Buwenge, Milly
  
(2020)
Development of a large database on prostate carcinoma, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Oncologia, ematologia e patologia, 32 Ciclo. DOI 10.48676/unibo/amsdottorato/9195.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            ![Milly Buwenge_TesiDottorato.pdf [thumbnail of Milly Buwenge_TesiDottorato.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png)  | 
            
              
Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
   Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 
              Download (1MB)
              
			  
			  
              
  
              
             | 
          
        
      
    
  
  
    
      Abstract
      The main aim of this study was to analyze the prognostic impact on outcome and toxicity of patients with prostate cancer [PCa] treated with radiotherapy [RT] in three different settings [curative, adjuvant, and salvage RT] based on a comprehensive analysis of parameters related to tumor, patients, and treatment characteristics. Furthermore, we aimed to develop simple risk stratification systems, based on real life data from a large patient population including the three different RT settings. Data on 2526 patients were collected. 
In the “curative RT” group we designed a prognostic model of the 5-year biochemical outcome using three PSA categories and 5 GS categories to define 15 different groups of patients. We arranged these 15 groups in only 4 categories based on 5-year bRFS values: group 1: very low-risk [bRFS > 90%], group 2: low risk [bRFS: 80-90%], group 3: intermediate risk [bRFS: 60-79.9%], group 4: high risk [bRFS < 60%].
In the “adjuvant RT” group we designed a predictive model of biochemical outcome using two age categories, two nodal stage categories, and four PSA categories to define 16 different groups of patients. These 16 groups were arranged in only 3 categories based on 5-year bRFS values: group 1: very low-risk [bRFS > 95%], group 2: low-intermediate risk [bRFS: 76-95%], group 3: high risk [bRFS: < 76%].
In the “salvage RT” group we designed a prognostic model using 4 GS categories, 2 nodal stage categories, and 2 nodal irradiation categories to define 16 different groups of patients. These 16 groups were arranged in only 4 categories based on 5-year bRFS values: group 1: low-risk [bRFS > 80%], group 2: intermediate risk [bRFS: 60-80%], group 3: high risk [bRFS: 40-< 59.9%], and group 4: very high risk [bRFS: < 40%].
     
    
      Abstract
      The main aim of this study was to analyze the prognostic impact on outcome and toxicity of patients with prostate cancer [PCa] treated with radiotherapy [RT] in three different settings [curative, adjuvant, and salvage RT] based on a comprehensive analysis of parameters related to tumor, patients, and treatment characteristics. Furthermore, we aimed to develop simple risk stratification systems, based on real life data from a large patient population including the three different RT settings. Data on 2526 patients were collected. 
In the “curative RT” group we designed a prognostic model of the 5-year biochemical outcome using three PSA categories and 5 GS categories to define 15 different groups of patients. We arranged these 15 groups in only 4 categories based on 5-year bRFS values: group 1: very low-risk [bRFS > 90%], group 2: low risk [bRFS: 80-90%], group 3: intermediate risk [bRFS: 60-79.9%], group 4: high risk [bRFS < 60%].
In the “adjuvant RT” group we designed a predictive model of biochemical outcome using two age categories, two nodal stage categories, and four PSA categories to define 16 different groups of patients. These 16 groups were arranged in only 3 categories based on 5-year bRFS values: group 1: very low-risk [bRFS > 95%], group 2: low-intermediate risk [bRFS: 76-95%], group 3: high risk [bRFS: < 76%].
In the “salvage RT” group we designed a prognostic model using 4 GS categories, 2 nodal stage categories, and 2 nodal irradiation categories to define 16 different groups of patients. These 16 groups were arranged in only 4 categories based on 5-year bRFS values: group 1: low-risk [bRFS > 80%], group 2: intermediate risk [bRFS: 60-80%], group 3: high risk [bRFS: 40-< 59.9%], and group 4: very high risk [bRFS: < 40%].
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Buwenge, Milly
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Prostate Neoplasms, large database, predictive models, radiotherapy
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/9195
          
        
      
        
          Data di discussione
          26 Marzo 2020
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Buwenge, Milly
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Prostate Neoplasms, large database, predictive models, radiotherapy
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/9195
          
        
      
        
          Data di discussione
          26 Marzo 2020
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: