crop performance (Virlet et al. 2017). This study is the first to investigate 

chlorophyll fluorescence imaging (CFI) data in time series using a “Lemnatec” field scanalyzer 

(LFS) platform. In detail, the on-board CFI system enabled the fluorescence measurements emitted 

mainly by PSII during the dark hours at 71, 97, 102 and 106 DAP under progressive moderate 

drought conditions. PSII results showed an increased significance in heritability (h2) under water 

shortage (102 and 106 DAP) as well as a progressive decreased trend of the values from 71 to 106 

DAP, consequent to the heterogeneous cumulative effects of senescence and considerable damages 

in the photosynthetic activity under advanced drought conditions (Urban et al. 2018).  

As expected, PSII data positively correlated with NDVI and negatively with IRT by UAVs, proving 

how these remote sensing systems could be integrated to select novel drought tolerant proxies in the 

future crop breeding programs (Shakoor et al. 2019). 

NDVI and IRT measurements by UAV- and ground-based platforms 

It is well known that HTP devices/platforms show different sensitivity features and, consequently, 

differ in their capacities to discriminate genotypes, specifically depending on the crop 

developmental stage and/or agronomic management (Marti et al. 2007; Cabrera-Bosquet et al. 

2011; Christopher et al. 2016). To our best knowledge, this study is the first to report on the use of 

https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B42
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B13
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B13
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B14
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UAV-based remote sensing for GWAS analysis in crops and to compare the results to those 

obtained using a ground-based platform. In detail, we compared two UAV- and one ground-based 

platforms to search for NDVI and IRT QTL in a field trial (2017) first conducted under well-

watered conditions until flowering, then followed by 2 weeks of progressively increasing water-

deficit conditions that decreased leaf relative water content (RWC) to 50%. The rapid decrease in 

RWC after stopping irrigation was consequent to the high evaporative demand typical of the 

environment where the field trial was conducted. During the time interval from 16 to 31 March 

when irrigation was terminated and plants experienced an increasing water-deficit stress, the 

average mean daily and average maximum temperatures were 20.9 and 29.7 °C, respectively while 

the average reference daily evapotranspiration using the standardized Penman-Monteith method 

was 5.41 mm. 

When compared to the two UAV-based platforms, NDVI-values collected with the ground-based 

platform plateaued earlier from 76 to 84 DAP, indicating its lower capacity to monitor plant 

biomass accumulation and leaf greenness during the reproductive stage of the wheat growth cycle. 

Additionally, UAV-mounted platforms allowed us to measure hundreds of plots in very short time, 

hence minimizing the confounding effects due to time-related environmental variation, which 

inevitably affect the results of studies conducted with ground-based platforms (Haghighattalab et al. 

2016). NDVI has been recognized for its ability to estimate crop biomass and grain yield (Lewis et 

al. 1998; Araus et al. 2001) and this correlation becomes stronger when estimated with UAV 

platforms (Kyratzis et al. 2015). 

In this study, the two UAV-based platforms showed a markedly higher heritability for NDVI 

measurements as compared to those collected with the ground-based platform. A high h2 is critical 

to effectively identify and eventually clone QTL (Tuberosa, 2012). Therefore, from a 

methodological perspective on the use of the aerial vs. ground-based HTPPs to detect significant 

loci for NDVI, our results show the increased ability of the former, particularly under terminal 

https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B19
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B19
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B31
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B31
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B3
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B25
https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B70
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drought stress, as shown by the considerably higher number of significant QTL with the UAV-

based platforms. Accordingly, a recent study conducted in barley grown under 10 different nitrogen 

treatments has also shown an increased sensitivity of aerial vs. ground-based platforms to measure 

NDVI using RGB (conventional digital cameras), multispectral and thermal aerial imagery in 

combination with a matching suite of ground sensors (Kefauver et al. 2017).  

As with NDVI, the relative benefits and comparison of UAV- and ground-based platforms were 

investigated for IRT, a surrogate measure of stomatal aperture and conductance as well as 

photosynthetic rate (Jones and Vaughan, 2010; Maes and Steppe, 2012). Our results demonstrated 

the more efficiency and repeatability of the UAV-based platform (RedEdge sensor) on IRT 

measurements than the ground-based platforms (GreenSeeker sensor). Additionally, a trend of IRT 

increase was observed on progressive DAP under water shortage, consequent to the cumulative 

effects of senescence and drought stress severity. In fact, IRT based on the fact that plant surfaces 

(e.g., leaves) are cooled by evaporation, so that temperatures decrease in proportion to the 

evaporation rate. The cooler temperature related with stomatal opening and higher transpiration 

rates and conversely, warmer temperature related with a reduction in transpiration rate (Deery et al. 

2016). 

Chlorophyll fluorescence (ChlF) by the manually pushed cart 

Simultaneous Fq’/Fm’ as well as Fr1’/Fm’ and Fr2’/Fm’ measurements under well-watered (WW, 

103 DAP) and water-limited conditions (WL, 115 DAP) provided more detailed information about 

the photosynthetic rate of the accessions in ambient light. Fq’/Fm’ was measured to quantify the 

maximum quantum efficiency of PSII (Keller et al. 2019) showing a decreased trend from 103 DAP 

to 115 DAP, consequent to considerable damages in the leaves and then in the photosynthetic 

electron transport steps sensitive to the advanced drought severity (Yordanov et al. 2000;  

Zandalinas et al. 2018). Contrary to Fq’/Fm’, less attention is paid to the QA re-oxidation efficiency 

https://www.frontiersin.org/articles/10.3389/fpls.2018.00893/full#B23
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0.65 ms (Fr1’/Fm’) and 120 ms (Fr2’/Fm’) to monitor fluorescence relaxation (Fr). Both traits 

showed an increased trend from 103 DAP to 115 DAP, result of the electron transport damages 

under advanced drought severity. Their negative correlation with Fq’/Fm’ under drought explained 

the reduction of the QA efficiency by PSII relative to the maintained efficiency of oxidation by PSI. 

Their low association with PSII data measured by LFS in the dark hours was due to the increasing 

light intensities and non-photochemical quenching (NPQ) processes which affect the fluorescence 

relaxation kinetics only in the light hours (Keller et al. 2019). 

Physiological drought adaptive traits 

The leaf carbon isotope discrimination (δ13C) was investigated under well-watered (85 DAP) and 

water-limited conditions (93 DAP) because represents a potentially useful trait in crop breeding for 

improved drought tolerance cultivars (Dixon et al. 2019), despite the selection criterion has been 

limited for the inconsistent relationship proved with grain yield (Araus et al. 1998; Korte and 

Farlow, 2013). In the present study, the differences in the photosynthetic gas exchange under well-

watered ad water-limited conditions explained the decreased trend from 85 to 93 DAP.  

δ13C-s positively correlated with photosynthetic traits, consequent to its implication within 

chlorophyll activities (Wingate et al. 2015) and to its relevance as useful proxy for the selection of 

drought tolerant wheat genotypes to enhance wheat productivity in drought (Bachiri et al. 2018). 

A number of authors have proposed OA as an important metabolic adaptation mechanism to support 

higher crop yield under stressful environmental conditions, as recently reviewed by Abdelrahman et 

al. (2017). Notably, grain yield differences have been shown to be positively correlated to OA in 

cereals (Morgan et al. 1984; Morgan and Condon, 1986; Blum and Pnuel, 1990 and Blum et al. 

1999), hence representing a valuable proxy to evaluate not only drought effects but also to predict 

grain production (Blum, 2017). This notwithstanding, the genetic factors regulating OA in wheat 

and other crops remain unknown, the main reason being the difficulty to adequately survey and 
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phenotype the large number of accessions of the mapping population and/or GWAS panels required 

for a meaningful QTL discovery. The collection of leaves and their processing must be completed 

rapidly to obtain meaningful data and minimizing the bias introduced by the time of sample 

collection OA in an adequately large number of genotypes, an essential prerequisite for identifying 

and accurately mapping QTL (Tuberosa, 2012; Maccaferri et al. 2015b). Not recently, the attempt 

to genetically dissect OA on cereals was conducted in rice (Lilley et al. 1996; Robin et al. 2003) and 

in barley (Teulat et al. 1998; Teulat et al. 2001). Only in bread wheat, Morgan and Tan (1996) 

mapped an osmoregulation gene locus (Morgan, 1991) located in the short arm on chromosome 7A 

by exploring genetic linkage to restriction fragment length polymorphism (RFLP) loci. However, 

OA and osmoregulation terms are different. OA refers to a lowering of osmotic potential (ψs) due to 

an accumulation of osmolytes in response to water scarcities, while the osmoregulation refers to the 

ψs regulation by the addition/removal of osmolytes until the intracellular potential is approximately 

equal to that of the medium surrounding the cell (Turner and Jones, 1981). The gene described by 

Morgan is concerned with regulation of turgor pressure and water content by osmotic adjustments 

(Morgan 1977, 1988), hence the term osmoregulation.  

In this study, OA was measured according to the “Rehydration method” (Babu et al. 1998) in two 

consecutive years (2018 and 2019) in drought (early grain-filling) as an assessment of adaptation to 

terminal drought stress. Although this method was criticized (Kikuta and Ritcher, 1992), many 

others considered it an optimal screening tool for large populations (Turner and Jones, 1980; Fisher 

et al. 2005; Mart et al. 2016). In support of this, the sizeable genetic variability and high 

repeatability observed for several crops (Zhang et al. 1999) and its merits in terms of labor, cost-

effectiveness and plant materials as compared to the other methods (Babu et al. 1998). In our 

experience, the rehydration of the leaf samples greatly facilitated (i) the cell sap extraction 

especially in water-stressed conditions and (ii) the OA screening for all durum wheat elite 

accessions (Durum Panel). These evidences have led to a high OA heritability in both years of 
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investigation (2018 and 2019), increased values for the modern French, North American, Canadian 

and Australian cultivars (S8) and a negative correlation with LR. In 2018, the positive correlation 

between OA and RWC clearly indicates an active physiological role of osmolytes to maintain a 

more favorable water status of the plant playing a key role for avoiding and mitigating the negative 

effects of water loss under severe drought. The results validate the effectiveness of the 

“Rehydration method” as an ideal option for handling the large number of samples required for the 

genetic dissection of OA.  

Additional drought adaptive traits 

The LR values showed a positive correlation with IRT as well as negative with OA and RWC traits 

as reported by different studies, which characterized LR as related to leaf water status and canopy 

temperature (Turgut et al. 1998; Cal et al. 2019). Back in 1980, O'Toole and Cruz reported that the 

transpiration rate per unit leaf area decreased when flag leaves rolled, while in 1986 Turner et al. 

found significant relationships between canopy temperature and leaf rolling under water shortage 

conditions. LR was reported to be directly related to leaf water potential (LWP) (Dingkuhn et al. 

1989) and osmotic potentials (Hsiao et al. 1984; Pandey et al. 2017) as observed in the current 

study.  

The chlorophyll content (SPAD) was estimated in two consecutive years (2017 and 2018) as a rapid 

non-destructive estimation of the plant nitrogen (N) status (Yue et al. 2019) which represent a major 

component of the photosynthetic apparatus. SPAD correlated with Fr1’/Fm and Fr2’/Fm’ 

photosynthetic traits, despite the different methodological approaches. The epicuticular wax on the 

flag leaves (WAXL) and spikes (WAXS) was estimated in two consecutive years (2017 and 2018) 

showing no significant relationships with the other investigated traits. Except between WAXL and 

IRT due to the known association of epicuticular waxes with the canopy temperature in wheat as 

reported by Mondal et al. (2015). 
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Dry biomass 

The DB in the first two years (2017 and 2018) showed a higher heritability than in the last year 

(2019). DB positively correlated with grain yield (GY) related proxies as NDVI and photosynthetic 

traits (Fq’/Fm’, Fr1’/Fm’ and Fr2’/Fm’) and negatively correlated with IRT. However, the 

influence of phenology and the harvest in advance (GS71, early milk) induced DB values to not 

represent a direct estimate of the final grain yield (GY) (Serrano et al. 2000; Duncan et al. 2018) in 

the current study. 

QTL clusters 

The use of the flowering time (FT) as covariate for the GWAS analysis reduced the genetic effects 

of the photoperiod and vernalization, which in turn allowed us to more accurately report thirty-one 

QTL hotspots based on the concurrent allelic effects on two or more drought adaptive traits.  

All of them unrelated to the major loci for flowering time and plant height of the current study as 

well as the major loci known to influence photoperiod/vernalization, (Milner et al. 2016) and in part 

were associated with previous grain yield (GY) and related QTL studies in wheat.  

DR_QTLcluster#01 shared the genetic interval with Ws gene on the short arm of chromosome 1AS 

responsible for spike glaucousness in durum wheat (Gadaleta et al. 2009). Worthy of note the 

overlap between the WAXL-locus on 2BS and the known Iw1 gene, an inhibitor of the 

glaucousness loci (W) in hexaploid wheat (Wu et al. 2013). DR_QTLcluster#04 as well as 

DR_QTLcluster#05 and DR_QTLcluster#11 overlapped with test weight (TW) and NDVI loci 

respectively, previously reported in a durum wheat elite population tested in contrasting thermo-

pluviometric conditions by Graziani et al. (2014).  DR_QTLcluster#08 co-mapped with QRga.ubo-

2A.3 while DR_QTLcluster#24 and DR_QTLcluster#25 with QRga.ubo-6A.1 and QRga.ubo-6A.2 

respectively. These important loci were identified for root growth angle (RGA) in Colosseo × Lloyd 

recombinant inbred lines (RILs) as well as thousand grain weight (TGW) and partially grain yield 



62 

 

(GY) in a panel of 183 elite durum wheat accessions under different water regimes (Maccaferri et 

al. 2016). DR_QTLcluster#10 affecting WAXL and LR as well as DR_QTLcluster#11 affecting 

chlorophyll content (SPAD) shared the interval with NDVI QTL on chr. 3A and 3B in hexaploid 

wheat (Jingdong 8/Aikang 5) under varying climate conditions across China (Li et al. 2014). 

DR_QTLcluster#15 affecting IRT and WAXL as well as DR_QTLcluster#19 affecting OA, RWC 

and SPAD overlapped with two major QTL for NDVI at the vegetative stage in Seri/Babax wheat 

mapping population. Finally, DR_QTLcluster#18 and DR_QTLcluster#29 affecting OA, RWC, 

SPAD co-mapped with two major GY QTL reported by Quarrie et al. (2005) from the hexaploid 

wheat cross between Chinese Spring × SQ1 evaluated across a broad combination of 24 site × 

treatment × year combinations. 

 

 

CONCLUSIONS 

This study genetically investigated drought adaptive traits in an elite durum wheat collection 

suitable for GWAS and representative of global durum breeding. The measurements were acquired 

using the traditional as well as the emerging HTP approach based on a semi-automatic platform 

“Lemnatec” field scanalyzer and UAV- and ground-based remote sensing. The results report herein 

demonstrate the great potential and effectiveness of semi-automated robots and UAV-based 

platforms to gather rapid, precise, and detailed measurements, which in turn considerably improved 

trait repeatability estimates as well as QTL identification. Additionally, they provide the detection 

of significant loci for OA and RWC due to the phenotypic plasticity as well as the genetic variants 

of our Durum Panel and support the validity of the “Rehydration method” as an optimal, fast and 

economical protocol for large-scale screening of OA under well-watered and drought conditions. 
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Twelve selected drought response-specific QTL hotspots (DR_QTLcluster#01, DR_QTLcluster#04, 

DR_QTLcluster#05, DR_QTLcluster#08, DR_QTLcluster#10, DR_QTLcluster#11, 

DR_QTLcluster#15, DR_QTLcluster#18, DR_QTLcluster#19, DR_QTLcluster24, 

DR_QTLcluster#25 and DR_QTLcluster#29) reveal useful markers for future breeding. Their 

overlap with known QTL/genes for grain yield and related traits promotes the investigated traits as 

prime drought stress adaptive proxies for wheat productivity in conditions of adverse water status.
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CHAPTER 2 

Kompetitive Allele Specific Polymerase chain reaction (KASP) marker development for the 

genetic dissection of Furarium Head Blight (FHB) resistance in durum wheat 

 

INTRODUCTION 

Fusarium head blight (FHB) is a fungal disease caused by pathogens belonging to the genus 

Fusarium, which infects wheat as well as several other minor cereals worldwide (Bai and Shaner, 

1994; Bottalico and Perrone, 2002; Moretti et al. 2018; Castiblanco et al. 2018). In particular, 

Fusarium culmorum (WG Smith) (FC) and Fusarium graminearum (FG) Schwabe [telomorph: 

Gibberella zeae Schw. (Petch)] species induce severe grain yield losses (Buerstmayr et al. 2012) 

and accumulation of mycotoxins (e.g. deoxynivalenol or DON) (Beres et al. 2018) compromising 

food safety and animal health (Goswami and Kistler, 2004; Petersen et al. 2017).  

Two important types of FHB resistance were reported in wheat (Schroeder and Christensen, 1963). 

Type I operates against initial infection while type II against the spread within the head. Up to now, 

they are easier to evaluate and more frequently recognized than less well-known type III (DON 

content), type IV (kernel infection) and type V (tolerance) (Shaner, 2002). 

Durum wheat (Triticum turgidum ssp. durum, tetraploid, 2n = 28, AABB) is notorious for its high 

susceptibility to FHB (Miedaner et al. 2017) in comparison to bread wheat (Triticum aestivum, 

hexaploid 2n = 42, AABBDD) for difficulties to combine the numerous small-effect resistance 

quantitative trait loci (QTL) in selective breeding (Steiner et al. 2019) and for its narrow genetic 

diversity (Rudd et al. 2001; Giancaspro et al. 2018). Szabo-Hever et al. (2018) reported a significant 

FHB severity reduction in synthetic hexaploid wheat (SHW) lines as compared to their tetraploid 

parents, mainly because of the lack of D-genome. At present, the effort to detect durum wheat 

resistant lines have been limited so far and none of selected durum landraces or lines show a FHB 
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resistance level comparable to Chinese spring wheat variety Sumai-3 (Buerstsmayr et al. 2003; 

Miedaner and Longin, 2014; Prat et al. 2014; Zhao et al. 2018; Hadjout et al. 2017). Over 250 

QTL/genes for FHB resistance have been identified in bread wheat, such as Fhb1 and Fhb5 in 

Sumai-3 and derivatives (Anderson et al. 2001; Buerstmayr et al. 2002; Jia et al. 2018). However, 

only a small number of FHB resistance loci have been mapped in durum wheat (Chen et al. 2007; 

Gladysz et al. 2007; Zhang et al. 2014; Sari et al. 2018; Zhao et al. 2018).  

Although bioengineering approaches were used by manipulating TaHRC sequence, a key gene for 

Fhb1-mediated resistance, to improve FHB resistance in wheat (Su et al. 2019), the most widely 

used strategy is the Fhb1 introgression from bread to durum wheat which has mainly led to unstable 

expressions in the durum genetic background (Zhu et al. 2016). However, Giancaspro et al. (2018) 

reported that cell wall structure as well as gene response acquired from the introgression induced to 

an increased FHB resistance in durum wheat, while Prat et al. (2017) successfully introgressed 

Fhb1 into durum wheat advanced lines inducing high levels of FHB resistance. Additionally, Zhao 

et al. (2018) reported three major loci for FHB resistance on chromosomes 2A, 5A and 7B from the 

cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line 

derived from the hexaploid wheat PI 277012). Recently, Sari et al. (2018) mapped a significant 

number of FHB resistance QTL using doubled haploid (DH) populations from Triticum turgidum 

ssp. durum and T. turgidum ssp. carthlicum.  

Another approach is the efficient use of ‘native’ resistance sources elite durum gene pool by 

combining the numerous small FHB resistance effects (Steiner et al. 2017) to breeding FHB 

resistance. To find effective breeding tools, we identified QTL hotspots for FHB resistance in 

durum wheat, in part unknown in bread wheat, based on a genome-wide association study (GWAS) 

on durum wheat accessions as well as based on a linkage mapping study on F6 recombinant inbred 

lines (RILs) from Simeto (susceptible cultivar) × Levante (moderately resistant cultivar) population. 

From the QTL detected, we chose specific loci in order to validate KASP (Kompetitive Allele-
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Specific Polymerase chain reaction) markers suitable for haplotype-based marker-assisted selection 

(MAS) programs. KASP assay is shown to be suitable for the high-throughput screening of large 

populations as well as for the selection of cultivars pyramiding loci for DON content and other FHB 

traits. 

 

 

MATERIALS AND METHODS 

The study included four steps: (i) GWAS on Fusarium Panel, (ii) linkage mapping on RIL 

population Simeto × Levante, (iii) selection of QTL hotspots and haplotype analysis, and (iv) KASP 

validation on PSB Panel.  

1. . GWAS on Fusarium Panel 

1.1. Plant material and field management 

A collection of 130 durum wheat accessions (Fusarium Panel) was assembled at the Department of 

Agriculture and Food Sciences - DISTAL, University of Bologna - UNIBO, considering the durum 

wheat passports as well as the phenotypic data from different countries worldwide. It included 

genotypes released from Mediterranean countries, breeding programs from the International Maize 

and Wheat Improvement Center (CIMMYT), USA breeding programs (Arizona, Minnesota, 

Montana and North Dakota States) as well as the International Center for Agricultural Research in 

the Dry Areas (ICARDA) (Supplementary Table 1). The Panel was grown and field-evaluated at the 

experimental fields of Società Italiana Sementi (SIS) S.p.A. in Idice (BO, Italy) in two years (2015 

and 2016) and at the experimental fields of ISEA S.p.A. in Tolentino (MC, Italy) in one year 

(2016). In both experiments, the field trials were sown in November consisting of two 2.5 m-long 
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and 0.15 m-apart rows, spaced 0.55 m between rows of adjacent plots arranged in a randomized 

complete block (RCB) design. Selected check cultivars (Claudio, Karim, Normanno, Saragolla and 

Simeto) were chosen and repeated within the experimental blocks to verify the FHB disease 

homogeneity in the field. Seed treatment, plot size, sowing density and crop management conditions 

were the same as those described in Buerstmayr et al. (2002). The accessions were spray-inoculated 

with macroconidia of FC single-spore isolates as described by Buerstmayr et al. (2000) and of FG 

single-spore isolates as described by Buerstmayr et al. (2002). In both cases, a total of 50 ml of 

inoculum was sprayed on the heads when 50% of the plants had reached anthesis using a motor 

driven back-pack sprayer. A restricted number of 43 elite accessions (Fusarium Panel subset) was 

field-evaluated at experimental farm of University of Bologna (Cadriano, BO) in 2016. In this case, 

a point-inoculation procedure (Purahong et al. 2014) was carried out using FC and FG single-spore 

isolates. 

1.2. Phenotypic analysis 

The Fusarium Panel grown in Idice was field-evaluated for incidence (proportion of diseased 

spikelets per spike) and severity (percentage of diseased spikes) in primary spikes on the following 

days after planting (DAP) (168, 174, 179 and 183) in the first year while on the following DAP 

(172, 179 and 186) in the second year. The FHB index was measured by dividing by 100 the sum of 

both trait values for each accession. The Fusarium Panel grown in Tolentino was field-evaluated for 

incidence, severity and then FHB index in primary spikes on the following DAP (170, 178 and 

187). In both environments, the area under the disease progress curve (AUDPC) was calculated 

taking into account all progressive dates of trait evaluation in order to provide an integrated 

measure of FHB disease. In addition, a considerable number of spikes for each plot was randomly 

harvested in order to collect 50 g of seeds from which to measure Fusarium-damaged kernels 

(FDK) as the percentage of shriveled, lightweight and chalky white kernels with occasional 
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characteristic pink coloration. The DON content was determined for the Fusarium Panel grown in 

Idice (2015 and 2016) and the subset of selective accessions grown in Cadriano (2017). The DON 

quantitative analysis (parts per billion, ppb) was measured at Genomics Research Centre (CREA-

GB) in Fiorenzuola d’Arda (PC, Italy) using a Ridascreen DON (R-Biopharm AG, Darmstadt, 

Germany) enzyme linked immune-assay (ELISA). The AUDPC was obtained for each considered 

trait taking into account all progressive dates of evaluation in order to provide an integrated 

measure of FHB disease and DON content. Finally, the flowering time (FT) was recorded for both 

plant materials grown in Idice and Tolentino by integrating each year and environment. 

1.3. Statistical analysis 

The lme4 package (R-project) was used to conduct spatial adjustment analyses of the raw plot data 

using a mixed procedure including row and column random effects as well as a moving mean of 

variable size. The resulting phenotypic data were analyzed by restricted maximum likelihood 

(REML) to fit a mixed model and produce best linear unbiased estimator (BLUE) values 

considering multiple and combined environments, years and inocula. Scripts in R-project were used 

to calculate Pearson correlation r coefficients among traits as well as the heritability value (h2) with 

reference to repeatable check cultivars within the experimental blocks and analysis of variance 

(ANOVA) treating accession, environment, year and inoculum as well as interactions as random 

factors. 

1.4. Genetic analysis 

The Fusarium Panel genomic DNA was extracted at the Plant Genetics laboratory of DISTAL - 

UNIBO using NucleoSpin® 8/96 Plant II Core Kit from Macherey Nagel and sent for SNP 

genotyping to TraitGenetics (http://www.traitgenetics.com/en/). The Illumina iSelect 90K wheat 

SNP assay (Wang et al. 2014) was used and genotype calls were obtained as described in 
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Maccaferri et al. (2015b). The tetraploid-consensus-2015 (Maccaferri et al. 2015a) was considered 

to assign polymorphisms on chromosomes and map positions.  

Haploview 4.2 software (Barrett et al. 2005) was used to exclude SNP markers with a minor allele 

frequency (MAF) > 0.10 and calculate the linkage disequilibrium (LD) among markers for each 

chromosome (A and B genomes). LD decay pattern as result of consensus genetic distances was 

inspected considering squared allele frequency correlation (r2) estimates from all pairwise 

comparisons among intra-chromosomal SNPs in TASSEL (Trait Analysis by aSSociation, 

Evolution and Linkage) 5.2.37. The Hill and Weir formula (Hill and Weir, 1988) was used in R-

project to define the QTL confidence interval (CI) in accordance with the curve fit and the distance 

at which LD decays below r2 0.3. 

A reduced subset of 2,656 SNP markers pruned for r2 = 0.5 was used in STRUCTURE software 

2.3.4 (Pritchard et al. 2000) in order to carry out the model-based quantitative assessment of 

subpopulation memberships of the accessions using inferences based on molecular SNP data only 

and including admixture and correlated allele frequencies among subpopulations. Numbers of 

hypothetical subpopulations ranging from k = 2 to 10 were assessed using 50,000 burn-in iterations 

followed by 100,000 recorded Markov-Chain iterations. To estimate the sampling variance 

(robustness) of population structure inference, five independent runs were carried out for each k. 

The rate of change in the logarithm of the probability of likelihood [LnP(D)] value between 

successive k-values (Δk) (Evanno et al. 2005), the inspection of the rate of variation (decline) in 

number of accessions clearly attributed to subpopulations (no. of accessions with Q membership's 

coefficient ≥ 0.5 and ≥ 0.7) and the Fixation Index (Fst) among all possible population pairwise 

combinations were used to predict the optimal number of subpopulations.  A Kinship matrix of 

genetic relationships among individual accessions of the Fusarium Panel was calculated with all 

non-redundant SNP markers using a tagger function set of r2 = 1.0 in Haploview 4.2. Kinship based 

on Identity-by-State (IBS) among accessions was calculated in TASSEL 5.2.37. A genome-wide 
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association study (GWAS) was performed in TASSEL 5.2.37 using 5,004 SNP markers (MAF > 

0.10) imputed with LinkImpute (LDkNNi) (Money et al. 2015). In particular, a Mixed Linear 

Model (MLM) was implemented for GWAS using the following formula: y = Xβ + Zu + e (Zhang et 

al. 2010) where y is the phenotype value, β is the fixed effect due to marker and u is a vector of 

random effects not accounted for by the markers; X and Z are incidence matrices that related y to β 

and u while e is the unobserved vector of random residual.  

MLM with the Kinship matrix (K) as random effect and FT as covariate was considered as the 

optimal model to control the P value inflation associated to population structure in all GWAS 

analyses. GWAS P values and R2 effects were extracted and QTL selection criteria was carried-out 

based on standard conditions of significance: “highly significant” refers to P < 0.0001 and 

“significant” refers to P < 0.001. According to the corresponding inter-marker genetic distance (Hill 

and Weir, 1988), the QTL confidence interval was obtained. Finally, Minitab 18 software was 

performed to calculate the global percentage of phenotypic variation (R2) explained by selected 

SNP markers for each trait. 

2. Linkage mapping on RIL population Simeto × Levante 

2.1. Plant material and field management 

Syngenta - Società Produttori Sementi Bologna S.p.A. (PSB, Bologna, Italy) produced a F6 RIL 

population through single-seed descent from the cross between the durum wheat cultivars Simeto 

(susceptible) × Levante (moderately resistant). The 165 RILs were field-evaluated in two years 

(2014 and 2015) and managed according to Buerstmayr et al. (2002) at the Department of 

Agrobiotecnology – IFA in Tulln (A) as well as spray-inoculated at anthesis with macroconidia of 

FG single-spore isolates. A restricted number of 34 RILs was further evaluated in greenhouse for a 

third year with respect to the temperature and relative humidity at the Department of Agricultural 
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and Food Sciences (DISTAL), University of Bologna, using a point-inoculation procedure with FG 

single-spore isolates. 

2.2. Phenotypic analysis 

The 165 RILs were field-evaluated for severity at five progressive days after anthesis (DAA) (10, 

14, 18, 22 and 26) in 2014 and 2015 years, one replication per year. Then AUDPC was calculated in 

order to integrate the measures of the trait. Similarly, the subset of 34 F6 RILs was evaluated for 

severity at five progressive DAA (10, 14, 17, 19 and 21) in 2016 from which AUDPC was 

calculated. 

2.3. Statistical analysis 

ANOVA was performed in R-project treating accession and year as random factors. Pearson 

correlation r coefficients were calculated among severity values using Genstat 19. 

2.4. Genetic analysis 

As for Fusarium Panel, the RIL population genomic DNA was extracted at the Plant Genetics 

laboratory of DISTAL - UNIBO using NucleoSpin® 8/96 Plant II Core Kit from Macherey Nagel 

and sent for SNP genotyping to TraitGenetics. The identification of QTL intervals in the genome of 

the RILs was carried out for 876 SNPs using a single marker analysis (SMA) in QTL Cartographer 

v. 2.5 (Wang et al. 2012). Then the additive effect and the percentage of total variation for each 

locus were calculated using the multiple interval mapping (MIM) procedure of Kao et al. (1999). 

The whole genome was re-scanned searching for potential new main QTL and epistatic effects 

between main loci using “search for new QTL” and “QTL interaction” options, respectively. 

Finally, each QTL with the logarithms of odds (LOD) greater than 2.0 was considered as significant 

for subsequent analyses. 
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3. Selection of QTL hotspots and haplotype analysis 

     3.1. Haplotype analysis  

Because patterns of variation within genomes are inherited as linkage groups (Daly et al. 2001; Patil 

et al. 2001) and to increase the polymorphism information content (PIC), selected SNP markers 

from major QTL hotspots, reporting by genetic analyses, were forced to be chosen as tagger using a 

r2 threshold > 0.3 of LD (Haploview 4.2. software) to obtain haplotype blocks. A “Least Significant 

Difference” (LSD) test (P < 0.05) (Agricolae package, R-project) grouped the haplotypes using 

letters or their combinations (a = susceptibility, ab = susceptibility/tolerance and b = tolerance) as 

indicative of significant differences in FHB index or DON response. Genetic relationships among 

haplotypes were assessed through median joining networks from PopART software (Leigh and 

Bryant, 2015) while phenotype relationships were showed through box-plots and pie charts from 

Genstat 19 software.  

     3.2. KASP assays 

Single or multiple SNP markers were chosen to discriminate the “LSD” haplotype groups using a 

KASP genotyping assay which exhibit superior properties compared to other marker systems in 

terms of low cost, high-throughput analysis, accuracy, reproducibility and flexibility (Segman et al. 

2014). The link https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-

guide.pdf describes the KASP reaction and its components. After completion of the thermal 

reaction, genotype clusters were acquired and results were showed in allelic discrimination plots. 

The plate was thermally cycled for repetitive additional three or six cycles when sufficient defined 

genotype clusters have not been obtained. 

 

 

https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-guide.pdf
https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-guide.pdf
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4. KASP validation on PSB Panel 

A panel of durum wheat genotypes (PSB Panel), including a Fusarium Panel subset as well as lines 

provided by Syngenta - PSB (SY), was grown in Argelato (BO) and evaluated for DON content 

(ppb) in four different years (2009, 2010, 2017, 2018) by Syngenta - PSB. Scripts in R-project were 

used to calculate Pearson correlation r coefficients among DON values as well as analysis of 

variance (ANOVA) treating genotypes and years. Then, best linear unbiased estimator (BLUE) 

values were generated from the DON measurements by the integration of the years and adjusted for 

heading data (HD) using Genstat 19 for the final haplotype-tagging KASPar marker validation, 

main purpose of this study.  

 

 

RESULTS 

Phenotypic analyses 

As for elite accessions (Fusarium Panel), Table 1 shows summary statistics for incidence, 

severity, FHB index (AUDPC values) as well as deoxynivalenol (DON) and Fusarium-damaged 

kernels (FDK) referring to year (2015 and 2016) and inoculum (FG and FC) evaluated in Idice 

and Tolentino. Considering both years (2015 and 2016) in Idice, the h2 showed high values for 

incidence (63.6 < h2 < 94.4), severity (63.1 < h2 < 98.5), FHB index (54.1 < h2 < 83.5), DON 

(82.1 < h2 < 90.4) and FDK (79.7 < h2 < 90.8). Similarly, the h2 showed high values in Tolentino 

for incidence (71.94 < h2 < 94.8), severity (67.7 < h2 < 88.6) and FHB index (69.4 < h2 < 92.8). 

High significant relationships were observed among accessions (A), years (Y) and inocula (I) as 

well as (A × Y) and (I × Y) interactions for DON (2015+2016 - Idice) while among A, Y and I as 

well as (I ×Y) interaction for FDK (2015+2016 - Idice). In addition, high significant relationships 
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were observed between A and Y as well as (A × Y) interaction for FHB index (2015+2016 - Idice) 

and between A, environment (E) and (A x E) interaction for FHB index (2015+2016 - 

Idice+Tolentino) (Supplementary Table 2). The phenotypic distributions approximated normality 

for all traits evaluated in Idice and Tolentino while Pearson correlation coefficients (r) were 

positively significant for incidence, severity and FHB index between environments (Supplementary 

Table 3): 0.30 < r < 0.46 between FHB index-2015 and -2016 (Idice), 0.24 < r < 0.35 between FHB 

index-2015 (Idice) and -2016 (Tolentino) and 0.21 < r < 0.42 between FHB index-2016 (Idice) and 

-2016 (Tolentino). Pearson correlation coefficients (r) were also positively significant for DON and 

FDK: 0.27 < r < 0.48 between DON-2015 and -2016 and 0.20 < r < 0.43 between FDK-2015 and -

2016. Fusarium Panel grown in Idice and obtained by the integration of 2015 and 2016 years as 

well as FC and FG showed a significant and positive correlation. A high correlation was observed 

between incidence and severity (r = 0.76) as well as DON and FDK (r = 0.47) while a slightly 

lower correlation between FHB index and FDK (r = 0.41) as well as FHB index and DON (r = 

0.41). By comparing the different inocula, FC-specific and FG-specific DON (r = 0.69) as well as 

FC-specific and FG-specific FDK (r = 0.36) were positively correlated. The phenology measured as 

FT negatively correlated with all traits evaluated in Idice by the integration of years as well as 

inocula, from r = -0.11 with FDK to r = -0.62 with incidence. In reference to single or multiple 

comparisons among inocula (FC and FG), years and environments (2015, 2016 in Idice and 2017 in 

Cadriano) as well as accessions for DON content, ANOVA showed high significant relationships 

among accessions years (Y) and (I × Y) interactions for DON (Table 2). Pearson correlation 

coefficients (r) were positively significant: from r = 0.40 between DON-2015-16 FC (Idice) and 

DON-2017 FG (Cadriano) to r = 0.78 between DON-2015-16 FC (Idice) and DON-2015-16 FG 

(Idice). Based on a range of optimal k subpopulations between 2 and 10, k = 3 was considered 

using Bayesian algorithm implemented as described by Evanno et al. (2005). A total of 108 

accessions (83%) were grouped into one of the main gene pools at a Q membership coefficient ≥ 
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0.5, while the remaining 22 (17%) were considered as admixed. Three subgroups (S) were 

identified: S1 included Italian germplasm, S2 included Mediterranean germplasm, CIMMYT and 

ICARDA selections for temperate areas and S3 included accessions from Canada and USA 

(Arizona, Minnesota, Montana and North Dakota). The Italian (S1) and the North American 

groups (S3) showed a high genetic diversity as evidenced by the box-plot distribution trends of 

decreased incidence, severity, FHB index  as well as DON and FDK from S1 to S3 

(Supplementary Figures 1 and 2). 

Concerning the F6 RILs (Table 2), the severity ranged from 87.6 to 661.8 in the first year (2014) 

while ranged from 190.01 to 975.16 in the second year (2015). The phenotypic values approximated 

normality and were positively correlated (r = 0.51) by comparing the two years. Regarding the third 

year (2016), the severity of the restricted number of 34 F6 RILs was significantly correlated only 

with values in 2015 (r = 0.46) but not with values in 2014 (r = 0.08). High significant relationships 

were observed between accessions (A) and years (Y) for 2014+2015 - Tulln and 2015+2016 - 

Tulln+Bologna while not significant relationships for 2014+2016 - Tulln+Bologna) (Supplementary 

Table 4). 

 

Table 1 | Summary statistics for incidence, severity, FHB index (AUDPC values) as well as 

deoxynivalenol (DON) content and Fusarium-damaged kernels (FDK) referring to year (2015 and 

2016) and inoculum (FG: Fusarium gramineraum and FC: Fusarium culmorum) on durum wheat 

accessions (Fusarium Panel) grown in Idice and Tolentino. 

 

IDICE 

Trait Year Fusarium spp. Range Mean St. dev h2 

INCIDENCE 
2015 FG 0-2,742 1,358 555.3 63.6 

2015 FC 0-2,593 1,457 583.7 85.1 
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SEVERITY 
2015 FG 0-3,923 1,167 514.9 85.7 

2015 FC 0-2,145 890.6 450.2 84.9 

FHB index 
2015 FG 0-69,591 18,214 12,64 70.3 

2015 FC 0-53,354 15,059 11,13 79.4 

INCIDENCE 
2016 FG 0-1,707 841.3 371.7 79.9 

2016 FC 0-2,077 953 418.3 94.4 

SEVERITY 
2016 FG 0-1,669 568.8 333.1 63.1 

2016 FC 0-1,773 675.5 328.7 98.5 

FHB index 
2016 FG 0-24,237 5,408 4,65 83.5 

2016 FC 0-31,810 7,230 5,76 54.1 

Trait Year Fusarium spp. Range Mean St. dev h2 

DON 
2015 FG 2,316-18,675a 8,160 3,90 83.9 

2015 FC 3,301-18,290 8,987 4,06 83.9 

FDK 
2015 FG 0-40b 3.77 4.46 81.4 

2015 FC 0-40 3.61 5.34 79.7 

DON 
2016 FG 0-20,258 6,072 3,24 90.4 

2016 FC 0-16,116 6,357 3,16 82.1 

FDK 
2016 FG 0-22.28 7.73 3.1 90.8 

2016 FC 0-18.7 6.01 2.74 89.5 

TOLENTINO 

Trait Year Fusarium spp. Range Mean St. dev h2 

INCIDENCE 
2016 FG 0-3,577 1,695 771.5 94.8 

2016 FC 0-3,695 1,740 820.8 71.5 

SEVERITY 
2016 FG 18.73-3,137 1,406 601.9 88.6 

2016 FC 160.4-2,888 1,388 609.3 67.7 

FHB index 
2016 FG 0-90,406 27,191 21,244 92.8 

2016 FC 0-101,297 27,229 21,514 69.4 
a Parts per billion (ppb). b Percentage (%). 

 

 

Table 2 | Summary statistics for severity referring to 2014 and 2015 years as well as F. 

gramineraum as inoculum in 165 F6 RILs from the population Simeto × Levante grown in Tulln 

(AT). 

TULLN (AT) – Simeto × Levante 
 

Trait Year Fusarium spp. Range Mean St. dev 

SEVERITY 
2014 FG 87.6-661.8 288.0 117.2 

2015 FG 190.0-975.2 494.8 177.1 
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PSB Panel for KASP validation. The panel was evaluated for DON in four different years (2009, 

2010, 2017 and 2018) by Syngenta - PSB. High correlations were observed between DON-2009 

and DON-2010 (r = 0.71), DON-2009 and DON-2017 (r = 0.78) as well as DON 2009 and DON-

2010 (r = 0.95). ANOVA showed high significant relationships between accessions (A) and years 

(Y) (Supplementary Table 5). These results have allowed the BLUE creation by the integration of 

the years as well as the adjustment using heading time (HD) values considering the high impact on 

DON (r = -0.60) in order to validate the haplotype-tagging KASPar markers. 

 

Genetic analyses 

Fusarium Panel. The confidence interval (CI) for QTL was based on the Hill and Weir formula 

(Hill and Weir, 1988). CI was of 1.58 (±0.79) for QTL in accordance with the curve fit and the 

distance at which LD decays below r2 of 0.3 (Hill and Weir, 1988) (Figure 1). 

A total of forty-five per se QTL were identified for flowering time (FT) on Fusarium Panel by 

combining the results of the two year (2015 and 2016). Three of them mapped on chr. 3A, 5A and 

7B explaining 28.9, 29.5 and 27.0% of phenotypic variation. A total of forty-three per se QTL were 

detected for incidence, severity and FHB index by the integration of both years and inocula (Idice). 

Fifteen of them were unique for incidence with two major loci on chr. 5A (r2 = 8.5 and r2 = 8.6) and 

6A (r2 = 8.4); the global R2 (%) was highly significant (54.50). Fifteen of them were unique for 

severity with four major loci on 2A (r2 = 10.6), 5A (r2 = 10.7 and r2 = 11.9) and 7A (r2 = 13.5); the 

global R2 (%) for the severity was similar to the incidence (54.35). Finally, thirteen of them were 

unique for FHB index with three major loci on 3B (r2 = 13.0), 4B (r2 = 12.1) and 7A (r2 = 20.6); the 

global R2 (%) was highly significant (61.24). A single QTL for FG-specific FDK (r2 = 8.80) and 

four QTL for FC-specific FDK (9.1 < r2 < 12.7) by integration of the two years in Idice. In addition, 

a total of three QTL were detected for FDK by the integration of both years and inocula with a 

major locus on chr. 4B (r2 = 10.5). The global R2 (%) of multiple QTL models ranged from 4.70 
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(FG-specific FDK) to 16.70 (FG+FC-specific FDK). A total of eleven QTL were detected for FG-

specific DON with four major loci on chr. 1A (r2 = 11.9), 2A (r2 = 10.6 and r2 = 11.6) and 6A (r2 = 

10.7); the global R2 (%) was of 38.37. A total of six QTL for FC-specific DON were detected with 

two major loci on chr. 1A (10.7) and 1B (9.4); the global R2 (%) was of 25.26. In addition, eleven 

QTL were identified for DON by the integration of both years and inocula. Five major locus were 

mapped on chr. 1A (r2 = 13.4), 2A (10.1 < r2 < 12.1), 6A (r2 = 11.1) and 7B (r2 = 10.1); the global 

R2 (%) was 37.77. Further investigations allowed the detection of four major overlapping QTL 

intervals linked to more traits. The loci on chr. 2A (6.4 < r2 < 10.6) and 5A (5.9 < r2 < 8.9) 

influenced the incidence and DON; the locus on 4A influenced the FHB index (r2 = 12.1) and FDK 

(r2 = 10.5); the locus on 7A influenced the incidence (r2 = 4.1), the severity (r2 = 5.1) and the FHB 

index (r2 = 20.6) as well as FDK (7.3 < r2 < 9.1). In addition, five major QTL intervals were DON-

specific, very representative by considering single or both inocula (FC and/or FG) and located on 

chr. 1A (10.7 < r2 < 13.4), 1B (9.4 < r2 < 9.6), 2A (8.6 < r2 < 12.1), 3A (7.4 < r2 < 8.2) and 4B (8.3 

< r2 < 9.7). A total of thirty-nine per se QTL were detected for incidence, severity and FHB index 

by the integration of both inocula (Tolentino). Eleven of them were unique for incidence with one 

major locus on chr. 4A (r2 = 7.5); the global R2 (%) was of 33.75. Fourteen of them were unique for 

severity with two major loci on 1A (r2 = 8.1) and 5B (r2 = 8.4); the global R2 (%) for the severity 

was slightly higher than the incidence (41.98). Finally, fifteen of them were unique for FHB index 

with two major loci on 3B (r2 = 9.5) and 4A (r2 = 9.3); the global R2 (%) was the lowest (20.69). 

Further investigations allowed the detection of five major overlapping QTL intervals, which 

influenced the three traits on chr. 1A (4.8 < r2 < 8.1), 1B (4.5 < r2 < 6.2 and 5.2 < r2 < 6.7), 3B (5.2 

< r2 < 9.5) and 4A (7.5 < r2 < 12.0). A total of sixteen per se QTL were detected for FHB index 

mapped by integrating Idice and Tolentino environments. Six of them were FC-specific and mapped 

on 2A (r2 = 7.3; r2 = 6.9; r2 = 9.5), 4A (r2 = 7.0), 4B (r2 = 7.3) and 5A (r2 = 8.9). Four of them were 

FG-specific and mapped on 2A (r2 = 6.7 and r2 = 7.7), 4B (r2 = 5.9) and 5B (r2 = 6.7). Six of them 
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were FC+FG-specific and mapped on 2A (r2 = 6.2; r2 = 7.8; r2 = 9.7), 3B (r2 = 6.7), 4B (r2 = 7.3) 

and 5B (r2 = 5.8). The global R2 (%) of multiple QTL models ranged from 7.65 (FG-specific FHB 

index) to 8.60 (FG+FC-specific FHB index).  

On the RIL population Simeto × Levante grown in Tulln in 2014 and 2015, a  total of twelve per 

se QTL were detected for severity. In the first year, a major locus was identified on chr. 3A (LOD = 

4.15 and r2 = 4.31) while, in the second year, two major loci were identified on 2A (LOD = 4.88 

and r2 = 8.82) and 4A (LOD = 12.19 and r2 = 23.02). A total of four loci influenced the severity in 

both years and located on 2A, 2B, 3A and 4A. 

 

 

 

 

 

Figure 1 | The rate of linkage disequilibrium (LD) decay of the 130 durum wheat elite accessions 

(Panel Fusarium). The Hill and Weir formula was used to describe the LD decay of r2. The LD 

among Single Nucleotide Polymorphism (SNP) markers in the Panel Fusarium was estimated using 

Haploview 4.2 (Barrett et al. 2005). The blue curve represents the model fit to LD decay (nonlinear 

regression of r2 on distance).  A confidence interval of 1.58 cM for the quantitative trait loci (QTL) 

is showed when LD (r2) is 0.3 (red line) while 3.90 cM when LD (r2) is 0.2 (green line).
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Selection of QTL hotspots and haplotype analysis. Based on the results reported herein, sixteen 

QTL hotspots were detected on chromosome arms 1AS, 1BL (2), 2AL (2), 3AL, 3BL, 4AL, 4BL, 

5AL (2), 5BL, 6AL (2), 6BL and 7BL unrelated to phenology for the majority (Table 3). 

QFHB.ubo-1A.1 (10.7 < r2 < 13.4), QFHB.ubo-1B.1 (8.5 < r2 < 9.6), QFHB.ubo-3A.1 (7.4 < r2 < 

8.6), QFHB.ubo-6A.1 (10.7 < r2 < 11.1), QFHB.ubo-6A.3 (9.2 < r2 < 9.4), QFHB.ubo-7B.1 (9.9 < r2 

< 10.1) were DON-specific. QFHB.ubo-4B.1 (7.3 < r2 < 12.7) influenced DON and FDK as well as 

FHB index from both environments (Idice and Tolentino). QFHB.ubo-2A.2 (7.7 < r2 < 12.1) 

influenced DON as well as FHB index (Idice and Tolentino). QFHB.ubo-5A.2 (7.1 < r2 < 13.8) 

influenced incidence, severity (Idice) and FHB index (Idice and Tolentino). QFHB.ubo-1B.2 (6.6 < 

r2 < 11.2) was incidence-specific (Idice). QFHB.ubo-2A.1 (6.0 < r2 < 10.6) influenced severity and 

FHB index (Idice) while QFHB.ubo-6A.2 (6.5 < r2 < 10.3) influenced incidence and severity 

(Idice). QFHB.ubo-3B.1 (7.8 < r2 < 13.7) and QFHB.ubo-5A.1 (8.5 < r2 < 9.7) influenced 

incidence, severity and FHB index. QFHB.ubo-4A.1 (2.3 < r2 < 5.8) influenced incidence (Idice) 

and severity (Tulln) while QFHB.ubo-5B.1 (5.2 < r2 < 7.8) influenced incidence (Tolentino) and 

severity (Idice). QFHB.ubo-2A.1, QFHB.ubo-4B.1, QFHB.ubo-5B.1 and QFHB.ubo-6A.2 could be 

influenced by plant height and/or phenology due to the overlapping with flowering time (FT) loci. 
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Table 3 | List of sixteen GWAS-QTL hotspots significantly associated with incidence (INC), 

severity (SEV), FHB index (FHB), Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) 

content. 

I: IDICE; T: TOLENTINO; TU: TULLN 

 

 

QTL hotspot Trait Position (cM) Log (P value) R2 % 

QFHB.ubo-1A.1 DON 10.16 3.51 - 4.22 10.7 - 13.4 

QFHB.ubo-1B.1 DON 78.6 - 79.2 3.00 - 3.14 8.5 - 9.6 

QFHB.ubo-1B.2 INC (I) 136.6 - 136.8 3.17 - 3.49 6.6 - 11.2 

QFHB.ubo-2A.1 SEV, FHB (I) 107 - 109.5 3.00 - 4.17 6.0 - 10.6 

QFHB.ubo-2A.2 DON, FHB (I), FHB (I+T) 208.7 3.00 - 4.73 7.7 - 12.1 

QFHB.ubo-3A.1 DON 109.5 3.00 - 3.08 7.4 - 8.6 

QFHB.ubo-3B-1 INC, SEV, FHB (I) 209.6 3.64 - 4.79 7.8 - 13.7 

QFHB.ubo-4A.1 INC (I), SEV (TU) 144.6 - 150.9 3.13 2.3 - 5.8 

QFHB.ubo-4B.1 DON, FDK, FHB (I), FHB (T), FHB (I+T) 81.5 - 83.1 3.22 - 4.57 7.3 - 12.7 

QFHB.ubo-5A.1 INC, SEV, FHB (I) 91.6 3.35 - 4.23 8.5 - 9.7 

QFHB.ubo-5A.2 INC, SEV, FHB (I), FHB (T), FHB (I+T) 114 - 119.4 3.27 - 4.80 7.1 - 13.8 

QFHB.ubo-5B.1 SEV (I), INC (T) 145.2 - 148.6 3.04 - 3.20 5-2 - 7.8  

QFHB.ubo-6A.1 DON 29.10 3.45 - 3.56 10.7 - 11.1 

QFHB.ubo-6A.2 INC, SEV (I) 85.7 3.00 - 4.63 6.5 - 10.3 

QFHB.ubo-6A.3 DON 123.0 - 126.8 3.09 - 3.17 9.2 - 9.4 

QFHB.ubo-7B.1 DON 150.8 3.19 - 3.26 9.9 - 10.1 
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For the haplotype analysis a total of eight QTL hotspots were selected in order to obtain haplotype 

blocks for DON and FHB index traits and increase the polymorphism information content (PIC) for 

future wheat breeding strategies. Six of them were specific for DON (QFHB.ubo-1A.1, QFHB.ubo-

1B.1, QFHB.ubo-2A.2, QFHB.ubo-3A.1, QFHB.ubo-6A.1 and QFHB.ubo-7B.1) while two for FHB 

index (QFHB.ubo-2A.1 and QFHB.ubo-5A.2). To follow, the list and description of the eight 

linkage blocks: 

HAP-QFHB.ubo-1A.1: three haplotypes containing ten markers were obtained from the peak SNP 

IWB42976 (r2 = 0.8). The “LSD” letters (a, b) and combination (ab) grouped them in response to 

DON. IWB46412 discriminated the “b haplotype group” characterized by a low accumulation of the 

mycotoxin. 

HAP-QFHB.ubo-1B.1: four haplotypes containing four markers were obtained from the peak SNP 

IWB47303 (r2 = 0.8). The “LSD” letters (a, b) grouped them in response to DON. Three haplotypes 

belonged to the “b haplotype group” characterized by a low accumulation of the mycotoxin and 

were discriminated using the same peak SNP. 

HAP-QFHB.ubo-2A.1: three haplotypes containing nine markers were obtained from the peak SNP 

IWB39681 (r2 = 0.3). The “LSD” letters (a, b) and combination (ab) grouped them in response to 

FHB index. IWB39681 and IWB52471 discriminated the “b haplotype group” linked to FHB index 

tolerance.  

HAP-QFHB.ubo-2A.2: seven haplotypes containing fourteen markers were obtained from the peak 

SNP IWA6963 (r2 = 0.3). The “LSD” letters (a, b) and combination (ab) grouped them in response 

to DON. Two haplotypes belonged to the “b haplotype group” characterized by a low accumulation 

of the mycotoxin and were discriminated using the following SNP markers: IWA6963 and 

IWB44619. 

HAP-QFHB.ubo-3A.1: four haplotypes containing thirteen markers were obtained from the peak 

SNP IWB53914 (r2 = 0.8). The “LSD” letters (a, b) grouped them in response to DON. Two 
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haplotypes belonged to the “b haplotype group” characterized by a low accumulation of the 

mycotoxin and were discriminated using the same peak marker. 

HAP-QFHB.ubo-5A.2: seven haplotypes containing five markers were obtained from the peak SNP 

IWB26027 (r2 = 0.8). The “LSD” letter (a) and combination (ab) grouped them in response to FHB 

index. One haplotype belonged to the “a haplotype group” linked to FHB index tolerance 

susceptibility and was discriminated using the following SNP markers: IWB75269 and IWB70054. 

HAP-QFHB.ubo-6A.1: five haplotypes containing nine markers were obtained from the peak SNP 

IWB56969 (r2 = 0.3). The “LSD” letters (a, b) and combination (ab) grouped them in response to 

DON. Two haplotypes belonged to “b haplotype group” characterized by a low accumulation of the 

mycotoxin and were discriminated using IWB56969 together with IWB35328 (Figure 2). 

HAP-QFHB.ubo-7B.1: three haplotypes containing three markers were obtained from the peak SNP 

IWB60960 (r2 = 0.3). The “LSD” letters (a, b) grouped them in response to DON. Two haplotypes 

belonged to “b haplotype group” characterized by a low accumulation of the mycotoxin and were 

discriminated using the same peak SNP marker. 

HAP-QFHB.ubo-1A.1, HAP-QFHB.ubo-1B.1, HAP-QFHB.ubo-3A.1 and HAP-QFHB.ubo-6A.1 

showed a high compatibility genetic relationship between intraspecific haplotype sequences and 

response to deoxynivalenol (DON) content as reported by the use of haplotype median joining 

networks (Leigh and Bryant, 2015). The box-plot showed the difference in DON accumulation 

between the different haplotype groups per linkage block. The pie charts illustrated the numerical 

proportion of the haplotype group frequency within the Fusarium Panel as well as the relative three 

subgroups (S1, S2 and S3) with a decreasing trend of DON content from the old Italian cultivars 

(S1) to the modern North American cultivars (S3) (Supplementary Figure 3). 
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Markers Chr. Pos. r2 Alleles Haplotypes Code 
Frequency 

(%) 

Group 

(LSD test) 
DON  

IWB11722 6A 29.10 0.96 T/C TGTTACCCTG HAP1 7.2 a 6624.126 

IWB35328 6A 29.10 0.48 G/A TGTTACCCTT HAP2 67.2 a 6500.755 

IWB35338 6A 29.10 1 T/C TATTACCCCT HAP3 12.0 ab 6363.969 

IWB35923 6A 29.10 0.53 T/C CACCGTTTCG HAP4 12.8 b 6141.082 

IWB56969 6A 29.10 1 A/G TACTGTTCCG HAP5 0.08 b 6069.488 

IWB64837 6A 29.10 1 G/A   
 

  

IWB66392 6A 29.10 1 A/G   
 

  

IWB71341 6A 29.10 0.58 C/T   
 

  

IWB36506 6A 34.90 0.36 T/G   
 

   

 

 

 

 

 

Figure 2 | Box-plot, pie chart and median joining network of the linkage block HAP-QFHB.ubo-

6A.1. Five haplotype groups (HAP1-5) from designated TAG-SNP markers (yellow) of the QTL 

hotspot QFHB.ubo-6A.1 showed a different response to deoxynivalenol (DON) content as well as 

distribution in the three subgroups (S1-S3). 
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KASP validation on PSB Panel. KASP assays on K-IWB46412 for HAP-QFHB.ubo-1A.1, K-

IWB47303 for HAP-QFHB.ubo-1B.1, K-IWB53914 for HAP-QFHB.ubo-3A.1, K-IWB70054 for 

HAP-QFHB.ubo-5A.2, K-IWB35328 and K-IWB56969 for HAP-QFHB.ubo-6A.1 (Table 4) showed 

the effectiveness in differentiating resistant and susceptible genotypes (Supplementary Figure 4). 

The alleles identified per genotype in KASP results had a complete correspondence with the 

respective haplotypes. Considering HAP-QFHB.ubo-1A.1, the KASP assay identified the favorable 

allele (T) for IWB46412 (T/C) in 75.4% of elite/SY genotypes. Considering HAP-QFHB.ubo-1B.1 

(Figure 3), the KASP assay identified the favorable allele (C) for IWB47303 (C/A) in 17.1% of 

elite/SY genotypes. Considering HAP-QFHB.ubo-3B.1, the KASP assay identified the favorable 

allele (C) in IWB53914 (T/C) in 84.3% of elite/SY genotypes. Considering HAP-QFHB.ubo-6A.1, 

the KASP assay identified the favorable allele combination (AG) for IWB56969 (A/G) and 

IWB35328 (A/G) in 7.3% of elite/SY genotypes. The KASP assays validated the haplotype-tagging 

markers against response to DON content for HAP-QFHB.ubo-1A.1, HAP-QFHB.ubo-1B.1 and 

HAP-QFHB.ubo-6A.1 as revealed by ANOVA results (Supplementary Table 6) which demonstrated 

their potential application in durum wheat breeding programs. 
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Table 4 | List of KASPar markers used to discriminate the haplotype groups with 

susceptibility/tolerance to deoxynivalenol (DON) content or FHB index (K-IWB46412, K-

IWB47303, K-IWB53914, K-IWB70054, K-IWB35328 and K-IWB56969. 

 

KASPar marker 

 FAM GAAGGTGACCAAGTTCATGCTGCAGCAACATCCCGAAGCTA 

K-IWB46412 HEX GAAGGTCGGAGTCAACGGATTGCAGCAACATCCCGAAGCTG 

 Common CGCCATGCGGGGAACTATC 

K-IW47303 

FAM GAAGGTGACCAAGTTCATGCTGAAACTGACCTGCCTCAAGTAA 

HEX GAAGGTCGGAGTCAACGGATTGAAACTGACCTGCCTCAAGTAC 

Common CTCGATCTGGTCTGGAAATG 

 FAM GAAGGTGACCAAGTTCATGCTTCTTGACATGGTCAGTGTAATGCTT 

K-IWB53914 HEX GAAGGTCGGAGTCAACGGATTTCTTGACATGGTCAGTGTAATGCTC 

 Common TATTTGTGCTGTGCGGTAAACAGATGACAT 

 FAM GAAGGTGACCAAGTTCATGCTAGTGCCAAGGGAGCTCTTAGTT 

K-IWB70054 HEX GAAGGTCGGAGTCAACGGATTAGTGCCAAGGGAGCTCTTAGTC 

 Common GCATCGATGTTTTCTTACCGAAGAAATA 

 FAM GAAGGTGACCAAGTTCATGCTCACAGGGAAAAACAAAGCTCATCG 

K-IWB35328 HEX GAAGGTCGGAGTCAACGGATTCACAGGGAAAAACAAAGCTCATCA 

 Common GGCCTCTGTTGCTGGTCC 

 FAM GAAGGTGACCAAGTTCATGCTAAGGACTTGCGGACCTACCA 

K-IWB56969 HEX GAAGGTCGGAGTCAACGGATTAAGGACTTGCGGACCTACCG 

 Common CGAGCCCCTGCCTCATG 
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Figure 3 | Allelic discrimination plots using the KASP assay for the alleles (C/A) of the SNP 

IWB47303 on chromosome 1B. The red and blue dots refer to the two homozygous genotypes with 

opposite DON accumulation response.  
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DISCUSSION 

Phenotypic analyses 

The greater efforts in North American durum wheat breeding programs (Clarke et al. 2010; Steiner 

et al. 2019) led the S3 accessions to a higher FHB resistance/tolerance as well as a lower DON 

content than S1 accessions, consequent to their high genetic diversity revealed in the current study. 

In this respect, five cultivars belonging to S3 (Edmore, Levante, Neodur, Provenzal and Shabha) 

exhibited low DON values in their kernels, in contrast to three cultivars belonging to S1 (Colosseo, 

Normanno and Simeto). 

The high heritability per trait referred to repeatable check cultivars within the experimental blocks 

showed how the variation in genetic factors highly affected the phenotypic values, while the 

positive Pearson correlations (r) among traits reflected their same direction in the FHB response. 

The ANOVA results indicated significant relationships mainly for DON, FDK and FHB index 

within the single environments by considering accessions and years as well as interactions.  

The inoculum, consisting of FC or FG single-spore isolates, produced more differences in FDK 

than DON and other FHB responses. Additionally, FC showed a higher aggressiveness than FG 

isolates (Mesterhazy et al. 2002; Tóth et al. 2008) leading to a higher DON-producing capacity 

(ppb) and damaged kernels, although the ecological requirements for growth and mycotoxin 

production could differ considerably in basis of water activity, temperature and time effects (Hope 

et al. 2005). In the current study, we discriminated cultivars (Cappelli, Karim, Kofa, Latino, Maier 

and Sfinge) which accumulated DON especially from FC and cultivars (Ardente, Don Pedro, 

Guerou-1, Kronos, Lloyd and Monastir) from FG isolates.  

A restricted number of elite accessions was evaluated for DON in the third year (2017) using a 

point-inoculation method (Purahong et al. 2014), contrary to the spray-inoculation method in the 

years before. The investigated accessions reacted differently to the DON response comparing both 
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procedures. As reported by Miedaner et al. (2003), type I resistance is the most appropriate for 

large-scale routine screening of breeding materials but is not fully appropriate to reduce infection 

efficiency, while type II seems to be more useful to reduce FHB progress in terms of limit yield 

losses and DON content.  

A restricted number of RILs was investigated for severity in greenhouse conditions using a FG 

point-inoculation method. As reported by Imathiu et al. (2014), the spray-procedure has the 

advantage to detect both resistance types I and II, in contrast to the point-procedure which is type II-

specific. Comparing the point- (2016) and the spray-inoculation (2014-15), high significant 

relationships were observed for severity between 2015 and 2016 years but not between 2014 and 

2016 years by evidencing a scarce repeatability. 

Genetic analyses 

The study illustrated the utility of haplotypes to identify potential novel sources of FHB 

resistance/tolerance in durum wheat based on their known superior performance over single 

markers (Terwilliger, 1995; Meuwissen and Goddard, 2001) to increment the polymorphic 

information content (PIC) for future breeding programs (N’Diaye et al. 2017). GWAS model 

(MLM+K) with FT as covariate revealed sixteen genetic QTL hotspots for INC, SEV, FHB index, 

FDK and/or DON into BLUE considering multiple and combined environments, years and inocula. 

QFHB.ubo-2A.1, QFHB.ubo-4B.1, QFHB.ubo-5B.1 and QFHB.ubo-6A.2 could be influenced by 

phenology for the overlapping with flowering time (FT) loci. According with the chromosome 

position on the durum consensus map (Maccaferri et al. 2015a) they overlapped with FHB 

QTL/genes mapped on Triticum aestivum and/or Triticum turgidum ssp. durum genomes by 

previous studies in literature even if QFHB.ubo-1B.2 and QFHB.ubo-6A.2 represented a novelty in 

wheat. According to a phenotypic variance (r2) > 10, three QTL hotspots (QFHB.ubo1A.1, 

QFHB.ubo-6A.1 and QFHB.ubo-7B.1) were DON-specific, while QFHB.ubo-5A.2 influenced FHB 
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index in multiple environments (Idice and Tolentino). QFHB.ubo-2A.1, explaining from 6.0 to 

10.6% of the FHB variation, was identified by Zhang et al. (2014) in emmer and durum wheat using 

a SNP based linkage map and by Zhao et al. (2018) from the cross between Joppa (a durum wheat 

cultivar) and 10Ae564 (a durum wheat introgression line). Qfhb.ndwp-2A reported by Zhao 

explained 14% and 15% of severity in two greenhouse experiments as well as 9 % of DON. 

Additionally, Sari et al. (2018) mapped two loci overlapping QFHB.ubo-1A.1 as well as 

QFHB.ubo-2A.1 explaining 12.2 % of severity from a doubled haploid (DH) population developed 

from cross between T. turgidum ssp. durum cultivar Strongfield and T. turgidum ssp. carthlicum 

cultivar Blackbird. Most of the QTL hotspots are DON-specific (QFHB.ubo-1A.1, QFHB.ubo-1B.1 

and QFHB.ubo-3A.1, QFHB.ubo-6A.1, QFHB.ubo-6A.3 and QFHB.ubo-7B.1). Until now, DON 

content was genetically investigated in Triticum aestivum. In this regards, Wu et al. (2019) 

performed a GWAS in a Chinese elite wheat germplasm and mapped QFHB-2BL.1 and QFHB-3A 

linked to DON content and fungal spread. He et al. (2018) investigated RILs from the cross between 

a FHB-susceptible cultivar “NASMA” and FHB-resistant CIMMYT breeding line 

“IAS20*5/H567.71” detecting two significant DON QTL on chromosome 3B and 3D in response to 

FG inoculum. Draeger et al. (2007) studied the genetics of DON in a DH population from a cross 

between cultivars Arina (FHB resistant) and Riband (FHB susceptible) inoculated with 

macroconidia of FG and mapped a DON-locus on the chromosome arm 6BL. In all these cases, we 

did not observe QTL overlaps towards our DON-specific loci in durum wheat.  

Haplotype analysis and KASP assays 

Although SNP markers represent the genotyping system of choice for crop genetic studies as well 

as MAS (Liu et al. 2014; Randhawa et al. 2013; Dreisigacker et al. 2015; Rasheed et al. 2016) due 

to their genomic abundance and detection easiness, the bi-allelic form is a limiting factor according 

to the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome 
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this limitation is to construct linkage blocks based on LD (Qian et al. 2017). In this respect, eight of 

sixteen QTL hotspots were chosen in order to generate linkage blocks, based on three parameters: i) 

high r2 value, ii) haplotype diversity in response to DON or FHB index and iii) absence of 

phenological influence. Six linkage blocks discriminated haplotype groups for DON (HAP-

QFHB.ubo-1A.1, HAP-QFHB.ubo-1B.1, HAP-QFHB.ubo-2A.2, HAP-QFHB.ubo-3A.1, HAP-

QFHB.ubo-6A.1 and HAP-QFHB.ubo-7B.1) and two for FHB index (HAP-QFHB.ubo-2A.1 and 

HAP-QFHB.ubo-5A.2) according to a linkage disequilibrium threshold of r2 > 0.3. The linkage 

blocks identified potential novel sources of FHB resistance/tolerance based on their known superior 

performance over single markers (Terwilliger, 1995; Meuwissen and Goddard, 2001) and PIC 

increase (N’Diaye et al. 2017) by providing a higher average genetic diversity among cultivars in 

order to optimize the breeding strategies (Chao et al. 2009). The haplotype median joining networks 

(Leigh and Bryant, 2015) reflected a high compatibility among intraspecific sequences and DON or 

FHB index response.  

Singh et al. (2019) developed a KASPar marker for Fhb1 in bread wheat to enhance the breeding 

efficiency for FHB resistance. In a similar way, the study supported the design of diagnostic 

KASPar markers to discriminate the haplotype groups mentioned above and select for novel FHB 

resistant durum wheat cultivars. The KASP assays demonstrated the effectiveness of “LSD” 

haplotype group discriminations within three DON-specific linkage blocks (HAP-QFHB.ubo-1A.1, 

HAP-QFHB.ubo-1B.1 and HAP-QFHB.ubo-6A.1) by providing useful ways to facilitate MAS in 

durum wheat breeding programs in a timely and cost-effective manner and ensure future sustainable 

food production. 
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CONCLUSIONS 

This study applied two genetic approaches to detect sixteen genetic QTL hotspots for FHB 

tolerance in durum wheat and illustrated the utility of haplotypes to identify potential genetic 

sources of FHB tolerance based on their known superior performance over single SNPs in MAS 

programs. Our results are the first to validate suitable KASPar markers against the DON 

accumulation (K-IWB46412, K-IWB47303, K-IWB35328 and K-IWB56969) by testing them in over 

100 lines and proving to be effective in differentiating resistant and susceptible genotypes.  

The KASP assay is shown to be suitable for the high-throughput screening of large populations and 

for the selection of cultivars pyramiding loci for resistance/tolerance to DON content and other 

FHB traits.  
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APPENDIX 

Supplementary Table 1 | List of the 130 durum wheat accessions (cultivars, landrace selections 

and breeding lines) with registration details. 

Fusarium Panel Short name Origin Donation Year 

DP004 Lesina ITALY CRA-CER 1998 

DP005 MERIDIANO ITALY UNIBO 1999 

DP008 PIETRAFITTA ITALY UNIBO n.a. 

DP010 TORREBIANCA ITALY UNIBO n.a. 

DP012 CIMMYT-36  CIMMYT UNIBO n.a. 

DP028 ALDEANO IRTA  UNIBO n.a. 

DP029 ARIESOL IRTA  UNIBO 1993 

DP034 BOLIDO IRTA  UNIBO n.a. 

DP039 DURCAL IRTA  UNIBO n.a. 

DP040 DUROI IRTA  UNIBO n.a. 

DP055 MARZAK INRA UNIBO 1984 

DP064 KARIM ICARDA UNIBO 1985 

DP066 KRS/HAUCAN ICARDA UNIBO n.a. 

DP068 MOULSABIL-2 ICARDA UNIBO n.a. 

DP077 APPIO ITALY UNIBO 1982 

DP081 BRAVADUR USA: Arizona UNIBO 1993 

DP082 BRONTE ITALY UNIBO 1996 

DP083 CAPEITI_8 ITALY UNIBO 1955 

DP084 CAPPELLI ITALY UNIBO 1930 

DP086 COLORADO USA/ITALY UNIBO 1995 

DP087 COLOSSEO ITALY UNIBO 1995 

DP088 CORTEZ USA: Montana UNIBO 1995 

DP089 CRESO ITALY SIS 1974 

DP090 DON PEDRO CIMMYT UNIBO n.a. 

DP091 DUILIO ITALY SIS 1984 

DP096 GRAZIA ITALY ISEA 1985 

DP097 IRIDE ITALY SIS 1996 

DP100 KRONOS  USA: Arizona UNIBO 1992 

DP104 MOHAWK USA UNIBO 1998 

DP105 OFANTO ITALY CRA-CER 1990 

DP108 PRODURA ITALY UNIBO 1975 

DP111 SVEVO ITALY UNIBO 1996 
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DP112 TRINAKRIA ITALY UNIBO 1970 

DP116 WESTBRED_881 USA UNIBO 1985 

DP117 WESTBRED_TURBO USA UNIBO n.a.  

DP122 AMMAR-1 ICARDA UNIBO 2010 

DP126 AWALI-1 ICARDA UNIBO n.a. 

DP142 GUEROU-1 ICARDA UNIBO n.a. 

DP145 HEIDER ICARDA UNIBO 1997 

DP148 ICARDA 125  ICARDA UNIBO n.a. 

DP167 OMLAHN-3 ICARDA UNIBO n.a. 

DP168 OMRUF-2 ICARDA UNIBO n.a. 

DP172 OUASERL-1 ICARDA UNIBO n.a. 

DP181 SHABHA ICARDA UNIBO n.a. 

DP189 KOFA USA: Montana UNIBO 1995 

DP194 ARDENTE FRANCE UNIBO 1984 

DP206 NEODUR FRANCE UNIBO 1987 

DP217 MORSE CANADA UNIBO 1996 

DP227 BELZER USA: North-Dakota UNIBO 1997 

DP229 LLOYD USA: North-Dakota CREA-GPG 1983 

DP238 EDMORE USA: North-Dakota UNIBO 1978 

DP240 MINDUM USA: Minnesota UNIBO 1917 

DP248 SIMETO PSB ITALY UNIBO 1988 

DP249 LEVANTE ITALY UNIBO 2002 

DP255 CHEN_1 CIMMYT UNIBO 1983 

DP256 MALMUK_1 CIMMYT UNIBO 1992 

DP258 HESSIAN-F CIMMYT UNIBO n.a. 

DP259 AJAIA_12 CIMMYT UNIBO 1987 

DP261 CNDO/PRIMADUR CIMMYT UNIBO 2008 

DP263 VANRRIKSE_6.2 CIMMYT UNIBO 1993 

DP264 RANCO CIMMYT UNIBO n.a. 

DP265 PLATA_10 CIMMYT UNIBO 1992 

FP101 D-ISEASOF-7 ITALY ISEA n.a. 

FP102 D-ISEASOF-8 ITALY ISEA n.a. 

FP103 D-ISEASOF-9 ITALY ISEA n.a. 

FP104 DURANGO ITALY ISEA n.a. 

FP105 ETTORE ITALY ISEA n.a. 

FP107 PROVENZAL ITALY ISEA 1998 

FP108 SAN CARLO ITALY ISEA n.a. 

FP109 SPARTACO ITALY ISEA n.a. 

FP135 508GD07/10T ITALY SIS n.a. 

FP136 909GD08/77 ITALY SIS n.a. 

FP137 ALEMANNO ITALY SIS 2006 

FP138 ASTERIX ITALY SIS n.a. 
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FP139 ATHORIS n.a. SIS n.a. 

FP140 AUREO ITALY SIS 2009 

FP141 BABYLONE ITALY SIS n.a. 

FP142 BACARDI ITALY SIS n.a. 

FP143 BIENSUR ITALY SIS n.a. 

FP144 CESARE ITALY SIS n.a. 

FP147 DAKTER ITALY SIS n.a. 

FP148 DGE-1 USA: North-Dakota SIS 2006 

FP150 FURIO CAMILLO ITALY SIS n.a. 

FP151 GIBRALTAR ITALY SIS n.a. 

FP153 ISILDUR ITALY SIS 2007 

FP154 JOYAU ITALY SIS n.a. 

FP155 KANAKIS ITALY SIS n.a. 

FP156 KARUR ITALY SIS n.a. 

FP157 LIBERDUR ITALY SIS 2007 

FP158 MAGELLANO ITALY SIS n.a. 

FP159 MIRADOUX FRANCE SIS 2007 

FP160 MURANO n.a. SIS n.a. 

FP161 OBELIX n.a. SIS n.a. 

FP162 OVIDIO ITALY SIS 2012 

FP163 PESCADOU n.a. SIS n.a. 

FP164 RAMIREZ n.a. SIS n.a. 

FP165 SARAGOLLA ITALY SIS n.a. 

FP166 SCULPTUR n.a. SIS n.a. 

FP167 SERAFO NICK n.a. SIS n.a. 

FP168 SEVERO n.a. SIS n.a. 

FP169 SY CISCO n.a. SIS n.a. 

FP170 SY LIDO n.a. SIS n.a. 

FP171 TIREX n.a. SIS n.a. 

FP172 ACHILLE n.a. UNIBO n.a. 

FP189 CLAUDIO ITALY UNIBO 1998 

FP195 Dupri ITALY UNIBO n.a. 

FP198 Dylan ITALY UNIBO 2002 

FP206 JORDAN ICARDA UNIBO n.a. 

FP214 MAIER AUSTRALIA UNIBO n.a. 

FP221 MONASTIR n.a. UNIBO n.a. 

FP225 NORMANNO ITALY UNIBO 2002 

FP226 ODISSEO ITALY UNIBO 2012 

FP239 TIZIANA ITALY UNIBO 2001 

FP26 L2300 n.a. CRA-CER n.a. 

FP27 L2443 n.a. CRA-CER n.a. 

FP34 Sfinge n.a. CRA-CER n.a. 
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FP52 LATINO ITALY CREA-GPG 1982 

FP54 SACHEM FRANCE CREA-GPG 1999 

FP55 ZARDAK n.a. CREA-GPG n.a. 

FP86 CUSPIDE ITALY ISEA n.a. 

FP87 D-ISEASOF-1 ITALY ISEA n.a. 

FP89 D-ISEASOF-10 ITALY ISEA n.a. 

FP91 D-ISEASOF-12 ITALY ISEA n.a. 

FP92 D-ISEASOF-13 ITALY ISEA n.a. 

FP93 D-ISEASOF-14 ITALY ISEA n.a. 

FP94 D-ISEASOF-15 ITALY ISEA n.a. 

FP95 D-ISEASOF-16 ITALY ISEA n.a. 

FP96 D-ISEASOF-17 ITALY ISEA n.a. 

FP98 D-ISEASOF-4 ITALY ISEA n.a. 

FP99 D-ISEASOF-5 ITALY ISEA n.a. 

 

 

Supplementary Table 2 | Analysis of Variance (ANOVA), table of degrees of freedom (Df) and P 

values referring to single or multiple comparisons among Fusarium culmorum (FC) and Fusarium 

graminearum (FG) inocula, years (2015-2016 in IDICE and 2016 in TOLENTINO) and durum 

wheat accessions (Fusarium Panel) for deoxynivalenol (DON) content, Fusarium-damaged kernels 

(FDK), incidence, severity and FHB index. 

 

TRAIT YEAR-ENVIRONMENT VARIABLE Df Pr(>F) 

DON 2015-IDICE A1 129 2.414e-07 *** 

  I2 1 0.1063 

DON 2016-IDICE A 129 2.230e-08 *** 

  I 1 1.462e-07 *** 

DON 2015+2016-IDICE A 129 2.456e-10 *** 

  I 1 9.288e-06 *** 

  Y3 1 1.175e-14 *** 

  A × I 129 0.650353   

  A × Y 129 0.001477 ** 

  I × Y 1 0.002585 ** 

FDK 2015-IDICE A 129 1.2e-03 ** 

  I 1 7.6e-01 

FDK 2016-IDICE A 129 1.3e-03** 

  I 1 < 2.2e-16 *** 

FDK 2015+2016-IDICE A 129 9.296e-05 *** 

  I 1 1.057e-05 *** 
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  Y 1 9.471e-11 *** 

  A × I 129 0.9122 

  A × Y 129 0.5916   

  I × Y 1 8.948e-05 *** 

INCIDENCE 2015-IDICE A 129 1.0000 

  I 1 0.2706 

  A × I 129 1.0000 

INCIDENCE 2016-IDICE A 129 0.07044 

  I 1 0.14090 

  A × I 129 1.00000 

INCIDENCE 2016-TOLENTINO A 129 2.318e-09 *** 

  I 1 0.7511 

  A × I 129 0.9086 

INCIDENCE 2015+2016-IDICE A 129 1.0000 

  I 1 0.03083 * 

  Y 1 1.623e-10 *** 

  A × I 129 1.00000 

  A × Y 129 0.9972 

  I × Y 129 0.001756 ** 

INCIDENCE 2016-IDICE+TOLENTINO A 129 6.470e-11 *** 

  E4 1 < 2.2e-16 *** 

  I 1 0.2093 

  A × E 129 1.155e-07 *** 

  A × I 129 1.0000   

  E × I 1 0.5522 

  A × E× I 129 1.0000   

INCIDENCE 2015+2016-IDICE+TOLENTINO A 129 1.00000 

  E 1 0.16264   

  I 1 0.12195 

  A × E 129 1.00000 

  A × I 129 1.00000   

  E × I 1 00.07504 

  A × E× I  1.00000 

SEVERITY 2015-IDICE A 129 1.000 

  I 1 0.455 

  A × I 129 1.000 

SEVERITY 2016-IDICE A 129 0.3024 

  I 1 0.6995 

  A × I 129 1.0000 

SEVERITY 2016-TOLENTINO A 129 2.51e-08 *** 

  I 1 0.8203 

  A × I 129 0.9189 

SEVERITY 2015+2016-IDICE A 129 0.9996 

  I 1 0.1152 

  Y 1 5.378e-13 *** 

  A × I 129 1.0000 

  A × Y 129 0.9977 

  I × Y 129 0.05267 

SEVERITY 2016-IDICE+TOLENTINO A 129 6.026e-07 *** 

  E 1 < 2.2e-16 *** 

  I 1 0.6588 
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  A × E 129 9.621e-06 *** 

  A × I 129 1.0000 

  E × I 1 0.7094 

  A × E× I 129 1.0000 

SEVERITY 2015+2016-IDICE+TOLENTINO A 129 1.0000 

  E 1 0.8301 

  I 1 0.2847 

  A × E 129 1.0000 

  A × I 129 1.0000 

  E × I 1 0.1635 

  A × E× I 129 1.0000 

FHB INDEX 2015-IDICE A 129 0.9067 

  I 1 0.6136 

  A × I 129 1.0000 

FHB INDEX 2016-IDICE A 129 0.006208 ** 

  I 1 < 2.2e-16 *** 

  A × I 129 0.056995 

FHB INDEX 2016-TOLENTINO A 129 5.032e-10 *** 

  I 1 0.8988   

  A × I 129 0.7337 

FHB INDEX 2015+2016-IDICE A 129 6.179e-13 *** 

  Y 1 < 2.2e-16 *** 

  I 1 0.4211 

  A × I 129 1.0000 

  A × Y 129 2.237e-14 *** 

  I × Y 129 0.4265 

FHB INDEX 2016-IDICE+TOLENTINO A 129 <2e-16 *** 

  E 1 <2e-16 *** 

  I 1 0.9200 

  A × E 129 <2e-16 *** 

  A × I 129 0.7363   

  E × I 1 0.9280 

  A × E× I 129 0.8019 

FHB INDEX 2015+2016-IDICE+TOLENTINO A 129 5.111e-08 *** 

  E 1 1.544e-11 *** 

  I 1 0.714587     

  A × E 129 0.002137 ** 

  A × I 129 0.999930 

  E × I 1 0.703661 

  A × E × I 129 0.999213 
 

1 Accession, 2 Inoculum, 3 Year, 4 Environment;  

0 < P value < 0.001***; 0.001 < P value < 0.01**; 0.01 < P value < 0.05*. 
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Supplementary Table 3 | Pearson correlation coefficients (r) for incidence, severity and FHB index traits evaluated on durum wheat 

accessions referring to Idice (2015, 2016) and Tolentino (TOL, 2016) environments. 

 

 

Pearson  

Correlation  

Coefficient (r) 

 
IN

C
ID

E
N

C
E

 1
5

 F
C

 I
D

IC
E

 

IN
C

ID
E

N
C

E
  

1
5
 F

G
 I

D
IC

E
 

S
E

V
E

R
IT

Y
 1

5
 F

C
 I

D
IC

E
 

S
E

V
E

R
IT

Y
 1

5
 F

G
 I

D
IC

E
 

F
H

B
 i

n
d

ex
 1

5
 F

C
 I

D
IC

E
 

F
H

B
 i

n
d

ex
 1

5
 F

G
 I

D
IC

E
 

IN
C

ID
E

N
C

E
  

1
6
 F

C
 I

D
IC

E
 

IN
C

ID
E

N
C

E
 1

6
 F

G
 I

D
IC

E
 

S
E

V
E

R
IT

Y
 1

6
 F

C
 I

D
IC

E
 

S
E

V
E

R
IT

Y
 1

6
 F

G
 I

D
IC

E
 

F
H

B
 i

n
d

ex
 1

6
 F

C
 I

D
IC

E
 

F
H

B
 i

n
d

ex
 1

6
 F

G
 I

D
IC

E
 

IN
C

ID
E

N
C

E
 1

6
 F

C
 T

O
L

 

 I
N

C
ID

E
N

C
E

 1
6
 F

G
 T

O
L

 

S
E

V
E

R
IT

Y
 1

6
 F

C
 T

O
L

 

S
E

V
E

R
IT

Y
 1

6
 F

G
 T

O
L

 

F
H

B
 i

n
d

ex
 1

6
 F

C
 T

O
L

 

F
H

B
 i

n
d

ex
 1

6
 F

G
 T

O
L

 

INCIDENCE 15 FC IDICE 1 0.72 0.72 0.55 0.83 0.61 0.42 0.47 0.40 0.32 0.49 0.44 0.45 0.40 0.44 0.29 0.39 0.35 

INCIDENCE  15 FG IDICE - 1 0.66 0.71 0.70 0.83 0.36 0.37 0.33 0.32 0.40 0.37 0.39 0.38 0.35 0.29 0.32 0.31 

SEVERITY 15 FC IDICE - - 1 0.54 0.95 0.60 0.37 0.38 0.43 0.33 0.45 0.38 0.41 0.36 0.39 0.29 0.35 0.32 

SEVERITY 15 FG IDICE - - - 1 0.55 0.95 0.29 0.29 0.28 0.24 0.33 0.27 0.32 0.27 0.34 0.23 0.30 0.24 

FHB index 15 FC IDICE - - - - 1 0.64 0.36 0.41 0.44 0.33 0.46 0.41 0.41 0.36 0.40 0.31 0.35 0.33 

FHB index 15 FG IDICE - - - - - 1 0.29 0.30 0.29 0.25 0.36 0.30 0.32 0.28 0.3 0.25 0.30 0.24 

INCIDENCE 16 FC IDICE - - - - - - 1 0.64 0.43 0.39 0.88 0.57 0.47 0.43 0.41 0.25 0.44 0.34 

INCIDENCE 16 FG IDICE - - - - - - - 1 0.39 0.52 0.59 0.87 0.44 0.40 0.36 0.18 0.38 0.29 

SEVERITY 16 FC IDICE - - - - - - - - 1 0.31 0.69 0.39 0.29 0.29 0.30 0.16 0.26 0.24 

SEVERITY 16 FG IDICE - - - - - - - - - 1 0.42 0.82 0.37 0.17 0.23 0.01 0.26 0.06 

FHB index 16 FC IDICE - - - - - - - - - - 1 0.58 0.45 0.42 0.40 0.28 0.42 0.36 

FHB index 16 FG IDICE - - - - - - - - - - - 1 0.45 0.33 0.34 0.13 0.37 0.21 

INCIDENCE 16 FC TOL - - - - - - - - - - - - 1 0.75 0.86 0.64 0.93 0.68 

INCIDENCE 16 FG TOL - - - - - - - - - - - - - 1 0.70 0.82 0.71 0.93 

SEVERITY 16 FC TOL - - - - - - - - - - - - - - 1 0.71 0.94 0.72 

SEVERITY 16 FG TOL - - - - - - - - - - - - - - - 1 0.68 0.93 

FHB index 16 FC TOL - - - - - - - - - - - - - - - - 1 0.71 

FHB index 16 FG TOL - - - - - - - - - - - - - - - - - 1 
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Supplementary Table 4 | Analysis of Variance (ANOVA), table of degrees of freedom (Df) and P 

values referring to single comparisons among years (2014, 2015 and 2016) and F6 recombinant 

inbred lines (RILs) from the cross Simeto × Levante for severity. 

 

TRAIT YEAR-ENVIRONMENT VARIABLE Df Pr(>F) 

SEVERITY 2014+2015-TULLN 
A1 164 1.809e-08 *** 

Y2 1 < 2.2e-16 *** 

SEVERITY 
2014+2016- 

TULLN+BOLOGNA 

A 33 0.35145   

Y 1 0.07468 

SEVERITY 
2015+2016- 

TULLN+BOLOGNA 

A 33 0.0052889 ** 

Y 1 0.0005842 *** 

 

1RILs, 2 Year;  

0 < P value < 0.001***; 0.001 < P value < 0.01**. 
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Supplementary Table 5 | Analysis of Variance (ANOVA), table of degrees of freedom (Df) and P-

values referring to single comparisons among years (2009, 2010, 2017 and 2018) and durum wheat 

lines provided by Syngenta - PSB for deoxynivalenol (DON) content. 

 

 

 

1 Genotypes provided by Syngenta - PSB, 2 Year; 

0 < P value < 0.001***; 0.001 < P value < 0.01**; 0.01 < P value < 0.05*. 

 

 

 

 

 

 

 

 

 

 

 

 

TRAIT YEAR-ENVIRONMENT VARIABLE Df Pr(>F) 

DON 2009+2010+2017+2018-ARGELATO 
A1 226 0.0003582 *** 

Y2 3 < 2.2e-16 *** 
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Supplementary Table 6 | PSB Panel including a subset of Fusarium Panel elite accessions as well 

as SY-lines provided by Syngenta - PSB was genotyped with four KASP assays in order to 

discriminate the “LSD” haplotype groups of interest within four DON-specific linkage blocks 

(HAP-QFHB.ubo-1A.1, HAP-QFHB.ubo-1B.1, HAP-QFHB.ubo-3A.1 and HAP-QFHB.ubo-6A.1). 

The results reported a significant association (P < 0.05) between KASP genotyping data and DON 

analysis in elite/SY genotypes for HAP-QFHB.ubo-1A.1, HAP-QFHB.ubo-1B.1 and HAP-

QFHB.ubo-6A.1 revealing their potential application in durum wheat breeding programs. 

 

Analysis of variance (ANOVA) 

DON-specific linkage block Trait KASPar marker VARIABLE Df Pr(>F) 

HAP-QFHB.ubo-1A.1 DON K-IWB46412 A1 165 0.017* 

HAP-QFHB.ubo-1B.1 DON K-IWB47303 A 190 0.042* 

HAP-QFHB.ubo-3A.1 DON K-IWB53914 A 151 0.249 

HAP-QFHB.ubo-6A.1 DON 

K-IWB35328 

A 187 0.011* 

K-IWB56969 

 

1Genotypes provided by Syngenta - PSB;  

0.01 < P value < 0.05*. 
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Supplementary Figure 1 | Box-plot distributions for the three durum wheat subpopulations (S1, S2 

and S3) related to incidence, severity and FHB index of durum wheat accessions grown in Idice and 

obtained by the integration of 2015 and 2016 years as well as Fusarium culmorum (FC) and 

Fusarium graminearum (FG) inocula. 
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Supplementary Figure 2 | Box-plot distributions for the three durum wheat subpopulations (S1, S2 

and S3) related to deoxynivalenol (DON) content and Fusarium-damaged kernels (FDK) of durum 

wheat accessions grown in IDICE and obtained by the integration of 2015 and 2016 years as well as 

Fusarium culmorum (FC) and Fusarium graminearum (FG) inocula.  
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Supplementary Figure 3 | Box-plot, pie charts and median joining networks of haplotype groups 

on Fusarium Panel from a designated TAG-SNP marker (bold) of four selected QTL hotspots (A: 

QFHB.ubo-1A.1, B: QFHB.ubo-1B.1, C: QFHB.ubo-3A.1 and D: QFHB.ubo-6A.1) in response to 

deoxynivalenol (DON) content. I selected specific SNP markers (yellow) whose alleles were used 

to discriminate specific haplotype groups within block. The QTL hotspots showed a different 

response to deoxynivalenol (DON) content as well as distribution in the three subgroups (S1-S3). 
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Supplementary Figure 4 | Allelic discrimination plots using the KASP assay for the following 

single nucleotide polymorphisms (SNPs): A) IWB46412 on chr. 1A, B) IWB47303 on chr. 1B, C) 

IWB53914 on chromosome 3A, D) IWB70054 on chr. 5A, E) IWB35328 and F) IWB56969 on chr. 

6A. IWB46412, IWB47303, IWB53914, IWB35328 and IWB56969 discriminated for haplotype 

groups with different response to deoxynivalenol (DON) content while IWB70054 to FHB index. 

The red and blue dots refer to the homozygous genotypes, the green dots refer to heterozygous 

genotypes and the black crosses refer to not discriminatory genotypes. 
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GENERAL CONCLUSIONS 

Both studies presented in the current thesis aimed to dissect the genetic bases of durum wheat 

responses to drought and FHB disease using a common GWAS approach. Based on the literature, 

GWAS is optimal for mapping in natural populations or in panels of diverse cultivars with the 

purpose of capitalizing abundant recombination events allowing a higher resolution in finding 

genetic regions (QTL intervals) associated to the traits of interest. However, the main limitation in 

those panels is the occurrence of false positive associations as artifact arising from population 

structure, which in turn could lead to waste resources, time, and money. In the present thesis, 

GWAS-MLM methods have proven useful in controlling for population structure and relatedness. 

In addition, the use of flowering time as covariate led to a consistent reduction of the genetic bias 

due to the photoperiod/vernalization. 

In Chapter 1, improving of drought adaptive trait repeatability as well as of the GWAS-QTL 

identification was obtained by taking advantage of the great potential and effectiveness of semi-

automated robots and of UAV-based platforms to gather rapid, precise, and detailed high-

throughput phenotypic measurements. Additionally, the validity of the “Rehydration method” for 

large-scale screening of osmotic adjustment trait under drought conditions was demonstrated. The 

results indicate that HTP-based approaches allow collection of phenotypic data with precision high 

enough to discern genetic differences and to facilitate QTL for drought-adaptive traits detection. 

The “Rehydration method” was useful to support osmotic adjustment for promoting wheat 

productivity and maintaining a more favorable water status of the crops. 

In Chapter 2, I illustrate the utility of haplotypes to identify potential sources of FHB tolerance 

based on their known superior performance over single SNPs previously selected by GWAS. 

Suitable KASPar markers were validated for haplotype-based MAS programs against the 

deoxynivalenol (DON) accumulation, and tested in over 100 lines thus proving to be effective in 

discriminating resistant and susceptible genotypes. The study reveals (i) the efficiency of LD-based 
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haplotype construction to overcome the bi-allelic form-limiting factor at which SNP-trait 

relationships can be delineated and (ii) the importance of resulting KASPar makers to provide 

useful ways to accelerate the next durum wheat breeding schemes. 

In conclusion, the whole research described here represents an endeavor to get a deeper insight into 

the principles governing the genetic response to biotic and abiotic stresses in durum wheat. The 

novel high-throughput phenotyping (HTP) approaches described in Chapter 1 as well as the 

validation of suitable KASPar markers against the deoxynivalenol (DON) accumulation described  

in Chapter 2 share a joint determination to a better understanding of genotype-phenotype 

relationship and will accelerate the selection of resistance loci in future wheat breeding programs. 
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