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Abstract

The recent development of computer technologies enabled test institutes to
improve their process of item selection for test administration by means of auto-
mated test assembly (ATA). A general framework for ATA consists in adopting
mixed-integer programming models which are commonly intended to be solved
by commercial solvers. Those softwares, notwithstanding their success in han-
dling most of the basic ATA problems, are not always able to find solutions
for highly constrained and large-sized instances. Moreover, all the model co-
efficients are assumed to be fixed and known, an hypothesis that is not true
for the item information functions which are derived from the estimates of item
response theory parameters. These restrictions motivated us to find an alterna-
tive way to specify and solve ATA models. First, we suggest an application of
the chance-constrained (CC) approach (see Charnes and Cooper, 1959) which
allows to maximize the α-quantile (usually smaller than 0.05) of the sampling
distribution function of the test information function obtained by bootstrapping
the calibration process. Secondly, for solving the ATA models, CC or not, we
adapted a stochastic meta-heuristic called simulated annealing (SA) proposed by
Goffe (1996). This technique can handle large-scale models and non-linear func-
tions. A reformulation of the model by the Lagrangian relaxation helps to find the
most feasible/optimal solution and, thanks to the SA, more than one neighbour-
hood of the space is explored avoiding to be trapped in a local optimum. Several
simulations on ATA problems are performed and the solutions are compared to
CPLEX 12.8.0 Optimizer, a benchmark solver in the linear programming field.
Finally, a real data application shows the potential of our approach in practical
situations. The algorithms are coded in the open-source framework Julia. Two
packages written in Julia are released for solving the estimation and assembly
problems described in this dissertation.
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1

1 Introduction

In the field of educational measurement, a test is a collection of items developed to
measure students’ abilities. In order to make different measurements comparable,
tests should be designed and developed providing evidence of fairness, reliability
and validity (AERA, 2014). These ideas have evolved together with the develop-
ment of new test theories but they are all based on the necessity of controlling
the testing environment and procedures in such a way differences among testing
conditions do not influence the scores. The test assembly is a process by which
items from an item pool are selected to build test forms conforming to content
and psychometric specifications. Thus, it plays a crucial role in this framework
because it allows to control the entire protocol of the test production, from the
item construction, since the features of the pool depend on the requirements on
the final tests, to the final test building: the core of test assembly.

Large testing programs, having better access to modern digital resources like
sophisticated item banking systems, opened the possibility to improve their test
assembly process by means of automated test assembly (ATA). ATA differs from
manual test assembly because the item selection is performed by optimizing math-
ematical models through specific softwares, called solvers. Therefore, it has sev-
eral advantages over manual test assembly. First of all, if the tests specifications
are defined rigorously, it will reduce the need to repeat some phases of the test
development. More importantly, ATA is the only way to find optimal or near-
optimal combinations of items starting from large item banks, for which manual
assembly is not feasible due to the large number of possible solutions. As a con-
sequence, ATA is fundamental to make measurements comparable while reducing
operational costs.

In practice, the ATA models are not always easy to solve because they involve
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a very large number of decision variables and constraints. Moreover, with the
standard form suggested in van der Linden (2005) it is not possible to define any
part of the model in a non-linear manner unless one resorts to approximations.
Another limit of classical optimization models, until now applied for ATA, is that
they consider each variable as fixed or known. This may be valid for prices,
amounts of product but not for estimates, key elements in ATA models. In fact,
most test assembly models are based on item response theory (IRT) which is used
for estimating the item characteristics, a process called parameter calibration, and
the ability of the examinees. Subsequently, IRT item parameters and the item
information function (IIF) are examples of uncertain inputs in ATA models.

1.1 Main Contributions

The restrictions mentioned above motivated us to find an alternative way to
specify and solve ATA models. We proposed a test assembly model based on
the chance-constrained (CC) approach (see Charnes et al., 1958) which allows
to maximize the α-quantile of the sampling distribution of the test information
function (TIF). The proposed model is an extension of the classical MAXIMIN
ATA model (van der Linden, 2005, p.69-70) in which the minimum TIF among
all the tests is maximized. The sampling distribution of the TIF is obtained by
adopting the bootstrap technique in the calibration process (Bradley and Tibshi-
rani, 1993; Shao and Tu, 2012). In this way, we ensure that, independently on
the situation in which the calibration has been made, we have a high probability
to have a certain error (possibly low) in the ability estimation.

The proposed chance-constrained model, as already mentioned, is based on
the sampling distribution of the TIFs of the assembled tests. This element is
constructed starting from the calibration process, that is the procedure in which
the IRT item parameters, such as discrimination and easiness, are estimated. The
estimation of item parameters is conducted by assuming a 2-parameter logistic
(2PL) univariate latent model and introducing the cubic-spline interpolator and
extrapolator in the quadrature rescaling step.

At the end of this phase, our first contribution takes place. A bootstrap
procedure is performed resampling the response data and generating a sample of
estimates for each item parameter. Then, the item information function (IIF)
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for all the items in the pool, at a predefined ability point, is computed using the
bootstrapped samples. These quantities are then used in the chance-constrained
model to compute the α-quantiles of the TIFs and the model is optimized by
looking for the best combination of items which produces the tests with the
highest quantiles. The use of the bootstrap technique in the calibration is not
only propaedeutic for our test assembly model but it is also a method to retrieve
additional information on the variability of the item parameters without affecting
their native underlying interdependence1.

As a second contribution, together with the definition of the chance-constrained
test assembly model, we developed an algorithm based on a stochastic meta-
heuristic called simulated annealing (SA) proposed by Goffe (1996) to solve the
ATA models, chance-constrained or not. This technique can handle large-scale
models and non-linear functions. Thanks to the Lagrange relaxation and to a
random variable that accepts or not an inferior solution, the useful properties of
our algorithm are essentially two: it can always find the most feasible set of test
forms and tries to avoid to be trapped in a local optimum seeking for the globally
optimal set of test forms.

Finally, all the algorithms described in this work are coded in Julia (Bezan-
son et al., 2017). This choice has been made to achieve the best performance in nu-
merical analysis and for the availability of many valuable and customizable pack-
ages for optimization. Two packages have been developed: IRTCalibration and
ATAjl. They are available at https://github.com/giadasp/IRTCalibration
and https://github.com/giadasp/ATAjl respectively. The documentation is
still in progress. The first package, IRTCalibration, allows to calibrate an item
pool following a unidimensional model with the one-parameter logistic or two-
parameter logistic formulations, respectively 1PL or 2PL, estimated on dichoto-
mous response data. IRTCalibration uses the techniques described in Chapter
3. Furthermore, it provides the bootstrap tool to derive the sampling distribu-
tion functions of the item parameters. The second package, ATAjl, implements
the algorithms explained in Chapter 4 to assemble tests optimizing the classical
MAXIMIN ATA model and the proposed chance-constrained MAXIMIN ATA

1We do not sample independently from the empirical distribution of each item parameter,
instead, we resample the data following the bootstrap principle and we let the calibration
algorithm produce directly the TIFs samples. This procedure should preserve the natural
relationships between the item parameters.

https://github.com/giadasp/IRTCalibration
https://github.com/giadasp/ATAjl
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model.

1.2 Outline of the Dissertation

The following figure gives a depicted idea of the entire framework we developed
in this thesis:

Output
Input      

Item Pool

i C_1 aIRT bIRT … ExpSc

1 M1 0.200 -5.023 … 0.002

2 M2 1.200 -0.001 … 0.520

3 M1 0.003 0.041 … 0.424

… … … … … …

I M1 0.890 3.420 … 0.890

Test 1

i C_1 … ExpSc

4 Math1 … 0.031

7 Math2 … 0.421

2 Math2 … 0.520

… … … …

40 Math1 … 0.789

Test 2

i C_1 … ExpSc

51 Math1 … 0.031

31 Math2 … 0.421

27 Math2 … 0.520

… … … …

125 Math1 … 0.789

Test …

Test T

i C_1 … ExpSc

25 M1 … 0.031

7 M2 … 0.421

2 M2 … 0.520

… … … …

40 M1 … 0.789

0 0 … 0

1 0 … 1

0 0 … 0

1 0 … 0

… … … …

0 0 … 1

Items x Tests design:
(0-1 Matrix, I x T)

...

Ch. 4:
• CC test assembly model;
• SA based heuristic.

Ch. 3:
• Cubic-spline;
• Bootstrap.

: Final report

Figure 1.1: Framework of the thesis, a depiction.

Since, nowadays, several test assembly models are either based on classical
test theory (CTT) or IRT, the dissertation starts, in Chapter 2, with a brief
excursus on the available test theories and continues with an introduction to
the automated test assembly models. The latter topic is enriched describing the
model relaxation using the Lagrange multipliers.

It follows, in Chapter 3, a software benchmarking, in which Julia is proposed
as a programming language for calibrating the IRT item parameters following
the 1PL and 2PL latent variable models. In this setting, the empirical histogram
method by Woods (2007) is revised and a cubic-spline method is proposed to
interpolate and extrapolate the observed distribution of the ability at predefined
quadrature points. A simulation study to compare estimation accuracy and com-
putational performance of our algorithm with respect to the R package mirt has
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been conducted. As a matter of fact, mirt is a high-level tool to estimate a large
class of IRT models. It includes methods for the analysis of unidimensional and
multidimensional models both with an exploratory and confirmatory approach
for binary and polytomous responses. Moreover, for completeness of the package
and for comparing the two approaches in the simulation study, both a parametric
and a non-parametric bootstrap technique are provided within the software and,
taking the standard setup defined in Section 3.2.1, we illustrate the results of their
application by means of a simulation study.

In Chapter 4, the CC test assembly model is defined and a specific empiri-
cal version is proposed which allows to assemble parallel test forms in terms of
percentiles of the TIFs. To solve the model the SA meta-heuristic is used. At
last, the performance of the heuristic is tested in optimizing both the CC and
MAXIMIN models on a simulated item pool always following the already men-
tioned standard setup. At the end, we show an application of the CC MAXIMIN
ATA model on real data coming from the 2018/2019 standardized assessment
program of INVALSI (Italian National Institute for the Educational Evaluation
of Instruction and Training). This exercise is limited because the response data
were available only for 39 items. However, with the aim to show that our ap-
proach is applicable to real-world situations, we decided to replicate the estimates
of the item parameters 8 times in order to have a richer item pool with length
312.

Conclusions and further research ideas are provided in Chapter 5.

Supplementary tables and figures, which cannot be displayed floating in the
body of text are reported at the end of the essay, in Appendix A. All the files
used and produced during the simulation studies and the real data application
are stored in the AMSACTA repository Spaccapanico P. (2020).
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2 Test Theories and Automated
Test Assembly Models

The educational assessment addresses the problem of measuring the ability of
students by modeling their responses to a test under a statistical perspective.
Such test is a set of items selected from an item bank. A key aspect is that,
as with any other measurement instrument, different measurements of the same
ability should be comparable. In order to meet this requirement, tests should
be standardized. A test is considered to be standardized when the test proce-
dures are fixed in such a way that differences among testing conditions, times,
and places, do not influence the scores (Verschoor, 2007). The accuracy of mea-
surement (test reliability) and the degree to which a test actually measures the
ability it is supposed to measure (test validity) are fundamental issues in the
development of standardized tests and in the production of a fair scoring system.
As the test takers do not necessarily get the same test, it is fundamental that the
conditions of reliability and validity are fulfilled through a systematic approach to
test development, in which the assembly procedures play a very important role.

According to Downing (2006), several phases in such an approach can be
distinguished: project plan, content definition, test specifications, item develop-
ment, item banking, pretesting, item bank calibration, test assembly, test pro-
duction, test administration, and reporting results. Several methods are used for
test assembly nowadays. A common practice is selection by hand, usually after
item analysis either based on classical test theory (CTT) or item response the-
ory (IRT). However, in the last decades, modern technologies like sophisticated
item banking systems and of open-source tools allowed the testing institutes to
improve their assessment programs and test assembly process by substituting
manual selection with automated test assembly (ATA).
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Moreover, the development of computer technologies enabled national test
institutes to introduce the use of computers in educational testing. For example,
in 2018 the Italian National Institute for the Educational Evaluation of Instruc-
tion and Training (INVALSI) adopted computer-based testing (CBT) for grades
8 and 10 instead of the traditional paper and pencil (P&P) testing. This chap-
ter discusses the basics of ATA and the specific characteristics of the assembly
procedures used in classical settings for automated test assembly. In Section 2.1,
the key theoretical issues of CTT and IRT, which represent the fundamentals of
ATA, are briefly introduced. In Section 2.2.2, the main features of the optimiza-
tion models used in ATA are presented together with an in-depth description of
the Lagrange relaxation (Fisher, 1981) applied to the mentioned ATA models.

2.1 Test Theories

In educational and psychological measurement, the process of test development
follows specific steps (see e.g., Downing, 2006) which are guided from strong
methodological test theories: CTT and IRT, respectively described in Lord (1952)
and Hambleton and Swaminathan (1985) and Hambleton et al. (1991). The
statistical framework of test theories was instead introduced in Lord and Novick
(1968). The major focus of CTT is on test-level information, while IRT primarily
focuses on the item-level information. Especially IRT provides a good framework
for automated test assembly methods because it is possible to compute the item
Fisher information, a key object used to build optimal test in terms of accuracy
of ability estimation.

2.1.1 Classical Test Theory

The fundamental assumption of CTT is that the true score of a person on a mea-
surement, which is an unobservable variable, is the expected value of the observed
raw score, i.e., the expected number-correct score over an infinite number of in-
dependent test administrations (Novick, 1966; Lord and Novick, 1968). Given a
person n, the observed score Xn is defined as the sum of the true component and
a random error component, as follows

Xn = τn + εn, (2.1)
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where τn is the true score and εn is the normally distributed error term with
expected value equal to zero and constant variance. Measurement errors are
assumed to be uncorrelated over repeated administrations.

Within CTT, the test development process is based on checking the test
validity and test reliability. In particular, the fundamental concept of reliability
is concerned with the internal consistency of the test, i.e., the degree to which all
item scores in a test correlate positively with one another. Given an item bank
with items indexed by i = 1, . . . , I and let It indicate the set of items taken in
test t, the most popular index used to assess test reliability is the Cronbach’s α
Cronbach (1951), which is defined as

α = |It|
1− |It|

(
1−

∑
i∈It

σ2
i

σ2

)
, (2.2)

where |It| is the cardinality, i.e. the length of test t, σ2 is the variance of the
total test score and σ2

i is the variance of item i. The closer α to 1, the higher
the test reliability. Unfortunately this function is non-linear with respect to the
items and hence is not actively used in test assembly models which are usually
linear. However, it can be employed to assess the consistency of the assembly
results.

Two other item properties play an essential role in CTT: item difficulty and
item discrimination. For dichotomously scored items, the difficulty of an item i,
in the item bank, is defined as the expected score given by a randomly selected
examinee from the population of interest and is usually denoted by πi or p-value
pi. The item discrimination is operationalized as the point-biserial correlation
between the item score and the raw observed test score and denoted as ρit for
item i and test t.

The main limitations of CTT are the test-dependent score, the existence of
a single standard error of measurement for the population, and the focus at test
level. These drawbacks are overcome by using IRT.
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2.1.2 Item Response Theory

An exhaustive introduction ab IRT models can be found in Lord and Novick
(1968) and Hambleton et al. (1991). Here, we are going to discuss IRT models
with the only intention to supply their fundamental ideas and statistical notation
needed to understand the subsequent sections. Very briefly, an IRT model ex-
presses the relation between the observable variables (the item responses) and the
unobservable, latent ability through a probabilistic model. It is assumed that the
performance of an examinee can be explained through his/her latent ability(ies).
The most popular IRT models are based on the unidimensionality assumption,
i.e., the existence of a single latent ability independent between test-takers and
the correct modeling of the phenomenon. However, multidimensional IRT models
have been developed as well. A second assumption is local independence, which
means that the item responses are statistically independent, conditional to the
specification of the correct dimensionality (a single ability or a set of abilities).

A unidimensional IRT model for dichotomous items (e.g., correct-incorrect)
expresses the probability of endorsing an item as a function of the underlying
ability and a set of item parameters representing the item properties through a S -
shaped curve called item characteristic curve (ICC). This function is nonlinear in
the ability, and it is monotone increasing because the idea behind these models is
that the higher a person is located on the latent trait the higher is the probability
she/he will give a correct answer. Different IRT models are characterized by the
item response type, the number of item parameters, the latent ability structure,
and the functional form.

The Rasch model, also known as the one-parameter logistic (1PL) model, has
an ICC expressed by the following formula

Pi(θ) = exp(bi + θ)
1 + exp(bi + θ) , (2.3)

where Pi(θ) is the probability of a correct answer to item i for an examinee
of ability level θ ∈ (−∞,∞), and the parameter bi ∈ (−∞,∞) represents the
easiness of the item i. We opted for this parametrization because it simplifies the
computations.

An example of ICCs for the Rasch model is shown in Figure 2.1. Note that
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the curves differ only by their location on the ability scale: the easiest item is C1
while the most difficult one is the C4. In fact, the Rasch model assumes that the
easiness parameter is the only item characteristic that influences the examinee’s
performance.
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Figure 2.1: ICCs of 4 items C1-C4 with different difficulties
according to the Rasch model.

IRT models allow the simultaneous estimation of the item parameters and
the examinees’ abilities. The calibration process usually involves the estimation
of item parameters from pre-test response data. The scoring phase deals with
the estimation of the ability scores of the candidates. Once the item parameters
have been estimated, it is possible to understand how precise the test is at various
ranges of the latent ability by using the test information function (TIF) which is
defined as the sum of the item Fisher information for all the items in the test.
In fact, under the maximum likelihood (ML) scoring, the Fisher information is
asymptotically equal to the inverse of the variance of the ML estimator as follow,

I(θ) = 1
Var(θ̂|θ)

. (2.4)
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The TIF has a very favourable property that is the additivity (and hence linearity)
over the items of a test. Given a test with k items, the TIF is equal to

I(θ) =
k∑
i=1

Ii(θ), (2.5)

where Ii(θ) is the item information function (IIF) for item i. Expressions for
the IIFs can be easily derived within the framework of IRT. For example, for the
Rasch model, the IIF of item i is equal to

Ii(θ) = Pi(θ)(1− Pi(θ)) = exp(bi+θ)

[1 + exp(bi+θ)]2 . (2.6)

An example of IIFs for the Rasch model is shown in Figure 2.2. The items are
maximally informative (information equal to 0.25) at the ability level correspond-
ing to the easiness parameter.
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Figure 2.2: IIFs of 4 items C1-C4 according to the Rasch model.

Figure 2.3 shows a test information function for a test with 10 items. The
Fisher information function is a critical element in test assembly because of its
linearity and its easy interpretation. Tests can be assembled merely through
the selection of appropriate items out of an item bank, one way to do so is
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to use mathematical programming techniques like 0-1 linear programming (LP)
or mixed-integer linear programming (MILP) models. Using these approaches
the tests can be built by, for instance, maximizing the TIF at predefined θ points
(MAXIMIN in this dissertation) or matching it with known optimal values (MIN-
IMAX) with linear restrictions on the values of items properties.
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Figure 2.3: An example of test information function (TIF).

The two-parameter logistic (2PL) model (Birnbaum, 1958) is a generalization
of the Rasch model. Like the Rasch model, the 2PL assumes that the probability
of a correct response to an item i depends on the difference between the respon-
dent’s trait level θ and the easiness of the item bi. Also, the 2PL postulates that
for every item, the association between this difference and the response probabil-
ity depends on an additional item discrimination parameter: ai. The ICC of the
2PL IRT model is given by:

Pi(θ) = exp(bi + aiθ)
1 + exp(bi + aiθ)

. (2.7)

The probability of a positive response (e.g., solving an item correctly) is
strictly monotonic, increasing in θ and bi. The item discrimination parame-
ter characterizes how fast the probability of endorsing the item approaches 1.00
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with increasing trait level when compared to other items. In other words, the
model accounts for the possibility that responses to different items are not equally
strongly related to the latent trait. The discrimination parameter describes how
well a particular item discriminates between examinees with different trait levels
compared to other items on the test.

We decided to focus on the 2PL model because it is widely used in practical
applications, De Simone and James (2015)

2.2 Automated Test Assembly

In the late 1970s, the transition from paper-and-pencil to computer-based tests
has begun in the United States, increasing the efficiency and the accuracy of the
assessment tools. First of all, the administration of tests by computers stream-
lined the process of data collection and recording, allowing to have scores im-
mediately available and free of data entry errors. Secondly, skills and variables
that could not be assessed or measured by paper-and-pencil tests like higher-
level thinking skills, complex problem-solving and response times now are quickly
recorded and evaluated thanks to the computers. The growing number of creden-
tialing exams for allowing the practice of a profession, admission tests for granting
the access to the universities and standardized national tests for comparing abil-
ities among different settings increased the importance of the use of test scores
and hence the content and statistical features of the tests became crucial for the
test validity and reliability.

ATA was born in this framework where fulfilling several specific requirements
on the tests such as reducing the length of the test, maximizing the precision of the
ability estimates, building tests with the same difficulty level and moreover, were
needed. In practice by ATA models, a test developer can impose any content and
statistical criteria, from here called constraints, by specifying them in the form
of linear (in)equalities. Also, a test developer could choose an objective function
to serve as the goal for test assembly. Therefore the computer can find a set of
test items that optimally meet these specifications. It is clear that test assembly
is at the heart of the test development process but the automatically produced
test is only a first draft of tests that could then be reviewed and re-examined by
committees.
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At the time when the test is assembled, the input is required from three other
processes: test specification, item construction, and test data analysis. A good
test needs good specifications, good items, and good data.

2.2.1 The Item Bank

Once the calibration has been done, the items and their estimated and structural
properties are stored in the item bank (or item pool). Afterward, we can move
on to the test assembly procedure in which the items will be selected depending
on those distinctive characteristics.

Table A.1 shows an example of the structure of an item bank with I items,
where the items are displayed by row while in the columns we find the items
features, from left to right: the identifier (ID), the IRT difficulty parameter (b)
together with its standard error (bse), CTT difficulty (p-value), content attributes
(TYPE, PROCESS, DOMAIN), and relational attributes that specifies if the item
belongs or not to a specific set (FRIEND SET 1, FRIEND SET 2, ENEMY SET
1, ENEMY SET 2).

Examinees can get different sets of items because, thanks to the calibration
via IRT, the items are set on the same scale and the examinees’ scores can be
compared.

2.2.2 Types of Assembly Models

Given an item bank containing a sufficient number of calibrated items, is it pos-
sible to assemble one or more test forms which features can be similar or diverge.
When we need to assemble only one test form we are speaking about single tests
assembly models while if the tests are more than one the models are for multiple
tests assembly, in particular, if the obtained ones are similar under their psycho-
metric characteristics they are called parallel 1. In this work, we will focus on the
latter category of automated test assembly models.

To solve this type of problems in the last decades three modes of automated
test assembly became prevalent: sequential, simultaneous single or multiple test
assembly and adaptive tests. By the first two, test forms are entirely built before

1Other details in Section 2.2.5.
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the administration of the test while in the adaptive framework, each test form is
assembled during the testing procedure.

Sequential test assembly

The straightforward technique for assembling single or multiple test forms is to
populate the forms with items in a sequential way. This is being done by selecting
items or groups of items and removing them from the pool; then the model is
adapted to the new pool to try to fit the next form. In the case of assembling
parallel forms, this method has two serious disadvantages. First, if the forms are
assembled one after the other, the value of the objective function for the solution
of the model tends to decrease due to the fact that the items with the best values
will be selected first. As a consequence, the forms will not be parallel. The
second disadvantage of this approach is the possible infeasibility of later models
in the sequence. On the other hand, by this type of model, an extensive range
of functions can be optimized, e.g., the linear structure of the problem can be
relaxed. Most of these problems nowadays are solved using ad hoc greedy and
heuristic techniques.

Simultaneous test assembly

In the sequential approach, an incremental number of different models must be
optimized in order to obtained multiple forms causing the disadvantages cited
in the last paragraph. Those can be overcome by applying simultaneous test
assembly models in which the solution, and hence, the test forms, is obtained by
solving only one model. They are usually represented by 0-1 integer program-
ming problems and solved by linear programming techniques. The model can be
reformulated as a mathematical optimization problem using decision variables.
Decision variables are variables defined such that the solution of the optimization
problem (i.e., the set of values for which the objective function is optimal and
all constraints are satisfied) identifies the best decision that can be made. The
decision variables {x}it are binary (0-1) since they represent the inclusion (1) or
exclusion (0) of the item i in the test t. In the last decades, the algorithms needed
to solve such optimization problems were improved, and nowadays, powerful im-
plementations of them are available as commercial or open-source software.
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Adaptive tests

In the adaptive approach, one item is optimally picked from the pool at a time.
The person’s ability estimate is updated during the test, and each next item is
chosen to be maximally informative at the last ability update. The test is then
tailored to the candidate. Because the ability estimates converge to the person’s
true ability level, item selection improves during the test and the ideal test with
maximum information at the person’s true ability level is approached. In the
early 1990s computerized adaptive testing (CAT) was implemented in large-scale
testing programs, and nowadays large numbers of subjects are tested worldwide
using this type of test assembly. One of the most important benefits of this
method is that it’s more efficient, i.e., it is possible to get more precise ability
estimates with fewer items than the previous standard approaches, but at the
cost that it’s quite impossible to ensure the congruence between tests since all
the test takers will get a different set of items from the pool.

The description of different approaches to assemble tests is not finished here.
Because of its advantages, the approach dealt with in this report is the simulta-
neous tests assembly mode. In Section 2.2.4 and Section 2.2.5 we introduce
the reader to the standard test assembly models used to build first, a single test
form and secondly, as a generalization, multiple test forms.

2.2.3 Finding the Solution of an ATA Model

In the simultaneous framework, an ATA model is considered as a particular case of
a MILP model. In order to find the solution of this class of models, a MILP solver
is needed. A MILP solver is nothing else than a software which solve the model,
i.e. finds the most satisfying solution. In order to find the combination of items
which is optimal concerning the ATA problem, the model must be written in a
mathematical formulation and translated in the programming language supported
by the chosen MILP solver. Examples of open-source solvers written in C are
cbc (Forrest et al., 2019) and lp_Solve (Berkelaar et al., 2004). Unfortunately,
as stated by several benchmarking studies, of which the MIPLIB 2017 (2018)
collection is an example, commercial MILP solvers outperform their open-source
similars. Nowadays, the best commercial alternatives on the market are CPLEX
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(CPLEX, 2017) and Gurobi (Gurobi, 2018) (however, they are free to use for
academic purposes) with a special mention to the former.

An issue for the practitioners is the level of the programming language used
to be interfaced with the solvers which is usually lower than languages used for
statistical tasks, such as R. This is why some packages to solve ATA model have
been developed in R, xxIRT2 is an example. This type of tools is usually just
wrappers, which means that they just call the code of the MILP solvers. The
solver is not natively written in R. For example, the package xxIRT, wraps the
solver lp_Solve which is widely recognized to not be the best performing MILP
solver available (see Gearhart et al., 2013). Despite its easiness of use in terms of
closeness to human language and its computational speed, there is no package for
ATA written in Julia. These reasons motivated us to develop a package for doing
ATA in Julia which is available at https://github.com/giadasp/ATAjl and
to take CPLEX as a benchmark solver for making comparisons in the applications
of Chapter 4.

2.2.4 Single Test Assembly

As already discussed, a new testing program starts with formulating the set of
specifications for the test to be met, that here we call desiderata. Sometimes they
are verbally expressed as a set of learning objectives or a list of dos and don’ts
for the test developer, but they can also be well-structured in tables specifying
how many items should have certain content or even better the distribution of
items according to their specific characteristics.

Once the desiderata have been collected, they must be translated into a stan-
dardized language used in test assembly problems. The standard form in these
problems is an objective function to be optimized subject to several constraints,
where the latter define a possibly feasible set of tests for a given item bank, and
the former expresses our preferences for the tests in this feasible set. If the specifi-
cations have been formulated in a simple, concise, but complete way, it is possible
to determine whether they are objectives or constraints. These requirements are
crucial for a correct translation of the desiderata into the standard language for
test assembly problems: disambiguations and possible complications may arise

2https://cran.r-project.org/web/packages/xxIRT/index.html

https://github.com/giadasp/ATAjl
https://cran.r-project.org/web/packages/xxIRT/index.html
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in test design if these principles are not satisfied. An example of verbal test
specifications is described in Table 2.1, which is partially extracted from van der
Linden (2005).

1. Average p-value of each test between .40 and .60
2. Number of items on applications equal to 24
3. Reliability of the test should be as high as possible
4. Items 73 and 100 never in the same test
5. Test information function as close as possible to the target
6. Items 33, 45 and 12 must be in the same test

Table 2.1: Examples of desiderata.

The specifications in Table 2.1 may represent either objectives or constraints;
for example, points 1,2,4 are constraints while 3 and 5 are objectives. It is clear
now that the objectives involve maximize or minimize some attributes, such as
minimize the gap between the test information function at some θ point to its
target (5) or maximize the reliability of the test (3) and on the other hand con-
straints impose a bound on an attribute of the test or of the items, such as
limiting the difficulty of the test (1), fixing the number of items having spe-
cific characteristics (2) or considering enemy sets (4) or also item (friend) sets
(6). An exhaustive classification of specifications together with examples of not
well-expressed desiderata can be found at pages 34-39 of van der Linden (2005).

Standard form of a test assembly problem

If a set of desiderata is well specified they can always be represented in the
standard form of Table 2.2.
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optimize Objective function
subject to

Constraint 1
Constraint 2
...
Constraint N

Table 2.2: Standard form of a test assembly problem.

Only one objective can be optimized at a time; if we have more than one
function to optimize some tricks can be applied to transform the objectives into
constraints. On the other hand, there is no upper limit for the number of con-
straints, provided our solver can handle the problem. If at least one combination
of items that meets all the constraints do exist, then the set of these combinations
is called feasible set; if this set is empty, we say that the model in infeasible. The
subset of tests in the feasible set that optimizes the objective function is called
optimal feasible solution.

Decision variables

Modeling a test assembly problem does not imply only defining objectives and
constraints, but we also need the so-called decision variables which represent
the possible combination of items that compose the test form in a mathematical
formulation. If we need to assemble a single test from a pool of I items, we can
choose as decision variables I binary variables in the form:

xi =

1 if item i is in the test,

0 otherwise.

We can also write the xi in an algebraic way using the vector x of length I.
Therefore we have 2I possible combinations of values the vector x can take. These
combinations decrease in number if we add constraints to the model. In the
following section, we will also use nonbinary variables like integer o continuous,
which are often useful to reduce the number of objectives in the problem. Once
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the decision variables have been identified, the process of modeling a test assembly
problem goes through the steps of modeling the constraints and objectives and
solving the model looking for an optimal solution. In the following Section, we
will present the basic formulations for some common types of constraints and
objectives. The last step consists of solving the model by using a computer
program which implements some mathematical or numerical algorithms.

The model for assembling a single test

The models presented in this Section are based mainly on item response theory
attributes and we will make an almost exhaustive list of categories of constraints
that can be added to a model for single test assembly together with possible
objective functions.

The standard model for the assembly of a single test with a generic quanti-
tative objective from a pool of I items indexed by i = 1, . . . , I is

optimize
I∑
i=1

qixi (objective) (2.8a)

subject to

nmin
c ≤

∑
i∈Vc

xi ≤ nmax
c , ∀c (categorical constraints) (2.8b)

bmin
q ≤

I∑
i=1

qixi≤ bmax
q , (quantitative constraints) (2.8c)

nmin ≤
I∑
i=1

xi ≤ nmax, (test length) (2.8d)
∑
i∈Ve

xi ≤ 1, ∀e (enemy sets). (2.8e)

Then, the definition of variables

xi ∈ {0, 1}, ∀i (decision variables).

In case the sums in the constraints are bounded only on one side, we only need
one of the two inequalities.
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For a qualitative variable, we use Vc to represent the set of indices of the vari-
able of the items in subset c. Allowing the test to have several items with specific
qualitative attribute represented by Vc between nmin

c and nmax
c means adding a

categorical constraint to the model. An example of a categorical constraint is “the
test must contain at least 10 items in problem-solving”, where the set of items in
the pool that has the attribute “problem solving” is represented by Vproblem solving

and nmax
problem solving = 10.

On the other hand, if we want to bound the value of a quantitative variable
(i.e. that can take numerical values) addressed by the symbol q between the values
bmin
q and bmax

q we are constraining the model adding a quantitative constraint
where qi is the value that the item i takes for that variable. Suppose we want
to assemble a test with the following criterion “the maximum of words must be
300”, qi will serve as the number of words displayed by the item i and bmax

q = 300.

The interpretation of the test length constraint is straightforward as it is a
special case of a quantitative constraint where qi = 1 for each i = 1, . . . , I. If
there are enemy sets in our pool then the items in one of these sets, called Ve,
cannot be picked together, e.g., the desideratum “items 23 and 46 cannot be
in the same test” means that items 23 and 46 are enemies and both are in the
enemy set Ve. Therefore the sum of the corresponding decision variables x23 and
x46 cannot be more than 1.

Item sets

Tests with sets of items organized around common stimuli (known as item sets or
friend sets) are popular because of the efficiency of their format. By combining
more than one item with the same stimulus, we can ask questions using more
complex stimuli, such as reading passages, descriptions of cases, or problems
with data in a set of tables or graphs, without having to sacrifice too many items
for the test to meet the time limit. However, the presence of such sets in the item
pool complicates the process of assembling the test. In particular, if the items
are grouped in S item sets or stimuli indexed by s, there are three ways to deal
with this problem (see van der Linden, 2005).

• The power set method that consists in summarizing all the quantitative
and qualitative attributes by summing or averaging them taking as groups
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the item sets; if we only need to constraint the test at the set/stimuli
level the problem decreases in size since you don’t have I decision variables
anymore but just S. This method is not efficient if you have variables that
cannot be summarized, such as standard errors and if you want to keep
some constraints at item level since you need to consider again the original
decision variables xi increasing the size of the model.

• The pivot-item method in which each set is represented by a pivot decision
variable xi∗s arbitrarily chosen. Therefore, we can use the variable for a
pivot item as a carrier of the attributes of both its stimulus and item set,
and we can drop the stimulus variables in the model.

• The two-stage method that is a sequential approach with two phases, in the
first, stimuli are selected and secondly, the model chooses the items with
those stimuli.

Given the earlier warnings about sequential approaches we do not suggest the
two-stage method and since all the variables in our item bank are summarizable
(e.g., the item information function is additive, so it is possible to sum it for all
the items in the stimulus) we prefer to adopt the power set method which helps
to decrease the size of the problem. The power-set formulation needs a phase
of preprocessing of the item bank. Instead, for the formal representation of the
model, we refer to van der Linden (Section 7.2, 2005).

Single test MINIMAX

Once we defined all the constraints and checked that the model is feasible, we need
to choose an objective to optimize. A first option is to choose absolute targets for
the TIF, targets are the values that a goal TIF assumes on a fixed number of θ
points along the θ scale, these values must be chosen by test specialists who knows
how much precision is required to estimate the abilities of the students at each
ability level. That is the reason why absolute targets are used almost exclusively
when tests are assembled to be parallel with respect to a known reference test.
Formalizing this requirement in the standard form of test assembly models will
produce a multi-objective test assembly problem that must be reformulated using
the MINIMAX approach explained below.
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In particular with the following addition to the model (2.8) we ask that the
TIF of the resulting test approximates with minimum negative and positive de-
viations (i.e., with the highest precision) the chosen goal TIF in a finite set of
points V on the θ scale, which we denote as Tk with k ∈ V :

minimize y (objective) (2.9a)

subject to

I∑
i=1

Ii(θk)xi ≤ Tk + y, ∀k ∈ V (2.9b)

I∑
i=1

Ii(θk)xi ≥ Tk − y, ∀k ∈ V (2.9c)

y ≥ 0.

More θ points are chosen more the TIF of the assembled test will meet the
desired one, usually 3-5 points are enough to have a good approximation.

Single test MAXIMIN

If a reference test or absolute targets are not available, an alternative approach
is trying to achieve the best predictive validity for the test, that is maximizing
the TIF in some chosen theta points. This goal can be met not only setting the
location of the peaks of the TIF but also defining its shape in the entire θ scale,
which is to say imposing relative targets.

So, denoting with Rk the relative targets for each θk with k in the chosen set
V of ability points in which we want to control the shape of the TIF, we must fix
one of the relative targets to a value (e.g. R1 = 1) and all the other target values
must be adjusted correspondingly trying to reproduce the wanted shape. Like
the absolute target model, this method leads to have more than one objective
function and, also in this case, it is possible to rely on a simplifying approach
called MAXIMIN. The model can be formalized as follows:

maximize y (objective) (2.10a)
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subject to
I∑
i=1

Ii(θk)xi ≥ yRk, ∀t, k ∈ V (2.10b)

y ≥ 0.

Also here, the practice suggests that the minimum number of θ points in which
maximize the TIF must be 3 or 5.

2.2.5 Multiple Simultaneous Test Assembly

In order to discourage the phenomenon of cheating, it is necessary to administer
different items to the test takers. This can be achieved by building more than one
test form that contains different items preserving some overall mutual psychome-
tric features, such as the same test difficulty or same content structure such as the
same percentage of items of a certain stimulus. These tests are called parallel (or
interchangeable) and the procedure aimed to perform this task is called multiple
test assembly. In particular, test forms are defined to be weakly parallel if their
information functions are identical (Samejima, 1977). On the other hand, test
forms are strongly parallel if they have the same test length and the exact test
characteristic function (Lord, 1980).

As a consequence, we typically have problems with more objectives than those
presented in Section 2.2.4 for a single test assembly. For example, if we assemble
T tests and each test has to meet a target for its information function at K ability
points (the same points for each test t, with t = 1, . . . , T ), the problem has at
least T × K objectives. However, these sizeable multi-objective test assembly
problems can be solved using a direct generalization of the approaches for single
test assembly. In the following, we will present a general model for simultaneous
assembly of a set of tests (that is, as a solution to a single model) that produces an
optimal solution. This type of assembly requires a reorganization of the problem
using a different version of the decision variables. These variables have double
indices3, one for the items in the pool and the other for the test forms. For the

3We use a matrix representation only for a better visual idea, actually they are still vectors
but of bigger size.
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current problem, the variables become

xit =

1, if item i is assigned to test t

0, otherwise

for all i and t. As before, we need to complement these variables with a set of
constraints that keep their values consistent. The adapted single test assembly
model is presented here followed by constraints that arise only in the case of
multiple test assembly.

The model for assembling multiple tests

Using the above decision variables, any model for a single test can be reformulated
as a model for multiple tests. To illustrate this statement, we reformulate the
standard model for a single test in (2.8a)-(2.8e). The model is

optimize
T∑
t=1

I∑
i=1

qitxit (objective) (2.11a)

subject to

nmin
ct ≤

∑
i∈Vc

xit ≤ nmax
ct , ∀c, t (categorical constraints) (2.11b)

bmin
qt ≤

I∑
i=1

qixit≤ bmax
qt , ∀t (quantitative constraints) (2.11c)

nmin
t ≤

I∑
i=1

xit ≤ nmax
t , ∀t (test length) (2.11d)

∑
i∈Ve

xit ≤ 1, ∀t, e (enemy sets) (2.11e)

Then, the definition of variables

xit ∈ {0, 1}, ∀i, t (decision variables)

The changes in (2.11) relative to the original model (2.8a)-(2.8e) are:

1. the replacement of the variables xi by xit;
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2. the extension of the objective function to the case of T tests;

3. the indexing of the bounds in the constraints by t to enable assembling tests
with different specifications.

The generalization of the objective function in (2.11a) is simple and consists
of taking an (unweighted) sum over the tests.

Item sets

The power-set method presented in Section 2.2.4 can be easily generalized to the
case of multiple tests assembly, for the sake of brevity we prefer to skip the details
and still refer to the van der Linden book van der Linden (2005), Section 7.2.

Item use

If we want to control the minimum or the maximum number, respectively nmin
i

and nmax
i , of tests in which an item i can be assigned, we have to consider the

following constraints:

nmin
i ≤

T∑
t=1

xit ≤ nmax
i , ∀i, (item use) (2.11f)

Test Overlap

Since we are creating more than one test form we are not only concerning the
properties of each form singularly but also the relationship between them, one of
these is the test overlap, that is the number of items two forms share. Sometimes
it is not important to control for this specification, especially if an item use
constraint has been fixed. However, if we do not want any overlap between all
the pairs, as an example, we have to add these constraints to (2.11)

T∑
t=1

xit ≤ 1, ∀i. (no overlap) (2.11g)

The latter is not enough if the test developer wants to keep the same but not
a null level of overlap between all the possible pairs of tests. In this case, the
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model has to be modified not only adding new constraints but also a substantial
number of variables (luckily binary). In particular, controlling for test overlap
means adding quadratic constraints of the form:

omin
tt′ ≤

I∑
i=1

xitxit′ ≤ omax
tt′ , ∀t 6= t′. (fixed overlap NON LINEAR)

Those types of constraints must be linearized in order to use the standard LP
solvers, so they must be replaced by the following variables

zitt′ =

1 if item i is both in test t and test t′ (i.e. xit = xit′ = 1)

0 otherwise.

This modification increases the size of the model of I ∗
(
T
2

)
binary variables.

Together with the new variables, the constraints must be replaced by

omin
tt′ ≤

I∑
i=1

zitt′ ≤ omax
tt′ , ∀t 6= t′. (fixed overlap LINEAR) (2.11h)

Integrality constraints:

ziit′ ≥ xit + xit′ − 1 ∀i, t 6= t′ (2.11i)

2ziit′ ≤ xit + xit′ ∀i, t 6= t′ (2.11j)

zitt′ ∈ {0, 1} ∀i, t 6= t′.

The last two constraints are necessary to keep the values of zitt′ consistent with
their definitions.

Multiple MINIMAX

An example of an objective for multiple test assembly is the generalization of the
MINIMAX principle presented in Section 2.2.4, formally

minimize y (objective) (2.13a)
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subject to

I∑
i=1

Ii(θkt)xit ≤ Tkt + wty, ∀t, k ∈ Vt, (2.13b)

I∑
i=1

Ii(θkt)xit ≥ Tkt − wty, ∀t, k ∈ Vt, (2.13c)

y ≥ 0,

where the target values Tkt are indexed by t to allow us to set different targets for
different tests. Besides, a different set of values Vt for each test can be given; we
can specify the target values at a different set of θ values for each test. Finally,
we have added weights wt to have the option of weighting deviations from target
values differently for several tests. If our goal is to assemble parallel tests, the
targets and weights will be equal for all t.

Multiple MAXIMIN

The approach used in Section 2.2.4 may be generalized to the case of multiple
test assembly with this mix of objective and constraints

maximize y (objective) (2.14a)

subject to
I∑
i=1

Ii(θkt)xit ≥ yRkt, ∀t, k ∈ Vt, (2.14b)

y ≥ 0,

where the Rkt may be chosen equal among the tests, i.e. Rkt = Rk′t′ with t 6= t′

and ∀k = k′ ensuring the parallelism.

2.2.6 Lagrange Relaxation

In the previous sections, we introduced the classical linear models for test as-
sembly formalized in the book of van der Linden (2005). In Chapter 4.3 of this
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book, an approach to approximate those models by means of Lagrange multipli-
ers is briefly mentioned, that is a Lagrange relaxation of the test assembly model
(2.11). This method is beneficial in case of infeasibility, a situation very common
in practice when there is a large number of constraints or optimization variables.
For example, when a large-scale test assembly model of the type (2.11) is given
to a MILP solver, it may happen that a set of tests that meets all the constraints
cannot be found, even if the user imposed time limit is very long. This is a very
big issue for the test assembler because, usually, the solver just says that the
problem is infeasible without returning any diagnostic. So, the test assembler
does not know which constraints made the problem infeasible and they do not
have any assembled test in their hands, not even a barely good one.

The Lagrange relaxation (Fisher, 1981) overcomes this issue by including in
the objective function the absolute deviation, called violation, of the incumbent
from the constraints. In this way, we try to solve a simplified version of the
problem, and we obtain an upper bound for the optimal solution of the initial
problem. Even if the problem is highly infeasible, the solver returns the most
feasible combination of variables that maximizes the modified objective function.
Thus if we have the most general optimization model:

maximize f(x) (objective) (2.15a)

subject to

gm(x)≤ 0, ∀m, (constraints) (2.15b)

x ∈ Rd. (decision variables)

Its Lagrange relaxation will be:

maximize f(x)− λ
∑
m

gm(x) (objective) (2.16a)

x ∈ Rd, (decision variables)

where f() ad g() are generic functions from Rd to R and λ is a constant called
the Lagrange multiplier, it has the role to weight the violations of the constraint
in the new objective function. We opt for a modification of the previous model
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to allow the violations to interfere in the optimization only when the constraints
are not met. The (2.16) will become:

maximize f(x)− λ
∑
m

max [0, gm(x)] (objective) (2.17a)

x ∈ Rd. (decision variables)

In the field of neural networks, max [0, gm(x)] is called ReLU activation function
and, in machine learning, it is mentioned as hinge loss and it is used for training
classifiers. In this context this function serves a different purpose but we will
continue to use this names as a reference.

In the case of test assembly, the relaxation of the classical model (2.11) is still
linear. We summarise this approach by an example of the Lagrange relaxation
applied to a single test assembly model of the form (2.8) with an objective function
to maximize. Suppose we have two set of indices mu ∈Mu and ml ∈Ml for upper
and lower bound constraints andm ∈Mu∪Ml. We can rewrite the relaxed version
of the model (2.8) as follows:

maximize β
I∑
i=1

qixi − (1− β)
∑

m∈Mu∪Ml

zm (objective) (2.18a)

subject to

I∑
i=1

cimuxi − ubmu ≤ zmu , ∀mu (generic constraints with upper bound) (2.18b)

−
I∑
i=1

ciml
xi + lbml

≤ zml
, ∀ml (generic constraints with lower bound) (2.18c)

xi ∈ {0, 1}, ∀i (decision variables)

zm ∈ R+, ∀m. (violations)

Note that any of the linear constraints showed in the previous subsections
can be represented as a generic constraint either of the form (2.18b) or (2.18c).
For example, the minimum length of the test can be written as (2.18c) and
the maximum length as (2.18b) where the ci are all equal to 1, lb = nmin and
ub = nmax.
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The definition of zm as a positive real number lets the solver look for solutions
that make the sum of zm go to zero and hence it tries to satisfy all the constraints.

To help the test assembler to control the trade-off between optimality and
feasibility of the final solution, we let them choose the Lagrange multiplier (1−β),
where 0 ≤ β ≤ 1. For example, if the assembler prefers a solution more accurate in
the ability estimation sacrificing the fulfillment of tougher constraints they might
choose a β next to 1. Viceversa, if they need to respect all the requirements in
the desiderata they will select a lower β. The balanced solution can be found
by analysing the results of a first optimization try and it depends on the level of
feasibility of the model together with the highest value that the TIF can assume
given the items in the bank. In chapter 4.2 we will refer to the model without
Lagrange relaxation (2.15) as the strict model, instead, the model of type (2.16)
will be called relaxed model.
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3 IRT Item Parameter
Calibration in Julia

Item response theory (IRT) models, already introduced in Chapter 2.1, are a
class of statistical models which are intended to describe the response behaviors
of individuals to a set of questions which have a discrete outcome. The item
responses are observable manifestation of underlying traits or constructs not di-
rectly measured which are called latent variables. In the framework of latent
class analysis, IRT models hypothesize the latent variable as continuous, instead,
the observed variables are patterns of discrete-valued responses which can be di-
chotomous (correct/incorrect) or polytomous. Common assumptions in IRT are
the unidimensionality of the latent trait since it’s considered to be enough to
describe the individuals’ propensity to endorse the items in the survey and condi-
tional independence of the probability of a correct response given a certain level
of ability. Moreover, IRT models can be seen as a specific type of fixed-effect
or random-effect model (Fox et al., 2006) or, changing the parametrization, they
become a particular case of latent regression models (von Davier and Sinharay,
2010).

Once the model is set, the parameters and the latent variables must be esti-
mated. For example in the 2-parameter logistic (2PL) model (Bock and Mislevy,
1982), easiness and discrimination power of the items must be quantified. Several
algorithms to retrieve the estimates exist, most of them are based on the expecta-
tion maximization (EM) paradigm and differ on how the expectation is approxi-
mated and in how the optimization model is solved, some examples are the joint
maximum likelihood (JML) (Lord and Novick, 1968), the marginal maximum
likelihood (MML) (Drasgow, 1989), the stochastic EM algorithm (Fox, 2003) and
the Bayesian methods which adopt Markov chain Monte Carlo (MCMC) or Gibbs
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samplers technique to approximate and maximize the posterior of the latent vari-
able (Matteucci et al., 2012).

In this work, the unidimensional model, dichotomous response data and MML
estimation method will be taken into account. The latter is widely recognized to
outperform the JML and MCMC in terms of consistency of the estimates (Ander-
sen, 1977; Neyman and Scott, 1948) and computational time (Patz and Junker,
1999) respectively. Unlike the joint maximum likelihood estimation technique,
which treats each of the responses as separate observational units, the MML esti-
mation treats only the individuals as such. To accomplish this the MML technique
assumes that the latent traits are random effects sampled from some continuous
distribution, usually discretized in order to compute the expected value of the
likelihood in the first step of the EM algorithm, called E-step. In this context,
the linear representation allows to perform faster computations of the involved
functions since some arrays are computed only once and reused in all the itera-
tions. Another advantage is the use of simple linear algebra transformation such
as matrix/matrix or matrix/vector multiplications which are extremely fast in
modern programming languages1.

Moreover, since we chose to work in the Julia environment due to its suit-
ability for numerical and computational tasks, we also developed a calibration
algorithm for the case of the unidimensional 2PL already introduced in Chap-
ter 2. The spline interpolation-extrapolation method (Birkhoff and Garabedian,
1960) is used to recompute the masses of the rescaled observed ability distri-
bution at the predefined theta points. Several combinations of spline functions
and boundary conditions has been tested and the cubic-spline together with the
line boundary condition have been chosen against linear and quadratic splines
which were not enough smooth to capture the curves between the masses of the
discretized density of the ability. The details of the applied methodology are pro-
vided in Section 3.1 together with a software benchmarking which compares the
performance of our algorithm to the R mirt package. Details about the algorithms
implemented in mirt are available at https://github.com/philchalmers/mirt
and briefly described in Section 3.2.

Finally, a full reading of this chapter will suggest to both practitioners and
1The BLAS routines are an example of very fast implementation of linear algebra operations.

See http://www.netlib.org/blas/

https://github.com/philchalmers/mirt
http://www.netlib.org/blas/
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scholars a framework for building a pre-test design without knowing the item
parameters and for doing a simulation study for testing the performance of an
estimation method. The framework is described both in Section 3.2.1. The
package together with the code and the detailed results we obtained are available
at https://github.com/giadasp/IRTCalibration.

3.1 MML Estimation

Test assembly models might be based on classical test theory (CTT) or IRT
item parameter estimates. In order to estimate these values, a test assembler
needs to perform what is called, a calibration of the items. Here, the objective
is achieved using the Expectation-Maximization (EM) paradigm in which the
likelihood marginalized with respect to the distribution of the initialized abilities
is maximized. The model is described in Bock and Aitkin (1981). We do not use
the approach based on response patterns because we allow an unbalanced design
of the pre-test after which the calibration takes place. The algorithm requires just
to input the responses of the test-takers, and since we allow for an unbalanced
design, the response matrix can contain missings. All the other inputs have a
default value which can be modified, in particular, the user can define2: the
number of quadrature points, K, by which the integral of the ability distribution
is approximated, the bounds for the ability distribution, starting knots and masses
and starting points and bounds for the item parameters. The user can also define
the features of the external optimization EM algorithm and of the internal M-
step, here called respectively external and internal optimizations, such as
the stopping criteria or the relative tolerances for the likelihood and/or for the
estimates.

In detail, our EM algorithm is composed of an iterative scheme. At the begin-
ning of each iteration, the classical E-step and M-step are resolved; there follows a
phase of readjusting and rescaling of the masses of the latent distribution. When
at least one stopping criterion is met, the abilities of the test-takers are estimated.
Before comprehensively outlining the mentioned stages we introduce the notation
used in the next paragraphs. Given a set of N respondents and I items in a pool,
we want to estimate a set of vectors ξi of length nPar of item parameters from

2Default values can be found in the file structs.jl in the Github page

https://github.com/giadasp/IRTCalibration


36 Chapter 3. IRT Item Parameter Calibration in Julia

a matrix U = {u}i,n of dichotomous responses, i.e.

ui,n =


1, if the test taker n answered correctly to the question i

0, if the test taker n answered incorrectly to the question i

missing, if the item i hasn’t been administered to the test taker n,

where i = 1, . . . , I and n = 1, . . . , N . For example, if the chosen model is the
2PL we will have nPar = 2, instead for the 1PL model nPar = 1. For simplicity,
we will also define the vectors ui and un respectively as the N columns and
the I rows of the matrix U. The density of the latent variable θ, the prior
in a Bayesian perspective, is denoted by p(θ|τ ) where the vector τ contains
the parameters which characterize the latent probability distribution. In order
to compute the expectation of the complete log-likelihood which consists of a
complex integral, a discretization of the distribution is performed at K knots in
the domain of θ, namely the Xks, for k = 1, . . . , K. Since, most of the times, the
latent density is not known, for each of these points, the mass Wk is initialized to
the value of an arbitrarily reasonable probability density (the observed sampling
distribution of a previous test administration may be used) and readjusted in the
calibration process to match the distribution of the ability in the population under
examination. This "readjusting" phase is not performed at each step because can
compromise the convergence of the algorithm. We decided to let the user choose
which are the first and the last iteration in which it must be done and after how
many iterations. For example, one can choose that the masses must be readjusted
from iteration 3 to iteration 12 and at every 3 iterations; basically, it will apply
at iterations 3, 6, 9 and 12.

Design matrices

The calibration algorithm strongly depends on the test design. To help under-
standing its structure we define two types of design matrices: an items × tests
design matrix and a tests × examinees design matrix. The first assigns the items
from the pool to the tests; this is the result of the pre-test assembly. The second
assigns the test forms to the test-takers. The combination of these two designs
generates the items × examinees design matrix. All these further configurations
can be represented by a 0-1 matrix, respectively of sizes I×T , T ×N and I×N .
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See Figures A.1, A.2 and A.3 for a visual explanation. One vector, in, for each
test-taker and one vector, ni, for each item are produced. They represent, in the
same order, the indices where the columns and the rows of the items × examinees
design matrix are equal to 1. For example, if the examinee n takes the items 1,
3, 40 and 52, his/her vector in will be equal to {1, 3, 40, 52}. On the other side,
if the item i is given to the examinees 100, 2540 and 351 his/her vector ni will
be equal to {100, 2540, 351}. These vectors are intensively used in the algorithm
to filter the response matrix U.

3.1.1 E-Step

In practice, in the E-step the expected value Eθ|u [l(u, θ|ξ)] of the complete data
log-likelihood is computed by summing the log-likelihoods of the I items weighted
by the posterior distribution p(Xk|un, τ , ξ) of the latent variable. Formally:

Eθ|u [l(u, θ|ξ)] =
I∑
i=1

∑
n∈ni

∫
θ

[l(u|θ, ξi) + log(p(θ|τ ))] p(θ|u, τ , ξ)dθ

≈
I∑
i=1

∑
n∈ni

K∑
k=1

p(Xk|un, τ , ξ) [l(ui,n|Xk, ξi) + log(p(Xk|τ ))]

≈
I∑
i=1

∑
n∈ni

K∑
k=1

p(Xk|un, τ , ξ)l(ui,n|Xk, ξi)

+ p(Xk|un, τ , ξ) log(p(Xk|τ ))

=
I∑
i=1

∑
n∈ni

K∑
k=1

Q(ui,n|Xk) + φ(Xk|τ ),

(3.1)

where
p(Xk|un, τ , ξ) = Wk [∏i∈in L(ui,n|Xk, ξi)]∑

jWj [∏i∈in L(ui,n|Xj, ξi)]

= Wk exp [∑i∈in l(ui,n|Xk, ξi)]∑
jWj exp [∑i∈in l(ui,n|Xj, ξi)]

,

l(ui,n|Xk, ξi) = ui,nΨ(ξi|Xk)− log(1 + exp(Ψ(ξi|Xk)))

(3.2)

and Ψ(ξi|Xk) is the linear predictor. For example, in case of the 2PL model,
Ψ(ξi|X) = bi + aiX.
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3.1.2 M-Step

Noticing that the function (3.2) is separable with respect to the I items, the M-
step is performed individually for each item i. In the s-th iteration the estimates
of the item parameters of item i are obtained by maximizing the first part of the
expected log-likelihood:

ξ̂
(s)
i = argmax

ξi

Eθ|u [l(u, θ|ξ)]i

≈
K∑
k=1

∑
n∈ni

Q(ui,n|Xk)

≈
K∑
k=1

∑
n∈ni

p(Xk|un, τ , ξ̂
(s−1))l(ui,n|Xk, ξi).

(3.3)

The maximization is usually performed numerically by using non-linear solvers.
In Julia several high-level interfaces are available to communicate with a mul-
titude of solvers, from commercial, such as Artelis Knitro or Fico Express, to
open-source, like NLopt and Ipopt 3.

3.1.3 The Rescale of the Latent Distribution

The posterior distribution of θ depends on the item parameters estimated at the
previous step s− 1 and to the masses Wk. The latter can be constant or may be
adapted at each iteration of the EM algorithm. Since the model is identified only
if the metric of the latent probability distribution is fixed (for example having
mean zero and standard deviation one), the adaptation of the masses is a very
delicate phase which is subject to unstable results. Usually, the starting points
for the masses come from the probability density function of the standardized
normal, but they can be arbitrarily initialized. After the first iterations, the Wk

may be adapted by using the approach introduced by Mislevy (1984), that implies
maximizing: ∑

n∈ni

log
K∑
k=1

Ln(Xk, ξ)Wk, (3.4)

3http://www.juliaopt.org/JuMP.jl/v0.20.0/installation/

http://www.juliaopt.org/JuMP.jl/v0.20.0/installation/
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and adding a Lagrange multiplier to constrain the sum of the masses to be equal
to 1. Practically, the optimal weights are analytically computed as the average
of the posterior distribution among the N respondents:

W
(s)
k = 1/N

N∑
n=1

p(Xk|un, τ , ξ̂
(s)). (3.5)

After the masses have been adjusted, it is necessary to rescale the quadra-
ture points in order to match a predefined metric which consists of: mean, µθ,
and standard deviation, σθ. At the iteration s, the rescale is performed by gen-
erating new knots X∗(s) = {X∗(s)1 , . . . , X

∗(s)
K } by linearly transform the original

quadrature points X(s) = {X(s)
1 , . . . , X

(s)
K } as follows

X
∗(s)
k = (X(s)

k − (W (s)′X(s) − µθ))σθ√
W (s)′(X(s) �X(s))

, k = 1, . . . , K, (3.6)

where X �X is simply a vector containing the squares of the elements of X
and W (s) comes from the EM algorithm as the optimum of (3.4). Using the
new quadrature points in the next iterations is not advisable because they can
alter the convergence of the algorithm and they can gradually translate outside a
reasonable interval of variation of the ability. To overcome this issue, the R pack-
age mirt adopts the interpolation/extrapolation approach introduced by Woods
(2007) that linearly estimates new weights W ∗(s) on the original quadrature
points X(s).

In this work, the spline interpolation is considered and applied to the calibra-
tion problem by using the Julia package Interpolations.jl4. On this topic
see De Boor (1978) for a gentle introduction and Meijering (2002) for a historical
traceback. In particular, by this package, it is possible to choose between linear,
quadratic, and cubic interpolation; on-grid and on cell interpolation objects and
flat, line, free, periodic and reflect boundary conditions. After several trials, the
cubic-spline, with on-grid interpolation and line boundary condition is selected
because it had the combination which produced lower RMSEs of the estimates.

This step is performed only in the first iterations in order to avoid an un-
desired behaviour of the spline at the peak of the density and preserving the

4https://github.com/JuliaMath/Interpolations.jl

https://github.com/JuliaMath/Interpolations.jl
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convergence of the EM procedure. In particular, the masses are adapted and
rescaled in iterations 9, 12 and 15.

3.1.4 Ability Estimation

Once the ξ̂(s)
i have been obtained and the weightsW (s) have been updated, if no

prior has been chosen, the θ̂(s)
n can be estimated by using the expected a posteriori

(EAP, Bock and Mislevy, 1982) or maximum a posteriori (MAP) method as
follows:

θ̂(s)
n EAP =

∑
k

p(Xk|un, τ , ξ̂
(s))Xk, (3.7)

θ̂(s)
n MAP = {Xk : k = argmax

k
p(Xk|un, τ , ξ̂

(s))}. (3.8)

However, if a prior p(θ|τ ) is selected, the latter is transformed into:

θ̂(s)
n MAP = argmax

θ
p(θ|un, τ , ξ̂

(s))

= argmax
θ

l(ui,n|θ, ξi) + log(p(θ|τ )).
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The algorithm

We optimize the marginal likelihood by using the NLopt.jl package based on the
NLopt suite, in particular, we use the SLSQP algorithm, which is fast and stable.
The implemented EM sub-routine is described in the following pseudo-algorithm:

Algorithm 1 EM

Initialize ξ,θ to arbitrary values (e.g. b(0)
i = 0.0, for all i)

Initialize W by the Normal(µθ, σθ) density.
s=1
while none of the stopping criterion is satisfied do

E-step: Compute (3.2) → p(Xk|un, τ , ξ), ∀n, k
M-Step: Maximize (3.3) by NLopt ∀i → ξ̂

(s)

if (s==9 or s==12 or s==15) then
Update W : Compute (3.5) →W ∗(s)

Rescale X: Compute (3.6) → X∗(s)

end if
Interpolate: Cubic-spline of W ∗(s) on X →W (s)

s+=1
end while

3.1.5 Bootstrap

The strength of IRT models, theoretically, is to have invariant item parameters
across samples of examinees from the same population. Practically, invariance is
hard to be guaranteed under the calibration process. Several factors may con-
tribute to obtain considerably different item parameter estimates from the same
set of items under different conditions. Such factors include the positioning of
items in the test, different populations, different points of time. In Tsutakawa and
Johnson (1990) is showed that using estimates of item parameters instead of their
actual values could lead to biases in the following inference about the students’
ability. Also, Veldkamp (2013) pointed out that an item selection based on maxi-
mum information would capitalize on positive estimation errors if the uncertainty
in the estimates of discrimination parameters is not taken into account.

Although existing methods for handling uncertainty in item parameters pro-
vide a variety of tools, most of them belong to Bayesian applications, which need
to know the prior distribution of item parameters and abilities. An alternative
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approach that simulates the calibration under different conditions and that does
not ask to assume any probability distribution is the bootstrap (see Bradley and
Tibshirani, 1993). In particular, we performed the calibration in a large number
of resamples of the response data. The aim is to fully characterize the uncertainty
related to each item parameter estimate by exploring its sampling distribution
function.

Given an item bank of items and a sample of students, from here called full
sample, after the items have been administered, we have a matrix of dichotomous
responses. For each item, we want to estimate a vector ξ̂i of IRT parameters which
may contain a different number of parameters in case we have a different model
such as the 1PL, the 2PL or the 3PL. The number of parameters for each item is
denoted by nPar. We first perform an overall calibration (on the full sample) by
following the MML estimation method, previously presented. Once the overall
estimates of item parameters and abilities of the students are obtained, we proceed
by resampling with replacement N∗ = N rows of the response matrix U , R times,
and, in each of these replications we reestimate the IRT item parameters. In this
way we have R samples of each item parameter.

Depending on the way the responses are resampled we can distinguish two
different algorithms: the parametric and the non-parametric schemes. They are
analytically described in the next pseudo algorithms:

Algorithm 2 Non-parametric bootstrap
Choose a large number of repetitions R, the subsample size N∗ = N .
for r = 1 : R do

Sample with replacement N∗ rows of the responses matrix assuming that
each row has a 1/N probability to be drawn.

Calibrate the items in the subsample. Get Ξ̂r = {ξ̂1r, . . . , ξ̂Ir}.
Store Ξ̂r

end for
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Algorithm 3 Parametric bootstrap
Choose a large number of repetitions R, the subsample size N∗ = N .
Estimate ξ̂, θ̂ and Ŵ on the full sample.
Discretize the distribution of the ability by dividing its continuum in K bins
and approximate the probability of sampling the n-th examinee by its relative
frequency p̂n of his θ̂n assuming that, in each bin, the students (and their
abilities) are uniformly distributed.
for r = 1 : R do

Resample with replacement from the discretized distribution, N∗ rows from
the responses matrix.

Calibrate the items in the subsample taking Ŵ as fixed and equal to its
overall estimate. Get Ξ̂r = {ξ̂1r, . . . , ξ̂Ir}.

Store Ξ̂r

end for

At the end of the bootstrap procedure, we will have a set of R, I × nPar

matrices Ξ̂r for r = 1, . . . , R, which contain the samples of the item parameter
estimates.

3.2 Simulation Study

In order to show the suitability of Julia as a programming language for cali-
bration purposes we present a benchmark analysis between our application and
another open-source framework, the R programming language. In particular, we
focused on the mirt (version 1.31) R package (R Core Team, 2013; Chalmers,
2012) because we believe it is the most reliable and fast open-source software
for this task. Moreover, mirt has a flexible structure which allows to estimate
several types of latent models with highly customizable settings and estimation
methods. mirt allows the analysis of dichotomous and polytomous response data
using unidimensional and multidimensional latent trait models under the IRT
paradigm. The parameters can be estimated with classical quadrature meth-
ods (EM) or stochastic methods (quasi-Monte Carlo, Monte Carlo, Metropolis-
Hastings Robbins-Monro, etc...). Other open-source options available for item
calibration were: the R package ltm (Rizopoulos, 2006) and stan (Carpenter
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et al., 2017) from a Bayesian perspective. The first, as far as we know, doesn’t
handle the missings coming from an unbalanced pre-test design, while the sec-
ond produced unstable results within our problem. Both were very slow com-
pared to mirt. Other options in R to estimate IRT models are listed at the page
https://cran.r-project.org/web/views/Psychometrics.html.

All the tasks are performed using Julia 1.2.0 and R 3.6.1 and working on
a desktop computer with the following features: Windows 10, Intel-core i5-4670
CPU and 16GB of RAM.

Specifically, the comparison is made between Julia and two versions of the
algorithms implemented in mirt. About mirt, the first version uses the default
of the argument dentype, which rules the type of density that is used for the
latent trait parameters, i.e., the Gaussian density. The second version, named
here mirt EHW, estimates the latent distribution with the empirical histogram and
interpolation extrapolation method described in Woods (2007). The unidimen-
sional 2PL model has been chosen for the simulation together with dichotomous
observed response variables. Through the analysis of the simulation results, first,
the accuracy of estimates, in terms of BIAS and RMSE, and computational per-
formance is evaluated for the three algorithms in all the cases defined in Table
3.2. Secondly, a non-parametric and parametric bootstrap is applied to the cal-
ibration process for the standard setup defined later in order to characterize the
uncertainty related to the estimates and to illustrate their sampling distributions.

3.2.1 Simulation Settings (Framework for Pre-Testing)

Several simulations are performed. Each design is driven by a different combina-
tion of variables that may recreate real pre-test situations. The aim of this section
is not only to describe the process in which we benchmarked the mentioned al-
gorithms but also to give to potential users an efficient framework for developing
a test assembly strategy, from the assembly of the pre-tests to the calibration of
item parameters. In practice, we chose to fix the length of the test at 50 items,
I = 250 items in the pool, and we varied the other conditions as follows:

The distributions of the item parameters and the ability have been chosen
according to the literature (Glas and van der Linden, 2005; Glas and Hendrawan,
2005; Ban et al., 2002, see for example). The case 1a will be used intensively in

https://cran.r-project.org/web/views/Psychometrics.html 
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Table 3.1: Simulated distributions for item parameters and abil-
ity and sample sizes

b Normal(0, 1), Uniform(−4, 4)
a LogNormal(0, 0.25), Uniform(0.001, 4)
θ Normal(0, 1), LogNormal(0, 0.5)
N 600, 3000, 6000

this work since it is a standard-setting for calibration. We will call it the standard
setup. We decided also to include a case plausible in the real world, that is the case
2b where the abilities of the test-takers will be drawn from a LogNormal(0,0.5)
and then changed of sign in order to increase the probability of having less high-
performing examinees. Next table details all the examined cases:

Table 3.2: Simulation settings

#case b a θ N

1a N(0, 1) LogN(0, 0.25) N(0, 1) 3000

1b N(0, 1) LogN(0, 0.25) N(0, 1) 600

1c N(0, 1) LogN(0, 0.25) N(0, 1) 6000

2a N(0, 1) LogN(0, 0.25) LogN(0, 0.5) 3000

2b N(0, 1) LogN(0, 0.25) −LogN(0, 0.5)5 3000

3 N(0, 1) U(0.001, 4) N(0, 1) 3000

4 U(−4, 4) LogN(0, 0.25) N(0, 1) 3000

Each step of the simulation study is comprehensively described herewith:

1. A case from Table 3.2 and a metric are chosen. We decide to fix µθ to 0
and σθ to 1.

2. True values for θ and ξ are sampled from the respective distributions. The
simulated item parameters ξ† and abilities θ† are linearly rescaled to fit

5The sampled abilities are changed in sign after being rescaled to the standard metric.
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the predefined metric. These quantities represent the true values in the
benchmarking phase.

3. To assemble the pre-test form, assuming no information is available about
the IRT item parameters, we assign to each item an approximated easi-
ness level, from 1 to 3. This information can be given by the experts of
the domain of the item under examination. In this simulation, the levels
are approximated by cutting the sampled bis by the 25th, 50th and 75th
percentiles of the true distribution of the easiness.

4. T = 6 tests are assembled with the following features: 10 anchor items,
length = 50, fixed difficulty (easiness) composition (25%, 50%, and 25%)
approximated by the three levels previously assigned. The resulting pre-
test design will be unbalanced, this means that the test forms are partially
overlapped (presence of anchor items) and hence the response data will
contain missings. To provide a random assignment we choose to distribute
the tests in a sequential fashion.

5. For each of the S = 100 simulations, we use the items × examinees de-
sign to generate the responses. The data matrices U(s) will be generated
by sampling, for each student n, a correct response to the item i using a
Bernoulli with a probability equal to

Pi,n = 1
1 + exp (−Ψ(ξ†i |θ

†
n))

6. The calibration process is run for each of the S simulations Us, for s =
1, . . . , S by the EM algorithm 1 and by the mirt package using the following
settings:

• Bounds for a and b are respectively [0, 5] and [−6, 6]6.

• Bounds for θ are [−6, 6]. The quadrature is done on K = 61 knots.

• Tolerance for the item parameters is 1e−4. Tolerance for the likelihood
is 1e−8.

• The maximum number of iteration is set to 500 and the time limit to
1000 seconds.

6mirt default solver which allows box bounds is minlp
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7. The elapsed time and the RMSEs and BIASs for the estimated item pa-
rameters ξ̂s and individual abilities θ̂ across the S simulations of response
data are compared.

Let x†j be the true value of the variable xj where x can be an item parameter
or the ability and the index j may indicate a particular item or the test-taker
Moreover, let x̂js the estimates of the same variable in the s-th simulation,
we define the RMSE and BIAS of the object i as:

RMSEj =

√√√√ 1
S

S∑
s=1

(
x̂js − x†j

)2
(3.9)

BIASj = 1
S

S∑
s=1

(
x̂js − x†j

)
(3.10)

3.2.2 Results

In the next sections, we illustrate the results of the calibration for the seven
cases under analysis calibrated using the three mentioned softwares Julia (jl),
mirt with default settings (mirt) and mirt with the Woods’ empirical histogram
(mirtEHW).

First, for the sake of brevity, the overall precision of each algorithm in all
the cases is summarized in Tables 3.3 and 3.4, where the RMSEs and BIASs are
averaged across the item pool, for the item parameters, and across test-takers,
for the abilities. For a deeper comparison of the estimation accuracy of the ex-
amined algorithms the boxplots and the scatterplots of the RMSEs and BIASs
are reported in the Appendix A together with the analytical tables for all the
items for the standard setup. The scatter plots with respect to the true values of
item parameters and abilities help to understand if the algorithms have a differ-
ent behaviour at specific intervals of the domains. Together with the precision of
estimates, we intend to evaluate the computational performance of our implemen-
tation by comparing the elapsed time and the number of iterations observed for
calibrating the items for all the algorithms. Secondly, the estimated Ŵ(s), where
s = 1, . . . , S, are plotted against the true W obtained by drawing 1.000.000 sam-
ples from the true distribution and computing the relative frequencies in the K
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chosen X points. In the last section, some examples of sampling distribution of
the item parameters obtained by bootstrapping the calibration are reported.

Summary of estimation accuracy

In the following tables the RMSEs and BIASs averaged across the item pool for
discrimination and easiness parameters and across the test-takers for the latent
variable are presented for all the cases under analysis. The best achieved, i.e.
the lowest RMSEs and the most proximal to zero BIASs, are formatted in bold
font. In the case of normality of the latent trait (cases 1a, 1b and 1c) we can
notice that the precision of the algorithms is almost the same for all the estimates
except the mirtEHW which does not behave well in case of few observations, that
is the case 1b in which N = 600. On the other hand, when it comes to have a
non-normal latent trait (case 2a and 2b) our algorithm has the best performance
notably for the discrimination parameter in which the RMSEs are 0.01 lower than
the mirt package. No remarkable differences are observed in cases 3 and 4 where
the distributions of the item parameters are different from the usual setting. A
substantial discrepancy is observed analysing the BIASs where our approach has
a better overall performance.

Regarding the analytical results illustrated in the plots and Tables which can
be found in Appendix A, we observe a comparable behaviour of our approach and
mirt in cases 1a, and 1c. Instead, in case 2a mirtEHW produces more or less the
same distribution of BIAS and RMSE but, looking at the scatterplots we can see
that our algorithm better estimates the abilities of high-performing examinees.
In case 2b, we decided to not plot the results of mirtEHW because it really had a
low accuracy; the distribution of RMSE and BIAS is sensibly more proximal to
zero than mirt. The plots confirm that we do not observe substantial differences
between the approaches in cases 3 and 4.
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Table 3.3: RMSEs averaged across the item pool (â and b̂) and
test-takers (θ̂)

b̂ â θ̂

case jl mirt mirtEHW jl mirt mirtEHW jl mirt mirtEHW

1a 0.114 0.114 0.114 0.134 0.135 0.135 0.311 0.311 0.311

1b 0.264 0.263 0.877 0.339 0.336 0.341 0.320 0.317 0.799

1c 0.077 0.077 0.078 0.094 0.094 0.094 0.305 0.305 0.305

2a 0.111 0.117 0.111 0.152 0.166 0.154 0.294 0.333 0.315

2b 0.114 0.119 6.076 0.149 0.159 0.232 0.302 0.331 5.278

3 0.138 0.138 0.138 0.214 0.221 0.227 0.221 0.220 0.220

4 0.188 0.189 0.190 0.186 0.186 0.187 0.372 0.372 0.372

Table 3.4: BIASs averaged across the item pool (â and b̂) and
test-takers (θ̂)

b̂ â θ̂

case jl mirt mirtEHW jl mirt mirtEHW jl mirt mirtEHW

1a 0.002 0.004 0.002 0.009 0.011 0.010 2.8× 10−4 -0.002 2.0× 10−4

1b 0.005 0.006 0.120 0.060 0.059 0.642 -0.002 -0.004 -0.105

1c 0.001 0.002 0.001 0.005 0.004 0.005 −1.6× 10−4 −1.1× 10−3 1.5× 10−4

2a 0.004 -0.042 0.005 0.005 -0.091 0.118 4.8× 10−4 -0.002 -0.028

2b -0.003 0.040 6.073 -0.009 -0.072 0.006 9× 10−4 -0.002 -5.268

3 0.001 0.010 0.001 -0.013 0.033 0.044 3.9× 10−4 -0.003 9.2× 10−4

4 0.001 0.006 0.001 0.013 0.013 0.014 −7.1× 10−5 −1.3× 10−3 2.2× 10−4

Cubic-spline interpolation/extrapolation

Our approach differs from usual MML estimation because in the step where the
distribution of the latent trait is updated we apply the cubic-spline method to
interpolate the just rescaled values of the masses W at the original ability points
X. The cubic-spline is a valuable technique in our case because it’s smoother than
a linear interpolator and hence more suitable for retrieving the discretized values
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of a continuous distribution. The following plots show, for all the cases under
analysis, the estimated Ŵ at X = {−6.0,−5.8,−5.6, . . . , 5.6, 5.8, 6.0} obtained at
the end of the 100 simulations in dark cyan color. The true histogram, at the same
X, built using 1.000.000 samples drawn from the true distribution of θ, overlaps
the estimates in indigo color. The distribution is approximately retrieved in most
of the cases, only when the true distribution of the discrimination parameter is
Uniform(0.001,4), case 3, the latent distribution is not well estimated.
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Figure 3.1: Retrieval of the latent probability distribution by
cubic-spline
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Computational performance

To compare the performance of the three considered algorithms, we evaluate
their CPU times, and the iteration counts averaged across the S simulations.
The results for the cases under analysis are summarized in the following table.

Table 3.5: Computational power summary

average CPU time average iterations count

jl mirt mirtEHW jl mirt mirtEHW

1a 5.75 11.90 17.27 88.88 55.12 59.99

1b 2.55 9.137 16.75 109.54 51.31 69.12

1c 10.58 14.69 20.50 92.73 56.42 59.31

2a 7.75 12.32 21.39 105.85 47.09 65.43

2b 5.77 9.47 97.42 97.35 49.87 169.73

3 12.81 24.81 37.54 222.28 140.44 151.14

4 3.59 12.98 16.45 58.17 43.86 53.61

As it is clearly noticeable, Julia has a better time performance in all the
studied cases. However, more iterations than mirt are needed to reach the con-
vergence of the estimations. We believe that the latter phenomenon is due to
acceleration techniques applied in the R package, such as Ramsay or SQUAREM
(Varadhan and Roland, 2008). In our approach, no acceleration has been imple-
mented to avoid instability in the first iterations where the rescale of the latent
distribution and the cubic-spline interpolation is performed. A remarkable nu-
merical inefficiency has been encountered in case 2b by mirtEHW where the average
CPU time is about 19 times our time. Moreover, we think that our code is further
optimizable by introducing more parallel or distributed computing Julia tools7

both in E-Step and in the M-Step where the summands in (3.1) and (3.3) can be
easily distributed across cores.

7See https://docs.julialang.org/en/v1/manual/parallel-computing/index.html

https://docs.julialang.org/en/v1/manual/parallel-computing/index.html
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Sampling distribution of IRT item parameters

The following plots show the sampling distributions of the IRT parameters, â and
b̂, of the first 10 items of the pool obtained by performing the non-parametric
and parametric bootstrap described before. The results are reported only for the
standard setup (case 1a). As can be seen, there is not any discernible difference
between the results of the two approaches. In both cases, the true value of the
item parameter (black dot) is not always between the first and third quartiles of
the distribution. At least, the simulated value is never in the outlier area, that is
the area outside the whiskers, which delimits the interval obtained by multiplying
by 1.5 the range between the first and third quartile.



54 Chapter 3. IRT Item Parameter Calibration in Julia

(1) Easiness parameter b

(2) Discrimination parameter a

Figure 3.2: Case 1a - Non-parametric bootstrap - Sampling dis-
tributions of first 10 item parameters.



3.3. Discussion of the Results 55

(1) Easiness parameter b

(2) Discrimination parameter a

Figure 3.3: Case 1a - Parametric bootstrap - Sampling distribu-
tions of first 10 item parameters

3.3 Discussion of the Results

RMSEs and BIASs illustrated in tables 3.3 and 3.4 show that, when the true dis-
tribution of the latent variables is not Normal, our approach has better accuracy
in the estimation of item parameters and approximating the ability density than
the mirt package, mostly when the sample size is small (N = 600). Furthermore,



56 Chapter 3. IRT Item Parameter Calibration in Julia

another attraction of our approach is its high numerical and computational sta-
bility and performance in terms of CPU time and convergence as shown in table
3.5.

Moreover, the cubic-spline seems a valuable technique to approximate the
distribution of the latent variable when its metric (mean and variance) must be
fixed in order to keep the model identified.

The bootstrap may be used in this context to obtain the standard errors of the
item parameter estimates computed as the standard deviations of their sampling
distribution functions. For ATA purposes the sampling distribution function of
the item parameters is used to derive the sampling distribution of the IIF at a
certain ability point and used as input in the Chance-constrained ATA model
defined in Section 4.
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4 Chance-Constrained Test
Assembly

The test information function (TIF) is a key object both in the item responses
theory (IRT) and in the test assembly framework. Most of the automated test
assembly models (ATA) are based on this quantity that usually appears in the
objective function, being the goal for the optimization model. As explained in
Section 2 the item information function (IIF) is considered as a given value. This
approach may lead to several issues such as infeasibility of the MINIMAX or
MAXIMIN model, e.g. if it is not possible to find T parallel tests that have
TIFs inside a fixed interval around the targets. Another issue is the incorrect
interpretation of the assembly results. For example, if the calibration algorithm
had produced wrong estimates for the item parameters and hence the item infor-
mation functions are not accurate enough, the TIF of the assembled test might
be overestimated. Regarding the latter issue, a good test assembly model would
consider the variation of the item parameter estimates in order to build test forms
in a conservative fashion, i.e., it would produce tests with a maximum plausible
lower bound of the TIF.

There is a need for better treatment of this problem in test assembly models.
My attempt in this dissertation is to incorporate uncertainty in the optimiza-
tion models most seen in practice and in literature for simultaneous multiple test
assembly, using the modern techniques proper of the stochastic programming
framework. Chance-constraints (or probabilistic constraints) are a natural solu-
tion to the mentioned problems. They are among the first extensions proposed
in the stochastic programming framework to deal with constraints where some of
the coefficients are uncertain (Charnes and Cooper, 1963; Krokhmal et al., 2002).
In particular, by adjusting a conservative parameter α, also called risk level, it
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is possible to modulate the level of fulfilment of some probabilized constraints
enabling the user to relax or to tighten the feasibility of the problem. Narrowing
our focus on the MAXIMIN test assembly model introduced in Section 2.2, a per-
centile optimization model would maximize a reasonable lower bound of the TIF,
its α-quantile, approximated by the dαRe-th ranked value of the TIF computed
on the R bootstrap replications of the estimates of item parameters.

An introduction to the idea of chance-constrained modeling is provided in
Section 4.1 together with a brief literature review of the issues and of the exist-
ing methods to solve this type of problems. Subsequently, a chance-constrained
version of the MAXIMIN test assembly model is proposed and, since this novel
model cannot be approximated by a linear formulation, a heuristic based on sim-
ulated annealing (Goffe, 1996) has been developed. This technique can handle
large-scale models and non-linear functions. A Lagrangian relaxation formula-
tion helps to find the most feasible/optimal solution and, thanks to a random
variable, more than one neighbourhood of the space is explored avoiding to be
trapped in a local optimum. Moreover, the proposed heuristic can solve a wide
class of optimization problems characterized by having binary optimization vari-
ables and a separable objective function. Furthermore, the details of the results
of the retrieval of the empirical distribution function of the TIF are provided in
Section 4.2.1.

Several simulations of ATA problems are performed and the solutions are
compared to CPLEX 12.8.0 Optimizer1, a benchmark solver in the linear pro-
gramming field. We used CPLEX through the JuMP interface2. In particular,
since our heuristic is able also to solve the classical ATA models we compare the
results of the optimization in both the framework: exact and chance-constrained.
The described algorithm is coded in the open-source framework Julia. A pack-
age written in Julia has been released at http://github.com/giadasp/ATAjl.
However, the documention is still in progress.

In the end, we show the results of an application of our model on real data
taken from the Italian national standardized assessment program of the scholastic
year 2018/2019.

1http://www.cplex.com
2http://www.juliaopt.org/JuMP.jl/0.18/

http://github.com/giadasp/ATAjl
http://www.cplex.com
http://www.juliaopt.org/JuMP.jl/0.18/
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4.1 Chance-Constrained Modeling

The theory of chance-constrained modeling has been deeply explored in the finan-
cial scientific field. Specifically, in risk management and reliability applications
the decision-maker must select a combination of assets for building a portfolio
by maximizing their utility function. Since the prices of instruments are usually
random variables, the theory of choice and portfolio optimization under risk was
born (see Rockafellar and Uryasev, 2000; Rockafellar and Uryasev, 2001). In
the past five decades, this sort of problems followed the expected mean-variance
approach (Chen, 1973; Freund, 1956; Scott Jr and Baker, 1972). In particular,
the utility function is defined in terms of the expected mean and variance of the
returns or of the prices of the instruments which are uncertain coefficients in the
linear objective or constraints of the optimization model. More recently, instead,
the regulations for finance businesses require to reformulate the problem in terms
of percentiles of loss distributions. These requirements gave rise to the theory
of chance-constraints, also called probabilistic constraints, originally proposed by
Charnes and Cooper (1959).

The probabilistic constraints present coefficients which are assumed to be
randomly distributed and they are subject to some predetermined threshold α

of the constraints fulfilment. Modifying α it is possible to relax or tighten some
constraints modulating the level of conservativeness of the model. The standard
form of a mixed-integer optimization problem can be represented by

arg min
x

f(x) (4.1)

subject to gj(x) ≤ 0 j = 1, . . . , J

x ∈ Zp × Rn−p,

where f(·) is the objective function to be optimized, x is the vector of p integer and
n− p continuous optimization variables. Both f(·) and g(·) are scalar functions.

The optimization domain is D = dom(f) ∩ ⋂Jj=1 dom(gj) and the set
X = {x : x ∈ D, gj(x) ≤ 0 ∀j} is called feasible set, i.e. a solution x is feasible
if it is in the optimization domain and it satisfies the constraints. Starting from
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(4.1), a chance-constraints reformulation will add the following set of constraints:

P [gk(x, ξ) ≤ 0] ≥ 1− α k = 1, . . . , K, (4.2)

where ξ is a vector of random variables. This formulation seeks a decision vec-
tor x that minimizes the function f(x) while satisfying the chance constraints
gk(x, ξ) ≤ 0 with probability at least 1 − α. Such constraints imply having a
function to compute (or better approximate) the probability and a solver which
can deal with that function. Whenever a MAXIMIN principle is applied, they can
be seen as percentile optimization problems (Krokhmal et al., 2002) because the
probability in (4.2) is replaced by the α-th percentile of the distribution function
of gk(x, ξ) and these percentiles must be maximized.

Despite the old age, chance-constrained models are still hard to be solved.
An issue is the general non-convexity of the probabilistic constraints. Even if the
original deterministic constraints3 were convex, the respective chance-constraints
may be non-convex. In general, they are usually untractable (see Nemirovski
and Shapiro, 2006) because even if they are convex the quantiles of the random
variables are difficult or impossible to compute. Examples of approximations of
chance-constraints are the linearization method called sample average approxima-
tion (Ahmed and Shapiro, 2008) and the case when the random variables follow
a known multivariate distribution with known mean and variance. For the first
case, a big-M approach is needed to deal with the indicator function bringing
numerical instability in the optimization. The second approach instead imposes
strong distributional assumptions (see Kataria et al., 2010) for a list of distribu-
tional assumptions) and, since they are based on the Chebyshev inequality they
require a modest number of elements in the summations to achieve the conver-
gence, they need also a solver which can deal with second-order conic constraints,
the most difficult type of convex functions to be optimized. All the mentioned
formulations increase exponentially the number of optimization variables, thus
they are not suitable for large-scale models.

Other approaches rely on discretization of the random variable and hence the
model is optimized in all possible scenarios (i.e. realizations of the random vari-
ables) thus they do not fit to problems with a large number of random variables

3gk(x, ξ) where ξ is not random.
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because all the patterns must be considered (Margellos et al., 2014; Wang et al.,
2011; Tarim et al., 2006). In finance, such models are called VaR (value at risk)
and they are usually characterized by non-concavity and hence computational
intractability except in certain cases where returns are known to have an ellipti-
cal distribution, see for example Vehviläinen and Keppo (2003) or McNeil et al.
(2005).

Another question is the domain of optimization. Usually, stochastic opti-
mization models are addressed in the case of continuous optimization variables
while mixed-integer problems are still neglected because of their greater complex-
ity. Given a lack of optimization techniques which can handle such problems, we
first use a Monte Carlo approach to approximate the quantiles in a percentile
optimization perspective and, in Section 4.2.2, we propose a heuristic to solve the
chance-constrained test assembly model defined previously. In the last section a
simulation study is conducted to show the practical and computational advantage
of our approach in the test assembly research field.

4.2 Chance-Constrained Test Assembly Model

In the context of test assembly, the optimization models used for selecting the
items do not consider the inaccuracy of the estimates of item parameters (van der
Linden, 2005). However, estimates are never exact. Thus, ignoring the potential
imprecision can lead to wrong conclusions and misinterpretations of the results
such as overestimation of the information function and hence of the accuracy
of the test in ability estimation. Some attempts to include uncertainty in the
test assembly models have been done by Veldkamp (2013) and Veldkamp et al.
(2013) who developed and applied the robust model introduced in Bertsimas
and Sim (2003). The mentioned ATA model considers the standard error of the
estimates and a protection level Γ that indicates how many items in the model are
assumed to be changed in order to affect the solution. It treats the uncertainty
in a deterministic way and, given Γ, it adjusts the solution adopting the most
conservative approach, because standard errors are the maximum expression of
uncertainty of the estimates.

In contrast, if we consider the MAXIMIN model (2.14) its chance-constrained
equivalent would replace the constraints (2.14b) involved in the maximization of
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the TIF by

P
[
I∑
i=1

Ii(θkt)xit ≥ y

]
≥ 1− α, ∀t, kt, (4.3)

where t = 1, . . . , T are the test to be assembled and θkt are the ability points in
which the TIF of the test t must be maximized. We decided to ignore the weights
to simplify the notation but the extension to the weighted case is straightforward.
We will call the model (4.3) chance-constrained MAXIMIN, or CCMAXIMIN.
The key element of this model is, again, the information function which is assumed
to be random. This assumption arises, as already explained, by the necessity of
taking into account the uncertainty of the item parameter estimates, of which the
IIF is a statistic (see Equation (2.6) for an example).

The CCMAXIMIN model allows to maximize the expected precision of the
assembled tests in estimating the latent trait of the test-takers at pre-determined
ability points with a high confidence level if the α is chosen to be next to zero. In
terms of probability we can say that the constraints in (2.14b) must be fulfilled
with a probability at least 1 − α. Adjusting the confidence level it is possible
to relax or tighten the fulfilment of the chance-constraints setting a specific con-
servative attitude, i.e. a small α means an high level of conservatism, on the
contrary, a large α means an almost relaxation of the constraints. This is the
novelty of the CCMAXIMIN model with respect to the robust model proposed in
Veldkamp (2013) and Veldkamp et al. (2013) which, instead, perform a worst-case
optimization.

Once the chance-constraints have been defined, a way to evaluate the proba-
bility in (4.3) must be found in order to quantify the feasibility of a solution. To
solve this problem, some methods rely on assumptions on the probability distri-
bution of ξ, such as the multivariate normal (Kim et al., 1990). Others try to
approximate the probability using samples of the random variable obtained by a
Monte Carlo simulation (Ahmed and Shapiro, 2008) which is a specific case of a
scenario generation where all the scenarios have the same probability of occur-
rence. We decided to use the Monte Carlo method because of its flexibility and
adaptability to our problem.

In particular, our random variable is the TIF of a test form, that is a statistic
on some estimates which are uncertain. There are different ways to sample from
the distribution function of this random variable: given the standard errors of the
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estimates, the samples can be uniformly drawn from their confidence intervals4;
otherwise, if a Bayesian estimation is carried on, the last samples in the Markov
chain can be used. In this dissertation, the samples are picked by bootstrapping
the estimation process and the empirical distribution function of the statistic is
obtained. The bootstrap (Bradley and Tibshirani, 1993) is a very powerful algo-
rithm to extract information about the distribution of some estimate, provided
that the method of resampling is accurate enough to reproduce the underlying
data generation process. The details of the retrieval of the empirical distribution
function of the TIF are reported in the following section.

4.2.1 Empirical Measure of the TIF

Conventionally, the estimates of IRT item parameters are considered as known
values in test assembly models (van der Linden, 2005). Test assembly models
ignore the uncertainty related to the calibrated items and thus they often yield
an overstated measurement accuracy of the assembled tests in terms of their TIFs.
A standard approach to extract the uncertainty related to the estimates of the
item parameters would be first, sampling a high number of plausible values of the
item parameters ξi in the confidence intervals built using the standard errors of
the estimates and, secondly, computing the related IIFs at target θ points. This
may be an optimal starting point to assemble robust tests, (see Veldkamp et al.,
2013; Veldkamp, 2013) but it has its own downsides because a uniform interval
of plausible values is assumed. Another attempt to account for the influence
of sampling error in the Bayesian framework has been made by Seung Yang et
al. (2012) who proposed a multiple-imputation approach with the aim to better
measure the latent variable of a respondent.

In Matteucci et al. (2012) it has been shown that the behavior of the esti-
mates of item parameters usually follows joint densities not equal to the product
of their marginals, suggesting the presence of an underlying dependence struc-
ture. This observation motivated the search for a new technique to recreate the
distribution function of the IIFs and hence of the TIF. Our solution is based on
bootstrapping the calibration process (see Bradley and Tibshirani, 1993) for a

4as in the robust model (Veldkamp, 2013)
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gentle introduction to the bootstrap), in particular, the observed vectors of re-
sponses (one vector for each test-taker) are resampled with replacement R times
and the item parameters are re-estimated for each sample. In this way, it is pos-
sible to preserve the natural relationship between the items and, given the ability
targets, it is possible to compute their IIFs. After that, given a set of items, we
can build a test form and compute its TIF for each of the R replications. The
resulting sample constitutes the empirical distribution function of the TIF.

More formally, let ξ1, . . . , ξR be an independent identically distributed (iid)
sample of R realizations of a I-dimensional random vector ξ, its respective em-
pirical measure is

F̂R := R−1
R∑
r=1

∆ξr,

where ∆ξr denotes the mass at point ξr5. Hence F̂R is a discrete measure assigning
probability 1/R to each sample. In this way we can approximate the probability in
the left-hand side of (4.2) by replacing the true cumulative distribution function
of ξ by F̂R.

Let 1(−∞,0]{x} : R→ R be the indicator function of x in the interval (−∞, 0],
i.e.,

1(−∞,0]{x} =

0, if x > 0

1, if x ≤ 0.
(4.4)

Thus, given a specific chance-constraint k, a known set of optimization vari-
ables x and a sample ξ1, . . . , ξR of our random vector, we can rewrite

P [gk(x, ξ) ≤ 0] =EF
[
1(−∞,0]{gk(x, ξ)}

]
(4.5)

≈EF̂R

[
1(−∞,0]{gk(x, ξ)}

]
(4.6)

= 1
R

R∑
r=1

1(−∞,0]{gk(x, ξr)}. (4.7)

That is, the chance-constraint is evaluated by the proportion of realizations
with gk(x, ξ) ≤ 0 in the sample.

5∆ξr(A) = 1 when ξr ∈ A
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Adopting the same principle to the left-hand side of the chance-constraints
in (4.3), the CCMAXIMIN model can be approximated by:

arg min
x

− y (4.8)

subject to 1
R

R∑
r=1

1[y,∞){Ir(θkt)′xt} ≥ 1− α, ∀t, kt,

gj(xt) ≤ 0 ∀j, t,

xt ∈ {0, 1}I , y ∈ R+, ∀t,

where Ir(θkt) is the vector of the I item information functions at pre-defined θkt

points computed from the estimates of the item parameters in the r-th bootstrap
replication.

The issues with the model (4.8) are multiple: it is clearly non-convex because
of the chance-constraints (see Rockafellar and Uryasev, 2000; Rockafellar and
Uryasev, 2001, for the demonstrations) and the indicator function is not well
handled by commercial solvers. To overcome these problems we solve the previous
model by a heuristic described in the next section.

4.2.2 Solving the CCMAXIMIN Model

Since the model (4.8) is not practically solvable by commercial solvers we devel-
oped a heuristic based on the simulated annealing approach. It is a flexible and
simple numerical procedure that can be used to find an optimal solution for a
model of arbitrary complexity which seeks the minimal of a function, f(x), called
loss. The loss function serves as a distilled form of the greater problem and it
depends on the values of some fixed coefficients and optimization variables x, a
vector d-dimensional. Changing the value of the objective variables, the returned
loss function will increase, decrease or remain constant telling if the variation
is useful or not to reach a minimum (global). Once the loss function is deter-
mined and evaluable for each value of the optimization variables, the simulated
annealing algorithm can be applied leading to the best configuration of x which
minimizes the loss. In practice, an initial value of x, namely x0, is chosen and a
forward pass to evaluate f(x0) is performed. At each successive step, s > 0, the
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current xs is a perturbation of xs−1 in the sense that one or more elements are
changed in order to explore another neighbourhood of the solution space.

The movement from a neighbourhood to another will be called journey and
how it is performed depends on the problem under inspection and on how far we
want to travel from the last accepted solution, called incumbent. If the loss for the
perturbed xs is more or equally optimal than the previous, then xs is accepted
as a basis for the next iterations. However, if the solution is less optimal (e.g.
the loss increase), the choice of whether discard or keep it depends on the value
of a sample of a random variable. The random variable is built considering the
amount of variation of the loss function induced by the journey and the state of the
cooling schedule defined by the temperature T (s) deterministically determined.
Here, the Metropolis-Hastings algorithm appears and plays an important role in
defining the convergence properties of the heuristic. The details are provided in
the next paragraph.

Simulated annealing

The principle of cooling schedule comes from the language used to describe the
mechanical process of metal annealing, which involves heating a metallic object
to a very high temperature and gradually cooling it. By letting the metal cool
down, the particles (the optimization variables) arrange themselves into the lowest
possible energy state (evaluated loss function). The atoms are allowed to move
to further areas of the space (neighbourhoods) at hot temperatures than at low
temperatures, this avoids to be stuck in local minima in the first phases of the
annealing. After the minimum temperature has been reached a reannealing can
be performed to explore other areas of the space. This allows to have an arbitrary
number of non-unique solutions to compare and select. The system temperature,
T (s), is a non-increasing function with respect to the iteration count. It has
been proved that, if an infinite number of iterations is made, the algorithm will
reach the global minimum (Bélisle, 1992). Since the infinite assumption cannot be
fulfilled in practice, a reasonable number of iterations is chosen, usually depending
on the maximum allowed elapsed time.
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The random variable which rules the acceptance/rejection step comes from
the normalized Boltzmann factor

P [E] = 1
z(T )e

−E
kT , (4.9)

which determines the probability of observing a particular energy E given a tem-
perature T , a normalizing factor z(T ) and a Boltzmann constant k. In practice, if
at the iteration s we observe f(xs) and this is higher than f(xs−1) the probability
of keeping xs is equal to the probability of the variation, ∆fs, in the loss function:

P [∆fs] = e
−f(xs)
kT (s)

e
−f(xs−1)

kT (s)

= e
−∆f(xs)

kT (s) . (4.10)

If the variation in energy is large the probability that the parameters will
be kept is low, while, for a small variation they might be accepted. In this way,
the algorithm allows to escape from local minima, increasing the chance that
the global minimum will be found. The actual choice is made by comparing the
value given in (4.10) to a random variate from the uniform distribution. If the
random value is smaller, the parameters are kept. As time goes on and the system
temperature drops, however, the probability of keeping the state approaches zero,
even for small changes in energy.

Heuristic

Adopting the simulated annealing algorithm it is possible to solve all the test
assembly models which take the form (2.18). The heuristic we developed is in-
spired by the work of Stocking and Swanson (1993) because the constraints in
the optimization model are treated as part of the loss function using the hinge
function and more in general, through the Lagrange relaxation, two main con-
cepts introduced in Section 2.2.6. The algorithm is based on the separation of
the problem, in particular we differentiate the T vectors x1, . . . ,xT of I binary
variables, each vector xt corresponds to a test assembly sub-problem for the test
form t. Also the T matrices and vectors involved in the linear constraints and in
the objective function are kept separated. Along with the iterations, each test is
evaluated separately in terms of optimality and feasibility. This separation allows
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to speed up the algorithm since all the algebraic operations are made on smaller
objects. The only constraints which are not separable are the overlap (Section
2.2.5) and the item use (Section 2.2.5) which are evaluated on the full-length
vector of optimization variables.

The simulated annealing has the disadvantage that is hardly able to find
the feasible space of a problem, this is why we decided to start our heuristic by
a fill-up sequential phase in which the worst performing test, both in terms of
optimality and feasibility6, is filled-up with the best item available in the item
pool. After the item has been assigned, the process is repeated until all the tests
have reached their maximum length, i.e. they are all "filled-up".

Once the first step is performed, luckily we have at least a feasible solution
to process with the simulated annealing principle. In detail, the first W worst
tests x1, . . . ,xW are taken and a fixed number of items V , already taken in these
tests, is sampled, namely x1,1, . . . ,x1,V , . . . ,xW,1, . . . ,xW,V . These sampled items
are firstly, removed and secondly, switched with all the other available items in
the pool. The test resulting from the removal and the switch is accepted with a
chance equal to (4.10). After the sampling phase, the performance of the tests
is again evaluated and if the termination criteria have not been met, tests and
items are sampled again. When a certain convergence in the objective is attained
we say that a neighbourhood of the space has been explored. The user can decide
how far he/she wants to go from the most recent solution and hence how many
neighbourhoods he/she wants to explore. If the journey is not completed, the last
solution is substantially perturbed and the heuristic performs again the fill-up and
sampling steps.

The result of the heuristic is a set of solutions of lengthH which is the number
of neighbourhoods explored. It is also possible to decide how many of these areas
must be evaluated just in terms of feasibility, Hf , and how many in terms of
optimality, Ho, i.e. H = Hf + Ho. In this way, the test assembler has a wider
choice of optimally assembled tests in terms of other features not considered in
the assembly model, such as content validity.

The hyperparameters (i.e. parameters chosen by the user) in the algorithms
are several, the following list summarizes all the customizable features:

6In practice we allow the user to decide if the fill-up phase must be done by considering only
the feasibility of the problem or adding the optimality evaluation.
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• Lagrange relaxation:

– β ∈ [0, 1], as in (2.18), it serves as a balancing between optimality and
feasibility. A β approaching one puts more emphasis on the optimality
of the solution. Viceversa, an almost zero β takes into account only
the feasibility of the solution.

• simulated annealing:

– Ff : number of feasible fill-up phases;

– t0: starting temperature;

– geom_temp: the factor by which the temperature is geometrically de-
creased at each iteration s, i.e. ts = ts−1/geom_temp;

– W : number of worst performing tests to sample;

– V : number of already selected items in each of the W tests to sample.

• termination criteria:

– Hf : number of feasible neighbourhoods;

– Ho: number of optimal neighbourhoods;

– max_eval: maximum number of objective function evaluations;

– max_time: maximum elapsed CPU time, the algorithm stops if, at
convergence, the actual elapsed CPU time is higher than max_time;

Most of the hyperparameters, apart from β and t0, are positively correlated with
the chance to find the global optimum, but obviously they are negatively cor-
related with the elapsed time. Consequently, more we increase Ff , W , V , Hf

and Ho more it is likely to find the global optimal tests at the cost of a large
computational time.

4.3 Simulation Study

The performance and benefits of the chance-constrained test assembly model (4.8)
are investigated through a simulation by implementing our heuristic (Section
4.2.2) in Julia to optimize it. This setting allows us to evaluate the effects of
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using probabilistic methods in the field of ATA models in terms of conservatism
of the test solution. In particular, this achievement is assessed by comparing the
quantile of TIFs obtained by our model and the classical one solved by CPLEX. On
the other hand, in order to show the computational and practical power of our
solver, also the classical linear ATA MAXIMIN model (2.10) is solved through
our heuristic and the overall estimated TIFs of the assembled tests are compared
with CPLEX solutions.

The data needed for assembling the chance-constrained tests consists of the
sample of the IIFs computed at the predetermined ability points, θkt , of each item
in the pool, namely the Ir(θkt), for r = 1 . . . , R. These quantities are obtained by
bootstrapping the calibration process, the procedure is described in Section 3.1.5.
In particular, the parametric approach is arbitrarily used in this simulation. As
a golden rule, the sample which better represents the distribution function of the
random variables in the test assembly model should be used. For the classical
model, a calibrated item pool is needed. A 2-parameter logistic IRT model is
assumed and for the other settings the standard setup described in Section 3.2.1
has been chosen.

Optimization features

The results are split in the next two sections. The first findings to be investigated
are those obtained by solving the classical MAXIMIN ATA model (2.10) in two
different versions: the strict model and the model relaxed by Lagrange multipliers.
These definitions have been introduced in Chapter 2, Section 2.2.6. In summary,
the former doesn’t allow the constraints to remain unfulfilled, on the opposite,
the latter model tries to meet all the constraints by reducing their deviations
from the predetermined lower and/or upper bounds. In particular, a β = 0.1 is
used as a balancer between optimality and feasibility. To evaluate the amount
of infeasibility of the relaxed version of the ATA model we report the sum of
all the deviations of the unmet constraints between round parenthesis. A value
approaching zero is desirable. For this class of models, the comparison between
our solver and CPLEX is made on the minimum observed TIF at θ = 0 among
all the assembled tests, i.e. mint [TIFt(0)], since it is exactly the value assumed
by the objective function. Given that the MAXIMIN model is a maximization
model this value must be as high as possible. The aim of this section is to show
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the practical benefits that our solver can bring also in the classical test assembly
framework.

Secondly, in the last section, the CC MAXIMIN model (4.8) is solved by
our heuristic and the best value of its objective function among all the explored
neighbourhoods is reported together with the amount of infeasibility since, again,
the model is defined as a relaxed ATA model. In order to show that our heuristic
effectively reaches a near-optimal solution in an uncertain environment we com-
pare the minimum, among all the T tests, of the empirical α-quantile of the TIF
computed at θ = 0, i.e. mint [Q(TIFt(0), α)]. Considering that CPLEX is not able
to solve the CCMAXIMIN model, the quantiles shown in the CPLEX columns are
those coming from the optimal tests obtained by solving the classical MAXIMIN
ATA model.

The just mentioned models are solved under different specifications, such as
the number of test forms and the confidence level α. The assembly is performed
in a parallel framework, i.e. all the tests must meet the same constraints. Two
fictiuos categorical variables, content_A and content_B, with three possible val-
ues each, are simulated to constrain the tests to have a certain content validity.
The complete set of specifications is summarized in the following table:

Table 4.1: Test specifications

Number of tests {10, 20, 25}
Test length [38, 40]
content_A [6, 10], [9, 12], [18, 25]7

content_B [9, 12], [15, 19], [9, 12]
Maximum overlap between tests 11
α {0.05, 0.01}8

Different combinations of these specifications create four cases to be investi-
gated for the classical MAXIMIN ATA model and eight cases for the CCMAX-
IMIN ATA model.

The hyperparameters and termination criteria chosen for the simulated an-
nealing algorithm are the following:

8This specification requires that each test must have from 6 to 10 items having the first
value of the variable content_A, from 9 to 12 items having the second value etc...



72 Chapter 4. Chance-Constrained Test Assembly

• Ff= 1;

• t0= 0.00001;

• geom_temp= 0.1;

• W= 1;

• V= 1;

• Hf= 0;

• Ho= Inf;

• max_eval= Inf;

• max_time= 1000 seconds.

Basically, the imposed termination criterion is limited to the amount of time
needed for solving the model. This criterion is also valid for the CPLEX solver.

Solutions of classical MAXIMIN parallel test assembly model

The classical MAXIMIN ATA model (2.10) has been solved both in the strict and
in the relaxed version. For the latter, our heuristic has been tested against CPLEX
imposing a time limit of 1000 seconds. The cases under inspection are ranked
from top to bottom in a increasing order of complexity. The optimal values of
the objective function of the aforesaid ATA model coming from the solvers are
reported in the following table where the best results are formatted in bold:

Table 4.2: mint [TIFt(0)](infeasibility)

model strict MAXIMIN relaxed MAXIMIN

case T Item use max CPLEX CPLEX our solver

1 10 4 14.863 14.992(0.0045) 15.350(0)

2 10 2 11.318 11.317 (0) 11.255(0)

3 20 4 11.018 11.237(0) 11.244(0)

4 25 4 No sol. 6.883(131.27) 9.309(1e-4)
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Apart from the case 2, our heuristic outperfomed the other solver. A re-
markable case is the forth, where a large-scale ATA model, highly constrained,
couldn’t be solved by CPLEX. In particular, no solution has been found for the
strict model and an unacceptably infeasible set of test forms for the relaxed model
has been returned. Instead, our solver could find always near-feasible solutions
even in the most difficult tasks (case 4) and returned the most optimal solutions
in three out of four cases (cases 1, 3 and 4). Summarizing, the results showed
that our solver always provides an arbitrarily acceptable solution for the classical
MAXIMIN ATA model with respect to the imposed constraints. For this reason,
we believe that, in professional contexts, our solver could be a very useful tool
since it is highly reliable against different test specifications.

Solutions of CCMAXIMIN parallel test assembly model

The test forms built using the chance-constrained test assembly model (4.3), de-
fined in this dissertation should have the maximum possible empirical α-quantile
of their TIFs. The optimality in this sense will ensure that the assembled tests are
conservative in terms of accuracy of ability estimation (indeed, the TIF) taking
into account the uncertainty of the estimates of the item parameters. In Table
4.3 the quantiles obtained by optimizing the chance-constrained model by means
of our solver, are printed. As can be noticed, the results are always in favour
of our approach, since, in the eight studied cases, the last column presents the
highest minimum quantile of the TIF among all the assembled tests. Moreover,
the constraints are always profitably fulfilled proving again that the solver can
likely find the feasible space of the problem. Thus, we can say that our solver is
able to find the optimal solution not only for the classical MAXIMIN ATA model
but also with respect to its chance-constrained formulation. Furthermore, it is
not sensible to alterations of the tests specifications and it is consistent with the
definition of the empirical quantiles since it never produces a set of tests with a
minimum 0.01-quantile higher than the minimum 0.05-quantile.
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Table 4.3: mint [Q(TIFt(0), 0.05)](infeasibility)

model strict MAXIMIN relaxed MAXIMIN CCMAXIMIN

case T Item use max CPLEX CPLEX our solver
1 10 4 14.370 14.553(0.0045) 14.862(0)
2 10 2 10.837 10.808(0) 11.034(0)
3 20 4 10.652 10.685(0) 10.970(0)
4 25 4 No sol. 6.639(131.27) 9.394(1e-3)

Table 4.4: mint [Q(TIFt(0), 0.01)](infeasibility)

model strict MAXIMIN relaxed MAXIMIN CCMAXIMIN

case T Item use max CPLEX CPLEX our solver
5 10 4 13.892 14.004(0.0045) 14.703(0)
6 10 2 10.567 10.402(0) 10.688(0)
7 20 4 10.288 10.336(0) 10.664(0)
8 25 4 No sol. 6.332(131.27) 8.715(0)

4.4 Application on Real Data

The data used in this application derive from the 2018/2019 Italian standardized
assessment program managed by INVALSI. In particular, the dichotomous re-
sponses come from a single test of 39 items and they are given by 24781 students
of the fifth grade (last year of the primary school). The subject under analysis
is mathematics. Unfortunately, the length of the pool is not sufficient to perform
a test assembly with a reasonable amount of optimization variables, this is why
we decided to replicate the items 8 times in order to have a pool of 39 ∗ 8 = 312
items. This procedure is not replicable in a real test assembly instance and, of
course, it makes this application resemble a simulation but, unlike the simulation
study showed in the Section 4.3, we believe that it represents better the reality.
Furthermore, we would like to point out that finding this type of data is extremely
difficult since they are subject to a strict privacy regulation and, usually, in order
to avoid spreading information about the items, the institutes don’t publish the
responses until the items are not used anymore in future testing sessions.
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4.4.1 Data Structure and Calibration

The item pool contains 39 items divided into 4 domains: numbers (numeri) 10
items, space and figures (spazio e figure) 11 items, data and forecasting (dati
e previsioni) 11 items and functions and relationships (funzioni e relazioni) 7
items. The items are grouped in 3 friend sets: D3, D8, and D12. The sample
of respondents has length 24781, thus, we stored the responses in a 0-1 matrix
39×24781 with a balanced design, so there are no missings in the data. The IRT
model chosen for the calibration is the unidimensional 2PL model. The estimation
is carried on by applying the algorithm described in this chapter. The process took
about 40 seconds to reach the convergence. After the calibration, we performed a
non-parametric bootstrap with 500 replications on the item parameter estimates
and we computed the IIF at θ = 0 for all the items in the pool. Since the number
of respondents is large, the range of variation of the sampling distribution of each
item parameter and subsequently of the IIF is small.

Table 4.5 shows the resulting calibrated item pool together with the standard
errors (SE) of item parameters obtained by the Fisher information approach ex-
plained in Paek and Cai (2014) and their sampling standard deviations (SD)
obtained by the non-parametric bootstrap. To reach a reasonable amount of
items we replicate 8 times the 500 samples of the IIFs and the calibrated item
pool. The final pool had 320 items and the final IIF matrix had 320× 500 sam-
ples. Subsequently, we solved the CC MAXIMIN ATA model using our approach
and imposing the specifications summarized in the next section.
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Table 4.5: Calibrated item pool

id b̂ SE SD â SE SD DOMAIN UNIT

1 1.556 0.007 0.023 1.161 0.013 0.024 1
2 0.030 0.008 0.017 1.244 0.012 0.022 3
3 1.760 0.007 0.023 1.072 0.014 0.023 2 D3
4 0.555 0.007 0.016 0.806 0.013 0.017 2 D3
5 -0.474 0.009 0.016 1.066 0.012 0.020 4
6 0.536 0.008 0.017 1.192 0.012 0.021 1
7 0.587 0.007 0.016 0.960 0.012 0.019 2
8 0.188 0.008 0.013 0.581 0.013 0.016 4
9 1.845 0.007 0.024 1.366 0.013 0.026 3 D8
10 0.532 0.008 0.017 1.233 0.012 0.021 3 D8
11 -0.595 0.009 0.018 1.313 0.012 0.022 3 D8
12 2.077 0.007 0.027 1.613 0.013 0.029 1
13 0.074 0.008 0.015 1.031 0.012 0.020 2
14 -1.033 0.010 0.020 1.501 0.012 0.026 4
15 1.418 0.007 0.021 1.183 0.013 0.025 3 D12
16 0.614 0.007 0.018 1.294 0.012 0.024 3 D12
17 2.776 0.006 0.035 1.284 0.016 0.035 3 D12
18 -0.284 0.009 0.013 0.583 0.013 0.016 4
19 -0.766 0.010 0.017 1.178 0.012 0.022 2
20 1.234 0.007 0.022 1.605 0.012 0.027 1
21 -0.250 0.009 0.018 1.536 0.011 0.024 2
22 0.553 0.008 0.018 1.556 0.012 0.027 1
23 1.709 0.007 0.023 1.239 0.014 0.027 3
24 0.547 0.008 0.017 1.133 0.012 0.022 1
25 -0.361 0.009 0.016 0.930 0.012 0.019 4
26 0.178 0.008 0.016 0.963 0.012 0.018 2
27 0.341 0.008 0.016 1.062 0.012 0.021 4
28 0.740 0.007 0.020 1.570 0.012 0.028 3
29 -0.050 0.008 0.015 0.750 0.013 0.017 1
30 0.082 0.008 0.015 0.936 0.012 0.018 1
31 0.873 0.007 0.018 1.092 0.013 0.022 2
32 -0.115 0.008 0.014 0.642 0.013 0.016 4
33 0.101 0.008 0.016 1.100 0.012 0.021 3
34 0.188 0.008 0.015 1.048 0.012 0.019 2
35 0.505 0.007 0.013 0.488 0.013 0.014 2
36 -0.384 0.009 0.018 1.483 0.012 0.025 1
37 -1.032 0.011 0.016 0.756 0.014 0.019 3
38 1.427 0.007 0.018 0.994 0.013 0.021 1
39 1.299 0.007 0.017 0.753 0.014 0.018 2
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4.4.2 Test Assembly

A set of T = 20 tests with length from nmin
t = 40 to nmax

t = 45 items is assembled.
The already mentioned friend sets are included in the assembly as constraints and
we imposed the tests to have at least 7 items and maximum 12 items of each of
the first three domains (numbers, space and figures, and data and forecasting).
We did not constrain the last domain because it is redundant. Each item can be
used maximum in 10 test forms. The overlap between test forms must be less or
equal to 11 items and, for the chance-constrained model (4.8) we chose α = 0.05.
After we included all the specifications in the model, we run the optimization
algorithm which implements our heuristic. We selected the same termination
criteria as in the simulation study (Section 4.3).

Before the time limit had been reached, the algorithm explored 4 neighbour-
hoods: the first one had not an optimal value of the objective function, on the
other hand, the second and the fourth had an objective value (-14.498 and -14.58
respectively) very close to the third neighbourhood which retained the best solu-
tion (-14.746). The assembled tests fulfil almost all the constraints as it can be
seen from Table A.7 in Appendix A. The only constraints not completely met are
those regarding the length of the tests. In particular, for tests 1, 10 and 16 the
model selected 46 items, that is one more than allowed. This issue is a drawback
of using the units. Friend sets contribute massively to the TIF but at the same
time they increase the size of the test, by decreasing the OptFeas parameter we
could try to strengthen the length constraints but, since all the other results were
really good, we preferred to keep this solution. Another option could be taking
the design obtained in the second neighbourhood which fulfil all the constraints
related to the test size and had a high minimum TIF among the tests.

The maximized α-quantiles together with the TIFs computed on the estimates
obtained in the full sample are reported in Table 4.6. For a graphical represen-
tation of the sampling distributions of the TIFs please refer to the Figures A.32
and A.34. The resulting TIFs and quantiles do not considerably differ among
the test forms, this is a signal that the model reached an optimal solution very
proximal to the global one. Analyzing the sampling distribution of the TIFs of
the assembled test illustrated in Figures A.32 and A.33, we can notice that the
TIF computed on the full sample is always higher than the 0.05-quantile. Thus,
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Table 4.6: Test information function

test (t) Q(TIFt(0), 0.05) TIFt(0)
1 16.409 16.703
2 16.534 16.863
3 16.449 16.773
4 16.414 16.734
5 16.409 16.730
6 16.462 16.775
7 16.397 16.707
8 16.404 16.704
9 16.447 16.730
10 16.405 16.723
11 16.400 16.682
12 16.442 16.739
13 16.401 16.711
14 16.526 16.836
15 16.425 16.730
16 16.388 16.690
17 16.440 16.742
18 16.385 16.677
19 16.481 16.791
20 16.466 16.762

for example, we could say that there is a low possibility that test 1 produces
estimates of the ability of an examinee with a true θ = 0 with a standard error
of measurement greater than

√
(1/16.409) = 0.247.
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5 Conclusion and Further
Research

In Chapter 3, a framework for deriving a pre-test design and for doing simula-
tion studies on estimation of parameters of unidimensional 1PL and 2PL IRT
models has been provided. It includes: first, the implementation of the cubic-
spline method for interpolation and extrapolation of the masses on the starting
quadrature points of the ability continuum; secondly, the definition of a bootstrap
algorithm applied to IRT models for retrieving the sampling distribution function
of the item parameters. All the described procedures are coded in Julia.

The results of the simulation study showed that our approach produces simi-
lar results in terms of estimation accuracy compared to the benchmark software,
the mirt R package. Remarkable positive differences in favour of our algorithm
are observed in case where the latent variable is not normally distributed. Over-
all, our algorithm shows always the best computational performances. The latter
result demonstrates that Julia is a programming language suitable for numerical
analysis, with a potential to be exploited by statisticians interested in optimiza-
tion, of which likelihood maximization is a special case. The efforts we put
in this direction are concretized with the production of a Julia package called
IRTCalibration.

Nevertheless, we would like to point out that the R package mirt offers a
multitude of options for latent models such as multidimensional latent structure
and different EM algorithms (such as stochastic EM and Monte Carlo EM). Also,
their output is very rich; it produces standard errors and other model diagnostics.
Our tool, instead, provides only the estimates of the latent variable, the final
weights of the latent distribution, the calibrated IRT item parameter and their
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bootstrapped standard errors, since it is out of the scope of this work to inspect
model diagnostics and other statistics.

On the other hand, the bootstrap allowed the analysis of the sampling distri-
bution functions of the item parameters. Thus, it showed that it is a powerful,
prior free, tool to inspect the uncertainty of the item parameters because is able
to capture the full characterization of the variability of the items due to the sam-
ple error. We believe that, in the future, a better specification of the parametric
scheme would improve also the accuracy of the parameters estimation.

In Chapter 4, an ATA model which can deal with uncertainty in item pa-
rameters has been defined and a solver based on the simulated annealing meta-
heuristic has been developed. Again, the results of a simulation study showed
that our solver outperformed the benchmark software CPLEX in several classical
test assembly tasks. About the CC MAXIMIN ATA model we proved that our
solver is able to look for the highest quantiles of the TIFs of the assembled tests
successfully optimizing the specified models. The use of our model will allow the
test assemblers to provide a conservative version of their tests which takes into
account the effect of uncertainty of the item parameter estimates in the future
process of ability estimation; the task the tests are primarily devoted to. More-
over, a second package called ATAjl, always based on the Julia programming
framework, has been developed.

In the near future we intend to provide a full documentation of the developed
packages in order to make them easily usable by practitioners. It will follow
an enrichment of the tools included within the IRTCalibration package, such
as the possibility to input polytomous responses and estimate the parameters
of multidimensional latent models. Regarding the test assembly suite ATAjl we
would like to implement other objective functions which until now couldn’t be
solved by linear ATA models. More in general, we believe that the heuristic we
proposed can be applied to a wider class of optimization problems, outside of the
ATA field, distinguished by having several binary optimization variables. It will
be our future concern to extend its field of application in order to show if it can
be helpful in other contexts.
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A Tables and Figures

A.1 Test Theories and ATA

Table A.1: Example of item bank.

i ID b bse ES FORMAT PROCESS DOMAIN ITEM ITEM ENEMY ENEMY ENEMY

SET 1 SET 2 SET 1 SET 2 SET 3

1 M02KL -2.0 1.02 0.6 Matching Problem Numbers 1 0 1 0 0

solving

2 M35KL -1.5 0.12 0.3 Multiple-choice Knowing Space 1 0 1 0 0

and figures
... ... ... ... ... ... ... ... ... ... ... ... ...

I − 2 M03PF 1.2 0.05 0.4 Open-ended Knowing Numbers 0 1 1 0 1

I − 1 M08PF 0.06 0.98 0.35 Multiple-choice Knowing Numbers 0 1 1 0 1

I M10ML 0.75 0.4 0.12 Multiple-choice Knowing Space 0 0 1 0 1

and figures
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Figure A.1: An example of unbalanced items × tests design, for
T = 4 tests with lenght equal to 5 and 2 anchor items (overlap),

and I = 16 items from the pool.
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Figure A.2: An example of tests × examinees design, for T = 4
tests, and N = 8 test takers.
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Figure A.3: An example of items × examinees design, for I = 16
items, and N = 8 test takers.
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A.2 Items Calibration in Julia

A.2.1 Case 1a (Standard Setup)

Table A.2: Case 1a - RMSE and BIAS of item parameters aver-
aged across the simulations, part 1/5

b RMSE b BIAS a RMSE a BIAS
i b† jl mirt mirtEHW jl mirt mirtEHW a† jl mirt mirtEHW jl mirt mirtEHW

1 -1.942 0.09 0.089 0.09 -0.018 -0.014 -0.018 0.893 0.111 0.112 0.111 -0.015 -0.015 -0.014
2 -0.704 0.095 0.094 0.095 -0.022 -0.019 -0.022 0.805 0.117 0.117 0.117 -0.017 -0.014 -0.017
3 -0.842 0.084 0.084 0.084 -0.02 -0.017 -0.02 0.963 0.098 0.099 0.098 -0.023 -0.02 -0.023
4 -0.502 0.09 0.09 0.09 0.044 0.045 0.045 0.838 0.071 0.072 0.071 0.003 0.003 0.004
5 1.104 0.1 0.098 0.1 -0.039 -0.036 -0.039 1.12 0.104 0.104 0.104 0.006 0.008 0.007
6 -0.625 0.077 0.075 0.077 -0.027 -0.023 -0.026 1.297 0.106 0.105 0.106 -0.043 -0.037 -0.042
7 -0.39 0.073 0.072 0.073 -0.015 -0.011 -0.015 1.035 0.09 0.09 0.09 -0.032 -0.028 -0.031
8 0.077 0.087 0.086 0.087 -0.03 -0.026 -0.03 1.457 0.116 0.115 0.116 -0.038 -0.03 -0.037
9 -1.368 0.093 0.092 0.093 -0.019 -0.015 -0.019 1.059 0.105 0.106 0.104 -0.015 -0.012 -0.014
10 -0.437 0.086 0.084 0.086 -0.041 -0.037 -0.041 1.031 0.101 0.102 0.102 0.006 0.01 0.007
11 -1.4 0.1 0.099 0.1 -0.03 -0.026 -0.03 1.094 0.101 0.101 0.101 -0.018 -0.014 -0.016
12 -0.617 0.087 0.086 0.087 -0.033 -0.03 -0.033 0.903 0.085 0.085 0.085 -0.022 -0.019 -0.022
13 -0.068 0.078 0.077 0.078 -0.016 -0.014 -0.016 0.55 0.084 0.084 0.084 0.012 0.013 0.012
14 1.432 0.101 0.1 0.101 -0.039 -0.036 -0.039 1.033 0.106 0.105 0.106 -0.024 -0.022 -0.022
15 -0.379 0.08 0.079 0.08 -0.02 -0.017 -0.02 0.893 0.096 0.097 0.097 -0.009 -0.005 -0.008
16 -1.547 0.104 0.103 0.103 -0.026 -0.021 -0.026 1.402 0.136 0.134 0.134 -0.062 -0.055 -0.059
17 -0.628 0.09 0.088 0.091 -0.037 -0.034 -0.037 1.086 0.099 0.101 0.099 0.024 0.029 0.026
18 -0.023 0.085 0.084 0.085 -0.025 -0.022 -0.026 1.162 0.099 0.101 0.1 0.002 0.007 0.003
19 0.051 0.073 0.072 0.073 -0.029 -0.027 -0.029 0.811 0.088 0.088 0.088 -0.03 -0.027 -0.029
20 0.906 0.07 0.069 0.07 -0.019 -0.017 -0.019 0.701 0.086 0.086 0.087 0.002 0.003 0.003
21 -2.054 0.13 0.13 0.13 0.015 0.019 0.015 1.057 0.114 0.114 0.114 0.009 0.007 0.011
22 1.0 0.092 0.092 0.092 0.014 0.016 0.015 1.225 0.109 0.11 0.11 0.004 0.005 0.006
23 0.963 0.113 0.112 0.113 -0.028 -0.025 -0.028 0.978 0.119 0.119 0.119 0.019 0.021 0.02
24 0.013 0.07 0.07 0.07 0.017 0.019 0.018 1.323 0.107 0.109 0.108 0.023 0.028 0.025
25 1.543 0.12 0.119 0.12 -0.038 -0.035 -0.037 1.514 0.137 0.136 0.136 -0.027 -0.025 -0.026
26 0.697 0.081 0.081 0.081 0.046 0.047 0.047 1.177 0.101 0.101 0.103 0.012 0.012 0.014
27 -0.456 0.131 0.13 0.131 -0.033 -0.029 -0.033 1.24 0.147 0.149 0.148 0.027 0.034 0.029
28 -1.062 0.121 0.121 0.121 -0.006 -0.002 -0.005 1.152 0.133 0.134 0.134 -0.016 -0.013 -0.015
29 2.575 0.155 0.155 0.155 -0.017 -0.015 -0.017 1.079 0.147 0.146 0.148 0.023 0.023 0.025
30 -0.251 0.081 0.081 0.081 0.011 0.013 0.012 1.222 0.098 0.099 0.099 0.007 0.011 0.008
31 1.672 0.091 0.092 0.091 0.042 0.042 0.042 0.938 0.089 0.089 0.09 0.03 0.029 0.032
32 -1.746 0.124 0.123 0.124 -0.03 -0.025 -0.03 1.244 0.117 0.117 0.117 -0.028 -0.025 -0.027
33 -0.363 0.076 0.077 0.077 0.03 0.03 0.03 0.934 0.093 0.093 0.093 0.006 0.007 0.008
34 0.509 0.067 0.067 0.067 -0.005 -0.003 -0.005 0.826 0.089 0.089 0.088 -0.014 -0.011 -0.013
35 -0.691 0.11 0.109 0.11 -0.022 -0.019 -0.022 1.104 0.146 0.148 0.146 -0.003 0.002 -0.001
36 -0.517 0.088 0.086 0.088 -0.042 -0.038 -0.042 1.169 0.1 0.103 0.1 0.028 0.034 0.03
37 1.565 0.111 0.112 0.111 0.024 0.025 0.025 1.176 0.112 0.111 0.113 0.027 0.027 0.029
38 -0.464 0.109 0.109 0.109 0.016 0.018 0.017 1.203 0.143 0.145 0.144 0.036 0.039 0.038
39 0.396 0.117 0.115 0.117 -0.041 -0.037 -0.04 1.155 0.139 0.139 0.14 -0.024 -0.018 -0.022
40 -0.291 0.138 0.138 0.138 0.09 0.09 0.091 1.453 0.177 0.178 0.178 0.041 0.046 0.043
41 -0.24 0.115 0.114 0.115 -0.034 -0.03 -0.034 1.413 0.149 0.148 0.149 -0.038 -0.029 -0.037
42 0.749 0.092 0.091 0.092 -0.017 -0.014 -0.017 1.306 0.115 0.115 0.114 -0.022 -0.018 -0.021
43 -1.447 0.131 0.129 0.131 -0.042 -0.039 -0.042 0.941 0.171 0.171 0.171 -0.044 -0.04 -0.043
44 -0.835 0.103 0.103 0.103 -0.025 -0.023 -0.025 0.654 0.115 0.115 0.115 -0.009 -0.008 -0.008
45 1.481 0.121 0.121 0.121 0.021 0.023 0.021 0.817 0.141 0.141 0.141 0.004 0.005 0.004
46 2.0 0.123 0.122 0.123 -0.017 -0.015 -0.017 1.026 0.122 0.122 0.123 0.006 0.006 0.008
47 -0.488 0.082 0.081 0.082 0.004 0.006 0.004 0.865 0.101 0.102 0.102 0.014 0.016 0.015
48 1.146 0.086 0.086 0.086 0.018 0.02 0.019 0.937 0.093 0.093 0.092 -0.011 -0.01 -0.009
49 -0.26 0.111 0.11 0.111 -0.026 -0.023 -0.026 1.044 0.113 0.115 0.113 0.003 0.007 0.005
50 -0.016 0.09 0.091 0.09 0.002 0.004 0.002 0.737 0.109 0.11 0.11 0.01 0.012 0.011
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Table A.3: Case 1a - RMSE and BIAS of item parameters aver-
aged across the simulations, part 2/5

b RMSE b BIAS a RMSE a BIAS
i b† jl mirt mirtEHW jl mirt mirtEHW a† jl mirt mirtEHW jl mirt mirtEHW

51 -2.564 0.19 0.189 0.19 0.025 0.028 0.026 0.794 0.163 0.159 0.164 0.029 0.023 0.029
52 -1.078 0.122 0.122 0.122 0.039 0.04 0.04 0.863 0.122 0.122 0.123 0.035 0.034 0.036
53 -1.115 0.124 0.125 0.125 0.062 0.063 0.063 1.067 0.14 0.14 0.141 0.01 0.011 0.012
54 -0.156 0.131 0.131 0.132 0.075 0.075 0.076 1.078 0.138 0.139 0.138 0.048 0.049 0.049
55 1.776 0.165 0.164 0.165 0.081 0.081 0.082 0.945 0.162 0.162 0.163 0.031 0.029 0.032
56 0.452 0.089 0.09 0.089 0.053 0.053 0.053 1.22 0.084 0.086 0.085 0.037 0.039 0.039
57 -0.757 0.146 0.146 0.147 0.086 0.087 0.087 1.154 0.148 0.15 0.148 0.03 0.032 0.032
58 -0.763 0.128 0.127 0.128 -0.015 -0.011 -0.015 1.042 0.137 0.138 0.138 0.027 0.031 0.028
59 1.02 0.104 0.103 0.104 -0.018 -0.015 -0.018 0.853 0.127 0.128 0.127 0.034 0.036 0.035
60 -0.4 0.101 0.1 0.101 -0.024 -0.022 -0.025 0.711 0.104 0.105 0.104 0.022 0.024 0.022
61 0.625 0.107 0.107 0.107 -0.008 -0.005 -0.009 1.185 0.145 0.147 0.145 0.029 0.033 0.031
62 -0.325 0.098 0.097 0.098 -0.021 -0.019 -0.021 0.649 0.109 0.11 0.11 0.035 0.037 0.036
63 -1.807 0.157 0.156 0.157 -0.048 -0.044 -0.048 0.796 0.164 0.164 0.166 0.037 0.036 0.037
64 -0.4 0.106 0.106 0.106 -0.013 -0.009 -0.013 1.081 0.134 0.136 0.133 0.027 0.031 0.028
65 0.824 0.111 0.11 0.11 -0.02 -0.017 -0.021 1.228 0.157 0.158 0.158 0.04 0.044 0.041
66 0.577 0.112 0.111 0.112 -0.027 -0.024 -0.028 1.157 0.17 0.172 0.172 0.05 0.053 0.051
67 -0.896 0.117 0.117 0.117 0.057 0.058 0.057 0.942 0.134 0.134 0.135 0.027 0.027 0.029
68 -0.425 0.144 0.144 0.144 0.083 0.084 0.084 1.172 0.161 0.163 0.16 0.03 0.033 0.032
69 -1.95 0.171 0.17 0.171 0.041 0.043 0.042 0.882 0.16 0.159 0.161 0.04 0.036 0.042
70 0.815 0.151 0.152 0.152 0.075 0.075 0.076 1.023 0.136 0.136 0.136 0.024 0.024 0.025
71 0.16 0.108 0.108 0.109 -0.034 -0.031 -0.034 1.047 0.135 0.136 0.135 0.013 0.017 0.015
72 0.164 0.092 0.092 0.092 -0.012 -0.009 -0.011 0.759 0.104 0.105 0.105 -0.008 -0.006 -0.007
73 -0.651 0.101 0.101 0.101 -0.019 -0.017 -0.019 0.736 0.105 0.106 0.105 0.011 0.013 0.011
74 0.042 0.1 0.1 0.101 -0.009 -0.006 -0.009 0.851 0.133 0.133 0.133 -0.029 -0.025 -0.028
75 0.653 0.108 0.108 0.108 -0.026 -0.023 -0.025 0.879 0.122 0.121 0.122 -0.028 -0.025 -0.027
76 -0.765 0.087 0.086 0.087 -0.028 -0.027 -0.028 0.408 0.122 0.122 0.122 -0.002 -0.001 -0.002
77 0.729 0.106 0.106 0.106 0.005 0.007 0.004 0.787 0.126 0.127 0.126 0.029 0.031 0.03
78 -2.147 0.146 0.144 0.145 -0.033 -0.028 -0.032 1.208 0.173 0.172 0.174 0.048 0.044 0.051
79 -0.702 0.109 0.108 0.109 -0.036 -0.033 -0.037 0.979 0.12 0.122 0.12 0.029 0.033 0.03
80 -1.629 0.139 0.138 0.139 -0.042 -0.039 -0.042 0.65 0.138 0.139 0.138 -0.01 -0.009 -0.01
81 -0.408 0.118 0.116 0.118 -0.037 -0.034 -0.038 1.251 0.155 0.158 0.154 0.022 0.029 0.023
82 -0.948 0.114 0.113 0.115 -0.017 -0.013 -0.017 0.971 0.144 0.146 0.144 0.01 0.014 0.011
83 0.62 0.106 0.106 0.106 0.032 0.033 0.033 0.741 0.123 0.124 0.125 0.027 0.028 0.029
84 1.187 0.116 0.115 0.116 -0.008 -0.005 -0.007 0.92 0.154 0.155 0.154 -0.004 -0.002 -0.002
85 -2.191 0.21 0.204 0.211 -0.041 -0.033 -0.042 1.416 0.2 0.2 0.2 0.013 0.013 0.014
86 0.467 0.11 0.11 0.111 -0.018 -0.015 -0.018 0.997 0.119 0.12 0.12 0.015 0.018 0.016
87 0.865 0.117 0.117 0.117 -0.005 -0.002 -0.005 1.022 0.151 0.153 0.152 0.053 0.056 0.054
88 -0.745 0.108 0.108 0.108 -0.003 0.0 -0.003 1.308 0.148 0.15 0.147 -0.001 0.005 0.0
89 1.071 0.125 0.125 0.125 0.028 0.028 0.028 1.029 0.144 0.144 0.145 0.007 0.007 0.01
90 0.124 0.113 0.113 0.113 -0.035 -0.032 -0.035 0.985 0.123 0.124 0.123 -0.0 0.003 0.001
91 0.695 0.115 0.115 0.115 0.021 0.022 0.021 0.971 0.125 0.125 0.125 0.006 0.007 0.008
92 0.516 0.108 0.108 0.108 0.023 0.026 0.023 1.152 0.152 0.153 0.152 -0.022 -0.018 -0.021
93 -0.088 0.087 0.088 0.087 0.01 0.012 0.01 0.955 0.121 0.121 0.12 -0.029 -0.027 -0.028
94 0.544 0.114 0.115 0.115 0.047 0.047 0.047 0.665 0.115 0.115 0.115 0.024 0.024 0.025
95 -1.625 0.146 0.144 0.146 -0.039 -0.035 -0.039 0.913 0.159 0.159 0.16 -0.003 -0.003 -0.001
96 0.505 0.106 0.106 0.107 -0.017 -0.013 -0.018 1.348 0.163 0.164 0.164 0.04 0.046 0.041
97 0.844 0.122 0.121 0.122 -0.023 -0.02 -0.023 0.821 0.129 0.13 0.13 0.034 0.036 0.035
98 1.42 0.153 0.153 0.153 0.064 0.064 0.065 0.977 0.131 0.13 0.131 -0.006 -0.007 -0.005
99 -0.409 0.121 0.12 0.122 -0.026 -0.022 -0.026 1.187 0.158 0.161 0.159 0.052 0.058 0.053
100 -0.525 0.117 0.116 0.117 -0.035 -0.032 -0.036 1.054 0.141 0.144 0.142 0.034 0.039 0.036
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Table A.4: Case 1a - RMSE and BIAS of item parameters aver-
aged across the simulations, part 3/5

b RMSE b BIAS a RMSE a BIAS
i b† jl mirt mirtEHW jl mirt mirtEHW a† jl mirt mirtEHW jl mirt mirtEHW

101 0.648 0.108 0.108 0.108 -0.025 -0.021 -0.025 1.574 0.192 0.193 0.192 0.015 0.022 0.017
102 0.342 0.111 0.11 0.111 -0.029 -0.026 -0.029 1.019 0.138 0.138 0.138 -0.032 -0.028 -0.032
103 -1.121 0.163 0.163 0.163 0.087 0.088 0.087 1.363 0.174 0.178 0.175 0.06 0.064 0.062
104 -0.354 0.11 0.109 0.11 -0.018 -0.014 -0.018 1.083 0.148 0.151 0.149 0.008 0.012 0.009
105 0.302 0.075 0.075 0.075 -0.007 -0.004 -0.006 0.851 0.086 0.086 0.086 -0.017 -0.014 -0.016
106 -0.535 0.119 0.117 0.12 -0.027 -0.023 -0.028 1.236 0.161 0.165 0.161 0.036 0.042 0.037
107 0.156 0.09 0.089 0.09 -0.033 -0.031 -0.033 0.646 0.108 0.108 0.108 -0.021 -0.019 -0.021
108 1.033 0.111 0.111 0.111 -0.008 -0.006 -0.008 0.753 0.144 0.145 0.145 0.037 0.039 0.038
109 -1.446 0.122 0.121 0.122 -0.016 -0.015 -0.016 0.746 0.137 0.136 0.138 0.039 0.038 0.041
110 -2.571 0.223 0.22 0.224 -0.024 -0.017 -0.024 1.02 0.225 0.224 0.225 -0.024 -0.028 -0.024
111 0.627 0.095 0.094 0.095 -0.014 -0.013 -0.014 0.624 0.106 0.107 0.107 0.005 0.006 0.006
112 0.855 0.183 0.182 0.184 0.116 0.116 0.118 1.758 0.204 0.204 0.204 0.014 0.016 0.016
113 -1.154 0.168 0.166 0.169 -0.066 -0.061 -0.067 1.482 0.212 0.219 0.213 0.083 0.093 0.084
114 1.02 0.104 0.104 0.104 -0.001 0.001 -0.001 0.593 0.125 0.124 0.125 -0.013 -0.012 -0.013
115 0.851 0.106 0.106 0.106 -0.012 -0.01 -0.012 0.933 0.146 0.147 0.147 0.023 0.026 0.025
116 0.88 0.127 0.127 0.127 0.008 0.01 0.008 0.839 0.146 0.146 0.146 -0.015 -0.014 -0.014
117 -0.924 0.136 0.134 0.135 -0.048 -0.044 -0.048 1.098 0.164 0.166 0.164 0.049 0.053 0.05
118 1.09 0.126 0.125 0.126 -0.032 -0.029 -0.032 1.213 0.135 0.135 0.135 -0.018 -0.015 -0.017
119 -0.833 0.102 0.101 0.102 -0.014 -0.011 -0.014 1.02 0.145 0.145 0.145 -0.047 -0.042 -0.046
120 0.48 0.091 0.091 0.091 -0.021 -0.018 -0.021 0.707 0.108 0.108 0.108 -0.028 -0.026 -0.027
121 -0.074 0.096 0.096 0.096 0.013 0.014 0.014 0.795 0.103 0.103 0.104 0.017 0.017 0.019
122 -0.808 0.124 0.124 0.124 0.029 0.031 0.03 0.994 0.146 0.147 0.147 0.013 0.015 0.015
123 -1.243 0.136 0.136 0.136 -0.025 -0.021 -0.026 1.103 0.142 0.144 0.142 0.031 0.034 0.031
124 -0.524 0.116 0.116 0.116 0.003 0.005 0.004 1.309 0.156 0.159 0.157 0.047 0.051 0.049
125 0.002 0.092 0.092 0.092 -0.013 -0.01 -0.013 0.893 0.125 0.126 0.125 0.013 0.015 0.014
126 -0.355 0.097 0.097 0.097 0.013 0.014 0.014 0.705 0.114 0.114 0.114 0.005 0.005 0.007
127 -0.575 0.1 0.1 0.1 -0.001 0.001 -0.001 0.672 0.106 0.107 0.106 -0.007 -0.006 -0.006
128 1.402 0.144 0.145 0.145 0.02 0.022 0.02 1.021 0.154 0.154 0.154 0.017 0.018 0.019
129 -0.337 0.109 0.108 0.109 -0.04 -0.036 -0.04 0.976 0.152 0.155 0.153 0.049 0.053 0.05
130 0.495 0.121 0.121 0.121 -0.028 -0.024 -0.027 1.384 0.149 0.151 0.149 0.017 0.023 0.019
131 -0.293 0.094 0.093 0.094 -0.014 -0.012 -0.014 0.689 0.115 0.115 0.115 -0.037 -0.035 -0.036
132 0.841 0.105 0.105 0.105 -0.017 -0.014 -0.016 0.886 0.148 0.149 0.148 0.018 0.02 0.02
133 -1.18 0.113 0.112 0.113 -0.032 -0.03 -0.032 0.676 0.119 0.119 0.12 0.005 0.007 0.007
134 1.117 0.11 0.11 0.11 0.026 0.026 0.026 1.027 0.157 0.157 0.158 0.047 0.047 0.049
135 -0.275 0.102 0.101 0.102 -0.023 -0.02 -0.023 0.922 0.133 0.133 0.133 -0.037 -0.033 -0.036
136 -0.629 0.104 0.104 0.105 0.001 0.002 0.001 0.699 0.122 0.122 0.122 0.016 0.016 0.018
137 1.167 0.128 0.126 0.128 -0.053 -0.049 -0.053 1.403 0.169 0.169 0.169 -0.048 -0.044 -0.047
138 0.589 0.107 0.107 0.107 0.024 0.025 0.024 0.868 0.144 0.144 0.145 0.02 0.021 0.022
139 -0.431 0.095 0.096 0.095 -0.002 0.001 -0.002 0.869 0.131 0.131 0.131 -0.006 -0.003 -0.005
140 -0.481 0.102 0.103 0.103 0.026 0.027 0.026 1.007 0.122 0.123 0.122 0.031 0.032 0.033
141 0.407 0.114 0.114 0.115 0.063 0.064 0.064 0.908 0.124 0.124 0.124 0.022 0.022 0.023
142 1.198 0.091 0.091 0.091 0.028 0.029 0.028 0.902 0.105 0.105 0.106 0.031 0.031 0.032
143 1.97 0.19 0.19 0.191 -0.021 -0.018 -0.021 1.256 0.175 0.175 0.176 0.036 0.037 0.037
144 -1.514 0.136 0.134 0.136 -0.034 -0.029 -0.034 1.354 0.189 0.188 0.188 -0.076 -0.069 -0.074
145 -0.594 0.103 0.103 0.103 0.012 0.013 0.012 1.069 0.131 0.132 0.132 0.014 0.015 0.016
146 0.685 0.119 0.119 0.119 0.037 0.038 0.037 1.06 0.14 0.141 0.141 0.046 0.047 0.048
147 1.502 0.14 0.14 0.14 -0.001 0.002 -0.001 1.253 0.183 0.183 0.184 -0.021 -0.019 -0.02
148 0.268 0.089 0.088 0.089 -0.029 -0.027 -0.029 0.825 0.116 0.116 0.117 -0.009 -0.007 -0.008
149 -0.742 0.107 0.107 0.107 -0.002 -0.0 -0.001 1.367 0.157 0.16 0.157 0.03 0.034 0.032
150 0.955 0.117 0.115 0.117 -0.018 -0.015 -0.018 1.047 0.136 0.137 0.136 0.036 0.039 0.038
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Table A.5: Case 1a - RMSE and BIAS of item parameters aver-
aged across the simulations, part 4/5

b RMSE b BIAS a RMSE a BIAS
i b† jl mirt mirtEHW jl mirt mirtEHW a† jl mirt mirtEHW jl mirt mirtEHW

151 -0.769 0.116 0.115 0.116 -0.024 -0.022 -0.025 0.648 0.128 0.128 0.128 0.017 0.017 0.017
152 0.702 0.106 0.105 0.107 -0.031 -0.027 -0.031 1.295 0.15 0.15 0.15 -0.036 -0.03 -0.035
153 -0.216 0.1 0.099 0.1 -0.021 -0.019 -0.022 0.655 0.121 0.121 0.12 0.016 0.017 0.017
154 -0.975 0.114 0.112 0.114 -0.026 -0.023 -0.027 0.988 0.153 0.155 0.154 0.047 0.05 0.048
155 -1.306 0.123 0.123 0.123 -0.003 0.0 -0.003 1.019 0.146 0.148 0.147 -0.019 -0.017 -0.018
156 -1.22 0.131 0.131 0.131 0.023 0.025 0.023 1.135 0.167 0.168 0.168 0.024 0.024 0.026
157 0.777 0.14 0.141 0.141 0.084 0.084 0.085 1.316 0.159 0.159 0.16 0.002 0.003 0.003
158 -0.375 0.111 0.111 0.111 -0.02 -0.017 -0.02 1.72 0.185 0.188 0.186 -0.012 -0.0 -0.012
159 -0.077 0.124 0.122 0.124 -0.034 -0.03 -0.034 1.645 0.165 0.163 0.166 -0.046 -0.035 -0.045
160 0.581 0.097 0.097 0.097 0.01 0.01 0.01 0.612 0.112 0.112 0.112 0.018 0.018 0.02
161 -1.697 0.149 0.148 0.148 0.014 0.018 0.014 0.934 0.159 0.158 0.16 -0.035 -0.035 -0.034
162 0.255 0.119 0.12 0.12 0.041 0.042 0.042 1.354 0.165 0.166 0.166 0.047 0.049 0.049
163 2.141 0.198 0.198 0.198 0.04 0.042 0.041 1.444 0.203 0.202 0.203 0.003 0.002 0.005
164 -0.082 0.105 0.105 0.105 -0.012 -0.009 -0.012 1.015 0.118 0.12 0.119 0.004 0.008 0.006
165 0.53 0.087 0.087 0.087 -0.02 -0.017 -0.019 0.743 0.122 0.122 0.121 -0.027 -0.025 -0.026
166 -0.082 0.109 0.109 0.109 -0.003 0.001 -0.003 1.109 0.155 0.155 0.154 -0.04 -0.034 -0.039
167 -0.053 0.106 0.105 0.106 -0.015 -0.012 -0.015 1.145 0.136 0.137 0.136 -0.002 0.002 -0.001
168 -0.401 0.104 0.104 0.103 -0.013 -0.011 -0.013 0.717 0.118 0.119 0.118 0.006 0.008 0.007
169 -0.994 0.12 0.119 0.12 -0.039 -0.036 -0.039 1.088 0.142 0.144 0.142 0.004 0.008 0.005
170 0.656 0.117 0.117 0.118 0.069 0.069 0.07 1.05 0.133 0.133 0.133 0.039 0.04 0.04
171 -1.592 0.143 0.142 0.143 0.017 0.02 0.018 1.11 0.144 0.144 0.144 0.025 0.024 0.027
172 0.655 0.117 0.117 0.117 0.019 0.02 0.02 0.894 0.137 0.137 0.138 0.027 0.027 0.029
173 2.449 0.193 0.193 0.194 0.027 0.029 0.028 0.995 0.188 0.186 0.189 0.011 0.01 0.014
174 -0.666 0.089 0.09 0.09 0.013 0.016 0.014 0.787 0.123 0.123 0.123 -0.003 -0.002 -0.003
175 -0.746 0.115 0.114 0.115 -0.035 -0.031 -0.035 1.003 0.138 0.139 0.138 0.025 0.028 0.026
176 -0.236 0.093 0.093 0.093 -0.002 0.0 -0.002 0.587 0.106 0.106 0.106 0.002 0.003 0.003
177 0.59 0.096 0.095 0.096 -0.026 -0.023 -0.026 0.812 0.109 0.109 0.109 -0.022 -0.019 -0.021
178 0.102 0.123 0.121 0.123 -0.043 -0.039 -0.043 1.815 0.201 0.202 0.201 -0.007 0.004 -0.006
179 0.992 0.097 0.098 0.097 0.046 0.047 0.047 1.06 0.096 0.097 0.097 0.018 0.018 0.02
180 0.107 0.099 0.098 0.099 -0.031 -0.027 -0.031 1.188 0.142 0.144 0.142 0.024 0.029 0.025
181 0.767 0.123 0.124 0.124 0.035 0.036 0.036 1.284 0.177 0.177 0.178 0.048 0.049 0.051
182 0.376 0.108 0.107 0.107 -0.013 -0.011 -0.013 0.876 0.128 0.128 0.128 -0.011 -0.009 -0.01
183 -0.357 0.112 0.112 0.112 0.016 0.017 0.017 1.488 0.164 0.167 0.165 0.06 0.066 0.063
184 0.109 0.102 0.101 0.102 -0.013 -0.009 -0.013 0.952 0.127 0.128 0.128 0.024 0.028 0.025
185 1.775 0.125 0.124 0.125 -0.021 -0.018 -0.02 1.325 0.131 0.13 0.131 -0.017 -0.016 -0.016
186 1.444 0.097 0.096 0.097 0.003 0.004 0.003 0.844 0.084 0.083 0.084 0.001 0.001 0.003
187 -1.223 0.129 0.127 0.129 -0.04 -0.036 -0.039 1.023 0.119 0.119 0.119 -0.007 -0.004 -0.005
188 -0.689 0.079 0.079 0.079 -0.021 -0.018 -0.021 0.882 0.095 0.096 0.095 0.01 0.013 0.011
189 -0.165 0.096 0.095 0.096 -0.017 -0.014 -0.017 0.765 0.132 0.133 0.132 -0.03 -0.027 -0.029
190 -0.59 0.128 0.128 0.128 0.058 0.058 0.058 0.847 0.125 0.125 0.125 0.014 0.015 0.015
191 0.649 0.111 0.111 0.111 0.007 0.008 0.008 1.115 0.129 0.128 0.129 -0.005 -0.004 -0.003
192 0.294 0.089 0.089 0.089 0.031 0.031 0.031 0.595 0.111 0.111 0.112 0.014 0.014 0.014
193 0.372 0.097 0.097 0.097 -0.023 -0.019 -0.023 1.345 0.152 0.154 0.151 -0.007 -0.0 -0.006
194 -0.392 0.097 0.097 0.098 -0.023 -0.021 -0.023 0.793 0.119 0.12 0.119 0.01 0.012 0.011
195 -1.46 0.089 0.089 0.089 0.003 0.005 0.003 0.874 0.093 0.093 0.093 0.008 0.008 0.01
196 0.477 0.107 0.107 0.108 0.024 0.025 0.024 1.136 0.151 0.152 0.151 0.034 0.035 0.036
197 -0.815 0.096 0.096 0.096 0.004 0.006 0.004 0.786 0.105 0.105 0.105 -0.014 -0.012 -0.014
198 0.434 0.106 0.105 0.106 -0.01 -0.008 -0.01 0.786 0.113 0.114 0.113 0.015 0.017 0.017
199 -0.241 0.088 0.085 0.088 -0.05 -0.046 -0.05 1.116 0.098 0.098 0.097 -0.02 -0.014 -0.019
200 0.149 0.1 0.1 0.1 -0.01 -0.007 -0.01 0.871 0.119 0.12 0.118 -0.026 -0.023 -0.026
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Table A.6: Case 1a - RMSE and BIAS of item parameters aver-
aged across the simulations, part 5/5

b RMSE b BIAS a RMSE a BIAS
i b† jl mirt mirtEHW jl mirt mirtEHW a† jl mirt mirtEHW jl mirt mirtEHW

201 0.537 0.097 0.097 0.098 0.059 0.06 0.06 1.242 0.114 0.113 0.114 0.017 0.018 0.019
202 -0.069 0.121 0.119 0.121 -0.046 -0.041 -0.045 1.715 0.176 0.179 0.177 0.027 0.038 0.029
203 -0.476 0.103 0.102 0.103 -0.027 -0.024 -0.028 0.885 0.137 0.14 0.138 0.041 0.044 0.042
204 -1.04 0.085 0.085 0.086 -0.015 -0.013 -0.015 0.759 0.086 0.086 0.087 -0.029 -0.027 -0.028
205 0.479 0.106 0.106 0.105 0.018 0.02 0.018 0.823 0.132 0.134 0.132 0.025 0.026 0.026
206 -0.165 0.101 0.101 0.101 0.02 0.021 0.02 1.177 0.144 0.146 0.146 0.036 0.038 0.038
207 -0.848 0.122 0.121 0.122 -0.045 -0.041 -0.045 1.065 0.148 0.151 0.149 0.04 0.044 0.041
208 0.333 0.105 0.105 0.105 0.0 0.003 0.001 1.267 0.152 0.153 0.152 -0.027 -0.023 -0.026
209 -0.807 0.13 0.129 0.13 -0.032 -0.028 -0.032 1.402 0.16 0.161 0.159 -0.006 0.001 -0.005
210 0.048 0.097 0.097 0.098 -0.022 -0.018 -0.022 1.165 0.134 0.137 0.135 0.04 0.046 0.042
211 1.504 0.142 0.142 0.142 0.027 0.029 0.028 1.036 0.147 0.147 0.147 0.018 0.018 0.019
212 0.85 0.111 0.11 0.111 -0.021 -0.018 -0.021 0.879 0.133 0.133 0.133 -0.019 -0.016 -0.018
213 -0.392 0.099 0.099 0.1 -0.015 -0.012 -0.015 0.84 0.136 0.137 0.137 -0.03 -0.027 -0.029
214 -0.018 0.097 0.096 0.097 0.005 0.008 0.006 0.887 0.138 0.139 0.138 -0.025 -0.022 -0.024
215 0.842 0.104 0.104 0.104 -0.012 -0.009 -0.012 0.739 0.129 0.129 0.129 -0.016 -0.013 -0.015
216 -0.591 0.101 0.099 0.1 -0.032 -0.029 -0.032 0.847 0.133 0.134 0.133 0.018 0.02 0.02
217 -0.347 0.12 0.118 0.12 -0.05 -0.045 -0.05 1.612 0.177 0.175 0.176 -0.057 -0.045 -0.056
218 0.107 0.088 0.088 0.088 -0.0 0.002 -0.0 0.785 0.098 0.098 0.098 -0.001 0.0 -0.001
219 0.236 0.119 0.12 0.12 0.02 0.021 0.021 1.385 0.15 0.151 0.15 0.002 0.005 0.004
220 -0.377 0.096 0.096 0.096 0.034 0.035 0.035 0.69 0.107 0.108 0.107 0.012 0.012 0.013
221 0.971 0.098 0.098 0.098 -0.013 -0.01 -0.013 0.842 0.118 0.117 0.117 -0.046 -0.044 -0.045
222 -0.592 0.112 0.11 0.112 -0.036 -0.032 -0.036 1.286 0.144 0.147 0.145 0.02 0.026 0.022
223 1.279 0.124 0.124 0.124 0.013 0.014 0.013 0.813 0.139 0.139 0.14 0.019 0.019 0.021
224 0.022 0.088 0.087 0.088 -0.018 -0.016 -0.019 0.748 0.131 0.132 0.132 0.027 0.03 0.028
225 -2.236 0.159 0.158 0.16 -0.003 0.001 -0.003 0.731 0.16 0.16 0.161 -0.009 -0.01 -0.008
226 1.128 0.115 0.115 0.115 -0.014 -0.011 -0.013 1.12 0.151 0.151 0.151 0.007 0.01 0.009
227 -1.086 0.134 0.135 0.135 0.075 0.076 0.076 1.115 0.151 0.152 0.151 0.043 0.043 0.044
228 -1.638 0.135 0.135 0.135 -0.008 -0.007 -0.008 0.624 0.15 0.15 0.15 0.008 0.007 0.01
229 1.462 0.189 0.188 0.19 0.095 0.095 0.097 1.518 0.199 0.199 0.2 0.018 0.017 0.02
230 0.981 0.151 0.151 0.152 0.088 0.089 0.089 1.099 0.162 0.162 0.162 0.013 0.013 0.015
231 -0.937 0.136 0.137 0.137 0.072 0.072 0.072 0.862 0.133 0.133 0.133 -0.007 -0.007 -0.006
232 1.23 0.129 0.129 0.129 0.059 0.059 0.06 0.597 0.149 0.149 0.15 0.035 0.035 0.035
233 0.364 0.096 0.096 0.096 0.053 0.053 0.053 0.669 0.103 0.103 0.103 0.018 0.017 0.019
234 -0.501 0.078 0.078 0.078 0.043 0.044 0.044 0.911 0.096 0.097 0.097 0.022 0.023 0.023
235 0.382 0.115 0.115 0.115 0.07 0.07 0.07 0.852 0.108 0.109 0.109 0.011 0.012 0.012
236 0.321 0.087 0.088 0.087 0.035 0.036 0.036 0.962 0.097 0.097 0.098 0.012 0.013 0.014
237 -0.181 0.129 0.13 0.13 0.066 0.066 0.067 0.974 0.152 0.152 0.152 0.053 0.054 0.054
238 -0.551 0.126 0.126 0.126 0.082 0.082 0.083 1.462 0.183 0.187 0.185 0.069 0.074 0.071
239 0.566 0.165 0.166 0.166 0.111 0.111 0.112 1.198 0.152 0.153 0.154 0.044 0.045 0.046
240 1.567 0.148 0.147 0.148 0.065 0.065 0.066 0.901 0.153 0.153 0.154 0.013 0.013 0.015
241 2.517 0.224 0.224 0.225 0.068 0.068 0.069 0.809 0.183 0.182 0.184 0.019 0.019 0.021
242 -0.035 0.115 0.116 0.115 0.071 0.071 0.072 1.032 0.135 0.136 0.136 0.041 0.043 0.042
243 0.98 0.127 0.126 0.129 -0.04 -0.037 -0.041 1.461 0.181 0.184 0.183 0.084 0.089 0.086
244 -0.606 0.135 0.135 0.135 0.067 0.068 0.068 1.227 0.153 0.155 0.154 0.031 0.034 0.033
245 1.046 0.156 0.157 0.157 0.096 0.096 0.097 1.289 0.163 0.163 0.164 0.027 0.027 0.028
246 0.018 0.113 0.113 0.114 0.066 0.067 0.067 1.06 0.143 0.144 0.144 0.041 0.043 0.042
247 -1.128 0.13 0.131 0.131 0.053 0.054 0.054 1.127 0.145 0.146 0.145 0.008 0.009 0.01
248 -0.873 0.103 0.103 0.102 0.013 0.013 0.013 0.562 0.116 0.115 0.116 0.007 0.007 0.008
249 -0.903 0.135 0.135 0.135 0.068 0.069 0.069 0.919 0.134 0.134 0.135 0.037 0.038 0.039
250 -0.796 0.083 0.084 0.083 0.038 0.039 0.039 1.015 0.112 0.113 0.114 0.052 0.053 0.054
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Figure A.4: Case 1a - Boxplots of RMSEs.
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Figure A.5: Case 1a - Boxplots of BIASs.
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Figure A.6: Case 1a - Scatter plots of RMSEs.
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Figure A.7: Case 1a - Scatter plots of BIASs
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A.2.2 Case 1b
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Figure A.8: Case 1b - Boxplots of RMSEs.
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Figure A.10: Case 1b - Scatter plots of RMSEs.
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Figure A.11: Case 1b - Scatter plots of BIASs



98 Appendix A. Tables and Figures

A.2.3 Case 1c
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Figure A.12: Case 1c - Boxplots of RMSEs.
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Figure A.14: Case 1c - Scatter plots of RMSEs.



A.2. Items Calibration in Julia 101

−3 −2 −1 0 1 2 3

−0.04

−0.02

0.00

0.02

0.04

b̂

jl
mirt

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

−0.04

−0.02

0.00

0.02

0.04

0.06

â
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Figure A.15: Case 1c - Scatter plots of BIASs
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A.2.4 Case 2a
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Figure A.16: Case 2a - Boxplots of RMSEs.
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Figure A.17: Case 2a - Boxplots of BIASs.
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Figure A.18: Case 2a - Scatter plots of RMSEs.
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Figure A.19: Case 2a - Scatter plots of BIASs
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A.2.5 Case 2b
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Figure A.20: Case 2b - Boxplots of RMSEs.
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Figure A.21: Case 2b - Boxplots of BIASs.



108 Appendix A. Tables and Figures

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

b̂

jl
mirt

0.
6

0.
9

1.
2

1.
5

1.
8

0.0

0.1

0.2

0.3

0.4

â
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Figure A.22: Case 2b - Scatter plots of RMSEs.
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Figure A.23: Case 2b - Scatter plots of BIASs
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A.2.6 Case 3
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Figure A.24: Case 3 - Boxplots of RMSEs.
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Figure A.25: Case 3 - Boxplots of BIASs.
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Figure A.26: Case 3 - Scatter plots of RMSEs.
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Figure A.27: Case 3 - Scatter plots of BIASs
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A.2.7 Case 4
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Figure A.28: Case 4 - Boxplots of RMSEs.
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Figure A.29: Case 4 - Boxplots of BIASs.
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Figure A.30: Case 4 - Scatter plots of RMSEs.
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Figure A.31: Case 4 - Scatter plots of BIASs
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A.3 Chance-Constrained Test Assembly

A.3.1 Application on Real Data

Table A.7: Structure of assembled tests.

test length DOMAIN1 overlap2

1 46 { 12;12;12;10 } {46;10;10;11;11;10;11;10;11;11;10;10;08;11;10;11;11;10;11;11}

2 45 { 12;12;12;09 } {10;45;11;11;10;11;10;11;11;11;11;11;10;11;10;11;11;11;11;11}

3 45 { 11;12;12;09 } {10;11;45;11;11;10;11;11;11;11;11;10;10;11;10;10;09;11;10;11}

4 45 { 12;12;12;09 } {11;11;11;45;11;11;11;11;10;09;11;11;11;11;11;11;10;09;11;08}

5 44 { 12;12;12;08 } {11;10;11;11;44;11;10;11;10;11;10;09;10;11;11;11;11;10;11;11}

6 43 { 12;12;12;07 } {10;11;10;11;11;43;11;11;11;10;08;11;11;11;11;11;10;11;10;10}

7 45 { 12;12;12;09 } {11;10;11;11;10;11;45;10;11;11;11;11;08;11;11;11;10;11;11;11}

8 44 { 12;12;12;08 } {10;11;11;11;11;11;10;44;11;11;09;11;11;09;09;11;11;11;10;11}

9 46 { 12;11;10;13 } {11;11;11;10;10;11;11;11;46;10;11;10;11;11;10;10;11;09;11;11}

10 45 { 12;11;12;10 } {11;11;11;09;11;10;11;11;10;45;11;11;11;09;11;10;09;11;11;10}

11 44 { 12;12;12;08 } {10;11;11;11;10;08;11;09;11;11;44;10;10;10;07;08;11;11;08;11}

12 45 { 12;12;12;09 } {10;11;10;11;09;11;11;11;10;11;10;45;11;11;11;11;11;11;10;09}

13 45 { 12;11;11;11 } {08;10;10;11;10;11;08;11;11;11;10;11;45;11;09;11;10;11;11;11}

14 45 { 12;12;12;09 } {11;11;11;11;11;11;11;09;11;09;10;11;11;45;08;11;11;08;10;10}

15 45 { 12;12;12;10 } {10;10;10;11;11;11;11;09;10;11;07;11;09;08;46;11;11;09;11;11}

16 46 { 12;12;12;09 } {11;11;10;11;11;11;11;11;10;10;08;11;11;11;11;45;11;11;11;05}

17 45 { 12;12;12;09 } {11;11;09;10;11;10;10;11;11;09;11;11;10;11;11;11;45;11;09;11}

18 45 { 12;12;12;09 } {10;11;11;09;10;11;11;11;09;11;11;11;11;08;09;11;11;45;11;11}

19 45 { 12;12;12;09 } {11;11;10;11;11;10;11;10;11;11;08;10;11;10;11;11;09;11;45;10}

20 45 { 12;12;12;09 } {11;11;11;08;11;10;11;11;11;10;11;09;11;10;11;05;11;11;10;45}
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Figure A.32: Sampling distributions of TIFs. Tests 1-10. The
horizontal axis represents the latent trait θ
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Figure A.33: Sampling distributions of TIFs. Tests 11-20. The
horizontal axis represents the latent trait θ.
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Figure A.34: TIFs and Item characteristic curves (ICCs) ob-
tained from the full sample. The horizontal axis represents the

latent trait θ.
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