
Argumentation and Artifacts for Intelligent
Multi-agent Systems

Enrico Oliva

March, 2008

Coordinator: Prof. Paolo Bassi

1st supervisor/tutor: Prof. Antonio Natali

2nd supervisor: Prof. Andrea Omicini
3rd supervisor: Dr. Ing. Mirko Viroli

Doctorate in Electronics, Computer Science and Telecommunications
ALMA MATER STUDIORUM – University of Bologna

ING-INF/05 Systems for information processing

Reviewers

Prof. Peter McBurney
University of Liverpool

Prof. Nicolas Maudet
University of Paris-Dauphin

Abstract

Reasoning under uncertainty is a human capacity that in software system is nec-

essary and often hidden. Argumentation theory and logic make explicit non-

monotonic information in order to enable automatic forms of reasoning under

uncertainty. In human organization Distributed Cognition and Activity Theory

explain how artifacts are fundamental in all cognitive process. Then, in this thesis

we search to understand the use of cognitive artifacts in an new argumentation

framework for an agent-based artificial society.

Acknowledgements

I owe many thanks to my family for their support over the years and in particular

to my wife for her patient and constant support. I would like to thank Antonio

Natali too for giving me the possibility to work and to study in this department.

I would also like to thank Andrea Omicini for giving me the abstractions that are

the bases of the thesis work. I like to thank Mirko Viroli for his helpful comments

and for inspiring me to the Prolog implementation. I would also like to thank

Peter McBurney for his enthusiastic support and for introducing me to argumen-

tation theory that is a fundamental part of this thesis. Also many thanks to the

department of Computer Science of Liverpool University where I spent six useful

months for my research. Finally, I would like to thank all my colleagues of the

department and all my friends from apiCE lab who gave me a valid support during

these three years of phd.

“The uncreative mind can spot wrong answers, by it takes a cre-

ative mind to spot wrong questions” 1

1Antony Jay, Management and Machiavelli, 1968, p. 87.

i

Contents

1 Introduction 1

1.1 Relevance . 1

1.2 Thesis outline . 3

2 On Argumentation System 5

2.1 Argumentation Theory . 5

2.2 Argumentation System . 8

2.2.1 Formal Model . 9

2.3 Dialog System . 14

2.3.1 Communication Language 15

2.3.2 Dialog Protocol . 16

2.4 Operational Semantics . 19

2.5 Issue on Argumentation . 22

3 Argumentation and Artifact 24

3.1 A&A meta-model for MAS . 24

3.2 Mediated Interaction . 26

3.3 Multi-agent Argumentation System 28

ii

3.4 Co-Argumentation Artifact . 32

3.5 Dialog Artifact . 35

4 Implementation of Dialog and Argumentation Artifact 39

4.1 The TuCSoN Infrastructure . 39

4.2 CAA Implementation . 40

4.3 DA Implementation . 49

5 Case study over ADR Systems 54

5.1 Overview of Alternative Dispute Resolution 54

5.2 Architecture for ADR . 57

5.3 Persuasion Dialog . 58

5.3.1 CAA . 59

5.3.2 DA . 60

5.3.3 Example of Run . 63

5.4 Argument Acceptance . 67

6 Conclusions 73

6.1 Related works and Discussion 73

6.2 Conclusions . 75

6.3 Further Research . 76

A Implementation and Example 78

A.1 Example of Prolog Meta-Interpreter for legal reasoning 78

A.2 ReSpecT Implementation of DA 82

A.3 ReSpecT Implementation of CAA 85

iii

Chapter 1

Introduction

1.1 Relevance

Multi-Agent Systems (MAS) paradigm provides the instruments to represent and

manage complex systems characterized by the presence of autonomously inter-

acting and possibly heterogeneous entities. Following A&A meta-model a MAS

is generally composed of computational entities of two sorts: agents and artifacts.

An agent is an autonomous and proactive computational entity situated in an en-

vironment. An artifact is a reactive, non-autonomous computational entity that

reacts to interaction events generating by agents or other artifacts, or changes of

the environment.

In the context of complex software systems argumentation theory is require-

ment in applications that involve both theoretical and practical aspects of artificial

intelligence and computer science. The Argumentation-based techniques range

from non-monotonic reasoning, knowledge engineering to MAS communication,

legal reasoning and alternative dispute resolution systems.

1

An agent-based society similar a human society could exploit cognitive artifact

to support cognitive processes. The join among artifact abstraction and argumen-

tation theory is an useful ground of research in order to build an intelligent multi-

agent system. The artifacts could bring at architecture level some useful features

of argumentation, enabling an easier composition of intelligent applications.

In this thesis we investigate the possibility to build cognitive artifact based

on argumentation. We provide a model of argumentation exploitable by agents

and artifacts. The capacity to build cognitive argumentation artifacts usable from

agents opens new prospective to design MAS in direction to obtain intelligent ar-

tificial societies. For instance an automatic Alternative Dispute Resolution system

could be obtained from such features.

The following critical questions the thesis aims at giving a response to under-

line the relevance of the thesis in both sectors of argumentation and multi-agent

systems.

• Which general architecture can be developed for specifying communication

and coordination among agent based on argument?

• Which argumentation framework could be exploited to implement multi-

agent argumentation systems?

• Which general formalization could be exploited for an intelligent and auto-

matic dialog mediation?

• Which general architecture could be exploited to realize Alternative and

Online Dispute Resolution systems?

2

• How can an Alternative and Online Dispute Resolution systems be imple-

mented in an agent society?

1.2 Thesis outline

This thesis goes from theoretic to practical studies. Table 1.1 shows the three se-

quence steps of thesis work: theory, model and coding with the respective results.

We start from a theorization of an argumentation system based on first order logic

representation. Moreover, we study the argument-based communication, defining

a formal dialog system where we exploit a process algebra representation and the

previous definition of arguments.

In the second step we design a model for multi-agent argumentation system.

We express the desidered set of functionalities in order to exploit argumentation

inside an agent society with two purposes: 1) enabling dialog based on arguments

and 2) enabling coordination based on argument. To satisfy the requirements fol-

lowing A&A meta-model we propose two type of artifacts: Co-Argumentation

Artifact and Dialog Artifact that encapsulate all the functionalities necessary to

build intelligent agent societies. The artifacts have the role of intelligent me-

diators that automatically can make some inference operations helpful to agent

coordination and communication.

The finally step is the implementation of the abstractions. To do that we exploit

TuCSoN infrastructure for agent society programming the artifact by ReSpecT

and Prolog languages. The reactive architecture of TuCSoN infrastructure is the

winning strategy to build complicate software such as MAS, that impose a right

scalable and flexible architecture. We foresee an ADR application scenario fitting

3

our theory, model and coding very well. This case study could be considered as a

validation of the thesis work.

Table 1.1: Map of thesis contents

Theory Argumentation System (AS) Dialog System (DS)

Model Co-Argumentation Artifcat (CAA) Dialog Artifact (DA)

Code TuCSoN TuCSoN

Case Study Argument Acceptance Persuasion Dialog

4

Chapter 2

On Argumentation System

In this chapter are introduced argumentation theory and some open issue about

argumentation. In the actual intelligent software systems closed to final user it is

useful to have a representation of the uncertain and a system of communication

both close to human. We focus our attention on the formalization of an Argu-

mentation System (AS) to build non-monotonic knowledge, and a Dialog System

(DS) to enable communication.

2.1 Argumentation Theory

Argumentation theory went up again 2,500 years old, to the time of Plato and Aris-

totle in Athens. The arts of communicating in public forums and persuasion were

very important abilities for the Athenian government. Aristotle introduced the

study of rhetoric that is generally understood to be the art or technique of persua-

sion through the use of oral, visual or written language. Argumentation is a part of

the study of rhetoric in particular: how to create and present good arguments that

5

could be logically accepted. Argumentation is a form of communication, where

at least one person supports the claims with evidences and reasoning. But it could

also be a form of knowledge representation, where the relevant arguments lead to

alternative, conflicting conclusions.

A society mainly evolves through interaction and communication among par-

ticipating entities. Within a society, people argue in order to solve problems, to

reduce conflicts, to exchange information and to inform each other of some per-

tinent facts. Argumentation is a useful feature of human intelligence that enables

us to deal with incomplete and inconsistent information. People usually have only

partial knowledge about the world (they are not omniscient) and often they have

to manage conflicting information. In the same way, the entities that compose

an artificial society should be able to deal with partial and conflicting knowledge.

Correspondingly, an agent-based model for an artificial society should provide an

adequate definition of knowledge with the purpose of providing a realistic reflec-

tion of a society. Also, it may be useful to share information in order to success-

fully deal with partial knowledge.

Actually, Argumentation or Argumentation Theory is a formal discipline within

artificial intelligence, where the aim is to make a computer assist in or perform

the act of argumentation. In addition, argumentation is used to provide a proof-

theoretic semantics for non-monotonic logic, starting with the influential work of

Dung (1995). Computational argumentation systems have found particular appli-

cation in domains where formal logic and classical decision theory are unable to

capture the richness of reasoning, domains such as law and medicine.

Argumentation is an important feature of human intelligence: the ability to

understand and manipulate arguments is fundamental to understand a new prob-

6

lem, reason about actions and perform scientific research. Typically an argument

is a sequence of inferences leading to a valid conclusion: a set of arguments is

managed by an argumentation component that is particularly useful in the case of

conflicting information.

Argumentation systems are now being applied for developing application in

legal systems, negotiation among agents decision making etc. Argumentation is

strictly connected with logic and reasoning. It makes use of formal and informal

logic to enable reasoning and represent arguments. The study of logical form also

includes the study of how premises should lead to conclusions assuming that the

premises are correct. Informal logic is the study of reasoning from evidence to

conclusions. The study of argumentation actually involves formal and informal

logic.

Argumentation systems are a way to formalize non-monotonic reasoning, such

as constructing and comparing arguments for and against certain conclusions. The

idea is: the construction of an argument is monotonic and the non-monotonicity is

expressed in term of interaction between conflicting arguments. An other view of

inference under uncertainty leads to probabilistic argumentation system, that is the

join between classic logic and probability theory. An argument can be seen such

as a chain of possible events (premises) that makes the hypothesis (conclusions)

true. The credibility of a conclusion can then be measured from the total proba-

bility calculated from the premises. Finally, a comparison between argument or a

quantitative judgment is obtained by considering the supported argument proba-

bilities.

7

Argumentation-based Communication

In a MAS, argumentation has a central role that allows agents to argue, justify

positions and try to persuade another agent to endorse some statement. All these

features are quite common in a real-world society, and enable complex global be-

haviours. Argumentation can be used to model the communication among agents

in a MAS, in particular to model the dialog between two entities. A set of six

primary dialogue types is identified by [44]: persuasion, inquiry, negotiation, in-

formation seeking, deliberation and eristic. All these dialogues can be captured in

an argumentation framework [29], and they are developed strictly among two enti-

ties. In [9] an implementation of information-seeking dialog based on tuple centre

architecture is presented. However, a definition for a dialogue says that a dialogue

is a mutual conversation between two or more people. In a society there are forms

of communication among multiple entities that enable humans to work together

and achieve their goals. Following that definition, we can naturally extend the

dialogue concept in MAS from two agents to N agents. The argumentation-based

dialogues listed above, for instance, could be transformed in social discussions

among agents.

2.2 Argumentation System

There are many existing formalisms to present argumentation theory such as de-

fensible logic, default logic and auto-epistemic logic as special case. In our vision,

an argument is a minimal set of facts that conduce to a conclusion. We use an un-

derlining monotonic logic, with logical connective representing implication and

8

with a semantics and proof theory already provided with logic, to represent and

define arguments.

Prakken and Vreeswijk [36], in their study of logics for defensible argumenta-

tion, observe that an argumentation system is generally composed of five elements

(although sometimes implicitly): 1) a logical language; 2) an argument definition;

3) a concept of conflict among arguments; 4) a concept of defeated argument;

5) a concept of argument acceptability. In this section we define an argumenta-

tion system as a reference point for our work. We take inspiration from Dung’s

framework [10], and we also define the structure inside the arguments.

The underlining logic of our system is a first-order language, where Σ contains

all well-formed formulae. The symbol ` denotes classical inference (different

styles will be used like deduction, induction and abduction), ≡ denotes logical

equivalence, and ¬ or non is used for logical negation.

2.2.1 Formal Model

Typically an argument has an internal structure, comprising of inferences that

leads to a conclusion. It has three components: beliefs, inference rules and con-

clusions.

• beliefs are facts and rules that represent premises

• inference rules are labels that represent inference processes such as deduc-

tion or induction

• conclusions are facts that represent results of the inference process applied

to the beliefs

9

In our system, we express the argument in predicate logic using the logic tuple

notation. We take inspiration from Dung’s framework [10], and we also define

the structure inside the arguments. In [36] an argumentation system formalized in

propositional logic is presented. Whereas we follow such an approach, we also try

to extend it using predicative logic, which suits a logic programming framework.

The object language of our system is a first-order language, where Σ contains

all well-formed formulae. The symbol ` denotes classical inference (different

styles will be used like deduction, induction and abduction) ≡ denotes logical

equivalence, and ¬ or non is used for logical negation.

Definition 1 An argument is a triple A = 〈B, I,C〉 where B = {p1, . . . , pn} ⊆ Σ

is a set of beliefs, `I∈ {`d,`i,`a} is the inference style (respectively, deducion,

induction, or abduction), and C = {c1, . . . ,cn} ⊆ Σ is a set of conclusions, such

that:

1. B is consistent

2. B `I C

3. B is minimal, so no subset of B satisfying both 1 and 2 exists

For instance, a classical example of argument like all men are mortal, Socrates is

a man, Socrates is mortal, in our representation becomes:

• B = human(Socrates),human(X)→ mortal(X)

• I = `MP Modus Ponens

• C 3 mortal(Socrates)

10

Our formalization of the ‘Socrates argument’ can be easily mapped in a logic

tuple. In the process of mapping, we add the predicate argument with the function

name and other predicates such as beliefs, infer and conclusions to represent the

triple A = 〈B, I,C〉.

argument(name,beliefs([human(Socrates)], [clause(mortal(X), [human(X)])]),

infer(MP),conclusions([mortal(Socrates)])).

A declarative representation of arguments could be useful to store and collect the

arguments during the argumentation process. The formula argument in our system

is the basic unit to represent an argument.

The inference rules we consider for deduction are Modus Ponens (MP), Multi-

Modus Ponens (MPP) and Modus Tollens (MT).

B B→C
C

(MP)

B1 B2 B3 (B1∧B2∧B3)→C
C

(MPP)

The MP is a particular case of MMP with only one premise. Socrates argument is

a example of MP deductive argument. Also, MT formula expresses a deductive

inference.
¬A B→ A
¬B

(MT)

For example, all humans are mortal, but Eraclito is not mortal, than Eraclito is not

human, in tuple form is:

argument(name,beliefs([non(mortal(eraclito))], [clause(mortal(X),

[human(X)])]), infer(MT),conclusions([non(human(eraclito))])).

11

The inference rule that we use for induction is θ -subsumption, as shown in (θ -su).

B
R

where Rθ ⊆ B (θ -su)

For example, mortal(X)← human(X), θ -subsumes mortal(socrates)← human(socrates)

with θ = 〈X = socrates〉, in tuple form looks like

argument(name,beliefs([mortal(socrates),human(socrates)]),

infer(Su),conclusions([clause(mortal(X), [human(X))])])).

This process derives a general rule R from specific beliefs B, but is not a legal

inference in a strict sense. Currently, we do not consider it as a probability value

that could be associated to the result of an induction process. Finally, the abductive

reasoning is expressed with the inference rule shown in (Ab).

B A→ B
A

(Ab)

For example, all humans are mortal, Parmenide is a mortal, then Parmenide is a

human, in tuple form looks like

argument(name,beliefs([mortal(parmenide)], [clause(mortal(X),

[human(X)])]), infer(Ab),conclusions([human(parmenide)]).

The definition of contrast is not trivial, because there are different types of attack

well defined in [36]. Following those definitions, two possible types of attack are

‘conclusions against conclusions’ – called rebuttals – and ‘conclusions against

beliefs’—called undercuts.

Definition 2 Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 are two distinct argu-

ments, A1 is an undercut for A2 iff ∃h ∈C1 such that h≡ ¬bi where bi ∈ B2

12

Definition 3 Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 are two distinct argu-

ments, A1 is a rebuttal for A2 iff ∃h ∈C1 such that h≡ ¬ci where ci ∈C2

From the algorithmic point of view, it is necessary to identify the opposite predi-

cate: α defeats ¬α in order to find the contrast argument. In our framework we in-

troduce non/1 operator that identifies the opposite predicate: non(mortal(Socrates))

is opposite to mortal(Socrates). We also introduce another notion of undercut

based on the principle of refutation. To find an attack to the rule, a counterex-

ample is required that disproves its truth. An argument A1 is attacked through a

counterexample contained in the conclusion of another argument. In formula, we

consider an implication with only one premise A→ B ≡ ¬A∨B the contrary is:

A¬(¬A∨B) ≡ A∧¬B. An expression with A and the negation of B is a coun-

terexample of the implication. For instance, the following argument undercuts the

Socrates example by refuting the implication mortal(X)→ human(X):

argument(name,beliefs([human(Eraclito),non(mortal(Eraclito))]),

infer(T),conclusions([human(Eraclito),non(mortal(Eraclito))])).

This type of attack is possible only with an explicit representation of the rules.

Finally inside the component there are the main algorithms to manipulate the

conflict knowledge in order to decide the admissible subset of a set of arguments

and to determine whether a new argument is acceptable or not. The definitions of

acceptability and admissibility used in our framework are in agreement with [10].

The following definitions are the basic ones in our argumentation system and take

inspiration from Dung’s framework.

Definition 4 An argument set S is a conflict free set iff there exists no Ai,A j ∈ S

such that Ai attacks A j.

13

Definition 5 An argument set S defends collectively all its elements if ∀ argument

B /∈ S where B attacks A ∈ S ∃ C ∈ S : C attacks B.

Definition 6 An argument set S is a admissible set iff S is conflict free and S

defends collectively all its elements.

Definition 7 An argument set S is a preferred extension iff S is a maximal set

among the admissible set of A.

We consider also important argument extensions such as acceptability in order to

determine whether a new argument is acceptable or not. In the context of preferred

semantics the acceptance problem is divided in credulous acceptance or sceptical

acceptance, if an argument is in some/all preferred extension.

Definition 8 An argument A is credulous acceptable if A ∈ at least one preferred

extension.

Definition 9 An argument A is sceptical acceptable if A ∈ all preferred exten-

sions.

2.3 Dialog System

In this section we present a novel formalization of a multi-agent dialog system.

Our intention is to capture the rules which govern legal utterances, and which

govern the effects of utterances on the commitment stores of the dialog. We use

a process algebra approach in the style of [41] to represent the possible paths

which a dialog may take, and to represent explicitly the operations to and from the

commitment stores. We proceed by considering each element of a dialog system

14

in turn: 1) the communication language; 2) the interaction protocol; and 3) the

protocol semantics.

Because a dialog is a dialectical exchange of arguments, we assume that ar-

guments and counter-arguments are represented and expressed in the formal lan-

guage defined above in Section 2.2. Agents may exchange arguments, along with

facts, with one another in the form of instantiated parameters in their utterances.

2.3.1 Communication Language

The agents need to share a same communication language CL in order to exchange

information. The role of CL as a language used for internal knowledge representa-

tion and reasoning is explained in [29]. We let F denote a set of terms representing

facts, and A the set of terms representing all arguments able to be represented in

Σ following the definition of an argument given in Definition 1. Our CL is defined

in order to support all six primary dialogue types as identified by [44]: persuasion,

inquiry, negotiation, information seeking, deliberation and eristic.

Definition 10 Our communication language is a set of locutions Lc. A locution

l ∈ Lc is a term of the form perfname(Arg1, . . . ,Argn) where perfname is a element

of the set P of performatives and Argx is either a fact or an argument.

An agent performing a dialog exploiting the communication language can utter

a locution composed of facts and arguments. A fact is represented by syntax

fact(Terms) and an argument with argument(B,I,C). The definitions to

manage attacking and undercutting arguments are provided by the underlying ar-

gumentation system given in Definition 1. In the example 1 an agent wants to

communicate the classical example of argument like All men are mortal, Socrates

15

is a man, Socrates is mortal, and it uses an Argue locution with an argument

parameter.

Example 1 Argue(argument(name,beliefs([human(Socrates)],[clause(mortal(X),

[human(X)])]),infer(MP),conclusions([mortal(Socrates)]))).

Examples of performatives to support an instance of an Information Seeking Dia-

log could be: OpenDialog, Ask, Tell, DontTell, Provide, Argue, and

so on. Further details about this form of dialog and its complete locutions are

presented in [9].

2.3.2 Dialog Protocol

In our framework the dialog protocol is a complete description of all possible

dialog paths, from the perspective of an external entity observing the dialog be-

tween the agents. The protocol indicates the possible paths of a dialog, specifies

the source and target of each message and shows the relationship between utter-

ances and the content of commitment stores. Our approach basically describes the

step-by-step behaviour of an external entity acting as a mediator, hence enabling

the allowed interactions. Therefore, we technically find it useful to model a dia-

log in terms of a process algebra with standard composition operators (sequence,

parallel, iteration), and whose atomic actions represent either agent utterances or

interactions with the commitment store (writing, reading or removing a commit-

ment).

On the one hand, Prakken [33] proposes a general definition of locution where

a move m is denoted by four elements: 1) identifier, 2) speaker (or source), 3)

speech act and 4) intended recipient (or target). Following this model, we provide

a definition of a speech act, as follows:

16

Definition 11 An action A is defined by the syntax A ::= s : Lc|s[t1, . . . , tn] : Lc

where s indicates the source, and [t1, . . . , tn] indicates the (optional) targets of the

message.

On the other, beyond this, we include additional atomic operations K over com-

mitment stores—many of them can actually occur into one argumentation artifact.

To this end, the commitment store is viewed as a set of tuples as in [20]: such tu-

ples are manipulated by the commands of the Linda language [13]—in, rd and

out.

Definition 12 A term action K has the syntax K ::= in(C,X)|out(C,X)|rd(C,X),

where C is a term representing the commitment store identifier, and X is a term

representing the commitment.

Specifically, the commands in(C,t), rd(C,t) and out(C,t) respectively

consume, read and put a tuple t in the commitment store C. These actions are

useful to manage the private or public commitment store in relation to the dialog

execution. In particular, they can operate, for example, as action-preconditions in

order to restrict or constrain the next action choice, and thus enable only cer-

tain future dialog paths. If at a given time a sub-dialog is guarded by oper-

ation rd(c,commit(a)), for instance, then it is allowed to proceed only if

commit(a) occurs in the commitment store.

Definition 13 A protocol P is a composition of action from sets A and K, de-

fined by syntax P ::= 0 |A |K |P.P |P + P |P B P |(P ‖ P) | !P where the symbols

.,+,B,‖, ! denote respectively sequencencial composition, choice, left-priority-

choice, parallel composition, and infinite replication operators.

17

For example, an abstract dialog protocol definition is given by D := (s : a1 + s :

a2).(s : a3 + s : a4);s : a5 where agent s is only allowed to execute a sequence of

three actions: the sequence composed of a first action consisting of either action

a1 or action a2, then a second action consisting of either a3 or a4, and then a

third action comprising a5. A protocol specifies a set of actions histories, that

the agents might execute. As another example of a protocol definition, consider

D := s : a1 ‖ s : a1 ‖ s : a1 ‖ t : a2 ‖ t : a3 where agent s can invoke a1 at most three

times, agent t can invoke a2 and a3 only once, but in whichever order.

To illustrate this framework, we present a specification for an Information-

Seeking dialog (f is seen as a variable over the content of communication):

Example 2 (Information Seeking Dialog) c:OpenDialog.

s:OpenDialog.

!(c:Ask(f).

s:Tell(f).(

rd(perm(c,f)).

s:Provide(f).

s:Argue(perm(c,f),YES,A)

+

s:DontTell(f).

s:Argue(perm(c,f),NO,B).

c:Argue(perm(c,ϕ),ADD,A). (

s:Argue(perm(c,f),NO,B)

+

s:Accept(A,perm(c,f)).

18

in(Accept(perm(c,f)))

)))

2.4 Operational Semantics

Following Hamblin [17], we assume that each agent is associated with a knowl-

edge base, accessible to all agents, containing its commitments made in the course

of the dialogue. Commitments are understood as statements which the associated

agent must support, while they remain in the commitment store, if these state-

ments are questioned or attacked by other agents. We can now use the notion of

commitment store and the transition system given in Definition 15 to define an

operational semantics for the dialog system. This semantics describes the evo-

lution over time of the dialog state and the states of commitment store (seen as

composition of all commitment stores). In essence, the commitment store is the

knowledge repository of the dialog as a whole, and it is expressed in our frame-

work as a multiset of terms.

Definition 14 A commitment store C is a multiset of terms and it is defined by the

syntax C ::= 0|(C|C)|X where X is a term.

Definition 15 The operational semantics of our dialog system is described by a

labelled transition system 〈S,→, I〉, where S ::= (C)P represents the state of dia-

log system (protocol P running with commitment store C), I is the set of interac-

tions (labels) composed of i ::= λ : θ where λ ::= τ|a and θ is a term substitution,

and→ is a transition relation of the kind→⊆ S× I×S.

19

A term substitution θ is of the kind {x/y}: when applied to a term t by syntax

t{x/y} it means t after applying the most general substitution between terms x

and y—x should be an instance of y, otherwise the substitution notation would

not make sense. As usual, we write s i−→ s′ in place of 〈s, i,s′〉 ∈←, meaning the

dialog system moves from state s to s′ due to interaction i—either an action a

or an internal step τ (an operation over the commitment store), involving a term

substitution θ inside the protocol. We introduce a congruence relation ≡, which

syntactically equates similar states:

0.P≡ P P.0≡ P (P.Q).R≡ P.(Q.R) !P≡ P|!P

0+P≡ P P+Q≡ Q+P (P+Q)+R≡ P+(Q+R)

0BP≡ P PB0≡ P (PBQ)BR≡ PB (QBR)

0 ‖ P P ‖ Q≡ Q ‖ P (P ‖ Q) ‖ R≡ P ‖ (Q ‖ R)

Finally, we define operational rules that describe the behavior of the dialog system

as follows:

20

(C)out(x) τ:θI−→ (C|x)0 (OUT)

(C|x)rd(y)
τ:{x/y}−→ (C|x)0 (RD)

(C|x)in(y)
τ:{x/y}−→ (C)0 (IN)

(C)a
a′{a′/a}−→ (C)0 (ACT)

(C)(P.Q) λ :θ→ (C′)P′.Qθ if (C)P λ :θ−→ (C′)P′ (SEQ)

(C)(P+Q) i→ (C′)P′ if (C)P i→ (C′)P′ (SUM)

(C)(PBQ) i→ (C′)P′ if (C)P i→ (C′)P′ (LEFT)

(C)(PBQ) i→ (C′)Q′ if (C)P 9 (C)Q i→ (C′)Q′ (RIGHT)

(C)(P|Q) i→ (C′)(P′|Q) if (C)P i→ (C′)P′ (PAR)

(C)P i→ (C′)Q if P≡ P′ (C)P′ i→ (C′)Q (EQUIV)

Rule (OUT) provides the local semantic of out operation, expressing that x term

is added to the commitment store C. Rules (RD) and (IN) similarly handle op-

eration rd and in: the use of substitution operator guarantees that the term x in

the commitment store is an instance of the term x to be retrieved. Rule (ACT)

expresses that locution a′ is executed that is an instance of the allowed one a,

using the proper term substitution. Rule (SEQ) handles sequential composition

and substitution: in a process P.Q, P is allowed to proceed (recursively), but, if

any substitution is involved, this is applied to Q as well. Rules (SUM) and (PAR)

provide the semantics for choice and parallel operators in the standard way. Rules

(LEFT) and (RIGHT) provide the semantics for left-priority-choice: in a process

P B Q, P proceeds if allowed to, otherwise Q proceeds. Finally, rule (EQUIV)

states that transitions can be applied modulo the congruence relation.

21

2.5 Issue on Argumentation

Building a software system in some domains requires the design and implementa-

tion of many programs to solve different computational tasks. In order to define a

program, the programmer has to use both the knowledge of the domain and his/her

own knowledge coming from experience. The knowledge representation is a key

point to build flexible and autonomous software systems.

In the main stream approach to develop Object Oriented or Component Ori-

ented software and in the new SOA architecture do not exist an explicit abstraction

to make explicit knowledge of the domain does not exist. Through symbolic rep-

resentation of knowledge some computational tasks are being realized by applying

different forms of inference such as: deduction, abduction, induction, model gen-

erator, updating etc. This forms of computation are strategic to develop intelligent

and complicated software systems.

In order to make all these ideas real it is necessary to provide: 1) first order

entity in the project of software system to represent knowledge, 2) a reference

logic theoryand 3) an infrastructure to make explicit symbolic knowledge repre-

sentations.

Argumentation provides a form of non-monotonic knowledge representation,

which is a generalization of non-monotonic logics. It could be a good choice

to make explicit knowledge and conflicting knowledge, to much time hidden in

software system. Also, a very useful innovation is to define a meta-model for

software system where the knowledge is a first class entity of design.

The argumentation theory could cover some lacks in software systems making

explicit conflicting knowledge and enabling form of reasoning under uncertain

22

such as practical reasoning [30] and common sense reasoning [12]. Moreover,

argumentation is used in the construction of systems for legal reasoning, collec-

tive decision making and negotiation and, in general, it has a fundamental role in

Alternative Dispute Resolution (ADR) systems.

In Multi-Agent Systems too the agents use arguments in order to exchange

information, to resolve dispute and to inform each other of some pertinent facts.

A MAS designer can provide an argumentation support within a social agent-

based context to enable a consistent evolution of social knowledge. It can also

provide agents with an instrument to enhance their ability to deal with their own

partial and incomplete knowledge.

The open issue in argumentation theory is the research of an efficient com-

putational model and scalable architecture to develop particular applications in

domains like law and medicine, where formal logic and classical decision the-

ory are unable to capture the richness of reasoning. Rahwan et al in [37] open a

new perspective on the argumentation system laying the basis for a World Wide

Argument Web. In their paper they show that semantic web, arguments and argu-

mentation ontology are strictly connected, demonstrating how an ontology repre-

sentation of arguments enables the description of web contents through a network

of arguments on the Semantic Web. An interesting example of this use is pro-

vided by Discourse DB1 forum powered by Semantic MediaWiki 2. Nowadays,

the open issue is building an infrastructure for large-scale argument representa-

tion, manipulation and evaluation, that could become pervasive in the Word Wide

Web context.

1See http://discoursedb.org
2See http://ontoworld.org/wiki/Semantic_MediaWiki

23

Chapter 3

Argumentation and Artifact

In this chapter we propose desidered functionalities of artifacts for exploiting ar-

guments. In building multi-agent systems the most hopeful meta-model is A&A

that proposes agents and artifacts as first class abstraction to model the system.

Two types of artifacts based on argumentation are proposed: Co-Argumentation

Artifact for construction of common knowledge and Dialog Artifact to enable me-

diate argument-based communication.

3.1 A&A meta-model for MAS

Agent-based systems technology is the new paradigm for conceptualizing, de-

signing, and implementing software systems. A Multi Agent System is a system

composed of several software agents, collectively capable of reaching goals that

monolithic systems find difficult to achieve. A most promising approach to design

MAS is the A&A meta-model that re-interprets MAS in terms of two fundamental

abstractions: agents and artifacts.

24

Agents are the active entities encapsulating control, which are in charge of

the goals/tasks all together building up the whole MAS behaviour. Artifacts are

instead the passive, reactive entities in charge of the services and functions that

make individual agents work together in a MAS, and that shape agent environ-

ment according to the MAS needs. An artifact is used by agents, possibly featur-

ing useful properties such as controllability, malleability, linkability, and situation

[26]. More generally, to engineering software systems: (1) agents represent task-

oriented or goal-oriented components that act pro-actively according to their task

or goal; (2) artifacts represent resources or tools that are used by agents during

their activities.

The design of agent-based artificial societies is based on the notion of artifact

[27], which takes inspiration from Activity Theory [21], where any human activ-

ity within a society is enabled, constrained or mediated by artifacts. An artifact is

social construct shared by agents of a MAS and is necessary to mediate interaction

among agents and between agents and their environment. Unlike agents, artifacts

are not meant to be autonomous or exhibit a proactive behaviour. Among the

main properties of an artifact there are: (i) inspectability and controllability, i.e.

the capability of observing and controlling artifact structure, state and behaviour

at runtime and of supporting their on-line management, in terms of diagnosing,

debugging, testing; (ii) malleability, i.e. the capability of artifact function to be

changed / adapted at runtime (on-the-fly) according to new requirements or un-

predictable events occurring in the open environment, (iii) linkability, i.e. the

capability of linking together at runtime distinct artifacts as a form of composi-

tion, as a means to scale up with complexity of the function to provide, and also

to support dynamic reuse, (iv) situation, i.e. the property of being immersed in the

25

MAS environment and be reactive to environment events and changes. A traffic

light, for instance, is a sort of coordination artifact: drivers watching the signal

know what they have to do to avoid accidents at an intersection, without any need

for direct communication with one another.

In a social context, people have only partial knowledge about the world and

use arguments in order to solve problems, to reduce conflicts or to exchange in-

formation. The same holds for intelligent agents in a multi agent system; here,

however, it is not clear what could act as a support for argumentation between

agents, external to the agents themselves. To this end, this work exploits the

agents and artifacts (A&A) meta-model for MAS, exploring the use of artifacts

for agent argumentation within a MAS.

3.2 Mediated Interaction

Mediation is useful to achieve cooperation between the entities and the coordi-

nation of the global system. In a MAS, in particular, mediation among agents

has a central role to coordinate activities, to achieve social goals, and to sup-

port interaction. Moreover, in a system there are social properties that need to be

expressed outside agents. Knowledge too, also according to Distributed Cogni-

tion [18], is not bounded inside each individual agent, but is instead distributed

among agents and artifacts in the environment. Environment-based coordination

and, more generally, mediated interaction frameworks and infrastructures based

on forms of coordination / cooperation without direct communication are among

the most promising lines of research in the MAS field.

In a human society the role of mediator exists: in a Dispute Resolution for

26

instance, the mediator ensures fairness and a correct resolution of the dispute.

Proponents of public policy conversations and decision-making processes usually

emphasize the need for a human moderator or mediator to be involved in the in-

teraction, e.g., [11]. The mediator may act to ensure equality of access by all par-

ticipants, assist participants to clarify their positions and to argue more effectively

and even try to reconcile opposing views. Similarly, the designers of computer-

aided argumentation systems have also provided support for human mediators; the

developers of Zeno, for example, define their system as “a mediation system” [14,

p.10]:

“a kind of computer-based discussion forum with particular sup-

port for argumentation. In addition to the generic functions for view-

ing, browsing and responding to messages, a mediation system uses a

formal model of argumentation to facilitate retrieval, to show and

manage dependencies between arguments, to provide heuristic in-

formation focusing the discussion on solutions which appear most

promising, and to assist human mediators in providing advice about

the rights and obligations of the participants in formally regulated

decision making procedures.”

Just as with human interactions, and for the same reasons, many of the functions

provided by mediators could be useful when software agents engage in argumen-

tation with one another. The mediator is useful to coordinate agents that have to

achieve a global goal. Some of these mediator functions require only limited intel-

ligence that could, for example, support the storage and share arguments with the

participants. These functionality could be automatically provided by an artifact.

27

3.3 Multi-agent Argumentation System

Our model of a multi-agent argumentation system following A&A meta-model

exploits two types of entities: agents and artifacts. In particular in our model

we consider intelligent dialog agents and two types of artifacts: a dialog artifact

and a co-argumentation artifact. Co-Argumentation Artifact (CAA) is a central co-

ordinating entity in an argumentation dialog, that provides co-ordination services

to the participating agents allowing them to share, store and exchange arguments

with one another. Vesting the CAA with its own argumentation capabilities means

that this entity, like the participants, could undertake reasoning across the argu-

ments it stores. The CAA, for example, could determine whether a particular

argument is acceptable (under a specific semantics of argumentation) with respect

to the global knowledge of all the participants.

It is easy to imagine that the CAA could undertake more sophisticated inter-

ventions in the dialog resembling complex, automated tasks of a human mediator.

To this end, we extend our earlier concept of a central co-ordinating artifact to

be a dialog artifact (DA), acting as a mediator between the participating agents.

Dialog participants, of course, need to be able to generate, evaluate, contest and

defend arguments as they interact with one another through dialog. But the dialog

artifact also needs this argumentation functionality if it is to find common ground

between different participants, or to clarify their differences. For example, if the

dialog artifact is to convince two participants that their opposed positions in fact

share common assumptions or that one position implies the other, then the media-

tor artifact may need – in an automated way – to create, present and defend a case

to the participants.

28

Consequently, we have described two conceptual artifacts variously required

by the entities in our system. The combination of both artifacts provides the sup-

port of basic and advanced functionality for automatic mediation services in a

MAS. Some basic functionalities to support the exchange of arguments in a dia-

log between the participants include:

1. Storage of the dialog protocol (e.g. in a library of such protocols)

2. Storage of the specifications of the dialog protocol

3. Storage of the complete history of a dialog as it proceeds

4. The ability to refuse to allow agent utterances which do conform to the

current protocol in use

5. The ability to suggest next moves which are legal according to the current

protocol in use in a dialog

6. The ability to receive and store confidential information from the participat-

ing agents, such as their preferences in a negotiation. The mediator could

then aggregate such information (across multiple agents), and/or seek to

identify and reconcile differences.

Also, the central artifact could act as a sophisticated mediator of the discussion,

by providing in an automated way the following services:

1. Seeking to resolve any dispute over the rules of the protocol

2. Providing rewards or penalties to agents for breaking the protocol rules

3. Having the power to admit or to expel agents to/from the dialog

29

4. Suggesting a new protocol, when needed.

5. Supporting multiple simultaneous bilateral interactions.

6. Assigning roles, rights and responsibilities to agents at run-time, as, for

example, in an action protocol, assigning the role of winner to a particular

agent near the end of the interaction.

7. Identifying conflicts and inconsistencies between commitments made by

agents in a dialog, for example, if an agent commits to sell a car it is also

trying to purchase.

8. Identifying agent utterances which are not relevant to the current state of the

dialog, and refusing to permit these to be made.

9. Providing automated alerts to inform agents that dialogs on particular topics

are about to start, or to end, or that particular commitments have just been

made.

10. Combining different dialogs on the same topic.

More advanced functions of the CAA and DA combination could also include:

1. Annotation of protocols with their properties, for protocols stored in the

protocol library, for instance, the possible outcomes of a protocol, its com-

putational complexity, and so on.

2. Storing the outcomes of past dialogs, like for example the commitments

remaining at the end of the dialog.

3. Tracking agent commitments across multiple dialogs.

30

4. Using previous dialogs to create an independent assessment of the reputa-

tion of participating agents.

5. Storage of the entire history of past dialogs. These may be required for

regulatory or legal reasons, e.g. in stock market transactions.

In section 3.5 and 3.4, we present a formalization respectively of the DA and

CAA which conceptually supports the basic functionalities listed above.

Figure 3.1: General Architecture of Multi-agent argumentation system

Figure 3.1 presents a possible architecture for a Multi-agent argumentation

system. We propose a scalable architecture composed of a local CAA private for

an agent and a global CAA common for the agent society. An agent exploits own

local CAA to coordinate its mental state. Classically those functions (to store,

to manage and to retrieve arguments) are provided by an internal argumentation

component hidden inside the agent. Exploiting A&A vision we propose to make

31

an explicit representation of agent mental state by a co-argumentation artifact.

Global CAA and DA artifacts provide services and functionalities listed above

for the entire agent society. Ideally, in the model DA and CAA are separate enti-

ties with separate and orthogonal functionalities. In an implementation scenario

both common artifacts could collapse in one unique global entity without loss of

generality.

To validate the architecture, we focus our attention on dispute resolution sys-

tem in artificial society, where the dialog has a fundamental role in achieving a

solution. In particular, the persuasion dialog based on arguments is exploited by

agents to find an agreement.A dispute resolution is not an easy task and usually in-

volves more entities (including mediator or arbitrator). Our architecture provides

the desired abstraction and properties to realize a mediation service for dispute

resolution in an agent society.

3.4 Co-Argumentation Artifact

In this section, combining multi-agent argumentation with the A&A meta-model

we define a Co-Argumentation Artifact (CAA) as an artifact specialized in man-

aging arguments and providing coordination services for argumentation process

in a MAS. The CAA is a mediator of agent interaction and supports a simplified

implementation of multi-agent argumentation system. It provides functionality

that allows agents to exploit social commitment, enabling them to share, store and

exchange arguments.

A simple example of social use of CAA is to fix social acceptance of the

arguments: the goal is determining whether an argument is acceptable with respect

32

to the global knowledge of the community. The CAA applies an argumentation

semantics over the shared arguments, which provides for the acceptance criteria.

Another interesting example is the use of CAA as a commitment store during the

dialog process. Tracing the commitments is fundamental for the next step of the

discussion. Also, from the arguments stored during the dialog process the CAA

could deduce or induce new knowledge. The introduction of the CAA model

provides new support to design communications that involve more entities in a

social context.

A similar type of artifact is the co-ordination artifact [27], specialised in pro-

viding a coordination service in MAS [40]. A typical use of a co-ordination arti-

fact is enabling the exchange of information among agents in an open and dynamic

environment—like a mailbox or a blackboard. Another interesting example is the

use of the co-ordination artifact for knowledge mediation where the information

can be manipulated by the artifact through either aggregation or induction process.

We define a CAA as a couple CAA = 〈S,AC〉 where S is the store of arguments

and AC argumentation component is the collection of specifications to work over

set of arguments.

Store

The class S is a collection of concrete representations of arguments, beliefs and

argument sets. The store enables the agents and artifacts to write, read, search

and consume information in form of arguments. Sharing arguments permits the

CAA to calculate argument sets over a common knowledge and for instance fix

a global argument acceptability - following acceptance argument definition pro-

33

vided in 2.2. Moreover, the stores could represent public or private information

from agents or artifacts, the access of which is regulated by particular policies.

Argumentation Component

The argumentation component is a set of specifications that should be useful in

principle in order to control a set of conflicting arguments. The main functions

of this class are to calculate the preferred extensions of a set of arguments and to

determine whether a new argument is valid and acceptable. Also, our goals are

the utilization of these algorithms by each of the agents of an agent society and

by artifacts embodying the social argumentation processes. This would be useful,

for example, to identify subsets of arguments agreeable to all participants in a

MAS. We adopt the argumentation system presented in the previous section with

a tuple-based notation and the Prolog logic language to implement the algorithms.

Prolog is very useful because of the uniform representation of code and data, both

represented as first-order logic clauses, which makes writing (meta-)interpreters

quite easy [39]. Our current specification of the AC follows the preferred semantic

and it provides service to calculate: 1) conflict free sets, 2) preferred extensions

and 3) admissible sets. In order to compute all these features, AC is composed of

several modules and each module provides a specific set of constrains resulting

from the analysis of the input argument set.

Argument base module contains all argument of the domain represented by S

Argumentation consistency check module verifies monotonicity of argument com-

position

Contrary module finds predicates that are in contrast

34

Argument set module makes argument division in sets be based on a given se-

mantic

Prolog meta-interpreter works over argument set

3.5 Dialog Artifact

As mentioned above, the A&A meta-model for MAS as discussed in [22] views

agents engaged in argumentative communication as making use of an abstraction,

called a Co-Argumentation Artifact, to communicate, to exchange information,

data and arguments, and to record their public commitments. The current work

extends this abstraction by formally defining a Dialog Artifact (DA), able to sup-

port and mediate the communication between agents engaged in a dialog under

the system defined in Section 2.3 above.

We define the Dialog Artifact as a triple DA = 〈DP,CS, IC〉, where: DP is a

collection of specifications of dialog protocols; CS is a collection of commitments

stores; and IC is a collection of specifications of interaction control (IC). We now

define each of these components in turn.

Dialog Protocols

The class DP is a collection of formal specifications of dialog protocols, with each

protocol specified using a labeled process algebra, as in Definition 13. Protocols

in DP may also be annotated with identifiers and with their properties, such as

their termination complexity. When agents engage in dialog using a protocol in

the collection DP, they make utterances according to the permitted sequences

35

defined by the protocol specification. Accordingly, the Dialog Artifact is able to

verify that utterances proposed by agents in a dialog are valid under the protocol;

the DA is also able to use the specification to suggest potential legal utterances to

participating agents at each point of the dialog.

Commitment Stores

For any particular collection of agents and any particular dialog they undertake,

the collection CS specifies a set of stores representing the private and public Com-

mitment Stores of each participant, together with a central Commitment Store for

the dialog as a whole. The Dialog Artifact can support the dialog by holding these

stores. The private Commitment Stores are also held by the DA to record confi-

dential information entrusted to it by the participants, such as their private valu-

ations of some scarce resource (in the case of Negotiation dialogs) or arguments

based on privileged information (in the case of dialogues over beliefs). Sharing

such information with the DA may allow the DA to reason across these stores in

a manner which does not reveal the private information of individual agents.

We can classify these various types of stores according to the access permis-

sions (write-, read-, and delete-permissions) holding on each store, as shown in

Table 3.1. The cells of this table indicate the access permissions pertaining to dif-

ferent types of Commitment Stores (the rows of the table), depending on the agent

seeking access (the columns of the table). The Dialog Artifact may also store other

relevant information, such as the sequence of locutions exchanged in the current

dialog, which would be stored in the Central Commitment Store. These stores

do not have an algebraic structure but a declarative representation of the contents

36

Type Agent A All Agents Mediator Artifact

Private Commitment Store of Agent A R/W/D - R

Public Commitment Store of Agent A R/W/D R R

Central Commitment Store - R R/W/D

Table 3.1: Commitment Stores - Read (R), write (W) and delete (D) Permissions

with a proper classification.

Interaction Control

The third component of the Dialog Artifact, denoted as IC, is a collection of spec-

ifications for interaction control. We roughly follow the pattern MVC (Model

View Control), where the model is the dialog specification in DP, the view is the

CS component with dialog trace and the control is represented by IC specifica-

tion. The control rule of the dialog is represented by the label transition system

introduced in previous section, modelling the evolution over time of the agent

interaction protocol. Three operators can be used to control the dialog:

nextI(s) =
{

i : s i→ s′
}

nextS(s) =
{

s′ : ∃i,s i→ s′
}

nextIS =
{

(i,s′) : s i→ s′
}

Operator nextI(s) yields the next admissible interactions i from state s. Operator

nextS(s) yields the states reachable from s in one step. Operator nextIS yields

couples (i,s) instead.

The component IC realizes the above three operators in order to identify which

potential utterances for any agent at any point in the dialog are legal. The basic

primitives in,rd,out to manage arguments and facts in commitment stores al-

low the IC to identify which constraints on the future course of dialogs are created

37

by the existing commitments. For instance, the IC could permit only one utterance

in a chosen point basing the decision on state of commitment store. Also, it can

work with argument set over some advanced structures such as conflict free sets

and preferred extensions presented in section 2.2 to determine, for instance, an

argument acceptability.

DA & CAA Functionalities

It is straightforward to see that all six basic functionalities of a multi-agent ar-

gumentation system listed in Section 3.3 can be performed by a Dialog Artifact

defined as a triple DA = 〈DP,CS,LI〉 and Co-Argumentation Artifact CA = 〈S,AC〉

as above. Basically the CAA is exploited by DA such as its Central Commitment

Store. The collection DP provides the functionalities of items 1 and 2, the storage

of protocols and their formal specifications; the Central Commitment Store of the

collection CS, which could be realized by CAA, provides storage for the history

of a dialog, item 3; similarly, the private Commitment Store components of the

collection CS realized by CAA provides storage for confidential information com-

municated from agents to global DA & CAA, item 6; the formal specification of

a protocol in DP (as given by the process algebra formalism we have used above)

permits the DA to identify potential utterances which do not conform to the pro-

tocol, item 4; and both the formal protocol specifications in the collection DP and

the logics of interaction in IC permit the DA to suggest possible legal next moves,

item 5.

38

Chapter 4

Implementation of Dialog and

Argumentation Artifact

Logic programming and meta logic programming are two useful techniques to

prototype quickly complicated software systems with rational behavior.TuCSoN

infrastructure following a Linda like coordination model provides a programmable

environment based on logic tuples. In this chapter TuCSoN infrastructure and

logic programming techniques are exploited in order to realize the artifacts.

4.1 The TuCSoN Infrastructure

The technological support to build artifacts is provided here by TuCSoN, a co-

ordination infrastructure for MAS introduced in [28]. TuCSoN provides MAS

with coordination abstractions called tuple centres where agents write, read and

consume logic tuples via simple communication operations (out, rd, in, inp,

rdp). As programmable tuple spaces [24], tuple centers can play the role of au-

39

tomatic agent mediators, where coordination rules are expressed in terms of logic

specification tuples of the ReSpecT language—an event driven language over the

multi-set of tuples [23].

Tuple centres can play the role of agent coordinators, where coordination rules

are expressed in terms of tuples, and also be considered such as a general sup-

port for artefacts. As a coordination artifact, a tuple centre is also a container of

knowledge declaratively represented through logic tuples, and is equipped with

Turing-equivalent computational power through the ReSpecT specification lan-

guage. There, MAS coordination is obtained by governing the exchange of logic

tuples through the tuple centres by properly programming their reactive behaviour.

4.2 CAA Implementation

So, in order to realize a CAA, an obvious choice is to exploit a TuCSoN logic

tuple centre. In fact, on the one hand a typical argumentation process is com-

posed of two parts: (1) knowledge representation; and (2) computation over the

set of arguments. On the other hand, the tuple centre architecture is also com-

posed of two parts: an ordinary tuple space where the information are stored in

form of tuples, and a behaviour specification that defines the computation over the

tuple set. Thus, a TuCSoN tuple centre could support the argumentation process

by representing knowledge declaratively in terms of logic-tuple arguments, and

by specifying the computation over argument set in term of ReSpecT specifica-

tion tuples. Therefore, our first experimental implementation of a CAA is built

as a TuCSoN tuple centre programmed with an argumentation component algo-

rithm (Section 3.4) and with arguments represented by logic tuples (Section 2.2).

40

Agents use the CAA and whenever a new argument is added to the tuple centre as

a logic tuple the CAA reacts and re-calculates the conflict free sets, the admissible

sets and the preferred extensions, representing them too in terms of logic tuples in

the tuple centre. A complete implementation of ReSpecT reactions joined with

the argumentation component implementation is provided in appendix A.3.

Argumentation Component Implementation

From a practical point of view, computational model is based on predicative logic

and logic programming. Each argument has its own context, where the argument

is true. The context is provided in the argument and is composed only by the set

of beliefs – facts and rules – directly declared in the tuple. The connection be-

tween the premises and the conclusion is expressed in terms of the corresponding

inference process, which is specified in the argument too.

The programs to manage, verify and compare arguments are meta-interpreters

written in Prolog. We have created a library composed of interpreters for each

type of inference rules supported: MP, MT, Su and Ab. When the component has

to evaluate an argument, the program looks for the correct interpreter and checks

if the conclusion is a consequence of the premises.

Meta-Interpreter for Argument Check

The following interpreter for argument check (1) has the argument name as its

input parameter, (2) asserts all of its facts and rules and (3) verifies its correctness

in the different sorts of inference.

check_argument(Name):-

41

argument(Name,_,beliefs(facts(F),rules(R)),infer(I),conclusion(C)),

assert_list(F),

assert_list(R),

check_conclusion(I,C).

check_conclusion(mt,[T|C]):-proveMT(T).

check_conclusion(mp,[T|C]):-proveMP(T).

contrary(non(P),P):-!.

contrary(P,non(P)).

The contrary term is a support to find opposite predicate. We also add spe-

cific relation of opposition like old vs. young that in predicate form looks like

contrary(old(X),young(X)) and vice versa; or add the definition of con-

trary for the subset like a number.

% Meta-interpreter for Modus-Ponens

proveMP([]):-!.

proveMP([Goal1|Goal2]):-

!,

proveMP(Goal1),

proveMP(Goal2).

proveMP(Goal):-

write(’call:’),write(Goal),nl,

(my_clause(Goal,Body);call(Goal)),!,

proveMP(Body).

% Meta-interpreter for Modus-Tollens

proveMT([]):-!.

proveMT([Goal1|Goal2]):-

!,

proveMT(Goal1),

42

proveMT(Goal2).

proveMT(Goal):-

write(’call:’),write(Goal),nl,

contrary(Goal,NegGoal),

my_clause(Head ,[NegGoal|T]),contrary(Head,NegHead),NegHead.

Example 3 Check of argument in Modus Ponens and execution trace

argument(arg1,1,beliefs(facts([man(john),age(90,john)]),

rules([my_clause(old(X),[human(X),age(A,X),A>80]),

my_clause(human(X),[man(X)])])),

infer(mp),conclusion([old(john)])).

?- check_argument(arg1).

assert:man(john)

assert:age(90, john)

assert:my_clause(old(_G385), [human(_G385), age(_G395, _G385), _G395>80])

assert:my_clause(human(_G385), [man(_G385)])

prove:old(john)

call:old(john)

call:human(john)

call:man(john)

call:age(_G430, john)

call:90>80

Yes

Example 4 Check of argument in Modus Tollens

argument(arg3,1,beliefs(facts([non(mortal(eraclito))]),

rules([my_clause(mortal(X),[human(X)])])),

infer(mt),

conclusion([non(human(eraclito))])).

43

?- check_argument(arg3).

Yes

Meta-Interpreter for Argument Management

Managing the argument set requires in particular an ability to calculate: (1) the

relations of undercut and attack between arguments; (2) the conflict-free sets; and

(3) the preferred extensions. Undercut and attack relations are found by com-

paring the ‘conclusion vs. conclusion’ and ‘conclusion vs. beliefs’ (and vice

versa) between two different arguments. The operation of comparison is done

in the argumentation component with the check/4 predicate. Each argument

has to be compared with the others to find all the relations; if we have N argu-

ments we have to do ≈ ∑
N
i=0 N2 comparisons. At the end of this process, tracing

the attack(from,to) and undercut(from,to) we obtain a defeat graph

where the relations are the arcs and the arguments are the nodes, according to

Dung [10].

The core of the argumentation component is represented by the interpreters

that manage the arguments in order to find the conflict free sets, the admissible

sets and the preferred extensions.

Conflict Free Set

The problem of a conflict free set is already known in graph theory with the name

of stable set or independent set. It is in the class of NP-hard problem, for which

it is very unlikely to find an efficient algorithm. Our idea is to build an algorithm

that works incrementally, trying to avoid the complexity of a growing amount of

information, because we foresee a dynamic and distributed scenario where agents

44

a

b-[ab]

c-[abc]

d-[abcd]

d-[abd]

c

d

d

b

c

d

d

c

d

d

Figure 4.1: Search trees generated for 4 arguments

share their own arguments at different times.

To solve the conflict free problem, we adopt a constraint-based approach. Our

algorithm is based on a standard backtracking strategy. The constraint is the ab-

sence of conflicts among arguments (undercut, rebuttal). A solution is consistent

if the set of arguments satisfies the constraints. In order to limit the degree of

backtracking, consistency is checked before each argument is added to the solu-

tion. When the consistency check fails, the algorithm stores partial results, and

starts backtracking. Then, it recursively tries to add all the remaining arguments.

In order to limit the size of the search space, a branching strategy is used in

the phase of set instantiation. The logic program constructs search trees with de-

creasing depth for all input elements, so that algorithm tries to find all possible

solutions around each argument. After such a search process, the selected argu-

ment is removed from the next search space. For example, if we consider a list of

four input arguments [a,b,c,d], the resulting search trees are shown in figure

4.1. There, the possible partial solutions are denoted in square brackets.

The algorithm can also be used in a dynamic context with inputs in succession.

45

To find a new solution, after each update we have to insert new arguments in each

existing conflict free set, and run the algorithm again. The following Prolog code

has been tested in tuProlog 1.3.0 [1] and shows the main predicates implementing

the conflict free set division.

selection(X,[X|Rest],Rest).

selection(X,[Head|List],Rest) :-

selection(X,List,Rest).

turn(ArgumentSet):-

selection(Name,ArgumentSet,RestArgumentSet),

argument(Name,_,beliefs(facts(F),rules(R)),_,conclusion(C)),

newconflictfree(RestArgumentSet,[Name],F,C,[Name]).

newconflictfree(Arguments,Result,Facts,Conclusions,ConflictFree):-

selection(Name,Arguments,RestArguments),

argument(Name,_,beliefs(facts(F),rules(R)),_,conclusion(C)),

check(Facts,F,Conclusions,C),

append1(Facts,F,NewFacts),

append1(Conclusions,C,NewConclusions),

add2end(Name,ConflictFree,NewConflictFree),

newconflictfree(RestArguments,NewConflictFree,NewFacts,

NewConclusions,NewConflictFree).

check(FL,F,CL,C):-

not(control(FL,C)),

not(control(F,CL)),

not(control(CL,C)).

newconflictfree(_,[],_,_,_):-!,fail.

46

newconflictfree(_,R,_,_,_):-

mem(P),

notsubsetset(R,P),

retract(mem(P)),

assert(mem([R|P])),!,

mem(P1),

fail.

Admissible Set and Preferred Extension

An admissible set of arguments is a conflict free set that defeats collectively all its

elements, referring back to definition 6. The notion of ‘collectively defends’ is

useful to find a subset of arguments that is more consistent than the conflict free

set. The Preferred Extension is the largest set among the admissible sets.

We have to find a conflict free set, where if an argument is attacked, then there

exists another argument in the same set that attacks the attacker. This is an indirect

form of defense, which we call collective defense.

Our algorithm to resolve the admissible set problem directly uses the conflict

free set calculated in the previous section. Also, the algorithm looks only for

undercut relations because each argument defends itself from a rebuttal attack

but not from an undercut. In a graph representation, the rebuttal relation is a

bidirectional arc; on the contrary the undercut relation is a one-direction arc.

The algorithm basically works by subtracting from each conflict free set the

arguments attacked but not defended by elements of the same set. The remaining

sets represent the solution called admissible sets. The three basic steps that the

algorithm does for each conflict free set are: (1) to find defeat arguments with

respect to the general set, (2) to find defenders from attackers in the general set,

47

and (3) to remove defeat arguments without defender. Following, the Prolog code

that calculates the admissible sets, again tested in tuProlog 1.3.0.

admissible(_,[],[]).

admissible(TotalArguments,[ConflictFreeSet|Rest],Solution):-

%to find set of attacker to conflict free

findundercat(TotalArguments,ConflictFreeSet,Attacker,Defeat),

%it find the defend argument that block the attack

findundercat(ConflictFreeSet,Attacker,AttackerFromCF,DefeatOut),

removelist(DefeatOut,Attacker,AttackerNotDefeat),

findundercat(AttackerNotDefeat,Defeat,AF,DF),

removelist(DF,ConflictFreeSet,Sol),

Solution=[Sol|Result],

admissible(TotalArguments,Rest,Result).

findundercat([],_,[],[]):-!.

findundercat([H|T],CF,A,D):-

argument(H,_,beliefs(facts(F),rules(R)),infer(_),conclusion([C])),

contrary(C,P),!,

(argument(Element,_,beliefs(facts([P]),rules(_)),infer(_),conclusion(_))->

(member(Element,CF)->(A=[H|R1],D=[Element|R2]);(A=R1,D=R2));(A=R1,D=R2)),

findundercat(T,CF,R1,R2).

The predicate findundercut(+General,+Reference,-Attackers,-Defeats)

is used to find the undercut relation among two sets: (1) general (the set with all

arguments) and (2) reference (a conflict free set).

The next step is to find the preferred extensions. We use the previous results,

and find the preferred extensions by looking for the maximal admissible set, in

accordance with the previous definition 7.

48

4.3 DA Implementation

In order to realize the DA, we exploited TuCSoN, a logic tuple centre with pro-

grammable behaviour. Agents utter a locution by means of a out(move(Dialog,

AgentID,Locution)) in the tuple space. The automatic actions executed

over the commitment store are represented by the term cs(ID,out(commit(...)))—

where out could be replaced by in or rd operations.

Commitment Store

The CS class is composed of commit tuples that are put in the tuple space as

facts and arguments express in logic tuple notation.The CS could be realized by

several CAA: one private for an agent and one common for the DA and the agent

society. Each CAA has a different access policy, expressed by ReSpecT reaction,

that makes the artifact readable or writable only by specific category of agents or

artifacts. The DA is connected with CAA by the likability function of TuCSoN

infrastructure provided by the link operation.

Dialog Protocol

The dialog is written in terms of tuples dialog(name,AList) where AList

is the list of actions reifying in tuple form the operators choice act(A1)+(act(A2)),

parallel par(A1,A2) and sequence A1,A2. There are two types of actions A:

1) the action act(_) expresses the locutions of communication language and 2)

the action cs(_) expresses the move versus the commitment store.

Example 5 Example of Dialog State (DP component)

dialogsession(infoseek,close)

49

participant(infoseek,2)

dialog(infoseek,[act(C,opendialog(C,T)),

act(T,opendialog(C,T)),act(C,ask(Arg)+

(act(T,tell(arg1),cs(T,out(commit(arg1)))))])

currentpar(infoseek,0)

Example 5 shows a dialog protocol composed by some basic information on

dialog state and few steps of the information seeking dialog protocol. The tu-

ples that form the DP component are: participant (number of participants),

dialog (dialog protocol), dialogstate (actual protocol dialog state), and

currentpar (actual number of participant). In addition, an open dialog ses-

sion also uses tuple session(AgentID,infoseek,open) for each dialog

participant.

Interaction Control

The complete IC implementation is shown in appendix A.2, where the reactions

implementing the control of dialog interaction are presented. In particular, the

code implements the dialog state transition after an agent action, the search of next

admissible move after an agent request, and also makes the automatic interaction

with the commitment store automatically executing cs actions possible. Such

mechanisms make it possible for a dialog to be driven automatically by the state

of the commitment store. Figure 4.3 shows the ReSpecT implementation of the

nextI operator.

The engine of process algebra management is implemented exploiting a transi-

tion system defined by the predicates transition(Currentstate, Action,

50

%reacts from agent next moves request

reaction(rd(nextmoves(Dialog,S)),(

rd_r(dialogstate(Dialog,S)),

out_r(findall(S,Dialog))

)).

reaction(out_r(findall(S,Dialog)),(

in_r(findall(S,Dialog)),

findall(A,transition(S,A,Q),L),%collect all next legal moves

out_r(nextmoves(Dialog,L))

)).

Figure 4.2: Implementation of nextI operator in ReSpecT

Newstate).

transition(cs(Id,A),cs(Id,A),zero).

transition(act(Id,A),act(Id,A),zero).

transition([Act],A,zero):-!,transition(Act,A,zero).

transition([Act,Act2],A,Act2):-!,transition(Act,A,zero).

transition([Act|S],A,S):-transition(Act,A,zero).

transition(S1+S2,A,R1):-transition(S1,A,R1).

transition(S1+S2,A,R2):-transition(S2,A,R2).

Future state of dialog Newstate is calculated exploiting the current action and

the current dialog state. Next admissible locutions are calculated exploiting a sec-

ond order query by findall(Object,Goal,List) predicate and by transition(S,A,Q)

predicate as Goal. Basically the findall collects in a List all the solutions

51

of the query Goal.

In our engine for dialog execution the action cs are executed and consumed

automatically by the artifact. When the next admissible move is a cs action, the

ReSpecT reactions try to perform it over the right commitment store. If the action

is well executed, then the move is consumed and the dialog state consequently

advance. The actions (k-OUT, k-RD, k-IN) model an automatic interaction versus

the commitment store. They could be used as pre- or post-condition of locutions

in communication language in order to automatically conduct the dialog through

a right sequence of actions.

reaction(out_r(findall(S,Dialog)),(

in_r(findall(S,Dialog)),

findall(cs(Id,Commit),transition(S,cs(Id,Commit),Q),L),

out_r(nextmoves(Dialog,L))

)).

reaction(out_r(nextmoves(D,[H|T])),(

in_r(nextmoves(D,[H|T])),

out_r(excom(H)),

out_r(looknext(D,T))

)).

Figure 4.3: Collection of next cs actions

Figure 4.3 presents the first step of automatic action execution by collecting all the

next admissible cs moves. The next step to perform automatically the admissible

actions is implemented by the reactions presented in 4.4.

52

%Automatic Action execution on the Commitment Store

reaction(out_r(excom(cs(Id,out(A)))),(

out_r(A),

in_r(excom(cs(Id,out(A)))),

in_r(dialogstate(Dialog,S)),

out_r(transition(S,cs(Id,Act),C,Dialog))

)).

reaction(out_r(excom(cs(Id,in(A)))),(

in_r(A),

out_r(excom(cs(Id,in(A)))),

in_r(dialogstate(Dialog,S)),

out_r(transition(S,cs(Id,Act),C,Dialog))

)).

reaction(out_r(excom(cs(Id,rd(A)))),(

rd_r(A),

in_r(excom(cs(Id,rd(A)))),

in_r(dialogstate(Dialog,S)),

out_r(transition(S,cs(Id,Act),C,Dialog))

)).

Figure 4.4: Automatic Action execution on the Commitment Store

53

Chapter 5

Case study over ADR Systems

5.1 Overview of Alternative Dispute Resolution

In a social context conflicts are often inevitable. From a human point of view

the different culture, own interest and partial consciousness are often the causes

of disputes. People develop systems and methods in order to settle conflicts in a

fair way. They provide norm systems, infrastructures (such as court) and methods

(such as trial) to achieve the dispute resolution.

In a global business process scenario there is a increasingly necessity for a

speed-up of the processes, and for faster conflict resolution. The new systems

have to support legal process, for instance when a negotiation is broken, or to

combine mediation and legal service to avoid litigation.

Alternative Dispute Resolution (ADR) is usually considered to be alternative

to litigation. It can also be used as a colloquialism for allowing a dispute to drop

or as an alternative to violence. ADR is generally classified into at least four

subtypes: negotiation, mediation, collaborative law and arbitration. Walker and

54

Daniels [42] underline that legal negotiation is a part of traditional dispute resolu-

tion system rather than a component of the ADR movement. The legal negotiation

happens directly among agents that represent the disputants in a context similar to

courtroom.

Arguments have a central role in the process of formal legal system and in

the trial. [35] shows a survey of logic in computational model on legal argument.

It presents the main architecture of legal arguments with in background a four

layer architecture: 1) logical layer, 2) dialectical layer, 3) procedural layer and

4) strategic layer. Disputants use arguments in order to persuade the other parts

of the dispute and also the decision makers - juries, judges, clients and attorneys.

[32] considers the use of argument in ADR systems and it is presents an analysis

of arguments in different context such as arbitration, mediation and multi-party

facilitation. Argumentation plays an important part in conflict resolution system,

since it drives the ADR to obtain a successful solution of the dispute. Argumen-

tation process promotes the values of justice, equality and community that are

desirable in a dispute resolution system.

In an open agent, society holds the same role as human society: it is undesir-

able to resolve dispute by litigation. The develop of a system for internal disputes

resolution in virtual organisation is purposed by Jeremy Pitt et al in [32]. It pro-

vides a norm-government MAS and an ADR protocol specification for virtual

organization exploited by intelligent agents.

ADR supplies a theoretical bases of Online Dispute Resolution (ODR) defined

in [38]. ODR has the purpose to extend ADR process, moving it to virtual envi-

ronment and providing computation and communication support. In ODR what

is crucial is the role of technology, which used to facilitate the resolution of dis-

55

putes between parties. It provides a structured communication and an informed

environment that helps the successful conclusion of the conflict.

ODR could be seen such as an instance of ADR system, communication in-

frastructure and Artificial Intelligence (AI) techniques aiming at supporting the

parties towards agreements. The reasoning and argument ability of the parties are

realized by AI methods.

In this section we aim at providing a framework for conflict resolution in an

agent-based society. We want to supply a supporting infrastructure in order to

manage arguments, to retrieve information and to bargain.

In Walton and Godden [45] is shown that argument-based dialogs, in particu-

lar persuasion dialogs, contribute to the realization of effective dispute resolution

systems. The main type of dialog usually considered by ADR is negotiation, but

it could be interpreted such as a particular kind of communication for the purpose

of persuasion. In argumentation theory are present both types of dialog: persua-

sion dialog and negotiation dialog. These two types of dialog have a different

structure and different goals and in ODR systems have to be managed by different

procedural rules.

A complete classification of six primary dialogs models in which argumen-

tation occur is presented by Walton in The New Dialectic [44]. The set of these

dialogue is composed by: persuasion, inquiry, negotiation, information seeking,

deliberation and eristic. All these dialogues can be captured in an argumentation

framework [29], and they are developed strictly among two entities.

Fundamental problem in ODR and ADR systems is that it is difficult to struc-

ture and process the information that is exchanged between negotiating parties.

In order to solve this problem, we propose to build an ADR system to use A&A

56

meta model with Co-Argumentation Artifact and Dialog Artifact abstraction ex-

plained in the previous sections. Our framework provides a structured information

based on logic tuple and the control of dialog processes through a mediate form

of communication over a programmable infrastructure. These two characteristics

are useful in order to build MAS in a scalable and flexible architecture and also to

build ADR that supports multi-party dialog session.

5.2 Architecture for ADR

We propose our architecture for MAS based on A&A metamodel to design a

ADR/ODR application. An ADR system, especially on-line, exploits the form

of negotiation, arbitration or mediation to achieve a solution. Typically in that

system the entities involved are more than two: two participants and a third entity

to help the dispute resolution like in mediator and arbitrator procedure. The par-

ties involved choose the procedure, terms and condition of their dispute.In [32]

are presented an arbitration protocol and concepts of decision making through

formation and voting protocol.

The parties, in order to find a solution, have the possibility to share any perti-

nent argument, make demands and evaluate the acceptability of an argument with

respect to normative context. To do that are a multi-party dialog protocol and an

impartial computation over the shared knowledge necessary. When the dispute in-

volves an increasing number of participants, it is necessary to introduce a mediate

form of communication in order to have a scalable system. Also, in the role of

mediation there are often evaluations that could be done automatically.

In that scenario our architecture provides the correct abstractions: 1) Dialog

57

Artifact 2) Co-Argumentation Artifact to make a flexible system. In the DA we

store the arbitration, mediation or negotiation protocol. The parties exploit the DA

to take part in the discussion, which drives the dialog ground on the commitments.

The advantages are the management of dialog between multiple entities and the

automatic interaction with commitment/argument store. The CAA provides the

right abstraction to make a commitment/argument store and where possible, to

evaluate automatically the argument validity as to the normative context. Also,

it provides default function to exchange information, data and arguments, and to

record their public commitments in private or public form. In a bargain among

three or more entities, for instance, through a CAA the final set of arguments

stored during the bargain represent a form of contract among the parties.

In the following paragraph we focus on the persuasion dialog, that is among

the most common and useful dialog in ADR. An interesting observation in [45]

underlines that a negotiation dialog can naturally include or shift to persuasion

dialog almost in two points: 1)to follow an offer and 2) to follow a rejection of an

offer. In both cases are provided reasons (by argument) to proof the acceptability

or unaccetabilitiy of an offer. A dialog model for persuasion could be composed

of: 1) commitment store for each participant, 2) inference rule to draw conclusion

from commits in the commitment store made by the participants and 3) practical

rules that govern the sequence of locutions and their consequences.

5.3 Persuasion Dialog

In persuasion dialog the goal of a participant is to prove his thesis and to rationally

persuade the other parties. With the word “persuasion” we do not mean a psycho-

58

logical persuasion, but rather a rational persuasion supported by arguments. In

Walton & Krabbe [44] they observe that disputes are a subtype of persuasion di-

alog where the parties disagree about a single proposition ϕ . At the start of the

dialog a party believes in ϕ and the other believes in ¬ϕ , therefore they have a

contrary opinion about a proposition. Generally, the moves that are allowed in

the dialog are: asking question, answering question, putting forward arguments.

Following Walton [45], a proponent in a persuasion dialog is successful when: 1)

the responded has committed all the premises of the argument 2) each argument

is corrected 3) the chain of argument has the proponent thesis as its conclusion

In [34] is presented a survey of formal systems of persuasion dialogue that

points out the crucial role of regulating interaction among agents rather than de-

sign of behaviour in individual agent within a dialogue. Among the main ap-

proaches to design persuasion dialogue and communication between agents based

on arguments, we keep inspiration from Parson and McBurney [29] approach and

Prakken [33] approach. And also from [2], where it is shown how each move

of the dialog could be specified by rational rules, dialog rules and update rules

making explicit the relation with the commitment store.

5.3.1 CAA

The CAA provides the services to read, store and consume arguments and be-

liefs such as a commitment store. And also following the general architecture

for MAS propose in 3.4 we provide a private and a public CAA. In particular

for persuasion dialog we exploit the ability of the CAA, in order to automatically

calculate arguments and beliefs acceptability following the agent attitudes and the

59

argumentation semantic. In [29] are introduced agent attitudes in order to provide

some acceptability criteria. An agent may have one of three acceptance attitudes

about proposition: a credulous agent can accept any formula for which there is an

argument S, a cautious agent can accept any proposition for which there is an ar-

gument if no stronger rebutting argument exists, a skeptical agent can accept any

proposition for which there is an acceptable argument S. Exploiting our argument

definition and referring to our argumentation system, the argument acceptance is

resolved following the argumentation preferred semantics. In the context of pre-

ferred semantics the argument acceptance is divided in credulous acceptance or

sceptical acceptance, if an argument is in some/all preferred extension.

The CAA validates the arguments committed verifying their correctness and

also it evaluates their acceptability verifying which of the preferred sets it be-

longs to. In particular for persuasion dialog the CAA supports the agent attitudes

and reacts from the tuple rd(cs(Y,acceptable(Attitude,P))) where

Attitude could be credulous, cautious or skeptical, in order to ver-

ify the acceptability of P formula grounded on agent attitude.

5.3.2 DA

The DA is the abstraction that encapsulates the rules of dialog and it coordinates

the entities during the persuasion process. We follow the definition of this artifact

provided in 3.5, that supplies all components definition. We also propose a dialog

persuasion protocol formalized with our process algebra. The commitment store

of DA is provided by CAA correctly implemented, and we suppose for simplicity

that it is in the same space of the DA.

60

Communication Language

The more common locutions on persuasion dialog that can be found in literature

are well collected in [34] and they are briefly listed here:

• claim ϕ (assert): The agent asserts a formula ϕ to start the persuasion.

• why ϕ (challenge): The agent asks for reasons about the ϕ formula.

• concede ϕ (accept): The agent accepts the validity of ϕ .

• reject ϕ(retract): The agent does not commit the ϕ . In some cases it retracts

the formula from the commitment store previously stored.

• S since ϕ (argue): The agent provides reasons for ϕ formula by an argu-

ment.

Our communication language is composed of the following set of locutions: as-

sert, why, accept, reject, retract, and argue.

Dialog Protocol

To make a persuasion dialog concrete, a persuasion protocol is defined, typically

among two parties: proponent and respondent. We formalize through our process

algebra a generic persuasion dialog protocol keeping inspiration from [31, 2] and

adding repetition rule proposed by [34]. Exploiting the expressive ability of the

defined process algebra we can express the agent attitude directly in the proto-

col enabling an automatic checking of those properties. The dialog is partially

driven through the state of commitment store by the actions (in, out, rd) that are

specifiable in the protocol.

61

dialog_persuasion(X,Y,P):= X:assert(P).dialog_response(X,Y,P)

dialog_response(X,Y,P):=

Y:accept(P) +

Y:reject(P) +

Y:why(P).

X:argue(argument(Name,bel(B),inf(I),conc(P))).

dialog_argue(X,Y,P)

% Evaluation of chain argument support of P assertion

dialog_argue(X,Y,P):=

Y:accept(P) +

Y:reject(P) +

Y:argue(argument(Name,bel(B1),inf(I1),conc(P1))).(

X:retract(P) +

X:argue(argument(Name,bel(B2),inf(I2),conc(P2))).dialog_argue(X,Y,P)))

Figure 5.1: Persuasion dialog without interaction with the CS

In figure 5.1 is shown a dialog protocol for persuasion where an agent can

accept or reject an assertion P, based on its attitudes, by an internal evaluation of

facts and argument acceptability. Then starts a phase of arguing conclude with an

acceptance or rejection of the assertion P. The relation among dialog and commits

is not explicitly expressed. In a dialog each move could be specified by rational

rules, dialog rules and update rules [2]: the rational rules specify the preconditions

for playing a move; The update rules specify the modification of commitment

store; the dialog rules specify the next moves. With our process algebra we have

the expressive power to cover the three types of dialog rules. For instance we

propose a modified version of the persuasion protocol in the figure 5.2 where

we provide an automatic evaluation of some preconditions(rationality) and the

consequent modification of the commitment store (update). In that version of the

62

dialog the DA automatically drives the sequence of action through the state of the

commitment store. In the choice points some locutions are automatically chosen.

We exploit also the ability of the CAA to find beliefs acceptability following the

agent attitudes and the argumentation semantic.

This protocol formalization is very flexible and opens a lot of courses of ac-

tions. The problems could be the termination of the dialog and the determination

of the dialog results. The dialog is partially automated through DA and CAA in-

frastructure. The agents have every time the control over their own actions and

they can decide in every moment to suspend the dialog. From the responder agent

point of view this type of dialog could be interpreted such as a dialog to build a

new argument. The new argument is composed of the tree branches from last lo-

cution to the first assertion. A new belief is accepted if there is a course of action

from the last uttered locution to the first assertion.

5.3.3 Example of Run

In this section we provide an example of simulation of a simplified version of

persuasion dialog exploiting TuCSoN infrastructure. The purpose is to show the

use of the infrastructure. In order to perform the dialog simulation TuCSoN

provides useful tools: CLIAgent to simulate agents interaction and Inspector to

inspect current state of tuple space . The Inspector tool shown in figure 5.3

allows users to observe and debug the communication state and the behaviour of a

tuple centre. In particular, it makes it possible to inspect the tuple set, the pending

query set, the triggered reaction set and the behaviour specification set.

The TuCSoN CLIAgent tool allows users to invoke the commands of the TuC-

63

dialog_persuasion(X,Y,P):= X:assert(P).dialog_response(X,Y,P)

dialog_response(X,Y,P):=

rd(cs(Y,acceptable(P))).Y:accept(P) +

rd(cs(Y,acceptable(not(P)))).Y:reject(P) +

Y:why(P).X:argue(argument(Name,bel(B),inf(I),conc(P))).dialog_argue(X,Y,P).(

rd(_,acceptable(B).Y:accept(P) +

rd(_,acceptable(not(B)).X:retract(P).in(X,assert(P))

+else dialog_argue(X,Y,P)

)

% Evaluation of chain argument support of P assertion

dialog_argue(X,Y,P):=

Y:accept(P).out(Y,commit(P)) +

Y:reject(P) +

Y:argue(argument(Name,bel(B1),inf(I1),conc(P1))).(

rd(_,acceptable(B1)).out(_,commit(P1)) +

X:retract(P).in(X,assert(P))+

X:argue(argument(Name,bel(B2),inf(I2),conc(P2))).(

rd(_,acceptable(B2)).out(_,commit(P2)) +

dialog_argue(X,Y,P)

)

Figure 5.2: Persuasion dialog with CS interaction: Automatic evaluation of ac-

ceptability

SoN coordination language. For our purpose we exploit the CLIAgent to utter

agent locution in the form out(move(Dialog,Id,Locution)).

The rules to manage the dialog in the DA are programmed with the ReSpecT

code in appendix A.2, for the commitment store is considered the same tuple

space of dialog and the initial dialog state is expressed by the tuple

64

Figure 5.3: Inspector tool

dialogstate(persuasion,[act(X,assert1(P)),

(act(Y,accept(P))+act(Y,reject(P)))+act(Y,assert1(non(P)))+

act(Y,why(P),act(X,argue(argument(N,bel(B),inf(I),conc(C)))),

(act(Y,accept(N))+ act(Y,reject(N)))]).

The locutions that could be uttered in that dialog are: assert, accept, reject, why,

and argue. We start the simulation sending an assert locution in the tuple centre

from agent Paul by the CLIAgent shown in the figure 5.4. After that move the

infrastructure reacts and it calculates next dialog state.

move(persuasion,paul,assert1(safe))

dialogstate(persuasion,

[’+’(’+’(’+’(act(_4,accept(safe)),act(_4,reject(safe))),

act(_4,assert1(non(safe)))),act(_4,why(safe))),

65

Figure 5.4: CLIAgent

act(paul,argue(argument(_3,bel(_2),inf(_1),conc(_0)))),

’+’(act(_4,accept(_3)),act(_4,reject(_3)))])

The responder agent Olga can ask the tuple rd(nextlocutions(persuasion,L))for

the possible admissible next locutions and the tuple centre responds by new tuple

nextlocution.

nextlocution(persuasion,

[act(_2,accept(safe)),act(_2,reject(safe)),

act(_1,assert1(non(safe))),act(_0,why(safe))])

At this point the responder chooses a move either from the state of commitment

store or independently from our knowledge base, for instance in this case the

choice could be why(safe). The figure 5.5 shows the state of the tuple centre

after Olga locution by the inspector tool. The new dialogstate expresses the

remaining locution constrained by previous logical unification of paul and olga

identifiers.

dialogstate(persuasion,[act(paul,

66

argue(argument(_3,bel(_2),inf(_1),conc(_0)))),

’+’(act(olga,accept(_3)),act(olga,reject(_3)))])

Figure 5.5: Tuple Set

5.4 Argument Acceptance

A tool to find argument socially acceptable could be useful in ADR process. The

key idea is to form a common knowledge acknowledged by all the participants

whereby the parties or third figures such as mediator, arbitrator or attorney use to

resolve their disputes. In a collaborative divorce, for instance, the parties look for

an agreement with the support of the attorneys. No one imposes a resolution on

the parties. An automatic evaluation of argument agreement could be useful in

order to speed up the solution or may eliminate in similar cases the figure of the

attorneys. More easily we present a example of dispute resolution among friend

67

that have to choose the activity of Saturday night.

We present an application of CAA in a multi-agent context where agents have

to decide whether their arguments are socially acceptable. We use the argumenta-

tion system presented in Section 2.2 with preferred semantics, and either credu-

lous or sceptical acceptance. An argument is considered as accepted in the cred-

ulous definition if it is contained at least in one preferred extension, and in the

sceptical definition if it is contained in every preferred extension. In [5] an algo-

rithm is presented that resolves the credulous and the sceptical decision problems

based on an argumentation game formalised with a dialog between two entities.

The algorithm could be applied either inside each agent simulating a dialog game,

or between two agents. In order to extend the solution to N agents, we propose to

use the A&A meta-model by adopting the CAA abstraction.

We foresee a scenario where a group of agents argue about what to do on

Saturday night. For instance, the agents are conditioned from the past history of

the place where to go, or the possible company. Each agent has its arguments

about whether to go or not to go to, say, the El Farol Bar. In order to make a

personal evaluation the agents may benefit from social information that could be

retrieved asking other agents. Besides, when the agents share their arguments, a

form of social knowledge is implicitly generated, which provides agents with a

social point of view on the Saturday night problem. Also, sharing knowledge and

arguments gives the group more chances to take congruent decisions.

More generally, social contexts typically introduce the need to represent and

store social knowledge. Since shared, social knowledge belongs in principle to

every agent, so to no agent in particular, it should be stored and maintained outside

agents: in short, this is what makes it useful to introduce in this scenario the

68

notion of artifact, as an abstraction that agents can use to share, compare and store

information.

Here, we consider agents with different knowledge bases composed only of

arguments, and an empty CAA only containing the algorithms proposed in the

argumentation component. The arguments acceptance is driven generally by a

system process divide in to three sequential steps. First, the agents share their

own arguments writing the arguments in the CAA. Secondly, the CAA reacts and

calculates the conflict free and preferred extension over the shared arguments.

Thirdly and finally, the agents evaluate credulous or sceptical acceptability based

on common sets calculated in the CAA. Then, each agent can consult the CAA

to understand the “social acceptability” of its own arguments, but also the other

agent’s arguments, and possibly deliberate its course of action based on a shared

view of arguments. Also, the CAA keeps track of the overall argumentation pro-

cess, and could be exploited by an external observer to understand the social be-

haviour of agents sharing arguments and behaving accordingly.

In particular, in our example the CAA is implemented as a TuCSoN tuple

centre called saturdayNight, which processes and combines knowledge ex-

pressed by arguments from various agents. In Table 5.1 the arguments possessed

and shared by the three agents are shown. Some arguments are in favor of going

out if the conclusion is play(1), or vice versa is play(-1). The support of

conclusions should contain the motivation to do the choice, for instance: a fa-

vorite kind of music music(rock), a previous nice night result(1) or a

good company willgo(susan). Different sets of arguments represent differ-

ent opinions and motivations that bring an agent to make a decision. The sharing

of the arguments enables the composition and completion of the information.

69

The sets calculated in CAA are expressed with the tuples conflictfreeset,

admissibleset and preferredset and calculated using the algorithm ex-

plained in section 3.4. An external observer can look inside the CAA through

the Inspector utility provide by TuCSoN, and consult the argument sets. In the

following we show the sets computed after the last argument insertion. The sets

contains the argument names.

conflicfreeset([[argB,argC,argD,musicB,companyB,dayA,dayB,typemusic],

[argB,argC,argD,musicB,companyB,day,dayA,typemusic],

[argB,argC,argD,music,companyB,dayA,dayB],

[argB,argC,argD,music,companyB,day,dayA],

[argA,companyA,day,typemusic],

[argA,music,musicA,companyA,day]])

admissibleset([[argB,argC,argD,companyB,dayA,typemusic],

[argB,argC,argD,companyB,day,dayA,typemusic],

[argB,argC,argD,music,companyB,dayA],

[argB,argC,argD,music,companyB,day,dayA],

[argA,companyA,day,typemusic],

[argA,music,companyA,day]])

preferredset([[argA,music,companyA,day],

[argA,companyA,day,typemusic],

[argB,argC,argD,music,companyB,day,dayA],

[argB,argC,argD,companyB,day,dayA,typemusic]])

One should observe that the global preferred sets are different from the ones that

each agent could calculate based on its own arguments only. Agents could then

read the preferredset tuple, and verify in which set its own arguments occur.

70

agent1, for instance, may want to consider the social acceptability of argument

musicB that in its own knowledge is accepted, because the argument belong

to their own preferred set ([argB,argC,day,musicB]). Vice versa, when

considering the common preferred extension, the argument is no longer (socially)

acceptable because it does not belong to a common set. These sets are calculated

from more information than the ones available to each individual agent, and in

some context they could be considered as more reliable. In any case, agents can

autonomously decide what to do with such information—either use it or ignore it.

71

Table 5.1: Arguments by Agent1, Agent2, and Agent3

Agent1

argument(argB,1,beliefs(facts([result(-1)])),infer(t),conclusion([play(-1)])).

argument(argC,1,beliefs(facts([result(1)])),infer(t),conclusion([play(-1)])).

argument(day,1,beliefs(facts([today(sunday)])),infer(t),conclusion([today(sunday)])).

argument(musicB,1,beliefs(facts([non(music(rock))])),infer(t),conclusion([play(-1)])).

argument(dayB,1,beliefs(facts([non(today(sunday))])),infer(t),conclusion([play(-1)])).

. . .

Agent2

argument(music,1,beliefs(facts([music(rock)])),infer(t),conclusion([music(rock)])).

argument(argD,1,beliefs(facts([result(-1)])),infer(t),conclusion([play(-1)])).

argument(companyA,2,beliefs(facts([willgo(susan)])),infer(t),conclusion([play(1)])).

argument(companyB,2,beliefs(facts([non(willgo(susan))])),infer(t),conclusion([play(-1)])).

argument(musicA,1,beliefs(facts([music(rock)])),infer(t),conclusion([play(1)])).

. . .

Agent3

argument(argA,1,beliefs(facts([result(1)])),infer(t),conclusion([play(1)])).

argument(typemusic,1,beliefs(facts([imtired(yes)])),infer(t),conclusion([non(music(rock))])).

argument(dayA,1,beliefs(facts([today(sunday)])),infer(t),conclusion([play(-1)])).

argument(company,1,beliefs(facts([willgo(susan)])),infer(t),conclusion([willgo(susan)])).

. . .

72

Chapter 6

Conclusions

6.1 Related works and Discussion

In literature there are several logical models to formalize reasoning among argu-

ments that are called by Prakken and Vreeswijka in [36] Argumentation Systems.

Different logical models of arguments formalize “commonsense” reasoning. For

instance giving rise to two conflicting arguments, accepting some premises or

building a counterargument could be considered commonsense reasoning. They

are typically human actions whence to study inference patterns.

To represent our arguments we use a meta logic approach based on first order

logic (FOL) where the conflicts and reasoning are computed at argument level.

The arguments are build with classical inference exploiting monotonic logic and

the commonsense reasoning is brought at the meta level. We follow an abstract

framework for defeasible argumentation developed in several articles from Dung

et al [10] that is a completely abstract version of Bondarenko et al [4] framework.

Another approach to build arguments is based on defeasible logic. It is a

73

non-monotonic logic that provides directly at language level three types of special

rules to model undercutting, rebuttal and defeater relation to express conflicts. The

fitness of defeasible logic for argumentation is stressed out by Governatori et al

in [15] and Garcia et al [12]. Moreover, there are also some other approaches that

extend defeasible logic and normal logic adding probability and certainty factors,

[16] in order to increase the expressiveness, and modalities to weight arguments,

[8] in order to resolve conflicts. An unifying approach to computational models

of argument using Labelled Deductive Systems (LDS) is proposed in [7].

Argumentation-based communication between agents is exploited to define

forms of rationality that drive the agents to accept or reject statements. Different

dialog formalizations are presented by Prakken et al [33] and Parsons et al [31],

both based on arguments. Walton and Krabbe in [44] presents six main type of dia-

log: persuasion, inquiry, negotiation, information seeking, deliberation and eristic

that can be captured in a argumentation framework as that one presented in [31].

Our dialog formalization is based on process algebra. We exploit a dialog system

similar to the generic framework for dialog presented by Maudet et al in [19].

We use a common and private board (mediator artifacts) to represent commitment

stores, the rules of dialog expressed by a process algebra with commitment store

interaction and the inferences automatically calculated by the infrastructure. We

present a formalization of some of these mediator artifact functions drawing on

the theory of communications artifacts in multi-agent systems [25, 41]. In ear-

lier work [22], we presented a conceptual framework for a central co-ordinating

entity in an argumentation dialog, called a Co-Argumentation Artifact (CAA), to

provide co-ordination services to the participating agents.

There is also the line of research based on argumentation schemes by Walton

74

[43], which tries to decrease the gap between human linguistic argumentation and

logic based approaches. The main drawback consists in the hardness of building

computational models for them. Rahwan et al [37] wrote an interesting paper

that drives a new direction of argumentation theory in the context of World Wide

Web application. It extends the Argument Interchange Format (AIF) [6] ontology

with Argumentation Schemes [43], in order to use both logic-based reasoning and

schemes based reasoning. We share with AIF a very similar definition of argument

composed of three components: beliefs, inference rules and conclusions. Our

meta logic approach with implementation in TuCSoN infrastructure fits very well

in the new application scenario of AIF ontology. An ontology expressed by RDF

meta data model could be equivalently represented in FOL and reified in tuple

form in the tuple center. In this way we can exploit by our artifacts all the AIF-

RDF ontology power, opening new innovative scenarios. For instance agent and

humans could collaborate exchanging arguments in WWAW context through a

Co-Argumentation Artifact. Moreover, our meta reasoning approach emerge to

be very useful to reason over the set of web arguments. The use of TuCSoN

coordination model inside a web architecture is already introduced by Omicini et

al in the paper [28].

6.2 Conclusions

In this thesis we have presented a completed work from theory to implementa-

tion level. At the theory level we define a formal argumentation and dialog sys-

tem following respectively a meta logic approach based on FOL and an algebraic

approach based on process algebra representation. At the model level following

75

A&A meta-model for MAS we have proposed a conceptual architecture for multi-

agent argumentation system in which the agents are assisted by an automatic me-

diation, provided by Co-Argumentation Artifact and Dialog Artifact abstraction.

At the coding level we reported on a prototype implementation of these ideas

exploiting programmable Tuple Space framework TuCSoN. We provide an im-

plementation of the desired functionality of the two artifacts. The case study of

ADR shows how it can efficiently applicate our system on an agent-based con-

text. ODR extends ADR moving it to the virtual environment of the Internet.

Exploiting TuCSoN infrastructure we provide a framework that enables the dis-

pute resolution on the Internet and an automatic mediation that makes the dispute

resolution process easier. The persuasion dialog and argument acceptance are two

concrete realizations of ADR/ODR systems.

6.3 Further Research

In future work, we want to promote a formalization of argument composition of

different type of arguments with dfferent inference rules. We hope to instrument

an appropriate artifact to safely combine, if possible, arguments based on different

inference rules such as strict and presumptive.

Moreover, we hope to formalize more of the potential functions of the me-

diator which we listed above in Section 3.5. Some of these functions will be

straightforward to formalize, to identify conflicts between commitments or pro-

vide automated alerts to agents concerning upcoming dialogs. Others, however,

such as run-time assignment of rights and responsibilities to dialog participants,

will be more challenging.

76

Finally, we desire to concretely open the possibility to add, in our artifacts,

arguments based on presumptive inference, and to generalize our argument rep-

resentation with the AIF ontology. The vision is to validate presumptive argu-

ment through an automatic revision of critical questions. We aim at obtaining an

advanced tool for a WWAW based on artifact, where agents and humans could

indistinctly interact.Our tool encapsulates and consistently handles the evolution

of Web social knowledge based on argument ontology, and it provides agents and

humans with an instrument to dialog and to enhance their ability to deal with their

own partial knowledge.

77

Appendix A

Implementation and Example

A.1 Example of Prolog Meta-Interpreter for legal

reasoning

In this section a meta-interpreter is proposed written in Prolog for the production

of legal argument. That program follows the idea presented by Trevor et al in [3].

We exploit a labelled theory term:label to record the extra logic information

require to organize the explanation. The labels class, data, condition,

qual identify different roles of Prolog clauses and the results of computation are

a set of arguments based on Stephen Toulmin argument schema.

%Labelled theory

age(john,80).

male(john).

greater_than(A,70):condition :-

A > 70.

78

man(X):-

human(X):class,

male(X):data.

old(X) :-

man(X):class,

age(X,A):data,

greater_than(A,70):condition,

not(tibetan(X)):qual.

%Meta-iterpreter for argument generation

body_list(’,’(Goal,OtherGoals),[Goal|L]) :-

body_list(OtherGoals,L).

body_list(LastGoal,[LastGoal]).

make_arguments([Goal|OtherGoals],C):-

argument(Goal,C),

make_arguments(OtherGoals,C).

make_arguments([],C).

argument(’:’(G,class),C):- C1 is C+1,clause(G,B),

B=\=true,meta(G,C1),nl,write(context(C,G,C1)),!.

argument(’:’(G,class),C):- nl,write(context(C,G)),!.

argument(’:’(G,data),C):- G,nl,write(data(C,G)),!.

argument(’:’(G,qual),C):- G,nl,write(rebuttal(C,G)),!.

79

%argument(’:’(G,condition),C):- nl, write(’condition’),!.

argument(G,C).

%warrant.claim,if,data,cond

correct_type(G,data).

correct_type(G,condition).

append1([],L,L).

append1([H|T],L,[H|O]):-append1(T,L,O).

make_worrant([],[]).

make_worrant([’:’(Goal,Type)|OthersGoals],[Goal|R]):-

correct_type(Goal,Type),!,

make_worrant(OthersGoals,R).

make_worrant([_|OthersGoals],Lout):-

make_worrant(OthersGoals,Lout).

type_basis(G,data).

type_basis(G,condition).

type_basis(G,class).

make_basis([],[]).

make_basis([’:’(Goal,Type)|OthersGoals],[Goal|R]):-

type_basis(Goal,Type),!,

make_basis(OthersGoals,R).

80

make_basis([_|OthersGoals],Lout):-

make_basis(OthersGoals,Lout).

make_worrants(Claim,Count,Lin,Lout) :-

make_worrant(Lin,Lout),!,

append1([Claim,if],Lout,Lout1),

nl,write(warrant(Count,Lout1)),

make_basis(Lin,LoutB),

append1([Claim,if],LoutB,LoutB1),

nl,write(basis(Count,LoutB1)).

%qual-rebuttal

%class-context

%data-data

meta_interpreter(G):-

tell(’argument.pl’),

meta(G,1),!,

told.

meta(X,C) :-

clause(X,B),

nl,write(claim(C,X)),

body_list(B,L),!,

make_arguments(L,C),

81

clause(X,B1),

body_list(B1,L1),!,

make_worrants(X,C,L1,A).

We exec the following java command the labeled theory java -cp 2p.jar;./

alice.tuprolog.Agent meta.pl meta_interpreter(old(john)).

and we generate a list of possible arguments that follow Toulmin schema.

claim(1,old(john))

claim(2,man(john))

context(2,human(john))

data(2,male(john))

warrant(2,[man(john),if,male(john)])

basis(2,[man(john),if,human(john),male(john)])

context(1,man(john),2)

data(1,age(john,80))

rebuttal(1,not(tibetan(john)))

warrant(1,[old(john),if,age(john,_142),

greater_than(_142,70)])

basis(1,[old(john),if,man(john),age(john,_142),

greater_than(_142,70)])

A.2 ReSpecT Implementation of DA

The Control of Interaction: Checking agent legal locution, Making dialog proto-

col transition and executing automatically cs actions are the basic function here

82

implemented in ReSpecT.

transition(cs(Id,A),cs(Id,A),zero).

transition(act(Id,A),act(Id,A),zero).

transition([Act],A,zero):-

!,transition(Act,A,zero).

transition([Act,Act2],A,Act2):-

!,transition(Act,A,zero).

transition([Act|S],A,S):-transition(Act,A,zero).

transition(S1+S2,A,R1):-transition(S1,A,R1).

transition(S1+S2,A,R2):-transition(S2,A,R2).

%Start reaction

reaction(out(move(Dialog,Id,Act)),(

in_r(dialogstate(Dialog,S)),

out_r(transition(S,act(Id,Act),C,Dialog))

)).

reaction(out_r(transition(S,A,S1,Dialog)),(

transition(S,A,S2), %make the state transition

in_r(transition(S,A,S1,Dialog)),

out_r(dialogstate(Dialog,S2)),

out_r(findall(S2,Dialog))

)).

reaction(out_r(findall(S,Dialog)),(

in_r(findall(S,Dialog)),

%collect all next commits

83

findall(cs(Id,Commit),transition(S,cs(Id,Commit),Q),L),

out_r(nextcsmoves(Dialog,L))

)).

reaction(out_r(nextcsmoves(D,[H|T])),(

in_r(nextcsmoves(D,[H|T])),

out_r(excommit(H)), %call execution commit

out_r(looknext(D,T))

)).

reaction(out_r(looknext(D,[E])),(

in_r(looknext(D,T)),

out_r(nextcsmoves(D,T))

)).

reaction(out_r(looknext(D,T)),(

T==[], in_r(looknext(D,[])),

in_r(nextcsmoves(D,[]))

)).

%Implementation of K-OUT, K-IN and K-RD

reaction(out_r(excommit(cs(Id,out(A)))),(

out_r(A), in_r(excommit(cs(Id,out(A)))),

in_r(dialogstate(Dialog,S)),

out_r(transition(S,cs(Id,Act),C,Dialog))

)).

reaction(out_r(excommit(cs(Id,in(A)))),(

in_r(A), out_r(excommit(cs(Id,in(A)))),

in_r(dialogstate(Dialog,S)),

84

out_r(transition(S,cs(Id,Act),C,Dialog))

)).

reaction(out_r(excommit(cs(Id,rd(A)))),(

rd_r(A), in_r(excommit(cs(Id,rd(A)))),

in_r(dialogstate(Dialog,S)),

out_r(transition(S,cs(Id,Act),C,Dialog))

)).

A.3 ReSpecT Implementation of CAA

In this appendix we provide the complete code for CAA functionality. The pro-

cedures to calculate argument sets (conflict free set, admissible set and preferred

extension) are called by ReSpecT reaction. The first reaction is fired by agents

putting an argument in the CAA. The CAA reacts collecting all arguments present

in the tuple space and using that list to calculate the argument sets. The use of

ReSpecT reaction in A&A perspective is well explained by Omicini in [23].

reaction(out_r(argument(Name,_,beliefs(facts(F),

rules(R)),infer(_),conclusion([C]))),(

pre,

out_r(rdall_collect(argument(Name1,_,beliefs

(facts(F1),rules(R1)),infer(_),conclusion([C1])),

[])),

in_r(out_r(argument(Name,_,beliefs(facts(F),

rules(R)),infer(_),conclusion([C])))

)).

85

reaction(out_r(rdall_collect(T,L)),(

current_tuple(rdall_collect(T1,_)),

in_r(T1), %leggo la tupla dal tuple space

in_r(rdall_collect(T,L)),

out_r(rdall_collect(T,[T1|L])))).

reaction(out_r(rdall_collect(T,_)),(

current_tuple(rdall_collect(T1,_)),

no_r(T1),

in_r(rdall_collect(T,L)),

out_r(start(L)),

out_r(rdall_restore(L)))).

reaction(out_r(rdall_restore([])),(

in_r(rdall_restore([])),

)).

reaction(out_r(rdall_restore([H|T])),(

in_r(rdall_restore([H|T])),

out_r(H),

out_r(rdall_restore(T)))).

%calculation of preferred extension

reaction(out_r(start(TotalARg)),(

86

not(turn(TotalArg)),

rd_r(mem(ConflictFreeSet)),

assert(mem(ConflictFreeSet)),

out_r(conflicfreeset(ConflictFreeSet)),

preferred(TotalArg,ConflictFreeSet,PreferredSet),

out_r(admissibleset(PreferredSet)),

eliminatesubset(PreferredSet,PreferredSet,[],_,Preferredmaxset),

out_r(preferredset(Preferredmaxset))

)).

contrary(non(P),P):-!.

contrary(P,non(P)).

%append1([1,2],[6,7],X). - X / [1,2,6,7]

append1(L1,L2,L3) :- L1=[], L3=L2.

append1(L1,L2,L3) :- L1=[H1|T1],

append1(T1,L2,T3), L3=[H1|T3].

add2end(X,[H|T],[H|NewT]):-add2end(X,T,NewT).

add2end(X,[],[X]).

%give back a element of the list and

%the rest in order [a,b,c,d]-> a [b,c,d]

selection(X,[X|Rest],Rest).

87

selection(X,[Head|List],Rest) :-

selection(X,List,Rest).

subset([A|X],Y) :- member(A,Y),subset(X,Y).

subset([],Y). % The empty set is a subset of every set.

%notsubset(+List,+List)

notsubsetset(R,[H|T]):-

not(subset(R,H)),

notsubsetset(R,T).

notsubsetset(_,[]).

turn(ArgumentSet):-

selection(Name,ArgumentSet,RestArgumentSet),

argument(Name,_,beliefs(facts(F),rules(R)),_,conclusion(C)),

newconflictfree(RestArgumentSet,Result,F,C,[Name]).

newconflictfree(Arguments,Result,Facts,Conclusions,ConflictFree):-

selection(Name,Arguments,RestArguments),

argument(Name,_,beliefs(facts(F),rules(R)),_,conclusion(C)),

check(Facts,F,Conclusions,C),

append1(Facts,F,NewFacts),

append1(Conclusions,C,NewConclusions),

add2end(Name,ConflictFree,NewConflictFree),

newconflictfree(RestArguments,NewConflictFree,

88

NewFacts,NewConclusions,NewConflictFree).

check(FL,F,CL,C):-

not(control(FL,C)),

not(control(F,CL)),

not(control(CL,C)).

newconflictfree(_,[],_,_,_):-!,fail.

newconflictfree(_,R,_,_,_):-

mem(P),

notsubsetset(R,P),

retract(mem(P)),

assert(mem([R|P])),!,

mem(P1),

fail.

removelist([],L,L).

removelist([H|T],List1,Result):-

delete(H,List1,R),

removelist(T,R,Result).

eliminatesubset([],CF,L,_,L).

eliminatesubset([H|T],CF,Newset,Sol,R):-

delete(H,CF,NewS),

(notsubsetset(H,NewS)->Sol=[H|Newset];Sol=Newset),

eliminatesubset(T,CF,Sol,Result,R).

89

preferred(_,[],[]).

preferred(TotalArguments,[ConflictFreeSet|Rest],Solution):-

findundercat(TotalArguments,ConflictFreeSet,Attacker,Defeat),

%to find set of attacker to conflict free

findundercat(ConflictFreeSet,Attacker,AttackerFromCF,DefeatOut),

%it find the defend argument that block the attack

removelist(DefeatOut,Attacker,AttackerNotDefeat),

findundercat(AttackerNotDefeat,Defeat,AF,DF),

removelist(DF,ConflictFreeSet,Sol),

Solution=[Sol|Result],

preferred(TotalArguments,Rest,Result).

findundercat([],_,[],[]):-!.

findundercat([H|T],CF,A,D):-

argument(H,_,beliefs(facts(F),rules(R)),infer(_),conclusion([C])),

contrary(C,P),!,

(argument(Element,_,

beliefs(facts([P]),rules(_)),infer(_),conclusion(_))->

(member(Element,CF)->

(A=[H|R1],D=[Element|R2]);(A=R1,D=R2));(A=R1,D=R2)),

findundercat(T,CF,R1,R2).

control([],_):-fail,!.

control([T|C],C2):-

90

contrary(T,CT),

(member(CT,C2)->true;

(control(C,C2))).

91

Bibliography

[1] aliCE Research Group. tuProlog home page.

http://tuprolog.alice.unibo.it/.

[2] Leila Amgoud, Nicolas Maudet, and Simon Parsons. An argumentation-

based semantics for agent communication languages. In Frank van Harme-

len, editor, ECAI, pages 38–42. IOS Press, 2002.

[3] T. J. M. Bench-Capon, F. P. Coenen, and P. Orton. Argument Based Expla-

nation of the British Nationality Act as a Logic Program. Computers, Law

and Artificial Intelligence, 2(1):53, 1993.

[4] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract

argumentation-theoretic approach to default reasoning. Artificial Intelli-

gence, 93:63 – 101, 1997.

[5] Claudette Cayrol, Sylvie Doutre, and Jérôme Mengin. On decision problems

related to the preferred semantics for argumentation frameworks. Journal of

Logic and Computation, 13(3):377–403, Jun 2003.

92

[6] C. Chesñevar, J. Mcginnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,

M. South, G. Vreeswijk, and S. Willmott. Towards an argument interchange

format. The Knowledge Engineering Review, 21:293 – 316, 2006.

[7] C. I. Chesñevar and G. R. Simari. Modelling Inference in Argumentation

through Labelled Deduction: Formalization and Logical Properties. Journal

Logica Universalis, 1(1):93 – 124, January 2007.

[8] Carlos I. Chesñevar, Guillermo R. Simari, Teresa Alsinet, and Lluís Godo.

A logic programming framework for possibilistic argumentation with vague

knowledge. In AUAI ’04: Proceedings of the 20th conference on Uncertainty

in artificial intelligence, pages 76–84, Arlington, Virginia, United States,

2004. AUAI Press.

[9] Sylvie Doutre, Peter McBurney, and Micheal Wooldridge. Law-governed

Linda as a semantics for agent dialogue protocols. In F. Dignum, V. Dignum,

S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, editors, 4rd Interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems (AA-

MAS 2005), pages 1257–1258, Utrecht, The Netherlands, 25–29 July 2005.

ACM Press.

[10] P. M. Dung. On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence, 77(2):321–358, 1995.

[11] J. Forester. The Deliberative Practitioner: Encouraging Participatory Plan-

ning Processes. MIT Press, Cambridge, MA, USA, 1999.

93

[12] A. J. García and G. R. Simari. Defeasible Logic Programming: An Argu-

mentative Approach. CoRR, cs.AI/0302029, 2003.

[13] D. Gelernter. Generative communication in Linda. ACM Transactions on

Programming Languages and Systems, 7(1):80–112, 1985.

[14] T. F. Gordon and N. Karacapilidis. The Zeno argumentation framework.

In Proceedings of the Sixth International Conference on AI and Law, pages

10–18, New York, NY, USA, 1997. ACM Press.

[15] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumenta-

tion Semantics for Defeasible Logics. In Pacific Rim International Confer-

ence on Artificial Intelligence, pages 27 – 37, 2000.

[16] R. Haenni and N. Lehmann. ABEL: An Interactive Tool for Probabilistic

Argumentative Reasoning, volume 2711, pages 588 – 593. Springer Berlin /

Heidelberg, April 2004.

[17] C. L. Hamblin. Fallacies. Methuen, London, UK, 1970.

[18] David Kirsh. Distributed cognition, coordination and environment design.

In European Conference on Cognitive Science, pages 1–11, 1999.

[19] N. Maudet and F. Evrard. A generic framework for dialogue game imple-

mentation. In In Proceedings of the 2nd Workshop on Formal Semantics

and Pragmatics of Dialogue, pages 185 – 198, University of Twente, The

Netherlands, 1998.

[20] Peter McBurney and Simon Parsons. Posit spaces: a performative theory

of e-commerce. In M. Wooldridge J. S. Rosenschein, T. Sandholm and

94

M. Yokoo, editors, Proceedings of AAMAS 2003, pages 624–631, New York

City, NY, USA, 2003. ACM Press.

[21] B. A. Nardi. Context and Consciousness: Activity Theory and Human-

Computer Interaction. MIT Press, 1996.

[22] Enrico Oliva, Peter McBurney, and Andrea Omicini. Co-argumentation arti-

fact for agent societies. In I. Rahwan, C. Reed, and S. Parsons, editors, Pro-

ceedings of the Fourth International Workshop on Argumentation in Multi-

Agent Systems (ArgMAS 2007), pages 115–130, AAMAS 2007, Honolulu,

Hawai’i, USA, 2007.

[23] Andrea Omicini. Formal ReSpecT in the A&A perspective. In Carlos Canal

and Mirko Viroli, editors, 5th International Workshop on Foundations of

Coordination Languages and Software Architectures (FOCLASA’06), pages

93–115, CONCUR 2006, Bonn, Germany, 31 August 2006. University of

Málaga, Spain. Proceedings.

[24] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres. Sci-

ence of Computer Programming, 41(3):277–294, November 2001.

[25] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. An algebraic approach

for modelling organisation, roles and contexts in MAS. Applicable Algebra

in Engineering, Communication and Computing, 16(2-3):151–178, August

2005. Special Issue: Process Algebras and Multi-Agent Systems.

[26] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber: Toward

a theory of artefacts for MAS. Electronic Notes in Theoretical Computer

95

Sciences, 150(3):21–36, 29 May 2006. 1st International Workshop “Coor-

dination and Organization” (CoOrg 2005), COORDINATION 2005, Namur,

Belgium, 22 April 2005. Proceedings.

[27] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi,

and Luca Tummolini. Coordination artifacts: Environment-based coordi-

nation for intelligent agents. In Nicholas R. Jennings, Carles Sierra, Liz

Sonenberg, and Milind Tambe, editors, 3rd International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2004), volume 1,

pages 286–293, New York, USA, 19–23 July 2004. ACM.

[28] Andrea Omicini and Franco Zambonelli. Coordination for Internet applica-

tion development. Autonomous Agents and Multi-Agent Systems, 2(3):251–

269, September 1999.

[29] Simon Parsons and Peter McBurney. Argumentation-based communication

between agents. In M-P. Huget, editor, Communication in Multiagent Sys-

tems, volume 2650 of LNCS, pages 164–178. Springer, Berlin, September

2003.

[30] Simon Parsons, Carles Sierra, and Nick Jennings. Agents that Reason and

Negotiate by Arguing. Journal of Logic and Computation, 8(3):261 – 292,

1998.

[31] Simon Parsons, Micheal Wooldridge, and Leila Amgoud. Properties and

Complexity of Some Formal Inter-agent Dialogues. Journal of Logic and

Computation, 13(3):347 – 376, 2003.

96

[32] D. Pitt, J.and Ramirez-Cano, L. Kamara, and B. Neville. Alternative Dispute

Resolution in Virtual Organizations. In Proceedings of The Eighth Annual

International Workshop "Engineering Societies in the Agents World" (ESAW

07), Athens, Greece, 2007.

[33] Henry Prakken. Coherence and flexibility in dialogue games for argumenta-

tion. Journal of Logic and Computation, 15(6):1009–1040, 2005.

[34] Henry Prakken. Formal systems for persuasion dialogue. Knowl. Eng. Rev.,

21(2):163–188, 2006.

[35] Henry Prakken and Giovanni Sartor. Computational Logic: Logic Program-

ming and Beyond. Essays In Honour of Robert A. Kowalski, Part II., chapter

The Role of Logic in Computational Models of Legal Argument: A Critical

Survey, pages 342–380. Lecture Notes in Computer Science 2048. Springer,

Berlin, 2048 edition, 2002.

[36] Henry Prakken and G. Vreeswijk. Logical systems for defeasible argumenta-

tion. In D. M. Gabbay and F. Guenther, editors, Handbook of Philosophical

Logic, Volume 4, pages 219–318. Kluwer, Dordrecht, 2002.

[37] I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a World Wide

Argument Web. Argumentation in Artificial Intelligence, 171(10-15):897 –

921, July-October 2007.

[38] T. Schultz, G. Kaufmann-Koheler, D. Langer, V. Bonnet, and J. Harms. On-

line dispute resolution: State of the art, issues, and perspectives. Technical

report, Faculty of Law and Centre Universitaire Informatique, University of

Geneva, October 2001. Draft Report.

97

[39] Leon Sterling and Ehud Shapiro. The art of Prolog: advanced programming

techniques. MIT Press, Cambridge, MA, USA, 1994.

[40] Mirko Viroli and Andrea Omicini. Coordination as a service. Funda-

menta Informaticae, 73(4):507–534, 2006. Special Issue: Best papers of

FOCLASA 2002.

[41] Mirko Viroli, Alessandro Ricci, and Andrea Omicini. Operating instruc-

tions for intelligent agent coordination. Knowledge Engineering Review,

21(1):49–69, March 2006.

[42] G. B. Walker and S. E. Daniels. Argument and alternative dispute resolution

systems. Argumentation, 9(5):693 – 704, 1995.

[43] D. N. Walton. Argumentation Schemes for Presumptive Reasoning.

Lawrence Erlbaum Associates., Mahwah, NJ, 1996.

[44] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Con-

cepts of Interpersonal Reasoning. SUNY Press, 1996.

[45] Douglas Walton and David M. Godden. Persuasion dialogue in online dis-

pute resolution. Artificial Intelligence and Law, 13:273–295, 2005.

98

	Introduction
	Relevance
	Thesis outline

	On Argumentation System
	Argumentation Theory
	Argumentation System
	Formal Model

	Dialog System
	Communication Language
	Dialog Protocol

	Operational Semantics
	Issue on Argumentation

	Argumentation and Artifact
	A&A meta-model for MAS
	Mediated Interaction
	Multi-agent Argumentation System
	Co-Argumentation Artifact
	Dialog Artifact

	Implementation of Dialog and Argumentation Artifact
	The TuCSoN Infrastructure
	CAA Implementation
	DA Implementation

	Case study over ADR Systems
	Overview of Alternative Dispute Resolution
	Architecture for ADR
	Persuasion Dialog
	CAA
	DA
	Example of Run

	Argument Acceptance

	Conclusions
	Related works and Discussion
	Conclusions
	Further Research

	Implementation and Example
	Example of Prolog Meta-Interpreter for legal reasoning
	ReSpecT Implementation of DA
	ReSpecT Implementation of CAA

