Chirco, Leonardo
(2020)
On the optimal control of steady fluid structure interaction systems, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Meccanica e scienze avanzate dell'ingegneria, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9206.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (12MB)
|
Abstract
Fluid-structure interaction (FSI) systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow and are commonly studied in many engineering and biomedical fields. Usually those kind of problems are solved in a direct approach, however it is also interesting to study the inverse problem, where the goal is to find the optimal value of some control parameters, such that the FSI problem solution is close to a desired one. In this work the optimal control problem is formulated with the Lagrange multipliers and adjoint variables formalism. In order to recover the symmetry of the state-adjoint system an auxiliary displacement field is introduced and used to extend the velocity field to the structure domain. As a consequence, the adjoint interface forces are balanced automatically. The optimality system is derived from the first order necessary condition by taking the Fréchet derivatives of the augmented Lagrangian with respect to all the variables involved. The optimal solution is obtained through a gradient-based algorithm applied to the optimality system. In order to support the proposed approach numerical test with distributed control, boundary control and parameter estimation are performed.
Abstract
Fluid-structure interaction (FSI) systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow and are commonly studied in many engineering and biomedical fields. Usually those kind of problems are solved in a direct approach, however it is also interesting to study the inverse problem, where the goal is to find the optimal value of some control parameters, such that the FSI problem solution is close to a desired one. In this work the optimal control problem is formulated with the Lagrange multipliers and adjoint variables formalism. In order to recover the symmetry of the state-adjoint system an auxiliary displacement field is introduced and used to extend the velocity field to the structure domain. As a consequence, the adjoint interface forces are balanced automatically. The optimality system is derived from the first order necessary condition by taking the Fréchet derivatives of the augmented Lagrangian with respect to all the variables involved. The optimal solution is obtained through a gradient-based algorithm applied to the optimality system. In order to support the proposed approach numerical test with distributed control, boundary control and parameter estimation are performed.
Tipologia del documento
Tesi di dottorato
Autore
Chirco, Leonardo
Supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Fluid-structure interaction, Monolithic algorithm, Optimal control, Adjoint variables, Distributed control, Boundary control, Parameter estimation, Finite element
URN:NBN
DOI
10.6092/unibo/amsdottorato/9206
Data di discussione
2 Aprile 2020
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Chirco, Leonardo
Supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Fluid-structure interaction, Monolithic algorithm, Optimal control, Adjoint variables, Distributed control, Boundary control, Parameter estimation, Finite element
URN:NBN
DOI
10.6092/unibo/amsdottorato/9206
Data di discussione
2 Aprile 2020
URI
Statistica sui download
Gestione del documento: