
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN:
Computer Science and Engineering

Ciclo XXXII

Settore Concorsuale: 09/H1
Settore Scientifico Disciplinare: ING-INF/05

SEMANTICS DRIVEN
AGENT PROGRAMMING

Presentata da: Francesco Antoniazzi

Coordinatore Dottorato
Prof. Davide Sangiorgi

Supervisore
Prof. Tullio Salmon Cinotti

Co-Supervisore
Prof. Luciano Bononi

Esame finale anno 2020

This work is licensed under a Creative Commons
“Attribution-NonCommercial-NoDerivatives 4.0
International” license.

 francesco.antoniazziunibo.it
 francesco.antoniazzioutlook.com

   Think green before printing this Thesis

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
mailto:francesco.antoniazzi@unibo.it
mailto:francesco.antoniazzi@outlook.com

Contents

Abstract in English 5

Abstract in Italiano 7

Abstract en Français 9

Introduction 11

1 Background Research 15
1.1 Internet of Things . 15
1.2 The Semantic Web . 19

1.2.1 Visualizing the Semantic Web . 21
1.2.2 AudioCommons Project . 34

1.3 SPARQL Event Processing Architecture 37
1.3.1 Origins . 37
1.3.2 Architecture . 38
1.3.3 Future . 40

2 Semantic Internet of Things 43
2.1 Semantic Interoperability . 43
2.2 Internet of Musical Things . 45

2.2.1 Methodology, audience, and scope 47
2.2.2 Related ontologies and data models 48
2.2.3 Specification . 49
2.2.4 Ontology description . 51
2.2.5 Implementation and maintenance 58
2.2.6 Evaluation . 59

3 Semantic Web of Things 67
3.1 W3C Web of Things vision . 67
3.2 A Dynamic Ontology for the Semantic Web of Things 69

3.2.1 Related Work . 70
3.2.2 Semantic Web Things . 75

3

3.2.3 Interaction Patterns: the PAE paradigm 76
3.2.4 DataSchema and FieldSchema . 82

4 Semantic Driven Agent Programming 91
4.1 Related Works . 91
4.2 SWOT agents framework and Evaluation 93

4.2.1 Cocktail framework . 93
4.2.2 Cocktail: in-use analysis . 94
4.2.3 Evaluation . 97

4.3 Next Steps . 100
4.3.1 Cocktail example . 101
4.3.2 Habitat project example . 104
4.3.3 Future directions . 105

Conclusion 109

List of Ontologies & Prefixes 113

List of Figures 115

List of Tables 118

Bibliography 121

4

Abstract in English

I n the last two decades the Information Technology changed substantially the life of
people all around the World. Just a few years ago, for instance, paper support was

needed to exchange all kind of data, while now electronics is indeed the main instrument
of communication. This mutation was originally due mostly to the efficiency, while now
it is, hopefully, also due to an increased attention towards environmental issues.

Information and data have proved over the time the importance of their role, con-
tributing to a plethora of applications that allow the physical world to interact with
mankind by the means of services dispatched pervasively and freely accessible. The
Internet is the kernel of such complex setup that is called Internet of Things (IoT).

The IoT inherited from the Internet a chaotic interface. Protocols, conventions,
mechanisms are different from an application to the other, and it is difficult and expensive
to discover and make applications compatible with one another. From this consideration
two exceptional ideas were born, namely the Semantic Web and the Web of Things
(WoT). The latter would unify the IoT on an application level shared view, enabling
standard discovery mechanisms and definitions. The former, on the other hand, intents
to provide the tools to formalize the knowledge contents of the World Wide Web in a
simultaneously human and machine understandable way.

This Thesis aims to explore both these two concepts and merge them into the Se-
mantic Web of Things using the best of each. Therefore we hereby propose, describe,
evaluate and use two ontologies: the Internet of Musical Things ontology, aiming to
outline a semantic description of IoT; and a Semantic WoT ontology, aiming to push
further the state of the art of IoT unification and standardization through a dynamic
semantic approach.

5

6

Abstract in Italiano

N egli ultimi due decenni le nuove Tecnologie dell’Informazione hanno cambiato
radicalmente la vita delle persone in tutto il mondo. Soltanto qualche anno

fa, per esempio, lo scambio di informazione era necessariamente effettuato sotto forma
cartacea in quasi ogni ambito. Oggi, invece, il mezzo elettronico viene privilegiato sempre
più per questioni di efficienza nonché, recentemente, si spera anche per motivi legati alla
sostenibilità ambientale.

L’informazione ha dato prova, nel corso del tempo, della sua importanza. Ha contri-
buito a rendere possibili numerosissime applicazioni in grado di far interagire l’umanità
con il mondo fisico attraverso un’astrazione composta da servizi facilmente accessibili e
distribuiti ovunque. Internet è il cuore di questo grande sistema chiamato Internet of
Things (IoT).

L’IoT ha in comune con Internet la sua interfaccia caotica e la mancanza di ordine. I
protocolli, le convenzioni, i meccanismi cambiano da una applicazione all’altra, rendendo
difficile e costoso scoprire e creare sistemi compatibili. Da queste considerazioni ormai
accettate dalla comunità traggono origine due concetti eccezionali: il Semantic Web
e il Web of Things (WoT). Quest’ultimo ha come fine quello di unificare l’IoT ad un
livello applicativo condiviso rendendo disponibili definizioni e meccanismi standard per
la scoperta dei dispositivi. Il primo, invece, fornisce degli strumenti per formalizzare la
conoscenza distribuita nel World Wide Web in modo che sia contemporanemante fruibile
all’uomo e alle macchine.

Questa Tesi si accinge ad esplorare i due concetti appena descritti, ed a riunirli usan-
do il meglio di entrambi nel Semantic Web Of Things. Per fare ciò si proporranno,
descriveranno, valuteranno ed useranno due ontologie: l’ontologia dell’Internet of Mu-
sical Things, che servirà per mostrare una definizione semantica dell’IoT; e l’ontologia
del Semantic WoT, il cui scopo è di spingere oltre lo Stato dell’Arte nell’unificazione
dell’IoT e nella sua standardizzazione attraverso un approccio semantico e dinamico.

7

8

Abstract en Français

L es deux dernières décennies ont vu les nouvelles Technologies de l’Information
changer de manière radicale la vie des gens partout dans le monde. Il n’y a que

quelques années, par exemple, des supports en papier étaient nécessaires pour l’échange
des données, alors qu’à présent l’instrument principal est l’électronique. Ce changement
était dû à l’ origine à l’efficacité de la communication. Maintenant, on l’espère, la raison
est aussi liée à la tutelle de l’environnement.

Il a été largement démontré que l’information joue un rôle essentiel : innombrables
applications ont été développées pour connecter le monde physique et l’humanité à tra-
vers des services distribués partout et librement accessibles. Internet est au centre de
toute cette infrastructure, qui n’est autre que l’Internet des Objets (IoT).

L’IoT et Internet ont en commun leur organisation chaotique. Les protocoles, les
conventions, les fonctionnements internes peuvent être très différents d’une application
à l’autre : il est souvent difficile et coûteux de découvrir et créer des applications com-
patibles avec le reste des systèmes qui sont à disposition. Ce concept est à l’origine de
deux idées exceptionnelles : le Web Sémantique, et le Web des Objets (WoT). Celui-ci
a pour but d’unifier l’IoT à un niveau applicatif commun avec des mécanismes de dé-
couverte et un vocabulaire standard. Le premier, d’autre part, propose les instruments
pour mettre de l’ordre dans la connaissance du World Wide Web, de façon à la rendre
à la fois compréhensible à l’être humain, et aux machines.

Cette Thèse explore donc les deux idées à peine présentées, et additionne leurs
meilleures qualités pour obtenir le Web des Objets Sémantiques. Ainsi sont proposées,
décrites, évaluées et utilisées deux ontologies : celle de l’Internet des Objets Musicaux,
pour produire une description sémantique de l’IoT ; et celle du WoT Sémantique, qui
voudrait avancer l’état de l’art de la recherche sur l’unification de l’IoT de manière
sémantique et dynamique.

9

10

Introduction

S emantic Driven Agent Programming idea joins together concepts that are relatively
well-known in literature. Agent programming, as it will be discussed, dates back to

the early 90’s [1], while the Semantic Web was introduced by Tim Berners Lee in 2001 [2].
The innovation proposed by this Thesis, therefore, is not given by those concepts taken on
their own, but is rather the outcome of their integration into several ideas and projects,
which are going to be explored in the following Chapters.

The effort made to define such collaboration targets the third pole of interest of
the Thesis, namely the Internet of Things (IoT) [3]. As a matter of fact, the IoT
represents one of the most outstanding global creativity sources of the last century. With
the advent of affordable computing, pervasive electronics and the Internet, technology
started to follow a quick and exponential growth trend that today incredibly changed our
society [4]. Moreover, technology became part of the life of almost everyone as a service
provider. Alongside with this revolution, the growth trend involved also an easier access
to the tools needed to create new things and to put into practice new ideas, giving birth
to maker movement [5, 6]. Anyone, with some know-how in electronics and informatics,
can try to implement his/her own projects, share it to the community and, eventually,
also make money with it [7, 8].

All this, with a continuous feedback process to and from the industry and the
academy, resulted in a worldwide productivity that still benefits almost every tech-
nological field.

Over the time, however, it became clear that this race to innovation was extremely
chaotic [9]. In fact, projects were designed in a vertical way from the beginning to the
end, and the problem of joining any two of them was often the same as restarting both
of them from scratch in a single one performing both tasks [10].

The present work tries to fight with this verticality enabling the IoT to use the tools
of the Semantic Web. Ontologies, in the semantic interpretation of the term, represent a
great opportunity to provide a common discussion pattern among vertical projects [11].
In particular, two ontologies will be provided here in the following Chapters.

The former, in Section 2.2, is the Internet of Musical Things (IoMusT) [iomust]
ontology. The discussion over this ontology will allow us to introduce a full set of
concepts and ideas related to an horizontal approach to IoT. Besides, the musical IoT
application represents an innovative application in the whole research field.

The latter, in Chapter 3, is the Semantic Web of Things (SWOT) ontology [swot].

11

Such ontology is located at a higher level compared to the previous one. As a matter of
fact, in this case we target a newer approach to IoT that treats the pervasive electronics
resources as web resources and renames IoT as Web of Things (WoT) [12, 13]. The
innovation proposed here is the addition of semantics to further prevent the formation
of fragmented entities.

Applying the Semantic Web technologies to the IoT and the WoT by the means
of an ontology will give a predefined shared way to set up projects at information and
organization level. For instance, in IoT systems there is often a lack of coherence about
the definition of the thing, which is a core concept that guarantees interoperability. A
standardized approach for concept interpretation would definitely help in building or in-
tegrating software and data architecture. In their interesting survey, Liu et al. [14] listed
a number of different possible definitions for the thing. The two most relevant among
them, for this Thesis, are W3C’s and IEEE’s hereby reported for reader’s convenience.

IEEE [The thing] is any physical object relevant from a user or application perspective.

W3C [The things] can be virtual representations of a physical or abstract entities. They
can be connected or not connected. Each thing can have one or more virtual rep-
resentations. Things can have histories, and have identities, rich descriptions,
services, access control and data handling policies. They have URIs.

Both those definitions make clear reference to the fact that the things are not static
elements in an application, but instead are interactive factors of change. They are either
active or passive in their environment, and consequently contribute to modify the appli-
cation context. For this reason, as the term thing is rather confusing and yet not far from
a philosophical concept, in this Thesis we will refer to it with a different word, i.e. agent,
unless otherwise stated. Such lexical change is derived from the comparison between the
two definitions above and the aforementioned paper by Shoham [1]. Some other works,
like Mzahm et al. [15] and Savaglio et al. [16] also go in that same direction. In particu-
lar, we refer to the agent as an entity that has access to context information, which the
Semantic Web is able to realize through its concept interconnection expressivity.

We will discuss how those agents moving and interacting in the semantic architec-
ture can be programmed and, even better, how they can provide us as much services as
possible, with the lesser effort. Globally, as a result, this work contains a set of proposi-
tions that target an integration of the Semantic Web in the IoT towards new working,
plug-and-play and fully integrated solutions.

Consequently, the outcome of this study is a complete description of why and how
we should put some order in the IoT as it is known today, as well as decide a shared
approach to perform this task. It is worth noticing, moreover, that a common way to
think about and use the IoT like the one suggested here may enable new opportunities
also in other related fields of ICT, like the one connected to the Big Data revolution [17].

The Thesis is organized as follows. In Chapter 1 the research background of the
whole work will be explained over its complete state-of-the-art. For instance, the IoT
evolution is there summarized, along with a view on the protocols and the challenges
that originated from it. Then the Semantic Web will be introduced and, eventually,

12

the hardware-software architectures that have been developed to use it overcoming its
limitations. A research on how to visualize semantic graphs is also included, which we
performed with didactic purposes.

Chapter 2, then, will provide a semantic layered view of the IoT by means of the ideas
outlined in Chapter 1. The Internet of Musical Things ontology is there fully explained,
leveraging general concepts that may be useful to grant horizontal interoperability among
various IoT systems within different environments and backgrounds.

Chapter 3, instead, includes the basic concepts needed to start talking about semantic
IoT, and extends the discussion to the WoT. It contains, therefore, the description of the
Semantic Web of Things Ontology: it compares the approach with the pre-existent works
made by W3C, and following this it proceeds with a semantic description of semantic
Web Things dynamic semantic interaction.

Following the theoretical views, we provide in Chapter 4 a rather complete evaluation
of the ontology. To do so, we show the functionality of a Python framework to use the
classes and the relationships previously introduced on a simple example, yet rich in
interesting insights. Then, the ontology itself is considered as a whole for evaluation,
leading us to ideas for future works to achieve additional results.

Eventually, we make a synthesis and conclude the Thesis.
The work discussed in this Thesis was carried in collaboration with:

• Industrial Research Center on ICT (CIRI ICT) - University of Bologna;

• Advanced Research Center on Electronic Systems Ercole de Castro (ARCES) -
University of Bologna;

• National Institute of Nuclear Physics (INFN) - Section CNAF;

• Centre for Digital Music (C4DM) - Queen Mary University of London;

Additionally, the following research projects represent the background in which all
the PhD and this Thesis work has been performed:

HABITAT: Home Assistance Based on the Internet of Things for the AuTonomy,
a POR-FESR 2014-2020 project related to home-caring Internet of Things;

 http://www.habitatproject.info/

OPEN-NEXT: Real-time and open-source software for embedded platforms of next
generation, a POR-FESR 2014-2020 project aiming to develop a platform for in-
dustrial real-time applications working with different devices and technologies;

 http://www.open-next.it/en/homepage-en/

AUDIOCOMMONS, an Horizon 2020 project (research and innovation grant 688382)
aiming at bringing Creative Commons audio content to the creative industries;

13

http://www.habitatproject.info/
http://www.open-next.it/en/homepage-en/

 https://www.audiocommons.org/

SWAMP: IoT based methods and approaches for smart water management in pre-
cision irrigation domain, a project for smart agriculture development Horizon
2020-EUB-2017, n. 777112, funded by the European Commission under: H2020-
EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial
technologies - Information and Communication Technologies (ICT);

 http://swamp-project.org/

14

https://www.audiocommons.org/
http://swamp-project.org/

Chapter 1

Background Research

A s discussed in the Introduction Section, this Chapter provides a complete related
work overview of the main relevant topics addressed in the Thesis. In particular,

Section 1.1 contains a large reference on the IoT-related technologies that represented a
source of inspiration or a basis for the Chapters that will follow. In Section 1.2, instead,
the Semantic Web vision and its capabilities are outlined. Some applications will be
described to exemplify.

Then, in Section 1.3, the base of IoT semantic approach for interoperability developed
at ARCES is explored. Almost all the work exposed in this Thesis lays on such approach,
that enables dynamic responsiveness in semantic contexts.

1.1 Internet of Things

Electronics is everywhere: it is pervasive [18] both in the spatial and conceptual meaning
of the term. That is, sensors are dispatched in almost every environment, and measure
almost every physical entity available contributing with their data to countless applica-
tions. Actuators, in a similar way, trigger changes within the environment, so that users
can benefit from the effects.

The IoT revolution [4, 19] deeply impacted many sectors of everyday life: nowadays
research and industry are proceeding towards the smartification of reality, including
smart homes [20], smart cities [21, 22], smart health-care [23, 24, 25], smart agriculture
[26, 27] and so forth.

Listing all possible architectures employed in IoT applications is a task that is almost
impossible, due to the huge variety of the topics that over the time have been concerned
by the smartification process. As a reference, anyway, here follows a description at high
level of some of them, mentioning in particular the ones that are relevant for the next
Chapters.

IoT, as we said, is a term that was coined by Kevin Ashton in 1999 [3]. The vision,
indeed, has been since then modified to be coherent with the current available tech-
nologies. Just consider that back at that time Internet access was possible, but not as

15

common as it is today, available in almost every home. This is an interesting indicator
of how different might have been the perspective.

Devices, before being connected to the Internet, were directly communicating with
one another and therefore we had short distance and small environments. To this ex-
tent, a rich collection of protocols and standards were developed like the USB standard,
dating back to 1996, and Bluetooth, whose first device was being sold in late 19991.
The connectivity through the Internet, due to the limited bandwidth available for data
transfer, was not yet ready to support online sensors and actuators and the exchange of
their data.

During the following years silicon production processes and studies on computer
architectures considerably evolved, revealing the bases of modern IoT. First of all, it was
possible to have CPUs with more calculation power in less space; secondly, broadband
connection to the Internet became a reality, together with new mobile communication
systems (3, 4, and now 5G). In addition, various wireless protocols like Wi-Fi, ZigBee,
6LoWPAN, LoRa became easily available [28]. In some cases, e.g., LoRa and 6LoWPAN,
they were designed with the explicit goal of enabling IoT technologies. As Mulligan states
in [29], “The concept was born from the idea that the Internet Protocol could and should
be applied to even the smallest of devices”.

Researches like [30, 31] provide a complete discussion on the IoT background, cov-
ering the various design layers from calculation units to communication protocols and
global architecture.

Such availability of new computation and communication instruments revealed itself
to be a powerful trigger for the spreading of IoT, which was then interpreted as the
solution to many complex important problems. Moreover, the variety of approaches
exponentially increased along with the number of questions that were answered through
IoT techniques. So, as a result, defining and realizing an IoT project eventually produced
others ideas, in a positive and creative feedback loop similar to the ones in Figg. 1.1 (a)
and (b), that are a synthesis of the one exposed by Jacobson et al. [32]. As it can be seen
there the problem definition derives from the evaluation of a previous project; a technical
analysis follows, where the state of the art is analyzed, and choices are made: which is
the best hardware platform, which are the most effective communication protocols for
this application? How to, in general, design the IoT solution?

Although depicting a rather general approach to engineering problems, Fig. 1.1 fits
in a very special way the IoT, hiding its main drawback. Every step in these two
flow charts is developed independently from one project to the other. This, eventually,
produces applications and systems that work on their own, that are connected to their
network, but still are unable to interoperate. Such broken communication may happen
at any level of ISO-OSI stack, that is the centre of IoT interoperability, as it is reported
by Banerjee et al. [33] and by Rayes et al. [34]:

Physical and DataLink Layer: two IoT systems will not be able to interact prop-
erly if it is not possible to share the physical communication mean and if there is no

1 https://www.bluetooth.com/about-us/our-history/

16

https://www.bluetooth.com/about-us/our-history/

Co-create

Ideate

Q & A

Map to OSI

Prototype

Deploy

(a)

Ideas

Problems

Technical Analysis

IoT Solution Design

Usage & Evaluation

(b)

Figure 1.1 – Typical problem solving workflow for IoT projects, as exposed by Jacobson et al. [32]
(1.1a), and in a higher level synthesis (1.1b).

match in the how they perform direct contact. This includes the usage of legacy
and/or constrained networks or devices requiring specific setups [35]. Example:
system A communicates with USB protocol, system B with Bluetooth.
When layers 1 and 2 are not matching, device and service local discovery is impos-
sible, signifying that devices and systems cannot even be aware that other devices
and systems are dispatched in the same environment.

Network and Transport Layer: given that two IoT systems share the same Physi-
cal and DataLink layers, their remote connection is possible only if routing is also
possible from one to the other, and if they agree on how to perform information
exchange. For instance, a system exploiting UDP vs a system using TCP and
targeting a very different audience.
Layer 3 and 4 match is necessary for remote discovery and complex data share
mechanisms [36].

Upper layers: are necessary when the setup gets more complex than mere commu-
nication of raw data. IoT systems exploiting upper layers share higher level in-
formation, which has to be interpreted in the very same way: from the character
sequence choice to the content scheme used to format the data.

17

A relevant example, here, may be the interaction of two different entities when one
produces JSON-formatted data, and the other expects XML. Or, similarly, when
they both interact through JSON, but the former uses the tag book to identify an
instance of literary creation, and the latter as the action of making a reservation
for a flight.

A sequence of choices is made for every IoT system within this stack. This builds up
the concept of vertical silos, which means that once that two developed applications are
up and running, either the design choices are the same, either at some point information
will get stuck and collaboration will not be possible. Studies on how to overcome this
fragmented vertical reality were performed since the very beginning of IoT era, and
resulted in an extremely rich literature [37, 38]. Among the results, research provided
over the years also

• New protocols like AMQP, MQTT, CoAP [39, 40]. In such context, devices are
supposed to be able to use application layer protocols (i.e., they have enough
memory and computational power to implement all the stack), and use a topic-
based logic to exchange information. That is, interoperability is defined as an
agreement on a topic taxonomy, and data is exchanged through a middleware that
is able to implement communication on top of topic channels.

• Translators from a protocol to the other, like presented in [41, 42], or from one
hub to the other [43]. This means, in particular, that the communication between
entities is mediated by a third entity designed to act as a gateway [44, 45]. This
approach, in some cases, generated heavy critics because of gateways development
complexity, and privacy issues [46];

• Information level interoperability, which may be considered as a mixture of the
two previous points, in addition with semantic techniques [47, 48, 49, 50]. This ap-
proach will be largely explored in this Thesis: it requires applications and systems
to organize their data according to standardized schemas (i.e., ontologies).

Globally, anyway, what is clear is that there must be a level shared by all IoT projects
and systems to make environments communicate to each other and to assure that, for
the future, service update will not imply a complete and expensive redesign.

It is worth saying also that the concepts of Cloud Computing before [51], and Fog
Computing later [52], were in the end pursuing that same idea of achieving full connection
of information. In fact, Big Data [53] has been largely feeding from both of them but
still, among its known drawbacks [54, 55], the disorder and incoherence of information
are probably the mostly well known.

The three points previously listed besides show that information interoperability is
the key for breaking the silos, even more than protocol aspects (whose lifecycle brings
them to evolve continuously following technological trends). As a matter of fact, even
the new facet of IoT, i.e. the Web of Things (WoT) [12, 56], whilst calling for the uniform
usage of the protocols of the web in the IoT, must face the problem of interpretation of
resources.

18

In this Thesis, to achieve this shared access to information we exploit the capabilities
of the Semantic Web to describe data generated by machines in a machine understand-
able way [2, 11]. The next Section will provide some general examples of it, while
Section 1.3 will explain some tools necessary for an application of the Semantic Web to
the Internet of Things world: the SPARQL Event Processing Architecture.

1.2 The Semantic Web

The possibility to freely interlink any piece of information and any service with all the
others is to be considered over the time one of the reasons of the great success of the
Internet. However, the idea that Web resources could be better organized is also quite
old. Internet chaotic approach was heavily criticized as the Web reached its status of
information and service provider.

How to discover resources, how to perform requests, if no agreement is made on how
contents are placed?

A first architectural answer to these questions was given in the research that intro-
duced the REpresentational State Transfer (REST) pattern [57] conducted in 2000 by
Roy Fielding. The suggested approach provides a set of rules on how to organize systems
whose information and services are web-based. Nowadays this is de facto a standard,
and contributed heavily to the development of actual standards like HTTP 1.1 [58] and
URI [59]. Moreover, the IoT and the WoT were also influenced, and several architectures
were proposed in litterature [60, 61, 12].

Nevertheless, RESTful architecture and principles (and its constrained version, called
CoRE2) do not provide a logical taxonomy to describe the reciprocal relationship be-
tween resources, excepted the request of a tree setup. Such logical meta-information
is demanded to the standards introduced in the Semantic Web [2, 11], namely OWL3,
RDF4, RDFS5 and SPARQL Language6. Briefly, this can be summarized as it is ex-
plained in Fig. 1.2: the Semantic Web allows to organize resources, given as URIs, blank
nodes, literals, in the form of triples subject-predicate-object. The subject can be a URI
or a blank node; the predicate must be a URI; and the object can be a URI or a blank
node or a literal.

This network of triples, that can be extremely complex, results in a resource graph,
which is also known as Knowledge Graph or Knowledge Base (KB). To make an example
of Knowledge Graph it is worth citing DBpedia7, which is a crowd-sourced community
effort to extract structured content from the information created in various Wikimedia
projects, and is therefore open to all. It can be explored by using the SPARQL language,
which we will largely use in the remaining of the Thesis.

2 https://datatracker.ietf.org/wg/core/about/
3 https://www.w3.org/TR/owl2-overview/
4 https://www.w3.org/TR/rdf11-mt/
5 https://www.w3.org/TR/rdf-schema/
6 https://www.w3.org/TR/sparql11-overview/
7 https://wiki.dbpedia.org

19

https://datatracker.ietf.org/wg/core/about/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/sparql11-overview/
https://wiki.dbpedia.org

subject object

dbpo:Jack_Nicholson foaf:Person

predicate

rdf:type

Figure 1.2 – An example of semantic triple storing the information that the resource URI related to
Jack Nicholson makes reference to an entity of type Person, as it is defined in [foaf] ontology.

To get an idea of how powerful is the setup provided by DBpedia, let us consider the
following request:

Design a software that, by querying the Internet, will list an “actor genealogy”.

Starting from two actors, an “actor genealogy” is a sequence of triples (actor1,
actor2, film) that allows in the minimum number n of steps to connect the two
actors through their films. For instance, trying to connect Jack Nicholson to Matt
Damon should give, as possible result, a single triple connecting them through the well
known 2006 film The Departed. Instead, trying to connect Jack Nicholson and Julia
Roberts results in two triples with George Clooney respectively in Batman_1989_series
and Ocean’s Eleven.

To address a problem like this, it is possible to avoid using DBpedia. Various services,
on the web, provide APIs to list films, actors and their respective awards. However, here
we will show that the semantic approach is definitely less expensive and more simple.
For a non semantic approach, since we are interested in the shortest path from one actor
to the other, a breadth first search is probably the easiest solution. Therefore, we expect
to perform a sequence of requests to the web service, and list the films in which an actor
starred, the other actors that were involved, iterating until there is a match for every
actor in the sequence.

Instead, a semantic approach would simply search for patterns increasing in depth
by 1 at each loop, as shown in the pattern in Listing 1.1. Consequently, by using the
semantic KB contained in DBpedia we will perform exactly n requests for a n-step
match, and we will not have to implement a breadth first search over a tree result.

Listing 1.1 – SPARQL pattern example to solve the actor genealogy problem. Consider Table 4.4 for
expanded prefixes.
Direct match
SELECT ?film1 WHERE {

?film1 dbpo:starring <actor_in >, <actor_out >.
}

One step match
SELECT ?film1 ?actor_1 ?film2 WHERE {

?film1 dbpo:starring <actor_in >, ?actor_1.
?film2 dbpo:starring ?actor_1 , <actor_out >.

}

20

This example gives just a simple overview of how the Semantic Web can help. In
general, however, we have that the graph in the KB is formatted according to specific
ontologies, that represent a pattern for triple organization [62]. In the List of Ontologies
Section it is possible to have a quick look on the ontologies that will be used in this
Thesis.

The ontology pattern is often considered as a bottleneck for the usage of Semantic
Web. Ontologies, in many cases, are quite difficult to be understood and used: this
creates a steep learning curve of the concepts and relationships expressed that, especially
in a learning environment, can hinder the realization of applications. To address these
obstacles, in the next Section some visualization techniques for the Semantic Web will
be studied.

1.2.1 Visualizing the Semantic Web

This survey Section is based on a research work made at ARCES, aiming to create a
better teaching-learning support for the students of the course Interoperability of Em-
bedded Systems held at the School of Engineering, University of Bologna. The following
paragraphs are therefore inspired from the works8 that were issued as a result of the
research.

Accessing and understanding the content of a database is hardly ever a negligible
task for programmers. When data is stored in a relational database, the views are
obtained by transforming into a table the output of a query written in one of the various
flavors of the SQL language. Smart-written queries on equally smart-built databases can
efficiently perform a lot of calculations over data, as well as outline special and complex
relationships even between apparently distant entries. Therefore the know-your-data
principle, typical of Data Mining and Big Data theory, is in fact a more general and solid
base from which to start any data-related implementation, though implying sometimes
great study effort from the developer in the initial phase of software creation [63]. It is,
as a matter of fact, common knowledge that frequently programmers have to spend more
time in organizing and reformatting their data more than in the actual programming
logic.

The appearance of the Semantic Web in the panorama of information technology gave
ways more than a simple new tool to explore the Web, but a new interpretation of the
resources available on the Internet. Through the SPARQL language and the Resource
Description Framework, the Internet network is considered as a whole a special database
whose resources are interconnected in a labeled directed graph. The main idea of the
Semantic Web, therefore, is to exploit the concepts of URI to bind resources through
triple-based statements (i.e., the already mentioned subject-predicate-object triple). Any
connection is in that fashion not a simple reference as hypertext linking is, but contains
in addition the information given by the inner content of the resources. Then, according
to W3C recommendations (see footnotes of Section 1.2), the Semantic Web in the end

8  2018 IEEE. Reprinted, with permission, from Antoniazzi, F., & Viola, F. (2018, November).
RDF Graph Visualization Tools: a Survey. In 2018 23rd Conference of Open Innovations Association
(FRUCT) (pp. 25-36)

21

takes the form of a graph, where both the contents and the statements contribute to the
overall meaning.

A few considerations are needed, however, when we start discussing about the possi-
bility to store information in a semantic graph. In fact, some critical points are present,
and have to be highlighted. First of all, as it is depicted in [64], without regulations,
the semantic graph is doomed to chaos, i.e. to an unpredictable information taxonomy.
The solution to this issue is the ontological description of knowledge, that consists in
the formal definition of all the classes, relationships and statements that can be present
in the graph. Once the programmers agree on the ontology, there is no uncertainty on
how the data is organized. All the information needed to query the graph is stored
in an OWL file, standing for Web Ontology Language. OWL is, according to W3C, a
semantic markup language for publishing and sharing ontologies, and has been widely
used to define all sort of ontologies and vocabularies (which are smaller ontologies): an
interesting repository, in this field of study, is the Linked Open Vocabularies website9

and, for the next Sections of this Thesis, the List of Ontologies.
A second critical point is connected to the dimension of the graph, which can be

considerable not only when we are discussing about web-located knowledge bases like
DBpedia [65], or the Internet itself, but also in smaller applications exploiting RDF
and SPARQL. To make an example, let us perform the query of Listing 1.2 to DBpedia.

Listing 1.2 – SPARQL query to all classes parent of the resource
dbpedia:The_Lord_of_the_Rings

SELECT (count (?o) as ?count)
WHERE {

dbpedia:The_Lord_of_the_Rings
rdf:type ?o

}

 Query execution:

Last visited: 15/10/2019

Listing 1.3 – SPARQL query to every link (except rdf:type) with
dpbedia:The_Lord_of_the_Rings as origin, and the destination’s
class
SELECT ?p (count(?t) as ?count)
WHERE {

dbpedia:The_Lord_of_the_Rings ?p ?o.
?o rdf:type ?t
FILTER (?p != rdf:type)

}

 Query execution:

Last visited: 15/10/2019

The output of the query, which is a simple request to count all the classes that “The
Lord of the Rings” resource belongs to, is equal to 25. Clearly, far from a naive and
optimistic expectation of a few outputs similar to :Book, :Novel and so on. Listing
the actual values consequently results in a 25-rows table that outlines the evidence of
the hidden complexity in the results analysis, even in simple situations. The complexity

9 https://lov.linkeddata.es/dataset/lov

22

https://lov.linkeddata.es/dataset/lov

grows considerably if we proceed querying on the following level (Listing 1.3).
The query available in Listing 1.3 with the variable ?count outputs the number of

links of type ?p outgoing from the resource dbpedia:The_Lord_of_the_Rings, except
from rdf:type links, that can be viewed by performing the query in Listing 1.2.

The direct outcome after running the queries in the Listings 1.2 and 1.3 is given
by the possibility to observe the available variability of results and to look for their
meanings. The output of those simple SPARQL queries highlights, for instance, that
the “Lord of the Rings” resource is individual of at least 25 classes which we expect
to have a specific meaning and a description of their own. Going further with the
latter query, moreover, the number of elements connected to the resource is even more
increasing, both as connectivity spread, and in diversity of ontological classes involved.
In general the description of all those resources can be as pragmatic as an algorithm, or
philosophical, or mathematical. However, it is clear that without the Semantic Web it
would be hardly achievable to obtain such a multi-layered description of a resource, apart
from using natural language. In fact, when it comes to exploit the tools of Semantic Web,
a frequent feeling is that it is not possible to reuse previously available data, because
it would imply to understand completely all the resources, all the classes, and all the
ontologies that are standing behind. According to [66], expressiveness, in this situation,
is a bottleneck for Semantic Web.

This is where visualization tools for the semantic graph come to help: they provide
a step by step approach to the knowledge base that, together with filtering techniques,
and the possibility to see the contents, are useful to go through the relevant concepts.

Possible visualizations

As we said previously, the most frequent way to produce a view of a database is the
tabular representation. This is a possible solution also for queries made in SPARQL
language to RDF triple stores like Blazegraph, Fuseki and Virtuoso. The view of a
SPARQL SELECT is a direct consequence of the number of variables concerned by the
inquire: i.e., the number of variables in the SELECT clause is the same as the number
of columns contained in the results. To be more precise, to obtain the column number
either (i) it is necessary to count the variables queued after the SELECT keyword, like in
listings 1.2 and 1.3; or (ii), variables have to be obtained from the WHERE clause, as in
the SELECT * WHERE {...} case.

The drawbacks with table views are, unfortunately, already quite visible when the
number of rows reaches as little as few dozen entries. Aside from the fact that there is
not a group view of the overall query result, the table often is required to contain more
than one row for the same conceptual entity. This happens for instance when a resource
is connected to another via more than one predicate, or when it is connected to different
objects, through the same predicate.

In such situations, the result table can contain not only plenty of lines with the same
meaning disturbing the overall understanding of the query output, but also, as already
said, a high number of columns. Moreover, some entries in the table can also be empty,
as an effect of OPTIONAL statements in the query. Detecting particular cases, in sparse

23

and large tables, becomes a time-consuming and error-prone task in those situations.
On the other hand, a few workarounds are available in SPARQL language to crunch into
a single line the occurrence of multiple table lines for a single concept, but they usually
imply slowing down the performances, and have the effect to concatenate the values into
strings. That is, we lose the possibility to check if they are represented as IRIs, literals,
or blank nodes.

The multi-table approach is a graph visualization technique that tries to address
the problem of having limited control over the complete data table. Let’s consider a
query selecting all triples in the RDF store: SELECT * WHERE {?a ?b ?c}, and let’s
suppose that in the store only 5 distinct resources might correspond to the ?b variable.
With this background a full-table approach would return an n = 3 column table, where
n is the number of variables. Instead a multi-table approach would outcome with 5
smaller tables, one for each one of the ?b resources, each of them built up of n− 1 = 2
columns. An interesting work about the complexity of translation from SPARQL to
other languages, included table view, was provided by Chebotko et al. in [67]: among all
the contributions, this paper perfectly shows the complexity of a multi-table approach.

Finally, last but not least, the RDF knowledge base representation can be performed
through a labeled graph visualization. Although the RDF concept is defined for directed
graphs, in most of the cases the label is sufficient to get at view time the direction of
the connection. This allows the usage of algorithms for undirected graphs. Nevertheless,
the drawbacks of this approach are also related to the knowledge base dimension, as the
understanding of contents is tightly bound to the possibility of identify paths and node
types easily and effectively.

Graph drawing algorithms

There is a complex relationship between the domain of the semantic application, the
tool that is being used, and the algorithm that is implemented to visualize the graph.
To make an example, let’s consider a knowledge base in which information about some
people is stored. If the application working on the knowledge base is not interested in
literal terms, the sight of the graph would be effectively simplified and clearified by just
removing all the links towards literal terms, e.g. names, surnames and birth dates.

In other RDF triple stores more than one unique ontology may have been used
to define resources, exploiting for instance simultaneously the [foaf] ontology and the
Dublin-Core ontology [dc]. If an application is interested only in the [foaf]-related
connections, and in a small part of the DC’s, there would be no use in trying to represent
everything.

A full description of all the algorithms available for graph drawing is out of the scope
of this Thesis. In this Section, nevertheless, a brief overview of a few works available in
literature is given, before proceeding in the next paragraph to the analysis of the tools.

A complete theoretical overview of the main algorithm logic available to draw graphs
is given by Kobourov in [68]. Spring algorithms and their variations for instance are
explained: they usually aim to reproduce an aesthetically pleasant view, even if their
best performance is obtained in most of the cases when the graph has less than 40

24

vertices. However, as it has been said, the semantic graph is definitely a large graph, or
very large, and for this reason it demands particular approaches that imply multiple scale
algorithms. Nodes organization is not necessarily done on a plane: possible alternatives
are to dispose them on a sphere or other geometrical objects. In [69] more than one
plane is used, which can be a technique also to represent the evolution of data over time.
How to show in an effective way dynamic evolution of contents in a graph is also the
topic of survey [70] by Beck et al.

Listing 1.4 – SPARQL CONSTRUCT that identifies in DBpedia the
Fantasy-genre books written between 1900 and 2018 having more than
200 pages.
CONSTRUCT {

?book rdf:type dbpo:Book;
dbpo:literaryGenre :Fantasy_novel;
dbpo:author ?author;
dbpo:releaseDate ?date;
rdfs:comment ?comment;
rdfs:label ?label;
dbpo:numberOfPages ?num;
foaf:isPrimaryTopicOf ?topic.

?author rdf:type foaf:Person
}
WHERE {

?book rdf:type dbpo:Book;
dbpo:literaryGenre :Fantasy_novel;
dbpo:author ?author.

?author rdf:type foaf:Person.
?book rdfs:comment ?comment;

rdfs:label ?label;
dbpo:numberOfPages ?num;
foaf:isPrimaryTopicOf ?topic.

FILTER langMatches(lang(?label), "EN")
FILTER langMatches(lang(? comment), "EN")
FILTER (isIRI (? author))
FILTER (xsd:integer (?num) > 200)
OPTIONAL {

?book dbpo:releaseDate ?date .
FILTER (?date > 1900)
FILTER (?date < 2018)
FILTER (isLiteral (?date))
FILTER (datatype (?date) = xsd:integer)

}
}

 Query execution:

Last visited: 15/10/2019

25

Graph visualization tools

Hereby a detailed analysis of the main tools for the visualization of RDF knowledge
bases and ontologies is proposed. We focus on the tools providing a graph visualization
of RDF statements. The tools presented in this Section are reported in alphabetical
order.

CytoScape is a tool for network data integration, analysis and visualization. Support
to Semantic Web technologies is provided by a set of extensions hosted on CytoScape’s
App Store, such as General SPARQL, SemScape and Vital AI Graph Visualization [71].
General SPARQL allows to navigate semantic web KBs through an extensible set of pre-
defined queries. The plugin is pre-configured to retrieve and visualize data from public
endpoints (e.g., Reactome, Uniprot, HGNC, NCBI Taxonomy, Chembl). SemScape
supports the interaction with remote SPARQL endpoints by means of SPARQL queries.
In this way, CytoScape can be employed to visualize the results of a query. Vital AI
Graph Visualization is not limited to semantic databases, but provides access also to
SQL and NoSQL databases as well as Apache Hadoop instances. To the best of authors’
knowledge, this tool only allows the visualization of data compatible with the BioPAX
format.

Fenfire was a tool for the visualization and editing of RDF graphs aimed at an interac-
tive exploration of the graph [72]. Authors face the problem of scalability by limiting the
exploration of the graph to one thing at a time. The visualization in facts, diplays only
one central node and its surroundings. The central node, at the beginning of the explo-
ration is selected exploiting the foaf:primaryTopic property (if present), otherwise is
selected by the user. The nodes surrounding the central one (named focus) are placed
on the plane according to a simple strategy: on the left, all the nodes being subjects of
the statements linking to the focus. On the right, those being objects of the statements.
Development of Fenfire stopped in 2008.

Gephi is a very powerful tool designed to represent not only semantic graphs, but every
kind of graph or network [73]. Support to RDF graphs is provided by two external plu-
gins, VirtuosoImporter and SemanticWebImport (this one developed by INRIA). Gephi
is able to retrieve data from SPARQL endpoints (through REST calls) as well as to load
RDF files. Gephi supports filtering the KB through SPARQL queries. The look of the
graph visualized by Gephi is fully customizable, in terms of colors and layouts; moreover
the tool supports grouping similar nodes and this helps achieving better results when
dealing with very complex graphs. As regard exporting the graph, Gephi is the tool that
supports the highest number of file formats for exporting the graph. Among these, it is
worth mentioning csv, pdf and svg.

In Figure 1.3a we can see a view of the graph that Gephi is able to retrieve from
DBpedia by using the SPARQL CONSTRUCT available in Listing 1.4. The tool performs
the representation very quickly, and implements various possible algorithms to build
the graph. Unfortunately, as it can be seen, it is quite difficult to get the overall idea
of the composition. Although there is the possibility to add the labels of nodes and

26

(a) The Figure is the output of Gephi’s CONSTRUCT in Listing 1.4 to DBpedia. According to its logger, the
triples represented in this graph are 6529.

(b) With Gephi some nodes can be highlighted, to help the user to go through the knowledge base. When
the number of edges and nodes is high, however, it’s not easy to outline the information. The nodes in red
are related to L. Alexander’s novel “The Black Cauldron”.

Figure 1.3 – Gephi [73] output example.

edges, the output is not reader-friendly, and the research in it is a rather impossible
task. A practical example can be observed also in Figure 1.3b, where we highlighted the
nodes related to the novel “The Black Cauldron” by L. Alexander. Eventually, a number
of statistical functions can be applied to the network, like the Network Diameter, the
Density and the Average Path Lenght: the only problem is that they have, as for the
Authors’ knowledge, very limited use when applied to a Semantic Graph.

Glow is a visualization plugin for the ontology editor Protégé [74]. Force-directed,
Node-link tree and Inverted radial tree are the three layout algorithms provided by

27

GLOW. The items are arranged automatically with every layout, and cannot be moved.
The tool is able to represent a set of ontologies and optionally their individuals. To the
best of authors’ knowledge, this tool is not developed anymore. No information about
the license could be found.

IsaViz is a 2.5D tool for the visualization of RDF graphs originally developed by
E. Pietriga (INRIA) in collaboration with Xerox Research Centre Europe [75]. IsaViz,
as the name suggests, is based on GraphViz [76] and allows importing and exporting
from/to RDF/XML, Notation 3 and N-Triple files. The result of the visualization can
be also exported as a png or svg file. In the Graph view it is possible to select resources
and access a textual list of properties (this view is named Property Browser). A third
view is named Radar and presents an overview of the graph, since the graph view may
contain only a portion of it. Finally, it is worth mentioning the search tool provided by
IsaViz, whose results are highlighted one by one in the graph view. Unfortunately, the
last development version of this tool dates back to 2007.

Jambalaya is a Protégé plugin for the visualization of ontologies [77]. Jambalaya is
characterized by the integration of the SHriMP (Simple Hierarchical Multi-Perspec-
tive) [78] visualization technique, designed to improve the user experience in browsing,
exploring, modelling and interacting with complex information spaces. This technique,
originally born to help programmers understanding software, was applied to Protégé to
build a powerful visualization of classes and relationships. The tool proposes a nested
graph view and the nested interchangeable views. Nesting is used to represent the sub-
class relationships among classes as well as the link between classes and their instances
(different colors allow to distinguish between classes and instances). Jambalaya also
provides an easy way to search for items in the ontology. Despite being an interesting
tool developed with support from the National Center for Biomedical Ontology (NCBO),
Jambalaya is not developed anymore.

LOD Live is a web-based tool for the incremental navigation of Linked Data available
on a selected SPARQL Endpoint (e.g., DBpedia) [79]. Endpoints can be configured
through a JSON map of their parameters, similarly to what happens in Tarsier [69].
The purpose of this tool is to demonstrate that the powerful Semantic Web standards
are also easy to understand; the aim is to foster the spread of Big Data. Every resource
drawn by LOD Live is surrounded by a set of symbols representing different kinds of
relationship (e.g., direct relations, group of direct relations, inverse relations and group of
inverse relations). The incremental navigation, joined to the ability of the tool to group
properties allows to draw a very clean graph. No support for statistics or advanced
filtering (e.g., based on SPARQL) is provided. To the best of our knowledge, directly
exporting the graph is not possible. In Figure 1.4 it is shown how LOD Live performs
a similar task as the one in Figure 1.3b: exploring data is easier, but there is no way to
perform requests like the one in Listing 1.4.

Ontograf is one of the visualization tools provided by the famous ontology editor Pro-
tégé [80]. The tool allows to build a custom visualization of the ontologies loaded in

28

Figure 1.4 – To use LOD Live [79] a resource must be fixed. Then, the knowledge related to the
resource can be expanded as shown. Like in Figure 1.3b, the example here is based also on L.
Alexander’s novel “The Black Cauldron”.

Protégé by iteratively enabling or disabling the desired classes. Ontograf proposes a
grid layout (with classes sorted in alphabetical order), a spring layout and a (vertical or
horizontal) tree layout. Individuals of a class can be visualized in its tooltip, but this
is uncomfortable when dealing with a high number of assertional statements. Ontograf
allows to export the visualized graph as a png, jpeg, gif or dot file. This tool exploits the
layout library provided by Jambalaya. Fig. 1.5 shows a graph created with OntoGraf
using the DBpedia ontology. Classes work and written work were initially selected.
Then, a double click on the latter allowed to expand it and visualize all the subclasses
(solid blue line), and all the classes linked to it by means of an object property (dashed
lines). The last version of Ontograf dates back to April 2010, but is still included in
the last stable version of Protégé10 (the 5.5.0, as of August 2019). The tool is useful to
select and visualize (a small number of) classes from the ontologies loaded in Protégé
and the existing relationships.

OntoSphere is one of the two tools (the other is Tarsier [69]) that proposes a three-
dimensional visualization of the graph [81]. The rationale behind OntoSphere is that
exploiting a 3D space it is possible to better arrange items. Moreover, the 3D visualiza-
tion is quite natural for humans and the exploration can then be more intuitive. Colors
allow to easily convey information about the different nature of represented items. On-
toSphere is aimed at representing both terminological and assertional statements. Four
scene types are proposed to fulfill different requirements. The RootFocus scene shows all
the concepts and their relationships on a sphere. The TreeFocus scene draws the tree

10 https://protege.stanford.edu/

29

https://protege.stanford.edu/

Figure 1.5 – A portion of the DBpedia ontology visualized in Ontograf [80].

originating from a concept, while the ConceptFocus scene proposes a view containing
all the items linked to a concept. The tool is aimed at domain experts dealing with the
development and review of ontologies, as well as novice users that wants to understand
the represented data and the links among concepts. OntoSphere is a standalone appli-
cations, but can also be run inside Protégé and Eclipse. The last version on the source
code repository is dated 2008, so the development stopped ten years ago.

OWLViz is a plugin for Protégé that enables the incremental visualization of the classes
in the class hierarchy [82]. As the name suggests, this tool, like IsaViz, is based on the
famous library GraphViz developed by the AT&T and allows exporting the visualized
graph as png, jpeg and svg. Through OWLViz is easy to visualize classes and is-a
relationships. OWLViz is not developed anymore, but is still included in the last version
of Protégé (August 2019).

Paged Graph Visualization (PGV) is a Java software for the visualization of RDF
graphs [83]. It is based on [84], a high performance RDF storage. With PGV, the explo-
ration starts from a point of interest and then incrementally includes more data. Such
point of interest can be selected interactively from a list or using a complex SPARQL
query. Then, it is drawn in the center of the graph using the color green, and its direct
neighbors are shown as blue rectangles placed around it. Literals on the other hand, are
represented with the white color. The user is able to explore nodes by double-clicking
on them: explored nodes are then displayed in green, while edges connecting explored
nodes are depicted in red. Deligiannidis et al. [83] declare that the tool’s strength relies
in helping the user willing to explore data without knowing the exact information and
graph patterns he is looking for, while in other situation a standard visualizer could be
more appropriate. This tool seems to be not developed anymore.

RelFinder is a web tool developed using Adobe Flex and can be tried using the web

30

Figure 1.6 – RelFinder view of the paths from “JRR Tolkien” to “The Lord of the Rings”.

instance linked in the homepage of the project (configured to access DBpedia) [85].
RelFinder differs from the other tools proposed in this survey, since it is aimed at vi-
sualizing all the paths connecting two resources. So, its purpose is to answer a very
specific question, rather than providing a tool for the free exploration of the knowledge
base. The tool supports filtering to increase or reduce the number of relationships shown
simultaneously. It also implements a smart drawing algorithm to reduce overlapping and
the user is allowed to move and pin items. To the best of authors’ knowledge, this tool is
not actively developed but the online instance is still available for tests on the DBpedia
endpoint. Fig. 1.6 reports an example of this application where all the paths between
two DBpedia resources, i.e, “JRR Tolkien” and “The Lord of the Rings”, are shown.

Tarsier is a tool developed by ARCES research group. It is a software for the interactive
exploration of an RDF graph in a three-dimensional space, aimed at the visualization
of small and medium-sized knowledge bases. The main contribution of the tool is the
introduction of the metaphor of semantic planes that group RDF terms sharing a com-
mon concept. The purpose of the tool is threefold: 1) Tarsier can be used as a support
for didactic (e.g., to help newcomers to deal with Semantic Web technologies); 2) It
is useful to figure out the nature of a new KB for developers (i.e., activity known as
“sensemaking” [86]) ; 3) It allows debugging of semantic knowledge bases.

Tarsier retrieves data from SPARQL endpoints. The initial knowledge base can
be determined through a SPARQL Contruct query: this pre-filtering stage allows to
efficiently interact also with very large knowledge bases (e.g., DBpedia, that contains
more than 6.6M entities). Tarsier proposes a classification of all the RDF terms among

31

(a) Tarsier showing the graph of all the fantasy books
published from 1900 to 2018 and their authors. This
subgraph is retrieved from DBpedia.

(b) Tarsier showing two semantic planes over the main
knowledge base: one showing books, the other (the
topmost) showing the author Marion Zimmer Bradley.

Figure 1.7 – Tarsier [69] user interface.

classes, resources, blank nodes, literals, object and datatype properties. This grouping
is exploited by Tarsier’s web interface to provide a set of controls for advanced filtering:
through them, the user is allowed to toggle visibility of items or to move them across
semantic planes.

An example of Tarsier is shown in Figg. 1.7a and 1.7b. Tarsier was set up to retrieve
data from DBpedia, and in particular to extract all the fantasy books published between
1900 and 2018 and their authors. While Fig. 1.7a shows the unfiltered knowledge base, in
Fig. 1.7b is shown one of the peculiarities of Tarsier: the semantic planes. Two semantic
planes were created over the main knowledge base to extract respectively books and one
of the authors, i.e., Marion Zimmer Bradley. In this way, it is easy to notice how this
instance of the class foaf:Person is linked with the graph.

TGVizTab is yet another visualization plugin for the ontology editor Protégé [87].
It is designed to be lightweight and support both T-Boxes and A-Boxes visualization,
and it relies on TouchGraph, an open source Java environment aimed at creating and
navigating network graphs in an interactive way. The tool supports exporting the graph
in an XML file, to be loaded in other TouchGraph applications. The graph is drawn using
the spring layout: similar nodes are drawn close to each other. TGVizTab, like other
tools (e.g., Fenfire), asks the user to select a focal node among classes and instances to
generate the graph. Then, the user is able to further modify the graph by right-clicking
on the represented nodes: in this way the so-called Node Menu is shown, containing four

32

options (i.e., expand, collapse, hide, view). Then TGVizTab allows to incrementally
build the desired visualization.

VOWL (Visual OWL) is available as a web-based tool (WebVOWL [88, 89]), a plugin
for Protégé (ProtégéVOWL [90]), a tool able to directly interact with Linked Data
endpoints (LD-VOWL [91]), and as a visual query language tool (QueryVOWL [92]).
Here we will refer to the web based version, WebVOWL. As the name suggests, software
in the VOWL toolkit are designed to graphically represent ontologies. They propose a
force-directed graph layout. The basic representation rules adpoted by VOWL consists
in:

• Classes are depicted using circles where the color depends on the type: light blue
for OWL classes, purple for RDFS classes, dark blue for those imported by other
ontologies, gray for deprecated classes.

• OWL object and datatype properties are represented with black solid lines with,
respectively, light blue and green labels, while RDFS properties have purple labels.

• Relationships subClassOf are depicted with a dashed line.

The graph drawn by VOWL can be exported as an svg image or as a json file.
A click on a node or edge allows visualizing the associated metadata and statistics.
Statistics also report the number of individuals of the selected class, but unfortunately
this is the only information about individual that is possible to obtain using VOWL.
As regards filtering, VOWL provides a basic support to filters that allows to show/hide
object/datatype properties, solitary classes, class disjointness and set operators.

VOWL is actively developed and an online instance is available. As the tool is
designed for ontologies, importing the output of the CONSTRUCT in Listing 1.4 results
in representing only the two rdf:type relationships. The other tools are still being
developed and at the moment do not allow to perform a customized request to DBpedia.

Overall considerations on graph visualization

Table 1.1 summarizes the main features of the analyzed software. Columns of the table
are:

• Software – reports the name of the software;

• T-Boxes – this column tells if the tool supports the visualization of terminological
statements;

• A-Boxes – this column shows if the tool supports the visualization of assertional
statements (and can then be used to explore a knowledge base, rather than just
ontologies);

• Statistics – a boolean field showing if the tool provides or not statistics on the
visualized data;

33

• Filtering – filtering allows to show/hide elements in the visualization according to
a set of user-defined criteria. Filtering can be implemented in very different ways
(e.g., SPARQL queries, or UI controls to select classes, just to name a few). This
column indicates whether the related tool provides at least one filtering mechanism.

• Editing – This Thesis surveys visualization tools for semantic data, but some
of them also offer editing functionalities. This column states whether or not the
related tool supports the manipulation of the ontology/knowledge base;

• Standalone – Many of the surveyed tools were born as plugins for the ontology
editor Protégé. Other can be run as standalone software. This column tells if the
related software is embedded in other tools or is a standalone application.

• Plugin – Not all the presented tools were born to visualize semantic knowledge
bases. Then, some of them need additional plugins to achieve this task.

• Domain – This column contains the specific domain (if any) where the related
application can be applied.

• Reference – This column reports the reference number of the paper(s) describing
the tool.

Plus, additionally, other information about the entities that started the development
of the tool, the license and the current status of the project.

1.2.2 AudioCommons Project

We will show in this Section an example of usage of the Semantic Web to foster infor-
mation interoperability in an European Project called AudioCommons11 (AC).

According to the project’s website, its goal is to bring Creative Commons audio
content to the creative industries. Therefore we will hereby discuss the development of a
tool (the AC Mediator) that promotes a synergy between web technologies and musical
audio production and sharing services (i.e., the industry). While here such approach will
support us in providing a common platform-methodology for audio sharing, enjoying and
researching, in Section 2.2 the Semantic Web will be our starting point to implement
from scratch a new concept of IoT connected to music.

Let us consider the following four online tools:

Jamendo12

Europeana13
Freesound14

Internet Archive15

11The author was involved in the project in the context of a collaboration with the Centre for Digital
Music at the Queen Mary University of London. Se also the Introduction for further references.

12 https://www.jamendo.com/
13 https://www.europeana.eu/portal/en
14 https://freesound.org/
15 https://archive.org/index.php

34

https://www.jamendo.com/
https://www.europeana.eu/portal/en
https://freesound.org/
https://archive.org/index.php

With reference to AudioCommons, they are all interesting sources of audio (and a lot
more!) material mostly stored with Creative Commons licenses16. The Internet Archive,
for instance, is a non-profit library of millions of free books, movies, software, music,
websites, and more. Freesound, instead, targets only audio media into a collaborative
environment. Jamendo aims to bring together a worldwide community of independent
music, creating experience and value around it. Lastly, Europeana provides access to
over 50 million digitized items - books, music, artworks and more.

By interacting with those services, consequently, end users are not only authorized,
but also encouraged to search for contents and use them into their local projects. The
Creative Commons license agreements regulate the rights of the users and the authors
[93].

How to explore the databases? First of all, contents can be accessed in a very simple
way from a regular web browser. Queries can be issued and their results can be examined
and downloaded in a user-friendly interface requiring a manual approach. APIs are also
available to perform this task.

While this is indeed a good result, it actually appears that a complete search implies
a manual exploration of the query outputs coming from the four services separately. Ac-
cording to [93], this required manual approach is one of the issues hindering the spread of
freely accessible medias. In particular, it is possible to outline two main bottlenecks: (i)
incomplete and wrong metadata, as there is often a lack of proper annotation within me-
dias; (ii) incoherence among content providers data representation, e.g., it is not possible
to access Jamendo’s database in the same way in which we access the Internet Archive.
The former is due, for instance, to the author’s bad description of his own work (e.g., by
choosing the wrong musical genre, by adding in the title unnecessary information, ...)
[94]. The latter, instead, refers to the differences into specific implementation choices
for every content provider, which are included into the APIs, authentication policies and
output formats. As we said in Section 1.1, typically we have that query results may
refer to the same type of content, but still are incompatible because they are presented
in radically different ways: namely, the file format or tagging vocabulary inconsistencies.

One of the main achievements of AudioCommons is the work on this specific vocab-
ulary matching topic. The main question, therefore, would be: how to grant through a
single query the access to the four services from a unique common endpoint, and still be
able to compare results coherently? All this, clearly, looking to the future and creating
a setup easily extendable with new features.

The first task to be addressed was the common interpretation of the results given by
the content providers. This is a typical situation in which having a Semantic descrip-
tion of the information exchanged would have provided a direct solution. In this case,
therefore, there is the need of aligning the vocabularies used by the four providers into a
unique one which would then represent our real access point. This is the reason behind
the AudioCommons Ontology [aco], developed by Ceriani et al. [95].

A complete and full description of the AC ontology is out of the scope of this Thesis.
We focus, however, on the methodology to exploit it. Given that we have a shared

16 https://creativecommons.org/

35

https://creativecommons.org/

Figure 1.8 – Schema of the AudioCommons Mediator working logic.

view on how to represent information following the aforementioned AC ontology, we
need to transform the information coming from the media providers in a format that is
compliant to it. To do so, consider Fig. 1.8: the proposed schema outlines the actual
working procedure of the core tool, the AC Mediator. Let us consider a client querying
for audio contents related to dogs: as we said, it would be possible to perform manually
a query to each of the contents providers, and try to obtain comparable results through
complex parsing algorithms.

Fig. 1.8, instead, takes a different direction: the dog request is given to a service
called SPARQL-Generate [96, 97] together with a set of mappings. Each mapping is
specific for a content provider, and carries the needed information to correctly contact
the provider and to interpret and parse the expected output.

In our setup, available on Github17, the mapping has to translate the outputs from
Europeana, the Internet Archive, Freesound and Jamendo, which are given in JSON
format, into a shared semantic RDF graph. This is the generate phase. This procedure,
of course, implies that

1. The mapping contains all the needed information to correctly contact the content
provider;

2. The SPARQL-Generate request is made having prior knowledge of the AC Ontology,
essential to correctly format the RDF graph;

3. The SPARQL-Generate request is made having prior knowledge of the schema used
by the media provider to build its JSON output;

17 https://github.com/AudioCommons/semanticMediator

36

https://github.com/AudioCommons/semanticMediator

4. Adding a new provider to the mediator means simply adding a new mapping,
resulting in a setup that is extremely flexible and extensible.

The RDF graph eventually obtained from the SPARQL-Generate after querying the
four providers is the actual result of the process. It can be stored in a knowledge base,
like Blazegraph or Virtuoso, for further usage. Alternatively, it can be simply returned
back to the original client.

A further development of this unification procedure is connected to particular queries
that need a long time to be performed, like the one suggested by Xambó et al. [98]. In the
next Section 1.3 we will introduce an additional tool that is one of the core instruments
of this Thesis, i.e. the SEPA. By using the SEPA, as it will be shown, it will be possible
to address the long-query problem with a fully semantic setup.

1.3 SPARQL Event Processing Architecture
This Section will introduce one of the core tools that allowed the realization of the work
outlined in this Thesis, i.e., the SPARQL Event Processing Architecture (SEPA). As a
complete discussion on the internal specific mechanism of SEPA is out of the scope of
this report, we will make some references to the published research [99], and present a
higher level explanation.

Some light examples will also be shown, although the real test bench application can
be found in Section 3.2, where the SEPA will represent the core engine supporting of
our vision of Semantic Web of Things agents.

1.3.1 Origins

The SPARQL Event Processing Architecture is the last step of a long path made of ideas
and projects in which ARCES research center has been involved since approximately
2010. At the time the idea was expressed in the Smart-M3 platform [100], which had the
intent of implementing a middleware architecture to support information sharing among
devices and software. The challenge of data interoperability was addressed through a
semantic approach: applications would agree on an ontological description of data, and
use a shared semantic endpoint to store their information.

An additional requirement, in this middleware setup, is dynamicity. This is due
to the fact that dealing with devices and software is not a static task, but rather is
something that is subject to continuous change. As a matter of fact, while the Smart-
M3 architecture started to be applied also to IoT, this aspect became even more relevant.

Addressing dynamic data exchange, in this context, created over the time the con-
cept of Publish-Subscribe: according to [101], a few types of Publish-Subscribe can be
outlined. Well known and frequently used protocols, like AMQP and MQTT belong to
the topic based methodology for which, in a broad view, the topic is a tag that identifies
a communication channel. A content based approach, instead, will simultaneously define
a tag for the channel and request some further conditions on the data exchanged (e.g.,
if the channel is tagged Temperature, we call for Temperature>25 degrees). The type

37

based, eventually, tag the channel with the format of the data that is passing.
The Smart-M3 architecture, in such panorama, is positioned as we said including part

of each of the three aforementioned ideas plus a semantic approach. The middleware was
implemented in various flavors, keeping nevertheless the reference to its function as a
Semantic Information Broker. It is possible to cite some of the implementations, namely
RedSib [102], OSGi SIB [103], CuteSIB [104], PySIB [105]: they were largely exploited
and evaluated [106, 107], implement approximately the same paradigm and the same
(non standard) protocols to perform semantic data insertion/deletion and subscription.

SEPA starts from that point on. With the appearance of the concepts of Web of
Things and Linked Data, the semantic middleware needed to be updated in order to be
compliant to web standards. In the next Section this complete refactoring is explained.

1.3.2 Architecture

SEPA’s working logic is rather simple. It is a semantic middleware for interoperability
that has to

1. Store and retrieve semantic data upon request;

2. Add and delete semantic data;

3. Control the evolution of data dynamically and notify changes;

The clients, in such context, will require their data to be safely kept: to do so, SEPA
relies on external tools to store semantic information, like Blazegraph18, Fuseki19 or
Virtuoso20. These are RDF stores, that can be queried and updated by the means of
SPARQL 1.1 Query and Update Language.

The event monitoring service is added by our architecture on top of the semantic
storage. To better understand how such subscription engine works, consider Fig. 1.9.
In the figure we outline the various possible behaviors that we can expect from a client
(i.e., the line on top of the schema). The box at the bottom, instead, represents the
SPARQL endpoint, or equivalently an RDF store instance.

Queries, as it is shown, pass almost in a transparent way through SEPA, with the only
constraint that query and update requests cannot be executed out of order. Updates, on
the other hand, are conceptually bound to the subscription engine, as their side effect is
to generate notifications. They are both executed through HTTP POST.

Once an update is received, the actual triples to be added, and the ones to be
removed, are matched to the list of subscriptions that are active. If the subscription
SPARQL pattern corresponds to some of the triples in either way, then the notification
is triggered, through Websocket. For a complete and precise description of every internal
mechanism, please refer to [99].

Let us make a simple SEPA usage example, by calling back the actor genealogy
18 https://www.blazegraph.com/
19 https://jena.apache.org/documentation/fuseki2/
20 https://virtuoso.openlinksw.com/

38

https://www.blazegraph.com/
https://jena.apache.org/documentation/fuseki2/
https://virtuoso.openlinksw.com/

Figure 1.9 – SEPA internal setup, from [99].

introduced in Section 1.2. Should we implement the algorithm proposed (available in
Github21), we could have a query approach like the following:

$ python3 hollywoodgenealogy.py "Jack␣Nicholson" "Julia␣Roberts"
(0) :Jack_Nicholson starred with :George_Clooney in
:Batman_ (1989 _film_series)
(1) :George_Clooney starred with :Julia_Roberts in :Ocean’s_Eleven

Indeed, to stay up to date with this information, it is necessary to repeat the search,
at least each time a new film starring either Jack Nicholson or Julia Roberts is released.
SEPA subscription engine would avoid this query polling procedure: by making the
subscriptions in Listings 1.5 and 1.6, we can be notified if a film in which both the
actors have a role is updated to DBpedia. Furthermore, as it can be seen, the SPARQL
that identifies the subscription is the same that is posted for the simple query.

Listing 1.5 – Subscription to new direct connections
SELECT ?film1 WHERE {
?film1 dbpo:starring dbpedia:Julia_Roberts ,dbpedia:Jack_Nicholson.

}

21 https://github.com/fr4ncidir/HollywoodGenealogy

39

https://github.com/fr4ncidir/HollywoodGenealogy

Listing 1.6 – Subscription to new one-step connections
SELECT ?film1 ?actor_1 ?film2 ?actor_1 WHERE {

?film1 dbpo:starring ?actor_1 , dbpedia:Julia_Roberts.
?film2 dbpo:starring ?actor_1 , dbpedia:Jack_Nicholson.

}

A slightly more complex example was already mentioned in the previous Section while
discussing the European project AudioCommons. The AC Mediator, in this case, was
designed to dispatch uniformed versions of query results coming from various services.
By introducing their research Xambó et al. [98] suggested a further expansion of the
AC Mediator including in the queries some characters that may require audio analysis
and elaboration. This activity, clearly, can be time-consuming and may cause scalability
problems.

A SEPA powered solution to this challenge can be implemented as follows. We
already said that query results are transformed into RDF graphs and then inserted
into an RDF knowledge base. Let us consider a SEPA engine, in this case, with an
underlying Blazegraph triple store. With reference to Fig. 1.8, we can modify the
schema to include long queries as it is shown in Fig. 1.10. Clients, here, make the
request to the AC Mediator, that in this case is aware of what are the services that
need the SEPA approach. If the incoming query request is one of them, the Medi-
ator will (i) generate an URI to identify within the RDF store a subgraph in which
results will be available in the end; (ii) use such URI to immediately reply to the
client. With this information, the client is able to subscribe to the results of the query,
and to be notified as soon as they are available (see Listing 1.7) without blocking.

Listing 1.7 – Subscription example for the SEPA-enhanced AC Mediator.
SELECT *
FROM <http :// this_is_the_generated_uri >
WHERE {?a ?b ?c}

1.3.3 Future

As it was detailed, SEPA introduces a relevant dynamism to the semantic information.
The IoT, in particular, will be the target of this in the prosecution of this Thesis, as by
monitoring events we can follow the context evolution, and through semantics we can
overcome the vertical silos fragmentation at information level.

However, SEPA presents various research opportunities for the future.
First of all, there is the need to study and enhance SEPAs performances. SEPA,

in fact, suffers of quick degradation of performances as the number and complexity
of subscriptions grows. Not to mention that the number of triples contained in the
knowledge base has also a considerable impact on the subscription triggering engine.

Secondly, following a technological trend of cloud distribution of services, a possible
future direction is to work on a distributed SEPA, addressing a set of coherence and

40

Figure 1.10 – Schema of the AC Mediator working logic for long query services.

reliability issues that, to the best of the author’s knowledge, have not yet been studied
over linked data endpoints.

Eventually, RDF knowledge bases can be exploited with reasoning techniques. Their
effect, in particular, is the modification of the knowledge base according to some rules.
The SEPA architecture has not yet been tested with reasoning, and therefore it could
be interesting to see how SEPA and rule engines behave when used together in an
application.

41

Table
1.1

–
Sum

m
ary

ofthe
featuresofthe

toolsforthe
visualization

ofsem
antic

knowledge
bases.

Legend:


=
yes,


=

no,
=

partial,


=
m

ultiple
options

available,
?=

unknown,
−

=
N

ot
applicable

Softw
are

T-Boxes

A-Boxes

Statistics

Filtering

Editing

Standalone

Plugin

Domain

D
evelop

ed

License

Active

Reference

C
ytoScape










G
eneralSPA

R
Q

L,
Sem

Scape,
V

italA
I

B
iology

C
ytoScape

C
onsortium

G
P

L


[71]

Fenfire









−

G
eneral

U
niversity

of
Jyw

äskylä
and

D
igital

E
nterprise

R
esearch

Institute
of

the
N

ationalU
niversity

ofG
alw

ay

G
P

L


[72]

G
ephi










Sem
anticW

ebIm
port,

V
irtuosoIm

porter
G

eneral
G

ephiC
onsortium

G
P

L


[73]

G
low










−
G

eneral
E

rasm
us

U
niversity

R
otterdam

?


[74]
IsaV

iz









−

G
eneral

IN
R

IA
in

collaboration
w

ith
X

erox
R

e-
search

C
entre

E
urope

G
P

L


[75]

Jam
balaya










−
G

eneral
C

hiselLab
(U

niversity
ofV

ictoria)
Individual


[77]

LO
D

Live









−

G
eneral

lodlive.it
M

IT


[79]
O

ntograf









−

G
eneral

Stanford
C

enter
for

B
iom

edical
Infor-

m
atics

R
esearch

LG
P

L


[80]

O
ntoSphere










−
G

eneral
Politecnico

diTorino
LG

P
L


[81]

O
W

LV
iz










−
G

eneral
U

niversity
ofM

anchester
LG

P
L


[82]

P
G

V









−

G
eneral

LSD
IS

Lab
and

C
om

puter
Science

(U
niversity

ofG
eorgia),K

no.e.sis
C

en-
ter

(W
right

State
U

niversity)

?


[83]

R
elFinder










−
G

eneral
V

isualization
and

Interactive
System

s
(U

niversity
ofStuttgart),A

gile
K

now
l-

edge
E

ngineering
and

Sem
antic

W
eb

(U
niversity

ofLeipzig),Interactive
Sys-

tem
s

and
Interaction

D
esign

(U
niver-

sity
ofD

uisburg-E
ssen)

G
P

L


[85]

Tarsier









−

G
eneral

A
dvanced

R
esearch

C
enter

on
E

lec-
tronic

System
s

(U
niversity

ofB
ologna)

G
P

L


[69]

T
G

V
izTab










−
G

eneral
IA

M
G

roup
(U

niversity
of

Southam
p-

ton)
G

P
L


[87]

V
O

W
L










−
G

eneral
V

isualization
and

Interactive
System

s
(U

niversity
of

Stuttgart),
A

lexandru
Ioan

C
uza

U
niversity

M
IT


[89],
[88],[90]

42

Chapter 2

Semantic Internet of Things

W ithin this Chapter a few facets of the Internet of Things will be discussed,
highlighting in particular its integration with and within semantic technologies.

Over the Sections some actual implemented ideas will explain which are the benefits of
adding the semantic layer, both with a SEPA dynamic background, and without.

In addition to this, in Section 2.2 we will completely present the first major con-
tribution of this Thesis, i.e., the Internet of Musical Things ontology. Its main goal is
to open the way to collaborative musical production, with connected musical devices.
Although it may appear that we address a limited subset of the whole IoT, Section 2.2
will give proof that the methodology is on the contrary general and open for further
enhancements.

2.1 Semantic Interoperability

Chapter 1 gave a broad view of the IoT panorama. The addition of semantics, as we
said, could represent a technique to overcome vertical fragmentation. As a matter of fact,
interoperability was one of the leading ideas since the first appearances of the Semantic
Web concept [2].

But what does interoperability actually means? As we said in Section 1.1, from a
technical point of view the term interoperability implies that there should be, among the
considered systems, the same ISO-OSI stack. Consequently, interoperability should allow
systems to be aware of the existence of other systems regardless of how they internally
work. Furthermore, a successful exchange of requests should also be possible, including
failure robustness.

Discovery mechanisms, for this reason, represent the bigger difference among interop-
erable and non interoperable systems: they allow agent-awareness and, if implemented
at higher level, also successful communication feedback. Literature is rich, in this sense,
and over the time provided a plethora of examples, middlewares and projects, some of
which have been already cited. They, however, often operate in a closed environment,
and mostly assume that parallel projects, whenever interested in a collaboration, should

43

Figure 2.1 – Conceptual vision of the Semantic IoT. Local applications can directly communicate
with each others, or with the Internet. Alternatively, they can share data through RDF formatting
according to one or more ontologies.

be reprogrammed to be compliant with their view.
The Semantic Web overcomes this required parallelism at information level as shown

in Fig. 2.1. As it can be seen, the Semantic Internet of Things keeps its specific im-
plementations, assumptions and realizations (the “app” boxes). However, while the
incompatibilities in previous IoT were either not treated, or case by case solved with
complex elaboration, we here transform it in semantic subgraphs that can coexist.

Consequently, interoperability is in this Section granted among collaborating systems
relying on a continuous process of ontological inclusion. Such process was also targeted
by previous research (e.g., [108, 109]). The Internet of Musical Things Ontology (see
next Section) in this context provides a methodology to create such inclusion. The choice
of a musical background, furthermore, is not limiting the suggested view: the core of the
ontology, in other environments, is the common IoT universe (i.e. the iot namespace).
The goal of Section 2.2 is to setup an ontology by joining together other preexisting
ontologies and taxonomies. Besides the innovative result materializing the IoMust in the
Semantic Web panorama, one of the related outcomes is the interoperability achieved
with IoMusT and any application made on top of the provided ontology components.

In Chapter 3, in a different way, we will provide a broader view (but still semantically
compatible with the present one), which includes also the web resources, unifying the
Web and the IoT in the WoT over a semantic platform exploiting also SEPA.

44

2.2 Internet of Musical Things

This Section takes inspiration from a recently submitted research paper:  Turchet, L.,
Antoniazzi, F., Viola, F., Giunchiglia, F., & Fazekas, G. (2019). The Internet of Musical
Things Ontology. Submitted to Journal of Web Semantics..

The Internet of Musical Things (IoMusT) is an emerging research area consisting
of the extension of the Internet of Things paradigm to the musical domain. This field
is positioned at the confluence of music technology, the Internet of Things, human-
computer interaction, and artificial intelligence, and relates to the networks of computing
devices embedded in physical objects (Musical Things) dedicated to the production
and/or reception of musical content. Considering the computer science perspective,
Turchet and colleagues [110] defined a Musical Thing as

a computing device capable of sensing, acquiring, processing, or actuating,
and exchanging data serving a musical purpose

and defined the IoMusT as

the ensemble of interfaces, protocols and representations of music-related in-
formation that enable services and applications serving a musical purpose
based on interactions between humans and Musical Things or between Mu-
sical Things themselves, in physical and/or digital realms. Music-related in-
formation refers to data sensed and processed by a Musical Thing, and/or
exchanged with a human or with another Musical Thing

Various kinds of Musical Things can be envisioned, which may be categorized ac-
cording to the musical purpose they serve (e.g., to control, generate, or track responses
to musical content). Examples of existing Musical Things are the “smart musical instru-
ments”, a new family of musical instruments encompassing sensors, actuators, wireless
connectivity, and on-board processing [111]. These musical devices are able to directly
exchange musically-relevant information with one another as well as communicate with
a diverse network of external devices, such as smartphones, wearables, virtual real-
ity headsets, or stage equipment. Instances of smart musical instruments include the
Smart Cajón reported in [112] and the Sensus Smart Guitar developed by MIND Music
Labs [113]. Another example of Musical Things are “musical haptic wearables” [114], a
novel class of wearable devices embedding haptic stimulation, tracking of gestures and
physiological parameters and wireless connectivity features. On the one hand, such de-
vices were conceived to enhance communication between performers as well as between
performers and audience members by leveraging the sense of touch in both co-located
and remote settings. On the other hand, they were devised to enrich musical experiences
of audiences of music performances by integrating haptic stimulations, as well as provide
new capabilities for creative participation thanks to embedded sensor interfaces.

Musical Things are connected by an infrastructure that enables multidirectional com-
munication, both locally and remotely, between different stakeholders such as composers,
performers, audience members, audio producers, live sound engineers, as well as music

45

students and music teachers. The ecosystems that will form around Internet of Musical
Things technologies are envisioned to support novel forms of interactions between such
stakeholders by means of novel musical applications and services. This has the poten-
tial to revolutionize the way music is composed, performed, experienced, learned, and
recorded.

To accomplish the IoMusT vision, the Musical Things within an ecosystem need
to dialog through a common language. A central unsolved issue within the IoMusT
paradigm is how facilitating interoperability among heterogeneous Musical Things, which
may serve radically different purposes (e.g., real-time analysis of musical content, gener-
ation and delivery of haptic, visual, or olfactory sensory layers additional to the musical
content, delivery of content-recommendation services for music students). To date, in-
teroperability across musical devices has mostly relied on protocols for the exchange of
musical messages such as Musical Instrument Digital Interface (MIDI) or Open Sound
Control (OSC) [115] and tools based on it (e.g., libmapper [116]).

However, the existing musical protocols are not adequate to support interoperability
across the wide heterogeneity of Musical Things, as they are typically not flexible, lack
high resolution, not equipped with inference mechanisms, and do not support the inte-
gration with the Web. Semantic technologies, such as semantic web [2] and knowledge
representation [117], possess these features. For this reason, they have been recently envi-
sioned as a solution to enable interoperability across heterogeneous Musical Things [110].
Existing ontologies devised for the musical domain to date, such as the Music Ontol-
ogy [music], the Studio Ontology [studio] or the Audio Features Ontology [afo], are
insufficient to represent the wide knowledge base that the variety of the possible Musical
Things entail. An ontology specific to the IoMusT scenario is currently missing. As
a consequence, the use of semantic technologies in Internet of Musical Things contexts
is limited to scenarios involving homogeneous Musical Things serving similar musical
purposes or ad-hoc interactions designed for a specific, fixed scenario.

The first effort towards the application of semantic technologies to the IoMusT con-
text is reported in [118]. The authors proposed a semantically-enriched Internet of
Musical Things architecture relying on a semantic audio server and edge computing
techniques. Specifically, a SPARQL Event Processing Architecture [99] was employed
as an interoperability enabler allowing multiple Musical Things to cooperate, relying on
a music-related ontology. A limitation of the developed architecture was the involve-
ment of an ontology restricted to the representation of simple musical features, which
prevented Musical Things dedicated to purposes other than music generation to join the
ecosystem formed around the architecture.

Semantic technologies based on an ontology for the IoMusT can assist in managing,
querying, and combining information characterizing an IoMusT ecosystem, including
data about the music produced, the involved stakeholders, the utilized Musical Things
and their application and services. This has the potential to spur the exploration of novel
artistic avenues, such as performance and composition, for instance based on emergent
properties of an IoMusT ecosystem [119].

In this Section the “Internet of Musical Things Ontology” [iomust] is exposed. The

46

full design and evaluation process of the IoMusT Ontology is hereby given from the be-
ginning to the current version, i.e., 1.0.0. The description of the IoMusT Ontology follows
the MIRO (minimum information for the reporting of an ontology) guidelines [120]. For
reference, the paper reports the MIRO designations (e.g., E.9 for Ontology relation-
ships), where the specific information item is provided. The ontology name (A.1) and
its need (B.1) have been already introduced. The ontology is available on the web (see
[iomust]) (A.4) with license GPL3 (A.3).

2.2.1 Methodology, audience, and scope

This section describes the methodology adopted for the design and development of the
IoMusT Ontology, as well as the audience of the ontology and its scope.

Methodology for ontology development

The ontology is developed and maintained by the authors and other members of the
emerging IoMusT research community, which is currently composed by leading research
institutes in sound music computing and Internet of Things (A.2 and C.2).

The design and development of the IoMusT Ontology was mostly inspired by the
Methontology methodological framework [121] (A.6). Such a framework is composed by
six phases: i) the specification, i.e., the identification of the audience, scope, scenarios
of use, and requirements; ii) the conceptualization of an informal model; iii) the for-
malization of the ontology namespaces, classes and properties; and iv) the integration
of existing ontologies in a description and its reproduction in an OWL2 file [122]; v)
the implementation of the ontology with an appropriate serialization language; vi) the
maintenance of the ontology once implemented.

Moreover, the aforementioned framework identifies three tasks that are accomplished
during the whole life of the ontology, which are orthogonal to the five phases: i) knowl-
edge acquisition through research of related ontologies and models as well as gathering
data from potential users), to inform multiple phases of the design process, mainly con-
ceptualization and integration; ii) documentation of the process phases (internal) and
the ontology specification (public); iii) the evaluation of the ontology before its release.

Other works, like Uschold [123] and more recently by De Nicola et al. [124] suggest
different methodologies for ontology engineering. These papers however include tech-
niques that aim to formalize the setup from scratch of new ontologies. This is not the
case in the current research, where the goal is to provide a new contribution based as
much as possible on the integration of pre-existing contents.

Scope and audience

The role of the IoMusT Ontology is to offer a common data model enabling interoperabil-
ity among heterogeneous Musical Things, which allows both people and virtual agents to
seamlessly generate, explore, access, or transform music-related content produced within
an IoMusT ecosystem. Therefore, the scope of the ontology (C.1) is represented by all

47

ecosystems forming around existing or future IoMusT technologies.
The target audience of the ontology (B.3) is represented by all actors and stake-

holders that are involved in such ecosystems, including performers, audience members,
composers, studio producers, live sound engineers, and choreographers.

2.2.2 Related ontologies and data models

Before defining an ontology specific to the IoMusT domain we conducted a review of
existing ontologies. The IoMusT vision is intrinsically multisensory and highly interdis-
ciplinary [110]. This section describes ontologies and data models (B.2) that are related
to such a vision. They have been gathered through the research of literature and online
resources (D.1 and D.2) and evaluated as part of the design process (D.3).

Ontologies for the audio domain

Several ontologies have been proposed in recent years for the audio and music domains, in
recognition of the complexity and broad ranging applications of such ontologies, and the
fact that much of the information exchanged on the Web today is multimedia, of which
music is a very substantial component, rather than text. The scope of such ontologies
are wide ranging, starting from very focused areas of music production such as audio
effects [125], to larger binding ontologies that target the description and retrieval of
audio resources on the web in general [95].

The Music Ontology (MO) [music] [126, 127] is a general purpose high-level ontology
for the music domain that models the music value-chain from production to consump-
tion. Therefore its focus is on editorial metadata, e.g. artist name and title associated
with audio recordings, as well as the representation of major steps in the production of
recorded music, from composition, through performance and recording, to release.

The Music Ontology does not deal with the nuances of technical workflows in music
production. This is the area covered by the Studio Ontology [studio] (SO) [128].

The Audio Features Ontology [afo] (AFO) addresses another audio domain that re-
quires detailed conceptualisations. Audio Features are descriptors that represent specific
characteristics of sound signals. These may relate to measurable properties of the signal,
such as bandwidth or spectral centroid, perceptual qualities like pitch and loudness, and
musical characteristics such as notes, musical key and chords.

The Musical Instruments Ontology [129] is highly relevant to the domain of IoMusT.
It provides an ontological model for encoding well known instrument classification sys-
tems, e.g. for grouping instruments into categories such as Idiophones or Aerophones,
based on their sound production or excitation mechanism.

The Audio Commons Ontology (ACO) [aco] [95] is an example of a higher level
domain ontology that binds several audio related ontologies together. It was designed
to facilitate the integration of audio content repositories on the Web as well as content
consumption by software agents.

48

Ontologies for sensors, actuators and connectivity

Among the ontologies designed for the IoT, two of the most diffuse are SSN (Semantic
Sensor Network) and SOSA (Sensor, Observation, Sample, and Actuator) [ssn, sosa].
Both SSN and SOSA adopt a complex approach to description of hardware, observa-
tion of physical entities and actuation. SSN [130] covers the majority of the SensorML
standard1 and has been designed to describe sensors and observations, as well as the
deployment in which sensors are employed. SOSA [131] adopts a lightweight approach
to describe sensors, actuators and the acts of observation and actuation. SOSA acts as a
replacement of the Sensor-Stimulus-Observation (SSO) design pattern provided by SSN,
that provides greater expressivity [132].

At a higher level of abstraction, things in IoT can be represented according to the
Web Thing model2 proposed by the W3C. In this sense, devices are provided with the
so-called thing description, a detailed profile reporting properties, events and actions
exposed through its interface. A first attempt to semantically represent this model has
been provided by Charpenay et al. in [133], later on envisioned by Serena et al. in [134]
for a discovery framework. The Web of Things ontology discussed by Charpenay et al.
and Serena et al. has been employed by Viola et al. [135] to build a semantic Web of
Things enviroment for recommendations in the audio domain. Eventually, Antoniazzi
et al. [136] provided a semantic version of the Web of Things.

2.2.3 Specification

The acquired knowledge was then analzed to identify a set of requirements that the
ontology should satisfy [137]. The literature review led to a total of 15 scenarios (5
scenarios from [110], 5 from [111], and 5 defined by the authors or derived from recent
experiments with users described in the literature). For each scenario we derived a
set of requirements, and then applied a thematic analysis [138] to reduced them. The
resulting requirements are represented below as a list of example questions that the
ontology should be able to support answering [139], and a list of formal requirements.

Competency questions

The following sample questions are meant to be asked with respect to an IoMusT ecosys-
tem:

1. Which type of Musical Things are
used by the local and remote per-
formers during the live concert?

2. How many Musical Things used by
the audience provide haptic feed-
back?

3. What smart instruments are control-
ling the smartphones used by the au-
dience?

4. What is the mood of the music at
a given time during the live perfor-
mance?

1 https://www.opengeospatial.org/standards/sensorml
2 https://www.w3.org/Submission/wot-model/

49

https://www.opengeospatial.org/standards/sensorml
https://www.w3.org/Submission/wot-model/

5. How many audience members are ac-
tively participating to the music cre-
ation process thanks to their Musical
Things?

6. Which kind of stage equipment is
used at a given time during the con-
cert?

7. Which gestural and biometric param-
eters are tracked from the audience
during the live performance?

8. How many and which kind of net-
works are used during a performance?

9. Which pedagogical applications are
available for a smart violin?

10. With which music content repository
a smart ukulele can interact?

11. Which services are available for a
smart guitar and what are their pur-
poses?

12. What type of sensors and actuators
compose a smart musical instrument
or a musical haptic wearable?

Formal requirements

The IoMusT Ontology should be able to:

1. represent the concept of Musical
Things, including:

(a) its type (e.g., musical instrument,
wearable device, stage equipment);

(b) its characteristics including the
number and type of inputs (e.g., sen-
sors tracking movements or biometric
parameters) and outputs (e.g., audi-
tory, visual, haptic, olfactory);

(c) the type of person for which it is
conceived (e.g., performer, audience
member, live sound engineer, pro-
ducer);

(d) its function (e.g., a smart instru-
ment used to produce musical con-
tent, a musical haptic wearable aim-
ing at enriching the listeners’ musical
experience, an interface used by audi-
ence members for participatory pur-
poses, a device used to infer the mood
of audience members based on sensed
quantities);

(e) its geographical position;

(f) the type of data that it generates
(e.g., audio signal, text message);

2. represent the concept of connectivity,
including:

(a) the type of network involved
(e.g., local network, remote net-
work, Wi-Fi-based, millimeter waves-
based);

(b) the attributes of the network
(e.g., bandwidth, speed, synchroniza-
tion mechanisms);

(c) the time taken by the network to
deliver/receive a message to/from a
certain Musical Thing;

3. represent the concept of application
and service, including:

(a) its purpose (e.g., for music learn-
ing, performance, composition, stu-
dio production)

(b) its level of interactivity (e.g., in-
teractive, non-interactive)

50

(c) its type (e.g., social network, on-
line music content repository)

(d) its user (e.g., composer, per-
former, studio producer, educational-
ist, student, audience member)

4. describe attributes of the music (pro-
duced live) at a given time, including:

(a) low-level features (e.g., the den-
sity of notes);

(b) high-level features (e.g., the
mood)

5. describe attributes of the ecosystems,
including:

(a) the number and type of Musical
Things present in the network at a
given time and a given space;
(b) which Musical Things are inter-
acting;
(c) the number and type of applica-
tions and services available within the
ecosystem;
(d) the number and type of networks
used at a given time.

2.2.4 Ontology description

The Internet of Musical Things ontology (the IoMusT Ontology) has been developed
incrementally. As a matter of fact, the task of developing ontologies is in general complex,
and needs an approach that involves continuous refinement and check of concepts and
relationships. This can be done in several ways, and may be performed iteratively as
long as the expected match of the ontology with the real subject is achieved.

Not surprisingly, the first step is to split the domain of interest in smaller parts
if possible. For each of those smaller parts, secondly, iterations are needed to ensure
that all relevant concepts are included. Sometimes this is done by surveying a pool of
experts and/or future users of the ontology, to get their feedback. Clearly, this check
helps designers to avoid wrong naming on resources, as well as to detect and correct
contradictory assertions.

Then, the smaller parts have to be joined together to form the ontology. Again, the
expressiveness of the complete work has to be checked, and in this paper this is provided
by requirement analysis and evaluation. The question to be answered, here, is: is my
ontology capable to describe my context? If so, is the description made with the precision
needed? This process also may be performed iteratively.

IoMusT Ontology is not an exception. On the contrary, it is very important to notice
that the formalization of a vocabulary for Internet of Musical Things needs this feedback
process to ensure a coherent representation of music-related entities with general-purpose
contents.

A bottom-up process was deployed for our case. In particular, jumping from wider
to narrower concepts, the first idea to be discussed is indeed the connection that stands
between the global interpretation of Internet of Things and how to decline it into the
Internet of Musical Things. See also Fig. 2.4. Clearly, the former is larger than the
latter, which should represent a specialization and rely on it. The usage of the IoMusT
Ontology, as a consequence, should allow a transparent view of any Musical Thing
context as an IoT system. There would be no point in ignoring this core aspect, because

51

the core idea of ontology engineering is to provide a shared and interoperable way to
collaborate between different fields of knowledge. Any design choice opposed to this
view would have as a direct result the creation of another vertical silos within the IoT
chaos [140].

In order to replicate in the ontology this necessary duality, this work will suggest the
adoption of two new namespaces:

1. iot, that will be used to connect concepts that belong to the broader view of
generic devices;

2. iomust, which is an extension of iot defined as iot:musical. Within this names-
pace are organized the concepts of music-related IoT;

For the sake of clarity the prefixes are kept in a contracted form. To see their
expanded version, please see the List of Ontologies.

iot namespace

The first concept to be defined is the Thing as it is intended in the acronym IoT. Liu
et al. [14] survey and comment the spectrum of definitions that have been suggested in
literature over the time. Among the surveyed entries, the one proposed by the IEEE is
coherent with our requirement of generality: the thing

is any physical object relevant from a user or application perspective

meaning that we consider things as items exploiting, or being exploited by, other items.
Therefore, from now on, the class iot:Thing has to be considered according to this
definition. Notice that also regular everyday life objects may be iot:Things, like chairs,
pillows, a scarf, a painting and, indeed, a musical instrument.

Clearly, this is a generic class that needs to be further specialized in subclasses.
Again, a lot of help can come from the listings in [14], as iot:Thing is definitely a huge
container. For instance, things can be wearable objects: so, the class iot:WearableThing
can be defined to represent this category. Similarly, devices can also be smart, so we
call for iot:SmartThing class: smart things, e.g., a smartphone, a smart TV, include
special technological features or artifacts that provide them with relevant added value
over the basic version of the same object.

Eventually, things can be connected to a communication network: they are, in this
case, instances of the class iot:ConnectedThing. Notice that the aforementioned Stu-
dio Ontology [studio] contains a rich environment of properties and classes related to
connectivity (e.g., the Connectivity and the Device sub-ontologies).

It would neither be reasonable, nor useful, to list here a hundred of possible sub-
classes. For this reason, in the present paper only a few will be defined, as the discussion
requires them. It is important to notice that there is complete freedom to include new
classes whenever needed, as this is precisely the kind of incremental approach for ontol-
ogy engineering which was above aforementioned.

52

Musical things in the iomust namespace

IoMusT Ontology, as already said, aims to develop the iot namespace in its musical
flavour. To do so, the reference to a vocabulary connected to music is essential. Our
reference in this work was introduced in Section 2.2.2: it is the Music Ontology [music],
which will be mentioned as the music namespace. An important contribution of this
namespace in IoMusT Ontology is its supporting role in creating the archetype of Musical
Thing, i.e. the class iomust:MusicalThing. In the present work, our definition for this
class is the following: the Musical Thing is a thing used to produce or enjoy music, with
reference to its context. As a consequence, IoMusT Ontology will consider that a smart
loudspeaker, a CD by David Bowie belong to that class, as well as a smart violin located
in a concert hall. The same smart violin, however, if stored for exposition in a museum,
is no more an iomust:MusicalThing because it loses its musical production interest.

The class iomust:MusicalThing is indeed less generic than its superclass iot:Thing,
because it provides a light form of contextualization. Yet, however, we need more precise
solutions to be even less abstract. All the items identified in the example above (the
smart loudspeaker, the CD, the smart violin) would point to iot:Thing through the
rdf:type predicate. Then, to include an explicit reference to music, and introduce the
Internet of Musical Things namespace, the following rule applies:

Rule 1 If an iot:Thing instance is also connected through rdf:type to a class belong-
ing to the Music Ontology, then it is also an instance of iomust:MusicalThing.

A typical application of Rule 1 is the aforementioned smart violin: consider Expres-
sion 2.1 as an example, where a simple triple representation is given of the implication
expressed. Notice that Rule 1 is not intended to be strictly reversible: during a concert,
lights and smoke machines may be intended as Musical Things because of their essential
contribution to the listening experience, and yet may not be included in one of the music
namespace categories.

ns:SmartViolin a iot:Thing, music:Instrument
⇒ ns:SmartViolin a iomust:MusicalThing (2.1)

The Generic Musical Thing definition is not enough to build the complete IoMusT.
Here it follows a sequence of new classes to be introduced in the iomust environment,
descending from the Musical Thing. Each of the classes here corresponds to a rule similar
to Rule 1 in the OWL.

iomust:SmartMusicalThing is a Musical Thing that is also an iot:SmartThing;

iomust:SmartInstrument is a Musical Thing that is also a music:Instrument;

iomust:WearableMusicalThing is a Musical Thing that is also an iot:WearableThing;

iomust:StageEquipment is a collection of Musical Things serving as equipment. The
definition of collection can be extracted from external ontologies designed ad hoc for
this, like [collection].

53

Table 2.1 – Example of usage for iot and iomust namespaces. We here show how objects part of
an Internet of (Musical) Things environment can be considered instances of the classes introduced in
this research. Extended prefixes are available in the List of Ontologies.

ns
:B

ob

ns
:W

ar
dr

ob
e

ns
:S

ma
rt

Ca
r

ns
:V

io
li

n

ns
:S

ma
rt

Vi
ol

in

ns
:T

Sh
ir

t

ns
:S

ta
ge

Li
gh

t

ns
:V

R_
He

ad
Se

t

ns
:H

ea
rt

Be
at

Se
ns

or
fo

r
m

us
ic

ex
pe

ri
m

en
t

foaf:Person 

iot:Thing        

iot:SmartThing    

iot:ConnectedThing    

iot:WearableThing   

music:Instrument  

iomust:MusicalThing    

iomust:SmartMusicalThing  

iomust:SmartInstrument 

iomust:StageEquipment item 

iomust:WearableMusicalThing 

Table 2.1 contains some practical examples of usage for the iot and iomust names-
pace entities.

iot & iomust sensing, actuating and interacting

So far the discussion on the IoMusT Ontology was conducted as a set of broad definitions
for the baseline concepts. Here, instead, space is given to how the integration of other
ontologies enables our vision of the IoMusT from a lower level standpoint.

First of all it is necessary to describe the smart devices more in detail, and include
additional information related to the electronic devices embedded in the iot:Thing (e.g.,
micro-controllers, sensors, actuators). The iot:SmartThing was previously introduced
to this effect, though without any other specificity. Consequently, to provide greater pre-
cision on the actual available sensing and actuating units, other information is needed.
Taking into consideration Table 2.1 as an example, we have to provide a way to se-
mantically distinguish between two instances of iot:SmartThing, like the smart violin,
and the virtual reality headset, based on their setup. To achieve such goal, this work
suggests the inclusion of an ontology already existing and well known in the panorama,
namely, SOSA [sosa]. The choice of SOSA has three main advantages that greatly
benefit IoMusT Ontology: (i) SOSA is de facto a light version of SSN, and therefore
the IoMusT Ontology can be furtherly extended towards SSN integration very easily;
(ii) SOSA is very simple, which is always a relevant factor when studying, building and
integrating ontologies; (iii) SSN and SOSA, eventually, are a relatively recent W3C rec-

54

ommendation (the last draft dates back to 2017), which means that they are globally
accepted as a reference.

The realization of this ontological alignment is made by including as a plug-in the
concept of sosa:Platform in the IoMusT Ontology subgraph for the iot:Thing and
its aforementioned subclasses. According to SOSA documentation, the sosa:Platform
is an entity that hosts other entities, particularly Sensors, Actuators, Samplers, and
other Platforms, that is precisely the facet missing until now in the iot namespace. In
Fig. 2.2 a few examples are provided to show how the connection can be made. As
it can be seen, the smart guitar instance ns:SmartGuitar has also as rdf:type the
sosa:Platform class. This additional type allows us to include references to the sensors
and actuators on board, as well as the entity they measure. Further details on sensing
and measurement description, extensively discussed in previous researches like [141, 142]
and surveyed in [143], are out of the scope of this paper. For the future, anyway, the
possibility to integrate new ontologies still exists: for the ones exploiting SOSA and SSN,
such process should be trivial.

ns:SmartGuitar

iot:Thing,
sosa:Platform,
iot:SmartThing,
iomust:MusicalThing,
music:Instrument,
iomust:SmartInstrument,
iomust:SmartMusicalThing;

ns:IMUSensor

ns:ContactMicrophone

ns:Loudspeaker

sosa:Sensor

sosa:Actuator

ns:Acceleration,
ns:Rotation,
ns:Orientation

sosa:ObservableProperty

ns:Vibration

ns:Sound sosa:ActuatableProperty

a

sosa:hosts

sosa:hosts

sosa:hosts

a

a

a

sosa:observes

a

sosa:observes

a

sosa:actsOnProperty a

Figure 2.2 – SOSA integration with the IoMusT Ontology. Extended prefixes are available in the List
of Ontologies. The color scheme is the same used in Protégé [144].
Legend: Classes Individuals Object Properties.

Sensing and actuating are in general part of a greater intent of interactive IoT system
design. Data collection, then, provides the tools to create a feedback to control actuation
and, eventually, to show smart behavior. Interaction is an unavoidable part of this
process and, consequently, it should also be represented in the ontology alongside with
sensors and actuators. Once such semantic prototype is given, it is possible to distinguish

55

the active resources from the environmental passive ones and an interaction is finally
possible. Besides, if the semantic view is shared among various systems horizontally, a
strong and effective interoperability is automatically achieved.

The study of entities interacting within their environment is a well established field
in literature, leveraging the concepts of agent (e.g., [145, 146, 147] and many others)
and semantic agent (see, for instance, [148, 149]).

Within the IoMusT Ontology, the agent is referred to as any entity, human, object
or virtual, that is capable of triggering any kind of dynamic evolution in an environment
populated by instances of iot:Thing class. Both iot and iomust namespaces do not
include directly such content, as their focus is the device, regardless the interaction
aspect. For this reason, and for the discussion above, the IoMusT Ontology needs to
rely on external ontologies to properly provide a definition of agent. Similarly to what
has been suggested in the previous paragraphs with SOSA, we suggest here to exploit
well-known ontologies, namely [foaf] and [prov].

The former, once connected to the IoMusT Ontology, defines the foaf:Agent as
person, group, software or physical artifact, and things that do stuff. The idea of agent
suggested in the previous paragraph is clearly derived from FOAF, although its real
utility, in our research, is its capability of including the human being class foaf:Person
and relationships in the semantic environment. Agents, intended as physical and virtual
devices, are described through the latter, PROV-O, where the agent is something that
bears some form of responsibility for an activity taking place, for the existence of an en-
tity, or for another agent’s activity [150]. This idea, in particular, includes also entities
running software, which belong to prov:SoftwareAgent. Listing 2.1 shows an exam-
ple of using FOAF and PROV-O, and introduces in the iot namespace the ownership
property iot:owns.

Listing 2.1 – FOAF & PROV-O integration with the IoMusT Ontology. Extended prefixes are available
in Table 4.4.
ns:cristina a foaf:Agent , foaf:Person ,

prov:Agent , prov:Person;
foaf:name ’Cristina ’;
iot:owns ns:SmartGuitar.

Ownership and actual usage do not necessarily coincide: it may happen, for instance,
that people use a tool belonging to someone else. Besides, ownership does not imply any
sort of activity with the device. A setup for activities, part of the IoMusT Ontology, is
available in Fig. 2.3.

As it can be seen, Fig. 2.3 contains a rather complex subgraph. First of all, the
application introduces the resource URI ns:bob as a music performer by exploiting the
Music Ontology. FOAF ontology then provides the foaf:knows relationship with other
people semantically represented.

After that, by using the iot namespace, we start setting up a semantic network to
identify the ongoing process involving things and users. In this case the user “Bob” is the
subject for the predicate iot:isInvolvedIn, that targets a new resource URI with type
iot:Application. This application class can be explained as the semantic endpoint

56

ns:bob

foaf:Agent,
foaf:Person,
music:Performer,
prov:Agent,
prov:Person;

’Bob’

ns:cristina

ns:IomustApplication

iot:Application,
prov:Activity,
iomust:MusicalThingApplication;

ns:SmartGuitar

_:event event:Event,
prov:Entity,
music:Performance;

_:eventtime timeline:Interval

’2019-06-18T12:00:00Z’

’PT1H’

a
foaf:name

foaf:knows

iot:isInvolvedIn

a

iot:isInvolvedIn

iot:produces,
prov:generated

a

event:agent

event:factor

event:time

a
timeline:start

timeline:duration

Figure 2.3 – Activities in the IoMusT Ontology. Undefined resources can be found in previous Figures
and Listings. The color scheme is the same used in Protégé [144].
Legend: Classes Individuals Object Properties Literals, Data Properties Blank Nodes .

tagging together all elements, items and agents involved in an activity. A similar de-
scription is given by PROV-O documentation for the prov:Activity class. Notice that
also the device ns:SmartGuitar points to the same instance of iot:Application ac-
cordingly. In addition to this, in order to create the musical background for the IoMusT
Ontology, a subclass of the iot:Application is suggested for specific IoMusT usage, as
reported in Rule 2.

Rule 2 If an iot:Application instance is also connected through iot:isInvolvedIn
to an instance of a class belonging to the Music Ontology, or to the iomust namespace,
then it is also an instance of iomust:MusicalThingApplication.

The application, indeed, is not only a matter of involving the participation of people
and objects in an activity. The goal of the IoMusT Ontology is also to represent the
application following its sequence of steps over time. Fig. 2.3 highlights how this is
possible through the usage of the predicate iot:produces. The logic supporting this
predicate refers to the application as timed sequence of events, where the event is se-
mantically represented by the Event [event] ontology over the event namespace. As it
is reported, the event is spawned as a blank node (it may appear on the go), and fully
benefits of the predicates available: in a few triples we get full informations on the acting
agents (e.g., ns:bob), the tools used (e.g., ns:SmartGuitar), and the timings by further

57

addition of the Timeline [timeline] ontology. Moreover, being the event a source of
information, we declare it also as a prov:Entity, alongside with any other information
that may be interesting for the user (e.g., the event is a music:Performance). Summa-
rizing, Listing 2.1 and Fig. 2.3 together refer that ns:bob performed some music playing
ns:cristina’s smart guitar in a performance that lasted 1 hour.

Location of devices

Another relevant problem is location of entities in IoT and IoMusT environments. Such
piece of information is extremely useful, for example in making spatial statistics on
collected data. In order to provide the ontological tools to locate devices, a few consid-
erations follow.

Currently, PROV-O ontology already has an object property devoted to location,
namely prov:atLocation. The triple pattern, in such case, is represented in Listing 2.2
(Example 1) and, as it can be seen, requires the location to be a semantic resource URI.
For the example, a DBpedia resource was chosen. To address also situations in which
more precision is required, a data property with range xsd:string has been added to
the iot namespace, iot:atLocation, that is used in Example 2.

Listing 2.2 – Location triples alternatives. Extended prefixes are available in Table 4.4.
ns:SmartPiano a iot:Thing , iot:SmartThing ,

iomust:MusicalThing , music:Instrument ,
iomust:SmartInstrument , sosa:Platform ,
iomust:SmartMusicalThing , prov:Entity;

[Example 1]
prov:atLocation dbpedia:London.

[Example 2]
iot:atLocation "51◦30’49.3’’N 0◦05’59.9’’W",

"GW72+F2 ,␣London",
"Paternoster␣Row ,␣London ,␣UK".

2.2.5 Implementation and maintenance

The ontology development is accomplished in an online public git repository hosted on
GitHub3 (A.5). The issue tracking system offered by GitHub, will be used as communi-
cation channel for maintenance and future development of the ontology (C.3).

The IoMusT vision is structured around several subdomains and related fields, from
interfaces for musical expression to the connectivity infrastructure [110]. The creation
of an ontology encompassing all the possible facets of the IoMusT domain in all their
complexity would be a very significant task that is beyond the scope of this work. For
this reason, the IoMusT Ontology is an implementation-driven ontology that is evaluated

3 https://github.com/fr4ncidir/IoMusT

58

https://github.com/fr4ncidir/IoMusT

and evolves during its use while developing applications. This means that the ontology
will be growing depending on the appearance of new components around which IoMusT
ecosystems are structured, such as novel Musical Things, connectivity infrastructures, or
innovative application and services (F.1). On the technical level, the last version of the
ontology will always be accessible at the IoMusT Ontology URI, while past versions will
accessible using an URI scheme including the version ID (F.3). For backward compati-
bility’s sake, all the defined concepts will remain in the ontology and keep their current
meaning. In case at some point the ontology maintainers decide that a concept is “not
to be used any more”, it will be annotated as deprecated (F.2).

In its current version, the IoMusT Ontology describes the IoMusT in general terms.
As a matter of fact, the work presented in this paper targets a system engineering
view enriched with musical content. Consequently, the intent of this research is to
provide tools for a global description and easy integration of a new and promising field
of IoT. Such premises, as it appears in Section 2.2.4, result in a description schema that
overviews the IoT in its musical flavour and its higher level features, but does not give
in the examples a taxonomy for the specific devices (i.e., there is no attempt at all to
define any form of Guitar ontology, Violin ontology, and so forth).

Indeed, looking towards the future, it is clear that any musical instrument-specific on-
tology together with the IoMusT Ontology would represent a set of shared and consistent
axioms able to provide a complete semantic approach to internet-connected instruments.
Extremely precise discovery over contexts described with a music-professional view may
be enabled in this way.

Looking to Fig. 2.4, moreover, the forthcoming path is quite easily understandable.
First of all, the inclusion of new lower level vocabularies-taxonomies-ontologies to de-
scribe as clearly and easily as possible the IoT. Secondly, the enhancement of iomust
namespace leveraging both the core iot and the new music related ontologies that may
appear in the panorama. Eventually, a continuous feedback by developers trying to
make innovative and groundbreaking connections between distant fields. Is the IoMusT
Ontology easy to use when it comes to coding? Was it possible to develop your project
of connecting the IoMusT Ontology and the new Automotive ontology together? Imple-
mentation and maintenance, in this situation, overlap almost completely.

2.2.6 Evaluation

The IoMusT Ontology was assessed by using formal methods as well as checking its
fitness for our domain and purposes.

Metrics and Formal Validation

Evaluating an ontology is always a matter of identifying the best trade-off between
its expressiveness and the performance of applications based on its concepts (i.e., the
effective usage). The former is the prevailing aspect in philosophical ontologies, while
the latter is of course the most important when dealing with engineered ones.

Fernández et al. [151] defined twelve metrics to measure the quality of an ontology

59

Figure 2.4 – The IoMusT Ontology is built up incrementally leveraging lower level concepts. It
provides the base for other Domain Specific Ontologies (DSO) and other Application Specific IoT
ontologies (ASO).

that we hereby report. In the current paper, not all the metrics have been applied,
and some of them required slight modifications to fit the scenario. The reason for this
is that, of course, ontology engineering is often a matter of personal interpretation of
the designer. Similarly to coding, where evaluation of different implementations and
algorithms is made on complexity and performances, the metrics considered relevant
for this paper are those belonging to the class of “Knowledge coverage and popularity
measures”. On the other hand, as IoMusT Ontology is built up as a compound of sub-
vocabularies, global metrics are considered less relevant, an will not be included here.

• Number of classes: it consists of the number of classes in the analysed ontology.

• Number of properties: this value represent the number of datatype and object
properties in a given ontology.

• Number of individuals: it is the number of individuals in the ontology.

• Direct popularity: this metric represents the number of ontologies importing
the given ontology. Being a novel ontology, the popularity is of course equal to
zero.

• Inverse popularity: the number of well established ontologies, classes and prop-
erties imported within the given ontology. It is a way to measure of interoperability
with other works vs the novelty introduced, and is calculated on the most basic
possible usage (i.e., the one provided in the OWL of the ontology).

Values for this metric are reported in Table 2.2.
Based on our previous experience on developing ontologies, metrics belonging to the

“structural ontology measures”, have been replaced by an alternative set of metrics:

• Minimum Musical Thing triple count: the minimum number of triples needed
to describe a Musical Thing. According to the previous examples available in

60

Table 2.2 – Evaluation of the IoMusT Ontology according to the “Knowledge coverage and popularity
measures” proposed by Fernandez et al. [151] as well as by University of Rostock in their Ontometrics
Wiki4.

Metric Value Metric Value

Number of classes 21 Inverse popularity:
Number of properties 15 - Ontology imports 7
- Datatype properties 4 - Classes 29%
- Object properties 11 - Properties 7%
Number of individuals 0 Schema metrics:
Direct popularity 0 - Inheritance richness 0.57

- Relationship richness 0.6

Listings 2.1, 2.2 and Figg. 2.2, 2.3, a very simple Musical Thing can be described
with less than 20 triples.

• Maximum Musical Thing triple count: this is the maximum number of triples
that can be used to describe a Musical Thing. In our case this value is unlimited,
depending on the complexity of the devices.

Classes and properties have been provided with a textual description (rdfs:comment)
in English (E.7). The ontology editor Protégé [144] and the Visual Notation for OWL
Ontologies tool (VOWL) [152] have been used to check the correctness of the ontology.
The logical consistency has been checked by running (through Protégé) three reasoners,
HermiT (version 1.3.8.413) [153], Pellet (version 2.2.0) [154], and FaCT++ (version
1.6.5) [155] and no inconsistencies have been found.

The evaluation of the ontology went on through the OntOlogy Pitfall Scanner!
(OOPS!) online service [156]. This service performs a set of checks to detect common
pitfalls in ontology design (based on the existing literature). No major pitfalls have been
detected in the IoMusT Ontology. Minor pitfalls have been identified due to: 1) the
absence of labels defined through rdfs:label; 2) the absence of an inverse relationship;
3) the presence of URIs containing file extensions. As regards the first point, it is as-
cribable to a design choice: since the ontology (in our opinion) is already easy to read,
the adoption of labels would be redundant. The last two points instead, depends on two
of the imported ontologies (i.e., the Event and Timeline ontologies).

Evaluation for Requirements and Answer to Competency Questions

Metrics calculation is a good solution to obtain comparable evaluation of ontologies.
However, not surprisingly numerical solutions do not take into account the actual topics
treated. To address this facet, it is necessary to dive into the ontology, ask questions
and evaluate the answers.

4 https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics

61

https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics

We hereby suggest three sets of questions, which will be applied to the IoMusT
Ontology:

1. The academic community developed over the time some suggestions for ontology
engineering. In particular one of the major Conferences for Semantic Web research,
namely ISWC, defined in its website5 a pool of guidelines.

2. Miro evaluation [120], that provides an organized list of standardized questions.
The report6 of their application to the IoMusT Ontology is available in the ontol-
ogy’s Github repository.

3. Section’s 2.2.3 competency questions.

Let us start with ISWC guideline analysis, which are also included partially in Miro
report. Concerning the Impact section, we can definitely say that the IoMusT Ontology
fulfills the requests. The answers to the questions were largely discussed over the previous
paragraphs of this work, although it is worth repeating that the IoMusT has a dual value,
contributing to both the IoT and Music domains. Reusability, then, is answered by
the explanations given in Section 2.2.4, and is maximized by plugging into the IoMusT
Ontology well established ontologies like SOSA, FOAF and PROV-O. Eventually, Design
& Technical Quality and Availability are appropriately fulfilled by the concepts provided
in Section 2.2.5.

Among all evaluations, anyway, the check for competency questions and requirements
satisfaction is the most important, because it justifies the whole work. In particular, the
12 competency questions in Section 2.2.3 are almost completely successfully handled.
With the exception of question 4 and 10, the IoMusT Ontology provides all the tools
to perform semantic discoveries as complex as needed. So, the ontology provides all the
tools necessary to format SPARQL queries that would answer the questions. Question 4,
by its side, refers to an aspect that should be treated with the AS ontologies of Fig. 2.4.
Instead competency question 10 may be addressed by a complex discovery including also
the concepts of the AudioCommons ontology [aco].

Concerning Formal Requirements (Section 2.2.3) the discussion is similar, as some
points can be obtained by direct usage of IoMusT ontology as we described it, and
some others need the inclusion of additional resources. For example, consider question
5: it is fully achievable by performing SPARQL discoveries as described in the previous
paragraph.

Competency question 4, on the contrary, refers to live attributes for music, which
were not directly targeted here, as they are connected to music and the specific appli-
cation, and not to devices. Questions 1 and 3 can be achieved by exploiting IoMusT
ontology along with specific concepts in the AudioCommons Ontology, Studio Ontology,
and Music Ontology. Question 2, then, refers to concepts available in the Studio/Con-
nectivity ontologies.

5 http://iswc2018.semanticweb.org/call-for-resources-track-papers/#
6 https://github.com/fr4ncidir/IoMusT/blob/master/MIRO%20report.md

62

http://iswc2018.semanticweb.org/call-for-resources-track-papers/#
https://github.com/fr4ncidir/IoMusT/blob/master/MIRO%20report.md

Table 2.3 – MIRO Report [120] of the IoMusT Ontology – Part I of III

A. The basics

A.1 Ontology name must Internet of Musical Things Ontology (IMTO), version 0.1
A.2 Ontology owner must Francesco Antoniazzi
A.3 Ontology license must GNU General Public License v3.0
A.4 Ontology URL must https://github.com/fr4ncidir/IoMusT/blob/master/iomust.

owl
A.5 Ontology repository must https://github.com/fr4ncidir/IoMusT
A.6 Methodological framework
must

The ontology defines the needed concepts to create a Musical Things
IoT environment by introducing the namespaces iot and iomust,
and connecting them to well known ontologies like [sosa] and [prov].

B. Motivation

B.1 Need must The Internet of Musical Things is an unexplored field of IoT that at
the moment lacks of semantic representation.

B.2 Competition must At the moment, only with ontologies in IoT panorama. So far, no
ontologies are available joining Music and IoT.

B.3 Target audience must Developers of IoT applications applied to music.
C. Scope, requirements, development community

C.1 Scope and coverage must The ontology covers the concepts necessary to create a Musical
Things IoT environment. The two namespaces identified in addi-
tion are extended, by plugging in references to other well known
ontologies. The result is a complete vocabulary available to develop
interoperable applications within and without the musical and artis-
tic domain.

C.2 Development community
must

Advanced Research Center on Electronic Systems (ARCES) of the
University of Bologna. Centre for Digital Music (C4DM), Queen
Mary University of London.

C.3 Communication must https://github.com/fr4ncidir/IoMusT/issues

D. Knowledge acquisition

D.1 Knowledge acquisition
method must

Analysis of the available literature on Semantic Web, ontologies and
IoT. In particular, how to represent music and musical instruments,
devices and their components. Competency questions on the rele-
vant domain.

D.2 Source knowledge location
should

Competency Questions

D.3 Content Selection should Things, Musical Things, Smart Things, Wearable Things: devices
for IoT, applied to the collaborative production of musical content.

63

https://github.com/fr4ncidir/IoMusT/blob/master/iomust.owl
https://github.com/fr4ncidir/IoMusT/blob/master/iomust.owl
https://github.com/fr4ncidir/IoMusT
https://github.com/fr4ncidir/IoMusT/issues

Table 2.4 – MIRO Report [120] of the IoMusT Ontology – Part II of III

E. Ontology content

E.1 Knowledge representation
language must

OWL 2 generated by Protégé v5.5.0beta; however, the ontology is
at this stage only descriptive, and it uses a reduced subset of OWL
2 capabilities, being the Description Logic ALCRIF(D).

E.2 Development environment
optional

Protégé v5.5.0beta.

E.3 Ontology metrics should Number of classes: 21; number of object properties: 11; number of
data properties: 4; 0 individuals.

E.4 Incorporation of other on-
tologies must

[sosa, prov, music, event, timeline, foaf]

E.5 Entity naming convention
must

Entities follows the CamelCase notation. Both datatype and object
properties are named as verb senses with mixedCase notation.

E.6 Identifier generation policy
must

Identifiers of the instances must be generated by the application.

E.7 Identity metadata policy
must

All entities have an rdfs:comment natural language explanation.

E.8 Upper ontology must See point E.4.
E.9 Ontology relationships must 11 object properties; 4 datatype properties.
E.10 Axiom pattern must 158 axioms included (of which 68 logical axioms, 40 declaration ax-

ioms, 12 SubClassOf, 6 EquivalentClass, 1 DisjointClass, 6 hid-
den GCI, 5 InverseObjectProperty, 2 FunctionalObjectProperty,
1 Inverse Functional, 4 Asymmetric Object Properties, 4 Irreflexive,
11 ObjectPropertyDomain and Range, 3 Functional DataProperty,
4 DP domain and range, 50 annotation assertions).

E.11 Deferencable URI op-
tional

It is possible to use deferencable URIs, but no assumption on this
is made in the ontology.

F. Managing change

F.1 Sustainability plan must Some research projects are being prepared to leverage the ontology.
F.2 Entity deprecation strategy
must

Deprecated classes will be labelled as obsolete with a proper anno-
tation property.

F.3 Versioning policy must The IoMusT ontology adopts sequence-based identifiers for its ver-
sions with a major number and a minor number, separated by a dot.
A novel release featuring only small changes will cause a switch of
the minor number, while relevant and/or structural changes affects
also the major number.

64

Table 2.5 – MIRO Report [120] of the IoMusT Ontology – Part III of III

G. Quality assurance

G.1 Testing must Tests have been made by checking competency questions and formal
requirements in the presentation paper.

G.2 Evaluation must Metrics, and discussions over IoMust ontology evaluation have been
discussed in the presentation paper.

G.3 Examples of use must At the moment, only theoretical examples of usage in the presenta-
tion paper.

G.4 Institutional endorsement
optional

None.

G.5 Evidence of use must The ontology is still new, but we plan to use it in forthcoming
projects.

IoMust ontology in 

65

66

Chapter 3

Semantic Web of Things

P reviously the discussions outlined that various approaches are considered in liter-
ature to define Things [14]. With reference to the views suggested in Section 2.2

we designed the Internet of Musical Things ontology relying on IEEE’s interpretation of
thing definition. Such definition, by focusing on application perspective, implies a specific
description of the various layers building the application.

For this reason we created the IoMusT ontology leveraging a layered setup (see
Fig. 2.4) including sensing and actuating, location, agents as well as generic activities.
However, while the single musical application was described (see Fig. 2.3), a global view
of systems interacting with other systems was missing.

Such global and inclusive interpretation of IoT is the subject of this Chapter, where
the transition to Semantic Web of Things will be explored, and where we suggest some
ideas that are currently scheduled for the future, and some of the topics of the next
Chapter.

The contents of this Chapter are inspired from the main research carried by the
author of this Thesis and his colleagues over the PhD duration, and recently published1.

3.1 W3C Web of Things vision

We already mentioned important research on the WoT [12, 13, 56]. The most complete
idea and implementation guidelines of Web of Things, to the best of our knowledge, have
been given over the last years by a working group created by the W3C2.

In particular, the working group realized a set of drafts that are (as for September
2019) now Candidate Recommendations. We will here go through two of them, namely
the W3C WoT Architecture3 and the W3C WoT Thing Description4, that over their

1  2019 IEEE Reprinted, with permission, from Antoniazzi, F. & Viola, F. (2019) Building the
semantic web of things through a dynamic ontology. IEEE Internet of Things Journal, early access

2 https://www.w3.org/WoT/WG/
3 https://www.w3.org/TR/2019/CR-wot-architecture-20190516/
4 https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/

67

https://www.w3.org/WoT/WG/
https://www.w3.org/TR/2019/CR-wot-architecture-20190516/
https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/

evolution represented a starting point for our work.
Let us consider, first of all, the W3C WoT Architecture. The draft is organized

to provide a Web of Things vision of the future connected environments: therefore a
complete report of possible use cases is given. All of them, except the thing-to-thing
paradigm have in common the fact that the data retrieved by sensing units is consumed
far beyond the limits of the local environment. That is, we imply that there is an
information step similar to the one included in a fog computing [52] environment: data
is locally collected as well as locally elaborated to get some higher level information to
be sent into the Internet to consumers. The usages are unnumbered, and are already
part of everyone’s everyday life.

The implementation patterns, in this context, are also analyzed: the thing-to-thing
paradigm is observed side by side with gateway mediated approaches. Gateway solutions
in some cases have also access to the Web, providing the possibility to interact from
outside the system, and in some others situations are limited to an internal function
of communication enablers among different technologies. Another idea included is the
digital twin, i.e. the possibility to interact with a virtual representation of the device
and not necessarily with the physical item directly. The twin concept is at the basis of
the Thing Description as we intend in this Thesis (see Section 3.2.2), where a semantic
responsive twin is provided through the capabilities of SEPA (see Section 1.3).

Going further, a set of requirements are given for the Web of Things based on the
aforementioned technologies. For instance it is stated that the usage of the standard
protocols of the Web, and the realization of virtual environments accessible through a
RESTful approach is an essential core feature of the WoT. Interoperability and scalability
are an additional must, although they are subject to case-by-case development. In this
work, we will suggest a semantic interoperability.

Devices, indeed, must also be discoverable. At application level this implies that
we should have the possibility to describe devices, and that a uniform method should
be provided. Things, moreover, exchange data with each other, with humans, with
the cloud, in various formats. The description for discoverability should include the
formatting information formalization, as there is no way to achieve interoperability if
shared information meaning is not common among the actors.

W3C changed and adjusted the Thing Description logic several times since the cre-
ation of the Working Group. Consequently in this Thesis there may be some differences
with the actual candidate recommendations available (September 2019). In next Sec-
tion, in any case, we will clearly specify which is the draft that has to be considered as
a reference.

When considering the Thing Description explained by W3C versus the semantic solu-
tion outlined in this Thesis it is worth considering what follows. The Thing Description,
as it is visible in the provided drafts, is given as a JSON-LD file containing the infor-
mation formalized in a taxonomy identifying thing capabilities in a shared fashion. The
goal of such taxonomy is not to grant a semantic vision of the Web of Things, but rather
to assure as much as possible machine understanding of descriptions. Differently, by the
means of SEPA’s publish subscribe, we hereby not only give access to a common under-

68

standing of descriptions, but also the possibility to interact through that same platform,
i.e., in an environment designed to be interoperable.

3.2 A Dynamic Ontology for the Semantic Web of Things

As it is reported in the previous Sections, the Web of Things has recently appeared as the
latest evolution of the Internet of Things and, as the name suggests, requires that devices
interoperate through the Internet using Web protocols and standards. Currently only
a few theoretical approaches have been presented by researchers and industry, to fight
the fragmentation of the IoT world through the adoption of semantics. This further
evolution is known as Semantic Web of Things and relies on a WoT implementation
crafted on the technologies proposed by the Semantic Web stack. This Section presents
a working implementation of the Web of Things declined in its Semantic flavour through
the adoption of a shared ontology for describing devices. In addition to that, the ontology
includes patterns for dynamic interactions between devices, and therefore we define it
as dynamic ontology.

This ontology, named SWOT [swot], realizes a high-level abstraction of the devices
taking part in a smart application and of their capabilities leveraging the concept of
Thing Description proposed for the WoT by Charpenay et al.[133].

In addition to that, this Thesis also addresses one of the main limitations that apply
to the SWoT: ontologies and semantic-formatted data are considered to be static, while
any real context is continuously evolving dynamically. To do so, the ontology presented
here offers the tools to build a static description of the things along with a set of concepts
that regulate the dynamic interaction. We include in the knowledge pattern a prototype
of what the actual thing behavior looks like both when an actuation is triggered, or
when a sensor is required to communicate its current measurement.

Moreover, through the presented ontology we suggest a solution to the problem
of discoverability [157] of devices. Along with the main contribution we propose also
a framework, named Cocktail, which is a practical realization of both the static and
dynamic ontological concepts (see Sections 3.2.3). It is made for the fast and automatic
prototyping of software agents, and will allow us to provide a proof of concept of how
it is possible to build a SWoT environment and orchestrate it. The ontology, together
with its applications and capabilities, will be evaluated.

The SWOT ontology can be employed with any of the available standard SPARQL
endpoints. Nonetheless, due to the dynamic nature of IoT applications, and therefore
of SWoT applications, the whole study considers and takes advantage of the SPARQL
Processing Event Architecture (SEPA) [158, 99] as reference architecture. SEPA aims
to enhance triple stores with a publish-subscribe layer on top the SPARQL 1.1 protocol.
SEPA clients, then, by using SPARQL 1.1 subscribe5 and update languages can respec-
tively subscribe to and publish semantic data. This means that with SEPA it is possible
to easily create a semantic representation of the context and keep it coherent with the

5 http://mml.arces.unibo.it/TR/sparql11-subscribe.html

69

http://mml.arces.unibo.it/TR/sparql11-subscribe.html

physical environment as time passes.
We consider that the usage of semantics to enable interactions within devices defines

the concept of dynamic ontology as it is intended in the title of this research. In par-
ticular, the SWOT ontology includes the concepts devoted to a static representation of
devices, as well as their interaction with other things, which is of course characterized
by a high mutability. By binding our work to publish/subscribe semantic endpoints like
SEPA, we allow the knowledge base to be constantly up to date with the context. The
dynamic ontology not only describes the abstract context, but also permits following its
real-time evolution.

Before going in the details of the presented work, we propose a summary of the
contributions achieved through our approach:

1. Representation of the W3C’s Thing Description model (Charpenay et al. [133])
through Semantic Web standards (i.e., OWL). The main outcome of this activity
is an easy, high-level and general ontology for the formalization of Web Thing
profiles;

2. Such representation, carefully refined after a comparison with the ontology pro-
posed by Serena et al. [134], was then extended to support the Semantic Web
Thing Interaction (see Section 3.2.3) in addition to discovery;

3. Concerning the last point, as shown in Sections 3.2.2 and 4.2.2, the discovery
mechanism based on the proposed ontology is flexible and fully customizable (e.g.,
by further extending the semantic descriptions with other ontologies).

4. Development of an intuitive framework (i.e. Cocktail see Section 4.2) providing
high-level APIs enabling an even easier approach to the adoption of the ontology;

5. Formalization of a domain-agnostic methodology and a framework supporting the
device interaction by means of any standard SPARQL endpoint. In particular, we
suggest the adoption of SEPA which provides the ability to develop a responsive
system based on its subscription mechanism.

Head to Fig. 3.5 for a full view of the SWOT ontology.

3.2.1 Related Work

In the past twenty years, several works have introduced and explained the Semantic Web
view. Going back to 2001, Tim Berners-Lee et al. discussed in [2] the driving ideas and
concepts of a still prototypical Semantic Web through some practical examples. The
paper’s focus was to highlight in a few examples the situations in which the currently
available Web is either insufficient, or insufficiently exploited.

Following this research stream, Shadbolt et al. in [11] studied the meaning of the
term ontology in the Semantic Web. The concept of ontology seems to offer a (at least
partial) solution, to the great information disorder that is an inner consequence of the
Internet decentralization. Far from the philosophical meaning of the term, i.e., the

70

absolute and unique reality of the being, an ontology is a set of relationships between
some well-identified entities, listed in a machine understandable way (namely, the RDF
format). The challenges foreseen in Shadbolt’s paper, and that effectively we are facing
nowadays, are the reuse of available ontologies to produce data [159, 160, 161], the
alignment of ontologies exposing the same concepts [162], and the effective exploration
and visualization of the data graph [163, 164].

All those concepts apply also to the IoT, whenever an attempt is made to semanti-
cally describe its contents. For instance, ontologies modeling the physical-digital inter-
face are, among all, the Sensor, Observation, Sample, and Actuator and the Semantic
Sensor Network [sosa, ssn] ontologies. Although being largely documented, SSN and
SOSA still offer a complex approach to description of hardware, observation of physical
entities and actuation, that may be particularly cumbersome if the aim of the work is
the formal semantic expression of any IoT service. For this reason, using an ISO-OSI
stack metaphor, the ontology presented in this Thesis acts as upper ontology located at
application level, while SOSA and SSN are at physical and data-link levels.

In addition to this aspect, IoT presents also another facet, which is the time-related
evolution of its context [165]. The Time ontology6, and the Event ontology [event]
have been developed to this extent, in order to categorize both the flow of time and
asynchronous behaviors in the RDF graph. Their design, however, was made for the
static description a posteriori of a sequence of events, while the SWOT ontology targets
real-time awareness of context evolution.

Other works, e.g. OpenIoT [166], IoT-O [167], IoT-Lite [168], either use one of the
previously cited ontologies like SSN, either design a lower level description of devices
almost at hardware level. This is something that in this research we want to avoid, to
provide to the developer only high level interfaces.

Different works in literature propose IoT architectures enhanced with semantics. The
following lines report an overview of these works, starting from those having semantics
in a limited set of components and concluding with those oriented at a semantic de-
scription of things. Puiu et al. [169] presented an IoT framework for smart cities named
CityPulse. This framework adopts semantics in two of its components (i.e., namely Data
wrapper and Data Federation). The first provides semantic annotations based on the
Stream Annotation Ontology (SAO) and the Quality Ontology (QO) as well as on the
information models developed on top of the above-mentioned SSN Ontology, PROV-O,
and OWL-S. The second module is instead used to answer users’ queries that are trans-
lated into RDF Stream Processing (RSP) requests. Then, the overall role of semantics
in this framework is limited to discovery, data analytics, and interpretation of large-
scale data. As in our case, semantics has been adopted to foster interoperability among
heterogeneous entities. Moreover, CityPulse, is constrained to the domain of smart city
applications.

The same domain is addressed by Kamilaris et al. in [170]. In this work, semantics
is the glue among the IoT/WoT elements and is used to annotate sensory data streams.

6https://www.w3.org/TR/owl-time/

71

https://www.w3.org/TR/owl-time/

Annotation is achieved through an information model based, once again on [ssn] and
OWL-S and the adoption of ontologies like the above-mentioned SAO, the COmplex
Event Ontology and [prov] (just to name a few).

Kamilaris et al. also proposed Agri-IoT [171] a semantic framework for IoT-based
smart farming applications supporting multiple heterogeneous sensor data streams. The
framework provides a complete semantic processing pipeline, offering a common frame-
work for smart farming applications. It re-uses a set of components of the CityPulse
framework [169] as well as modules from FIWARE, ThingSpeak and OpenIoT. Devices
are handled by the device manager module borrowed from FIWARE IoT Backend that is
based on NSGI-LD. In our work we adopt the Web Thing abstraction to describe devices
in terms of properties, events and actions and we applied this model to a SEPA-based
ecosystem. SEPA and NGSI-LD are not conflicting, as demonstrated by our research
work [172].

All the ontologies mentioned in the previous lines, and many others available for
research and usage in the World Wide Web, have the common goal of overcoming a
fragmented world, where every solution cannot easily communicate with the one devel-
oped in the nearby office [173]. This well known nightmare of IoT researchers is analyzed
in [10], for instance, listing the causes of fragmentation of IoT (e.g., the coexistance of
resource constrained and rich devices in environments). Many researches suggest the
usage of a gateway to solve this problem (e.g., [174, 175]), while in [46] Zachariah et al.
highlight the limitations of such kind of approach, though proposing, as for today’s state
of the art, a rather difficult to realize smartphones-as-a-gateway solution.

Semantic Web was also included in this discussion: for instance, to foster the hori-
zontal communication of vertical silos, Desai et al. propose a semantic approach, studied
developing a protocol translation gateway [47]. This idea of enhancing IoT by unifica-
tion and translation at information level, rather than at lower protocols, is also followed
by Gangemi et al. in [176], where they propose the IoT Application Profile (IoT-AP)
ontology with the aim of representing and modelling the knowledge in the Internet of
Things. In [177], as well, an ontology is suggested and associated with the tasks of
discovery and dynamic composition: this work differs from ours, as the ontology there is
neither designed with the purpose of context evolution, nor targets the Semantic WoT,
but the plain IoT.

The interest of the IoT community in what the Semantic Web has to offer is also
demonstrated by ontology repositories for IoT and smart cities (e.g., Ready4SmartCities,
OpenSensingCity, LOV (Linked Open Vocabularies) [178] and LOV4IoT [179]) and their
impressive growth [180]. As an example, LOV, standing at the analysis proposed by
Gyrard et al. [180], stepped from less than one hundred to more than five hundred
ontologies in the period between March 2011 and June 2015 (and more than 650 are
available as of December 2018). As already said, discovery and orchestration of resources
are killer applications of semantics applied to the IoT.

The problem of discovering available resources in a network (i.e., the discoverability
problem [157]) is well known in research [181] and several solutions have been provided
over the years. It can be also addressed through ad-hoc protocols (like the one proposed

72

in [182], focused on privacy requirements), protocol-specific tools (e.g., CoAP-based
discovery was proposed by Djamaa et al. in [183] and Viola et al. in [184], while XMPP-
based solution is proposed in [185]) and gateway-based approaches [186]. Semantics in
this scenario has been proposed in several research contributions [187, 188, 47, 189, 190].
Kamilaris et al. in [191] presented WOT2SE, a search engine for the Web of Things
based on web crawlers that scan Linked Data endpoints. In our work instead, we rely
on a central broker, i.e. SEPA, where discovery can be made by means of SPARQL
queries/subscriptions either directly or indirectly (e.g., through high-level tools like the
WoT store [192]).

On the other hand, orchestration/choreography [193] refers to the centralized/decen-
tralized composition of services to perform complex tasks exploiting multiple elementary
components. The creation of a seamless flow of information through IoT devices and
services turns out to be a challenging task due to the: 1) heterogeneity of devices; 2)
the heterogeneity of data; 3) the unpredictability of the availability of devices and infor-
mation. Heterogeneity of shared information can be overcome only through an agreed
understanding of its composition, while the latter issue can be addressed through an
effective discovery mechanism. It is then clear how semantics may help the develop-
ment of service composition functionalities in large-scale scenarios. In this sense it is
important to keep track of the provenance of the information and, again, this can be
achieved through a well established ontology, like [prov]. Several approaches to orches-
tration/choreography have been proposed over the years. Tzortzis et al. [194] present a
semi-automatic approach to service composition. Viola et al. [135] propose an example
of orchestration of virtual things applied to the Semantic Audio research area. Song
et al. [195] propose a middleware based on Semantic Web techonologies aimed at the
automatic configuration of an heterogeneous network with service composition function-
alities. In literature it is also common to find approaches based on large IoT frameworks
and architectures supporting service composition like Arrowhead [196], OpenIoT [197]
and IoT-A [198].

As highlighted by Barnaghi et al. [199] the heterogeneity of devices makes interop-
erability a challenging problem, which prevents generic solutions from being adopted on
a global scale. Due to the key role of Semantic Web technologies in fostering interop-
erability in the Internet of Things, a new research area pivoting on them is born: the
Semantic Web of Things (SWoT).

Unfortunately, the application of semantic technologies to the IoT is not straigth-
forward due to the nature of IoT requirements (e.g., constrained devices, unreliable
connections) [199] and this motivates the birth of this new research area.

One of the first research works mentioning the Semantic Web of Things is the one by
Pfisterer et al. in [200]. The authors propose a service infrastructure to make information
produced by sensors available to all the possible users through the Linked Open Data
cloud, and not just to a single application. While we propose a high-level abstraction of
sensors and actuators, Pfisterer et al. focus on the nature of sensors. In both cases tools
for the automatic representation of information are provided: in SPITFIRE, knowledge
about sensors is inferred and eventually confirmed by the user, while in Cocktail the

73

developer is required to declare properties, events and actions. As regards the discovery
mechanism, Pfisterer et al. declare that an important functionality is searching for
entities with a certain state at the time of the query. Due to the high dynamicity of IoT
scenarios, SPARQL is not applicable and they developed a heuristic-based system. In
our architecture, SEPA (through its subscription mechanism) allows using SPARQL to
perform this task also in IoT scenarios.

Ruta et al. in [201] define the Semantic Web of Things as the adoption of Semantic
Web technologies in Internet of Things application. That said, the purpose of their
research is rather different from the work disclosed in the present Thesis. In fact, Ruta
et al. mostly focused on one of the common criticisms to the Semantic Web protocols:
their efficiency. The formats adopted in the Semantic Web are generally considered too
verbose to allow efficient data storage and management in IoT applications and this
motivates their work on efficient compression methods. Despite the different topic, it
is interesting to compare the system architectures: the project by Ruta et al. is based
on layer named ubiquitous Knowledge Base (u-KB), providing access to the information
embedded into semantic-enhanced micro-devices. It is a fully-decentralized system, in
contrast with SEPA, where the information is always available thanks to a central broker
hosting data. In both the architectures, devices are fully decoupled, but SEPA hosting
the knowledge base allows: 1) reducing the number of accesses to devices, imporant with
constrained devices or when the network is not reliable; 2) hosting the whole knowledge
base in a powerful node granting faster access and inference.

As mentioned in the Introduction, the W3C founded a Working and an Interest
Group dedicated to the Web of Things, whose challenges are depicted by Ragget [56].
Among the various contributions proposed by these groups, it is worth mentioning again
Charpenay et al. [133]. Within their research, the authors describe a vocabulary specif-
ically built for the WoT. Their main objective, with such vocabulary, is the alignment
with the pre-existing W3C achievements on IoT semantic reordering. The cited work re-
lies on the IRE (Identifier, Resource, Entity) ontological pattern, which states that Web
resources may act as proxies for real world entities. From this work, we borrow the con-
cept of Thing Description as Semantic resource formally describing a unique WoT Thing
that a software agent can interact with., and the concepts of Property, Action and Event
(the interaction patterns of Web Things). For all those borrowed concepts, however, the
SWOT ontology creates the semantic background that in W3C approach is limited to the
JSON-LD availability for the Thing Description. In addition to that, we introduce the
ontological view of real-time instances for actions and events. The framework proposed
in Section 4.2 leverages these concepts to provide a practical implementation of all the
tools needed to create a full environment.

Ontologies for the so-called (Semantic) Web of Things have been proposed also by
other authors. For instance, Serena et al. in [134] proposed an ontology for the discovery
of devices in the Semantic Web of Things. With respect to this paper, again, our
research goes beyond the pure discovery of devices, enabling the interaction through
the semantic broker. The ontology by Serena et al. is also used by Noura et al. [202]
that propose a framework for the goal-oriented description of web thing interactions. A

74

framework for semantic interoperability in the Web of Things is presented also in [203]
which combines an extension of the SSN ontology and machine learning techniques. No
detail are provided regarding the way subscriptions can be defined.

3.2.2 Semantic Web Things

The core concept of SWoT ontology is the swot:Thing class representing Web Things.
Any software, any real world item connected to the Internet with a semantic represen-
tation of its capabilities can be considered an instance of this class. In the next Sections
the precise patterns that are used in the ontology to describe the Web Thing capabilities
will be discussed.

Such definition of Semantic Web Thing is indeed unrelated to the technology realizing
it. We might also argue that even the human body can be considered as a connected Web
Thing in some situations: applications in healthcare [204], of course, but also research
on wearable IoT for everyday life [205], [206] and music [207] are valid examples.

The collection of Web Things acting and interacting in a semantic context will be
referred to as the Semantic Web Thing Environment (SWTE). Querying the SWTE
will eventually result in an inner context-awareness. In the next Sections, in fact, we
will see that the evolution of the context is taken into account by the architecture, and
therefore the actual physical environment is represented on-the-go in the stored RDF
representation. So, in a very simplified example, we may need to be notified of any new
device entering in our environment. This can be done with the subscription in Listing 3.1.
As outlined in the Introduction, this research exploits the SEPA subscription mechanism
(whose description is out of the scope of this Thesis). As opposed to MQTT protocol7,
where notifications are topic-based and not specifically focused on RDF knowledge bases,
SEPA natively allows SPARQL queries to differentially follow their subgraph over time.

Listing 3.1 – SPARQL subscribe to list all Web Things available in the RDF store.
SELECT * WHERE { ?thing rdf:type swot:Thing }

In a slightly more complex situation we may need to be notified of a temperature
overcoming a threshold. This will be possible by subscribing to an event once, in Sec-
tion 3.2.3, the Interaction Patterns will be explained.

The whole ontology, both in the static and dynamic description, is designed to sup-
port and easy respond to enquiries on the control of the dynamic evolution of the context,
providing a SPARQL-based context awareness. Through the Cocktail framework, pre-
sented in Section 4.2, examples on how to code and use the controls and the ontological
description of evolving SWTEs will be provided.

In the RDF representation, a Web Thing’s URI can be a dereferenceable resource
or, in any case, it should be an appropriately formatted address. A standard compliant
Web of Things ecosystem would rely on HTTP(S) addresses over TCP/IP as URIs.

As already proposed by Guinard and Trifa [157], Web Things can be declared to act

7 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

75

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

as proxies for other Web Things. This may be useful in case of constrained devices (see
[35] for a complete definition of the term) that are not directly reachable at application
level, and/or unable to declare themselves in the SWTE. The proxy Web Thing receives
and forwards requests in the right format to the proxied Web Things.

Semantic Web Thing discovery is not limited to the SPARQL example provided in
Listing 3.1. Exactly as in the IoT, the number of possible ways in which things can
be described is almost unlimited. Even the same object, in two different environments,
can be described in different ways leveraging, for instance, on other ontologies targeting
other descriptive aspects. For this reason the Semantic Web Thing discovery is tightly
connected to the semantic feature description of the object: the basic features of a Web
Thing are contained in the thing description, while an example including other ontologies
is given in Section 4.2.2.

In the ontology, the swot:Thing is bound to the swot:ThingDescription through
the predicate swot:hasThingDescription. While the former, as already said, is not
necessarily a Web resource but must be unique for each Web Thing, the second should
be. In particular, any HTTP GET to the thing description resource should respond
with a full JSON-LD description of the features of the Web Thing (i.e., the interaction
patterns: Actions, Properties and Events, as it is described in the next Sections). This
is a useful feature, especially for devices that must be available both from inside the
SWTE, and from outside (i.e., the World Wide Web).

To give an example on how to use this first ontology subset, consider Fig. 3.1, where
the colour code is defined and used in Protégé [208]. In the red box, that is only for
suggestion and does not belong to the ontology presented in this work, we added a few
straight-forward connections to other ontologies, like [prov, dul, foaf], proving that
SWOT ontology integration with other ontologies is possible as well as its usage with
DBpedia resources.

3.2.3 Interaction Patterns: the PAE paradigm

When an explanation is needed on what an object is?, people often tend to answer to a
different question, which is in fact what is it made for?. This is in general a reasonable
topic change, especially from the engineer’s point of view, as the real matter of discussion
are the possibilities that can be explored through the usage of the object.

IoT, WoT, and indeed SWoT, comply with this vision: users, both machines and
humans, will be discovering the SWTE looking for Web Things because they want to
use them in order to achieve something. There is, for this reason, the need of a semantic
unified description of the capabilities of objects. Such description has to be both machine
and human understandable, as we would like to enable people and AI to choose the right
device [209].

Within this Section, a full description of Semantic Web Thing interactive framework
is provided, as explanation of the ontology. As already discussed, the ontology presented
in this work borrows some concepts from other works, and extends them with an original
contribution. For instance, Charpenay et al. in [133], on behalf of the considerable work
of W3C Interest and Working group, introduced the thing description object, while

76

Figure 3.1 – swot:Thing and swot:ThingDescription partial ontology and a practical example of
instances and some suggestions of extensibility with other ontologies.

Serena et al.[134] defined the concepts of Property, Action and Event which in this
Thesis we call the PAE paradigm. On the 5th April 2018 the W3C released the Thing
Description Draft8, that leverages the two works aforementioned. Our research takes its
origins in such draft.

Static Interaction

The static interaction is the abstract description of a connected device feature: in our
context the feature is basically the need we have to fulfil when using the device. Proper-
ties, Actions and Events have been identified by W3C as the best way to represent that
concept of feature:

8 https://www.w3.org/TR/2018/WD-wot-thing-description-20180405/

77

https://www.w3.org/TR/2018/WD-wot-thing-description-20180405/

1. Properties address the need of storing, fixing and defining a device’s current state:
for example, a smart car’s property may be the percentage of gas remaining in its
reservoir;

2. Actions are the active interactions with the world (i.e., the need to produce, sooner
or later and in a finite amount of time, an effect on the environment): a smart
car’s action may be to switch on the radio;

3. Events, which implement the inner asynchronous nature of any agent oriented
environment (i.e., the need to be aware of changes in the environment): a smart
car’s event may notify the driver that the rear seatbelt is detached, or call for help
in case of accident;

In the present Thesis these three entities are represented as the classes swot:Property,
swot:Action, swot:Event, which are all subclasses of the interaction pattern concept
swot:InteractionPattern. In Fig. 3.2 the ontology subgraph for the interaction pat-
tern (IP) is shown: it can be noticed that all IPs have a friendly name, and they all can
refer to one or more wot:DataSchema to format their data (see Section 3.2.4), which can
be input data for Actions, output for Actions and Events, or property data for Proper-
ties. While for Properties the data is an essential part, and therefore the connection with
the DataSchema is compulsory, this is not the case for Actions and Events. They both
may produce some output, and Actions may need some input: the choice of including
input or output is left to the specific needs of the Web Thing designer.

The Property, in particular, is slightly different from Actions and Events, representing
a current state of the device. We then semantically describe it with a friendly name
(inherited from the swot:InteractionPattern), a stability and writability flag. The
stability’s xsd:unsignedLong value identifies in milliseconds the average time that the
Property is expected to remain constant. The writability’s xsd:boolean flag indicates
if the Property is software-definable or not. If yes, it is possible that (i) an Action exists
able to allow such software modification, or (ii) an external physical action is required
to modify the value (e.g. a mechanical toggle position).

Actions and Events, on their side, apart from inherited object and data properties
offer the dynamic interaction which will be treated in the next Subsection pointing
to the swot:Instance concept (see Fig. 3.3). In addition to that, both actions and
events can also refer to the swot:Property they may have effect on (i.e., through the
swot:forProperty object property).

Dynamic interaction: interaction pattern instances

The core discussion of this Subsection is how the dynamicity of interaction is achieved
within the SWTE, through the usage of the ontology proposed. In fact, the semantic
description of the interaction among Web Things plays a key role for the discussion
of the contributions presented here. The evolution of a WoT environment cannot be
observed through the immutable characters of the context. The ability to represent also
the interactions among the agents is why we attributed the dynamic adjective to the our

78

Figure 3.2 – swot:InteractionPattern subset of the ontology. Actions, events and properties
are interaction patterns, receiving inputs and giving outputs according to a data schema (see Sec-
tion 3.2.4)

ontology.
To render a mutable environment like the Web Thing Environment over a semantic

platform, the latter has to be enriched with a subscription engine. Therefore, to handle
such dynamic interaction, we will consider a RDF knowledge base on top of which we add
a publish-subscribe architecture like the SEPA, proposed by Roffia et al. [158]. SEPA
has been designed to be communication-protocol agnostic. In this Thesis HTTP(S)
protocols for query and update, plus WebSocket(S) for subscriptions will be considered.
There would be, of course, no difference if other choices were made: for instance, a CoAP
oriented SEPA engine called C minor is being developed for time-constrained musical
applications in [184].

Once the Semantic Web Thing Description has been given, we expect at run time
two possible situations: (i) the request for the execution of an Action, which we call
ActionInstance, and define through the swot:ActionInstance class; (ii) an Event no-
tification, which we call EventInstance, and define in the swot:EventInstance class.
They both are subclasses of swot:Instance.

See Fig. 3.3 for the subset of ontology related to dynamic evolution of instances.
Let us first consider an Event instance. In Table 3.1 the triples that a Semantic

79

Figure 3.3 – swot:Instance subset of the ontology, i.e., how the subgraph for an action request
must be formatted, as well as how an Event notification is thrown.

Web Thing must insert in the RDF store to notify the occurrence of an Event with its
output content can be observed. Among these triples there is the xsd:dateTimeStamp
of occurrence, that is essential to keep a timeline for notifications, and the output of the
notification itself. As it will be better explained in the last paragraph of this Section,
the exchange of inputs and outputs is another of the sources of dynamicity in the Web
of Things that requires the publish-subscribe mechanism.

In Table 3.2, on the other hand, are shown the triples that concern the instance
type swot:ActionInstance. Action instances are inserted into the RDF store by any
entity requiring the execution of an action. Among them, the authorship of the request
is shown by the swot:requestedBy predicate, and the timestamp of the request.

The two examples available have either an input given, either an Output. As already
discussed, actions can have both, or none of them. Events, on their side, can have an
output or just be empty. What is interesting, here, is the timings with which those
pieces of information are inserted into the knowledge base.

Let’s consider first actions. A common definition for them, according to W3C WoT
working group, is a kind of interaction taking a finite amount of time to reach an end.
It is therefore reasonable to consider that the outputs of an action, if available, will be
given after that amount of time. So, while inputs need to be given immediately together
with the action instance to trigger the execution, we definitely run into an asynchronous
behavior whenever we expect an output as result of the execution.

Events, instead, are by definition asynchronous. So, when they happen, they should

80

Table 3.1 – swot:EventInstance triples to be inserted in the RDF store to trigger an event notifi-
cation to all interested entities. Notice that the concept of data schema is explained in Section 3.2.4,
while the triples needed for the definition of swot:MyStringDataSchema are available in the high-
lighted rows of Table 3.3.

subject predicate object
ns:MyEvent rdf:type swot:InteractionPattern, swot:Event
ns:MyEvent swot:hasEventInstance ei:<uuid>
ei:<uuid> rdf:type swot:EventInstance
ei:<uuid> swot:occurredAt "2018-12-06T17:00:00Z"^^xsd:dateTimeStamp
ei:<uuid> swot:hasOutputData ei:<uuid>/outputdata
ei:<uuid>/outputdata swot:hasValue "This is an output"^^xsd:string
ei:<uuid>/outputdata rdf:type swot:Data
ei:<uuid>/outputdata swot:hasDataSchema swot:MyStringDataSchema

Table 3.2 – swot:ActionInstance triples to be inserted in the RDF store to trigger the action
performace. Notice that the concept of data schema is explained in Section 3.2.4, while the triples
needed for the definition of swot:MyStringDataSchema are available in the highlighted rows of
Table 3.3.

subject predicate object
ns:MyAction rdf:type swot:InteractionPattern, swot:Action
ns:MyAction swot:hasActionInstance ai:<uuid>
ai:<uuid> rdf:type swot:ActionInstance
ai:<uuid> swot:hasRequestTimeStamp "2018-12-06T17:00:00Z"^^xsd:dateTimeStamp
ai:<uuid> swot:requestedBy ns:AnotherWebThing
ai:<uuid> swot:hasInputData ai:<uuid>/inputdata
ai:<uuid>/inputdata rdf:type swot:Data
ai:<uuid>/inputdata swot:hasValue "This is the input"^^xsd:string
ai:<uuid>/inputdata wot:hasDataSchema swot:MyStringDataSchema

carry all the information they need (i.e., their output if they have one). A different
reasoning has to be done concerning properties: they are, in fact, the reference for
information specific to the Semantic Web Thing and therefore they exist because of the
information itself. So they have no input nor output, but they just supply their property
data.

The input or output resource, of course, needs to be filled out with actual infor-
mation. Within the ontology inputs and outputs belong to the class swot:Data when
given by user or retrieved from execution. In our vision, however, there is no sensible
difference between swot:Data and the [dul] class dul:InformationObject as the piece
of information is here collected, citing DUL rdfs:comment of dul:InformationObject,
independently of how it is concretely realized.

Eventually, as it can be seen, all swot:Data instances refer to a swot:DataSchema.
This is necessary, as an InteractionPattern might accept as input different formats,
or release its output in different formats: connecting the information with the ac-
tual interpretation statement is therefore essential. For a complete tractation of the
swot:DataSchema concept, see Section 3.2.4.

81

Figure 3.4 – swot:DataSchema and swot:FieldSchema ontology subgraph, together with an exam-
ple of a simple xsd:string datas chema inclusion.

3.2.4 DataSchema and FieldSchema

As it was told in the previous Sections, swot:Thing is an abstraction for connected
objects in a SWoT environment. Similarly to any object in the real world, the semantic
Web Thing instance needs several connections with the virtualized semantic enviroment.
Those connections enable all the interactions that things may have in their own context.
Hence, they are very important because they permit a dynamic flow of information from
thing to thing, as well as from user to thing and vice versa. Actions, then, will be able
to receive information on how they are expected to perform their task: the parameters.
According to such information the performance may change dramatically: just consider
the difference between asking a printer to make 2 or 200 copies of the same file!

Similar interfaces, moreover, are needed when actions or events have to produce some
kind of output. And eventually, as we already said, also properties may need one, as
they store status information.

Formatting parameters is not a negligible problem. Furthermore, when discovering
the available Web Things in a SWTE, it may be of great interest to query for Actions
that require an input formatted in a specific way (e.g., a thermostat where the target
temperature is expressed in celsius degrees in an XML file), or for Events that generate
outputs with a particular syntax (e.g., a temperature sensor with output expressed in
Fahrenheit degrees in a JSON file).

Within the SWOT ontology this problem is addressed by the swot:DataSchema and

82

the swot:FieldSchema classes. In Fig. 3.4 are shown the relationships between these
two classes and the ones introduced in the previous sections, as well as a simple example.

To better understand the meaning and the usage of data schemas and field schemas,
it is useful to distinguish the basic situations that can occur within a semantic Web
Thing data interaction. All the following cases can happen either in inputs and outputs
of any of the swot:InteractionPattern subtypes, i.e. actions, events and properties.

1. The data exchanged (or stored, in the case of a property) is a basic data type,
that fulfils the definition of any of the types in XML Schema9, like xsd:integer,
xsd:string;

2. The data exchanged is a complex data type collecting in various ways a cluster
of basic data types: this might be (but not limited to) the case of a JSON or an
XML file;

3. The data exchanged is a resource: a text file, audio, video, and so on;

4. The data exchanged is a Semantic graph formatted according to a specific ontology.

The following Subsections will demonstrate their usage giving practical examples.

Basic and Complex datatype

In this Section the complex and basic datatypes are examined. Tables 3.3 and 3.4 are
provided to exemplify the meaning and the usage of swot:DataSchema and swot:Field-
Schema classes.

In particular, Table 3.3 (first example) reports the triples needed by an action re-
quiring as input information a unique xsd:integer, and outputting the square root of
that number as xsd:double.

In a smarter Web Thing, the same action might be able to read also an xsd:string,
and parse it independently towards the integer. In that case, there would be no difference
with the previous situation except that, as in Table 3.3 (second example), the grey-
coloured entries are included.

In a smarter Web Thing, the same action might be able to read also an xsd:string,
and parse it independently towards the integer. In that case, there would be no difference
with the previous situation except that, as in Table 3.3 (second example), the grey-
coloured entries are included.

The complex datatype is slightly more challenging and is represented in Table 3.4.
The Table contains the triples necessary for an action that requires an xsd:string as
input, α, and outputs a JSON object having an entry for every distinct character of α,
and value the number of times such character appears in α.

The two examples provided come in help to explain the concepts of data schema and
field schema.

9 https://www.w3.org/TR/xmlschema-2/

83

https://www.w3.org/TR/xmlschema-2/

Table 3.3 – Examples of basic datatypes. White lines refer to the first example. Grey lines have to
be added to realize the second example discussed in Section 3.2.4 (Basic and Complex datatype).

subject predicate object
ns:MyAction rdf:type swot:InteractionPattern,

swot:Action
ns:MyAction swot:hasDataSchema ns:MyIntDataSchema,

ns:MyDoubleDataSchema
ns:MyAction swot:hasInputDataSchema ns:MyIntDataSchema
ns:MyAction swot:hasOutputDataSchema ns:MyDoubleDataSchema
ns:MyIntDataSchema rdf:type swot:DataSchema
ns:MyDoubleDataSchema rdf:type swot:DataSchema
ns:MyIntDataSchema swot:hasFieldSchema _:MyIntFieldSchemaBN
_:MyIntFieldSchemaBN rdf:type swot:FieldSchema, xsd:integer
ns:MyDoubleDataSchema swot:hasFieldSchema _:MyDoubleFieldSchemaBN
_:MyDoubleFieldSchemaBN rdf:type swot:FieldSchema, xsd:double
ns:MyAction swot:hasDataSchema ns:MyStringDataSchema
ns:MyAction swot:hasInputDataSchema ns:MyStringDataSchema
ns:MyStringDataSchema rdf:type swot:DataSchema
ns:MyStringDataSchema swot:hasFieldSchema _:MyStringFieldSchemaBN
_:MyStringFieldSchemaBN rdf:type swot:FieldSchema, xsd:string

Table 3.4 – Complex datatype triple description example. Notice that ns:MyStringDataSchema
definition is not included in the Table, as it is already available in Table 3.3, grey-coloured lines.

subject predicate object
ns:MyAction rdf:type swot:InteractionPattern,

swot:Action
ns:MyAction swot:hasDataSchema ns:MyStringDataSchema

ns:MyComplexTypeDataSchema
ns:MyAction swot:hasInputDataSchema ns:MyStringDataSchema
ns:MyAction swot:hasOutputDataSchema ns:MyComplexTypeDataSchema
ns:MyComplexTypeDataSchema rdf:type swot:DataSchema
ns:MyComplexTypeDataSchema swot:hasFieldSchema ns:MyJSONFieldSchema
ns:MyJSONFieldSchema rdf:type swot:FieldSchema, xsd:Literal

First of all, it is important to observe that an instance of swot:DataSchema should
not be considered thing-specific. Therefore we expect that numerous actions, events and
properties (no matter the Web Thing they belong to) share the same data schema, like
is done for ns:MyStringDataSchema. This is an essential point, to guarantee interop-
erability as well as to reduce the amount of data in the knowledge base. Besides, it
has to be highlighted that any swot:DataSchema should neither be bound to a role of
fixed and immutable input or output: action A may need data schema D as input, while
event E as output. The data schema must be a Web resource to be easily identified. As
a matter of fact, it should be reachable from the Web, and should reply to requests with
a JSON-LD describing the data format.

Secondly, having a closer look to the Tables, we can outline the usage of the entity
swot:FieldSchema. As it can be seen, the field schema closely depends on the data

84

schema. It is a semantic resource that acts similarly to a collection point for data
formats. Field schemas can be provided in the SWTE as blank nodes and as resources,
depending on the needs of the interaction pattern: in the basic data case, the field
schema is a blank node typed as an xsd resource. There should be no need for further
format description and interpretation support, as xsd refers to a well-known standard.

Inversely, in the complex data case, the field schema is a full resource typed as
a generic xsd:Literal. The field schema resource URI, now, should be a reachable
resource on the Web (i.e., a blank node here is not acceptable), containing all the needed
information to interpret the literal entity. That is, in the case of Table 3.4, we intend
the resource to answer to an HTTP GET with a JSON Schema according to Listing 3.2.

Multiple field schemas can be connected to a data schema, signifying that the inter-
action pattern is able to use (or expecting) data formatted in more than one way.

Once this answer reaches the client, there is a global understanding of how the data
should be formatted and/or interpreted. Notice that a DataSchema may point to more
than one FieldSchema, meaning that all of them will be given (if it is an ouput), or all
of them are required (if it is an input).

Listing 3.2 – JSON Schema expected in response to an HTTP GET to ns:MyJSONFieldSchema as in
Table 3.4 referring to the complex datatype example in Section 3.2.4.
Request:
GET MyJSONFieldSchema
Host: ns

Result:
200 OK
Content type: application/json+schema

{
"definitions": {},
"$schema": "http ://json -schema.org/schema#",
"$id": "ns:MyJSONFieldSchema",
"type": "object",
"title": "Char␣counter␣Action␣output",
"patternProperties": {

"^[a-z]$": {"type": "integer"}
},
"additionalProperties": false

}

Web Resource datatype

It is not rare for a device to need a file to perform an action: especially (but not limited
to that case) if the device is virtual. While a generic and maybe small textual file can be
treated as in the previous Subsection as an xsd:Literal, a more complex situation is
here considered of actions, events and properties dealing with generic resources located

85

Table 3.5 – Web resource datatype triple description example.

subject predicate object
ns:MyAction rdf:type swot:InteractionPattern, swot:Action
ns:MyAction swot:hasDataSchema ns:WebAudioDataSchema
ns:MyAction swot:hasInputDataSchema ns:WebAudioDataSchema
ns:WebAudioDataSchema rdf:type swot:DataSchema
ns:WebAudioDataSchema swot:hasFieldSchema _:MyAudioResourceBN
_:MyAudioResourceBN rdf:type swot:FieldSchema, swot:ResourceURI

on the Web.
The most important point, when the semantic Web Thing is parametrized with Web

resources, is to define the semantic description in order to allow a correct usage of the
given item. This task belongs to the data schema and the field schema. As a first
example, let us consider Table 3.5, containing the triples necessary for an action that is
capable of playing an audio file by using a generic audio player (which will be referred
to as play). In such case, the Web Thing’s inner logic would be parameterized so that
the parameter URI is interpreted as a link to music file. Once the resource URI is
received, its usage is fully dependent on the device purpose. In general, we consider two
possibilities: (i) the resource is downloaded and used (ii) the resource is not directly
downloadable (i.e., a database access point, a streaming resource). Cocktail framework
(see Section 4.2) can implement such audio player in both ways, either if the logic is
equivalent to

$ download audioFile.mp3 from music_link
$ play audioFile.mp3

or to

$ play music_link

A second example of this same kind might be a database access Action. In this case,
we consider the Action to expect as input an xsd:string containing the SQL query,
and a swot:ResourceURI, Web address of the database. Consider Table 3.6 for the
triples. Given those inputs, the software logic would probably be something similar to
the command

Request:
POST "SHOW␣DATABASES"
Host: <my_DB_resource_URI >

Of course, there is no difference in the case of an output resource: an upload is to be
expected towards the resource address, or the creation of the server itself, responding to
queries on that resource. This may also be a powerful solution, to be combined with a
REST architecture.

86

Table 3.6 – Web resource datatype triple description for a database query swot:Action client. Notice
that ns:MyStringDataSchema is not included, as it is already available in Table 3.3.

subject predicate object
ns:MyAction rdf:type swot:InteractionPattern, swot:Action
ns:MyAction swot:hasDataSchema ns:DBAccessDataSchema,

ns:MyStringDataSchema
ns:MyAction swot:hasInputDataSchema ns:DBAccessDataSchema,

ns:MyStringDataSchema
ns:DBAccessDataSchema rdf:type swot:DataSchema
ns:DBAccessDataSchema swot:hasFieldSchema _:MyDBResourceBN
_:MyDBResourceBN rdf:type swot:FieldSchema, swot:ResourceURI

Table 3.7 – Graph resource datatype triple description.

subject predicate object
ns:MyAction rdf:type swot:InteractionPattern,

swot:Action
ns:MyAction swot:hasDataSchema ns:GraphAccessDataSchema
ns:MyAction swot:hasInputDataSchema ns:GraphAccessDataSchema
ns:GraphAccessDataSchema rdf:type swot:DataSchema
ns:GraphAccessDataSchema swot:hasFieldSchema foaf:
foaf: rdf:type swot:FieldSchema,

swot:OntologyURI
ns:MyAction swot:hasActionInstance ai:<uuid>
ai:<uuid> rdf:type swot:ActionInstance
ai:<uuid> swot:hasRequestTimeStamp "2018-12-06T17:00:00Z"

^^xsd:dateTimeStamp
ai:<uuid> swot:requestedBy ns:AnotherWebThing2
ai:<uuid> swot:hasInputData ns:foafgraphResource
ns:foafgraphResource rdf:type swot:Data
ns:foafgraphResource swot:hasInputDataSchema ns:GraphAccessDataSchema

Semantic Resource datatype

Eventually, we refer to the possible occurrence of a swot:InteractionPattern designed
to produce or to consume a semantic graph. It is important to say that there is not such
a big difference with the previous case exposing an action querying a database. In fact,
as it is shown in Table 3.7, the difference is that the field schema is now given by a
complete resource instead of a blank node, and of course it is not a swot:ResourceURI
but a specialized swot:OntologyURI. With this data/field schema construction, the user
can download or explore the ontology given by the field schema, and use the patterns
there described either to format a triple graph, if it is an input graph, or to query the
triple graph, if it is an output. The grey lines in Table 3.7 include the triples to be added
in order to perform an action request.

It might be useful, in other scenarios, to join the usage of the swot:ResourceURI
with the swot:OntologyURI, for more complex situations. For instance, let us consider
the same input DataSchema of Table 3.7, and an action whose task is to perform a
SPARQL query like:

87

SELECT ?v1 ... ?vN
WHERE { <some very complex query pattern > }

Let’s consider, also in this case, that the FieldSchema is foaf. Then, the actual
swot:Data parameter expected here is the Web location of a graph resource which we
know is formatted according to foaf, so that the query will be able to be performed
successfully. To make things more complex, let us add a line to the query:

SELECT ?v1 ... ?vN
FROM <graph_resource >
WHERE { <some very complex query pattern > }

If we include a swot:ResourceURI as second FieldSchema as we did for the case in
Section 3.2.4 (Web Resource datatype), it will be possible to give as a parameter also
the graph_resource variable.

88

Figure 3.5 – Full view of the SWoT ontology. swot: prefix is omitted from the items shown.

89

90

Chapter 4

Semantic Driven
Agent Programming

T his Chapter reports the current status of a research that is still ongoing. Starting
from the Semantic Web of Things Ontology presented in the previous Chapter,

we hereby proceed studying how it would be possible to apply this semantic approach
to address real problems.

To do so, Section 4.1 provides some references to the origins of this research and
to other relevant works on the subject. Section 4.2, then, develops a practical imple-
mentation for the ontological work available in Section 3.2. The Cocktail framework is
presented, described in detail and realized. Eventually, in Section 4.3 various examples
inspired by real world needs are given. Once analyzed, we show our possible solutions
with increasing complexity, by exploiting Cocktail and the Semantic Web of Things
ontology alongside with other relevant methodologies.

The Chapter takes inspiration from the works published and submitted during the
PhD1.

4.1 Related Works

Agent-oriented programming idea was originally introduced by Yoav Shoham in 1993 [1].
Within his exceptional work an extended view is proposed over object-oriented program-
ming: agent-oriented programming interprets systems as a continuous collaboration and
competition of computational entities. Such entities, i.e. the agents, are modeled as
the result of complex mutual influences of beliefs, decisions, capabilities and obligations.
Along with this work, similar theories can also be listed, like the Belief-Desire-Intention
(BDI) by Georgeff et al. [210].

The belief, first of all, is related with the knowledge of the agent’s relevant sur-

1  2019 IEEE Reprinted, with permission, from Antoniazzi, F. & Viola, F. (2019) Building the
semantic web of things through a dynamic ontology. IEEE Internet of Things Journal, early access

91

rounding environment and entities. In literature this facet was later on intended as the
context, and was declined in works focusing on the so called context-aware computing
[211, 212]. Abowd et al. suggested in [213] a definition of context that is still up-to-date:

Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.

From this definition on, a plethora of works started to explore the subject. Just to
name a few, Kofod-Petersen et al. [214] used activity theory to connect contexts to task
identification; Sezer et al. [215] surveyed the relationships between context awareness,
Internet of Things and Big Data. Baldauf et al. [216], among many others [217, 218, 219,
220], outlined the relevance of Semantic Web in this discussion introducing ontologies to
realize applications.

Decisions and capabilities, secondly, define the agent’s potential influence over the
context. The set of capabilities, on one hand, should contain description of what agents
can do, regardless their local status. This is the reason why, recently, the concept of
capability was declined in works on device discovery mechanisms both in academy (e.g.,
[221, 222]) and in industry (e.g. [223], and the already cited work within W3C WoT
Working and Interest groups).

Decisions, on the other hand, would outline the connection between the current con-
text and the most relevant and applicable capability available, to maximize compliance
with obligations. To achieve these results, indeed, current research leverages various
Artificial Intelligence (AI) techniques that span from classic AI to machine learning
[224, 225], as well as, in our case, to the usage of semantic information [226, 227].

Lastly, obligations: they are the constraints that agents must respect. Usually, the
first idea of “obligation” presented to students is given by I. Asimov’s Three Laws of
Robotics included in the well-known novel I, Robot. Although they have been source of
prolific discussion (e.g., [228]) over the last decades because of their visionary relevance,
it is clear that with the advent of IoT systems the concept of obligation was slightly
redirected on a different level. Obligations can be related to constrained device environ-
ments [35], minimize power, maximize security and privacy, and so on [229], or related
to the application business logic.

Both the works by Shoham and Georgeff were made before the pervasive electronics
and connected IoT real revolution. Over the time, the exponential increase in the number
of devices reached a bottleneck in system integration and in capability of interoperate
[10, 230]. The context awareness, as discussed, would move to a context of contexts, to
create systems of systems into an “Agents of Things” environment [231]. Consider also,
in this field, the survey by Kotseruba et al. [232].

The Semantic Web revealed itself to be part of this discussion according to the
view summarized in the previous Sections of this Thesis, and in particular our dynamic
approach and exploitation of graph knowledge bases. With reference to the BDI model,
the SWOT ontology will hereby be our tool to allow intelligent behavior of agents,
through SEPA mediated semantics.

92

4.2 SWOT agents framework and Evaluation

This Section contains the discussion over the SWOT ontology and its conceptualization
into the Cocktail framework. To do so, the first Subsection will describe Cocktail and
show how the ontology can be easily employed to build interoperable applications. Af-
terwards, an overall evaluation of the SWOT ontology will be provided, according to a
set of literature metrics.

4.2.1 Cocktail framework

Once the SWOT ontology is given and both its static and dynamic parts have been
addressed, we have the ingredients to setup a Semantic Web of Things environment.
As already stated in the previous Sections, in our implementation the SEPA has been
adopted to dispatch events and notifications to control the dynamic evolution of the
SWTE. On the other hand, the Web Things will use instances of the static subset of
the SWOT ontology to declare themselves and to discover their context. In a broader
view, starting from here, the SEPA may act as a Semantic Cloud engine for a generalized
Semantic Web of Things over the SWOT ontology.

To do so, the SEPA implementation available on Github2 will be used together with
the baseline APIs developed for it3. On top of them the Semantic WoT SEPA APIs are
built as a complete framework named Cocktail. The Cocktail framework is also freely
available on Github4 with its documentation and the explanation of the reasons behind
its name.

Cocktail contains high level functions and classes to:

1. Declare the things, assign them a friendly name, an URI, and a thing description
resource;

2. Append to the thing description resource all the interaction patterns needed, i.e.,
actions, events, properties, with their friendly names, URIs, data as described in
Section 3.2.3;

3. Define, if needed, new data schemas;

4. Query the SWTE for things, interaction patterns, and basic discovery mechanisms;

5. Request the execution of an action, post its output and wait for it if necessary,
together with all the needed timestamps;

6. Throw, and wait for event notifications;

7. Delete those instances.
2 https://github.com/arces-wot/SEPA
3 https://github.com/arces-wot/SEPA-python3-APIs (branch dev-0.9.5)
4 https://github.com/fr4ncidir/SemanticWoT

93

https://github.com/arces-wot/SEPA
https://github.com/arces-wot/SEPA-python3-APIs
https://github.com/fr4ncidir/SemanticWoT

All these functions, indeed, share a common point. They perform specific requests
to SEPA: either SPARQL Updates, or SPARQL Queries, or SPARQL Subscriptions.
Cocktail uses SPARQL Updates to spawn new things, actions, events, properties and
data schemas and their internal relationships; in addition to that, they are needed also
to inject in the graph new action or event instances and output data. Those triples, once
inserted in the knowledge base, will be captured by the SEPA subscriptions engine, that
will trigger an action execution, or notify that an event has occurred or that an output
is available. Eventually clients, humans or Web Things, will be allowed to perform
SPARQL Queries looking for all kinds of information in the graph: e.g., we expect
standard requests like “List all Web Things in the SWTE” along with more complex
ones, like “What interaction patterns give as output mp3 files?” or “What Web Things
have at least an action which is described through the Pizza Ontology?” or also “How
can I format my data so that a specific action can use it as input?”

It is therefore clear that Cocktail is composed by two facets: the SPARQL code, that
interacts with triples in the knowledge base; and the thing business logic, that takes
care of performing the main tasks of the device, and the communication with SEPA.
In our implementation, targeting a proof of concept rather than a full realization of
the platform, Python3 has been adopted to address the thing business logic. Indeed,
equivalent APIs will be developed for other languages in the future, to be used also in
more constrained devices, like the Arduino family and so on.

It is worth noticing that the SPARQL code remains the same in all those implemen-
tations. As already said, it is available in Cocktail repository, to be used within our
Python3 setup or to be called directly from others services.

4.2.2 Cocktail: in-use analysis

Cocktail’s collection of SPARQL updates, queries and subscriptions on top of SEPA
proves that a Semantic WoT implementation is achievable in an overall limited amount
of lines of code.

Nevertheless, an evaluation is required, both of the framework’s usability and of the
ontology itself. Notice that an evaluation of the SEPA and its processing units is not
within this paper’s scope.

Let’s start by analyzing the usage of the framework. To do so, the following small
SWTE composed by 3 semantic Web Things (depicted in Fig. 4.1) and a few additional
triples has been developed:

ns:Thermostat is a smart thermostat also declared as a sosa:Sensor observing the
special resource ns:Temperature (2 additional triples). This smart Web Thing
has an action called ThresholdAction, and an event called TemperatureEvent. By
calling the ThresholdAction, the user can define Tlow and Thigh, and therefore setup
his/her desired temperature interval. The thermostat performs also a smart discov-
ery: it looks for Web Things acting on ns:Temperature, and providing an action
that requires some input formatted with a specific data schema ψ. The SPARQL
code used for discovery is available in Listing 4.1. If there are available actions of

94

this kind, and the temperature t ̸∈ [Tlow, Thigh], the thermostat triggers Thresh-
oldAction. Every 5 seconds, also, the thermostat throws a TemperatureEvent with
the current temperature value (data schema λ).

ns:HotCold is a smart air conditioner and heater. It is also typed as sosa:Actuator
acting on resource ns:Temperature (2 additional triples). It has an action that can
be triggered with input formatted according to dataschema ψ. The device performs
a different smart discovery, available in Listing 4.2, searching for ns:Temperature
sensors and subscribing to their temperature-change event formatted as λ data
schema.

ns:Clock is a smart clock with an action that, when requested, replies with the current
timestamp (data schema ξ), and an action that replies with the current tempera-
ture (data schema λ). Also, ns:Clock is a sosa:Sensor observing ns:Temperature
(2 additional triples). It’s worth saying that this is a dummy device that proves
the effectiveness of smart discoveries: Listing 4.1 discovery will not match with
ns:Clock, because it is not a sosa:Actuator, and Listing 4.2 because there is no
corresponding Event.

Other triples are related to the resource ns:Temperature and to the data schemas. In
order to allow the more complex discovery methods previously cited, two rdf:type
references are added to the temperature resource using the SOSA ontology,
sosa:ActuatableProperty and sosa:ObservableProperty (2 additional triples).

Listing 4.1 – Smart discovery for Web Things with an Action acting on temperature and requiring a
ψ-formatted input
SELECT ?thing ?action WHERE {

?thing rdf:type swot:Thing , sosa:Actuator;
sosa:actsOnProperty ns:Temperature;
swot:hasThingDescription/swot:hasAction ?action .

?action swot:hasInputDataSchema <ψ_uri >
}

Listing 4.2 – Smart discovery for Web Things that are ns:Temperature sensors triggering Events
with λ-formatted output
SELECT ?thing ?event WHERE {

?thing rdf:type swot:Thing , sosa:Sensor;
sosa:observes ns:Temperature;
swot:hasThingDescription/swot:hasEvent ?event.

?event swot:hasOutputDataSchema <λ_uri >
}

As stated in Section 3.2.4, all the dataschemas ψ, λ, ξ are considered to be already
available in the SWTE. Given that, if we imagine that temperature is t = 3◦C and
Tlow = 18◦C, what happens in this environment is that:

95

Figure 4.1 – An example of Semantic Web Thing Environment

• if the thermostat is declared first it will only notify the temperature event until the
smart discovery is becomes effective. Once ns:HotCold is available, the thermostat
is notified that an action formatted as requested is now present in the SWTE. The
action is therefore immediately triggered, and will continue until a temperature
event is notified so that Tlow ≤ t ≤ Thigh;

• if ns:HotCold is declared first, it will just start waiting normally for its action to be
triggered. No temperature event from sensors is available, as ns:Clock generates
temperature through an Action. Once, finally, the thermostat is available the
Action is triggered upon its request and the temperature starts rising, until it
reaches a level between the thresholds.

As it can be seen, Cocktail on its own is enough to build an environment in which
semantic Web Things are totally independent, and basic environmental discoveries are
available. Cocktail allowed to concentrate on the basic mechanisms of the SWTE.

Cocktail alone, however, would have been insufficient to help the thermostat decide
the best action to trigger. To make the decision, if the action in ns:HotCold or in
ns:Clock, we need to introduce the 8 SOSA-related triples. Those additional triples
allowed us to identify the Web Thing needed, the action to be requested and the events
to which we have to subscribe.

This result, in particular, proves that our ontology is easily extensible, and that
even a small addition to it can lead to interesting autonomous behaviours, by expanding
context awareness.

The code realizing the SWTE is available in Cocktail’s Github repository, and shows
that the realization of the software modules is rather simple and based on a schema that
can be summarized as following:

1. Identification and description of interaction patterns;

2. Posting to the SWTE the triples;

96

3. Definition of actions’ and events’ behaviour;

4. Device loop: business logic, and events’ throwing;

5. Optional small Web server dedicated to JSON-LD thing description.

4.2.3 Evaluation

The task of evaluating an ontology is rather complex due to the fact that it has to
be performed as a balance between expressiveness and effective usage. Although the
ontology may address various abstraction levels, the target applications must be taken
into account in order to distinguish pros and cons. Philosophical ontologies will be
mostly evaluated by their expressiveness, while the engineered ones will need also a
contact with real applications.

In this work, furthermore, the target is an even different concept, which is in fact
a quite new situation in the panorama: the ontology has been defined as dynamic to
highlight the fact that it is built up of a descriptive and static part, and of a context-
evolutionary part. While proceeding with an empirical evaluation of the work presented
in this paper this factor, that has strong relevance in the realization of the whole appli-
cation, will be taken into account.

Fernández et al. [151] defined a set of 12 metrics to measure the quality of an ontology.
In the current paper those metrics are partially adopted and partially re-arranged to
be reasonably applied to the work. In fact, the authors believe that in this specific
case, due to the small dimension of this SWOT ontology, not every metric among the
ones suggested in origin would be completely appropriate. Keeping this in mind, the
evaluation is hereby reported:

• Number of classes: the number of classes in the SWOT ontology. The overall
value, for the ontology, is 14: among these, 10 are used for the static SWTE
description, and the remaining 4 have a dynamic role;

• Number of properties: number of (datatype or object) properties in the ontol-
ogy. The datatype properties are overall 9, 4 of which allow the static description,
and 5 the dynamic one. The object properties, instead, are 9 static, 7 dynamic and
4 belonging to both the sets, 20 in total. Eventually, 20 more (inverse) properties
can be added. Being redundant elements, they will not be considered from now
on.

• Number of individuals: number of individuals defined in the presented ontology.
At present, the SWOT ontology does not include any individuals: however, as it
has been already said, swot:DataSchema and the swot:FieldSchema instances are
a kind of entity that may be considered similar to the concept of individual, since
they should be available in the SWTE before the setup of things, and in general
they should not be removed.

Those first three points have a considerable impact on the overall composition of a

97

Cocktail-based SWTE because their values affect the complexity of the needed SPARQL
enquiries. Being the ontology composition almost equally bipartite, with 27 entries
belonging to the static description and 20 belonging to the dynamic evolution, in fact the
SPARQL obtained for the complete Cocktail setup appears to be unexpectedly simple.

Another metric that can help understanding the SWOT ontology capabilities is the
number and the sequence of SPARQL interactions (Updates, Queries and Subscriptions)
that are required to have a running Cocktail-based SWTE. The metric, similarly, outlines
an evaluation of the computational resources necessary for a working SWTE setup,
identifying the minimal requirements for a running Web Thing. To give an example,
let’s consider the same example of Subsection 4.2.2, considering Web Things as is, out
of the general application logic:

ns:Thermostat requires 6 SPARQL updates to globally post the Web Thing (1), its
Action (1) and Event plus its notifications (2). In addition to that, there is also
the update for the additional background (1) and, eventually, the external Action
request, that is also a SPARQL update. Concerning subscriptions, one permits to
be notified of external requests towards the thermostat Action, and one is required
for the smart discovery mechanism, as already described in the previous Subsection.

ns:HotCold similarly requires 5 updates and 3 subscriptions.

ns:Clock requires 4 updates and 2 subscriptions.

In the end, this 3-Web Thing SWTE requires 15 updates (some of which are performed
into a loop according to the application logic), and to keep 7 subscriptions opened. Not
to mention, moreover, the deletion of resources, once they are no more needed. Most
the times (namely, the ones related to the dynamic part of the ontology), the deletion
is embedded in the same SPARQL Update that performs triple addition. So, it has
been already counted in the previous discussion. The deletion of static resources, on the
contrary, is more rare, and we do not count it, as it has to be made on explicit request
by the system maintainer.

Indeed, this is an interesting result, even though no graph level security and privacy
mechanisms have yet been implemented. For now, by extrapolation from this example,
one can notice that the SWOT ontology requires from the device the capability of dealing
with U updates, linearly increasing with the number of interaction patterns; and with
S subscriptions, whose minimum number increases also linearly on interaction patterns,
and whose actual number depends on the application logic involved. In this performance
evaluation, eventually, it is important to mention that a great impact is related to
subscriptions. They imply, with the SEPA compliant Cocktail implementation, the
capability of the device’s hardware to keep a WebSocket opened over a long period
of time, which is not always possible because of restricted computational or energetic
constraints. A complementary solution would be the usage of queries instead, resulting
in devices explicit request of the contents of the knowledge base at specific instants. This
implementation is not available in Cocktail, but is possible and is scheduled for a future
work.

98

• Maximum and minimum Web Thing triple count T : how many triples are
needed to setup a Semantic Web Thing? As it has been already said, this calcu-
lation depends on the interaction patterns that the Web Thing has to implement.
However, by parsing the SPARQL updates we get a total of

T = 4 + 9Aio + 7(Ai +Ao + Eo) + 5(Ae + Ee) + 13Pv + 12Pe + f + C (4.1)

where 4 triples are dedicated to swot:Thing and swot:ThingDescription, 9 to a
number Aio of input-output Actions, 7 to input, output Actions and output Events,
5 to empty Actions and Events and 13 (or 12) to Properties. To be precise, Pe

is the number of Properties that have data formatted as swot:ResourceURI or
swot:OntologyURI, and Pv the ones that have data as a literal). A constant f
is related to swot:forProperty connections, and C includes connections to third
parties ontologies. Notice that f cannot be greater that the number of Actions
and Events times the number of Properties.
Given this, concerning the static description of Web Things, it is possible to outline
that 4 triples is the absolute minimum reachable for a special Web Thing without
Interaction Patterns, and that Properties are the pattern that requires the greatest
number of triples, due to the fact that they store also data.

• Triple count for interactions and DvS ratio: how many triples are inserted
when a new action request is made, or when a new event notification is triggered?
Similarly to Equation 4.1, it is possible to obtain the number of triples required
for the dynamic control of event and action instances. Refer to Fig. 4.2 to observe
in each situation what are the requirements.
Fig. 4.2 also introduces the dynamic vs static (DvS) ratio (i.e., the triple count for
static description over the triple count for dynamic interaction). DvS depends on
the kind of interaction pattern only and is bound to the Web Thing functionality
within its context. It is therefore a metric that is obtainable only once its descrip-
tion according to Section 3.2.3 has been defined by the programmer. DvS ratio
can be applied to a real Web Thing with all its setup: the greater the ratio, the
higher the Web Thing requirements in term of real-time interactions.

• Data format influence on triple dimension; as explained in Section 3.2.4 the
format of data exchange is of great importance. The complexity of the description
of any SWoT device, however, does not depend on that of exchanged data, nor
on its dimension or type. The possible alternatives have been fully described and
exemplified in Tables 3.1 and 3.2, which show that the number of triples exchanged
is the same.

In order to make a more complete evaluation of SWOT ontology, some additional con-
siderations can be made thanks to the usage of online tools like PerfectO5 and OOPS!6.

5 http://perfectsemanticweb.appspot.com/?p=ontologyValidation
6 http://oops.linkeddata.es/

99

http://perfectsemanticweb.appspot.com/?p=ontologyValidation
http://oops.linkeddata.es/

Figure 4.2 – Number of triples for every interaction pattern, and their DvS ratio value maximum and
minimum.

By performing a scan of SWOT ontology through the tools listed in those websites, we
were able to make relevant enhancements to SWOT ontology.

OOPS! tool, however, provides only a formal check of the .owl file, while a global view
is also needed. This kind of evaluation is possible by examining our work through a set of
criteria globally accepted by the research community. As an example, the guidelines for
submission to the well-known ISWC Conference7 are very helpful. Most of the suggested
points were largely covered in the previous Sections and/or in Tables 4.1, 4.2, 4.3. What
has to be noticed globally is that SWOT ontology addresses a relevant topic of current
research that targets a fusion of Semantic Web and IoT and provides tool for a working
implementation. Moreover, it is documented and freely available on GitHub, GNU GPL
licensed, but, as a work in progress, still not submitted to community registries like
LOV.

4.3 Next Steps

This Section will address the possibilities that Cocktail offers when the Semantic WoT
Environment (see SWTE definition in Section 3.2.2) created is intended to work in
collaboration with some AI mechanisms. A general idea has been already given in
Section 4.2.2, although we will here discuss in more detail the opportunities and the
setups.

7 http://iswc2018.semanticweb.org/call-for-resources-track-papers/#

100

http://iswc2018.semanticweb.org/call-for-resources-track-papers/#

In addition to what has been introduced in the previous paragraphs, we will also refer
to the ideas expressed in some research papers that have been published [204, 233, 234]
over the time at (or with the collaboration of) ARCES lab.

While reading this Section please consider that some of the suggestions given are
either pending research (as of October 2019), either planned for future studies and
implementations. Although not yet complete, they deserve to be mentioned anyway
because they participated as a global frame to the creation of this Thesis work.

4.3.1 Cocktail example

Let us now consider the setup described to explain Cocktail available in Fig. 4.1 and
fully discussed in Section 4.2.2. As we said, by the means provided by SEPA our small
application was using the SPARQL subscriptions to dynamically discover the environ-
ment and to call the right swot:Action at the right time, as well as to stop it when
there was no more need. In order to autonomously respond to context variations, in
particular, the heating unit needed to be informed of the availability of a thermostat
capable of formatting its output in a convenient manner. Vice versa, the thermostat
needed to be aware of heating units close by (see Listings 4.1 and 4.2).

In our case, additionally, the thermostat had to be aware of the requirements com-
ing from the user in terms of expected temperature in the room. Even though that
assumption might appear reasonable here, it is worth mentioning that in general this is
not the case. It may not always be possible to have such a Master WebThing, which we
define here as a device containing all the preferences of the user regarding the politics
of context control within his/her own domain.

An IoT environment built up on a middleware setup is probably the easiest way
to create the Master WebThing abstraction: all information passes through the central
unit, and therefore can be forwarded to the context master for AI elaboration. Clearly, in
this description, Cocktail framework and SEPA together offer this capability providing
to the Master WebThing the same abstraction as an ordinary WebThing, including a
discovery mechanism that is as flexible as SPARQL, as dynamic as publish-subscribe.

The main limit of the example is the way in which the user preference expression
Tlow ≤ t ≤ Thigh is given. As it is now, we have that the preference is hardcoded in the
thermostat business logic. Even if Cocktail allows quite easily to add a new Action that
modifies the two thresholds upon user request, this solution implies that every other
device implementing this rule should be visited and updated in the same way.

A possible alternative, that is currently a preliminary study work still pending im-
plementation is shown in Fig. 4.3 and refers to the Master WebThing concept. First
of all, we consider here that the added ns:Temperature resource might be in fact a
separate RDF subgraph within SEPA. The temperature graph is required to follow the
data schema/field schema concept (see Section 3.2.4), being formatted in its own spe-
cific way. Consequently, any device updating the temperature would make a SPARQL
Update similar to the one in Listing 4.3.

101

Figure 4.3 – Suggestion for including in Cocktail the concept of Master Device, i.e. a device dealing
with the user’s preferences on context control.

Listing 4.3 – SPARQL Update temperature subgraph. Refer to the previous Sections for any unex-
plained resource. Notice that this is currently (October 2019) an ongoing work and therefore it is not
to be considered a final solution.
WITH ns:Temperature
DELETE {ns:RoomTemperature swot:hasValue ?v}
INSERT {ns:RoomTemperature swot:hasValue "18.4"}
WHERE {

ns:RoomTemperature a swot:Data;
swot:hasDataSchema ns:MyDoubleDataSchema.

}

The Master Device on the other hand would take care of the user preferences by
modifying the appropriate part of the ns:Temperature subgraph. In our preliminary
research we suggest to introduce a new swot:Preference resource type as shown in
Listing 4.4, defining for the current example the lower and upper boundaries of acceptable
temperatures.

Eventually, any device acting due to some temperature specific behaviors would
subscribe to that same subgraph, filtering the results according to its own business logic
as reported in Listing 4.5. In this way, each time the temperature falls out of the interval,
SEPA triggers the relevant subscriptions based on that resource.

What is still missing in this approach is a complete theory concerning the relation-
ships between different preferences. Are there preferences that are more or less important
than others? What would be the effect of this preference ordering in the knowledge base?
These are the main future directions for this research.

102

Listing 4.4 – SPARQL Update to temperature preferences. Notice that this is currently (October
2019) an ongoing work and therefore it is not to be considered a final solution.
WITH ns:Temperature
DELETE {

ns:user_preference ns:lower ?low;
ns:upper ?high.}

INSERT {
ns:user_preference ns:lower "18.2";
ns:upper "28.0".}

WHERE {
ns:user_preference a swot:Preference.

}

Listing 4.5 – Suggested example for SPARQL device FILTER subscription. Notice that this is currently
(October 2019) an ongoing work and therefore it is not to be considered a final solution.
SELECT ?current
FROM ns:Temperature
WHERE {

ns:user_preference a swot:Preference;
ns:lower ?low;
ns:upper ?high.

ns:RoomTemperature swot:hasValue ?current.
FILTER (? current <= ?high)
FILTER (? current >= ?low)

}

Summarizing:

1. Nothing changes in the PAE interaction paradigm;

2. Target entities like ns:Temperature would be represented as swot:Data within a
subgraph;

3. A Master WebThing, described in the same way as other WebThings, would be able
to control the user’s preferences swot:Preference and modify the target entities
accordingly;

4. The devices using the target entities would apply their (autonomous behaviour)
business logic based on FILTERed subscriptions related to swot:Preference in-
stances.

Notice that we have formalized here a Semantic Belief-Desire-Intention behaviour
[235]: the beliefs are the aforementioned subgraphs like ns:Temperature; the desires
are the swot:Preference definitions; the intentions are the notification triggers upon
FILTERed subscription.

103

4.3.2 Habitat project example

The Habitat project acted an essential role in the development of the Semantic Web
of Things as intended in this Thesis. Its main contribution, as it will be clear in the
next paragraphs, is related to the flexibility in thing description and easy extensibility
required to the Habitat IoT-WoT environment. They both had relevant effects in the
actual Cocktail implementation.

During the project the author and his colleagues were involved in the creation of
an indoor localization IoT environment with the goal of monitoring people with mental
impairments. The importance of such systems can be exemplified by a typical use case
connected to one of the greatest problems that modern societies are facing, namely the
care for people suffering Alzheimer’s disease.

Along with the cognitive decay due to the progression of the disease, it is indeed
important to allow the patients to stay safely independent as much as possible so that
no stress or technical malfunction could have negative effects on their everyday life.
Keeping this in mind, the indoor monitoring provided by Habitat would act as a non
invasive control of danger situations, like being close to the stairs, or the patient being
almost out of the house without the caregiver supervision.

From a broader point of view indoor monitoring represents a functionality that has
various possible applications. Given the versatility of the information retrieved, we
have that smartphones apps, social networks, but also police and many others use such
information to be more efficient and effective in their jobs of advertising, catching illegal
activities and so on.

This is one of the main reasons why the a Semantic approach was preferred within
Habitat to control the information flow. The variety of possible usages that can be done
of localization information requires a shared and flexible solution for data description.
As a consequence, Habitat project outlined on one hand the lower level setup (that are
out of the topic of this thesis), i.e. (i) raw data measurements with radio frequency; (ii)
fog computing approach retrieving medium-level information, like (x, y, z) coordinates.

On the other hand, it is important to mention that, on top of the information inter-
operability, a great achievement was the successful usage of a prototype of Cocktail over
SEPA, realizing (iii) information aggregation; (iv) the handling of danger situations by
calling the appropriate actuators.

Let us consider point (iv), that was largely addressed in the Sections describing and
evaluating Cocktail. Within Habitat we considered two separate possible approaches:

• If-This-Then-That (IFTTT): the business logic of the IoT environment is realized
performing the requests as a set of actions following predetermined conditions.

• Rule engines, like Drools [236]: SEPA notifications, in this case, were transformed
into events triggering rule evaluation in drools, and resulting eventually in decisions
over the environment state.

While Habitat project reached its end, there is still the possibility to proceed with
some further research in the future. For instance, as the SEPA middleware is common to

104

all these implementations and Cocktail, a good plan would be to study the integration
of the two aforementioned techniques within the swot:Preference concept introduced
in the previous Section.

4.3.3 Future directions

This short subsection will list a few possible ideas that could represent some future re-
search directions connected to Cocktail, SEPA, and the applications that were mentioned
in the Thesis.

Indeed, over this Thesis presentation SEPA was largely used and represented an
essential tool. The following future directions can be therefore outlined concerning this
architecture:

1. Study and enhance SEPA’s performances. SEPA suffers of quick degradation of
performances as the number and complexity of subscriptions grows. Not to men-
tion, the number of triples contained in the knowledge base. This may be a good
opportunity to study new algorithms and solutions;

2. Study the feasibility and the methodology to realize a distributed SEPA, as a single
endpoint would clearly not be enough to support the Big Data revolution;

3. RDF knowledge bases can be exploited with reasoning techniques. Their effect is
the modification of the knowledge base according to some rules that could have
a huge impact on the whole architecture. Consider, for instance, the situation in
which a triple ?subject-?predicate-?object is enriched by a reasoner of the
inverse predicate.
A client could remove that inverse triple, because of its own application logic.
The rule effect, however, once aware that the triple is missing, would be to insert
it back again and again: how would complex and unexpected behaviors like these
interact with the publish-subscribe and with large applications like the SWoT and
the IoMusT? The SEPA architecture has not yet been tested with reasoning, and
therefore it could be interesting to see how they behave when used together in an
application.

Concerning Cocktail and the Semantic Web of Things, there is a need of research
that include the implementation of new applications with this framework. A positive
feedback of this process, moreover, would be the enhancement of the ontology itself
whenever the users come across limits in the definitions or in usage. The framework, also,
might be tested as a tool to realize the aforementioned Internet of Musical Things in a
WoT flavour, as well as a benchmarking indicator for SEPA performances. Additionally,
further research direction related to the semantic knowledge contained in the SWoT
would be to extend the semantic context by using for instance DBpedia, and study how
this can impact intelligent behaviours within the applications.

105

Table 4.1 – MIRO Report [120] of the SWOT Ontology – Part I of III

A. The basics

A.1 Ontology name must Semantic Web of Things Ontology (SWoT), version 0.1
A.2 Ontology owner must Francesco Antoniazzi
A.3 Ontology license must GNU General Public License v3.0
A.4 Ontology URL must https://github.com/fr4ncidir/SemanticWoT/blob/master/

swot.owl
A.5 Ontology repository must https://github.com/fr4ncidir/SemanticWoT
A.6 Methodological framework
must

The ontology is clearly divided into static and dynamic description.
The former was developed taking into account previously available
works on the Web Thing description made by W3C. An additional
part was included, related to data formatting and parametrization.
The dynamic part was also studied to be coherent and effective. A
proof of concept was given by writing the SPARQL Updates and
Queries/Subscriptions needed by the Cocktail framework.

B. Motivation

B.1 Need must The aim of the ontology is to permit the development of Semantic
Web of Things applications focusing equally on discovery and acces-
sibility of devices . In fact, as regards this last point, the ontology
allows reading properties of Web Things as well as subscribing to
their events or invoking their actions.

B.2 Competition must Web of Things ontology [134]
B.3 Target audience must Developers of Semantic Web of Things applications.

C. Scope, requirements, development community

C.1 Scope and coverage must The ontology defines all the concepts belonging to the Semantic
Web of Things domain. The aim of the ontology is to provide a
mean for a semantic-enriched interaction with Web Things. This
allows developers to exploit semantics for more than just discovering
devices. The ontology provides the definitions needed to model the
Thing Description as well as the interaction patterns provided by
every device.

C.2 Development community
must

Advanced Research Center on Electronic Systems (ARCES) of the
University of Bologna

C.3 Communication must https://github.com/fr4ncidir/SemanticWoT/issues

D. Knowledge acquisition

D.1 Knowledge acquisition
method must

Analysis of the literature about Web of Things and experiments
carried out at the ARCES department of the University of Bologna
in the context of the HABITAT Italian research project and at the
Centre for Digital Music (C4DM) of the Queen Mary University of
London (QMUL) in the AudioCommons European project.

D.2 Source knowledge location
should

–

D.3 Content Selection should The main entities to be represented ontology have been selected ac-
cording to the literature about Web of Things. In fact, the concepts
of Web Thing, Property, Event and Action play a crucial role in
the ontology. Moreover, to make the ontology suitable to control
devices, some classes have been added to map the input and output
data.

106

https://github.com/fr4ncidir/SemanticWoT/blob/master/swot.owl
https://github.com/fr4ncidir/SemanticWoT/blob/master/swot.owl
https://github.com/fr4ncidir/SemanticWoT
https://github.com/fr4ncidir/SemanticWoT/issues

Table 4.2 – MIRO Report [120] of the SWOT Ontology – Part II of III

E. Ontology content

E.1 Knowledge representation
language must

OWL 2 generated by Protégé v5.5.0beta; however, the ontology is
at this stage only descriptive, and it uses a reduced subset of OWL
2 capabilities, being the Description Logic ALCRIF(D).

E.2 Development environment
optional

Protégé v5.5.0beta

E.3 Ontology metrics should Number of classes: 14; number of object properties: 20; number of
data properties: 9; 0 individuals. Application metrics: Web Thing
triple count (Equation 4.1), DvS contents ratio, Data format im-
pact;

E.4 Incorporation of other on-
tologies must

The ontology is stand-alone. Examples are given on how [dul,
prov, sosa] can be included. See Table 4.4.

E.5 Entity naming convention
must

Entities follows the CamelCase notation. Both datatype and object
properties are named as verb senses with mixedCase notation.

E.6 Identifier generation policy
must

The SWoT ontology does not Identifiers of the instances must be
generated by the application

E.7 Identity metadata policy
must

All entities have an rdfs:comment natural language explanation.

E.8 Upper ontology must No upper ontology is used in this work, to keep SWoT ontology as
close as possible to real applications. A suggestion is given on how
to include references to [dul] in Fig. 2.4.

E.9 Ontology relationships must 20 object properties (plus 20 inverse properties); 9 datatype prop-
erties.

E.10 Axiom pattern must The ontology is not yet to be used with reasoners, but
rahter oriented at a clear and operactional definition of
the concepts in the Semantic Web of Things. 316 ax-
ioms included (of which 175 logical axioms, 7 SubClassOf, 4
DisjointClass, 23 SubObjectPropertyOf, 20 InverseProperty,
5 DisjointObjectProperty, 4 FunctionalObjectProperty,
2 IrreflexiveObjectProperty, 4 SubDataPropertyOf, 8
FunctionalDataProperty, 77 AnnotationAssertion)

E.11 Deferencable URI op-
tional

Some of the entities of the ontology have been conceived to be reach-
able from the Web. For instance, thing descriptions, data schemas
and field schemas. This is a best practice to be followed, to expand
interoperability towards future uses.

F. Managing change

F.1 Sustainability plan must The SWoT Ontology will be adopted in wide research projects (as
already done with Habitat and AudioCommons). Feedbacks col-
lected during these activities will guide the future development of
the ontology.

F.2 Entity deprecation strategy
must

No class will be deleted from the ontology. Deprecated classes will
be labelled as obsolete with a proper annotation property.

F.3 Versioning policy must The SWOT Ontology adopts sequence-based identifiers for its ver-
sions with a major number and a minor number, separated by a dot.
A novel release featuring only small changes will cause a switch of
the minor number, while relevant and/or structural changes affects
also the major number.

107

Table 4.3 – MIRO Report [120] of the SWOT Ontology – Part III of III

G. Quality assurance

G.1 Testing must The tests for SWoT ontology are closely bound to the ones for the
Cocktail framework. A first successful test is the realization itself of
all Cocktail’s SPARQL enquiries. Secondly, the unittests available
in the repository, allowing to check their consistency by direct usage.

G.2 Evaluation must Some of the metrics reported in [151] have been used to evaluate
the SWOT Ontology. In particular the number of classes, properties
and individuals have been measured. Moreover, the maximum and
minimum Web Thing triple count, the triple dimension of dynamic
interactions and the data format influence on triple dimension have
been defined to deal with the dynamic aspect of the ontology.

G.3 Examples of use must An example of the ontology is reported in [135]. Other exam-
ples are available on the GitHub repository: https://github.com/
fr4ncidir/SemanticWoT/tree/master/SWTE_example

G.4 Institutional endorsement
optional

None.

G.5 Evidence of use must Evidences of use are provided by [135] and [204].

SWOT ontology, and Cocktail framework in 

108

https://github.com/fr4ncidir/SemanticWoT/tree/master/SWTE_example
https://github.com/fr4ncidir/SemanticWoT/tree/master/SWTE_example

Conclusion

A cross the Chapters of this Thesis a variety of topics were discussed. First of all,
we introduced the great Internet of Things revolution, that created in the last

twenty years an outstanding opportunity for industry and academy to reach exceptional
results. The IoT is now part of everyday life, and its effects on society can only increase
in the next years.

A large discussion was then presented reporting the greatest drawback of IoT, i.e., its
fragmentation. Also known as “vertical silos” fragmentation, this IoT design nightmare
is substantially hindering the development of integrated systems due to the difficulty of
sharing resource and data among entities that were developed at different time, with dif-
ferent goals, and by different programmers. The various abstraction layers that compose
IoT applications need a common way to interact safely and effectively.

The term interaction, in this Thesis, is usually intended as sharing information. The
Semantic Web stack was designed to provide the suitable tools capable of realizing this
shared data community. That is, systems would use and design internally their own
proprietary data representation, but still agree on a common way to intend resources
and relationships on a higher interactive level. Consequently, the Semantic Web could
represent a powerful tool to fight IoT fragmentation.

Keeping this idea in mind, we presented some applications related to the Semantic
Web: a study on how to visualize it, for diagnostic and didactic purposes; an integra-
tion of multiple information sources, within the AudioCommons European project; the
SPARQL Event Protocol Architecture, that is the core of the work pursued in the PhD.

The effort of creating a common playground for a fully interoperable IoT through
Semantic technologies and protocols led us also to the design and the evaluation of the
Internet of Musical Things Ontology. This is a major contribution of the Thesis, as we
provide a large description of a shared vocabulary in an innovative and previously mostly
unexplored field of the IoT. For the future, we expect to further extend step-by-step the
ontology to integrate further IoT application domains in the same description.

Eventually, the Thesis outlines the possibility to realize an implementation of the
Web of Things in a semantic fashion. By exploiting the SEPA, in particular, the work
here presented shows that the semantic representation of information is capable to keep
up with the dynamic evolution of an IoT environment. Consequently, a study is pro-
vided on how the Things and their active and passive interactions could be ontologically
represented.

109

We designed and evaluated, therefore, the Semantic Web of Things Ontology and a
framework that realizes the interaction mechanisms over our SEPA architecture. Both
the framework and the ontology are an important contribution within the Thesis, and
are freely available on Github. This work also led to a publication on the Journal with
the highest Impact Factor in the IoT research field (IEEE IoT Journal). Their usage
is expected to provide interesting results in future research, for instance by extending
the Internet of Musical Things towards the Semantic Web Of Musical Things, as well
as enhancing the descriptive capabilities with reasoning mechanisms, or integrating the
context with the knowledge of semantic endpoints like DBpedia.

110

Summary of Achievements and Main Contributions I of II
IoMusT ontology The author of this Thesis realized the ontology engineering

work for the IoMusT journal publication (still under revision
as for February 4, 2020). That is, the various sub-components
of the ontology were studied to realize the overall integration
and functionalities (Section 2.2.4). The evaluation part (Sec-
tion 2.2.6) is also an achievement of the work pursued by the
author in this Thesis, given the fact that there is not a stan-
dard evaluation mechanism for ontologies. Not to mention,
the full .owl file realization through Protégé, and the pro-
vided online documentation.

SWOT ontology The contribution of the author of this Thesis in the SWOT
ontology spans over all the steps described in the previous
Chapters 3 and 4. In particular, the complete analysis of
the work made by the W3C, including the Thing Description
conceptualization and the data representation were refactored
keeping in mind the SEPA. The ontology, its .owl description,
its documentation and the paper published at IEEE IoT Jour-
nal [136] are the main achievements to be reported here.

Cocktail framework The author implemented and currently maintains the Cocktail
framework presented in the Chapter 3 and available freely on
GitHub. Cocktail is a Python3 framework SEPA compatible
enabling an easy realization of Semantic WoT environments
as described in [136].

111

Summary of Achievements and Main Contributions II of II
Habitat Project From mid-2016 until late-2017 the author was involved in

the Habitat project: on top of semantic technologies and the
SEPA, we realized a radio frequency 2D indoor localization
monitoring unit, followed later on by a 3D evolution of the
same device. They are both fully integrated in a smart health-
care IoT application environment [25].

AudioCommons
Project

As explained in the previous Section 1.2.2, the author was
involved in the Internet Archive integration within the Au-
dioCommons Mediator. The main achievement, here, was the
study performed on the integration among different services
addressed with semantic technologies.

Visualization of
Semantic Knowledge
Bases

Working with ontologies both at teaching level and at a re-
search level outlined over the time in ARCES research group
the need for tools that would help us in explaining the con-
tents of ontologies and Knowledge Bases. The achievements
reached in this field by the author are in one hand a survey
over the tools already available [163] and, in the other hand,
the collaboration in the realization of another tool specific for
teaching purposes, named Tarsier [69]. This work was helpful
to study and prepare the SWOT ontology and the IoMusT
ontology.

112

List of Ontologies & Prefixes

foaf - The Friend of a friend ontology is a basic ontology used to describe links between people.
Developed by FOAF project, RDF and Semantic Web community
Available at http://xmlns.com/foaf/spec/
SPARQL prefix http://xmlns.com/foaf/0.1/
Reference http://www.foaf-project.org/

prov - The Provenance of Information ontology is a basic ontology used to describe how agents
exchange information .
Developed by W3C
Available at https://www.w3.org/TR/prov-o/
SPARQL prefix http://www.w3.org/ns/prov#

ssn, sosa - The Semantic Sensor Network ontology, and its core Sensor, Observation, Sample, and
Actuator ontology, are the basic approach to represent semantically sensors and actuators
in their environment.
Developed by W3C
Available at https://www.w3.org/TR/vocab-ssn/
SPARQL prefixes http://www.w3.org/ns/ssn/

http://www.w3.org/ns/sosa/

event - The Event ontology deals with sequences of events, providing the tools to identify actors
and relationships among them.
Developed by Centre for Digital Music, Queen Mary University of London
Available at http://motools.sourceforge.net/event/event.html
SPARQL prefix http://purl.org/NET/c4dm/event.owl#

timeline - The Timeline ontology is an ontology used to annotate any kind of time-related resource.
Developed by Centre for Digital Music, Queen Mary University of London
Available at http://motools.sourceforge.net/timeline/timeline.html
SPARQL prefix http://purl.org/NET/c4dm/timeline.owl#

mo, music - The Music ontology is a modelization that provides a common vocabulary to address all
kind of music-related information.
Developed by Yves Raimond, Thomas Gängler, Frédérick Giasson,

Kurt Jacobson, George Fazekas, Simon Reinhardt, Alexandre Passant

113

http://xmlns.com/foaf/spec/
http://www.foaf-project.org/
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/vocab-ssn/
http://motools.sourceforge.net/event/event.html
http://motools.sourceforge.net/timeline/timeline.html

Available at http://musicontology.com/
SPARQL prefix http://purl.org/ontology/mo/
Reference [126, 127]

studio - The Studio ontology, compared to the Music ontology, models the music production ac-
tivity in a recording studio environment.
Developed by Centre for Digital Music, Queen Mary University of London
Available at http://isophonics.net/content/studio-ontology
SPARQL prefix not available
Reference [128]

afo - The Audio Features ontology describes the features of audio signals, and exploits the Event
and the Timeline ontologies.
Developed by Centre for Digital Music, Queen Mary University of London
Available at http://motools.sourceforge.net/doc/audio_features.html
SPARQL prefix not available
Reference [237]

dul - The DOLCE+DnS Ultralite (DUL) ontology, with reference to the website, aims to provide
a collection of upper-level concepts, to foster alignment among ontologies and semantic
setups.
Developed by Aldo Gangemi, Nicola Guarino, Claudio Masolo

Alessandro Oltramari, Luc Schneider
Available at 

http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
SPARQL prefix http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
Reference [238]

swot - The Semantic Web of Things ontology is a work that organizes a new vision of the Web
of Things, compatible with semantic technologies, to overcome the fragmentation of IoT.
Developed by Francesco Antoniazzi, Fabio Viola
Available at https://w3id.org/swot#
SPARQL prefix http://www.semanticweb.org/unibo/antoniazzi/2019/0/swot
Reference [136]

iot, iomust - The Internet of Musical Things ontology aims to provide the instruments to define an IoT
environment for music. It is fully described in Section 2.2.
Developed by Francesco Antoniazzi
Available at https://w3id.org/iomust#
SPARQL prefix

http://www.semanticweb.org/iot/ontologies/2019/5/internet_of_things
Reference under review

collection - The Collection ontology is used to define a common vocabulary to represent collections,
lists, bags of items, and their relationships.
Developed by Paolo Ciccarese, Silvio Peroni

114

http://musicontology.com/
http://isophonics.net/content/studio-ontology
http://motools.sourceforge.net/doc/audio_features.html
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
https://w3id.org/swot#
https://w3id.org/iomust#

Available at https://code.google.com/archive/p/collections-ontology/
SPARQL prefix http://purl.org/co#
Reference [239]

dc - The Dublin Core ontology was defined to describe metadata. It contains, for instance, the
authorship relation, and is commonly used to describe even meta information on ontologies.
Developed by The Dublin Core Metadata Initiative (DCMI)
Available at https://www.dublincore.org/specifications/dublin-core/
SPARQL prefix http://purl.org/dc/elements/1.1/

http://purl.org/dc/terms/
Reference [240],

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
2012-06-14/?v=terms

aco - The Audio Commons Ontology provides main concepts and properties for describing audio
content, both musical and non-musical, on the Semantic Web.
Developed by George Fazekas, Miguel Ceriani
Available at http://www.audiocommons.org/ac-ontology/aco.html
SPARQL prefix https://w3id.org/ac-ontology/aco#
Reference [95]

Table 4.4 – Expanded SPARQL prefixes

Prefix URI
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
owl: http://www.w3.org/2002/07/owl#
iot: http://www.semanticweb.org/iot/ontologies/2019/5/internet_of_things/
iomust: http://www.semanticweb.org/iot/ontologies/2019/5/internet_of_things/iomust/
mo, music: http://purl.org/ontology/mo/
prov: http://www.w3.org/ns/prov#
sosa: http://www.w3.org/ns/sosa/
co: http://purl.org/co#
foaf: http://xmlns.com/foaf/0.1/
event: http://purl.org/NET/c4dm/event.owl#
timeline: http://purl.org/NET/c4dm/timeline.owl#
dbpedia: http://dbpedia.org/resource/
dbpo: http://dbpedia.org/ontology/
ns: whatever personal valid namespace

115

https://code.google.com/archive/p/collections-ontology/
https://www.dublincore.org/specifications/dublin-core/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/?v=terms
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/?v=terms
http://www.audiocommons.org/ac-ontology/aco.html

116

List of Figures

1.1 Typical problem solving workflow for IoT projects, as exposed by Jacobson et
al. [32] (1.1a), and in a higher level synthesis (1.1b). 17

1.2 An example of semantic triple storing the information that the resource URI re-
lated to Jack Nicholson makes reference to an entity of type Person, as it is defined
in [foaf] ontology. 20

1.3 Gephi [73] output example. 27
1.4 To use LOD Live [79] a resource must be fixed. Then, the knowledge related to

the resource can be expanded as shown. Like in Figure 1.3b, the example here is
based also on L. Alexander’s novel “The Black Cauldron”. 29

1.5 A portion of the DBpedia ontology visualized in Ontograf [80]. 30
1.6 RelFinder view of the paths from “JRR Tolkien” to “The Lord of the Rings”. . . 31
1.7 Tarsier [69] user interface. 32
1.8 Schema of the AudioCommons Mediator working logic. 36
1.9 SEPA internal setup, from [99]. 39
1.10 Schema of the AC Mediator working logic for long query services. 41

2.1 Conceptual vision of the Semantic IoT. Local applications can directly commu-
nicate with each others, or with the Internet. Alternatively, they can share data
through RDF formatting according to one or more ontologies. 44

2.2 SOSA integration with the IoMusT Ontology. Extended prefixes are available
in the List of Ontologies. The color scheme is the same used in Protégé [144].
Legend: Classes Individuals Object Properties. 55

2.3 Activities in the IoMusT Ontology. Undefined resources can be found in previ-
ous Figures and Listings. The color scheme is the same used in Protégé [144].
Legend: Classes Individuals Object Properties Literals, Data Prop-
erties Blank Nodes . 57

2.4 The IoMusT Ontology is built up incrementally leveraging lower level concepts.
It provides the base for other Domain Specific Ontologies (DSO) and other Ap-
plication Specific IoT ontologies (ASO). 60

3.1 swot:Thing and swot:ThingDescription partial ontology and a practical exam-
ple of instances and some suggestions of extensibility with other ontologies. . . . 77

3.2 swot:InteractionPattern subset of the ontology. Actions, events and properties
are interaction patterns, receiving inputs and giving outputs according to a data
schema (see Section 3.2.4) . 79

3.3 swot:Instance subset of the ontology, i.e., how the subgraph for an action request
must be formatted, as well as how an Event notification is thrown. 80

117

3.4 swot:DataSchema and swot:FieldSchema ontology subgraph, together with an
example of a simple xsd:string datas chema inclusion. 82

3.5 Full view of the SWoT ontology. swot: prefix is omitted from the items shown. . 89

4.1 An example of Semantic Web Thing Environment 96
4.2 Number of triples for every interaction pattern, and their DvS ratio value maxi-

mum and minimum. 100
4.3 Suggestion for including in Cocktail the concept of Master Device, i.e. a device

dealing with the user’s preferences on context control. 102

118

List of Tables

1.1 Summary of the features of the tools for the visualization of semantic knowledge
bases. Legend: = yes, = no, = partial, = multiple options available, ?=
unknown, −= Not applicable . 42

2.1 Example of usage for iot and iomust namespaces. We here show how objects
part of an Internet of (Musical) Things environment can be considered instances
of the classes introduced in this research. Extended prefixes are available in the
List of Ontologies. 54

2.2 Evaluation of the IoMusT Ontology according to the “Knowledge coverage and
popularity measures” proposed by Fernandez et al. [151] as well as by University
of Rostock in their Ontometrics Wiki8. 61

2.3 MIRO Report [120] of the IoMusT Ontology – Part I of III 63
2.4 MIRO Report [120] of the IoMusT Ontology – Part II of III 64
2.5 MIRO Report [120] of the IoMusT Ontology – Part III of III 65

3.1 swot:EventInstance triples to be inserted in the RDF store to trigger an event
notification to all interested entities. Notice that the concept of data schema is ex-
plained in Section 3.2.4, while the triples needed for the definition of swot:MyStringDataSchema
are available in the highlighted rows of Table 3.3. 81

3.2 swot:ActionInstance triples to be inserted in the RDF store to trigger the action
performace. Notice that the concept of data schema is explained in Section 3.2.4,
while the triples needed for the definition of swot:MyStringDataSchema are avail-
able in the highlighted rows of Table 3.3. 81

3.3 Examples of basic datatypes. White lines refer to the first example. Grey lines
have to be added to realize the second example discussed in Section 3.2.4 (Basic
and Complex datatype). 84

3.4 Complex datatype triple description example. Notice that ns:MyStringDataSchema
definition is not included in the Table, as it is already available in Table 3.3, grey-
coloured lines. 84

3.5 Web resource datatype triple description example. 86
3.6 Web resource datatype triple description for a database query swot:Action client.

Notice that ns:MyStringDataSchema is not included, as it is already available in
Table 3.3. 87

3.7 Graph resource datatype triple description. 87

4.1 MIRO Report [120] of the SWOT Ontology – Part I of III 106
4.2 MIRO Report [120] of the SWOT Ontology – Part II of III 107

119

4.3 MIRO Report [120] of the SWOT Ontology – Part III of III 108
4.4 Expanded SPARQL prefixes . 115

120

Bibliography

[1] Y. Shoham, “Agent-oriented programming,”
Artificial intelligence, vol. 60, no. 1, pp. 51–
92, 1993.

[2] T. Berners-Lee, J. Hendler, and O. Las-
sila, “The semantic web,” Scientific ameri-
can, vol. 284, no. 5, pp. 34–43, 2001.

[3] K. Ashton et al., “That internet of things
thing,” RFID journal, vol. 22, no. 7, pp. 97–
114, 2009.

[4] J. Gubbi, R. Buyya, S. Marusic, and
M. Palaniswami, “Internet of things (iot):
A vision, architectural elements, and future
directions,” Future generation computer sys-
tems, vol. 29, no. 7, pp. 1645–1660, 2013.

[5] D. Dougherty, “The maker movement,” In-
novations: Technology, Governance, Global-
ization, vol. 7, no. 3, pp. 11–14, 2012.

[6] L. Martin, “The promise of the maker move-
ment for education,” Journal of Pre-College
Engineering Education Research (J-PEER),
vol. 5, no. 1, p. 4, 2015.

[7] M. B. Abbasy and E. V. Quesada, “Pre-
dictable influence of iot (internet of things)
in the higher education,” International Jour-
nal of Information and Education Technol-
ogy, vol. 7, no. 12, pp. 914–920, 2017.

[8] K. Lensing and J. Friedhoff, “Design-
ing a curriculum for the internet-of-things-
laboratory to foster creativity and a maker
mindset within varying target groups,” Pro-
cedia Manufacturing, vol. 23, pp. 231–236,
2018.

[9] L. Farhan, R. Kharel, O. Kaiwartya,
M. Quiroz-Castellanos, A. Alissa, and
M. Abdulsalam, “A concise review on in-
ternet of things (iot)-problems, challenges
and opportunities,” in 2018 11th Interna-
tional Symposium on Communication Sys-

tems, Networks & Digital Signal Processing
(CSNDSP). IEEE, 2018, pp. 1–6.

[10] A. Al-Fuqaha, A. Khreishah, M. Guizani,
A. Rayes, and M. Mohammadi, “Toward
better horizontal integration among iot ser-
vices,” IEEE Communications Magazine,
vol. 53, no. 9, pp. 72–79, 2015.

[11] N. Shadbolt, T. Berners-Lee, and W. Hall,
“The semantic web revisited,” IEEE intelli-
gent systems, vol. 21, no. 3, pp. 96–101, 2006.

[12] D. Guinard, V. Trifa, F. Mattern, and
E. Wilde, “From the internet of things to
the web of things: Resource-oriented archi-
tecture and best practices,” in Architecting
the Internet of things. Springer, 2011, pp.
97–129.

[13] D. Zeng, S. Guo, and Z. Cheng, “The web
of things: A survey,” JCM, vol. 6, no. 6, pp.
424–438, 2011.

[14] X. Liu and O. Baiocchi, “A comparison of the
definitions for smart sensors, smart objects
and things in iot,” in 2016 IEEE 7th Annual
Information Technology, Electronics and Mo-
bile Communication Conference (IEMCON).
IEEE, 2016, pp. 1–4.

[15] A. M. Mzahm, M. S. Ahmad, and A. Tang,
“Enhancing the internet of things (iot) via
the concept of agent of things (aot),” Jour-
nal of Network and Innovative Computing,
vol. 2, no. 2014, pp. 101–110, 2014.

[16] C. Savaglio, G. Fortino, M. Ganzha, M. Pa-
przycki, C. Bădică, and M. Ivanović,
“Agent-based computing in the internet of
things: a survey,” in International Sympo-
sium on Intelligent and Distributed Comput-
ing. Springer, 2017, pp. 307–320.

[17] A. McAfee, E. Brynjolfsson, T. H. Daven-
port, D. Patil, and D. Barton, “Big data:
the management revolution,” Harvard busi-
ness review, vol. 90, no. 10, pp. 60–68, 2012.

[18] D. Saha and A. Mukherjee, “Pervasive com-
puting: a paradigm for the 21st century,”
Computer, vol. 36, no. 3, pp. 25–31, 2003.

[19] L. Atzori, A. Iera, and G. Morabito, “The
internet of things: A survey,” Computer net-
works, vol. 54, no. 15, pp. 2787–2805, 2010.

[20] B. L. R. Stojkoska and K. V. Trivodaliev,
“A review of internet of things for smart
home: Challenges and solutions,” Journal of
Cleaner Production, vol. 140, pp. 1454–1464,
2017.

121

[21] A. Zanella, N. Bui, A. Castellani, L. Vange-
lista, and M. Zorzi, “Internet of things for
smart cities,” IEEE Internet of Things jour-
nal, vol. 1, no. 1, pp. 22–32, 2014.

[22] G. Betis, V. M. Larios, D. Petri, X. Wu,
A. Deacon, and A. Hayar, “The ieee smart
cities initiativeaccelerating the smartification
process for the 21st century cities [point of
view],” Proceedings of the IEEE, vol. 106,
no. 4, pp. 507–512, 2018.

[23] A. Solanas, C. Patsakis, M. Conti, I. S. Vla-
chos, V. Ramos, F. Falcone, O. Postolache,
P. A. Pérez-Martínez, R. Di Pietro, D. N.
Perrea et al., “Smart health: a context-aware
health paradigm within smart cities,” IEEE
Communications Magazine, vol. 52, no. 8,
pp. 74–81, 2014.

[24] L. Catarinucci, D. De Donno, L. Mainetti,
L. Palano, L. Patrono, M. L. Stefanizzi, and
L. Tarricone, “An iot-aware architecture for
smart healthcare systems,” IEEE Internet of
Things Journal, vol. 2, no. 6, pp. 515–526,
2015.

[25] E. Borelli, G. Paolini, F. Antoniazzi, M. Bar-
biroli, F. Benassi, F. Chesani, L. Chiari,
M. Fantini, F. Fuschini, A. Galassi et al.,
“Habitat: An iot solution for independent el-
derly,” Sensors, vol. 19, no. 5, p. 1258, 2019.

[26] N. Gondchawar and R. Kawitkar, “Iot based
smart agriculture,” International Journal of
advanced research in Computer and Commu-
nication Engineering, vol. 5, no. 6, pp. 838–
842, 2016.

[27] K. Patil and N. Kale, “A model for smart
agriculture using iot,” in 2016 International
Conference on Global Trends in Signal Pro-
cessing, Information Computing and Com-
munication (ICGTSPICC). IEEE, 2016, pp.
543–545.

[28] S. Al-Sarawi, M. Anbar, K. Alieyan, and
M. Alzubaidi, “Internet of things (iot) com-
munication protocols,” in 2017 8th Interna-
tional conference on information technology
(ICIT). IEEE, 2017, pp. 685–690.

[29] G. Mulligan, “The 6lowpan architecture,” in
Proceedings of the 4th workshop on Embedded
networked sensors. ACM, 2007, pp. 78–82.

[30] F. Samie, L. Bauer, and J. Henkel, “Iot
technologies for embedded computing: A
survey,” in Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System
Synthesis. ACM, 2016, p. 8.

[31] J. Guth, U. Breitenbücher, M. Falkenthal,
P. Fremantle, O. Kopp, F. Leymann, and
L. Reinfurt, “A detailed analysis of iot plat-
form architectures: concepts, similarities,
and differences,” in Internet of Everything.
Springer, 2018, pp. 81–101.

[32] I. Jacobson, I. Spence, and P.-W. Ng, “Is
there a single method for the internet of
things?” Communications of the ACM,
vol. 60, no. 11, pp. 46–53, 2017.

[33] T. Banerjee and A. Sheth, “Iot quality con-
trol for data and application needs,” IEEE
Intelligent Systems, vol. 32, no. 2, pp. 68–73,
2017.

[34] A. Rayes and S. Salam, “The internet in
iotosi, tcp/ip, ipv4, ipv6 and internet rout-
ing,” in Internet of Things From Hype to Re-
ality. Springer, 2017, pp. 35–56.

[35] C. Bormann, M. Ersue, and A. Kera-
nen, “Terminology for constrained-node net-
works,” Tech. Rep., 2014.

[36] O. Bello, S. Zeadally, and M. Badra, “Net-
work layer inter-operation of device-to-device
communication technologies in internet of
things (iot),” Ad Hoc Networks, vol. 57, pp.
52–62, 2017.

[37] H. Mora, M. Signes-Pont, D. Gil, and
M. Johnsson, “Collaborative working archi-
tecture for iot-based applications,” Sensors,
vol. 18, no. 6, p. 1676, 2018.

[38] S. Bandyopadhyay, M. Sengupta, S. Maiti,
and S. Dutta, “Role of middleware for inter-
net of things: A study,” International Jour-
nal of Computer Science and Engineering
Survey, vol. 2, no. 3, pp. 94–105, 2011.

[39] D. Soni and A. Makwana, “A survey on mqtt:
a protocol of internet of things (iot),” in In-
ternational Conference On Telecommunica-
tion, Power Analysis And Computing Tech-
niques (ICTPACT-2017), 2017.

[40] M. B. Yassein, M. Q. Shatnawi et al.,
“Application layer protocols for the inter-
net of things: A survey,” in 2016 Inter-
national Conference on Engineering & MIS
(ICEMIS). IEEE, 2016, pp. 1–4.

[41] H. Derhamy, J. Eliasson, and J. Delsing, “Iot
interoperabilityon-demand and low latency
transparent multiprotocol translator,” IEEE

122

Internet of Things Journal, vol. 4, no. 5, pp.
1754–1763, 2017.

[42] E. Palavras, K. Fysarakis, I. Papaefstathiou,
and I. Askoxylakis, “Semibiot: secure multi-
protocol integration bridge for the iot,” in
2018 IEEE international conference on com-
munications (ICC). IEEE, 2018, pp. 1–7.

[43] M. Blackstock and R. Lea, “Iot interoperabil-
ity: A hub-based approach,” in 2014 inter-
national conference on the internet of things
(IOT). IEEE, 2014, pp. 79–84.

[44] G. Vivek and M. Sunil, “Enabling iot ser-
vices using wifi-zigbee gateway for a home
automation system,” in 2015 IEEE Interna-
tional Conference on Research in Computa-
tional Intelligence and Communication Net-
works (ICRCICN). IEEE, 2015, pp. 77–80.

[45] G. Aloi, G. Caliciuri, G. Fortino, R. Grav-
ina, P. Pace, W. Russo, and C. Savaglio, “A
mobile multi-technology gateway to enable
iot interoperability,” in 2016 IEEE First In-
ternational Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE,
2016, pp. 259–264.

[46] T. Zachariah, N. Klugman, B. Campbell,
J. Adkins, N. Jackson, and P. Dutta, “The
internet of things has a gateway problem,”
in Proceedings of the 16th international work-
shop on mobile computing systems and appli-
cations. ACM, 2015, pp. 27–32.

[47] P. Desai, A. Sheth, and P. Anantharam, “Se-
mantic gateway as a service architecture for
iot interoperability,” in 2015 IEEE Interna-
tional Conference on Mobile Services. IEEE,
2015, pp. 313–319.

[48] A. Bröring, A. Ziller, V. Charpenay, A. S.
Thuluva, D. Anicic, S. Schmid, A. Zappa,
M. P. Linares, L. Mikkelsen, and C. Seidel,
“The big iot api-semantically enabling iot in-
teroperability,” IEEE Pervasive Computing,
vol. 17, no. 4, pp. 41–51, 2018.

[49] M. Ganzha, M. Paprzycki, W. Pawłowski,
P. Szmeja, and K. Wasielewska, “Towards se-
mantic interoperability between internet of
things platforms,” in Integration, intercon-
nection, and interoperability of iot systems.
Springer, 2018, pp. 103–127.

[50] M. Antunes, D. Gomes, and R. L. Aguiar,
“Towards iot data classification through se-
mantic features,” Future Generation Com-
puter Systems, vol. 86, pp. 792–798, 2018.

[51] A. D. JoSEP, R. KAtz, A. KonWinSKi,
L. Gunho, D. PAttERSon, and A. RABKin,
“A view of cloud computing,” Communica-
tions of the ACM, vol. 53, no. 4, 2010.

[52] F. Bonomi, R. Milito, J. Zhu, and S. Ad-
depalli, “Fog computing and its role in the
internet of things,” in Proceedings of the first
edition of the MCC workshop on Mobile cloud
computing. ACM, 2012, pp. 13–16.

[53] A. Oussous, F.-Z. Benjelloun, A. A. Lah-
cen, and S. Belfkih, “Big data technologies:
A survey,” Journal of King Saud University-
Computer and Information Sciences, vol. 30,
no. 4, pp. 431–448, 2018.

[54] S. Kaisler, F. Armour, J. A. Espinosa, and
W. Money, “Big data: Issues and challenges
moving forward,” in 2013 46th Hawaii In-
ternational Conference on System Sciences.
IEEE, 2013, pp. 995–1004.

[55] V. N. Gudivada, R. Baeza-Yates, and V. V.
Raghavan, “Big data: Promises and prob-
lems,” Computer, no. 3, pp. 20–23, 2015.

[56] D. Raggett, “The web of things: Challenges
and opportunities,” Computer, vol. 48, no. 5,
pp. 26–32, 2015.

[57] R. T. Fielding and R. N. Taylor, “Princi-
pled design of the modern web architecture,”
ACM Transactions on Internet Technology
(TOIT), vol. 2, no. 2, pp. 115–150, 2002.

[58] R. Fielding and J. Reschke, “Hypertext
transfer protocol (http/1.1): Semantics and
content,” 2014.

[59] T. Berners-Lee, R. Fielding, L. Masinter
et al., “Uniform resource identifiers (uri):
Generic syntax,” 1998.

[60] B. Cheng, S. Zhao, J. Qian, Z. Zhai, and
J. Chen, “Lightweight service mashup mid-
dleware with rest style architecture for iot ap-
plications,” IEEE Transactions on Network
and Service Management, vol. 15, no. 3, pp.
1063–1075, 2018.

[61] M. Laine, “Restful web services for the
internet of things,” Online]. Saatavilla:
http://media. tkk. fi/webservices/person-
nel/markku_laine/restful_web_services_for
_the_internet_of_things. pdf, 2012.

[62] N. F. Noy, “Semantic integration: a survey
of ontology-based approaches,” ACM Sigmod
Record, vol. 33, no. 4, pp. 65–70, 2004.

[63] J. Han, J. Pei, and M. Kamber, Data mining:
concepts and techniques. Elsevier, 2011.

123

[64] N. Noy, “Order from chaos,” Queue, vol. 3,
no. 8, pp. 42–49, 2005.

[65] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer et al.,
“Dbpedia–a large-scale, multilingual knowl-
edge base extracted from wikipedia,” Seman-
tic Web, vol. 6, no. 2, pp. 167–195, 2015.

[66] A. Maedche and S. Staab, “Ontology learning
for the semantic web,” IEEE Intelligent Sys-
tems, vol. 16, no. 2, pp. 72–79, March 2001.

[67] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fo-
touhi, “Storing and querying scientific work-
flow provenance metadata using an rdbms,”
in e-Science and Grid Computing, IEEE In-
ternational Conference on. IEEE, 2007, pp.
611–618.

[68] S. G. Kobourov, “Spring embedders and
force directed graph drawing algorithms,”
arXiv preprint arXiv:1201.3011, 2012.

[69] F. Viola, L. Roffia, F. Antoniazzi, D. Alfredo,
C. Aguzzi, and T. Salmon Cinotti, “Inter-
active 3d exploration of rdf graphs through
semantic planes,” Future Internet, vol. 10,
no. 9, p. 36, 2018.

[70] F. Beck, M. Burch, S. Diehl, and
D. Weiskopf, “A taxonomy and survey
of dynamic graph visualization,” in Com-
puter Graphics Forum, vol. 36, no. 1. Wiley
Online Library, 2017, pp. 133–159.

[71] P. Shannon, A. Markiel, O. Ozier, N. S.
Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker, “Cytoscape:
a software environment for integrated mod-
els of biomolecular interaction networks,”
Genome research, vol. 13, no. 11, pp. 2498–
2504, 2003.

[72] T. Hastrup, R. Cyganiak, and U. Bojars,
“Browsing linked data with fenfire,” 2008.

[73] M. Bastian, S. Heymann, M. Jacomy et al.,
“Gephi: an open source software for ex-
ploring and manipulating networks.” Icwsm,
vol. 8, no. 2009, pp. 361–362, 2009.

[74] W. Hop, S. de Ridder, F. Frasincar, and
F. Hogenboom, “Using hierarchical edge
bundles to visualize complex ontologies in
glow,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing.
ACM, 2012, pp. 304–311.

[75] E. Pietriga, “Isaviz: A visual authoring
tool for rdf,” World Wide Web Consor-
tium.[Online]. Available: http://www. w3.
org/2001/11/IsaViz, 2003.

[76] J. Ellson, E. Gansner, L. Koutsofios, S. C.
North, and G. Woodhull, “Graphvizopen
source graph drawing tools,” in International
Symposium on Graph Drawing. Springer,
2001, pp. 483–484.

[77] M.-A. Storey, N. F. Noy, M. Musen, C. Best,
R. Fergerson, and N. Ernst, “Jambalaya:
an interactive environment for exploring on-
tologies,” in Proceedings of the 7th interna-
tional conference on Intelligent user inter-
faces. ACM, 2002, pp. 239–239.

[78] M.-A. Storey, C. Best, and J. Michand,
“Shrimp views: An interactive environment
for exploring java programs,” in Program
Comprehension, 2001. IWPC 2001. Proceed-
ings. 9th International Workshop on. IEEE,
2001, pp. 111–112.

[79] D. V. Camarda, S. Mazzini, and A. Antonuc-
cio, “Lodlive, exploring the web of data,” in
Proceedings of the 8th International Confer-
ence on Semantic Systems. ACM, 2012, pp.
197–200.

[80] S. Falconer, “Ontograf protege plugin.” [On-
line]. Available: http://protegewiki.stanford.
edu/wiki/OntoGraf

[81] A. Bosca, D. Bonino, and P. Pellegrino, “On-
tosphere: more than a 3d ontology visualiza-
tion tool.” in Swap. Citeseer, 2005.

[82] M. Horridge, “Owlviz,” Available on:
http://protegewiki.stanford.edu/wiki/OWLViz,
2010.

[83] L. Deligiannidis, K. J. Kochut, and A. P.
Sheth, “Rdf data exploration and visual-
ization,” in Proceedings of the ACM first
workshop on CyberInfrastructure: informa-
tion management in eScience. ACM, 2007,
pp. 39–46.

[84] M. Janik and K. Kochut, “Brahms: a work-
bench rdf store and high performance mem-
ory system for semantic association discov-
ery,” in International Semantic Web Confer-
ence. Springer, 2005, pp. 431–445.

[85] P. Heim, S. Hellmann, J. Lehmann,
S. Lohmann, and T. Stegemann, “Relfinder:
Revealing relationships in rdf knowledge

124

http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OntoGraf

bases,” in International Conference on Se-
mantic and Digital Media Technologies.
Springer, 2009, pp. 182–187.

[86] E. Motta, P. Mulholland, S. Peroni,
M. dAquin, J. M. Gomez-Perez, V. Mendez,
and F. Zablith, “A novel approach to visual-
izing and navigating ontologies,” in Interna-
tional Semantic Web Conference. Springer,
2011, pp. 470–486.

[87] H. Alani, “Tgviztab: an ontology visualisa-
tion extension for protégé,” 2003.

[88] S. Lohmann, V. Link, E. Marbach, and
S. Negru, “WebVOWL: Web-based visualiza-
tion of ontologies,” in Proceedings of EKAW
2014 Satellite Events, ser. LNAI, vol. 8982.
Springer, 2015, pp. 154–158.

[89] S. Lohmann, S. Negru, F. Haag, and T. Ertl,
“Visualizing ontologies with vowl,” Semantic
Web, vol. 7, no. 4, pp. 399–419, 2016.

[90] S. Lohmann, S. Negru, and D. Bold, “The
ProtégéVOWL plugin: Ontology visualiza-
tion for everyone,” in Proceedings of ESWC
2014 Satellite Events, ser. LNCS, vol. 8798.
Springer, 2014, pp. 395–400.

[91] M. Weise, S. Lohmann, and F. Haag, “Ld-
vowl: Extracting and visualizing schema in-
formation for linked data,” in 2nd Interna-
tional Workshop on Visualization and Inter-
action for Ontologies and Linked Data, Kobe,
Japón, 2016, pp. 120–127.

[92] F. Haag, S. Lohmann, S. Siek, and T. Ertl,
“Queryvowl: A visual query notation for
linked data,” in International Semantic Web
Conference. Springer, 2015, pp. 387–402.

[93] F. Font, T. Brookes, G. Fazekas, M. Guer-
ber, A. La Burthe, D. Plans, M. D. Plumbley,
M. Shaashua, W. Wang, and X. Serra, “Au-
dio commons: bringing creative commons au-
dio content to the creative industries,” in
Audio Engineering Society Conference: 61st
International Conference: Audio for Games.
Audio Engineering Society, 2016.

[94] X. Favory, E. Fonseca, F. Font, and
X. Serra, “Facilitating the manual anno-
tation of sounds when using large tax-
onomies,” in Proceedings of the 23rd Con-
ference of Open Innovations Association
FRUCT. FRUCT Oy, 2018, p. 60.

[95] M. Ceriani and G. Fazekas, “Audio commons
ontology: a data model for an audio content

ecosystem,” in International Semantic Web
Conference. Springer, 2018, pp. 20–35.

[96] M. Lefrançois, A. Zimmermann, and N. Bak-
erally, “A sparql extension for generating rdf
from heterogeneous formats,” in European
Semantic Web Conference. Springer, 2017,
pp. 35–50.

[97] ——, “Flexible rdf generation from rdf
and heterogeneous data sources with sparql-
generate,” in European Knowledge Acquisi-
tion Workshop. Springer, 2016, pp. 131–135.

[98] A. Xambó, J. Pauwels, G. Roma, M. Barthet,
and G. Fazekas, “Jam with jamendo: Query-
ing a large music collection by chords from a
learner’s perspective,” in Proceedings of the
Audio Mostly 2018 on Sound in Immersion
and Emotion. ACM, 2018, p. 30.

[99] L. Roffia, P. Azzoni, C. Aguzzi, F. Vi-
ola, F. Antoniazzi, and T. Salmon Cinotti,
“Dynamic Linked Data: A SPARQL Event
Processing Architecture,” Future Internet,
vol. 10, no. 4, p. 36, 2018.

[100] J. Honkola, H. Laine, R. Brown, and
O. Tyrkkö, “Smart-m3 information sharing
platform,” in The IEEE symposium on Com-
puters and Communications. IEEE, 2010,
pp. 1041–1046.

[101] P. T. Eugster, P. A. Felber, R. Guerraoui,
and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM computing surveys
(CSUR), vol. 35, no. 2, pp. 114–131, 2003.

[102] F. Morandi, L. Roffia, A. D’Elia, F. Vergari,
and T. S. Cinotti, “Redsib: a smart-m3 se-
mantic information broker implementation,”
in 2012 12th Conference of Open Innovations
Association (FRUCT). IEEE, 2012, pp. 1–
13.

[103] D. Manzaroli, L. Roffia, T. S. Cinotti,
E. Ovaska, P. Azzoni, V. Nannini, and
S. Mattarozzi, “Smart-m3 and osgi: The in-
teroperability platform,” in The IEEE sym-
posium on Computers and Communications.
IEEE, 2010, pp. 1053–1058.

[104] I. V. Galov, A. A. Lomov, and D. G. Ko-
rzun, “Design of semantic information broker
for localized computing environments in the
internet of things,” in 2015 17th Conference
of Open Innovations Association (FRUCT).
IEEE, 2015, pp. 36–43.

125

[105] F. Viola, A. D’Elia, L. Roffia, and T. S.
Cinotti, “A modular lightweight implemen-
tation of the smart-m3 semantic information
broker,” in 2016 18th Conference of Open In-
novations Association and Seminar on Infor-
mation Security and Protection of Informa-
tion Technology (FRUCT-ISPIT). IEEE,
2016, pp. 370–377.

[106] ——, “Performance evaluation suite for se-
mantic publish-subscribe message-oriented
middlewares,” 2016.

[107] F. Viola, A. D’Elia, D. Korzun, I. Galov,
A. Kashevnik, and S. Balandin, “The m3
architecture for smart spaces: Overview
of semantic information broker implemen-
tations,” in 2016 19th Conference of Open
Innovations Association (FRUCT). IEEE,
2016, pp. 264–272.

[108] H. Halpin, P. J. Hayes, J. P. McCusker, D. L.
McGuinness, and H. S. Thompson, “When
owl: sameas isnt the same: An analysis of
identity in linked data,” in International se-
mantic web conference. Springer, 2010, pp.
305–320.

[109] D. Calvanese, M. Giese, D. Hovland, and
M. Rezk, “Ontology-based integration of
cross-linked datasets,” in International Se-
mantic Web Conference. Springer, 2015, pp.
199–216.

[110] L. Turchet, C. Fischione, G. Essl, D. Keller,
and M. Barthet, “Internet of Musical Things:
Vision and Challenges,” IEEE Access, vol. 6,
pp. 61 994–62 017, 2018.

[111] L. Turchet, “Smart Musical Instruments:
vision, design principles, and future direc-
tions,” IEEE Access, vol. 7, pp. 8944–
8963, 2019. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2018.2876891

[112] L. Turchet, A. McPherson, and M. Bar-
thet, “Real-time hit classification in
a Smart Cajón,” Frontiers in ICT,
vol. 5, no. 16, 2018. [Online]. Available:
https://doi.org/10.3389/fict.2018.00016

[113] L. Turchet, M. Benincaso, and C. Fis-
chione, “Examples of use cases with
smart instruments,” in Proceedings of
Audio Mostly Conference, 2017, pp.
47:1–47:5. [Online]. Available: https:
//doi.org/10.1145/3123514.3123553

[114] L. Turchet and M. Barthet, “Co-design
of Musical Haptic Wearables for electronic

music performer’s communication,” IEEE
Transactions on Human-Machine Systems,
vol. 49, no. 2, pp. 183–193, 2019.

[115] M. Wright, A. Freed, and A. Momeni,
“Opensound control: State of the art 2003,”
in Proceedings of the Conference on New In-
terfaces for Musical Expression, 2003, pp.
153–160.

[116] J. Malloch, S. Sinclair, and M. Wanderley,
“Distributed tools for interactive design of
heterogeneous signal networks,” Multimedia
Tools and Applications, vol. 74, no. 15, pp.
5683–5707, 2015.

[117] J. Sowa, Knowledge representation: logi-
cal, philosophical, and computational founda-
tions. Brooks/Cole Pacific Grove, CA, 2000,
vol. 13.

[118] L. Turchet, F. Viola, G. Fazekas, and M. Bar-
thet, “Towards a Semantic Architecture for
Internet of Musical Things applications,” in
IEEE Conference of Open Innovations Asso-
ciation (FRUCT). IEEE, 2018, pp. 382–390.

[119] M. Ulieru and R. Doursat, “Emergent engi-
neering: a radical paradigm shift,” Interna-
tional Journal of Autonomous and Adaptive
Communications Systems, vol. 4, no. 1, p. 39,
2011.

[120] N. Matentzoglu, J. Malone, C. Mungall, and
R. Stevens, “Miro: guidelines for minimum
information for the reporting of an ontology,”
Journal of Biomedical Semantics, vol. 9,
no. 1, p. 6, Jan 2018. [Online]. Available:
https://doi.org/10.1186/s13326-017-0172-7

[121] M. Fernández-López, A. Gómez-Pérez, and
N. Juristo, “METHONTOLOGY: from on-
tological art towards ontological engineer-
ing,” in Proceedings of the Onto- logical Engi-
neering AAAI-97 Spring Symposium Series.
American Association for Artificial Intelli-
gence, 1997.

[122] B. Motik, P. Patel-Schneider, B. Parsia,
C. Bock, A. Fokoue, P. Haase, R. Hoek-
stra, I. Horrocks, A. Ruttenberg, U. Sat-
tler, and M. Smith, “Owl 2 web ontol-
ogy language: Structural specification and
functional-style syntax,” W3C recommenda-
tion, vol. 27, no. 65, p. 159, 2009.

[123] M. Uschold, “Building ontologies: Towards a
uni ed methodology,” in Proceedings of 16th
Annual Conference of the British Computer
Society Specialists Group on Expert Systems.
Citeseer, 1996.

126

https://doi.org/10.1109/ACCESS.2018.2876891
https://doi.org/10.1109/ACCESS.2018.2876891
https://doi.org/10.3389/fict.2018.00016
https://doi.org/10.1145/3123514.3123553
https://doi.org/10.1145/3123514.3123553
https://doi.org/10.1186/s13326-017-0172-7

[124] A. De Nicola and M. Missikoff, “A
lightweight methodology for rapid ontology
engineering,” Communications of the ACM,
vol. 59, no. 3, pp. 79–86, 2016.

[125] T. Wilmering, G. Fazekas, and M. Sandler,
“The audio effects ontology,” in Proc. of
the 14th International Society for Music In-
formation Retrieval Conference, ISMIR’13,
November 4-8, Curitiba, Brazil, 2013.

[126] Y. Raimond, S. Abdallah, M. Sandler, and
F. Giasson, “The music ontology,” in Pro-
ceedings of International Society for Music
Information Retrieval Conference, 2007.

[127] Y. Raimond, F. Giasson, K. Jacobson,
G. Fazekas, T. Gangler, and S. Reinhardt,
“The music ontology specification,” in On-
line Specification Document., 2010. [Online].
Available: http://musicontology.com/

[128] G. Fazekas and M. Sandler, “The Studio
Ontology Framework,” in Proceedings of the
International Society for Music Information
Retrieval conference, 2011, pp. 24–28.

[129] S. Kolozali, G. Fazekas, M. Barthet, and
M. Sandler, “Knowledge representation is-
sues in musical instrument ontology design,”
in Proc. of the 12th International Society
for Music Information Retrieval (ISMIR’11)
conference, 24-28 Oct., Miami, Florida,
USA, 2011.

[130] M. Compton, P. Barnaghi, L. Bermudez,
R. Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog et al.,
“The ssn ontology of the semantic sensor net-
works incubator group,” Journal of Web Se-
mantics: Science, Services and Agents on
the World Wide Web, ISSN, pp. 1570–8268,
2011.

[131] K. Janowicz, A. Haller, S. J. Cox,
D. Le Phuoc, and M. Lefrançois, “SOSA:
A lightweight ontology for sensors, observa-
tions, samples, and actuators,” Journal of
Web Semantics, 2018.

[132] A. Haller, K. Janowicz, S. J. Cox,
M. Lefrançois, K. Taylor, D. Le Phuoc,
J. Lieberman, R. García-Castro, R. Atkin-
son, and C. Stadler, “The sosa/ssn ontology:
a joint wec and ogc standard specifying the
semantics of sensors observations actuation
and sampling,” in Semantic Web. IOS Press,
2018, vol. 1, pp. 1–19.

[133] V. Charpenay, S. Käbisch, and H. Kosch,
“Introducing thing descriptions and interac-
tions: An ontology for the web of things.” in
SR+ SWIT@ ISWC, 2016, pp. 55–66.

[134] F. Serena, M. Poveda-Villalón, and
R. García-Castro, “Semantic discovery
in the web of things,” in International
Conference on Web Engineering. Springer,
2017, pp. 19–31.

[135] F. Viola, A. Stolfi, A. Milo, M. Ce-
riani, M. Barthet, and G. Fazekas,
“Playsound.space: enhancing a live per-
formance tool with semantic recommenda-
tions,” in Proc. 1st SAAM Workshop (in
press). ACM, 2018.

[136] F. Antoniazzi and F. Viola, “Building the
semantic web of things through a dynamic
ontology,” IEEE Internet of Things Journal,
vol. 6, no. 6, pp. 10 560–10 579, Dec 2019.

[137] K. Siegemund, E. J. Thomas, Y. Zhao,
J. Pan, and U. Assmann, “Towards ontology-
driven requirements engineering,” in Work-
shop semantic web enabled software engineer-
ing at 10th international semantic web con-
ference, 2011.

[138] V. Braun and V. Clarke, “Using thematic
analysis in psychology,” Qualitative Research
in Psychology, vol. 3, no. 2, pp. 77–101, 2006.

[139] M. Grüninger and M. S. Fox, “Methodology
for the design and evaluation of ontologies,”
in Workshop on Basic Ontological Issues in
Knowledge Sharing, 1995, pp. 6.1.–6.10.

[140] A. Bröring, S. Schmid, C.-K. Schind-
helm, A. Khelil, S. Käbisch, D. Kramer,
D. Le Phuoc, J. Mitic, D. Anicic, and E. Te-
niente, “Enabling iot ecosystems through
platform interoperability,” IEEE software,
vol. 34, no. 1, pp. 54–61, 2017.

[141] H. Rijgersberg, M. Van Assem, and J. Top,
“Ontology of units of measure and related
concepts,” Semantic Web, vol. 4, no. 1, pp.
3–13, 2013.

[142] T. W. Narock, A. Szabo, and J. Merka, “Us-
ing semantics to extend the space physics
data environment,” Computers & Geo-
sciences, vol. 35, no. 4, pp. 791–797, 2009.

[143] X. Wang, X. Zhang, and M. Li, “A survey
on semantic sensor web: Sensor ontology,
mapping and query,” International Journal
of u-and e-Service, Science and Technology,
vol. 8, no. 10, pp. 325–342, 2015.

127

http://musicontology.com/

[144] M. A. Musen and the ProtégéTeam, “The
Protégé Project: A Look Back and a Look
Forward,” AI matters, vol. 1, no. 4, pp. 4–
12, 06 2015.

[145] N. R. Jennings, “Agent-oriented software en-
gineering,” in European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent
World. Springer, 1999, pp. 1–7.

[146] P. Leitao, S. Karnouskos, L. Ribeiro, J. Lee,
T. Strasser, and A. W. Colombo, “Smart
agents in industrial cyber–physical systems,”
Proceedings of the IEEE, vol. 104, no. 5, pp.
1086–1101, 2016.

[147] K. Kravari and N. Bassiliades, “A survey of
agent platforms,” Journal of Artificial Soci-
eties and Social Simulation, vol. 18, no. 1,
p. 11, 2015.

[148] J. Hendler, “Agents and the semantic web,”
IEEE Intelligent systems, vol. 16, no. 2, pp.
30–37, 2001.

[149] J. Lin, S. Sedigh, and A. Miller, “Mod-
eling cyber-physical systems with semantic
agents,” in 2010 IEEE 34th Annual Com-
puter Software and Applications Conference
Workshops. IEEE, 2010, pp. 13–18.

[150] T. Lebo, S. Sahoo, D. McGuinness, K. Bel-
hajjame, J. Cheney, D. Corsar, D. Garijo,
S. Soiland-Reyes, S. Zednik, and J. Zhao,
“Prov-o: The prov ontology,” W3C recom-
mendation, vol. 30, 2013.

[151] M. Fernández, C. Overbeeke, M. Sabou,
and E. Motta, “What makes a good ontol-
ogy? a case-study in fine-grained knowledge
reuse,” in The Semantic Web, A. Gómez-
Pérez, Y. Yu, and Y. Ding, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009,
pp. 61–75.

[152] S. Lohmann, S. Negru, F. Haag, and
T. Ertl, “Visualizing ontologies with
VOWL,” Semantic Web, vol. 7, no. 4,
pp. 399–419, 2016. [Online]. Available:
http://dx.doi.org/10.3233/SW-150200

[153] R. Shearer, B. Motik, and I. Horrocks, “Her-
miT: A Highly-Efficient OWL Reasoner.” in
Proc. OWLED 2008, vol. 432, 2008, p. 91.

[154] B. Parsia and E. Sirin, “Pellet: An owl dl rea-
soner,” in Third international semantic web
conference-poster, vol. 18. Publishing, 2004,
p. 2.

[155] D. Tsarkov and I. Horrocks, “Fact++ de-
scription logic reasoner: System descrip-
tion,” Automated reasoning, pp. 292–297,
2006.

[156] M. Poveda-Villalón, A. Gómez-Pérez, and
M. C. Suárez-Figueroa, “Oops!(ontology pit-
fall scanner!): An on-line tool for on-
tology evaluation,” International Journal
on Semantic Web and Information Systems
(IJSWIS), vol. 10, no. 2, pp. 7–34, 2014.

[157] D. Guinard and V. Trifa, Building the web of
things: with examples in node. js and rasp-
berry pi. Manning Publications Co., 2016.

[158] L. Roffia, F. Morandi, J. Kiljander, A. DElia,
F. Vergari, F. Viola, L. Bononi, and T. S.
Cinotti, “A semantic publish-subscribe archi-
tecture for the internet of things,” IEEE In-
ternet of Things Journal, vol. 3, no. 6, pp.
1274–1296, 2016.

[159] M. Uschold, M. Healy, K. Williamson,
P. Clark, and S. Woods, “Ontology reuse and
application,” in Formal ontology in informa-
tion systems, vol. 179. IOS Press Amster-
dam, 1998, p. 192.

[160] E. P. Bontas, M. Mochol, and R. Tolkorf,
“Case studies on ontology reuse,” in Pro-
ceedings of the IKNOW05 International Con-
ference on Knowledge Management, vol. 74,
2005, p. 345.

[161] J. Z. Pan, L. Serafini, and Y. Zhao, “Seman-
tic import: An approach for partial ontol-
ogy reuse,” in Proceedings of the 1st Inter-
national Conference on Modular Ontologies-
Volume 232. CEUR-WS. org, 2006, pp. 71–
84.

[162] S. Karim, K. Latif, and A. M. Tjoa, “Pro-
viding universal accessibility using connect-
ing ontologies: A holistic approach,” in In-
ternational Conference on Universal Access
in Human-Computer Interaction. Springer,
2007, pp. 637–646.

[163] F. Antoniazzi and F. Viola, “Rdf graph visu-
alization tools: a survey,” in Proceedings of
the 23rd Conference of Open Innovations As-
sociation FRUCT. FRUCT Oy, 2018, p. 4.

[164] N. Bikakis and T. Sellis, “Exploration and vi-
sualization in the web of big linked data: A
survey of the state of the art,” arXiv preprint
arXiv:1601.08059, 2016.

128

http://dx.doi.org/10.3233/SW-150200

[165] M. Rinne, E. Blomqvist, R. Keskisärkkä,
and E. Nuutila, “Event processing in rdf.” in
WOP, 2013.

[166] J. Soldatos, N. Kefalakis, M. Hauswirth,
M. Serrano, J.-P. Calbimonte, M. Riahi,
K. Aberer, P. P. Jayaraman, A. Zaslavsky,
I. P. Žarko et al., “Openiot: Open source
internet-of-things in the cloud,” in Interoper-
ability and open-source solutions for the in-
ternet of things. Springer, 2015, pp. 13–25.

[167] N. Seydoux, K. Drira, N. Hernandez, and
T. Monteil, “Iot-o, a core-domain iot on-
tology to represent connected devices net-
works,” in European Knowledge Acquisition
Workshop. Springer, 2016, pp. 561–576.

[168] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi,
and K. Taylor, “Iot-lite: a lightweight se-
mantic model for the internet of things and
its use with dynamic semantics,” Personal
and Ubiquitous Computing, vol. 21, no. 3, pp.
475–487, 2017.

[169] D. Puiu, P. Barnaghi, R. Tönjes, D. Kümper,
M. I. Ali, A. Mileo, J. X. Parreira, M. Fis-
cher, S. Kolozali, N. Farajidavar et al., “City-
pulse: Large scale data analytics framework
for smart cities,” IEEE Access, vol. 4, pp.
1086–1108, 2016.

[170] A. Kamilaris, A. Pitsillides, F. X. Prenafeta-
Bold, and M. I. Ali, “A web of things based
eco-system for urban computing-towards
smarter cities,” in 2017 24th International
Conference on Telecommunications (ICT).
IEEE, 2017, pp. 1–7.

[171] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldú,
and M. I. Ali, “Agri-iot: A semantic frame-
work for internet of things-enabled smart
farming applications,” in 2016 IEEE 3rd
World Forum on Internet of Things (WF-
IoT). IEEE, 2016, pp. 442–447.

[172] F. Viola, F. Antoniazzi, C. Aguzzi,
C. Kamienski, and L. Roffia, “Mapping
the ngsi-ld context model on top of a sparql
event processing architecture: implementa-
tion guidelines,” in 2019 24rd Conference
of Open Innovations Association (FRUCT).
IEEE, 2019.

[173] R. Tommasini, P. Bonte, E. Della Valle,
E. Mannens, F. De Turck, and F. Onge-
nae, “Towards ontology-based event process-
ing,” in OWL: Experiences and Directions–

Reasoner Evaluation. Springer, 2016, pp.
115–127.

[174] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and
W. Qin, “Iot gateway: Bridgingwireless sen-
sor networks into internet of things,” in Em-
bedded and Ubiquitous Computing (EUC),
2010 IEEE/IFIP 8th International Confer-
ence on. Ieee, 2010, pp. 347–352.

[175] S. K. Datta, C. Bonnet, and N. Nikaein,
“An iot gateway centric architecture to pro-
vide novel m2m services,” in Internet of
Things (WF-IoT), 2014 IEEE World Forum
on. IEEE, 2014, pp. 514–519.

[176] A. Gangemi, R. Lillo, G. Lodi, and A. G.
Nuzzolese, “A pattern-based ontology for the
internet of things.”

[177] W. Wang, S. De, R. Toenjes, E. Reetz,
and K. Moessner, “A comprehensive ontol-
ogy for knowledge representation in the inter-
net of things,” in Trust, Security and Privacy
in Computing and Communications (Trust-
Com), 2012 IEEE 11th International Con-
ference on. IEEE, 2012, pp. 1793–1798.

[178] P.-Y. Vandenbussche, G. A. Atemezing,
M. Poveda-Villalón, and B. Vatant, “Linked
open vocabularies (lov): a gateway to
reusable semantic vocabularies on the web,”
Semantic Web, vol. 8, no. 3, pp. 437–452,
2017.

[179] A. Gyrard, C. Bonnet, K. Boudaoud, and
M. Serrano, “Lov4iot: A second life for
ontology-based domain knowledge to build
semantic web of things applications,” in Fu-
ture Internet of Things and Cloud (FiCloud),
2016 IEEE 4th International Conference on.
IEEE, 2016, pp. 254–261.

[180] A. Gyrard, A. Zimmermann, and A. Sheth,
“Building iot-based applications for smart
cities: How can ontology catalogs help?”
IEEE Internet of Things Journal, vol. 5, pp.
3978–3990, 2018.

[181] M. A. Razzaque, M. Milojevic-Jevric,
A. Palade, and S. Clarke, “Middleware for
internet of things: A survey,” IEEE Internet
of Things Journal, vol. 3, pp. 70–95, 2016.

[182] D. J. Wu, A. Taly, A. Shankar, and
D. Boneh, “Privacy, discovery, and authen-
tication for the internet of things,” in Eu-
ropean Symposium on Research in Computer
Security. Springer, 2016, pp. 301–319.

129

[183] B. Djamaa, M. A. Kouda, A. Yachir, and
T. Kenaza, “Fetchiot: Efficient resource
fetching for the internet of things,” in 2018
Federated Conference on Computer Science
and Information Systems (FedCSIS). IEEE,
2018, pp. 637–643.

[184] F. Viola, L. Turchet, F. Antoniazzi, and
G. Fazekas, “C minor: a semantic publish/-
subscribe broker for the internet of musi-
cal things,” in Open Innovations Association
(FRUCT), 2018 23th Conference of. IEEE,
2018, pp. 405–415.

[185] P. Waher and R. Klauck, “Internet of things-
discovery,” 2018.

[186] S. Cirani, L. Davoli, G. Ferrari, R. Léone,
P. Medagliani, M. Picone, and L. Veltri, “A
scalable and self-configuring architecture for
service discovery in the internet of things,”
IEEE Internet of Things Journal, vol. 1,
no. 5, pp. 508–521, 2014.

[187] S. Mayer and D. Guinard, “An extensible dis-
covery service for smart things,” in Proceed-
ings of the Second International Workshop on
Web of Things. ACM, 2011, p. 7.

[188] S. B. Fredj, M. Boussard, D. Kofman, and
L. Noirie, “Efficient semantic-based iot ser-
vice discovery mechanism for dynamic envi-
ronments,” 2014 IEEE 25th Annual Interna-
tional Symposium on Personal, Indoor, and
Mobile Radio Communication (PIMRC), pp.
2088–2092, 2014.

[189] M. Ganzha, M. Paprzycki, W. Pawlowski,
P. Szmeja, and K. Wasielewska, “Semantic
technologies for the iot - an inter-iot perspec-
tive,” 2016 IEEE First International Confer-
ence on Internet-of-Things Design and Im-
plementation (IoTDI), pp. 271–276, 2016.

[190] F. Gao, M. I. Ali, and A. Mileo, “Seman-
tic discovery and integration of urban data
streams*,” challenge, vol. 7, p. 16, 2014.

[191] A. Kamilaris, S. Yumusak, and M. I. Ali,
“Wots2e: A search engine for a semantic web
of things,” in 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT). IEEE,
2016, pp. 436–441.

[192] L. Sciullo, C. Aguzzi, M. Di Felice, and
T. S. Cinotti, “Wot store: Enabling things
and applications discovery for the w3c web
of things,” in 2019 16th IEEE Annual Con-
sumer Communications & Networking Con-
ference (CCNC). IEEE, 2019, pp. 1–8.

[193] K. Dar, A. Taherkordi, R. Rouvoy, and
F. Eliassen, “Adaptable service composition
for very-large-scale internet of things sys-
tems,” in Proceedings of the 8th Middleware
Doctoral Symposium. ACM, 2011, p. 2.

[194] G. Tzortzis, “A semi-automatic approach for
semantic iot service composition,” 2016.

[195] Z. Song, A. A. Cárdenas, and R. Masuoka,
“Semantic middleware for the internet of
things,” in Internet of Things (IOT), 2010.
IEEE, 2010, pp. 1–8.

[196] J. Delsing, Iot automation: Arrowhead
framework. CRC Press, 2017.

[197] P. P. Jayaraman, D. Palmer, A. Zaslavsky,
A. Salehi, and D. Georgakopoulos, “Address-
ing information processing needs of digital
agriculture with openiot platform,” in Inter-
operability and Open-Source Solutions for the
Internet of Things. Springer, 2015, pp. 137–
152.

[198] A. Bassi, M. Bauer, M. Fiedler, and
R. v. Kranenburg, Enabling things to talk.
Springer, 2013.

[199] P. Barnaghi, W. Wang, C. Henson, and
K. Taylor, “Semantics for the internet of
things: early progress and back to the fu-
ture,” International Journal on Semantic
Web and Information Systems (IJSWIS),
vol. 8, no. 1, pp. 1–21, 2012.

[200] D. Pfisterer, K. Römer, D. Bimschas,
O. Kleine, R. Mietz, C. Truong, H. Hase-
mann, A. Kröller, M. Pagel, M. Hauswirth
et al., “Spitfire: Toward a semantic web
of things.” IEEE Communications Magazine,
vol. 49, no. 11, pp. 40–48, 2011.

[201] M. Ruta, F. Scioscia, and E. Di Sciascio, “En-
abling the semantic web of things: frame-
work and architecture,” in 2012 IEEE Sixth
International Conference on Semantic Com-
puting. IEEE, 2012, pp. 345–347.

[202] M. Noura, S. Heil, and M. Gaedke, “Growth:
Goal-oriented end user development for web
of things devices,” in International Confer-
ence on Web Engineering. Springer, 2018,
pp. 358–365.

[203] Z. Wu, Y. Xu, Y. Yang, C. Zhang, X. Zhu,
and Y. Ji, “Towards a semantic web of things:
a hybrid semantic annotation, extraction,
and reasoning framework for cyber-physical
system,” Sensors, vol. 17, no. 2, p. 403, 2017.

130

[204] F. Antoniazzi, G. Paolini, L. Roffia, D. Ma-
sotti, A. Costanzo, and T. S. Cinotti, “A
web of things approach for indoor position
monitoring of elderly and impaired people,”
in Open Innovations Association (FRUCT),
2017 21st Conference of. IEEE, 2017, pp.
51–56.

[205] M. Swan, “Sensor mania! the internet of
things, wearable computing, objective met-
rics, and the quantified self 2.0,” Journal of
Sensor and Actuator networks, vol. 1, no. 3,
pp. 217–253, 2012.

[206] P. Gope and T. Hwang, “Bsn-care: A secure
iot-based modern healthcare system using
body sensor network,” IEEE Sensors Jour-
nal, vol. 16, no. 5, pp. 1368–1376, 2016.

[207] L. Turchet, C. Fischione, G. Essl, D. Keller,
and M. Barthet, “Internet of musical things:
Vision and challenges,” IEEE Access, vol. 6,
pp. 61 994–62 017, 2018.

[208] M. A. Musen et al., “The protégé project: a
look back and a look forward,” AI matters,
vol. 1, no. 4, p. 4, 2015.

[209] P. Hitzler and F. Van Harmelen, “A reason-
able semantic web,” Semantic Web, vol. 1,
no. 1, 2, pp. 39–44, 2010.

[210] M. Georgeff, B. Pell, M. Pollack, M. Tambe,
and M. Wooldridge, “The belief-desire-
intention model of agency,” in International
workshop on agent theories, architectures,
and languages. Springer, 1998, pp. 1–10.

[211] B. N. Schilit, N. Adams, R. Want et al.,
Context-aware computing applications. Xe-
rox Corporation, Palo Alto Research Center,
1994.

[212] P. Dourish, “Seeking a foundation for
context-aware computing,” Human–
Computer Interaction, vol. 16, no. 2-4,
pp. 229–241, 2001.

[213] G. D. Abowd, A. K. Dey, P. J. Brown,
N. Davies, M. Smith, and P. Steggles, “To-
wards a better understanding of context and
context-awareness,” in International sympo-
sium on handheld and ubiquitous computing.
Springer, 1999, pp. 304–307.

[214] A. Kofod-Petersen and J. Cassens, “Using ac-
tivity theory to model context awareness,” in
International Workshop on Modeling and Re-
trieval of Context. Springer, 2005, pp. 1–17.

[215] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu,
“Context-aware computing, learning, and big
data in internet of things: a survey,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp.
1–27, 2018.

[216] M. Baldauf, S. Dustdar, and F. Rosenberg,
“A survey on context-aware systems,” Inter-
national Journal of Ad Hoc and Ubiquitous
Computing, vol. 2, no. 4, pp. 263–277, 2007.

[217] T. Gu, X. H. Wang, H. K. Pung, and D. Q.
Zhang, “An ontology-based context model
in intelligent environments,” in Proceedings
of communication networks and distributed
systems modeling and simulation conference,
vol. 2004. San Diego, CA, USA., 2004, pp.
270–275.

[218] T. Broens, S. Pokraev, M. Van Sinderen,
J. Koolwaaij, and P. D. Costa, “Context-
aware, ontology-based service discovery,” in
European Symposium on Ambient Intelli-
gence. Springer, 2004, pp. 72–83.

[219] M. Alirezaie, J. Renoux, U. Köckemann,
A. Kristoffersson, L. Karlsson, E. Blomqvist,
N. Tsiftes, T. Voigt, and A. Loutfi, “An
ontology-based context-aware system for
smart homes: E-care@ home,” Sensors,
vol. 17, no. 7, p. 1586, 2017.

[220] O. Cabrera, X. Franch, and J. Marco,
“3lconont: a three-level ontology for con-
text modelling in context-aware computing,”
Software & Systems Modeling, vol. 18, no. 2,
pp. 1345–1378, 2019.

[221] P. C. Ccori, L. C. C. De Biase, M. K. Zuffo,
and F. S. C. da Silva, “Device discovery
strategies for the iot,” in 2016 IEEE Inter-
national Symposium on Consumer Electron-
ics (ISCE). IEEE, 2016, pp. 97–98.

[222] Q. M. Ashraf, M. H. Habaebi, M. R. Islam,
and S. Khan, “Device discovery and configu-
ration scheme for internet of things,” in 2016
International conference on intelligent sys-
tems engineering (ICISE). IEEE, 2016, pp.
38–43.

[223] Y. Zhou, G. Cherian, and S. P. Abra-
ham, “Server-assisted device-to-device dis-
covery and connection,” May 16 2017, uS
Patent 9,654,960.

[224] Y. Ding, Y. Jin, L. Ren, and K. Hao, “An in-
telligent self-organization scheme for the in-
ternet of things,” IEEE Computational In-
telligence Magazine, vol. 8, no. 3, pp. 41–53,
2013.

131

[225] N. Wanigasekara, J. Schmalfuss, D. Carlson,
and D. S. Rosenblum, “A bandit approach for
intelligent iot service composition across het-
erogeneous smart spaces,” in Proceedings of
the 6th International Conference on the In-
ternet of Things. ACM, 2016, pp. 121–129.

[226] E. Kovacs, M. Bauer, J. Kim, J. Yun,
F. Le Gall, and M. Zhao, “Standards-based
worldwide semantic interoperability for iot,”
IEEE Communications Magazine, vol. 54,
no. 12, pp. 40–46, 2016.

[227] M. Ganzha, M. Paprzycki, W. Pawłowski,
P. Szmeja, and K. Wasielewska, “Seman-
tic interoperability in the internet of things:
An overview from the inter-iot perspective,”
Journal of Network and Computer Applica-
tions, vol. 81, pp. 111–124, 2017.

[228] R. Murphy and D. D. Woods, “Beyond asi-
mov: the three laws of responsible robotics,”
IEEE Intelligent Systems, vol. 24, no. 4, pp.
14–20, 2009.

[229] A. Haroon, M. A. Shah, Y. Asim, W. Naeem,
M. Kamran, and Q. Javaid, “Constraints in
the iot: the world in 2020 and beyond,” Con-
straints, vol. 7, no. 11, pp. 252–271, 2016.

[230] M. M. Hossain, M. Fotouhi, and R. Hasan,
“Towards an analysis of security issues, chal-
lenges, and open problems in the internet of
things,” in 2015 IEEE World Congress on
Services. IEEE, 2015, pp. 21–28.

[231] A. M. Mzahm, M. S. Ahmad, and A. Y.
Tang, “Agents of things (aot): An intelli-
gent operational concept of the internet of
things (iot),” in 2013 13th International Con-
ference on Intellient Systems Design and Ap-
plications. IEEE, 2013, pp. 159–164.

[232] I. Kotseruba and J. K. Tsotsos, “40 years of
cognitive architectures: core cognitive abili-
ties and practical applications,” Artificial In-
telligence Review, pp. 1–78, 2018.

[233] G. Paolini, D. Masotti, F. Antoniazzi, T. S.
Cinotti, and A. Costanzo, “Fall detection
and 3-d indoor localization by a custom
rfid reader embedded in a smart e-health
platform,” IEEE Transactions on Microwave
Theory and Techniques, pp. 1–11, 2019.

[234] ——, “Anchorless indoor localization and
tracking in real-time at 2.45 ghz,” in 2019
IEEE MTT-S International Microwave Sym-
posium (IMS), June 2019, pp. 286–289.

[235] M. Challenger, B. Tezel, O. Alaca, B. Tekin-
erdogan, and G. Kardas, “Development of se-
mantic web-enabled bdi multi-agent systems
using sea_ml: An electronic bartering case
study,” Applied Sciences, vol. 8, no. 5, p. 688,
2018.

[236] M. Proctor, “Drools: a rule engine for com-
plex event processing,” in Proceedings of
the 4th international conference on Applica-
tions of Graph Transformations with Indus-
trial Relevance. Springer-Verlag, 2011, pp.
2–2.

[237] A. Allik, G. Fazekas, and M. Sandler, “An
ontology for audio features,” in Proceedings
of the International Society for Music Infor-
mation Retrieval Conference, 2016, pp. 73–
79.

[238] A. Gangemi, N. Guarino, C. Masolo,
A. Oltramari, and L. Schneider, “Sweeten-
ing ontologies with dolce,” in International
Conference on Knowledge Engineering and
Knowledge Management. Springer, 2002, pp.
166–181.

[239] P. Ciccarese and S. Peroni, “The collections
ontology: creating and handling collections
in owl 2 dl frameworks,” Semantic Web,
vol. 5, no. 6, pp. 515–529, 2014.

[240] S. L. Weibel and T. Koch, “The dublin core
metadata initiative,” D-lib magazine, vol. 6,
no. 12, pp. 1082–9873, 2000.

132

	Abstract in English
	Abstract in Italiano
	Abstract en Français
	Introduction
	Background Research
	Internet of Things
	The Semantic Web
	Visualizing the Semantic Web
	AudioCommons Project

	SPARQL Event Processing Architecture
	Origins
	Architecture
	Future

	Semantic Internet of Things
	Semantic Interoperability
	Internet of Musical Things
	Methodology, audience, and scope
	Related ontologies and data models
	Specification
	Ontology description
	Implementation and maintenance
	Evaluation

	Semantic Web of Things
	W3C Web of Things vision
	A Dynamic Ontology for the Semantic Web of Things
	Related Work
	Semantic Web Things
	Interaction Patterns: the PAE paradigm
	DataSchema and FieldSchema

	Semantic Driven Agent Programming
	Related Works
	SWOT agents framework and Evaluation
	Cocktail framework
	Cocktail: in-use analysis
	Evaluation

	Next Steps
	Cocktail example
	Habitat project example
	Future directions

	Conclusion
	List of Ontologies & Prefixes
	List of Figures
	List of Tables
	Bibliography

