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Abstract

Fluid-structure interaction (FSI) systems consist of one or more solid struc-

tures that deform by interacting with a surrounding fluid flow and are com-

monly studied in many engineering and biomedical fields. Usually those kind

of problems are solved in a direct approach, however it is also interesting

to study the inverse problem, where the goal is to find the optimal value of

some control parameters, such that the FSI problem solution is close to a

desired one. In this work the optimal control problem is formulated with

the Lagrange multipliers and adjoint variables formalism. In order to recover

the symmetry of the state-adjoint system an auxiliary displacement field is

introduced and used to extend the velocity field to the structure domain. As

a consequence, the adjoint interface forces are balanced automatically. The

optimality system is derived from the first order necessary condition by tak-

ing the Fréchet derivatives of the augmented Lagrangian with respect to all

the variables involved. The optimal solution is obtained through a gradient-

based algorithm applied to the optimality system. In order to support the

proposed approach numerical test with distributed control, boundary control

and parameter estimation are performed.





Introduction

Optimization has always been a key aspect in the field of engineering in order

to improve the performance of existing devices or to create better ones. As

long as the goals to pursue are trivial, improvements can be attained by trial

and error without the use of sophisticated mathematical models. When the

problem becomes complex the use of the appropriate optimization techniques

is instead essential. In this work we refer to adjoint based methods, which

have been proven to be a good approach for the optimal control of complex

problems where computational fluid dynamics simulations can be performed

on the system of interest, see for example [41, 38]. Moreover, these methods

have a solid mathematical background and the existence of local optimal

solutions can be proven for many interesting cases, [30].

In order to describe the behavior of a dynamical system different math-

ematical models can be adopted taking into account the peculiarities of the

problem and the grade of accuracy that one aims to recover. Lumped-

parameter models simplify the description of the behavior of spatially dis-

tributed physical systems into a set of discrete entities that, under certain

assumptions, approximate the behavior of the distributed system. This ap-

proach is used for instance in electronics to substitute Maxwell’s equations

with Kirchhoff’s circuit laws. Ordinary differential equations often model

one-dimensional dynamical systems with functions of a single variable and

their derivatives. On the other hand, multidimensional phenomena where the

variables depend both on time and on the spatial components are modeled

by mean of partial differential equations (PDE). Common examples include
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heat and wave propagation, electrodynamics, quantuum mechanics, fluid and

solid motion. In fluid-structure interaction (FSI) the latter two are coupled

into a single problem and the set of PDEs describing fluid and solid motion

has to be satisfied simultaneously. In this case the fluid-structure mutual in-

teraction is fundamental since the behavior of the solid affects the fluid and

vice versa. In details, the fluid, through its pressure, behaves as an exter-

nal load over the solid structure that deforms and changes the shape of the

channel which modifies the fluid dynamic state inside the channel itself.

Many FSI studies have been published in recent years but the optimal

control of such problems is still an open challenge. In fact, only few optimal

control studies of FSI systems can be found in literature, see for examples

[23, 7, 48]. In the recent work [23] the authors study a linear unsteady FSI

optimal control problem, written in monolithic form, and introduce a solid

velocity so that the adjoint system has the same properties of the state sys-

tem. In [7] the authors deal with an adjoint formulation for a time-dependent

distributed control, namely a force acting on a part of the solid domain, to

match a target displacement. In [48] the authors propose a solution ap-

proach based on a Newton method to solve Young modulus estimation and

stationary optimal control problems. However, in all the steady cases found

in literature the optimality system comes directly from the steady FSI equa-

tions. The time is not present and the non linear algorithm to recover the

final deformation is implicitly determined. Furthermore, the balance between

the adjoint displacement, the adjoint velocity and the final deformed inter-

face must be recovered after many non linear iterations. Differently from

these approaches, with this new method we desire to recover the symme-

try of the state-adjoint system that is characteristic of the time dependent

problem where the final deformation is obtained step by step. In order to

do this we introduce an auxiliary displacement field and use it to extend the

velocity field to the structure domain. As a consequence, the adjoint inter-

face forces are balanced automatically. It is worth pointing out that in this

steady optimization problem the physical velocity in the solid is zero, while

the fictitious velocity is used as the driving force for the solid motion during

the optimization process.

In this work the FSI state and adjoint systems are written in a monolithic

form. There are several motivations behind this approach. First, the coupling

conditions at the fluid-solid interface are automatically taken into account in

the monolithic variational formulation and no sub-iterations are necessary as
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in the case of partitioned approaches. Furthermore, since in the framework

of FSI gradient-based optimization the solution of the adjoint system is used

to determine the gradient of the functional, then it is important to solve with

a stable and robust method that treats accurately the propagation of the

information across the interface. Finally, with this approach, we can use the

same solver for both the state and adjoint systems with minor modifications.

This work is organized as follows. In Chapter 1 the FSI framework is in-

troduced under the hypothesis of a continuum material. We first describe the

basic principles of the kinematics of such medium in Lagrangian coordinates

and in Eulerian ones. By introducing the Arbitrary Lagrangian Eulerian map-

ping we derive the conservation laws of mass and momentum that describe

the FSI problem. A brief review of the most common constitutive models

for fluids and solids is then reported. The monolithic variational formulation

suitable for a Finite Element implementation of the FSI problem is recovered.

Finally, we validate our FEM code by performing some well known direct FSI

benchmarks available in literature. In Chapter 2 the basic principles of ad-

joint optimal control are presented and a simple heat conduction example is

used in order to introduce and clarify the fundamental aspects of the method.

Finally, the algorithms and techniques used to solve a general stationary FSI

optimal control problem are illustrated. In Chapter 3 a pressure boundary

control problem for the minimization of a solid displacement matching func-

tional is studied. The control aims to find the optimal pressure on a fluid

boundary such as the inlet or an auxiliary duct. We implement a simple

steepest descent algorithm to determine the gradient direction for the itera-

tive solution of the optimality system. In order to improve the convergence

properties of the method we propose a quasi-Newton one. By performing

some test cases we compare the performance of these two methods in terms

of convergence rate and accuracy. In Chapter 4 we study a distributed op-

timal control approach. A volumetric force acts on the solid and changes

the shape of the structure in order to recover the desired objective. We con-

sider both fluid velocity and solid displacement matching functionals. This

approach can be used in practical application to reformulate complex FSI

shape optimization problems into simpler distributed control ones. In Chap-

ter 5 an inverse Young modulus estimation problem is studied. In this case

the control parameter used is one of the solid material physical properties

and the objective is a displacement mismatch minimization. This problem

has many industrially relevant applications, since changes in the mechanical
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properties as a function of temperature are commonly visible. Upper and

lower limits on the control are taken into account in order to avoid negative

or very high values of the Young modulus, obtaining a variational inequality

in the optimality system. We present a projected gradient method in order

to deal with these control inequality constraints.



CHAPTER 1

Fluid Structure Interaction

In fluid-structure interaction (FSI) problems, one or more solid structures de-

form due to the interaction with a surrounding fluid flow. The flow behavior

depends on the shape and motion of the structure while the deformation of

the structure depends on the fluid mechanics forces acting on the structure.

FSI simulations evaluate the stress state of the mechanical component due

to the surrounding fluid flow and take into account the effects of the solid

deformations on the motion of the interior flows. Furthermore, the FSI ef-

fects become more relevant when the dependence between the influence and

response becomes stronger.

FSI problems are becoming of great interest in the scientific community

since they play an important role in the design of several components. The

fluttering of aircraft wings, flapping of an airport windsock, deflection of

wind-turbine blades, falling of a leaf, inflation of automobile airbags, dy-

namics of spacecraft parachutes, and the interaction between blood flow

and cardiovascular tissue, are all FSI examples. In literature many works

can be found dealing with this subject and the interested reader can see

[57, 24, 36, 12, 26, 13, 5, 58, 14, 15, 4] and references therein.

The inherently non linear and time dependent nature of FSI makes it

very difficult to use analytical methods in this class of problems. Only a

handful of cases have been studied analytically, where simplifying hypotheses

have been assumed to find closed-form solutions of the underlying partial
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differential equations. One can apply some analytical methods in solution

of fluid-only or structure-only problems but only few analytical techniques

can be extended successfully to the solution of FSI problems. In contrast,

there have been significant advances in computational FSI research in recent

decades since stable and efficient FSI solvers would be indispensable tools for

industry, research laboratories, medical fields, space exploration, and many

other contexts.

A comprehensive study of FSI problems remains an open challenge due to

their strong non linearity and multi-physics nature. The sets of differential

equations and boundary conditions associated with the fluid and structure

domains must be satisfied simultaneously. The domains do not overlap and

the two systems are coupled at the fluid-structure interface, which requires

a set of physically meaningful interface conditions. These coupling condi-

tions are the kinematics compatibility laws and stress balances at the fluid-

structure interfaces. The structure domain is in motion and, in most cases,

its motion follows the material structure particles or points. This is known as

the Lagrangian description of the structural motion. As the structure moves

through space, the shape of the fluid subdomain changes to conform to the

motion of the structure. The motion of the fluid domain needs to be ac-

counted for in the differential equations and boundary conditions. There are

two major classes of methods for tracking the structure deformation, which

are known in the discrete setting as the non moving-grid and moving-grid

approaches. Furthermore, the motion of the fluid domain is not known a

priori since it is a function of the unknown structural displacement. This

makes FSI a three-field problem, where the third unknown is the motion of

the fluid domain.

The additional challenges in FSI come from the discretization at the fluid-

structure interface. The most flexible option is, of course, to have separate

fluid and structure discretizations for the individual sub-problems, which

results in non-matching meshes at the interface. In this case, one needs

to ensure that, despite the non-matching interface meshes, the fluid and

structure have the correct coupling of the kinematics and stress profiles. A

simpler option is to have matching discretizations at the fluid-structure in-

terface. In this case, the satisfaction of the FSI coupling conditions is much

less challenging. However, this choice leads to a lack of flexibility in the

discretization choices and mesh refinement levels for the fluid and structure

sub-problems. That flexibility becomes increasingly important as the com-
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plexity of the fluid-structure interface geometry increases. On the other hand,

there are situations where having matching discretizations at the interface is

the most effective approach. Another computational challenge in some FSI

applications is the need to accommodate very large structural motions. In

this case, one needs a robust mesh moving technique and the option to pe-

riodically regenerate the fluid mechanics mesh (i.e., re-mesh) to preserve the

mesh quality and consequently the accuracy of the FSI computations. The

re-meshing procedure requires the interpolation of the solution from the old

mesh to the new one. Re-meshing and data interpolation are also necessary

for fluid-only computations over domains with known motion. The differ-

ence between that and FSI is that the re-meshing can be precomputed in

such fluid-only simulations, while in the case of FSI the fluid mechanics mesh

quality depends on the unknown structural displacements, and the decision

to re-mesh is made on the fly.

There are two major classes of FSI coupling techniques: loosely-coupled

and strongly-coupled, which are also referred to as staggered and monolithic,

respectively. Monolithic coupling often refers to strong coupling with match-

ing interface discretizations. In loosely-coupled approaches, the equations of

fluid mechanics, structural mechanics, and mesh moving are solved sequen-

tially. For a given time step, a typical loosely-coupled algorithm involves

the solution of the fluid mechanics equations with the velocity boundary

conditions coming from the extrapolated structure displacement rate at the

interface, followed by the solution of the structural mechanics equations with

the updated fluid mechanics interface traction, and followed by the solution

of the mesh moving equations with the updated structural displacement at

the interface. This enables the use of existing fluid and structure solvers,

a significant motivation for adopting this approach. In addition, for several

problems the staggered approach works well and is very efficient. However,

convergence difficulties are encountered sometimes, most commonly when the

structure is light and the fluid is heavy, and when an incompressible fluid is

fully enclosed by the structure. In strongly-coupled approaches, the equa-

tions of fluid, structure, and mesh moving are solved simultaneously, in a

fully-coupled fashion. The main advantage is that strongly-coupled solvers

are more robust. Many of the problems encountered with the staggered

approaches are avoided. However, strongly-coupled approaches necessitate

writing a fully-integrated FSI solver, virtually precluding the use of existing

fluid and structure solvers. There are three categories of coupling techniques
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in strongly-coupled FSI methods: block-iterative, quasi-direct, and direct

coupling. The methods are ranked according to the level of coupling between

the blocks of the left-hand-side matrix. In all three cases, iterations are per-

formed within a time step to simultaneously converge the solutions of all the

equations involved.

In this work we use a monolithic approach with quasi-direct coupling

[55, 56] for the solution of the FSI system. The fluid+structure and mesh

systems are treated as two separate blocks, and the non linear iterations are

carried out one block at a time. In solving a block of equations for the block

of unknowns it is associated with, we use the most current values of the other

block of unknowns.

The rest of this chapter is organized as follows. First we describe the kine-

matics of the continuum in the Eulerian, Lagrangian and Arbitrary Eulerian-

Lagrangian (ALE) formulations, that are useful to derive the mass and mo-

mentum balance equation for liquid and solid. Then, an overview on the most

common constitutive models for FSI is presented. The differential equations

describing the unsteady and stationary FSI model are derived, and finally, in

order to validate our code we perform some well known benchmark available

in literature.

1.1 Governing equations

In this chapter we will focus on the kinematics of the continuum, which is

the branch of mechanics that studies the motion properties, such as position

and velocity. In the theory of the continuum we are not interested to the

real microscopic structure of solid objects, instead we only consider objects

that are much larger than the mean free path of their particles. Under these

premises, in the next paragraphs we introduce the basic principles of the

kinematics of the continuum and balance laws with the formalism of [8] and

[21].

1.1.1 Kinematics of the continuum

Let Ω ⊂ R3 be a reference configuration of a structure and let Γ0 be its

boundary. Let Ωt ⊂ R3 be the current configuration of the given structure

and let Γt be its boundary. Since all the possible reference configurations are

equivalent, we can assume that the reference configuration coincides with the
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η(X+dX) = η(X)+dη

dη

Reference
configuration

Deformed
configuration

x = X (X, t)

Figure 1.1: Infinitesimal vector dX in Ω, its deformed version dx in Ωt and

mapping X .

initial configuration (stress-free) of the structure at time t = 0. Let X be the

position of an arbitrary point in the reference configuration and let η be the

displacement of the material point with respect to the initial configuration.

We can think of η = η(X, t) as a time depending vector field over Ωt and

define a mapping X

x = X (X, t) = X + η(X, t) , (1.1)

which maps the coordinates of material points in the reference configuration

to their counterparts in the current configuration (x, t). We call the set (X, t)

Lagrangian coordinates, named after Joseph Louis Lagrange, or material co-

ordinates, or reference coordinates. The application of these coordinates is

called Lagrangian description or reference description. The inverse of the

mapping of (1.1) can be written as

X = X−1(x, t) . (1.2)

The set (x, t) is called Eulerian coordinates, named after Leonhard Euler, or

space coordinates, and their application is said Eulerian description or spa-
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tial description. In the Lagrangian formulation we follow the evolution of a

material particle, while in the Eulerian formulation we observe the history of

a physical quantity in a given point in the physical space. The Eulerian de-

scription is well suited to describe the fluid flow through a fixed spatial region.

In this case the fluid particles enter and leave the fixed domain of interest.

On the other hand the Lagrangian description is well suited to describe the

motion of a body defined as a fixed collection of material particles. The body

can change its shape under the action of external and/or internal forces but

not its composition. One of the key quantities in deformation analysis is the

deformation gradient F : Ω→ R3×3 given by

F = ∇X (X, t) =
∂x

∂X
, (1.3)

and, by substituting (1.1),

F = I +
∂η

∂X
. (1.4)

The deformation gradient tensor gives the relationship between a material

line dX before deformation and the line dx (consisting of the same material

as dX) after deformation. Clearly, we can define an inverse deformation

gradient G of the inverse mapping relating Ω to the deformed configuration

Ωt

dX = Gdx . (1.5)

Of course, the gradient tensors F and G are related by the relations

G(x, t) = F−1(X, t) F(X, t) = G−1(x, t) , (1.6)

where F is a Lagrangian tensor and G is an Eulerian tensor. The velocity and

acceleration fields of the particle starting at X in the Lagrangian description,

are given by

v(X, t) =
∂x

∂t
(X, t) , a(X, t) =

∂2x

∂t2
(X, t) . (1.7)

On the other hand, the velocity and acceleration fields in the Eulerian for-

mulation can be written as

v(x, t) =
∂x

∂t
(X−1(x), t) , a(x, t) =

∂2x

∂t2
(X−1(x), t) . (1.8)

The mapping X (X, t) has to be invertible and twice continuously differen-

tiable, which implies that cracks and voids do not appear during the defor-

mation. In order to guarantee the local invertibility of the mapping X , the
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tensor F has to be non-singular, which means that

J = det F 6= 0 . (1.9)

In order to preserve the orientation the deformation mapping, the determi-

nant J has to be strictly positive everywhere. The deformation is said to be

isochoric or volume preserving if J = det F = 1 and a material that under-

goes only isochoric deformations is incompressible. Moreover, J determines

the relation between the infinitesimal volumes dV in the reference configura-

tion and the one dv in the current configuration

dv = JdV . (1.10)

The deformation gradient F also expresses the following relation that links

the distance between two points, as seen from the reference and current con-

figuration

dx = FdX→ ||dx|| =
√
dXTFTFdX . (1.11)

The difference between the two distances can then be written as

||dx||2 − ||dX||2 = dXT
(
FTF− I

)
dX = dXT2EdX , (1.12)

where E is the Green-Lagrange strain tensor, which by using the (1.4) can

be written as

E =
1

2

(
FTF− I

)
=

1

2

(
∇η +∇ηT +∇ηT∇η

)
. (1.13)

Under the hypothesis of small deformations the last contribution can be ne-

glected, since it involves the dot product between two infinitesimal defor-

mations. Therefore the small deformation tensor D can be defined as the

symmetrical part of the deformation gradient

D =
1

2

(
∇η +∇ηT

)
. (1.14)

In the field of continuum mechanics it is common to introduce the so-called

principal invariants of tensors. The main property of the principal invari-

ants is that they do not change with rotations of the coordinate system.

The three principal invariants (ID, IID, IIID) of D are the coefficients of the

characteristic polynomial p(λ)

p(λ) = det(D− λI) = λ3 + IDλ
2 − IIDλ+ IIID = 0 , (1.15)
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and can be computed as functions of the eigenvalues λ1, λ2, λ3 of the matrix

D as

ID = tr(D) = λ1 + λ2 + λ3 , (1.16)

IID =
1

2
(tr(D))2 − tr(D2) = λ1λ2 + λ2λ3 + λ1λ3 , (1.17)

IIID = det(D) = λ1λ2λ3 . (1.18)

Finally, the right Cauchy-Green deformation tensor C is defined as

C = FTF . (1.19)

Since in the following paragraphs we will need to compute forces acting

on surfaces in both the coordinate system, we now derive some relationships

useful for our scope. The relation between infinitesimal surface area elements

in the current and reference configurations is known as Nanson formula

nds = JF−TNdS , (1.20)

where we defined NdS and nds as the unit normal vector multiplied by the

area element in the reference and deformed configuration, respectively. With

F−T we denoted the transpose of the inverse of the stress tensor F−T =

(F−1)T . Nanson formula (1.20) can be also applied in order to obtain the

so-called Piola identity. To this aim we use the divergence theorem∫
Ωt

∇ · ψdv =

∫
Γt

ψ · nds . (1.21)

By considering ψ = 1 identically, the volume integral vanishes and therefore∫
Γt

nds =

∫
Γt

JF−TNdS =

∫
Ωt

∇ · (JF−T ) = 0 , (1.22)

which gives the expression of the Piola identity

∇ · (JF−T ) = 0 . (1.23)

Stress tensors. The Cauchy stress tensor is the most natural and physical

measure of the stress measured per unit area of the deformed configuration at

a point in the deformed configuration. It is the quantity most commonly used

in the Eulerian description of problems in continuum mechanics. However,

some other stress measures must be introduced in order to describe continuum
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mechanics in the Lagrangian formalism. To this aim we first recall that the

surface forces dfs applied to the Eulerian area element ds can be written in

the following form

dfs = σnds , (1.24)

where n is the external normal unit vector to the surface delimiting the

portion of body and σ is the Cauchy stress tensor. In a similar fashion, we

introduce a stress tensor P, called the first Piola-Kirchhoff stress tensor such

that dfs = PNdS. It relates forces in the current configuration to areas in

the reference configuration and in general is not symmetric. By using the

Nanson formula (1.20) nds = JF−TNdS we obtain

dfs = σJF−TNdS =⇒ P = JσF−T . (1.25)

The transformation used to obtain the first Piola-Kirchhoff stress tensor from

the Cauchy stress tensor is called Piola transformation. The Piola transfor-

mation Π of a second order tensor field τ : Ω → R3×3 associated to the

mapping X is the second order tensor field

Π(X) = J(X)τ (X (X))F−T (X) , (1.26)

for every X ∈ Ω.

An important equation gives the relationship between the divergence of

a field taken in the two configurations. Let σ be a Eulerian tensor field and

Π its Piola transformation, then we have that

∇ ·Π = J∇ · σ , (1.27)

where the divergence terms are taken with respect to the corresponding do-

main configuration. The proof of the above relation (1.27) uses the Piola

identity (1.23) and the chain rule, the full proof can be found in [21]. Some-

times it is useful to introduce another stress tensor in order to relate forces in

the reference configuration to areas in the same reference configuration. This

is called second Piola-Kirchhoff stress tensor S, it is symmetric and defined

as

S = F−1P = F−1JσF−T . (1.28)

These relations will be useful to transform integrals involving the divergence

of a tensor from the current configuration to the reference one and vice versa.
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ALE formulation. Until now we have considered only the Eulerian and

Lagrangian approaches, however none of them can be applied “as it is” to

FSI problems. In fact, the Lagrangian formalism is not suited for the fluid

sub-problem, while the Eulerian approach contrasts with our needs of having

a fluid mesh that moves following the deformation of the fluid-solid interface.

Thus, an intermediate and more general description that combines the ad-

vantages of the Eulerian and Lagrangian approaches is introduced. In the

Arbitrary Lagrangian Eulerian (ALE) description the position of the mesh

nodes can either be fixed or changed following a criteria that does not depend

on the motion of the material particles. We then use the ALE approach for

the fluid sub-problem, while we describe the solid motion with the Lagrangian

formalism. In Figure 1.2 a comparison between the Lagrangian, Eulerian and

ALE approaches is shown.

We define the following ALE mapping

Ã : ω̃ × R+ → R3 , (x̃, t) 7→ x = Ã(x̃, t) , (1.29)

where ω(t) = Ã(ω̃, t) for every t > 0. Moreover, we define the ALE mesh

velocity w̃(x̃, t) as

w̃(x̃, t) =
∂Ã
∂t

(x̃, t) , ∀x̃ ∈ ω̃ . (1.30)

The Lagrangian and Eulerian cases can be considered as particular cases of

the ALE description. In fact, in the Eulerian formulation the computational

domain is fixed (ω(t) = ω(0), ∀t ≥ 0) and the ALE velocity is null w̃ =

0. Vice versa, in the Lagrangian formulation the computational domain

moves with the same velocity of the material domain and the ALE and mesh

velocities coincide, w̃ = v.

Now, we recall the expressions of the time derivatives of a generic field for

the reference, current and ALE configurations. Given a Eulerian field q(x, t)

we define the Eulerian derivative as

∂q

∂t
(x, t) ∀x ∈ Ω(t) , (1.31)

which coincides with the standard partial derivative, since the domain is

fixed. The time derivative of a Lagrangian field q̃(x, t) can be calculated as

Dq̃

Dt
(x̃, t) =

∂q

∂t
+
∂q

∂x
· ∂x

∂t
=
∂q

∂t
+ v · ∇q , (1.32)
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Figure 3.3: Top: 1D Lagrangian description; Middle: 1D Eulerian description;
Bottom: 1D ALE (Arbitrary Lagrangian-Eulerian) description.

In the Lagrangian description we consider a physical quantity ϕ to be defined

on the reference configuration Ω as a function of the material coordinate X and

time t:

ϕ = ϕ̂(X, t) : Ω× [0, T ]→ Y . (3.2)

For the Lagrangian field ϕ̂ we define the Lagrangian time-derivative and the

31

Figure 1.2: Top: 1D Lagrangian description; Middle: 1D Eulerian descrip-

tion; Bottom: 1D ALE (Arbitrary Lagrangian Eulerian) description.

where we applied the chain rule for derivation. The first contribution refers

to the time dependence of q, the Eulerian derivative, while the second one

takes into account the advection of the field q due to the material velocity v.

Moreover, the ALE time derivative of a Eulerian field reads

∂q

∂t

∣∣∣∣
Ã

=
d

dt

(
q(Ã(x̃, t), t)

)
=
∂q

∂t
+ w · ∇q , (1.33)

where the first term is the Eulerian derivative and w is the Eulerian represen-
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tation of the computational domain velocity. Here, the second contribution

takes into account the advection of the field q due to motion of the mesh.

1.1.2 Conservation laws

We recall that an FSI problem is defined by mean of partial differential equa-

tions, the so-called conservation laws, that describe the behavior of the fluid

and solid. In particular we have balance laws that prescribe the balance of

mass, momentum and energy (in the case of non isothermal problems). In

order to state the balance laws we first introduce the Reynolds transport the-

orem. Let Ωt be a material domain, i.e. Ωt = {x : x = X (X, t),X ∈ Ω},
then

d

dt

∫
Ωt

ϕdx =

∫
Ωt

(
∂ϕ

∂t
+∇ · (ϕv) dx

)
. (1.34)

The same theorem can be written referring to the ALE formulation, by sub-

stituting (1.33) into (1.34). Let ω̃0 ⊂ ω̃ an ALE subdomain and ω0(t) = {x :

x = Ã(x̃, t), x̃ ∈ ω̃0} its image in the ALE mapping, then the following ALE

Reynolds transport formula holds

d

dt

∫
ω0(t)

ϕdx =

∫
ω0(t)

(
∂ϕ

∂t
+∇ · (ϕ(v −w)) dx

)
. (1.35)

Mass conservation. The first balance equation of the continuum mechan-

ics concerns the mass distribution. Let m be the mass contained in a fixed

region V ⊂ R3

m =

∫
V

ρ(x, t) dV , (1.36)

where ρ(x, t) is the mass density in the Eulerian description. By applying

Reynolds transport theorem to the mass conservation principles we obtain

dm

dt
=

d

dt

∫
V

ρ(x, t) =

∫
V

[
∂ρ

∂t
+∇ · (ρv)

]
dv = 0 , (1.37)

which is the integral form of the mass conservation equation in Eulerian form.

If all fields are smooth enough we can write the following local form

∂ρ

∂t
+∇ · (ρv) = 0 . (1.38)

In the case of constant density we recover the incompressibility constraint

∇ · v = 0 . (1.39)
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Now we derive the corresponding form of the mass conservation in the La-

grangian formulation. Let Ṽ be a fixed set of particles. Therefore, mass

conservation reads

dm

dt
=

d

dt

∫
Ṽ

ρ dṽ =

∫
V

∂(ρJ)

∂t
dv = 0 . (1.40)

Since V can be chosen arbitrarily we can localize the results to any material

point as
∂

∂t
(ρJ) = 0, ∀t ≥ 0 . (1.41)

This means that the product ρJ does not change in time and is only a function

of the material point, namely ρJ = ρJ(X). At t = 0 the structure is not

deformed and then J = 1. Let ρ0 = ρ0(X) be the structural mass density

in the undeformed configuration, then we recover the following expression of

the continuity equation in Lagrangian form

ρ0 = ρJ . (1.42)

Since ρ0 is known, by knowing the structural displacement field (i.e. J is

known), (1.42) may be used to obtain the density at a material point in the

current configuration.

Momentum conservation. The conservation of momentum corresponds

with Newton second law of motion applied to a material domain V (t), which

states that the resultant of external forces is equal to the rate of change of the

total linear momentum of the system. The momentum is given by
∫
V (t)

ρvdv

and the external forces acting on V (t) can be either volume forces Fv or

surface forces Fs. Therefore momentum conservation can be written as

d

dt

∫
V (t)

ρvdv = Fv + Fs . (1.43)

The volumetric forces act on the whole domain V (t) and are usually due

to external fields, such as gravitational or electromagnetic fields. They can

be expressed as the integral over V (t) of a specific force multiplied by the

material density

Fv =

∫
V (t)

ρfv dv . (1.44)

The surface forces Fs are responsible of the interaction between the material

particles contained in V (t) and the exterior through the boundary ∂V (t).
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They can be calculated as the surface integral over the boundary ∂V (t) of

the Cauchy stress tensor σ

Fs =

∫
∂V (t)

σn dS . (1.45)

By substituting into (1.43) the expressions of the force terms we get

d

dt

∫
V (t)

ρvdv =

∫
V (t)

ρfv dv +

∫
∂V (t)

σn dS . (1.46)

We now use the Reynolds transport formula on the first contribution and the

divergence theorem on the term with the Cauchy stress tensor in order to

obtain∫
V (t)

∂ρv

∂t
dv +

∫
V (t)

∇ · (ρvv) dv =

∫
V (t)

ρfv dv +

∫
V (t)

∇ · σ dv . (1.47)

Since the volume V (t) is arbitrarily chosen we can recover the local formula-

tion of the balance of momentum in Eulerian form

ρ
∂v

∂t
+ ρ(v · ∇)v = ρfv +∇ · σ in Ω(t), t > 0 . (1.48)

The Lagrangian formulation of (1.48) can be derived by mapping the integrals

back on the undeformed configuration Ω obtaining

d

dt

∫
Ω

ρJv dv =

∫
Ω

ρJfv dv +

∫
Ω

J∇ · σ dv . (1.49)

The first term can be rewritten by exploiting (1.41) and (1.42) derived from

the mass conservation principle

d

dt

∫
Ω

ρJv dv =

∫
Ω

∂(ρJ)

∂t
v dv +

∫
Ω

(ρJ)
∂v

∂t
dv =

∫
Ω

ρ0
∂v

∂t
dv . (1.50)

Therefore, by considering the arbitrariness of Ω we have

ρ0
∂v

∂t
= ρ0fv + J∇ · σ in Ω, t > 0 , (1.51)

where the divergence is taken with respect to the deformed coordinates x.

By using (1.27) we can transform the divergence term into its Lagrangian

form and obtain

ρ0
∂v

∂t
= ρ0fv +∇ ·P in Ω, t > 0 , (1.52)

where P = JσF−T is the first Piola-Kirchhoff stress tensor. Finally, we can

write the following momentum balance in the ALE formulation as

ρ
∂v

∂t

∣∣∣∣
Ã

+ρ[(v −w) · ∇]v = ρfv +∇ · σ in Ω(t), t > 0 . (1.53)
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1.2 Constitutive models

In the previous sections we have derived the equations for mass and mo-

mentum balance, without making any hypothesis on the material. From a

mathematical point of view, these equations alone lead to an undetermined

system, thus before we can move to the FSI formulation we must take into

account some constitutive models for fluid and solid materials. In particular

we have to find the relations that link stress to strain and strain to kinematic

variables. In the following subsections we will introduce some of the most

adopted constitutive equations for fluids and solids.

1.2.1 Newtonian fluids

We now focus on the fluid sub-problem and derive the relation that exists

between the Cauchy stress tensor σ and the fluid velocity. Newtonian fluids

are the simplest mathematical model of fluid that account for viscosity and

the viscosity does not depend on the stress state and on the fluid velocity.

The stress tensor can be decomposed into an hydrostatic part, which tends

to change the volume of the stressed body, and a deviatoric component that

is responsible for the fluid distortion rate of deformations as

σf = σhyd + σdev = −pfI + τ , (1.54)

where the pressure pf is the Lagrange multiplier associated to the incom-

pressibility constraint (1.39). The pressure can also be written as

pf = −tr(σ)

3
=
−ID

3
, (1.55)

where ID is the first invariant of the stress tensor and tr() the trace (i.e. the

sum of the diagonal values) of the Cauchy tensor. In the case of a Newtonian

fluid the deviatoric part τ is modeled through the following relation

τ = 2µfD− 2

3
µf (∇ · v)I τi,j = 2µfDi,j −

2

3
µf
∂ui
∂xi

δi,j , (1.56)

where δi,j is Kronecker delta and µf the fluid dynamic viscosity. When the

fluid is incompressible, by using (1.39) the second term vanishes and thus

τ = 2µfD τi,j = 2µfDi,j . (1.57)
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The fluid deformation tensor D can be written as

D =
1

2

(
∇vf + (∇vf )T

)
Di,j =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (1.58)

Therefore, the Cauchy stress tensor for a Newtonian incompressible fluid

reads

σf = −pfI + µf
(
∇vf + (∇vf )T

)
. (1.59)

This model is suitable for many common liquids and gas, such as water and

air, under ordinary conditions. However, many other fluids do not obey

the principle of constant viscosity independent of stress, such as colloidal

suspensions, blood and synovial fluid. In these cases the viscosity of the

non-Newtonian fluid depends on the shear rate or on the shear rate history.

1.2.2 Solid hyperelastic models

In this work we will restrict the presentation only to the class of hyperelastic

materials. More complicated cases, such as inelastic materials, may be found

in literature, see [53]. The theory of hyperelasticity assumes that the work

done by the stress forces in order to deform the solid does not depend on the

path followed, but only on the initial and final state. Therefore, a stored strain

energy density function per unit volume of the undeformed configuration, ϕ,

can be expressed as

ϕ = ϕ(F) . (1.60)

Different forms of ϕ(F) lead to different constitutive relationships between

stress and strain. The first Piola-Kirchhoff stress tensor P is obtained by

differentiating ϕ with respect to F as

P(F) =
∂ϕ(F)

∂F
. (1.61)

The second Piola-Kirchhoff stress tensor S can be obtained as a function of

the right Cauchy-Green deformation tensor C, remembering that S = FP

and C = 1
2
(FF−T − I), or as a function of E as

S = 2
∂ϕ(C)

∂C
=
∂ϕ(E)

∂E
. (1.62)

The Cauchy stress tensor σ can be computed according to (1.25) or (1.28).
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The tensor of elastic moduli is defined as the second derivative of ϕ with

respect to E, namely,

C(E) =
∂2ϕ(E)

∂E∂E
. (1.63)

The tensor C is a fourth-rank tensor and, for hyperelastic solids, is inde-

pendent of the state of deformation. In the most general case the 6 × 6

components of the elastic tensor differ from each other and all of them have

to be determined independently. However, by taking into account symme-

try and isotropy the number of different entries can be reduced to only two.

Many physically relevant quantities have been introduced to determine the

properties of the materials. Among them the Young modulus, Poisson ratio,

shear modulus, bulk modulus and Lamé parameters are mainly used. Young

modulus E is a measure of the stiffness of a solid material and is defined as

the ratio between stress and strain in a material in the linear elastic regime.

Poisson coefficient ν is the negative of the ratio between transverse strain to

axial strain

ν = −dεtrans
dεaxial

. (1.64)

For common materials ν is between 0 and 0.5, and almost incompressible

materials, such as rubber, have ν → 0.5, while cork Poisson ratio is close to

0, showing very little lateral expansion when compressed. Bulk modulus k is

an indicator of the resistance to compression of a solid and is defined as

k = −V ∂p

∂V
. (1.65)

Finally, other commonly used moduli are the Lamé parameters λ and µ,

with the latter also known as shear modulus G in the context of elasticity.

Homogeneous isotropic linear elastic materials have their elastic properties

uniquely determined by any two moduli among these. Thus, given any two,

any other of the elastic moduli can be calculated according to the formulas

reported in Table 1.1.

We now aim to obtain the Piola-Kirchhoff and Cauchy stress tensors in

the case of incompressible hyperelastic solid. Under these conditions it holds

that

J = det F = IIIC = IIIb = 1 . (1.66)

Therefore, in order to ensure the incompressibility constraint of a hyperelastic

material the strain energy function can be written as

ϕ = ϕ(F)− p(J − 1) , (1.67)
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Table 1.1: Elastic modulus relationships for homogeneous isotropic materials

(R =
√
E2 + 9λ2 + 2Eλ).

E ν λ µ

(E, ν) - - Eν
(1+ν)(1−2ν)

E
2(1+ν)

(E, λ) - E−3λ+R
4

- 2λ
E+λ+R

(E, µ) - E
2µ
− 1 µ(E−2µ)

3µ−E -

(ν, λ) λ(1+ν)(1−2ν)
ν

- - λ(1−2ν)
2ν

(ν, µ) 2µ(1 + ν) - 2µν
1−2ν

-

(λ, µ) µ(3λ+2µ)
λ+µ

λ
2(λ+µ)

- -

where the scalar p is the hydrostatic pressure that can be seen as the La-

grangian multiplier that enforces the incompressibility constraint. The first

Piola-Kirchhoff tensor can be obtained by substituting (1.67) into (1.61). As

a consequence, we need to compute the derivative of J = det F with re-

spect to the deformation gradient F. From tensor calculus we have that the

derivative of the determinant of a second-order tensor F is

∂

∂F
det(F) = det(F)F−T = JF−T . (1.68)

Thus, the first Piola-Kirchhoff tensor becomes

P =
∂ϕ

∂F
− pJF−T . (1.69)

Remembering that P = FS we can obtain the second Piola-Kirchhoff tensor

as well

S = F−1 ∂ϕ

∂F
− pJF−1F−T = 2

∂ϕ

∂C
− F−1JpF−T , (1.70)

Finally, the Cauchy stress tensor σ is recovered by using the Piola transfor-

mation (1.26) with τ = pI

σ = −pI + σ∗ , (1.71)

where σ∗ can be easily determined once the solid model is chosen.

In the following paragraphs a few models for hyperelastic solids are dis-

cussed in terms of strain energy function, range of applicability and known

drawbacks.
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St. Venant-Kirchhoff. This model is characterized by the following non-

linear formula for the strain energy function

ϕ(E) =
1

2
E : CE , (1.72)

that substituted in (1.62) leads to the following linear relationship between

the Green–Lagrange strain E and the second Piola–Kirchhoff stress S

S(E) = CE . (1.73)

Moreover, in the case of isotropic materials the strain energy function can be

rewritten as

ϕ(F) = λ(tr(E))2 + 2µ tr(E2) , (1.74)

where E2 = E : E. Thus the second Piola-Kirchhoff S becomes

S(E) =
∂ϕ(E)

∂E
= λ tr(E)I + 2µE . (1.75)

This model can be easily adapted to deal with small deformations and incom-

pressible materials. We first substitute E with the small deformation tensor

D. Then the trace of D coincides with the diverge of the displacement η due

to the definition of D in (1.14)

tr(D) =
∂ηi
∂xi

= ∇ · η . (1.76)

Finally, the Cauchy stress tensor can be written as

σ = λ(∇ · η)I + µ(∇η +∇ηT ) . (1.77)

By comparing this expression with (1.71) we find that the arbitrary solid

pressure becomes p = −λ(∇ · η), where λ→∞ and (∇ · η)→ 0.

Since St. Venant-Kirchhoff materials are the simplest among the nonlinear

models they are quite used in computational dynamics. However, this model

has some disadvantages such as the lack of any term preventing J to approach

zero in the stored energy function. This model is therefore mainly adopted

when dealing with small strains E.

Neo-Hookean. The Neo-Hookean solid model was first proposed in 1948

by Rivlin in order to improve the St. Venant-Kirchhoff model, see [49]. It is
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an extension of Hooke law for the case of large deformations and is suitable

for plastics and rubber-like substances.

For a Neo-Hookean material, with respect to the current configuration,

the strain energy function takes the form

ϕ(IC , J) =
1

2
µ(J−2/3IC − 3) +

1

2

(
λ+

2

3
µ

)(
1

2
(J2 − 1)− ln J

)
. (1.78)

The (J2 − 1) term penalizes the deviation of J from unity and the ln J

term stabilizes the formulation for the regime of strong compression. With

this definition of the elastic-energy density, the second Piola–Kirchhoff stress

tensor S may be explicitly computed by using (1.62) and is given by

S = µJ−2/3

(
I− 1

3
ICC−1

)
+

1

2

(
λ+

2

3
µ

)
(J2 − 1)C−1 . (1.79)

In the case of incompressible materials the third invariant J is equal to one

and then the strain energy function can be written as

ϕ(IC) =
1

2
µ(IC − 3) , (1.80)

and the second Piola–Kirchhoff stress tensor as

S = µJ−2/3

(
I− 1

3
ICC−1

)
− pJC−1 . (1.81)

The corresponding Cauchy stress tensor can be obtained by using (1.26)

σ = −pI + µJ−5/3(b− 1

3
IbI) , (1.82)

with Ib = IC . Many other hyperelastic models have been proposed, such

as Mooney or Mooney-Rivlin materials, and can be found in literature, the

interested reader can refer to [45].

1.3 The mathematical model of FSI

In this section we present the mathematical model for a generic fluid-structure

interaction problem. We introduce some basic notations for the functional

spaces. We use standard notation Hs(O), s ∈ R for the Sobolev spaces of

order s with respect to the set O, which is either the flow domain Ω, or its

boundary Γ, or part of its boundary. Whenever m is a non negative integer,
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the inner product over Hm(O) is denoted by (f, g)m, where (f, g) denotes

the inner product over H0(O) = L2(O). Hence, we associate with Hm(O)

its natural norm ||f ||m,O =
√

(f, f)m. For 1 ≤ p < ∞ the Sobolev space

Wm,p(O) is defined as the closure of C∞(O) in the norm

||f ||pWm,p(O) =
∑
|α|<m

∫
O
|
(
∂

∂x

)α
f(x)|p dx . (1.83)

The closure of the space C∞0 (O) under the norm || · ||Wm,p(O) will be denoted

by Wm,p
0 (O). Whenever possible, we will neglect the domain label in the

norm. For vector-valued functions and spaces, we use boldface notation. For

example, Hs(Ω) = [Hs(Ω)]n denotes the space of Rn-valued functions such

that each component belongs to Hs(Ω). We denote with Hs
Γd

(Ω) the space

of all functions in Hs(Ω) that vanish on the boundary Γd of the bounded

open set Ω and with H−s(Ω) the dual space of Hs(Ω). The trace space for

the functions in H1(Ω) is denoted by H1/2(Γ). For more information on

functional spaces the interested reader can consult [2, 10]. Let us consider a

Ωs
0 Ωs

t

Ωf
0 Ωf

t

Γi
0 Γi

t

X s

Af

Figure 1.3: Reference and current configuration where a vessel wall interacts

with a fluid.

domain Ωt ⊂ R3 with boundary Γt, that consists of a fluid Ωt
f and a solid part

Ωt
s, so that Ωt = Ωt

s ∪Ωt
f and Ωt

s ∩Ωt
f = ∅ at t ∈ (0, T ]. The outer boundary

Γt = ∂Ωt is then split into the solid boundary Γts = Γt ∩ ∂Ωt
s and the fluid

one Γtf = Γt ∩ ∂Ωt
f . The surface Γti = ∂Ωt

s ∩ ∂Ωt
f shared between the solid

and the fluid is called fluid-structure interface. The solid and liquid reference

undeformed configurations are denoted with Ω0
s and Ω0

f , respectively. Figure

1.3 shows a typical FSI configuration.

The evolution in time of the solid Ωs and fluid domain Ωf are mapped by

X f : Ωs
0 × R+ → R3 , (1.84)

Af : Ωf
0 × R+ → R3 , (1.85)
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such that the range of X s(·, t) and Af (·, t) define Ωt
s and Ωt

f , respectively. X s

maps the coordinates of solid points in the reference configuration to their

counterparts in the current configuration through the displacement ηs

ηs(t) = X s(xs, t)− xs0 . (1.86)

The coordinate vector x0 defines the initial position of the solid domain Ωs
0.

The evolution of the fluid domain Ωt
f is such that

Af (xf , t) = xf0 + ηf (xf , t) , (1.87)

where ηf (xf , t) is defined as an arbitrary extension operator over the fluid

domain Ωf
t and given by

ηf (xf , t) = Ext(ηs|Γt
i
) in Ωf

0 . (1.88)

The extension operator used to evaluate the fluid region displacement is the

harmonic or Laplace operator. Other similar operators can be employed as

described in [51, 22, 36, 17, 34]. We use the notation Ωs(η) and Ωs(0) = Ωs
0

for the final and initial domain, respectively. In the following we drop the

notation (η) and (0) over the domain whenever it is not necessary.

The mathematical model of the steady state FSI problem in strong form

is defined by the the mass and momentum balance for the fluid and solid

(1.39)-(1.51)-(1.53)

∇ · v = 0 on Ωf , (1.89)

ρf (v · ∇)v −∇ · σf = 0 on Ωf , (1.90)

∇ · σs(η) = 0 on Ωs , (1.91)

where the derivatives with respect to time have been neglected, the mesh

velocity w is null and no volumetric forces fv act on the domain. With ρf we

denoted the fluid density, σf is the viscous stress tensor on the fluid and σs
the solid Cauchy stress tensor. The tensors are defined by means of consti-

tutive models. In this work we consider the interaction of an incompressible

Newtonian fluid (1.59) with a hyperelastic St. Venant Kirchhoff material

(1.77). For the sake’s of clarity we report the expressions of the Cauchy

stress tensors

σf (pf ,v) := −pfI + µf (∇v +∇vT ) , (1.92)

σs(η) := λs(∇ · η)I + µs(∇η +∇ηT ) , (1.93)
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where µf is the fluid dynamic viscosity and λs and µs are the first and second

Lamé parameters of the solid. In order to complete the FSI strong formulation

we need to provide the following boundary and interface conditions

v = v0 on Γfd , η = η0 on Γsd ,

σf · nf = 0 on Γfn, σs · ns = 0 on Γsn , (1.94)

σf · nf + σs · ns = 0 on Γi, v = 0 on Γi ,

where Γfd and Γsd are the surfaces with Dirichlet boundary conditions for the

fluid velocity and solid displacement while on Γfn and Γsn standard homo-

geneous outflow boundary conditions are imposed. On the interface Γi the

fluid velocity has to vanish and the normal components of the stress tensors

σ have to be continuous. We denote with ns and nf the normal unit vector

to the solid and fluid boundary with ns = −nf on Γi. We can write the

monolithic FSI system in weak form for the displacement η and the velocity

field v over Ω(η) = Ωf (η)∪Ωs(η), which implicitly incorporates the bound-

ary conditions (1.94) on the common interface Γi. The weak or variational

problem can be obtained by multiplying (1.89-1.91) with the appropriate test

functions (ψ,φ) ∈ L2(Ωf )×H1
Γs
d
∩H1

Γf
d

(Ω), integrating over the whole com-

putational domain and performing the integration by parts on the terms with

∇p · φ, (∇ · (µf∇v)) · φ, and (∇ · (µs∇η + λsI∇ · η)) · φ obtaining

∫
Ωf

(∇ · v)ψ dΩ = 0 ∀ψ ∈ L2(Ωf ) , (1.95)∫
Ωf

[(ρf (v · ∇)v) · φ− p∇ · φ+ µf∇v : ∇φ] dΩ +∫
Ωs

[λs(∇ · η)(∇ · φ) + µs∇η : ∇φ] dΩ + (1.96)∫
Γ

[µs(∇η · ns) · φ+ λs(∇ · η)(ns · φ)]]dΓ+ (1.97)∫
Γ

[[pnf − µf (∇v · nf ) · φ] = 0 ∀φ ∈ H1
Γs
d
(Ω) ∩H1

Γf
d

(Ω) .

The surface integral vanishes due to the boundary and interface conditions

(1.94) and this assures that forces at the interface are always computed in an

exact way. Finally, the weak form of the FSI system is given by (1.95-1.96).
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1.4 Numerical benchmark results

In order to validate our code we perform some well known benchmark avail-

able in literature. As first step we consider the Navier-Stokes benchmark [52]

proposed by Turek and Schäfer. An evolution of this successful benchmark

has been proposed in [57], with the aim of testing different numerical methods

and implementations for fluid-structure interaction systems. Since developing

and testing an FSI code can be quite a challenging task the authors have split

the full problem into smaller and easier partial computational tests. First,

only standalone CFD and CSM benchmarks are considered where the fluid

solid mutual interaction is neglected. Finally the benchmark results for the

complete FSI problem are given. Since the focus of this work is on stationary

problems, only the steady benchmark tests are considered and their results

are presented in the following sections.

1.4.1 Navier-Stokes benchmark

In this section we describe the domain and the characteristic quantities used

in the benchmark [52].

L

H

(0, 0)

rCA B

Figure 6.1: Computational domain.

Figure 6.2: Coarse Mesh.

Table 6.1: Overview of the geometry parameters.

Geometry parameter symbol value

channel length L 2.2 m
channel width H 0.41 m
cylinder center position C (0.2 m, 0.2 m)
cylinder radius r 0.05 m
reference point A A (0.15 m, 0.2 m)
reference point B B (0.25 m, 0.2 m)

and a density ρ = 1Kg/m3.

Boundary and Initial conditions On the upper wall, lower wall and on

the cylinder surface, a homogeneous Dirichlet boundary condition is imposed.

The left wall is set to a parabolic inflow profile with maximum inflow velocity

121

Figure 1.4: Computational domain for Navier-Stokes benchmark.

Domain. Figure 1.4 shows the geometrical properties of the considered

domain. The geometry consists of a simple channel of length L = 2.2m and

height H = 0.41m. A cylinder of radius r = 0.05m and center C is placed into

the channel. The dimensions and the coordinates of the reference points A
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and B are reported in Table 1.2. We remark that the setting is intentionally

non-symmetric. The density of the fluid is given by ρ = 1kg m−3 and its

viscosity by νf = 10−3m2 s−1.

Table 1.2: Geometry parameters.

Geometry parameter Symbol Value [m]

Channel length L 2.2

Channel width H 0.41

Cylinder center position C (0.2, 0.2)

Cylinder radius r 0.05

Reference point A A (0.15, 0.2)

Reference point B B (0.25, 0.2)

Boundary conditions. A parabolic inlet velocity is prescribed on the left

side as

v(0, y) =
4Umaxy(H − y)

H2
, (1.98)

where Umax = 0.3m/s is the characteristic velocity and the cylinder diameter

2r = 0.1m the reference length. The Reynolds number Re becomes

Re =
2ρUavgr

µ
= 20 , (1.99)

since for a parabolic profile the mean value of the inflow velocity is Uavg =
2
3
Umax. On the right side a homogeneous Neumann boundary condition is

imposed, while no-slip conditions are imposed at the other boundaries, in-

cluding the cylinder surface.

Quantities for comparison. The benchmark parameters are the drag co-

efficient cd, the lift coefficient cl and the pressure drop ∆p = p(A) − p(B),

where A and B are the front and the back of the cylinder, respectively. The

forces acting on the submerged bodies are among the quantities of interest

for the above-mentioned benchmark tests. Drag and lift coefficients can be

easily obtained, once the forces are known, as follows

cd =
2Fx
ρLU2

=
2

ρLU2

∫
S

(
ρν
∂vt
∂n

ny − pnx
)
dS , (1.100)

cl = − 2Fy
ρLU2

=− 2

ρLU2

∫
S

(
ρν
∂vt
∂n

nx + pny

)
dS , (1.101)



32 Chapter 1. Fluid Structure Interaction

where n = (nx, ny)
T is the normal on the surface S and vt the tangential

velocity.

In this work we implemented in our code the method presented in [33] and

briefly reported here for clarity. Consider the weak form of the stationary

incompressible Navier-Stokes equations∫
Ω

[(v · ∇v) +∇p− ν∇2v]φ dΩ = 0 ∀φ ∈ H1(Ω). (1.102)

Consider now an arbitrary test function φd ∈ H1(Ω) with (φd)|S = (1, 0)T

and (φd) = (0, 0)T on all the other boundaries. After integration by parts the

line integrals in (1.100)-(1.101) can be rewritten, obtaining

cd =
2

ρLU2

∫
Ω

ν∇ : ∇φd + (v · ∇v) · φd − p(∇ · φd) dΩ . (1.103)

The following analogous expression can be derived for the lift coefficient con-

sidering test functions φl ∈ H1(Ω) with (φl)|S = (0, 1)T and (φl) = (0, 0)T on

all the other boundaries

cl =
2

ρLU2

∫
Ω

ν∇ : ∇φl + (v · ∇v) · φl − p(∇ · φl) dΩ . (1.104)

By doing so, the line integrals (1.100)-(1.101) on S are replaced by volume

integrals on Ω. Furthermore, if we choose φd and φl with a small support the

number of integrals is reduced to a minimum. Here, the computations are

performed only in one layer of cells around the surface S (e.g the cylinder),

the shaded mesh cells in Figure 1.5.

φd = (1, 0) and φl = (0, 1)

φd = (0, 0) and φl = (0, 0)

Figure 1.5: Shape functions φd and φl for drag and lift computations.
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Figure 1.6: Horizontal component of the velocity and streamlines.
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Figure 1.7: Pressure field and isolines near the cylinder.

Table 1.3: Results for the Navier-Stokes benchmark.

Level Nel Ndof Drag Lift ∆p [Pa]

1 384 3696 5.48815 0.00984 0.12007

2 1056 9884 5.55206 0.01036 0.11792

3 3264 30036 5.57287 0.01053 0.11760

4 14400 130990 5.57797 0.01060 0.11754

Ref 5.57954 0.01062 0.11752

Numerical results. The results of the benchmark computations, obtained

with increasing mesh resolution, are summarized in Table 1.3. The reference

values have been obtained by high-order spectral method in [42]. Our results
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are in very good agreement with the reference ones. In Figure 1.6 the velocity

field is reported with streamlines, while in Figure 1.7 the pressure profile in

the region near the cylinder is shown.

1.4.2 FSI benchmark computational setup

6. NUMERICAL RESULTS

6.2.1.1 Definitions

Geometry and computational mesh The computational domain is based

on the 2D version of the well-known flow around cylinder benchmark and it is

showed in Figure 6.7. The parameters which define the geometry are reported in

Table 6.5 and are given as follows:

• the domain dimensions are: length L = 2.5m, height H = 0.41m;

• the circle center is positioned at C = (0.2m, 0.2m) (measured from the left

bottom corner of the channel) and the radius is r = 0.05m;

• the elastic structure bar has length l = 0.35m and height h = 0.02m; the

right bottom corner is positioned at (0.6m, 0.19m), and the left end is fully

attached to the fixed and rigid cylinder;

• the control points isA(t), attached to the structure withA(0) = (0.6m, 0.2m).

The thickness and the length of the beam are chosen in order to reduce the bend-

ing stiffness without introducing additional numerical complications connected

with high aspect ratios in the geometry. As reported in Turek & Schäfer [1996],

the setting is intentionally non-symmetric to prevent the dependence of the onset

of any possible oscillation on the precision of the computation.

L

l

H

(0, 0)

l

rC
hA

Figure 6.7: Computational domain and detail of the beam.

The geometry previously defined has to be discretized and partitioned in sev-

eral domains of simple geometry. The output of the mesh processing is reported

in Figure 6.8. The computational mesh for the simulations is obtained by succes-

sive regular or selective refinements of the coarse mesh of Figure 6.8. In Table 6.6

128

Figure 1.8: Computational domain for FSI benchmark.

In order to test the accuracy of our FSI solver we perform the benchmark

proposed in [57]. The fluid is incompressible and Newtonian and interacts

with an elastic solid. The equations describing the FSI problem are (1.95-

1.96).

Domain. The domain is based on the one used for the Navier-Stokes bench-

mark and is reported in Figure 1.8. By removing the elastic bar behind the

cylinder one can exactly recover the setup of the flow around cylinder config-

uration. The domain dimensions are: length L = 2.5m, height H = 0.41m.

The circle center is positioned at C = (0.2, 0.2)m and the radius is r = 0.05m.

The elastic structure bar has length l = 0.35m and height h = 0.02m, the

right bottom corner is positioned at (0.6, 0.19)m and the left end is fully

attached to the fixed cylinder. The control points are A(t), fixed with the

structure with A(0) = (0.6, 0.2)m and B = (0.15, 0.2)m. The above values

are also reported in Table 1.4 for clarity.

Boundary conditions. The boundary conditions for the FSI problems

studied are the following
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Table 1.4: Geometry parameters for the FSI benchmark.

Geometry parameter Symbol Value [m]

Channel length L 2.5

Channel width H 0.41

Cylinder center position C (0.2, 0.2)

Cylinder radius r 0.05

Elastic structure length l 0.35

Elastic structure thickness h 0.02

Reference point A A (0.15, 0.2)

Reference point B B (0.25, 0.2)

• A parabolic velocity profile is prescribed at the left channel inflow

v(0, y) =
1.5Ūy(H − y)

(H
2

)2
= 1.5Ū

4.0

0.1681
y(0.41− y) , (1.105)

such that the mean inflow velocity is Ū and the maximum of the inflow

velocity profile is 1.5Ū .

• The outflow condition can be chosen by the user, for example stress free

or do nothing conditions. The outflow condition effectively prescribes

some reference value for the pressure variable p. While this value could

be arbitrarily set in the incompressible case, in the case of compressible

structure this will have influence on the stress and consequently the

deformation of the solid. In this benchmark, the reference pressure at

the outflow is set to have zero mean value.

• The no-slip condition is prescribed for the fluid on the other boundary

parts.

We would like to point out that the interface conditions are automatically

taken into account in our monolithic variational formulation.

1.4.3 CFD partial benchmark

The first test focuses on the fluid dynamics part of the problem, where the

flag is taken as a rigid object. The flag is made almost rigid by setting

the structural parameters to large values (ρs = 106 kg
m3 , µs = 1012 kg

ms2
), as
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Table 1.5: Results for the Turek CFD benchmark.

Level Nel Ndof Drag (e+01) Lift

1 1870 17330 1.44023 1.08907

2 9350 68320 1.43366 1.11035

Ref 1.42929 1.11905
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Figure 1.9: Horizontal component of the velocity profile and streamlines.

S0

S1

S2

Figure 1.10: Integration path S = S1 ∪ S2 for the drag and lift force calcu-

lation.

suggested by the test authors. The fluid parameters are the following

ρf = 1000
kg

m3
, νf = 10−3m

2

s
, Ū = 0.2

m

s
, Re =

Ūd

νf
= 20 .

Here the forces exerted by the fluid on the whole submerged body, i.e. lift

and drag forces acting on the cylinder and the beam structure together, are

among the benchmark quantities for comparison

(FD, FL) =

∫
S

σfn dS =

∫
S1

σfn dS +

∫
S2

σfn dS , (1.106)

where S = S1 ∪ S2 denotes the part of the circle being in contact with the

fluid (i.e. S1) plus the part of the boundary of the beam structure which is
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contact with the fluid (i.e. S2 ) and n is the outer unit normal vector to the

integration path that points towards the fluid region, see Figure 1.10. Table

1.5 summarizes the results obtained for this partial computational test, while

the velocity profile is reported in Figure 1.9. Our results obtained with two

refinement levels show convergence to the reference values, that are obtained

with much higher mesh resolutions.

1.4.4 CSM partial benchmark

0.00E+00
p

Figure 1.11: Solid deformation for CSM1, CSM2 test benchmark and unde-

formed configuration.

Table 1.6: Results for the Turek CSM1 benchmark.

Level Nel Ndof Dx(A)(e-03) [m] Dy(A)(e-03) [m]

1 1870 17330 -9.4032 -60.9275

Ref -7.18767 -66.1023

Table 1.7: Results for the Turek CSM2 benchmark.

Level Nel Ndof Dx(A)(e-03) [m] Dy(A)(e-03) [m]

1 1870 17330 -0.60587 -16.8514

Ref -0.469000 -16.9739

The structural tests are computed only for the elastic beam (without the

surrounding fluid) adding the gravitational force only on the structural part,

~g = (0, g) [m
s2

]. The material properties for the CSM1 test are the following

ρs = 1000
kg

m3
, νs = 0.4 , µs = 0.5 · 106 kg

ms2
, ρf = 1000

kg

m3
,

νf = 10−3m
2

s
, Ū = 0

m

s
, g = 2

m

s2
.
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For CSM2 test the shear modulus µs is higher than for CSM1

µs = 2 · 106 kg

ms2
,

while all the other properties are the same. In Table 1.6 and 1.7 we report the

results obtained for the CSM1 and CSM2 tests, respectively. The discrepancy

between our results and the reference ones is large for CSM1, where large

displacements are involved, since this solid model is accurate only for small

displacements. For this reason in the CSM2 case our results are closer to the

reference one. In Figure 1.11 the solid displacement profile is reported for

both the test configurations together with the undeformed profile.

1.4.5 FSI full benchmark

Table 1.8: Parameter setting for the FSI1 benchmark.

Parameter Symbol Measure unit Value

Solid density ρs [103 kg
m3 ] 1

Poisson coefficient νs - 0.4

Shear modulus µs [106 kg
ms2

] 0.5

Fluid density ρf [103 kg
m3 ] 1

Fluid viscosity νf [10−3m2

s
] 1

Density ratio β - 1

Dimensionless shear modulus Ae - 3.5×104

Average inlet velocity Ū [m
s

] 0.2

Reynolds number Re - 20

Table 1.9: Results for the Turek FSI1 benchmark.

Level Nel Ndof Dx(A)(e-05) [m] Dy(A)(e-04) [m] Drag Lift

1 1870 17330 2.15828 8.34873 14.4034 0.750155

2 9350 68320 2.16161 8.28078 14.3377 0.757567

3 39270 271280 2.16367 8.23453 14.3074 0.761073

Ref 2.27049 8.20877 14.2943 0.763746

Finally, the mutual interaction between solid and fluid, which is the core

of FSI, is taken into account with the stationary FSI1 test. The parameter
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Figure 1.12: Horizontal component of the velocity profile and streamlines.
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Figure 1.13: Pressure profile in the fluid.

values for this test are given in Table 1.8. The velocity profile and the pressure

distribution in the fluid are reported in Figures 1.12 and 1.13, respectively.

In Table 1.9 the results obtained with different spatial resolution are reported

and compared with the reference values. The results converge to the values

given by the benchmark authors, when the mesh resolution is increased.





CHAPTER 2

Optimal FSI control

In the field of computational fluid dynamics (CFD) there is a growing inter-

est towards optimization and nowadays the computational power available

allows researchers to study systems that were out of reach just few decades

ago. There is a wide literature on optimization processes, which can be

based on many different approaches, such as linear feedback methods, ad-

joint or sensitivities-based optimal control, multi-objective optimization and

many others. The interested reader can consult [18, 43, 37, 44, 30, 50, 35]

and references therein. Linear feedback methods are commonly employed to

operate complex systems like turbine valves-heat exchanger in power plants

and are used in electronic applications in the railway or automotive indus-

tries [46, 29]. Multi-objective optimization and sensitivities-based optimal

control are other interesting research fields that find applications ranging

from engineering design to financial predictions of market shares.

In this work we refer to adjoint based methods, which have been proven

to be a good approach for the optimal control of complex problems, in which

computational fluid dynamics simulations can be performed on the system of

interest [59]. Moreover, these methods have a solid mathematical background

and the existence of local optimal solutions can be proven for many interesting

cases [28]. However, this method is only appropriate when the design vari-

ables are continuous. For design variables which can take only integer values

(e.g. the number of engines on an aircraft) stochastic procedures such as sim-
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ulated annealing and genetic algorithms are more suitable, anyway this kind

of variables are not common in the field of CFD optimization. Moreover, if

the objective function contains multiple minima, then the gradient approach

will generally converge to the nearest one without searching for other min-

ima elsewhere in the design space. If the objective function is known to have

multiple local minima, and possibly discontinuities, then again a stochastic

search method may be more appropriate. The adjoint based method, can

then be used only to get improvements from a reference state and not to find

the global optimal solution to the problem, unless this is the only minimum

of the functional. However, in many practical situations an improvement on

a reference state is what is needed because too big changes on the design

cannot be performed for physical or practical reasons. In these cases this

method could prove useful for the optimal design of engineering devices.

Although the literature is quite heterogeneous, most of it can be classified

according to some peculiarities. In stationary problems the system variables

do not depend on time, while in unsteady problems the studied system is

optimized during its evolution in time. Another classification can be made

between different approaches to control, such as distributed, boundary and

shape controls. The difference between them lies in the way the control can

act on the problem domain. In the first one, source terms in the interior

part of the domain are used as control parameter. This kind of control is not

often suitable for practical applications due to technical difficulties or physical

limits. However, from a theoretical point of view it can be applied to any

problem and the numerical implementation is usually straightforward. The

boundary control, where one acts on the system through its external surface,

can be considered as a more realistic approach to optimization. However, one

has to pay the price of a much more challenging mathematical framework and

numerical algorithm implementation. The last one we mention is the shape

control, where the controlled parameter is the shape of the domain boundary,

as in the case of leading or trailing edge flaps, see [31, 25]. Furthermore,

identification of material properties such as Young modulus in solids or fluid

viscosity is an inverse problem that can be studied with the adjoint based

formalism, see [47].

In the following sections the basic principles of the adjoint optimal control

theory are presented. Then we derive the optimality system for a simple

example problem. Finally, we introduce the algorithm used for the solution

of the optimal control of fluid-structure interaction systems.
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2.1 Introduction to adjoint optimal control

In many engineering fields a key process is trying to improve already avail-

able devices or creating new ones with enhanced properties. Improving the

performances of a machinery in order to use less resources or to increase the

productivity or finding a better shape to reduce the air resistance are common

examples. The first necessary step when optimizing consists of identifying an

objective, a quantitative indicator of the performance of the studied system.

It may be velocity, time, profit, fuel consumption or any other quantity of

interest, provided that it can be quantified in numbers. Clearly, in order

to reach the objectives one or more control parameters or variables have to

be changed inside feasible limits. Often these parameters can not be chosen

arbitrarily, but have to be restricted, or constrained, to a certain range of

values. For example, if the temperature is the control variable then it has to

be restricted to non negative values. Once the optimal control problem has

been set up, an optimization algorithm can be used in order to find the de-

sired solution. This is usually done numerically with the help of a computer

or even supercomputers for larger systems.

We now focus on a simple example of an adjoint optimal control problem,

useful to introduce and clarify the main aspects of the method. To set up

the problem we first need to choose the goal to reach and how we intend

to do so. We introduce a cost functional, a mathematical formulation that

measures how far from the desired target the studied system is. This is

usually expressed in terms of the state system variables. Let us consider the

case where we want to heat a metal bar in such a way that its temperature

distribution matches a given profile. This cost functional J becomes

J (T ) =
1

2

∫
Ω

ω(T − Td)2 dΩ , (2.1)

where Ω represents the domain of the metal bar and Td is the target tem-

perature, which can depend on the coordinates or can have a uniform value

in the whole domain. This cost functional measures the distance in norm

between the metal bar temperature and the target one. We may also be

interested not to the whole domain but only to a subdomain of Ω, so we

introduce the parameter ω, which is a function of the space. The dependence

on the time is not considered here, otherwise the integration in (2.1) should

be performed also in time, hugely increasing the complexity of the problem.

For time-dependent problems see for example [30]. The partial differential
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equation (PDE) that models the behavior of the metal bar is the following

Poisson equation

∇ · (k∇T ) + q = 0 ∀x ∈ Ω , (2.2)

where k is the thermal conductivity of the material and the volumetric heat

source q is our distributed control parameter. The solution of the Poisson

equation can be found after prescribing the boundary conditions

∇T · n = 0 on Γn , (2.3)

T = T0 on Γd , (2.4)

where Γd are the surfaces with Dirichlet boundary conditions for the tem-

perature, while on Γn standard homogeneous Neumann boundary conditions

are imposed. In a finite element framework we are interested in the weak

formulation of the state system (2.2). We consider test functions φ defined

in the appropriate functional space Vd

φ ∈ Vd =
(
φ ∈ H1(Ω) : φ = 0 on Γd

)
. (2.5)

The weak formulation is obtained in the standard way, after integrating by

parts the Laplacian term in (2.2) and applying the boundary conditions we

recover ∫
Ω

−(k∇T )φ dΩ +

∫
Ω

qφ dΩ = 0 ∀φ ∈ Vd , (2.6)

and in the following we will refer to (2.6) as state system. Now we can state

the optimal control problem as

Problem. Find an optimal control q and an optimal state T such that the

functional J (T ) given in (2.1) is minimized and the state system (2.6) is

satisfied.

It is worth noticing that the state system behaves as a constraint for the

optimization problem, since it limits the possible solutions to a subset of the

solution space. Moreover, in many circumstances the control parameter has

to be limited somehow to avoid unbounded solutions, with infinite values of

the control in some part of the domain. There are mainly two approaches to

do so. We can limit the value of the admissible control with an additional

constraint, so that it is bounded

q < qmax , (2.7)
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or we can penalize the objective functional by adding a regularization term to

(2.1). Adding this regularization has the effect of forcing better mathematical

and numerical properties to the optimization process. This term can be the

classic Tychonov term containing the L2-norm of the control q, penalized

with a parameter β

J (T, q) =
1

2

∫
Ω

ω(T − Td)2 dΩ +
β

2

∫
Ω

q2 dΩ . (2.8)

The value of the parameter β is used to balance the relative importance of the

two terms in (2.8). For example, if we choose too high values of β then the

control range is limited and the optimization algorithm cannot improve the

reference solution efficiently. Under certain circumstances, for example when

studying boundary controls, one may wish to impose further requirements on

the regularity of the controls, i.e. H1 controls, so other regularization terms

have to be added to the cost functional.

2.2 Optimality system

The above-mentioned problem is an example of constrained optimization

problems. Such class of problems may be reformulated as unconstrained

optimization problems through the Lagrange multiplier method. However

we remark that this technique can find only local stationary points (maxima

or minima) of a functional subject to equality constraints. We recall that a

local minimum (T ∗, q∗) for the functional of interest is a point such that, for

some ε > 0

J (T ∗, q∗) 6 J (T, q) ∀(T, q) ∈ T ×Q and ||T ∗ − T || < ε . (2.9)

We now apply the Lagrangian multiplier method to the example of dis-

tributed control described in the previous section. The following Lagrangian

functional (or augmented functional) is obtained by adding to the objective

functional the constraint multiplied by the Lagrangian multiplier φ as

L(T, q, φ) = J (T, q) + φ

∫
Ω

[∇ · (k∇T ) + q] dΩ , (2.10)

L(T, q, φ) =
1

2

∫
Ω

ω(T − Td)2 dΩ +
β

2

∫
Ω

q2 dΩ +

∫
Ω

[∇ · (k∇T ) + q]φ dΩ .

(2.11)
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In the framework of optimal control theory the Lagrange multipliers are in-

terpreted as adjoint variables or costate.

By imposing the first order necessary conditions we recover the stationary

points of the Lagrangian and the optimality system. We set to zero the

Fréchet derivatives taken with respect to all the problem variables T , q and

φ. The Fréchet derivative used in infinite dimensional spaces differs from the

ordinary derivative since its value depends on the arbitrary variation δT

δL
δT

= lim
ε→0

L(T + εδT, q, φ)− L(T, q, φ)

ε
. (2.12)

By setting to zero the derivative taken with respect to T we get

δL
δT

=

∫
Ω

(T − Td)δT dΩ−
∫

Ω

k∇φ · ∇δT dΩ+

∫
Γ

k∇δT · nφ dΓ = 0 (2.13)

∀δT ∈ H1(Ω) ,

that is the equation for the Lagrangian multiplier φ. When a Dirichlet bound-

ary condition is imposed the temperature is fixed and therefore we can assume

δT = 0, since δT is the variation of the temperature T . The appropriate

functional space for δT is then Vd(Ω) ⊂ H1(Ω). Moreover, by taking the

variations of (2.3), we get ∇δT ·n = 0 on Γn, so the surface integral over Γ in

(2.13) has to be computed only on the subset Γd where Dirichlet boundary

conditions are prescribed.

In order to recover the strong form of the adjoint system together with

the dual boundary conditions we integrate by parts and obtain∫
Ω

(T − Td)δT dΩ+

∫
Ω

∇ · (k∇φ)δT dΩ−
∫

Γn

k∇φ · nδT dΓ (2.14)

+

∫
Γd

k∇δT · nφ dΓ = 0 ∀δT ∈ Vd(Ω) .

The dual boundary conditions can be recovered by imposing that the surface

integrals in (2.14) must vanish. So, on Γn the gradient of φ along the normal

component is zero and on Γd the value of φ is zero. The boundary value

problem in strong form reads

∇ · (k∇φ) + (T − Td) = 0 ∀x ∈ Ω , (2.15)

k∇φ · n = 0 on Γn , (2.16)

φ = 0 on Γd , (2.17)
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since the variations δT can be chosen arbitrarily. It is worth noticing that the

adjoint variable φ in (2.15-2.17) satisfies a similar heat transfer equation with

the same thermal conductivity of the state temperature in (2.2-2.4) and with

a source term proportional to the difference between the temperature and

the desired one. Moreover the boundary conditions of the adjoint system

are of the same type as in the state problem but they should be assumed

homogeneous. This is a typical feature of adjoint problems: when a Dirichlet

b.c. is imposed in the state system an homogeneous Dirichlet b.c. must be

imposed in the adjoint system. At the same time in the regions where a

Neumann b.c. is used, the adjoint system has an homogeneous Neumann

b.c..

When considering the variations δq we obtain

δL
δq

=

∫
Ω

(βq + φ)δq dΩ = 0 ∀δq ∈ H1(Ω) , (2.18)

which, since the variations δq are arbitrary, becomes a simple algebraic equa-

tions for the control q as

q = −φ
β
. (2.19)

Finally, when we derive with respect to the Lagrangian multiplier φ, we get

δL
δφ

=

∫
Ω

[∇ · (k∇T ) + q]δφ dΩ = 0 ∀δφ ∈ H1(Ω) . (2.20)

This is the weak form, see (2.2), of the state system. The equations (2.13-2.18-

2.20) form the so called optimality system and allow to find the stationary

point of the Lagrangian functional.

2.2.1 Numerical solution of the optimality system

In order to solve the obtained optimality system, a first possible strategy is

solving in a fully coupled fashion, with a one shot method. By doing so, for

this simple example the system is solved in a fast and reliable way without

any optimization algorithm. However, for complex systems the optimality

system is made of many nonlinear and strongly coupled equations and the

solution becomes too expensive when a fine domain discretization is used. In

order to overcome these challenges a segregated approach is generally a better

alternative. In this approach the equations forming the optimality system

are solved independently with appropriate algorithms, known as optimization
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algorithms, that reduce the computational expense. In fact, for most practical

applications it is far more convenient to solve the non linear state system

several times with a segregated approach, than it is to solve the non linear

coupled optimality system once with a one shot method.

All these algorithms require the choice of a starting point x0. When the

starting point is a reasonable estimate of the solution, then the algorithms

are expected to perform better, i.e, to find the optimal solution faster. Begin-

ning at x0, a sequence of solutions {xk}∞k=0 is found and the algorithm ends

when either no more progress is obtained or a certain convergence criteria is

satisfied.

Many different algorithms have been proposed in literature and among

them one can distinguish between two main classes, that differ in the way

the update solutions are found from the previous ones, trust region and line

search. Both of them require a search direction and a step size, which evaluate

the distance from the current solution. In trust region approaches the new

iterate is searched in a region around the current solution, the maximum

distance between two consecutive iterates is fixed by a step size and the

algorithm aims to find the optimal direction. Line search methods are in

some sense dual to trust region ones: the step direction is found first and

then the step size is chosen in order to minimize the functional along that

direction.

In this work we use a gradient based line search approach with a simple

Armijo backtracking strategy. The search direction is obtained by solving

the adjoint and control equations that give the objective functional gradient

direction. A generic iteration of a line search method for the minimization

of a functional J is given by

xk+1 = xk + αkpk , (2.21)

where αk is the step length and pk is the search direction. In order to guar-

antee that the the functional is reduced along the search direction it is fun-

damental that pk is a descent direction, therefore it usually has the form

pk = −B−1
k ∇Jk , (2.22)

where Bk is a symmetric, non-singular, positive definite matrix. When Bk is

the identity matrix the method is known as steepest descent and the direction

is simply given by the functional gradient. In Newton methods Bk is the exact

Hessian matrix of the functional ∇2Jk, while in quasi-Newton methods Bk
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approximates the Hessian at every iteration with a low-rank formula, such as

BFGS [11].

Algorithm 1 Backtracking Line search

1. Set αk = α0 > 0, ρ ∈ (0, 1)

while Jk(xk + αkpk) > Jk(xk) do

2. Set αk = ραk
if αk < toll then

Line search not successful . End of the algorithm

end if

end while

We now focus our attention to the choice of the step length parameter αk.

The main trade-off we have to face is that we would like to find an αk such that

the functional Jk is significantly reduced, with as less computational effort

as possible. An exact line search aims to find the value of αk that minimizes

the functional Jk along the search direction, but in general identifying this

value is too expensive. For this reason more feasible strategies perform only

an inexact line search, reducing Jk at minimal cost. The backtracking line

search strategy presented in Algorithm 1 is a commonly used inexact method.

The step length αk is first initialized to a positive value α0, whose value

depends on the choice of the algorithm. Then the step length is reduced by

a contraction factor ρ until we obtain a lower functional for the new iterate.

The process may also come to an end if αk becomes lower than a tolerance

value toll.

Functional sensitivity. Functional sensitivity to the controls or design pa-

rameters is an important issue in flow control and deserves a brief discussion.

Continuous dependence on data means that a small change in the data, leads

to small changes in the solution, i.e., the solution is largely insensitive to the

data. This is exactly what one does not want for control and optimization

problems. Instead, what one wants is to have at disposal control or design

parameters such that small changes in their values effect large changes in the

solution; the solution should be very sensitive to small changes in the data.

Achieving the goals of optimization is made much easier when the flow is

very sensitive to changes in the controls or design parameters. So, in trying

to effect control or optimization, one should look for controls or design pa-
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rameters that have a major effect on the flow and ignore those that do not.

Consider for instance a problem where the goal of optimization is to make a

given objective functional as small as possible. If the cost functional is not

sensitive with respect to a design parameter it means that we can eliminate

that parameter from the problem since it is useless for meeting our objective.

As an example, it is known that the flow in a channel will develop into the

parabolic profile of Poiseuille flow regardless of the inflow condition; the lower

the value of the Reynolds number, the quicker the parabolic profile will de-

velop. The flow far away downstream is insensitive, especially for low values

of the Reynolds numbers, to the inflow profile one imposes. Thus, insensi-

tivities of the cost functional can be used to induce changes in the choice of

design parameters by replacing the useless parameters with others that have

a greater effect on the cost functional, or change the cost functional itself so

that it becomes more sensitive to the design parameters. These will result

in more efficient use of the optimizer, with fewer iterations, and/or better

results, with lower functional values or better design parameter values.

2.3 Optimal control of FSI

Algorithm 2 Description of the Steepest Descent algorithm for FSI.

1. Set a state (v0, p0,η0) satisfying FSI state system . Setup of the state

2. Compute the functional J 0

3. Set r0 = 1

for i = 1→ imax do

4. Solve the adjoint system to obtain the adjoint state (via, p
i
a)

5. Set the control update with the adjoint variables

6. Set ri = r0

while J i > J i−1 do . Line search

7. Set ri = ρ ri

8. Solve FSI state system for (vi, pi,ηi) with updated control and ri

if ri < toll then

Line search not successful . End of the algorithm

end if

end while

end for

In this section we apply the adjoint optimal control theory to a general

fluid-structure interaction problem. The system of equation that models our
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FSI problem has been reported in Section 1.1. In all the steady cases found

in literature the optimality system comes directly from the steady FSI equa-

tions. The time is not present and the nonlinear algorithm to define the

final deformation is implicitly determined. The balance between the adjoint

displacement, the adjoint velocity and the final deformed interface must be

recovered after many nonlinear iterations. Moreover, the numerical algo-

rithm cannot be constructed in a very straightforward way. Differently from

these approaches, with our method, we desire to recover the symmetry of

the state-adjoint system that is characteristic of the time dependent problem

where the final deformation is obtained step by step. By doing so the adjoint

interface forces are balanced automatically. In order to do this we introduce

an auxiliary displacement field and use it to extend the velocity field to the

structure domain. This is a steady optimization problem where the physical

velocity in the solid is zero while the fictitious velocity is used as the driving

force for the solid motion during the optimization process. In the following

Chapters we apply a new optimization algorithm to few stationary FSI prob-

lem, where both the state and adjoint systems are written in a symmetric

monolithic form. There are several motivations behind this approach. First,

the coupling conditions at the fluid-solid interface are automatically taken

into account in the monolithic variational formulation and no sub-iterations

are necessary as in the case of partitioned approaches. Furthermore, since

in the framework of FSI gradient-based optimization the solution of the ad-

joint system is used to determine the gradient of the functional, then it is

important to solve with a stable and robust method that treats accurately

the propagation of the information across the interface. Finally, with our

approach, we can use the same solver for both the state and adjoint systems

with minor modifications.

Here, in order to provide a general description of the method, we do not

consider a specific objective functional for the minimization problem. How-

ever, many choices can be made for example considering solid displacement

or fluid velocity profile matching, solid stress state or drag minimization. Af-

ter the choice of the functional of interest the full Lagrangian functional can

be introduced. By imposing vanishing Fréchet derivatives of the Lagrangian

functional we obtain the weak form of the FSI state system (1.95-1.96), the

adjoint FSI system and the optimality condition. The adjoint system and the

optimality system are usually linear in their own unknowns, which depend

on the choice of the objective functional. The unknowns of the optimality
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system are then (v, p,va, pa,η,ηa) and are strongly coupled in the system.

For this reasons a one-shot approach is not feasible and a gradient-based

algorithm is used instead.

In Algorithm 2 the outline of the iterative algorithm is reported. After the

setup, where the initial state and initial functional value are computed, the

algorithm consists of two nested loops. In the outer loop the adjoint system

is solved together with the control equation in order to obtain the gradient

direction. In the inner loop a backtracking line search with step length pa-

rameter r is used. The step length is initially set to one and is iteratively

reduced during the line search until a lower value of the objective functional

is obtained. This algorithm stops either when the step length becomes lower

than a minimum value toll or when two consecutively computed functional

values are similar, i.e., no more improvements can be obtained. Nonlinear

iterations are required for the solution of the FSI state equations (Step 8. in

Algorithm 2), thus increasing the complexity of the algorithm. To perform

the nonlinear iterations we use a classical Picard method, with a given toler-

ance ε. Since the adjoint FSI system is linear in its unknowns then it can be

solved directly without nonlinear iterations. Furthermore, we usually do not

need the solution of the adjoint displacement equation to compute the control

update and therefore it may be neglected, thus reducing the complexity of

the adjoint system.

We would like to focus now on the line search subroutine and in particular

on Step 8. in Algorithm 2. During the first steps of every line search the

control parameter can have extremely large values, leading to a failure of the

FSI solver (e.g. due to not physical, enormous, solid displacement). However,

we do not want to limit a priori the control parameter range, since by doing

so we might lose some optimal control results. As a consequence, every time

a line search is unsuccessful we discard the new solution and reload the last

optimal solution obtained, that will then be used as initial condition during

the nonlinear iterations of the following line search.

Furthermore, another aspect we have to keep into consideration concerns

the preconditioner used to improve the convergence properties of the linear

system we are solving. When solving the linear systems obtained after the

discretization our solver keeps the same preconditioner as long as reasonably

possible, thus saving computational time. However, under the circumstances

above (failure of the FSI solver), the preconditioner in use might have been

computed with a very different (and wrong) FSI matrix, leading to conver-
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gence issues. Therefore, since the FSI preconditioner must not be affected by

the previous iterations it has to be computed from scratch at the beginning

of every line search.

In the following Chapters some FSI optimal control problems are studied.

A pressure boundary control problem is presented in Chapter 3, a distributed

control approach in Chapter 4 and in Chapter 5 we studied an inverse param-

eter estimation problem for the estimate of the solid Young modulus. Every

Chapter is self consistent since it contains its specific mathematical formula-

tion and can then be read independently from the others. Few numerical tests

are reported at the end of each Chapter. One of the test cases is studied for

all the optimal control methods presented, keeping the same geometry, objec-

tive functional, reference state, material properties and boundary conditions

in order to compare the effectiveness of the methods.





CHAPTER 3

Boundary pressure control

In this Chapter we investigate a pressure boundary optimal control approach

to the fluid-structure interaction problem based on the Lagrangian multipli-

ers formalism presented in Chapter 2. The objective of the problem is to

minimize a displacement field functional in a specific region of the solid do-

main. This is obtained through a pressure control acting on a fluid boundary

that bends the solid and the location of the fluid domain. The rest of this

Chapter is organized as follows. First, we derive the optimality system aris-

ing from the Lagrangian functional minimization and since solving iteratively

the optimality system with a steepest descent method shows slow convergence

we also propose a quasi-Newton method to improve the algorithm, see [44].

Finally, in order to support the proposed approach we implement both the

algorithms in our finite element code FEMuS (available at [1]) and perform

numerical tests in two and three-dimensional spaces.

3.1 Mathematical model

In this section we present the mathematical model of the FSI problem to-

gether with the derivation of the optimality system. The notation used for

functional spaces and the mathematical model of the FSI problem can be

found in details in Section 1.1. Nevertheless, for the sake of completeness, we
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report now the strong and weak forms of the FSI state system. The mathe-

matical model of the steady state FSI problem in strong form is defined by

the following set of equations

∇ · v = 0 on Ωf , (3.1)

ρf (v · ∇)v −∇ · σf = 0 on Ωf , (3.2)

∇ · σs(η) = 0 on Ωs . (3.3)

The viscous stress tensor σf of a Newtonian fluid and the Cauchy strain

tensor σs of a St. Venant Kirchhoff material read

σf (p,v) := −pI + µf (∇v +∇vT ) , (3.4)

σs(η) := λs(∇ · η)I + µs(∇η +∇ηT ) , (3.5)

where pf is the fluid pressure, µf the dynamic viscosity of the fluid while

λs and µs are the solid Lamé parameters. In order to complete the FSI

strong formulation we need to provide the following boundary and interface

conditions

v = v0 on Γfd , η = η0 on Γsd ,

σf · nf = 0 on Γfn, σs · ns = 0 on Γsn , (3.6)

σf · nf + σs · ns = 0 on Γi, v = 0 on Γi ,

where Γfd and Γsd are the surfaces with Dirichlet boundary conditions for the

fluid velocity and solid displacement, while on Γfn and Γsn standard homo-

geneous outflow boundary conditions are imposed. On the interface Γi the

fluid velocity has to vanish and the normal components of the stress tensors

σ have to be continuous. We denote with ns and nf the normal unit vector to

the solid and fluid boundary with ns = −nf on Γi. We remark that, by using

a monolithic approach in a finite element framework, the interface conditions

are imposed directly in the same solver and there is no need to iterate and

obtain the correct interface values, see [32, 19, 20].

We can write the monolithic FSI system in weak form for the displacement

η and for the velocity field v over Ω(η) = Ωf (η) ∪ Ωs(η), which implicitly
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incorporates the boundary conditions (3.6) on the common interface Γi.∫
Ωf

(∇ · v)ψ dΩ = 0 ∀ψ ∈ L2(Ωf ) , (3.7)∫
Ωf

[(ρf (v · ∇)v) · φ− p∇ · φ+ µf∇v : ∇φ] dΩ+∫
Ωs

[λs(∇ · η)(∇ · φ) + µs∇η : ∇φ] dΩ + (3.8)∫
Γ

[µs(∇η · ns) · φ+ λs(∇ · η)(ns · φ)]]dΓ+∫
Γ

[[pnf − µf (∇v · nf ) · φ] dΓ = 0 ∀φ ∈ H1
Γs
d
(Ω) ∩H1

Γf
d

(Ω) .

The surface integrals vanish due to the boundary and interface conditions

(3.6) and consequently the weak form of the FSI system is given by (3.7-

3.8). If we now use the standard techniques to obtain the optimality system

then the adjoint system results with uncoupled boundary conditions on the

interface. This optimality system shows non-symmetric and non-monolithic

patterns that differ from those of the state variable equations (3.7-3.8). In

order to solve state and adjoint equations with a similar monolithic structure

we need to extend the state variables in an appropriate way.

Over the solid domain Ωs(η) we define the auxiliary displacement field η̂,

solution of the following Laplace operator and boundary conditions

∇2η̂ = 0 x ∈ Ωs , (3.9)

η̂ = η on Γi , (3.10)

η̂ = 0 on (∂Ωs − Γi) . (3.11)

Therefore, over the whole domain Ω, we can define the velocity field v as

v =

{
τ (η − η̂) on Ωs(η)

v solution of (3.1)-(3.2) on Ωf (η)
, (3.12)

with τ a positive constant. It is clear that Ωf (η) = Ωf (η̂) and Ωs(η) = Ωs(η̂)

with v = 0 on Γi. During the optimization process the function

η̂ : Ωs(0̂)→ Ωs(̂l) (3.13)

can be seen as a mapping that defines the solid domain during the displacing

process. The velocity field v is assumed to be continuous over Γi. It is
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important to remark that the physical velocity in the solid is zero. With

this extension we may compute differential quantities of a functional, like

shape derivatives of Ωs(η̂) and Ωf (η̂). It is more convenient to impose on

the boundary Γi the (3.12), which allows variation of the fields η̂ and η even

over the solid domain, instead of (3.10). With this notation the FSI problem

can be written as∫
Ωf (η̂)

(∇ · v)ψ dΩ = 0 ∀ψ ∈ L2(Ωf ) , (3.14)∫
Ωf (η̂)

[(ρf (v · ∇)v) · φ− p∇ · φ+ µf∇v : ∇φ] dΩ + (3.15)∫
Ωs(η̂)

[µs∇η : ∇φ+ λs(∇ · η)(∇ · φ)] dΩ = 0 ∀φ ∈ H1
Γs
d
∩H1

Γf
d

(Ω) ,∫
Ωs(η̂)

∇η̂ : ∇η̂a dΩ = 0 ∀ η̂a ∈ H1
Γs

(Ωs) , (3.16)∫
Ωs(η̂)

(v − τ(η − η̂)) · βa dΩ = 0 ∀βa ∈ L2
Γs

(Ωs) . (3.17)

In the following we refer to (3.14-3.17) as state system in weak form.

3.1.1 Optimality System

In an optimal control framework it is necessary to choose the objective of the

problem and the control parameters. In this work we study a displacement

matching profile problem where the control is the pressure on a subset of

the fluid boundary. The objective functional, that we aim to minimize, then

reads

J (η, pc) =
1

2

∫
Ωd

ω||η − ηd||2 dΩ +
1

2
β

∫
Γc

|pc|2 dΓ . (3.18)

The first term takes into account the difference in norm between the solid

displacement η and its target value ηd. The solid sub-domain Ωd ⊆ Ωs is

the observation region where we want to reach the objective and ω is a con-

stant weight function that vanishes on the boundary ∂Ωd. The second term

is a regularization contribution needed to penalize the boundary pressure pc,

which is then limited to the space of non singular square integrable functions

L2(Γ). In order to derive the optimality system we write the following aug-

mented Lagrangian that is the sum of the objective functional and of the FSI

equations multiplied by appropriate Lagrangian multipliers, i.e. the adjoint
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variables

L(p,v,η, η̂, pa,va, η̂a, ŝa, βa) = J (η, pc) +

∫
Ωf

(∇ · v) pa dΩ

+

∫
Γc

(va · n)p dΓ +

∫
Ωf

[ρf (v · ∇)v +∇p−∇ · (µf∇v)] · va dΩ

+

∫
Ωs

[
−∇ · (µs∇η + λsI(∇ · η))

]
· va dΩ +

∫
Ωs

∇2η̂ · η̂a dΩ (3.19)

+

∫
Γi

ŝa ·
[
(η̂ − η) +

v

τ

]
dΓ +

∫
Ωs

βa · [v − τ(η − η̂)] dΩ .

We use label a to denote the adjoint variable (pa,va, η̂a,βa) of the corre-

sponding state variable. Then, the solution that minimizes the functional

J under the constraints given by the FSI system is a stationary point of

the Lagrangian functional L and therefore can be computed by imposing the

following first order necessary minimization condition

δL = 0 . (3.20)

In the following we use notation δq for the variation of the generic function

q and (DL/Dq)δq for the Fréchet derivative of functional L in the direction

δq. Moreover, the shape derivatives of the functionals F1 and F2 on a moving

domain with velocity δv are given by [54]

dF1

dΩ(η̂)
δv =

∫
∂Ω(η̂)

yδv · n dΓ , (3.21)

dF2

dΓ(η̂)
δv =

∫
Γ(η̂)

(∇n + χ) yδv · n dΓ , (3.22)

where ∇n is the normal derivative operator and χ the mean curvature of Γ.

Since the variations of all the variables are independent we can extract and

set to zero the sum of terms containing each variation [30]. When we consider

the variations of the adjoint variables (pa,va, η̂a,βa) we obtain the weak form

of the FSI state system (3.14-3.17), which can be solved with a monolithic

approach. When we focus on the variations of the state variables (v, p,η, η̂)

we obtain the weak form of the adjoint system. We start collecting δv terms

obtaining
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DL
Dv

δv =

∫
Ωf

(∇ · δv) pa dΩ +

∫
Ωs

δv · βa dΩ +

∫
Γc

[
(∇n + χ)

βp2

2

]
δv · n dΓ+∫

Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+∫

∂Ωf

(∇ · v) pa δv · n dΓ +

∫
∂Ωd

ω
(η − ηd)2

2
δv · n dΩ +

1

τ

∫
Γi

δv · ŝa dΓ+∫
∂Ωf

va ·
[
ρf (v · ∇)v +∇p−∇ · (µf∇v)

]
δv · n dΓ + (3.23)∫

∂Ωs

va ·
[
−∇ · (µs∇η + λsI(∇ · η))

]
δv · n dΓ+∫

∂Ωs

(
∇2η̂ · η̂a

)
δv · n dΓ +

∫
Γi

(∇n + χ)
[
ŝa ·

[
(η̂ − η) +

v

τ

]]
δv · n dΓ+∫

∂Ωs

βa · [v − τ(η − η̂)] δv · n dΓ = 0 ∀δv ∈ H1

Γf
d∩Γs

d

(Ω) .

Many terms can be rearranged and simplified in order to obtain a system

suitable to numerical solution. First we notice that the shape derivative

terms vanish when the integrated function vanishes on the boundary, so the

terms integrated on ∂Ωs and ∂Ωf in (3.23) can be neglected. Furthermore

one can prove that the following term∫
Γi

(∇n + χ)
[
ŝa ·

[
(η̂ − η) +

v

τ

]]
δv · n dΓ , (3.24)

is equal to zero, too. In fact when we multiply by the curvature χ the term

in square brackets, which is zero due to (3.17), we obtain a null contribution.

The term ŝa is defined on the surface Γi and a constant extension of this value

towards the normal direction to the surface leads to a null normal gradient

of this term, so (3.24) becomes∫
Γi

ŝa · ∇n

[
(η̂ − η) +

v

τ

]
δv · n dΓ . (3.25)

Since (3.17) is valid on the whole domain Ωs, this term vanishes [54]. The

surface integral over ∂Ωd vanishes since the weight function ω is vanishing

over that surface and does not depend on η̂, which means that the target

region Ωd moves integrally with Ωs. Finally, the controlled boundary Γc is
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fixed so the integral over that surface vanishes. After these simplifications

the variation in δv gives∫
Ωf

[(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va] dΩ+ (3.26)∫
Ωf

(∇ · δv) pa dΩ +

∫
Ωs

δv · βa dΩ +
1

τ

∫
Γi

δv · ŝa dΓ ∀δv ∈ H1

Γf
d∩Γs

d

(Ω) .

For δη we have

DL
Dη

δη =

∫
Ωd

ω(η − ηd)δη dΩ +

∫
Ωs

[µs∇δη : ∇va + λs(∇ · δη)(∇ · va)] dΩ

− τ
∫

Ωs

δη · βa dΩ−
∫

Γi

ŝa · δη dΓ = 0 ∀δη ∈ H1
Γs
d
(Ωs) . (3.27)

By performing integration by parts on the term where the variation δη is

differentiated we obtain the values of βa and ŝa

βa = −1

τ
∇ · [µs∇va + λsI(∇ · va)] +

ω

τ
(η − ηd) , (3.28)

ŝa = [µs∇va + λsI(∇ · va)] · n . (3.29)

By using (3.28-3.29), the (3.26) becomes∫
Ωf

(∇ · δv) pa dΩ +
1

τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ+∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+

1

τ

∫
Ωd

ω(η − ηd)δv dΩ = 0 ∀δv ∈ H1

Γf
d∩Γs

d

(Ω) . (3.30)

Collecting δη̂ we obtain∫
Ωs

∇δη̂ : ∇η̂a dΩ + τ

∫
Ωs

δη̂ · βa dΩ +

∫
Γi

ŝa · δη̂ dΓ = 0 ∀δη̂ ∈ H1
Γs
d
(Ωs) .

(3.31)

With (3.28-3.29) the (3.31) reads∫
Ωs

∇η̂a : ∇δη̂ dΩ = −
∫

Ωs

[µs∇va : ∇δη̂ + λs(∇ · va)(∇ · δη̂)] dΩ+∫
Ωd

ω(η − ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) . (3.32)
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Finally, the equation for the variation δp gives∫
Γc

(pβ + va · n)δp dΓ−
∫

Ωf

(∇ · va)δp dΩ = 0 ∀δp ∈ L2(Ω) . (3.33)

The contribution of the surface term over the controlled boundary Γc gives

the following control equations

pc = p = −va · n
β

. (3.34)

To summarize, the adjoint system in weak form is represented by∫
Ωf

(∇ · va)δp dΩ = 0 ∀δp ∈ L2(Ω) , (3.35)∫
Ωf

(∇ · δv) pa dΩ +
1

τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ+∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+

1

τ

∫
Ωd

ω(η − ηd)δv dΩ = 0 ∀δv ∈ H1

Γf
d∩Γs

d

(Ω) , (3.36)∫
Ωs

∇η̂a : ∇δη̂ dΩ = −
∫

Ωs

[µs∇va : ∇δη̂ + λs(∇ · va)(∇ · δη̂)] dΩ+∫
Ωd

ω(η − ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) . (3.37)

If one is interested in the strong form of the adjoint system, for instance to

obtain a proper finite volume discretization, it is necessary to perform inte-

gration by parts on the terms where the variations δ are differentiated. After

performing the integration by parts, we recover the adjoint state (vfa,v
s
a, pa) ∈

H1
∂Ωf−Γi

(Ωf )∩H2(Ωf )×H1
∂Ωs−Γi

(Ωs)∩H2(Ωs)×L2
0(Ωf )∩H1(Ωf ), by solving

∇ · vfa = 0 , (3.38)

− ρf (∇v)Tvfa + ρf [(v · ∇)vfa] +∇pa −∇ · (µf∇vfa) =
ω

τ
(η − ηd) , (3.39)

∇ · S(vsa) = 0 . (3.40)

with boundary conditions defined as

vsa = vfa on Γi ,

σs(v
s
a) · n = σf (v

f
a) · n on Γi , (3.41)

µf (∇va) · n = −(v · n)va , pa = 0 on Γfn ,

va = 0 on Γfd ∪ Γsd .
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We remark the duality between (3.41) and (3.6). In fact if a Dirichlet bound-

ary condition for a state variable is set then the corresponding adjoint variable

must satisfy the same type of condition in homogeneous form. The adjoint

velocity va must be continuous and different from zero on the interface since

the source term ω(η − ηd)/τ is active only in the solid region and the infor-

mation has to propagate towards the control boundary Γc, which is part of

the fluid domain. We also remark that since we use a monolithic approach

with a finite element approximation for both the state (3.14-3.15) and the

adjoint system (3.35-3.36) the equilibrium conditions on the interface are

automatically satisfied.

3.2 Numerical implementation and tests

The optimality system obtained in the previous section is highly nonlinear

and doubles the unknowns of a standard FSI simulation. Its solution is

a very difficult task and we propose a segregated approach, splitting the

solution of the state and adjoint equations to combine the result in the control

gradient equation. By doing so we use the same solver for the solution of

the state (3.14-3.15) and the adjoint systems (3.35-3.36) with only minor

modifications. The outline of the method used for the iterative solution of

the optimality system is described in Algorithm 3. After the setup, where

the initial state and the initial functional value are computed, the algorithm

consists of two nested loops. In the outer loop the adjoint system (3.35-

3.36) is solved together with the control equation in order to obtain the

gradient direction δp. In the inner loop a backtracking line search based on

the Armijo strategy is used [3]. Here we use a contraction factor ρ = 0.7. This

algorithm stops either when the step length becomes lower than a minimum

value toll = 10−8 or when two consecutively computed functional values are

similar, i.e. no more improvements can be obtained. This algorithm is quite

robust however it has a high computational cost: the optimal solution requires

many line searches where the state system must be solved. Furthermore

this method has a slow convergence rate and relies only on the information

available at the current iteration to determine the direction of the functional

gradient.

The use of more sophisticated approaches, such as Newton’s or quasi-

Newton methods, can significantly improve the convergence properties of

the algorithm, see [44]. In quasi-Newton methods the approximation of the
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Algorithm 3 Description of the Steepest Descent algorithm.

1. Set a state (v0, p0,η0) satisfying (3.14-3.15) . Setup of the state - Reference

case

2. Compute the functional J 0 in (3.18)

3. Set r0 = 1

for i = 1→ imax do

4. Solve the system (3.35-3.36) to obtain the adjoint state (via, p
i
a)

5. Set the control update δpi = −(pi−1
c + via · n/β)

6. Set ri = r0

while J i(pi−1
c + riδpi) > J i−1(pi−1

c ) do . Line search

7. Set ri = ρ ri

8. Solve (3.14-3.15) for the state (vi, pi,ηi) with pic = pi−1
c + riδpi

if ri < toll then

Line search not successful . End of the algorithm

end if

end while

end for

Hessian matrix of the functional is computed at every optimization iteration.

In our case a quasi-Newton method can be of practical interest if compared

to the requirements needed by a Newton’s approach. Moreover, since in our

work the control parameter is a scalar, the Hessian matrix denoted in the

following as B has to be intended as the second derivative of the functional.

The control update equation for δp becomes

Bi =

∂J
∂p

(pi−1)− ∂J
∂p

(pi−2)

(pi−1 − pi−2)
,

δpi = −(Bi)−1(pi−1
c + via · n/β) .

(3.42)

Since the above formula evaluates an approximation of the Hessian by using

information from the two previous iterations, it can be used only after the

first iteration. The first iteration may be computed with a standard steepest

descent. We implemented this algorithm in our in-house finite element code

FEMuS (available at [1]), that works on multiprocessor architectures with

openMPI libraries and uses a multigrid solver with mesh-moving capability

[6, 9, 17]. We use standard quadratic-linear elements for the velocity and

pressure solution in order to fulfill the BBL inf-sup condition. The displace-

ments are approximated with standard quadratic elements. In the rest of
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this section we report the results obtained for some test cases with different

values of the regularization parameter β. We compare the performance of

the steepest descent and quasi-Newton methods in terms of total number

of line searches, number of optimization iterations and functional reduction

attained. The first case is a two-dimensional channel while in the second one

we simulate a more complex three-dimensional geometry.

3.2.1 Test 1. Plane channel

A B C
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0.
5
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Ωs
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Ωd
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0.020
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Figure 3.1: Geometry and controlled region defined by dotted square on

the right Ωd (left). Reference case with velocity profiles and streamlines

in the liquid (middle). Solid displacement field ηx for the same reference

configuration (right).

The geometry of our first test case is shown on the left of Figure 3.1.

This simple test case has been studied with the optimal control approaches

presented in Chapters 4 and 5, as well. We used the same boundary condi-

tions, physical properties and objective functional, while changing the control

parameter in order to compare the different controls in terms of functional

reduction.

In this test a fluid flows vertically from the bottom to the top in a plane

channel. The fluid region Ωf is on the left while the solid domain Ωs, in

gray, is on the right. The dotted region is the controlled domain Ωd ⊂ Ωs

and the lower boundary AB is the control region Γc. The left boundary
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Figure 3.2: Controlled case with velocity profiles v and streamlines in the

liquid and displacement η in the solid (on the left). Adjoint velocity va field

and streamlines for the reference case configuration (on the right).

AF is a symmetry axis and on the top EF pressure boundary conditions

with pEF = 10000Pa and vanishing tangential velocity are imposed. All the

boundaries are fixed except the right segment CD, which is free to move with

fixed endpoints C and D. The physical properties are the following

ρs = ρf = 103kg/m3, νf = 0.07m2/s, νs = 0.2, E = 106Pa , (3.43)

so the solid can easily bend. The optimal control algorithm searches the

optimal pressure on the lower fluid boundary Γc such that the x-component

of the displacement over the region Ωd matches the uniform target value

ηd = 0.05m. The displacement in the remaining part solid domain is not

controlled and therefore can have any value, solution of the state system.

Now we present the results referring to the reference case, with p0 =

11500Pa on Γc. In the middle of Figure 3.1 the velocity profile in the fluid

domain Ωf is shown with streamlines. The solid displacement in the solid

domain Ωs is reported on the right of the same figure. The main deformation

occurs around the middle point of the right boundary and the maximum

value is ηx = 0.02m, lower than the target value ηd.

We report in Table 3.1 the functionals J (η, p) and the mean values η̄x of

the x-component of the displacement in the controlled region Ωd, obtained

with different β values. By reducing β, the controlled solution tends to

converge to the desired displacement and the functional values decrease. On

the right of the same Figure a comparison is shown among the results obtained



3.2. Numerical implementation and tests 67

0 0.05 0.1 0.15 0.2

10,000

20,000

30,000

A

B

C

x

p
c
[P

a
]

Figure 3.3: Control pressure pro-

file with β = 10−8 (A), β = 10−9

(B) and β = 10−10 (C).

β J (η, p) η̄x [m]

∞ 1.292 · 10−5 0.0180

10−8 9.192 · 10−6 0.0202

10−9 1.515 · 10−6 0.0469

10−10 6.454 · 10−7 0.0497

Table 3.1: Objective functionals.

The reference case with no control

is labeled with β =∞.

with different values of the regularization parameter β. The control pressure

profile over Γc is reported as a function of the horizontal coordinate x for

three values of the regularization parameter β = 10−8, 10−9 and 10−10. The

pressure has a more uniform, regular profile as β, and therefore the intensity

of the control, decreases. In Figure 3.2 we reported the results obtained

when the optimal control problem is solved with β = 10−10. On the left

the fluid velocity with streamlines and the solid displacement are shown.

Finally, on the right of the same figure the adjoint velocity field is reported

with streamlines at the beginning of the optimization algorithm.

3.2.2 Test 2. Optimization methods comparison

Here, considering the domain of Figure 3.1, we want to test the accuracy

of our algorithm and compare the steepest descent method with the quasi-

Newton one. We first perform a forward simulation where we set a uniform

pressure value on Γc and then compute the average deformation over the

controlled region Ωd. By using a boundary pressure pfw = 5500Pa on Γc we

have η̄ = 0.0582m. This deformation is then imposed as the desired value

ηd of the optimal controlled problem. By doing so we expect to recover, at

the end of the optimization algorithm, an average pressure value close to

pfw taking in mind that the optimal pressure does not have a flat profile.

On the left boundary AF we impose no-slip conditions and on the top EF

pressure conditions with pEF = 4000Pa and vanishing tangential velocity.



68 Chapter 3. Boundary pressure control

Table 3.2: Case A. Objective functional value and optimization (Opt.)/line

search (L.s.) number of iterations for the steepest descent and quasi-Newton

methods as a function of different β. The reference case with no control is

labeled with β =∞.

Steepest descent Quasi-Newton

β J (η, p) popt[Pa] Opt. L.s. J (η, p) popt[Pa] Opt. L.s.

∞ 2.554 · 10−6 0 - - 2.554 · 10−6 0 - -

10−7 3.182 · 10−7 5 057 6 193 3.344 · 10−7 5 308 4 42

10−9 8.998 · 10−9 5 448 12 523 1.009 · 10−8 5 321 3 98

10−10 5.897 · 10−9 5 467 16 794 5.892 · 10−9 5 463 8 65
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Figure 3.4: Case A. Functional values (left) for the steepest descent and

quasi-Newton methods with β = 10−10 and control pressure profile (right) on

the lower fluid boundary Γc with β = 10−7 (A), β = 10−9 (B) and β = 10−10

(C).

The physical properties are now the following

ρs = ρf = 103kg/m3, νf = 0.07m2/s, νs = 0.2, µs = 7.65 · 104Pa . (3.44)

We report in Table 3.2 the results obtained by applying the steepest descent

and quasi-Newton methods explained in Algorithm 3 and (3.42) with differ-

ent β values. With popt we denoted the mean pressure value on the control

surface Γc at the end of the optimization process. By reducing β, the mean

pressure popt approaches the optimal one pfw = 5500Pa since the regular-

ization contribution of the functional becomes negligible with respect to the

objective contribution, with smaller corresponding functional values. We no-
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tice that the choice of the method does not influence the accuracy of the

results in terms of functional reductions and pressure values. However, fo-

cusing on a specific value of the regularization parameter, for instance 10−10,

the steepest descent takes 16 optimization with 794 line search iterations

to converge, while the quasi-Newton takes 8 optimization with only 65 line

search iterations. On the left of Figure 3.4 the functional values are reported

as a function of algorithm iterations for the two optimization methods, with

β = 10−10. On the right of the same Figure a comparison among the re-

sults obtained with different β is shown. The control pressure profile over Γc
is reported as a function of the horizontal coordinate x for three values of

the regularization parameter β = 10−7, 10−9 and 10−10. The pressure has a

symmetric profile for all β and takes higher value as β increases.

3.2.3 Test 3. 3D accuracy test

x y

z

Figure 3.5: Case study geometry. Left: in gray is the liquid control surface

Γc. Right: in gray is the solid controlled region Ωd.

In this section we report the results of the three-dimensional geometry

shown in Figure 3.5. The spherical domain consists of an external deformable

solid that surrounds the internal fluid. On the upper liquid surface we pre-

scribe a boundary condition of uniform pressure and vanishing tangential

velocity while the lateral surfaces of the sphere are left free to move. Clearly

by increasing the boundary pressure, the solid deformation becomes more
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Figure 3.6: Convergence of the functional for the steepest descent and quasi-

Newton methods, β = 10−8.

Table 3.3: Effects of the regularization parameter β on objective functionals,

optimization (Opt.) and line search (L.s.) number of iterations for the steep-

est descent and quasi-Newton methods. The reference case with no control

is labeled with β =∞.

Steepest descent Quasi-Newton

β J (η, p) popt[Pa] Opt. L.s. J (η, p) popt[Pa] Opt. L.s.

∞ 5.552 · 10−5 0 - - 5.552 · 10−5 0 - -

10−6 1.223 · 10−5 19 455 8 75 1.205 · 10−5 18 809 4 43

10−7 1.259 · 10−6 19 959 11 88 1.260 · 10−6 19 983 6 34

10−8 1.356 · 10−7 20 005 20 126 1.355 · 10−7 19 988 5 40

relevant. The solid and fluid properties are the following

ρs = ρf = 103kg/m3, νf = 0.02m2/s, νs = 0.2, µs = 7.65 · 105Pa . (3.45)

The control problem searches the optimal pressure on the upper boundary

such that the z-component of the displacement over the region Ωd shown on

the right of Figure 3.5 matches a uniform target value. We first perform

a forward simulation imposing on the inlet boundary a uniform pressure

pfw = 20000Pa, then compute the average deformation over the controlled

region and obtain 7.0982 · 10−2m. This value acts as target displacement ηd
for our optimization test case. The initial control pressure value is p0 = 0Pa,
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far away from the optimal one pfw = 20000Pa.

In Table 3.3 we reported the results of the optimization process obtained

using both the steepest descent and quasi-Newton methods and for different

values of the regularization parameter β. With popt we denoted the pressure

value obtained at the end of the optimization process. We first notice that

reducing β the pressure popt approaches the optimal one pfw = 20000Pa.

The choice of the method does not afflict the accuracy of the results in terms

of functional reductions and pressure values. However, the steepest descent

requires more optimization and line search iterations to converge than the

quasi-Newton. The latter method is much less computationally expensive

from a CPU point of view, while the memory requirements are similar since

its implementation only requires to store few values of the functional gradient

and control parameter more than for the steepest descent. Finally, in Figure

3.6, is reported the evolution of the functional values during the optimization

process. We recall that the first iteration corresponds to the reference state

and the second one is always obtained with a steepest descent line search

method.

3.2.4 Test 4. 3D with auxiliary channel

ΓcΩd

Ωf

Ωs

z

x
y

  

Figure 3.7: Case B. Geometry with controlled domain Ωd (in green) (left)

and solid displacement field for the reference configuration (right).
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Table 3.4: Case B. Values of the parameter β and objective functional values

with optimization (Opt.) and line search (L.s.) number of iterations for

the steepest descent and quasi-Newton methods. The reference case with no

control is labeled with β =∞.

Steepest descent Quasi-Newton

β J (η, p) Opt. L.s. J (η, p) Opt. L.s.

∞ 5.919 · 10−9 - - 5.919 · 10−9 - -

10−9 1.258 · 10−9 7 56 1.134 · 10−9 4 33

10−10 1.176 · 10−9 7 82 1.043 · 10−9 4 39
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Figure 3.8: Case B. Convergence of the functional for the steepest descent

and quasi-Newton methods, β = 10−11.

Now we consider a test case where the control surface is an auxiliary duct

and not the domain main fluid inlet, as it was in the previous cases. This

approach could be more suitable for industrial applications. We present the

results of the simulations of the three-dimensional geometry shown on the

left of Figure 3.7. The domain is a cylindrical channel with a circular hole

located in the middle of the cylinder. The radius of the inner fluid region

is 0.1m, the thickness of the solid is 0.015m and the height of the channel

is 0.3m. The fluid enters the channel from the bottom with a parabolic

velocity profile v = (0, 0, 1− 100× (x2 + y2))m/s and flows along the z-axis

to the top. On the upper surface we prescribe a uniform pressure conditions

p = 5 · 104Pa and vanishing tangential velocity. The solid lateral boundaries

are free to move, while the others are fixed. The hole in the solid represents
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Figure 3.9: Case B. Velocity field profiles in the liquid for the reference case

(on the left) and controlled case with β = 10−10 (on the right).
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Figure 3.10: Case B. Adjoint velocity (on the left) and pressure (on the right)

profiles over the control surface Γc for the controlled case with β = 10−10.

an auxiliary duct connected to the main channel. Clearly if the duct pressure

is higher than that of the channel internal fluid, then the auxiliary duct brings

more fluid in the liquid domain, behaving as an injection. On the other hand

if the pressure is lower than the internal one the fluid exits from the duct.

For the case without control we impose a no-slip boundary condition so that

the main fluid flow is not altered by the presence of the duct. The physical
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properties of the solid and liquid are the following

ρs = ρf = 103kg/m3, νf = 0.1m2/s, νs = 0.2, µs = 7.65 · 104Pa . (3.46)

Our control problem consists of finding the optimal pressure that has to be

imposed on the auxiliary duct Γc, so that the solid displacement in the region

Ωd shown on the left of Figure 3.7 matches a given value.

First we report the uncontrolled FSI problem and then the results of the

optimal controlled problem obtained with the steepest descent and quasi-

Newton methods for different values of the regularization term β. On the

right of Figure 3.7 the x-component of the solid displacement field is reported

and its average value in the controlled region Ωd, which is about 0.0295m. We

have then chosen as target value of our control problem ηd = 0.031m, aiming

to increase the solid deformation. In Table 3.4 we report the results obtained

by applying the steepest descent and quasi-Newton methods. It is worth

noticing that the latter method requires less line searches and optimization

iterations to minimize the functional, thus reducing the computational effort.

Again one can see that the greatest improvement is obtained with the lowest

β for both algorithms. We recall that due to its numerical implementation

the first step performed by the quasi-Newton method is actually a steepest

descent step as clearly visible in Figure 3.8 that shows the evolution of the

functional values during the optimization process. In Figure 3.9 the velocity

field obtained is compared with the reference case with no control, on the

left, and with control, on the right. In the first case the flow is aligned with

the channel axis, while in the controlled one the auxiliary duct injects fluid

at high velocity into the channel that mixes with the main flow. Finally, in

Figure 3.10 the pressure and adjoint velocity fields over the control surface

Γc are reported. The profiles are very similar, as suggested by the control

update equations (3.34, 3.42), with higher values near the center of the duct,

that consequently is the region where the control acts more efficiently.



CHAPTER 4

Distributed optimal control

applied to Fluid Structure

Interaction problems

In this Chapter we study a fluid-structure interaction distributed optimal

control problem. Inside this framework, the aim of our control problem is

the minimization of two objective functionals with a distributed force that

acts in the solid domain and changes the location of both the solid and fluid

domains. We first consider a velocity tracking functional in a specific region

of the fluid domain. This distributed control for FSI systems can be easily

used to find the optimal shape of the solid domain that changes the fluid

flow profile accordingly to our goal. The second functional of interest is a

solid domain displacement matching functional. This control involves mainly

the solid sub-problem, since both the control parameter and the objective

functionals are located into the solid sub-domain. This distributed control

approach is compared with the boundary control and parameter estimation

problems presented in Chapter 3 and 5, respectively.

The rest of this Chapter is organized as follows. First we introduce the FSI

governing equations in strong and weak form, then we derive the optimality

system arising from the Lagrangian functional minimization. The steepest
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descent iterative algorithm used for the numerical solution of the optimality

system is presented. Finally, in order to support this approach we report

numerical tests with different values of the regularization parameter where

the distributed force deforms the solid structure in order to minimize the

objective functional of interest.

4.1 Mathematical model

In this section we introduce the mathematical formulation of the FSI problem

and derive the optimality system. For our steady state FSI problem we

consider the interaction of a Newtonian fluid, whose behavior is described

by the Navier-Stokes equations, with a St. Venant-Kirchhoff material. The

mathematical model in strong form of the FSI problem is then the following

∇ · v = 0 on Ωf , (4.1)

ρf (v · ∇)v −∇ · σf = 0 on Ωf , (4.2)

∇ · σs(η) = f on Ωs , (4.3)

with v being the fluid velocity field and ρf its density. We denote with f the

distributed force that acts exclusively in the solid sub-domain. The constitu-

tive relations for the fluid stress tensor σf in the Newtonian incompressible

case and for the solid Cauchy stress tensor σs read

σf (pf ,vf ) = −pfI + µf (∇v +∇vT ) , (4.4)

σs(η) = λs(∇ · η)I + µs(∇η +∇ηT ) , (4.5)

where pf is the fluid pressure, µf the dynamic viscosity of the fluid while λs
and µs are the solid Lamé parameters. In order to complete the system (4.1-

4.3) it is necessary to define the following appropriate boundary and interface

conditions, which are

v = v0 on Γfd , η = η0 on Γsd ,

σf · nf = 0 on Γfn, σs · ns = 0 on Γsn , (4.6)

σf · nf + σs · ns = 0 on Γi, v = 0 on Γi ,

where Γfd and Γsd are the surfaces where Dirichlet boundary conditions are

imposed and Γfn and Γsn are the surfaces where standard homogeneous outflow

boundary conditions are imposed for the fluid velocity and solid displacement,
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respectively. With Γi we denote the interface between the solid and fluid

domain, Γi = ∂Ωs ∩ ∂Ωf .

In order to recover a symmetric formulation of the optimality system

that we are going to derive, we introduce the auxiliary mesh displacement η̂

defined as

∇2η̂ = 0 x ∈ Ωs , (4.7)

η̂ = η on Γi , (4.8)

η̂ = 0 on (∂Ωs − Γi) , (4.9)

through which we extend the velocity field to the whole domain Ω, with τ

positive and constant

v =

{
τ(η − η̂) on Ωs,

v solution of (4.1)-(4.2) on Ωf .
(4.10)

It is clear that at steady state Ωf (η) = Ωf (η̂) and Ωs(η) = Ωs(η̂) with

v = 0 on the interface Γi. On the fluid-structure interface Γi we impose the

(4.10) instead of (4.8), since it allows variation of the fields η̂ and η even over

the solid domain. With this notation we can write the following variational

formulation of the FSI problem by integrating the strong form over the sub-

domains Ωs or Ωf and multiplying by the appropriate test function∫
Ωf

(∇ · v)ψ dΩ = 0 ∀ψ ∈ L2(Ωf ) , (4.11)∫
Ωf

[(ρf (v · ∇)v) · φ− p∇ · φ+ µf∇v : ∇φ] dΩ +∫
Ωs

[λs(∇ · η)(∇ · φ) + µs∇η : ∇φ− f ] dΩ + (4.12)∫
Γ

[µs(∇η · ns) · φ+ λs(∇ · η)(ns · φ)]]dΓ+ (4.13)∫
Γ

[[pnf − µf (∇v · nf ) · φ] = 0 ∀φ ∈ H1
Γs
d
(Ω) ∩H1

Γf
d

(Ω) ,∫
Ωs(η̂)

∇η̂ : ∇η̂a dΩ = 0 ∀ η̂a ∈ H1
Γs

(Ωs) , (4.14)∫
Ωs(η̂)

(v − τ(η − η̂)) · βa dΩ = 0 ∀βa ∈ L2
Γs

(Ωs) . (4.15)

The surface integrals on Γ vanish due to the boundary and interface condi-

tions (4.6).
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4.1.1 Optimality system

In this work we study two different matching profile problems by using a

distributed force that moves and deforms the solid. We consider either a

fluid velocity or a solid displacement matching problem by introducing the

following objective functional

J (v,η, f) =
a

2

∫
Ωd

ω||v − vd||2dΩ +
b

2

∫
Ωd

ω||η − ηd||2dΩ +
β

2

∫
Ωc

||f ||2dΩ ,

(4.16)

where vd and ηd are the desired velocity and displacement on the controlled

domain region Ωd ⊂ Ωf or Ωd ⊂ Ωs, respectively. The weight function ω

of the coordinates x can be used to give more importance to some parts of

Ωd. When b = 0 the objective functional gives a velocity matching problem,

while for a = 0 a displacement matching problem is defined. The functional

is completed with a regularization term which is needed to obtain a control

function f in the space of square integrable functions L2(Ωc), with Ωc being

the solid region where the control can act. The regularization parameter

β plays a fundamental role for the numerical solution of the minimization

problem. If a too high value of β is chosen the regularization contribution

dominates over the objective one and the objective cannot be achieved well,

while a lack of regularization can lead to singular solutions or convergence

issues in the numerical solution of the problem.

The first step towards the optimality system consists of writing the full

Lagrangian of the problem, which is composed of the functional (4.16) and

state equations (4.11-4.15) multiplied by the appropriate Lagrangian multi-

pliers, the so-called adjoint variables. By doing so we transform a constrained

minimization problem into an unconstrained one.

L(p,v,η, η̂, pa,va, η̂a, ŝa, βa) = J (η, pc) +

∫
Ωf

(∇ · v) pa dΩ

+

∫
Ωf

[ρf (v · ∇)v +∇p−∇ · (µf∇v)] · va dΩ (4.17)

+

∫
Ωs

[−∇ · (µs∇η + λsI(∇ · η))− f ] · va dΩ +

∫
Ωs

∇2η̂ · η̂a dΩ

+

∫
Γi

ŝa ·
[
(η̂ − η) +

v

τ

]
dΓ +

∫
Ωs

βa · [v − τ(η − η̂)] dΩ .

In order to derive the optimality system we impose the first order necessary
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condition

δL = 0 . (4.18)

In the following we use notation δq for the variation of the generic function q

and (DL/Dq)δq for the Fréchet derivative of functional L in the direction δq.

We recall that the shape derivatives of a functional F on a moving domain

with velocity δv are given by

dF

dΩ(η̂)
δv =

∫
∂Ω(η̂)

yδv · n dΓ , (4.19)

dF

dΓ(η̂)
δv =

∫
Γ(η̂)

(∇n + χ) yδv · n dΓ , (4.20)

where ∇n is the normal derivative operator and χ the mean curvature of Γ,

see [54]. From the above definitions it is clear that the shape derivatives

terms vanish if the integrated function is zero on the integration domain (i.e.

the boundary).

The first order necessary condition (4.18) implies that the total variation

of the Lagrangian has to vanish. Since each variation is independent from the

others then each variation has to be zero. When taking the Fréchet derivatives

of the Lagrangian (4.17) with respect to the adjoint variables (pa,va, η̂a,βa)

we recover the weak form of the state system (4.1-4.3), together with the

appropriate boundary and interface conditions. When we focus on the varia-

tions of the state variables (v, p,η, η̂) we obtain the weak form of the adjoint

system. The equation of the variations δη reads

DL
Dη

δη = b

∫
Ωd

ω(η − ηd)δη dΩ +

∫
Ωs

[µs∇δη : ∇va + λs(∇ · δη)(∇ · va)] dΩ

− τ
∫

Ωs

δη · βa dΩ−
∫

Γi

ŝa · δη dΓ = 0 ∀δη ∈ H1
Γs
d
(Ωs) . (4.21)

By performing integration by parts on the term where the variation δη is

differentiated we obtain the following values of βa and ŝa

βa = −1

τ
∇ · [µs∇va + λsI(∇ · va)] +

bω

τ
(η − ηd) , (4.22)

ŝa = [µs∇va + λsI(∇ · va)] · n . (4.23)
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We now collect all the terms with δv obtaining

DL
Dv

δv =

∫
Ωf

(∇ · δv) pa dΩ +

∫
Ωs

δv · βa dΩ +
1

τ

∫
Γi

δv · ŝa dΓ+ (4.24)∫
Ωf

[
(ρf (δv · ∇)v) + (ρf (v · ∇)δv)−∇ · (µf∇δv)

]
· va dΩ+∫

Ωd

aω(v − vd)δv dΩ +

∫
Ωd

bω(η − ηd)δv dΩ+∫
∂Ωf

(∇ · v) pa δv · n dΓ +

∫
∂Ωd

ω
b(η − ηd)2 + a(v − vd)2

2
δv · n dΩ+∫

∂Ωf

va ·
[
ρf (v · ∇)v +∇p−∇ · (µf∇v)

]
δv · n dΓ + (4.25)∫

∂Ωs

va ·
[
−∇ · (µs∇η + λsI(∇ · η))− f

]
δv · n dΓ+∫

∂Ωs

(
∇2η̂ · η̂a

)
δv · n dΓ +

∫
Γi

(∇n + χ)
[
ŝa ·

[
(η̂ − η) +

v

τ

]]
δv · n dΓ+∫

∂Ωs

βa · [v − τ(η − η̂)] δv · n dΓ = 0 ∀δv ∈ H1

Γf
d∩Γs

d

(Ω) .

The surface terms integrated on ∂Ωs and ∂Ωf can be simplified since the

integrated functions are equal to zero on those surfaces. The terms integrated

on ∂Ωd vanish as well, since we can take an arbitrary weight function ω that

vanishes on ∂Ωd. Finally, the term referring to the interface shape derivative

vanishes due to the (4.10).

By collecting the remaining terms with δv we obtain∫
Ωf

(∇ · δv)padΩ +

∫
Ωs

δv · βadΩ +
1

τ

∫
Γi

δv · ŝadΓ + a

∫
Ωd

ω(v − vd)δvdΩ+∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ = 0

∀δv ∈ H1

Γf
d∩Γs

d

(Ω) . (4.26)

By using (4.22-4.23) the (4.26) becomes∫
Ωf

(∇ · δv) pa dΩ +
1

τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ+ (4.27)∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+

b

τ

∫
Ωd

ω(η − ηd)δv dΩ + a

∫
Ωd

ω(v − vd)δv dΩ = 0 ∀δv ∈ H1

Γf
d∩Γs

d

(Ω) .
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Collecting δη̂ we obtain

DL
Dη̂

δη̂ =

∫
Ωs

∇δη̂ : ∇η̂a dΩ + τ

∫
Ωs

δη̂ · βa dΩ+∫
Γi

ŝa · δη̂ dΓ = 0 ∀δη̂ ∈ H1
Γs
d
(Ωs) . (4.28)

With (4.22-4.23) the (4.28) reads∫
Ωs

∇η̂a : ∇δη̂ dΩ = −
∫

Ωs

[µs∇va : ∇δη̂ + λs(∇ · va)(∇ · δη̂)] dΩ+

b

∫
Ωd

ω(η − ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) . (4.29)

When we set to zero the Fréchet derivatives taken with respect to the pressure

we obtain

DL
Dp

δp =

∫
Ωf

(∇ · va)δp dΩ = 0 ∀δp ∈ L2(Ω) . (4.30)

Finally, when considering the Fréchet derivatives of the Lagrangian (4.17)

with respect to the control parameter f we obtain the control equation

DL
Df

δf =

∫
Ωc

(−βf + va)δf dΩ = 0 . (4.31)

The distributed control is proportional to the adjoint velocity by the regu-

larization parameter β, namely f = va/β. We now collect the contributions

obtained and write the following weak form of the adjoint system∫
Ωf

(∇ · va)δp dΩ = 0 ∀ δp ∈ L2(Ωf ) , (4.32)∫
Ωf

[(
ρf (δv · ∇)v

)
· va +

(
ρf (v · ∇)δv

)
· va + µf∇δv : ∇va

]
dΩ + (4.33)

+
1

τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ +

∫
Ωf

(∇ · δv)pa dΩ

+
b

τ

∫
Ωd

ω(η − ηd)δv dΩ + a

∫
Ωd

ω(v − vd)δv dΩ = 0 ∀δv ∈ H1
Γfd∪Γsd

(Ω) ,∫
Ωs

∇η̂a : ∇ δη̂ dΩ +

∫
Ωs

µs∇va : ∇δη̂ dΩ = 0 ∀δη̂ ∈ H1
Γsd

(Ωs) . (4.34)

The equation for the adjoint displacement ηa has been neglected since we do

not need the adjoint displacement to determine the force f .



82 Chapter 4. Distributed control

By performing integration by parts on the system (4.32-4.34) it is possible

to determine the strong form of the adjoint system together with the bound-

ary conditions for the adjoint variables. After performing the integration by

parts, we recover the adjoint state (vfa,v
s
a, pa) ∈ H1

∂Ωf−Γi
(Ωf ) ∩ H2(Ωf ) ×

H1
∂Ωs−Γi

(Ωs) ∩H2(Ωs)× L2
0(Ωf ) ∩H1(Ωf ), by solving

∇ · vfa = 0 , (4.35)

− ρl(∇v)Tvfa + ρl[(v ·∇)vfa] + ∇pa −∇ · (µl∇vfa) =

aω(v − vd) + b
ω

τ
(η − ηd) , (4.36)

∇ · σs(vsa) = 0 . (4.37)

with boundary conditions defined as

vsa = vfa on Γi ,

σs(v
s
a) · n = σf (v

f
a) · n on Γi , (4.38)

µf (∇va) · n = −(v · n)va , pa = 0 on Γfn ,

va = 0 on Γfd ∪ Γsd .

The optimality system is then composed by the state (4.11-4.15) and adjoint

(4.32-4.34) systems coupled with the control equation (4.31).

4.2 Numerical implementation and tests

Due to the strong non-linearity of the problem a one-shot solution of the opti-

mal system can not be performed. In this work we use a segregated approach

for the solution of the optimality system where we solve the state system,

the adjoint system and the control equation separately and iteratively, see

for example [16]. By doing so we can also use the same solver to compute

both the adjoint and state systems with only minimal modifications. The

iterative algorithm used to minimize the objective functional is the simple

Steepest Descent method described in Algorithm 4.

The algorithm starts by solving the state system (4.11-4.15) with no con-

trol in order to obtain the solution of the reference case (v0, p0,η0). Then

the gradient direction is obtained from the solution of the adjoint equations

(4.31), where va is known once that the adjoint system (4.32-4.34) has been

solved. The core of the algorithm consists of the backtracking line search

process, where the state system is solved iteratively, reducing the value of
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Algorithm 4 Description of the Steepest Descent algorithm.

1. Set a state (v0, p0,η0) satisfying (4.11-4.15) . Setup of the state - Reference

case

2. Compute the functional J 0 in (4.16)

3. Set r0 = 1

for i = 1→ imax do

4. Solve the system (4.32)-(4.34) to obtain the adjoint state (via, p
i
a)

5. Set the control update δf i = (f i−1 − via/β)
6. Set ri = r0

while J i(f i−1 + riδf i) > J i−1(f i−1) do . Line search

7. Set ri = ρ ri

8. Solve (4.11-4.15) for the state (vi, f i,ηi) with f i = f i−1 + riδf i

if ri < toll then

Line search not successful . End of the algorithm

end if

end while

if ||J i(f i−1 + riδf i)− J i−1(f i−1)||/J i−1(f i−1) < τ then

9. Convergence reached . End of the algorithm

end if

end for

the control parameters by a contraction factor ρ until a functional reduction

is obtained. We set ρ = 0.7. The step length r determines how far from the

current state solution we are moving along the gradient direction, which is

given by δf . This algorithm comes to an end either when two consecutively

computed functionals are almost equal and no further improvements can be

achieved or when r becomes lower than a tolerance value toll = 10−7.

This algorithm requires several solutions of the state and adjoint systems

in order to find the optimal control, however it does not need a great amount

of memory which is similar to a standard, direct FSI simulation. We imple-

mented this algorithm in our in-house finite element code FEMuS, available

at [1], which works on multiprocessor architectures with openMPI libraries,

uses a multigrid solver with mesh-moving capability and PETSc libraries for

the solution of the linear systems. We use standard quadratic-linear elements

for all the variables except the pressure that is assumed linear to satisfy the

BBL inf-sup condition. The displacements are approximated with standard

quadratic elements.
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4.2.1 Test 1. Velocity matching

A B

D C

E F

H I

0.5

0.
2

0.3 0.17

0.
12

Ωd

Ωf

Ωs

Figure 4.1: Case study. Domain overview with the solid region (Ωs), the fluid

region (Ωf ) and the controlled region (Ωd).

In this section we present the results obtained by applying Algorithm 4 to

a two-dimensional test case. In Figure 4.1 we report the domain considered

with the geometrical properties. The origin of the reference system is the

bottom left corner (point A). The solid region Ωs is colored with darker gray

while the fluid region Ωf with lighter gray. The fluid controlled region Ωd =

[0.465, 0.5]m × [0.16, 0.2]m, which is located near the channel exit, is shown

in red. We impose pressure boundary conditions with vanishing tangential

velocity on the left and right surfaces, pAD = 10000Pa and pBC = 9750Pa,

respectively. On the lower boundary AB we prescribe a no-slip condition,

while the upper surface CD is a symmetry axis and we set a homogeneous

Neumann boundary condition for all the state and adjoint variables apart

from uy and uay that vanish. All the boundaries are fixed with the exception

of the interface Γi, that may move with fixed endpoints H and I. The physical

properties are ρs = ρl = 1000kg/m3 with µl/ρl = 0.07Pam3s/kg and µs =

76250Pa so that the flow is not turbulent and the solid can bend easily.

The Young modulus Es and Poisson coefficient ξ are equal to 183000Pa and

ξ = 0.2, respectively.

According to Algorithm 4, we start solving the state system (4.11-4.15)

assuming f = 0 in order to obtain the reference case, which is reported in

Figure 4.2. The velocity profile is reported on the top of this Figure, while on

the bottom the pressure field with iso-lines is shown. Since the solid obstacle
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Figure 4.2: Reference geometry with velocity (m/s) profile in the fluid region

(on the top). Pressure (Pa) profile and iso-lines in the fluid region (on the

bottom).

reduces the fluid domain cross section the fluid has to accelerate to satisfy

the mass conservation equation. Furthermore, the solid object is responsible

for the majority of the pressure losses as it can be seen on the bottom of

Figure 4.2.

Our optimal control problem consists in finding the optimal solid defor-

mation so that the axial component of the velocity (vx) matches a desired

profile over the controlled domain Ωd. The solid is deformed by a distributed

force f which is the control parameter acting in the whole solid domain, see
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Figure 4.3: Velocity (m/s) profile in the fluid region and force (N) vectors

(on the top), β = 10−9. Pressure (Pa) field and iso-lines in the fluid region

(on the bottom), β = 10−9.

(4.3). In the reference case with no control we obtain a mean value of vx
over Ωd equal to v̄x = 0.037 m/s. We then choose a constant target value

vxd = 0.065 m/s in the whole controlled domain, thus requiring a higher fluid

velocity near the channel outlet. The objective functional becomes

J (vx, f) =
1

2

∫
Ωd

ω(vx − 0.065)2dΩ +
1

2
β

∫
Ωs

||f ||2dΩ , (4.39)
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Figure 4.4: On the left axial velocity ux, profile on a line at x = 0.49m. On

the right ux on a line at y = 0.18m. Result (A) obtained with no control,

(B) with β = 10−7 and (C) with β = 10−9.

0.000 22.938 45.876 68.814 91.752

f [N]

Figure 4.5: Force vectors in black and magnitude in colors on the solid

domain for β = 10−5, 10−7, 10−9 from left to right.

in which we set

ω =

{
1 x ∈ Ωd,

0 otherwise.

Once the reference case is set up it is possible to solve the optimality system

with the technique described in Algorithm 4.

We now report the results obtained for different values of the regulariza-

tion parameter β = 10−5, 10−7, 10−9. On the top of Figure 4.3 we report the
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Figure 4.6: Adjoint velocity profile and vectors in the fluid domain, β = 10−9.

velocity profile and the force acting in the solid domain, and on the bottom

of the same Figure the pressure profile is shown. The force bends the solid

to the right so that the channel cross section becomes larger than that of

the reference case. Since the total pressure drop between the channel inlet

and outlet is fixed by the boundary conditions (250Pa), if the pressure losses

induced by the obstacle decrease then the fluid velocity has to increase. In

particular it is worth noticing that, due to the regularization term in (4.39),

it is more effective to apply an intense force near the tip of the solid rather

than a weaker one largely distributed. In Figure 4.4 the axial component of

the velocity field, vx, is shown on a vertical line at x = 0.49m on the left

and on a horizontal one at y = 0.18m on the right, for different values of

the regularization β. Both lines cross the controlled region Ωd. By reducing

the value of β the control can act more strongly and the velocity is higher

than that of the reference case. In Figure 4.5 the control force is reported

for different amount of regularization. The force acting on the solid is very

small in the case β = 10−5, while becomes more relevant when reducing β,

leading to a higher solid deformation. The adjoint velocity profile is reported

in Figure 4.6 with arrows and colors related to the va magnitude. It can

be easily verified that the source term of the adjoint velocity, which is the

difference between the actual and the desired velocity, is located in the top

right corner Ωd.

Finally, in Table 4.1 we report the functionals and the average axial ve-
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Table 4.1: Objective functionals J and average x-velocity over the controlled

region Ωd computed with no control (β =∞) and different β values.

β ∞ 10−5 10−7 10−9

J (v) · 108 113.69 111.68 32.75 1.10

v̄x [m/s] 0.0367 0.0375 0.0584 0.0651

locity over the controlled region as computed in the reference and in the

controlled case with different β. The functional is reduced in every case and

in particular with β = 10−9, where the axial velocity is very close to the

desired value 0.065m/s.

4.2.2 Test 2. Displacement matching
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5
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0.015

0.020
ηx[m]

Figure 4.7: Geometry and controlled region defined by dotted square on

the right Ωd (left). Reference case with velocity profiles and streamlines

in the liquid (middle). Solid displacement field ηx for the same reference

configuration (right).

With this test case we study now a solid displacement matching profile,

where the control is again a distributed force acting on the structure. The

geometry considered is shown on the left of Figure 4.7. This test case has been

studied with the other optimal control approaches presented in Chapters 3

and 5 as well. We recall that we used the same boundary conditions, physical
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Figure 4.8: Controlled case with velocity profiles v and streamlines in the

liquid and displacement η in the solid (on the left). Force vectors f in black

and magnitude in colors (on the right).

Table 4.2: Objective functionals J and average x-displacement over the con-

trolled region Ωd computed with no control (β =∞) and different β values.

β ∞ 10−11 10−12 10−13

J (η, f) · 108 1292.4 25.854 5.8864 2.3875

η̄x [m] 0.0180 0.0494 0.0498 0.0499

properties and objective functional, while changing the control parameter in

order to compare the different controls in terms of functional reduction.

Now a fluid flows vertically from the bottom to the top in a plane channel.

The fluid region Ωf is on the left, the solid domain Ωs, in gray, is on the right

and the dotted region is the controlled domain Ωd ⊂ Ωs The left boundary AF

is a symmetry axis and on the bottom boundary AB pressure conditions with

pAB = 11500Pa and vanishing tangential velocity are set. All the boundaries

are fixed except the right segment CD, which is free to move with fixed

endpoints C and D. The physical properties are the following

ρs = ρf = 103kg/m3, νf = 0.07m2/s, νs = 0.2, E = 106Pa , (4.40)

so the solid can easily deform. The optimal control algorithm aims to find the

optimal force on the whole solid domain Ωs such that the x-component of the

displacement over the region Ωd matches the uniform target value ηd = 0.05m.
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The displacement in the remaining part solid domain is not controlled and

thus can have any value, solution of the state system. Therefore, in the

objective functional (4.16) we set b = 1, a = 0, ηd = 0.05m obtaining

J (η, f) =
1

2

∫
Ωd

ω(ηx − 0.05)2dΩ +
1

2
β

∫
Ωc

||f ||2dΩ . (4.41)

In Figure 4.7 we report the fluid velocity profile and the solid displacement in

the reference configuration. The results obtained in the controlled case with

β = 10−13 are reported in Figure 4.8 and the functionals J (η, f), together

with the mean horizontal displacement, in Table 4.2. Finally, we report on

the right of Figure 4.8 the profile of the force acting on the solid. The force

has the highest intensity near the boundaries of the controlled domain Ωd

and pushes mainly to the right. Inside of Ωd the force pushes, with lower

intensity, to the left in order to balance the stress induced on the controlled

region by the fluid, obtaining a flat profile with uniform displacement.

We now compare these results with those obtained applying the pressure

boundary control and presented in Chapter 3. We first notice that with

the distributed control the fluid velocity in the optimized configuration is

much smaller. In fact, with the boundary control we have a large pressure

gradient between the fluid inlet and outlet and as a consequence the velocity

increases. Now, on the contrary, the boundary pressure values are fixed and

are the same as in the reference configuration with no control. Furthermore,

the solid deformation is now more uniform with an average value closer to the

target one. The functional values reported in Table 4.2 are lower than those

obtained with the boundary control, meaning that the distributed control

has reached an optimized solution closer to the desired one. One can see that

the greatest improvements are always obtained with the lowest β value.





CHAPTER 5

An inverse Young modulus

estimation for fluid structure

interaction systems

In this Chapter we study an optimal control problem based on adjoint vari-

ables and Lagrangian formalism for the Young modulus estimation of a fluid-

structure interaction problem. A large part of the papers that can be found

in literature refers to FSI direct problems, where the physical properties of

the materials are known a priori and the solution of the corresponding equa-

tions gives the solid deformed shape and the fluid velocity-pressure fields.

However, it is also interesting to study the inverse problem, where the goal

is to find the optimal value of some physical properties, such that the FSI

problem solution is close to a desired one. The latter is also called a param-

eter estimation problem. The objective of our optimal control problem is

to obtain a desired solid shape by controlling the solid material properties.

This problem has many industrially relevant applications where changes in

the mechanical properties as a function of temperature are important. As a

consequence of temperature changes, if the Young modulus is known then the

solid temperature distribution, which corresponds to the desired shape, can

be found in a straightforward manner. We take into account constraints over
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the control to avoid negative or very high values of the Young modulus and

obtain a variational inequality in the optimality system that can be solved

using the Lagrangian multiplier method. In literature a few papers dealing

with FSI optimal control and parameter estimation can be found [48, 47]. In

[48] a steady Lamé parameter estimation problem is studied, while in [47] the

authors solve an unsteady interface displacement field minimization problem

for cardiovascular applications. In the rest of this Chapter we first introduce

the mathematical model used for the direct FSI problem. Then, we derive

the optimality system from the first order necessary conditions and present

a projected gradient-based method for the numerical solution. Finally, we

report some numerical tests with different control constraints in order to

validate the proposed approach.

5.1 Mathematical model

In this section we introduce the mathematical model that describes our FSI

problem. We consider the following steady strong form of the FSI system

∇ · v = 0 on Ωf , (5.1)

ρf (v · ∇)v −∇ · σf = 0 on Ωf , (5.2)

∇ · σs(η) = 0 on Ωs , (5.3)

where the fluid velocity and density are denoted with v and ρf , respectively.

The solid Cauchy stress tensor σs of a Saint Venant-Kirchhoff material can

be written as

σs(η) = ES(η) = λs(∇ · η)I + µs(∇η +∇ηT ) , (5.4)

where η is the unknown displacement field and E is the solid Young modulus.

By substituting the following definitions of the Lamé parameters µs and λs

µs =
E

2(1 + ν)
λs =

Eν

(1 + ν)(1− 2ν)
, (5.5)

into the (5.4) we obtain

S(η) =
1

2(1 + ν)
(∇η +∇ηT ) +

ν

(1 + ν)(1− 2ν)
(∇ · η)I . (5.6)

The Young modulus E and Poisson ratio ν determine the solid physical prop-

erties. The stress tensor σf for a Newtonian fluid with pressure p reads

σf = σf (p,v) = −pI + (∇v +∇vT ) . (5.7)
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The FSI strong formulation is completed with the appropriate boundary and

interface conditions

v = v0 on Γfd , η = η0 on Γsd ,

σf · nf = 0 on Γfn, σs · ns = 0 on Γsn , (5.8)

σf · nf + σs · ns = 0 on Γi, v = 0 on Γi ,

where we impose Dirichlet boundary conditions for the fluid velocity and solid

displacement on Γfd and Γsd, respectively. Neumann homogeneous boundary

conditions are imposed on the surfaces Γfn and Γsn. On the interface Γi we

impose vanishing fluid velocity and the normal components of the stress ten-

sors σ have to be continuous. We denote with ns and nf the normal unit

vectors to the solid and fluid boundaries with ns = −nf on Γi. Since we are

solving the FSI in a monolithic fashion the interface coupling conditions in

(5.8) are automatically satisfied. We now introduce the following functional

spaces to keep the notation clear

V = {φ ∈H1(Ω) : φΓf
d∪Γs

d
= 0} , Qs,f = L2(Ωs,f ) ,

W s,f = {φ ∈H1(Ω) : φΓs,f = 0} .

In order to recover the variational formulation of the state system we follow

the standard approach obtaining∫
Ωf

(∇ · v)ψ dΩ = 0 ∀ψ ∈ Qf , (5.9)∫
Ωf

[(ρf (v · ∇)v) · φ− p∇ · φ+ µf∇v : ∇φ] dΩ +∫
Ωs

E

[
ν

(1 + ν)(1− 2ν)
(∇ · η)(∇ · φ) +

1

2(1 + ν)
∇η : ∇φ

]
dΩ + (5.10)∫

Γ

E

[
1

2(1 + ν)
(∇η · ns) · φ+

ν

(1 + ν)(1− 2ν)
(∇ · η)ns · φ

]
dΓ+∫

Γ

[[pnf − µf (∇v · nf ) · φ] dΓ = 0 ∀φ ∈ V ,

where the surface integrals vanish due to the boundary and interface condi-

tions (5.8).

In order to obtain a symmetric formulation of the monolithic optimality

system we introduce in (5.9-5.10) a mesh displacement field η̂, solution of
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the following boundary value problem

∇2η̂ = 0 x ∈ Ωs , (5.11)

η̂ = η on Γi , (5.12)

η̂ = 0 on (∂Ωs − Γi) . (5.13)

For the same reasons we also extend the velocity field to the solid domain

v =

{
τ (η − η̂) on Ωs(η)

v solution of (5.1-5.2) on Ωf (η)
, (5.14)

where τ is an arbitrary positive constant. We remark that, in a station-

ary problem, the solid physical velocity is zero, while this fictitious velocity

can be seen as the driving element of the solid motion during the nonlinear

optimization process. With this extension we can easily compute the shape

derivatives of a functional on a moving domain. The FSI system can therefore

be rewritten as∫
Ωf (η̂)

(∇ · v)ψ dΩ = 0 ∀ψ ∈ Qf , (5.15)∫
Ωs(η̂)

E

[
1

2(1 + ν)
∇η : ∇φ+

ν

(1 + ν)(1− 2ν)
(∇ · η)(∇ · φ)

]
dΩ+∫

Ωf (η̂)

[(ρf (v · ∇)v) · φ− p∇ · φ+ µf∇v : ∇φ] dΩ = 0 ∀φ ∈ V , (5.16)∫
Ωs(η̂)

∇η̂ : ∇η̂a dΩ = 0 ∀ η̂a ∈W s , (5.17)∫
Ωs(η̂)

(v − τ(η − η̂)) · βa dΩ = 0 ∀βa ∈ Qs . (5.18)

5.1.1 Optimality system

In this parameter estimation problem we want to minimize the following

quadratic functional based on the difference between the solid displacement

η and the target one ηd

J (η(E)) =
1

2

∫
Ωs

ω||η − ηd||2 dΩ +
1

2
β

∫
Ωs

|E|2 dΩ , (5.19)

where ω is a weight function used to determine where, in the solid domain, the

displacement mismatch has to be minimized. The Tichonov regularization
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term is introduced to keep the control E in the space of square integrable

functions L2(Ωs). If one is interested in having a more regular control then

another term can be added to the cost functional obtaining

J (η(E)) =
1

2

∫
Ωs

ω(η−ηd)2 dΩ+
1

2
β

∫
Ωs

|E|2 dΩ+
1

2
α

∫
Ωs

|∇E|2 dΩ , (5.20)

thus constraining the Young modulus to E ∈ H1(Ωs). Since in practical

applications technical limits can occur, we take into account constraints over

the Young modulus in order to avoid negative or very large values, see [39, 40].

For this purpose we define the space of admissible controls Ead as

Ead = {E ∈ L2(Ωs) : χ 6 E 6 ω with χ, ω ∈ R+} , (5.21)

where χ and ω are the lower and upper limits for the control, respectively.

The set of all the admissible solutions Aad is defined as follows

Definition. (η, E) is said to be an admissible solution if η ∈ H1(Ωs), the

functional J (η(E)) is bounded, and there exists a E ∈ Ead such that (η, E)

satisfies the problem in (5.9-5.10).

With this notation, the optimal control problem can then be formulated as

Problem. Given ηd, find (η, E) ∈ Aad such that J (η(E)) 6 J (w(h))

∀(w, h) ∈ Aad.

If (η̄, Ē) is an optimal solution of the control problem and the Gateaux

derivative of J (η̄(Ē)) exists, then the following variational inequality holds

true

J ′(η̄(Ē)) · (h− Ē) > 0 ∀h ∈ Ead . (5.22)

In fact from the definition of optimal solution (η̄, Ē), we have

J (η̄(Ē))− J (η̃(Ẽ)) > 0 ∀Ẽ ∈ Ead . (5.23)

As Ead is convex, then we can set Ẽ = ht+ (1− t)Ē for all t ∈ [0, 1] and for

all h ∈ Ead. Hence

J (η̄(Ē − t(Ē − h)))− J (η̄(Ē)) > 0 ∀t ∈ [0, 1] , (5.24)

which, by using the definition of the Gateaux derivative, implies (5.22) when

t tends to 0.
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We now present a strategy that can be adopted in order to deal with

this variational inequality. We introduce an auxiliary variable s to transform

the inequality constraint into an equality, which can then be treated with

standard techniques for equality constrained minimization problems. We

replace

χ 6 E 6 ω on Ωs , (5.25)

by

(E − E0)2 − E2
m + s2 = 0 on Ωs , (5.26)

with s ∈ L2(Ωs) and E0 = (χ + ω)/2, Em = (ω − χ)/2. It can be easily

verified that if (5.25) is satisfied, then so is (5.26). Furthermore, if (η̄, Ē)

is an optimal solution, then it can be shown that a subspace of the solution

space exists, A′ad ⊂ Aad, such that

1. on A′ad we have χ < E < ω and

J ′(η̄(Ē)) · Ẽ = 0 ∀Ẽ ∈ L2(Ωs) , (5.27)

with s2 = E2
m − (E − E0)2;

2. on Aad −A′ad we have s = 0 which implies E = χ or E = ω.

In case 1 the constraints are said to be inactive since they do not limit the

control. As a consequence, the optimal solution obtained corresponds to a

local minimum of the objective functional. In case 2 one of the constraints

is active and limits the control, therefore the optimal solution may not be a

functional minimum. No more improvements can be made since the control

coincides with one of the bounds, however we have found the optimal solution

in the admissible set Ead. If we use this equation in a numerical algorithm the

variable s introduces many local minima, leading to a poor computational

behavior, therefore it will not be used in our algorithm. In this work we deal

instead with the constraints on the control by using a projected gradient

method that will be presented in the next section.

In order to recover the optimality system we use the Lagrangian multi-

plier method, which is used to find stationary points, such as local minima,

of constrained problems. Here the constraints are represented by the state

equations of the FSI problem. The following augmented Lagrangian func-

tional L is the sum of the cost functional (5.19) and of the state equations
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multiplied by the appropriate Lagrangian multiplier, which are the so-called

adjoint variables (va, pa,ηa)

L(p,v, E,η, η̂, pa,va, η̂a, ŝa, βa) = J (η(E)) +

∫
Ωf

(∇ · v) pa dΩ (5.28)

+

∫
Ωf

[ρf (v · ∇)v +∇p−∇ · (µf∇v)] · va dΩ +

∫
Ωs

∇2η̂ · η̂a dΩ

+

∫
Ωs

[
−∇ · E

(
1

2(1 + ν)
∇η +

ν

(1 + ν)(1− 2ν)
I(∇ · η)

)]
· va dΩ

+

∫
Γi

ŝa ·
[
(η̂ − η) +

v

τ

]
dΓ +

∫
Ωs

βa · [v − τ(η − η̂)] dΩ .

In order to derive the optimality system we impose the following first order

necessary condition

δL = 0 . (5.29)

In the following we denote with δq the variation of a generic function q and

with (DL/Dq)δq the Fréchet derivative of a functional L in the direction δq.

Moreover, the shape derivatives of a functional F on a domain moving with

velocity δv can be computed as

dF

dΩ(η̂)
δv =

∫
∂Ω(η̂)

yδv · n dΓ , (5.30)

dF

dΓ(η̂)
δv =

∫
Γ(η̂)

(∇n + χ) yδv · n dΓ , (5.31)

where ∇n is the normal derivative operator and χ the mean curvature of

Γ. We remark that the above shape derivatives vanish when the integrated

function vanishes on the boundary.

The stationary points of the Lagrangian functional can be found by setting

to zero the Fréchet derivatives taken with respect to all the problem variables,

since each variation is independent from the others. When the derivatives are

taken with respect to the adjoint variables (pa,va, η̂a,βa) the weak form of

the state system (5.1-5.3) is recovered together with the boundary conditions.

By taking the derivatives with respect to the state variables (v, p,η, η̂), the

weak form of the adjoint or dual system is obtained. We first collect all the
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terms involving the variations δv

DL
Dv

δv =

∫
Ωf

(∇ · δv) pa dΩ +

∫
Ωs

δv · βa dΩ +
1

τ

∫
Γi

δv · ŝa dΓ+∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+∫

∂Ωf

(∇ · v) pa δv · n dΓ +

∫
∂Ωd

ω
(η − ηd)2

2
δv · n dΩ∫

∂Ωf

va ·
[
ρf (v · ∇)v +∇p−∇ · (µf∇v)

]
δv · n dΓ + (5.32)∫

∂Ωs

va ·
[
−∇ · E

(
1

2(1 + ν)
∇η +

ν

(1 + ν)(1− 2ν)
I(∇ · η)

)]
δv · n dΓ+∫

∂Ωs

(
∇2η̂ · η̂a

)
δv · n dΓ +

∫
Γi

(∇n + χ)
[
ŝa ·

[
(η̂ − η) +

v

τ

]]
δv · n dΓ+∫

∂Ωs

βa · [v − τ(η − η̂)] δv · n dΓ = 0 ∀δv ∈ V .

The surface integrals over ∂Ωs and ∂Ωf vanish since the integrated functions

are equal to zero, due to the state system (5.15-5.16). The term integrated on

∂Ωd vanishes as well, since we can take an arbitrary weight function ω that

vanishes on ∂Ωd. Finally, the term referring to the interface shape derivative

can be simplified due to the (5.14). The resulting equation for δv is therefore

the following∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+∫

Ωf

(∇ · δv)pa dΩ +

∫
Ωs

δv · βa dΩ +
1

τ

∫
Γi

δv · ŝa dΓ = 0 ∀δv ∈ V .

(5.33)

Collecting now the terms with δη we get

DL
Dη

δη =

∫
Ωd

ω(η − ηd)δη dΩ +

∫
Ωs

[µs∇δη : ∇va + λs(∇ · δη)(∇ · va)] dΩ

− τ
∫

Ωs

δη · βa dΩ−
∫

Γi

ŝa · δη dΓ = 0 ∀δη ∈ H1
Γs
d
(Ωs) . (5.34)

The following expressions of βa and ŝa can be obtained by integrating by



5.1. Mathematical model 101

parts the terms where the variation δη is differentiated

βa = −1

τ
∇ · [µs∇va + λsI(∇ · va)] +

ω

τ
(η − ηd) , (5.35)

ŝa = [µs∇va + λsI(∇ · va)] · n . (5.36)

By substituting (5.35-5.36) into the (5.33) we obtain∫
Ωf

(∇ · δv) pa dΩ +
1

τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ+∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+

1

τ

∫
Ωd

ω(η − ηd)δv dΩ = 0 ∀δv ∈ V . (5.37)

Collecting δη̂ terms we obtain∫
Ωs

∇δη̂ : ∇η̂a dΩ + τ

∫
Ωs

δη̂ · βa dΩ +

∫
Γi

ŝa · δη̂ dΓ = 0 ∀δη̂ ∈ H1
Γs
d
(Ωs) ,

(5.38)

that, by using (5.35-5.36), can be rewritten as∫
Ωs

∇η̂a : ∇δη̂ dΩ = −
∫

Ωs

[µs∇va : ∇δη̂ + λs(∇ · va)(∇ · δη̂)] dΩ+∫
Ωd

ω(η − ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) . (5.39)

By setting to zero the Fréchet derivatives taken along the direction δp we

obtain
DL
Dp

δp =

∫
Ωf

(∇ · va)δp dΩ = 0 ∀δp ∈ L2(Ω) . (5.40)

Finally, when taking the derivatives with respect to the control parameter E

we recover the variational equality

DL
DE

δE =

∫
Ωs

(S(η) : ∇va)δE dΩ +

∫
Ωs

βEδE + α∇E · ∇δE dΩ = 0

∀δE ∈ H1(Ωs) , (5.41)

that in the case α = 0 reduces to the following expression

E =
S(η) : ∇va

β
. (5.42)
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To summarize, the adjoint system in weak form can be written as∫
Ωf

(∇ · va)δp dΩ = 0 ∀δp ∈ L2(Ω) , (5.43)∫
Ωf

(∇ · δv) pa dΩ +
1

τ

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ+∫
Ωf

[
(ρf (δv · ∇)v) · va + (ρf (v · ∇)δv) · va −∇ · (µf∇δv) · va

]
dΩ+

1

τ

∫
Ωd

ω(η − ηd)δv dΩ = 0 ∀δv ∈ V , (5.44)∫
Ωs

∇η̂a : ∇δη̂ dΩ = −
∫

Ωs

[µs∇va : ∇δη̂ + λs(∇ · va)(∇ · δη̂)] dΩ+∫
Ωd

ω(η − ηd)δη̂ dΩ ∀δη̂ ∈ H1
Γs(Ωs) . (5.45)

We remark that the equation for the adjoint displacement ηa has been ne-

glected since it is not necessary to determine the control E.

The strong form of the adjoint system can be recovered by integrating by

parts the terms where the variations δ are differentiated. After performing the

integration by parts, we recover the adjoint state (vfa,v
s
a, pa) ∈ H1

∂Ωf−Γi
(Ωf )∩

H2(Ωf )×H1
∂Ωs−Γi

(Ωs) ∩H2(Ωs)× L2
0(Ωf ) ∩H1(Ωf ), by solving

∇ · vfa = 0 , (5.46)

− ρf (∇v)Tvfa + ρf [(v · ∇)vfa] +∇pa −∇ · (µf∇vfa) =
ω

τ
(η − ηd) , (5.47)

∇ · σs(vsa) = 0 . (5.48)

with boundary conditions defined as

vsa = vfa on Γi ,

σs(v
s
a) · n = σf (v

f
a) · n on Γi , (5.49)

µf (∇va) · n = −(v · n)va , pa = 0 on Γfn ,

va = 0 on Γfd ∪ Γsd .

We remark that since we use a monolithic approach with a finite element

approximation for both the state (5.15-5.16) and the adjoint system (5.43-

5.44) the equilibrium conditions on the interface are automatically satisfied.



5.2. Numerical implementation and tests 103

Algorithm 5 Description of the Projected Gradient Descent algorithm.

1. Set a state (v0, p0,η0) satisfying (5.15-5.16) . State setup - Reference case

2. Compute the functional J 0 in (5.20)

3. Set r0 = 1

for i = 1→ imax do

4. Solve the system (5.43-5.44) to obtain the adjoint state (via, p
i
a)

5. Compute the control update δEi by solving (5.41)

6. Set ri = r0

7. Set Ei = PL
(
Ei−1 + δEi

)
while J i(Ei) > J i−1(Ei−1) do . Line search

7. Set ri = ρ ri

8. Solve (5.15-5.16) for the state (vi, pi,ηi) with Ei = PL
(
Ei−1 + riδEi

)
if ri < toll then

Line search not successful . End of the algorithm

end if

end while

end for

5.2 Numerical implementation and tests

In this section we first describe our approach to solve the optimality system,

then the finite element discretization used is presented and finally some nu-

merical tests are reported. Due to its complexity the optimality system can

not be solved in practice with a coupled one-shot approach. A segregated

gradient based method is, instead, more suitable since the state and adjoint

systems and the optimality condition are solved sequentially until a given

criteria is satisfied, see [44].

In order to satisfy the inequality constraints we project back to the set of

admissible controls Ead, see for more details [30]. To clarify let us suppose

that the inequality constraint on the control E is satisfied by the current

iterate Eold. Next, assume that the new iterate for the control given by

Enew = Eold + δE , (5.50)

where δE is a step size, does not satisfy the constraint. By projecting back

to Ead we find a new E that satisfies the constraint and that is nearest Enew
and use that point instead as the new iterate.

In Algorithm 5 the outline of the projected gradient method is reported.

In the setup phase the state system is solved obtaining the reference state
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(v0, p0,η0) and the reference functional J 0. After the setup, by solving the

adjoint system (5.43-5.44) we recover the adjoint velocity va that is exploited

in (5.41) in order to obtain the gradient direction δE. Then a line search

with backtracking strategy and contraction factor ρ = 0.7 is performed un-

til a decrease of the objective functional is attained. The operator PL used

in the line search is the projection operator that projects back the control

E to the set of admissible controls Ead. This algorithm ends either when

two consecutively computed functionals are almost equal and no further im-

provements can be achieved or when the step length r becomes lower than a

tolerance value toll = 10−7. We implemented this algorithm in the in-house

finite element code FEMuS, implemented with openMPI libraries, that uses

a multigrid solver with mesh-moving capability and PETSc libraries for the

linear systems. This code and its different solvers are available at [1].

We now introduce the finite element discretization used. Let Ωh be an

open bounded domain, Xh ⊂ H1(Ωh) and Sh ⊂ L2(Ωh) be two families of

finite dimensional sub-spaces parameterized by h that tends to zero. We

denote with Sh0 the family of finite dimensional sub-spaces containing piece-

wise constant functions. In order to satisfy the BBL inf-sup condition (see

[27]) we consider the velocity field uh ∈ Xh and the pressure ph ∈ Sh and use

standard Taylor-Hood elements. We consider quadratic displacements fields

(η, η̂) ∈ Xh
2 . The Young modulus is discretized as a piece-wise constant

function Eh ∈ Sh0 when α = 0, while a point-wise discretization Eh ∈ Xh
2 is

adopted when α > 0. The discretization of the adjoint variables follows that

of the corresponding state variable. The discretized form of the optimality

system then, for the state variables (vh, ph,ηh, η̂h), reads

∫
Ωf (η̂)

(∇ · vh)ψh dΩ = 0 , (5.51)∫
Ωf (η̂)

[(ρf (vh · ∇)vh) · φh − ph∇ · φh + µf∇vh : ∇φh] dΩ + (5.52)∫
Ωs(η̂)

Eh
2(1 + ν)

∇ηh : ∇φh +
Ehν

(1 + ν)(1− 2ν)
(∇ · ηh)(∇ · φh) dΩ = 0 ,∫

Ωs(η̂)

∇η̂h : ∇η̂ha dΩ = 0 , (5.53)∫
Ωs(η̂)

(vh − τ(ηh − η̂h)) · βha dΩ = 0 . (5.54)
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For the adjoint variables (vha, pah) we have to solve∫
Ωf

(∇ · vha)ψh dΩ = 0 , (5.55)∫
Ωf

pha∇ · φh dΩ +
1

τ

∫
Ωs

[µs∇vha : ∇φh + λs(∇ · vha)(∇ · φh)] dΩ+∫
Ωf

[
(ρf (φh · ∇)vh) · vha + (ρf (v · ∇)φh) · vha −∇ · (µf∇φh) · vha

]
dΩ+

1

τ

∫
Ωd

ω(ηh − ηd)φh dΩ = 0 , (5.56)∫
Ωs

∇η̂ha : ∇φh dΩ = −
∫

Ωs

[µs∇vha : ∇φh + λs(∇ · vha)(∇ · φh)] dΩ+∫
Ωd

ω(ηh − ηd)δη̂h dΩ , (5.57)

and for the control Eh we can write the following equation∫
Ωs

[(S(ηh) : ∇vha + βEh)ϕh + α∇Eh · ∇ϕh] dΩ = 0 , (5.58)

for all test functions (φh, η̂ha) ∈ Xh
2 , (ψh,βha) ∈ Sh, ϕh ∈ Sh0 or ϕh ∈ Xh

2 .

5.2.1 Test 1. Displacement enhancement

In order to validate our optimal control algorithm we consider a simple test

case. The plane channel domain with the geometrical properties is reported

on the left of Figure 5.1. The fluid domain Ωf and the solid one Ωs are

coupled at the interface Γi. Our optimal control problem aims to reach a

target displacement ηd in the solid subset Ωd, by finding the optimal value of

the Young modulus in Ωs. On the fluid inlet AB and outlet EF we impose

Neumann boundary conditions, with given pressure, namely pin = 11.5kPa

and pout = 10kPa. The solid right boundary is free to move with fixed

end-points C and D. The domain is symmetric with respect to the left

axis AF . We set the solid and fluid densities as ρs = ρf = 1000kg/m3,

fluid kinematic viscosity νf = 0.07m2/s, Young modulus E = 106Pa and

Poisson modulus ν = 0.2. With this choice of the physical properties we

have laminar fluid motion in the channel. The above value of the Young

modulus is the reference one which is used in the uncontrolled case and as

initial guess for the optimal control algorithm. We use a multigrid approach
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Figure 5.1: Test case domain (left). The dotted square Ωd is the controlled

region. Velocity field profile with streamlines (center) and solid displacement

field (right) for the reference solution with no control.
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Figure 5.2: Young modulus E fields, discretization l = 3 with different

Emin = 10Pa (left), 50Pa (center), 100Pa (right). E and Emin are scaled by

2.4 · 103.

for the solution of both the state and adjoint systems. The coarsest grid

l = 0 has ne = 8 quadratic elements and the finer levels are obtained through
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Figure 5.3: Young modulus E fields, discretization l = 6 with different

Emin = 10Pa (left), 50Pa (center), 100Pa (right). E and Emin are scaled by

2.4 · 103.
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Figure 5.4: Young modulus profile on the solid vertical mid-line (left) and

on the interface Γi (right), with different Emin = 10Pa (A), 50Pa (B), 100Pa

(C). E and Emin are scaled by 2.4 · 103.

a standard mid-point refinement approach. We solve the optimal control

problem with different discretization levels, the finest one l = 6 has ne = 8192

elements (33153 grid nodes).

The reference solution obtained with no control is reported in Figure 5.1.
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The fluid velocity profile with streamlines and the solid displacement field are

shown in the center and on the right of the same Figure, respectively. The

fluid deforms the solid, obtaining a smooth solid profile, with a maximum

deformation of 0.02m obtained in the central region of Ωd. We choose the

target displacement ηx = 0.05m in the region Ωd, and wish to obtain a

flat solid profile, with large deformations. The displacement in the remaining

part of the solid domain is not controlled and therefore we can have any value

solution of the state system. Our choice of the target is such that the solid

profile we aim to recover can be obtained only if the Young modulus is not

uniform in the whole solid domain, with a complex distribution. We remark

that this test case has been studied with the optimal control approaches

presented in Chapters 3 and 4 as well.

In Figure 5.2 we report the profile of the Young modulus E obtained

after the optimization process, for l = 3 and with different values of the

Young modulus lower bound Emin. In order to improve the readability of the

Figures we scaled all E values by 2.4·103. By comparing these results with the

Table 5.1: Objective functionals. Emin is scaled by 2.4 · 103. The reference

case with no control is labeled with NC.

Emin[Pa]

Level 10 50 100 200 NC

2 1.63·10−7 2.08·10−7 1.82·10−7 2.73·10−6 1.23·10−5

3 1.41·10−7 1.12·10−7 1.53·10−7 2.58·10−6 1.23·10−5

4 1.23·10−7 1.62·10−7 1.18·10−7 2.58·10−6 1.23·10−5

5 1.19·10−7 9.17·10−8 1.16·10−7 2.52·10−6 1.23·10−5

6 7.15·10−8 4.18·10−8 7.20·10−8 2.23·10−6 1.23·10−5

reference solution we notice that the control is able to obtain a profile close

to the desired one. The Young modulus highest values are located near the

middle point of the right side, which is the target region Ωd, in order to try to

recover the desired uniform displacement. In the upper and lower parts of the

solid sub-domain the solution is almost symmetric. By increasing the Young

modulus lower limit the region near the solid endpoints where E = Emin
becomes larger, as well as the maximum value of E in the central region.

In Figure 5.3 we report the results obtained on the finest grid, l = 6, with

the same values of Emin. By comparing these results with those obtained on
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a coarser grid (Figure 5.2), it is worth noticing that the solution is similar.

Clearly, in the case l = 6, the number of degrees of freedom available for the

optimal control is higher and then, with higher resolution, the solid deforma-

tion is closer to the desired one, see Table 5.1. In this Table we report the

functional obtained with different grid resolution, from l = 2 to l = 6 and

with different values of the Young modulus lower bound Emin. The effects

of the penalty constraints are more important with higher lower bounds and

then the solution obtained is further away from the target one, in particular

when Emin = 200Pa. We would like to point out that the functionals ob-

tained with Emin = 50Pa are lower than those with Emin = 10Pa. Although

it may seem strange, we recall that in the context of optimization problems

many local minima can exist, thus the final solution attained is usually af-

fected by the choice of the initial guess and by the evolution of the solution

during the optimization process. The Young modulus profile, obtained with

different values of Emin, on the solid mid-line and on the fluid-solid interface

is shown in Figure 5.4.

5.2.2 Test 2. Displacement reduction
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Figure 5.5: Velocity field profile with streamlines (left) and solid displace-

ment field (right) for the reference solution with no control.

With this test we want to test our method against a displacement reduc-

tion problem. Since we expect that the control tries to increase the Young
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Figure 5.6: Young modulus E fields, discretization l = 6 with different

Emax =∞ (left), 1000Pa (center), 500Pa (right). E and Emax are scaled by

2.4 · 103.
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Figure 5.7: Young modulus profile on the solid vertical mid-line (left) and

on the interface Γi (right), with different Emax =∞ (A), 1000Pa (B), 500Pa

(C). E and Emax are scaled by 2.4 · 103.

modulus in order to reduce the solid deformation, we impose also an up-

per bound to the control. The domain, boundary conditions and material

properties are the same as in the previous test case. However, the value of

the Young modulus used for the reference case with no control is reduced
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Table 5.2: Objective functionals. Emax is scaled by 2.4 · 103. The reference

case with no control is labeled with NC.

Emax[Pa]

Level 500 750 1000 1500 ∞ NC

3 5.65·10−8 4.21·10−8 3.69·10−8 1.53·10−8 1.45·10−8 3.64·10−6

6 4.64·10−8 3.41·10−8 2.94·10−8 1.55·10−8 4.25·10−9 3.64·10−6

from the previous test and set to 480 · 103Pa. Thus the displacement in the

uncontrolled situation is now higher and is reported on the right of Figure

5.5, while the fluid velocity profile is shown on the left of the same figure.

We choose as target displacement a uniform value ηx = 0.02m in the target

region Ωd, thus wishing to reduce the solid deformation.

We now report and analyze the results obtained with different values of the

upper bound on the control, ranging from 500Pa to ∞ (i.e. no upper bound

imposed). In Figure 5.6 the Young modulus profile and the solid deformation

field are reported from left to right for Emax =∞, 1000Pa and 500Pa. The

Young modulus profile, obtained with different values of Emax, on the solid

mid-line and on the fluid-solid interface is shown in Figure 5.7. When no

upper limits are imposed on the control, the optimal profile of E has two

peaks close to the boundaries of the controlled domain Ωd, while in the rest

of the solid domain the control has a uniform value equal to the lower bound

Emin = 200Pa. When we set upper limits, the E distribution still has two

peaks in the same region, but now their height is cut by the constraint. For

a quantitative comparison we gathered in Table 5.2 the objective functionals

obtained at the end of the optimization process. The lowest functional value

corresponds to the case where the upper limit is not imposed and it increases

when we set stricter limits on the control E.

5.2.3 Test 3. Control with gradient regularization

In this test case we want to recover smoother controls, so we impose further

regularization on the gradient of the control. With referral to the (5.58), we

take α > 0 so that E ∈ H1 and investigate the effects of the choice of α.

We study again the solid displacement enhancement problem of the test in

Section 5.2.1. The domain and the reference configuration with no control
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Figure 5.8: Young modulus E fields, discretization l = 6 with Emin = 10Pa

and α = 10−1 (left), α = 10−3 (right). E and Emin are scaled by 2.4 · 103.
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Figure 5.9: Young modulus profile on the solid vertical mid-line, with Emin =

10Pa and α = 10−1 (A), α = 10−3 (B). E and Emin are scaled by 2.4 · 103.

are the same as in Figure 5.1. We recall that the aim of this test consists

in matching the target deformation ηx = 0.05m in the controlled region Ωd,

starting from a maximum displacement of about 0.02m.

In Figure 5.8 the Young modulus profile is shown for α = 10−1 and 10−3

with Emin = 10Pa. In Table 5.3 we report the functional values obtained by

changing the lower bound Emin and with the same values of α. The add of
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Table 5.3: Objective functionals. Emin is scaled by 2.4 · 103. The reference

case with no control is labeled with NC.

Emin[Pa]

α 10 50 100 200 NC

10−1 3.29·10−7 3.29·10−7 3.51·10−7 2.68·10−6 1.23·10−5

10−3 9.79·10−8 9.20·10−8 3.22·10−7 2.68·10−6 1.23·10−5

the regularization term leads to smoother solutions if compared with those

of Test 1, in particular with the higher value of α. In this case we have an

optimal solution where the limits on the control are inactive and the control is

not very effective. This can be deduced also from Figure 5.9, where the Young

modulus profile on the solid vertical mid-line is reported and has an almost

uniform value in the whole solid. For α = 10−1, we obtain the same functional

for different values of Emin which means that the control is higher than the

lower constraint in the whole domain. By reducing α, the regularization term

becomes less important and the optimal solution recovered by the algorithm

is closer to both the target one and to the one obtained without such term

in Section 5.2.1.





Conclusions

In this work we applied the optimal control principles to stationary fluid-

structure interaction systems. We first implemented a monolithic FSI direct

solver in an in-house finite element code with multi-grid capabilities and

validated our solver by performing well known benchmarks. Then we used

the adjoint formalism for the optimization of FSI systems. We extended the

velocity field into the solid domain in order to obtain a symmetric adjoint

system, coupling adjoint variables and forces on the interface, thus allowing

us to use the same coupled solver for the state and adjoint systems. To solve

the minimization problem we adopted the Lagrangian multiplier method and

the optimality system was recovered by imposing the first order necessary

conditions. This optimality system was solved with an iterative gradient-

based algorithm implemented in the FEM code.

In Chapter 3 we studied an optimal pressure boundary control applied to

the FSI system. The objective has been the matching of a displacement field

in a particular region of the solid domain by controlling the pressure on a fluid

boundary, such as the inlet or an auxiliary duct. We compared the optimal

solutions obtained with a simple steepest descent algorithm and with a quasi-

Newton one. Both methods showed accuracy and robustness. However, the

quasi-Newton algorithm converged faster to the optimal solution.

In Chapter 4 a distributed optimal control was investigated. An external

force acting on the solid modifies the shape of the solid domain in order to

recover the desired objective. We considered as objectives both fluid velocity

and solid displacement matching ones.
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Finally, in Chapter 5, we studied a stationary inverse parameter estima-

tion problem where the goal was to find the optimal distribution of the Young

modulus in the solid subdomain in order to obtain a desired solid deforma-

tion or shape. Upper and lower limits on the Young modulus were taken into

account, since they are of great interest in practical applications. We used

a projected gradient method in order to satisfy the inequality constraints on

the control. The Young modulus was taken in L2, then we added a regular-

ization term based on its gradient and obtained a control in H1. The results

obtained show the feasibility and robustness of the approaches proposed.

A test case was considered with all the optimal control methods presented.

We used the same geometry, objective functional, reference state, material

properties and boundary conditions in order to compare the effectiveness of

the methods. With the distributed control the functional are the lowest,

while when applying the pressure boundary control we recovered the highest

values. This can be easily explained, in fact our distributed control can act

directly in the solid controlled region, with great effectiveness. The effects of

the boundary control instead have to propagate from the fluid boundary to

the target domain that may be far away, which means that, in this case, the

objective functional is less sensitive to the control parameter.
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