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soy un espíritu liberado, egoísta. Yo obro como yo siento.”

Biófilo Panclasta.
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the pawn of a consensus, the refusal to stay within a rigid circle that others have
drawn around one-it is in this solitary act that one finds true creativity. All
others things follow as a matter of course.”

Alexander Grothendieck.

«Если они знают мои работы, им не нужно мое CV. Если они нуждаются в
моем CV, они не знают мои работы.»

Григорий Яковлевич Перельман.

«Nessun ricercatore può essere misoneista, ma molti cultori di scienza possono,
quasi direi debbono essere conservatori per la stessa loro missione di custodire
con gelosa cura un certo patrimonio intellettuale ben consolidato, e di vagliare
con severo spirito critico tutto ciò che importa variazione o alienazione del
patrimonio stesso.»

Tullio Levi Civita.





v

UNIVERSIDAD NACIONAL DE COLOMBIA

Abstract
Facultad de Ciencias

Departamento de Física

Doctor en Ciencias Física

Constraints on alternative cosmological models from clustering and
redshift-space distortions

by Jorge Enrique García Farieta

In this Thesis I have exploited the most recent observational data from CMB, BAO
and growth rate of LSS as well as N-body simulations of modified gravity, to inves-
tigate the spatial properties of the large scale structure of Universe by constraining
cosmological parameters in the framework of alternative cosmologies. The research
is focused on clustering and redshift space distortions as cosmological probe. In
this context I have studied the degeneracies between modified gravity and massive
neutrinos as well as the robustness of the methodology for constraining the linear
growth rate including realistic systematics, implementing suitable parametrizations
of the redshift-space distortions in the perspective of current and future galaxy surveys.

Spanish
En esta tesis se han utilizado los datos observacionales más recientes de CMB, BAO
y tasa de crecimiento de LSS al igual que simulaciones tipo N-body de gravedad
modificada, con el fin de investigar las propiedades espaciales de la estructura a gran
escala del Universo a través de la restricción de parámetros cosmológicos en el marco de
cosmologías alternativas. La investigación se centra en el clustering y las distorsiones
del espacio de redshift como prueba cosmológica. En este contexto se ha estudiado la
degenerancia de modelos de gravedad modificada y neutrinos masivos como también su
robustez incluyendo errores sistemáticos realistas, e implementando parametrizaciones
adecuadas de las distorsiones del espacio de redshift teniendo en cuenta los mapas de
galaxias actuales y futuros.

Italian
In questa tesi sono stati sfruttati i dati osservativi più recenti di CMB, BAO e tasso
di crescita di LSS, nonché simulazioni di N- body di gravità modificata per studiare le
proprietà spaziali della struttura a grande scala dell’Universo vincolando i parametri
cosmologici nel quadro di cosmologie alternative. La ricerca si concentra sul clustering
e sulle distorsioni nello spazio dei redshift come test cosmologico, in questo contesto
ho studiato le degenerazioni nella gravità modificata e nei neutrini massivi, nonché
la loro robustezza, compresa i gli errori sistematici, e anche sono stati implementati
parametrizzazioni delle distorsioni nello spazio dei redshift nella prospettiva di galaxy
surveys attuali e future.
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Introduction

The analysis of the large-scale structure of the Universe (LSS) rep-
resents one of the most active research fields from a theoretical,
observational and computational point of view. The rise of precision
cosmology is leaving a deeper understanding of the Universe. In the

last two decades, many experiments have been developed to this aim, leading to
the concordance model ΛCDM (Lambda cold dark matter) which describes the
evolution and the components of the Universe. According to the ΛCDM model,
the Universe is composed of ≈ 5% of ordinary matter and radiation, while ≈ 25%
is filled by Dark Matter (DM) and the remaining (≈ 70%) is associated with the
so-called Dark Energy (DE), both components are physically unknown. This
fact, together with a viable explanation of the accelerated expansion rate of the
Universe represents a big issue for modern cosmology, and unveiling the nature
of the dark sector of the Universe is one of the most ambitious challenges of
fundamental physics in the recent years.

The open issues in the standard ΛCDM model have also motivated several
theoretical efforts to find a satisfactory explanation of the dark sector, conse-
quently different DE and DM models have been proposed in the literature, from
simple scenarios with a constant equation of state w(z) to models considering
interactions between DM and DE or models based on modifications/extensions
of general relativity. In this sense, a growing amount of observational evidence
has been used to constrain cosmological parameters, in particular one of the most
effective ways to test cosmological models on large scales, that is where the DM
and DE arise, is to use the redshift-space distortions (RSD) (Sargent and Turner,
1977; Kaiser, 1987). Since RSD are directly related to the growth rate of cosmic
structures, they have a leading role in both present and planned cosmological
investigations (see e.g. Samushia, Percival, and Raccanelli, 2012; de la Torre
et al., 2013; Beutler et al., 2014; Ross et al., 2007, and references therein). These
measurements, together with other probes, are used to set constraints on several
alternative cosmological models. Moreover, it is important to investigate how the
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RSD affect the statistical properties related to the matter correlation function
and power spectrum, which is essential to compare theoretical predictions to
observations.

In this Thesis, we study the clustering properties of the spatial distribution
of dark matter haloes in the framework of alternative cosmologies. The analysis
is carried out to investigate a) the spatial properties of the LSS by improving the
measurements of anisotropic clustering, focusing in particular on the multipole
moments and clustering wedges of the two-point correlation function (2PCF)
and b) parametrizing the RSD beyond the dispersion model (Reid and White,
2011), by implementing results based on LSS perturbation theory like Scocci-
marro (2004) model and Taruya, Nishimichi, and Saito (2010) model to derive
cosmological constraints.

The Thesis is organised as follows. In Chapter §2 a general overview on
clustering is presented. First, we introduce briefly the current framework of
the standard cosmological model giving a brief summary of general relativity,
the definition of the background Universe, perturbation theory and structure
formation. Then, in Chapter §3 the main topic of this Thesis, the redshift-space
distortions (RSD), is introduced, providing details on the statistical description
of random fields and the methods used to measure the clustering signal from
discrete samples. The theoretical models used to parametrize RSD are also
presented in this Chapter as well as its assumptions to derive cosmological
constraints from them; a short introduction to some statistical measures of
clustering is also given. In Chapter §4 a joint analysis from observational
data, including growth rate, CMB, BAO measurements, is performed to set
constraints on dynamical Dark Energy models. In Chapter §5 we investigate
the clustering properties in modified gravity models with massive neutrinos
using N-body simulations. The growth rate and bias parameters are constrained
on intermediate scales making use of the Bayesian analysis that includes the
clustering description in terms of its multipole moments. The implementation
of models and the results obtained from a parametrization of RSD based on
extensions of the linear perturbation theory are discussed in Chapter §6. In this
Chapter the spatial distribution of the large-scale structure is studied in the
standard scenario using high-resolution N-body simulations, and making use of
both, the multipole description and clustering wedges of the 2PCF. Additionally,
in this Chapter, the effect of dynamic distortions in galaxy redshift surveys
is also studied. Finally, the main findings of this Thesis are summarized and
discussed in Chapter §7.
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Landscape of modern cosmology

Until the first half of the 20th century, there was not enough phys-
ical evidence to make reasonable models about the origin and
evolution of the Universe. Nowadays cosmology addresses these
issues exploiting well understood physical phenomena and tested

theories in a large range of scales and energies. The technology improvements on
data acquisition, management, processing, and calibration, that have provided
an increasing amount of observational/experimental data, together with the
description of more refined theoretical models have led to establish a consensus
about the best description of our Universe, commonly called standard cosmo-
logical model. The current standard cosmological model ΛCDM allows us to
interpret with a high degree of precision many of the cosmological observations.
In this context, the model was historically developed around three pillars of
observational evidence (Kanipe, 1995; Dodelson, 2003): 1) the expansion of the
Universe (see e.g. galaxy surveys results Hubble, 1926; Hubble, 1934; Perlmutter
et al., 1999; Riess et al., 1998; Cole et al., 2005; Guzzo et al., 2014; Alam et al.,
2017), 2) the cosmic microwave background (CMB) (Dicke et al., 1965; Penzias
and Wilson, 1965; Hinshaw et al., 2013; Smoot, 1999; Smoot et al., 1992; Planck
Collaboration et al., 2018a, see e.g. ) and 3) the abundance of light-elements
(Alpher, Bethe, and Gamow, 1948; Copi, Schramm, and Turner, 1995; Walker
et al., 1991; Cooke et al., 2014; Planck Collaboration et al., 2018b); in addition
to two theoretical assumptions: the cosmological principle (Einstein, 1917; Bondi,
1948; Lemaître, 1927) and General Relativity (GR) as the theory describing
gravitational interactions on cosmological scales (Einstein, 1917; Robertson, 1935;
Friedmann, 1922).

The observational data collected during the last decade provided strong
support to the concordance ΛCDM model, which, with only 6 free parameters,
yields a consistent description of the main properties of the LSS (see e.g. Tonry
et al., 2003; Bel et al., 2014; Hamana et al., 2015; Planck Collaboration et al.,
2016a; Planck Collaboration et al., 2016b; Alam et al., 2017; Alsing, Heavens,
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and Jaffe, 2017; Abbott et al., 2018; Planck Collaboration et al., 2018b; Pacaud
et al., 2018; Joudaki et al., 2018; Di Valentino et al., 2018; Jones et al., 2018).
In this framework, the Universe is currently dominated by DE, in the form
of a cosmological constant, responsible for the late-time cosmic acceleration
(Riess et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999), and by a
Cold Dark Matter (CDM) component that drives the formation and evolution
of cosmic structures. However, despite its great successes, some fundamental
open issues have motivated efforts aimed at searching for possible expansions or
alternative models beyond ΛCDM (Amendola et al., 2013; Frieman, Turner, and
Huterer, 2008; Albrecht et al., 2006). In this way the main aspects that should
be understood in the cosmological arena are related to the nature of the dark
sector, DM (Zwicky, 1937) and DE (Perlmutter et al., 1999; Riess et al., 1998),
cosmological tests of GR at large scales (Hut, 1977), fine-tuning of cosmological
parameters (Weinberg, 2001; Quartin et al., 2008) and cosmic structures above
the limit of homogeneity (Clowes et al., 2013).

2.1. The framework of General Relativity
According to GR, the gravitational attraction between masses is due to a

curvature of spacetime and therefore to its geometry rather than instantaneous
action-at-a-distance, in contrast to Newtonian gravity. After more than 100 years
of being formulated by A. Einstein, GR has passed different tests, from the very
well known perihelion precession of Mercury, the deflection of light by the Sun,
and the gravitational redshift of light, until the most stringent tests today at lab-
oratory scales including atom interferometry (Dimopoulos et al., 2007), low orbit
scales precession in the Earth’s perigee (Iorio, 2003), weak-field gravity at solar
system distances with pulsar timing (Kramer et al., 2006), and, perhaps one of
the most exciting during the last years, the first detection of gravitational waves
observed, produced by the merger of binary compact object (Abbott et al., 2016).

The fundamental principles introduced in GR are the Einstein’s equivalence
principle which describes acceleration and gravity as distinct aspects of the
same reality, the notion of curvature of spacetime and the principle of general
covariance. GR can be expressed nowadays as a theory of a dynamical tensor
field, in which the lengths of space-time intervals are defined in terms of the
metric gµν on a manifold M as follows ds2 = gµνdx

µdxν being a covariant
quantity under diffeomorphisms 1. Consequently a gravitational phenomenon is
described by the metric in a universal way and its dynamic does not depend
on the chosen coordinates. Given a metric for any gravitational phenomenon,
the Einstein field equations (EFE’s) can be obtained by varying the so-called
Einstein-Hilbert action with respect to the metric as

S =
∫ [

c4

16πG(R− 2Λ) + Lm
]
√
−gd4x, (2.1)

1The small Greek indices run from 0 to 3 and denote space-time dimensions, while small
Latin indices run from 1 to 3.
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being R the Ricci scalar, g the determinant of the metric, Λ the cosmological
constant, c the speed of light in vacuum, G the Newton’s gravitational constant
and Lm corresponds to the matter-energy Lagrangian. By applying the principle
of least action, the corresponding equation of motion are given by the EFE’s
written as

Rµν −
1
2Rgµν + Λgµν = 8πG

c4 Tµν with signature (−,+,+,+). (2.2)

Here Rµν is the Ricci tensor and Tµν the energy-momentum tensor (sometimes
called stress-energy tensor), and commonly the Einstein tensor is defined as
Gµν ≡ Rµν − 1

2gµνR. The Ricci tensor, obtained from the contraction of the
Riemann tensor, is defined by

Rµν ≡ Γαµν,α − Γαµα,ν + ΓαµνΓ
β
αβ − ΓαµβΓβαν , (2.3)

being Γµνλ = 1
2g

µα (gαν,λ + gαλ,ν − gνλ,α) the Christoffel symbols (also known as
affine connections), where the derivative of the metric gαν with respect to xλ is
represented by gαν,λ ≡ ∂gαν/∂x

λ. The Ricci scalar (also called scalar curvature)
is the simplest curvature invariant obtained from the full contraction of the Ricci
tensor R = gµνRµν .

Equation (2.2) condenses essentially 16 coupled nonlinear partial differential
equations that characterize completely the gravitational effects produced by a
given mass, however, since the Einstein tensor is linear in the second partial
derivatives of the metric, can be written as a symmetric order-2 tensor with
10 independent components in a 4-dimensional space. On the other hand, the
energy-momentum tensor is equivalent to

Tµν = −2∂Lm
∂gµν

+ gµνLm, (2.4)

it contains all the information about the energy density, momentum and elec-
tromagnetic fields in the spacetime, and it can be interpreted as the source of
the gravitational field in the EFE’s. Moreover, the Bianchi identities, which
state that the covariant divergence of the Einstein tensor is identically zero,
automatically ensure the covariant conservation of the energy-momentum tensor
in curved spacetimes:

∇µT
µν = 0. (2.5)

A particular form of this tensor is given by considering the approximation of
perfect fluid, i.e., constant density and zero viscosity, to describe all the matter-
energy components that constitute the fluid. In this case, the energy-momentum
is given by

Tµν =
(
ρ+ p

c2

)
uµuν + pgµν , (2.6)

with p being the pressure of the fluid, ρ its density, both are functions of time,
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and uµ = (−1, 0, 0, 0) is the four-velocity of the fluid in comoving coordinates 2.

The equations (2.2) and (2.4) provide a precise formulation on the geometry
of space-time, and therefore the dynamics of the metric, with properties of the
matter itself. In this context, there are no better words to interpret the EFE’s
than the famous quote by Misner, Thorne, and Wheeler (Misner, Thorne, and
Wheeler, 1973), “Matter tells space-time how to curve and geometry tells matter
how to move”.

2.2. The background Universe
The standard cosmological model assumes as valid the cosmological principle,

which states that the mass distribution in the Universe is statistically homo-
geneous and isotropic on scales large enough, beyond hundreds of Mpc. This
postulate allows to write the line element in an universe maximally symmetric
by using Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 = gµνdx
µdxν = −c2dt2 + dl2, (2.7)

where gµν is a diagonal metric tensor, and the proper time t has been defined
such that dl is identical in every space and time interval. The spatial metric
dl can be expressed as product of a time-dependent term, the so-called scale
factor a(t), by one time-independent metric of the 3-dimensional space dσ, i.e.,
dl2 = a2(t)γijdxidxj. By assuming spherical polar coordinates

dσ2 = γijdx
idxj = dr2

1− kr2 + r2
(
dθ2 + sin2 θdφ2

)
, (2.8)

where the spatial positions are denoted by the dimensionless coordinates (r,
θ, φ), and γ11 = (1− kr2)−1, γ22 = r2, and γ33 = r2 sin2 θ. The coordinates
are comoving with the expansion of the universe through the scale factor, this
quantity is dimensionless and it is defined to be equal to 1 at the present epoch
[a(t0) = 1]. The value of the parameter k defines the geometry of the universe
under consideration to be flat (k = 0), open (k < 0) or closed (k > 0) as
sketched in the Fig. 2.1a. By using natural units c = 1, the FLRW metric is
often expressed, without loss of generality, as

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
]
. (2.9)

The equations of motion that describe the time evolution of a(t) and the
dynamic growth of the Universe are called Friedmann equations. This set
of equations can be obtained from the EFE’s, without any assumption on the
geometry of the Universe, by evaluating the Einstein tensor in a FLRW spacetime

2The comoving coordinates correspond to fix values in a reference frame where an observer
moves with the space expansion and perceives the Universe to be isotropic. The comoving
distance between two bodies remains constant at all times i.e., fixed as the Universe expands.
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and considering the energy-momentum tensor of the background matter as a
perfect fluid. Tab. 2.1 shows the results of non-null elements of the Christoffel
symbols, Ricci tensor, Ricci scalar and Einstein tensor in the FLRW metric
described in Eq. (2.9). By evaluating the EFE’s, assuming further that the
matter and radiation content in the universe can be described as an ideal fluid
with energy-momentum tensor T µν = diag(−ρ, p, p, p), we get a system of two
ordinary differential equations, that describe the evolution of the scale factor a(t)
and correspond to the Friedmann equations for the (00) and (ii) components of
the metric: (

ȧ

a

)2
= 8πG

3 ρ− k

a2 + Λ
3 ,

2 ä
a

+
(
ȧ

a

)2
= −8πGp− k

a2 + Λ,

(2.10a)

(2.10b)

then, by eliminating the curvature term, they can be re-expressed as

ρ̇ = −3 ȧ
a

(ρ+ p) ,
ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 .

(2.11a)

(2.11b)

The fact that Eq. (2.11a) corresponds to the continuity equation is not surprising
since the energy-momentum tensor is covariant conserved. Moreover, this result
is also equivalent to the first law of thermodynamics under adiabatic conditions,
that can be understood as a continuity equation of energy. These equations lead
to the definition of the Hubble parameter as H ≡ ȧ

a
, which drives the expansion

rate of the Universe, and usually is represented in terms of the dimensionless
factor h, defined by the expression H0 = 100 h km s−1 Mpc−1 at the present
epoch. In order to have a full description of the background universe, it is
necessary an equation of state (EoS) of the cosmic fluid, considering that the
cosmic fluid has three principal components: baryonic matter, dark matter,
and radiation (see Fig. 2.1b). In this sense, a first approximation consists in
assuming a linear relationship between ρ and p, thus, the equation of state can
be written as follows:

p = wρ, (2.12)

where w is a parameter that in principle can be time-dependent w = w(t), but
the simplest approach is to consider it as a constant. Under this assumption,
Eq. (2.11a) is easy to solve, resulting ρ(a) = a−3(1+w).

The history of the Universe is commonly divided into two main epochs. The
first epoch corresponds to the early universe, when radiation and relativistic
particles were the dominant component of the energy density and the constant of
proportionality in the EoS is w = 1/3, leading to ρ ∝ a−4. Then, as the universe
expanded and cooled down, the energy density of the radiation decayed faster
than the energy density of the non-relativistic matter. Thus, after a certain
moment in the history of the Universe, the energy density of non-relativistic
matter started to dominate the cosmic energy density and so the pressure of the
fluid can now be neglected, which means w = 0, leading to the second epoch
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Γ0
ij = a2Hγij, Γi0j = Γij0 = Hδij

Γ1
11 = kr

1−kr2 , Γ1
22 = −r (1− kr2)

Γ1
33 = −r (1− kr2) sin2 θ, Γ2

33 = − sin θ cos θ
Γ2

12 = Γ2
21 = Γ3

13 = Γ3
25 = 1

r
, Γ3

23 = Γ3
32 = cot θ

R00 = −3
(
H2 + Ḣ

)
R0i = Ri0 = 0
Rij = a2

(
3H2 + Ḣ + 2k/a2

)
γij

R = 6
(
2H2 + Ḣ + k/a2

)
G0

0 = −3 (H2 + k/a2)
G0
i = Gi

0 = 0
Gi
j = −

(
3H2 + 2Ḣ + k/a2

)
δij

Table 2.1: Summary of the results of non-null elements for the Christoffel symbols,
Ricci tensor, Ricci scalar and Einstein tensor in a FLRW spacetime described by Eq.

(2.9).

where ρ ∝ a−3. Since a universe in accelerated expansion is described by ä > 0,
thus from Eq. (2.11) and from the state equation Eq. (2.12) we have w < −1/3.
The case with w = −1 corresponds to the so-called cosmological constant, it
is obtained assuming a constant density energy so that the corresponding EoS
is p = −ρ. It means a negative pressure related to dark energy (DE). The
cosmological constant can be also associated with a vacuum energy density as
following:

ρΛ = Λ
8πG. (2.13)

On the other hand, the case of a flat universe (k = 0) is interesting because it
is in agreement with many observational results (Planck Collaboration et al.,
2018b), it also implies a special value of the matter density in the universe
that allows to introduce naturally a critical density ρc in terms of the Hubble
parameter as follows:

ρcr ≡
3H2

8πG, (2.14)

whose value at present-day can be easily computed in terms of the actual
Hubble constant, H0 = 67.4±0.5 km s−1Mpc−1 constrained from Planck mission
TT+TE+EE+lowP at 95% confidence level (Planck Collaboration et al., 2018b),
to be ρcr,0 = 8.533× 10−27 kgm−3. The critical density is also useful to define
the dimensionless density parameter Ωi for the various species i. We define the
current contributions of radiation, matter, cosmological constant and curvature
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in units of the critical density today (a = 1), as the following ratios:

Ωm ≡
ρm,0
ρcr,0

= 8πGρm,0
3H2

0
, (2.15)

Ωr ≡
ρr,0
ρcr,0

= 8πGρr,0
3H2

0
, (2.16)

ΩΛ ≡
ρΛ,0

ρcr,0
= Λ

3H2
0
, (2.17)

Ωk ≡ −
k

H2
0
. (2.18)

It is easy to verify that the sum of these parameters is equal to unity, as it can
be expected from the Friedmann equations, in fact

Ωm + Ωr + ΩΛ + Ωk = 1, (2.19)

is known as the cosmic sum rule and it is valid for any epoch of the universe.
Therefore, a Friedmann universe can be described by the cosmological parameters
(H0,Ωm, Ωr, Ωk, ΩΛ) as defined above, such that the expansion rate as a function
of the scale factor is given by

H2(a) = H2
0

[
Ωra

−4 + Ωma
−3 + Ωka

−2 + ΩΛ
]
. (2.20)

This equation is usually written as a dimensionless function defined by E(a) =
H(a)/H0. The last constraints on cosmological parameters obtained by the
Planck satellite show that w = −1.03 ± 0.03, consistent with a cosmological
constant and Ωm = 0.3153± 0.0073, ΩΛ = 0.692± 0.012, Ωk = 0.000± 0.005,
where Ωm contains the density of baryons (Ωb) and cold dark matter (ΩCDM).
Additionally, in the last few years it became usual to include the energy density
of neutrinos Ων , they contributes to the radiation density at early times but
behave as matter after the non-relativistic transition at late times (Lesgourgues
and Pastor, 2012), so that for a flat universe the total energy density is given by
ρ = ργ + ρCDM + ρb + ρν + ρΛ. Fig. 2.1b shows the percentages, derived from
Planck Collaboration et al. (2018b) data, in which each specie contributes to
the total content of the Universe.

Since each component of the cosmic fluid scales in a different way with respect
to the scale factor (see Eq. 2.20), the history of the Universe has been dominated
by a specific component as previously mentioned. Fig. 2.2 shows the evolution
of the density parameter ρ (in units of ρcr,0) and the dimensionless parameter
Ωi as functions of the scale factor a and redshift z defined as z ≡ 1/a − 1.
The plot displays the periods of domination for the different species and the
transition from one to another (radiation era, the matter era and the dark energy
era). The transition from the radiation era to the matter era takes place at
aeq ≡ Ωr/Ωm = 2.98× 10−4, then, since the DE remains constant while matter
and radiation density drops as the Universe expands, the transition to the DE
era occurs about aΛ = (Ωm/ΩΛ) = 0.47, keeping the Universe expanding.
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Figure 2.1: a) Spatial geometry of the Universe: Flat Universe (k = 0), Open
Universe (k = −1) and Closed universe (k = 1), credit: NASA/WMAP Science
Team. b) The current composition of the Universe derived from Planck data (Planck

Collaboration et al., 2018b).

A fundamental aspect of the standard model ΛCDM is the measurement
of distances. These depend on the geometry used and also on the content of
matter-energy in the universe. As discussed above, the Friedmann equations
depend primarily on the form of the field equations, so that the expressions for
the distances will ultimately depend on the form of the metric and the field
equations used. It is usual to express time through the cosmological redshift.
Due to the expansion of the universe, the electromagnetic radiation emitted
with a wavelength λem is observed, by a distant observer, having a wavelength
λobs > λem. In other words, the electromagnetic signal has been redshifted by
z = (λobs − λem)/λem. This redshift is of particular importance in cosmology
because it can be directly measured from the observations of spectra. If one
neglects the peculiar motions that the source can have, i.e. its deviations from
the Hubble flow, the redshift can be related to the expansion factor as following:

z + 1 = 1
aem

, (2.21)

where aem is the scale factor at the emission time normalized to today’s size. In
an expanding Universe, it is important to obtain information about astrophysical
tracers, either by detecting electromagnetic radiation or the recent gravitational
waves, which allows to construct maps with the tracer position computed from
the cosmological observations. In this sense, the comoving distance, dc(z),
corresponds to the distance between observers that are both moving with the
Hubble flow, it does not change with time, but it accounts for the expansion of
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Figure 2.2: Upper panel: evolution of the energy density parameter ρ normalized to
ρcr,0 as a function of the scale factor a. Lower panel: evolution of the dimensionless
density parameter Ωi for each specie (matter, radiation and DE) as a function of the
redshift z = 1/a− 1. The intersections between lines split the cosmic history in three

eras: radiation, matter and Dark Energy era.

the Universe. The comoving distance is defined as follows:

dc(z) = c
∫ z

0

dz′

H(z′) . (2.22)
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The transverse comoving distance, dM(z), i.e. , the comoving distance between
two events at the same redshift that is given by:

dM(z) =


c

H0
√

Ωk
sinh

[√
ΩkH0dc/c

]
for Ωk > 0,

dc for Ωk = 0,
c

H0
√
|Ωk|

sin
[√
|Ωk|H0dc/c

]
for Ωk < 0.

(2.23)

The luminosity distance, dL(z), is related to the intrinsic luminosity of a distant
object by measuring its flux, in terms of the redshift. It can be expressed as

dL = (1 + z)dM(z). (2.24)

The angular diameter distance, dA(z), is defined in terms of the angular size
of an object as viewed from an observer, and can be written in terms of the
transverse comoving distance as follows:

dA = dM
1 + z

. (2.25)

Finally, Tab. 2.2 displays a summary of the notation used in this Thesis, as
well as a short definition of the some derived quantities, useful for the reader in
the following Chapters. For further details concerning the background Universe
see Refs. (Peebles, 1993; Dodelson, 2003; Mukhanov, 2005).

2.3. Basics on cosmic structure formation
The observations have shown that the Universe contains a wide range of

structures, from small galaxies to clusters of galaxies, superclusters and even to
complex larger structures, but also, exist big regions with a very low density
of galaxies known as “voids”. The galaxy surveys have revealed that the uni-
verse becomes statistically homogeneous on very large scales, i.e., at distances
larger than 100 Mpc/h, although the Universe appears to be inhomogeneous at
small scales. This means that if the cosmic field is smoothed over large enough
volumes, the homogeneity is recovered and it is still possible to describe the
global dynamics of the universe using the Friedmann equations. In this sense
the structures in the Universe can be understood from a cosmological point of
view by considering the formation and evolution of galaxies (Coil, 2013). The
most accepted description of structure formation is based on a homogeneous
background universe perturbed by some mechanism in the early stages, these
perturbations drive the formation and evolution of virialised large-scale struc-
tures that can be treated in the context of a perturbation theory.

Considering the Newtonian limit, we can assume a non-relativistic, homoge-
neous, dissipationless fluid without turbulent effects, described by a mass density
ρ, pressure p� ρ, and velocity u, in a Friedmann cosmology. The equations of
motion of the fluid are then described by the hydrodynamical equations. The
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Parameter Physical meaning and/or definition
h Dimensionless Hubble parameter
Ωm Dimensionless DM density parameter
ΩΛ Dimensionless DE density parameter to ΛCDM
Ωk Dimensionless curvature density parameter
σ8 RMS matter fluctuations at 8Mpc/h in linear theory
ω Constant EoS to ωCDM
ω(a) = ω0 + (1 + a)ω1 EoS of the Chevallier-Polarski-Linder (CPL) parametrization
ωx, δ EoS and dimensionless coupling term for Interacting Dark Energy model (IDE)
ω0, Ωe EoS and asymptotic DE density term for Early Dark Energy model (EDE)
H0 = 100h Current expansion rate (Hubble parameter) in Km.s−1Mpc−1

t0 Age of the Universe today (in Gyr)
Ωb = 0.045 Dimensionless baryon density parameter
Ωr = Ωγ + Ων Dimensionless radiation density parameter
Ωγ = 2.469× 10−5h−2 Dimensionless photon density parameter
Ων Dimensionless neutrino density parameter
Neff = 3.04 Effective number of relativistic neutrino degrees of freedom
ωm = Ωmh2 Physical DM density
ωb = Ωbh2 Physical baryon density
ρcri = 3H2

0/8πG Critical density (1.88× 1029h2g/cm3)
ΩX Dimensionless DE density parameter
ρX = ρcriΩX Physical DE density
Λ = 8πGρΛ Cosmological constant where ρΛ = ρcri3H2

0
cs Sound speed
rs Comoving size of sound horizon
zdrag Redshift at which baryon-drag optical depth equals unity
rdrag = rs(zdrag) Comoving size of the sound horizon at zdrag
rs/Dv(z) BAO distance ratio scale
zcmb Redshift at decoupled photon-baryon
R(zcmb) Scaled distance at recombination (zcmb)
lA(zcmb) Angular scale of sound horizon at recombination (zcmb)

Table 2.2: Notation and short overview of the cosmological parameters used in this
Thesis. The upper block contains the main set of parameters usually consider as free
in Bayesian analysis. The lower block displays the derived parameters from the upper

block.
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mass conservation implies the continuity equation

∂tρ = −∇r · (ρu), (2.26)

where the vector position of a fluid element, at time t, is denoted by r. The
momentum conservation in a continuous system leads to the Euler equation

(∂t + u ·∇r) u = −∇rp

ρ
−∇rΦ, (2.27)

where the gravitational potential Φ, is determined by the Poisson equation

∇2
rΦ = 4πGρ. (2.28)

This set of equations, together with an equation of state, forms a closed non-
linear system for ρ, u, p and Φ. A first approach to get the evolution of small
perturbations in a homogeneous background, is given by perturbing the fluid
around its Hubble flow and by solving the hydrodynamical equations at the
linear order in the perturbed quantities, i.e. , δρ, δu, δp and δΦ. The quantities
that correspond to the homogeneous background will be henceforth indicated
by a bar (ρ̄, ū, p̄ and Φ̄). Thus, assuming that the perturbations are small
compared to the background, these quantities are given by

ρ(t, r) = ρ̄(t) + δρ(t, r), (2.29)
ū(t, r) = ū(t) + δu(t, r), (2.30)
p(t, r) = p̄(t) + δp(t, r), (2.31)

Φ(t, r) = Φ̄(t) + δΦ(t, r). (2.32)

In order to illustrate the procedure to get the evolution of the perturbations,
first we consider the particular case of a static space in absent of gravity, then
we introduce the gravitational potential to see how it affects the equations of
motion as a source term. Finally we modify the equations for an expanding
space with the Hubble flow, considering the usual relationship between physical
coordinates r and comoving coordinates x. In the first case we have Φ ≡ 0, it
implies that the solution for the background is given by ρ̄ = const., p̄ = const.
and ū = 0, whereas the evolution of the linearised equations for the fluctuations
is reduced to

∂tδρ = −∇r · (ρ̄u),
ρ̄∂tu = −∇rδp,

(2.33a)
(2.33b)

that, after some manipulations, leads to

∂2
t δρ−∇2

rδp = 0. (2.34)

Eq. (2.34) takes the form of a wave equation for the density perturbations, since
it is proportional to the pressure in adiabatic regime, such that δP = c2

sδρ with
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cs being the speed of sound, whereby(
∂2
t − c2

s∇2
)
δρ = 0, (2.35)

whose solution can be easily obtained in Fourier space by expanding δρ. The
result is given by a plane wave δρ = A exp[i(ωt − k · r)], with ω = csk, and
k ≡ |k| the wave number, meaning that the fluctuations oscillate with a constant
amplitude, as expected since gravity was ignored. If gravity is not ignored,
Eq. (2.35) then gets a source term from the perturbed Poisson equation,
∇2δΦ = 4πGδρ, such as (

∂2
t − c2

s∇2
r

)
δρ = 4πGρδρ. (2.36)

The solution of Eq. (2.36) is also described by a plane wave δρ = A exp[i(ωt−
k · r)], however the natural frequency of the oscillations is given by ω2 =
c2
sk

2 − 4πGρ, which implies that there is a critical wavenumber kJ , the so-called
Jeans wavenumber, for which the frequency of oscillations is equal to zero, see Eq.
(2.37). The Jeans wavenumber sets a limit, in which for small scales, i.e. large
wavenumber, k > kJ , the pressure dominates and the oscillations of the fluid
are then described by Eq. (2.35). However, on large scales, when k < kJ , the
gravitational effects are not negligible and the fluctuations grow exponentially.
Naturally, there is a Jeans length associated to the Jeans wavenumber given by
the following relationship

kJ ≡
√

4πGρ
cs

→ λJ = 2π
kJ

= cs

√
π

Gρ
. (2.37)

Taking into account the expansion of the universe driven by H(t), we can
transform the equations of the evolution of perturbations into the comoving
frame by using the usual relationship between physical coordinates (t, r) and
comoving coordinates (t,x), to be

r(t) = a(t)x, (2.38)
u(t) = ṙ = Hr + v, (2.39)

∇r = 1
a

∇x, (2.40)

∂

∂t

∣∣∣∣∣
r

= ∂

∂t

∣∣∣∣∣
x

−Hx ·∇x, (2.41)

where Hr is the Hubble flow and v = aẋ is the peculiar velocity. Notice that in
a static spacetime, the time and space derivates are independent, but are not in
an expanding spacetime. Thus, by introducing density contrast defined as

δ ≡ δρ

ρ
= ρ− ρ

ρ
,
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the equations that give the evolution of the perturbations in an expanding
universe can be rewriting as follows:

δ̇ = −1
a

∇ · v Continuity equation,

v̇ +Hv = − 1
aρ

∇δP − 1
a

∇δΦ Euler equation,

∇2δΦ = 4πGa2ρδ Poisson equation.

(2.42a)

(2.42b)

(2.42c)

By combining these equations, and considering that the expansion is adiabatic,

Figure 2.3: Schematic representation of the structure formation process. The plot
shows the growth of the density fluctuations from the early universe depending on the
Jeans limit, they can grow and propagate due to the effects of gravity and the expansion
of the Universe. Upper panel: small scale, low mass density enhancements propagate
over time due to pressure effects. Lower panel: large mass density enhancements grow

due to gravitational effects which overcome the pressure effects.

we can get the differential equation that govern the evolution of the density
contrast to characterize how the perturbations evolve during different cosmic
epochs. This is given by

δ̈ + 2Hδ̇ − c2
s

a2∇
2δ = 4πGρδ, (2.43)

which is identical to the equation expected for linear acoustic waves in a static
medium, apart of the Hubble damping and gravitational source term, but now
the background density ρ(t) and sound speed cs(t) depends on time, even if
the Jeans’ length is the same as Eq. (2.37). As consequence of the damping
term, 2Hδ̇, at scales below the Jeans’ length λ < λJ , the fluctuations oscillate
with decreasing amplitude, whereas in the opposite case, above the Jeans’
length λ > λJ , the fluctuations behave as a power-law growth, rather than the
exponential growth that we found for a static space. Moreover, since this is a
second-order differential equation, it admits two independent solutions that can
grow under certain conditions, thus the peculiar velocity field created by the
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perturbations δ is immediately determined by means of Eq. (2.42a). The most
general solution of the set of Eqs. (2.42) is a superposition of modes, commonly
expressed as

δ(t,x) = δ+(x)D+(t) + δ−(x)D−(t), (2.44)

where the subscript + denotes the growing mode and − the decaying mode. The
functions D+(t) and D−(t) are independent, where the growing solution is often
called linear growth function, normalized by definition such that D+(t0) = 1.
Among these modes, only the adiabatic modes (i.e. that the cooling time is
long compared with the age of the Universe) are interesting in the context of
structure formation, so we will focus only on these in what follows. Fig. 2.3
shows schematically the process of the structure formation, considering that
density fluctuations can grow and propagate due to the effects of gravity and
the expansion of the Universe depending on the Jeans limit. Fig. 2.4 shows
the evolution in redshift of the perturbations, in the ΛCDM model, for each
component of the cosmic fluid: CDM, baryon and radiation. In the remaining
of this Section, we summarise the main results of the modes obtained from the
evolution of the matter fluctuations in each cosmic era.

Matter era: considering the linearised CDM fluctuations, by setting cs = 0
since a non-linear effect produce a very small sound speed, the pressure
term in Eq. (2.43) can be neglected, leading to

δ̈m + 2Hδ̇m − 4πGρmδm = 0. (2.45)

In a flat universe matter-dominated, the scale factor takes the form a ∝ t2/3,
so that H = 2/3t, which in turn implies

δ̈m + 4
3t δ̇m −

2
3t2 δm = 0, (2.46)

whose solutions can be obtained from δm ∝ tp, giving the two modes as
indicated by Eq. (2.47), where the growing mode of the dark matter
fluctuations scales like the scale factor, clustering matter and forming later
structures.

δm ∝
{
t−1 ∝ a−3/2

t2/3 ∝ a
(2.47)

Radiation era: during this epoch the main contribution to the total density
fluctuation is given by matter and radiation species, δρ = δρm + δρr,
both under the effect of δΦ, however from a full relativistic analysis of
perturbation theory (see e.g., Mukhanov, 2005; Peacock, 1999; Peebles,
1993), can be shown that the fluctuations of radiation on scales smaller
than the Hubble radius oscillate as sound waves, supported by large
radiation pressure and the time-averaged density contrast that vanishes.
This has as consequence the so-called Meszaros effect that establish that
DM perturbations during radiation domain are basically frozen even for
perturbations much larger than the Jeans length but inside the horizon
(see e.g., Mukhanov, 2005). It implies that only CDM is responsible of
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clustering during the acoustic oscillations of the radiation, furthermore,
since ρ̄m � ρ̄r, it leads to δ̈m ∼ H2δm ∼ 8πG

3 ρrδm � 4πGρmδm. We can
therefore ignore the last term in Eq. (2.48) in comparison to the others
terms, and to express the equation of the perturbations as

δ̈m + 1
t
δ̇m − 4πGρmδm ≈ 0. (2.48)

In this case, the modes are given by

δm ∝
{

const.
ln t ∝ ln a. (2.49)

It means that the fast expansion due to radiation decreases the growing
of δm to only logarithmic scales, moreover, in order to form structures
the universe must make a transition from radiation domination to matter
domination allowing that the density fluctuations of dark matter grow
significantly.

Dark energy era: In this era the perturbations are even entirely frozen (see
e.g., Mukhanov, 2005), since by definition the dark energy does not cluster,
because ρΛ remains constant in all cosmic epochs as shown by Eq. (2.13).
In this stage H2 ≈ const. � 4πGρ̄m, hence δm ≈ 0, that simplifies the
equation of perturbations as following

δ̈m + 2Hδ̇m ≈ 0. (2.50)

whose solutions are given by

δm ∝
{

const.
e−2Ht ∝ a−2.

(2.51)

Since these solutions are not growing, it can be inferred that once dark
energy starts to dominate the matter fluctuations stop growing and there is
not structure formation anymore. Further details concerning scales larger
than the Hubble radius, and a complete relativistic treatment on structure
formation can be seen in Refs. (Padmanabhan, 1993; Peebles, 1993).

2.4. The linear growth factor and growth rate
In the matter dominated epoch, under the linear regime of the perturbation

theory discussed previously, the density contrast δ of a pressureless fluid [see
Eq. (2.43)], can be expressed like an equation of the amplitude of the growing
mode D(z), being scale independent and following the differential equation:

D̈ + 2H(z)Ḋ − 3
2Ωm,0H

2
0 (1 + z)3D = 0. (2.52)



2.4. The linear growth factor and growth rate 19

101102103104105106

1 + z

10 3

10 2

10 1

100

101

102

103

104
i=

i/
i

b = b/ b

CDM = CDM/ CDM

= /

Figure 2.4: The evolution in redshift of the CDM (orange), baryon (blue) and
radiation (green) perturbations for a wavenumber k = 10−2Mpc−1 by assuming
the ΛCDM model. The baryon density fluctuates before recombination, i.e. about
z ∼ 1000, and grows afterwards. The baryon density eventually follows the CDM
density perturbations, which starts growing before recombination. Figure created

using CAMB.

By assuming a flat universe with cosmological constant ΛCDM-like, the solution
of the differential equation can be written in its integral form as

D1(z) = H(z)
H0

∫ ∞
z

dz′ (1 + z′)
H3 (z′)

[∫ ∞
0

dz′ (1 + z′)
H3 (z′)

]−1

, (2.53)

where D1 is the growing mode normalized so that D1(z = 0) = 1. Eq. (2.53)
allows introducing the dimensionless linear growth rate f(z), which is related to
the growth factor in the follows form

f(z) ≡ − d lnD
d ln(1 + z) '

[
Ωm(1 + z)3 H2

0
H2(z)

]γ
, (2.54)

where the exponent γ ' 0.55 for GR (Linder, 2005). Eq. (2.54) is valid for a
wide range of models in linear perturbation theory based on GR and for relevant
values of cosmological parameters.

The dependence of the growth factor D(z) with redshift is shown in Fig. 2.5
obtained by numerical integration of Eq. (2.53) for a flat universe with different
cosmological parameters given by: WiggleZ (Blake et al., 2011), WMAP9
(Hinshaw et al., 2013), PLANCK18 (Planck Collaboration et al., 2018b) and
Millennium simulation (Springel et al., 2005). Some significant deviations can be
appreciated at low redshift due to the difference on the constrained parameters
even if they are globally in agreement. This feature of the growth factor is
highly important in the sense that allows to constrain several cosmological
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Figure 2.5: Evolution of the growth factor D(z) in terms of redshift assuming a flat
universe with different combinations of cosmological parameters as indicated by the

labels.

models by evaluating the behaviour of its growth history. It means that an
accurate estimate of the growth factor can constrain the value of Ωm, ΩΛ and
the EoS w thanks to its dependence with the Hubble parameter H(z). Usually
the constraints are obtained by measuring the growth rate f(z) instead of the
growth factor, since its dependence with the cosmological parameters is more
transparent. Additionally f(z) can be used to find possible deviations from GR
predictions, understood as a test of General Relativity at large scales, since this
information is encoded in the γ exponent. In the literature, it is common to
find the constraints expressed as f(z)σ8(z), where the σ8 parameter corresponds
to the linear density fluctuations smoothed on a scale of 8h−1 Mpc computed
from linear theory. This is done because at large scales the growth factor is fully
degenerate with σ8, and consequently, only the quantity fσ8 can be constrained.
Fig. 2.6 shows the evolution of fσ8 in terms of redshift, obtained from surveys
like the 2dfGRS (Percival et al., 2004a) and 6dFGS (Beutler et al., 2012), the
GAMA (Blake et al., 2013b), the WiggleZ (Blake et al., 2012), the VVDS
(Guzzo et al., 2008), and the VIPERS (de la Torre et al., 2013), as well as the
measurements from the SDSS-I and -II main galaxy sample (Howlett et al., 2015,
MGS) and the SDSS-II LRG sample (Oka et al., 2014, DR7).

2.5. Statistical description of the density field
As shown in the previous Section, the dynamics of the density contrast is

described in the linear regime by a differential equation of the growth factor, that
has been obtained after perturbing the density, velocity and potential fields. In
particular, the density contrast have been decomposed into plane waves, that by
Fourier transform, it produces a set of independent equations that can be solved
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Figure 2.6: Redshift evolution of fσ8(z) assuming a Planck ΛCDM background
cosmology, where f(z) is the growth rate of matter fluctuations and σ8(z) is the rms
amplitude of the density contrast δ smoothed on 8h−1Mpc in comoving scale. The
fσ8(z) values are measured from the 2dfGRS (Percival et al., 2004a) and 6dFGS
(Beutler et al., 2012), the GAMA (Blake et al., 2013b), the WiggleZ (Blake et al.,
2012), the VVDS (Guzzo et al., 2008), and the VIPERS (de la Torre et al., 2013)
surveys, as well as the measurements from the SDSS-I and -II main galaxy sample
(Howlett et al., 2015, MGS) and the SDSS-II LRG sample (Oka et al., 2014, DR7).

Figure taken from Alam et al. (2017).

independently for each mode k. All the cosmological information is contained
in the solutions of these equations when the linear theory applies. Naturally,
solving the equations requires to specify a set of initial conditions to guarantee
the uniqueness of the solution. In such a case, the initial conditions for the
density field are not trivial, since they are related to the very early Universe,
that is described nowadays by the inflationary paradigm 3. Indeed, inflation
does not predict the primordial density field δ(x, t), but it makes predictions
about the statistical properties of the density field, creating the seeds of the
primordial Gaussian fluctuations imprinted in the density field at the end of the
inflationary period (for a review on inflation see Turok, 2002).

From a statistical point of view, it is assumed that the observed Universe
3The inflationary theory (developed at the beginning of the 80’s by A. Guth, A. Linde

and A. Starobinsky), provides a mechanism to solve the horizon and flatness problems of
the standard model of cosmology, by introducing an exponential expansion of universe just
after the Big Bang. The inflation epoch occurs for a period around 10−36 seconds, where the
Universe expands by 1024 orders of magnitude to fit the current observational constraints.
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corresponds to a random realization of all the possible universes, which must be
isotropic and homogeneous in order to comply the cosmological principle. This
also implies that one part of the observable Universe can fairly represent the
whole sample. Moreover, in order to describe the statistical properties of the
Universe, it is not enough to evaluate the matter density contrast δ(x) = δρ(x)/ρ
at a specific point x, instead it can be associated to a Gaussian random field mo-
tivated in inflation as discussed above. In general, the distribution of the density
fluctuations δ can not be exactly described by a Gaussian field, because it has
to satisfy the condition δ > −1, however since they have 〈δ〉 = 0 and under the
approximation of a sufficiently small amplitude of the fluctuations, it is possible
to describe them as Gaussian, this fact is also supported by the observations of
the CMB anisotropies, which shows that possible deviations from Gaussianity in
the primordial density field are very small. Besides that Gaussian random fields
are crucially important in clustering, they have the virtue to describe their full
statistical properties analytically; thus in what follows we discuss this statistic.
A concise study on theory and observations of non-Gaussianity from inflation
can be found in (Bartolo et al., 2004).

The simplest statistics, that quantifies completely the spatial distribution of
cosmic tracers, is the two-point correlation function, defined in configuration
space as follows

ξ(r) ≡ 〈[ρ(x)− ρ][ρ(x + r)− ρ]〉
ρ2 = 〈δ(x)δ(x + r)〉, (2.55)

where the brackets denote the average over all possible realizations, or by evoking
the ergodic theorem, over the entire Universe. The two-point correlation function
measures the coherence of the density contrast field between all points on the sky
separated by a distance r. Assuming that the random field is homogeneous and
isotropic, the correlation function only depends on r i.e. ξ(r) ≡ ξ(r). Additionally,
by considering the spectral representation theorem (for a description see e.g.
Adler, 1981), if ξ(r) is continuous at r = 0 there exists a spectral representation
of the field, it means a representation in Fourier space with modes δ(k). The
spatial Fourier transform of the density field δ(x) has the form

δ(k) = 1
(2π)3

∫
δ(x)e−ik·xdx, (2.56)

with δ(x) being a real quantity and δ∗(k) = δ(−k). The variance of the density
contrast in Fourier space defines the power spectrum P (k) as follows

〈δ(k)δ∗(k′)〉 = (2π)3δ
(3)
D (k− k′)P (k), (2.57)

where δ(3)
D is the three-dimensional Dirac Delta distribution, which ensures

that modes of different wave vector k are uncorrelated in Fourier space and
keeps the validity of cosmic homogeneity; furthermore, the isotropy condition
makes the power spectrum independent of the direction of k. Since this quantity
is defined naturally in Fourier space, the power spectrum can be interpreted
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Figure 2.7: Linear matter power spectrum P (k) computed with the CAMB code
at different redshifts for a ΛCDM model with Planck Collaboration et al. (2018b)

parameters.

as the contribution of modes of wave vector k to the total variance, per unit
volume of wavenumber space, containing all the statistical information about
the fluctuations. The determination of the matter power spectrum P (k) in a
wide range of scales, with high levels of precision and accuracy, is one of the big
challenges in current cosmology. On the other hand, both, the power spectrum
P (k) and the two-point correlation function (hereafter 2PCF), encode the same
information to describe the clustering, making them completely equivalent,
perhaps a difference lies in that different Fourier coefficients are uncorrelated
until the evolution of the perturbations remains linear, while the number of
pairs at different separations become correlated because of gravity 4. The power
spectrum P (k) can be computed from the 2PCF by Fourier transforming as
follows

P (k) =
∫
d3rξ(r)eik·r = 4π

∫
r2ξ(r)sin kr

kr
dr, (2.58)

whereas the inverse case in configuration space, i.e. getting the 2PCF given the
power spectrum, follows

ξ(r) = 1
(2π)3

∫
P (k)e−ik·rd3k = 1

2π2

∫
k2P (k)sin kr

kr
dk. (2.59)

Fig. 2.7 displays the evolution of the linear matter power spectrum for the
ΛCDM model by assuming the final constraints on cosmological parameters from
Planck Collaboration et al. (2018b). In literature is often used an alternative

4The correlation function is a dimensionless quantity, whereas the power spectrum P (k)
has units of volume. The density contrast δ(r) and δ(k) are dimensionless too.
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definition of the power spectrum as given by

∆2(k) ≡ k3P (k), (2.60)

which is equivalent to d 〈δ2〉 /d ln k, where 〈δ2〉 = ξ(0) is the zero-lag correlation
function. The quantity ∆2(k) is called the dimensionless power spectrum and it
measures the contribution of perturbations per unit of logarithmic interval at
wavenumber k to the variance of the matter density fluctuations.

Figure 2.8: The correlation function measured from the 2dFGRS galaxy survey
(Hawkins et al., 2003) in log-log scale. The dashed line is the best-fit power-law
[r0 = 5.05h−1Mpc, n = −1.33 → exponent γ = 1.67]. The solid line is the result
from the survey and the dashed line from an N-body simulation. Figure taken from

(Hawkins et al., 2003).

2.6. The bias factor
In the previous Section, the clustering was described by introducing the

concepts of power spectrum and correlation function of the total matter distri-
bution. However, since its density is constituted mainly by CDM, the spatial
distribution of observable galaxies, galaxy clusters, AGN etc., can not trace the
clustering of the bulk of matter in the Universe. In a general sense, the observed
matter density must be linked to the dark matter density field by introducing
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a tracer bias, i.e. , a relationship between the spatial distribution of the tracer
(galaxies, galaxy clusters, etc.), and the underlying dark matter density field as
follows

δtr = f(δDM), (2.61)

where δtr and δDM are the density fields of the tracer and dark matter, respectively.
The bias is related to all the physical processes of the tracer history which
cause the spatial distribution of baryons to differ from the expected of DM.
It can depends on several factors such as scale, redshift or galaxy properties
such as luminosity, morphology or color (Coil, 2013). The most simple and
reasonably physical assumption is to assume a linear dependence of f(δ) with δ,
parametrizing Eq. (2.61) by a bias factor b, so that

δtr = bδDM → b = δg/δDM . (2.62)

Since the bias factor is defined in terms of the density contrast, it encloses
information about the level of clustering of the tracers; a bias b > 1 means
a higher clustering of the tracers with respect to the underlying dark matter
density field. In terms of the correlation function, the linear bias follows

ξtr(r) = b2ξDM(r), (2.63)

where the correlation function of both, matter and tracers, have positive values
at small scales and it is well described by a power law relationship

ξ(r) =
(
r

r0

)−(3+n)
, (2.64)

with n and r0 being fitting parameters (see Fig. 2.8)5. From a theoretical
and numerical point of view, the bias factor is complex to model because the
tracer density can be a non-local and stochastic function adding extra variances
(Scoccimarro, 2000). The linear approximation of the bias has shown to be valid
on sufficiently large scales (Desjacques, Jeong, and Schmidt, 2018; Gaztañaga
et al., 2005; Verde et al., 2002; Marulli et al., 2018).

2.7. Galaxy surveys - observational status
From an observational point of view, the study of the LSS has remote and

diverse origins. Focused on modern science, the Edwin Hubble’s observations
in 1930 provided the elements to understand that galaxies are not randomly
distributed (Schneider, 2007). Hubble used a catalog with 400 “extragalactic
nebulae” to test the homogeneity of the Universe, finding that it is statistically
uniform (Hubble, 1926). The following galaxy surveys such as Shapley-Ames in

5Motivated in the power law scaling of the correlation function, the 2 point statistic have
been used also to find the homogeneity scale of the galaxy distribution. Early in the 90s,
several authors extended this idea by using the fractal analysis. In the Appendix A are shown
the details on how is performed this kind of analysis, and discuss the impact of observational
holes on galaxy samples.



26 Chapter 2. Landscape of modern cosmology

1932 for bright galaxies (Shapley and Ames, 1932), showed a “general inequality
in the distribution” of projected galaxies in the celestial sphere with a difference
by a factor 2 in the number of galaxies in each celestial hemisphere. For this
galaxy sample, Hubble observed that at angular scales smaller than ∼ 10◦ there
was an excess in the counts of galaxies above what would be expected for a
Poisson distribution (Coil, 2013). This sample follows a Gaussian distribution at
larger scales, wherewith the Universe seems to be homogeneous at large scales
but exhibits a lumpy appearance defined by the clustering of galaxies at small
scales (Hubble, 1934).

a) b)

Figure 2.9: a) CfA slice with 249 galaxies distributed in declination 10◦ < δ < 20◦
(Figure taken from https://www.cfa.harvard.edu/~dfabricant/huchra/zcat/);
b) 62559 galaxies distributed in a 3◦ thick slice through the 2dF Galaxy Redshift

Survey (Figure taken from Eke et al., 2004 - http://www.2dfgrs.net/).

Advances in the study of LSS were significant with the Lick catalog of galaxies
by Shane, Wirtanen, and Steinlin, 1959 and the analysis performed by Seldner
et al., 1977 that showed in much more detail that the galaxy distribution is
not fully uniform. The samples from this catalog and from the Zwicky and
Herzog, 1966 catalog were analyzed by Peebles and Groth, 1975 and Hawley and
Peebles, 1975 showing that the angular two-point correlation function follows
approximately a power law in the range ∼ 0.1◦ − 5◦. Since 1980 maps of galaxy
distribution have been made in three dimensions. These galaxy surveys show
a matter configuration with cosmic structures at large-scales. Some of the
first galaxy redshift surveys were the KOS survey (Kirshner et al., 1983) with
164 galaxies in a field of 15 deg2; CfA (Davis et al., 1982; Davis and Peebles,
1983) with approximately 5800 galaxies, that revealed the structure so-called
“Great Wall”, a supercluster of galaxies that extends over 170 Mpc/h (see Fig.
2.9a), and the 2dF -“Two-degree-Field Galaxy Redshift Survey” operated by the
Anglo-Australian Observatory (AAO), which showed a wall structure of 766.5
Mpc (see Fig. 2.9b).

Nowadays galaxy surveys have progressed rapidly with the development
of multi-object spectrographs and fiber-optic systems allowing simultaneous
observations of hundreds of galaxies, making it possible to have deeper samples
with objects at high redshift. Two examples are: a) the Baryon Oscillation
Spectroscopic Survey (BOSS), one of the projects managed by the Sloan Digital

https://www.cfa.harvard.edu/~dfabricant/huchra/zcat/
http://www.2dfgrs.net/
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Sky Survey III (SDSS-III), consisting of approximately 1000 optical fibers with
an effective volume of ∼6 h−3Gpc3 in a field of ∼10000 deg2, and a sample
close to 1.5 million galaxies until a redshift of 0.7 (Delubac et al., 2015); and b)
the VIMOS Public Extragalactic Redshift Survey (VIPERS), a completed ESO
Large Program that has mapped in detail the spatial distribution of normal
galaxies over an unprecedented volume at z ∼ 1 using a spectrograph at the 8 m
Very Large Telescope to measure spectra for more than 90000 galaxies (Guzzo
et al., 2014). Advances in observational techniques and instrumentation allow
to use these surveys for cosmological purposes, such as WiggleZ Dark Energy
Survey, VIPERS, BOSS, Dark Energy Spectroscopic Instrument (DESI) and the
Euclid mission that will use specific tracers to probe the underlying structure on
large scales with the latest technology, representing the next step in the study
of observational cosmology. Figure 2.10 shows a comparison of the effective
volume Veff (h−3Gpc−3) for galaxy redshift surveys operating at optical and
radio wavelengths.
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Figure 2.10: a) Effective volume of several galaxy surveys as a function of total
galaxy count for telescopes at optical and radio wavelengths. Symbol size indicates
the approximate year in which the survey is finished or will finish; b) effective volume
of several galaxy surveys as a function of the year it was completed for both optical
and radio facilities. Symbol size indicates the approximate number of objects sampled.
Fits to a power law of the effective volume are shown in gray curves based on the

completed year and the number of observed galaxies. Credit: Duffy, 2014.

Since the study of the dark sector and the RSD includes mainly large-scale
surveys, the European Space Agency (ESA) has developed the Euclid mission6.
Euclid is a space mission approved in October 2011, and will be launched to the
L2 Sun-Earth Lagrange point in 2022, for a mission of 7 years to investigate the
nature of dark energy, dark matter and gravity by tracking their observational
signatures on the geometry of the Universe and on the history of structure
formation. To accomplish this task, Euclid will use two main probes, weak
lensing and galaxy clustering, including Baryon acoustic oscillations (BAO) and
RSD, to measure about 10 billion sources, from which around 1 billion will

6Euclid Consortium http://www.euclid-ec.org

http://www.euclid-ec.org
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be used for weak lensing, and tens of million redshifts will be used for galaxy
clustering (Laureijs et al., 2012; Amendola et al., 2018). Euclid will use a 1.2
m mirror telescope operating in both visible and infrared wavelengths, which
will cover an area of about 15000 deg2 in the redshift range 0.5 < z < 2.0, when
the cosmic speed-up its supposed to start. Euclid seems promising, and a big
scientific effort has been made until now (and for sure in the forthcoming years)
to provide the best map of the structure on a large scale and allow us to expand
our knowledge of the fundamental open questions about the structure of the
Universe.

Figure 2.11: The two-point correlation function (2PCF) described as the excess of
probability (compared with that expected for a random distribution) of finding a pair

of objects in the volumes dV1 and dV2 separated by r12.

2.8. Clustering measurements of discrete sam-
ples

Regarding the clustering measurements, the 2PCF can be also defined as the
joint probability dP12, compared with that is expected for a random distribution,
of finding a pair of objects at certain spatial separation r in the infinitesimally
small volume elements dV1 and dV2 (see Fig. 2.11):

dP12 = n2[1 + ξ(r)]dV1dV2, (2.65)

where n̄ is the mean number density of the tracer and the product n̄dVi
represents the stochastic probability of finding an object in dVi. Fig. 2.12 shows
the coordinate convention used in this Thesis to estimate the clustering. If
the tracers are distributed randomly, i.e. uncorrelated, Eq. (2.65) is reduced
to dP12 = n2dV1dV2, otherwise ξ(r) > 0 means a positive correlation while
−1 < ξ(r) < 0 means negative correlation. This probabilistic definition provides
a method to estimate the 2PCF by counting pairs that can be summarized as
follows: given the limited volume, like a galaxy survey or an N-body simulation,
finding the count of pairs separated by a distance between r and r+dr, and then
compare it to the count of pairs expected if the tracers were randomly distributed.
Usually the estimation of ξ(r), considering edge effects, is performed in a sample
of objects within a window W of the entire volume V (W ), as illustrated in
Fig. 2.13, so that the centres for counting pairs correspond only to objects within
an inner window Win, leading to
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Figure 2.12: Sketch that describes the coordinate convention used in this Thesis for
the 2PCF. Two tracers (galaxies) separated by a distance r, which is decomposed in
terms of the line-of-sight of the observed as a transverse r⊥ and parallel r⊥ components,

with θ = r‖/r.

ξ̂(r) = V (W )
NNin

Nin∑
i=1

ni(r)
Vsh

− 1, (2.66)

where ξ̂(r) is the so-called minus-estimator of ξ(r) and Vsh is the volume of the
shell of width dr,

Vsh = 4π
3
[
(r + dr)3 − r3

]
, (2.67)

than can be approximated by 4πr2dr if dr is small enough, on the other hand,
based on this estimator several edge-corrections to estimate the 2PCF have
been proposed to avoid underestimations (Martínez and Saar, 2002). Now, by
denoting the number of pairs in the catalogue of N tracers (by example galaxies,
haloes, etc.) as DD(r); the number of pairs in an auxiliary random sample with
Nrd points as RR(r); and the number of pairs between the data and the random
sample as RR(r); the Peebles-Hauser (PH) unbiased estimator (Peebles and
Hauser, 1974), sometimes called natural estimator, can be defined as follows

ξ̂PH(r) =
(
Nrd

N

)2 〈DD〉
〈RR〉

− 1, (2.68)

being a statistics based on discrete counts of stochastic variables; its variance
scale as Poissonian variance, i.e. as the inverse of number of pairs. The Davis-
Peebles (DP) estimator (Davis and Peebles, 1983) is defined as follows:

ξ̂DP (r) = Nrd

N

〈DD〉
〈DR〉

− 1, (2.69)
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Figure 2.13: Sketch of the inner window method used in the minus-estimator of the
2PCF. Only points within Win are considered as centres to perform the pair counting.

Figure taken from (Martínez and Saar, 2002).

the Hamilton (HAM) estimator (Hamilton, 1993) as follows:

ξ̂HAM(r) = 〈DD〉〈RR〉
〈DR〉2

− 1, (2.70)

and finally the Landy-Szalay (LS) estimator (Landy and Szalay, 1993) as follows:

ξ̂LS(r) =
(
Nrd

N

)2 〈DD〉
〈RR〉

− 2Nrd

N

〈DR〉
〈RR〉

+ 1. (2.71)

The latter estimator is almost unbiased with minimum variance, this is reason
why the Landy-Szalay estimator is preferred over the other ones, being widely
used in investigations on clustering (Kerscher, Szapudi, and Szalay, 2000).
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Redshift space distortions

The large-scale structure provides a powerful tool to study many of
the current issues in cosmology, such as to test gravity theories
on large scales, to explore the dark sector and the origin of the
accelerated expansion of the Universe, as well as it provides a probe

to constrain alternative cosmological models. Over many decades, galaxy surveys
have measured the position of these objects using different technologies that
have been improved over the years. Nevertheless, the galaxy distances that
contains cosmological information as shown in Chapter 2, are mostly obtained
through their redshift, impacting the shape of the clustering signal.

3.1. Real and redshift space
Let us consider the case of a redshift survey where the position of each galaxy

is expressed in terms of its angular position in the sky and its redshift, that is
denoted in equatorial coordinates as Right Ascension (RA), Declination (DEC),
and redshift z. The position of a galaxy in real-space, i.e. as a function of its
actual distance, is then given by

r = |r|(sin θ cosφ, sin θ sinφ, cos θ), (3.1)

which corresponds to a position in redshift-space, i.e. , as a function of its redshift,
given by

s = dL(z)(sin θ cosφ, sin θ sinφ, cos θ), (3.2)

with dL being the luminosity distance as a function of the redshift as described
by Eq. (2.24). This expression can be simplified in the low-redshift limit z � 1,
where the Hubble relation is linear, so that s = cz/H, however it ignores the
peculiar velocities of galaxies. Indeed, this is not completely exact because
inhomogeneities in the matter density field induce galaxies to have peculiar
velocities that distort the Hubble flow. Actually, the measured redshift has
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Figure 3.1: Representation of the redshift space distortions from a galaxy catalogue
of the SDSS DR7 in a 4◦ slice with right ascensions in the range from 14h to 10h and
with redshift 0.01 ≤ z ≤ 0.1. The left panel shows the galaxy distribution in redshift-
space, where the redshift space distortions can be appreciated a long the line-of-sight.
The right panel shows the equivalent of the galaxy distribution in real-space. Figure

taken from (Shi et al., 2016).

two contributions: the Hubble expansion velocity and the line-of-sight (LOS)
projection of the peculiar velocity, so that cz = Hr + v · r. Therefore, the
interpretation of the distance as cz/H, contains the extra term v/H ≡ v · r̂/H
due to the peculiar velocity, in such a way, the redshift-space distortions can
be understood as displacements of galaxies relative to their true positions in
redshift-space when they have a peculiar velocity along the LOS of the observer.
In terms of the measurements performed by spectroscopic surveys, it means,
that they observe a combination of the density and velocity fields in redshift-
space, where the observed redshift of an extragalactic source, zobs, encloses the
cosmological redshift, zc, and the term related to the peculiar velocities along
the LOS, as follows

zobs = zc + (1 + zc)
v · r̂
c

, (3.3)

where r̂ is a unit vector along the LOS, so that the contribution of peculiar
motions is given by v‖ = v · r̂. In fact, by taking into account the peculiar
velocities, the positions in redshift-space appear distorted with respect to the
ones in real-space (see Fig. 3.1), being described by the following relationship

s = r + (1 + zc)
v‖

H (zc)
r̂. (3.4)

This shift in the position causes the so-called redshift-space distortions (RSD),
that can be appreciated in Fig. 3.1, where the spatial distribution of galaxies
appears squashed and distorted when their positions are plotted in redshift-space
rather than in real-space. Fig. 3.2 shows schematically how the RSD look like in
redshift-space for a symmetric radial distribution of galaxies represented by dots.
All galaxies in the real space (represented by the black circle) have the same
total peculiar velocity and they are falling towards the center, such that for an
observer the galaxies will appear, in redshift-space, with positions represented
by the red ellipse due to the effect caused by peculiar velocities. Coherent infall
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velocities of galaxies between the center of the distribution and the observer will
add to the Hubble expansion, while velocities of galaxies behind the center of
the density contrast will subtract from the Hubble flow. On large scales the
distortion tends to be small because the gravitational pull is relatively weak, so
the distribution appears squashed along the LOS, this result is called Kaiser
effect (Kaiser, 1987). At smaller scales, the peculiar motions of galaxies can
even surpass the Hubble flow velocity thus producing a smearing effect known as
Fingers of God (FoG) (Jackson, 1972). There is an intermediate point between
those regimes where the peculiar velocities are cancelled exactly out the Hubble
flow velocity (Hamilton, 1998).

Figure 3.2: Schematic diagram showing how real-space structures look in redshift-
space due to peculiar motions. In the linear regime, a spherical density contrast
appears squashed along the line of sight. At smaller scales velocities tend to be larger
appearing to be turned inside out. There is an intermediate point of turnaround where

the density contrast shell appears collapsed (Marcondes, 2016).

The RSD have been used over the years as a powerful tool to constrain the
growth factor f(z), which is directly related to the mass density parameter
Ωm (e.g. Kaiser, 1987; Cole, Fisher, and Weinberg, 1995; Hamilton, Tegmark,
and Padmanabhan, 2000; Peacock et al., 2001; Scoccimarro, 2004; Guzzo et al.,
2008; Cabré and Gaztañaga, 2009; Blake et al., 2013b; Hawkins et al., 2003;
Ross, Shanks, and Cruz da Ângela, 2007; da Ângela, Outram, and Shanks,
2005). Since the RSD destroy the statistical homogeneity (Hamilton, 1998), they
were considered for a while, as a source of “noise” to be marginalized over (Seo
and Eisenstein, 2003; Seo and Eisenstein, 2007), nevertheless, the interest on
RSD grew rapidly when it was realized that they can constrain the cosmological
parameters if not marginalized over (Amendola, Quercellini, and Giallongo, 2005;
Guzzo et al., 2008; Zhang et al., 2008). Nowadays, RSD represent one of the
most useful and promising techniques in cosmology to discriminate between
dark energy (DE) scenarios and models based on modified gravity theories to
explain the cosmic acceleration, being used in many investigations that involve
forecasts (see e.g. Linder, 2008; Wang, 2008; Song and Percival, 2009) and galaxy
clustering of several datasets (Cabré and Gaztañaga, 2009; Blake et al., 2011).
Moreover, by modelling the clustering anisotropies derived from the RSD, it
is possible to characterize the statistical properties of the LSS by constraining
the linear growth rate of cosmic structures, as it has been shown successfully
in many spectroscopic galaxy surveys (see e.g. Guzzo et al., 2014). In the last
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few years, the RSD have also been used in different contexts, such as, con-
straining interacting dark energy models (Marulli, Baldi, and Moscardini, 2012;
Costa et al., 2017), constraints on the neutrino mass in DE scenarios (Marulli
et al., 2011; Upadhye, 2019), investigations on the effect of vector perturbations
(Tansella et al., 2018; Bonvin et al., 2018) and baryons on RSD (Hellwing et al.,
2016), RSD around cosmic voids (Hamaus et al., 2015; Cai et al., 2016; Hamaus
et al., 2017), as well as in astrophysical scenarios as shown in (Ursino et al.,
2011; Turner et al., 2017). Recently, the RSD have been exploited by first time
to investigate the degeneracy between modified gravity and massive neutrinos
(García-Farieta et al., 2019; Wright et al., 2019).

3.2. Clustering in redshift-space
Although the galaxy distribution in redshift-space induces a bias in the

measurements derived from the density field, such as the power spectrum or the
2PCF, it also contains valuable information on the growth of cosmic structures as
mentioned above. Indeed, the peculiar motions of galaxies, or tracers in general,
are related to the gravitational collapse of density fluctuations, being influenced
by the growth of the perturbations and changing the observed clustering signal.
Regarding the linear perturbation theory, the effect of peculiar velocities does not
change the number of galaxies, thus the number density conservation requires
δsd3s = δd3r, where the superscript s refers to the quantities in redshift-space.
Taking into account the relation between the redshift position and real position,
it implies that

δs(s) = [1 + δ(r)]
∣∣∣∣∣d3s

d3r

∣∣∣∣∣
−1

− 1. (3.5)

This equation can be linearised by assuming that the separations are much
smaller than the distances from the observer to the sources, i.e. kr � 1, which
is commonly known as the plane-parallel approximation, being valid for many
surveys that do not have a wide angular depth. This approximation simplifies
the Jacobian of the coordinate transformation between real and redshift-space
as follows ∣∣∣∣∣dsdr

∣∣∣∣∣ = 1− f∂‖u‖, (3.6)

where the velocity along the LOS of the observer has been normalized to
u‖(r) = −v‖(r)/[faH(a)], being f the growth rate and H the Hubble parameter.
In this framework, the velocity divergence field is defined as θ(r) ≡ ∇ · v(r),
such that the density contrast in redshift-space, Eq. (3.5), follows

δs(s) =
[
δ(r) + f∂2

‖∆−1θ(r)
] [

1− f∂2
‖∆−1θ(r)

]−1
, (3.7)

where ∆ denotes the Laplacian operator. If µ is the cosine of the angle between
the line-of-sight and the wave vector k (µ = cos θ, see Fig. 2.12), in Fourier
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space the derivative of the Laplacian term takes the form

∂2
‖∆−1 =

(
k‖/k

)2
= µ2.

By replacing this expression in Eq. (3.7), the density contrast is equivalent to

δs(k, µ) =
∫ d3s

(2π)3 e
−ik·sδs(s) =

∫ d3x

(2π)3 e
−ik·re−ikµfu‖

[
δ(x) + µ2fθ(x)

]
. (3.8)

Finally, this expression can be written in terms of the power spectrum using the
fact that P (k) =

〈
|δk|2

〉
, as defined in the previous Chapter, allowing to recover

the expression given in (Scoccimarro, Couchman, and Frieman, 1999), that is

P s(k, µ) =
∫ d3r

(2π)3 e
−ik·r

〈
e−ikµf∆u‖ ×

[
δ(x) + µ2fθ(x)

] [
δ (x′) + µ2fθ (x′)

]〉
,

(3.9)

where ∆u‖ = u‖(x)− u‖ (x′) is the relative difference in the velocity field and
r = x− x′. This result makes evident the dependency of the signal from RSD
on the non-linear density and the velocity field. Furthermore, as shown by
(Scoccimarro, Couchman, and Frieman, 1999; Bernardeau et al., 2002), in a more
general case, by considering the impact of the rotational term in the velocity
field, which is quite important at smaller scales since it describes completely the
clustering anisotropies of the density field at each separation, the result obtained
previously can be generalized using only the plane-parallel approximation:

P s(k, µ) =
∫ d3r

(2π)3 e
−ik·r

〈
e−ikµf∆u‖ ×

[
δ(x) + f∂‖u‖

] [
δ (x′) + f∂‖u‖

]〉
.

(3.10)
On the basis of the previous discussion, by assuming the distant observer

approximation in linear regime, Kaiser (1987) showed that the power spectrum
in redshift-space, P s(k, µ), can be modelled in terms of the isotropic one in
real-space, P (k), by the following relation:

P s(k, µ) =
(
1 + 2fµ2 + f 2µ4

)
P (k),

=
(
1 + fµ2

)2
P (k).

(3.11a)

(3.11b)

Moreover, in the case of galaxies by considering a linear bias term so that δg = bδ,
the linear growth rate f in Eq. (3.11) can be replaced by a distortion parameter
defined as β ≡ f/b, such that the redshift power spectrum is described by

P s
g (k, µ) =

(
1 + 2βµ2 + β2µ4

)
b2P (k),

=
(
1 + βµ2

)2
b2P (k),

(3.12a)

(3.12b)

where P s
g (k, µ) is the galaxy power spectrum in redshift-space and P (k) is the
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linear matter power spectrum in real-space. Note that the anisotropic term
originates from the velocity and therefore it does not depend on the bias, this
explains why the RSD measurements are often parametrized in terms of fσ8.
In order to examine how significant is the RSD correction, the redshift power
spectrum can be expanded in the orthonormal basis of the Legendre polynomials,
as shown by (Hamilton, 1992), such that

P s(k, µ) =
∑
`

P`(k)L`(µ), (3.13)

where L`(µ) is the Legendre polynomial of degree l, and each coefficient Pl(k)
corresponds to the l-th multipole moment obtained from the orthonormality
condition as follows

P`(k) = 2`+ 1
2

∫ 1

−1
dµP s(k, µ)L`(µ). (3.14)

Since the Kaiser formula, Eq. (3.12), contains terms only up to µ4, only the
monopole (l = 0), quadrupole (l = 2), and hexadecapole (l = 4), moments are
non-vanishing, (for details see e.g. , Percival and White, 2009), it reduces to

P (k, µ) = P0(k)L0(µ) + P2(k)L2(µ) + P4(k)L4(µ) , (3.15)

where, explicitly, the multipole moments are given by

P s
`=0(k) =

(
1 + 2

3β + 1
5β

2
)
b2P (k) (3.16)

P s
`=2(k) =

(4
3β + 4

7β
2
)
b2P (k) (3.17)

P s
`=4(k) = 8

35β
2b2P (k). (3.18)

The monopole moment can be understood as a spherical average in the k-space
of the galaxy power spectrum, see Eq. (3.12), while the other multipole moments
contributes to the anisotropic part of the power spectrum. Tab. 3.1 shows
the functions to which the three first even Legendre polynomials correspond
and their polar representation. In configuration space these equations can
been obtained by computing the corresponding Fourier transform of the power
spectrum (for a detailed description see e.g. , Kaiser, 1987; Lilje and Efstathiou,
1989; McGill, 1990; Hamilton, 1992; Fisher and Nusser, 1996). Thus, the 2PCF
in redshift-space can be written as

ξ(s⊥, s‖)lin = ξ0(s)L0(µ) + ξ2(s)L2(µ) + ξ4(s)L4(µ) , (3.19)

where µ = cos θ = s‖/s and s =
√
s2
⊥ + s2

‖, furthermore the multipole moments
of the correlation function can be expressed in terms of the multipole moments
of the power spectrum, as shown by Eq. (3.14), such that

ξ`(s) = i`

2π2

∫
Pl(k)L`(k)j`(ks)k2dk, (3.20)
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L0(µ) = 1

L2(µ) = 1
2 (3µ2 − 1)

L4(µ) = 1
8 (35µ4 − 30µ2 + 3)

Table 3.1: Three first three even Legendre polynomials and their polar representation,
where the radial coordinate is described by r = Ll(µ) with µ = cos θ.

where jl(ks) is the spherical Bessel function at l-th order; or to be computed
from the full 2D 2PCF as

ξ`(s) = 2l + 1
2

∫ 1

−1
dµξ(s, µ)Ll(µ). (3.21)

In their explicit form, the three first non-null multipole moments of ξ(s⊥, s‖) can
be written as follows:

ξ0(s) =
(

1 + 2β
3 + β2

5

)
ξ(r) , (3.22)

ξ2(s) =
(

4β
3 + 4β2

7

)
[ξ(r)− ξ(r)] , (3.23)

ξ4(s) = 8β2

35

[
ξ(r) + 5

2ξ(r) ,−
7
2ξ(r)

]
, (3.24)

where ξ(r) is the real-space undistorted correlation function, and the barred
functions are defined by

ξ(r) ≡ 3
r3

∫ r

0
dr′ξ(r′)r′2 , (3.25)

ξ(r) ≡ 5
r5

∫ r

0
dr′ξ(r′)r′4 . (3.26)

Fig. 3.3 shows the RSD effects on the iso-correlation curves of the 2D two-
point correlation function (2PCF) in the plane (r⊥, r‖), where r⊥ and r‖ co-
ordinates are respectively the perpendicular and parallel components along
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the line-of-sight of the observer. The 2PCF has been computed from a N-
body simulation, in real-space (left panel), and for the corresponding sample
in redshift-space (right panel). The contours are draw at the iso-correlation
levels ξ(s⊥, s‖) = 0.3, 0.5, 1.0, 1.4, 2.2, 3.6, 7.2, 21.6. In real-space the correlation
function is undistorted, describing circular curves in this plane, as discussed in
previous Section. In redshift-space (left panel), the effect caused by the RSD
are clearly visible on small scales, where the 2PCF is stretched in the direction
of r‖ (Finger-of-God effect), and the infall effect on large scales, the contours
are squashed along the perpendicular direction (Kaiser effect).
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Figure 3.3: Contours of the 2D two-point correlation function (2PCF) in the plane
(r⊥, r‖), the r⊥ and r‖ coordinates are respectively the perpendicular and parallel
components along the line-of-sight of the observer. The 2PCF has been computed
from a N-body simulation, in real-space (left panel), and for the corresponding sample
in redshift-space (right panel). The contours are draw at the iso-correlation levels
ξ(s⊥, s‖) = 0.3, 0.5, 1.0, 1.4, 2.2, 3.6, 7.2, 21.6 as indicated by the color bar. Both the
effect of redshift space distortions on small scales (Finger-of-God effect) and the infall
effect at large scales (Kaiser effect) are clearly visible in the left panel. On small scales
the 2PCF is stretched in the direction of r‖, and on large scales the contours are

squashed along the perpendicular direction.

Measuring independently the monopole and the quadrupole moments of the
2PCF, it is possible to get an estimation on the distortion parameter β. In
particular two relationships can be defined, the first one by calculating the ratio
of the monopole in redshift-space to the real-space correlation function R(s),
and the second one, by the quadrupole-to-monopole ratio Q(s). By assuming
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the linear regime, these quantities are given by

R(s) ≡ ξ0(s)
ξ0(r) = 1 + 2β

3 + β2

5 , (3.27)

Q(s) ≡ ξ2(s)
ξ0(s)− 3

s3

∫ s
0 ds

′ξ(s′)s′2 =
4
3β + 4

7β
2

1 + 2β
3 + β2

5

, (3.28)

where ξ0 and ξ2 are the monopole and quadrupole of the 2PCF, respectively,
and β is the linear distortion parameter defined as β ≡ f(z)/b(z).

An alternative description of the anisotropies in the correlation function is
given by the clustering wedges, introduced by (Kazin, Sánchez, and Blanton,
2012), that correspond to the angle average of the ξ(s⊥, s‖) over wide bins of
µ. It can be interpreted as a projection of ξ(s⊥, s‖) into wide bins of the LOS,
expressed as

ξw(s) = 1
∆µ

∫ µ2

µ1
ξ(s, µ)dµ, (3.29)

being µ1 and µ2 the lower and upper limits of non-intersecting wedges, such
that ∆µ = µ2 − µ1 is the wedge width. In this Thesis we will focus on two
clustering wedges of ∆µ = 0.5, that in the literature are labelled as trans-
verse wedge ξ⊥(s) ≡ ξ1/2(0 ≤ µ ≤ 0.5, s) and radial (or line-of-sight) wedge
ξ‖(s) ≡ ξ1/2(0.5 ≤ µ ≤ 1, s) for the ranges 0 ≤ µ < 0.5 and 0.5 ≤ µ ≤ 1,
respectively.

From the definitions given in Eq. (3.29) and (3.19), clustering wedges are
related to the multipole moments through the following relationship

ξw(r) =
∑
l

ξl(s)L̄l, (3.30)

with L̄l being the average value of the Legendre polynomials over the interval
[µ1, µ2]. Moreover, considering multipole contributions up l = 2 and wedges
width ∆µ = 0.5, this relation can be expressed through the following transfor-
mation (

ξ‖
ξ⊥

)
=
(

1 3
8

1 −3
8

)(
ξ0
ξ2

)
. (3.31)

In real-space the two wedges, radial ξ‖ and transverse ξ⊥, are identical between
them and equal to the monopole signal ξ0(r) because there are no distortions in
any direction.

3.3. Redshift space distortions beyond Kaiser
model

The Kaiser formula is a good description of the RSD only at very large scales,
where non-linear effects can be neglected. Thus, with the aim of extracting infor-
mation from the RSD signal at non-linear regime and considering the increasing
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precision of recent and upcoming surveys, many more approaches have been
proposed. There is a vast literature that shows the efforts to model the RSD
beyond the linear Kaiser model, (for a review see by e.g. Scoccimarro, Couch-
man, and Frieman, 1999; Scoccimarro, 2004; Taruya, Nishimichi, and Saito,
2010; Reid and White, 2011), some of them making use of a phenomenological
description of the velocity field, others instead, taking into account higher orders
in perturbation theory since, in principle, there is no reason to stop at linear
order. Other approaches do a combination of both frameworks. In the remaining
part of this Section, three of the most important models that have provided a
satisfactory representation of the redshift-space distortions in recent years are
discussed.

� Dispersion model (Peacock and Dodds, 1996): although the Kaiser formula
reproduces the apparent enhancement of the clustering at large scales, it does
not describe accurately the non-linear regime. Thus, it is possible to model the
redshift-space 2PCF at small scales, extending the Kaiser formula, by adding
a phenomenological damping factor that plays the role of a pairwise velocity
distribution. It can account for both linear and non-linear dynamics. For
convenience, the model is written in Fourier space knowing in advance that the
2PCF can be obtained by Fourier transforming, as follows

P s(k, µ) = DFoG (k, µ, σ12)
(

1 + f

b
µ2
)2

b2Pδδ(k), (3.32)

where DFoG(k, µ, σ12) is a damping factor, which depends on the σ12 parameter
assumed to be scale-independent and usually can be interpreted as the dispersion
in the pairwise random peculiar velocities. In particular, the damping factor
has been described by Gaussian or Lorentzian distributions (Cole, Fisher, and
Weinberg, 1995; Peacock and Dodds, 1996) since both have the same behaviour
to first order, so that

DFoG(k µ, σ12) =

e
−k2µ2σ2

12 ,
1

1+k2µ2σ2
12
.

(3.33)

In configuration space, the redshift-space correlation function is expressed as the
convolution of the linearly-distorted function with the distribution function of
pairwise velocities f(v), the latter is obtained by Fourier transform of Eq. (3.33),
resulting

ξ(s⊥, s‖) =
∫ ∞
−∞

dvf(v)ξ
(
s⊥, s‖ −

v(1 + z)
H(z)

)
lin
, (3.34)

with the pairwise velocity v expressed in physical coordinates and f(v) given by

f(v) =


1

σ12
√
π

exp
(
− v2

σ2
12

)
,

1
σ12
√

2 exp
(
−
√

2|v|
σ12

)
.

(3.35)
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Since the exact form of σ12, and therefore of the damping factor, depends on
several features of the galaxy population (Jing and Börner, 2004; Li et al., 2007),
it is common in RSD analysis, to regard it as a free parameter that quantifies the
cumulative effect of small scale random motions. The dispersion model can be
also extended by replacing the linear power spectrum by its non-linear version
computed from an analytic approximation, for example by using HALOFIT which
is currently implemented in several codes like CAMB. By adopting the notation
of this model presented in (Vargas-Magaña et al., 2018; Xu et al., 2012; Xu
et al., 2013), the non-linear redshift-space power spectrum of matter density,
P (k, µ), can be expressed as

P (k, µ) = (1 + βµ2)2DFoG(k, µ, σ12)PNL(k). (3.36)

� Scoccimarro model: the previous models ignore the fact that the velocity
divergence field θ deviates from linear theory on large scales, in this direction
Scoccimarro (2004) proposed an extension of the matter power spectrum from
linear theory. It considers the density and velocity divergence fields separately
to account for the non-linear mode coupling between them in order to explain
the mildly non-linear regime, moreover it consider an exponential pre-factor that
can be decoupled from the Kaiser term, so that its impact on the clustering is
limited only to small scales. Usually the exponential pre-factor can be replaced,
without loss of generality, by a damping factor similar to the one already used
in the dispersion model (Pezzotta et al., 2017), leading to

P s(k, µ) = D (kµσ12)
(
b2Pδδ(k) + 2fbµ2Pδθ(k) + f 2µ4Pθθ(k)

)
, (3.37)

where Pδδ, Pδθ and Pθθ denote the auto-power spectrum of density, the cross-
power spectrum and the velocity-divergence auto-spectrum, respectively. In
Fourier space these power spectra are defined as

〈δ(k)δ (k′)〉 ≡ (2π)3δD (k + k′)Pδδ(k), (3.38)
〈δ(k)θ (k′)〉 ≡ (2π)3δD (k + k′)Pδθ(k), (3.39)
〈θ(k)θ (k′)〉 ≡ (2π)3δD (k + k′)Pθθ(k), (3.40)

moreover, at scales close to linear-regime Pδθ and Pθθ tend to Pδδ.

� TNS model: even considering the contribution of the velocity divergence,
there are strong bias dependences in the shape of the redshift space correlation
function as shown by (Reid and White, 2011). Taruya, Nishimichi, and Saito
(2010) proposed a model on the basis of the cosmological perturbation theory
(hereafter PT), that besides taking into account the non-linear mode coupling
between the density and velocity divergence fields, involves additional terms
to correct systematics at small scales. For this model the power spectrum is
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written as follows

P s(k, µ) = D(kµσ12)
(
b2Pδδ(k) + 2fbµ2Pδθ(k) + f 2µ4Pθθ(k)+

+CA(k, µ, f, b) + CB(k, µ, f, b)
)
. (3.41)

In general, the Pδδ, Pδθ and Pθθ terms can be computed from perturbation theory
(Eulerian, Lagrangian or Time renormalization), but also from fitting formulae
(see e.g. Jennings, 2012; Pezzotta et al., 2017; Bel et al., 2019). In this Thesis
we adopt the full description given by the standard perturbation theory (SPT),
that consists of expanding the statistics of interest as a sum of infinite terms,
where every term corresponds to a n-loop correction. We consider corrections
up 1-loop order, where the power spectrum is written as Eq. (3.42).

P SPT(k) = P (0)(k) + P (1)(k) = P (0)(k) + 2P13(k) + P22(k). (3.42)

It is well known that the 0-loop correction term in SPT corresponds to the linear
power spectrum, P (0)(k) = Plin(k), whereas the 1-loop term is expressed as a
sum of 2 different terms P13(k) and P22(k). For a detailed description on the per-
turbation theory approach for the power spectrum for massive haloes in redshift
space see e.g., Gil-Marín et al. (2012). Following Taruya, Nishimichi, and Saito
(2010) and de la Torre and Guzzo (2012), we can express the corrections terms
derived from SPT of the TNS model, CA and CB, in terms of the basic quantities
of the density δ and of the velocity divergence θ(k) ≡ [−ik · v(k)]/[af(a)H(a)],
specifically they are rewritten as

CA(k, µ) = (kµf)
∫ d3p

(2π)3
pz
p2

× [Bσ(p,k − p,−k)−Bσ(p,k,−k − p)]

CB(k, µ) = (kµf)2
∫ d3p

(2π)3F (p)F (k − p)

F (p) = pz
p2

[
Pδθ(p) + f

p2
z

p2Pθθ(p)
]

(3.43)

(3.44)

(3.45)

where Bσ is the cross-bispectrum defined by〈
θ(k1)

{
δ (k2) + f

k2
2z
k2

2
θ (k2)

}{
δ (k3) + f

k2
3z
k2

3
θ (k3)

}〉
= (2π)3δD (k1 + k2 + k3)Bσ (k1,k2,k3) .

(3.46)

Note that the CA and CB terms are proportional to b3 and b4, respectively,
actually they can be re-written as a power series expansion of b, f and µ and
their respective contributions to the total power spectrum. For a detailed
explanation about perturbation theory calculations for these correction terms
see the appendix A of (Taruya, Nishimichi, and Saito, 2010), and for what
concern the correlation functions and the dependence of the spatial bias of the
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considered tracers see appendix A of (de la Torre and Guzzo, 2012).
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4
Constraints on Dynamical Dark Energy mod-
els

As mentioned above, in the ΛCDM model DM is composed by col-
lisionless non baryonic particles and DE is described in terms of
the cosmological constant Λ, traditionally presented as responsible
of the present cosmic acceleration, with an EoS w = −1. The pre-

dictions made by this model reproduce remarkably well the observations of the
anisotropies in the Cosmic Microwave Background (CMB) radiation, baryonic
acoustic oscillations (BAO), Supernovae Ia (SNIa), etc. Although this framework
offers a simple description of the LSS in terms of few free parameters, the dark
sector (DM and DE) remains not well understood both from the theoretical and
the observational points of view (Frieman, Turner, and Huterer, 2008; Albrecht
et al., 2006). Currently no direct detection of a dark matter particle has been
achieved, and the theoretical basis of the observed cosmological constant is not
clearly established, especially with respect to the issue of gravitational effects
of quantum vacuum energy (Tutusaus et al., 2016). The lack of a full compre-
hension of the fundamental nature of these two components has demanded to
further test the GR to understand if it is the effective theory of gravity at large
scales, and consequently to get a complete cosmological model that explains
fully the astrophysical and cosmological observations at those scales (Martino,
De Laurentis, and Capozziello, 2015).

The coincidence problem is one out of many theoretical arguments against
a cosmological constant. It is related to the order of magnitude of DE and
DM densities in the current era, i.e., Ωm ∼ ΩΛ. A second issue is associated
with the required fine tuning of the value of Λ, which is quite far from particle
physics predictions (Weinberg, 1989; Copeland, Sami, and Tsujikawa, 2006). To
alleviate these tensions, different DE models with dynamical EoS have been
proposed in literature (Frieman, Turner, and Huterer, 2008). The Chevallier-
Polarski-Linder (CPL) is one of the most popular parametrizations of the EoS
(Chevallier and Polarski, 2001; Linder, 2003). Another alternative is to include



46 Chapter 4. Constraints on Dynamical Dark Energy models

a scalar field that mimics the DE component, such as quintessence (Caldwell,
Dave, and Steinhardt, 1998; Ratra and Peebles, 1988), phantom (Caldwell,
2002; Chiba, Okabe, and Yamaguchi, 2000; Parker and Raval, 1999), quin-
tom (Xu and Zhang, 2016) and k-essence fields (Armendariz-Picon, Mukhanov,
and Steinhardt, 2000; Armendariz-Picon, Mukhanov, and Steinhardt, 2001;
Chiba, Okabe, and Yamaguchi, 2000). Besides these models, more ambitious
proposals have been done by considering interactions between DE and DM.
Some of these alternatives are the so-called Interacting Dark Energy (IDE)
(Caldera-Cabral, Maartens, and Ureña-López, 2009), Early Dark Energy (EDE)
(Doran and Robbers, 2006; Pettorino, Amendola, and Wetterich, 2013; Poulin
et al., 2019), the Holographic DE (HolDE) (Cohen, Kaplan, and Nelson, 1999;
Susskind, 1995; ’t Hooft, 1993; ’t Hooft, 2001; Zhang, Li, and Noh, 2010),
modified gravity (MG) (Dvali, Gabadadze, and Porrati, 2000) and Braneworld
models (García-Aspeitia, Magaña, and Matos, 2012). A typical classification
of the cosmological models is done in terms of the value assumed by the EoS,
so that, models are considered as phantom if EoS w < −1, or quintessence
if w > −1. In the first case a fluid multicomponent is required with at least
one phantom constituent, which has been shown to suffer serious theoretical
problems, and in the second case, general relativity needs to be extended to a
more general theory at cosmological scales (Nesseris and Perivolaropoulos, 2007).

In this Chapter we constrain the main set of parameters in some of the
well established models of DE by combining recent observational data from
CMB, BAO and growth rate of LSS. These original results are based on our
research (Bonilla and García-Farieta, 2019). In order to discern which one of
the DE models considered is the most favoured by current observations, we have
used statistical tools like the Akaike and Bayesian Information Criteria (Shi,
Huang, and Lu, 2012; Akaike, 1974; Schwarz, 1978), to indicate the level of
agreement with the observational data taking into account the number of free
parameters and the data points of each model. Data from SNIa, CMB and BAO
have been used to determine H(z) directly through the redshift dependence
with cosmological distances, e.g. by the angular diameter distance dA(z). A
dynamical test, has been also implemented using the linear growth factor of
matter density perturbations D(a), that can be obtained from the redshift
distortion parameter from redshift surveys [A(z) ≡ f(z)σ8(z)].

4.1. The cosmological tests
In the following Sections we present the details about the observational

datasets and the methodology employed. In order to do a forecast on the main
set of parameters of each cosmological model (ΛCDM , wCDM, CPL, IDE and
EDE), we implement a Bayesian analysis taking into account the following
data: the CMB by using the so-called shift parameter R, which is related to the
position of the first acoustic peak in the power spectrum of the temperature
anisotropies; the baryon acoustic oscillations (BAO), by a combination of the
radial and angular signal that defines the Distance Ratio Scale Dv(z)/rs, being
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Dv(z) the so-called dilation scale and rs the comoving sound horizon1; and the
growth rate of LSS through Growth Parameter A(z) ≡ f(z)σ8(z).

4.1.1. CMB data
From the CMB information provided by the Planck satellite final release

(Planck Collaboration et al., 2018c), it is possible to explore the early stages of
the expansion history in each model considered here. A useful test to achieve this
is given by the angular scale of sound horizon at decoupling time (zcmb ≈ 1090),
which is encoded in the location of the first acoustic peak of the CMB power
spectrum. Following (Chen, Huang, and Wang, 2019), the χ2 for the CMB data
is constructed as

χ2
CMB = XT

P lanck18C
−1
cmbXPlanck18, (4.1)

such that

XPlanck18 =

 R− 1.7502
lA − 301.471
ωb − 0.02236

 , (4.2)

where ωb = Ωbh
2 is the physical baryon density parameter. The acoustic scale

lA is defined in terms of the angular diameter distance dA(zcmb) as

lA = πdA(zcmb)(1 + zcmb)
rs(zcmb)

, (4.3)

where zcmb corresponds to the redshift at decoupling time given by (Hu and
Sugiyama, 1996),

zcmb = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ωmh

2)g2 ], (4.4)

g1 = 0.0783(Ωbh
2)−0.238

1 + 39.5(Ωbh2)0.763 , g2 = 0.560
1 + 21.1(Ωbh2)1.81 . (4.5)

The shift parameter R is defined as follows (Bond, Efstathiou, and Tegmark,
1997):

R =
√

Ωm

c
dA(zcmb)(1 + zcmb). (4.6)

The inverse of the covariance matrix for (R, lA, ωb), denoted as C−1
cmb in Eq. (4.1),

takes the form C−1
cmbPlanck18 = σiσjCNorCovi,j by assuming Planck 2018 data, where

σi = (0.0046, 0.090, 0.00015) contributes with three data points to the statistical
analysis, so that the normalised covariance matrix is given by (Chen, Huang,

1The BAO feature in the LSS correlation function is the consequence of acoustic waves in
the pre-recombination baryon-photon plasma, caused by the opposing forces of gravity and
radiation pressure (Peebles and Yu, 1970). The sound horizon rs is related to the distance
between the wavefront of the acoustic waves after decoupling between baryons and photons,
while the dilation scale Dv(z) can be understood as an angle-weighted average of DA(z) and
DH(z), which is the best determined quantity in measurements of BAO from galaxy surveys.
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and Wang, 2019) as follows:

CNorCovi,j =

 1.00 0.46 −0.66
0.46 1.00 −0.37
−0.66 −0.33 1.00

 . (4.7)

4.1.2. BAO data
A remarkable feature that appears in the large-scale correlation function

measured from several galaxy surveys (e.g. 2dF, SDSS, WiggleZ, 6dF, etc), is the
BAO scale represented as a hump in the 2PCF at a distance around 100h−1Mpc
in comoving coordinates, or equivalently in Fourier space as a series of decaying
wiggles in the matter power spectrum (Cole et al., 2005; Eisenstein et al., 2005).
As mentioned earlier, the BAO correspond to fluctuations in the density field,
as expanding acoustic waves, imprinted in the primordial plasma before the
matter-radiation decoupling; they have been widely used as standard rule to
characterize the properties of DE (Bassett and Hlozek, 2010; White, 2005). In
order to set constraints on dynamical dark energy models, we consider data from
WiggleZ, SDSS-MGS, SDSS-BOSS LOWZ, SDSS BOSS-Lyα, 6dF, which leads
to a total of effective measurements of 12 data points and whose χ2 is given by

χ2
BAO = χ2

WiggleZ + χ2
SDSS + χ2

6dF + χ2
SDSS−MGS + χ2

BOSS−LOWZ

+χ2
BOSS−Lyα . (4.8)

Now we describe each one of these contributions. Following (Blake et al., 2011),
the WiggleZ BAO data is given by

χ2
WiggleZ = (Āobs − Āth)C−1

WiggleZ(Āobs − Āth)T , (4.9)

where Āobs = (0.447, 0.442, 0.424) is the data vector at z = (0.44, 0.60, 0.73)
and Āth(z,Θm

i ) is the theoretical prediction given by Eisenstein et al. (2005) at
redshift z for a set of cosmological parameters Θm

i in each model m, with

Āth = DV (z)

√
ΩmH2

0

cz
, (4.10)

assuming the distance scale DV (z) defined traditionally as

DV (z) = 1
H0

[
(1 + z)2dA(z)2 cz

E(z)

]1/3

. (4.11)

Moreover, the inverse covariance matrix C−1
WiggleZ for the WiggleZ dataset is given

by

C−1
WiggleZ =

 1040.3 −807.5 336.8
−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

 . (4.12)
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Similarly, the SDSS DR7 - BAO distance measurements contributes to the
total χ2 as (Percival et al., 2010)

χ2
SDSS = (d̄obs − d̄th)C−1

SDSS(d̄obs − d̄th)T , (4.13)

where d̄obs = (0.1905, 0.1097) is measured at z = 0.2 and z = 0.35, whereas
d̄th(z,Θm

i ) denotes the distance ratio

d̄th = rs(zdrag)
DV (z) , (4.14)

being zdrag the redshift at the baryon drag epoch2 and rs(z) the comoving sound
horizon given by

rs(z) = c
∫ ∞
z

cs(z′)
H(z′)dz

′, (4.15)

and cs(z) is the sound speed

cs(z) = 1√
3(1 + R̄b/(1 + z))

, (4.16)

where R̄b is defined in terms of the fractional energy densities of baryons and
photons at the present-day, so that R̄b ≡ 3Ωb0/4Ωγ0 = 31500Ωbh

2(TCMB/2.7K)−4

and TCMB = 2.726K is the today’s CMB temperature. The redshift zdrag at the
baryon drag epoch is fitted using the Eisenstein and Hu (1998) formula as

zdrag = 1291(Ωmh
2)0.251

1 + 0.659(Ωmh2)0.828 [1 + b1(Ωbh
2)b2 ], (4.17)

where b1 = 0.313(Ωmh
2)−0.419[1 + 0.607(Ωmh

2)0.674] and b2 = 0.238(Ωmh
2)0.223.

For the SDSS dataset, the inverse of the covariance matrix C−1
SDSS is given by

C−1
SDSS =

(
30124 −17227
−17227 86977

)
. (4.18)

The 6dFGS - BAO data (Beutler et al., 2011), contributes to the analysis with
only one point at z = 0.106, so that the χ2 is computed by

χ2
6dFGS =

(
dth − 0.336

0.015

)2

. (4.19)

To complement the analysis, we have included measurements from the Main
Galaxy Sample of Data Release 7 of Sloan Digital Sky Survey (SDSS-MGS)
(Anderson et al., 2014) (rs/DV (0.57) = 0.0732±0.0012), the LOWZ and CMASS
galaxy samples of the Baryon Oscillation Spectroscopic Survey (BOSS) (Ander-
son et al., 2014) (DV /rs(0.32) = 8.47±0.17), the distribution of the LymanForest

2The drag epoch is defined as the time, when the recombination process occurs, at which
baryons are released from the Compton drag of the photons in terms of a weighted integral
over the Thomson scattering.
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in BOSS (BOSS - Lyα) (Font-Ribera et al., 2014) (DA/rs(2.36) = 10.08±0.4) and
BOSS DR12 galaxy sample (DV /rs(0.38) = 1477± 16, DV /rs(0.51) = 1877± 19,
DV /rs(0.61) = 2140± 22).

4.1.3. Growth Rate of LSS
Following the description given in Chapter §2 on perturbation theory and

structure formation, we characterize the growth of the structures by using
the linear structure growth factor D(a), obtained numerically from Eq. (2.52)
(Nesseris et al., 2011; Uzan, 2006; Stabenau and Jain, 2006)

D̈ + 2H(z)Ḋ − 3
2Ωm,0H

2
0 (1 + z)3D = 0.. (2.52)

The observational estimates on the growth rate f(z) can be obtained from
the linear growth factor D(z), where by convention we define the parameter
A(z) ≡ f(z)σ8(z) to constrain cosmological models by minimizing

χ2
G =

n∑
i=1

(A(z)− Aobs(zi))2

σ2
i

, (4.20)

where the subscript G refers to the growth rate measurements, σ8(z) to the RMS
mass fluctuation on spheres of 8Mpch−1 and Aobs(zi) to the observed growth
parameter with measurement error σi, that includes the Alcock-Paczynski effect
3 in redshift-space distortions. Since σ8(z) = σ0

8D(z)/D(0), we adopt σ0
8 as free

parameter in our analysis. The growth parameter data have been obtained from
the following projects: PSCz, 2dF, VIPERS, SDSS, 2MASS, GAMA, WiggleZ
and FastSound galaxy surveys. The Tab. 4.1 displays the complete dataset of
the observed growth parameter and the corresponding references.

In addition, the Supernovae data (SNIa) from the project Union2.1 (Suzuki
et al., 2012) and also information from the Observational Hubble Parameter
Data (OHD) (Meng et al., 2015) have been included to complement our analysis.
The Union 2.1 compilation is part of The Union2.1 Supernova Cosmology
Project (Suzuki et al., 2012), which contains a sample of 833 SNIa, of which
580 pass usability cuts. The luminosity distance is obtained by the relationship
dL(z) = (1 + z)2dA(z) [see Eq. (2.24)], and it is fitted to a cosmological model
by minimizing the χ2 function, that by convenience has been expanded up
quadratic terms (for a detailed description on this method see e.g. Nesseris and
Perivolaropoulos, 2005), such as

χ2
SNIa = A− B2

C (4.21)

3The Alcock-Paczynski (AP) effect consists in the apparent distortion of the clustering
when the distances are derived from a wrong cosmological model. The Alcock-Paczynski test
is a method of determining the geometry of the universe despite this effect, by adjusting the
cosmological model to ensure that angular and radial clustering match constrains.
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Index z Aobs(zi) Refs.
1 0.02 0.360± 0.040 (Hudson and Turnbull, 2012)
2 0.067 0.423± 0.055 (Beutler et al., 2012)
3 0.17 0.510± 0.060 (Percival, 2004b; Song and Percival, 2009)
4 0.18 0.360± 0.090 (Blake, 2013a)
5 0.25 0.351± 0.058 (Samushia, Percival, and Raccanelli, 2012)
6 0.37 0.460± 0.038 (Samushia, Percival, and Raccanelli, 2012)
7 0.38 0.440± 0.060 (Blake et al., 2013b)
8 0.41 0.450± 0.040 (Blake et al., 2011)
9 0.60 0.550± 0.120 (Pezzotta et al., 2017)
10 0.60 0.430± 0.040 (Blake et al., 2011)
11 0.78 0.380± 0.040 (Blake et al., 2011)
12 0.57 0.427± 0.066 (Reid et al., 2012)
13 0.30 0.407± 0.055 (Tojeiro et al., 2012)
14 0.40 0.419± 0.041 (Tojeiro et al., 2012)
15 0.50 0.427± 0.043 (Tojeiro et al., 2012)
16 0.60 0.433± 0.067 (Tojeiro et al., 2012)
17 0.86 0.400± 0.110 (Pezzotta et al., 2017)
18 1,40 0.484± 0.116 (Okumura et al., 2016)

Table 4.1: Summary of the observed growth rate measurements and their corre-
sponding references.

where

A =
580∑
i=1

[µth(zi,Θm
i )− µobs(zi)]2
σ2
µi

,

B =
580∑
i=1

µth(zi,Θm
i )− µobs(zi)
σ2
µi

, (4.22)

C =
580∑
i=1

1
σ2
µi

,

with µ(z) ≡ 5 log10[dL(z)/Mpc] + 25 being the theoretical expectation of the
distance modulus, and we have marginalized over the nuisance parameter µobs.

Regarding the Hubble parameter, it has been used widely in literature
together with other probes to constrain the cosmic growth and expansion
history of the Universe and to test gravity (see e.g. Moresco and Marulli, 2017;
Linder, 2017). In our analysis, the observational Hubble parameter data (OHD)
used to constrain the free parameters of the models under consideration, it
have been obtained by considering that the differential evolution of early type
passive galaxies provides model-independent information about the Hubble
parameter H(z) from direct observations. We used 36 OHD in the redshift range
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0.0708 ≤ z ≤ 2.36, obtained from (Meng et al., 2015), where 26 of them are
deduced from the differential age method, and the remaining 10 belong to the
radial BAO method. Other constraints on the Hubble parameter can be found
in (Moresco, 2015; Moresco et al., 2016). The corresponding χ2 is given by

χ2
H(z)(H0,Θm

i ) =
36∑
i=1

[Hobs(zi)−Hth(zi, H0,Θm
i )]2

σ2
H(zi)

, (4.23)

where Hth(zi, H0,Θm
i ) is the theoretical expectation on the Hubble parameter

at redshift zi. To marginalize over H0, we assume a Gaussian prior distribution,
in such a way the posterior likelihood function LH(Θm

i ) depends only of the free
parameters Θm

i , as

LH(Θm
i ) =

∫
πH(H0)exp

[
−χ2

H(H0,Θm
i )
]
dH0, (4.24)

where

πH(H0) = 1√
2πσH0

exp

−1
2

(
H0 − H̄0

σH0

)2 , (4.25)

is a prior probability function widely used in the literature. Finally, we minimize
χ2
H(z)(Θm

i ) = −2 lnLH(Θm
i ) with respect to the free parameters Θm

i to obtain
the best-fit model.

4.2. Methodology
In order to get the best-fit values of the free parameters for a given dark

energy model, a Bayesian analysis is performed by minimizing the negative
log-likelihood for the vector of parameters Θm

i . Since the likelihood L has a
Gaussian error distribution (Andrae, Schulze-Hartung, and Melchior, 2010), the
minimized χ2 can be expressed as

χ2
min(Θm

i ) = −2 lnLmax(Θm
i ), (4.26)

that by combining the different observational datasets and by considering the
properties of χ2, the final constraint of parameters is obtained from the total
posterior distribution, such as

χ2
min = χ2

CMB + χ2
BAO + χ2

G + χ2
SNIa + χ2

H(z). (4.27)

The uncertainties are computed by using the Fisher matrix formalism, which
is widely used to constrain the parameter space from joint analysis (Albrecht
et al., 2009; Wolz et al., 2012). The coefficients of the Fisher matrix encode the
Gaussian uncertainties of the parameters Θm

i , being computed in terms of the
best-fit χ2

min as

Fij = 1
2
∂2χ2

min

∂Θi∂Θj

, (4.28)
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where Θi and Θj are the set of free parameters in each model. In its extended
form the Fisher matrix is given by

[F ] = 1
2



∂2

∂Θ2
1

∂2

∂Θ1∂Θ2
. . . ∂2

∂Θ1∂Θn
∂2

∂Θ2∂Θ1
∂2

∂Θ2
2

. . . ∂2

∂Θ2∂Θn
. . . .
. . . .
. . . .
∂2

∂Θn∂Θ1
∂2

∂Θn∂Θ2
. . . ∂2

∂Θ2
n


χ2
min(Θ1,Θ2, ...,Θn). (4.29)

On the other hand, the covariance matrix Ccov corresponds to the inverse of the
Fisher matrix, see Eq. (4.30), where its coefficients σi and σj are the uncertainties
related to each parameter Θm

i and Θm
j , with 1σ of statistical confidence. The

uncertainties are obtained as σi =
√
Diag [Ccov]ij.

[Ccov] = [F ]−1 =



σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

. . . .

. . . .

. . . .
σn1 σn2 . . . σ2

n


. (4.30)

After obtaining tight constraints on the set of parameters in each model, we
applied two criteria to discern among them, which model is the most favoured
by the observations. The best-fit results are compared by using the Akaike
information criterion (AIC), (Akaike, 1974) and the Bayesian Information Crite-
rion (BIC)(Schwarz, 1978), both of them allow to compare cosmological models
considering the degrees of freedom, with respect to the observational evidence
and the set of parameters used (Liddle, 2004). The AIC and BIC criteria can
be computed as

AIC = −2 lnLmax + 2k, (4.31)

BIC = −2 lnLmax + k lnN, (4.32)

where Lmax is the maximum likelihood and k is the number of parameters of the
model in consideration. Since the BIC criterion takes into account the number of
data points N used in the fit, it imposes a strict penalty against extra parameters
for any set of data lnN > 2. Thus, the most favoured model corresponds to the
one that minimizes AIC and BIC, that is easy to check by calculating their relative
values among the different models, instead of their absolute values. Therefore
the weight of the evidence can be quantified by ∆AICi = AICi − AICmin and
∆BICi = BICi − BICmin, where the subindex i runs over the models and
AICmin (BICmin) is the lowest value of the corresponding criterion among all
the models (Anderson and Burnham, 2004; Kass and Raftery, 1995). Tabs. 4.2
and 4.3 summarize the convention adopted by each criterion in terms of their
relative difference. In the analysis we have considered a total of N = 639 data
points from independent cosmological probes: CMB (3), BAO (12), G (18),
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SNIa (580), H(z) (36). In next Section the main results obtained for each model
are presented, with a comparative analysis based on the AIC and BIC criteria
that display the hierarchy of the models preferred by the observations given
their phenomenology related to DE.

∆AIC Level of Empirical Support For Model i
0− 2 Substantial
4− 7 Considerably Less
> 10 Essentially None

Table 4.2: ∆AIC criterion.

∆BIC Evidence Against Model i
0− 2 Not Worth More Than A Bare Mention
2− 6 Positive
6− 10 Strong
> 10 Very Strong

Table 4.3: ∆BIC criterion.

4.3. Cosmological models and data analysis
In order to apply the Bayesian analysis, first of all, we calculated the predicted

angular diameter distance in a FLRW metric to compare it with the observations.
The angular diameter distance described in Chapter §2, given by Eq. (2.25),
is only valid for a flat universe; since we are interested in estimating also the
curvature parameter in each model, the general form of Eq. (2.25) is considered
instead, such as for a source at redshift z, the angular diameter distance is given
by

dA(z,Θm
i ) = 3000h−1

(1 + z)
1√
| Ωk |

sin ς
∫ z

0

√
| Ωk |

E(z,Ωi)
dz

 , (4.33)

where h is the dimensionless Hubble parameter and the function sin ς(x) is
defined as sinh(x) if Ωk > 0, sin(x) if Ωk < 0 and x if Ωk = 0 (Hogg, 1999).
Currently, all the evidence about DE comes from measurements of the expansion
rate H(z), providing a detailed description on the expansion history of the
Universe. As discussed in Chapter §2, in a standard FLRW cosmology, the
expansion rate as a function of the redshift H(z) is given by the Friedmann
equation as

E2(z,Ωi) = Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩXe
3
∫ z

0
dz′

1+z′ (1+w(z′))

(4.34)
where E(z,Ωi) ≡ H(z)/H0, H0 is the Hubble parameter today, and the rela-
tionship between redshift and scale factor is given by 1 + z = a−1. As already
introduced, Ωi in the equation (4.34) corresponds to the today’s energy density
normalised to the critical density ρcri = 3H2

0/8πG, for radiation (Ωr), matter
(Ωm), curvature (Ωk) and DE (ΩX). The EoS of DE is characterised by the ratio
pressure to energy-density w(a) = p(a)/ρ(a), what allows to classify the models
into two groups: one with constant energy density and the other with dynamic
energy density. For all models studied, the density parameter of curvature Ωk

is free, and each one of them is described in terms of its vector of parameters
Θm
i = {θi,Ωi}, where θi = {h, σ0

8} while Ωi = {Ωr,Ωm,Ωk,Ωx} represents the
components of the cosmic fluid.
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Since the Hubble parameter H(z) provides a natural description about of
kinematics of the cosmic expansion, it is possible to characterize whether the
Universe is currently accelerating or decelerating, by introducing the deceleration
parameter q(z) ≡ −ä(z)/a(z)H(z)2. In particular, if q(z) > 0, it means ä(z) < 0,
then the expansion decelerate as expected due to the gravitational collapse.
The information derived from the dynamics of the expansion history is quite
useful when expressed by means of the deceleration parameter, since it helps to
clarify the issues related to the cosmological constant and to constrain, from
a phenomenological point of view, the possible deviations from the standard
ΛCDM model. In a general FLRW cosmology the deceleration has the following
form

q(z) = −1 + (1 + z)
E(z)

dE(z)
dz

, (4.35)

it depends explicitly on the cosmological model studied and its matter-energy
content through E(z). In general, if ΩX 6= 0 is large enough, i.e.ΩX > Ωm,
then q(z) < 0 and ä(z) > 0, it corresponds to an accelerated expansion as
shown by observational data (Perlmutter et al., 1999; Riess et al., 1998), with
a cosmological constant different from zero. If the acceleration is driven by a
perfect fluid with nonlinear equation of state, it is important to identify the signs
that determine the dynamics of the energy density of the fluid; this is achieved
by considering the EoS parameter, that can be written as (Saini et al., 2000)

w(z) =
−1 + 2(1+z)

3
d lnH(z)

dz

1− Ωm(1+z)3

E2(z)

. (4.36)

Clearly, the EoS w(z) has a dynamical nature given its dependence on redshift,
as mentioned earlier, depending on its value the models can be classified as
quintessence if −1 < w(z) < −1/3 or phantom if w(z) < −1. In quintessence
models, the accelerated expansion related to DE implies a negative pressure,
whose simplest case is given by cosmological constant so that w(z) = −1.
In phantom models, the Einstein’s field equations are modified and the new
equations combined with the assumption of homogeneity and isotropy lead to
a generalized Friedman equation, but w(z) can not be interpreted as a perfect
fluid. In this context, the parameter w(z) determines not only the gravitational
properties of DE but also its evolution.

4.3.1. ΛCDM model
As reference, we consider the standard baseline ΛCDM model. As it is well

known, in this scenario DE is consistent with a cosmological constant Λ with
EoS w = −1 (see Fig. 4.9). The dimensionless Hubble parameter E2(z,Θ) is
given by

E2(z,Θ) = Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩX , (4.37)

where Ωm and ΩX = ΩΛ = 1 − Ωm − Ωk − Ωr are the density parameters for
matter and DE respectively and Ωr corresponds to the radiation parameter. The
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Figure 4.1: 2D contour plots at 1σ and 2σ levels and 1D posterior distributions,
with CMB+BAO+G (Gray) and CMB+BAO+SNIa+G+Hz (Black) for the ΛCDM

model.

vector of parameters is given by ΘΛCDM
i = {h, σ8,Ωm,Ωk} and the corresponding

best-fit values after minimizing the χ2 are shown in Tab. 4.4 for two cases, a)
by combining CMB, BAO and the growth factor data (CMB+BAO+G); b) by
combining CMB, BAO, SNIa and OHD data (CMB+BAO+G+SNIa+Hz).

In Tab. 4.4 we present a summary of the best-fit values for the ΛCDM
model, including the reduced χ2 that is defined as χ2

red = χ2
min/ν, being ν the

number of degrees of freedom such that ν ≡ N − k with N = 639 and k is the
number of free parameter in the model. As shown in Tab. 4.4, we find that the
RMS mass fluctuations σ8 = 0.744±0.021 with 68% confidence level. This result
is compatible with the one obtained from Planck Collaboration et al. (2018c),
which report a lower uncertainty. Additionally the best-fit value for the DE
density normalised to the critical density today is ΩΛ = 0.687± 0.009 at 68%,
that also agrees with the limits reported by Planck 2018 (ΩΛ = 0.6847± 0.0073
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Θi CMB+BAO+G CMB+BAO+G+SNIa+Hz
h 0.658± 0.022 0.6576± 0.0068
Ωm 0.339± 0.028 0.3126± 0.0081
Ωk 0.004± 0.018 −0.0054± 0.0035
σ8 0.733± 0.022 0.744± 0.019
χ2
min 28.894 621.624
χ2
red 0.046 0.980

Table 4.4: Summary of the best-fit values for the ΛCDM model.

at 68% using TT,TE,EE+LowE+lensing)(Planck Collaboration et al., 2018c).
Moreover, the analysis gives a positive cosmological constant, whose value
in physical units corresponds to Λc−2 = (1.517 ± 0.009) × 10−35s−2, which
agrees with measurements obtained by the High-Z Supernova Team and the
Supernova Cosmology Project (Perlmutter et al., 1999; Carmeli and Kuzmenko,
2001). As complement we computed the derived parameters for this model as
shown in Tab. 4.11, while Fig. 4.1 displays the 2D confident contours at 1σ
and 2σ levels and 1D posterior distributions with CMB+BAO+G (gray) and
CMB+BAO+SNIa+G+Hz (black). From Tab. 4.4 it is worth noting the impact
of adding the SNIa and Hz datasets to CMB + BAO + G, which evidently
improves the constraints on the parameters.

4.3.2. wCDM model
A natural extension of the standard model is given by considering an EoS

constant but in theory different from w = −1. In this case the dimensionless
Hubble parameter E2(z,Θ) for a universe with curvature reads as

E2(z,Θ) = Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩX(1 + z)3(1+w),(4.38)

where ΩX = 1−Ωm−Ωk−Ωr. For this model the set of free parameters is given by
ΘwCDM
i = {h, σ8,Ωk,Ωm, w}, and the best-fit values after marginalizing over

are displayed in Tab. 4.5. Fig. 4.2 shows the 2D contour plots at 1σ and 2σ
confidence levels and the 1D posterior distribution using CMB+BAO+G (gray)
and CMB+BAO+SNIa+G+Hz (magenta) for the wCDM model. From the
contours, it can be appreciated that the ΛCDM model, w = −1, is allowed at
1σ with CMB+BAO+G and combining all datasets, and it is consistent with a
cosmological constant (see Tab. 4.5). The result obtained by Shi, Huang, and
Lu (2012), w = −0.990± 0.041, is consistent with our results within the errors.
The constraints by (Planck Collaboration et al., 2018c) for the wCDM model
gives w0 = −1.03± 0.03, being also in agreement with our marginalization at
1σ and 2σ. From Tab. 4.5, the EoS corresponds to a quintessence model when
used CMB+BAO+G (see Fig. 4.9) and it has a phantom behaviour when SNIa
and Hz are added.
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Figure 4.2: 2D contour plots at 1σ and 2σ levels and 1D posterior distributions, with
CMB+BAO+G (Gray) and CMB+BAO+SNIa+G+Hz (Magenta) for the wCDM

model.

4.3.3. Chevalier-Polarski-Linder model
The Chevalier-Polarski-Linder (CPL) parametrization corresponds to an

extension of the standard scenario by generalizing the EoS of DE considering w
as a linear function of the scale factor, or equivalently of the inverse of redshift,
(Chevallier and Polarski, 2001; Linder, 2003), satisfying

w(z) = w0 + w1
z

1 + z
, (4.39)

where w0 and w1 are free parameters to be fitted. The dimensionless Hubble
parameter E(z) for the CPL parametrization is written as

E2(z,Θ) = Ωr(1 + z)4 + Ωk(1 + z)2 + Ωm(1 + z)3 + ΩXX(z), (4.40)
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Θi CMB+BAO+G CMB+BAO+G+SNIa+Hz
h 0.606± 0.083 0.676± 0.011
Ωm 0.341± 0.026 0.3054± 0.0087
Ωk −0.009± 0.029 −0.0048± 0.0033
w −0.86± 0.21 −1.070± 0.036
σ8 0.747± 0.037 0.738± 0.020
χ2
min 39.366 629.191
χ2
red 0.062 0.990

Table 4.5: Summary of the best-fit values for the wCDM model.

being ΩX = (1− Ωk − Ωm − Ωr) and X(z) = (1 + z)3(1+w0+w1) exp
[
−3w1z

1+z

]
. The

vector of free parameters is given by ΘCPL
i = {h, σ8,Ωk,Ωm, w0, w1} and the

corresponding best-fit values obtained from the observational data are shown in
Tab. 4.6.

Θi CMB+BAO+G CMB+BAO+G+SNIa+Hz
h 0.57± 0.11 0.678± 0.011
Ωm 0.306± 0.079 0.303± 0.010
Ωk −0.025± 0.065 −0.0054± 0.0034
w1 0.57± 2.79 0.02± 0.53
w0 −0.92± 0.89 −1.091± 0.092
σ8 0.777± 0.034 0.735± 0.020
χ2
min 27.353 616.376
χ2
red 0.043 0.973

Table 4.6: Summary of the best-fit values for the CPL model.

The confidence contour plots at 1σ and 2σ levels and the posterior distribu-
tions for the CPL parametrization are shown in Fig. 4.3, for the joint analysis
of CMB+BAO+G (Gray) and CMB+BAO+SNIa+G+Hz (Purple). At 1σ of
confidence using all cosmological data, the constraints on h, Ωm and σ8 are
compatible with the values obtained by Shi, Huang, and Lu (2012) and Planck
Collaboration et al. (2018c), however, there is a clear degeneracy between the
curvature parameter Ωk and the equation of state w0. The final results by Planck
Collaboration et al. (2018c) combining only CMB+SNe+BAO information gives
w0 = −0.961± 0.077, which is inside the statistical confidence of our estimates.
Since the CPL model is reduced to the ΛCDM one when w0 = −1 and wa = 0,
it is possible to appreciate that a cosmological constant is not discarded from
this analysis as shown in Fig. 4.3. The set of derived physical parameters for
this model is displayed in Tab. 4.11, being in general very close to the reference
ΛCDM model. From Tab. 4.6, the EoS corresponds to a quintessence model for
CMB+BAO+G and phantom when the full dataset is used. On the other hand,
in Fig. 4.9 it can be seen that the evolution of EoS with CMB+BAO+G does
not cross the phantom line at late times.
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Figure 4.3: 2D contour plots at 1σ and 2σ confidence levels and 1D posterior
distributions, with CMB+BAO+G (Gray) and CMB+BAO+SNIa+G+Hz (Purple)

for CPL model.

4.3.4. Interacting Dark Energy model
In interacting dark energy (IDE) scenarios there is a coupling between the DE

density ρx with the DM density ρm that could alleviate the cosmic coincidence
problem. A general approach is to introduce an interacting term in the right
side of the continuity equation (Amendola, 2000; Caldera-Cabral, Maartens, and
Ureña-López, 2009; Cai and Wang, 2005; Dalal et al., 2001; Guo, Ohta, and
Tsujikawa, 2007), such as

ρ̇m + 3Hρm = δHρm,

ρ̇x + 3H (1 + wx) ρx = −δHρm, (4.41)

where wx is the equation of state of DE and δ denotes the term of interaction to
be fitted with the observations. Thus, the dimensionless Hubble parameter for
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Figure 4.4: 2D contour plots at 1σ and 2σ confidence levels and 1D posterior
distributions, with CMB+BAO+G (Gray) and CMB+BAO+SNIa+G+Hz (Orange)

for the IDE model.

this interacting model is described by

E2(z,Θ) = Ωr(1 + z)4 + Ωk(1 + z)2 + ΩmΨ(z) + ΩX(1 + z)3(1+wx), (4.42)

with ΩX = (1− Ωm − Ωk − Ωr) and

Ψ(z) =

(
δ(1 + z)3(1+wx) + 3wx(1 + z)3−δ

)
δ + 3wx

. (4.43)

This model is characterised by six parameters so that ΘIDE
i = {h, σ8,Ωk,Ωm, wx, δ},

their best-fit values are shown in Tab. 4.7. Fig. 4.4 shows the contour plots at
1σ and 2σ confidence level and the posterior distributions for the IDE model
using data from CMB+BAO+G (gray) and from CMB+BAO+SNIa+G+Hz
(orange). From this model, the ΛCDM scenario can be recovered when wx = −1
and δ = 0, however, the constraints obtained show that the ΛCDM model is
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ruled out at least 1σ level in our analysis with all datasets, as it can be seen
in Tab. 4.7. Furthermore, if the coupling term in Eq. (4.41) takes a negative
value so that δ < 0, thus there is a transfer from DM to DE, whereas a positive
coupling, i.e. δ > 0, implies a transfer from DE to DM, the latter case is favoured
according to the constraints obtained in this work. According to the classification
of the EoS of DE, the analysis points to a phantom behaviour wx < -1 when the
CMB+BAO+G dataset is used. A similar result has been previously reported by
Shi, Huang, and Lu (2012), with an agreement at 1σ confidence level. However,
with the joint analysis of CMB+BAO+G+SNIa+Hz data the central values of
wx, as shown in Tab. 4.7, point to a quintessence behaviour. Indeed, in Fig. 4.9 it
can be appreciated the evolution of EoS with CMB+BAO+G, which crosses the
limit of phantom models at z ∼ 0.64, making a transition from a quintessential
behaviour at early times to a phantom behaviour at late times.

Θi CMB+BAO+G CMB+BAO+G+SNIa+Hz
h 0.87± 0.46 0.688± 0.012
Ωm 0.317± 0.026 0.276± 0.014
Ωk 0.024± 0.046 −0.0183± 0.0068
wx −1.09± 0.38 −0.976± 0.057
δ −0.020± 0.015 −0.0192± 0.0093
σ8 0.737± 0.045 0.769± 0.027
χ2
min 28.669 612.756
χ2
red 0.045 0.968

Table 4.7: Summary of the best-fit values for the IDE model.

4.3.5. Early Dark Energy model
In early dark energy (EDE) scenarios, the energy density of DE is assumed

to be significant at high redshift, unlike in a cosmological constant scenario,
where the fraction of DE is negligible at high redshift. This kind of models are
attractive since they can alleviate the current Hubble tension, as it has been
stated recently by Poulin et al. (2019). Moreover this phenomenon is allowed if
the DE tracks the dynamics of the background fluid density (Steinhardt, Wang,
and Zlatev, 1999; Wetterich, 1988), what could also ameliorate the coincidence
problem of the cosmological constant. A relevant quantity in the EDE model is
the Ωe parameter, which measures the amount of dark energy present at early
epochs. We adopt a general EDE model proposed by (Doran and Robbers, 2006)
adding a curvature term, what leads to the dimensionless Hubble parameter

E2(z,Θ) = Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2

1− ΩX

, (4.44)

with ΩX given by

ΩX = ΩX0 − Ωe [1− (1 + z)3w0 ]
ΩX0 + f(z) + Ωe

[
1− (1 + z)3w0

]
(4.45)
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Figure 4.5: 2D contour plots at 1σ and 2σ levels and the posterior distributions,
with CMB+BAO+G (Gray) and CMB+BAO+SNIa+G+Hz (Blue) for EDE model.

and

f(z) = Ωm(1 + z)−3w0 + Ωr(1 + z)−3w0+1 + Ωk(1 + z)−3w0−1, (4.46)

such that ΩX0 = 1−Ωm−Ωk−Ωr is the current DE density. This model has five
free parameters ΘEDE

i = {h, σ8,Ωk,Ωm,Ωe, w0}, whose best-fit values are shown
in Tab. 4.8. After applied the Bayesian analysis with the full dataset we found
that Ωe = 0.061±0.037, which is in agreement at 2σ confidence level with Doran
and Robbers (2006), who reported Ωe < 0.04 at 95% confidence level by using a
combination of data from WMAP+VSA+CBI+BOOMERANG+SDSS+SNIa,
and it is also in agreement with Pettorino, Amendola, and Wetterich (2013),
reporting a constraint of Ωe < 0.015 at 95%. From Fig. 4.5 it is clear that
the ΛCDM model (Ωe = 0, w0 = −1) is favoured at least at 2σ confidence
level by the join analysis of the full dataset, but it is out of the confidence
region for the combination CMB+BAO+G. In addition, some tensions are found
between h and the rest of parameters, in particular when SNIa+Hz data are
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included in the χ2 thus significant deviations appear in the limits of the posterior
distribution. Tab. 4.8 shows that the EoS (w0) is quintessence for CMB+BAO+G
and phantom by adding SNIa+Hz. Fig. 4.9 displays the evolution of the EoS
with CMB+BAO+G which crosses the phantom line at z ∼ 0.49, passing from
a phantom behaviour at early times to a quintessential behaviour at late times.

Θi CMB+BAO+G CMB+BAO+G+SNIa+Hz
h 0.359± 0.029 0.683± 0.011
Ωm 0.338± 0.026 0.275± 0.018
Ωk −0.117± 0.012 −0.0144± 0.0064
w0 −0.5587± 0.0091 −1.039± 0.043
Ωe −0.44± 0.10 0.061± 0.037
σ8 0.752± 0.033 0.771± 0.030
χ2
min 30.912 613.638
χ2
red 0.049 0.969

Table 4.8: Summary of the best-fit values for the EDE model.

4.3.6. History of the expansion
After constraining the main set of parameters of each model, it is possible

to reconstruct the history of the expansion as well as the main features of
the corresponding cosmology as a function of the redshift. Fig. 4.6 shows the
evolution of the Hubble parameter H(z) as a function of redshift, as evaluated
by considering the models with the central values of the posterior distribution
obtained using CMB+BAO+G+SNIa+Hz data. The relative differences in the
lower panel of Fig. 4.6 have been computed with respect to the ΛCDM model;
at high redshift z > 1 the dynamical DE models have a similar behaviour with
deviations smaller than 2%, so that the wCDM mimics the CPL one, whereas the
EDE model reproduces the ΛCDM evolution with negligible deviations at these
redshifts. The IDE model behaves as the ΛCDM one with almost a constant
deviation smaller than 1%, at z > 1. On the contrary, at z < 1, all dynamical
DE models deviate from ΛCDM , in particular at z ≈ 0, wCDM and CPL
models differ by about 3%, the EDE model by 4% and the IDE one beyond this
value.

Model χ2
min Parameters

ΛCDM 25.71 h = 0.7497, Ωm=0.3202, Ωk=-0.1462
wCDM 15.29 h = 0.6133, Ωm=0.3067, Ωk=-0.6021, w=-0.6548
CPL 13.62 h = 1.9489, Ωm=0.2829, Ωk=-0.4470, wa=0.8145, w0=-0.8927
IDE 15.29 h = 0.6245, Ωm=0.3064, Ωk=-0.6024, wx=-0.6554, δ=-0.0027
EDE 15.43 h = 0.3885, Ωm=0.3419, Ωk=-0.2887, w0=-0.4582, Ωe= -0.5558

Table 4.9: Best-fit values obtained from the Bayesian analysis using BAO and growth
factor datasets for each model considered in this work.
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Figure 4.6: The Hubble parameter H(z) as a function of redshift. The shaded region
in the lower panel represents a 3% deviation around the ΛCDM model prediction.
The best-fit parameters from CMB+BAO+G+SNIa+Hz constraints have been used

for each model.

Fig. 4.7 shows the behaviour of the deceleration parameter q(z) as a function
of redshift using the BAO and Growth factor datasets; the central values of
the free parameters are shown in Tab. 4.9. As expected, the models studied
display q(z) < 0 at late times and q(z) > 0 at earlier epoch, it means that the
history of the expansion is slowed down in the past and accelerated today. All
models have a transition, at redshift zt, between the two periods, however, the
models that include a dynamical DE term display an interesting behaviour of
slowing down of acceleration at low redshift, i.e., late times, when only BAO+G
datasets are used. This effect have been reported previously by Cárdenas, Bernal,
and Bonilla (2013), Magaña, Cárdenas, and Motta (2014), Wang et al. (2016),
Magaña et al. (2017), and Zhang and Xia (2018), and it can be characterised
through the change of sign of the jerk parameter j(z), that can be interpreted
as the slope at each point of the q(z) function indicating a change in the ac-
celeration (Bonilla and Castillo, 2018), so that, in CPL: j(zlow) → 0, when
zlow ∼ 0.25; IDE: j(zlow) → 0, when zlow ∼ −0.09; EDE: j(zlow) → 0, when
zlow ∼ 0.24. This result is consistent with the one presented by Barrow, Bean,
and Magueijo (2000), who raise the possibility of a scenario consistent with
the current accelerating Universe and does not imply an accelerated eternal
expansion. For an extensive analysis exploring this possibility see e.g. Bolotin,
Erokhin, and Lemets (2012). This can be also related to a clear behaviour of a
dynamical DE at low redshift in these models with variation of the density of
DE over time.

Fig. 4.8 shows the distance-redshift relation Dv(z)/rs using the best-fit values
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Figure 4.7: The deceleration parameter as a function of redshift using BAO and
growth factor datasets. The transition from a decelerated to an accelerated phase
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for CPL; zt ≈ 1.07, q0 = −0.95 for IDE and zt ≈ 0.84, q0 = −0.06 for EDE. Note
the behaviour of the deceleration parameter to later times for dynamical DE models

(CPL, IDE, EDE).

obtained from BAO+CMB+G measurements for each model considered in this
analysis. The differences have been quantified by means of the exclusion analysis
since all models present a high confidence with respect to the measurements.
By using the same posterior parameters, in Fig. 4.9, we show the evolution of
the equation of state w(z) as a function of redshift; in fact, the IDE and EDE
models are the only ones that cross the phantom limit, making a transition at
z ∼ 0.57 (IDE) and at z ∼ 0.77 (EDE). The other models behave as expected,
following the corresponding parametrization of the EoS.

The measurements of the growth parameter A(z) have been used to constrain
independently the amplitude of density fluctuations σ8. This method allows
to break the Ωm − σ8 degeneracy, by means of Eq. (2.52) to thereby achieve a
good independent constraint. Fig. 4.10 displays the growth rate measurements
and the theoretical prediction by using the best fit values from BAO+CMB+G.
Fig. 4.11 shows the evolution of the normalised growth factor computed by using
Eq. (2.52) for each model considered in our research. Deviations around 3%
with respect to ΛCDM can be appreciated in the lower panel, where all models
are in well agreement at low redshift. In particular, the deviations increase
above 1% from redshift 0.5 at all redshifts considered, where the transition to
an accelerated stage occurs, i.e., q(z) < 0. As the growth factor evolves as a
function of redshift, the wCDM and CPL models remain close to ΛCDM. Finally,
in Tab. 4.11 we report the main derived parameters from the constraints in this
work, by considering the full observational data samples.
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Figure 4.8: The distance-redshift relation using best-fit values for BAO+CMB+G
and BAO measurements Dv(z)/rs for each model considered in this analysis.

4.3.7. Exclusion analysis
In order to discern the most favoured model in terms of its statistical

confidence and the number of parameters used in the Bayesian analysis, we
compute the AIC/BIC criteria for each model. The exclusion criteria have
been quantified by the absolute and relative differences of the AIC/BIC weights.
Tab. 4.10 shows the values of ∆AIC and ∆BIC for DE models from the full
cosmological tests. The IDE model gives the lowest value of ∆AIC and ∆BIC,
therefore, we conclude this is the most favoured model by the observational
data employed, as it can also inferred from Tab. 4.11. The ∆AIC and ∆BIC
weights for the other models are measured with respect to IDE one. Following
Shi, Huang, and Lu (2012), the DE models can be classified in two groups:
1 ) models that show a substantial level of empirical support to IDE, EDE
and positive evidence for ΛCDM ; 2 ) models with a considerably low level of
empirical support and positive evidence against CPL and wCDM models.

Model k χ2
red AIC ∆AIC BIC ∆BIC

ΛCDM 4 0.980 631.624 6.868 653.924 2.409
wCDM 5 0.990 637.191 12.435 655.031 3.516
CPL 6 0.973 628.376 3.620 655.135 3.620
IDE 6 0.968 624.756 0.000 651.515 0.000
EDE 6 0.969 625.638 0.882 652.397 0.882

Table 4.10: Comparison of the different cosmological models with the ∆AIC y
∆BIC criteria using the joint analysis of CMB+BAO+G+SNIa+Hz data, where
N = 639 and χ2

red = χ2
min/ν, being ν the number of degrees of freedom such that

ν ≡ N − k with k the number of free parameter in each model.
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Figure 4.9: Evolution of the equation of state w(z) as a function of redshift for
ΛCDM , wCDM, CPL, IDE (z ∼ 0.57) and EDE (z ∼ 0.77) models, where the redshift
between parenthesis corresponds to the transition in the phantom line. The color
lines correspond to the predictions for each model using the best-fit values from the

BAO+CMB+G dataset.
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Figure 4.10: Growth rate measurements Aobs(zi) and theoretical expectations for
different cosmological models using the fit values for BAO+CMB+G.

4.4. Discussion
In this Chapter we have investigated different dark energy models by con-

straining its main set of cosmological parameters, including a comparison between
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prediction. Best-fit parameters from CMB+BAO+G+SNIa+Hz constraints have been

use for each model.

them through the best-fit to observational data.

In particular, the cosmic expansion history of dynamical dark energy mod-
els has been revisited using a Bayesian analysis, considering the most recent
information from CMB and LSS. The cosmological models studied (ΛCDM ,
wCDM, CPL, IDE and EDE) have been evaluated by a robust exclusion analysis
in terms of their confidence with the observational data and the number of
degree of freedom. We studied the cosmic expansion through the deceleration
parameter q(z) with data from LSS, using BAO distance, ratio scale rs/Dv(z)
and the growth factor, providing new support to some results stated in previous
works (Bonilla and Castillo, 2018), such as the behaviour of the deceleration
parameter q(z) at late times (zlow < 0.5). Our findings show a change in the
sign of the jerk parameter j(z), from positive to negative values, which is more
evident in the dynamical dark energy models that indicate a possible decelerated
stage as shown by Fig. 4.7. This effect raises the possibility that an accelerated
expansion does not imply an eternal accelerated expansion, even in presence of
DE. This particular behaviour is present only in models with DE density varying
with time, and it is possibly due to the dynamics of the DE density which in
principle can be a way to distinguish it from a cosmological constant.
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Based on the best fit parameters obtained from the χ2 minimization, the
models have been classified following the information criteria provided by ∆AIC
and ∆BIC, giving a favorability weight of the models by the data employed.
The exclusion analysis shows that the IDE model is preferred by the Bayesian
and Akaike criterion, but although ΛCDM , wCDM , EDE and CPL models are
less favoured, they are not discarded. In fact, the evolution of the normalised
growth factor and Hubble parameter show deviations up 3% at high redshift.
The deviations at low z are very interesting, since models with interactions offer
a natural alternative to alleviate some of the current tensions in cosmology such
as those of H0 with different observational tests.
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5
Constraints on f (R) gravity with and with-
out massive neutrinos from redshift-space
distortions

In the previous Chapter we explored different cosmological models, all of
them including DE and DM components, following the dynamics derived
from the general relativity (GR) framework solving the corresponding
modified Friedmann equations. In this Chapter we go one step beyond,

by considering models where the theory of gravity is a modification of GR,
keeping as usual the standard model ΛCDM as reference.

From first principles it is well known that a theory of gravity is needed to
describe the spatial properties and dynamics of the LSS of the Universe. The
observational data collected for several decades provide strong support to the
concordance ΛCDM model, which yields a consistent description of the main
properties of the LSS as already discussed in the previous Chapters (see e.g.
Tonry et al., 2003; Bel et al., 2014; Hamana et al., 2015; Planck Collaboration
et al., 2016a; Planck Collaboration et al., 2016b; Alam et al., 2017; Alsing,
Heavens, and Jaffe, 2017; Abbott et al., 2018; Planck Collaboration et al.,
2018b; Pacaud et al., 2018; Joudaki et al., 2018; Di Valentino et al., 2018;
Jones et al., 2018). However, since cosmological observations have entered in
an unprecedented precision era, one of the current aims is to test some of the
most fundamental assumptions of the concordance model of the Universe. In
this sense, the ΛCDM model assumes: GR as the theory describing gravitational
interactions at large scales, the standard model of particles and the cosmological
principle. Moreover, in this framework, the Universe is currently dominated by
DE, in the form of a cosmological constant, responsible for the late-time cosmic
acceleration (Riess et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999),
and by a CDM component that drives the formation and evolution of cosmic
structures.



74Chapter 5. Constraints on f(R) gravity with and without massive neutrinos
from redshift-space distortions

Recently, several shortcomings have been found, like a possible critical ten-
sion in the ΛCDM scenario consisting in the discrepancy observed in H0 and
σ8 measurements when different probes at high and low redshifts are used (see
Planck Collaboration et al., 2016c; Riess et al., 2016; Bernal, Verde, and Riess,
2016; Planck Collaboration et al., 2018b). This has motivated the interest on
theoretical models beyond GR. Between them, models based on f(R) gravity are
the favourite ones because of their generality and rich phenomenology (Sotiriou
and Faraoni, 2010; De Felice and Tsujikawa, 2010). Moreover, modified gravity
(MG) models represent one of the most viable alternatives to explain cosmic
acceleration (for a review see e.g. Joyce, Lombriser, and Schmidt, 2016), that
require satisfying simultaneously solar system constraints and to be consistent
with the measured accelerated cosmic expansion and large-scale constraints (see
e.g. Uzan, 2011; Will, 2014; Pezzotta et al., 2017; Collett et al., 2018, and
references therein).

An extra motivation to study MG models, is given by the fact that massive
neutrinos, the only (hot) dark matter candidates we actually know to exist,
can affect these observables and have several cosmological implications (e.g.
Lesgourgues and Pastor, 2006; Wong, 2008; Wong, 2011; Marulli et al., 2011;
Costanzi et al., 2014; Battye and Moss, 2014; Villaescusa-Navarro et al., 2014;
Enqvist et al., 2015; Roncarelli, Carbone, and Moscardini, 2015; Zennaro et al.,
2018; Poulin et al., 2018). As has been recently shown in literature, exists a
strong observational degeneracy between some modified gravity (MG) models
and the total neutrino mass (Motohashi, Starobinsky, and Yokoyama, 2013; He,
2013; Baldi et al., 2014; Giocoli, Baldi, and Moscardini, 2018), giving rise to an
intrinsic limitation of the discriminating power of many standard cosmological
statistics (Peel et al., 2018a; Hagstotz et al., 2018).

Considering the impact of MG and massive neutrinos in the clustering, a
powerful cosmological test to discriminate among these scenarios is provided by
the redshift-space galaxy clustering on different scales (see e.g. Arnouts et al.,
1999; Blake and Glazebrook, 2003; Percival et al., 2007; Guzzo et al., 2008;
Blake et al., 2011; Marulli, Baldi, and Moscardini, 2012; Marulli et al., 2012; de
la Torre et al., 2013; Beutler et al., 2014; Alam et al., 2017; Sánchez et al., 2017;
Satpathy et al., 2017; Pezzotta et al., 2017). In this context, the present Chapter
is based on our paper (García-Farieta et al., 2019), where we investigated the
spatial properties of the LSS of the Universe focusing on models derived from the
Hu and Sawicki (2007) f(R) gravity. The RSD have been used as cosmological
test since it is well known that the large-scale velocity field is more sensitive to
modifications of gravity as compared to the matter density distribution (Jennings
et al., 2012) and it can increase the possible signal associated with a deviation
from GR. In this sense, recently some kinematic information encoded by the
velocity power spectrum and by the velocity dispersion around massive clusters
have been extracted from a new suite of MG cosmological simulations – the
DUSTGRAIN-pathfinder simulations (Giocoli, Baldi, and Moscardini, 2018) –
in order to discuss and possibly break the f(R)-massive neutrino degeneracy
(Hagstotz et al., 2019). Here, we investigate the information gain coming from
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14

one extra scalar degree of freedom with respect to GR.
The absence of a kinetic term for the scalar in the ac-
tion (54) or in eq. (56) should not mislead us to think
that this degree of freedom does not carry dynamics.
As can be seen by eq. (57), φ is dynamically related to
the matter fields and, therefore, it is a dynamical de-
gree of freedom. Of course, one should also not fail to
mention that eq. (56) does constrain the dynamics of φ.
In this sense metric f(R) gravity and ω0 = 0 Brans–
Dicke theory differs from the general Brans–Dicke theo-
ries and constitutes a special case. On the other hand,
in the ω0 = −3/2 case which corresponds to Palatini
f(R) gravity, the scalar φ appears to have dynamics in
the action (66) or in eq. (68). However, once again this is
misleading since, as is clear from eq. (69), φ is in this case
algebraically related to the matter and, therefore, carries
no dynamics of its own [indeed the field eqs. (67) and (69)
could be combined to give eq. (28), eliminating φ com-
pletely]. As a remark, let us state that the equivalence
between Palatini f(R) gravity and ω0 = −3/2 Brans–
Dicke theory and the clarifications just made highlight
two issues already mentioned: the fact that Palatini f(R)
gravity is a metric theory according to the definition of
(Will, 1981), and the fact that the independent connec-
tion is actually some sort of auxiliary field.

The fact that the dynamics of φ are not transparent at
the level of the action in both cases should not come as
a big surprise: φ is coupled to the derivatives of the met-
ric (through the coupling with R) and, therefore, partial
integrations to “free” δφ or δgµν during the variation are
bound to generate dynamical terms even if they are not

initially present in the action. The ω0 = −3/2 case is
even more intricate because the dynamical terms gener-
ated through this procedure exactly cancel the existing
one in the action.

We already saw an example of how different represen-
tations of the theory can highlight some of its charac-
teristics and be very useful for our understanding of it.
The equivalence between f(R) gravity and Brans–Dicke
theory will turn out to be very useful in the forthcoming
sections.

Until now we have not discussed any possible equiva-
lence between Brans–Dicke theory and metric-affine f(R)
gravity. However, it is quite straightforward to see that
there cannot be any. Metric-affine f(R) gravity is not a
metric theory and, consequently, it can not be cast into
the form of one, such as Brans–Dicke theory. For the
sake of clarity, let us state that one could still start from
the action (30) and follow the steps of the previous sec-
tion to bring its gravitational part into the form of the
action (66). However, the matter action would have an
explicit dependence from the connection. Additionally,
one would not be able to use eq. (27) to eliminate R in
favour of R since this only holds in Palatini f(R) gravity.

In conclusion, metric-affine f(R) gravity is the most
general case of f(R) gravity. Imposing further assump-
tions can lead to both metric or Palatini f(R) gravity,
which can be cast into the form of ω0 = 0 and ω0 = −3/2
Brans–Dicke theories with a potential. In both cases, re-
stricting the functional form of the action leads to GR.
These results are summarized in the schematic diagram
of Fig. 1.
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D. Why f(R) gravity then?

Since f(R) gravity in both the metric and the Palatini
formalisms can acquire a Brans–Dicke theory represen-

tation, one might be led to ask two questions: first, why
should we consider the f(R) representation and not just

Figure 5.1: Classification of f(R) theories of gravity and the assumptions needed to
arrive to the various versions of f(R) gravity and GR. Taken from (Sotiriou, 2006).

the large-scale velocity field through the redshift-space distribution of biased
tracers, such as CDM haloes expected to host galaxies and galaxy clusters. In the
following Sections, we present the analysis of the real-space and redshift-space
clustering properties of CDM halo catalogues extracted from the DUSTGRAIN-
pathfinder simulations, with the aim of exploring the possible degeneracies
introduced by massive neutrinos, by constraining bσ8 and fσ8 from the multipole
moments of the 2PCF.

5.1. Modified gravity models
Among the proposed extensions of GR, we consider the one based on the

following modified Einstein-Hilbert action:

S =
∫

d4x
√
−g

(
R + f(R)

16πG + Lm
)
, (5.1)

where R is the Ricci scalar, G is the Newton’s gravitational constant, g is the
determinant of the metric tensor gµν , and Lm is the Lagrangian density of all
matter fields1. Fig. 5.1 shows a short classification of f(R) theories of gravity
and the assumptions needed to arrive to different versions of f(R) gravity and
GR. For a general f(R) model, by considering a spatially flat FLRW universe
with metric ds2 = −dt2 + a2(t)dx2 and varying the above action with respect to
gµν one can get the general form of the modified Einstein field equations

Gµν + fRRµν − gµν
(1

2f(R)−�fR
)
−∇µ∇νfR = 8πGTm

µν , (5.2)

where Rµν and Gµν are the Ricci tensor and Einstein tensor respectively,
while ∇µ denotes the covariant derivative, � = ∇µ∇µ the d’Alambertian, Tmµν

1We use natural units c = 1. The Greek indices, µ and ν, run over 0, 1, 2, 3.
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the energy-momentum tensor for matter and fR ≡ df(R)/dR is the so-called
scalaron field. The amplitude of the latter quantity determines the deviation
from GR, so that a large |fR| means a strong deviation. The corresponding
modified Friedmann equations are obtained by following the procedure detailed
in Chapter §2, such that for the action given by Eq. (5.1) these are

3H2(1 + fR) = 8πG (ρm + ρrad) + 1
2(fRR− f)− 3HḟR (5.3)

−2(1 + fR)Ḣ = 8πG
(
ρm + 4

3ρrad
)

+ f̈R −HḟR , (5.4)

where R = 6(2H2 + Ḣ), the over-dot denotes a derivative with respect to the
cosmic time t. In general, the background evolution of a viable f(R) is not
simple as it has been shown by Boisseau et al. (2000), Nojiri, Odintsov, and
Sáez-Gómez (2009), and Cognola et al. (2009). However it is possible to get
an approximation in a way analogous to the DE models, by neglecting the
higher derivative and the non-linear terms. Thus, the equation that describes
the growth of matter perturbations in terms of the density contrast δ in a f(R)
model is approximated by (Boisseau et al., 2000):

δ̈ + 2Hδ̇ − 4πGeffρmδ = 0, (5.5)

where Geff is the effective gravitational constant, that can be written as (Tsu-
jikawa, 2007)

Geff = G

(
1 + 1

3
k2/a2

k2/a2 + 1/(3fRR)

)
, (5.6)

where we introduced the derivative of the scalaron with respect to the scalar
curvature fRR ≡ d2f(R)/dR2, whereas k corresponds to the wave number,
meaning that the evolution of matter density perturbations depends on this (Fu,
Wu, and Yu, 2010; Narikawa and Yamamoto, 2010). By defining the growth
rate as usual f ≡ d ln δ/d ln a, it leads to

df

d ln a + f 2 + 1
2

(
1− d ln Ωm

d ln a

)
f = 3

2
Geff

GN

Ωm , (5.7)

with Ωm(a) = H2
0 Ω0a

−3/H2. Besides, if the background expansion in the f(R)
model is well approximated by the ΛCDM model, the following relations must
be satisfied 

Ḣ

H2 = −3
2Ωm(a), (5.8)

dΩm(a)
d ln a = −3Ωm(a) (1− Ωm(a)) , (5.9)

allowing to re-write Eq. (5.7) as (Narikawa and Yamamoto, 2010):

−3Ωm(a) (1− Ωm(a)) df

dΩm(a) + f 2 +
(

2− 3
2Ωm(a)

)
f = 3

2
Geff

G
Ωm(a). (5.10)
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A plausible f(R) function able to satisfy the solar system constraints, to
mimic the ΛCDM model at high-redshift regime where it is well tested by the
CMB, and at the same time, to accelerate the expansion of the universe at low
redshift but without a cosmological constant (Hu and Sawicki, 2007), suggests
that

lim
R→∞

f(R) = const, lim
R→0

f(R) = 0, (5.11)

that can be satisfied by a broken power law function such that

f(R) = −m2 c1
(
R
m2

)n
c2
(
R
m2

)n
+ 1

, (5.12)

where the mass scale m is defined as m2 ≡ H2
0 ΩM, and c1, c2 and n are non-

negative free parameters of the model (Hu and Sawicki, 2007). For this f(R)
model, the background expansion history is consistent with the ΛCDM case
by choosing c1/c2 = 6ΩΛ/ΩM, where ΩΛ and ΩM are the dimensionless density
parameters for vacuum and matter, respectively. The scalar field fR adds an
additional degree of freedom to the model, whose dynamic in the limit of |fR| � 1
and |f/R| � 1 can be expressed in terms of perturbations of the scalar curvature,
δR, and matter density, δρ as

∇2fR = 1
3 (δR− 8πGδρ) . (5.13)

Comparing to the ΛCDM model expansion history, and under the condition
c2(R/m2)n � 1, the scalar field can be approximated by:

fR ≈ −n
c1

c2
2

(
m2

R

)n+1

. (5.14)

Thus, for n = 1 the model is fully specified by only one free parameter c2, which
in turn can be expressed in terms of the dimensionless scalar at present epoch,
fR0, given by:

fR0 ≡ −
1
c2

6ΩΛ

ΩM

(
m2

R0

)2

. (5.15)

Under these assumptions, the modified Einstein’s field equations for f(R) gravity
lead to a dynamical gravitational potential, Φ = ΦN − δR/6, that satisfies the
following equation:

∇2Φ = −16πG
3 δρ− 1

6δR , (5.16)

being ΦN the Newtonian potential.

Nowadays it is generally accepted that some MG theories such as the Hu and
Sawicki f(R) are strongly degenerated in a wide range of their observables with
the effects of massive neutrinos (see e.g. Baldi et al., 2014; He, 2013; Motohashi,
Starobinsky, and Yokoyama, 2013; Wright, Winther, and Koyama, 2017). This
represents a serious challenge constraining cosmological models from current
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Figure 5.2: Evolution of the massive neutrino density, normalised with respect
today’s critical density, as a function of the scale factor a, for a neutrino mass mν =
0.1 eV. The pink solid line shows the correct solution for ρν(a), while the green and
blue dashed lines show the limit at early and late time respectively. The early time
limit is proportional to a4, underlining that at early times neutrinos are relativistic
and behave like radiation. The late time limit, instead, is proportional to a3, following
the same evolution of matter. The short vertical dashed line (black) marks the non-
relativistic transition for neutrinos of this given mass. The figure was computed by

using the CAMB code.

and future galaxy surveys requiring robust and reliable methods to disentangle
both phenomena. Furthermore, for some specific combinations of the f(R)
gravity parameter fR0 and of the total neutrino mass mν ≡ Σmν,i, standard
statistics such as the matter auto-power spectrum, the lensing convergence power
spectrum, and the halo mass function may be hardly distinguishable from their
standard ΛCDM expectations (see Baldi et al., 2014; Peel et al., 2018a; Giocoli,
Baldi, and Moscardini, 2018). In addition, since the degeneracy is mostly driven
by the non-linear behaviour of both the MG and the massive neutrinos effects on
the LSS, the linear tools are not suitable to properly disentangle the combined
parameter space (Giocoli, Baldi, and Moscardini, 2018).

5.2. Massive neutrinos and the large-scale struc-
ture

Motivated by the apparent violation of energy, momentum and spin in β-
decay processes, Pauli proposed the existence of neutrinos in 1930 to keep the
conservation laws safe. Eventually, twenty six years after been theoretically
postulated, the neutrinos were detected for the first time by Cowan et al. (1956).
Neutrinos are classified in three ‘flavour’ in the standard model of particles, they
were considered to be massless for some time until the discovery of the neutrino
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oscillation phenomena, i.e. related to the change of flavour (Cleveland et al.,
1998). Since then, it is known that at least two of the three neutrino families
are massive, in contrast to the particle standard model assumption, however
measuring the absolute masses of the neutrinos is not easy, which makes this a
very active field of research today, both for cosmology and particle physics. In a
cosmological context, the neutrinos leave detectable imprints on observations
that can then be used to constrain their properties, in particular, the presence
of massive neutrinos impacts the background evolution of the universe and the
growth of structures (for a detailed and updated review see Lesgourgues et al.,
2013; Lesgourgues and Pastor, 2014). In the early universe, massive neutrinos are
relativistic and indistinguishable from the massless ones, behaving like photons,
meaning that their energy density drops like ∝ a−4. In this stage, neutrinos are
in thermal equilibrium and their momentum follows the standard Fermi-Dirac
distribution

n(p)dp = 4πgν
(2π~c)3

p2dp
e

p
kBTν + 1

, (5.17)

where n(p) is the number of cosmic neutrinos with momentum between p and
p+dp, gν is the number of neutrino spin states, Tν(z) is the neutrino temperature
at redshift z and kB is the Boltzmann constant. In principle, in the momentum
distribution function the chemical potential should be also included, however
it has been shown to be negligible for cosmological neutrinos (see for example
Dolgov et al., 2002; Wong, 2002; Abazajian, Beacom, and Bell, 2002). The
temperature of the cosmic neutrino background and the one from CMB are
related by Tν(z = 0) =

(
4
11

)1/3
Tγ(z = 0) (for details see e.g. Weinberg, 2008),

such that the temperature of the neutrino background at certain redshift z is
given by Tν(z) ∼= 1.95(1+z) K. Then, when the average momentum of neutrinos
drops below a certain mass, they become non-relativistic and their energy density
drops like ∝ a−3 behaving like baryons and cold dark matter. Fig. 5.2 shows
the evolution of the massive neutrino density, normalised to the today’s critical
density, as a function of the scale factor from its early stage to the late universe.

After neutrinos with mass mν decouple from the rest of the plasma at redshift
znr, as shown by Eq. (5.18)

1 + znr (mν) ' 1890
(
mν

1eV

)
, (5.18)

the number density per flavour is fixed by the temperature, so that the Universe
is currently filled by a relic neutrino background, uniformly distributed, with
a density of 113 part/cm3 per species and average temperature of 1.95K. As
neutrinos are non-relativistic particles at late times, they contribute to the total
matter density of the Universe ΩM , so that ΩM = ΩCDM + Ωb + Ων , where ΩCDM,
Ωb and Ων are the dimensionless density parameters for CDM, baryons and
neutrinos, respectively. The density background is affected by massive neutrinos
such that a perturbation in the density field is well described by (Lesgourgues
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et al., 2013; Castorina et al., 2014) as follows:

δm = (1− fν)δCDM + fνδν , where fν ≡
Ων

ΩCDM + Ων

, (5.19)

being δν the neutrino perturbations and Ων the density contribution related to
massive neutrinos that can be expressed in terms of the total neutrino mass,
mν ≡

∑
imνi , as follows:

Ων = Σimνi

93.14 h2eV . (5.20)

Several astronomical observations provide upper limits on the total neutrino
mass, that results around 0.1−0.3 eV, under the assumption of standard GR (see
e.g. Seljak, Slosar, and McDonald, 2006; Riemer-Sørensen et al., 2013; Lu et al.,
2015; Lu et al., 2016; Cuesta, Niro, and Verde, 2016; Kumar and Nunes, 2016;
Yèche et al., 2017; Poulin et al., 2018). Currently, one of the most important
goals of precision cosmology is to extract robust, model-independent constraints
on neutrino masses.

Among the main features that neutrinos imprint on cosmological observables,
is well established that massive neutrinos suppress the clustering below their
thermal free-streaming scale and change the matter-radiation equality time
(Lesgourgues and Pastor, 2006). They also affect the non-linear matter power
spectrum (Brandbyge et al., 2008; Saito, Takada, and Taruya, 2008; Saito,
Takada, and Taruya, 2009; Brandbyge and Hannestad, 2009; Brandbyge and
Hannestad, 2010; Agarwal and Feldman, 2011; Wagner, Verde, and Jimenez,
2012), the halo mass function (Brandbyge et al., 2010; Marulli et al., 2011;
Villaescusa-Navarro et al., 2013), the clustering properties of CDM haloes and
redshift-space distortions (Viel, Haehnelt, and Springel, 2010; Marulli et al.,
2011; Villaescusa-Navarro et al., 2014; Castorina et al., 2014; Castorina et al.,
2015; Zennaro et al., 2018), and the scale-dependent bias (Chiang, LoVerde, and
Villaescusa-Navarro, 2018). Given these effects, it is thus crucial to investigate
whether the cosmological effects of massive neutrinos might be degenerate with
MG models, which would severely affect the constraints. Indeed, cosmological
probes able to distinguish between these two effects are required to achieve
tight constraints on both MG and massive neutrinos (He, 2013; Motohashi,
Starobinsky, and Yokoyama, 2013; Baldi et al., 2014; Bellomo et al., 2017;
Wright, Winther, and Koyama, 2017; Peel et al., 2018a; Giocoli, Baldi, and
Moscardini, 2018).

5.3. N-body simulations and halo samples
Since the formation and evolution of cosmic structures is based on the growth

of small fluctuations in the density field, it is expected that the amplitude of
these initial perturbations have the correct value at late times to match the
observed clustering today. As reviewed in Chapter §2, an analytical development
based on perturbation theory makes possible to follow the growth of structures
to a certain extent using the linear approximation, being valid as long as δρ� ρ.
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„ 550 billions particles whose evolution is evaluated along
the entire history of the universe using an Adaptive Mesh
Refinement grid with more than two trillion computing points.

The impact of these simulations goes beyond the study of
the physical effects of DE on the cosmic structure formation. In
fact, by simulating the full observable universe, the numerical
data offers an ideal benchmark for the next generation of
survey programs which will probe large cosmic volumes at
high-redshift.

The realization of the first full universe simulation marks a
remarkable achievement in the development of cosmological
simulations. The improvements in memory and computing
power are often described by the well-known “Moore Law”.
In cosmology this growth has resulted from advancements
in the efficiency of numerical algorithms as well as the
increasing capabilities of supercomputing machines. These
factors have been responsible for an exponential growth of the
field, which has developed in parallel with major technological
advancements.

In Figure 2, we plot a selection of cosmological simulations
(the list is by no means exhaustive and is intended only to
be illustrative of the evolution of the field). The first point
on the graph is the historical simulation run by Jim Peebles
at Princeton University in the early 70’s with 300 particles.
The plot covers 40 years span including the latest high-
resolution large-volume numerical simulations. First, we see
that a ”Moore”-like law with an increasing factor of 2 every
18 months underestimates the acceleration of state-of-the-art
cosmological N-body simulations. The mean evolution of the
simulation size is taken from Springel et al. 2005 [35]. It is
linear in logarithmic space, increasing by a factor of 10 every
4.55 years. In the smaller box we plot the trend from the
DEUS Series [11], [31] performed by our team during the last
7 years with DEUS FUR at top of the ranked list.

We plot in Figure 3 a visual comparison of box size of the
three most recent cosmological “grand-challenge” simulations.
The pictures are in scale. We clearly see the impressive
improvement of DEUS FUR with respect to the box size of
Millennium XXL Run [4] and Horizon Run [22].

DEUS FUR has the largest simulation box, nonetheless
using an adaptive grid pattern we have been able to follow
the gravitational dynamics over 6 orders of magnitude length-
scale, from the size of the Milky Way to the size of the
observable universe. Combining all numerical simulations
performed by our group (DEUSS and DEUS FUR), we can
trace the distribution of matter from a scale of less than
one hundredth the size of our galaxy to the size of the full
observable universe.

DEUS FUR has been realized through several steps which
have required the use of the ”AMA-DEUS” (see Figure 1).
Firstly, the initial conditions are generated, then the gravita-
tional evolution of the initial matter density field is computed,
while the huge data volume generated during the run is
properly organized, processed and stored. If we could back
up all data characterizing a snapshot of DEUS FUR, i.e. the
position and velocity of all particles, at all computing time this
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Fig. 2. Evolution of the number of particles in N-body simulations versus
time (years) from a non-exhaustive list of cosmological runs. D-symbols (red)
are PM-AMR simulations made by our group. We can see the acceleration in
performance occurred in the last decade especially for DEUS collaboration.
Note in particular the position of the Millennium Run (10) [35] with 10 billion
particles and box size 500 h´1 Mpc; the Horizon 4π (11) [36] with 68 billion
particles and box size 2000 h´1Mpc; the recent Millenium XXL Run (12)
[4] with 303 billion particles and box size 3000 h´1Mpc and the Horizon
Run (13) [22] with 375 billion particles and box size 10800 h´1Mpc. The
solid blue line is the mean evolution of the simulation size from Springel et
al. (2005) and the dashed blue line is ”Moore’s Law” which shows a factor
2 increase every 18 months.

Fig. 3. Comparison of the box size of DEUS Full Universe Run with the
most performing numerical simulations in cosmology realized in the past few
years. Pictures are in scale.

would amount to over 50 PB of data. This is obviously not
possible (and would also be unusable), so we have developed a
post-processing chain that can efficiently handle, considerably
reduce and exploit the data generated during and immediately
after the run.

We describe in the following section the application AMA-
DEUS.

III. AMA-DEUS: Method and Application

The dynamical evolution of Dark Matter particles under the
effect of their mutual gravitational interaction in an expanding
universe is described by Vlasov-Poisson equations which can
be represented by a set of discrete point particles:

d~ri

dt
“ ~vi and

d~vi

dt
“ ´~Orφ (1)

Figure 5.3: Left panel: Evolution of the number of particles used in cosmological
N-body simulations as a function of time until 2010. Taken form (Alimi et al.,
2012). Right panel: Resolution of hydrodynamical simulations as a function of the
number of resolved galaxies (lower axis) and simulation volume (upper axis) from the

IllustrisTNG project www.tng-project.org/.

Nevertheless, these calculations are limited and can not be extrapolated to
explain completely the observational data, they break down on a scale where
the density contrast δ ∼ 1. Moreover, beyond the linear regime, the observed
structures have a density contrast in a wide range from cosmic voids with δ ∼ −1
to δ ∼ 106 and larger. It makes necessary a more elaborated description of the
perturbations in the non-linear regime, which can be achieved using higher order
perturbation theory or numerical simulations (Yepes, 2001).

Over the past three decades, cosmological simulations have played a key role
in exploring the cosmic structure landscape, becoming a powerful tool for testing
theoretical predictions and to lead observational projects. In this context, the
formation and evolution of cosmic structures can be understood as a dynamical
system of many particles, that trace the underlying mass distribution in a certain
cosmological model. The N-body simulations, methods and algorithms have
progressed continuously achieving a high-resolution to resolve finer structures
with millions of particles, reducing the gap between theory and observations. For
a detailed description on fundamentals of cosmological simulations see e.g. Yepes
(2001), Knebe (2005), Moscardini and Dolag (2011), and Dolag et al. (2008).
The left panel of Fig. 5.3 shows the evolution of the number of particles in
N-body simulations as a function of time in years until 2010 (Alimi et al., 2012).
The solid blue line is the mean evolution of the simulation size from Springel
(2005) and the dashed blue line is an analogous of the Moore’s Law which shows
that the volume increases by a factor of two every 18 months. The marks ‘D’
in red correspond to the simulations of the project AMA-DEUS - A Multiple
purpose Application for Dark Energy Universe Simulation - (Alimi et al., 2012).
The right panel of Fig. 5.3 shows the state of art of hydrodynamical simulations
from the IllustrisTNG project, where the resolution is plotted as a function of
the number of resolved galaxies and volume.

www.tng-project.org/
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To investigate the clustering in the modified gravity context with massive
neutrinos, we used a subset of the DUSTGRAIN-pathfinder (Dark Universe
Simulations to Test GRAvity In the presence of Neutrinos) cosmological N-body
simulations, which is part of a numerical project aimed at investigating possi-
ble cosmic degeneracies. In a series of recent papers, these simulations have
been exploited to investigate several features related to weak-lensing statistics
(Giocoli, Baldi, and Moscardini, 2018; Peel et al., 2018a), to the abundance
of massive haloes (Hagstotz et al., 2018) and to explore cosmic degeneracies
using machine learning techniques (Peel et al., 2018b; Merten et al., 2018).
The DUSTGRAIN-pathfinder runs have been performed using the MG-Gadget
code (Puchwein, Baldi, and Springel, 2013), which is a modified version of
GADGET (Springel, 2005) implementing the Hu and Sawicki (2007) f(R) grav-
ity model, with a mixture of cold and hot DM components, the latter made
up of massive neutrinos. The simulations were carried out in a box of (750
Mpc/h)3 volume, with periodic boundary conditions, and 7683 DM particles.
The cosmological parameters assumed for all the considered models at z = 0 are
consistent with Planck 2015 constraints (Planck Collaboration et al., 2016b):
ΩM ≡ ΩCDM + Ωb + Ων = 0.31345, Ωb = 0.0481, ΩΛ = 0.68655, H0 = 67.31 km
s−1 Mpc−1, As = 2.199× 10−9, ns = 0.9658 and σ8 = 0.847.

We identify haloes in the particle distribution using the Spherical Overdensity
(SO) algorithm termed Denhf (Tormen, 1998; Tormen, Moscardini, and Yoshida,
2004; Giocoli, Tormen, and van den Bosch, 2008; Despali et al., 2016). This
method has been chosen over the Friends-of-Friends (FoF) group finding algo-
rithm by Davis et al. (1985), because it appears to be slightly closer to physical
models of halo formation, and because of its resemblance to the definition of the
mass in observational data sets. Specifically, for each particle we compute the
local DM density by calculating the distance di,10 to the tenth nearest neighbour.
In this way, we assign to each particle a local density ρi ∝ d−3

i,10. Next, we sort
the particles by density and define the position of the densest particle as the
centre of the first halo. Around this centre, the algorithm grows a sphere with
a certain average density, that in this work has been chosen to be 200 times
the critical density of the Universe. At this point we assign all particles within
the sphere to the newly identified halo, removing them from the global list of
particles. Subsequently, the densest particle of the remaining distribution is
chosen and the process is repeated several times, until none of the remaining
particles has a local density large enough to be the centre of a 10 particle halo.
The particles that are not assigned to any haloes are called ‘field’ or ‘dust’
particles. In numerical simulations containing massive neutrinos, we assume
that they contribute only to the expanding cosmological background metric
(Castorina et al., 2014) and thus, when identifying the haloes, we link together
only DM particles.

Tab. 5.1 presents an overview of the main parameters of each simulation,
such as the fR0 values, the total neutrino mass, the total CDM density contrast,
ΩCDM, and the mass of the DM particles. In all cases, the scalar at present
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Figure 5.4: Maps of the projected number density of CDM haloes in the mass range[
4× 1012, 7× 1014]M�/h extracted from the DUSTGRAIN-pathfinder simulations
at z = 0. The boxes have been divided into 300× 300 pixels and the colorbar indicates
the normalised number of CDM haloes nCDM per unit area (2.5× 2.5 Mpc2h−2).

epoch, |fR0|, is in the range 10−4− 10−6, as suggested by Hu and Sawicki (2007),
to be consistent with distance-based measurements of the expansion history. The
total neutrino masses considered in this work are mν = 0, 0.06, 0.1, 0.15, 0.3
eV. As shown in Fig. 5.4 at z = 0, the density distributions of CDM haloes
predicted by the MG models considered show notable differences, as it can be
appreciated, for instance, comparing f(R) and f(R) + mν models. For the
clustering analysis presented in the following Sections, we make use of halo
samples from each of the nine models presented in Tab. 5.1, restricting our
analysis in the mass range Mmin < M < Mmax, where Mmin = 4×1012M�/h and
Mmax = 7×1014, 4×1014, 3×1014, 2×1014, 1014M�/h at z = 0, 0.5, 1, 1.4, 1.6,
respectively. In particular we focus on the halo clustering modelled through DM
N-body simulations that include simultaneously both effects.
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5.4. The halo mass function
As CDM haloes form from collapsing regions that detaches from the back-

ground density field, their abundance can be related to the volume fraction of
a Gaussian density smoothed on a radius R above a critical collapse threshold
δc (Press and Schechter, 1974). The comoving number density of the haloes
is strictly related to underlining cosmological model, such that within a mass
interval [M, M + dM ], the halo mass function is given by

dn(M, z)
dM = f(σ(M, z)) ρ

M

d ln σ(M, z)−1

dM , (5.21)

where f(σ) is the multiplicity function, σ the RMS variance of the linear
density field smoothed on scale R(M) and ρ is the mean matter density. The
product f(σ(M, z))ρ quantifies the amount of mass contained in fluctuations of
typical mass M = 4

3πR
3ρ. The simplest argument to compute analytically the

multiplicity function f(σ) comes from the spherical collapse theory, following the
Press and Schechter (1974) formalism, such that a perturbation is supposed to
collapse when it reaches the threshold δc ' 1.68, by assuming that the probability
distribution for a perturbation on a scale M is a Gaussian function with variance
σ2
M , resulting

f(σ(M)) =
√

2
π

δc
σ(M) exp

(
− δ2

c

2σ2(M)

)
. (5.22)

Another approach to determine f(σ) is given by accurate fitting functions,
like the proposed by Tinker et al. (2008), which extends phenomenologically
the results of Press and Schechter (1974). For Tinker et al. the function f(σ)
is expected to be universal to the changes in redshift and cosmology, and is
parametrized as follows:

f(σ) = A

[(
σ

b

)−a
+ σ−c

]
exp

(
−d/σ2

)
, (5.23)

where A is an amplitude of the mass function and a, b, c, and d are free
parameters that depend on halo definition. The variance σ2 is usually given by

σ2(R(M), z) =
∫ P (k, z)

2π2 W 2(kR(M))k2dk, (5.24)

where P (k) is the linear matter power spectrum as a function of the wave number
k, and W is the Fourier transform of the real-space top-hat window function
of radius R. A fundamental feature of the mass function is that it decreases
monotonically with increasing masses, furthermore, its dependency on cosmology
is encoded in the variance σ2, as shown by the integrand of Eq. (5.24). From the
point of view of N-boby simulations, an approach to compute the mass function
is given straightforward from Eq. (5.21), by counting the number of haloes Nh
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Figure 5.5: The mass function of CDM haloes per each model of the DUSTGRAIN-
pathfinder project at six different redshifts z = 0, 0.5, 1, 1.4, 1.6, 2 as labelled. Each
panel corresponds to one model as labelled, and the dashed line represents the

theoretical expectation by Tinker et al. (2008) assuming a flat ΛCDM model.

above a certain mass threshold Mmin in a comoving volume V such as

Nh = A
∫ zmax

zmin

∫ ∞
Mmin

dV
dz n(M, z)dMdz, (5.25)

where A is the area, zmin and zmax are the redshift boundaries and dV/dz is the
comoving volume element.

Fig. 5.5 shows the mass function of CDM haloes measured for all models of
the DUSTGRAIN-pathfinder runs at six different redshifts z = 0, 0.5, 1, 1.4, 1.6, 2.
Each panel contains the mass function, per each model as labelled, to track
its evolution in redshift. As reference, the black dashed line represents the
theoretical expectation by Tinker et al. (2008) for a flat ΛCDM model. As ex-
pected, massive haloes are less abundant with respect to smaller ones in a fixed
comoving volume. The mass function decreases with redshift, since at earlier
times the density field is smoother than at late times. The plot is logarithmic,
meaning that the number density of large mass haloes falls off by several orders
of magnitude over the range of redshifts shown. The f(R) models both with
and without neutrinos reproduce in very well agreement this pattern, but only
at really high masses significant differences appear.

Fig. 5.6 compares the halo mass functions of the different DUSTGRAIN-
pathfinder simulations, computed at z = 0 (left column), z = 1 (central column)
and z = 1.6 (right column). The lower panels show the percentage difference
with respect to the ΛCDM model. It is possible to see that the effect of f(R) and
massive neutrinos on the dynamical evolution of the matter density field results
in different halo formation epochs and different number density of collapsed
systems. In particular, the fR4 model (blue) is the most deviated model from
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Figure 5.6: The mass function of CDM haloes for all the models of the DUSTGRAIN-
pathfinder at three different redshifts: z = 0 (left column), z = 1 (central column),
z = 1.6 (right column). The lower panels show the percentage difference with respect
to the ΛCDM model. As in Fig. 5.5 the dashed line represents the theoretical

prediction by Tinker et al. (2008).

the standard scenario whereas the fR6, fR6_0.06eV and fR6_0.1eV models
mimic the ΛCDM behaviour over a wide range of masses.

5.5. Clustering in real space
In the first part of this Section, we present the methodology used to quantify

the halo clustering in real space, focusing on the first multipole moment of
the 2PCF, that is the monopole. In the second part, the halo biasing function
derived from the previous mass functions is studied.

All the numerical computations in the current Section and in the following
ones have been performed with the CosmoBolognaLib, a large set of free software
libraries that provide all the required tools for the data analysis presented in this
Thesis, including the measurements of all statistical quantities and the Bayesian
inference analysis2 (Marulli, Veropalumbo, and Moresco, 2016).

5.5.1. The two-point correlation function
To measure the 2D 2PCF, ξ(r, µ), we used the Landy and Szalay (1993)

estimator given by

ξ̂(r, µ) = DD(r, µ)− 2DR(r, µ) +RR(r, µ)
RR(r, µ) , (5.26)

where µ is the cosine of the angle between the line of sight and the comoving halo
pair separation, r; DD(r, µ), RR(r, µ), and DR(r, µ) represent the normalised

2Specifically, we used CosmoBolognaLib V5.0. The CosmoBolognaLib are entirely
implemented in C++. They also provide the possibility to be converted in Python modules
through wrappers. Both the software and its documentation are freely available at the public
GitHub repository: https://github.com/federicomarulli/CosmoBolognaLib.

https://github.com/federicomarulli/CosmoBolognaLib
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Figure 5.7: The real-space 2PCF r2ξ0 of CDM haloes for all the models of the
DUSTGRAIN-pathfinder project at three different redshifts: z = 0 (left column),
z = 1 (central column), z = 1.6 (right column). From top to bottom, the panels show
the fR4, fR5 and fR6 models, respectively, compared to the results of the ΛCDM
model. The error bars, shown only for the ΛCDM model for clarity reasons, are the
diagonal values of the bootstrap covariance matrices used for the statistical analysis.
Percentage differences between f(R), f(R) +mν and ΛCDM predictions are in the
subpanels, while the shaded regions represent the deviation at 1σ confidence level.
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number of data-data, random-random and data-random pairs, respectively, in
ranges of r and µ. We consider intermediate scales from 1h−1 Mpc to 50h−1 Mpc ,
in 25 linear bins. The random samples used are ten times larger than the halo
ones. The 2PCF uncertainties are estimated with the bootstrap method, by
dividing the original data sets into 27 sub-samples, which are then re-sampled
in 100 data sets with replacement, measuring ξ(r, µ) in each one of them (Efron,
1979; Barrow, Bhavsar, and Sonoda, 1984; Ling, Frenk, and Barrow, 1986).

For the reasons discussed in Chapter §4, it is convenient to expand the 2D
2PCF in terms of Legendre polynomials, Ll(µ), as follows:

ξ(s, µ) ≡ ξ0(s)L0(µ) + ξ2(s)L2(µ) + ξ4(s)L4(µ) , (5.27)

where each coefficient corresponds to the lth multipole moment:

ξl(r) = 2l + 1
2

∫ +1

−1
dµ ξ(r, µ)Ll(µ) . (3.21)

The clustering multipoles are computed with the integrated estimator (e.g. Kazin,
Sánchez, and Blanton, 2012), which consists in calculating ξ(r, µ) in 2D bins
and then integrating it as follows:

ξ̂l(r) = 2l + 1
2

∫ +1

−1
dµLl(µ)DD(r, µ)− 2DR(r, µ) +RR(r, µ)

RR(r, µ) . (5.28)

In real space the full clustering signal is contained in the monopole mo-
ment ξ0(r). Fig. 5.7 shows ξ0(r) of the CDM haloes for all models con-
sidered in the DUSTGRAIN-pathfinder project, at three different redshifts
z = 0, 1, 1.6. Subpanels show the percentage difference between MG mod-
els [f(R) with and without massive neutrinos], and the ΛCDM model, computed
as ∆ξfR = 100(ξfR − ξΛCDM)/ξΛCDM.

The clustering properties of fR4 and fR4_0.3eV models at z = 0 are the
ones that deviate the most from ΛCDM, with a significant clustering suppression
at scales larger than 10 h−1 Mpc . This is expected, as the fR0 value of these
models is the most extreme one considered, marginally compatible with the
constraints from solar system observations (Hu and Sawicki, 2007). At higher
redshifts the fR4_0.3eV monopole gets closer to the ΛCDM one, due to the
effect of massive neutrinos. A similar, though less significant, effect is found also
for fR5, fR5_0.15eV and fR5_0.1eV models. The clustering suppression is
further reduced in the fR6, fR6_0.06eV and fR6_0.1eV models, so that they
appear highly degenerate with ΛCDM at all the scales and redshifts considered,
with deviations smaller than 2%.
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Figure 5.8: The coloured solid lines represent the apparent effective halo bias, 〈b〉,
as a function of redshift, averaged in the range 10h−1 Mpc< r <50h−1 Mpc . Black
lines show the theoretical ΛCDM effective bias predicted by Tinker et al. (2010)
(dashed), normalised to the σ8 values of each DUSTGRAIN-pathfinder simulation,
while the cyan shaded areas show a 10% error. The upper set of panels shows the
results considering the total power spectrum, while the lower set of panels shows the

results when the CDM+baryon power spectrum is used instead.
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5.5.2. The halo bias
We estimate the effective halo bias to characterise the relation between the

halo clustering and the underlying mass distribution. In the linear regime, the
bias is approximately independent of the scale, depending only on halo masses
and redshifts. In our mass-selected samples, this quantity can be computed as
follows, averaging in a given scale range:

〈b(z)〉 =
〈√√√√ ξhalo,fR

ξDM,ΛCDM

〉
, (5.29)

where ξhalo,fR and ξDM,ΛCDM are the CDM halo 2PCF of the DUSTGRAIN-
pathfinder models and the CDM 2PCF estimated in ΛCDM, respectively. Eq.
(5.29) is obtained by Fourier transforming the non-linear matter power spectrum
computed with CAMB, including HALOFIT (Lewis, Challinor, and Lasenby,
2000; Smith et al., 2003). The latter simulates the apparent bias that would be
assessed in a f(R) Universe if a ΛCDM model was wrongly assumed to predict
the DM clustering (see Marulli, Baldi, and Moscardini, 2012, for more details).
The apparent effective bias is then estimated by averaging the bias b(M, z) over
a set of CDM haloes with given mass Mi:

b(z) = 1
Nhalo

Nhalo∑
i=1

b(Mi, z) , (5.30)

where Nhalo is the number of haloes enclosed in the sample volume and b(Mi, z) is
their linear bias computed using the theoretical Tinker et al. (2008) mass function.
Then, in order to compare measurements in f(R) and f(R) +mν scenarios with
the ΛCDM ones, we consider the theoretical effective bias proposed by Tinker et
al. (2010), computed with the so-called CDM prescription (Villaescusa-Navarro
et al., 2014), that is, using the linear CDM+baryons power spectrum3, and
replacing ρm with ρCDM (Castorina et al., 2014). It implies, as shown by Costanzi
et al. (2013), that the effect of neutrinos on the cluster abundance is well captured
by rescaling the smoothed density field such that

σ2 → σ2
CDM(z) =

∫ PCDM(k, z)
2π2 W 2(kR)k2dk (5.31)

with the CDM power spectrum obtained by rescaling the total matter power
spectrum with the corresponding transfer functions, TCDM and Tb, weighted by
the density of each species so that

PCDM(k, z) = Pm(k, z)
(

ΩCDMTCDM(k, z) + ΩbTb(k, z)
Tm(k, z) (ΩCDM + Ωb)

)2

. (5.32)

However the CDM prescription has a minor impact on the results presented in
this work as it can be appreciated in the lower panel of Fig. 5.8. Comparing to the

3Both PCDM+b
lin (k) and Pmlin(k) can be directly obtained with CAMB, since PCDM

lin (k) =
T 2

CDM/T
2
mP

m
lin(k), where TCDM(k) and Tb(k) are the corresponding transfer functions.
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Figure 5.9: The apparent effective halo bias as a function of scale, for three different
redshifts (z = 0, 1 and 1.6, columns from left to right), for all models, as indicated by
the labels. Dotted and dashed horizontal lines show theoretical predictions, as in Fig.

5.8.

results obtained with the total matter power spectrum, we found deviations on
the estimated halo bias smaller than 1% for fR5+mν and fR6+mν models, and
of about 3% for fR4+mν model. Fig. 5.8 shows the mean apparent effective bias
as a function of redshift, averaged over the range 10h−1 Mpc< r <50h−1 Mpc ,
whereas Fig. 5.9 shows how it changes as a function of scale. The error bars are
computed by propagating the 2PCF uncertainties obtained with the bootstrap
method (for details see Section 5.5.1). Dashed lines represent the theoretical ex-
pectations by Tinker et al. (2010), while the shaded region shows a 10% difference
with respect to the central value. The effective bias increases as a function of red-
shift, as expected (Matarrese et al., 1997; Ma, 1999). The predicted effective bias
of all the models considered appears quite indistinguishable from the ΛCDM case,
when it is normalised to the σ8 values of the DUSTGRAIN-pathfinder cosmologies,
that is assuming ξDM,f(R) = ξDM,ΛCDM(σ8), where ξDM,ΛCDM(σ8) is computed by
setting the amplitude of the primordial curvature perturbations to the values
required to have the σ8 values of the f(R) models (see e.g. Marulli et al., 2011;
Marulli et al., 2012). The largest deviation occurs at z = 1.6 for the fR4_0.3eV
model, though it is in any case not statistically significant (between 5% and 7%,
averaging over different distances larger than 10h−1 Mpc ). As a counterpart,
the most degenerate model is fR6, both with and without massive neutrinos,
which is in agreement with ΛCDM better than 2% at all scales.

5.6. Clustering in redshift-space
In a realistic case, spectroscopic surveys observe a combination of density

and velocity fields in redshift space. Specifically, the observed redshift, zobs, of
extragalactic sources is a combination of the cosmological redshift, zc, due to
the Hubble flow, and an additional term caused by the peculiar velocities along
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the line of sight:

zobs = zc + (1 + zc)
v · r̂
c

, (3.3)

where r̂ is a unit vector along the line of sight, so that the contribution of peculiar
motions is given by v‖ = v · r̂. As a consequence, redshift-space catalogues appear
distorted with respect to the real-space ones. Since in N-body simulations both
positions and peculiar velocities are known, the distorted mass distribution in
redshift space can be derived directly. Specifically, we first convert the comoving
coordinates of each CDM halo, {x, y, z}, into polar real-space coordinates {R.A.,
Dec, zc}, relative to a given virtual observer placed at random, where R.A. and
Dec are the Right Ascension and Declination, respectively. Then, we estimate
the observed redshifts using Eq. (3.3). Finally, we convert back {R.A., Dec,
zobs} into distorted comoving coordinates {x’, y’, z’}, mimicking the redshift
space.

Redshift-space distortions turned out to be one of the most powerful cos-
mological probes to test the gravity theory on the largest scales (Kaiser, 1987;
Guzzo et al., 2008; Simpson and Peacock, 2010; Jennings et al., 2012; Rac-
canelli, Percival, and Samushia, 2012; He et al., 2018). In redshift space, the
spatial statistics of cosmic tracers, such as the 2PCF and power spectrum, are
anisotropic due to the dynamic distortions along the line of sight (Hamilton,
1998; Scoccimarro, 2004): at large scales the matter density distribution appears
squashed along the line of sight, while an opposite stretching distortion is present
at small scales, the so-called fingers of God (FoG) effect (Jackson, 1972).

The effect of redshift-space distortions on the 2PCF is shown conveniently by
decomposing the pair comoving distances into their parallel and perpendicular
components to the line of sight, that is ~s = (s‖, s⊥). Hereafter, we will use s
to indicate redshift-space coordinates. The anisotropic redshift-space 2PCFs,
ξ(s⊥, s‖), of all our DUSTGRAIN-pathfinder halo catalogues at z = 1.6 are shown
in Fig. 5.10. Similarly to the real-space case, the 2PCF predicted by the f(R)
model with |fR0| = 10−6, both with and without massive neutrinos, is quite
similar to the ΛCDM one. On the other hand, the |fR0| = 10−4 model with
massless neutrinos predicts a lower signal on all scales.

As described in Section 5.5.1, the 2D 2PCF can be conveniently expressed
in the Legendre multipole base. For simplicity, we focus here only on the first
two even multipoles of the 2PCF, that is the monopole, ξ0, and the quadrupole,
ξ2. The signal in the other even multipoles of the redshift-space 2PCF of CDM
halo in the considered simulations is negligible, while odd multipoles vanish by
symmetry. Fig. 5.11 shows the monopole and quadrupole of the redshift-space
2PCF of all the halo catalogues considered in this work. As expected, the
{|fR0| = 10−4,mν = 0.3eV } model is the one that differs the most from ΛCDM.
This is particularly evident in the monopole. On the other hand, the quadrupole
appears less sensitive to the effect of the alternative cosmologies considered, both
with and without massive neutrinos. The percentage differences with respect
to the ΛCDM case are shown in the lower panels. For the quadrupole they are
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Figure 5.10: Contour lines of the 2D 2PCF of the DUSTGRAIN-pathfinder simula-
tions at z = 1.6. Each quadrant refers to a different set of models, as labelled in the
plot. The iso-curves plotted are ξ(s⊥, s‖) = {0.3, 0.5, 1.0, 1.4, 2.2, 3.6, 7.2, 21.6}.
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Figure 5.11: The redshift-space monopole (upper curves) and quadrupole (lower
curves) moments of the 2PCF of the DUSTGRAIN-pathfinder simulations at three
different redshifts: z = 0.5 (left column), z = 1 (central column), and z = 1.6
(right column). Black lines show the ΛCDM predictions compared to the results of
different models (coloured lines, as labelled). The percentage differences between f(R),
f(R) + mν and ΛCDM predictions are in the subpanels. The cyan shaded regions

represent the deviations at ±1σ confidence level.



96Chapter 5. Constraints on f(R) gravity with and without massive neutrinos
from redshift-space distortions

4 6 8 10 30 50
1.1

1.4

1.7 ΛCDM z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR4 z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR4 0.3eV z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR5 z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7

ξ 0
(s

)/
ξ 0

(r
)

z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR5 0.15eV z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR5 0.1eV z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR6 z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50

r [Mpc/h]

1.1

1.4

1.7 fR6 0.06eV z = 0.5

4 6 8 10 30 50

r [Mpc/h]

1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50

r [Mpc/h]

1.1

1.4

1.7 z = 1.6

4 6 8 10 30 50
1.1

1.4

1.7 fR6 0.1eV z = 0.5

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.0

4 6 8 10 30 50
1.1

1.4

1.7 z = 1.6

Figure 5.12: Ratio between the redshift-space and real-space 2PCF monopoles at
redshifts z = 0.5 (left column), z = 1 (central column), z = 1.6 (right column).
From top to bottom, the panels show the results for the fR4, fR5 and fR6 models,
respectively. Horizontal dashed lines show the theoretical predictions by Tinker et al.
(2010), normalised to the σ8 values of each DUSTGRAIN-pathfinder simulation.

always smaller than 5%, whereas for the monopole they can reach up to 10%.

5.7. Modelling the redshift-space distortions
Until now, we have characterised statistically the samples of mock catalogues

constructed from the DUSTGRAIN-pathfinder runs. In this Section we provide a
description of the implemented model to derive cosmological constraints from
the clustering signal.

In order to quantify the effects of f(R) gravity and massive neutrinos on
redshift-space clustering distortions, we perform a statistical analysis aimed
at extracting constraints on the growth rate of matter perturbation from the
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monopole and quadrupole of the redshift-space 2PCF of CDM haloes. Following
Marulli et al. (2012), we start analysing the ratio between the redshift-space and
real-space monopoles, which depends directly on the linear distortion parameter,
β:

ξ0(s)
ξ0(r) = 1 + 2

3β + 1
5β

2 . (5.33)

The linear distortion parameter is defined as follows:

β ≡ f(Ωm)
b
' Ωm(z)γ

b
, (5.34)

where f(Ωm) ≡ d lnD/d ln a is the linear growth rate, D is the linear density
growth factor, b is the linear CDM halo bias and γ is the gravitational growth
index, which depends on the gravity theory. In GR, it can be demonstrated that
γ ∼ 0.545 (Wang and Steinhardt, 1998; Linder, 2005).

The results of this analysis are shown in Fig. 5.12, at three different redshifts,
for all the models considered. The horizontal lines in each panel show the
ΛCDM predictions computed with the linear biases by Tinker et al. (2010),
normalised at the σ8 values of each model (Marulli et al., 2012). Thanks to
the latter normalisation, all the considered models agree remarkably well with
the ΛCDM predictions, particularly at scales beyond 10h−1 Mpc . These results
show that the effect of f(R) gravity models, with or without massive neutrinos,
on the redshift-space monopole of the halo 2PCF is strongly degenerate with σ8,
similarly to what was previously found in real space (see Fig. 5.8). This result
also confirms what found by Marulli et al. (2012) for cDE models with massless
neutrinos. Similar conclusions have been reached by Villaescusa-Navarro et al.
(2018), who investigated the redshift-space clustering in massive neutrino cos-
mologies.

The redshift-space 2PCF monopole alone is not sufficient to discriminate
among these alternative cosmological frameworks due to the σ8-degeneracy.
Thus, in order to break the degeneracy, the full 2D clustering information has to
be extracted. As explained in Section 5.6, it is enough though to consider only
the first two even multipoles, that is the monopole and the quadrupole (see Fig.
5.11), which contain the anisotropic clustering information. To construct the
likelihood, we consider the so-called dispersion model (Peacock and Dodds, 1994).
Though it has been shown that it can introduce systematics in the linear growth
rate measurements (see e.g. Bianchi et al., 2012; de la Torre and Guzzo, 2012;
Marulli et al., 2017, and references therein), the dispersion model is accurate
enough for the purposes of the present work, that consists in quantifying the
relative differences between f(R) models and ΛCDM.

In the following, we briefly summarise the main equations of the dispersion
model (see e.g. de la Torre and Guzzo, 2012, for more details) implemented in the
CosmoBolognaLib. Assuming the plane-parallel approximation, the redshift-space
power spectrum of matter density fluctuations, P zs(k, µ), can be parametrised
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Figure 5.13: Covariance matrices from the analysis of the redshift-space monopole
and quadrupole moments of CDM haloes with Bootstrap errors. The models correspond
to: ΛCDM (upper panels), fR4 (central panels) and fR5 (bottom panels), at three

different redshifts z = 0.5, 1.0 and 1.6 from left to right.

as follows:

P zs(k, µ) =
(

1 + f

b
µ2
)2

F (k, µ,Σs)b2P (k) , (5.35)

where the first term on the right-hand side is the linear Kaiser term, b is the
linear bias and P (k, µ) is the matter density power spectrum in real space.
F (k, µ,Σs) is a damping function used to describe the FoG at small scales given
by:

F (k, µ,Σs) = 1
(1 + k2µ2Σ2

s)
, (5.36)

where the streaming scale Σs is a free model parameter (Kaiser, 1987; Hamilton,
1992; Fisher and Nusser, 1996). The model for the 2PCF multipoles are obtained
by Fourier transforming the power spectrum multipoles, Pl(k), as follows:

Pl(k) = 2l + 1
2

∫ +1

−1
dµP (k, µ)Ll(µ) , (5.37)

ξl(s) = il

2π2

∫
dkk2Pl(k)jl(ks) , (5.38)

where jl are the lth-order spherical Bessel functions (for more details see e.g.
Pezzotta et al., 2017).

For the Bayesian analysis, the dispersion model (Eqs. 5.35, 5.36) can be
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written in terms of three free parameters, fσ8, bσ8 and ΣS, that we constrain
by minimising numerically the negative log-likelihood:

−2 lnL =
N∑

i,j=1

[
ξDl (si)− ξMl (si)]Cl(si, sj)−1[ξDl (sj)− ξMl (sj)

]
, (5.39)

with N being the number of bins at which the multipole moments are estimated,
and the superscripts D and M referring to data and model, respectively. The
covariance matrix Cl(si, sj) is computed from the data with the bootstrap
method:

Cl(si, sj) = 1
NR − 1

NR∑
n=1

[
ξnl (si)− ξ̄l(si)][ξnl (sj)− ξ̄l(sj)

]
, (5.40)

where the indices i and j run over the 2PCF bins, l = 0, 2 correspond to the
multipole moments considered, ξ̄l = 1/NR

∑NR
n=1 ξ

n
l is the average multipole of

the 2PCF, and NR = 100 is the number of realisations obtained by resampling
the catalogues with the bootstrap method. Fig. 5.13 shows the normalised covari-
ance matrices (Ci,j/

√
Ci,iCj,j) of the redshift-space monopole and quadrupole

moments of CDM haloes with Bootstrap errors resampling at three different
redshifts z = 0.5, 1.0 and 1.6. As it can be appreciated, the covariance matrices
represent how the scatter propagates into the likelihood and on the final posterior
probabilities of the parameters.

Then, to assess the posterior distributions of the three model parameters,
we perform a MCMC analysis. The fitting analysis is limited to the scale
range 10 ≤ r [Mpch−1] ≤ 50, assuming flat priors in the ranges 0 ≤ fσ8 ≤ 2,
0 ≤ bσ8 ≤ 3 and 0 ≤ ΣS ≤ 2.

As an illustrative example, Fig. 5.14 shows the fσ8-bσ8 posterior constraints,
marginalised over Σs, obtained from the MCMC analysis of ξ0, ξ2 and ξ0 + ξ2.
The upper panel shows the constraints for all models considered in this work at
z = 1.0 using the monopole (orange), quadrupole (green) and monopole plus
quadrupole (blue), while the lower panel corresponds to a zoom of the intersec-
tion region of a ΛCDM halo mock sample at z = 0.5. As it is well known, a joint
analysis of the redshift-space monopole and quadrupole is required to break the
degeneracy between fσ8 and bσ8, as it is shown in the Figure. We apply this
analysis to all the DUSTGRAIN-pathfinder mock catalogues. Fig. 5.15 shows the
monopole and quadrupole measurements compared to best-fit model predictions.
The latter are obtained by assuming the dispersion model, with ΛCDM power
spectrum, normalised to the σ8 values of each DUSTGRAIN-pathfinder simula-
tion. As in all previous plots, this method simulates the statistical analysis that
would be performed if the real cosmological model of the Universe was one of
the f(R) assumed scenarios, with or without massive neutrinos, while a ΛCDM
model was instead erroneously assumed to predict the DM clustering.

Fig. 5.16 shows the fσ8-bσ8 posterior contours, at 1 − 2σ, for all models



100Chapter 5. Constraints on f(R) gravity with and without massive neutrinos
from redshift-space distortions

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
ΛCDM

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
fR4

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
fR4 0.3eV

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

f
σ

8

fR5

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
fR5 0.15eV

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
fR5 0.1eV

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
fR6

0.0 0.5 1.0 1.5
bσ8

0.0

0.2

0.4

0.6

0.8

1.0
fR6 0.06eV

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0
fR6 0.1eV

z = 1.0

0.25 0.50 0.75 1.00
bσ8

0.2

0.4

0.6

0.8

1.0

1.2

f
σ

8

0.86 0.87
bσ8

0.50

0.52

0.54

Figure 5.14: Contours at 1− 2σ confidence level of the fσ8 − bσ8 posterior distri-
butions, obtained from the MCMC analysis in redshift-space for 2PCF multipoles of
CDM haloes. Upper panel shows the results for all models considered in this work at
z = 1.0: monopole (orange), quadrupole (green) and monopole plus quadrupole (blue).
Lower panel corresponds to a zoom of the region of interest for the ΛCDM model at
z = 0.5. The joint modelling of monopole and quadrupole breaks the degeneracy in

the {fσ8, bσ8} space.
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Figure 5.15: The measured redshift-space 2PCF multipole moments for the ΛCDM
(points with errorbars) model compared to the best-fit posterior models, at three
different redshifts (z = 0.5, 1 and 1.6, columns from left to right), for the different

MG models (as labelled in the plot).

and redshifts considered. This represents the main result: the alternative MG
models considered in this work can be clearly discriminated at z & 1, also in
the presence of massive neutrinos whose masses are chosen to introduce strong
degeneracies in linear real-space statistics.

In Fig. 5.17 we show the theoretical behaviour of the linear distortion pa-
rameter and the growth factor as a function of the redshift for each family of
models assuming a flat ΛCDM model. A final summary of all our fσ8, bσ8
and Σs cosmological constraints is presented in Fig. 5.18. At low redshifts,
the fσ8 posteriors of almost all the f(R) models considered appear statistically
indistinguishable from ΛCDM (as already evident in Fig. 5.16). Nevertheless,
at higher redshifts they are clearly no more degenerate. This is an interesting
result, given that the next-generation dark energy experiments, such as the ESA
Euclid mission (Laureijs, 2011a), will mainly probe the high redshift (z > 1)
Universe.

An additional issue we investigated is related to how much our estimated
uncertainties on ∆fσ8 and ∆bσ8 depend on the survey volume. In this case,
we repeated the entire analysis on 5 smaller sub-boxes, extracted from the
original simulation snapshots, with increasing sides, Lbox = 350, 450, 550 and
650 Mpch−1. We found approximately linear relations between the estimated
uncertainties and the survey volume. Considering the volume of surveys like
Euclid, we expect that the uncertainties on both fσ8 and bσ8 will be about 10
times smaller relative to the values estimated in the current analysis. However,
there are many complications affecting the analysis on real data, that might
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Figure 5.16: Posterior constraints at 1 − 2σ confidence levels in the fσ8 − bσ8
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Figure 5.17: Theoretical expectation of the linear distortion parameter β (upper
panel), and the growth rate fσ8 (lower panel) as a function of the redshift for each
family of mocks from the DUSTGRAIN-pathfinder runs assuming a flat ΛCDM model.

significantly increase the estimated uncertainties. Reliable forecasts should
include both statistical and systematic uncertainties possibly caused by ob-
servational effects, such as e.g. redshift measurement errors, photometric and
spectrophotometric calibration, sky brightness variations, geometric selections.

5.8. Discussion
We investigated the clustering and redshift-space distortions of CDM haloes

in MG models, with and without massive neutrinos. The present work is a
follow-up to the analyses presented in Marulli et al. (2012), who investigated the
halo clustering properties in cDE cosmological scenarios. In particular, this work
extended the analysis to f(R) models, investigating at the same time the effects
of including massive neutrinos. Specific combinations of parameters in f(R)
gravity and neutrino masses are considered to investigate possible cosmic degen-
eracies in the spatial properties of the LSS of the Universe. The family of MG
models analysed in this work mimics the ΛCDM background expansion on large
scales, being also consistent with solar system constraints (Hu and Sawicki, 2007).

In particular we studied whether redshift-space distortions in the 2PCF
multipole moments can be effective in breaking these cosmic degeneracies. The
analysis has been performed using mock halo catalogues at different redshifts
extracted from the DUSTGRAIN-pathfinder runs, a set of N-body simulations of
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Figure 5.18: Posterior constraints at 1σ and 2σ confidence levels for fσ8 (upper
panels), bσ8 (central panels) and Σs (bottom panels), at three different redshifts
z = 0.5, 1.0 and 1.6 from left to right, for all models considered in this work, obtained
from the MCMC analysis of the redshift-space monopole and quadrupole moments of
CDM haloes. The vertical shaded areas are centred on ΛCDM results, for comparison.
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f(R) models with and without massive neutrinos (Giocoli, Baldi, and Moscardini,
2018; Peel et al., 2018a; Peel et al., 2018b; Merten et al., 2018). We considered
intermediate scales, below 50h−1 Mpc , focusing on the first two even multipole
moments of the 2PCF. We exploited a Bayesian statistical approach to assess
posterior probability distributions for the three free parameters of the dispersion
model {fσ8, bσ8, ΣS}. The main result that came out from this analysis
is that redshift-space distortions of 2PCF multipoles are effective probes to
disentangle cosmic degeneracies, though only at large enough redshifts (z & 1).
In fact, the linear growth rate constraints obtained from all the analysed f(R)
mock catalogues are statistically distinguishable from ΛCDM predictions, at all
redshifts but z = 0.5, as shown in Fig. 5.16 and 5.18.





107

C
h

a
p

t
e

r

6
Modelling redshift space distortions: vali-
dation of statistical methods of clustering
anisotropies

Since redshift-space distortions are considered one of the most powerful
cosmological probe to explore the LSS, in this Chapter we validate
it considering different statistical methods that are currently used
to constrain the linear growth rate from the 2PCF. The content of

this Chapter is an extended version of our paper (García-Farieta et al., 2019),
in which we studied the clustering signal of mock catalogues extracted from
large N-body simulations of the standard cosmological framework. The analysis
consists in quantifying the systematic uncertainties on the growth rate and linear
bias measurements due to the assumptions in the redshift-space distortion model,
using both multipole moments and clustering wedges of the redshift-space 2PCF.
We take into account the impact of redshift measurement errors, that introduce
spurious clustering anisotropies.

Observational cosmology has had progressive improvements concerning both
data acquisition and modelling. With the common goal of understanding struc-
ture formation and its evolution in the Universe, several projects have been
carried on to explore the properties of cosmic tracers at different scales. The
main properties of the large-scale structure of the Universe have been constrained
both at very high redshifts, exploiting the Cosmic Microwave Background (CMB)
power spectrum (Bennett et al., 2013; Planck Collaboration et al., 2018a), and
in the local Universe thanks to increasingly large surveys of galaxies and galaxy
clusters (e.g. Parkinson et al., 2012; Campbell et al., 2014; Guzzo et al., 2014;
Alam et al., 2017). The unprecedented amount and quality of the data expected
from the upcoming projects are focused on testing fundamental physics and
solving questions that have remained unanswered for years. In particular, in
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the era of large galaxy surveys, such as the Dark Energy Survey1 (DES) (DES
Collaboration et al., 2017), the extended Roentgen Survey with an Imaging
Telescope Array (eROSITA) satellite mission2 (Merloni, 2012), the NASA Wide
Field Infrared Space Telescope (WFIRST) mission3 (Spergel, 2013), the ESA Eu-
clid mission4 (Laureijs et al., 2011b; Amendola et al., 2018), the Large Synoptic
Survey Telescope5 (LSST) (Ivezic, 2008), and the Square Kilometre Array (SKA)
(Maartens et al., 2015; Santos et al., 2015), we will have the opportunity to
clarify some of the main open issues in the current understanding of the Universe,
such as the physical nature of dark matter (DM) and dark energy (DE), and
to test the gravity theory on the largest scales accessible (for a recent review
see e.g. Silk, 2017). This constitutes sufficient motivation for the forthcoming
generation of galaxy surveys, exploring the dark sector with increasingly large
and accurate maps of galaxies and other cosmic tracers.

The impact of systematics on constraining cosmological parameters is per-
haps the most important factor to consider from an observational point of view.
In this context, systematics have been taken into account in several previous
investigations, considering their impact on constraining cosmological parameters
using cosmic shear tomography (Cardone et al., 2014), lensing statistics in
ray-tracing simulations with photometric redshifts (Abruzzo and Haiman, 2019),
cluster mass function in large weak lensing surveys (Corless and King, 2009),
cosmography with strong and weak lensing (Mandelbaum et al., 2005; Acebron
et al., 2017; Shirasaki and Yoshida, 2014), power spectra from cosmic shear
analysis (Hikage et al., 2019), estimators from supernova cosmology (Nordin,
Goobar, and Jönsson, 2008; Zhai and Wang, 2018), and involving the systematic
errors on redshift-space distortions in Fourier space to test cosmological-scale
gravity (Ishikawa et al., 2014). Recently, some theoretical tools have been
proposed to deal with the effect of the unknown systematics, like the Bayesian
conservative constraints (Bernal and Peacock, 2018). Robust constraints on
cosmological parameters should also take into account the spurious effects in the
measurements. In particular we investigate the impact of redshift measurement
errors on the estimators that quantify the galaxy clustering and that are com-
monly used to derive constraints on cosmological parameters. This is important
considering the limits of precision in the redshift expected from photometric
and spectroscopic samples of future galaxy surveys.

In the following Sections, we present a systematic validation analysis of
the main statistical techniques currently used to constrain the linear growth
rate from redshift-space anisotropies in the 2PCF of cosmic tracers. We model
the monopole and quadrupole multipole moments and the clustering wedges of
the 2PCF, which encode most of the information on the large-scale structure
distribution. Then, we investigate new RSD models based on perturbation

1http://www.darkenergysurvey.org
2http://www.mpe.mpg.de/eROSITA
3http://wfirst.gsfc.nasa.gov
4http://www.euclid-ec.org
5http://www.lsst.org

http://www.darkenergysurvey.org
http://www.mpe.mpg.de/eROSITA
http://wfirst.gsfc.nasa.gov
http://www.euclid-ec.org
http://www.lsst.org


6.1. N-body simulations and mock halo catalogues 109

Figure 6.1: Density field map of a FOF sample from the MDPL2 simulation at
redshift z = 0. The slice is 5h−1 Mpc thick and encloses the region of the most massive

halo in the simulation. Taken from http://www.cosmosim.org/.

theory, named Scoccimarro (2004) and Taruya, Nishimichi, and Saito (2010)
models, that we compare with the so-called dispersion model (Davis and Peebles,
1983; Peacock and Dodds, 1996). Moreover, we investigate also the impact of
redshift measurement errors, which introduce spurious small-scale clustering
anisotropies. We focus on the redshift range 0.5 . z . 2, and consider mildly
non-linear scales 10 < r[h−1 Mpc ] < 55, where the assumptions in the RSD
models considered in this work are expected to be reliable. In addition, we
investigate the impact of considering only larger scales, r > 30 h−1 Mpc , where
the models are supposed to be less biased.

6.1. N-body simulations and mock halo cata-
logues

The basics on N-body simulations have been presented in Chapter §5. In
this Chapter we use a set of the halo catalogues extracted from the publicly
available MDPL2 simulations belongs to the MultiDark suite (Riebe et al.,
2013; Klypin et al., 2016) that is available at the CosmoSim database6. This

6http://www.cosmosim.org/

http://www.cosmosim.org/
http://www.cosmosim.org/
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set of simulations have been widely used in several studies in recent years (see
e.g. van den Bosch and Jiang, 2016; Rodríguez-Puebla et al., 2016; Klypin et al.,
2016; Vega-Ferrero, Yepes, and Gottlöber, 2017; Zandanel et al., 2018; Topping
et al., 2018; Wang et al., 2018; Ntampaka, Rines, and Trac, 2019; Granett et al.,
2019). The MDPL2 simulation follows the dynamical evolution of 38403 dark
matter particles, with mass resolution as low as 1.51× 109M�/h, in a comoving
box of 1000h−1 Mpc on a side assuming a ΛCDM cosmology consistent with
Planck results (Planck Collaboration et al., 2014; Planck Collaboration et al.,
2016d). The adopted cosmological parameters are: Ωm = 0.307, ΩΛ = 0.693,
Ωb = 0.048, σ8 = 0.823, n = 0.96 and h = 0.678. The dark matter haloes (Riebe
et al., 2013) have been identified using a Friends-of-Friends (FoF) algorithm
with a linking length of 0.2 times the mean interparticle distance (Knebe et al.,
2011). A projection of the density field map of a FOF sample from the MDPL2
simulation at redshift z = 0 is shown in Fig. 6.1.

Our analysis will focus on mock catalogues constructed using the MDPL2
simulation and considering redshift errors to investigate the RSD on inter-
mediate and non-linear scales. For the clustering analysis presented in this
Chapter we make use of one realisation of the halo samples per each red-
shift considered, taking into account only the identified haloes that have
more than Nmin particles per halo, where Nmin have been chosen according
to the mass threshold fixed to Mmin = 1012M�/h, which corresponds to a
minimum number of 665 particles per halo. For all the samples, we have re-
stricted our analysis in the mass range Mmin < M < Mmax, where Mmax =
2× 1015, 1.3× 1015, 7.4× 1014, 5.4× 1014, 4.0× 1014, 3.6× 1014, 3.1× 1014M�/h,
at z = 0.523, 0.740, 1.032, 1.270, 1.535, 1.771, 2.028, respectively.

6.2. Clustering of DM haloes
In this Section, we describe the methodology used to quantify the halo clus-

tering through the 2PCF. Specifically, we characterise the anisotropic clustering
either with the first two non-null multipole moments of the 2PCF, or with
the clustering wedges. All the numerical computations in this Chapter have
been performed with the CosmoBolognaLib (Marulli, Veropalumbo, and Moresco,
2016)7.

6.2.1. The two-point correlation function
The methodology employed in this Section is similar to the one adopted

in Chapter §5. As mentioned above, we compare the results obtained from
the multipole moments with the one from the clustering wedges of the 2PCF,
reason for which we recall the main equations of these formalisms (for details

7Specifically, we used the CosmoBolognaLib V5.3, which includes the new
implemented RSD likelihood modules required for the current analysis. The
software and its documentation are freely available at the GitHub repository:
https://github.com/federicomarulli/CosmoBolognaLib.

https://github.com/federicomarulli/CosmoBolognaLib
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see Chapter §3), and we give a more detailed description on the estimators.

Firstly, we characterise the spatial distribution of DM haloes in MDPL2
simulations in terms of its 2PCF in both real-space ξ(r, µ) and redshift-space
ξ(s, µ). Since the full 2D 2PCF encodes a complete description of the halo
clustering, we measure it by using the conventional Landy and Szalay (1993)
estimator with an angular dependence given by

ξ̂(r, µ) = DD(r, µ)− 2DR(r, µ) +RR(r, µ)
RR(r, µ) , (5.26)

with µ being the cosine of the angle between the line-of-sight (LOS) and the
comoving separation r, and DD(r, µ), RR(r, µ), and DR(r, µ) the normalised
number of pairs of CDM haloes in data-data, random-random and data-random
catalogues, respectively. We consider intermediate scales from 1h−1 Mpc to
55h−1 Mpc , in 80 linearly spaced bins, with random samples five times larger
than the halo ones to keep the shot noise errors due to the finite number of
random objects negligible.

As introduced in Chapter §3, the clustering anisotropies can be effectively
quantified by decomposing the full 2D 2PCF either in its multipole moments or
in the so-called wedges (Kazin, Sánchez, and Blanton, 2012; Sánchez et al., 2013;
Sánchez et al., 2014; Sánchez et al., 2017). The coefficients of the Legendre
expansion [see Eq. (5.27)], correspond to the lth non-vanishing multipole moment
of the 2PCF written as follows:

ξl(r) ≡
2l + 1

2

∫ +1

−1
dµξ(r, µ)Ll(µ). (3.21)

We measure the multipole moments through the direct estimator, instead
of the integrated estimator presented in the previous Chapter, see Eq. (5.28).
Starting from the Landy and Szalay (1993) estimator, the direct multipoles
actually take the form

ξ̂`(s) = DD`(s) +RR`(s)− 2DR`(s)
RR0(s)

= 2`+ 1
2

∫ +1

−1
dµDD(µ, s) +RR(µ, s)− 2DR(µ, s)

RR(µ, s) Ll(µ)

·RR(µ, s)
RR(s) , (6.1)

thus the pair-counter was performed directly in 1D bins considering that our
random pairs do not depend on µ, i.e. RR(r, µ) = RR(r) instead of integrating
over 2D bins (Kazin, Sánchez, and Blanton, 2012). In real-space the full
clustering signal is encoded in the monopole moment ξ0(r), whereas in redshift-
space we focus on the two first non-zero multipole moments, monopole ξ0(s) and
quadrupole ξ2(s), since the odd multipoles vanish by symmetry at first order.
On the other hand, the clustering wedges introduced by Kazin, Sánchez, and
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Blanton (2012), correspond to the angle-averaged of the ξ(s, µ) over wide bins
of µ expressed as

ξw(s) = 1
∆µ

∫ µ2

µ1
ξ(s, µ)dµ, (3.29)

where ∆µ = µ2−µ1 is the wedge width. In this work we focus on the two cluster-
ing wedges with ∆µ = 0.5, that is the transverse wedge, ξ⊥(s) ≡ ξ1/2(µmin = 0, s),
and the radial (or LOS) wedge, ξ‖(s) ≡ ξ1/2(µmin = 0.5, s), computed in the
ranges 0 ≤ µ < 0.5 and 0.5 ≤ µ ≤ 1, respectively. In real-space both wedges, ra-
dial ξ‖ and transverse ξ⊥, are identical between them and equal to the monopole
signal ξ0(r) because there are no distortions in any direction. For consistency,
in following Sections we present all our results using both descriptions, the
multipole statistics and clustering wedges defined above.

The errors on the 2PCF measurements are estimated by using the bootstrap
resampling method (Efron, 1979). Firstly, the original catalogue is divided
into 27 sub-samples, which are then re-sampled in 100 different data sets with
replacement, then the ξ(r, µ) is measured in each one of them (Barrow, Bhavsar,
and Sonoda, 1984; Ling, Frenk, and Barrow, 1986).
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Figure 6.2: The real-space 2PCF of CDM haloes at three different redshifts, as
indicated by the labels. Upper panels: the monopole ξ0 and quadrupole ξ2 moments.
Bottom panels: the perpendicular ξ⊥ and parallel ξ‖ wedges; the latter are shifted by
−10, for clarity reasons. The error bars are computed with bootstrap sampling.

6.2.2. Clustering in real space
The real-space 2PCF of DM haloes at three different redshifts, created from

the FOF MDPL2 simulations, is shown in Fig. 6.2. In the upper panel the 2PCF
was computed from the multipole statistics, monopole ξ0(r) (red) and quadrupole
ξ2(r) (blue). As expected, the main signal is contained in the monopole, while
the mean quadrupole is consistent with zero, at 1σ, at all scales. The lower
panels show the 2PCF computed from clustering wedges, ξ⊥(r) (red) and ξ‖(r)
(blue), the latter are rescaled by −10 for visualisation purposes. As mentioned
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before, all of them are statistically equal since in real-space there are no clus-
tering anisotropies from the simulations, all multipole moments with l > 0 are
supposed to vanish and the clustering wedges for any width ∆µ correspond to the
ξ0(r) signal. In all cases, the error bars are computed with the bootstrap method.

The amplitude of the real-space clustering signal allows us to characterise
the effective halo bias, beff , which relates the halo clustering to the underlying
mass distribution. From our mass-selected samples, the mean apparent effective
bias of CDM haloes is defined as follows

〈b(z)〉 =
〈√

ξhalo

ξCDM(σ8)

〉
, (5.29)

where ξhalo is the measured halo bias of the MDPL2 sub samples and ξCDM is
obtained by Fourier transforming of the non-linear matter power spectrum from
the HALOFIT (Smith et al., 2003) implementation in CAMB (Lewis, Challinor,
and Lasenby, 2000). Moreover, we consider the effective bias proposed by
Tinker et al. (2010) in order to compare our results with theoretical predictions.
In each case the effective bias is estimated by averaging the bias b(M, z) of
a set of CDM haloes with a given mass M and redshift, in the scale range
10h−1 Mpc< r <50h−1 Mpc , as following

beff (z) =
∫Mmax
Mmin

n(M, z)b(M, z)dM∫Mmax
Mmin

n(M, z)dM
, (5.30)

where the mass limits [Mmin, Mmax] have been defined in Section 6.1, while the
mass function, n(M, z), and the linear bias, b(M, z) are estimated using the
Tinker et al. (2008) model and the Tinker et al. (2010) model, respectively. The
left panel of Fig. 6.3 shows the measured CDM halo bias as a function of scale
with error bars propagated from the 2PCF and the horizontal line corresponds
to the Tinker et al. (2010) prediction.

A scale dependent behaviour of the bias can be appreciated at scales smaller
than 10h−1 Mpcwith deviations of about 4% with respect to the theoretical
linear prediction. The right panel of Fig. 6.3 shows the evolution of the mean
effective bias for scales larger than 10h−1 Mpc , with respect to the redshift, the
dashed line refers to the theoretical ΛCDM predictions of Tinker et al. (2010)
normalised to the σ8 value of MDPL2 simulations. The error bars are computed
by propagating the 2PCF errors estimated with bootstrap resampling. They
show a very good agreement with respect to the Tinker et al. (2010) prediction
as it can be appreciated in the bottom subpanel, where the blue line represents
the difference between the two values and the cyan shaded region corresponds
to 1σ deviation.

6.2.3. Dynamic distortions and clustering in redshift space
The patterns of the clustering in the density field are affected by the peculiar

velocities of CDM haloes, which causes an enhancement of the 2PCF due to
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Figure 6.3: Effective halo bias 〈b〉 as a function of the comoving scale (left panel)
and as a function of the redshift (right panel), computed as an average in the range
10h−1 Mpc< r <50h−1 Mpc from the real-space correlation function. Dashed line

show the theoretical ΛCDM effective bias predicted by Tinker et al. (2010).

redshift-space distortions. As it is well known, the observed redshift zobs mea-
sured for real galaxy surveys can be expressed as a combination of three terms
(e.g. Marulli et al., 2012): i) the cosmological redshift, zc, due to the Hubble flow,
ii) the redshift caused by the peculiar velocity along the LOS of the observer,
and iii) an additional term due to the redshift measurement errors coming from
the adopted instrumentation and calibration analysis. Indeed, neglecting the
latter two terms introduces displacements between the matter distribution in
real and redshift space (for a review see Hamilton, 1998; Scoccimarro, 2004).

Since we are interested in mimicking redshift surveys, we construct realistic
mock catalogues of the CDM halo distribution in redshift-space from the MDPL2
simulations. First, we introduce a local observer at a random position in the
simulation, then we transform the comoving coordinates of each DM halo into
polar coordinates as a projection on the sky, and finally we estimate the observed
redshifts assuming the following relation:

zobs = zc + (1 + zc)
v · r̂
c

+ σv
c
, (6.2)

where σv corresponds to the amplitude of a Gaussian noise in the measured
redshift expressed in km/s and r̂ is a unit vector along the LOS, so that the
contribution of peculiar motions is given by ~v‖ = ~v · r̂. Finally, we return back to
comoving Cartesian coordinates, mimicking the distortions in redshift space by re-
placing zc with zobs to estimate the comoving distance. As in Marulli et al. (2012),
we consider the following values for the σv term: 0, 200, 500, 1000, 1250, 1500
km/s, whose effects in the redshift measurement of the mock catalogues corre-
spond to the per cent uncertainties δz = {0, 0.07, 0.2, 0.3, 0.4, 0.5}%. These
values cover the sensible range extending from the case with negligible redshift
errors (σz = 0), to the case with errors representative to those expected from
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z
σv [km/s]

200 500 1000 1250 1500
0.523 0.44 1.09 2.19 2.74 3.28
0.740 0.38 0.96 1.92 2.39 2.87
1.032 0.33 0.82 1.64 2.05 2.46
1.270 0.29 0.73 1.47 1.84 2.20
1.535 0.26 0.66 1.31 1.64 1.97
1.771 0.24 0.60 1.20 1.50 1.80
2.028 0.22 0.55 1.10 1.38 1.65

Table 6.1: The ratios between the values of the Gaussian redshift errors considered in
this work and the expected redshift errors in Euclid-like spectroscopic galaxy surveys.

next-generation spectroscopic surveys. Tab. 6.1 reports the ratios between the σv
values considered in this work and the ones expected in Euclid-like spectroscopic
galaxy surveys, that is σz/(1 + z) ∼ 0.001 (Laureijs et al., 2011b).

Fig. 6.4 shows the spatial distribution of DM haloes in polar coordinates
for a mock sample at z = 1.032 including redshift measurement errors. The
slight elongation increasing with σv in the halo distribution along the LOS due
to redshift errors can be appreciated in the different panels.

Figure 6.4: Spatial distribution of haloes in mock sub samples at z = 1.032 including
redshift errors as indicated in the labels. Only haloes in a 2 degree declination slice

are plotted.

Fig. 6.5 shows the 2PCF as a function of the transverse s⊥ and parallel s‖
separations to the LOS, at z = 0.523, 1.032, 1.535 for the MDPL2 mocks. The
iso-correlation contours of ξ(s⊥, s‖) are evaluated in the interval [0.05, 3] for
different values of the redshift measurement errors, δz as indicated in the panels.
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Figure 6.5: Iso-correlation contours of ξ(s⊥, s‖) measured in the mock cata-
logues. Contours are drawn in correspondence of the correlation levels ξ(s⊥, s‖) =
0.05, 0.07, 0.09, 0.13, 0.18, 0.24, 0.33, 0.45, 0.62, 0.85, 1.17, 1.6, 2.2, 3. Differ-
ent panels refer to different amplitudes of the redshift errors, as indicated in the

labels.

As it can be seen, redshift errors introduce spurious clustering anisotropies at
small scales, enhancing the clustering signal along the LOS, analogously to the
Fingers-of-God (FoG) elongations (Marulli et al., 2012).

In order to increase the signal-to-noise ratio, it is convenient to project
the two-dimensional 2PCF correlation function, ξ(s⊥, s‖), onto one-dimensional
statistics, such as the multipole moments and the clustering wedges. In Figs. 6.6a
and 6.6b we show the redshift-space monopole and quadrupole moments, and
the redshift-space radial and transverse wedges, respectively. The case of the
isolated monopole moment of the 2PCF was studied in a previous paper by
Marulli et al. (2012). In agreement with the results of that paper, we found a
suppression in the 2PCF monopole at small scales due to redshifts errors. The
results for the clustering wedges are consistent with the multipole ones, showing
a small-scale suppression in the transverse wedge, in the presence of redshift
errors, while the radial wedge increases. As shown in Fig. 6.5 and discussed in
detail in the next Sections, the spurious anisotropies caused by redshift errors in
the multipole moments and wedges have a scale-dependent pattern similar to
the FoG one caused by small-scale incoherent motions.

A first quantitative assessment on the impact of redshift errors in the estimates
of the linear growth rate fσ8 and the bias bσ8 can be obtained from the multipole
moments of the 2PCF by calculating the ratio of the monopole in redshift-space
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(a) Redshift-space 2PCF monopole and quadrupole of the MDPL2 DM haloes, at
three different redshifts. The coloured lines correspond to the 2PCFs measured in
mock catalogues with redshift errors, as indicated by the labels. The bottom panels
show the percent relative difference with respect to the case with no redshift errors.
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(b) Redshift-space 2PCF perpendicular and parallel wedges of the MDPL2 DM haloes,
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Figure 6.6: Measured multipole moments and clustering wedges of the 2PCF from
mock catalogues of the MDPL2 simulation.
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Figure 6.7: The ratio between the redshift-space and real-space monopole moments,
R(s) (upper panels), and between the redshift-space quadrupole and monopole, Q(s)
(lower panels), at three different redshifts and for different redshift errors, as indicated
by the labels. Horizontal lines represent the theoretical predictions obtained assuming
the Tinker et al. (2008) mass function and the Tinker et al. (2010) effective bias. The
error bars are computed by propagating the 2PCF bootstrap errors and the subpanels
show the relative percent differences with respect to the case with no redshift errors.

to the real-space correlation function R(s) and from the quadrupole-to-monopole
ratio Q(s). By assuming the linear regime, these quantities are simply related
to the distortion parameter β as follows:

R(s) = ξ0(s)
ξ0(r) = 1 + 2β

3 + β2

5 ,

Q(s) = ξ2(s)
ξ0(s)− 3

s3

∫ s
0 ds

′ξ(s′)s′2 =
4
3β + 4

7β
2

1 + 2β
3 + β2

5

,

(3.27)

(3.28)

where ξ0 and ξ2 are the redshift-space monopole and quadrupole of the 2PCF,
respectively. Fig. 6.7 shows the measurements of the R(s) and Q(s) estimators,
as a function of redshift errors, and their theoretical prediction calculated by
assuming the Tinker et al. (2010) linear bias. We find a good agreement between
measurements and theoretical predictions in the case without redshift errors,
for both estimators, at large enough scales (beyond ∼ 10h−1 Mpc ). On the
other hand, redshift errors introduce scale-dependent distortions in both these
statistics. In particular, their effect is to increase (decrease) the R(s) ratio above
(below) a characteristic scale, whereas the Q(s) is reduced, especially at small
scales.



6.3. Intermezzo: implementing models of RSD 119

6.3. Intermezzo: implementing models of RSD
A short theoretical description on the modelling of clustering distortions

induced by peculiar velocities has been already presented in Chapter §3. Here
we discuss briefly the methodology followed in the implementation of the models
for redshift-space distortions, from the linear theory to more elaborated pre-
scriptions based on standard perturbation theory (SPT). Since the aim of this
Chapter is focused on modelling RSD, we do not enter in a detailed description
on the theoretical aspects of perturbation theory, that clearly is out of reach of
this Thesis.

In order to extract information from the RSD signal, we model the clustering
signal in configuration space. To get the theoretical model of the multipole mo-
ments or clustering wedges of the 2PCF, first of all, we consider the description
of the clustering in Fourier space through the matter power spectrum P (k, µ).
The complexity of the redshift-space power spectrum P (k, µ) depends on how
the matter field, the velocity field and the galaxy bias are described to account
for the non-linearities in the growth of cosmic structures, in this sense several
approaches have been proposed in literature (for a review see e.g. Scoccimarro,
2004). Under the assumption of the plane-parallel approximation, meaning that
the probed separation range is much smaller than the distance between sources
and observer, and considering a linear bias, we focus on three specific models:
i) the so-called dispersion model, ii) the Scoccimarro (2004) model, and iii)
the TNS model (Taruya, Nishimichi, and Saito, 2010). Once the redshift-space
power spectrum is computed, it can be decomposed in terms of its multipole
moments Pl(k) [see Eq. (3.14)], and finally by Fourier transforming, as shown
by Eq. (3.20), the corresponding multipole moments and clustering wedges of
the 2PCF can be obtained.

The Dispersion model was already introduced in Chapter §3 and discussed
in the analysis presented in Section 5.6 of Chapter §5. Thus, in this Section we
focus on the models based on perturbation theory, for which the power spectrum
is given by

P (k, µ) =

DFoGb
2 [Pδδ + 2βµ2Pδθ + β2µ4Pθθ] Scoccimarro model

DFoGb
2 [Pδδ + 2βµ2Pδθ + β2µ4Pθθ + bCA + b2CB] TNS model,

(6.3)

where DFoG is a damping term that describes the velocity dispersion, Pδδ, Pδθ
and Pθθ denote the auto-power spectrum of density, the cross-power spectrum
and the velocity-divergence spectrum, respectively [see Eq. (3.38)], and CA, CB
are correction terms of the TNS model that depend on the bias and growth
factor. Several motivations, regarding the pairwise velocities σ12, suggest that
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the DFoG term can be modelled as a Gaussian or Lorentzian function following:

DFoG(k, µ, f, σ12) =

exp [−(kµfσ12)2] Gaussian
1/[1 + (kµfσ12)2] Lorentzian;

as it can be noted, the use of either a Gaussian or a Lorentzian damping results
in the same effect at first order.

Since both the Scoccimarro (2004) model and the Taruya, Nishimichi, and
Saito (2010) model take into account the non-linear mode coupling between the
density and velocity divergence fields, the main issue is to compute, first, these
individual contributions, Pδδ, Pδθ and Pθθ, and then the correction terms in the
case of the TNS model. At scales close to linear-regime Pδθ and Pθθ tend to Pδδ,
in general, they can be computed from perturbation theory (Eulerian, Lagrangian
or Time renormalization)8, but also from fitting formulas (see e.g. Jennings,
2012; Pezzotta et al., 2017; Bel et al., 2019). Pδδ is the non-linear correction
obtained directly from the HALOFIT non-linear model built-in Boltzmann codes,
e.g. CAMB or CLASS codes, while for the contribution coming from the cross
term and the velocity one, we used the following relations:

Pδθ(k) =



(
Pδδ(k)PL(k)e−k/k∗

) 1
2 , Pezzotta et al. (2017) approx.,[

PHF
δδ (k)P lin

θθ (k)
] 1

2 e
− k
kδ
−bk6

, Bel et al. (2019) approx.,
exp(f(k))2 (PL(k) + P1loop(k)) , Crocce et al., (2012),
PL(k) + 2

∫
F2(p, q)G2(p, q)P (p)P (q)d3q+

3P (k)
∫

[F3(k, q) +G3(k, q)]P (q)d3q, Scoccimarro (2004),

(6.4)

and

Pθθ(k) =



PL(k)e−k/k∗ , Pezzotta et al. (2017) approx.,
P lin
θθ (k)e−

k
kθ , Bel et al. (2019) approx.,

exp(g(k))2 (PL(k) + P1loop(k)) , Crocce et al., (2012),
PL(k) + 2

∫
[G2(p, q)]2 P (p)P (q)d3q+

6P (k)
∫
G3(k, q)P (q)d3q, Scoccimarro (2004),

(6.5)

being PL (k) the linear matter power spectrum. For the fitting formulas by
Pezzotta et al. (2017), k∗ is a parameter representing the typical damping scale of
the velocity power spectra, which can be well described by 1

k∗
= p1σ

p2
8 , where p1

and p2 are the free parameters of the fit. This description of the power spectrum
naturally converges to Pδδ(k) in the linear regime, including a dependence on
the redshift through σ8(z).

The fitting functions by Bel et al. (2019) extend the ones previously investi-
gated by (Jennings, Baugh, and Pascoli, 2011; Jennings, 2012), considering a
dependency on the amplitude of linear fluctuations measured by σ8. In this case,
PHF
δδ (k) refers to the non-linear density-density CDM power spectrum computed

with HALOFIT (Takahashi et al., 2012), which is included in CAMB, while
8For the Eulerian scheme see (Bernardeau et al., 2002), for the Lagrangian see (Bernardeau

and Valageas, 2008) and for Time renormalization see (Pietroni, 2008).
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P lin
θθ (k) refers to the linear auto-spectrum of the velocity divergence which can

be computed as P lin
θθ (k) = f 2(k)P lin

δδ (k). Moreover, b, a1, a2, and a3 are free
parameters to be fitted, controlling the amplitude of the typical damping scales
kδ and kθ so that 1/kθ = a1 + a2k + a3k

2.

The expressions for Pθθ(k) and Pδδ(k) by Crocce and Scoccimarro (2006a)
are derived from the renormalized perturbative scheme, in terms of the functions
f(k) and g(k), which represent the second-order correction of the non-linear prop-
agator, while P1loop is the one-loop power spectrum correction. Both terms can
be computed with the MPTbreeze code9 (Crocce, Scoccimarro, and Bernardeau,
2012). A detailed description of this formalism can be found in (Crocce and
Scoccimarro, 2006b; Crocce and Scoccimarro, 2006a).

In the last scheme that we use, the auto-power spectra of density, the cross-
power spectrum and the velocity-divergence, are obtained from the standard
perturbation theory, as proposed originally by Scoccimarro (2004). The terms Fi
and Gi in Eqs. (6.4) and (6.5) are named kernels and can be written as follows:

F2(k, q) = ν2
2 + 1

2 k̂ · q̂
(
k

q
+ q

k

)
+ 2

7

(
k̂ik̂j −

1
3δij

)(
q̂iq̂j −

1
3δij

)
,

G2(k, q) = µ2
2 + 1

2 k̂ · q̂
(
k

q
+ q

k

)
+ 4

7

(
k̂ik̂j −

1
3δij

)(
q̂iq̂j −

1
3δij

)
,

F3(k, q) = 6k6 − 79k4q2 + 50k2q4 − 21q6

63k2q4 +
(
q2 − k2)3 (7q2 + 2k2)

42k3q5 ln
∣∣∣∣k + q

k − q

∣∣∣∣ ,
G3(k, q) = 6k6 − 41k4q2 + 2k2q4 − 3q6

21k2q4 +
(
q2 − k2)3 (q2 + 2k2)

14k3q5 ln
∣∣∣∣k + q

k − q

∣∣∣∣ ,
where ν2 = 34/21 and µ2 = 26/21 represent the second-order evolution in
the spherical collapse dynamics. The origin of the other terms in the kernels
has different physical motivations, which consider the mapping transformation
from Lagrangian to Eulerian space and take into account the effect of tidal
gravitational fields (for details see Scoccimarro, 2004).

Since the SPT consists on expanding the statistics of interest as a sum of
infinite terms, where every term corresponds to a n-loop correction, we consider
corrections up 1-loop order. The 0-loop correction corresponds to the linear
power spectrum, P (0)(k) = PL(k), whereas the 1-loop term is expressed as a
sum of 2 different terms P 13(k) and P 22(k). Thus at 1-loop order the power
spectrum is written as follows

P 1−loop
xy (k) = P L

xy(k) + P 13
xy (k) + P 22

xy (k), (3.42)

where the 1-loop corrections are defined by〈
x2(~k)y2

(
~k′
)〉

= (2π)3δD
(
~k + ~k′

)
P 22
xy (k),〈

x1(~k)y3
(
~k′
)

+ x3(~k)y1
(
~k′
)〉

= (2π)3δD
(
~k + ~k′

)
P 13
xy (k),

(6.6)

9http://maia.ice.cat/crocce/mptbreeze/

http://maia.ice.cat/crocce/mptbreeze/
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where x and y can be δ or θ. Working these through, the extended expressions for
the 1-loop corrections in terms of the linear power spectrum P0(k) = P L(k, z = 0)
at redshift z = 0, are, for the 22 correction:

P 22
δδ (k) = 2 k3

(2π)2

∫ ∞
0

r2dr
∫ 1

−1
P0(kr)P0

(
k
√

1 + r2 − 2rx
)
F 2

2 (k, r, x)dx,

P 22
δθ (k) = 2 k3

(2π)2

∫ ∞
0

r2dr
∫ 1

−1
P0(kr)P0

(
k
√

1 + r2 − 2rx
)
F2(k, r, x)G2(k, r, x)dx,

P 22
θθ (k) = 2 k3

(2π)2

∫ ∞
0

r2dr
∫ 1

−1
P0(kr)P0

(
k
√

1 + r2 − 2rx
)
G2

2(k, r, x)dx,

(6.7)

(6.8)

(6.9)

while for the 13 correction they are:

P 13
δδ (k) = 2 k3

(2π)2F1(k)P0(k)
∫ ∞

0
r2P0(kr)F3(k, r, x)dr, (6.10)

P 13
δθ (k) = k3

(2π)2F1(k)P0(k)
∫ ∞

0
r2P0(kr)G3(k, r, x)dr

+ k3

(2π)2G1(k)P0(k)
∫ ∞

0
r2P0(kr)F3(k, r, x)dr (6.11)

P 13
θθ (k) = 2 k3

(2π)2G1(k)P0(k)
∫ ∞

0
r2P0(kr)G3(k, r, x)dr. (6.12)

For a detailed description of the perturbation theory approach see e.g.Gil-
Marín et al. (2012). The algorithms to compute all these quantities are provided
by the Cosmological Perturbation Theory Library (henceforth CPT Library)10
(Taruya, Nishimichi, and Saito, 2010), that we implemented and tested as
subroutines in the CosmoBolognaLibrary. Thus, with the SPT power spectra
computed up to 1-loop order we can input these to the Scoccimarro (2004) model
and to the TNS model (Taruya, Nishimichi, and Saito, 2010) to calculate the
redshift-space power spectrum as in Eq. (6.3). Regarding the TNS model, the
corrections terms CA and CB, can be expressed in terms of the basic quantities
of density δ and velocity divergence θ(k) ≡ [−ik ·v(k)]/[af(a)H(a)], specifically
they are rewritten as

CA(k, µ) = (kµf)
∫ d3p

(2π)3
pz
p2

× [Bσ(p,k − p,−k)−Bσ(p,k,−k − p)]

CB(k, µ) = (kµf)2
∫ d3p

(2π)3F (p)F (k − p)

F (p) = pz
p2

[
Pδθ(p) + f

p2
z

p2Pθθ(p)
]

(3.43)

(3.44)

(3.45)

10Cosmological Perturbation Theory Library (CPT Library) http://www2.yukawa.
kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html
http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html
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Figure 6.8: Comparison of the different schemes implemented in the CosmoBolog-
naLib to compute Pδδ(k), Pδθ(k) and Pθθ(k). The upper panels show each power
spectrum, at z = 0, as a function of the wave number when a PLANCK18 cosmology
is assumed. In the lower panels the relative differences are measured with respect to

the linear power spectrum.
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where Bσ is the cross bispectrum defined by〈
θ(k1)

{
δ (k2) + f

k2
2z
k2

2
θ (k2)

}{
δ (k3) + f

k2
3z
k2

3
θ (k3)

}〉
= (2π)3δD (k1 + k2 + k3)Bσ (k1,k2,k3) .

(3.46)

Note that CA and CB terms are proportional to b3 and b4, respectively, actually
they can be re-written as a power series expansion of b, f and µ and their
respective contributions to the total power spectrum (Taruya, Nishimichi, and
Saito, 2010; de la Torre and Guzzo, 2012).
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Figure 6.9: Contribution of the correction terms of the TNS model, at z = 0 for a
PLANCK18 cosmology, with respect to the Pδδ, Pδθ and Pθθ power spectrum. The Ai
and Bi terms have been computed using the Standard Perturbation theory at 1-loop

according to Eq. (6.13).

Fig. 6.8 shows the comparison between the different ‘methods’ that have
been implemented in the CosmoBolognaLib to compute Pδδ(k), Pδθ(k) and
Pθθ(k). The upper panels show each power spectrum, at z = 0, as a function
of the wave number when a PLANCK18 cosmology is assumed. In the lower
panels the relative differences are measured with respect to the linear power
spectrum. As it can be noticed, all approaches are in agreement each other at
linear regime. The results using the MPTbreeze method are the most deviated
from the others since this method includes an exponential cut-off that dominates
in the non-linear regime (see e.g. Lazanu et al., 2016). The Pezzotta et al. (2017)
and Bel et al. (2019) fitting formulas are in very well agreement between them
for the auto-power spectrum and the cross-power spectrum; the observed differ-
ences in the velocity divergence power spectrum are in the non-linear regime,
where the Bel et al. (2019) approach predicts a lower value with respect to the
predictions of the rest of the methods. Furthermore, the fitting formulas deviate
significantly when k > 10−1h/Mpc from the full prediction at 1-loop order from
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SPT computed with the CPT Library.

Fig. 6.9 shows the contribution of the correction terms of the TNS model
with respect to the Pδδ, Pδθ and Pθθ power spectrum. Each power spectrum was
computed using the SPT scheme implemented in the CPT Library and linked
with the cosmology provided by the CosmoBolognaLib. As expected, the effect
of the correction terms is more important at non-linear regime exhibiting an
oscillating behaviour, as predicted by Taruya, Nishimichi, and Saito (2010). Us-
ing perturbation theory, the integrals in Eqs. (3.43) and (3.44) can be separated
and written in a different fashion as follows
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Figure 6.10: Total amplitude of the TNS correction terms (CA = PkA and CB =
PkB), computed using the SPT scheme from the CPT routines up 1-loop, compared
with respect to the full redshift power spectrum from each RSD model: Dispersion,
Scoccimarro and TNS models. The subpanel refers to the ratio between the power

spectrum predicted by each one of the models and the Kaiser model.

A2 = µ2(βPA11 + β2PA12), (6.13)
A4 = µ4β2(PA22 + βPA23), (6.14)
A6 = µ6β3PA33, (6.15)
B2 = µ2(β2PB12 + β3PB13 + β4PB14), (6.16)
B4 = µ4(β2PB22 + β3PB23 + β4PB24), (6.17)
B6 = µ6(β3PB33 + β4PB34), (6.18)
B8 = µ8β4PB44; (6.19)
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each term contributes to the total correction such that

CA(k, µ; f, b) = A2 + A4 + A6 (6.20)
CB(k, µ; f, b) = B2 +B4 +B6 +B8, (6.21)

where the Ai and Bi terms are obtained from the implemented CPT routines.
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Figure 6.11: Total redshift power spectrum P (k, µ) predicted by different RSD
models: i) Dispersion model, ii) Scoccimarro (2004) model and iii) TNS model
(Taruya, Nishimichi, and Saito, 2010), making use of three different schemes: i) SPT
from CPT Library, ii) Renormalized perturbation theory from MPTBreeze, and iii)

fitting formulas. The cosmology assumed corresponds to PLANCK18 at z = 0.

The extended form of the PAmn and PBmn terms can be found in the Appendix
B. Fig. 6.10 displays the total effect of the TNS correction terms, at z = 0 for
a PLANCK18 cosmology, compared to the full redshift power spectrum from
each RSD model (Dispersion, Scoccimarro and TNS), computed using the SPT
scheme integrated in the CPT Library, where CA = PkA and CB = PkB. Both
Scoccimarro (2004) and TNS (Taruya, Nishimichi, and Saito, 2010) models give
a similar prediction of the power spectrum, where the TNS correction terms
change the P (k, µ) amplitude slightly only at k > 10−1 by less than 1%. On
the other hand, at the same scales the Dispersion model has a larger ampli-
tude with respect to the previous models. This overestimation in the power
spectrum impacts the clustering analysis using RSD in configuration space, in
such a way that the constraints on the growth rate parameter deviates from
the theoretical expectation by at least 10% (Marulli et al., 2012; Marulli et al.,
2017). A comparison of these results with the other schemes, MPTBreeze and
fitting functions, is shown in Fig. 6.11, where the same behaviour can be appre-
ciated. For the remaining part of the Thesis we focus only in the results derived
using SPT up 1-loop; then in the following Sections the statistical analysis
is performed considering that Pδδ, Pδθ, Pθθ and the TNS correction terms are
computed using the CPT routines instead of the fitting formulas and MPTBreeze.
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6.4. Modelling redshift-space distortions
In this Section we show the results of applying the RSD models, implemented

in the previous Section, to each mock catalogue constructed from MDPL2 simu-
lations considering the effect of possible redshift errors. The parametrisation of
the RSD allows us to derive constraints on fσ8 and bσ8 parameters directly from
the clustering. Thus, in order to extract this information from the RSD signal,
we model both multipole moments (monopole and quadrupole) and clustering
wedges (radial and transverse) by assuming the plane-parallel approximation
and the non-linear correlation function derived from the dispersion, Scoccimarro
(2004) and TNS (Taruya, Nishimichi, and Saito, 2010) models.

We exploit a full Markov Chain Monte Carlo (MCMC) statistical analysis
to estimate posterior distribution constraints on the three free RSD model
parameters [fσ8, bσ8, σ12]. We consider a standard Gaussian likelihood defined
as follows:

−2 lnL =
N∑

i,j=1

[
ξDl (si)− ξMl (si)

]
C−1
l (si, sj)

[
ξDl (sj)− ξMl (sj)

]
, (6.22)

with N being the number of bins at which the multipole moments and the
wedges are computed, and the superscripts D and M refer to data and model,
respectively. The corresponding covariance matrix Cl(si, sj) is computed from
the data with the bootstrap method given by

Ck (si, sj) = 1
NR − 1

NR∑
n=1

[
ξnk (si)− ξk (si)

] [
ξnk (sj)− ξk (sj)

]
. (6.23)

The indices i and j run over the 2PCF bins, while k refers either to the order
of the multipole moments considered, in which case k = l = 0, 2, or to the
clustering wedges, with k = w = 0, 0.5. In both cases, ξ̄k = 1/NR

∑NR
n=1 ξ

n
k is

the average multipole (wedge) of the 2PCF, and NR = 100 is the number of
realisations obtained by resampling the catalogues with the bootstrap method.

We perform the MCMC analysis on all the MDPL2 mock halo catalogues to
get the global evolution of the constrained parameters. First we compare the
constraints on fσ8, bσ8 and σ12 at z = 1.032, obtained with the Gaussian and
Lorentzian damping factors. The results are shown in Fig. 6.12 for the redshift-
space multipole moments and clustering wedges. As it can be appreciated, the
systematic errors are lower when the damping factor is modelled with a Gaussian
function. This effect is more significant when the redshift errors are large, i.e.
δz > 0.2%, in agreement with Marulli et al. (2012). Thus, in the following we
will adopt the Gaussian form. Figs. 6.13 and 6.14 show the measured multipole
moments and the clustering wedges compared to best-fit model predictions for
the dispersion, Scoccimarro and TNS models, at z = 0.523, 1.032, 2.028, and
for different redshift measurement errors as labelled in the panels.
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Figure 6.12: Constraints on [fσ8, bσ8, σ12] of the MDPL2 mock catalogue at
z = 1.032 assuming the Gaussian and Lorentzian form of the damping factor for
different values of redshift errors. The models: dispersion, Scoccimarro and TNS
models, are differentiated by colour as labelled and the error bars show the 68%
marginalised posterior uncertainties. The gray lines show the theoretical predictions,
computed assuming the Tinker et al. (2010) effective bias. Upper panel: results from
the redshift-space monopole and quadrupole moments; lower panel: results from
the perpendicular and parallel wedges. The shaded area represents a 3% region, for

comparison.
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Figure 6.13: Redshift-space monopole, ξ0, and quadrupole, ξ2, moments of the
MDPL2 mock catalogues, compared to the best-fit models – dispersion model (red),
Scoccimarro model (blue) and TNS model (green). The results are shown at three
different redshifts, and for different measurement redshift errors, as indicated by
the labels. The subpanels show the relative percent differences with respect to the

measurements. The shaded area represents a 3% difference for comparison.
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Figure 6.14: As Fig. 6.13 but for the redshift-space perpendicular, ξ⊥, and parallel,
ξ‖, wedges of the MDPL2 mock catalogues.
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6.5. Discussion
The global evolution of the marginalised posterior constraints on the parame-

ters [fσ8, bσ8, σ12], as a function of redshift, can be appreciated in Figs. 6.15 and
6.16 for multipole moments and clustering wedges, respectively. The black lines
represent the theoretical predictions, where fσ8 was computed from CAMB, bσ8
by assuming the Tinker et al. (2010) bias and the pairwise velocity dispersion σ12
corresponds to the best fit value obtained from the model considered (Dispersion,
Soccimarro or TNS), when the remaining parameters are fixed to the theoretical
expectation. For clarity, the results are divided by model conserving the same
colour scheme in all plots when redshift errors are included as indicated by the
labels. In the case with no redshift errors, we find a systematic bias in the fσ8
constraints of about 10% at low redshifts (z < 1) for the dispersion model, in
agreement with previous works, (see e.g. Bianchi et al., 2012; Marulli et al.,
2012; Marulli et al., 2017). The Scoccimarro and TNS models provide more
accurate constraints, with a systematic bias of about 8% and 5%, respectively.
At high redshifts (z ≥ 1) the agreement between fσ8 measurements and the
expected values improves. In particular, the Scoccimarro model recovers fσ8
within 4%, while the TNS model within 3%. The constraints on bσ8 are overall
in good agreement for all models, being the TNS model the one with the lowest
deviation with respect to the theoretical expectations, which is found to be less
than 2% at all considered redshifts.

As we have seen in Fig. 6.5, the spurious anisotropies caused by the Gaussian
redshift errors are similar to the FoG distortions. The combined effects of redshift
errors and FoG are thus parameterised by the single damping term of the RSD
models. Indeed, as shown in Figs. 6.15 and 6.16, the estimated value of the
σ12 parameter of the damping term systematically increases as redshift errors
increase. At z ≥ 1, the fσ8 and bσ8 constraints are not significantly affected
by the introduction of Gaussian redshift errors, up to δz = 0.5%. On the other
hand, at lower redshifts, the impact is more significant, as expected, though
only for the largest redshift errors considered, δz > 0.3%. This means that
at z ≈ 0.5 and including redshift errors around δz = 0.3% in the mocks, the
relative error on the recovered fσ8 decreases from 13% (8%, 7%) to 8% (3%, 5%)
in the dispersion (Scoccimarro, TNS) model; at z = 0.75 the same parameter
changes from 9% (6%, 3%) to 3% (4%, 1%) in the dispersion (Scoccimarro,
TNS) model. The effect of the remaining δz values on fσ8 constraints makes it
fluctuate around the expected value for all models considered, meaning that true
value can be recovered with a deviation of 3% even if there are redshift errors
as the introduced ones in the mocks at high redshift. On the other hand the
recovered bσ8 is very stable as redshift changes, even for the distorted cases, being
around a 3% of deviation for δz < 0.5 i.e.∼ 1500km/s. The global evolution
of the constrained parameters suggests an increase proportional to δz, being
the damping factor σ12 the most sensitive to the redshift errors. In fact, it has
large variations in the relative error with respect to the theoretical value. This
is expected since this term modulates the velocity dispersion and encodes the
information to describe the squashing observed at small scales. This behaviour
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can be also anticipated from the shape of the 2D 2PCF (see Fig. 6.5) and the
best fit models displayed in Fig. 6.13 for multipole moments and 6.14 for wedges.
At high redshift z > 1 we did not find a significant difference when clustering
wedges are used instead of the multipole moments to get the constraints from
redshift-space distortions. However, at low redshift z < 1, we observed that
the constraints derived from clustering wedges have a smaller dispersion with
respect to what obtained from the multipole moments. This can be also noticed
from the first column of Fig. 6.16, where fσ8 at z = 0.5, 0.75 has relative errors
close to 3% as indicated by the shaded regions in the lower panels, for the three
models studied. The same behaviour can be appreciated in Fig. 6.14 at scales
smaller than 20h−1 Mpc for each mock catalogue.

The marginalised posterior constraints at 68% confidence level for fσ8, bσ8
and σ12, obtained from the MCMC analysis of the redshift-space monopole
and quadrupole moments, and of the perpendicular and parallel cluster wedges,
are shown in Figs. 6.17 and 6.18, respectively. The posterior constraints show
a notable agreement in the fσ8 − bσ8 plane at high redshift when multipole
moments and clustering wedges are used. In both cases the Gaussian redshift
errors cause shifts in the constraints that tend to increase bσ8, while fσ8 fluctu-
ates close to the true value. This can be better seen in Figs. 6.19 and 6.20 for
multipole moments and wedges respectively. The MCMC analysis shows that
the fσ8− bσ8 parameters obtained from the dispersion model are more sensitive
to the Gaussian redshift errors than the ones obtained using the Scoccimarro
and TNS models. In these models, the bias bσ8 is quite stable around the
central value with respect to the no distorted case, while fσ8 changes in a similar
way that the dispersion model, considering that, in any case the deviations are
rather small. The global trend for each Gaussian redshift error δz considered
is displayed in Fig. 6.21 for multipole moments and in Fig. 6.22 for clustering
wedges. The models are displayed with the same colours used before [dispersion
(red), Scoccimarro (blue) and TNS (green)] and the true values are highlighted
with the stars for comparison.

A summary of the posterior constraints at 68% confidence level at three
different redshifts z = 0.523, 1.270 and 2.028, is displayed in Fig. 6.23 (multipole
moments) and in Fig. 6.24 (wedges), where the results for fσ8 are shown in
the first column, bσ8 in the central column and σ12 in the last column. These
plots confirm that the TNS model recover better the parameters being the least
affected by the Gaussian errors after the whole MCMC analysis. Moreover, we
compare the results obtained by fitting the 2PCF statistics in the comoving scale
range 10 < r[h−1 Mpc ] < 55 to the ones obtained at scales r > 30 h−1 Mpc . As
expected, while the statistical uncertainties are larger in the latter scale, the
systematic discrepancies are slightly reduced. In particular, the discrepancies of
the TNS model on both the growth rate and the linear bias are reduced below
3%, at z < 1.5, for redshift errors up to δz ∼ 0.3%. On the other hand, at larger
redshifts it seems more convenient to consider in the analysis also the small
scales, which can be reliably described by all the RSD models considered.
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Figure 6.15: Best-fit constraints on [fσ8, bσ8, σ12] obtained from the redshift-space
monopole and quadrupole moments, as a function of redshift, and for different values
of redshift errors, as indicated by the labels. The error bars show the 68% marginalised
posterior uncertainties. The black lines show the theoretical predictions, computed
assuming the Tinker et al. (2010) effective bias. Upper panels: dispersion model;
central panels: Scocimarro model; lower panel: TNS model. The subpanels show the
relative percent differences with respect to the theoretical prediction. The shaded

area represents a 3% difference for comparison.
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Figure 6.16: As Fig. 6.15, but using perpendicular and parallel clustering wedges.
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Figure 6.17: Posterior constraints at 68% and 95% confidence levels in the fσ8− bσ8
plane, marginalised over the damping parameter σ12, obtained from the MCMC
analysis of the multipole moments monopole and quadrupole of the 2PCF in redshift-
space for the models shown by different colours as labelled. Panels in the columns,
from left to right, refer to z = 0.523, 1.27 and 2.028. From top to bottom, the rows
increase the Gaussian redshift error considered in the mock catalogue from δz = 0%
to 0.5% as labelled in each panel. The shaded area represents a 3% difference for

comparison.
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Figure 6.18: As Fig. 6.17 but for the MCMC analysis of the clustering wedges,
transverse and parallel, of the 2PCF in redshift-space.
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Figure 6.19: Impact of the Gaussian redshift errors on fσ8 and bσ8 obtained from
the MCMC analysis of the monopole and quadrupole moments of the 2PCF in redshift-
space as labelled. Panels in the columns, from left to right, refer to z = 0.523, 1.27 and
2.028, while the rows represent each one of the models considered to model the RSD:
the dispersion (red), the Scoccimarro (blue) and the TNS (green) models. Dashed
lines represent the theoretical expected values assuming Tinker et al. (2010) bias.
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Figure 6.20: As Fig. 6.19 but for the MCMC analysis of the transverse and parallel
clustering wedges of the 2PCF in redshift-space as labelled.
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Figure 6.21: Impact of the Gaussian redshift errors, as labelled in each panel, on
fσ8 and bσ8 constraints obtained from the MCMC analysis of the monopole and
quadrupole moments of the 2PCF in redshift-space. The contours are shown for all
redshifts considered in this work as labelled, where the colours correspond to the
dispersion (red), the Scoccimarro (blue) and the TNS (green) models. Dashed lines
represent the theoretical expected values assuming Tinker et al. (2010) bias, being the

intersections highlighted by stars.
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Figure 6.22: As Fig. 6.21 but for the MCMC analysis of the transverse and parallel
clustering wedges of the 2PCF in redshift-space.
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Figure 6.23: Summary of the posterior constraints at 68% confidence level for fσ8
(first column), bσ8 (central column) and σ12 (last column), obtained from the MCMC
analysis of the redshift-space monopole and quadrupole moments of CDM haloes. The
results are shown at three different redshifts z = 0.523 (blue), z = 1.270 (orange)
and z = 2.028 (green), for the models considered in this work. The panels, from top
to bottom, refer to the dispersion (first row), Scoccimarro (central row) and TNS
(bottom row) models. The vertical gray lines are centred on theoretical expectations,

with the shaded area reporting a 3% region, for comparison.
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Figure 6.24: As Fig. 6.23 but for the MCMC analysis of the clustering wedges,
transverse and parallel, of redshift-space 2PCF of CDM haloes.
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Conclusions

Motivated by the current issues in cosmology, in this Thesis we
have investigated the large scale structure of Universe in dif-
ferent scenarios with the goal of constraining its cosmological
parameters. To explore reliable evidence beyond the standard

ΛCDM model, we have analysed statistically: i) some of the well established
models of dark energy by combining recent observational data from CMB, BAO
and growth rate of LSS and ii) predictions obtained from N-body simulations
focusing on the clustering and RSD in the context of modify gravity models
with massive neutrinos. Additionally, since RSD have been proven to be a
powerful method to estimate cosmological parameters, we have implemented,
tested and compared RSD models based on phenomenological approximations as
well as schemes based on cosmological perturbation theory, investigating the ro-
bustness of this methodology at several scales and including realistic systematics.

In Chapter §2 we have introduced the theoretical framework of modern
cosmology, which is based on the Einstein’s General Relativity and then we pro-
ceeded presenting the standard ΛCDM model. We emphasize on the structure
formation and on the statistical description of the density field as well as the
measurements of galaxy clustering. Then, in Chapter §3 we discuss in detail
the redshift-space distortions and the differences between clustering in real and
redshift space, considering that in the recent years, the spatial distribution of
matter on cosmological scales, has become one of the most efficient probes to
investigate the properties of the Universe, such as test gravity theories on large
scales, to explore the dark sector and the origin of the accelerated expansion of
the universe, as well as a probe to constrain alternative cosmological models.

Moreover, we have illustrated that despite the current data are in well agree-
ment with the standard model, there are some unsatisfactory properties of the
cosmological constant, the so-called fine-tuning and the coincidence problems,
that motivate different frameworks for Dark Energy and Modified Gravity in
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which extra degrees of freedom can help alleviate these issues. In Chapter §4, we
use the most recent observational data from CMB (Planck 2018 final data release)
and LSS (SDSS, WiggleZ, VIPERS) to constrain dynamical dark energy models.
The CMB shift parameter, which traditionally has been used to determine the
main cosmological parameters of the standard model ΛCDM is employed in
addition to data from redshift-space distortions through the growth parameter
A(z) = f(z)σ8(z) to constrain the mass variance σ8. BAO data is also used to
study the history of the cosmological expansion and the main properties of DE.
From the evolution of the deceleration parameter q(z), we found new evidence
on results indicated in previous works (Bonilla and Castillo, 2018), showing a
slowdown behaviour of q(z) at low redshifts (z < 0.5), made evident by the
change of sign in the jerk parameter j(z). This behaviour is present only in
models with DE density varying with time and it is related to the dynamics of
the DE density, being in principle a sign that allows us to distinguish this kind of
models from a cosmological constant. Then, by using the Akaike and Bayesian
Information Criterion (AIC, BIC) we performed an exclusion analysis of the
different models classifying those that are better suited to the observational
data; we found that the interactive dark energy (IDE) models are the most
favoured by observational data, when information from SNIa and Hz is included.
The analysis shows that the IDE model is followed closely by EDE and ΛCDM
models, which in some cases fit better the observational data with individual
probes.

In the context of models based on modified gravity and massive neutrino
cosmologies, presented in Chapter §5, we investigated the spatial properties of
the large-scale structure by exploiting the DUSTGRAIN-pathfinder simulations
that follow, simultaneously, the effects of f(R) gravity and massive neutrinos.
These are two of the most interesting scenarios that have been recently explored
to account for possible observational deviations from the standard ΛCDM model.
In particular, we studied whether redshift-space distortions in the 2PCF multi-
pole moments can be effective breaking the cosmic degeneracy between these
two effects. We analysed the redshift-space distortions in the clustering of dark
matter haloes at different redshifts, focusing on the monopole and quadrupole
moments of the two-point correlation function, both in real and redshift space.
The deviations with respect to ΛCDM model have been quantified in terms of the
linear growth rate parameter. We found that multipole moments of the 2PCF
from redshift-space distortions provide a useful probe to discriminate between
ΛCDM and modified gravity models, especially at high redshifts (z & 1), even
in the presence of massive neutrinos. The linear growth rate constraints that
we obtain from all the analysed f(R) + mν mock catalogues are statistically
distinguishable from ΛCDM predictions at all redshifts but z = 0.5.

Finally, in order to test the ability of redshift-space distortions to constrain
cosmological parameters, such as the linear growth rate, we presented in Chapter
§6 the results on the systematic validation of the state-of-the-art methods used
to model the galaxy two-point correlation function. The numerical recipes were
tested on mock halo catalogues extracted from large N-body simulations of the
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standard cosmological scenario, specifically we use the MDPL2 simulations be-
longs to the MultiDark suite, in the redshift range 0.5 < z < 2. We have consider
both the monopole and quadrupole multipole moments of the redshift-space
two-point correlation function, as well as the radial and transverse clustering
wedges, in the comoving scale range 10 < r[h−1 Mpc ] < 55. In our analysis,
we quantified the systematic uncertainties on the growth rate and linear bias
measurements due to the different assumptions in the redshift-space distortion
modelling. Moreover, we investigate the impact of redshift measurement er-
rors, up to δz ∼ 0.5%, which introduce spurious clustering anisotropies. To
perform the Bayesian analysis, we have implemented in the CosmoBolongaLib,
both the dispersion model and two widely-used models based on perturbation
theory, that is the Scoccimarro (2004) model and the Taruya, Nishimichi, and
Saito (2010) model. We also revisited briefly the schemes currently used for
perturbation theory computations up 1-loop, which have become important
tools in theoretical cosmology, such as fitting formulas, standard perturbation
theory and renormalized perturbation theory. These schemes provide a more
accurate description of the redshift matter power spectrum in terms of the
auto-spectrum, cross-spectrum and the velocity divergence, all of them were
implemented and tested in the last version of the CosmoBolongaLib. After
applying our methodology to the mock samples, we conclude that, at z < 1,
the linear growth rate measured with the dispersion model is underestimated
by about 10%, in agreement with previous findings, while the Scoccimarro and
TNS models provide slightly better constraints, with a systematic bias of about
8% and 5%, respectively. At z ≥ 1, all the RSD models considered provide con-
straints in good agreement with expectations. The TNS model is the one which
performs better, with growth rate uncertainties below 3%. Limiting the analysis
at r > 30 h−1 Mpc , the statistical uncertainties become larger, as expected, while
the systematic discrepancies are slightly reduced. In particular, the systematics
of the TNS model on both the growth rate and the linear bias are reduced below
3%, at z < 1.5, for redshift errors up to δz ∼ 0.3%. Furthermore, Gaussian
redshift errors introduce spurious anisotropies, whose effect combines with the
one of the small-scale as incoherent motions responsible of the FoG distortions.
The effect of redshift errors is degenerate with the one of small-scale random
motions, and can be marginalised in the statistically analysis, not introducing a
significant bias in the linear growth constraints, especially at z ≥ 1.
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A
Homogeneity scale in the context of fractal
analysis

This section is based on the paper by García-Farieta and Casas-
Miranda (2018). The fractal analysis is an useful mathematical tool
that quantifies galactic clustering using data from galaxy surveys
by calculating quantities such as the fractal dimension. This makes

possible to establish relationships between these values and other statistical de-
scriptors. The possible cosmological implications of fractal analysis of the galaxy
distribution are discussed in detail by Baryshev et al. (1998) and Martinez (1991).

The concept of dimension is associated with the number of degrees of freedom
to specify any point within a distribution of points in a metric space. Topo-
logically, the dimension indicates how much space a set occupies near each of
its points (Falconer, 2004). The self-similar dimension can be explained by a
further fragmentation of a set, and the ratio of the number of identical parts
where each part is scaled down by the ratio r. For any set X ∈ Rn that
supports division into a finite number of subsets N(k), where all of them are
consistent with each other by translations and rotations, and it is a reduced
copy of the initial set by a factor r = 1/k. The self-similar dimension of X is
defined as the unique value D satisfying the equation N(k) = kD (Mandelbrot,
1983), i.e.,

D = logN
log(k) . (A.1)

Here D is not necessarily an integer number. When the object cannot be
subdivided into exact copies of itself we can use the box-counting dimension.
In this case a set A is covered by a grid or regular boxes with side δ > 0, all
equal to each other, then the number of boxes N(δ) needed to cover the figure
is determined. The mass-radius fractal dimension Dm is defined by a power
law. In particular this dimension is the measure of the total mass contained in
a sphere of radius R whose center is a point of the set, and the mass contained
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as a function of the radial size is determined as

M(R) = FRDm , (A.2)

where the factor F is a function that may be different for fractals with identical
dimension, and the density number of galaxies decreases as n(R) ≈ RDm−d for a
set in Rd (Martinez and Saar, 2010).

A more general geometric estimator is given by the multifractal description
(Saslaw, 2000), that provides the most detailed description possible of the fractal
properties of a distribution of points. For each center of a point distribution,
the number of particles ni(r) contained within a sphere of radius r measured
from the position of the ith particle is given by

ni(r) =
N∑
j=1

Θ(r − |xi − xj|), (A.3)

where the sum is over all particles in the sample, and N is the total number of
particles. The coordinates of each particle in the three-dimensional space are
denoted as xj, j 6= i, and Θ is the Heaviside function. The number of particles
ni(r) around each galaxy taken as the center, with coordinates xi, is determined
by counting the particles around the center that are located within a comoving
sphere of radius r (Célérier and Thieberger, 2005), that is, a sphere expanding
with the Hubble flow, where the distance between two points remains fixed as
the universe expands.

The correlation dimension is defined similarly to the mass-radius fractal
dimension (Seshadri, 2005). To characterize the distribution, we must have all
the information about the statistical moments in order to define the generalized
dimension. The generalized correlation integral Cq(r) is defined as

Cq(r) = 1
NM

M∑
i=1

[ni(r)]q−1, (A.4)

where q is called the structure parameter and corresponds to an arbitrary real
number, andM is the number of particles used as centers. According to Murante
et al. (1997), from the correlation integral it is possible to perform a power
series expansion of log (r) [equation (A.5)] and thus to calculate directly the
multifractal dimension Dq. It is sufficient to keep the first two terms on the right
side of equation (A.5), which is simplified so that a simple relation between the
generalized correlation integral and generalized fractal dimension is obtained as
in equation (A.6) (Chacón, 2014):

log[C1/(q−1)
q ] = Dq log(r) + log(Fq) +O

(
1

log(r)

)
, (A.5)

Cq(r)1/(q−1) = Fqr
Dq . (A.6)
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Thus the generalised fractal dimension can be defined in the same way as the
mass-radius fractal dimension, such that Dq is given by

Dq = 1
q − 1

d logCq(r)
d log r . (A.7)

For some values of q such that qi 6= qj which satisfy Dqi = Dqj , i.e., Dq is
independent of q and r, the distribution is called monofractal because its di-
mension is constant. In addition, if Dq is equal to the Euclidean dimension, the
distribution is homogeneous. For q ≥ 1, Dq explores the scaling behaviour in
high-density environments within the distribution, which are associated mainly
with clusters and superclusters, whereas for q < 1, Dq explores the behaviour
in low-density environments, i.e., those associated with voids (Sarkar et al., 2009).

Based on this formalism several investigations have reported a value of
the homogeneity scale, such as Zheng et al. (1988) for CfA survey data, Xia,
Deng, and Zou (1992) for the IRAS survey, and Seshadri (1999) for the Cam-
panas redshift survey. Chacón-Cardona and Casas-Miranda (2012) performed
a multifractal analysis of dark matter halos from the Millennium simulation
(Springel et al., 2005). They found a transition to homogeneity between 100
and 120 Mpc/h in strong agreement with the ΛCDM model. For analysis with
the WiggleZ survey, Scrimgeour et al. (2012) report a transition to homogeneity
at rH = 71± 8 Mpc/h with z ≤ 0.2; this indicates that the galaxy distribution
does not behave as a fractal object. This result is also consistent with Hogg et al.
(2005), Yadav et al. (2005) and Sarkar et al. (2009), who report a transition
to homogeneity at ∼ 70 Mpc/h. Wu, Lahav, and Rees (1999) and Yadav et al.
(2005) are in agreement with this value for the homogeneity scale. In all cases
the effects of the geometry of the surveys must be taken into account according
to (Yadav, Bagla, and Khandai, 2010; Pan and Coles, 2002). In particular, the
fractal calculations may be affected by the presence of holes and borders in the
catalogues that are inherent to the process of observation using astronomical
instruments.

Recently García-Farieta and Casas-Miranda (2018) investigated if the effect
of cumulative holes in the masks of BOSS (SDSS-III) can produce variations
in the scale of cosmic homogeneity. The results show that observational holes
cause a shift in the homogeneity scale rH , in particular for percentages of holes
between 0 − 10% the homogeneity scale is reached at (83 ± 1)Mpc/h with a
dimension in the range 2.83±0.09 ≤ Dq ≤ 2.855±0.09. The correlation dimension
D2 is related to the homogeneity scale rH and the usual two-point correlation
function for a sample displaying cosmic homogeneity (Peebles, 1980; Peebles,
1989; Pan and Coles, 2000). Fig. A.1 shows the spectrum of fractal dimension
Dq and its dependency with radial distance for synthetic samples. For q = 2
the dimension tends to D = 3 as r increases, at scales below 50 Mpc/h the
distribution it is highly noisy indicating that it is grouped into small spatial
regions. In high-density regions there is a strong tendency to homogeneity
because the values of the fractal dimension are very close to the physical space
dimension. Dq≥2 increases at large r values to reach homogeneity in agreement
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Figure A.1: Upper panel: Multifractal spectrum of D2(r) (structure parameter
q = 2.0), as a function of the comoving distance r for all synthetic samples (green
line) and for the galaxy sample (blue line). Lower panel: percentage difference in
fractal dimension between synthetic and galaxy samples, where ∆D2 = 100(D2synth −

D2gal)/D2gal .

with other analysis, this means that on average the space is statistically filled at
depths greater than rH .
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B
Correction terms of the TNS model

The correction terms CA and CB for the TNS model (Taruya, Nishimichi,
and Saito, 2010) are derived from perturbation theory. Following
Taruya, Nishimichi, and Saito (2010) and de la Torre and Guzzo
(2012), for a biased tracer, these terms can be written as follows

CA(k, µ, f, b) =
3∑

m,n=1
b3−nfnµ2mPAmn(k) (B.1)

CB(k, µ, f, b) =
4∑

m=1

2∑
i=1

b4−a−b(−f)a+bµ2nPBnab(k), (B.2)

where f is the growth rate, b the bias of the tracer and

PAmn(k) = k3

(2π)2

[∫ ∞
0

dr
∫ +1

−1
dx (Amn(r, x)P (k)

+Ãmn(r, x)P (kr)
)
×
P
(
k
√

1 + r2 − 2rx
)

(1 + r2 − 2rx)2

+P (k)
∫ ∞

0
dramn(r)P (kr)

]
, (B.3)

PBnab(k) = k3

(2π)2

∫ ∞
0

dr
∫ +1

−1
dxBn

ab(r, x)

Pa2
(
k
√

1 + r2 − 2rx
)
Pb2(kr)

(1 + r2 − 2rx)a , (B.4)

where the non-vanishing functions Amn(r, x), Ãmn(r, x), amn(r, x) and Bab(r, x)
have been provided by Taruya, Nishimichi, and Saito (2010), as follows
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A11 =− r3

7
{
x+ 6x3 + r2x(−3 + 10x2)

+r (−3 + x2 − 12x4)
}
,

A12 = r4

14(x2 − 1)(−1 + 7rx− 6x2),

A22 = r3

14
{
r2x(13− 41x2)− 4(x+ 6x3)

+r (5 + 9x2 + 42x4)
}
,

A23 = A12,

A33 = r3

14(1− 7rx+ 6x2)
{
−2x+ r(−1 + 3x2)

}
,

for Amn,
Ã11 = 1

7(x+ r − 2rx2)(3r + 7x− 10rx2),

Ã12 = r

14(x2 − 1)(3r + 7x− 10rx2),

Ã22 = 1
14
{

28x2 + rx(25− 81x2) + r2(1− 27x2 + 54x4)
}
,

Ã23 = r

14(1− x2)(r − 7x+ 6rx2),

Ã33 = 1
14(r − 7x+ 6rx2)(−2x− r + 3rx2),

for Ãmn, and
a11 =− 1

84r
[
2r(19− 24r2 + 9r4)

−9(r2 − 1)3 log
∣∣∣∣r + 1
r − 1

∣∣∣∣] ,
a12 = 1

112r3

[
2r(r2 + 1)(3− 14r2 + 3r4)

−3(r2 − 1)4 log
∣∣∣∣r + 1
r − 1

∣∣∣∣] ,
a22 = 1

336r3

[
2r(9− 185r2 + 159r4 − 63r6)

+9(r2 − 1)3(7r2 + 1) log
∣∣∣∣r + 1
r − 1

∣∣∣∣] ,
a23 = a12,

a33 = 1
336r3

[
2r(9− 109r2 + 63r4 − 27r6)

+9(r2 − 1)3(3r2 + 1) log
∣∣∣∣r + 1
r − 1

∣∣∣∣] .
for amn. Whereas the non-vanishing contributions for Bn

ab are

B1
11 = r2

2 (x2 − 1),
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B1
12 = 3r2

8 (x2 − 1)2,

B1
21 = 3r4

8 (x2 − 1)2,

B1
22 = 5r4

16 (x2 − 1)3,

B2
11 = r

2(r + 2x− 3rx2),

B2
12 = −3r

4 (x2 − 1)(−r − 2x+ 5rx2),

B2
21 = 3r2

4 (x2 − 1)(−2 + r2 + 6rx− 5r2x2),

B2
22 = −3r2

16 (x2 − 1)2(6− 30rx− 5r2 + 35r2x2),

B3
12 = r

8
{

4x(3− 5x2) + r(3− 30x2 + 35x4)
}
,

B3
21 = r

8
[
−8x+ r

{
−12 + 36x2 + 12rx(3− 5x2)

+r2(3− 30x2 + 35x4)
}]
,

B3
22 = 3r

16(x2 − 1)
[
−8x+ r

{
−12 + 60x2

+20rx(3− 7x2) + 5r2(1− 14x2 + 21x4)
}]
,

B4
22 = r

16
[
8x(−3 + 5x2)− 6r(3− 30x2 + 35x4)

+ 6r2x(15− 70x2 + 63x4)
+r3

{
5− 21x2(5− 15x2 + 11x4)

}]
.

By using the Kaiser term of the TNS model, i.e. ignoring the damping terms
D(k, µ, f, σ12), the corresponding multipole moments of the correlation function
are then given by (de la Torre and Guzzo, 2012):
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ξs0(s) = b2ξδδ + bf
2
3ξδθ + f 2 1

5ξθθ

+ b2f
1
3ξA11 + bf 2 1

3ξA12 + bf 2 1
5ξA22 + f 3 1

5ξA23

+ f 3 1
7ξA33 + b2f 2 1

3ξB111 − bf 3 1
3 (ξB112 + ξB121)

+ f 4 1
3ξB122 + b2f 2 1

5ξB211 − bf 3 1
5 (ξB212 + ξB221)

+ f 4 1
5ξB222 − bf 3 1

7 (ξB312 + ξB321) + f 4 1
7ξB322

+ f 4 1
9ξB422,

ξs2(s) = bf
4
3ξ

(2)
δθ + f 2 4

7ξ
(2)
θθ

+ b2f
2
3ξ

(2)
A11 + bf 2 2

3ξ
(2)
A12 + bf 2 4

7ξ
(2)
A22 + f 3 4

7ξ
(2)
A23

+ f 3 10
21ξ

(2)
A33 + b2f 2 2

3ξ
(2)
B111 − bf 3 2

3
(
ξ

(2)
B112 + ξ

(2)
B121

)
+ f 4 2

3ξ
(2)
B122 + b2f 2 4

7ξ
(2)
B211 − bf 3 4

7
(
ξ

(2)
B212 + ξ

(2)
B221

)
+ f 4 4

7ξ
(2)
B222 − bf 3 10

21
(
ξ

(2)
B312 + ξ

(2)
B321

)
+ f 4 10

21ξ
(2)
B322

+ f 4 40
99ξ

(2)
B422,

(B.5)

(B.6)

where ξAmn and ξBnab are the Fourier conjugate pairs of PAmn and PBnab in Eqs.
(B.3) and (B.4), and ξ(l)

X is the l-th multipole moment of the correlation function
associated to PX as defined in Eq. (3.20). For the order l = 2, the latter were
already found by Hamilton (1992) and Cole, Fisher, and Weinberg (1994), by
using recurrence relations and the integral forms of spherical Bessel functions,
so that

ξ
(2)
X (r) = ξX(r)− 3X2(r) (B.7)

(B.8)
where,

Xn(r) = r−(n+1)
∫ r

0
ξX(r′)r′ndr′. (B.9)
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