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ABSTRACT

Radio over Fiber (RoF) is a pertinent technology to deal with exorbitant requirement of bandwidth
in multivariate wireless services both for outdoor and indoor scenarios and is regarded as a significant
technology for building centralized/cloud radio acsce®twork (CRAN) due to its inherent capillary
properties.

The dissertation aims to analydi€ferent Radio over Fiber systems for the frbiaul applications.
Particularly, analog radio overfiber (A-RoF) are simplest and suffer from nonlinearities, therefore,
mitigating such nonlinearities througligital predistortion are studied. In particular for the long aul
RoF links directdigital predistortiontechnique (DPDT) is proposed which is basethetbehavioral model
of the linkwhich can be applied to reduce the impairments-&ok systems due to the combined effects
of frequency chirp of the laser source and chromatic dispersion of the optical chidrerelindirect
learning architecture (ILA) badestructuresnamely memory polynomial (MP), generalized memory
polynomial (GMP) and decomposed vector rotation (DVR) modedsemployed toperform adaptive
digital predistortion with low complexitieRistributed feedback (DFB) laser and vertical capagitface
emitting lasers (VCSELSh combination with single mode/mutthode fibershave been linearized with
different quadrature amplitude modulation (QAM) formats for single and multichannel Easaly, a
feedback adaptive DPD compensation is predos

Then, there is still a possibility to exploit the other realizai@hRoF namely digital radio over
fiber (D-RoF) systemwhere signal is digitized and transmits the digitized bit streams via digital optical
communication linksThe proposed solution i®bust and immun& nonlinearities wo 70 km of link
length It is shown that efficient BRoF links can be obtained with a relatively low amount of analog to
digital converter (ADC) resolution bits.

Lastly, in light of disadvantages coming fromRoF and DROF, it is still possible to takenly
the advantages from both methods and implement a more recent form knows as SigmadietiezeR
Fiber (SDRoF) system Second Order Sigma Delta Modulator avidlti-stAgenoiseSHaping (MASH)
based Sigma Delta Modulatare proposed The workbench has been evaluated for 20 MHz LTE signal
with 256 QAM modulation. Finallythe 6x2 GSa/s sigma delta modulators are realized on FPGA to show
a real time demonstratioof S-DRoF system. The demonstration shows th&IR®F is a competitive

competitor for 5G suBGHz band applications.

<eywords: Radio over Fibe Direct Digital Predistortion Technique Digital Predistortion Technique

Nonlinearities Generalized Memory Polynomial Decomposed Vector Rotation Modkt
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Chapter/1

Introduction

The contents of this chapter are takpartially from A2, where we presented the

characterization andeviewof different Radio over Fibesystems.

1.1 Introduction

The fifth generation (5G) technology is envisaged to provide faster internet
acces with low latency, cost effectiveness and pervasive mobile covetrdge 3].
The increasing demand of Interretnnected smartphones, tablets and other gadgets
are leading towards the explosive growth of mobile data traffic. This has made
mobile fronthall (MFH) networks as the data rate bottleneck of user experience. To
enhance the capacity and coverage of mobile data networks, the next generation
MFH is expected to support the coexistence of multiple mobile services from various
radio access technologi€éRATS), such alsong Term Evolutionl(TE) signals.etc.
Radio over Fiber (RoF) is a pertinent technology to deal with exorbitant requirement
of bandwidth multivariate wireless services both for outdoor and indoor scenarios
[1.4-1.6] and isregarded as a significant technology for the next generation networks
[1.7]. In particular, RoF technology can provide an essential platform for building
centralized/cloud radio access networkR&N) which should be able to control the
centralized base bd units (BBU) coming from different base stations and remote
radio heads (RRHsL[8].
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Figurel.1: Basic GRAN architecture showing optical fronthauls (OFHS)

The interconnectivity of these BBUs with RRHs is economically viable with the

di stribution net wo rlo1.kOh dhesRoF eechnotodyesthénf r ont h
a suitable candidate for the fronthauling due to its inherent capillary properties.
Figurel.1 shows the €RAN utilizing optical front hauls (OFHS).

In addition to the advantages coming from the wuse of the
optical fiber asa transmission channel, like extremely broad bandwidth, immunity
to electromagnetic interference and large transmission distances, an additional
attractive feature lies in the agnosticism of RoF systems concerning the particular
transmission modulation forat, which makes them intrinsically futupeoof.
Nonetheless, the drawbacks of these systems can be presented through the
presence of distortion that can possibly lower the performances. These impairments
are caused by imperfect linear behavior of laphgto detector and optical fiber.

or due to the combination of fiber chromatic dispersion and spurious phase signals
generated by the laser source (also called frequency chifd)].[ Similarly, since

RoF transmission is based on optical subcarrier mobdajatherefore, it is

susceptible to nonlinear distortion.

To avoid these issues, an alternative solution can consist in the Digital Radio over
Fiber (D-RoF) techniquell.12]. Transmitting digital data mitigates the Aorearity

issues at both the trangter and receiverdf 13].



Similarly, the phase relation between many RRHs does not remain steady and
spectral efficiency decreaseisl4]. More recently, Delt&igma modulation has been
proposed as a new digitization interface for a digital fronthaak [i1.151.16].
However, these systems require expensive, higffiient and high sampling rate DSP
circuitry to achieve the performancel7]. Therefore, to utilize the-RoF technology
while applying an efficientethodology to alleviate the inherambnlinearities can
represent a reasonabdhoice. Different topologies of RoF are discussed in the

following section.

1.2 Radio over Fiber Architectures

In this section, differemtadio over fiber topologies are compared. The idea is to
explain the differencein the topologies of the different RoF architecturegurel.2
shows a possible scenario for the comparison of different RoF architectures.

The typical schematic framework of anROF architecture system at the dewn
stream link is shown ifrigure1.2. In the most typical case, the baseband signal is
upconverted to an RF signal. The RF signal is then converted to an optical signal in
the electical to optical (EO) conversion block and transmitted through the optical
link. At the receiver, optical to electrical {E) block retrieves the received RF signal
back to electrical domain. This signal is then transmitted through the antenna after
perfoming filtering and amplification. The link explained is called in literature as
Intensity Modulation Direct Detection (INDD) Analog Radio over Fiber @RoF). In
particular, the intensity of optical power produced by the laser is directly modulated
by theuseful RF signal, while the output RF current of the pluai@ctor (PD) is
produced by the optical power which is directly absorbed by the PD. Moreover, the
transmission is performed in the analog domain, or rather, without the usage of any
Analogto-Digital Converter (ADC) to convert the RF signal in the digital domain
[1.18-1.22]

However, the AROF is liable to noise and distortidae to nonlinearities, which,
in general, are generated both, at the transmitter and receive[lskie$.26] The

otherpossible architecture is Digital Radio over Fiber. The architecture is similar to



A-RoF, however, after the frequency -apnversion, analog to digital (ADC)
converter is present which convetiti® analog signal to digital on®n the other hand,
Digital mobile fronthauls (EMBFHs) based on the Digit&adio over Fibe(D-RoF)
technique are not affected by the nonlinear effects typical -8R systems1.12
1.131.27. In Figure 1.2, considering the blue {RoF) branches, a typical-RoF
architecture cabe visualized.

The common public radio interface (CPRI) that was proposed by the CPRI
cooperation, Nokia, Bell Labs, Ericsson, Huawei, Orange and NEC, was adopted as the
D-MBFH interface [L.28. However, when CPRI was employed aigitization interface
developed for narrowband radio access technologies (RATS), such as UMTS (CPRI
version 1 and 2), WiMAX (version 3), LTE (version 4) and GSM (version 5), due to its
limited spectral efficiency, it had limited scalability. Moreoveralgéo requires a very
high data traffic in the fronthaul network segment, immyihe use of expensive high
performance analetp-digital and digitalto-analog convertersl[14. Therefore, an
alternative solution, which can overcothese bottlenecksould be desirable.

This solution can be pursued by employing Sighnal t a ( E@) Modul ati or
in this way a technique which can be called Sigppa| t a Radi o-RoRmand Fi br e
can combine the advantages of bot#RAF and DRoF.An example of ralization ofa
E gRoF system can still be appreciatedFigure 1.2, considering the redZ(gRoF)
branches. t can be obs e ReFesysternsh the signah befora beindgZ g
converted t o t he Optical domai n by t he (@)
modulation. This operation, exploiting a highspeed digital oversampling of the
modulating signal with -bit resolution, allows to reach a high immunity to non
linearities. At the same time, it realizes thecatled operation of noise shaping, which

places most of the noise power out of the signal bandwiti2o-1.32].

As shown inFigurel.2, at the receiver end, after the optittaklectrical conversion,
performed by a photodetector, a bgrasbs filter (BPF) guarantees the correct digial
analogue coversion of the signal as well as the spectral emission requirements, by
filtering the outof-band quantization noise.



|t can t hen be eRois &chrique proves garticularty e 70 o)
convenient in the realization of the fronthaul downlink, wherme tilansmitting
section is located at the BBU, while the receiving section is at the RRH. Indeed, the
cost of the Emp modul ator can in this way
structure is maintained simple, without the installation of active dekcdiswing
the same idea, solutions for the fronthaul uplink which can maintain the RRH simple

configuration should be pursued, not excluding thea¥ one 1.32].
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Figurel.2: Essential schematic illustration ofRoF, DRoF and SERoF downlinksNote
that the SBRoF scheme can also be implemented swapping the positionsBigfi©D
block and of the Freq. Upconv. Block.



1.3 Aims of the Thesis

The main aimand contribution ofthis thesisaretwo fold. Firstly, © exploit different Radio

over Fiber systemfor the fronthaul applications. ParticularlyAnalog Radio over Fiber are

simplest and suffer from nonlinearities, therefaapplying linearization methods to Analog

Radio over Fiber systenis studied and implemented in first half of thesifien,there is still a

possibility toexploit the otherealization of RoF namelg digital radio over fiber isliscussed

anddesignedLastly, in light of disadvantages coming fromR®oF and DROF, it is still possible

to take the advantages from both methodsiamdement a more recent form knows as Sigma
Delta RoF.

Thespecific objectivesf the thesisare listed below.

1.

2.

3.

4.

To developanovel predistortion methodology that linearizeslihle impairments in long
haul Analog Radio over Fiber links caused duedaimbined effect of laser chirp and fiber

dispersion.

To develop anovel predistortion linearization technique based on indirect learning
architecture for improving the nonlinearities issue in Analog Radio over fiber links based
on Vertical Capacity Surfac Emitting Laser§VCSELS) or Distributed-eedbackKDFB)
lasers. Linearization methodologies are shown not only for single but-chahinel

scenarios as well.

To design and implemeaatDigital Radio overFiber System for medium range length and

compare its performanae@th Analog Radio over Fiber links.

To realize a Sigma Delta Radio over Fiber System which intermixes the advantages of
both, ARoF and DBRoF links. Different sigma delta modulation structures are

implemented, and performance methodologies are evaluated. Particularly, a real time
Sigma delta RoF link is designed where FPGA is used to implement sigma delta

modulation followed by performance evaluation.



1.4 Thesis Outline

This thess is organizednto sevenchaptes, and its comprehensive overvigsvdepictedin

Figurel.2.

U Chapter 1 discusses the main context of the thesis followed by the main contributions
added through this thesis. It introduces the radio over fiber (RoF) technology. A brief

summary of different RoF topologies are discussed. The aim of the thesis is discussed.

0 Chapter 2 discusses the literature review of previous linearization techniques
developed for Analog Radio over Fiber syst@iiferent architectures developed in
Digital predistortiorare discussed. Chapter also includes the literature review of DPD

identification process and DPD models that have been proposed up till now.

U Chapter 3 proposes a predistortion technidoelinearizing Analog RoF linke/hich
correcs the link impairments caused due to combined effect of laser chirp and fiber
dispersion. The proped techniqués independent ahe lasemodel which makes it
salutary in terms of adapting to other possible laser modéls.mathematical
framework of theproposed technique anits implementation is discussedhe
predistortion is applied firstly tarsusoidal signals and then to LTE standard signals.
As a figure of merit, the effects of the proposed operation are reportthlyging
the Adjacent Channel Leakage Ratio (ACLR) and Error Vector Magnitude (EVM) of
the received signal.

U Chapter 4 discusses linearization techniquessed on indirect learning architecture.
Two class of links are linearized i.e. Vertical Capacity Surface tigit_asers
(VCSEL9 and Distributed Feedback LaseDFB) based RoF linksVolterra
polynomial structures such as memory polynomial (MP) and generalized memory
polynomial (GMP)methodsare proposed for linearizing Radio over fiber links.
Similarly, a noveldemonstration is shown for dual channel transmissioere each
channel nonlinearities are reduced with the DPD models proposed in this chapter.
Finally, a feedback approximation methodology is proposédith is a possible

implementation of a digital prextorter in adaptive form.



U Chapter 5 discusses another class of RoF system which is called as Digital Radio
over Fiber system. The chapter introduces the need and importadiggtaif RoF
system. It is discussed that Digital RoF is a good option to switch from Analog RoF
to Digital RoF. Analytical model is proposed and it is shown that a better error free
transmission is obtained for digital RoF as compared to Analog RoF. &hen,
experimental validation of this analytical model is presented which proves that the
proposed digital radio over fiber system is an optimized version that uses less number
of ADC resolution bits.

U Chapter 6 discusses another class of RoF system whictalled asSigmaDigital
Radio over Fibe(S-DroF) system. The chapter introduces the need and importance of
Sigma deltaRoF systeman auxiliary methodthat amalgamates the advantages of A
RoF and BROoF. It discusses the basics of sigma delta modul&t{( ). The need of
power hungry antiigh-speedigital to analog converter (DAC) required inRbF is
replaced by 8 Y0 . It describeghe different architecturethat have been proposed
The analytical modelwith simulation is shown andhen experimental setup is

discussed.

U Chapter 7 concludesand discussese overall findings of the thesis. It also highlights

the extension of the work that chathe object of future researelativity.

The comprehensive overview of the thesis is showngarel.3.
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Chapter 2

Linearization'Methods foAnalog Radio over Fiber

Transmission:Systems

This chapterpresentsthe literature review of previous linearization techniques
developed for Analog Radio ovéiber system.Then, Digital Predistortion(DPD) is
discussed in detail followed by the different architectures utiliZéis Chapter also
includes the literature review of DPD identification process and DPD models that have
been proposed up till now

2.1 Introduction

Suppression of nonlinearities that arise iARAF is the key for the successful
application of RoF transmissiont is important to identify the causes of these
nonlinearities. In general, ndimear distortion in RoF transmission occur due to

nonlinear chracteristics of microwave and optical transmission in the RoF systems.
The main sources of nonlinearities in the RoF based-fraat are the following:

1. Signal Impairments of Optical Modulation at optical transmitter (OTx)

2. Nonlinearities of RF power amplification at radio transmitter (RTx)

3. Fiber Dispersion

4. Combination of laser chirp and fiber dispersion

5. Other possible components such as low noise amplifiers (LNA),

photodiodes, etc.



RF power amplifier
O-TX | {1 O-RX
downlink

(

O-RX O-TX
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Figure2.1: RoF uplink and downlink schematic

For RoF downlinks inFigure 2.1, the main sources of nonlinearities stem from
optical subcarriemodulation at baseband unit (BBU) and RF power amplifier at remote
radio head (RRH). Whiléor RoF uplinks, the main sourceénonlinearities originate
from optical subcarrier modulation at RRH. The rest of the componentmaustuce
nonlinearities, but typicallgrevery small compared to the aboWe order to minimize
the nonlinearitiesi RoF transmission, different methodologies have been proposed that
comprises otlectrical and optical linearization methods. They have been summarized

in the block diagram below iRigure2.2.

Figure2.2: Summary of linearization techniques
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