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Aim of the study 

Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase that is predominantly 

expressed in the brain (Williamson et al., 2012). Mutations in the X-linked CDKL5 gene were 

originally identified in individuals diagnosed with the early-onset seizure variant of Rett syndrome 

(RTT), now known as CDKL5 deficiency disorder (Kalscheuer et al., 2003, Tao et al., 2004, Weaving 

et al., 2004). CDKL5 deficiency disorder (CDD) is a very severe, chronically debilitating disorder that 

mostly affects girls. Most children affected by this disorder suffer from seizures that begin in the 

first few months of life. Most cannot walk, talk, or feed themselves, and many are confined to 

using a wheelchair. Currently, there is no cure or effective treatment for CDD, and the mainstay of 

care is support for the families. Therefore, identification of treatments will represent an important 

social challenge. 

 

A single protein kinase is generally expected to have multiple substrates/phosphorylation sites and 

thereby regulates a wide variety of cellular functions. Screening for targets of a specific kinase is 

mandatory in order to understand the signaling networks in which the protein kinase participates 

and, more importantly, to identify potential substrates for drug therapy approaches. In fact, 

modern drug discovery is primarily based on the search for, and subsequent testing of, drug 

candidates that act on preselected therapeutic targets.  

 

To date, the phosphorylation targets/interactors of CDKL5 are largely unknown. Therefore, 

knowledge of the molecular targets of CDKL5 is mandatory in order to identify potential 

pharmacological interventions.  

 

The overall objective of the proposed study was to identify new CDKL5 targets that may be key 

actors in the neurodevelopmental alterations that characterize CDKL5 disorder, in order to 

expedite the discovery of new therapies for CDD. 

 

In particular the specific aims of the project were: 

 

1- Screening of candidate phosphorylation targets/interactors of CDKL5 using 

phosphoproteomic arrays. 
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2- Identification of direct CDKL5 phosphorylation targets/interactors through co-

immunoprecipitation and kinase assays. 

2- Validation of CDKL5 targets identified in vitro in a model of CDD, the Cdkl5 KO mouse. 

3- Identification of the relevance of CDKL5 targets in neuronal maturation/survival both in 

vitro, in primary neuronal cultures, and in vivo, in Cdkl5 KO mice 

  

The results of this study represent a solid starting point for future studies that we plan to carry out 

in order to fulfill the general goal of “Identifying pharmacological  interventions for CDKL5 

disorder”. 
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Abstract 

 
CDKL5 Deficiency Disorder (CDD) is an early-onset epileptic encephalopathy that shares common 

features with Rett syndrome (RTT), such as neurodevelopmental delay, stereotypic hand 

movements, hypotonia and impaired psychomotor development, and unique features like 

intractable epilepsy that is resistant to multiple antiepileptic drugs. CDD is a very severe pathology 

that strongly impairs the quality of life of patients and their families, and for which there are no 

available therapies at the moment. This disorder is caused by mutations in the cyclin-dependent 

kinase-like 5 (CDKL5, OMIM 300203) gene, encoding for a serine/threonine protein kinase that 

belongs to the CMGC family of serine/threonine kinases. The highest levels of CDKL5 occur in the 

brain, especially during early postnatal stages, in parallel with brain development and maturation. 

This is in accordance with its involvement in neurodevelopmental alterations, suggesting its role in 

brain maturation and function. Protein kinases are enzymes that modify the activity, localization, 

and stability of other proteins by attaching phosphate groups to the target protein. A single 

protein kinase is generally expected to have multiple substrates/phosphorylation sites and 

thereby regulates a wide variety of cellular functions. Given the importance of protein kinases in 

cellular physiology, it is not surprising that deregulation of protein kinase activity has been found 

to underlie many pathological processes. Autosomal recessive kinase mutations are the 

predominant cause of disparate neurological diseases, ranging from degenerative and 

encephalopathic disorders to epilepsies and ataxia. Since kinase function alterations are 

associated with several pathologies, cancers, and also neurological disorders, these proteins can 

be both valuable biomarkers and potential drug targets for disease prognosis and treatment. 

Unfortunately, the poor clinical understanding of the pathological mechanism of CDD highlights 

the need to characterize CDKL5 biological function and identify effective therapies targeted 

toward slowing or reversing the progression of the disease. Screening for targets of a specific 

kinase is necessary in order to understand the signaling networks in which the protein kinase 

participates and, more importantly, to identify potential substrates for drug therapy approaches. 

Here we took advantage of a phospho-specific-antibody-microarray technology to identify 

potential direct CDKL5 substrates in a mouse model of the disorder. An overview of the dataset 

highlighted the misregulated pathways suggesting the potential involvement of the kinase in 

signaling transduction, immune system, neuronal maturation and function, cell -cycle regulation, 
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apoptosis and DNA damage repair. Among the potential CDKL5 targets, SMAD3, a pr imary 

mediator of TGF-β action, has been identified as a direct CDKL5 phosphorylation substrate, and its 

CDKL5-dependent phosphorylation promotes protein stability. Importantly, restoration of SMAD3 

signaling through TGF-β1 treatment normalized defective neuronal survival and maturation in 

Cdkl5 knockout (KO) neurons, suggesting that TGF-β/SMAD3 signaling deregulation plays a key 

role in the etiology of the CDKL5 pathological phenotype. Moreover, we demonstrated that Cdkl5 

KO neurons are more vulnerable to neurotoxic/excitotoxic stimuli. Indeed, TGFβ signaling through 

SMAD3 is a critical regulator of key events in brain development and it is also known to have a 

neuroprotective effect against various toxins and injurious agents. Both in vitro and in vivo 

treatment with TGF-β1 prevents increased NMDA-induced cell death in hippocampal neurons 

from Cdkl5 KO mice and in CDKL5 KO mice respectively. This finding suggests that SMAD3 signaling 

deregulation is involved in the neuronal susceptibility to excitotoxic injury found in Cdkl5 KO mice.  

This finding has revealed a new CDKL5 substrate and its crucial role in the neuronal response to 

stress stimuli while also providing a panel of potential CDKL5 substrates for future studies aimed 

at increasing the definition of the signaling networks in which the protein kinase participates. In 

addition, our results have shown the first evidence of a new function of CDKL5 in neuronal 

survival, that could have important implications for susceptibility to neurodegeneration in pati ents 

with CDD. 

In conclusion, this study contributes to a better understanding of the molecular pathomechanism 

underlying the clinical phenotype of CDD and raises important implications of absence of CDKL5 

function in the potential susceptibility to neurodegeneration in patients with CDD.  
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INTRODUCTION 

Protein Kinases 

Protein kinases belong to a class of cellular enzymes that catalyze the transfer of a phosphate 

group PO4
3- from a high-energy, phosphate-donating molecule, usually nucleotide triphosphate 

(ATP or GTP), to specific substrate residues in polypeptide chains. This process, called 

phosphorylation, results in a covalent modification of the target which produces a structural 

change, thereby modifying its activity and function (Huse and Kuriyan, 2002, Endicott et al., 2012).  

Known as the most abundant protein post-translational modification, phosphorylation, and its 

phosphatase-mediated counterpart dephosphorylation, allow for a reversible mechanism of 

substrate modification that plays a crucial role in cellular function regulation. The complicated and 

sophisticated system of protein kinase activity is used in cellular transport, cell signaling, 

metabolism, protein regulation, secretory processes, and other cellular pathways, providing a 

critical tool for controlling and influencing many biological processes (Krebs, 1985, Hamilton, 1998, 

Shchemelinin et al., 2006).  

The importance of protein kinases in cellular physiology is also evidenced by the wide distribution 

of these enzymes in all 6 kingdoms of life: in eukaryotic cells they constitute 2% of the genes (Huse 

and Kuriyan, 2002), while in humans they account for 1.7% of the entire genome, representing the 

third most populous protein family (Endicott et al., 2012). 

 

Classification and function 

Due to the wide range of proteins and their broad spectrum of actions, eukaryotic kinases have 

been classified according to several schemes, depending on which of the many different 

parameters such as function or structure was examined. The first classification scheme was 

proposed in 1995 (Hanks and Hunter, 1995) and then largely extended or adapted; it has been 

continuously revised with additional research studies, discoveries, and new kinome sequencing. 

Therefore, the main classification now in use is a hybrid classification that aims to be of practical 

use rather than conforming to general rules.  
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Considering this, kinases can be divided into large groups and subdivided into families and 

subfamilies, accordingly to their functions, sequence and structure similarity, and evolutionary 

history (Manning et al., 2002). Kinases are sorted into groups according to site specificity, by the 

identification of the specific phosphorylated residues (serine/threonine, tyrosine, histidine) or the 

general consensus site (e.g., proline adjacent to the phosphorylated residue). A more precise 

analysis of biological functions and amino acid sequence homology, with a particular focus on the 

catalytic domains, allows for a division into family groups, which are sometimes further subdivided 

into subfamilies in relation to their conservation among phyla (Manning et al., 2002). 

Aside from “atypical” proteins that do not share similarities with most of the eukaryotic kinases, 

some of the main known and studied “conventional” protein kinase groups are, for example, 

Tyrosine Kinases, that phosphorylate almost exclusively tyrosine residues, as opposed to 

Serine/Threonine Kinases, which make up the majority of kinases, and target serine/threonine 

amino acids. One of the main families is the AGC that derives from the name of the core 

intracellular signaling kinases PKA, PKG and PKC, whose activities are responsive to the presence 

of messenger molecules such as calcium, phospholipids, and cyclic nucleotides; CMGC represents 

another large group of well-known families CDK, MAPK, CLK,  GSK3, which are critical for a broad 

spectrum of cellular processes (cell cycle control, MAPK growth- and stress-response, splicing, 

metabolic control, and many other unknown functions) (Manning et al., 2002). 

Protein kinases can act downstream of a number of different cellular pathways, influencing many 

biological activities. Depending on the input signal and the cellular context, individual members of 

the family can phosphorylate different protein targets. The specificity of target recognition allows 

for a tight control of the cellular activities and responses to different stimuli. This specificity mainly 

depends on the type of kinase-substrate interaction, which is based either on the direct 

recognition of the consensus amino acid sequence by the catalytically active site of the kinase or 

on the interaction between docking sites, structural motifs or domains distant from both the 

substrate phosphorylation site and the active site of the kinase (Cheng et al., 2011). The 

consequent phosphorylation of the substrate influences its function by inducing conformational 

changes in the protein or by modifying its structural surfaces for protein-protein interactions. This 

post-translational modification has profound effects on protein function, resulting, for example, in 

enzyme activation/inhibition or formation/disruption of the interaction with protein partners, thus 
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leading to activation or inactivation of specific pathways for intra- and extra-cellular signal 

transmission to the nucleus (Endicott et al., 2012).  

Although protein kinases play a major role in protein phosphorylation, they can also have non-

catalytic activities. Indeed, only recently with new emerging evidence, increasing attention is being 

given to activity such as DNA binding, competition for protein interactions, or scaffolding of 

protein complexes (Rauch et al., 2011). Interestingly, these functions can be autonomous and 

independent of the kinase catalytic activity, or can be complementary to the main 

phosphotransfer activity, for example by increasing substrate specificity or coordinating the 

phosphorylation event (Rauch et al., 2011). 

The physiological functions of protein kinases are mediated by their target substrates. Whereas 

genome projects allowed for the discovery of the organism kinome profile, the identification of 

the cellular target of protein kinases now represents the major challenge to elucidating their 

physiological function. Alongside a direct approach for the discovery of new kinase substrates, 

researchers must investigate the structural basis of target recognition in order to expedite the 

identification of potential substrates. 

 

Structure and regulation 

The understanding of the biological functions of kinases along with the tight regulation of their 

activity come also through an in-depth comprehension of their structure. Structural studies on 

protein kinases have provided insight into the phosphorylation mechanism, kinase scaffolding, 

target selection, domain interactions, kinase activation/inactivation (Endicott et al., 2012), 

highlighting molecular details that have turned out to be crucial for proper kinase function and 

regulation. 

Kinases exist in two different states which are dependent on the different structural folding of the 

enzyme. In fact, active and inactive configurations are reflected by an open and closed 

conformation, respectively, and the switching between these two states provides a tool for the 

control of kinase activity in response to environmental and external stimuli (Huse and Kuriyan, 

2002, Shchemelinin et al., 2006, Endicott et al., 2012). Catalytically competent conformation is 

attained by correct positioning of the catalytic residues in the active site; indeed, proper kinase 
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pocket formation is mandatory for the allocation and orientation of ATP and the substrate for the 

phosphoryl transfer mechanism to be successfully completed (Endicott et al., 2012). On the 

contrary, inactive configuration does not require catalytic constraints to protein fold. Thus, while 

the ATP-binding pocket adopts a catalytically active structure that is strikingly similar among 

kinases, the inactive state reveals a notable plasticity of the protein for a more diverse structure 

(Huse and Kuriyan, 2002, Shchemelinin et al., 2006, Endicott et al., 2012). Indeed, the absence of 

the structural constraints needed for the correct formation of the peptide phosphorylation 

platform is responsible for more flexibility that allows kinases to assume different conformations. 

Nevertheless, they share common domains or structural motifs for mutual biological activities, 

protein interactions, or substrate recognition. 

Many kinases undergo transition from the inactive state to the active conformation as a 

consequence of phosphorylation on peptide motifs that triggers structural changes, responsible 

for folding the rest of the domain. However kinases can also be activated as a result of interactions 

with accessory proteins (such as cyclins for CDKs), as opposed to removing restraining interactions 

with extra domains or separate subunits (for example in the Src kinase, or AMP-activated kinases); 

dimerization can also activate kinases (as first observed with the receptor tyrosine kinase 

subfamily) (Endicott et al., 2012). 

Once activated, kinases catalyze the phosphorylation of serine, threonine, or tyrosine in the 

substrate. The specificity for the target proteins is defined by the capability of the phosphorylation 

site-containing region to fit the kinase pocket and establish stable interactions between critical 

residues. Thanks to their intrinsically more disordered nature, these target regions are able to be 

structurally resolved to fit the kinase catalytic site and at the same time can function, upon 

phosphorylation, as interaction motifs for several proteins (Endicott et al., 2012). Considering the 

flexibility of the target region and the similarity of active sites of the kinases, remote docking sites 

are useful in order to increase substrate selection and specificity of phosphorylation events. Being 

distant from the active pocket and located on different domains or subunits of the kinase, these 

sites increase the stability of the association with the substrate, whereas in the catalytic region 

this configuration is transient, thus raising the affinity for protein targets (Endicott et al., 2012). 

A combination of these multiple mechanisms allows kinase function to be dependent on, and 

modulated by, multiple layers of control. Since protein kinases play a key role in fundamental 
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cellular processes and signaling transduction in response to extracellular stimulation, the tight 

regulation of their activity is critical for the integration of multiple input signals and the correct 

maintenance of cellular biological functions (Huse and Kuriyan, 2002, Shchemelinin et al., 2006). 

Coordination of this system allows protein kinases to function downstream of different pathways 

in a concerted network of interactions. From gene transcription to protein degradation, kinase 

control is operated in a spatial and temporal way over many different aspects. Interacting protein 

partners, protein post-translational modifications, and cellular localization are just some of the 

most common methods employed in cells for kinase activity regulation (Hamilton, 1998, Huse and 

Kuriyan, 2002, Endicott et al., 2012). Apart from being necessary for integrating different biological 

processes, interaction with other proteins or kinases is the basis of activation of kinase signaling 

cascades, a peculiar feature of many signaling pathways that allows for a hierarchical organization 

of signal transduction. Protein interactions not only contribute to activation or inhibition of kinase 

activity via allosteric control or protein biochemical modifications, but also provide a tool for 

spatial allocation of phosphorylation events (Hamilton, 1998, Huse and Kuriyan, 2002). Subcellular 

localization of kinases, also determined by structural motifs that work as localization signals, limits 

accessibility of substrates and activators or influences the availability spectrum of interacting 

partners in selectively activating specific physiological functions (Hamilton, 1998). In addition to 

spatial control, stringent temporal regulation through inactivation or destruction of kinases after 

phosphorylation events is also mandatory for cellular growth and development (Huse and Kuriyan, 

2002, Shchemelinin et al., 2006). 

This system modularity is as complex as it is sophisticated and it is of central importance for 

establishing the subtle regulation over the cellular machinery and the proper stimulus-response 

coupling. 

 

Pathological implication of kinase misfunction 

Given the precise regulation of the kinase system and its significant impact on cellular physiology, 

deregulation of protein kinase activity can be directly correlated to pathological processes. Kinase 

function alterations are associated with a number of disorders and cancers; their deregulation also 

results in neurological disorders (Shchemelinin et al., 2006, Chico et al., 2009, Cheng et al., 2011, 

Rauch et al., 2011, Endicott et al., 2012). Epigenetic and genetic modification such as mutations or 
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chromosomal rearrangement can affect kinase genes directly, usually having a higher impact when 

they involve the kinase domain, or indirectly, through alteration of the molecular mechanisms that 

are involved in their codification, time and space distribution, activity regulation, and protein 

interactions. As a result, some kinases are both biomarkers and potential drug targets for disease 

prognosis and treatment. 

One of the most common kinase families involved in disorders is that of tyrosine receptor kinases. 

Since activation of these kinases, upon ligand binding to the extracellular domain, promote 

interconnected phosphorylation events that trigger multiple signaling cascades, their deregulation 

affects several biological processes and cellular responses (Choura and Rebai, 2011). For example, 

the kit receptor tyrosine kinase is expressed in many different tissues and promotes pleiotropic 

effects through different pathways such as PI3K/Akt and Ras/MAPK or the JAK/STAT and Src family 

(Shchemelinin et al., 2006). Reported loss- and gain-of-function mutations of c-kit result in 

decreased activity due to receptor truncation or permanent activation in the absence of ligand, 

thus inducing uncontrolled cell proliferation, cell survival, and other cellular responses ; these 

alterations lead to defects in melanogenesis, gametogenesis, or hematopoiesis, and in a variety of 

malignancies (Shchemelinin et al., 2006). Improper functioning of many receptors belonging to the 

well-studied families of EGFR, IR, FGFR, VEGFR are known to be involved in breast, colorectal, 

ovarian, and prostate cancers. Truncations of the extracellular domain or receptor overexpression 

are the most common alterations that promote cell proliferation, fostering tumor growth and 

malignancies (Choura and Rebai, 2011). 

Besides receptor kinases, non-receptor tyrosine kinases are also implicated in human diseases. 

Bcr-Abl is a deregulated, constitutively activated enzyme generated by the fusion of the Bcr and 

Abl proteins as a consequence of chromosomal rearrangement, t(9;22), known as Philadelphia 

chromosome. Multiple pathways are activated by the deregulated tyrosine kinase activity of this 

aberrant protein, resulting in a chronic myeloid leukemia (Deininger et al., 2000, Shchemelinin et 

al., 2006). 

In addition to tyrosine kinases, many serine-threonine kinase misfunctions are reported to be 

related to cancers and disorders. CDKs are involved in colorectal cancer, lung cancer, and in 

various types of sarcomas, whereas alterations affect either the kinase itself or its cognate 

activating cyclin or specific inhibitor (Shchemelinin et al., 2006). In addition,  MAPK family 
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members such as p38 or JNKs have crucial roles in inflammatory processes, brain cytoarchitecture, 

and development, and their abnormal activities have been found in several pathological 

conditions like acute ischemic damage or rheumatoid arthritis, as well as CNS disorders like 

Huntington's, Parkinson’s and Alzheimer’s diseases, Down’s syndrome, and tauopathies 

(Shchemelinin et al., 2006, Chico et al., 2009). Among this group of kinases GSK3 is another serine-

threonine kinase worthy of mention. Due to its involvement in a wide range of cellular processes 

and the complexity of its regulation, GSK3 has been linked to numerous human diseases such as 

diabetes, stroke, Alzheimer’s disease, sleep disorders, and neuropsychiatric and mood disorders 

(Chico et al., 2009). 
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Table 1 

Protein kinase in CNS disorders and cancers (Adapted from (Chico et al., 2009)). 

 

Since protein kinases are regarded as important effectors in human pathology, they are intensively 

studied and have become major targets for therapy. Therefore, kinase inhibitors represent 

potential therapeutic agents for the development of selective and specific targeted therapies. 
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CDKL5 deficiency disorder: an overview 

CDKL5 deficiency disorder (CDD) is an early infantile epileptic encephalopathy and is a very severe 

and chronically debilitating disorder. It is an X-linked monogenic disorder that mostly affects girls 

with an incidence of 1:42000 live birth (Symonds et al., 2019). The history of CDD started very 

recently when, in 2003, Vera Kalscheuer and colleagues showed that a balanced translocation 

causing a truncation of the X-linked cyclin-dependent kinase–like 5 (CDKL5/STK9) gene was 

responsible for the profound developmental delay and infantile spams exhibited by two unrelated 

girls (Kalscheuer et al., 2003). Due to many overlapping clinical features, such as 

neurodevelopmental delay, stereotypic hand movements, hypotonia, and impaired psychomotor 

development (Artuso et al., 2010), patients diagnosed with the “early seizure variant” of RTT, also 

known as “Hanefeld variant”, were studied and found to be positive for CDKL5 mutations (Tao et 

al., 2004, Weaving et al., 2004). RTT is a severe childhood neurological disorder, most often caused 

by mutations in the X-linked gene of the methyl-CpG-binding protein 2 (MeCP2), with a frequent 

clinical picture characterized by impairment of motor and cognitive functions, spinal problems 

(scoliosis), epilepsy, loss of communication ability, and characteristic stereotypic hand 

movements. Nevertheless, CDD has only recently been proposed as a distinct clinical entity with 

its unique features such as the early drug-resistant epilepsy starting within the first 6 months of 

life and the consequent lack of normal development (Fehr et al., 2013). 

Ever since, a full clinical overview of the CDD has improved, as the number of patients has 

increased, allowing for a better definition of the clinical symptoms and diagnostic criteria. In the 

past few years, a more detailed phenotypic spectrum has been described, spanning from a milder 

form to a more severe form (Guerrini and Parrini, 2012). Once the early-onset seizures were 

established as the core feature of the CDKL5-related phenotype, screenings for CDKL5 mutations 

were also extended to cohorts of patients with an undefined diagnosis of West syndrome, 

epileptic encephalopathy, or infantile spasms, resulting in high positive scores (Intusoma et al., 

2011). CDD is a very severe encephalopathy that strongly impairs the quality of l ife of patients and 

their families, and for which there are no available cures at the moment. 

CDD is caused by pathogenic variants and loss of function of cyclin-dependent kinase-like 5 

(CDKL5) (Kalscheuer et al., 2003, Tao et al., 2004, Weaving et al., 2004), a serine/threonine protein 

kinase that belongs to the CMGC family of serine/threonine kinases. Despite the wide expression 
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among different tissues in the body, the highest levels of CDKL5 occur in the brain, especially 

during early postnatal stages, in parallel with brain development and maturation (Rusconi et al., 

2008). This is in accordance with its involvement in neurodevelopmental alterations, suggesting its 

role in brain maturation and function. 

 

CDD clinical features and phenotype-genotype correlation 

CDD phenotype is variable, with differently distributed clinical symptoms. Bahi-Buisson and 

colleagues tried to define the clinical profile of 20 patients with CDKL5 mutations screened among 

183 females with early seizure encephalopathy. The core symptoms were early-onset seizures in 

the first six months of life, neurocognitive development, and severe hypotonia, commonly 

followed by the repetitive hand movements as the hallmark of the disease (Bahi-Buisson et al., 

2008b, Fehr et al., 2013). Despite seizures being prominent and usually severe, they include a wide 

range of expression depending on the progression of the disease, including infantile spasms, 

myoclonic seizures, tonic-clonic seizures, and, most particularly, epileptic encephalopathy. 

Consequently, a three-stage evolution trend in epilepsy has been described based on age.  Stage I 

characterizes younger patients (1-10 weeks old) with early epilepsy and frequent prolonged tonic-

clonic seizures occurring 2-5 times a day; epileptic encephalopathy with infantile spasms and 

hypsarrhythmia is identified as Stage II (from 6 months to 3 years of age); finally, in Stage III about 

half of the patients may experience seizure remission, whereas the remainder continue to present 

refractory epilepsy with tonic seizures and myoclonia (Bahi-Buisson et al., 2008a). 

Other common and less common clinical features are autistic behavior, sleep and respiratory 

disturbances, absent language skills, limited hand use, poor developmental  skills, including poor 

sucking and poor eye contact, cardiorespiratory dysrhythmias, gastroesophageal reflux, and 

scoliosis (Bahi-Buisson et al., 2008b, Artuso et al., 2010, Pini et al., 2012, Fehr et al., 2013) (Figure 

1). 
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Figure 1  

Prevalence of 18 clinical features in 20 CDKL5 mutation patients (Bahi-Buisson et al., 2008b). 

 

Most of the affected patients are girls, although a few boys with this disorder have also been 

identified and a reported ratio of 4:1 have emerged (Olson et al., 2019). Male hemizygous patients 

(YX-) with just one mutated copy of CDKL5 were initially reported to show a more severe 

phenotype compared to heterozygous females (XX-), who usually have a wild-type copy of the 

gene that was thought to be responsible for the milder form of the pathology (Fehr et al., 2015, 

Liang et al., 2019). However, recently, a clinic-based study by the International Foundation for 

CDKL5 Research Centers of Excellence (COEs) suggested that no striking differences were observed 

between genders and that males also show milder phenotype (Olson et al., 2019). 

Nevertheless, considering the physiological process of dosage compensation of the X chromosome 

expression through random X-inactivation, female cells may express either the mutated copy or 

the normal copy. The resulting variable mosaic pattern among different tissues in the body is 

suggested to be responsible for the different phenotypic outcome of the disorder  (Zhou et al., 

2017), but the influence of somatic CDKL5 mosaicism on clinical phenotype is still unknown (Olson 

et al., 2019). Nevertheless, the big clinical heterogeneity is also being explained by the wide CDKL5 

mutational spectrum identified in patients, accounting for the severe to profound alterations in 
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CDKL5 protein function (Bahi-Buisson et al., 2008a, Fehr et al., 2016). Therefore, patients span 

from a milder form of the disorder with independent ambulation and controlled epilepsy to severe 

forms that include intractable refractory seizures, absolute microcephaly, and no motor 

milestones. This heterogeneous clinical presentation is also strengthened by the report of two 

twin CDD patients showing a significant discordant phenotype (Weaving et al., 2004). Since both 

girls were characterized by random X-inactivation, this observation emphasizes the idea that 

epigenetic or environmental factors may also play a role in influencing the phenotypic outcome of 

the pathology (Kilstrup-Nielsen et al., 2012). Considering the above discussion, the genotype-

phenotype correlation still remains limited. 

Given the above considerations and the small number of cases, further studies are necessary to 

increase the clinical understanding of CDD. These limitations highlight the need to characterize 

CDKL5 biological function, to understand the mechanisms underlying CDKL5-related disorder, and 

identify effective therapies targeted toward slowing or reversing the progression of the disease. 

 

CYCLIN-DEPENDENT KINASE-LIKE 5 (CDKL5) 

CDKL5 gene and protein isoforms 

The human CDKL5 kinase was initially identified through a positional cloning study aimed at 

identifying disease gene mapping on the X-chromosome. Sequence homologies and protein 

signatures that are common to the serine-threonine protein family led the authors to name the 

gene STK9 (Serine Threonine Kinase 9) [Montini et al. 1998]. Given the strong similarity to some 

cell division protein kinases, the STK9 gene was subsequently renamed cyclin-dependent kinase-

like 5, CDKL5. 

The cyclin-dependent kinase-like 5 (CDKL5) human gene is located on the Xp22, spanning around a 

240kb region. It comprises 27 exons which are combined in five major transcript isoforms 

containing distinct coding regions (Hector et al., 2016) (Figure 2). Although all the isoforms appear 

to have the same ATG start codon from exon 2, the first 6 untranslated exons contain alternative 

transcriptional start sites (TSS) reflecting differences in the 5’UTR of the different transcribed 

mRNAs. On the contrary, the last exons (19-22) codify for a very large 3’UTR (>6,6kb), suggesting 
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their importance in the potential additional regulation of CDKL5 transcripts, while the remaining 

exons (2-19) stand for the coding region of the different protein isoforms (Hector et al., 2016). 

 
Figure 2 

Human CDKL5 gene and transcript isoforms (Hector et al., 2016). Lines linking exons indicate 

splicing events while asterisks indicate exon differences across transcript isoforms. 

 

It is worth noting that the hCDKL5_1 and hCDKL5_5 transcripts encode for the two main known 

CDKL5 protein isoforms, the CDKL5107 and the CDKL5115, respectively. The latter was the first to be 

reported and studied (Kalscheuer et al., 2003, Tao et al., 2004), while the first was later found to 

be the most abundant in the brain (Williamson et al., 2012). The differing weights (107kDa and 

115kDa) revolve around the different C-terminal regions that are suggested to be involved in 

activity regulation, localization, and protein interaction (Lin et al., 2005, Rusconi et al., 2008). 

Other 3 CDKL5 transcripts hCDKL5_2, hCDKL5_3, and hCDKL5_4, that are very similar to hCDKL5_1, 

have been identified, but vary depending on either the addition of exon 17, truncation of exon 11 

due to an alternative splicing site, or a combination of the two. While exon 17 does not contain 

known functional elements, truncation of exon 11 results in the loss of a putative nuclear 

localization signal. The corresponding coded proteins have not yet been characterized, probably 

due to the lower abundance of their transcripts (Hector et al., 2016). 

 

Pathological CDKL5 mutations 

With the exception of one instance of familial occurrence, likely due to gonadal mosaicism, all 

reported cases of CDD are sporadic, with mutations occurring de novo in the germline (Weaving et 
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al., 2004). A wide range of pathogenic mutations including missense and nonsense mutations, 

small and large deletions, frameshifts and aberrant splicing have been described (Figure 3) 

(Kilstrup-Nielsen et al., 2012, Hector et al., 2017). This mutational heterogeneity may play a part in 

the clinical variability of CDD. 

 
Figure 3 

Graphical map of hCDKL5 genomic locus and the reported CDKL5 mutations (Kilstrup-Nielsen 

et al., 2012). In color exons codifying for kinase domain (blue) and extreme C-terminal tail 

(red). Above: deletions, frame shift mutations and splice variants; Below: Missense and 

nonsense mutations (fuchsia and black, resp.) 

 

While large scale mutations, such as chromosomal rearrangements, involve large alterations 

directly to the CDKL5 gene region, small scale mutations are equally distributed in the whole 

coding sequence. Interestingly, missense mutations are usually observed mainly in the catalytic 

domain of the protein, whereas single amino acid substitutions can deeply affect the structural 

folding required for proper kinase pocket formation, therefore confirming the importance of 

CDKL5 catalytic activity for correct brain function and development. Nevertheless, many nonsense 

mutations, frameshifts or aberrant splicing resulting in premature stop codon formation and 

protein truncation occur both in the N-terminal domain as well as in the C-terminal region, 

suggesting that the long tail is also relevant for protein activity. However, while missense 

mutations do not seem to affect protein expression level, no reports have demonstrated the 

presence of truncated proteins in human cells, thus indicating that this type of mutations might 

lead to the process of nonsense-mediated mRNA decay (Bahi-Buisson et al., 2008b). Considering 
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this, overexpression of mutated derivatives in non-neuronal cell culture lines have been used to 

investigate the molecular effects of these mutations, along with some of the most recurrent 

modifications observed in patients (Lin et al., 2005, Bertani et al., 2006, Rusconi et al., 2008). From 

these studies it emerged that the C-teminal region exerts multiple regulatory functions on the 

protein, negatively regulating its phosphorylating activity and localizing the protein in the 

subcellular compartments. Considering the kinase localization-related functions, this 

mislocalization could contribute to the pathogenic phenotype of the disorder.  

Since loss-of-function mutations are usually associated with catalytic impairment, it has been 

suggested that they correlate with a more severe form of the pathology. On the contrary, gain-of-

function alterations, that usually preserve kinase function while altering its control and 

modulation, have been proposed to have less impact on the phenotypic outcome (Rusconi et al., 

2008, Fehr et al., 2016). Indeed, two well-known RTT CDKL5 derivatives, R781X and L879X, are 

proposed to causes neurological phenotypes due to the kinase mislocalization into the nucleus 

and the increased autocatalytic activity observed in vitro (Bertani et al., 2006). However, the 

correct in vivo expression of this mutant still to be addressed. 

Nevertheless, large duplication events involving the CDKL5 gene have also been identified in 

several studies (Szafranski et al., 2015). However the duplicated regions reported (spanning 8–21 

Mb) included as many as 80 genes making the interpretation of gene-specific overexpression 

effects in such circumstances problematic (Hector et al., 2017). Although more evidence is 

required to conclude that there is a well-defined CDKL5 duplication syndrome, as is found in the 

closely-related genes MECP2 and FOXG1, the importance of a gene dosage effect might be taken 

into consideration.  

Continued evaluation of cases investigating both genotypic and phenotypic expressions as well as 

diagnoses of copy number variations involving CDKL5 may help to elucidate pathological aspects of 

CDKL5 mutations. 

 

Mouse CDKL5 isoforms and mouse models of CDD 

The majority of the CDKL5 coding region is orthologous and well-conserved between humans and 

mice. A detailed analysis of mouse Cdkl5 transcripts has also been carried out. A total of 23 
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identified exons were combined with exon boundaries and chromosomal sequence coordinates 

demonstrating the existence of five major transcript isoforms containing distinct coding regions 

(Hector et al., 2016). The murine isoforms mCdkl5_1-2 are orthologous of their human 

counterparts while, in contrast, the remaining 3 isoforms show more differences and therefore 

have been termed as mCdkl5_6, mCdkl5_7 and mCdkl5_8.  

Human and mouse CDKL5_1 are the most abundant isoforms in the brain; they have a very similar 

expression profile and show a very high degree of nucleotide and amino acid sequence similarity. 

Altogether this homology renders Cdkl5 mouse models of significant relevance when studying 

CDKL5 functions. Although animal models cannot completely recapitulate the pathology, they 

provide an excellent tool for studying the molecular mechanisms underlying the development and 

progression of the disease and identifying potential therapeutic intervention for treatment of 

patients. For this reason, Cdkl5 constitutive knockout mice have been developed in order to 

address how CDKL5 dysfunction leads to neurological defects in CDD. Some conditional KO mouse 

models have also been generated to isolate Cdkl5 deletion to a specific cellular type and study the 

connection to the pathological outcomes. By using the site-specific recombinase technology of 

Cre-Lox recombination, exons 6 (Wang et al., 2012, Jhang et al., 2017, Tang et al., 2017), exon 4 

(Amendola et al., 2014), and exon 2 (Okuda et al., 2017) have been targeted both in conditional 

and constitutive KO mouse models to generate a premature stop codon within the N-terminal 

kinase domain, thus mimicking a loss-of-function mutation (Figure 4).  

 
Figure 4 

Generation of Cdkl5 knockout mice (Adapted from (Amendola et al., 2014)). 
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The first constitutive Cdkl5 knockout mice studied by Wang and colleagues displayed hyperactivity, 

motor defects, reduced anxiety, decreased sociability, and impaired learning and memory. They 

recapitulated several core features observed in CDKL5 patients, such as absence of hand skills, 

intellectual disability, hyperactivity, and poor response to social interactions. Sensory information 

processing measured as an event-related potential (ERP) showed impaired neuronal connectivity, 

although EEG monitoring revealed an absence of spontaneous seizures (Wang et al., 2012). 

Deletion of exon 4 by Amendola and colleagues also revealed abnormal clasping of hind-limbs, a 

decrease in locomotion, and hippocampus-dependent learning and memory impairment 

(Amendola et al., 2014). These deficits are associated with neuroanatomical defects and are 

similar to previous findings from Wang’s group. As reported by Wang et al., spontaneous seizure 

or epileptiform activity in mutant mice was not detected, but an abnormal EEG response to 

convulsant, as PTZ and KA,  has been described (Amendola et al., 2014). 

Conditional knockouts of Cdkl5 in glutamatergic cortical neurons (cortical interneurons, striatal 

medium spiny neurons) with Emx1::Cre and GABAergic forebrain neurons (cortical and 

hippocampal pyramidal neurons) with Dlx5/6::Cre had been reported (Amendola et al., 2014). 

These models revealed that behavioral phenotypes can be mapped to diverse forebrain neuronal 

populations (Amendola et al., 2014). In fact, while limb clasping and head tracking are associated 

with cortical motor and visual circuits, non-cortical regions control the hypolocomotion 

phenotype. The study of a similar forebrain excitatory neuron-specific Cdkl5 knockout line 

demonstrated the glutamatergic origins of impaired hippocampal-dependent memory, along with 

context-dependent hyperactivity and hindlimb clasping (Tang et al., 2017). This study also showed 

that the altered neuronal morphology corresponds to an increased spontaneous excitatory and 

inhibitory synaptic activity in the CA1 microcircuit, that is crucial for learning and memory. 

A further exon 6 Cdkl5 KO mouse model was characterized by Jhang et al., confirming previous 

studies by Wang and colleagues, and introducing new features resembling core symptoms of 

attention-deficit hyperactivity disorder (ADHD) and autism such as impulsivity, aggressiveness, 

increased digging stereotypy and the disruption of dopamine synthesis and sociocommunication-

associated gene expression in the corticostriatal areas (Jhang et al., 2017). 
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A significant recent study on a CDKL5 exon 2-targeted KO mouse model revealed an aberrant gain-

of-function effect on postsynaptic NMDARs in the hippocampus and identified hyperexcitability in 

response to NMDA (Okuda et al., 2017). In this study, the same authors found that behavioral 

characterization of these mice also showed significant enhancement of anxiety- and fear-related 

behaviors and impairment in both acquisition and long-term retention of spatial reference 

memory (Okuda et al., 2018). 

Although most CDD patients are female, male hemizygous knockout mice have mostly been 

studied, in order to avoid the potential confound introduced by mosaic CDKL5 protein expression 

due to random X-inactivation. Nevertheless, a new study recently demonstrated that 

heterozygous Cdkl5 knockout female mice show several aspects of CDD, including autistic-like 

behaviors, defects in motor coordination and memory performance, and breathing abnormalities 

(Fuchs et al., 2018).  

 

 

Figure 5 

Summary of the neuronal morphology and behavior of the Cdkl5 constitutive and conditional 

KO mouse line (Zhu and Xiong, 2019). 

 

To sum up, mice lacking CDKL5 recapitulate the core symptoms of CDKL5-related disorders such as 

the severe intellectual disability and autistic-like features, but not the early-onset seizures. Indeed, 

the absence of spontaneous seizures observed in the Cdkl5 KO mice may reflect a significantly 

different mechanism of epilepsy development in humans and mice. Nevertheless, all things 



 
27 

 

considered, mouse models are a very useful tool for revealing pathological mechanisms and 

testing therapeutic interventions for CDD. 

 

CDKL5 protein structure 

CDKL5 is a Ser/Thr protein kinase that belongs to the CMGC family of serine/threonine kinases, 

which include cyclin-dependent kinases (CDKs), glycogen synthase kinases (GSKs), mitogen-

activated protein kinases (MAP kinases), and CDK-like (CDKL) kinases (Montini et al., 1998). The 

protein is characterized by an N-terminal catalytic domain (aa 13-297) that is homologous to that 

of the other CDKL-family members, and a long unique C-terminal tail (over 600 a.a.), that is highly 

conserved among the several CDKL5 orthologues that differ only for the extreme C-terminus 

(Figure 6). 

 
Figure 6 

Schematic view of the CDKL5_1 and CDKL5_5 protein isoforms structure (Adapted from 

(Kilstrup-Nielsen et al., 2012)). 

 

The catalytic domain contains the ATP-binding region, the kinase active site, and the typical TEY 

motif (Thr-Asp-Tyr) of the MAPK proteins, whose dual phosphorylation usually induces protein 

kinase activation. Interestingly, CDKL5 itself is capable of autophosphorylating this motif (Lin et al., 

2005, Bertani et al., 2006), as are some of the other CMGC protein kinases. 

On the contrary, the large C-terminal region presents a unique sequence that include s two nuclear 

localization signals (NLSs) and one nuclear export signal that are involved in protein import/export 

from the nucleus. Indeed, the COOH-tail is crucial for protein subcellular localization (Lin et al., 

2005, Rusconi et al., 2008). In addition, it is suggested that the C-terminal includes the interacting 
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regions of some of the few characterized CDKL5 substrates (Mari et al., 2005, Sekiguchi et al., 

2013), highlighting its role in protein-protein interactions. As suggested from transcript studies, 

CDKL5 protein isoform differences occur in the C-terminal region and mostly in the extreme C-

terminal tail. This structural variability could reflect different needs for CDKL5 regulation and 

function in a time- and spatial-dependent manner. 

 

CDKL5 expression profile: stage-, tissue- and cell type-specificity 

Expression levels and tissue specificity of CDKL5 proteins have also been investigated. Expression 

studies have shown that CDKL5 mRNAs are at their highest in the brain, accordingly to their 

suggested function based on the pathological phenotype of the disorder (Williamson et al., 2012). 

Nevertheless, the kinase has been found to be widely expressed among different tissues in the 

body and its mRNAs can easily be detected in testis, lung, spleen, prostate, uterus, and placenta, 

whereas they are almost undetectable in heart, kidney, liver, and skeletal muscle (Williamson et 

al., 2012).  

A detailed study in the developing mouse brain reported a temporal and spatial diversity of the 

CDKL5 protein (Rusconi et al., 2008). In fact, CDKL5 levels appear to be different between the 

individual regions of the adult mouse and human brain, showing a higher expression in forebrain 

structures like the hippocampus and cortex. It has also been found in the thalamus and striatum, 

albeit at lower levels, but it is barely present in the cerebellum and hypothalamus (Rusconi et al., 

2008). Superficial cortical layers such as the motor, cingulate, pyriform, and entorhinal cortices, 

areas that are involved in higher functions like language and information processing, showed a 

notably higher CDKL5 expression compared to other cortical areas, evidencing the importance of 

the kinase for the physiology of these brain districts (Kilstrup-Nielsen et al., 2012). Also in the 

hippocampus, high levels of CDKL5 have been found in all CA fields, but not in the dentate gyrus, 

where neurogenesis is more prominent in adulthood (Kilstrup-Nielsen et al., 2012). Considering 

the expression profile, it has been assumed that glutamatergic and GABAergic neurons are the 

primary cell types that express CDKL5, since no to little expression was observed in dopaminergic 

and noradrenergic areas. 
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Figure 7 

CDKL5 expression profile in the mouse brain (Kilstrup-Nielsen et al., 2012). 

 

Given the strong similarity of CDD to RTT and considering the developmental expression profile of 

MeCP2, a correlation between neuronal maturation and CDKL5 expression has been considered. 

Indeed, while CDKL5 is reduced in embryonic stages, it starts to be expressed in perinatal stages, 

with a strong induction in early postnatal days, showing  a tight CDKL5 expression modulation 

during pre- and postnatal development (Rusconi et al., 2008). 

Along with increasing available information, further studies have better defined the spatial and 

temporal expression profiles in relation to the different human and mouse CDKL5 transcripts 

(Hector et al., 2016). This detailed analysis showed individual transcript level changes during 

development, highlighting a more complex and dynamic developmental regulation of CDKL5 

expression in relation to the different isoforms (Hector et al., 2016). Nevertheless, the functional 

implications of this tight spatial and temporal isoform-dependent modulation still need to be 

assessed. 

At the cellular level CDKL5 is easily detectable in the majority of the neuronal fractions, while it is 

expressed at very low levels in the glia, indicating an essential role in neuronal development and 

function. In addition to the variances in protein levels between the different brain areas, the 
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specific distribution of the protein between the cellular compartments also differs, suggesting that 

the protein plays multiple roles and regulates distinct signaling pathways depending on its 

localization, therefore making subcellular localization another key mechanism for CDKL5 activity 

control. Neuronal CDKL5 protein is expressed in both the nucleus and the cytoplasm, with a ratio 

that varies depending on the brain areas and stage of development (Rusconi et al., 2008). In fact, 

during embryonic stages the CDKL5 protein predominantly localizes in the cytoplasm, but from 

perinatal and postnatal stages, during which protein expression is induced in concomitance with 

neuronal maturation, until adult stages, CDKL5 progressively accumulates in the nucleus. 

However, this differential localization changes only in the hippocampus, cortex, and thalamus, 

where the nuclear fraction accounts for 40% of the total protein, while in the striatum and 

cerebellum it remains around 20% (Rusconi et al., 2008).  

Studies in non-neuronal cell culture revealed that exogenous CDKL5 translocation is mediated by 

an active export mechanism. This process is controlled by the receptor CRM1/Exportin 1, that is 

dependent on the recognition of nuclear export signals that are present in the C-terminal domain 

of the protein (Rusconi et al., 2008). Similarly, the domain also includes a nuclear localization 

signal on the presence of which depends the nuclear import of the protein. Indeed, CDKL5 

phosphorylation close to its NLS by the dual specificity tyrosine-phosphorylation-regulated kinase 

1A (DYRK1A) localized the kinase in the cytosolic subcellular compartment of cultured neuronal 

cells (Oi et al., 2017). Additional studies confirmed the primary role of the C-terminal region in 

mediating the subcellular localization of the exogenously expressed CDKL5 protein isoforms (Lin et 

al., 2005, Bertani et al., 2006, Williamson et al., 2012). Interestingly, in primary murine 

hippocampal neurons CDKL5 was localized both in nucleus and cytoplasm, but it did not undergo 

constitutive shuttling between these compartments as did proliferating cells. On the contrary, a 

glutamatergic stimuli induced the translocation and accumulation of the kinase in the perinuclear 

cytoplasm (Rusconi et al., 2011). Moreover, prolonged treatment promoted CDKL5 proteasomal 

degradation, showing that expression and localization are modulated by the activity of 

extrasynaptic N-methyl-d-aspartate receptors (NMDARs). 

All things considered, the coordination of this network through the integration of multiple layers 

of control over the CDKL5 protein is critical for proper regulation of its activity and for the correct 

time and spatial maintenance of cellular biological functions. 
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CDKL5 substrates and functions 

As already mentioned, the expression profile of the CDKL5 protein suggests that the protein plays 

a main role in brain development and function. Nevertheless, it has been found to be implicated in 

several physiological processes, suggesting its involvement in many cellular biological functions. 

Both in vivo and in vitro studies, using mouse models, neuronal hippocampal cultures, and non-

neuronal cell lines, have shown that CDKL5 coordinates multiple signaling cascades at the cellular 

level through the direct and indirect interaction with protein partners and molecular machineries.  

➢ Neuronal proliferation, differentiation and cell cycle control 

CDKL5 was found to affect proliferation and differentiation in a study that used neuroblastoma 

cells as cellular model (Valli et al., 2012). Neuroblastoma cells share several features with normal 

neurons and are therefore considered a good model with which to study the biochemical and 

functional properties of neuronal cells. Showing the regulation of pro-proliferative MYCN on the 

CDKL5 gene, Valli and colleagues proved that CDKL5 inhibits proliferation, promoting cell cycle exit 

and subsequently inducing cell differentiation, suggesting that the kinase has a crucial role in 

interconnecting proliferation and differentiation processes in neuronal precursors. Another study 

correlates CDKL5 with neuronal differentiation in CDKL5 patient-derived induced pluripotent stem 

cells (iPSCs) (Livide et al., 2015). In fact, GRID1, encoding for glutamate D1 receptor (GluD1), a 

member of the δ-family of ionotropic glutamate receptors, and important for inducing the 

differentiation of presynaptic inhibitory neurons, has been found to be altered in CDKL5-mutated 

iPS cells. 

Considering the homology of CDKL5 with MAPKs and CDKs, the role of the kinase in cell cycle 

progression has been further investigated. Increased proliferation rate of neuronal precursor cells 

(NPC) was observed in the hippocampus of adult Cdkl5 KO mice with an increase in apoptotic cell 

death of post-mitotic granule neuron precursors (Fuchs et al., 2014b). Interestingly, it is suggested 

that CDKL5 exerts the modulation of this balance between survival/proliferation and 

differentiation of hippocampal postnatal neurogenesis through the control of the AKT/GSK-3β  

signaling pathway, known to be involved in diverse developmental events in the brain, including 

neurogenesis, neuron survival and differentiation (Luo, 2012). Moreover, the AKT/mTOR/rpS6 

signaling cascade has also been found to be disrupted in two mouse models of the disorder (Wang 

et al., 2012, Amendola et al., 2014). The implication regarding the regulation of cell cycle 
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progression has been further confirmed by a recent study in proliferating cells where CDKL5 was 

found to localize at the midbody and contribute to faithful cell division, mediating the correct 

formation of mitotic spindle and regulating cytokinesis (Barbiero et al., 2017b).  

➢ Neuronal maturation and morphology: actin and microtubule associated functions 

As mentioned above, the localization of CDKL5 at the midbody for a cell cycle control might reflect 

the involvement of the kinase in the interactions with microtubules and actin networks. Processes  

of cytoskeletal remodeling such as migration and cell polarity, proliferation, vesicle transport, and 

intracellular signaling are fundamental for correct neuronal maturation. Multiple potential 

partners of CDKL5 that are important for the correct assembly and function of the microtubule 

cytoskeleton have recently been determined. By using a chemical genetics method and 

phosphoproteomic screening, respectively, two independent studies have identified murine 

microtubule-associated targets MAP1S (microtubule-associated protein 1S), EB2 (microtubule-

associated protein EB family member 2) and ARHGEF2 (Rho guanine nucleotide exchange factor 2) 

(Baltussen et al., 2018), and human MAP1S, CEP131 (Centrosomal Protein 131) and DLG5 (Discs 

Large MAGUK Scaffold Protein 5) (Munoz et al., 2018), proteins that are fundamental for 

microtubule establishment, cilia based signaling and cell polarity.   

The clear involvement of CDKL5 in regulating cytoskeletal dynamics has also been described 

(Barbiero et al., 2017a). Barbiero et al. demonstrated that a loss of CDKL5 negatively regulates the 

IQGAP-Rac1-CLIP170 complex formation, which is necessary for microtubule stability and 

microtubule growth, with a consequent disruption of proper cell morphology. However, a series of 

experiments by Chen et al. provided preliminary evidence of the CDKL5 link to the actin 

cytoskeleton. They showed that CDKL5 plays a critical role in neuronal morphogenesis and 

dendritic arborization in a BDNF-Rac1 dependent manner. Brain-derived neurotrophic factor 

(BDNF) is found to induce phosphorylation of CDKL5 that colocalized with F-actin in the peripheral 

domain of growth cones and formed a protein complex with Rac1, a Rho GTPase involved in the 

remodeling of the actin and microtubule cytoskeleton. It is suggested that disruption of this 

interaction causes neuronal migratory defects that may be implicated in early seizures in patients 

with CDKL5 mutations (Chen et al., 2010). In addition, when overexpressed in cultured neurons, 

CDKL5 increased the total dendritic length in a kinase activity-dependent manner, showing that 

the kinase is not only required, but is sufficient to promote dendrite growth. It is worth noting that 
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Rac1 signaling is also important for Shootin1 function, a brain-specific protein acting as a 

determinant of axon formation. The interaction with CDKL5 concurs to regulate neuronal 

polarization regulation and proper axon specification and elongation in mouse primary 

hippocampal neurons (Nawaz et al., 2016). 

A microtubule-based organelle called primary cilium also plays a main role in neurogenesis, and 

has emerged as an essential signaling hub in many cells, including neural progenitors and 

differentiating neurons (Lepanto et al., 2016). In fact, ciliopathies are associated with a large 

variety of manifestations that often include distinctive neurological findings (Valente et al., 2014). 

In addition to deleterious effects on postnatal development, a lack of primary cilia in adult 

progenitor cells resulted in a reduction in hippocampal neurogenesis and a deficit in spatial 

learning in mice. These findings support a potential pathomechanism for intellectual disability 

associated with ciliary dysfunction. Indeed a specific branch of CMGC kinases, including CDKL5 

protein, is known to be involved in ciliary functions (Canning et al., 2018). Interestingly, CDKL5 has 

been found to impair ciliogenesis when overexpressed, and CDKL5 patient mutations modeled in 

C. elegant CDKL-1 caused localization and/or cilium length defects (Canning et al., 2018). This 

suggested functional activity of cilium structure and length control may be relevant for 

neurological disorders and especially for elucidating CDD pathological mechanisms. 

All these data reinforced the evidence observed in CDKL5 mouse models in which 

neuroanatomical defects pointed to CDKL5 having a crucial role in the correct morphological 

development of neurons. Several studies, aimed at characterizing neuroanatomical aspects of the 

mouse models, showed that the loss of CDKL5 protein in the KO mouse negatively impacts on 

proper neuronal maturation (Amendola et al., 2014, Fuchs et al., 2014b, Tang et al., 2017, Okuda 

et al., 2018). Cortical and hippocampal pyramidal neurons showed a reduction in dendritic 

arborization and immature spine development. In particular, the dendritic complexity of CA1 

pyramidal neurons was decreased in different KO mice, with an overall reduction in branching and 

a reduction also in length in one mouse line. Reduced dendritic arborization results in a significant 

reduction in thickness of cortical and hippocampal layers (Amendola et al., 2014). 
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➢ Neuronal function: dendritic spine structure and synapse activity 

It has been demonstrated that CDKL5 also contributes to correct spine structure and synapse 

activity. A synapse is a structure that mediates the communication between two neurons. 

Synapses are mostly formed on specialized dendritic protrusions called dendritic spines. Abnormal 

spine morphology is observed in patients with intellectual disability (Purpura, 1974). In dendritic 

spines, CDKL5 is highly enriched in the postsynaptic density (PSD), a dense protein complex 

composed of the key proteins for synaptic transmission, signal transduction, and cell adhesion, 

suggesting its role in synapse development and function (Ricciardi et al., 2012, Zhu et al., 2013). 

Even though RNAi experiments in cultured neurons showed either an increase in the number of 

dendritic protrusions and immature spines (filopodia‐like and thin-headed spines) or a reduction in 

spine size and density, probably depending on the different stages of neuronal differentiation, the 

number of functional spines was generally reduced. In fact, a reduction in synaptic markers such 

as PSD-95 and Homer was observed (Ricciardi et al., 2012, Zhu et al., 2013, Pizzo et al., 2016), and 

a corresponding reduction in miniature excitatory postsynaptic current (mEPSC) was measured 

(Ricciardi et al., 2012, Zhu et al., 2013, Pizzo et al., 2016). Although these defects are also 

confirmed in a constitutive KO mouse model (Della Sala et al., 2016, Trazzi et al., 2018), they are in 

contrast with the increase in spine density and mEPSC identified in a conditional KO mouse model, 

in which CDKL5 is ablated from forebrain excitatory neurons only (Tang et al., 2017). Interestingly, 

miniature inhibitory postsynaptic current (mIPSC) was unaffected in initial experiment with CDKL5 

silenced neurons (Ricciardi et al., 2012), further indicating the relationship of CDKL5 with 

excitatory neurons. However later in-vivo investigations of the synaptic activity of different 

conditional CDKL5 knockout mice showed different results. While a selective loss of CDKL5 in 

GABAergic neurons did not affect mIPSC (Tang et al., 2019), an enhancement of the inhibitory 

signaling was observed in CA1 pyramidal neurons of a mouse model with a selective loss of CDKL5 

in glutamatergic neurons (Tang et al., 2017). All these inconsistencies raise the possibility that 

compensatory mechanisms might take place when CDKL5 is ablated from a specific group of cells 

only, complicating the interpretation of its function. Nevertheless, CDKL5 is found to be required 

for ensuring a correct number of well-shaped spines in developing and mature neurons. 

Excitation and inhibition in the CNS are mediated mainly by the neurotransmitters glutamate and 

γ-amino butyric acid (GABA), respectively. The type of synapses formed depends on the specific 

neurotransmitter released and related receptors expressed, respectively, by the axonal terminal 
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and the postsynaptic dendrites that make contact. The direct binding of CDKL5 to palmitoylated 

PSD95 has been found to promote kinase targeting to excitatory synapses for dendritic spines 

development (Zhu et al., 2013). Recruitment of specific molecules may then regulate the type of 

neurotransmitter receptors recruited at these sites. Indeed, the study by Okuda and colleagues in 

the hippocampus of a mouse model of the disorder has revealed that CDKL5 has a crucial role in 

controlling postsynaptic localization of GluN2B-containing NMDARs (Okuda et al., 2017). In 

concordance with this result, electrophysiological analysis in the hippocampal CA1 region revealed 

an increased ratio of NMDA/AMPA receptor-mediated excitatory postsynaptic currents (EPSCs), 

abrogated by a GluN2B-selective antagonist. This molecular pathomecanism underlying the 

NMDA-induced hyperexcitability of Cdkl5 KO mice is suggested to be the primary underlying cause 

of epileptogenesis associated with the loss of CDKL5. Previous findings had already linked CDKL5 

function to glutamate stimulation, showing that extrasynaptic NMDAR activation induces 

cytoplasmic translocation of CDKL5 and its proteasomal degradation (Rusconi et al., 2011). 

Moreover a recent study in a conditional CDKL5 KO mouse demonstrated that selective loss of 

CDKL5 in GABAergic neurons leads to autistic-like phenotypes in mice accompanied by excessive 

glutamatergic transmission, hyperexcitability, and increased levels of postsynaptic NMDA 

receptors (Tang et al., 2019). Alongside accumulation and overactivation of NMDA receptors, an in 

vitro reduction in GluA2-containing AMPAR expression (Tramarin et al., 2018, Ren et al., 2019) and 

an overall in vivo AMPAR dysregulation (Yennawar et al., 2019) have been observed as a 

consequence of CDKL5 loss of function. Taken together, all these studies showed that the loss of 

CDKL5 induces an apparent imbalance in glutamate receptors subunit composition. 

In recent years, it has become clear that dendrites and spines are dynamic structures that, during 

early postnatal development, undergo a significant remodeling, involving processes such as 

formation, elongation, stabilization, and retraction, all of these necessary for synapse function and 

plasticity. As development proceeds to adulthood, spine s continue to be remodeled in response to 

diverse stimuli such as LTP and LTD; these changes are considered of high relevance for learning 

and memory. Recently, Della Sala and collaborators monitored structural dynamics of den dritic 

spines by applying an in vivo two-photon microscopy of the somatosensory cortex of Cdkl5 KO 

mice. Their data showed that CDKL5 absence results in a specific deficit of dendritic spine 

stabilization that was prominent in juvenile mice and that persisted in adults. New spines were 

generated normally but failed to stabilize and were eliminated at an abnormally high rate in the 
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absence of CDKL5. Their loss led to a strong decrease in spine density associated with a reduced 

number of postsynaptic constituents and defective LTP, accompanied by a consistent reduction in 

the frequency of miniature EPSCs (Della Sala et al., 2016). These results reinforced the idea of the 

involvement of CDKL5 in the stabilization of mature mushroom-shaped spines rather than in the 

formation of new spines. Indeed, at the molecular level, CDKL5 interacts with the netrin-G1 ligand 

(NGL-1), a synaptic cell adhesion molecule (CAMs) that exerts a regulatory role in synapse 

formation and homeostasis. NGL-1 spine-inducing capability is promoted by targeting PSD-95 to 

new-forming dendritic protrusions and the stabilization of this interaction seems to be reinforced 

by CDKL5 phosphorylation of NGL-1, ensuring excitatory synapse stability (Ricciardi et al., 2012). 

CDKL5 coupling with NGL-1 may be required for stabilization rather than formation of nascent 

contacts, a critical process for the development of fully functional synapses. 

Moreover, a new paradigm that has come to light indicates that differential association of proteins 

modulates the balance between excitatory and inhibitory synapses (Levinson and El-Husseini, 

2005). In this regard, molecules that control retention of these cell adhesion molecules at a 

particular synapse type may eventually determine the specificity of stabilized synapses. Relative 

levels of scaffolding proteins that regulate excitatory synapse maturation may modulate the 

excitation/inhibition (E/I) ratio by sequestering members of the neuroligin family to excitatory 

synapses at the expense of inhibitory contacts. The number of excitatory versus inhibitory 

contacts that a single neuron receives dictates neuronal excitability and function. Thus, precise 

control systems must be established in each neuron to maintain appropriate numbers of 

excitatory and inhibitory synapses. In fact, Pizzo and colleagues investigated the organization of 

excitatory and inhibitory synapses in the cerebral cortex of Cdkl5 KO mice showing the E/I balance 

disruption in the Cdkl5-null brain. CDKL5 deletion produces an opposite impact on excitatory and 

inhibitory transmission in cortical circuits, with an increase in PV+ inhibitory contacts and a 

perturbation of glutamatergic synapses, consistent with previous findings (Pizzo et al., 2016). 

Another work carried out on the cerebellar area of CDKL5 KO adult mice brains demonstrated that 

a greater reduction in spontaneous GABA efflux, as opposed to glutamate efflux, leads to a 

significant increase in the spontaneous glutamate/GABA efflux ratio (Sivilia et al., 2016). The 

disruption of the postsynaptic machinery at glutamatergic synapses, along with the enhancement 

of GABAergic transmission, conceivably results in an alteration of the E/I balance and reflects 
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activity-dependent plastic modifications that may be required for rebalancing dynamic changes in 

the neuronal network. 

Finally, another line of evidence of the crucial role of CDKL5 functional activity over synapse 

function comes from the direct interaction of the kinase with its endogenous substrate AMPH1 

(Sekiguchi et al., 2013). AMPH1 is a brain-specific protein that plays important roles in neuronal 

transmission and synaptic vesicle recycling through clathrin‐mediated endocytosis, thus suggesting 

that CDKL5 has a potential role in the fine control of endocytotic processes in neuronal cells. 

Thus, CDKL5 exerts important functions not only in the correct structure formation of mature 

spines but also in the maintenance, function, and plasticity of the neuronal network. 

➢ Nuclear activity: transcriptional regulators and epigenetic and splicing factors 

In addition to these cytoplasmic activities, the CDKL5 kinase has been found to regulate important 

nuclear processes through interaction with epigenetic and splicing factors, and transcriptional 

regulators. Indeed, since mutations in MeCP2 and CDKL5 genes lead to similar genetic disorders, it 

was deemed important to investigate the relationship between the two. MeCP2 gene, mapped to 

the Xq28 chromosome, encodes for the methyl-CpG-binding protein 2, a transcriptional regulator 

capable of binding specifically to methylated DNA. MeCP2 is important for the correct function of 

nerve cells, and its mutations have been linked to RTT. Different groups have suggested that 

CDKL5 and MeCP2 work in common molecular pathways, after it was shown that the two genes 

are activated simultaneously during development and share a similar expression pattern (Mari et 

al., 2005, Bertani et al., 2006, Carouge et al., 2010). Nevertheless, whether or not CDKL5 is able to 

directly phosphorylate MeCP2 in vitro, influencing its activation and function, still needs to be 

confirmed (Lin et al., 2005).  

On the contrary, Kameshita et al. have shown the in vitro capability of CDKL5 to bind and 

phosphorylate the N-terminal region of DNMT1, an enzyme that maintains a correct DNA 

methylation pattern, even though this interaction has not yet been confirmed in vivo (Kameshita 

et al., 2008). 

Ricciardi et al. reported that in both cell lines and tissues CDKL5 localizes and is associated with the 

splicing factor SC35 that is clustered in specific nuclear foci that are referred to as nuclear 

speckles. These are sub-nuclear structures traditionally considered as storage/modification sites of 
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pre-mRNA splicing factors. By providing evidence that CDKL5 regulates the dynamic behavior of 

nuclear speckles, the authors suggested that the kinase was indirectly involved in pre-mRNA 

processing (Ricciardi et al., 2009). 

Lastly, the histone deacetylase 4 (HDAC4) has been reported to be a direct phosphorylation target 

of CDKL5. Trazzi and colleagues found that in the Cdkl5 knockout mouse model 

hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells where it binds to 

chromatin and transcription factors, leading to histone deacetylation and altered neuronal gene 

expression. 

 
Figure 8 

Graphical representation of CDKL5 KO pathological phenotype in neurons and its related 

direct/indirect interactors. 

 

These data show that different CDKL5-signaling cascades are involved in brain development and 

function, and act on neuronal development, maturation and transmission; they elucidate, in part, 

how a lack of CDKL5 may contribute to the typical neuronal phenotype of CDD. 
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CDKL5 consensus motif and phospho-proteomic analysis 

The pathological phenotype of the disorder depends on kinase substrates, therefore studies aimed 

at the identification of direct and indirect partners of CDKL5 will help to define its functions and 

could lead to the identification of relevant targets for therapeutic approaches. 

As already stated, target phosphorylation mainly depends on the recognition of the consensus 

amino acid sequence by the catalytically active site of the kinase. CDKL5 belongs to a unique group 

of kinases that share homology with proline-directed kinases, CDKs and MAPKs. Indeed, sequence 

analysis revealed that the presence of a critical arginine residue in the kinase subdomain VIII 

suggests that CDKL5 might be a proline-directed kinase. This residue is highly conserved among 

proline-directed kinase subfamilies and is required for the selectivity toward substrates containing 

a proline at the P+1 position, relative to the phosphate acceptor (Tao et al., 2004). Later, the newly 

discovered CDKL5 interactor AMPH1, and its non-phosphorylated homologue AMPH2, were used 

in vitro to investigate the molecular mechanisms of substrate recognition. In the study in question, 

RPXSX emerged as a putative consensus sequence (Katayama et al., 2015).  

More recently, two independent works identified new multiple CDKL5 substrates using two 

different mass spectrometry (MS)‐based phosphoproteomics approaches, converging on a subset 

of substrates related both through shared subcellular function(s) and conserved consensus site(s) 

of CDKL5 phosphorylation (Eyers, 2018). A minimal CDKL5 phosphorylation consensus emerged in 

both papers as the amino acid sequence RPX[S/T][A/P], confirmed biochemically with model 

peptide substrates. Interestingly, this is the first in vitro evidence that CDKL5 is also able to 

phosphorylate Thr residue, albeit to a much lesser extent.  

It is worth noting that CDKL5_5, but not CDKL5_1, shows this motif in the unique extreme distal C-

terminal part of the protein that differs from the other CDKL5 isoforms. This additional potential 

auto-phosphorylation site could account for a more consistent role of this unique C-terminus in 

the regulation of subcellular localization and, especially, kinase activity of this isoform. Indeed, a 

slight change in the subcellular compartmentalization has been observed and a higher auto-

phosphorylation activity has been measured compared to CDKL5_1 isoform (Williamson et al., 

2012). Since studies on the C-terminal tail have been performed on the CDKL5_5 isoform that 

contains this RPXSX site, in light of this recent finding it would be interesting to assess the role of 

the CDKL5_1 C-terminus in more detail. Considering that the different isoforms are also differently 
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expressed during development in the context of the same tissue (Hector et al., 2016), the 

cytoplasmic preference of CDKL5_1 could account for a more structural neuron-specific function, 

while its homologue CDKL5_5, mainly expressed in the fetal stage of the brain, could be crucial for 

cell cycle and proliferation control of neuronal precursor cells. Future studies will investigate these 

time and spatial isoform-dependent differences that may be crucial for the development of 

effective therapeutic strategies.  

The CDKL5 consensus represents a preliminary solution to the identification of other CDKL5 

targets, but the lack of this motif in other CDKL5 substrates described in literature highlights the 

need for further studies to better understand the molecular interactions underlying kinase 

substrate phosphorylation. Surprisingly, many substrates are phosphorylated on residues that are 

not within linear consensus motifs. Therefore, strategies aimed at screening for interactors based 

on primary amino acid sequences using the predicted linear consensus might fail to identify a large 

subset of substrates. Apart from the already-mentioned substrate docking sites in the kinase that 

are distant from the catalytic site and are also important in enhancing substrate-kinase 

interactions, the phosphorylated residues are often found in flexible structures, such as loops; it 

has been proposed that these structures conformationally adapt to the catalytic site (Johnson, 

2011). In fact, a recent work demonstrated that in “structurally formed” consensus motifs, amino 

acids that are present in a distant part of the primary sequence come close to the phosphorylated 

residue in the folded protein, thereby producing a structurally formed consensus motif. This study  

showed that structurally formed consensus motifs are common and that analysis of linear 

sequences surrounding phosphorylation sites may reveal only a subset of substrates (Duarte et al., 

2014). 

Therefore, complementary approaches are needed to further increase possibilities for CDKL5 

protein phosphorylation profiling and expedite a better definition of the molecular pathways 

regulated by CDKL5. Together with consensus-based bioinformatic analysis, antibody microarrays 

represent an interesting method for profiling experiments on tissue samples with the aim of 

discovering a panel of candidate CDKL5 phosphorylation targets. This technique would not only 

permit simultaneous screening of large protein sets but would also be more sensitive and rapid 

than other screening methods. Notably, since proteins used in the antibody array assays are not 

denatured, their tertiary folding structures are intact, thereby this technique allows not only 
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taking into consideration threonine phosphorylation and structurally formed consensus motifs, 

but also providing an overview on indirect targets and overall dysregulated pathways. 

Indeed, a preliminary Phosphoproteomic analysis using specific Antibody Microarray-based 

phosphoprotein profiling was recently performed by Trazzi and colleagues using extracts from 

CDKL5 overexpressing SH-SY5Y neuroblastoma cells. The direct CDKL5 target HDAC4 was found 

and further validated, confirming the reliability and efficacy of this technique for CDKL5 substrate 

screening (Trazzi et al., 2016). Interestingly, this target is one of the few validated targets 

containing the RPXSX consensus site. 

 

Increasing knowledge of the molecular targets of CDKL5 may help identify substrates for 

pharmacological intervention. 
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MATERIALS and METHODS 

Colony 

Mice were handled according to protocols approved by the Italian Ministry for Health 

(approval number DGSAF 114/2018). The mice used in this work derive from the Cdkl5 KO strain in 

the C57BL/6N background developed in (Amendola et al., 2014) and backcrossed in C57BL/6J for 

three generations. Mice for testing were produced by crossing Cdkl5 +/− females with Cdkl5 -/Y 

males and Cdkl5 +/− females with +/Y males; animals were genotyped by PCR of genomic DNA 

using GoTaq® DNA Polymerase from Promega and the following primers spanning Cdkl5 exon 4: 

LoxUp 5’-ACGATAGAAATAGAGGATCAACCC-3’, LoxDown 5’-TGGAAAGGGGTATACTTGGG-3’, and 

Cdkl5flp_Rw 5’-TCTCTAGCCCCTAGTCACAG-3’. The day of birth was designated as postnatal day (P) 

zero and animals with 24 h of age were considered as 1-day-old animals (P1). Mice were housed 3-

5 per cage on a 12 h light/dark cycle in a temperature-controlled environment with food and 

water provided ad libitum. 

 

Antibody microarray  

Six phospho explorer antibody microarrays (PEX100; Full Moon BioSystems) were labeled 

according to the manufacturer's protocol, starting from cortex protein extracts from 3 Cdkl5 +/Y 

and 3 Cdkl5 -/Y mice aged P20. Briefly, proteins were extracted with non-denaturing lysis buffer, 

and biotinylation of protein samples was performed with the antibody array assay kit (Full Moon 

BioSystems). The antibody microarray slides were first blocked in a blocking solution for 30  min at 

room temperature, then rinsed 10 times with Milli-Q grade water for 3-5 min. The slides were 

then incubated with the biotin-labeled cell lysates (100 μg of protein) in coupling solution at room 

temperature for 2 h. The array slides were washed 4 to 5 times with 1x Wash Solution and rinsed 

extensively with Milli-Q grade water before detection of bound biotinylated proteins using Cy3-

conjugated streptavidin. Fluorescence intensity of each array spot was quantified and the average 

signal intensity of replicate spots was calculated. Raw data were normalized as follows: (Average 

Signal Intensity – Average Background intensity)/Median Signal.  Median Signal is the median 

value of Average Signal Intensity for all antibodies on the array. For total protein, the fold change 

was calculated as a ratio between the Cdkl5 -/Y and Cdkl5 +/Y mean signals. Phospho site-specific 

signals were firstly normalized on the corresponding site-specific signals of the same protein and 
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then the fold change was calculated based on the following equation: Phosphorylation 

ratio= (phosphoA/unphosphoA)/(phosphoB/unphosphoB) where phosphoA or phosphoB and 

unphosphoA or unphosphoB referred to signals of the phosphorylated and unphosphorylated 

proteins, respectively, from the experimental samples: (A) Cdkl5 -/Y (B) Cdkl5 +/Y samples. 

 

Plasmids 

The following plasmids were used: pHA-hCDKL5 (Lin et al., 2005) and phCDKL5-3xFLAG 

(Trazzi et al., 2016), carrying the first characterized CDKL5 isoform that generates a protein of 

1030 amino acids (115 kDa; (Lin et al., 2005)); pCS2-FLAG-SMAD2 (Addgene), pCS2-FLAG-SMAD3 

(Inui et al., 2011), pCS2-FLAG-SMAD3-MH1, pCS2-FLAG-SMAD3-MH2 and pCS2-FLAG-SMAD3-L-

MH2 (Inui et al., 2011). SMAD3 deletion mutant plasmids were produced by whole around PCR 

using pCS2-FLAG-SMAD3 plasmid as a template and the indicated primers: Fw 5’-

TAGGAATTCAAGGCCTCTCGAG-3’ and Rev 5’-AGGTAGAACTGGTGTCTCTACTCTC-3’ for MH1; Fw 5’-

TGGTGCTCCATCTCCTACTACG-3’ and Rev 5’-CTTGTCATCGTCGTCCTTGTAGTC-3’ for MH2. pCS2-

FLAG-SMAD3 plasmid was provided by Prof. Stefano Piccolo (University of Padova, Italy) (Inui et al., 

2011), (CAGA)12-luc plasmid, reporter gene for SMAD3 activity, was provided by Caroline Hill 

(Lincoln’s Inn Fields Laboratories) (Levy et al., 2007), and pTKRL plasmid was obtained from 

Promega. 

 

Quantitative Real Time PCR and Standard Reverse Transcription-PCR 

Total RNA was isolated from the hippocampus and cortex of wild-type +/Y and Cdkl5 -/Y 

male mice with TRI reagent (Sigma-Aldrich), according to the manufacturer’s instructions. cDNA 

synthesis was achieved with 5 g of total RNA using iScriptTMAdvanced cDNA Synthesis Kit (Bio-

Rad), according to the manufacturer’s instructions. We used the primers that gave an efficiency 

that was close to 100%. Real-time PCR was performed using SsoAdvanced Universal SYBR Green 

Supermix (Bio-Rad, CA, USA) in an iQ5 Real-Time PCR Detection System (Bio-Rad). The primer 

sequences used were as follows: glyceraldehyde-3-phosphate dehydrogenase (GAPDH; E = 95.0%), 

Fw 5’ GAACATCATCCCTGCATCCA 3’, Rv 5’ CCAGTGAGCTTCCCGTTCA 3’; SMAD3 (E = 97.1%), Fw 5’ 

GTTGGAAGAAGGGCGAGCAG 3’, Rv 5’ATCCAGTGCCTGGGGATGGTA 3’. Relative quantification was 

performed using the Ct method. 



 
44 

 

 

Co-immunoprecipitation assays 

HEK293T cells were transfected with HA-CDKL5 alone or co-transfected with HA-CDKL5 and 

SMAD3-FLAG or SMAD3 mutants using Metafectene Easy Plus (Biontex). Twenty-four h after 

transfection, cell were lysated in lysis buffer (50 mMTris–HCl, pH 7.4, 150 mM NaCl, 0.1% NP40, 1 

mM dithiothreitol), supplemented with 1 mM PMSF and 1% protease and phosphatase inhibitor 

cocktail (Sigma-Aldrich), and cleared by centrifugation (10,000 x g, 30 min). One mg of protein 

lysate was added to 40 μl of EZview™ Red ANTI-FLAG® M2 Affinity Gel (Sigma-Aldrich) and 

incubated overnight at 4°C. For endogenous SMAD3 co-immunoprecipitation, SH-SY5Y cells were 

infected with CDKL5-FLAG adenovirus particles (Ad-CDKL5) or GFP adenovirus particles as a control 

(Ad-GFP; Vector BioLabs) at 100 multiplicities of infection (MOI). Twenty-four h after transfection, 

cells were lysed in lysis buffer, and 2 mg of total protein lysate was added to 20 ul of resin. Twenty 

g was kept for input. After 6 washing steps in lysis buffer, loading buffer was added to the resin 

and boiled for 10 min at 95°C. For CDKL5 and SMAD3 immunodetection the immunoprecipitates 

were subjected to Western blotting as described below. 

 

In vitro phosphorylation assay  

Two mg of protein lysate from HEK293T cells transfected with SMAD3-FLAG or SMAD3 

mutants was added to 20 μl of EZview™ Red ANTI-FLAG® M2 Affinity Gel (Sigma-Aldrich) and 

incubated overnight at 4°C. 3xFLAG peptide was used to elute purified protein according to the 

manufacturer’s instructions (Sigma-Aldrich). For recombinant CDKL5 kinase assay, CDKL5C 

protein (rCDKL5 1-498aa, Aurogene) was incubated with 2 mM cold ATP, 1x kinase buffer (20 mM 

HEPES, pH 7.4, 10 mM MgCl2, 10 mM NaCl), 10 μCi of [γ- 32P]-ATP (Perkin Elmer), and SMAD3 

purified proteins at 32°C for 60 min. The reaction was terminated by the addition of 15 l loading 

buffer and boiled at 95°C for 10 min. For the wild-type CDKL5 kinase assay, 2 mg of protein lysate 

from HEK293T cells transfected with hCDKL5-FLAG was immunoprecipitated on an EZview™ Red 

ANTI-FLAG® M2 Affinity Gel (Sigma-Aldrich). Beads were washed 3 times with 1x kinase buffer. 

Twenty μl of CDKL5-bound beads were pre-incubated with 2 mM cold ATP and 1x kinase buffer at 

32°C for 30 min to activatethe kinase. Beads were washed twice with 1x kinase buffer and a kinase 

assay was performed with the addition of 2 mM cold ATP, 10 μCi of [γ- 32P]-ATP (PerkinElmer) and 
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SMAD3-FLAG or SMAD2-FLAG purified proteins. The kinase assays were carried for 1 h at 32°C and 

terminated by the addition of loading buffer. Western blotting was performed as described below 

and membrane was exposed to an autoradiographic film. After the decay of radioactivity, 

membranes were stained with PonceauS or immunostained with anti- SMAD3 and SMAD2 

antibodies. 

 

Primary hippocampal cultures  

 Primary hippocampal neuronal cultures were prepared from P1 Cdkl5 +/Y and Cdkl5 -/Y 

mice. Briefly, hippocampi were dissected from mouse brains under a dissection microscope and 

treated with trypsin (Sigma-Aldrich) for 15 min at 37°C and DNase (Sigma-Aldrich) for 2 min at 

room temperature before triturating mechanically with a fire-polished glass pipette to obtain a 

single-cell suspension. Approximately 1.2 x 105 cells were plated on coverslips coated with poly-L-

lysine in 6-well plates and cultured in Neurobasal medium supplemented with B27 (Invitrogen) 

and glutamine (Invitrogen). Cells were maintained in vitro at 37 °C in a 5% CO2-humified incubator 

and processed for further experiments as described below. 

TGF-β1 treatment –1 ng/ml TGF-β1 (ReliaTech GmbH) was added to the conditioned medium on 

alternate days starting from day 2 postplating (DIV2). Cells were fixed on DIV4 for apoptotic 

studies and on DIV10 for SMAD3 and P-SMAD (Ser213) expression studies and morphological 

analysis. For P-SMAD experiments, 1h TGF-β1 treatment was performed. For luciferase 

experiments, 5ng/mL TGF-β1 was used.  

CDKL5 re-expression studies - Primary hippocampal neurons were infected on DIV3 with CDKL5-

Flag (Ad-CDKL5) or GFP (Ad-GFP) adenovirus particles (Vector BioLabs) at 100 multiplicities of 

infection (MOI). Cells were fixed on DIV4 for apoptotic studies and on DIV10 for SMAD3 expression  

studies and morphological analysis.  

Neurotoxicity studies - Primary hippocampal neurons were treated at DIV10 for 10 min with 100 

µM NMDA in a Mg2+-free, HEPES-buffered saline containing 146 mM NaCl, 5 mM KCl, 1 mM CaCl2, 

10 mM glucose, 10 mM Hepes, 10 µM glycine, pH 7.42. During this time, cells were kept in the 

incubator at 37°C. After NMDA treatment, hippocampal cultures were washed several times and 

returned to the original medium. After the washing steps, some cultures were treated with 1 

ng/ml TGF-β1 (ReliaTech GmbH), fixed after 24 h and processed for immunocytochemistry 

analysis. On DIV10 primary hippocampal neurons were exposed for 18 h to 100 µM H2O2. Some 
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H2O2-treated cultures were co-treated with 1 ng/ml TGF-β1 (ReliaTech GmbH). Cell cultures were 

fixed and processed for immunocytochemistry analysis at DIV10. 

 

Immunocytochemistry  

 Hippocampal cultures were fixed in 4% paraformaldehyde + 4% sucrose in 100mM 

phosphate buffer, pH 7.4. Fluorescent images were acquired using a Nikon Eclipse TE600 

microscope equipped with a Nikon Digital Camera DXM1200 ATI System (Nikon Instruments Inc.).  

SMAD3 and P-SMAD3 (Ser213) nuclear intensity – Primary hippocampal neurons were fixed after 

10 days in culture DIV10 and immunostaining was performed using a primary anti-SMAD3 

antibody (rabbit polyclonal anti-SMAD3 Ab, 1:200, Cell Signaling) or a primary anti-Phospho-

SMAD3 antibody (Ser213) (rabbit polyclonal anti-phospho-SMAD3 Ab, 1:200; Full Moon Biosystem 

Inc) and a Cy3-conjugated anti-rabbit IgG (1:200, Jackson Immunoresearch) secondary fluorescent 

antibody. Nuclei were counterstained with Hoechst-33342 (Sigma-Aldrich), and fluorescence 

images were acquired at the same intensity. To assess SMAD3 or P-SMAD3 nuclear intensity 

Hoechst and SMAD3 or P-SMAD3 images of the same cell were processed. The perimeter of the 

nucleus was traced using Hoechst counterstaining as a guide to define the nuclear area of each 

cell, and the intensity of Cy3-staining corresponding to the SMAD3 or P-SMAD3 signal was 

quantified by determining the number of positive (bright) pixels of the cell and within the nucleus. 

A total of 200 cells for each condition were quantified for SMAD3 signal intensity. A total of 50 

cells for each condition were quantified for P-SMAD3 signal intensity. 

Apoptotic cell death - To assess apoptotic cell death primary hippocampal cultures were fixed on 

DIV4 or DIV10-12 (after exposure to different neurotoxic stimuli as above described) and double-

stained with the following primary antibodies: anti-α-tubulin (mouse monoclonal anti-α-tubulin 

Ab, 1:500, Sigma-Aldrich) and anti-cleaved caspase-3 antibody (rabbit polyclonal anti-cleaved 

caspase-3 Ab, 1:200, Cell Signaling). Detection was performed with a FITC-conjugated anti-mouse 

IgG (1:200, Jackson Immunoresearch) and a Cy3-conjugated anti-rabbit IgG (1:200, Jackson 

Immunoresearch) antibody. The number of cleaved caspase-3 positive neurons (α-tubulin positive 

cells with a neuronal phenotype) was counted manually and expressed as a percentage of the 

total number of neurons. A total of 100 cells for each condition were counted. 

Neuronal maturation – In order to assess axon elongation and neuritic outgrowth primary 

hippocampal neurons were fixed on DIV10 and stained with the following primary antibodies: anti-
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TAU1 (mouse monoclonal anti-TAU1 Ab, 1:200, Merck Millipore) and anti-MAP2 (rabbit polyclonal 

anti-MAP2 Ab, 1:100, Merck Millipore). Detection was performed with a Cy3-conjugated anti-

mouse IgG (1:200, Jackson Immunoresearch) and a FITC-conjugated anti-rabbit IgG (1:200, Jackson 

Immunoresearch) antibody. Neurites with a significant intensity of TAU1 staining increasing along 

the proximal to distal axis were counted as axons. Axon and dendritic length was analyzed by 

tracing along each neuronal projection using the image analysis system Image Pro Plus (Media 

Cybernetics, Silver Spring, MD, USA). The starting point of a dendrite was defined as the point at 

the midline of the dendrite that intersected the curvature of the soma. For our measures, 

protrusions emerging from the cell soma with all its branches were counted as a single dendrite, 

tracing the entire dendritic arbor. The average neurite length per cell was calculated by dividing 

the total neurite length by the number of cells counted in the areas. A total of 50 neurons for each 

condition were evaluated for axon elongation and neuritic outgrowth. 

To assess the degree of synaptic innervation primary hippocampal neurons were fixed on DIV10 

and stained with the following antibodies: anti-synaptophysin (mouse monoclonal anti-SYN Ab, 

1:500, clone SY38, Merck Millipore) and anti-MAP2 (rabbit polyclonal anti-MAP2 Ab, 1:100, Merck 

Millipore). Detection was performed with a Cy3-conjugated anti-mouse IgG (1:200, Jackson 

Immunoresearch) and a FITC-conjugated anti-rabbit IgG (1:200, Jackson Immunoresearch) 

antibody. The degree of synaptic innervation was evaluated by counting the number of synaptic 

puncta (SYN-positive) along the proximal dendrites and expressed as the number of SYN puncta 

per 10 µm of dendritic length. In order to evaluate spine density fluorescence images (MAP2-

postitive protrusions) were acquired using a Leica TCS confocal (Leica Mycrosystems) 63x oil 

immersion lens at a 0.6 mm intervals at 1.024 x 1.024 pixels resolution with a 1x zoom. Spine 

density was measured by counting the number of dendritic protrusions (spines) on proximal 

dendrites and expressed as the number of spines per 10 µm of dendritic length. A total of 50 

neurons for each condition were evaluated for the number of synaptic puncta and number of 

spines. 

 

Luciferase assay  

SMAD3 activity in SH-SY5Y cells and primary hippocampal cultures was monitored through 

luciferase assays using a p(CAGA)12-luc reporter plasmid. SH-SY5Y cells were plated 24 h before 

transfection in 24-well plates (105 cells/well) and co-transfected with phCDKL5-FLAG (1000 ng), 
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p(CAGA)12-luc (800ng) and Renilla pTKRL (16ng), as an internal control to normalize for 

transfection efficiency, using Metafectene Easy Plus (Biontex). Cells were treated with 5 ng/ml 

TGF-β1 (ReliaTech GmbH) or 10 µM SB431542 (Sigma-Aldrich), or left untreated. For the luciferase 

assay in primary hippocampal neurons, cultures were co-transfected on DIV2 with p(CAGA)12-luc 

(800 ng) and pTKRL (16ng), using Metafectene Easy Plus (Biontex). SB431542 (10 µM, Sigma-

Aldrich) was added immediately after transfection to the medium. After 24 h some cultures were 

extensively washed with PBS and then treated with 5ng/ml TGF-β1 (ReliaTech GmbH) for an 

additional 6h. Luciferase activity was measured with Dual-Luciferase® Reporter Assay System Kit 

(Promega) according to the manufacturer’s instructions. Firefly luciferase activity was normalized 

for each sample by dividing for the Renilla luciferase activity in the same sample. Luciferase 

activity was measured with GloMax® Discover Microplate Reader (Promega, USA). 

 

Western blot analysis 

Total proteins from SKNBE cells transfected with wild-type CDKL5 or CDKL5ΔN, SH-SY5Y 

cells infected with CDKL5-FLAG (Ad-CDKL5) or GFP (Ad-GFP) adenovirus particles, and primary 

hippocampal cultures at DIV10 were lysed in ice-cold RIPA buffer (50 mM Tris–HCl, pH 7.4, 150 

mM NaCl, 1% Triton-X100, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with 1mM PMSF, 

and with 1% protease and phosphatase inhibitor cocktail (Sigma-Aldrich). Total proteins from the 

hippocampus and cortex of 9-12-week-old Cdkl5 -/Y and Cdkl5 +/Y male mice were homogenized 

in ice-cold RIPA buffer. Protein concentration for both cell and tissue extracts was determined 

using the Lowry method (Lowry et al., 1951) and equivalent amounts (50 μg) of protein were 

subjected to electrophoresis on a 4-12% Mini-PROTEAN® TGX™ Gel (Bio-Rad) and transferred to a 

Hybond-ECL nitrocellulose membrane (Amersham - GE Healthcare Life Sciences). The following 

primary antibodies were used: anti-HA antibody (rabbit polyclonal anti-HA Ab, 1:1000, Cell 

Signaling Technology), anti-FLAG M2 antibody (mouse monoclonal anti-FLAG M2 Ab, 1:1000, 

Sigma-Aldrich), anti-SMAD3 antibody (rabbit polyclonal anti-SMAD3 Ab, 1:1000; Cell Signaling 

Technology), anti-SMAD2 antibody (rabbit polyclonal anti-SMAD3 Ab, 1:1000; Cell Signaling 

Technology), anti-Phospho-SMAD3 antibody (Ser423/425) (rabbit polyclonal anti-phospho-SMAD3 

Ab, 1:1000; Cell Signaling Technology), anti-Phospho-SMAD3 antibody (Ser425) (rabbit polyclonal 

anti-phospho-SMAD3 Ab, 1:1000; Full Moon Biosystem Inc), anti-Phospho-SMAD3 antibody 

(Ser213) (rabbit polyclonal anti-phospho-SMAD3 Ab, 1:1000; Full Moon Biosystem Inc), anti-GFP 
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antibody (rabbit polyclonal anti-green fluorescent protein Ab, 1:1000; Thermo Fisher scientific), 

anti-CDKL5 antibody (rabbit polyclonal anti-green fluorescent protein Ab, 1:500, Sigma-Aldrich), 

and anti-GAPDH antibody (rabbit polyclonal anti-GAPDH Ab, 1:5000; Sigma-Aldrich). Densitometric 

analysis of digitized images was performed using Chemidoc XRS Imaging Systems and Image Lab™ 

Software (Bio-Rad). 

 

In vivo experiments 

 NMDA and KA treatment- Experiments were carried out on a total of 46 Cdkl5 -/Y and 38 Cdkl5 

+/Y mice. Seizures were induced in 10-12-week-old mice by intraperitoneal administration of 60 

mg/kg NMDA (Sigma-Aldrich) or 35 mg/kg KA (Sigma-Aldrich)  in phosphate-buffered saline (PBS). 

Seizure grades were scored according to (Wu et al., 2005) and recorded in a 120-min observation 

period. NMDA- or KA-induced seizures were scored as follows: 0 – no abnormalities; 1 – exploring, 

sniffing, and grooming ceased, with mice becoming motionless; 2 – forelimb and/or tail extension, 

appearance of rigid posture; 3- myoclonic jerks of the head and neck with brief twitching 

movements, or repetitive movements with head-bobbing or “wet-dog shakes”; 4 – forelimb clonus 

and partial rearing, or rearing and falling; 5 – forelimb clonus, continuous rearing and falling; 6 – 

tonic-clonic movements with loss of posture tone, often resulting in death.  

Rescue experiments with TGF-β1 – Rescue experiments with TGF-β1 (ReliaTech GmbH) were 

performed 60 min after drug injections on 5 Cdkl5 -/Y mice. Animals were injected under general 

anesthesia (2% isoflurane in pure oxygen) with an intracerebroventricular internal cannula 

(diamenter 26 G, C313I, Plastics One). The following stereotaxic coordinates were used to place 

the tip of the cannula in the lateral ventricle: 0.6 mm posterior and 1.2 mm lateral to bregma, 2 

mm depth from the bone surface. The internal cannula was connected to a Hamilton syringe and 5 

microliters of TGF-β1 (10 ng/µl) was injected at a flow rate of 1 µl/min using an infusion pump 

(Harvard Apparatus). Analgesic (Carprofen 5 mg/kg) and antibiotic (12500 UI/kg 

Benzylpenicillinbenzathine + 5 mg/kg dihydrostreptomycinsulphate) were given subcutaneously to 

each mouse. After TGF-β1 injection the cannula was removed and the skin was sutured. 

Animals were sacrificed 24 h after NMDA and 8-days after KA injection and were preceded for 

immunohistochemical and histological procedures as described below. 
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Immunohistochemical and histological procedures  

For immunolabeling experiments animals were deeply anesthetized with isoflurane (4% in 

pure oxygen) and sacrificed by cervical dislocation. Brains were quickly removed, cut along the 

midline and hemispheres were fixed by immersion in 4% paraformaldehyde in 100 mM phosphate 

buffer, pH 7.4. Brains were stored in fixative solution for 48 h, kept in 20% sucrose in phosphate 

buffer for an additional 24 h and then frozen with cold ice. Brains were cut with a freezing 

microtome into 30-µm-thick coronal sections that were serially collected. One out of 6 sections 

from the somatosensory cortex and the hippocampal formation were used for 

immunohistochemistry. Brain sections were incubated overnight with a primary anti -SMAD3 

antibody (rabbit polyclonal anti-SMAD3 Ab, 1:200, Cell Signaling) or anti-cleaved caspase-3 

antibody (rabbit polyclonal anti-cleaved caspase-3 Ab, 1:200, Cell Signaling). Sections were then 

incubated for 2 h at room temperature with a Cy3-conjugated anti-rabbit IgG (1:200, Jackson 

Immunoresearch) secondary fluorescent antibody, mounted on gelatin-coated glass slides, and 

nuclei were counterstained with Hoechst-33342 (Sigma-Aldrich). Fluorescent images were 

acquired using a Nikon Eclipse TE600 microscope equipped with a Nikon Digital Camera DXM1200 

ATI System (Nikon Instruments Inc.). SMAD3-positive cells were manually counted using the point 

tool in Image Pro Plus (Media Cybernetics) in one out of 6 sections of the somatosensory cortex 

and expressed as a percentage of the total cells. The analysis of nuclear SMAD3 intensity was 

performed under constant microscope settings. The perimeter of the nucleus was traced using the 

Hoechst counterstaining as a guide to define the nuclear area of each cell, and the intensity of Cy3 

staining corresponding to the SMAD3 signal was quantified by determining the number of positive 

(bright) pixels within the nucleus. Hoechst 33342 staining was used to identify cell nuclei and 

pyknotic cells in CA1. To assess cell damage the density of apoptotic (cleaved caspase-3 positive) 

and pyknotic cells in CA1 was established as cells/mm3. 

 

Statistical analysis 

Values are expressed as means ± standard error (SE). The significance of results was 

obtained using Student’s t test and one-way or two-way ANOVA followed by Fisher’s LSD post-hoc 

test. A probability level of P< 0.05 was considered to be statistically significant. 
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RESULTS 

Protein expression and phosphorylation profiling in the brain of Cdkl5 KO mice 

To search for CDKL5 target proteins, cortex protein extracts from 3 Cdkl5 -/Y and 3 wildtype 

(+/Y) mice were applied onto Phospho Explorer antibody microarrays (Figure 1). These microarrays 

consist of 1318 site-specific and phospho site-specific antibodies against proteins related to 

multiple signaling pathways and biological processes.  

 

 

Figure 1 

Differential CDKL5-dependent phosphorylation profile. 

Representative images of the Phospho Explorer Antibody Microarrays. Microarrays were 

labeled as described in Materials and Methods section, starting from cortical protein extracts 

from 3 Cdkl5 +/Y and 3 Cdkl5 -/Y mice aged P20. 

 

 

The comparative analysis of KO- and wild type- data resulted in a panel of proteins 

misregulated in their total (n=36) and/or phosphorylated forms (n=14). Reactome, a tool for 
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analysis of biological pathways (Fabregat et al., 2017), provided an interesting visualization and 

interpretation of the datasets, with a functional relationships among identified protein in known 

pathways (Figure 2). Pathway analysis considers the connectivity between molecules, grouping all 

of them in sub-pathway branches. Proteins in the analyzed dataset are then matched to this 

pathway steps, giving an indication of the proportion of the pathways that matches the data. 

Among the different pathways (see Discussion), a clear involvement of CDKL5 in signal 

transduction emerged. Of note, SMAD family members resulted misregulated in the absence of 

Cdkl5. SMADs comprise a family of structurally similar proteins that are the main signal 

transducers for receptors of the transforming growth factor beta (TGF-) superfamily. Since 

SMAD-dependent canonical TGF-signaling is critical for multiple aspects of neurodevelopment, 

including adult neurogenesis and neuroprotection (Moustakas and Heldin, 2009, Ueberham and 

Arendt, 2013, Caraci et al., 2015), we decided to focus our study on this signaling. 

 

 

Figure 2 

CDKL5-dependent pathway overview. 

Graphical visualization of Reactome Pathway analysis obtained using Phospho Explorer 

Antibody Microarray datasets. A yellow color is applied to pathway branches for evidencing 

dataset coverage. 
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Reduced SMAD3 protein levels in the brains of Cdkl5 KO mice 

Among the antibodies against the SMAD family proteins, array data obtained with the site-

specific antibody against SMAD2 (Smad2 Ab-245) and that against SMAD3 (Smad3 Ab-204) 

suggested reduced SMAD2 and SMAD3 protein levels in the absence of Cdkl5 (Table 1). No 

difference in SMAD protein phosphorylation levels between Cdkl5 -/Y and +/Y mice was 

highlighted by the SMAD phospho site-specific antibodies on the array (Table 1). 

 

 

Table 1  

Profile of SMAD family members expression and phosphorylation in the cortex of Cdkl5 KO 

mice. 

A summary of Phospho Explorer Antibody Microarray results for the SMAD family of proteins is 

presented with corresponding antibodies. Cdkl5 -/Y (KO, n=3) versus Cdkl5 +/Y (WT, n=3) ratio 

of total SMAD proteins and their phospho-isoforms are indicated with fold change, error and P 

value. (Unpaired t-test). 

 

Western blot analyses were used to confirm array data. While we did not find reduced 

SMAD2 levels in the cortex of Cdkl5 -/Y mice in comparison with +/Y mice (Figure 4A), we 

 

PhosphoExplorer Antibody Microarray - SMAD family signals 

           

  KO/WT ratio Pvalue    KO/WT ratio Pvalue 

 Smad1 (Ab-187) 0,94 ± 0,10 0,560 Smad1     

 Smad1 (Ab-465) 1,17 ± 0,11 0,202 P-Ser187/Smad1 (Ab-187) 1,16 ± 0,13 0,238 

 Smad1-mean 1,05 ± 0,12  P-Ser465/Smad1 (Ab-465) 0,70 ± 0,15 0,183 

           

 Smad2 (Ab-220) 1,13 ± 0,22 0,555 Smad2     

 Smad2 (Ab-245) 0,86 ± 0,05  0,047* P-Ser250/Smad2 (Ab-250) 0,94 ± 0,09 0,619 

 Smad2 (Ab-250) 0,89 ± 0,05 0,173 P-Ser467/Smad2 (Ab-467) 1,33 ± 0,29 0,286 

 Smad2 (Ab-255) 0,96 ± 0,11 0,732 P-Thr220/Smad2 (Ab-220) 0,91 ± 0,13 0,544 

 Smad2 (Ab-467) 0,83 ± 0,08 0,120      

 Smad2-mean 0,93 ± 0,05  Smad2/3     

      P-Thr8/Smad2/3 (Ab-8) 1,13 ± 0,15 0,385 

 Smad2/3 (Ab-8) 0,83 ± 0,13 0,320      

           

 Smad3 (Ab-179) 0,96 ± 0,02 0,117 Smad3     

 Smad3 (Ab-204) 0,75 ± 0,07    0,054(*) P-Ser204/Smad3 (Ab-204) 1,08 ± 0,08 0,309 

 Smad3 (Ab-213) 0,88 ± 0,13 0,480 P-Thr213/Smad3 (Ab-213) 1,00 ± 0,17 0,972 

 Smad3 (Ab-425) 1,02 ± 0,08 0,819 P-Ser425/Smad3 (Ab-425) 0,93 ± 0,12 0,645 

 Smad2-mean 0,90 ± 0,06  P-Thr179/Smad3 (Ab-179) 0,92 ± 0,06 0,315 
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confirmed that SMAD3 levels are reduced both in the cortex (Figure 4B) and hippocampus (Figure 

4C) of Cdkl5 -/Y mice.  

 

 

Figure 4 

SMAD2 and SMAD3 levels in the cortex and hippocampus of Cdkl5 KO mice. 

A: Western blot analysis of SMAD2 levels normalized to GAPDH levels in the somatosensory 

cortex of wild-type (+/Y; n=4) and Cdkl5 -/Y (n=4) adult mice. B,C: Western blot analysis of 

SMAD3 levels normalized to GAPDH levels in the somatosensory cortex (B) of wild-type (+/Y; 

n=3) and Cdkl5 -/Y (n=4) adult mice and in the hippocampus (C) of wild-type (+/Y; n=7) and 

Cdkl5 -/Y (n=8) adult mice. Immunoblots are examples from two animals of each experimental 

group. Values are represented as means ± SE. *p<0.05; **p<0.01; ***p<0.001 (Unpaired t-

test). 

 

Immunohistochemistry analyses showed that in Cdkl5 -/Y mice, in all cortical layers, the 

number of SMAD3 positive cells were reduced compared to wild-type (+/Y) mice (Figure 5A,C). 

These latter mice exhibited a strong SMAD3 immunopositivity, whereas Cdkl5 -/Y mice showed a 

moderate SMAD3 immunopositivity both in the cortex (Figure 5A,D) and hippocampus (Figure 

5B,D). 
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Figure 5 

Reduced SMAD3 levels in the cortex and hippocampus of Cdkl5 KO mice. 

A,B: Representative images of cortical sections (A) and hippocampal sections at the CA1 field 

level (B) processed for fluorescent SMAD3 immunostaining of wild-type (+/Y) and Cdkl5 -/Y 

mice. The dotted boxes indicate the regions shown at a higher magnification. (A) Scale bar = 50 

μm lower magnification, 15 μm higher magnification. (B) Scale bar = 40 μm. C: Number of 

SMAD3 positive cells in the somatosensory cortex of wild-type (+/Y; n=10) and Cdkl5 -/Y (n=7) 

adult mice. D: SMAD3 nuclear signal intensity in the cortex and hippocampus of wild-type (+/Y; 

n=4, n=8 respectively) and Cdkl5 -/Y (n=4, n=8 respectively) mice. Values are represented as 

means ± SE. **p<0.01; ***p<0.001 (Unpaired t-test). 
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As suggested by the array data (Table 1), we did not observe a difference in SMAD3 

phosphorylation levels at Ser213 and Ser425 in the cortex of Cdkl5 -/Y mice in comparison with +/Y 

mice (Figure 6A,B). 

 

 

Figure 6 

SMAD3 phosphorylation levels at Ser213 and Ser425 in the cortex of Cdkl5 -/Y mice. 

A,B: Western blot analysis of P-SMAD3 (Ser213 (A) and Ser425 (B)) levels normalized to 

SMAD3 levels in the somatosensory cortex of wild-type (+/Y; n=4) and Cdkl5 -/Y (n=4) adult 

mice. Immunoblots are examples from one animal of each experimental group. Values are 

represented as means ± SE. (Unpaired t-test). 

 

SMAD3 is regulated at the mRNA level and at the level of protein stability (Poncelet et al., 

2007, Daly et al., 2010). No differences in SMAD3 mRNA levels were observed between Cdkl5 -/Y 

and +/Y mice in either the cortex (Figure 7A) or hippocampus (Figure 7B), suggesting a CDKL5-

dependent post-transcriptional regulation of SMAD3. 

 

 

Figure 7 

SMAD3 mRNA levels in the cortex and hippocampus of Cdkl5 -/Y mice. 

A,B: Quantification by RT-qPCR of SMAD3 expression in the somatosensory cortex (A) and 

hippocampus (B) of wild-type (+/Y; n=5, n=8 respectively) and Cdkl5 -/Y (n=6, n=8 respectively) 

mice. Data are expressed as a percentage of the values of Cdkl5 +/Y mice. Values are 

represented as means ± SE. (Unpaired t-test). 
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SMAD3 physically interacts with CDKL5 

SMAD3, together with SMAD2, is one of the primary mediators of TGF-β action (Feng and 

Derynck, 2005, Hill, 2009, Macias et al., 2015). Upon phosphorylation by the TGF-β receptors, the 

SMAD proteins translocate into the nucleus, where they regulate transcription (Inman, 2005).  

To establish whether SMAD3 and CDKL5 physically interact in vivo, we performed co-

immunoprecipitation assays from cell lysates of HEK293T cells transfected with both HA-CDKL5 

and SMAD3-FLAG. Using an anti-FLAG antibody, we found co-immunoprecipitation of SMAD3 and 

CDKL5, indicating their interaction (Figure 8B; lane 4 arrow). SMAD3 consists of two highly 

conserved MAD homology domains, in the amino (MH1) and carboxyl (MH2) termini, that are 

connected by a proline-rich non-conserved linker region (Figure 8A). To identify the SMAD3 

domain that interacts with CDKL5, FLAG-tagged SMAD3 deletion constructs (Figure 8A), FLAG-MH1 

(amino acids 1–136) and FLAG-L-MH2 (amino acids 136–425), were co-transfected with HA-CDKL5 

into HEK293T cells. As shown in figure 8B, CDKL5 interacted with the SMAD3 deletion construct 

MH1 (Figure 8B; lane 6 arrow), but not with the L-MH2 construct (Figure 8B; lane 8), indicating 

that the association of CDKL5 and SMAD3 in cells is mediated via the N-terminal MH1 domain of 

SMAD3. To confirm the interaction of CDKL5 with SMAD3 in cells, we also performed co-

immunoprecipitation experiments with endogenous SMAD3 protein in SH-SY5Y cells, a 

neuroblastoma cell line that exhibits relatively high basal levels of SMAD3 (Figure 8C ,D). We 

infected SH-SY5Y cells with CDKL5-FLAG adenovirus particles (Figure 8C) or transfected SH-SY5Y 

cells with CDKL5-FLAG plasmid (Figure 8D) and precipitated the overexpressed protein from the 

cell extracts with anti-FLAG antibodies (Figure 8C,D). Subsequent immunoblotting with an anti-

SMAD3 antibody revealed that endogenous SMAD3 co-precipitated with overexpressed CDKL5-

FLAG (Figure 8C,D). As control of IPs we used GFP (Fig. 8C) or an empty vector (data not shown). 
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Figure 8 

CDKL5 interacts with SMAD3 protein. 

A: Schematic representation of SMAD3 and mutant SMAD3 domains. The locations of MH1 

domain (brown), linker region, and MH2 domain (yellow) are shown. B: Interaction between 

CDKL5 and SMAD3. HEK293T cells were co-transfected with HA-CDKL5 and wild-type SMAD3-

FLAG or the indicated SMAD3 mutant-FLAG plasmids, and cell lysates (Input) were 

immunoprecipitated with anti-FLAG antibodies (IP). GAPDH was used as an internal control for 

Input. Immunoprecipitated proteins were detected by anti-HA (CDKL5) and anti-FLAG 

antibodies (SMAD3 and SMAD3 mutants). Arrows indicate co-immunoprecipitated CDKL5. 

Lysates of cells overexpressing only HA-CDKL5 (Input; lane 1) were immunoprecipitated with 

anti-FLAG antibodies as a control (IP; lane 2). C,D: SH-SY5Y cells were infected with CDKL5-

FLAG adenoviral particles or GFP adenoviral particles as control in C, and SH-SY5Y cells were 

transfected with CDKL5-FLAG vector in D. Cells were lysed (Input) and immunoprecipitated 

with anti-FLAG antibodies (IP). Immunoprecipitated CDKL5, SMAD3 and GFP were detected by 

anti-CDKL5, anti-SMAD3 and anti-GFP antibodies, respectively. 
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SMAD3 is a phosphorylation target of CDKL5 

To determine whether SMAD3 is a direct phosphorylation substrate for CDKL5, we 

immunoprecipitated overexpressed SMAD3 from transfected HEK293T cells and incorporated it 

into a reaction mixture containing [- 32P] ATP, in the presence of increasing concentrations of the 

CDKL5 kinase domain (amino acids 1-498; CDKL5C). We observed a CDKL5C dose-dependent 

increase in SMAD3 phosphorylation (Figure 9A), indicating that SMAD3 is a direct CDKL5 

phosphorylation target. To determine the critical domain in SMAD3 phosphorylated by CDKL5, the 

SMAD3 deletion constructs MH1, L-MH2, and MH2 were incubated with CDKL5C. While L-MH2 

and MH2 were not phosphorylated in the presence of CDKL5, MH1 was highly phosphorylated 

(Figure 9A). Confirming previous evidence (Lin et al., 2005, Bertani et al., 2006), we found that 

CDKL5C exhibits autophosphorylation activity, which increased in the presence of a target 

protein (Figure 9A). The increased efficiency of the MH1 domain phosphorylation by CDKL5 could 

be explained by the absence of structural constraints in the MH1 domain that could allow for a 

more open conformation of the domain compared to the one in the full -length SMAD3 protein 

(Kurisaki et al., 2001). At the same time, the increased association between CDKL5 and the target 

could then trigger a proximity effect of CDKL5 kinase monomers that could explain the higher 

CDKL5 autophosphorylation signal (Beenstock et al., 2016). 

SMAD3 and SMAD2 are closely related TGF-β downstream effectors with 92% amino acid 

sequence similarity (Brown et al., 2007). To investigate whether CDKL5 specifically phosphorylates 

SMAD3 and not SMAD2, we compared the effect of wild-type CDKL5 kinase activity on SMAD3 and 

SMAD2. Full-length CDKL5 phosphorylated SMAD3, similarly to CDKL5C, but did not 

phosphorylate SMAD2 (Figure 9B), indicating a specific CDKL5/SMAD3 interaction. 
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Figure 9 

CDKL5 phosphorylates SMAD3. 

A: CDKL5 phosphorylates SMAD3 at the MH1 domain. Kinase assays were conducted with 

purified CDKL5ΔC (1-498aa) and SMAD3 or SMAD3 mutants (Fig. 8A). Samples were resolved 

by SDS-PAGE, transferred onto nitrocellulose membrane and exposed to film by 

autoradiography. CDKL5ΔC was detected with PonceauS staining (lower panel). B: 

Immunoprecipitated FLAG-tagged wild-type CDKL5 was subjected to an in vitro kinase assay to 

test its ability to phosphorylate purified SMAD3 and SMAD2 (see Materials and Methods). 

Samples were resolved by SDS-PAGE, transferred onto nitrocellulose membrane and exposed 

to film by autoradiography. The same membrane was subjected to immunoblot analyses using 

anti- SMAD3 and SMAD2 antibodies. 

 

 

CDKL5-mediated phosphorylation of SMAD3 is required for SMAD3 protein 

stability 

Various types of phosphorylation of SMAD3, mediated by protein kinases and 

phosphatases, have been reported to affect its activity, stability, and localization in cells (Wrighton 

et al., 2009, Tarasewicz and Jeruss, 2012, Xu et al., 2012). SMAD3 regulates transcription of genes 

by binding to specific sequences within the promoter of target genes and by interacting with other 

proteins (Shi and Massague, 2003). To explore whether CDKL5-dependent phosphorylation affects 

the transcriptional activity of SMAD3, we performed assays with a luciferase reporter that is 

sensitive to SMAD3 (Figure 10A). CAGA(12)-luc reporter, containing CAGA elements in the 
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promoter which bind activated SMAD3 (Dennler et al., 1998), was transfected into SH-SY5Y cells. 

Expression of CDKL5 did not modify luciferase activity in SH-SY5Y cells (Figure 10A), indicating that 

CDKL5 does not directly affect SMAD3 transcriptional activity. Treatment with TGF-β1 strongly 

increased SMAD3 transcriptional activity (Figure 10A), while treatment with SB431542 (SB), a 

potent and specific inhibitor of TGF-β receptor, decreased SMAD3 transcriptional activity (Figure 

10A), indicating the presence of a functional TGF-β/SMAD3 signaling in SH-SY5Y cells.  

Since phosphorylation levels could affect SMAD3 basal turnover and protein stability (Inoue 

et al., 2004, Waddell et al., 2004, Kim et al., 2005, Guo et al., 2008) we hypothesized that CDKL5-

dependent phosphorylation of SMAD3 might affect SMAD3 protein levels. To support this 

hypothesis, we over-expressed CDKL5 or GFP as a control in SH-SY5Y neuroblastoma cells. We 

found higher SMAD3 protein levels in cells expressing CDKL5, compared to SH-SY5Y cells that were 

not infected or expressing GFP (Figure 10B). Similarly, in a neuroblastoma cell line, SKNBE, that 

does not express endogenous CDKL5 (Valli et al., 2012), we found that the stability of co-expressed 

SMAD3 protein was affected by whether it was CDKL5 or CDKL5 lacking the kinase domain 

(CDKL5N) that was expressed (Figure 10C). We found higher SMAD3 protein levels in SKNBE cells 

expressing CDKL5, compared to cells expressing CDKL5N (Figure 10C). 
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Figure 10 

CDKL5 regulates SMAD3 protein levels.  

A: Luciferase reporter analysis of SMAD3-dependent promoter (CAGA12-luc reporter; 

schematic representation in the upper panel) in SH-SY5Y cells transfected with CDKL5 or 

treated with TGF-β1 (5 ng/ml) or SB431542 (SB; 10 µM). B: Western blot analysis of SMAD3 

levels normalized to GAPDH levels in SH-SY5Y cells infected with CDKL5 adenoviral particles 

(Ad-CDKL5; n=3), with GFP adenoviral particles (Ad-GFP; n=3), or not infected (n=3). 

Immunoblots (upper panel) are examples from each experimental group. C: Western blot 

analysis of SMAD3 levels normalized to GAPDH levels in SKNBE cells co-transfected with 

CDKL5ΔN (n=4) or wild-type CDKL5 (n=4) and SMAD3. Immunoblots (upper panel) are three 

examples from each experimental group. Data are expressed as a percentage of the values of 

control samples. Values are represented as means ± SE. **p<0.01; ***p<0.001 (Unpaired t-test 

in C; Fisher’s LSD after ANOVA in A,B). 
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Reduced SMAD3 protein levels in hippocampal neurons from Cdkl5 KO mice 

As observed in vivo in Cdkl5 -/Y mice (Figure 5), we found reduced SMAD3 levels in 

hippocampal cultures from Cdkl5 -/Y mice compared to wild-type mice (Figure 11A-C), which were 

paralleled by a reduced SMAD3 nuclear intensity (Figure 11D). Re-expression of CDKL5 in Cdkl5 -/Y 

neurons restored SMAD3 protein levels (Figure 11B,C) and, consequently, its nuclear intensity 

(Figure 11D), suggesting a CDKL5-dependent regulation of SMAD3 protein levels. In a similar way, 

treatment with TGF-β1 was able to restore SMAD3 nuclear intensity in Cdkl5 -/Y hippocampal 

neurons (Figure 11E). 

 

 

 

 

Figure 11 

Reduced SMAD3 protein levels in hippocampal neurons from Cdkl5 -/Y mice. 

A: Western blot analysis of SMAD3 levels in 10-day (DIV10) differentiated hippocampal 

neurons from wild-type (+/Y, n=5) and Cdkl5 -/Y (n=6) mice. Immunoblots (upper panel) are 
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two examples from each experimental group. B: Quantification of SMAD3 signal intensity in 

hippocampal neurons infected with adenoviral particle for GFP (Ad-GFP; +/Y n=5, -/Y n=4) or 

CDKL5 (Ad-CDKL5; +/Y n=5, -/Y n=4). C: Representative fluorescent images of 10-day (DIV10) 

differentiated hippocampal neurons from wild-type (+/Y) and Cdkl5 -/Y mice immunopositive 

for SMAD3 and counterstained with Hoechst. SMAD3 localizes both in the nucleus and in the 

cytoplasm. Cdkl5 -/Y hippocampal cultures were infected with adenoviral particle for CDKL5 

(Ad-CDKL5) or GFP as a control (Ad-GFP) on DIV3, or treated with TGF-β1 (1 ng/ml) 

administered on alternate days starting from DIV2. Scale bar = 1.5 µm higher magnification, 6 

μm lower magnification. D,E: Quantification of SMAD3 nuclear signal intensity in hippocampal 

neurons infected with adenoviral particles for GFP (Ad-GFP ; +/Y n=5, -/Y n=4) or CDKL5 (Ad-

CDKL5; +/Y n=5, -/Y n=4) in D and untreated (+/Y n=5, -/Y n=5) or treated with TGF-β1 (+/Y n=4, 

-/Y n=5) in E. Data are expressed as a percentage of the values of control samples.  Values are 

represented as means ± SE. *p<0.05; **p<0.01; ***p<0.001 (Unpaired t-test in A; Fisher’s LSD 

after ANOVA in B,D,E). 

 

 

In agreement with reduced SMAD3 nuclear levels, we found a decreased SMAD3-

dependent transcriptional activity in hippocampal cultures from Cdkl5 -/Y mice compared to wild-

type mice (Figure 12A). Treatment with TGF-β1 in Cdkl5 -/Y neurons restored SMAD3 activity to 

control levels (Figure 12A). 

Increased TGF-β1-induced SMAD3 transcriptional activity is mediated by TGF-β type I 

receptor-induced SMAD3 phosphorylation at the Ser213 site in the linker region (Bruce and 

Sapkota, 2012). As expected we found increased SMAD3 phosphorylation at Ser213 in 

hippocampal cultures from both Cdkl5 KO and wild-type mice treated with TGF-β1 (Figure 12B,C). 

Differently, as observed in vivo in Cdkl5 -/Y mice (Figure 6A), a lack of Cdkl5 did not affect 

SMAD3 phosphorylation at Ser213 in hippocampal cultures (Figure 12B,C), suggesting that TGF-β1 

furthers SMAD3 activity through a CDKL5-independent pathway. 
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Figure 12 

Decreased SMAD3-dependent transcriptional activity in Cdkl5 KO hippocampal neurons is 

restored by treatment with TGF-β1. 

A: Luciferase reporter analysis of SMAD3-dependent promoter in primary hippocampal 

neurons from wild-type (+/Y, n=5) and Cdkl5 -/Y (n=5) mice and in Cdkl5 -/Y cultures treated 

with TGF-β1 (5 ng/ml; n=5). B: Western blot analysis of P-SMAD3 (Ser213) levels normalized to 

SMAD3 levels in untreated hippocampal cultures (+/Y = 9; -/Y = 14) or treated for 1h with TGF-

β1 (-/Y = 8). C: Representative fluorescent images of 10-day (DIV10) differentiated 

hippocampal neurons from wild-type (+/Y) mice immunopositive for P-SMAD3 (Ser213) and 

counterstained with Hoechst. Cdkl5 +/Y hippocampal cultures were treated with TGF-β1 (1 

ng/ml) for 1h. Scale bar = 2.5 µm. Quantification of P-SMAD3 (Ser213) signal intensity in 

untreated (+Y n=2) or TGF-β1 treated (+Y n=2) hippocampal neurons. Values are represented 

as means ± SE. *p<0.05; ***p<0.001 (Unpaired t-test in C; Fisher’s LSD after ANOVA in A,B). 

 

 

Restoration of TGF-β/SMAD3 signaling in primary hippocampal neurons from 

Cdkl5 KO mice recovers neuronal survival and maturation 

Based on evidence that TGF-β/SMAD signaling regulates many physiological processes in 

the brain, including neuronal survival, development, and activity (Dobolyi et al., 2012), we sought 

to investigate whether restoration of TGF-β/SMAD3 signaling improves the neurodevelopmental 

alterations that characterize Cdkl5 -/Y hippocampal neurons (Fuchs et al., 2014a, Fuchs et al., 

2015, Trazzi et al., 2016). 
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The assessment of apoptotic cell death revealed that differentiating hippocampal neurons 

generated from Cdkl5 -/Y mice had more apoptotic (cleaved caspase-3 positive) cells compared to 

control cultures (Figure 13A). We found that treatment with TGF-β1 restored the number of 

cleaved caspase-3 positive cells in hippocampal cultures from Cdkl5 -/Y mice (Figure 13A), 

suggesting that TGF-β/SMAD3 signaling plays a role in CDKL5-dependent neuronal survival. As 

expected, the re-expression of CDKL5 restored the number of apoptotic cells in hippocampal 

cultures from Cdkl5 -/Y mice (Figure 13B). 

 

 

Figure 13 

TGF-β1 treatment and CDKL5 replacement restores Cdkl5 KO hippocampal neuron survival. 

A,B: Percentage of cleaved caspase-3 positive neurons in 4-day (DIV4) differentiated 

hippocampal neurons from wild-type (+/Y n=5) and Cdkl5 -/Y (n=5) mice treated with TGF-β1 in 

A or infected with adenoviral particles for GFP (AdGFP) or CDKL5 (AdCDKL5) in B. Values are 

represented as means ± SE. **p<0.01; ***p<0.001 (Fisher’s LSD after ANOVA). 

 

 

Hippocampal neurons from Cdkl5 -/Y mice are characterized by reduced axon (Figure 

14A,B; (Nawaz et al., 2016)) and neurite (Figure 14C,D; (Trazzi et al., 2016)) outgrowth. We found 

that treatment with TGF-β1 restored primary axon length in hippocampal neurons from Cdkl5 -/Y 

mice (Figure 14A,B), but did not improve the reduced neurite outgrowth (Figure 14A,D), 

suggesting that the TGF-β signal has a specific involvement in axonal development. The re-

expression of CDKL5 restored both primary axon length and neurite outgrowth (Figure 14C,E). 
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Figure 14 

TGF-β1 treatment and CDKL5 replacement restores Cdkl5 KO hippocampal neuron 

maturation. 

A: Representative images of 10-day (DIV10) differentiated +/Y and -/Y hippocampal neurons 

and -/Y hippocampal neurons treated with TGF-β1, immunopositive for the axon marker TAU1 

(upper panel; scale bar = 50 µm, arrows indicate the primary axon), or microtubule-associated 

protein 2 (MAP2; scale bar = 30 µm). B-E: Quantification of the length of the primary axon (B,C, 

TAU1-positive; +/Y=4, -/Y=4), and the total length of MAP2-positive neurites (D,E, +/Y=6, -

/Y=6), from differentiated hippocampal cultures from Cdkl5 +/Y and Cdkl5 -/Y mice.  (B,D) 

Hippocampal culture were treated as in A or (C,E) infected with adenoviral particles for GFP 

(AdGFP) or CDKL5 (AdCDKL5). Values are represented as means ± SE. *p<0.05; **p<0.01; 

***p<0.001 (Fisher’s LSD after ANOVA). 

 

 

As previously reported (Trazzi et al., 2016), the assessment of synaptophysin (SYN) puncta 

in neurites revealed that hippocampal neurons from Cdkl5 -/Y mice had a reduction in the number 
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of presynaptic connections (Figure 15A,B). Treatment with TGF-β1 restored the number of SYN 

puncta in hippocampal neurons from Cdkl5 -/Y mice (Figure 15A,B).  

 

 

Figure 15 

TGF-β1 treatment and CDKL5 replacement restores Cdkl5 KO hippocampal neuron 

connectivity.  

A: Representative images of 10-day (DIV10) differentiated +/Y and -/Y hippocampal neurons 

and -/Y hippocampal neurons treated with TGF-β1, immunopositive for microtubule-

associated protein 2 (MAP2, green) plus synaptophysin (SYN, red). The dotted boxes indicate 

the regions shown at a higher magnification. Scale bar = 30 μm lower magnification, 2.5 μm 

higher magnification. B,C: Quantification of the number of SYN-immunoreactive puncta per 

10 μm in proximal dendrites (+/Y=6, -/Y=6) from differentiated hippocampal cultures from 

Cdkl5 +/Y and Cdkl5 -/Y mice. (B) Hippocampal cultures were treated as in A or (C) infected 

with adenoviral particles for GFP (AdGFP) or CDKL5 (AdCDKL5). Values are represented as 

means ± SE. ***p<0.001 (Fisher’s LSD after ANOVA). 

 

 

To confirm the reduced number of synaptic connections, we evaluated the number of 

neuritic spine, labeled by MAP2 immunocytochemistry (Morales and Fifkova, 1989). We found a 
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reduced spine density in hippocampal neurons from Cdkl5 -/Y mice compared to those of control 

cultures (Figure 16A,B). Treatment with TGF-β1 restored the density of dendritic spines in 

hippocampal neurons from Cdkl5 -/Y mice (Figure 16A,B). As expected, the re-expression of CDKL5 

restored synaptic connections (Figures 15C and 16C). In control neurons treatment with TGF-β1 or 

increased CDKL5 levels had no effect on neuronal survival (Figure 13B), axon and neurite growth 

(Figure 14B,D), or connectivity (Figures 15B and 16B). 

 

 

Figure 16 

TGF-β1 treatment and CDKL5 replacement restores spine density in Cdkl5 KO hippocampal 

neuron. 

A: Representative fluorescence images of proximal dendrite segments of hippocampal neurons 

treated with TGF-β1 that were immunopositive for microtubule-associated protein 2 (MAP2) 

showing spine protrusions. Scale bar = 2.5 μm. B,C: Quantification of the number of MAP2-

positive spines (+/Y=6, -/Y=6) from differentiated hippocampal cultures from Cdkl5 +/Y and 

Cdkl5 -/Y mice treated with TGF-β1 in B or infected with adenoviral particles for GFP (AdGFP) 

or CDKL5 (AdCDKL5) in C. Values are represented as means ± SE. *p<0.05; **p<0.01; 

***p<0.001 (Fisher’s LSD after ANOVA). 
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Increased susceptibility to neurotoxic stress in primary hippocampal neurons from 

Cdkl5 KO mice is rescued by treatment with TGF-β1.  

Primary hippocampal neurons are known to be susceptible to excitotoxicity and oxidative 

stress, which lead to the induction of apoptotic cell death (Hwang et al., 2008, Chen et al., 2009, 

Wang et al., 2014, Calvo et al., 2015). Numerous studies have shown a protective effect of TGF-β 

signaling against various toxins and injurious agents in cultured neurons (Flanders et al., 1998, 

Unsicker and Krieglstein, 2000, Brionne et al., 2003). To test the hypothesis that CDKL5, with its 

function on TGF-β/SMAD3 signaling regulation, is required for neuronal apoptotic resistance, we 

exposed hippocampal neuronal cultures from Cdkl5 -/Y mice to an oxidative stress (100 M H2O2) 

or an excitotoxic stimulus (100 M NMDA). Apoptotic cell death was evaluated using cleaved 

caspase-3 immunocytochemistry or Hoechst staining to visualize pyknotic nuclei. Interestingly, 

neuronal vulnerability to H2O2- or NMDA-induced apoptosis was higher in hippocampal neurons 

from Cdkl5 -/Y mice in comparison with control neurons (Figure 17A-C). Treatment with TGF-β1 

after H2O2 or NMDA exposure prevented apoptosis in hippocampal neuronal cultures from Cdkl5 -

/Y mice (Figure 17A-C). 
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Figure 17 

TGF-β1 treatment rescues the increased susceptibility to NMDA- and H2O2-induced stress of 

Cdkl5 KO hippocampal neurons. 

Hippocampal cultures were treated on DIV10 with H2O2 (100 µM; +/Y n=4, -/Y n=4) or H2O2 + 

TGF-β1 (1 ng/ml; +/Y n=4, -/Y n=4) in B, and NMDA (100 µM; +/Y n=4, -/Y n=4) or NMDA + TGF-

β1 (1 ng/ml; +/Y n=3, -/Y n=4) in C, and fixed after 24 h. A: Representative fluorescent images 

of differentiated hippocampal neurons from wild-type (+/Y) and Cdkl5 -/Y mice 

immunopositive for MAP2 (green), cleaved caspase 3 (red), and stained with Hoechst (blue). 

Higher magnification: white arrows indicate pyknotic nuclei, scale bar = 30 µm; Lower 

magnification: white arrows indicate apoptotic cells positive for cleaved caspase 3, scale bar = 

40 µm. B,C: Percentage of cleaved caspase-3 positive neurons in primary hippocampal neurons 

from wild-type and Cdkl5 -/Y mice. Values are represented as means ± SE. *p<0.05; 

***p<0.001 (Fisher’s LSD after ANOVA). 
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In order to elucidate the mechanism underlying the higher neuronal vulnerability 

associated with Cdkl5 loss of function, we investigated the effect of NMDA on TGF-β/SMAD3 

signaling activation by evaluating SMAD3 nuclear-immunopositivity. NMDA-induced excitatory 

stimulation resulted in an increase in SMAD3 nuclear levels in control cultures (Figure 18). 

However, Cdkl5 -/Y neurons did not show a significant increase in SMAD3 levels after NMDA 

exposure (Figure 18), suggesting an impaired NMDA-induced SMAD3 activation in the absence of 

CDKL5. On the contrary, after TGF-β1 treatment, similarly increased SMAD3 levels were detected 

in hippocampal neurons from Cdkl5 -/Y and control mice (Figure 18). 

 

Figure 18  

The increased susceptibility to neurotoxic stress of Cdkl5 KO hippocampal neurons is due to 

an impaired SMAD3 activation.  

Quantification of SMAD3 signal intensity in untreated (+/Y n=3, -/Y n=3), NMDA-treated (100 

µM; +/Y n=4, -/Y n=3), and NMDA + TGF-β1-treated (1ng/ml; +/Y n=3, -/Y n=3) hippocampal 

neurons immunostained for SMAD3. Data are expressed as a percentage of the values of 

untreated +/Y. Values are represented as means ± SE. *p<0.05; **p<0.01; ***p<0.001 (Fisher’s 

LSD after ANOVA). 

 

 

Treatment with TGF-β1 protects CA1 pyramidal neurons from Cdkl5 KO mice 

against NMDA-induced cell death  

To determine whether Cdkl5 KO neurons are also more susceptible to excitotoxic stimuli in 

vivo, we injected Cdkl5 -/Y and wild-type (+/Y) mice intraperitoneally with NMDA (60 mg/kg; 

Figure 19A) or Kainic acid (KA; 35 mg/kg; Figure 19A). No difference in seizure intensity was 

observed between Cdkl5 -/Y and wild-type (+/Y) mice in the 120 minutes following NMDA or KA 

administration. Seizure intensity reached a maximum of stage 3 on a 0 to 5 seizure scale, between 

10 and 20 minutes following NMDA administration (Figure 19B), while seizure intensity reached a 



 
73 

 

maximum after 40 minute following KA administration and remains high for the next hour (Figure 

19C). Similarly, a low mortality rate was observed in treated Cdkl5 -/Y and wild-type mice. 

 

 

Figure 19 

NMDA- or KA-induced seizures in Cdkl5 KO mice. 

A: Schematic view of in vivo treatments and analysis schedule. B,C: Graph represents seizure 

score NMDA-induced (60 mg/kg) in B or kainic acid-induced (KA; 35 mg/kg) in C, for wild-type 

(+/Y, n=13, n=6 respectively) and Cdkl5 -/Y (n=17, n=6 respectively) mice at indicated time 

points after injections. Values are represented as means ± SE. (Fisher’s LSD after ANOVA). 

 

 

It has been reported that 24 h after NMDA injection neuronal loss is evident in the CA1 

layer of the hippocampus of rodents (Villapol et al., 2013), differently KA injection mainly affects 

principal neurons in the CA3 layer (Otani et al., 2006, Tripathi et al., 2009), effect particularly 

evident after 7-8 days post injection. Therefore, we evaluated neuronal damage 24 h after NMDA 

injection or 8 days after KA injection using Hoechst staining. In the CA1 layer of the hippocampus, 

NMDA-treated Cdkl5 -/Y mice showed a lower cell density (Figure 20A-C) and a higher number of 

pyknotic (Figure 20A-C). In the CA3 layer of the hippocampus, KA-treated Cdkl5 -/Y mice showed a 

lower cell density (Figure 20A,B,D) in comparison with treated wild-type mice.  Very few pyknotic 

cells were present 8 days after KA injection and therefore not assessable as index of cell death.  
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These suggests that Cdkl5 -/Y mice are more vulnerable to neurotoxicity/neurodegeneration 

induced by excitotoxic stimuli. 

 

 

Figure 20 

Increased susceptibility to excitotoxic stimuli of Cdkl5 KO mice.  

A: Representative fluorescence image of a hippocampal section processed for Hoechst 

staining. Abbreviations: GL, granule cell layer; Mol, molecular layer. Scale bar = 150 M. The 

dotted box in the panel indicates the analyzed region (CA1). B: Magnifications panels showing 

examples of the pyramidal neuron layer in CA1 of a Cdkl5 +/Y and a Cdkl5 -/Y mouse treated 

with NMDA (60 mg/kg), or KA (35 mg/kg). Arrows indicate the neuronal damage sites with low 

cell density. Scale bar = 100 M. C: Quantification of Hoechst-positive cells (left) and number 

of pyknotic nuclei (right) in CA1 of hippocampal sections from untreated (+/Y n=5, -/Y n=5) and 

NMDA-treated (+/Y n=8, -/Y n=9, left; +/Y n=6, -/Y n=7, right) mice. D: Quantification of 

Hoechst-positive cells in CA3 of hippocampal sections from untreated (+/Y n=4, -/Y n=4) and 

KA-treated (+/Y n=4, -/Y n=4) mice. Values are represented as means ± SE. *p<0.05; **p<0.01; 

***p<0.001 (Fisher’s LSD after ANOVA). 
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To test whether TGF-β1 is sufficient to protect Cdkl5 KO neurons against NMDA-induced 

cell death, we administered TGF-β1 to Cdkl5 -/Y mice via intracerebroventricular infusion 1 h after 

NMDA treatment (Figure 21A). Treatment with TGF-β1 prevented neurodegeneration of CA1 

pyramidal neurons in Cdkl5 -/Y mice assessed using Hoechst staining and immunohistochemistry 

for activated caspase-3 (Figure 21B-D). 

 

 

 

Figure 21 

Effect of treatment with TGF-β1 on NMDA-induced hippocampal neuron cell death in Cdkl5 

KO mice. 

A: Schematic view of in vivo treatments and analysis schedule. B-D: Quantification of Hoechst-

positive cells (B), number of pyknotic nuclei (C), and number of cleaved caspase-3 positive cells 

(D) in CA1 of hippocampal sections from untreated (+/Y n=5, -/Y n=5), NMDA-treated ((B) +/Y 

n=8, -/Y n=9;   (C) +/Y n=6, -/Y n=7;   (D) +/Y n=5, -/Y n=6), and NMDA + TGF-β1 treated (-/Y 

n=5) mice. Values are represented as means ± SE. *p<0.05; **p<0.01; ***p<0.001 (Fisher’s LSD 

after ANOVA). 

 

 

To determine whether SMAD3 is involved in TGF-β1-induced neuroprotection against 

NMDA-induced cell death, we quantified SMAD3 expression in the CA1 layer of the hippocampus 
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of Cdkl5 -/Y mice 1 hour after TGF-β1 treatment (Figure 21A). NMDA-treated Cdkl5 -/Y mice 

showed lower SMAD3 levels in comparison with NMDA-treated Cdkl5 +/Y mice, with a difference 

of the same amplitude as that found between vehicle-treated Cdkl5 +/Y and Cdkl5 -/Y mice (Figure 

22A,B). Treatment with TGF-β1 strongly increased SMAD3 levels in CA1 pyramidal neurons of 

NMDA-treated Cdkl5 -/Y mice (Figure 22A,B), suggesting that SMAD3 plays a functional role in 

TGF-β1-induced neuroprotection. 

 

 

 

Figure 22 

SMAD3 plays a functional role in TGF-β1-induced neuroprotection. 

A: Quantification of SMAD3 signal intensity in the CA1 pyramidal neuron layer from untreated 

(+/Y n=10, -/Y n=10), NMDA-treated (+/Y n=3, -/Y n=4), and NMDA + TGF-β1 treated (-/Y n=5) 

mice. B: Representative fluorescent images of the pyramidal neuron layer in CA1 of a Cdkl5 +/Y 

and a Cdkl5 -/Y mouse treated with NMDA (60 mg/kg), and of a Cdkl5 -/Y mouse treated with 

NMDA and TGF-β1 (50 ng) immunostained for SMAD3 and counterstained with Hoechst. Scale 

bar = 50 M. Values are represented as means ± SE. **p<0.01; ***p<0.001 (Fisher’s LSD after 

ANOVA). 
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DISCUSSION 

Involvement of CDKL5 in several cellular pathways  

The phospho antibody microarray results were analyzed with Reactome in order to obtain 

an overview of the misregulated pathways in the absence of CDKL5. This first analysis, that 

provided an intuitive visualization of the dataset, highlighted the potential involvement of CDKL5 

in several cellular functions. Beside the well-known involvement of CDKL5 in neuronal maturation, 

the analysis revealed alterations in pathways involved in the regulation of gene expression, DNA 

damage/repair, cell-cycle, and apoptosis. A CDKL5 nuclear activity, in RNA splicing, had already 

been reported (Ricciardi et al., 2009); future studies are needed to validate the role of CDKL5 in 

these cellular processes.  

As previously reported (Wang et al., 2012, Amendola et al., 2014), our analysis revealed 

that CDKL5 has an important involvement in signal transduction pathways. Recently, through 

kinome profiling study, Wang and colleagues demonstrated that several signaling transduction 

pathways involved in neuronal and synaptic plasticity are disrupted in the forebrain of Cdkl5 

knockout male mice (Wang et al., 2012), with changes in the phosphorylation profiles of AMPK, 

AKT, PKC, and MAPK substrates. Similarly, Amendola et al. found a decrease in the 

phosphorylation of AKT Ser473 and rpS6 Ser240/244 in several brain structures (cortex and 

hippocampus) of hemizygous male and heterozygous and homozygous female Cdkl5 knockout 

mice (Amendola et al., 2014). A further characterization of AKT-dependent pathways showed a 

disruption of AKT-GSK3beta signaling in Cdkl5 knockout mice (Fuchs et al., 2014b, Fuchs et al., 

2015). 

Interestingly, the Reactome analysis highlighted the involvement of CDKL5 in signaling 

associated with the immune system. Immune activation within the central nervous system (CNS) is 

a classical feature of ischemia, neurodegenerative diseases, immune-mediated disorders, 

infections and trauma, exerting a dual role for both neurotoxic and neuroprotective respo nse 

(Amor et al., 2010). It is worth noting that, in CDD patients, a defective inflammation regulatory 

signaling system has been reported as the primary source of the subclinical immune dysregulation 

associated with the disease (Leoncini et al., 2015, Cortelazzo et al., 2017). Indeed cytokine changes 

that are proportional to clinical severity have been observed and increased IL-22 and T-reg 

cytokine levels were evidenced in patients with CDD (Leoncini et al., 2015, Cortelazzo et al., 2017). 
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Thus, it would be interesting to further investigate the potential involvement of CDKL5 in the 

immune system response as a pathomechanism underlying CDD. 

 

Reduced SMAD3 levels due to Cdkl5 loss of function impair neuron survival and 

maturation 

In the current study, we provide novel evidence that SMAD3 is a direct phosphorylation 

target of CDKL5. Despite the extensive sequence similarity between SMAD2 and SMAD3, we found 

that CDKL5 specifically phosphorylates SMAD3 at the MH1 domain. While the MH2 domain is 

highly conserved among all SMADs, the different structure of the MH1 domain of SMAD3, which 

does not contain the 30-amino-acid insert that is present in SMAD2 (Dennler et al., 1999), could 

explain the specificity of the CDKL5-dependent phosphorylation of SMAD3. Though recent 

observation has raised the possibility that the RPXSA motif might represent a consensus sequence 

for phosphorylation by CDKL5 (Katayama et al., 2015, Baltussen et al., 2018, Munoz et al., 2018), 

other studies have identified CDKL5 phosphorylation targets that do not contain this consensus 

motif (Mari et al., 2005, Kameshita et al., 2008, Ricciardi et al., 2012, Trazzi et al., 2016), 

suggesting the presence of a different consensus sequence for CDKL5 phosphorylation or of a 

protein folding that creates a noncontiguous CDKL5 phosphorylation motif (Duarte et al., 2014). 

SMAD3 seems to belong to this latter group because the MH1 domain does not present a RPXSA 

motif. Nevertheless, 6 Serine and 7 Threonine are present in the MH1 domain as possible target of 

CDKL5 phosphorylation. Further studies will be needed to identify the CDKL5 phosphorylation site 

on SMAD3. 

We additionally found that CDKL5-dependent phosphorylation of SMAD3 does not directly 

affect SMAD3 activity, but that CDKL5 deficiency causes a reduction in SMAD3 protein levels and, 

consequently, in activity in Cdkl5 KO neurons. Phosphorylation at different sites of SMAD3 

contributes to its stability (Guo et al., 2008, Gao et al., 2016). Most SMAD proteins can be 

polyubiquitinated and degraded in either a ligand-dependent or a ligand-independent manner (Izzi  

and Attisano, 2006). Although it still remains to be established how CDKL5-dependent 

phosphorylation affects SMAD3 protein stability, we found that treatment with TGF-β1, similarly 

to CDKL5 re-expression, normalized SMAD3 levels, indicating a reversible SMAD3 stability/activity 

in Cdkl5 KO neurons. We found that CDKL5 does not phosphorylate SMAD3 at the C-terminal 

residues Ser425 in the MH2 domain or at the Ser213 site in the linker region, phosphorylation sites 
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that drive TGF-β type I receptor-induced SMAD3 nuclear localization and stability (Bruce and 

Sapkota, 2012). On the other hand, there is no evidence that TGF-β has a direct action on the 

SMAD3 MH1 domain (Bruce and Sapkota, 2012). The finding that TGF-β1 can rescue SMAD3 levels 

and transcriptional activity in the absence of CDKL5 suggests that TGF-β1 modulates SMAD3 

stability through a CDKL5-independent pathway.  

Importantly, we provide novel evidence that loss of Cdkl5 increases cell death of 

differentiating hippocampal neurons. The restoration of SMAD3 activity through TGF-β1 treatment 

fully rescued survival of Cdkl5 KO neurons, suggesting that SMAD3 signaling dysregulation is 

involved in the reduced survival of Cdkl5 KO neurons. Consistent with our findings, primary 

neurons lacking TGF-β1 showed a reduced survival rate compared with wild-type controls (Brionne 

et al., 2003). Moreover, studies on SMAD3-deficient mice have revealed that SMAD3 plays a role 

in trophic support for nigral dopaminergic neurons (Tapia-Gonzalez et al., 2011) in addition to the 

maintenance of survival of newborn granule cells in the hippocampal dentate gyrus (Tapia-

Gonzalez et al., 2013).  

In addition to its role in neuronal survival we found that restoration of SMAD3 signaling 

recovered the primary axon outgrowth and reduced connectivity caused by Cdkl5 loss of function. 

Contrariwise, treatment with TGF-β1 did not improve the dendritic hypotrophy that characterizes 

Cdkl5 KO neurons. This is in agreement with previous evidence that indicates that TGF-β1 signaling 

is required for axon specification in the developing brain (Yi et al., 2010), and for synaptic growth 

and function (Chin et al., 2002, Sweeney and Davis, 2002), while it does not affect the process of 

branching and the number of dendrite-like processes in hippocampal neurons (Ishihara et al., 

1994). 

 

Increased vulnerability of Cdkl5 KO hippocampal neurons to neurotoxic stress is 

rescued by treatment with TGF-β1 

Our data provide the first evidence that CDKL5 has a key role in neuronal survival and 

indicate that CDKL5 deficiency increases the vulnerability of neural cells to apoptosis induced by 

different types of neurotoxic stress. It is becoming increasingly clear that various types of cell 

death cascades can share pathways in death execution (Yakovlev and Faden, 2004). Our finding 

that the increased neuronal vulnerability to oxidative stress, VPA, and excitotoxic injury shown by 

Cdkl5 KO hippocampal neurons is fully recovered by TGF-β1 treatment, suggests that SMAD3 
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signaling deregulation might be the common mechanism responsible for the enhanced 

vulnerability of Cdkl5 KO neurons. The neuroprotective role of TGF-β/SMAD3 signaling in the 

injured CNS is increasingly being recognized (Dobolyi et al., 2012). TGF-β1 deficiency in adult TGF-

β1-/+ mice does not result in overt neurodegeneration but does increase neuronal cell loss after 

excitotoxic injury (Brionne et al., 2003). Moreover, SMAD3 deficiency increases cortical and 

hippocampal neuronal loss following traumatic brain injury (Villapol et al., 2013). Therefore, the 

reduced SMAD3 activation in NMDA-treated Cdkl5 KO mice might underlie the increased 

neurodegeneration observed in the absence of CDKL5. Moreover, our observations that the 

increased NMDA-induced cell death of hippocampal neurons of Cdkl5 KO mice was fully rescued 

by TGF-β1 treatment correlates well with previous studies that show that activation of TGF-

β/SMAD3 dependent signaling protects neurons against NMDA-induced cell death (Prehn et al., 

1994, Docagne et al., 2002).  

A recent study in a Cdkl5 KO mouse model (Cdkl5 exon 2 deletion; (Okuda et al., 2017)) 

showed increased seizure susceptibility in response to NMDA that was correlated with an 

upregulation of the NMDA receptor subunits GluN2B at the CA1 hippocampal glutamatergic 

synapses (Okuda et al., 2017). We did not observe an increase in NMDA-induced tonic-clonic 

seizure episodes in the Cdkl5 KO mouse model used in this study (deletion of Cdkl5 exon 4; 

(Amendola et al., 2014)). Therefore, the increased hippocampal neuron vulnerability that we 

observed in Cdkl5 KO mice in response to NMDA treatment is unlikely to be due to a higher 

NMDA-induced neuronal hyper-excitability, and is, rather, ascribable to a generalized increased 

susceptibility to neurotoxic stress due to the impairment of SMAD3 signaling. 

Several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, 

and motor neuron diseases have been associated with disturbed cellular or subcellular SMAD 

localization and disruption of SMAD-controlled transcriptional machinery (Dobolyi et al., 2012). 

Our findings suggest that, through the deregulation of SMAD3 signaling, CDKL5 loss of function 

predisposes neurons to multiple forms of cell death. The endangering action of CDKL5 mutations is 

likely to sensitize neurons in the brain to neurotoxic conditions known to promote neuronal death. 

Seizures are prominent in CDD patients and are usually severe and untreatable. Conceivably, 

individuals with CDKL5 deficiency may be more susceptible to oxidative stress as a direct 

consequence of seizures (Frantseva et al., 2000). Therefore, preventive and therapeutic strategies 

that target both excitotoxic and apoptotic pathways might be recommended to forestall 
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neurodegenerative processes in CDD. 
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CONCLUSION 

 In conclusion our study provides new insight into CDKL5 deficiency disorder, revealing a 

new CDKL5 substrate and its crucial role in the neuronal response to neurotoxic stimuli. The 

increasing definition of the signaling networks in which CDKL5 participates contributes to a better 

understanding of the pathomechanisms underlying the clinical phenotype of CDD patients.  

In addition to the newly discovered CDKL5 target, the phosphoprofiling study revealed 

misregulated proteins involved in well-known pathways as well as in new interesting physiological 

processes. Future studies will focus on the characterization of these new potential interactors so 

as to provide more in-depth knowledge of CDKL5 functions. 

Comprehension of the neurodevelopmental alterations that characterize CDKL5 disorder 

will expedite the discovery of new therapies for CDD. 
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