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2 Abstract

Bioinformatics is a recent and emerging discipline which aims at studying
biological problems through computational approaches. Most branches of
bioinformatics such as Genomics, Proteomics and Molecular Dynamics are
particularly computationally intensive, requiring huge amount of
computational resources for running algorithms of ever-increasing
complexity over data of ever-increasing size.

In the search for computational power, the EGEE Grid platform, world's
largest community of interconnected clusters load balanced as a whole,
seems particularly promising and is considered the new hope for satisfying
the ever-increasing computational requirements of bioinformatics, as well as
physics and other computational sciences.

The EGEE platform, however, is rather new and not yet free of problems. In
addition, specific requirements of bioinformatics need to be addressed in
order to use this new platform effectively for bioinformatics tasks.

In my three years' Ph.D. work | addressed numerous aspects of this Grid
platform, with particular attention to those needed by the bioinformatics
domain.

| hence created three major frameworks, Vnas, GridDBManager and
SETest, plus an additional smaller standalone solution, to enhance the
support for bioinformatics applications in the Grid environment and to
reduce the effort needed to create new applications, additionally addressing
numerous existing Grid issues and performing a series of optimizations.

The Vnas framework is an advanced system for the submission and
monitoring of Grid jobs that provides an abstraction with reliability over the
Grid platform. In addition, Vnas greatly simplifies the development of new
Grid applications by providing a callback system to simplify the creation of
arbitrarily complex multi-stage computational pipelines and provides an
abstracted virtual sandbox which bypasses Grid limitations. Vnas also
reduces the usage of Grid bandwidth and storage resources by
transparently detecting equality of virtual sandbox files based on content,
across different submissions, even when performed by different users.

BGBlast, evolution of the earlier project GridBlast, now provides a Grid
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Database Manager (GridDBManager) component for managing and
automatically updating biological flat-file databases in the Grid environment.
GridDBManager sports very novel features such as an adaptive replication
algorithm that constantly optimizes the number of replicas of the managed
databases in the Grid environment, balancing between response times
(performances) and storage costs according to a programmed cost formula.
GridDBManager also provides a very optimized automated management for
older versions of the databases based on reverse delta files, which reduces
the storage costs required to keep such older versions available in the Grid
environment by two orders of magnitude.

The SETest framework provides a way to the user to test and
regression-test Python applications completely scattered with side effects
(this is a common case with Grid computational pipelines), which could not
easily be tested using the more standard methods of unit testing or test
cases. The technique is based on a new concept of datasets containing
invocations and results of filtered calls. The framework hence significantly
accelerates the development of new applications and computational
pipelines for the Grid environment, and the efforts required for maintenance.

An analysis of the impact of these solutions will be provided in this thesis.

This Ph.D. work originated various publications in journals and conference
proceedings as reported in the Appendix. Also, | orally presented my work
at numerous international conferences related to Grid and bioinformatics.



3 Introduction

This Ph.D. thesis reports my research work addressing numerous aspects
of the Grid platform, with particular attention to those needed by the
bioinformatics domain.

Bioinformatics is a recent and emerging discipline which aims at studying
biological problems through computational approaches. Most branches of
bioinformatics are particularly computationally intensive, requiring huge
amount of computational resources for running highly complex large-scale
algorithms over data of ever-increasing size.

In the search for computational power, the EGEE Grid platform, world's
largest community of interconnected clusters load balanced as a whole,
seems particularly promising and is considered the new hope for satisfying
the ever-increasing computational requirements of bioinformatics, as well as
physics and other computational sciences.

In the subsections of this chapter 3, firstly a brief introduction will be given
to the bioinformatics discipline, explaining its history, purposes and peculiar
needs, then the EGEE Grid platform will be introduced in greater detail, with
an accent on discussing the major issues of this platform in section 3.2.2,
which have been addressed by my research work.

The subsequent Chapters are devoted to the description of my research
work on this subject.

In Chapter 4, four solutions will be presented in detail (respectively in
chapters 4.1, 4.2, 4.3 4.4) for solving the main issues of the EGEE Grid
platform. These solutions tackle the problems sinergically from many
aspects. The solutions:

e create abstractions with reliability over the unreliable Grid
environment

e increase the effective grid uptime
e bypass some Grid limitations and automate some procedures
e ensure proper cleanup of common Grid resources automatically

e increase the Grid performances
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e reduce Grid storage costs
e reduce Grid bandwidth usage at multiple locations

e reduce the time and effort needed to write applications in the Grid
environment

e reduce the time and effort needed to test applications in the Grid
environment

e automatically maintain and manage specific data commonly needed
by biocinformaticians, dynamically balancing between various types of
costs, depending on the amount of usage

e provide a mechanism to help programmers write arbitrarily complex
multi-stage pipelines or workflows for the Grid environment

In chapter 5, attempts will be made at evaluating the exact impact of these
solutions in the Grid environment. Firstly, in 5.1 an evaluation of the
increase in Grid performances will be given through monte-carlo simulations
based on experimentally probed data and simulated submission algorithms.
Then, in 5.2, the reduction in time and effort due to the solutions in chapter
4 will be examined. In 5.3 some more benefits will be mentioned. Finally, in
5.4 a case study will be presented showing how one of the frameworks was
used bring to the grid a complex multi-stage computation pipeline.

In chapter 6, the conclusions of my Ph.D.'s work will be discussed together
with the direction of the imminent future work.

In chapter 7 - Appendices, some low-level implementation details will be
given about the solutions presented. Additionally, in 7.3 a tutorial section
giving hints on how to develop effective applications in the Grid
environments will be given, based on my three years' Ph.D. experience in
the Grid environment and being part of the BioinfoGRID [BioiNFoGRID] project.
Finally, in 7.4 the list of publications and oral presentations in international
conferences related to my Ph.D. work will be listed.

3.1 Bioinformatics

Bioinformatics is an emerging discipline that leverages computer science
means and techniques for addressing biological problems. The discipline is



11

very new, first appearing in scientific journals at the end of 1980s.

Bioinformatics was first born with the aim of managing the enormous
amount of data coming from the Human Genome Project [Her] and that of
developing algorithms for mining through such large amount of data to
gather meaningful information. That specific branch of bioinformatics is now
more specifically called Genomics.

Bioinformatics has since then evolved to cover a number of other fields of
study such as

- Proteomics: large scale study of proteins, particularly aimed at studying
their structures and sub-parts (domains) in relation with the structure of
other known proteins. The mechanism of action of some proteins can
hence be guessed on the basis of similes with other proteins or domains
for which the action is known or partly known.

- Molecular Dynamics: studies the folding of protein atoms in the 3D
space and interactions between proteins and other proteins or proteins
and other molecules. This is performed through computer simulation of
the laws of physics. Each protein contains thousands of atoms.

- Phylogenetics: studies the amount of evolutionary relationship among
various groups of organisms usually through comparative analysis of the
genomes associated with complex statistical simulations (e.g. Hidden
Markov Model [Hmm1], [HMM2]).

- Systems Biology: probably the newest branch of bioinformatics,
Systems Biology studies the interaction between the various components
of biological systems in order to understand the functions and behaviour
of the system. This is achieved through mathematical equations and
computational modelling.

...and an uncountable number of other often interconnected sub-disciplines.

Bioinformatics as well as physics and other mathematics-based
experimental sciences is constantly in great need of always new
computational powers which can be used to solve algorithms of ever-
increasing complexity over data of ever-increasing size.

Genomics for example, has recently seen great increases in the amount of
data being generated and which has to be analyzed, due to pyrosequencing
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and other novel DNA sequencing techniques increasing sequencing speeds
by an order of magnitude. Considering the current trend and the enormous
amount of money being spent each year for new sequencing technologies, it
is foreseen that a complete human genome (that's 3 billion nucleotide
bases) could probably be sequenced for just $1000 in 10 years from now.
This would allow most people on the planet to have their complete genome
sequenced, and would simultaneously create amazing challenges for the
computing hardware and bioinformatics algorithms needing to mine through
such amount of information for finding meaningful results.

In addition, new approaches usually referred to as "genotyping" aimed at
sampling a large number of highly variable and probably meaningful points
of the human genome called SNPs, are already a reality today. | will cite for
example the lllumina beadstation [BeapstaTion] which can now sample 1
million SNPs out of a human DNA for about $500 in one hour. Even though
the amount of information in this case is smaller than in the case of raw
genome sequencing, the density of meaningful information which has to be
analyzed by informatics means in this case is very high.

In this scenario, the Grid computing (see next chapter) appears as a hope
for bioinformatics, a dream which might be able to provide enough
computational power for bioinformaticians' needs already today and on
existing hardware, for solving some of the most complex computational
needs.

3.2 The EGEE Grid

3.2.1 Definition and history of the EGEE Grid

The term Grid Computing refers to a distributed infrastructure to allow the
usage of computational and storage resources coming from an indistinct
number of computers (each of these being of not particularly high power)
interconnected via a network which is usually, but not necessarily, the
Internet.

The term "grid" comes from the first devisers of Grid Computing which
foresaw the advent of a time in which people would be using computational
resources in the same way as power resources, that is, just connecting a
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plug to the power grid. The simile is actually quite unfortunate as one of the
main problems of Grid Computing is its high complexity, which makes usage
most hard and complicated, in contrast to just connecting a plug.

The idea of Grid Computing stemmed from realizing that, on average, the
usage of computational resources in an organization is around 5% of
maximum. With the Grid, the resources would be shared among various
entities so to create a virtual organization with a much better infrastructure
that the single entity could afford.

A grid is able to give users access to the computing power and storage of a
distributed system, while the users can still be a virtual group not belonging
to any single geographic location. The Grid guarantees a coordinate and
checked access to shared resources and offers to the user the visibility of a
single logic computation system where jobs can be submitted.

"Computing Grids" are mostly used to solve large-scale computational
problems in the scientific and engineering subjects. Originarily evolved from
High Energy Physics (HEP), their role is now extended to biology /
bioinformatics, astronomy, and other subjects. Biggest commercial IT
players have shown significant interest to the phenomenon, and have been
collaborating in the main worldwide Grid projects as sponsors and/or
developing their own Grid projects, expecting a future widespread use also
in the commercial fields.

Another significant phenomenon to mention is the birth of numerous small-
scale implementations of grids on local or metropolitan networks. These
maintain the carachteristics of a grid and are usually referred to with the
terms Local Area Grid (LAG) and Metropolitan Area Grid (MAG). These are
in a sense similar to intranets, and might constitute an infrastructure for
distributed computing in a company environment, while nation-wide grids
might eventually (hopefully) join together and constitute a global scale
World-Wide Grid.

EGEE (Enabling Grids for E-Science) [eceE] is the current EU-funded project
for a common research european grid and is the world's largest grid as of
today. Started in 2004 within the fifth framework programme, went on in the
sixth framework programme as EGEE-Il and will be followed up by an
EGEE-IIl in the seventh. EGEE leverages the existing infrastructure of the
LCG (LHC Computing Grid) intended to perform the data analysis for the
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CERN's LHC (Large Hadron Collider) when this is ready. As middleware,
the EGEE project started out by using the earlier LCG-2 middleware,
originated from the earlier EU grid project EDG (EU Data Grid) then started
developing the next generation middleware gLite. All middleware versions
are layered one on top of the other so that earlier versions (such as LCG-2)
can still be used on the newer EU grids without problems, and in fact, for
some middleware commands and libraries newer versions are no more than
wrappers to the older versions.

3.2.1.1 Structure of the EGEE Grid

The EGEE Grid [ecee] is a widely distributed and not centrally administered
structure, composed of the following main elements (see figure 1 below):

- CE (Computing Element): this computer is the master node for a
cluster of WN (worker nodes) located behind it and acts as gatekeeper
and workqueue manager for such cluster. The Worker Nodes provide the
real computational power of the Grid. The queueing system being used
is usually PBS [pBs] or equivalent system, but is not accessible as it is
abstracted to the user by the Grid environment.

- SE (Storage Element): a computer sporting large disk arrays which
provides the storage capacity to the Grid environment. There should be
one of these located near (within a Local Area Network) to every CE of
the Grid so to provide large bandwidth to the Worker Nodes. Big
amounts of data can be uploaded to a Storage Element before
submitting computation jobs to the Grid. Jobs can be locked to go
executing on a CE near a SE which holds a replica of the data they need.
There can be multiple replicas on different locations for a user-uploaded
file, up to one replica for every SE of the Grid.

- RB (Resource Broker): a computer whose main task is to receive jobs
submitted through the User Interfaces. The RB routes such jobs to a CE
capable of fulfilling the requirements for the execution of the jobs, as
specified by the user in a so-called JDL file (from the name of its syntax:
Job Description Language) at the time of submission. From the list of the
CEs capable of fulfilling the request, the RB chooses the CE which is
estimated to have the shorter execution queue. This evaluation is
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performed through the information received by the BDII (see).

BDIl (Berkeley Database Information Index): this computer gathers a
significant amount of statistical information from mostly any other
element of the Grid, in particular the CEs and the SEs. From the CEs it
receives the number of CPUs and their power, their busy/free state, the
number of jobs waiting in the queue, the number of jobs executing and
their provenance for accounting purposes (mainly, the VO). From the SE
it receives the amount of disk space allocated and free. This information
is feeded to the RB for helping it perform queue times estimation, in
addition these are used for monitoring and accounting purposes.

Ul (User Interface): This is a user owned computer and strictly speaking
not part of the Grid. This computer is what the Grid-user uses for
interfacing himself/herself to the Grid, i.e. for submitting jobs, receiving
results and doing file operations on the Storage Elements. The User
Interface communicates prevalently with the RB for job management, but
can also communicate the the SEs and the Replica Catalog. The Ul runs
a subset of the gLite Grid middleware in order to be able to communicate
with the other elements of the Grid.

Replica Metadata Catalog (RMC), Local Replica Catalog (LRC) and
LCG File Catalog (LFC): These computers manage a virtual hierarchical
filesystem for Logical File Names (LFN). LFN are human readable
names which can be associated to the cryptic names automatically
generated when a file is uploaded to a Storage Element. Actually the
automatically generated names are in SFN (Storage File Name) or
analogous (SRM) form, which are then mapped to a GUID (Globally
Unique IDentifier) by the RMC/LRC/LFC, and while there will be different
SFN/SRM for each replica of the same file, there will be only one GUID.
There can be multiple LFN (human readable names) for each GUID. The
LRC/LFC allow bidirectional navigation between the three mappings
(SFN or SRM / GUID / LFN).

VO (Virtual Organization): this (not shown in figure) is not a computer
but still an important constituting part of the Grid. The users which
decide to join the Grid will be part of a Virtual Organization, which is not
localized to a physical address like a normal organization but rather
distributed, scattered across the planet. The amount of computation
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consumed by each user is accounted firstly to the Virtual Organization
and then possibly to the specific user. Grid site owners and VO
managers might set a fee for the amount of computation being used
(though this probably never happened up to now) or more likely ask the
most active grid users to share some of their computational resources to
compensate. Virtual Organizations also have a central administration for
distributing Grid certificates for granting access, and a Responsible
Person which monitors the good behaviour of the Grid users belonging to
the VO, possibly denying further access to vile users in extreme cases.

Replica Catalog

'. Site
[\5
< ; 3 J \-;fl |

s \ Storag ement
| N .
Resource Broker O o~
User Interface N A
S

S—
W=t \
N, /

&
= A = A
_r‘:'l-:rﬁ' A

.
Computing Element Worker Nodes
Lllustration 1: Elements of the Grid and intercommunications

The Site in the figure 1 shows a group of computational and storage
resources administered by an Organization which decided to actively join
the Grid also sharing their computational resources. The said Organization
will be part of a larger VO, and their computational resources will be usable
by at least the VO where they belong, but can be used by more VOs,
depending on their specific agreements of collaboration with the other VOs.

3.2.2 Existing issues

Notwithstanding the great efforts of many entities which collaborated for
long years to the development of the EGEE Grid, due to the extremely
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distributed nature of such platform developing a flexible and stable grid
interface is not easy and many issues remain. In the next subsections some
of the main issues of the EGEE Grid will be summarized.

In my work | have addressed many of those issues, providing frameworks
that either work completely around the limitations or significantly simplify
such operations for the end user (in addition to other features which will be
described later in this thesis).

3.2.2.1 Jobs failures

Not all the jobs which are submitted to the Grid execute successfully. In fact,
excluding programming errors due to the Grid user, the EGEE Grid has still
an unfortunately high percentage of job failures. (A quantitative
measurement of the failure rate is in section 5.1.2.1 of this thesis)

Job failures happen in many forms, the following are the main ones:

1. A Job (J) is submitted by the user (U) and end up in a queue on a CE
which appears very slow, and does not process jobs fast enough for J to
reach execution before expiration of the Grid proxy (usually 48 hours). J
dies in the queue.

2. A Job (J) submitted by the user (U) is assigned to a CE (C). The Job is
reported to immediately enter execution after a very brief interval in the
queue, but then, almost immediately, aborts.

3. A Job (J) submitted by the user (U) is assigned to a CE (C). The Job
stays in the queue for some time then enters execution. The job executes
for some time but as soon as it tries to contact the closest SE (S) for
downloading a file or for uploading results, it fails.

The first two cases are most likely due to some misconfiguration of C but
there are other responsibilities.

The first case is also partial responsibility of the RB or BDII which have not
detected the extremely long queue and decided to schedule the job in the
wrong place.

The second case also shows how C's failure rate does not influence in any
way the ranking made by the RB for deciding where to route incoming jobs
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(C should have ranked low and hence jobs should have not been scheduled
there), and this is, in my humble opinion, a lack.

The third case can be a misconfiguration of C or S, or could be some error
in the authentication subsystem of the middleware at the time of J
attempting access to S.

Summing up, while for most job failures there is a human responsibility, it is
still true that the Grid middleware does not do much to detect and provide
automatic countermeasures to this kind of errors, which are so frequent that
the Grid user simply cannot ignore them and really needs to handle them.

The simplest way for the user to handle job failures is just to resubmit failed
jobs, and this is what is usually done, more or less manually. In extreme
cases, the user might want to ban some misbehaving CEs by adding an
apposite line in the JDL file when submitting the job, and/or contacting only
trusted SEs.

3.2.2.2 Sandbox (size)

Jobs submitted by the Grid user allow for up to 10 (usually, depends on the
VO) megabytes of data submitted together with the job.

Ten megabytes are insufficient for the majority of bioinformatics task, and in
addition, only a few single files are allowed, not arbitrarily complex directory
structures such as those of installed applications or libraries. Hence the
user always needs to package directory structures in archives manually,
and write code in the job so to unpack these.

When the 10 MB sandbox size is insufficient, Storage Elements have to be
used for storing the needed files. This adds another layer of complexity,
since tar or similar archives are to be made, files are to be manually
uploaded to the SEs, code has to be written in the job for connecting to a
SE and downloading the files, and for unpacking. In addition, the user must
remember to manually delete the files from the SEs when these are not
needed anymore, so to free disk space for the other Grid users.

The whole procedure is highly uncomfortable to non-computer-scientists
and very error prone. In addition, the SEs risk to remain polluted due to
forgetfulness of the users (also see next section).
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3.2.2.3 Files maintenance on SEs and RMC

Manual management of SE allocation (as described in previous section) is
highly uncomfortable for non-computer-scientists, and very error prone. The
main problems which consistently happen with this procedure are:

- Users forget to delete files belonging to them from the SEs after finishing
using the files. SE are wildly over-allocated due to this reason and space
is now lacking. Browsing the LFN hierarchies you can find files which are
years old and probably not used since short after their upload.

- Wild allocation of LFN (human readable) file names by users, most of
which don't bother to make one subdirectory relative to their (physical)
organization and simply pollute the root directory of the LFN filesystem. |
remember having seen more than a thousand files in the root of the
biomed LFN hierarchy (then the user responsible for this was banned, in
this case).

- RMC is still very unreliable as of today, and often loses LFN names. This
is unfortunate because most people rely on LFN names for finding their
files, as the automatically generated ones are very long and cryptic, and
impossible to remember (one would need to write a software that
remembers the mapping, but this is exactly what the RMC was supposed
to be doing). People relying on the LFN name only (most do), will not be
able to access their uploaded files, or even delete them from the Storage
Elements once the RMC loses the LFN reference. Storage Elements are
overallocated also for this reason

3.2.2.4 Downtimes

Every element of the Grid has some downtimes, and this is understandable
since this is a distributed architecture, not centrally administered, and each
part is without official guarantees of uptime.

Downtimes cause some problems though, especially those related to the
Storage Elements and Resource Brokers. While the former ones are
relatively rare, the latter are particularly common. This might be because of
the high load the RBs experience during large job submissions. In fact |
have seen downtimes of around 5% for Resource Brokers, usually lasting
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one or two days.

RB downtimes cause significant problems because User Interfaces are
programmed to use only one Resource Broker. When the configured
resource broker is down, two things happen:

1. The User Interface cannot submit any new job to the Grid

2. It will not be possible to get the status or the results for all jobs submitted
previously, which were submitted through the RB which is now down.

While the first point could be fixed by changing the configured resource
broker (this requires intervention of the system administrator and also it is
not a totally straightforward procedure) there is no possible fix for the
second point.

In addition to these downtimes, Worker Nodes and RMC/LRC/LFC are
sometimes very slow. WN slowness cause the problems already described
in the 3.2.2.1 - Job Failures section above, while RMC/LRC/LFC slowness
have the effect of significantly slowing down and annoying the users when
they need to perform manual interactive operations on the SE / LFN
filesystems (such as e.g. uploading of files which don't fit into the 10MB
sandbox and/or removing old files).

3.2.2.5 Waste of bandwidth and execution time

In case of computations which need to access large files such as a multi-GB
biological database (this is common in bioinformatics), the Grid is not
optimal in the way bandwidth and computation time are used.

Biological databases are files which are commonly in the range
500MB-5GB, created and maintained by reputable bioinformatics institutes
such as NCBI, EMBL and EBI. These kind of files are commonly uploaded
once (manually) and then left on the Grid forever, since it is known that they
will be reused sooner or later.

However, with this kind of manual management, the number of replicas for
every one of these files is static, and is usually one.

Jobs on the Grid can be constrained to go executing near (within the Local
Area Network) to a SE where a replica of the file they need is located.
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However this cannot reasonably be done when only one replica is available,
as only one CE would be usable in this case, and this would mean not
exploiting the power of the Grid.

On the other hand with a higher number of replicas for files of this size the
storage costs increase wildly. Leaving a multi-GB file with multiple replicas
uploaded on the Grid for long times while it is not being used is considered
unpolite and against the policies of the EGEE Grid.

It also appears too bothersome for the Grid user to upload the biological
database to multiple locations only when needed (this also takes a
significant user time if done interactively), and practically nobody does this
as far as | know.

What is usually done is that the database is uploaded once and then left on
the Grid with a single replica, and jobs are not constrained to go executing
near the replica.

This is also not optimal because every job then needs to download the
database to the WN prior to starting the computation. This is a remote
download of a multi-GB file from the Internet, and this wastes a significant
bandwidth. In addition, in case of many jobs launched in parallel (very
common case), these will all start downloading at similar times so the
impact will be multiplied and will easily saturate all the bandwith of the SE
where the database was uploaded for hours. This in turn renders their own
download slow, and also that of other users' jobs relying on the same SE.

In addition to this, there is another problem: the CEs have a scheduler and
queuing system that do not let other jobs execute on the CPU that is already
occupied by one job, whatever it is doing, computing or downloading, until
the job exits or its proxy certificate times out. Hence, if the job wastes its
time for downloading a multi-GB file from a remote location, the job is
wasting CPU time for everybody, in addition to the waste of bandwidth.

Clearly the Grid needs a better solution.

In addition to this | will mention that there is no automatic mechanism on the
Grid for keeping such kinds of databases updated, e.g. reflecting updates
from the FTP sites of the maintainers. This means that most
bioinformaticians update the databases they use more or less manually by
replacing it with the new version every some time. This is really not a Grid's
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fault, since this requirement is specific only to bioinformaticians, however it
needed to be fixed for our case. Hence, | also worked in this direction as
you can see in section 4.2 — BGBlast and the Grid Database Manager.

3.2.2.6 RB suboptimal CE ranking

The Resource Broker (RB) CE ranking algorithm is based on estimated
queue times of computing elements and incoming jobs are normally routed
by the RB to the CE ranked highest among the Computing Elements being
compatible with the job requirements (which are specified at submission
time). A number of problems exist in this procedure which will be described
here.

The ranking trusts the grid BDII service, which is not updated in real time, it
has a certain propagation time. When submitting a sequence of two jobs
using a resource broker, in the short time gap between the two submissions
the LB service won't be able to notify the RB itself of the new estimated
queue time for the CE where the first job has just been assigned. The RB
itself doesn't have the required information to compute this new queue
estimation by itself, hence, such CE has the likelyhood to remain first
ranked with regard to the queue time at the time of the second job
submission. In a long sequence of jobs submissions using the same or even
different RBs, many jobs might be assigned to the same CE, thus not really
performing a load balancing.

However, it is not easy to fix such a problem. Considering that multiple RBs
exist for each VO, and these are relatively pluggable and can be added and
removed from the Grid, most design changes would fail either in
effectiveness or in scalability.

Recently, the probabilistic ranking has been introduced, which should allow
a better load balancing, with regard to the previously mentioned problem. In
this ranking mode, the estimated queue time for a CE is used to compute
the probability that the job is delivered to a certain CE, so the job will not be
necessarily submitted to the CE which is at the top of the list.

Currently, the deterministic ranking still remains the default for the EGEE
Grid and most Grid users don't override this setting. This is partly because
users are not aware of the option or do not care, and partly because the
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users hope to get a faster response time with the deterministic ranking,
notwithstanding the problem mentioned above.

The fact that most Grid users use the deterministic ranking worsens the RB
ranking reliability itself somewhat, because CEs that are declared by the LB
service as having a short queue at a certain point in time, will be flooded by
jobs by most RBs and most users until the next LB information update. This
creates queues on the flooded CEs, that result in "unexpected" wait times
for the jobs themselves.

Another serious problem, orthogonal to the ones mentioned above, is that
the queue time estimation is based on insufficient data. Basically, only the
number of CPUs in a CE, the declared power of these, and the number of
jobs in the queue can be used for the queue time estimation. These data
are clearly insufficient if the expected running lenght for the jobs in the
queue is not known, and leads to gross mistakes in the queue time
estimation. Unfortunately, the EGEE Grid does not have a mechanism for
declaring the expected running length for a job, in contrast to e.g. PBS [rBs]
(PBS enforces the termination of a job which goes beyond its declared
running time, and this leads to a nice predictability of the queuing system
not available on the Grid).

Unfortunately there are not many fixes available for all the problems
mentioned above. Other than using the probabilistic ranking when this
seems appropriate, my suggestion still remains that of monitoring the queue
times of submitted jobs and killing-resubmitting jobs when these appear to
be stuck in the queues. These actions are performed automatically by the
Vnas framework | developed in my Ph.D. and which is reported in this
thesis, which relieves the user from the burden to write automated code for
this task.

An effort by the EGEE developers is in the direction of providing a pull-
mode in the middleware. In this mode the CEs would pull jobs from the
Resource Brokers, which would handle the queues of jobs in place of the
CEs. Unfortunately, the fact that in this mode every RB has a queue which
is separate from that of the other RBs might just move the problem of the
queue estimation from the RBs to the Uls, and from the automatic
matchmaking/ranking system to the hands of the users. This design
decision was needed in order to share the great load of the queues handling
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among the various RBs, considering that this creates a burden an order of
magnitude higher than with the push-mode. Notwithstanding this problem,
many issues of the Grid might be resolved by this pull mode when it will be

released. The pull mode is currently in alpha testing stage within the EGEE
project.
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4 Improving Grid support for

bioinformatics applications

As was mentioned in the previous chapter, the EGEE Grid appears as very
promising platform which can provide an unprecedented computational
power for the scientists already today for performing computationally
intensive researches in various scientific fields such as bioinformatics,
physics and other mathematics-based sciences.

However, as was mentioned in section 3.2.2 — Existing Issues, the Grid is a
very new architecture, not yet free from problems. In addition, work was
needed for better supporting specific requirements of the bioinformatics
domain in the Grid environment.

In my three year's Ph.D. course | hence created three major frameworks,
Vnas, GridDBManager and SETest, plus a smaller standalone solution for
addressing RB downtimes.

The presented solutions help in addressing a number of issues, either
related generically to the Grid or specific to the bioinformatics domain. The
four solutions work sinergically in the direction of optimizing Grid
performances, increasing the user-perceived platform reliability, optimizing
Grid storage and bandwidth usage, reducing the time and effort needed for
the development of new Grid applications and reducing application testing
times.

These solutions will be described in detail in the following subsections.

4.1 Vnas

This project started as a support for the the high performance cDNA
analysis pipeline project, reported separately as a case study in section
54.

The pipeline in question was a complex achievement for the Grid because it
was multi-stage, and couldn't easily be supported in the Grid environment
due to the lack of a callback system which could launch a second
computation step when all the jobs belonging to the first step completed.
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In addition, | was strongly feeling the lack of a job management system that
could monitor Grid jobs and resubmit them in case of failure until they finally
completed, otherwise the pipeline computation steps would have failed too
easily. Also please note that the management and resubmission should
have happened at a /lower level than the callback system, so that the
resubmission would occur transparently to the callback system, and the
computation stage wouldn't fail until the maximum number of resubmissions
for a single failing job had been exceeded!

The Virtual sandbox feature was also used in its very early implementation,
as the files needed for the computation in the pipeline were exceeding
10MB by far.

Then the Vnas system evolved to refine and optimize such embrional
features, and others were added, finally resulting in the Vnas as it is
described in the following sections. Vnas has since then been used as a
submission system in countless other projects by the Bioinformatics group
at CNR-ITB for reliably launching computational challenges in the Grid
environment.

The following subchapters are laid out as follows: first the motivation for
Vnas will be described, then the features, then an overview of the internal
functioning, and lastly | will describe the problems that still persist when
developing Grid applications notwithstanding the use of Vnas.

4.1.1 Motivation

The idea of Vnas stems from the need to overcome the many Grid
limitations described in section 3.2.2 — Existing Issues in particular those
regarding jobs submission and monitoring, the sandbox management and
the Storage Elements management.

In particular, the major problems related to grid jobs submission which |
addressed with Vnas are the following:

e Limited sandbox: Users of the Grid have got a limited space to store
data and executables they need for their job. Current limit is 1 MB for
most users. All files not fitting into 1 MB need to be uploaded on
Storage Elements (SEs) separately by hand, and need to be
downloaded on the worker node prior to execution. Files stored on



27

SEs need to be deleted by hand when no longer needed or they
would waste shared resources.

e Flat sandbox and Storage Elements: The Grid sandbox and the SEs
can only bear raw files. If a job needs a nested directory structure this
has to be created with a custom code on the job. Tar archives are
also to be packed and unpacked manually.

e Needless reuploading of the same files: If many users need the same
files, every user will need to upload the files on SEs unbeknownst to
the others, wasting bandwidth and storage space.

e Slices management: Commonly, in order to improve performances on
the Grid, conceptually monolithic jobs are first divided into
computation steps by creating a pipeline, and then each pipeline step
is split in smaller “slices” which can execute in parallel. Slices are
then submitted to the Grid separately. Unfortunately, the code to poll
and wait for all slices to complete execution, fetch results, and launch
the next computation stage is to be created as custom code for each
application, which is considerably time consuming for the developer.

In addition to these objective problems of the Grid, the quantity of details
that the user has to keep in mind for producing effective and "nice" (wrt.
sane resource usage and cleanup) grid jobs is simply too great not to
overlook some, in addition this fact discourages the casual bioinformatics
user from approaching the Grid. Automating these tasks, Vnas reduces the
risk of mistakes which might result in unwise resource exploiting by the non-
grid-proficient, while simultaneously helping prospective users approach the
grid.

4.1.2 Vnas features

In this chapter an overview of Vnas's features will be given, while the details
of internal Vnas functioning can be found in the next chapter.

e Virtual Sandbox: sandbox emulation providing a sandbox of unlimited’

'Please note that while there is no limitation imposed by Vnas on the size of
the Virtual Sandbox, the Virtual Sandbox is only an abstraction substituting
a manual upload of the files onto the Storage Elements. The Virtual
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size also allowing nested subdirectories. This prevents (1) the need to
manually upload big files to storage elements (2) the need to pack
and upload archives for recreating directory structures needed for the
job to run and (3) the need to write code in the job for downloading
the files described at points -1- and -2- and for unpacking the archives
at point -2- prior to starting the computation.

Job completion callback: this allows a custom command to be
executed by Vnas when a certain set of slices completes execution
(Vnas constantly monitors the submitted jobs). This can be used to
trigger the following step in a computational pipeline and releases the
pipeline programmer from needing to write such code.

Automatic deletion of Grid uploaded files that have not been used
recently. This prevents the waste of Grid storage resources due to
users forgetting to remove files they no longer need.

Grid bandwidth optimization: the Vnas-uploaded files are left on the
Grid Storage Elements for a certain time frame before deletion: this
prevents a needless reupload of the same files in case these are
needed by the same or even by another Grid user within the time
frame. This prevents a waste of Grid bandwidth.

Sharing of files uploaded by different Grid users: files uploaded by
Vnas for Virtual Sandboxes are never uploaded by Vnas more than
once: if a second job submission, even by a different Grid user, needs
a file that has already been uploaded its presence is detected on the
Grid and the file is not uploaded again. This saves users' time and
Grid storage space.

The files uploaded to the Grid by Vnas are identified by their md5
hash. This allows Vnas to identify files with certainty based on their
content and regardless of the name the users locally assigns to the
files (which could be different for the same file for different Grid
users). The md5 hash also prevents false positive matches that can
arise due to random name equality among files or due to a file
existing in different versions with the same name.

Sandbox does not create any new storage space on the Grid and the user is
still responsible for the files uploaded by Vnas in this way. The user who has
uploaded a file to the Grid is always traceable by the Grid administrators.



29

4.1.3 Vnas functioning

Vnas architecture (see figure 2 below) is decentralized, with the exception
of a central database containing hashes of files submitted for Vnas virtual
sandbox functionality. The central database should (but is not required to)
be shared among a high number of Grid users to better take advantage of
the sharing of files uploaded by different users. The Vnas architecture
ensures that the per-user load on the central database is very low hence the
system can still scale linearly up to a large number of users (in the
thousands).

Vnas job submission is instead performed from standard Grid User Interface
(Ul) nodes. A local database located on the same host stores Vnas
information about job submissions and users' callback requests.

Vnas has the following three main operating modes:
- Job submit (direct user invocation)
- Job run (triggered by the grid infrastructure)

- Set-callback request (direct user invocation)

4.1.3.1 Outline of job submit:

e The user creates a sample job_home directory containing all the files
needed for the job to run, i.e. both executables and data, then s/he
invokes Vnas.

e Vnas scans the job_home directory, packs files and subdirectories of
job_home separating them in sub-archives and single files according
to a customizable algorithm.

e Vnas then computes the md5 hashes of all such files and archived
contents, and uploads them onto the grid with a filename generated
from their hash (some might exist already: the upload is skipped).
Then Vnas contacts the central database for inserting the entries
regarding the newly uploaded files, or updating the “last access”
timestamp for files already existing (hash matched). A small set of
files up to a certain (user definable) amount of KB are packed into a
physical (traditional) sandbox.
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e Vnas then submits the job to the grid, and records the job information
such as the grid job identifier on the local database.

4.1.3.2 Outline of job run:

e A “jobprepare” script (belonging to the Vnas distribution, and
automatically inserted into the job submission by Vnas) is run first.
The jobprepare scans some bundled data to find the configuration of
the job_home to be recreated.

e Jobprepare downloads all the needed archives and single-files to
recreate the content of the job_home directory tree. The downloading
is performed in a write-through fashion: if the file’s nearest replica is
still geographically distant, it gets replicated from there onto the
Storage Element closest to the worker node, then gets downloaded
on the worker node. The latter happens on a local network, and is
basically immediate. This kind of replication ensures that subsequent
downloads of the same files are faster and faster, and that the more a
file is used, the higher the number of replicas. Space does not risk to
get wasted for long, as when a file remains unused for a number of
days, all replicas get deleted by a Vnas instance polling information
from the central Vnas's database.

e Vnas invokes the user specified executable and waits for its
termination

e Vnas packs the user-requested result files and uploads them onto a
storage element, using a filename automatically generated at the time
of job submission.

4.1.3.3 Outline of set-callback request:

e The user invokes Vnas specifying a set of job identifiers that s/he
wishes to wait for, and the command to be invoked by Vnas when the
condition arises. Vnas records such information into the local
database.
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4.1.3.4 Vnas polling loops

In addition to the three above described main working modes, two additional
slow paced Vnas polling loops are needed in order to provide the virtual
sandbox file expiration and the callback functionalities:

e A very slow paced Vnas loop on the central database node, which
monitors the “last access” timestamps of files uploaded by Ul Vnas
instances, for virtual sandbox functionality. Vnas clears the Grid from
all replicas of files which were last used too long ago. The exact
number of days for expiration can be configured but values between
between 7 and 15 days are typical. Longer times save Grid bandwidth
at the expense of storage space and vice versa.

e A medium paced Vnas loop on each Ul interface, which polls the local
database and the Grid information system to fetch the state of the last
jobs submitted by the users of the node. When all the jobs required
for a certain callback request complete their execution, the user
command is invoked with the credentials of the user who requested it
(leveraging sudo -b). This is typically used to trigger a further step in a
computational pipeline
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Hllustration 2: Vnas distributed architechture - The figure shows, from right to left: A) A Vnas loop on the
central database, detecting expired virtual sandbox files and removing them from the Grid. B) A Vnas loop on
the local Ul database and the Grid, polling for the status of the most recently submitted jobs. C) A job
submission on UI2 by GridUser3, and more in detail: C1) User creates a job_home. C2) User invokes Vnas.
C3) Vnas scans job_home (Submit_1), uploads the files to the grid (Submit_2) and creates the corresponding
entries or updates the “last usage” timestamps for the uploaded files, on the Central Database (Submit_3).

4.1.4 Persisting obstacles in porting applications to
the Grid with Vnas

One of the obstacles found when porting an application to the Grid which
still persists notwithstanding the use of Vnas and that could deter a more
widespread usage of the Grid is the burdensome splitting of input data to
create multiple slices of a conceptually single job (even though for the
implementation of the “wait all results” join the Vnas callback can be
leveraged), and the consequential parsing of the results from multiple slices
at the end, for recreating a single result set.

Unfortunately, it is not easy to conceive a tool which can help with this in the
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general case, since the way to perform splitting of data and merging back of
results depends heavily on the type of data and the specific problem.

Of course, when comparing the Grid to a privately owned cluster, it has to
be noticed that the problem would arise identically.

4.2 BGBlast and the Grid Database Manager

Blast [ALtscHuL'90], [BLasT] is probably the most famous bioinformatics
application. In my Ph.D. | continued an existing project by Merelli and
Milanesi for evolving an existing porting of Blast on the Grid platform
(GridBlast [MereLLI'05]) adding features related to the data management that
appear to be very innovative, unprecedented for a Grid application.

Here follows an introduction to the topic and discussion of existing
solutions, then my approach and implementation will be described.
Additional details can be found in the Appendix. This is partly taken and
adapted from a publication of mine [TromeeTTI'O7] with permission from the
publisher.

4.2.1 Introduction

BLAST [AvtscHuL'90], [BLAsT] is a well known and widely used bioinformatics
application for comparing (usually unknown) “query” biological sequences,
either genomic or amino-acidic, against a set of known “reference”
sequences (“Blast Reference Database” or BRD in these chapters). BLAST
is a variation and approximation of the exhaustive dynamic-programming
Smith-Waterman [SwmitH'81] algorithm for local sequence-alignment, resulting
in a speed increase of 10-100x, at the expense of some sensitivity
[ALIGNMENTSCORE].

While BLAST sensitivity is generally regarded as still adequate for most
circumstances, the speed of BLAST can still be scarce for certain massive
computations, which are in fact performed rather commonly by many
bioinformatics research groups.

The problem of BLAST speed can be addressed in various ways, the
solutions usually belonging to the following groups (a) faster alternatives to
BLAST, (b) BLAST execution on clusters and (c) BLAST execution in Grid.
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Pros and cons for (a) and (b) will be mentioned in the next section 4.2.2 -
Existing Solutions. The solution | present here belongs to (c). As far as (c) is
concerned, the main problems usually arising from BLAST execution in Grid
are:

1. Defining and enforcing a policy for replication of the BRDs over the
Grid. BRDs are large files needed during BLAST execution over the
Grid. Due to their size they require allocation on Grid Storage
Elements (SEs). Rising the number of replicas for a BRD reduces the
Grid queue times for BGBlast runs using that BRD, but also rises the
associated storage costs (see section 4.2.4.2.1 - Motivation for ARM
for details). Due to their significant size, it is not reasonable to
replicate every BRD on a large number of SEs. In this scenario,
policies should be defined and enforced for allowing an optimal usage
of Grid resources.

2. Keeping the replicated BRDs up-to-date.

3. Optionally it might be profitable to store older versions of the BRDs so
that BLAST users can reproduce and verify results obtained in the
past. The problem in providing this feature is that keeping older
versions of BRDs available normally has a very high storage cost.

In section 4.2.4 - Implementation more details are given regarding the
above issues and on how | was able to address them.

4.2.2 Existing solutions

4.2.2.1 Faster alternatives

Various alternatives to BLAST which are faster and similar in scope are
available such as MegaBLAST [ZHanG'00], [MeEGABLAST], BLAT [KenT'02] and
PatternHunter [MAa'02] . These alternatives usually are different enough to
be not suitable for exactly the same situations as BLAST is, or sometimes
can have different drawbacks. As far as the examples are concerned,
MegaBLAST and BLAT, albeit much faster, have a lower sensitivity than
BLAST. PatternHunter on the other hand claims a similar sensitivity but is a
commercial closed source product, and the algorithm is not known exactly.
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Such drawbacks might or might not be acceptable for the researcher,
depending on the specific circumstances. In addition, researchers aiming at
publishing their results might want to use specifically BLAST simply
because its reliability is well established and cannot be object of discussion.

4.2.2.2 Cluster execution

Various solutions [QiI'05], [MaTH0G'03], [DARLING'03] have been developed to
parallelize the BLAST algorithm for execution on computing clusters and
supercomputers. These solutions have been used for quite some time now
and are regarded as reliable. The main drawback of cluster execution for
BLAST is the initial cost for purchasing the dedicated cluster, which is high,
and might be unreasonably high -relatively speaking- in case the cluster is
not going to be used full-time (uneven workloads).

4.2.2.3 Grid execution

A number of implementations of BLAST for the Grid environments already
exist [Baver'04], [KonisH'O3], [MereLLi'05] but in general suffer from the
problems already mentioned in section 4.2.1 - Introduction. | hereby present
BGBlast, another Grid implementation for BLAST which | developed
evolving the earlier Merelli-Milanesi's project GridBlast [MereLu'05]. In
BGBlast | successfully addressed the issues mentioned in section 4.2.1 -
Introduction.

4.2.3 BGBlast's approach

BGBlast (BioinfoGridBlast) has some unique advantages over the existing
solutions. BGBlast is an innovative porting of BLAST onto the Grid providing
the following capabilities (1) automatic update of the biological databases
handled by BGBlast (2) adaptive replication of databases on the Storage
Element Grid nodes (3) version regression for the biological databases.
BGBlast is the evolution of the earlier project GridBlast [MereLLI'O5] on top of
which | added the following features:

1. Automatic Database Updater (ADU): ensures the users always work
with the latest version of every Blast Reference Database (BRD), and
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this without needing human staff to manually monitor the release of
newer versions of BRDs or manually performing database updates
over the Grid.

. Adaptive Replication (AR) for the BLAST Reference Databases:

ensures that the most used BLAST databases are replicated more
times than less used databases. The optimal number of replicas for
each BRD is calculated dynamically based on the relative usage of
such database in recent times. This keeps a constant optimization of
Grid queue times vs Grid storage costs.

. Version Regression for BLAST Reference Databases: allows the user

of BGBlast to specify an older version of a certain BRD to be used for
the computation. This allows the user to exactly reproduce
computations obtained in the past, something that might be needed to
confirm results that were obtained. The storage of older version of
BRDs is performed with a delta-encoding efficient in both space
(storage costs) and time (a short download time and a short time to
patch a BRD for regressing it to an earlier version).

4.2.4 Implementation

4.2.4.1 GridBlast core

GridBlast [MereLLI'05] is still the core for BGBlast, providing the following
capabilities:

1.

Factor J parallelization of large BLAST executions. This is done by
splitting the user input into J even subset, each taking 1/J of the
original time to execute. This is followed by the submission of J
smaller BLAST jobs (1/J of query sequences against the target BRD)
on the EGEE [ecee] Grid platform. J is chosen so to create jobs of
reasonable length, neither too small (Grid overhead would be
comparatively large) nor too big (insufficient parallelization).

. A rate limiting feature triggered on very large BLAST executions. This

limits the rate at which the jobs are submitted to the Grid so to avoid a
sudden massive Grid exploit.
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3. Monitoring of the launched jobs and automatic resubmission in case
of failure for any of those. This is still important nowdays, as the Grid
platform is still new and reliability is not excellent.

4. Fetch of the results back after the completion of the Grid jobs. Merge
of such results into a single BLAST results file.

5. A recent improvement of the core provides measurements of the
queue times and cpu hours consumed by the J Grid jobs for each run
of BGBlast. These measurements are passed to the Adaptive
Replication Manager and are essential for the correct functioning of
the AR functionality (see).

On top of the GridBlast core, | implemented the following functionalities:

4.2.4.2 Adaptive Replication Manager (ARM)

The Adaptive Replication of BLAST Reference Databases is a BGBlast
feature for optimizing the number of replicas for each BLAST database
dynamically and adaptively.

4.2.4.2.1 Motivation for ARM

BLAST Reference Databases (BRDs) are large files, usually in the range
500MB-5GB, and are needed during the run of BLAST on the Grid CEs for
each of the J BGBIlast-generated jobs. Due to their size, it is not reasonable
to download a BRD from a remote location. It is hence necessary to
constrain the J jobs to execute on CEs having a replica of the user-
requested BRD on a near (local network) SE.

Due to this constraint, the number of CEs to choose from for the BGBlast
generated Grid jobs is limited. This impacts the queue times negatively and
this is particularly true if the replicas of the requested BRD are few. A
massive replication of every BRD on all the SEs of the Grid is not feasible
either, because of their size which would make the storage costs
unbearable.

Clearly, it is more useful to have additional replicas for BRDs used often, so
that the queue times are reasonably small for the most common BGBlast
runs, while it is better to have fewer or possibly only one replica for the
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BRDs used less frequently, and this is in order to reduce the Grid storage
costs.

Since the amount of usage of for each of the BRDs cannot be known in
advance, | have implemented a dynamic, adaptive replication mechanism to
balance between queue times and storage costs.

4.2.4.2.2 Implementation for ARM

The ARM performs a D days moving average (usually D=10) of the cpu
hours and queue times used for each reference database. This statistical
measurement is used to compute the optimal number of replicas for each
of the BLAST reference databases. This algorithm balances between the
additional storage costs incurred in increasing the number of replicas and
the benefit of the reduced queue times.

Additionally when evaluating the addition of a replica the ARM engine also
evaluates which of ths SEs would be the most advantageous for a replica
addition. Similarly, when evaluating the benefit of removing a replica the
ARM engine also evaluates the least advantageous of the currently existing
replicas, that is, best for removal. See the Appendix for details.

Initially | also thought about featuring a hysteresis for the variation on the
number of replicas but | haven't yet implemented that as the D days moving
average seems to already provide an acceptable behaviour. Also it was not
clear to me what hysteresis-like algorithm would have been optimal in this
situation (this is again a bandwidth vs performance balance) and in
particular what algorithm would have allowed a reduction to exactly one
replica for the least used BRDs. | might anyway implement this feature in
the future.

The measurements of used cpu-hours and queue times experienced for
each BGBlast run, and implicitly for each BLAST database, are provided to
the ARM by the GridBlast core (see). The dynamic variation of the number
of replicas is evaluated, and possibly performed, at each BGBIlast run and at
the end of each day.

Additional algorithm and implementation details regarding the ARM can be
found in the Appendix section 7.1 — BGBlast's Grid Database Manager
algorithm details.
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4.2.4.3 Automatic Database Updater (ADU)

BGBlast's ADU engine constantly monitors FTP sites for newer versions of
the BRDs registered to be handled by BGBlast. If a newer version of a BRD
is detected, the ADU automatically updates all the replicas of such BRD
over the Grid. This is not the only action performed by the ADU: the ADU
also computes an xdelta (xdelta3 is used in the last version of the
framework) patch for regressing the newer version of the BRD to the earlier
version of the BRD now being replaced, and uploads such xdelta patch on a
predefined SE. The xdelta patch computed by the ADU, together with the
xdelta patches computed during previous database updates, is needed for
the DVR functionality (see).

Such xdelta3 patches are at least one order of magnitude smaller than any
version of the BRD they refer to, and this makes the storage costs
reasonable. In order to further reduce the storage costs, | decided to keep
only one replica for the xdelta patches. Also see the next section on this
topic.

4.2.4.4 Database Version Regression (DVR)

BGBlast provides an option for specifying a version (in terms of date) of the
BRD to be used for the BLAST computation, along with the name of the
BRD. The requested version of the BRD is obtained from the latest version
of the BRD by applying the ADU-generated xdelta patches in sequence,
from the newest to the oldest. Each xdelta patch regresses the BRD by one
version, and this action is performed until the requested version is reached.

The version regression operation is performed on the Computing Element
(CE) after the download of the BRD from the near (local network) SE and
prior of starting the computation.

The download of the xdelta patches is generally remote, as the patches are
only replicated once on the Grid (see section 4.2.4.3 - Automatic Database
Updater (ADU)), and this is in contrast with the download of the BRD (latest
version) which is over a local network (see section 4.2.4.2.2 -
Implementation for ARM). However, due to the small size of the patches,
the patches' download time rarely surpasses that of the BRD (latest
version). Since the DVR is also a relatively uncommon request by users, |
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considered the patches download time an acceptable overhead.

Additional implementation details for BGBlast can be found in the Appendix
section 7.1 — BGBlast's Grid Database Manager algorithm details.
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Hllustration 3: BGBlast architecture - ADU polls for new version of handled databases from the FTP site of
origin, downloads a new version then updates the version on the Storage Elements. ADU also uploads the

corresponding Xdelta file for allowing version regression (not replicated). The GridBlast core processes Blast
user requests and sends Blast sub-tasks to the Grid for computation, together with DVR agent code. ARM
updates the number of replicas for the handled database based on usage information from GridBlast.

4.3 SETest testing framework

In addition to the very grid-specific frameworks described above, | also
developed a Python testing framework for testing Python applications
scattered with side effects. This framework proved very beneficial for
accelerating the development of Grid computational applications such as
those for the bioinformatics domain.
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4.3.1 Motivation - Side effects

Most bioinformatics applications developed for the Grid are actually
computational pipelines created joining together a number of existing
programs (standalone executables) developed by leading bioinformatics
institutes. The specific computation to be performed is achieved through the
exact choice of these numerous standard pieces, their exact joining, the
parameters for launching every executable, and the parsers, the converters
and filters between every executable and the next.

Being every step of a pipeline a standalone executable (and in most cases
with more than one input and output) their inputs and outputs are in most
cases stored in files. The inputs have to be prepared by the pipeline and
feeded to the executable, then the executable is run and the pipeline's logic
again is used to parse the results reorganize the information for the next
executable.

Operations on disk are called "side effects" in programming terms, since
they are not completely contained inside an application's runtime memory
dump. Other side effects are network communications and operations on
external databases.

All these three types of side effects are very present in Grid computational
pipelines, expecially in the bioinformatics domain. In my experience, in a
bioinformatics Grid pipeline on average one line of code every three has
got a side effect!

This fact makes testing bioinformatics pipelines really challenging.

It is a widespread belief that testing of applications should be performed
through unit-testing and test-cases (see [uNITTESTING], [TESTCASE], [xP],
[DIPTESTING], [TESTDRIVEN]).

However, unit tests and test cases cannot be used in regions of code
containing side effects. The usual common practice is to encapsulate side
effects in a small number of classes, and then test the rest of the application
using unit testing and test cases. However, this is feasible when the
application is big and mostly self-contained, and side effects are relatively
few, while the technique would be at the very least highly unpractical to do
when side effects are scattered every few lines of code and when side
effects are actually the purpose of the programming logic (as is in our
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cases: the purpose of the pipeline is preparing correct side effects for use
by external executables, and correctly parse side effects after the
executable has run).

In this circumstance, a novel testing technique had to be developed, and
this is what | did within the course of my Ph.D. with the SETest framework.

This framework could not be programmed in a statically linked language
without introspection capabilities such as C++, while other dynamic
languages where not optimal for other reasons written in the Motivation-
Python subsection below.

4.3.2 Motivation - Python

Python is a modern object oriented fully dynamic and strict-typed language,
fully supporting advanced exception handling, RAIl and Guards
programming techniques. And it is the ONLY language having all these
features together. The reliable exception handling with deterministic
destruction available in Python (and in C++ but not in other modern
languages such as Java and Ruby) allows to create resilient program flows
within complex algorithms with relative ease and very readable coding. The
deterministic destruction (stack rollback) available in Python upon
exceptions allows automatic cleanup to be performed, which allows the
programmer to use the same RAIl and Guards programming paradigms
which were once available only for C++ programmers. These characteristics
were of extreme help when developing programs for such an unreliable
platform as the Grid, where every single command has a significant
probability of failing and lots of cleanup actions are to be performed in these
cases.

For these reasons Python was my language of choice for developing Grid
frameworks and bioinformatics applications during the course of my Ph.D.
The dynamic nature and introspection capabilities of Python also allowed to
create this testing framework, which wouldn't have been possible with a
compiled language without introspection capabilities such as C++.
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4.3.3 Main features

4.3.3.1 Wrapping function calls

The SETest framework allows testing most Python applications heavily
scattered with side-effects, such as most Grid computational pipelines, in
particular bioinformatics ones.

The language of the application to be tested is mandatorily Python: Python
introspection was used heavily for the internals of this framework.

The framework can be used to wrap almost any function call having side
effects. Once function calls are wrapped, the framework is able to record
the exact function call and its return values and replay the call in the future
without executing it again.

The wrapping syntax looks like this:

This function call

results = obj.fun(paraml,"foo",param5=6.51)

becomes
st = SETest.SETest() #Only once per file, after import

results = st.do(obj.fun, paraml,"foo",param5=6.51) #Actual wrapping line

So as you can see, wrapping a function almost does not increment the
number of lines (just one more per file) and the programmer only needs to
type about 5 more carachters for each wrapped call. In addition, library
function calls which might provoke side-effects (such as the Python
os.system call and process opening) can be wrapped directly in the libraries.

4.3.3.2 The four operating modes

The framework has four operating modes:
- Bypass

- Recording

- Playback

- Playback with recording fallback



44

The framework can be set in any of these modes through a configuration file
unique to each wrapped application.

In bypass mode, the call is executed exactly like if the SETest framework
was not present. The overhead is almost zero.

In recording mode, the call is executed then results are stored into a
"dataset” file together with the exact call which has generated them. With
exact call | mean that also the value of parameters for the function call are
recorded in the file, and if these are objects, their state is serialized. Results
are also serialized if the type is complex. Finally, results are returned to the
caller as it would have happened with an unwrapped call.

In playback mode, the call is not performed. An equal call (including
parameters equality) is searched into the dataset file. If an equal call is
found, the results are returned to the caller. If an equal call is not found we
have two possibilities, depending on how SETest was configured: either a
DatasetLookupFailure exception is raised (kind of "testing has failed"
paradigm), or the programmer is dumped to a Python Interactive Shell ("let's
investigate why calls are different this time" paradigm). From the interactive
shell the programmer can do a series of things:

- inspect the call, the value of all parameters, the stack trace (including all
variables in scope in every function of the call chain) and the dataset

- can perform the call manually

- can insert some results in the dataset, either hand-made or those
coming from the manual execution of the call

— can raise a DatasetLookupFailure exception, or can return to the caller
some results (again either hand-made or those coming from the manual
execution of the call)

In playback with recording fallback mode, the framework behaves like in
playback mode, except when the dataset lookup fails, in which case the call
is transparently executed and results are stored into the dataset (like in
recording mode) without returning any error.

The apparently innocent-looking "playback with recording fallback" mode is
probably the most powerful for our scopes. This mode allows to greatly
speed-up the initial testing of newly created computationally intensive
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pipelines in Python, relieving from Python almost the only disadvantage it
has: slow initial testing due to the lack of a compiler.

The "playback with recording fallback” mode in fact allows to restart the
execution of a computationally complex pipeline from the beginning, but
skipping all computationally complex steps which have already been
executed the first time (the steps are skipped because they are usually
external applications and hence are wrapped, but even if they were internal
side-effect-free function calls, it is still possible to also wrap these). This
means e.g. that all syntax errors, undeclared variables or any other kind of
interpreter-detected error the programmer might have written, which in
python cause a stop of the execution, now do not anymore cause the re-
execution of the computationally complex steps upon restart. This in turn
means that the restarted execution will immediately get again to the point
where last error was, so the programmer almost has the illusion that s/he
can fix errors on the fly and continue execution sequentially (which is
nothing short of a dream in Python expecially during the first executions, in
which usually newly-created code filled with trivial errors needs to be
continuously restarted, and wait times are longer and longer once the first
errors are fixed and those in line 250something start to emerge).

4.3.3.3 Regression testing

Other than significantly accelerating initial debug times for newly created
Python applications completely scattered with side-effects, this framework
also allows an easy regression testing [RecressionTESTING] oOf such
applications, which would have been extremely difficult otherwise. A
regression testing is defined as testing again something that has been
modified, and it was known to work properly before modifications.

The way to proceed in this case is the following: with the stable version of
the application, prior to modifications, the programmer sets the SETest
framework in Recording mode and launches the application multiple times
with multiple inputs, possibly covering all execution flows and critical types
of input, producing in this way a number of dataset files with known-good
function call invocations and results.

After performing the modifications to the application, the programmer sets
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the SETest framework to Playback mode (without recording fallback in this
case!) and launches the application again using the dataset files recorded
previously.

If the behaviour of the application is still equivalent to before, the application
should execute very quickly (most computationally heavy steps are probably
skipped) and exit without errors returning correct results to the user.
Instead, if the behaviour of the application is not equivalent to before, some
function call to an external component will be different than before, hence
will cause a DatasetLookupFailure exception (or dump to the interactive shell,
depending on the configuration). Syntax errors and other language errors
are of course also detected in this way, and for all possible execution flows,
providing that the programmer had filled enough datasets to test all
execution flows.

This framework is hence very effective in providing a means for performing
regression testing for applications heavily scattered with side effects.

4.3.3.4 Opaque object states

In the presence of functions or executables which store an opaque internal
state, or use a state from some system component (such as the system
clock --> time / date functions), or have an implicit random input or internal
random number generation (such as a random number generator -->
random() and similar library calls), which we will call opaque functions or
opaque objects, one is actually forced to also wrap the calls to those
functions treating them in the same way as if they were side-effect
functions.

This is because in case the random or systemstate-related value is used as
a parameter in a subsequent call, during a second execution of the pipeline
the said subsequent call wouldn't match anymore with the corresponding
call recorded in the dataset file during the first execution of the pipeline. The
call would be detected as different because the input parameter would be
different (random each time).

Not only, but if the random number generator function is called multiple
times in the pipeline there is another problem: if more than one call to the
same random function is wrapped (thing which is usually needed, as said in
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the above paragraph), as the random generator function takes zero
parameters, all calls are detected to be equal by SETest. This means that
during Recording modes all the calls would overwrite the same entry in the
dataset, while in Playback modes all calls would return the same value. The
same problem exists with most functions or executables which store an
opaque internal state, or use a state from some system component (such as
the system clock --> time / date functions), or have an implicit random input
or internal random number generation (such as a random number generator
--> random() and similar library calls), which we will call here "opaque
objects”.

For this purpose, the framework also has a state advance() function, which
can be called when a new separate results set should be used
(stored/retrieved to/from the same dataset file but on a separate section of
it). This is needed to wrap all calls to opaque objects which return a result
which is different for multiple calls even if the input parameters or data are
the same.

The SETest state advance() function should then be called just before or
just after such calls to the opaque object and the effect is practically that of
moving to a separate partition of the dataset file, for each time
state advance() is called.

This surprisingly simple trick allows the SETest framework to be used in
cases in which the real state of the pipeline is partially opaque and cannot
be detected by the framework, such as in presence of the state of a random
number generator, and it actually works so reliably that | cannot consider it
a completely inelegant solution. The partitions created by state advance()
are however completely separated from one another, without any kind of
smart logic behind. This means that if two truly identical calls are performed
one before and one after the state advance() call, these too will be treated
as different. This is a lack of optimization but it should not be a semantic
problem as far as | can see, for the way SETest is meant to be used.

The state_advance() can also be called with a -n parameter as in
state_advance(-n) and this has the effect of regressing the state by n, going
back to an older section of the dataset. As | said, this was probably not
needed, semantically speaking, however being able to regress the state can
be a helpful optimization when the code exits from a zone filled with random
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generators and similar opague objects, returning to a region where all calls
and external object invocations are truly described by their input
parameters.

Additional implementation details about this frameworks can be found in the
Appendix section 7.2 — SETest framework implementation details.

4.4 Resource Brokers Round-Robin (RBRR)

The most critical element of the Grid is probably the Resource Broker, which
has the task of routing newly submitted jobs to the optimal CE based on a
series of constraints, heuristic evaluations and a load balancing algorithm.

The RB is also the Grid element which the User Interface contacts when it
wants information on the status of jobs. In particular, the Ul automatically
contacts the same RB that was used to submit a job.

As | mentioned in section 3.2.2.4 — Downtimes, RB failures are
unfortunately common and this causes a series of issues. The uptime |
experienced is around 95% for the resource brokers of the Biomed VO.
During downtimes it is not possible to submit any job to the Grid, and in
addition, it is not possible to retrieve the status of submitted jobs or the
results of completed ones. The RB downtimes are hence serious failures.

During my Ph.D. course the problem was appearing very evident to us so |
implemented a simple solution in the User Interface at CNR-ITB: resource
brokers round-robin. | replaced glite_job_submit with a small proxy
application that first delegates the call to the real glite_job_submit and then
atomically switches the gLite configuration files so that a new RB will be
chosen for the next job submission. Every job is now submitted to a
different RB, looping through the list of available resource brokers for our
VO.

This simple solution solved both mentioned problems and two additional
ones:

- The downtime of a resource broker doesn't prevent us from sending jobs.
Please note that while single submission failures are still possible (one
RB down), the single submission failure is immediately handled by
VNAS, which is programmed for resilience and retries failed Grid
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commands multiple (configurable, usually 3) times. The second
submission attempt will be over a new resource broker, and we have yet
to see a failed submission using 3 attempts (3 brokers).

The downtime of a resource broker only prevents us fetching a small
percent of job statuses and results (jobs that were launched with an RB
that has now become unavailable), and we treat that small number of
jobs through the upper level frameworks (VNAS) in the same way as
Grid job failures: resubmitting the job

We evenly distribute our workloads among the many RB of the Biomed
VO so we don't overload a single RB which can be used by other people

Load balancing of CEs jobs appears more effective now, that is, a long
sequence of submitted jobs is spread across the available CEs more
evenly. | am unsure of why this happens, it might be because different
brokers update their BDII statistics at different times, so they have
different rankings, or it might be because some configuration parameters
affecting the ranking might have been set differently in the various RBs
by the different system administrators.
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5 Impact of solutions & case studies

In this chapter | will try to analyze the impact of the four solutions |
developed in my Ph.D. work and which were described in detail in chapter
4.

Firstly, the most quantifiable enhancements produced by the solutions will
be presented: in subsection 5.1 the impact of the solutions in increasing the
Grid performances will be examined, and following that, in 5.2 an attempt
will be made at evaluating the impact of the solutions in reducing the time
and effort needed for the Grid user to create and launch computational
applications in the Grid environment.

Then, other benefits which could not easily be quantified will be presented
in subsection 5.3.

Lastly, in 5.4 a case study will be presented showing how Vnas was used in
practice for supporting a multi-stage computational pipeline in the Grid
environment.

5.1 Increase in the Grid performances

This section studies the increase in performances in the Grid environment
which can be achieved through the usage of Vnas and the Grid Database
Manager (from BGBlast package).

Vnas's impact on performances is due to the advanced management of Grid
jobs (Vnas also causes bandwidth and storage space optimization not
covered in this section). Vnas performs a frequent polling of the status of
jobs and can resubmit them upon failure or when exceeding a configured
maximum queue-time threshold (jobs stuck in the queue as described in
3.2.2.1 — Job failures), reliably and without delays.

GridDBManager on the other hand reduces the execution time of jobs by
providing a replica locally to where the job is executing (i.e. within a LAN),
and hence the job setup time (i.e. the time to be spent downloading files
prior to computation) is greatly reduced. The GridDBManager is considered
to be in fully running state as a simplifying assumption, i.e. all the required
databases are already considered fully replicated for the purposes of the



52

following sections.

The approach used to quantitatively obtain and then show these results is
the following: in chapter 5.1.3 — Grid Performance simulation results you can
find the Grid performance graphs computed with the Grid Performance
Simulator (GridPerfSim), simulating the applications' performances in Grid
under various Grid conditions, size of the overall task and submission
algorithms, both for the manual case (without tools) and for the case of a
user using Vnas and GridDBManager. The GridPerfSim simulation is based
on the probed Grid performance data reported in chapter 5.1.2 —
Experimental Data. Exact methods to obtain these data and the graphs are
precisely explained in the next subsection. Each of the graphs implies
millions of simulated jobs in the various conditions, and could not
realistically be obtained without the help of a simulator.

5.1.1 Methods

For measuring the Grid platform’s intrinsic performances

1 | sent probes to evaluate the job queue times during normal Grid load
and during artificially elevated load (250-jobs artificial load).

2 | sent probes to evaluate the Grid download speed from a SE to a
WN, both in case of local download (downloading from the closeSE,
that should be LAN local network) and remote download. | computed
log-normal p and o statistical distribution parameters.

For obtaining the performance graphs

1 | built a monte carlo simulator (GridPerfSim: see below) for quickly
simulating the performances of massive Grid submissions following
certain submission algorithms.

2 | selected a few representative use-cases for the Grid (“quick-
response”, “small-challenge”, “big-challenge”), and coded the
algorithm for those use cases in the simulator

3 | coded the algorithms for handling the various submission
parameters that were different in the case of manual submission
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versus the case of using the tools Vnas and GridDBManager

4 | plotted the graphs for all combinations of use cases and tools usage

5.1.1.1 GridPerfSim simulator algorithm

GridPerfSim is a valuable tool to examine the Grid performances through
simulation, once certain experimental data are available.

GridPerfSim simulates a Grid submission of an arbitrary size (number of
jobs, duration of each job) with a certain submission algorithm. GridPerfSim
simulates this submission many times, computes average and standard
deviation values for all the results obtained, and finally traces precise
graphs showing these results.

For each job it has to launch, GridPerfSim takes the Grid queue time from
one of my probes (experimental data). For each job then the time for
downloading the database is simulated using the log-normal distribution
with the parameters i and o that | probed from the Grid, or can be a fixed
time.

The submission algorithm which can be set, includes the following
parameters:

- task_size: size of submission (number of jobs)
- duration of each job

- size of database and download speed statistical parameters, or a fixed
job-setup time (the job-setup time on the Worker Node is identified
with the database download time in this thesis)

- rate_limiter: number of parallel jobs that can be launched. If this
parameter is set to e.g. 100, after launching 100 jobs the simulator will
wait for one job to complete before launching the next job.

- queue_time_ceiling: if the job stays in the queue for too long,
GridPerfSim can kill the job (like a edg-job-cancel) after such preset
threshold time has expired, and launch another job. This is a common
practice on the Grid, because some jobs sometimes happen to stay
stuck for extremely long times in broken queues.

- polling period: GridPerfSim is able to simulate the case in which the
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user does not poll the status of the job immediately at the job's
completion, but only after some time. The polling period can hence be
configured and in our graphs will be different for the hand-made case
and for the case with Vnas automated polling.

Two types of graph can be traced with GridPerfSim: the completion-time
graph and the speedup graph. The first shows the total time to complete for
a task, and the second shows what is the overall speedup that was
obtained, that is, (completion time with 1CPU)/(completion time in Grid).

In this chapter | report the results of my experimental measurements for the
Grid performances.

| measured both Grid queue times and failure rates, and the local (closeSE)
and across-the-Grid download speeds using probes.

The experimental data obtained, reported in the next section, were used in
the GridPerfSim simulator to compute the performance and scalability
graphs which | will show in the subsequent sections.

5.1.2 Experimental Data

5.1.2.1 Grid queue times and reliability

Of first and utmost importance for evaluating the Grid's performances in
various cases is to measure the Grid queue times and the reliability of the
nodes during execution. | sent hundreds of probe jobs on the grid for this
evaluation.

The probes were sent both in a situation of normal Grid load, and in a
situation of artificially elevated Grid load. The results are shown in the
following subsections.

The graphs represent aggregate (hence approximate) data to facilitate
reading, however, the simulator uses the probed experimental data directly.
5.1.2.1.1 Normal Grid Load measurements

| sent three distinct groups of 50 probe jobs in separate moments for
evaluating queue times and nodes reliability during execution. | waited for
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the jobs of one group to complete or time-out before sending another group
of jobs in order not to artificially elevate the Grid load during this
measurement. The jobs had 1-hour duration, enough to prevent immediate
completion of all jobs by a single worker node.

The results are summed up in the following figure
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The red part of the bars represents the jobs that initiated execution but then
failed, or in the last column those jobs which never reached the execution
phase.

In the simulator, the jobs that initiated execution and then failed are
resubmitted at the moment of the failure of the probe, or at the end of the
simulated execution if this is set to be shorter. The jobs that never reached
the computation phase will be resubmitted when the preset maximum-
queue-time threshold is exceeded.

5.1.2.1.2 Elevated Grid Load measurements

For this measurement | locked 200 jobs on Grid nodes for 10 hours, then |
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sent 100 8-hours long probe jobs. In this way the average Grid load seen by
the 100 probe jobs is about 250 (first probe launched sees 200-jobs load,
second sees 201... last probe sees 299 jobs).

The results are the following
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As it can be seen the outcome was even better than with the probes sent
without artificial load.

Presumably this is because the variability of the EGEE Grid load across
different days is much higher than 250 jobs. Apart from this, the trend of the
two graphs is similar.

5.1.2.1.3 Using the probed data

In my simulations | assume that the user does not want to launch more than
100-500 jobs in parallel (100 or 500 depending on the specific use case and
submission algorithm, as doing this could be unrespectful of the other Grid
users. In addition, | did not want to artificially load the Grid with e.g. 1000
jobs or more for many hours, in order to avoid a significant waste of Grid
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resources.

On the other hand, since a load of 250 jobs cannot be distinguished on the
Grid (it is overwhelmed by the variability of the EGEE Grid, as it seems) |
found more sensible to use all the four sets of probed data merged together.
In this way | gathered a set of 250 probe jobs (50+50+50+100 probes)
obtained at four different times, and this makes a fairly good dataset for our
simulator.

This is the graph for the merged data:
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5.1.2.2 Grid download speed

The Grid download speed from worker nodes is also important when
simulating the performances of database-oriented bioinformatics
applications on the Grid, because the database sizes can be significant and
this would affect the “setup-time” of the application on a worker node, i.e.
the time prior to starting the computation.

| sent 200 probes over the grid for estimating the download speed from
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various storage elements to the worker nodes.

The download speed | experienced varied significantly and | found it to be
best expressed with a log-normally distributed download speed measured in
bytes/sec (1MB = 10242 bytes) with the following 1 and o parameters:

distance M o Average download speed
near (closeSE) 16.143 0.607 11.755 MB/sec
distant (a remote SE) 13.932 0.582 1.269 MB/sec

Hence the download from a near location practically never causes relevant
delays, but the download from a distant location of a database larger than
1GB might incur in a significant delay and bandwidth usage and should be
avoided, in particular if the job is going to run for relatively short time after
the download.

In the next section | report the simulated performance graphs for:

- 1.5GB of remote download with stochastic download speed (case of
the manual Grid submission). Average expected download time: 20m
10s

- 1.5GB of local download (from the closeSE) with stochastic download
speed (case of the Grid submission using GridDBManager). Average
expected download time: 2m 10s

5.1.3 Grid Performance simulation results

5.1.3.1 Introduction

In this chapter | report the GridPerfSim's Grid performance graphs
computed using the probed performance data described in section 5.1.2 —
Experimental Data and different submission parameters and algorithms
depending on whether the submission was "manual” or through Vnas and
GridDBManager. This was done as described in section 5.1.1 — Methods.

The whole simulation to obtain the following graphs with good precision
implied about 10 million simulated grid job launches. This was clearly not
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feasible without a simulator.

Two types of graphs will be presented in this chapter: the completion-time
graph and the speedup graph.

- The completion time graph shows the overall completion time for a
certain submission size

- The speedup graph shows (completion time with 1 CPU) / (total grid
completion time) for a certain submission type

Mean values are marked by dots and standard deviations by vertical
segments. The submission size (number of jobs launched) is the X axis for
both graphs.

Three submission modes (algorithms) are simulated:

1. Fast response: use case for a user who quickly wants a small number
of results from the grid.

the overall number of launched jobs is small (1 to 100). More
precisely, the following submission sizes (number of jobs) are
simulated: 1, 5, 10, 20, 30, 40, 50, 75, 100.

the rate_limiter is not set
the duration of the computation for the jobs is short (1 hour)

the polling time for checking the status of jobs and resubmitting
failed jobs will be 3 minutes in case of Vnas (BLUE COLOR), while
it will be half an hour in case of manual grid submission (RED
COLOR)

the resubmission algorithm towards long queue times
(queue_time_ceiling) is aggressive for Vnas case
(queue_time_ceiling timeout set at 20 minutes, BLUE COLOR)
while it is up to the next polling moment (i.e. every 30 minutes) for
the manual case (RED COLOR)

2. Small challenge: use case for a small sized challenge submitted to the
Grid.
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- the overall number of jobs launched is medium (50 to 10000). More
precisely, the following submission sizes are simulated: 50, 225,
500, 1000, 2500, 5000, 10000.

- the rate_limiter is set at maximum 500 jobs running simultaneously,
so not to impact the Grid too much for the duration of the
submission, and be fair with other grid users.

- the duration of the computation for each jobs is medium (6 hours)

- the polling time for checking the status of jobs and resubmitting
failed jobs will be 3 minutes in case of Vhas (BLUE COLOR), while
it will be half an day (12 hours) in case of manual grid submission
(RED COLOR)

- the resubmission algorithm towards long queue times
(queue_time_ceiling) is 2 hours for the Vnas case (BLUE COLOR)
while it is up to the next polling moment (i.e. every 12 hours) for the
manual case (RED COLOR)

. Big challenge: use case for a relatively big sized challenge submitted

to the Grid.

- The overall number of jobs launched is large (1000 to 100000).
More precisely, the following submission sizes are simulated: 1000,
2500, 5000, 10000, 50000, 100000.

— the rate_limiter is set to maximum 100 jobs running simultaneously,
so to impact the Grid as little as possible for the duration of the
submission. The rate limiter is set to a value smaller than for the
“Small challenge” in order to be fair with the other Grid users,
considering that the “Big challenge” is expected to run on the Grid
for a very long time.

- the duration of the jobs is long (10 hours)

- the polling time for checking the status of jobs and resubmitting
failed jobs will be 3 minutes in case of Vhas (BLUE COLOR), while
it will be one day (24 hours) in case of manual grid submission
(RED COLOR)

- the resubmission algorithm towards long queue times
(queue_time_ceiling) is 6 hours for the Vnas case (BLUE COLOR)
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while it is up to the next polling moment (i.e. every 24 hours) for the
manual case (RED COLOR)

Download times are also stochastically simulated with GridPerfSim. The
size of the database to be dowloaded for the computation is considered to
be 1.5GB in all use cases. The download will be considered local (within the
LAN) for the GridDBManager case (BLUE COLOR) while it will be remote
for the manual Grid submission (RED COLOR)

The simulated performance graphs follow:

5.1.3.2 Fast Response submission type

| will recall here the parameters used for the simulation of the Fast-response
submission (details in section 5.1.3.1 — Introduction):

Meanining of colors

Manual Grid submission

Submission through Vnas and GridDBManager

Submission sizes

1, 5, 10, 20, 30, 40, 50, 75 and 100 jobs

Rate limiter disabled
Queue_time_ceiling 30 minutes
20 minutes
Polling period 30 minutes
3 minutes
Duration of the 1 hour

computation

Line colors to setup time

1.5GB download from remote location

1.5GB download time close location
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5.1.3.2.1 Completion time:
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Hllustration 4: Fast-response completion time

The completion time graph has an asymptotic trend when the number of
jobs is increased. Keep in mind that the jobs are all submitted
simultaneously at the beginning of the simulation since there is no
rate_limiting. The reason for which the completion time increases when the
number of jobs is raised is because with more jobs there is a greater
likelihood of some unlucky jobs which happen to go in bad queues and stay
stuck until they time-out (time-out set at 20 minutes or 30 minutes as
described above) and eventually need to be resubmitted, maybe more than
once.

Notwithstanding the aggressive resubmission timeout in the Vnas case
(blue line), the standard deviation for the completion time is still significant
in this type of submission. Anyway please note that the y-axis does not start
from zero in this graph, so standard deviation bars might give the
impression to be longer than they actually are.
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The benefit of the Vnas and GridDBManager tools (blue line) versus the
manual submission (red line) is significant in this graph, showing the blue
line providing an e.g. ~40% decreased completion time in the case of 500
jobs batch. The standard deviation is also reduced.

5.1.3.2.2 Speedup
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Lllustration 5: Fast-response speedup

The speedup is roughly linear to the number of jobs since all jobs are
submitted simultaneously at the beginning of the simulation (rate_limiter
disabled). More submitted jobs mean higher parallelism in this scenario.

Also here it can be seen that the standard deviation is significant, though
not extreme.

The benefit of the Vnas and GridDBManager tools (blue line) versus the
manual submission (red line) can be seen clearly also in this speedup
graph, and it is mantained to a constant ~60% higher than the speedup
obtained with manual execution, regardless of the number of jobs.
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5.1.3.3 Small Challenge submission type

I will recall here the parameters used for the simulation of the Small-
challenge submission (details in section 5.1.3.1 — Introduction):

Meanining of colors Manual Grid submissiond

Submission through Vnas and GridDBManager

Submission sizes 50, 225, 500, 1000, 2500, 5000 and 10000 jobs
Rate limiter 500 simultaneous jobs
Queue_time_ceiling 12 hours
2 hours
Polling period 12 hours
3 minutes
Duration of the 6 hours
computation

Line colors to setup time 1.5GB download from remote location

1.5GB download time close location
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5.1.3.3.1 Completion time
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Hllustration 6: Small-challenge completion time

Keep in mind that the rate_limiter is set at 500 for this type of submission.

Before the rate limiter is in action, as it is for the first three submission sizes
(50, 225 and 500), the trend is asymptotic, like for the fast-response
submission type. For larger submissions (1000 to 10000) where the
rate_limiter is actively working, the trend is linear. The standard deviation is
small for these rate-limited submissions, and almost non-existent in the
Vnas submission (blue line).

The benefit of the Vnas and GridDBManager tools (blue line) versus the
manual submission (red line) appears even more evident in this
small-challenge use case, showing the blue line providing a 60% to 70%
decreased completion time across all batch sizes and reduced standard
deviation.
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5.1.3.3.2 Speedup
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Hllustration 7: Small-challenge speedup

For the first three submission sizes, where the rate_limiter is not effective,
the trend is linear as it was for the fast-response submission type. For
higher values, for which the rate_limiter is effective, the trend is asymptotic
and, when using Vnas and GridDBManager, not too distant from 500.

Here the standard deviations are more visible than in the completion-time
graph before because the scale is more favourable. Also here it can be
noted that the rate limiter reduces the standard deviation significantly,
though not completely, of course at the expense of not allowing the speedup
increase beyond the value of the rate_limiter (500).

The benefit of the Vnas and GridDBManager tools (blue line) versus the
manual submission (red line) is very evident also from the speedup graph.
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5.1.3.4 Big Challenge submission type

| will recall here the parameters used for the simulation of the Big-challenge
submission (details in section 5.1.3.1 — Introduction):

Meanining of colors Manual Grid submissiond

Submission through Vnas and GridDBManager

Submission sizes 1000, 2500, 5000, 10000, 50000 and 100000 jobs
Rate limiter 100 simultaneous jobs
Queue_time_ceiling 24 hours
6 hours
Polling period 24 hours
3 minutes
Duration of the 10 hours
computation

Line colors to setup time 1.5GB download from remote location

1.5GB download time close location
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5.1.3.4.1 Completion time
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Hllustration 8: Big-challenge completion time

Having the rate limiter set at 100 and the submission sizes starting from
1000, the rate limiter is always effective and we can see a perfectly linear
graph for the completion time.

The relative standard deviations are almost zero for this submission type
and this shows the almost complete predictability of the Grid for big rate-
limited submissions such as large scale challenges.

Clearly, having the rate limiter set as low as 100 jobs prevents the speedup
(shown in the next subsection) to raise above 100, and this makes such a
big challenge take a very significant amount of time to complete, as is
shown in the graph. | don't assert that 100 is the right value for such a large
sized challenge: 100 is certainly on the safe side and should pass
unnoticed, however, submissions of this size generally imply agreements
with the members and the Responsible Person for the Virtual Organization
the user belongs to, who will recommend the amount of Grid resources that
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can be exploited simultaneously, and this might be well over 100. The trend
for a rate limiter set at 500 can be seen from the Small-challenge graphs in
section 5.1.3.3 — Small challenge submission type.

The benefit of the Vnas and GridDBManager tools (blue line) versus the
manual submission (red line) in this big-challenge use case ranges from
45% to 50% reduced completion time across the various batch sizes. In this
use case the standard deviation was not significant even for the manual
submission.

It is also to be said that, contrary to the other use cases, nobody would
really face such a big challenge without an automated tool for performing
the submission and resubmission of jobs upon failure such as Vnas. Hence,
in this and the following speedup graph, the red line is very theoretical.

5.1.3.4.2 Speedup
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Lllustration 9: Big-challenge speedup
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As it was for small-challenge the trend is asymptotic but starts earlier and
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the asymptote is lower because the rate limiter is set lower than for small-
challenge.

Standard deviation is almost non-existent for large rate-limited submissions.
These kinds of submissions are very predictable on the Grid.

The benefit of the Vnas and GridDBManager tools (blue line) versus the
manual submission (red line) appears very evident in this graph and ranges
from factor 2 to 2.5 over the manual speedup across the various batch
sizes. However, as said for the completion time graph, the red line for this
use case is very theoretical.

5.2 Reduction of time and effort

In addition to the increments in the Grid performances as described in the
previous section 5.1, the presented solutions can provide additional benefits
for the Grid user in terms of reduction of the time and effort needed to
create and launch computational applications in the Grid environment.

A precise evaluation of these additional benefits is particularly difficult as it
depends on a number of factors such as: how the bioinformaticians exactly
work, what types of "challenges" (computational pipelines / applications
launched to the Grid as multiple parallel small jobs) they submit to the Grid,
what is the submission algorithm being used for this challenge, whether
they have or want to create automated procedures similar to those in Vnas
or instead they prefer to handle the Grid completely manually, and so on.

Keeping this in mind, | will anyway attempt a rough estimate at quantifying
the majority of the benefits. A few more unquantifiable benefits will then be
presented in the section 5.3.

5.2.1 Reduction due to Vnas, GridDBManager and
RBRR

In this section the reduction of time and effort due to Vnas, GridDBManager
and the RBRR will be evaluated. The next section will attempt at evaluating
the impact from SETest.

Please note that when evaluating the number of lines of code which need to
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be written due to the absence of the tools, | will refer to the number of lines
of code for a "reasonably stable" approach, not for a "barely workable" one.
For a barely workable one the number of lines of code might be half of that,
but then significantly more human time would have to be accounted for
bringing challenges to completion.

1.

Vnas virtual sandbox management reduces the burden to create
software packages with the applications needed to run the pipeline on
the Worker Nodes (20 minutes) and upload these to a Storage
Element (20 minutes). In addition most computations need an
amount of data which cannot fit within the normal 10MB sandbox and
also changes from job to job within the same challenge. Hence, such
data cannot be uploaded manually and has to really be packed and
uploaded from within the submission loop (6 lines of code). Then the
SRM names resulting from the upload is to be somehow inserted into
the job's configuration and read by the job (4 lines of code)

. The SRM names from the point above also have to be logged to a file

(2 lines of code) so to allow manual deletion of files from the Storage
Elements at the end of the challenge (10 minutes) (Often forgotten,
though.)

. Vnas job submission relieves the need to programmatically create

JDL files (8 lines of code)

. Vnas's worker-node agent relieves the need to create code in the job

for downloading and unpacking all needed files from Storage
Elements, prior to starting the computation. (20 lines of code) (this
includes some resilient code and some error reporting code to ease
the very complex debugging in the Grid environment, already present
in Vnas's worker-node agent)

. Vnas job submission together with Resource Broker Round Robin

(RBRR) relieves the need to check for returnvalues from glite-job-
submit, and in case of error stop submission loop (the submission
would fail again if attempted again on the same RB) reporting the
error message from edg-job-submit to the user (3 lines of code). In
case of error, the code should also clear up temporary files and other
side effects created on the Ul which were needed for the job
submission that failed, and bring everything to a consistent state (10
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lines of code). Also the code should be checkpointable so to allow
resume of the submission after human intervention, without needing
to relaunch already launched jobs (20 lines of code). None of this is
needed with Vnas + RBRR: we have never seen glite-job-submit fail
or hang anymore using 3 automatic attempts by Vnas (note: Vnas
also has timeout implementation for Grid operations!) on rotating RBs.

. RB problems happen in 5% of days. In these days the user should

either wait, supposing s/he can work on other things, or call the
administrator to change the RB configuration settings for the Ul. The
first choice is the most common in my experience, but let's account
for the second which appears the most reasonable. Considering the
debugging time to first ensure that the error is due to the RB, the time
for contacting the system administrator and waiting the fix, we will
account for 30 minutes of work by the personnel. This problem cannot
happen when using Vnas + RBRR. (30 man-minutes lost per
working month).

. Vnas job management relieves the need to manually poll for the

status of jobs and manually resubmit in case of failure, or fetching
results in case of completion. (20 minutes twice per day until the
challenge is completed) It also relieves the need to keep the
"source" files for all jobs sent, so to be able to resubmit single jobs if
needed (6 lines of code).

. Vnas's callback system allows the user to be notified at the

completion of the challenge. In case of a multi-stage pipeline, it will
automatically submit the next stage. (Time included in the manual
polling time above. Vnas solution is more comfortable, though.)

. GridDBManager relieves the need to manually update biological

databases in the Grid environment, including burdensome download,
preparation of the databases (for BLAST databases, database
formatting for BLAST databases is automatic with GridDBManager),
and upload. (3 man-hours / Month)
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Summing up the numbers and averaging them over the working days, and
considering 20 working days /month:

77 lines of code + 50 minutes, once + 50m:30sec per day

These estimates are per-challenge, except for an average of 1m:30sec per
working day coming from point 6 which is per-Ul (there is usually one Ul for
each bioinformatics team).

Depending on how big the challenge is, this can be a very significant impact
or not. Most bioinformatics computational pipelines are relatively small in
terms of lines of code: some small computational pipeline can be made of
just 30 lines of effective computational code (glue code joining external
applications). Also, often bioinformatics computational pipelines are very
short-lived in terms of maintenance: they run for a few days to a few weeks
so to produce results, and then are replaced with something completely
different.

It is then clear that on a such small and short-lived pipeline, the above
estimates have a very strong impact, with the tools saving 72% of the lines
of code plus 50 man-minutes per day. It should also be noted that the saved
lines of code are also probably among the most difficult to write, since these
are lines of code interfacing with the Grid environment, and have to be
written as resilient as possible and capable to handle a wide variety of
errors.

On the other hand, if the pipeline is much larger than that, the impact of the
effort needed to interface it to the Grid would be proportionally much
smaller. In addition, bioinformaticians which often submit to the Grid at a
certain point will probably create code to automate the most common
procedures, hence investing some development effort once for all in order
to get a reduced impact from the Grid overhead code in the long run. But
exactly how much time and effort a bioinformatician is willing to invest for
reducing the Grid overhead code in the long run, is difficult to estimate. This
is one of the reasons for which it is difficult to estimate the exact impact of
the solutions presented.

5.2.2 Reduction due to SETest

The reduction of time and effort due to the usage of SETest is more difficult
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to quantify than the one coming from the other tools. This is because the
usage of SETest does not cause a reduction in the number of lines of code
of an application, nor a reduction of other measurable and demonstrable
entities.

| will hence attempt this analysis with a different approach. | will simulate a
debugging session of completely written but never tested Python code for
execution of bioinformatics computations in the Grid environment.

In my experience, Grid bioinformatics pipelines contain between 30 and 200
lines of code (supposing the developer is using Vnas), 1/3 of which (10 to
66) contain side effects (though not all are computationally intensive).

The testing is performed locally, i.e. on the Ul through a bash login, not on
Grid WNs, and this is because otherwise the Grid queue times would
increase the debug times by many orders of magnitude.

During a testing session, the Python interpreter will stop at every time it
finds a syntax error (we will simplify our reasoning by assuming all errors
are syntax errors and hence are detected by the interpreter). The user
should then fix the error and restart the execution.

However, the real problem is (and this is one of the key reasons for which
SETest was developed) that side-effect-based invocations such as
invocations of Linux filesystem commands or external executables in the
great majority of cases don't like files left over from previous executions. In
other words, if the execution stops due to a syntax error and the user just
corrects the Python error and then launches the pipeline again, the pipeline
is going to immediately exit due to another error caused by the existence of
a file which was not expected to exist on the filesystem at that point, and
which in fact comes from the previous execution of the pipeline.

The net effect of this is that at every error found, the user needs to delete
all intermediate files from the pipeline, recreate original tar archives and so
on. Also, it is not possible to simply replace the whole directory of the job
with a pristine version, because unfortunately this would also delete the
fixes that one has done on the Python code up to that moment.

In addition to this, every time the pipeline is launched again, the execution
is repeated. While for the errors in the first lines of code the execution takes
milliseconds to reach there, when those are fixed and the errors which start
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to appear are in the middle of the pipeline, it can take half an hour to reach
that point again at every execution. The user can indeed choose a simplified
input for the debugging session so to shorten the execution times, but in
many cases a valid input which has zero execution time does not exist, and
the best that can be done is an input 15 minutes long or so.

If the pipeline has e.g. 115 lines of code (median case 30--200) and 1/5 (23)
of these lines contain an error (remember there is no compiler to catch
trivial errors), and as a simplification we assume that the execution time is
equally spread across all the lines, the outline of the debugging session
would be the following:

The execution will need to be restarted 23 times to fix all errors.

The first execution starts at line 0 and stops at line 5 (first error at the fifth
line, 1/23 of the length) and takes 39 seconds (1/23 of 5 minutes). When the
error is found the user needs to fix it (let's suppose 30 seconds, if the code
is already open on the editor and just needs to be modified and saved) and
then find and wipe all intermediate files by hand (let's suppose 20 seconds),
then restart the execution.

The second execution starts at line 0 and stops at line 10 (first error at the
10" line, 2/23 of the length) and takes 1m:18sec, then the user needs to fix
it (30 seconds), wipe intermediate files (20 seconds) and restart... and so
on.

The whole debugging session would then take about 3 and a half hours.

The same debugging on a larger pipeline of 200 lines of code would take
about 5h:45min, while on a shorter pipeline of 30 lines of code this would
take about one hour.

By comparison, with SETest the times required for the 115-lines pipeline are
roughly the following:

1. Wrap every side effect call: time required is about 10 seconds per call
for a total of about 6m:23sec

2. Run 23 rounds of execution. SETest will skip every repeat of the
same computation in successive runs, so, the 23 rounds of execution
will take exactly 15 minutes to complete.

3. Fix 23 errors: this takes 23 x 30 seconds = 11.5 minutes
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for a total of about 33 minutes (84% of time saved). In addition, the debug
procedure becomes much less annoying with almost no dead times and,
last but not least, the likelyhood that further errors may be introduced during
the debugging process due to e.g. the user modifying the code to try to skip
steps, is greatly reduced.

The same debugging on the 200 lines pipeline would take about 46 minutes
(86% of time saved), and on the 30 lines pipeline it would take about 19
minutes (68% time saved). The benefit of SETest is hence significant.

In addition, SETest also has the added benefit of allowing regression
testing, which would be otherwise very hard to perform for these side-
effects based applications. When performed, regression testing should cut
down debug times by at least 95% compared to a standard testing session
performed from scratch, and give a much higher reliability due to the wide
variety of input data that is possible to feed to the application being tested,
in a short time and skipping all external computational steps.

Even if it is true that in the bioinformatics field probably not many pipelines
are so long-lived to benefit from regression testing, still SETest can be used
outside the bioinformatics and Grid domains.

5.3 Additional unquantifiable benefits

Besides the benefits presented in the previous sections 5.1 and 5.2, the
solutions presented can provide additional benefits to the Grid infrastructure
(in turn positively affecting other Grid users), and to the Grid VO managers
and responsible personnel.

It is extremely difficult to quantify these benefits.

1. Vnas automated garbage collection system for virtual sandbox files
ensures that no unused old file (garbage) remains forgotten on
Storage Elements. This reduces SE occupation in the medium term,
and relieves the VO Responsible Personnel and/or SE administrators
from the burden of hunting misbehaving users and asking them to
clear up their garbage from the Storage Elements.

2. The usage of Grid bandwidth is usually reduced when using Vnas's
virtual sandbox functionality, compared to both the case in which the
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overall size of programs and data is < 10MB and the user is using the
Grid's native sandbox directly, and the case of overall size > 10MB
and the upload of required files to storage elements is made with
custom code inside the submission loop. Unless of course the user is
very careful or implements an equality detection based on file
contents such as that of Vnas.

3. The wusage of internet bandwidth is greatly reduced by
GridDBManager (as the download is local, versus remote download
not using GridDBManager in the most common naive implementation
with one replica). This reduction in bandwidth usage can have a
series of effects and in particular it is likely to speed up network
transfers by the other jobs located in the same CE. This would in turn
reduce their total execution time (similar to: performance increase).

4. GridDBManager allows to effortlessly maintain older versions of the
managed databases on the Grid environment, with an insignificant
impact on the storage costs due to the novel approach based on
reverse-delta files. Older versions of the databases might be of help
to bioinformaticians who occasionally need to reproduce and verify
results obtained in the past, or compare their results to others which
were obtained in the past by other research groups.

5.4 High performance cDNA analysis - A Case
Study

Some excerpts from my publication [TromeetT'06] follow. These are
reprinted from Journal of Parallel and Distributed Computing, Vol 66, Issue
12, Trombetti G.A., Merelli I. and Milanesi L., "High performance cDNA
sequence analysis using grid technology”, p. 1482--1488, Copyright 2006,
with permission from Elsevier.

The work described in the following subparagraphs was performed
leveraging an early implementation of my Vnas framework (please see
section 4.1 — Vnas for a discussion), in particular the completion-callback
feature was used for triggering the next step in the computation. The
framework didn't have a name at that time.
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5.4.1 Abstract and Introduction

Innovative DNA sequencers, relying on pyrosequencing, are now being
produced, which cut down costs and speed up sequencing by an order of
magnitude. Hence the capability of handling high throughput sequencing is
becoming increasingly important for bioinformatics.

This study concerns the development of a high performance pipeline for
analyzing cDNA sequences produced by a high throughput pyrosequencer.
Mainly, this analysis system has been developed by us to map the
sequenced cDNA strands against a cDNA database for studying different
mutations that can influence the genes functionality. The pipeline supports
heterozygous organisms.

[..]

The results of this high performance pipeline are stored into an output
database directly from the grid sites using the Web Services technology. By
querying this database it is possible to inspect the analysis results to detect
different mutations in the cDNA sequences, as well as other meaningful
biological parameters and information.

[..]

This pipeline was designed to assemble the cDNA sequences starting from
the sequencer output data, and using the human cDNA database as a
reference, in order to identify punctual mutations in the expressed
sequences.

Our main purpose is to detect punctual variations of the sequenced cDNAs
in heterozygous organisms, in order to find either punctual mutations
(genomic mutations [Garcia'00] present in isolate biological samples) or
SNPs (Single Nucleotide Polymorphism - genomic variations present in a
statistically relevant percentage of the population [MarsH'05]). These
analyses are important to establish a relationship between mutations in the
coding zone of DNA and genomic diseases.

5.4.2 Motivation

Problems in genomics and proteomics tend to have a quadratic or higher
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computational complexity [Karun'93]. For example, global / local genome
pairwise alignment with general or affine gap penalty functions, genome
assembly, inversion distance computation, genome rearrangement analysis
and molecular dynamics have all got a quadratic or higher complexity: small
increases in the input data, due to the advancement in knowledge or
improvement in machines providing the input, greatly increase the
computation time. CPU speed increases also have been nonlinear (in facts
exponential) for a long time, providing approximately a doubling in speed
every two years; however, this is faulting lately, as the speed increases
have almost stopped in recent years.

As far as genomic problems are concerned, also has to be taken into
account that the development of sequencers has been far from linear in the
last years, recently leading to high throughput pyrosequencers having a
tenfold increase in throughput [RonagHI'98], and similar decrease in
operating costs, compared to the previous technology. Such high throughput
pyrosequencer technologies create an enormous flow of genomic
sequences that must be elaborated in minimum time to best exploit the
sequencer capabilities.

In our case, for detecting punctual mutations, comparing each of the
sequences output of the sequencer, called reads, against the whole cDNA
database was necessary. Having as reference a large database of over
39,000 cDNAs [Wiemann'O1], and the output rate of our pyrosequencer as
high as 10,000 reads per hour it was not possible to keep up reliably with a
single machine. In addition, we wanted to allow repeatability of past
calculations after variation of the algorithm or parameters, which meant a
potentially very large dataset to be recomputed in a reasonable time.

Hence, for the implementation of this pipeline a high performance system
needed to be designed to coordinate a large number of computation
resources and to manage the flow of such amount of information. This has
been possible by leveraging a massively distributed environment such as
the grid platform [FosTter'01].

5.4.3 Implementation

First make it work, then make it fast. Our first approach was with a non-
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distributed pipeline (Fig. 10 below — The analysis pipeline). The first stage of
our pipeline leverages Blast [ALtscHuL'90] to match the reads against the
39000 cDNA reference database. From the Blast results groups are then
made, gathering together the reads which best match the same reference
sequence. These associations are written onto a database. In case of
alternative splicing, two or more reference cDNAs will have common parts,
hence, when the Blast matching is attempted, a read matching a common
part will match all such reference cDNAs. Since at this first stage it is not
possible to determine, or even guess, which reference cDNA this read
belongs to, our policy is to accept all. During the next (second) stage, it will
be possible to heuristically filter out some reference cDNAs (and their
associated groups) which were not in facts expressed, based on the
coverage of the cDNA which would be covered by reads only on the
common parts of the alternative splicing. In the meanwhile, during this first
stage we already distinguish the cases in which the second (or further)
Blast match of a read against another cDNA is caused by alternative
splicing (for which our policy at this stage is to accept it) from the cases in
which the match is determined by random similarity (which we clearly want
to reject). An heuristic and partly adaptive algorithm solves this.

Once groups are made, a second computation stage clusters the reads
together, using the cDNA as a reference [Parsons'92]. For this second stage
again we leveraged Blast, this time for anchoring the sequences (as Blast
““subjects") against the reference cDNA (as Blast ~"query"), to obtain a
multiple alignment of the reads referring to each cDNA [BeLsHaw'05].

A third computation stage analyzes each multi-alignment obtained at the
previous stage looking for punctual mutations. We remark that we are
working with gene expressions from heterozygous organisms, which can
have any punctual mutations present on either homologous chromosome, or
both of them. In the same way, gene expressions also will.
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Hence, when looking at multiple alignments, it is to be kept in mind that, on
average (even if with a significant variance), half of the aligned reads should
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High throughput
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-Storage of reads onto the database
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-Storage of the multiple alignments
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(sequenced cDNAs differing from
reference cDNA on isolate nucleotides)

Storage of punctual mutations
onto the database

Hllustration 10: The analysis pipeline - The three pipeline steps are shown in row 2, 3 and 4. Row 1 is the
pyrosequencing step. Between any two steps, computation results of the previous stage are stored into the
database (located on the central server in the grid implementation). Outgoing arrows at the right side of the
picture connect to incoming arrows at the left side (A-A, B-B, C-C).

come from a chromosome and the other half from the other homologous. In
a column of aligned reads where more than one nucleotide is present, the
most present nucleotide will most certainly be that of (at least) one
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chromosome, but the second most present nucleotide can either be a
sequencing error or the expression of the gene on the homologous
chromosome (Fig. 11 — Clustered reads belonging to a cDNA)
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Lllustration 11: Clustered reads belonging to a cDNA — An A——>G punctual mutation in one chromosome only
(heterozygosis) is shown.

After a statistical analysis we decided that a coverage of 10x (at least ten
overlapping strands over each and every point of the whole multi-alignment)
should be used to distinguish reliably between the two, and we put the
threshold of 30% (of the coverage over that specific point, i.e. the column
height) for calling the expression of the second allele.

5.4.4 Distributed Implementation

Our distributed implementation for this pipeline shares the computational
load over the grid nodes of EGEE grid. The whole pipeline is coordinated by
a single central server, on which the grid User Interface software is
installed. This creates a high performance and relatively scalable system
according to the grid performance and the power of the central server (the
central server can act as a bottleneck in the general case depending on the
amount of work assigned to it, but such work was small enough in our
case). The central server is both involved in the coordination of the parallel
execution of the grid jobs through the User Interface and in the pre and post
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elaboration of sequences.

To obtain a high performance implementation of this analysis pipeline the
most time-consuming steps have been implemented in a distributed way.
The first step implemented on the grid platform is the blast that groups
sequences according to cDNA similarity. The input data of this step are the
raw sequences produced by the sequencer while the output is used as input
of the second distributed step, anchoring each read to the related cDNA for
creating a complete coverage.

Both of these steps are based on blast and their implementation is quite
similar. Bioinformatics application that relies on the comparison of an input
sequence against a database are usually implemented on a distributed
platform by subdividing the input dataset in small groups [MereLLI'05]. To
manage the distributed implementation of these pipeline steps an efficient
system has been implemented to coordinate the execution of the jobs, to
control the completion status and to retrieve the output in case of a
successful termination.

For each job a JDL script is generated with the information about the input
sequence, the job requirements and the information about the databases
that have to be accessed. The jobs are routed by the Resource Broker to
the best Computing Element that is available at the moment. From the User
Interface the execution of the pipeline analysis is automatically monitored by
our software and, in case of failure, is re-submitted to the grid infrastructure.

Porting onto the grid platform bioinformatics applications relying on
databases implies dealing with distributed database management. In the
first analysis step of this pipeline, input sequences are clustered according
to a database of cDNA. This is a flat file database of significant size which
needs to be transferred to the used Computing Elements prior of invoking
Blast. In order to minimize the transfer time we replicated the cDNA flat file
database to various Storage Elements. In this way it is possible to use a
high number of Computing Elements (each located near one of such
replicas, i.e. local network) while keeping the database transfer overhead
for the execution of step one minimal.

Grid technology does not support distributed RDBMS. This is a problem
when the output data has to be collected in a database. Although it would
be possible to retrieve data into the User Interface and parse them before
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storing results in the database, this solution would remarkably slow down
the system performance. To obviate this problem a solution based on the
technology of the Web Services has been implemented [FosTer'02].

For each grid job, the blast output is parsed directly on the Computing
Element on which it has been executed. In this way a temporary result set is
created and, eventually, through a small Web Service client carried into the
grid together with the input sequence, it is entirely stored into the results
database on the User Interface. This is performed in one pass, hence
minimizing the SOAP communication overhead [MereLu'05-11]: the Web
Service receives the incoming SOAP message from the client containing
information about the blast results, and performs the SQL insert onto the
results database.

5.4.5 Results Database

The working data are passed from a computation stage of the pipeline to
the next through the help of a database (Fig. 12). In the non-distributed
version of the pipeline, the previous stage would store the result on a
database which the next stage would read. This ensured complete
separation of the stages, and made the repeatability of computations very
easy, implying a simple deletion of some result rows of a certain stage from
the database (or cloning of some input rows of the same stage) and re-run
of the computation stage.

In the current, distributed version of the pipeline, at the end of a stage
computation a Web Service is used to dump the results onto the database
on the User Interface, which is then responsible for passing such data to the
next stage. This does add some overhead, however it ensures that:

e the stages are fully separated
e the computation is repeatable in part or whole
e the intermediate results are held on a single and local database.

Results of intermediate calculations may hold important information for
biological analyses which might not even be fully foreseen at this point. In
order to allow inspired searches by the biologists, we kept all such database
information meaningfully ordered and easily searchable with SQL queries
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and scripts.
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Hllustration 12: Entity-Relationship diagram for our current database - 10 tables. Biological samples are
sequenced in pyrosequencer runs producing reads. Computation analysis projects are initiated on the reads of
one or more runs, producing groups of reads according to Blast-detected most similar reference (cdnas) in
pipeline step 1. These groups are clustered in multialignments (multialig) in pipeline step 2 and their punctual

mutations (punmuts), either homozygous or heterozygous, are finally detected in pipeline step 3.

Results of intermediate calculations include:

e grouping of the reads mapping onto any cDNAs, for each biological
sample, potentially giving information for the relative amounts of gene
expression for each cDNAs

e multi-alignments within the groups

e punctual mutations found (homozygous / heterozygous), whose
frequency could be investigated to find new SNPs, or correlation
between the presence of different SNPs

e reads not matching reliably any known cDNA, which can be a clue for
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a new unknown cDNA that could be investigated further via multiple
alignments among such reads, and could then be tested for “~amount
of expression" comparing it against genomic data collected in the past
(e.g. unknown multiple splicing of a known cDNA).

5.4.6 Distributed Implementation Performance

Even though the performance of the grid pipeline is more than adequate for
our situation, a numeric estimate of such performance is difficult due to the
great variance in queue times for jobs sent on the Grid. This depends
mainly on the workload which is assigned to the Grid throughout Europe at
the specific moment of submission. In addition, the highest the number of
jobs which are submitted together to the Grid, the most unfavorable (in
terms of queue times) the computing resource the last of those will get.
Needing to wait the execution of all jobs makes the pipeline wait for the
worst queue time of the set of jobs, hence, the pipeline-perceived queue
wait time for 40 jobs is significantly worse than the pipeline-perceived queue
wait time for 10 jobs.

It is also obvious that, given a certain amount of computation to be
performed, splitting such computation into a high number of grid jobs will
reduce the size for each of them, and since the jobs are executed
independently on the grid, raising the number of jobs increases the
execution parallelism and reduces the computation time as it is perceived
by the pipeline. Hence it is clear that splitting the workload in a number of
grid jobs too small would also hinder the pipeline performance. In facts, in
our executions we try to keep the length of every job comparable to the
(estimated) queue wait time of the set with a lower limit of 20 minutes (in
order to avoid excessive grid overhead).

Our performances are best described by the following: the nondistributed
version of our pipeline needs 19 computation hours on a Xeon class CPU
for the 100,000 reads that an high throughput pyrosequencer is ideally able
to produce in 1 hour. These are roughly 10 hours for the first step, 6 for the
second step and 3 for the third step. With the grid distributed version of our
pipeline we can parallelize the three steps as much as we want by raising
the number of grid jobs we submit. A good compromise for the number of
jobs for obtaining the completion of such a computation in the shortest time
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considering the queue wait time is around: 20 jobs for the first step, 12 for
the second and 6 for the last step, for a total of 36 half-an-hour-long jobs. A
typical queue wait time is 30 minutes for the first step (a 20-job set) 15
minutes for the second step (a 12-job set) and 10 minutes for the third step
(a 6-job set) making an total wait+execution time of two and half hour on
average (but the variance can be significant, as we said, depending on the
EGEE Grid load). In addition, our computation resources remain still
substantially free and capable of submitting and handling more grid
computation if this is needed (e.g. for a recomputation of older genomic
data with altered pipeline parameters).

The benefit of the Grid is hence very evident, at least for heavy
computational loads, and the costs of joining the Grid are minimal
(sometimes zero, depending on the load you intend to submit to the Grid)
compared to those of a dedicated cluster.
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6 Conclusion and future work

Bioinformatics, physics and other mathematics-based sciences using
computational approaches for research purposes are always in need of
more and more computational power for solving algorithms of ever-
increasing complexity over data of ever-increasing size. In this scenario,
computational grids and in particular the European and world's largest
EGEE Grid platform show great promises, delivering to the hands of the
scientists an enormous computational power which can be used already
today to perform innovative research activities.

Unfortunately this Grid architecture is still new and not free of issues. These
issues, which were discussed in this thesis, greatly complicate the work of
the scientists who need to create and launch computational pipelines and
applications in the Grid environment.

In this Ph.D. thesis three major frameworks and an additional smaller
standalone solution have been presented, which can solve most of the main
Grid issues by creating abstractions adding reliability over the most
common stability and availability problems, bypassing some Grid limitations,
increasing the Grid performances, reducing bandwith usage, and
abstracting away much of the effort that is associated with writing and
testing a computational application for the Grid environment.

More specifically, in chapter 5 the impact of the solutions was examined. An
approximately two-fold increment in the perceived Grid performances was
demonstrated through monte-carlo simulations based on experimentally
probed data and simulated submission algorithms. In addition, a reduction
of up to 72% of the lines of code needed to develop and manage a
computational pipeline in the Grid environment was shown. Additionally, the
SETest testing framework allows a significant reduction of the debug times
of up to 86% for Python computational pipelines scattered with side effects,
such as those commonly used for the execution of bioinformatics pipelines
in the Grid environment.

The solutions presented include innovative concepts, and were published in
three articles in scientific journals and four conference proceedings, and
orally presented in five internationational conferences during the three
years' Ph.D. course.
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Future work related to these solutions will be in the direction of handling the
failures and information losses by the Replica Metadata Catalog, which is
the single most problematic component remaining after what is already
handled by the current version of the frameworks.
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7 Appendices

7.1 BGBlast's Grid Database Manager
algorithm details

BGBlast's ARM optimizes the number of replicas for each BRD separately,
by minimizing the sum of the storage cost and user wait time cost. The
algorithm is an iterative algorithm which converges on the optimal number
of replicas and the optimal location for them, simultaneously.

The ARM optimization algorithm at each cycle evaluates the benefit of the
addition of one replica and the benefit of the removal of one replica.

During the evaluation of the addition of one replica, the ARM takes into
account the specificity of each Grid location suitable for replication (i.e.
every SE not yet holding a replica), hence finding the best location for an
added replica. The ARM then evaluates whether the addition of a replica in
that specific place is profitable or not, using the costs formula.

The best location for adding a replica is ideally a SE having a large amount
of free disk space (so to cause a proportionally little impact when adding the
replica) near a CE being large in the number of nodes (a larger computing
power means that the job queue is generally consumed more quickly).

The costs formula for evaluating variations in replicas numbers considers
the Grid queue times to be inversely proportional to the number of nodes
useable by BGBlast, i.e. those having a replica nearby (see section
4.2.4.21 "Motivation for ARM"). The correctness of this assumption can in
fact be demonstrated under some simplifying assumptions. The cost of a
minute of user wait time is to be specified in the BGBlast configuration file.

The cost of Grid storage is the other cost to be specified in the BGBlast
configuration file. The cost of storage is to be expressed in terms of cost per
percent of free storage space occupied per day on a SE. This approach was
chosen for reflecting the intuitively higher impact on other Grid users that a
GB-sized file has when uploaded on a small or already full SE compared to
the impact it has when uploaded on a SE with plenty of free space.

The ARM engine hence works by minimizing the sum of the storage cost
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and user wait time cost, for each BRD separately.

The process for evaluating the benefit of the removal of one replica is
analogous. The worst existing replica is chosen using the same kind of
analysis as described above. The cost formula is then recomputed while
simulating the removal of the “worst” replica, and the result obtained in this
way is compared to the cost associated to the current situation. If the cost
after the removal of the replica appears lower, the replica is removed.

This algorithm converges quickly.

7.2 SETest framework implementation details

The framework can be used from the application to be tested by simply
importing it as seTest then instantiating the main singleton class like
st = SETest.SETest()

then

retval = st.do(fun, args, kwargs)

will be the wrapper call for

retval = fun(args, kwargs)

The SETest framework is to be configured before launching the application
using it, so to set the correct functioning mode (Bypass, Recording, etc.) for
the framework as described in section 4.3.3.2 . The framework is not
intended to be normally configured through the application using it, but
externally, this choice was made in order to preserve the transparency of
the framework to the application. Were it not so, one would need to add the
parsing of options for configuring the testing framework in the code of every
application using it, and | believed this was not the intended behaviour for
this kind of framework.

It is hence possible to configure the framework by launching it as if it was an
application itself:

./SETest.py <options here>
this will store the configuration options in a configuration file. Among the
most important options are

- the operating mode (Bypass, Recording etc.)



93

- policy on dataset lookup failure (exception or interactive)
- the name and path of the dataset file to be used

- log file name (for precisely logging all activity by SETest)
- log file verbosity level

whose location is specified within this launch itself (one of the options,
mandatory). This location should preferably be in the same directory as the
tested application, so that, at the beginning of the execution of the
application, when the SETest singleton is instantiated, the SETest
configuration is loaded from the SETest.config file located in the same
working directory. It is also possible to specify a different location for the
configuration file, and the first call to the singleton (instantiation of the
singleton) would then become
st = SETest.SETest(configfilelocation)

In this case multiple preconfigured configuration files can coexist for the
same tested application, however, in this case the programmer of the
application (e.g. computational pipeline) needs to add the parser for parsing
the configfilelocation option, so this solution is more flexible but a bit less
transparent to the application being tested.

The implementation of this framework heavily relies on introspection and
serialization features of Python. Parameters are stored to the dataset as a
hash of their serialized value, while results are fully serialized. Python
iterators are unpacked to lists in order to perform equality tests and
serialization. Clearly this has some overhead on memory usage, however
there didn't seem to be a better strategy in this case. The unpacking is not
performed in Bypass mode, which simply relays calls.

Non-serializable objects such as network sockets cannot currently be used
with SETest (their value would have no meaning at the next execution), and
this is the biggest limitation for this framework. However network
communication can usually be wrapped at a higher level: you can still wrap
the call which performs the connection + download / upload.

Database connections and cursors are supported as a special case in
SETest (these also are non-serializable objects), due to their high
importance in computational pipelines, however, their behaviour is simplified
in the current version of the framework: connections to the database are not
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stored in the dataset and the connection is created again at every query.
Commits are performed at every query (transactions not possible, except of
course in bypass mode). Cursors can be stored to the dataset, and
retrieved in playback mode (an emulated cursor is provided by the
framework), however, as it happens for iterators, all rows will be loaded into
memory. In bypass mode everything works normally and there is no
overhead.

Last minor feature is the break_next() call which sets a breakpoint in the
SETest framework so that the user will be dumped to the interactive shell at
the next wrapped call, no matter what mode SETest was in or whether the
call was present in the dataset or not. The purpose is the same as that of
breakpoints in debuggers.

7.3 Developing applications for the Grid
Environment

Notwithstanding the fact that within the frame of the BioinfoGRID
[BlIOINFOGRID] project, other researchers and | ported to the Grid a large
number of the most common bioinformatics applications, thinking that no
Grid user, or even Grid-bioinformatician, would ever need more than such
standard applications is unrealistic.

Bioinformaticians and/or researchers in general will probably come to a
point where they find that a computational pipeline for the specific task they
need to accomplish does not exist yet, or maybe is not specific enough and
should be improved, fixed, optimized or totally rewritten for such specific
task.

In this case the Grid user will need to become a Grid application developer.
Developing applications for the Grid is relatively difficult, as the platform is
significantly different from almost anything else. The architecture of the Grid
will have to be learned (and for this specific documentation exists), but after
this, experience will still be lacking.

Hence, in this section | will write some recommendations for building
applications for the Grid environment. These recommendations are mainly
aimed at scientists approaching the Grid, and are based on the experiences
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gathered in my 3-years Ph.D. course in collaboration with the ITB-CNR and
being involved into the BioinfoGRID project.

This section also helps better understanding the difficult work associated to
the creation of Grid applications starting from scratch, i.e. without the help
of frameworks or other software not part of the standard gLite installation. In
fact in this section | will by purpose not refer to existing frameworks for
easing the Grid development, not even those made by me and mentioned in
the rest of this thesis. This section can in fact also act as a motivation for
my Ph.D. work, and as a hint on the impact of solutions.

This section is novel and the recommendations were never published
elsewhere up to now. The next sections are written down as an informal
guide conceived for the standard Grid user, henceforth addressed as "you".

7.3.1 Introduction

The following sections presume knowledge of programming topics, at least
in the localized environment, and some knowledge of network programming.

Reading the official documentation at [ariDiT] is essential for getting started
on the architecture and commands for the Grid and it is a prerequisite for
understanding the following sections and the technical Grid terms which will
be used. All command-line commands available from a User Interface node
also have a man page, which covers the usage options in good detail.
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7.3.2 General recommendations

As programming languages for developing Grid frameworks and
applications, we were using mainly Python and Perl and this is what | would
suggest, though most general purpose programming languages should work
fine. Whatever the language you use, you should make sure that your
application executes properly in a machine running Scientific Linux 3.0.4 +
Glite framework, because this is what the great majority of EGEE Grid
machines is running. You should test your application as well as possible
before submitting it to the Grid, because receiving errors back from the grid
is very frustrating. A “remote” debug would be difficult and extremely time-
consuming. Some more helpful information can be found in the “Developing
resilient program flows” section below.

Your application, together with the data files it needs for computation should
fit within the sandbox that your VO has set for you, which is usually 10MB. If
you need more space than that, you should upload the needed files by hand
to a Storage Element and code your job so to download these files prior to
starting the computation. Remember to delete those files from the SE when
these are not needed anymore. Here there is room for various types of
optimizations; some techniques will be described in the “Space, bandwidth
and time optimizations” section below.

The execution time of your application should be thought of carefully. The
application should not run over the time limit imposed by your certificate,
which usually means making computation jobs shorter than 24 hours,
computations longer than that will have to be split into multiple shorter jobs.
The job also should not be too short, or the overhead for the RB and the
queuing system of the CE would be comparably too high and you would be
wasting common resources. Grid time is a precious resource and should be
used wisely and sparely.

Grid jobs can fail: distributed environments are always unreliable. The Grid
is very distributed, hence it is very unreliable. You should monitor the jobs
you submitted and you should resubmit such jobs if you see them fail (see
command glite-job-status). In order to be able to do this, you will need to
keep the submission files until you are sure that your job has succeeded.
Jobs also can remain stuck in the queue for a very long time (days... these
problems are mostly due to misconfigurations in some CE of the Grid) so
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you should also decide a queue-time-ceiling threshold after which you
programmatically kill and resubmit a job which is still declared as queued.
This topic is covered in greater detail in the “Grid submission algorithms”
section below.

7.3.3 Developing resilient program flows

Programming for a distributed environment is significantly different from
programming for a local environment because of the intrinsic unreliability of
distributed environments. This is particularly true for the Grid, where the
various parts of the system are very distant and maintained by different
people.

If in the localized environment the commands succeed practically every
time, on the Grid for every distributed command you use there is a
significant likelyhood of failure. This means that if in your job you use 10
gLite commands and you never check return values, your job is going to fail
often. “How often” is difficult to say, as it widely depends on which glite
commands you use, but connecting to SE, downloading files, determining
the nearest SE, uploading files, replicating files, are all risky operations.

When you program for the Grid you should always check the returnvalue for
every glite command you use (the “$?” variable in bash: nonzero means
error). When programming the code for a job, you should think if alternative
actions exist for a glite command that can fail. If there is a possible
alternative action which can allow the job to go ahead (e.g. Can you
download the needed file from another source? Can you upload your results
to another destination? Can you skip the action this time, was it really
needed?) you should code that alternative action in your job. If there is no
possible alternative action, you should still identify the error and quit the job
with failure (nonzero return code) and this should be done (if possible)
before wasting hours of computation on incomplete/wrong data. Upon
failure of a command, the job should also print some helpful (to you)
message to stderr which you can fetch with glite-job-output and you can use
to understand what exactly has gone wrong. If this happens often, at a
certain point you might want to change your code using a more reliable
technique.
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Languages using exceptions can help in this a great deal and languages
providing deterministic destruction upon exceptions (C++, Python) can help
even further. Using these features you can easily create program flows
which provide alternative execution paths upon failure of some commands
without scattering your code with if statements. A code scattered with if
statements is difficult to read, and this reduces code maintainability.

7.3.4 Space, bandwidth and time optimizations

This section is dedicated to Grid users who need to develop a Grid
application for which the amount of data to be processed is significant,
beyond the capability of the sandbox, in particular if the download time for
such amount of data is not negligible.

The simplest approach, as already described, is to upload the input data
files (data files which your job needs for the computation) to a Storage
Element of the Grid. In a first unoptimized implementation, the SE that you
choose for holding these files is not even relevant.

It is very important that you remember to delete the uploaded data once
they are not needed anymore. Many Grid users unfortunately forget to do
so, and the Grid SEs in the years have become loaded by leftovers of
ancient Grid computations. In order to take care of this and avoid unneeded
headaches, it is suggested that you write or find some kind of automatic
cleanup manager, which you preset with a timeout (number of days)
approximating your project length (plus some margin). When the timeout
expires, the cleanup manager would delete such files for you.

Another approach is to upload the input data files to a machine of yours
located outside of the Grid and make these files accessible via FTP or
HTTP protocols. Since wget is installed on every WN machine, this can be
used for the download. This approach has pros and cons. The pro is that
you don't need to take care of removing leftover files from Storage
Elements, the cons are that your “external” (to the Grid) storage server will
never be located near the computation site (remote download means slow
download speed) and that you cannot do data replication (more on this,
below). With this approach you are directly responsible for your storage
server to be online and reachable at the time your jobs enter execution. This
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is both a pro and a con: you don't rely on the system administrator of the SE
for your jobs to execute properly, but you rely on yourself for the same task.

In either approach, in case you are going to submit a batch of jobs together
(this is the common use case for the Grid) and not just an isolated one, it is
wise to upload the input data which changes between the different jobs and
the input data that is constant for all the batch as two separate entities. If
you don't do this, e.g. you make a single tar file of all the input data, you will
need to upload again the whole tar file for each job, instead of the only
changing part, and this would at least waste time and Grid bandwidth during
upload, probably would waste storage space, and makes replication (see
below) practically infeasible. This might not be an issue if the input data is
not very large anyway, e.g. less than 50MB, or if the changing part is much
larger than the constant part.

As far as the download time for input data within your job is concerned, |
recommend that attention is paid so that the download time (an overhead)
be at least an order of magnitude smaller than the computation time (the
useful part). You should not create jobs that download for half an hour then
compute for 20 minutes. Keep in mind that when your job is running it is
occupying a ’slot” of the Grid, whatever it is doing, downloading or
computing, without distinction. No other job can start in your slot while your
job is running, they will be waiting in the queue until your job exits, so
please try to optimize your jobs so that the overhead time (time for
downloading files and other preparations your job might need) is no more
than 10% of the productive time. In the mentioned example, you should
either reduce (optimize) the download time, or increase the computing time,
possibly both.

A technique for dramatically reducing download times is to constrain the job
go executing near the location of the input files. This requires that you used
a SE of the Grid for your input files, and not an owned external storage
server. The location of the files (name of Storage Element) should be known
from the upload operation, or can be reversed from the LFN name using
Icg-Ir. The execution of the job can be constrained by using the --resource
option on edg-job-submit or through the JDL file (see official
documentation). Both constraining techniques actually need the name of a
CE while you only know the name of the SE where your files are. The
following command gives you the proximity map of CEs to SEs, that is, it
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tells you for each CE what SEs are connected in local area network to it:
Icg-infosites --vo <yourvoname> -f closeSE

Having the input file in local area network means a download speed which
is one order of magnitude faster than remote download (which is over the
internet), hence, the download time for these input files during the execution
of your job will decrease 10-fold.

However, constraining the execution to a single CE might be too much, as
the queue times on that CE might be unfavourable at the time you submit
your job. If this is the case, you have another option: replication. You can
replicate (command /cg-rep) the same input files on multiple SEs then you
can use the JDL file to constrain execution to the related group of CEs.
Replication is very bandwidth consuming for the Grid and can be time
consuming for the initiator (you) so is only meaningful if 1) the constant part
of your input data is much larger than the variable part 2) you are replicating
only the constant part, and 3) you are going to use that constant part for a
significant number of jobs (I.e. the batch is large). At the end of your batch it
is imperative that you remember to remove all the replicas of your input
files.

Lastly, | will disclose a neat optimization that you can do with replication.
Starting with only one replica, you would start sending the jobs without
constraining the location of execution. At the moment of downloading the
input files, you would not download these files directly, instead you would
first replicate the remote files to the SE which is nearest to your current
location (which will be in local area network). You can determine the
closeSE name from the system variable VO_VONAME_DEFAULT_SE
(replace VONAME with the actual VO name, all uppercase) if existing. After
the replication is complete, you would download the files from the closeSE.
This technique takes 10% more time than the simple download from remote
location, but will also create an additional replica as a side effect.
Essentially, you get an additional replica almost without overhead. After
some job runs, the most used CEs will already have a replica near to them,
and you would start saving download time. At a certain point you might also
start constraining to execute near an SE where a replica already exists.
Also with this technique, it is imperative that you remember to remove all
the replicas that were generated for all your input files at the end of your
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submission task.

7.3.5 Grid Submission algorithms

Depending on the task you have to accomplish (or the “problem” you have
to “solve”), the approach for submitting it to the Grid can vary widely.

Depending on the task, a few important parameters related to your Grid
submission are intrinsically determined; | will call these the “problem
parameters”. The problem parameters typically are:

1 the total number of computation hours (and this also affects the batch
submission size i.e. the total number of jobs)

2 the size of the input files, both the variable part and constant part

A certain number of parameters for your submission can still be set by you,
and these will be called the “submission parameters”. The submission
parameters typically are, at least:

3. the computation length for each job (affects the batch submission size)
4. queue-time-ceiling threshold (affects the response wait time)

5. location of the input files (remote / closeSE) (balances the set-up
overhead towards the bandwidth overhead)

6. rate-limiter setting (more on this below here)
Here are some words of explanation for every point mentioned:

The total number of computation hours is clearly a parameter intrinsic to the
problem you have to solve, at least in our approximation (if you can optimize
that, go for it!).

The total number of computation hours contributes to determine the number
of jobs that have to be submitted to the grid, which | call the submission
size. The other parameter that determines the submission size is the
computation length for each job. The submission size (overall number of
jobs) is obviously TotalCpuHours/JobComputationLengh .

The size of the input files (variable and constant parts across the batch) is
the other parameter intrinsic to the problem you have to solve. Depending
on how big the constant and variable parts are, you might be able to
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perform some kind of optimizations, which will result in having the files
locally or remotely at job execution time (a submission parameter). Please
see detailed discussion in “Space, bandwidth and time optimization”.

As | already mentioned, Grid jobs can remain stuck in the queue for a very
long time, and these jobs won't be able to enter execution before the
expiration of the certificate. These problems need to be addressed with a
queue-time-ceiling threshold: the job should be killed and resubmitted when
its time in the queue reaches the preset threshold. By setting this threshold
you will set the aggressiveness of the resubmission algorithm, which has
dramatic consequences for small submissions which have fast-response
(quick turnover) requirements, while it can be left much more relaxed for
large submissions not having fast-response requirements. Even for large
submissions of the latter case, it is anyway important that a threshold exists,
and a reasonable setting is it at 8 hours, while for fast-response
requirements it might be set much lower such as at 20 minutes. Also see
the next section.

The rate-limiter parameter determines the maximum number of jobs that
you will have simultaneously running on the Grid. Rate-limiting your
submission at 100 jobs means that you will not submit the 101" job until one
of your jobs has returned. Rate limiting your submission becomes
imperative if the submission size is larger than a few thousand jobs: if you
submit more than a few thousands jobs simultaneously you could
monopolize the Grid resources effectively causing a denial-of-service to the
other Grid users. This is absolutely to be avoided.

As you probably have guessed by now, for large sized submissions you will
need to use an automatic submitter and job monitor, which can be either a
third party one or you can create your own. It is not extremely difficult to
create an automatic submitter, and while making it you will learn a great
deal about the functioning of the Grid. If you develop your own submitter
you can also adapt it better to your requirements.

The automatic submitter should take care of:
1.launching jobs and monitoring execution
2.resubmit jobs if they fail during execution

3.kill and resubmit job if they reach the queue-time-ceiling threshold (jobs
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stuck in the queue)

4.if the batch submission is larger than about 1000 jobs, | recommend that a
rate-limiter is also implemented, so that not all jobs are submitted to the
Grid together at the beginning.

5.can be bundled with a timed garbage collection system for input files that
might have been uploaded to SEs (see “Space, bandwidth and time
optimizations”)

After having set up your automatic submitter, you will need to start tweaking
the submission parameters for optimizing your Grid submissions.

While setting your submission parameters please keep in mind that you
should keep a fair behaviour to the other Grid users. Do not submit massive
amounts of jobs together and do not submit more than 500 parallel jobs for
weeks without first asking authorization to the Responsible Person for your
VO.

7.4 Publications and oral presentations

My 3-years Ph.D. work described in this thesis has originated various
publications in journals and conferences proceedings. In addition, |
personally presented my work as a speaker in numerous international
conferences.

The details are in the following subsections.

7.4.1 Publications in journals and conferences

proceedings

My Ph.D. work originated the following publications in journals and
conferences proceedings:

Journal Gabriele A Trombetti, Ivan Merelli, Luciano Milanesi —
publication High Performance cDNA Sequence Analysis Using
(first author) Grid Technology — Journal of Parallel and Distributed

Computing 2006, 66(12):1482-8
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Journal
publication
(first author)

Journal
publication
(first author)

Proceedings

Proceedings

Proceedings

Proceedings
(first author)

Trombetti GA, Bonnal RJP, Rizzi E, De Bellis G,
Milanesi L — Data handling strategies for high
throughput pyrosequencers — BMC Bioinformatics
BMC Bioinformatics 2007, 8(Suppl 1):S22

(Impact Factor 4.96 at the time of acceptance)

Trombetti, GA and Merelli, |. and Orro, A. and Milanesi,
L. — BGBlast: A BLAST Grid Implementation with
Database Self-Updating and Adaptive Replication —
Stud Health Technol Inform 2007, 126:23-30

L. Milanesi et al. — BioinfoGRID: Bioinformatics GRID
based applications overview — NETTAB2006
proceedings

Milanesi L, Andreas G, Arlandini C, Beltrame F, Bishop
C, Breton V, Ernest P, Jacqg N, Legre Y, Lio P, Liuni S,
Mazzuccato M, Maggi G, Meloni G, Merelli I, Morra G,
Orro A, Porro |, Sanger M, Shuai S, Trombetti G —
BioinfoGRID: Bioinformatics Grid Application for
life science — BITS2006 proceedings

Alessandro Orro, lvan Merelli, Gabriele Trombetti,
Luciano Milanesi — Enabling Post Processing Data
Extraction in Grid Environment — NETTAB2006
proceedings

Gabriele Trombetti, Alessandro Orro, lvan Merelli,
Luciano Milanesi — FreshBlast: A Blast Grid
Implementation with Database self-Updating and
Adaptive Replication — NETTAB2006 proceedings
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7.4.2 Oral presentations in conferences

| personally presented my work in the following international (except INFN
workshop which is national) conferences related to Grid Computing and/or
Bioinformatics:

December 18-20", 2006 INFN Workshop, Padova, ltaly
April 24-27", 2007 HealthGrid Conference, Geneva, Switzerland

May 9-11", 2007 EGEE User Forum / 20" Open Grid Forum,
Manchester, UK

May 14-19", 2007 Biomed Grid School, Varenna, Italy
October 1-5", 2007 EGEE'07 Conference, Budapest, Hungary

December 10-13", 2007 BioinfoGRID Symposium 2007
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