
1 

 

AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  

iinn  ccoottuutteellaa  ccoonn  LL’’ÉÉccoollee  NNaattiioonnaallee  SSuuppéérriieeuurree  ddee  CChhiimmiiee  ddee  MMoonnttppeelllliieerr  ((EENNSSCCMM)),,  

FFrraannccee  

 
 

DOTTORATO DI RICERCA IN 

 

CHIMICA 

 
Ciclo XXXIV 

 
Settore Concorsuale: 03/C2 

 

Settore Scientifico Disciplinare: CHIM/04 

  

 

 

 

 

PHYSICAL CHEMISTRY OF THE INTERACTIONS BETWEEN 

MULTICOMPONENT SOLVENTS AND BIOMASS 

 
 

 

 

Presentata da: Sonia Milena Aguilera Segura 

 

 

 

Coordinatore Dottorato     Supervisore 
 

Prof. Domenica Tonelli      Dr. Tzonka Mineva    

         Prof. Stefania Albonetti 

 

         Co-Supervisore 

         Prof. Francesco Di Renzo 
 

 

 

 

 

 

Esame finale anno 2019 



2 

 

 

THESE POUR OBTENIR LE GRADE DE DOCTEUR DE 
L’ECOLE NATIONALE SUPERIEURE DE CHIMIE DE MONTPELLIER 

 
En Chimie et Physico-Chimie des Matériaux 

 
École doctorale 459 – Sciences Chimiques Balard 

 

Unité de recherche – Institut Charles Gerhardt de Montpellier (ICGM) – UMR5253 
 

En partenariat international avec l’Université de Bologne, ITALIE 
 

 

 

Chimie-physique des interactions entre solvants 
multicomposants et biomasse 

 

 

 

 

 

Présentée par Sonia Milena AGUILERA SEGURA 
Le 27 novembre 2019 

 
Sous la direction de Tzonka MINEVA, 

Francesco DI RENZO et Stefania ALBONETTI 
 
 

Devant le jury composé de 
 

Mme Emilia SICILIA, professeure associée , Università della Calabria Rapportrice 
M. Yoshiharu NISHIYAMA, DR CNRS HDR, CERMAV, Grenoble  Rapporteur 
Mme Barbara BONELLI, professeure associé, Politecnico di Torino Examinatrice 
M. Marco GARAVELLI, professeur, Università di Bologna Examinateur 
M. Jean-Michel GUENET, DR CNRS, Université de Strasbourg Examinateur 
M. Eric CLOT, DR CNRS, Université de Montpellier Examinateur 
M. Ivan RIVALTA, professeure associé, Università di Bologna Membre invité 
Mme Stefania ALBONETTI, professeure associée, Università di Bologna Co-directrice de thèse 
M. Francesco DI RENZO, DR CNRS ENSCM, Montpellier Co-directeur de thèse 
Mme Tzonka MINEVA, DR CNRS, ENSCM, ICGM, Montpellier  Directrice de thèse 

 
 
  



3 

 

THESIS TO OBTAIN THE GRADE OF DOCTOR OF PHILOSOPHY OF THE 

ECOLE NATIONALE SUPÉRIEURE DE CHIMIE DE MONTPELLIER AND 

THE UNIVERSITÀ DI BOLOGNA 
   
 

In Chimie et Physico-Chimie des Matériaux- École doctorale 459 Chimie Balard 
 

In Chimica Industriale- Scuola Dottorale di Chimica  

 

In the framework of the Erasmus Mundus Joint Doctorate SINCHEM (Sustainable Industrial Chemistry) 

 

 

 

Physical chemistry of the interactions between 
multicomponent solvents and biomass 

 

 

 

 

 

Presented by Sonia Milena AGUILERA SEGURA 
The 27th of November 2019 

 
Under the supervision of Tzonka MINEVA, 

Francesco DI RENZO, and Stefania ALBONETTI 
 
 

In front of the commission 
 

Mme Emilia SICILIA, professore associato, Università della Calabria Reviewer 
M. Yoshiharu NISHIYAMA, DR CNRS HDR, CERMAV, Grenoble  Reviewer 
Mme Barbara BONELLI, professore associato, Politecnico di Torino Examiner 
M. Marco GARAVELLI, professore ordinario, Università di Bologna Examiner 
M. Jean-Michel GUENET, DR CNRS, Université de Strasbourg Examiner 
M. Eric CLOT, DR CNRS, Université de Montpellier Examiner 
M. Ivan RIVALTA, professore associato, Università di Bologna Invited member 
Mme Stefania ALBONETTI, professore associato, Università di Bologna Thesis Co-director 
M. Francesco DI RENZO, DR CNRS ENSCM, Montpellier Thesis Co-director 
Mme Tzonka MINEVA, DR CNRS, ENSCM, ICGM, Montpellier  Thesis Director 

 
  



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Abstract 

This research project has been carried out in the Sustainable Industrial Chemistry (SINCHEM) Erasmus 

Mundus Joint Doctorate. The research activity has been conducted both at the Ecole Nationale Supérieure de 

Chimie de Montpellier (ENSCM), as home university, under the supervision of Dr. Tzonka Mineva and Dr. 

Francesco Di Renzo, and at the University of Bologna, as host university, under the supervision of Prof. 

Stefania Albonetti in collaboration with Prof. Marco Garavelli and Prof. Ivan Rivalta. The objectives of this 

thesis focus on atomistic understanding of the interactions between lignocellulosic biomass and mixed 

solvents, studied with molecular dynamic (MD) simulations and quantum chemical (QM) approaches. The 

work is motivated by the experimental research carried out in our team (ICGM-MACS) on the fractionation of 

wood with mixed water/organic solvents. The observed unusual swelling of wood in a series of mixed 

aqueous solvents led to the hypothesis that synergic interactions of solvent components with biomass play 

an essential role in the cohesion of composite biomaterials, a subject of high fundamental and technological 

relevance.  

The project has been divided into the followings parts i) study of structures, intermolecular interactions, and 

polarity in terms of chemical hardness, of binary water-organic solvents  (ethanol, isopropanol, and 

acetonitrile) by MD ii) study of the solvent effect on conformations, role of inter- and intramolecular 

hydrogen bonds(HB) in the considered solvents and dynamics of lignocellulose compounds (cellulose, lignin, 

and xylan)  by MD,  QM, and QM/MM methods; iii) study of the solvent effect on the interactions between 

cellulose-lignin and xylose-lignin complexes by MD; and  iv) Ab-initio  spectroscopic features of 

lignocellulose compounds: the case of UV-VIS spectra of lignin dimer conformers.  

First, a systematic comparative study of structural and thermodynamic properties of the selected pure solvents 

(water, ethanol, acetonitrile, and isopropanol) and their binary aqueous mixtures (25, 50, and 75wt%) was 

carried out with MD simulations. Also, a simple method for the averaged, dynamic, total hardness 

computations is suggested. The computational methods and detailed results of this work can be found in 

ref.[1]. The obtained thermodynamic properties are in a good agreement with the experimental and previous 

theoretical studies, demonstrating the excellent performance of the TIP4P (water) and CHARMM36 (organic 

solvents) potentials for these types of binary mixtures. The analysis of the average numbers of HBs with the 

liquid composition shows that alcohol molecules tend to substitute water molecules, allowing compensating 

for the loss of H-bonds in the water solvent domains. Acetonitrile is not an H-bond donor, and it is inferred 

that the presence of water and the formation of H-bonds helps it to reduce the strong dipole-dipole interactions 

while preserving the microheterogeneity of the solvent mixture. The averaged hardness, similar to the other 

dynamic and thermodynamic properties, has a nonlinear profile with the solvent compositions. As a general 

trend, a softening of the water solvent by introducing the organic cosolvents is obtained with the only 
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exception for the isopropanol-water mixture at X = 0.75. The proposed method could be applicable within the 

HSAB principle to rationalise the behaviour of complex solute systems in mixed solvents. 

Next, Molecular Dynamics (MD) simulations were carried out in order to study the structure and dynamics of 

interactions between the solvents and lignocellulose model compounds (cellulose, lignin, and xylose). A 

thorough description of the computational details and results can be found in refs. [2]. These were 

characterised by solvent-accessible surface areas (SASA), radial distribution functions (RDF), torsion angles, 

H-bonding and H-bond lifetimes, and intermolecular energies. Also, we analysed the atom polarisation of 

cellulose chains and guaiacyl tetramers employing density functional theory (DFT) calculations, which was 

found to correlated with the observed preferred solvent – lignocelluloses interactions gathered from MD 

simulations. Furthermore, we analysed the stability of guaiacyl dimers by QM/MM simulations using the 

Born-Oppenheimer Molecular dynamics (BOMD) simulations for lignin, coupled to MD simulation of the 

solvent molecules (BOMD/MD). This allowed to infer that the stability of the lignin dimers in the solvents 

follows the order 0.75 EtOH > Water > EtOH > 0.75 ACN > ACN. The analysisof the BOMD/MD results 

together with the conclusions from MD simulations led to establish thatsolvent interactions can stabilise the 

lignin structure by gaining energy due to H-bonds formation with the solvent molecules. This compensates the 

loss of intramolecular H-bonds in the presence of solvents. In the case of 75% ethanol, the lignin-solvent 

interactions are, therefore, maximised and stabilised extended lignin conformation. The stacked lignin 

conformer in water, however, gains stability by reducing the surface-accessible area in order to minimise the 

hydrophobic interactions with water.Despite the relatively small lignin models, our results are in a qualitative 

agreement with recent studies that show an increase of lignin solubility in water-ethanol mixtures[3].The 

SASA distributions analysis shows an increase of the SASA of cellulose and lignin in the binary mixtures.  

The torsion angle analysis of the xylose glycosidic bond has shown that xylose adopts a left-handed threefold 

conformation in water and diluted mixtures, whereas a two-fold conformation is favoured in pure and 

concentrated organic solvents. The analysis of the β-O-4 torsion angle in lignin shows a dihedral conformation 

distribution in pure water and diluted ethanol which corresponds to a stacked conformation. In contrast, a 

more extended T-stacked conformation is found in pure and concentrated organic solvents. Furthermore, 

analysis of the site-to-site RDFs shows a preferential orientation of solvent molecules toward specific oxygens 

of the glucose monomer. This preferential solvent-Ocellulose binding varies with the nature of the organic 

solvent and the water content. For example, in water-acetonitrile solvent,the integration of the RDFs revealed 

a solvent phase separation at the cellulose interface, promoting the existence of water-rich and acetonitrile-

rich cellulose interfaces.Structure analysis indicates that chain deformation obeys to the selective presence of 

solvents in the different interfaces of cellulose. This deformation is a response of conformational transitions of 

the hydroxymethyl chain due to solvation. Consequently, intermolecular hydrogen bonds, as well as their 

dynamics, vary as a function of co-solvent concentration. The atomic charges (computed with DFT-Mulliken 
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population scheme) of cellulose and lignin oxygens in the presence of water are considerably affected by the 

solvent, whereas the effect is significantly reduced in the presence of acetonitrile.  

The effect of binary water-organic solvents on the adhesion of lignocellulose components was studied with 

molecular dynamics simulations, considering ethanol and acetonitrile as organic co-solvents in binary water-

organic solvent mixtures. The lignin-xylan and lignin-cellulose binding is significantly disrupted in the mixed 

solvents, which could be explained with preferential interactions between water or organicsolvent components 

and the individual polymers. In pure water, the hydrophobic nature of lignin favours the lignin affinity toward 

cellulose surface. Thus lignin-cellulose interactions are enhanced, and long-lasting H-bonds between lignin 

and cellulose are observed. On the contrary, xylose-lignin interactions are rapidly interrupted upon hydration 

of the xylose chain. The RDF analysis and interaction energies reveal that water-organic solvent mixtures act 

together to disrupt more effectively the cellulose-lignin interactions. However, our analyses show that the 

presence of the organic phase can enhance orslow down the detachment between xylose and lignin. This 

suggests that a detailed description of the intermolecular interactions between lignocellulose models and 

solvent molecules can provide better insight into the effect of water-organic mixtures on the xylan-lignin and 

lignin-cellulose adhesion.  

The aromatic nature of lignin makes it a great candidate for UV-VIS spectra studies, as each of its aromatic 

rings provides native local probes for tracking lignin dynamics in solution. Two-dimensional (2D) UV 

electronic spectroscopy (2DES) is a recently developed technique, which can disentangle signals arising from 

different intermolecular interactions that remain hidden in the 1D pump-probe spectra. 2DUV electronic 

spectroscopy can target the π-π* transitions of aromatic residues, and it can be employed for tracking all sorts 

of localised, delocalised, energy and charge transfer photoinduced phenomena; however, their interpretation 

proves to be challenging. Alternatively, computational simulation of 2DES can be used to separate the 

different peaks into their contributing specific electronic transitions, thus providing a tool to recognise, 

understand and interpret the observed primary fingerprints [4].   

In this work, we studied the electronic structure and conformations in water of a guaiacyl lignin dimer using 

2D electronic spectroscopy in the UV-VIS region, using the SOS//QM/MM, with QM = CASSCF and 

RASSCF. First, vertical excitation energies and 2D-UV/VIS excitation spectra were obtained for all lignin 

model monomers (guaiacol, creosol, homoveratrole) in gas phase, including all π and lone-pair electrons and 

orbitals in the active space, and they  were further compared against anisole and previously studied benzene 

and phenol, to aid in excited state assignments. We found an excellent agreement between the 2DEF obtained 

by both QM schemes for the monomers. Besides, we studied the 2D electronic spectra of stacked and 

unstacked lignin conformers in solution taken from MD simulations of the lignin dimer in water reported 



8 

 

above. The main result is that charge transfer (CT) states become bright upon stacking, allowing to distinguish 

between two conformers with different degrees of stacking. 

The research work over the three years SINCHEM project led to the following most significant conclusions: 

(i) The structures of mixed solvents are disturbed in comparison to their monocomponent counterparts and the 

mechanism for solvent structure disruption varies according to the solvent nature. 

(ii) A method to compute the dynamic hardness values, as estimates of solvents reactivity, is proposed. The 

dynamic hardness profile has a non-linear evolution with the liquid compositions, similarly to the 

thermodynamic properties of these non-ideal binary solvents. The solvent mixtures with predominant 

hydrogen bonding interactions (alcohol-water) are chemically harder (tending to preferably react with hard 

solutes) than those with predominant dipole-dipole interactions (acetonitrile-water). 

(iii) Non-linear effects have also been observed in the solvation of lignin, which reaches a maximum for 50% 

ethanol and 75% acetonitrile aqueous solution. 

(iv) The preferential interaction sites between lignocellulose components and the pure or binary solvent 

molecules were established in detail. These preferential interactions were evidenced to induce solvent-

dependent conformational changes of the lignocellulose compounds. We could, therefore, explain the 

substantial decrease in cellulose-lignin interactions in the presence of organic components in water. Even 

more, we could distinguish between ethanol and acetonitrile effects. Our results suggest that the preferential 

interactions of water and acetonitrile for different sites in both lignin and cellulose results in a more effective 

disruption of the lignin-cellulose interactions in water-acetonitrile solvents than in ethanol-water mixtures, and 

in the pure solvents. On the contrary, the addition of the organic phase in the water solvent slows down the 

xylose-lignin separation.  

(v) QM/MM models and methodology has been established to compute the stabilisation of lignocelluloses 

compounds in solvents, as illustrated in this work on lignin in water, ethanol, acetonitrile and their 75 wt% 

binary organic-aqueous mixtures, and lignin optical properties.  

(vi) Our results provide evidence that the use of the SOS//QM/MM approach employed here is suitable for 

studying different degrees of aggregation of lignin dimers by 2DUV-vis spectra. 
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Abstract 

Questo progetto di ricerca è stato condotto nell’ambito del Dottorato congiunto Erasmus Mundus di Chimica 

Industriale Sostenibile (SINCHEM). L'attività di ricerca si è svolta sia presso l'Ecole Nationale Supérieure de 

Chimie di Montpellier (ENSCM), come università di provenienza, sotto la supervisione della Dott.ssa Tzonka 

Mineva e del Dott. Francesco Di Renzo, sia presso l'Università di Bologna, come università ospitante, sotto la 

supervisione della Prof. Stefania Albonetti in collaborazione con il Prof. Marco Garavelli e il Prof. Ivan 

Rivalta. Gli obiettivi di questa tesi si concentrano sulla comprensione atomistica delle interazioni tra biomassa 

lignocellulosica e solventi misti, studiata con simulazioni di dinamica molecolare (MD) e approcci di chimica 

quantistica (QM). Il lavoro è motivato dalla ricerca sperimentale condotta nel nostro team (ICGM-MACS) sul 

frazionamento del legno con acqua mista / solventi organici. Il gonfiarsi insolito del legno osservato in una 

serie di solventi misti acquosi ha portato a formulare l'ipotesi che le interazioni sinergiche dei componenti del 

solvente con la biomassa svolgano un ruolo essenziale nella coesione dei biomateriali compositi, argomento di 

elevata rilevanza fondamentale e tecnologica. 

Il progetto è stato suddiviso nelle seguenti parti i) studio di strutture, interazioni intermolecolari e polarità in 

termini di durezza chimica, in solventi binari organico-acqua (etanolo, isopropanolo e acetonitrile) mediante 

MD ii) studio dell'effetto del solvente su conformazioni, del ruolo dei legami inter- e intra-molecolari 

dell’idrogeno (HB) nei solventi considerati e della dinamica dei composti lignocellulosici (cellulosa, lignina e 

xilano) mediante metodi MD, QM e QM / MM; iii) studio dell'effetto del solvente sulle interazioni tra i 

complessi di cellulosa-lignina e xilosio-lignina mediante MD; e iv) caratteristiche spettroscopiche ab-initio dei 

composti della lignocellulosa: il caso degli spettri UV-VIS dei conformeri dimeri di lignina.  

In primo luogo, uno studio comparativo sistematico delle proprietà strutturali e termodinamiche dei solventi 

puri selezionati (acqua, etanolo, acetonitrile e isopropanolo) e le loro miscele acquose binarie (25, 50 e 75% in 

peso) è stato condotto con simulazioni MD. Inoltre, viene suggerito un metodo semplice per i calcoli della 

durezza media, dinamica e totale. I metodi computazionali ed i risultati dettagliati di questo lavoro sono 

riportati in ref. [1]. Le proprietà termodinamiche ottenute sono in buon accordo con gli studi sperimentali e 

teorici precedenti, dimostrando le eccellenti prestazioni dei potenziali del modello TIP4P (acqua) e 

CHARMM36 (solventi organici) per questi tipi di miscele binarie. L'analisi dei numeri medi di HB con la 

composizione liquida mostra che le molecole di alcol tendono a sostituire le molecole di acqua, consentendo 

di compensare la perdita di legami H nei domini dei solventi d'acqua. L'acetonitrile non è un donatore di 

legami H e si deduce come la presenza di acqua e la formazione di legami H aiuti a ridurre le forti interazioni 

dipolo-dipolo preservando la microeterogeneità della miscela di solventi. La durezza media, simile alle altre 

proprietà dinamiche e termodinamiche, ha un profilo non lineare con le composizioni del solvente. Come 

tendenza generale, si ottiene un addolcimento del solvente in acqua introducendo i cosolventi organici, con la 
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sola eccezione della miscela isopropanolo-acqua a X = 0,75. Il metodo proposto potrebbe essere applicabile 

nell'ambito del principio HSAB per razionalizzare il comportamento di sistemi complessi di soluti in solventi 

misti. 

Successivamente, sono state eseguite simulazioni di Molecular Dynamics (MD) al fine di studiare la struttura 

e la dinamica delle interazioni tra i solventi ed il modello dei composti di lignocellulosa (cellulosa, lignina e 

xilosio). Una descrizione completa dei dettagli computazionali e dei risultati può essere trovata nei riferimenti 

[2]. Questi erano caratterizzati da aree di superficie accessibili ai solventi (SASA), funzioni di distribuzione 

radiale (RDF), angoli di torsione, legami H e durata dei legami H, ed energie intermolecolari. In aggiunta, 

abbiamo analizzato la polarizzazione dell'atomo delle catene di cellulosa e dei tetrameri di guaiacile mediante 

calcoli con la teoria funzionale della densità (DFT), che sono risultati correlare con le interazioni preferenziali 

osservate tra solvente e lignocellulose ottenute da simulazioni MD. Inoltre, abbiamo analizzato la stabilità dei 

dimeri guaiacilici mediante simulazioni QM / MM utilizzando le simulazioni di dinamica molecolare di Born-

Oppenheimer (BOMD) per la lignina, insieme alla simulazione MD delle molecole di solvente (BOMD / 

MD). Ciò ha permesso di dedurre che la stabilità dei dimeri di lignina nei solventi segue l'ordine 0,75 EtOH> 

Acqua> EtOH> 0,75 ACN> ACN. L'analisi dei risultati di BOMD / MD, insieme alle conclusioni delle 

simulazioni MD, ha portato a stabilire che le interazioni dei solventi possono stabilizzare la struttura della 

lignina acquisendo energia grazie alla formazione di legami H con le molecole di solvente. Ciò compensa la 

perdita di legami H intramolecolari in presenza di solventi. Nel caso dell'etanolo al 75%, le interazioni 

lignina-solvente sono pertanto massimizzate e stabilizzano la conformazione estesa della lignina. Il 

conformatore impilato di lignina in acqua, tuttavia, guadagna stabilità riducendo l'area accessibile in superficie 

al fine di ridurre al minimo le interazioni idrofobe con l'acqua. Nonostante i modelli relativamente piccoli di 

lignina, i nostri risultati sono in accordo qualitativo con studi recenti che mostrano un aumento della solubilità 

della lignina in miscele di acqua-etanolo [3]. L'analisi delle distribuzioni SASA mostra un aumento del SASA 

di cellulosa e lignina nel binario miscele. 

L'analisi dell'angolo di torsione del legame glicosidico dello xilosio ha mostrato che lo xilosio adotta una 

conformazione triplice sinistrorsa in acqua e miscele diluite, mentre una conformazione duplice è favorita nei 

solventi organici puri e concentrati. L'analisi dell'angolo di torsione β-O-4 nella lignina mostra una 

distribuzione di conformazione diedrica in acqua pura e etanolo diluito che corrisponde a una conformazione 

impilata. Al contrario, una conformazione impilata a T più estesa si trova in solventi organici puri e 

concentrati. Inoltre, l'analisi delle RDF per ogni sito mostra un orientamento preferenziale delle molecole di 

solvente verso specifici atomi di ossigeno del monomero di glucosio. Questo legame preferenziale solvente-

Ocellulosa varia in base alla natura del solvente organico ed al contenuto di acqua. Ad esempio, nel solvente 

acqua-acetonitrile l'integrazione delle RDF ha rivelato una separazione di fase del solvente all'interfaccia della 

cellulosa, promuovendo l'esistenza di interfacce di cellulosa ricche di acqua e di acetonitrile. L'analisi della 
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struttura indica che la deformazione della catena obbedisce alla presenza selettiva di solventi nelle diverse 

interfacce della cellulosa. Questa deformazione è una risposta delle transizioni conformazionali della catena 

idrossimetilica dovuta alla solvatazione. Di conseguenza, i legami intermolecolari dell’idrogeno e le loro 

dinamiche variano in funzione della concentrazione di co-solvente. Le cariche atomiche (calcolate con lo 

schema di popolazione DFT-Mulliken) degli atomi di ossigeno di cellulosa e lignina in presenza di acqua sono 

notevolmente influenzate dal solvente, mentre l'effetto è significativamente ridotto in presenza di acetonitrile.  

L'effetto dei solventi binari organici-acquosi sull'adesione dei componenti lignocellulosici è stato studiato con 

simulazioni di dinamica molecolare, considerando etanolo e acetonitrile come co-solventi organici in miscele 

binarie di solventi organici-acquosi. Il legame lignina-xilano e lignina-cellulosa è significativamente interrotto 

nei solventi misti, il che potrebbe essere spiegato con interazioni preferenziali tra l’acqua o i componenti di 

solventi organici e i singoli polimeri. In acqua pura, la natura idrofobica della lignina favorisce l'affinità della 

lignina con la superficie della cellulosa, migliorando così le interazioni lignina-cellulosa, e si osservano 

legami H di lunga durata tra lignina e cellulosa. Al contrario, le interazioni xilosio-lignina vengono 

rapidamente interrotte all'idratazione della catena del xilosio. L'analisi RDF e le energie di interazione 

rivelano che le miscele di solvente organico-acquoso agiscono insieme per interrompere più efficacemente le 

interazioni cellulosa-lignina. Tuttavia, le nostre analisi mostrano che la presenza della fase organica può 

migliorare o rallentare il distacco tra xilosio e lignina. Ciò suggerisce che una descrizione dettagliata delle 

interazioni intermolecolari tra i modelli di lignocellulosa e le molecole di solvente può fornire una migliore 

comprensione dell'effetto delle miscele idro-organiche sull'adesione di xilan-lignina e lignina-cellulosa. 

La natura aromatica della lignina la rende un ottimo candidato per gli studi sugli spettri UV-VIS, poiché 

ciascuno dei suoi anelli aromatici fornisce sonde locali native per il monitoraggio della dinamica della lignina 

in soluzione. La spettroscopia elettronica bidimensionale UV (2DES) è una tecnica, recentemente sviluppata, 

che può isolare i segnali derivanti da diverse interazioni intermolecolari che rimangono nascoste negli spettri 

pompa-sonda 1D. La spettroscopia elettronica 2DUV può indirizzare le transizioni π-π* dei residui aromatici e 

può essere impiegata per tracciare tutti i tipi di fenomeni fotoindotti localizzati, delocalizzati, di trasferimento 

di energia e carica; tuttavia, la loro interpretazione si rivela complicata. In alternativa, la simulazione 

computazionale del 2DES può essere utilizzata per separare i diversi picchi nelle transizioni elettroniche 

specifiche che contribuiscono, fornendo così uno strumento per riconoscere, comprendere e interpretare le 

impronte digitali primarie osservate [4]. 

In questo lavoro, abbiamo studiato la struttura elettronica e le conformazioni in acqua di un dimero di lignina 

guaiacilica mediante spettroscopia elettronica 2D nella regione UV-VIS, usando SOS // QM / MM, con QM = 

CASSCF e RASSCF. Innanzitutto, sono state ottenute energie di eccitazione verticale e spettri di eccitazione 

2D-UV / VIS per tutti i monomeri del modello di lignina (guaiacolo, creosolo, omoveratrolo) in fase gassosa, 



13 

 

inclusi tutti gli elettroni e gli orbitali π e coppie solitarie nello spazio attivo, e sono stati ulteriormente 

confrontati con l'anisolo e il benzene ed il fenolo precedentemente studiati, per essere d’aiuto nelle 

assegnazioni di stati eccitati. Abbiamo trovato un eccellente accordo tra i 2DEF ottenuti da entrambi gli 

schemi QM per i monomeri. Inoltre, abbiamo studiato gli spettri elettronici 2D di conformatori di lignina 

impilati e non impilati in soluzione ottenuti da simulazioni MD del dimero di lignina in acqua, sopra riportate. 

Il risultato principale è che gli stati di trasferimento di carica (CT) diventano luminosi al momento 

dell'impilamento, consentendo di distinguere tra due conformatori con diversi gradi di impilamento. 

Il lavoro di ricerca nel triennio del progetto SINCHEM ha portato alle seguenti conclusioni più significative: 

(i) Le strutture dei solventi misti sono disturbate in confronto alle loro controparti monocomponenti, ed il 

meccanismo per la distruzione della struttura del solvente varia a seconda della natura del solvente. 

(ii) Viene proposto un metodo per calcolare i valori di durezza dinamica, come stime della reattività dei 

solventi. Il profilo di durezza dinamica ha un'evoluzione non lineare con le composizioni liquide, 

analogamente alle proprietà termodinamiche di questi solventi binari non ideali. Le miscele di solventi con 

predominanti interazioni di legami idrogeno (alcool-acqua) sono chimicamente più dure (avendo la tendenza a 

reagire preferibilmente con soluti duri) rispetto a quelle con interazioni dipolo-dipolo predominanti 

(acetonitrile-acqua). 

 (iii) Effetti non lineari sono stati osservati anche nella solvatazione della lignina, che raggiunge un massimo 

per soluzione acquosa di etanolo al 50% e acetonitrile al 75%. 

(iv) I siti di interazione preferenziale tra i componenti della lignocellulosa e le molecule pure o binarie di 

solvente sono stati stabiliti in dettaglio. Queste interazioni preferenziali sono state rilevate indurre 

cambiamenti conformazionali dei composti lignocellulosici dipendenti dal solvente. Potremmo quindi 

spiegare la sostanziale riduzione delle interazioni cellulosa-lignina in presenza di componenti organici 

nell'acqua. Ancor di più, potremmo distinguere tra effetti di etanolo e acetonitrile. I nostri risultati 

suggeriscono che le interazioni preferenziali di acqua e acetonitrile per siti diversi sia nella lignina che nella 

cellulosa determinano un'interruzione più efficace delle interazioni lignina-cellulosa nei solventi acqua-

acetonitrile rispetto alle miscele etanolo-acqua e nei solventi puri. Al contrario, l'aggiunta della fase organica 

nel solvente acquoso rallenta la separazione xilosio-lignina. 

(v) Sono stati stabiliti modelli e metodologie QM / MM per calcolare la stabilizzazione dei composti 

lignocellulosici in solventi, come illustrato in questo lavoro sulla lignina in acqua, etanolo, acetonitrile e le 

loro miscele binarie idro-organiche al 75% in peso, e le proprietà ottiche della lignina . 
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(vi) I nostri risultati dimostrano che l'uso dell'approccio SOS // QM / MM qui impiegato è adatto per studiare 

diversi gradi di aggregazione di dimeri di lignina mediante spettri 2DUV-vis. 
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Résumé 

Ce projet de recherche a été réalisé dans le cadre du Doctorat en cotutelle Erasmus Mundus en Chimie 

Industrielle Durable (SINCHEM). L’activité de recherche a été menée à la fois à l’École Nationale Supérieure 

de Chimie de Montpellier (ENSCM), en tant qu’université d’origine, sous la supervision du Dr. Tzonka 

Mineva et du Dr. Francesco Di Renzo, et à l’Université de Bologne, en tant qu’université hôte, sous la 

supervision du Prof. Stefania Albonetti en collaboration avec le Prof. Marco Garavelli et le Prof. Ivan Rivalta. 

Les objectifs de cette thèse se concentrent sur la compréhension atomistique des interactions entre la biomasse 

lignocellulosique et les solvants mixtes, étudiés avec des simulations dynamiques moléculaires (MD) et des 

approches chimiques quantiques (QM). Le projet est motivé par la recherche expérimentale menée au sein de 

notre équipe (ICGM-MACS) sur le fractionnement du bois avec des solvants mixtes eau/organique. Le 

gonflement inhabituel du bois observé dans une série de solvants aqueux mélangés a conduit à l’hypothèse 

que les interactions synergiques des composants solvants avec la biomasse jouent un rôle essentiel dans la 

cohésion des biomatériaux composites, un sujet de grande importance fondamentale et technologique. 

Le projet est composé des quatre parties suivantes: i) l’étude des structures, des interactions intermoléculaires 

et de la polarité en termes de dureté chimique, des solvants binaires eau-organique (éthanol, isopropanol et 

acétonitrile) par MD; ii) l’étude de l’effet des solvants sur les conformations, du rôle des liaisons inter- et 

intramoléculaires de l’hydrogène (HB) dans les solvants considérés et de la dynamique des composés 

lignocellulosiques (cellulose, lignine et xylane) par les méthodes MD, QM et QM/MM; iii) l’étude de l’effet 

du solvant sur les interactions entre la cellulose-lignine et les complexes xylose-lignine par MD; et 

finalement, iv) l’étude des caractéristiques spectroscopiques ab-initio des composés lignocellulosiques : cas 

des spectres UV-VIS des conformateurs de lignine dimer. 

La première étape est la réalisation d’une étude orientée vers la comparaison systématique des propriétés 

structurales et thermodynamiques des solvants purs sélectionnés (eau, éthanol, acétonitrile et isopropanol) et 

de leurs mélanges aqueux binaires (25, 50 et 75 % en poids) au moyen de simulations MD. Pour y parvenir, 

une méthode simple pour les calculs de dureté moyenne, dynamique et totale est suggérée. Les méthodes de 

calcul et les résultats détaillés de ces travaux se trouvent dans la réf. [1].Les propriétés thermodynamiques 

obtenues sont en accord avec les études théoriques expérimentales précédentes, démontrant l’excellente 

performance des champs de force TIP4P (eau) et CHARMM36 (solvants organiques) pour ce type de 

mélanges binaires. De même, l’analyse des nombres moyens de HB de composition liquide montre que les 

molécules d’alcool ont tendance à remplacer les molécules d’eau, ce qui permet de compenser la perte de 

liaisons H dans les domaines des solvants d’eau. L’acétonitrile n’est pas un donneur de liaisons H, on en 

déduit que la présence d’eau et la formation de liaisons H contribuent à la réduction des fortes interactions 
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dipôle-dipole tout en préservant la microhétérogénéité du mélange solvant. En outre, la dureté moyenne, 

similaire aux autres propriétés dynamiques et thermodynamiques, a un profil non linéaire avec les 

compositions de solvant. Comme tendance générale, on obtient un adoucissement du solvant d’eau en 

introduisant les cosolvents organiques, à exception du mélange isopropanol-eau à X = 0,75. La méthode 

proposée pourrait être applicable dans le cadre du principe HSAB pour rationaliser le comportement des 

systèmes à soluté complexe dans les solvants mixtes. 

Ensuite, des simulations de dynamique moléculaire (MD) ont été effectuées afin d’étudier la structure et la 

dynamique des interactions entre les solvants et les composés du modèle lignocellulosique (cellulose, lignine 

et xylose). Une description approfondie des détails computationnelles et des résultats est disponible dans les 

références. [2]. Les interactions entre les solvants et les composés ont été caractérisés par des zones de surface 

accessibles aux solvants (SASA), des fonctions de distribution radiale (RDF), des angles de torsion, des 

durées de vie des liaisons H et H, et aussi par des énergies intermoléculaires. Également, et s’appuyant sur la 

théorie fonctionnelle de la densité (DFT), on a analysé la polarisation des atomes des chaînes de cellulose et 

des tétramères de guaiacyle, d’où on a constaté qu’ils étaient corrélés avec le solvant préféré observé – 

interactions lignocellulosiques recueillies à partir des simulations MD. De plus, on a analysé la stabilité des 

dimères de guaiacyle par simulations QM/MM à l’aide des simulations de dynamique moléculaire Born-

Oppenheimer (BOMD) pour la lignine, couplées à la simulation MD des molécules de solvant (BOMD/MD). 

Cela a permis de déduire que la stabilité des dimères de lignine dans les solvants suit l’ordre 0,75 EtOH> Eau 

>EtOH> 0,75 ACN > ACN. D’un autre côté, l’analyse des résultats BOMD/MD ainsi que les conclusions des 

simulations MD, ont permis d’établir que les interactions des solvants peuvent stabiliser la structure de la 

lignine en gagnant de l’énergie grâce à la formation de liaisons H avec les molécules de solvant, ce qui 

compense la perte de liaisons H intramoléculaires en présence de solvants. Dans le cas de l’éthanol à 75wt%, 

les interactions lignine-solvant sont donc maximisées et stabilisent la conformation lignine étendue. 

Néanmoins, la lignine empilée respecte dans l’eau gagne la stabilité en réduisant la surface accessible, ce qui 

permet la minimisation des interactions hydrophobes. Malgré les modèles de lignine relativement petits, les 

résultats obtenus concordent qualitativement avec les études récentes qui montrent une augmentation de la 

solubilité de la lignine dans les mélanges eau-éthanol [3]. De plus, l’analyse des distributions SASA montre 

une augmentation du SASA de cellulose et de lignine dans les mélanges binaires. 

La troisième étape est concentrée sur l’analyse de l’angle de torsion de la liaison glycosidique xylose a montré 

que la xylose adopte une conformation triple gauchère dans l’eau et les mélanges dilués, tandis qu’une 

conformation double est privilégiée dans les solvants organiques purs et concentrés. L’analyse de l’angle de 

torsion β-O-4 en lignine montre une distribution de conformation dièdre en eau pure et éthanol dilué qui 

correspond à une conformation empilée.En revanche, une conformation T-empilée plus étendue se trouve dans 

les solvants organiques purs et concentrés. De plus, l’analyse des fonction de distribution radiale (FDR) de 
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site à site montre une orientation préférentielle des molécules de solvants vers des oxygènes spécifiques du 

monomère de glucose. Cette liaison préférentielle solvant-Ocellulose varie selon la nature du solvant organique et 

la contenu en eau. Par exemple, dans le solvant eau-acétonitrile, l’intégration des FDR a mis en évidence la 

séparation de phase solvant à l’interface cellulose. L’analyse de structure montre que la déformation de la 

chaîne de la cellulose solvatée par transition conformationnelle de la chaîne hydroxyméthyle obéit à la 

présence sélective de solvants dans les différentes interfaces de la cellulose. Par conséquent, les liaisons 

intermoléculaires d’hydrogène ainsi que leur dynamique varient en fonction de la concentration du co-

solvant. Les charges atomiques (calculées avec le schéma de population DFT-Mulliken) de cellulose et de 

lignine oxygènes en présence d’eau sont considérablement affectées par le solvant, tandis que l’effet est 

significativement réduit en présence d’acétonitrile. 

L’effet des solvants hydro organiques binaires sur l’adhérence des composants lignocellulosiques a été étudié 

à travers des simulations de dynamique moléculaire, en considérant l’éthanol et l’acétonitrile comme des co-

solvants organiques dans des mélanges binaires eau-solvants organiques. La liaison lignine-xylane et lignine-

cellulose est considérablement perturbée dans les solvants mélangés, ce qui pourrait s’expliquer par des 

interactions préférentielles entre l’eau ou les composants organiques du solvant et les polymères 

individuels.Cependant, dans l’eau pure, la nature hydrophobe de la lignine favorise l’affinité de la lignine à la 

surface de la cellulose, ce qui améliore les interactions lignine-cellulose et permet d’observer des liaisons H 

durables entre la lignine et la cellulose. Autrement, les interactions xylose-lignine sont rapidement 

interrompues lors de l’hydratation de la chaîne xylose. Non seulement l’analyse du RDF mais aussi les 

énergies d’interaction révèlent que les mélanges de solvants eau-organique agissent ensemble pour perturber 

plus efficacement les interactions cellulose-lignine. Pourtant, nos analyses montrent que la présence de la 

phase organique peut augmenter ou ralentir le détachement entre la xylose et la lignine., ce qui suggère qu’une 

description détaillée des interactions intermoléculaires entre les modèles de lignocellulose et les molécules de 

solvant pourrait fournir un meilleur aperçu de l’effet des mélanges eau-organique sur l’adhérence xylo-lignine 

et lignine-cellulose. 

La nature aromatique de la lignine en fait un excellent candidat pour les études spectrales UV-VIS, chacun de 

ses cycles aromatiques fournit des sondes locales natives pour suivre la dynamique de la lignine en 

solution. La spectroscopie électronique UV (2DES) bidimensionnelle (2D) est une technique récente 

permettant de démêler les signaux résultants des différentes interactions intermoléculaires qui restent cachées 

dans les spectres de la pompe-sonde 1D. La spectroscopie électronique 2DUV peut non seulement cibler les 

transitions π-π* des résidus aromatiques, mais aussi peut être utilisée pour suivre les variétés de phénomènes 

photo induits localisés, délocalisés, de transfert d’énergie et de charge. Toutefois, leur interprétation s’avère 

difficile. Par ailleurs, la simulation computationnelle de 2DES peut être utilisée pour séparer les différents pics 



18 

 

des transitions électroniques spécifiques, fournissant ainsi un outil qui permet la reconnaissance, 

compréhension et interprétions des empreintes digitales primaires observées [4]. 

Dans ce travail, nous avons étudié la structure électronique et les conformations dans l’eau d’un dimer lignine 

guaiacyl en utilisant la spectroscopie électronique 2D dans la région UV-VIS, et le SOS//QM/MM, avec QM 

= CASSCF et RASSCF. D’un côté, des énergies d’excitation verticale et des spectres d’excitation 2D-UV/VIS 

ont été obtenus pour tous les monomères de lignine (guaiacol, créosol, homovératrole) en phase gazeuse, y 

compris tous les électrons π et les électrons monopièces et orbitaux dans l’espace actif. Puis, ils ont été 

comparés à l’anisole et au benzène et phénol, précédemment analysées, dans le bout de contribuer aux d’état 

excité. Nous avons trouvé un excellent accord entre le 2DEF obtenu par les deux systèmes QM pour les 

monomères. En outre, nous avons étudié les spectres électroniques 2D des aligneurs empilés et non plaqués en 

solution tirés des simulations MD du dimère de lignine dans l’eau, signalées ci-dessus. Le résultat principal 

décrit que les états de transfert de charge (CT) deviennent brillants lors de l’empilage, permettant de 

distinguer entre deux conformes avec des degrés d’empilage différents. 

Les travaux de recherche menés au cours des trois années du projet SINCHEM ont abouti aux conclusions 

suivantes: 

(i) Les structures des solvants mixtes sont perturbées par rapport à leurs contreparties monocomponiques et le 

mécanisme de perturbation de la structure des solvants varie selon la nature du solvant. 

(ii) Une méthode de calcul des valeurs de dureté dynamique, sous forme d’estimations de la réactivité des 

solvants, est proposée. Le profil de dureté dynamique et les propriétés thermodynamiques des solvants 

binaires non idéaux évoluent de façon non linéaire avec les compositions liquides. Les mélanges de solvants 

avec des interactions prédominantes de liaison hydrogène (alcool-eau) sont chimiquement plus dure (ayant 

tendance à réagir avec des solutés durs) que ceux avec des interactions dipôle-dipole prédominantes 

(acétonitrile-eau). 

(iii) Des effets non linéaires ont également été observés dans la solvation de la lignine, qui atteint un 

maximum de 50wt% d’éthanol et de 75wt% d’acétonitrile en solution aqueuse. 

(iv) Les sites d’interaction préférentiels entre les composants lignocellulosiques et les molécules à solvant pur 

ou binaire ont été établis en détail. Il a été démontré que ces interactions préférentielles induisaient des 

changements conformationnels dépendant des solvants des composés lignocellulosiques. Cela pourrait donc 

expliquer la diminution substantielle des interactions cellulose-lignine en présence de composants organiques 

dans l’eau. De plus, nous pourrions dissocier les effets de l’éthanol de ceux de l’acétonitrile. Les résultats 

suggèrent que les interactions préférentielles de l’eau et de l’acétonitrile pour différents sites dans la lignine et 
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la cellulose entraînent une perturbation plus efficace des interactions lignine-cellulose dans l’eausolvants 

acétonitrile que dans les mélanges éthanol-eau et les solvants purs. Au contraire, l’ajout de la phase organique 

dans le solvant à eau ralentit la séparation xylose-lignine. 

(v) Des modèles et une méthodologie QM/MM ont été établis pour calculer la stabilisation des composés 

lignocellulosiques dans les solvants, comme le montrent ces travaux sur l’apprentissage dans l’eau, l’éthanol, 

l’acétonitrile et leur 75wt% les mélanges aqueux et les propriétés optiques de la lignine.  

(vi) Nos résultats montrent que l’utilisation de l’approche SOS//QM/MM utilisée ici est adaptée à l’étude de 

différents degrés d’agrégation des dîners de lignine par les spectres de 2DUV-vi. 
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General Introduction 

Use of petroleum as a source for fuel and chemicals during the last centuries has provided a cheap way to 

satisfy the needs of society by leaving, however, a footprint in the environment. The awareness of its negative 

impact along with the anticipated depletion of petroleum reserves in the next few decades has arisen an 

intense interest from industry and academy towards finding next-generation feedstocks. Advances in genetics, 

biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting 

renewable biomass to valuable fuels and chemical products [1]. Wood is highly abundant and can be used as 

an inexpensive feedstock [2, 3] without compromising the food supply [4] while doing sustainable and 

responsible use of the resources [5]. 

Wood –i.e., lignocellulosic biomass- is a natural, composite material constructed from a variety of organic 

polymers, which possesses unique structural and chemical characteristics rendering it desirable for a broad 

range of applications [6, 7]. The skeletal material of wood cell walls is cellulose, a long chain, linear sugar 

polymer composed of glucose monomers and it accounts for about 40-45% of the dry weight of normal wood 

tissue. According to how it is treated, cellulose can be used in a plethora of applications ranging from paper, 

film, explosives, plastics, textiles, in addition to having many other industrial uses, such as biofuel production 

[8-15]. Cellulose is organised into fibrils [16] and interacts with a surrounding matrix formed by 

hemicellulose and lignin [17, 18]. Hemicellulose, a lower molecular weight polysaccharide that contains short 

chains of carbohydrates, serves as a matrix substance for the cellulose superstructure. The carbohydrates in 

hemicellulose represent mostly combinations of various five-carbon sugars (xylose and arabinose) and six-

carbon sugars (glucose, mannose, and galactose) [7]. Once isolated, the potential applications for 

hemicellulose include barrier materials for food packaging or biopolymers with new properties [19], among 

others [19-25].  

Lignin, the third major constituent of wood after hemicelluloses, composes around 25-35% of the total dry 

weight of the polysaccharide wall substances [7]. It permeates both cell walls and intercellular regions (middle 

lamella) and plays a significant role in imparting rigidity to the polysaccharide wall substances [7]. Lignin 

interactions with cellulose determine wood mechanical properties, such as strength, creep, durability and 

ageing [26]. Lignin is a three dimensional, highly branched, and polyphenolic molecule complex structure 

with high molecular weight and a variety of lignin units and linkages. The phenylpropanoid unit is the basic 

structure of lignin, consisting of an aromatic ring and a 3-C side chain [27]. Two types of inter-unit linkages 

(C-O and C-C linkages) bind several aromatic units, with the β-O-4 ether bond being the predominant inter-

unit linkage [28]. Lignin can be used in the production of a variety of chemicals, such as antioxidants, binders, 
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and dispersants, among others [29-35]. Moreover, minor low-molar-mass extraneous materials, mostly 

organic extractives and inorganic minerals,  are also present in wood (usually 4%-10%)[36] 

Disassembling of lignocellulose matter in paper pulping is a significant economic activity, enabling the use of 

renewable resources to satisfy the world needs of more than 400 Mt of paper and cardboard per year [38]. In 

most current chemical pulping, the only product targeted is oligocellulose, and the solubilised lignin fraction 

is slightly more than a waste, which is only thermally valorised in the wet combustion process needed to 

recycle the salts and the aggressive inorganic chemicals used in the pulping process [39]. The introduction of 

greener processes for disassembling plant biomass remains a major environmental issue, which could allow a 

better valorisation of the rich chemistry of lignin components. The higher purity requirement for cellulose 

used in second-generation ethanol biorefineries is fostering development of organosolv pulping processes, 

favouring the recovery of lignin coproducts [40-42].  

The use of multicomponent solvents has provided remarkable results in fractionation processes of several 

levels of severity, ranging from swelling, dilute acid, hydrothermal, steam explosion, alkaline treatment, to 

organosolv pulping [4, 43-53]. In organosolv fractionation [43], for example, wood is in contact with different 

solvents to produce treated fractions of cellulose pulp, soluble lignin, and hemicelluloses-derived products. 

Despite all invested efforts, no fractionation method is currently capable of valorising all functionalities of 

lignocellulose components in an economically viable commercial-scale deconstruction process. 

Therefore, the complex and versatile nature of lignocellulose puts fractionation at the core of most successful 

valorisation processes. Nevertheless, these biopolymers form a complex matrix, intricately cross-linked with a 

network of interactions. Hemicellulose and lignin are covalently and non-covalently linked, while cellulose 

and hemicelluloses are connected exclusively by non-covalent interactions. Moreover, the polysaccharides of 

the cell wall, cellulose and hemicellulose, have a strong affinity for water molecules in either their liquid or 

vapour state. Lignin, on the other hand, is considered mostly hydrophobic. Therefore, investment for 

techniques and technologies for lignocellulose deconstruction into its structural constituents represents a 

challenge since the fractionation process is crucial to the subsequent valorisation of the fractions [43]. 

Furthermore, to make end processes feasible, the fractionation step should produce easily treated fractions, 

such as cellulose pulp, soluble lignin, and hemicellulose-derived products (oligomers, sugars, furans, organic 

acids, etc.) [43].  

Understanding of the underlying physicochemical mechanisms is expected to lead to essential innovations in 

the biomass fractionation technology, rendering bio-sourced synthons and platform molecules available in 

economically sustainable ways. Understanding the mechanisms of biomass breakdown and its interactions 

with the solvent medium during fractionation will lead to more efficient use of biomass. Furthermore, the 
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reduction of the energetic costs of the fractionation processes passes through the optimisation of the 

interactions between the different components of the biomass and a solvent medium [4]. This has stimulated a 

significant amount of recent experimental and theoretical investigations of lignocellulosic polymers in mono-

component solvents [54-89], aiming to shed light on the microscopic interactions between crystalline or 

amorphous biopolymers. Moreover, a better understanding of the interactions between biomass components 

and solvents is also an essential requirement for the design of more effective catalytic processes dealing with 

renewable resources and could provide useful information for the study of the reactivity of any kind of 

composites.  

Project Description 

This work is motivated by the experimental research carried out in our team (ICGM-MACS) on the 

fractionation of wood with mixed water-organic solvents. Swelling, the first step in wood dissolution, has 

been studied to understand the solvent effect on the volumetric change of wood in water and organic solvents 

[90-95]. The observed unusual swelling of wood in a series of mixed aqueous solutions (discussed in more 

details in Chapter 1- State of the Art) has shown not only higher swelling values for selected mixed aqueous 

solvents, but also a nonlinear relation between the volume swollen and the concentration of the organic 

component in the solution [90, 94, 96-99]. This evolution of wood volume with the concentration of the 

organic solvents shows a behaviour similar to gels, with a significant swelling for solutions of intermediate 

polarity [90]. Thus, these observations have led to the hypothesis that synergic interactions of solvent 

components with biomass play an important role in the cohesion of composite biomaterials, a subject of high 

fundamental and technological relevance. There is a consensus in the literature [85, 89] that changes in the 

morphology of lignocellulosic biomass as exposed to mixed solvent play a vital role in the increase of its 

solubility, i.e. swelling, and therefore, promotes the fractionation of the material. However, the factors 

responsible for such behaviour at a molecular scale are still scarcely available. Moreover, understanding the 

effect of various compositions of multi-component solvents on the molecular structures, reactivity and solute-

solvent specific interactions can be most appropriately achieved employing theoretical methods. Molecular-

scale studies performed by computational methods are very promising, but the results are scarce. Furthermore, 

the study of binary mixtures effects on lignocellulosic biomass remains unexplored. 

In view of the aforesaid, the objectives of this thesis focus on atomistic understanding of the interactions 

between lignocellulosic biomass and binary water-organic solvent mixtures. To achieve this scope, we 

carried out predominantly molecular dynamic (MD) simulations on model lignocelluloses compounds in 

various solvents. We aim to gain knowledge on wood polymer-solvent specific interactions, and 

lignocellulose properties from an atomistic scale. To this end, we elaborated a computational protocol based 

on combination of molecular dynamics (MD), combined quantum mechanics/molecular mechanics (QM/MM) 
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scheme and quantum mechanics (QM) approaches in conjunction with ab-initio Born-Oppenheimer molecular 

dynamics (BOMD) to evaluate the solvent effect on wood molecular structures, their solvent-specific 

interactions and properties explicitly. The QM density functional theory (DFT) was used to compute the 

cellulose and lignin atomic polarisation, whereas BOMD/MD was employed to study the lignin stabilisation 

energy in water, ethanol, acetonitrile, and in their mixtures at 75%. QM/MM scheme was also undertaken for 

calculations of optical (UV-VIS) characteristic fingerprints of lignin-conformers and to estimate the effect of 

solvents, using higher-level wave-function QM methods. 

This research project has been carried out in the Sustainable Industrial Chemistry (SINCHEM) Erasmus 

Mundus Joint Doctorate. The research activity has been conducted both at the Ecole Nationale Supérieure de 

Chimie de Montpellier (ENSCM), as home university, under the supervision of Dr. Tzonka Mineva and Dr. 

Francesco Di Renzo, and at the University of Bologna, as host university, under the guidance of Prof. Stefania 

Albonetti in collaboration with Prof. Marco Garavelli and Prof. Ivan Rivalta. 

The present manuscript is organised in the following way. The state of the art is presented in Chapter 1. 

Chapter 2 contains a summary of the variety of computational chemistry methods used throughout the work. 

Chapter 3 presents the study of the structures and the intermolecular interactions of binary water-organic 

solvents (ethanol, isopropanol, and acetonitrile) using MD simulations, along with a chemical hardness 

analysis. In Chapter 4, we include the MD study of the solvent effect on wood molecules (cellulose, lignin, 

and hemicellulose), followed by presentation of the survey of cellulose-lignin and xylan-lignin adhesion in 

Chapter 5. In Chapter 6, a general discussion on the effects of different solvent components on the specific 

intramolecular and intermolecular H-binding, lignocellulose stabilization energies and solvent binding 

affinities (presented in Chapter 4) are discussed together with the results in Chapter 5 on the lignin-cellulose 

and lignin-xylan interaction profiles, which permits an emphasis on the major conclusion and hypothesis 

drawn from the results in Chapters 4, 5. In this Chapter 6, an attempt of assessment on the validity of the 

model sizes, used in the simulations, the choice of the force field parameters and the conducted simulation 

time lengths is presented as well. Chapter 7 presents the first-principles calculations of two-dimensional 

electronic spectroscopy of lignin model monomers and the β-O-4 linked dimer. Finally, the conclusions and 

perspectives are summarised in the General Conclusions and perspectives section.  
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Abstract 

In this chapter, we reviewed the lignocellulose structure and the chemical composition of its main 

constituents, the most common pre-treatment and fractionation methods including mixed solvents, as well as 

the study of swelling to understand the factors involved in lignocellulose solubilization. An emphasis is given 

on the computational studies dealing with lignocellulosic biomass. Lignocellulose is composed mainly of 

cellulose, hemicellulose, and lignin. These polymers form a complex matrix; thus, the access to 

hemicelluloses and cellulose is hindered by the complex chemical and physical structure of biomass. The 

conversion of cellulose into fermentable sugars in lignocellulose pretreatment is enhanced in the presence of 

organic solvents. Computational methods along with experimental studies have provided the first insights 

recently into the mechanisms of lignocellulose deconstructions, from dehydration, solubilization and reduction 

of the interactions between lignocellulose components, to selective interactions of the solvents with different 

lignocellulose domains. These studies also evidenced many questions about the mechanisms for biomass 

deconstruction that remain to be addressed.  

1.1 Wood structure and constituents 

Wood-i.e., lignocellulosic biomass- is a natural, composite material constructed from a variety of organic 

polymers. The skeletal material of wood cell walls is cellulose, a long chain, linear sugar polymer composed 

of glucose monomers, and it accounts for about 40-45% of the dry weight of normal wood tissue. Cellulose is 

organised into fibrils[1] (Fig. 1.1) and interacts with a surrounding matrix formed by hemicellulose and 

lignin[2, 3]. These biopolymers form a complex matrix, intricately cross-linked with a network of interactions. 

Hemicellulose and lignin are covalently and non-covalently linked, while cellulose and hemicelluloses are 

connected exclusively by non-covalent interactions. Moreover, the polysaccharides of the cell wall, cellulose 

and hemicellulose, have a strong affinity for water molecules in either their liquid or vapour state. Lignin, on 

the other hand, is considered mostly hydrophobic because of its aromatic nature.  

The skeletal substance of the wood cell wall –cellulose- is aggregated to form microfibrils and macrofibrils, 

which further combine to form sheets of wall layers. This architectural scheme,  illustrated in Figure 1.1,  is 

widely considered to be formed by the middle lamella (ML), the primary cell wall (P), and the S1, S2, and S3 

layers of the secondary cell wall (S) [4]. The relative composition of cellulose, hemicellulose, and lignin 

among the different cell wall layer is shown in Figure 1.2. The primary cell wall is composed of cellulose 

microfibrils that form a random, irregular, and interlinked network to facilitate cell expansion. The primary 

wall also contains a large portion of carbohydrates, particularly pectic materials and hemicelluloses. The 

region between two adjacent primary walls is generally known as the middle lamella. This region is 70-80% 

lignin by weight, and it is considered as responsible for binding all wood cells together. Nonetheless, about 

70% or more of the total wood lignin is located in the cell wall itself.  Finally, in the innermost region of the 



Chapter 1. State of the art 

39 

 

primary wall, the secondary wall is formed by many lamellae, each with a specific orientation.  Each of these 

S layers are easily distinguishable and have different thickness and orientations. Moreover, this region is rich 

in cellulose.  

 

Figure 1. 1. Structure of wood cell walls [5]. 

 

Figure 1. 2. Composition of wood constituents through cell wall[6] 

The gain or loss of water or other liquids into or out of the wood cell wall can be significantly influenced by 

the nature, amount, and distribution of wood polysaccharides. Thus, swelling and shrinkage of wood subject 

to different environments are affected by sorption phenomena and architectural arrangements of wood cells. 

Furthermore, the cell wall is anisotropic, resulting in differences in swelling and shrinkage in different 

directions and different part in the cell wall [4]. Moreover, the cell structure varies among different kinds of 

tissue, that can be influenced by the part of the wood, time, weather, wood type, among others. In the 

following section, we describe the main features of the physical structure of the main constituents of wood –

i.e., cellulose, hemicellulose, and lignin-. 
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1.1.1 Cellulose 

 

Figure 1. 3. The partial molecular structure of cellulose in the 1,4-β-D-glucopyranose form. Cellulose assemblies 

into elementary fibres and cellulose microfibrils that vary from 18 to 36 glucan chains[1, 7].  

Cellulose is a glucan polymer consisting of linear chains of 1,4-β-bonded anhydroglucose units. The number 

of sugar units in one molecular chain is referred to as the degree of polymerisation (DP). The wood cellulose 

has an average DP of at least 9000-10000 and possibly as high as 15000. A DP of 10000 means a linear chain 

length of approximately 5 um in wood. Cellulose in the primary wall has a lower average DP and is thought to 

be polydisperse. Native cellulose is partially crystalline[8]. 

 

Figure 1. 4. Schematic representation of the hydrogen bonds in origin (left) and centre (right) sheets of cellulose 

Iβ. Carbon, oxygen, and hydrogen atoms are coloured cyan, red, white, respectively. Hydrogen bonds are 

represented by dotted lines [1]. 

Natural crystalline cellulose consists of two allomorphs, Iα and Iβ, but for this review, we focus on allomorph 

Iβ, which dominates in higher organisms such as plants and therefore it is the industrially most relevant form 

[9]. The synchrotron X-ray and neutron experiments of Nishiyama et al. [1] have determined that the 

monoclinic unit cell of cellulose Iβ (space group symmetry P21 ) consists of two parallel chains having 

slightly different conformations (centre and origin) and they organised in sheets (Fig. 1.4). The cell 

dimensions are a= 7.784 , b= 8.201 nm,  c=10.380 nm and γ=96.5°.  

The Intramolecular hydrogen bonds O3-H…O5’ and O2…O6’ (more dynamic), parallel to the glycoside bond 

cause each cellulose to have extended rigid chains (Fig. 1.4). The hydroxymethyl groups of cellulose I are in 

the tg conformation, with O5-O6 trans [10]. Each hydroxymethyl (O6) in a cellulose chain is partly engaged 
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in an intramolecular hydrogen bond with the O2 atom of the adjacent glucosyl moiety of the same chain and 

partly in an intra-chain hydrogen bond with another chain of the same sheet. Moreover, there is no inter-sheet 

O-H…O hydrogen bonds in cellulose Iβ. Therefore, the cellulose sheets are held together only by hydrophobic 

interactions and weak C-H…O bonds. [1] 

1.1.2 Hemicellulose 

 

Figure 1. 5. Chemical structure of xylan and glucomannan hemicellulose compounds[11]. 

Hemicellulose (Fig. 1.5) is a low molecular weight polysaccharide that contains short chains of carbohydrates 

and serves as a matrix substance for the cellulose superstructure. The carbohydrates in hemicellulose represent 

mostly combinations of various five-carbon sugars (xylose and arabinose) and six-carbon sugars (glucose, 

mannose, and galactose) [4]. Common hemicelluloses include xylan, glucuronoxylan, arabinoxylan, 

glucomannan, and xyloglucan. Moreover, hemicellulose composition differs in different wood species. In this 

work, hemicellulose is regarded as xylan, the most abundant hemicellulose in plants [12]. The backbone of 

xylan consists of poly β-(1→4) linked D-xylopyranosyl units, to which can be attached a variety of side 

group. 
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1.1.3 Lignin 

 

Figure 1. 6. A) Chemical structure of a lignin polymer with different linkages and monomer units [13]. B) The 

three monolignols before polymerisation: p-coumaryl (R1=R2=H), coniferyl (R1=H, R2=OMe), and sinapyl 

(R1=R2=OMe) alcohols. C) A lignin dimer formed by two guaiacyl (G, G’) units linked with a β-O-4 ether bond.  

Lignin, the third principal constituent of wood after hemicelluloses, composes around 25-35% of the total dry 

weight of the polysaccharide wall substances [4]. It permeates both cell walls and intercellular regions and 

plays a significant role in imparting rigidity to the polysaccharide wall substances[4]. Lignin interactions with 

cellulose determine wood mechanical properties, such as strength, creep, durability and ageing [14]. Lignin is 

a three dimensional, highly branched, and polyphenolic complex structure with high molecular weight and a 

variety of lignin units and linkages (Fig. 1.6A ). The phenylpropanoid unit (Fig. 1.6B)  is the basic structure of 

lignin, consisting of an aromatic ring and a 3-C side chain [15]. The monolignol subunits are derived from 

coniferyl, p-coumaryl, and sinapyl alcohols (Fig. 1.6B), and are referred to as, after polymerisation, p-

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) residues, respectively [13]. Two types of inter-unit linkages 

(C-O and C-C linkages) link several aromatic units, being the β-O-4 ether bond the predominant inter-unit 

linkage in the structure of lignin (Fig. 1.6C) [16]. 

The chemical structure of lignin and composition of lignin varies with source, type of lignin, and isolation 

method. Thus, the study of lignin is a considerable challenge due to the lack of a regular and ordered structure. 

The β-O-4 linkage represents the predominant inter-unit linkage in lignin, and it is an excellent model for 

studying major conformation features such as H-bonding and flexibility [17]. Thus, concerning the complexity 

of the lignin network, we have chosen here to explore the guaiacyl β-O-4 dimer model compound. 

Furthermore, the study of such model compounds can lead to the understanding of the behaviour of larger and 

more complex molecular systems.  
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1.2 Interactions of solvents with lignocellulose biomass 

Lignocellulose biomass can be used in a plethora of applications [4, 18-40]. However, access to 

hemicelluloses and cellulose is hindered by the complex chemical and physical structure of biomass. Thus, 

biomass pretreatment is fundamental for modifying its structural and chemical characteristics. Nonetheless, 

this step is one of the main economic costs in the process. To make end processes feasible, the fractionation 

step should produce easily treated fractions, such as cellulose pulp, soluble lignin, and hemicellulose-derived 

products (oligomers, sugars, furans, organic acids, among others) [41]. Thus, the reduction of the energetic 

costs of the fractionation processes passes through the optimisation of the interactions between the different 

components of the biomass and a solvent medium[42]. 

1.2.1 Pretreatment and fractionation processes  

The use of solvents has provided remarkable results in fractionation processes of several levels of severity, 

ranging from swelling, dilute acid, hydrothermal, steam explosion, alkaline treatment, to organosolv 

pulping[41-52]. Alkaline reagents such as ammonium hydroxide, sodium hydroxide, and calcium hydroxide 

has been used as pre-treatment reagents[53]. This treatment increases cellulose digestibility by affecting lignin 

in biomass. However, the degradation of hemicellulose and cellulose is minor compared to acid and 

hydrothermal treatments and has been more effective at treating hardwood than softwood. Concentrated or 

diluted acid has been used to solubilise hemicelluloses. However, the use of concentrated acid is not suitable 

for ethanol production due to the degradation of both hemicellulose and cellulose, and the formation of 

inhibiting compounds. [54, 55]. Biomass can also be pre-treated with liquid hot water at high pressure to 

solubilise hemicellulose and degrade lignin. However, the high demand for energy and water makes this 

process expensive[56]. The steam explosion pretreatment combines both chemical and mechanical effects, 

and the energy requirements are lower than for the liquid hot water process.  

Moreover, organic solvents are also used to enhance the conversion of cellulose into fermentable sugars in 

lignocellulose pretreatment [57-59], and novel water-organosolv pretreatments have demonstrated enhanced 

sugar yields[60-62].  It is presumed that water-organosolv pretreatment disrupt the lignocellulose interactions, 

resulting in structural changes. Tetrahydrofuran-water (THF-water) and γ-valerolactone-water (GVL-water) 

systems have demonstrated to increase to solubilise lignin and hemicellulose as well as partially de-crystalise 

cellulose[61, 63, 64]. Ammonia and ethylenediamine (EDA) can efficiently penetrate cellulose fibres, and 

they are being explored for use in pulping and lignocellulose pre-treatment to improve its conversion [65-67]. 

Swatloski et al.[68]reported that ionic liquids could be used as solvents cellulose under relatively mild 

conditions. Good solubilities of cellulose in Ils as high as 25 wt% have been observed; however,  the major 

drawback is the high viscosity of the ionic liquids, which hinders cellulose dissolution and post-processes. The 

inclusion of aprotic solvents as cosolvents to decrease the viscosity without the precipitation of cellulose has 
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been proposed to overcome this problem. [69-72]Polar aprotic solvents can accept a hydrogen bond through 

lone pair electron but are unable to donate any acidic protons and form hydrogen bonding. Biomass 

conversion in various polar aprotic solvents is promising for the solubilization and depolymerisation of 

carbohydrates[73]. 

Thus, there is considerable interest in understanding how cosolvents can lead to an increase in pre-treatment 

efficiency. Moreover, non-linear effects of aqueous solutions of organics have been observed in solvent 

fractionation techniques, where aqueous-organic solvent solutions led to higher lignin solubilisation and 

extraction of polyphenols than pure solvents [74, 75]. However, the factors responsible for such behaviour are 

still not well understood. 

1.2.2 Swelling: first step towards polymer dissolution 

Swelling of dry and green wood in liquid water and organic solvents has been studied by several authours[76-

84]. Early, it has been established an inverse relation between the weight and size of the molecule with the 

extent of wood swelling due to diffusion barriers [76]. Nayer and Hossfeld [77] tried to correlate the 

volumetric swelling of thin sections against the dielectric constant, dipole moment and surface tension of 

liquids. However, weak correlations were observed. Nevertheless, they were able to find a relationship 

between the degree of swelling and the extent of hydrogen bonding between constituents of wood and the 

swelling agent. Similarly, Mantanis [85] evaluated the swelling rates of forty organic liquids, and he 

concluded that the swelling of wood in organic solvents is mainly influenced by three solvent properties: the 

solvent basicity, the molar volume, and the hydrogen bonding capability [86]. Some other authors have 

performed experiments to correlate the effect of temperature [80]. 

Higher swelling values for wood when using non-pure organic solvents were suggested earlier by Hasseblatt 

[79]. Ishimaru and coworkers [81, 85] studied water-ethanol and water-acetone mixtures and concluded that 

the increase of swelling of wood was explained thanks to a positive deviation of the constituent’s activity from 

the ideal solution meaning some stresses related with the cohesion force of the mixture were released and, 

thus, absorption sites in the polymer seem to increase. More recent work on wood swelling of mixed solvents 

in dry and green wood  [87-91] (Fig. 1.7) has shown not only higher swelling values for selected mixed 

aqueous solutions, but also a nonlinear relation between the volume swollen and the concentration of the 

organic solvent. This evolution of wood volume with the concentration of the organic solvents shows a 

behaviour similar to gels, with a significant swelling for solutions of intermediate polarity [91]. Other authors 

have explained this behaviour due to changes in the wood structure thanks to a partial dissolution of lignin 

from the matrix [89, 90].   
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Figure 1. 7 Volumetric swelling of green wood at different concentrations of mixed solvents, taken from ref. [91] 

Recent experimental work based on optical microscopy experiments has evidenced a detachment between the 

primary wall and middle lamella of wood cells in pure and ethanol aqueous solutions [92]. There is a 

consensus in the literature that changes in the morphology of lignocellulosic biomass as exposed to mixed 

solvent plays a vital role in the increase of its solubility, promoting the fractionation of the material. However, 

the current understanding of the solvent effect on the interactions within the cell wall is limited. Hence, 

molecular-scale studies achieved by experimental and theoretical approaches are needed for the understanding 

and optimisation of biorefinery processes [93-97]. 

1.2 Computational studies of lignocellulose 

Understanding how pre-treatment will affect biomass chemical and physical features can offer meaningful 

improvements in biomass conversion [98]. Furthermore, a molecular-level description is needed to understand 

the interplay between the solvents and the lignocellulose structures, which can be useful for the design of 

solvent systems for use in biomass pretreatment processes. In this regard, computational methods such as 

molecular dynamics (MD) and quantum chemistry (QM), among others, are an indispensable investigation 

tool to provide insight into the structural and dynamic properties of lignocellulose systems at the atomic level.  

Molecular-scale studies achieved by computational methods often in combination with experimental 

investigations have been promising to understand the conformations of the principal wood components –i.e. 

cellulose[9, 99-110], hemicelluloses [111-115], and lignin [17, 116-124]-, but the solvent effect on 

lignocellulosic biomass remains widely unexplored [10, 64, 92, 125-130]. Although the study of lignin and 

hemicellulose has proven to be a considerable challenge due to the lack of a regular and ordered structure, 

theoretical studies have provided valuable information about the most common units and linkages present in 

these polymer structures [17, 111-124, 131, 132].In this section, we summarise the findings of the theoretical 

studies performed with MD and QM methods. We also include some of the models used in these studies to 

highlight the evolution of the field over the past years. 
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1.3.1 Cellulose 

Molecular dynamics (MD) simulations along with experimental studies have provided valuable information 

about the cellulose bulk structure [99, 100], the orientation of the hydroxymethyl group, and the hydrophilic 

/hydrophobic cellulose surface site interactions with water [9, 101-110], and the degree of water structuring 

due to hydrogen bonding with the cellulose surfaces [108, 109].  

1.3.1.1 First studies on cellulose monomers 

 

Figure 1.8. (A) Cellulose topology and oxygen notation. Three hydroxymethyl group conformers tg (bulk, full 

line), gt, and gg (dashed lines), and their gauche or trans positions of O6 relative to both O5 and C4 are present in 

cellulose. Ideal tg, gt, and gg conformations are characterised by the hydroxymethyl torsion angle ω = 180°, 60°, 

and -60° to O5, respectively. In the bulk phase, the hydroxymethyl is found in the tg conformer, and participates 

in hydrogen bonds with the O2 of the adjacent residue (See Fig. 1.4) [1]. 

Early work concerned mostly the evaluation of the stability of glucose anomers, the hydroxymethyl group 

conformation, and the solvent effect on glucose oligomers. van  Eijck et al.[101] calculated free energy 

differences of six conformations of D-glucose α/β and the transitions between the three staggered 

conformations of the hydroxymethyl group  (gg/gt/tg)  by MD using the GROMOS force field. By NMR 

studies, it is known that in both α and β forms, the gg and gt forms dominate. Experimentally, Gβ-Gα is -0.34 

kcal mol-1, and the study provided a calculated value of  -0.86 kcal mol-1in good agreement with the 

experiment. The free energy differences between gt and gg forms are almost zero, in excellent agreement with 

NMR measurements. However, the tg form was overestimated. This study highlights the limitations of the 

moment in terms of the model, such as the force field and cutoff radius and the methods used.  

Ha at al [133] and Schmidt et al.[134] performed free energy calculations of D-glucose and D-xylose in 

aqueous solution to analyse the anomeric equilibrium when solvated. In both papers, the simulations predicted 

the wrong anomers to be preferred in solution, and this was attributed to the used force field [135]. 

Thermodynamic integration analysis of the component values showed that the free energy difference results 

from a balance between an internal term favouring the α anomer and a solvation term favoring the β anomer. 

Nevertheless, hydrogen bonding analysis of the MD provided a mechanistic explanation of the solvation 

preference for the β anomer. Improved hydrogen bonding of the anomeric hydroxyl group results as a 

consequence of an increased accessible surface area and determined by geometric features of the solute and 
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solvent structuring. Thus, this work highlighted the importance of including the solvent medium in the 

simulation, to get the right conformational features of the system. 

Both QM  [99] and MD  [100] have shown that solvation effects determine the orientation of the 

hydroxymethyl group. Similarly, Leeflang et al. [10] observed by H-NMR and MD that the intramolecular 

hydrogen bond O3-H3...O5 over the glycosidic linkage in methyl β-cellobioside is present in apolar solvents 

but absent in polar solvents. Due to solvation/desolvation of the hydroxyl groups, solute-solvent hydrogen 

bonds are often energetically favoured over solute-solute hydrogen bonds, resulting in different hydroxyl 

conformations for well-hydrated carbohydrates compared to carbohydrates in vacuum or an apolar 

environment. Moreover, Their results indicate that intramolecular hydrogen bonding does not contribute 

significantly to the rigidity of cellulose chains during the spinning of fibres in aqueous solutions. 

1.3.1.2 Cellulose in aqueous medium  

The results highlighted in the previous section provided a base for the understanding of the solvation effect on 

the hydroxymethyl conformation and intramolecular hydrogen bonding of cellulose. However, the results are 

presented for minimal models that do not capture the complexity of the hydrophobic/hydrophilic nature of 

cellulose. 

Two decades ago (1997), the first paper on the interface between a crystal of cellulose Iβ and water was 

published by Heiner and Teleman [102]. Favoured At the surface, half of the cellulose intermolecular 

hydrogen bonding is lost, but this it is compensated by hydrogen bonds with water molecules. According to 

this study, the energy of water molecules in the first hydration layer is lower by 2 kJ/mol, and the cellulose 

surface contains in average five exposed hydroxyl groups per square nanometer, which explains the excellent 

hydration of this surface. In this study, six cellulose layers, each layer consisting of six chains of three 

cellobiose units were placed in a monoclinic periodic box. The simulation was performed during 500 ps under 

the NVT ensemble, using GROMOS87 force field and the GROMOS87 program. The interplanar distance 

was monitored, and it was found to decrease by 3%. Besides, for “odd” and “even” chains, the camber angle 

between the glucose ring plane and the 200 plane was monitored, and between layer II and III, it was found 

the camber differs by 8.3°. For layer I odd molecules, the camber increases to 7.5° for C6-outward glucose 

rings, which is believed to be a consequence of the asymmetry of the hydrogen bond network of cellulose 

chains at the surface.  

In further work, Heiner et al.[9] assessed the hydrophilicity of different surfaces of native crystalline cellulose. 

Upon association, hydroxyl groups of either substrate or ligand may reorient, and the reorientations are 

thought to be due to solvation/desolvation processes, and therefore entropy-driven. Based on the previous 

studies, it is expected that the hydrophilicity of the surface, by means of the extent of hydrogen bonding, 

depends on the precise distribution of the hydroxyl groups and their ability to adjust to the solvent to 
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maximise hydrogen bonding. This work focused on the qualitative description of the surface structure and 

solvent-induced structural changed on the four surfaces of native crystalline cellulose (monoclinic 110 and 1-

10 and triclinic 100 and 010) exposed to water. It was found that for all cases, only the topmost surface layer 

is cellulose is structurally affected by the water of the exterior. The monoclinic 1-10 and triclinic 100 surfaces 

were found to be denser and more hydrophilic than the monoclinic 110 and 010 surfaces since the former 

made more hydrogen bonds with the solvent.  

Mazeau and Heux [110] found that the conformational behaviour of the amorphous phase of cellulose differs 

significantly from that of the crystal phases. For instance, torsion angles explore an extensive angular range, 

and hydroxymethyl groups explore mostly the gg and gt orientations, in contrast with the crystal structure. 

Thus, the total number of hydrogen bonds per residue is more significant for the crystalline microstructure 

than for the amorphous one. 

In the work of Matthews et al.[108], different extended surfaces (1 1 0, 1 ´1  0, 1 0 0, and 010) of two small 

crystals of 36 and 32 chains of 14 monomer units of cellulose Iβ surrounded by water were analysed. The 

simulations were carried out under the NVE ensemble during 1 ns using the CHARMM program along with 

the CHARMM Carbohydrate Solution Force Field (CSFF)[136] and the modified TIP3P water model. As 

water molecules interact with individual functional groups in the cellulose surface, they will become localised 

at particular positions relative to the surface. Contour maps to show the regions with high and low water 

densities. These simulations demonstrated that cellulose surfaces highly structure the water solution in contact 

with them primarily through direct hydrogen bonding.  

Moreover, during the simulation of Matthews et al.[108], the crystal structures showed deviations in rmsd 

ranging from 1.46 to1.72 A in comparison with the initial structure, differing from the unit cell dimensions in 

previous diffraction studies. The unit cell varied such that a increased from 7.784 to 8.470 A, c increased from 

10.380 to 10.512, and the γ-angle decreased from 96.5° to almost 90°. Also, many of the C-6 primary alcohols 

underwent rotational transitions from tg to gg conformations. In contrast with the alcohol groups in the 

surface, whose structure is influenced by the solvent medium, conformations in the internal layers of the 

crystal should not be affected. Besides, it was observed an increased disorder and swelling of the glucose units 

at each end of the chains. The transitions to the gg conformation in the simulations seem to be expected since 

the CSFF force field was parameterized to reproduce the lower energy conformation of isolated glucose 

residues, instead of cellobiose units with glycoside bonds.  Nevertheless, in this simulations both 

microcrystals developed a right-hand twist of about 1.5° per cellobiose unit, similar to the twist of β-sheets in 

proteins, and the authors indicate that such twist is not related with the transition to gg conformation of the 

primary alcohol of the centre chains, since constrained simulations of this groups in the tg conformation were 

also performed, showing the same twist.  
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Yui et al. [109] performed a similar study also using atomic coordinates, hydroxyl-group orientations, and 

lattice parameters from the fibre-diffraction results of Nishiyama et al.[1] using the GLYCAM04 force field 

and AMBER 8 package. The size of the crystals varied from 24 to 48 chains with DP of 10 or 20 monomer 

units. Simulations using the GLYCAM [109, 137] and GROMOS [9] force field revealed the similar right-

handed twist of the chains, arising the question of whether the differences with the experiment are due to force 

field parameterization or real transitions in the material. The authors suggested that a possible cause for such a 

transformation would be an inherent tension probably involved in both the origin- and centre-chain sheets. 

In the following year after this discussion regarding the twist was aroused, Guvench et al. [138] presented the 

all-atom additive force field for hexopyranose monosaccharides. Parametrisation target included vibrational 

frequencies, crystal geometries, solute-water interaction energies, molecular volumes, heats of vaporisation, 

and conformational energies for over 1800 monosaccharide conformations at the MP2/cc-pVTZ/MP2/6-

31G(d) level of theory. Free energies of aqueous solvation for model compounds compared favourably with 

experimental values. Furthermore, shortly after Guvench et al. [139] presented an extension of the CHARMM 

hyxopyranose monosaccharide force field to enable modelling of glycosidic-linked hexopyranose 

polysaccharides. This extension allowed for MD simulations of linear, branched, and cyclic hexopyranose 

glycosides both alone and in heterogeneous systems including proteins, nucleic acids, and lipids. Similarly, 

the GLYCAM06 [140] and GROMOS56A(CARBO)[141] force fields were released after optimisation to 

balance the interaction energies due to inconsistency between classes of molecules and to reproduce the 

correct properties of these systems. Also, parameters for carbohydrate derivatives such as xylose, fucose, 

glucuronic acid [142], among others, and solvent-free coarse-grain models for crystalline and amorphous 

cellulose fibrils was developed [143] .  

Matthews et al. [103] performed a conformational analysis of cellobiose and simulation of hydrated cellulose 

Iβ with CSFF and GLYCAM06 force fields using the CHARMM program. 3-ns simulations of hydrated DP 

40 diagonal crystals with either 36 or 16 chains were run with both force fields to explore the effect of chain 

length and diameter of fiber structure. Also, additional 10-ns simulations of the diagonal crystal were run. In 

contrast with previous simulations of the same group with CSFF, for this simulation, the treatment of 

electrostatics was handled by particle mesh Ewald whereas the earlier simulations ignored interactions more 

than 13 A away.  The GLYCAM06 simulations of this study reproduced the hydroxymethyl conformation and 

hydrogen bond pattern from diffraction studies, but unit cell dimensions do not match exactly. In 36-chain 

fibrils of CSFF and GLYCAM06 simulations, the interior of the GLYCAM06 crystal remains stable, with 

surface chains more free to move whereas CSFF shows more dynamic behaviour in the interior, with 

occasional transitions from gt back to tg in the origin layers. Moreover, for the 10-ns MD of the Iβ diagonal 

with CSFF, the twist mentioned in previous work went away as the simulation progressed, as direct result of 

the development of the regular three-dimensional hydrogen bond pattern.  However, this twist is observed in a 

higher magnitude for the GLYCAM06 force field due the fact that in this model the hydrogen bond patter is 
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mostly two dimensional. Many essential features found in these simulations are sensitive to differences in 

force field parameters and treatment of long-range interactions, giving rise to dramatically different structures.  

Further work by the same research group [104] compared fully hydrated 36 chain microfibril with DP 40 for 

the CHARMM35, GLYCAM06, and Gromos45a4 up to the near-microsecond scale. For all simulations, the 

box sizes are 6 x 6 x 23.3 nm and contains 1.5 nm of water solvation in each dimension. It was found the 

behaviour of cellulose with the GROMOS 45a4 force field to significantly diverge from the initial cellulose Iβ 

crystal structure and with the other two force fields. For GLYCAM and C35 force fields, it was found that the 

microfibrils initially twisted while retaining the tg conformation in the interior. After several tens to hundreds 

of ns, the microfibrils untwist. The loss of twist is due to the conformation of a three-dimensional hydrogen-

bond pattern, which is not present in the cellulose Iβ crystal structure. These events seem to be promoted by 

surface-mediated conformational changes, which produce both gt and gg conformers and an expanded unit 

cell. It was demonstrated that for GLYCAM, both the initial hydrogen bond pattern and 1,4 electrostatic 

scaling factors increase the rate of structural divergence from the Iβ structure, while for C35 this rate is not 

significantly affected. Also, surface chain conformations for both force fields equilibrate within the first few 

tens of nanoseconds, and the twist disappears after hundreds of nanoseconds. From these comparison 

simulations, the time scale achieved is likely sufficient to converge interactions of interest which occur at 

surfaces, such as solvent-cellulose or catalyst-cellulose interactions. Also, it was noted that simulations with 

all three force fields diverge from the initial Iβ structure. It is unknown from the experiment whether particles 

of this width and length may have the same structure as in the bulk phase. Experimental work addressing these 

questions is needed.  

It was discussed in simulations of finite length crystals with explicit chain ends microfibrils can adopt twist 

along a chain axis, as a result of chirality amplification [105]. This can be solved by using an alternative 

simulation approach in which period boundary conditions are applied at the chain-ends, by simulating a 

periodic infinite crystal where chains are covalently linked across the periodic boundary such that there are no 

chain ends [104].  This behaviour has also been observed under some experimental conditions, for instance, 

with individual microfibrils with a cross-sectional thickness of 20-50 nm. However, due to insufficient 

conformational sampling in MD simulations and experimental results, it remains unclear the certainty of this 

behaviour.   

Hadden et al. [106] studied a cellulose crystal to understand the driving forces behind this twisting, as well as 

to determine the role of computational methodology, microfibril dimensions, solvent effect and solvent model, 

charge set and bond constrains.  Their findings suggest that vdW interactions favour microfibril twisting, and 

are counteracted by both intrachain hydrogen bonds and solvents effects at the surface. A microfibril of 81 

chains, 9 per face, and DP 20 was taken as model of this study, using the GLYCAM06h force field and the 

TIP3P model. Model microfibrils were solvated with a 1.2 nm water buffer and were simulated during 10 ns, 

with equilibration times of 1 ns. Simulations in vacuo showed great deformation indicating that the presence 
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of water plays a critical role in mitigating the extent of twisting. Also, simulations of implicit solvents 

produced microfibrils that fragmented into constituent cellulose chains. TIP4PEW and TIP3P produced 

comparable results, however, TIP5P, which includes lone pairs on oxygen atoms to better reproduce both bulk 

water properties and the tetrahedral geometry of hydrogen bonds, resulted in a noticeable reduction of the 

twist. This means that solvent H-bond plays an essential role in stabilising the structure. TIP5P binds more 

tightly and displays higher occupancy in the first solvation shell as compared to TIP3P. Also, the interaction 

energy between microfibril and solvent from the force field showed that TIP5P is preferred over TIP3P due to 

more favourable electrostatic interactions. It could be that increased order structuring of solvent servers to 

restrict twisting motion and, therefore, results in better stabilisation of the structure. Using GLYCAM06EP 

(include lone pairs in carbohydrate oxygen atoms) and TIP5P yields considerable reduction of the twisting, in 

comparison to GLYCAM06 and TIP3P models.  

Empirical force field methods keep being an affordable option to study the dynamics of of large systems such 

as lignocellulose. MD simulations are a promising tool to quantitively compare with experimental results as 

newer force field versions improve the parametrisation. It is essential to mention that previous versions of the 

GROMOS force field reproduce better the experimental data than more recent releases such as the 

GROMOS56Acarbo, that has been specially optimised for carbohydrates. Chen et al. [144]studied the 

influence of the nonbonded parameters, i.e., Lennard-Jones and the partial atomic charges using the 

GROMOS force field. It was found that the atomic partial charges and the LJ parameter of C1 are crucial to 

model cellulose allomorphs accurately. The unit cell parameters gave a prediction within 0.2% from the 

experimental value when the united-atom the repulsion term of CH1 was optimised, and the CHARMM 

charge set was imported. 

Petridis et al. [107] studied the hydration of the hydrophilic surfaces of cellulose using the CHARMM36 force 

field and the TIP4P-EW model of water. The simulations were used to determine how hydration changes the 

rigidity of cellulose Iα fibres. Their results show that hydration leads to an increased disorder in 

hydroxymethyl conformation on the cellulose surface and that the structure of in the bulk phase is well 

preserved. Moreover, an overall increase of local packing and water-cellulose bonds increase the stiffness 

when hydrated than dry.  

The theoretical and experimental results of Langan et al.[145] sensitive at different scales have elucidated 

processes responsible for morphological changes in biomass during steam explosion pretreatment. Cellulose 

dehydration is partially responsible for such an outcome. The authors have suggested a mechanism in which 

the core water molecules leave the microfibrillar bundles and, as a consequence, the surrounding matrix goes 

through a phase separation, with more hydrophobic lignin component aggregation into crumpled globules. 

This phase separation and the pressure of lignin globules to separate seem to cause swelling and will expand 

the size of small voids by a few nanometres. 
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1.3.1.3 Cellulose in non-aqueous solvents 

Whereas an extensive work on cellulose in water has been carried out, only a hand of computational studies 

approaches the interactions of the wood components as mentioned earlier with non-water or mixed solvents 

[10, 64, 92, 125-130].   

Simulations of a methyl β-cellobioside [10] have shown that the intramolecular O3-H…O5’ H-bond over the 

glycosidic linkage is present in apolar solvents but absent in polar solvents.  More recently, quantum chemical 

calculations and MD simulations of cellulose with EDA [125] shows that the solvent strongly disrupts the 

naturally occurring hydrogen bond pattern, including the well preserved O3-H…O5’ H-bond, as O3 prefers to 

donate to EDA instead of O5. Simulation of glucose solvation in water, THF, DMSO, and DMF[128] showed 

that the organic solvents compete with water to be in the first solvation shell of glucose and a significant 

amount of water is pushed to the second solvation shell.  

Simulations of cellulose with ionic liquids, DMSO, and water [71] show that anions interact much more 

strongly with the cellulose surface than the cations, which is responsible for the dissolution of cellulose. 

Furthermore, the addition of DMSO or water strongly affects cellulose-chloride interactions. Zhao et al.[146] 

observed preferential solvation os anions by protic solvents with a reduction of the interactions between the 

anions and cellulose. Aprotic solvents form weak hydrogen bonds with the cations, thus enhancing the anion-

cellulose interactions.  

Moreover, a phase separation of binary water-organic solvents (THF, acetone, ethanol, and γ-valerolactone) 

on cellulose surfaces was reported [64, 129]. Chen et al. [147] demonstrated that the primary molecular 

mechanisms for urea absorption on cellulose are the Lennard-Jones dispersion energies as well as the gain in 

the translational entropy of water expelled from the cellulose surface, in water-urea mixtures. Moreover, the 

authors show that the decrease in the entropy of urea adsorbed on the cellulose surface is always lower than 

the increase in the entropy of water.  

1.3.2 Hemicellulose 

The most abundant hemicellulose backbone components have served as a model to study the conformation 

and flexibility of hemicelluloses. Simulations of low molecular weight of polysaccharides  [111] have shown 

that the structure of the glycosidic linkage is highly flexible in xylose and can explore conformations that 

depend on the surrounding environment. Mazeau et al. [148] have reported that three low energy conformers 

stabilised by interresidue hydrogen bonds can be found. The two lowest minima are the extended (21) and 

threefold helical (32) conformers which are stabilised by hydrogen bonds between O3 and O5,  whereas the 

third conformer form hydrogen bonds between O3 and O2. It has been reported that free xylan adopts a left-

hand threefold helical (32) conformation in water, whereas a twofold helical (21) structure is stabilised in the 
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presence of cellulose [112-114]. This conformation emerges from the distortion of the OH3 rotamer allowing 

water molecules to move freely around the glycosidic region and exchange with bulk water [113].  

Moreover, simulations of polysaccharides [115] have shown lower solute-water and solute-solute hydrogen 

bonds and less hydrated surfaces in xylose when compared to glucose polymers. Hemicelluloses have been 

reported experimentally to turn into a gel with the addition of ethanol[149, 150], and previous MD have also 

reported a decrease of xylan’s diffusion coefficient in ethanol-water mixture [130]. A xylan chain with 30 

monomers in water-THF mixtures was studied by Smith et al.[151]. MD simulations, along with experimental 

results, indicate that the solvation of xylan depends on the phase miscibility if the water-THF mixture. Xylan 

is preferentially solvated by water in the immiscible mixture of THF and water. Furthermore, xylan’s 

solubilisation is slower in the water-THF than in water.  

1.3.3 Lignin 

Density functional theory (DFT) methods have been used to examine structural features and stabilities of most 

common dimerisation products of lignin. Durbeej and Eriksson [124] have found that, in the absence of 

external hydrogen bond acceptors, intramolecular hydrogen bonding acts as a stabilising force in the lowest-

energy conformers of several different dimeric conyferil alcohol structures.  

The β-O-4 linkage represents the predominant inter-unit linkage in lignin, and it is an excellent model for 

studying major conformation features such as H-bonding and flexibility [17]. Both experimental and 

theoretical studies suggest that β-O-4 structures are flexible molecules that can adopt a large number of 

conformations [17, 121, 122]. The results of Charlier and Mazeau [123] and Besombes et al.[122]on the 

different torsion angles of the B-O-4 linkages in linkages have shown that the torsional angles simultaneously 

explore multiple orientations, thus indicating that lignin very flexible coil conformation. Charlier and Mazeau 

[123] have reported that the mobility of water molecules in the proximity of lignin is 1.5 times larger than that 

of carbohydrates. This is in line with the results of NMR data. MD studied have provided useful insights into 

the structures of lignin [17, 131, 152, 153]; however, by using force fields that have beendeveloped to model 

proteins or other biomolecules, instead of lignin.  

Petridis and Smith [154, 155] developed a molecular mechanics force field for lignin parametrised based on 

reproducing quantum mechanical data of model compounds. Thus, along with the already existing force fields 

for polysaccharides, the force field has opened the door towards full simulations of lignocellulose. Moreover, 

the force field has been recently reviewed, and a new version of the force field [156, 157]has been released, 

improving some features of the previous version and including the parametrisation of more units and linkages 

presents in lignocellulose biomass.  

All-atom MD simulations to examine the structure of lignin at four different temperatures and tetrahydrofuran 

(THF) concentrations [126, 127] addresses the interactions of mixed solvents with lignocellulosic biomass at a 
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molecular level. The simulation showed that THF, a polar aprotic ether, preferentially solvates lignin, and in 

doing so, shifts the configurational equilibrium distribution of the biopolymer from a crumpled globule to coil, 

independent of temperature. Whereas pure water is a bad solvent for lignin, the THF-water cosolvent acts as a 

ɵ-solvent, in which solvent-lignin and lignin-lignin interactions are approximately equivalent in strength. 

Under these conditions, polymers do not aggregate, thus providing a mechanism for the observed lignin 

solubilization that facilitates unfettered access of cellulolytic enzymes to cellulose [126]. 

Work has been done by the same research group in study the temperature dependence of lignin physics [118, 

119], dependence of the shape of lignin polymers on chain length [117], its aggregation [120], lignin 

inhibition mechanism and enzymatic biomass deconstruction [158],  and processes that drive the biomass 

pretreatment using models of hemicellulose and lignin [145], among others [132, 159, 160]. Most relevant 

contributions of their work show the tendency of softwood lignin polymers (degree of polymerisation from 6 

to 41) to self-aggregate, even at high temperature. The shape of low polymerisation degree lignin is 

aspherical, and it has been explained due to favourable interactions of polar surface hydroxyl groups with 

water, which decrease the surface tension. On the other hand, spherical confirmations for longer chain lengths 

seem to be favoured by monomer-monomer interactions and dominance of the entropic confinement of 

surface water [117].   

1.3.4 Lignocellulose interactions 

Molecular dynamics (MD) simulations, often in combination with experimental investigations, have provided 

valuable information about the adhesion between lignocellulose components. Besombes et al.[152, 153] 

observed that the aromatic rings of lignin adopt a preferential parallel orientation relative to the cellulose 

surface in water. Moreover, electrostatic interactions between the alcohol groups of lignin and the hydroxyls 

of cellulose are favoured, where lignin acts as an H-bond donor[152]. Thus, cellulose-lignin adhesion is 

controlled by both van der Waals and H-bond interactions [152]. Linder et at. [160] have observed that lignin 

binding to cellulose is favoured in the presence of water. Furthermore, it has been shown that lignin molecules 

preferentially aggregate into the hydrophobic faces of crystalline cellulose fibres [158, 160]. 

Kumar et al.[161] demonstrated that the cellulose-hemicellulose interactions at elevated temperatures increase 

cellulose recalcitrance. Falcoz-Vigne et al. [114]and Mazeau et al. [112]have observed that the interaction 

between xylan and cellulose is stronger when xylan is in the twofold conformation than when it is in the 

threefold one. Charlier and Mazeau [123]performed MD on a model of secondary cell plant composed by 

cellulose, lignin, hemicellulose, and water. The models showed a well-defined interface between cellulose and 

xylan, as well as interpenetration of xylan into the lignin domain.  

The theoretical and experimental results of Langan et al. [145, 162] sensitive at different scales have 

elucidated processes responsible for morphological changes in biomass during steam explosion pretreatment. 
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Cellulose dehydration and lignin-hemicellulose phase separation are responsible for such an outcome. The 

authors have suggested a mechanism in which the core water molecules leave the microfibrillar bundles and, 

as a consequence, the surrounding matrix goes through a phase separation, with more hydrophobic lignin 

component aggregation into crumpled globules. This phase separation and the pressure of lignin globules to 

separate seem to cause swelling and will expand the size of small voids by a few nanometres. 

Very recent NMR spectroscopy and dynamic nuclear polarisation experiments have revealed that lignin has 

abundant electrostatic interactions with the polar motifs of xylan [95]. Recently, simulations of the lignin-

carbohydrate complex to study the elastic moduli and adhesion energies between the lignocellulose 

compounds [163] have shown that hemicellulose model has stronger mechanical properties than lignin 

whereas lignin exhibits greater tendency to adhere to cellulose microfibrils. This work also suggests that the 

various presence of hydrogen bonds in hemicellulose chains are responsible for improving the mechanical 

behaviour of the lignocellulosic complex. Moreover, it is highlighted that strong van de Waals forces between 

lignin molecules and cellulose microfibrils are responsible for higher adhesion energy in the complex. The 

effect of hemicellulose composition and the nano forces that control the cell wall strength have been 

addressed by using 3D-RISM-KH molecular theory of solvation [164].  

However, the non-aqueous solvent effect on the adhesion between lignocellulose components is still 

unexplored. Recently, Yang et al. [165] studied at the quantum level the solvent effect on the pairwise 

adhesion between several tetramer models of cell wall components using polarised continuum models to 

represent water, methanol, and chloroform. Their results show that implicit solvation methods does not 

replicate the interaction energies calculated with explicit solvation of water molecules, as expected, because 

polarised continuum models do not consider the strong short-range interactions such as hydrogen bonding. 

Moreover, their results show that the variations in model interaction with the solvent dielectric constant in the 

polarised continuum model are significant and non-systematic [165]. Thus, the explicit inclusion of the 

solvent is fundamental to consider the strong short-range interactions. The quantum inclusion of the solvent is 

computationally expensive and can result in local potential energy minima [165]; however, MD simulation of 

explicitly solvated interactions can provide a compromise between cost and accuracy.  
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Abstract 

In this chapter, we outline the theoretical framework behind the computational methodology presented in this 

thesis. The generalities of classical mechanics and molecular dynamics simulations are summarized. The basis 

of the quantum chemical approximations to solve the Schrodinger equation for many-electron systems is 

introduced. The theoretical formalism of Density Functional Theory is described. The fundamentals of the 

multiconfigurational methods with complete and restrictive actives spaces are reviewed.  And finally, the QM 

/ MM method was introduced.  

1. Fundamentals of Statistical Mechanics 

Most computer simulations are based on the assumption that classical mechanics can be used to describe the 

motions of atoms and molecules. A quantum mechanical system can be found in different states. Those 

quantum states are limited for general purposes to quantum states that are eigenvectors of the Hamiltonian H 

of the system (energy eigenstates). For any such state i,  Hi=Ei, where Ei is the energy of state i. For the 

systems of interest to statistical mechanics (systems with up to 1023 particles), the degeneracy of energy levels 

is very large. It is denoted by Ω(E,V,N) the number of eigenstates with energy E of a system with N particles 

in a volume V. The basic assumption of statistical mechanics states that a system with fixed N, V, and E is 

equally likely to be found in any of its Ω(E) eigenstates [1].  

The lnΩ of the total system is at a maximum when the thermal equilibrium is reached. This suggests that lnΩ 

is somehow related to the thermodynamic entropy S. The second law of thermodynamics states that the 

entropy of a system N, V, and E is at its maximum when the system is in thermal equilibrium. Therefore, it is 

established a direct relationship between the entropy and the degeneracy of the system. The entropy is related 

to the density of states of a system with energy E, volume V, and number of particles N. The entropy S will be 

defined as follows[1] 

𝑆(𝑁, 𝑉, 𝐸) = 𝑘𝐵𝑙𝑛Ω(𝑁, 𝑉, 𝐸)                    (1) 

Where kB is Boltzmann’s constant. With this, it is seen that if all degenerate eigenstates of a quantum system 

are equally likely immediately implies that, in thermal equilibrium, the entropy of a composite system is at a 

maximum [1]. The thermodynamic definition of temperature is  

1

𝑇
= (

𝜕𝑆

𝜕𝐸
)

𝑉,𝑁
                  (2) 

Now it is supposed that there is a system (denoted by A) that is in thermal equilibrium with a large heat bath 

(system B). The total system is closed, the total energy E is defined by EA+EB, and system A is prepared in one 
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specific quantum state i with energy Ei. The probability Pi to find system A in state i determined by 

degeneracy can be defined as [1]: 

𝑃𝑖 =
Ω𝐵(𝐸 − 𝐸𝑖)

∑ Ω𝐵(𝐸 − 𝐸𝑗)   𝑗

              (3) 

Expanding lnΩ(E-Ei) around Ei=0,  

𝑃𝑖 =
𝑒𝑥𝑝 (−

𝐸𝑖

𝑘𝐵𝑇
)

∑  𝑒𝑥𝑝 (−
𝐸𝑗

𝑘𝐵𝑇
)  𝑗

                 (4) 

Equation 4 is known as the Boltzmann distribution for a system at temperature T. Knowledge of the energy 

distribution allows us to compute the average energy [E] of the system at the given temperature T [1]: 

〈𝐸〉 = ∑ 𝐸𝑖𝑃𝑖

𝑖

      (5) 

=
∑ 𝐸𝑖𝑒𝑥𝑝 (−

𝐸𝑖

𝑘𝐵𝑇
)𝑖

∑  𝑒𝑥𝑝 (−
𝐸𝑗

𝑘𝐵𝑇
)  𝑗

 

=
𝜕𝑙𝑛 ∑ 𝑒𝑥𝑝 (−

𝐸𝑖

𝑘𝐵𝑇
)𝑖

𝜕1/𝑘𝐵𝑇 
 

=
𝜕𝑙𝑛𝑄

𝜕1/𝑘𝐵𝑇 
     (6) 

Where the partition function Q is defined in the last line of Equation 6. If this equation is compared with the 

thermodynamic relation 

𝐸 =
𝜕𝐹/𝑇

𝜕1/𝑇
     (7) 

Where A is the Helmholtz free energy, it is seen that A is related to the partition function Q [1]: 

𝐴 = −𝑘𝐵𝑇𝑙𝑛𝑄 = −𝑘𝐵𝑇𝑙𝑛 (∑ 𝑒𝑥𝑝 (−
𝐸𝑖

𝑘𝐵𝑇
)

𝑖

)     (8) 

The relation between the Helmholtz free energy and the partition function is often more convenient to use that 

the relation between lnΩ and the entropy. As a consequence, Equation 8 is the workhorse of equilibrium 

statistical mechanics [1]. Statistical mechanics deals with ensemble averages. For the canonical ensemble, in 
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which the temperature T and number of particles N are fixed, the equilibrium average of some quantity G is 

expressed in terms of phase-space integrals involving the potential energy U (r1,…,rNm) [2], 

〈𝐺〉 =
∫ 𝐺(𝑟1, … , 𝑟𝑁𝑚)𝑒−𝛽𝑈(𝑟1,…,𝑟𝑁)𝑑𝑟1 … 𝑟𝑁𝑚

∫ 𝑒−𝛽𝑈(𝑟1,…,𝑟𝑁)𝑑𝑟1 … 𝑟𝑁𝑚

     (9) 

Where (ri, i= 1, …, Nm) are the coordinates and β=1/kBT. This average corresponds to a series of 

measurements over an ensemble of independent systems. The ergodicity hypothesis relates the ensemble 

average to measurements carried out for a single equilibrium system during the course of its natural evolution. 

It is expected that both kinds of measurement should produce the same result. Molecular dynamics simulation 

follows the dynamics of a single system and produces averages of the form [2]: 

〈𝐺〉 =
1

𝑀
∑ 𝐺𝑘(𝑟1, … , 𝑟𝑁𝑚)

𝑀

𝑘=1

 (10)    

 over a series of M measurements made as the system evolves. Assuming that the sampling is sufficiently 

complete to capture the typical behaviour, the two kinds of averaging will be identical [2].  

2. Molecular Dynamics Simulations 

Molecular Dynamics (MD) is a technique for computing the equilibrium and transport properties of a many-

body system. In this system, the nuclear motion of the constituent particles obeys the laws of classical 

mechanics which is an excellent approximation for a wide range of materials. In an MD simulation a sample is 

prepared, a model consisting of N particles is selected, and Newton´s equations of motion for this system 

(F=ma) is solved until the properties of the system no longer change with time (known as an equilibration). 

After equilibration, the actual measure of the properties of interest is performed.  MD simulations are in many 

aspects similar to real experiments since they follow a similar protocol and some of the most common 

mistakes are similar. Some of these errors are sample preparation, short time of measurement, the system 

undergoes an irreversible change during the experiment, or  the measure does not represent what it is 

supposed to be [1]. 

To measure an observable quantity in a MD simulation, it is needed to first express this quantity as a function 

of the position and momenta of the particles in the system. The definition of temperature in MD makes use of 

the equilibration of energy over all the degrees of freedom that enter quadratically in the Hamiltonian of the 

system. The total kinetic energy of the system should be measured and then divided by the number of degrees 

of freedom 𝑁𝑓 (3𝑁 − 3, 𝑓𝑜𝑟 𝑎 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑓 𝑁 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑓𝑖𝑥𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚). As the total kinetic 

energy of a system fluctuates, so does the instantaneous temperature [1]:  
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𝑇(𝑡) = ∑
𝑚𝑖𝑣𝑖

2(𝑡)

𝑘𝐵𝑁𝑓
    (11)

𝑁

𝑖=1

 

A MD program usually reads in the parameters that specify the conditions of the run (e.g., initial temperature, 

number of particles, density, time steep) and initialize the system (i.e., select initial positions and velocities). 

Then the program computes the forces on all particles and integrates Newton’s equations of motion. This 

steep make up the core of the simulation. They are repeated until the time evolution of the system has been 

completed for the desired length of time. After completion of the central loop, the averages of measured 

quantities are computed and printed and stop [1]. Those steps will be described as follows. 

2.2 Initialization 

It is needed to assign initial positions and velocities to all particles in the system to start the simulation. The 

particle positions should be chosen compatible with the structure that it is aimed to simulate. The particles 

should not be positioned at positions that result in an appreciable overlap of the atomic or molecular cores for 

any reason. This is achieved by initially placing the particles on a cubic lattice. First, each particle is located 

on its lattice site, and then a value that is drawn from a uniform distribution is attributed to each velocity of 

each particle on its lattice. Subsequently, all velocities are shifted such that the total momentum is zero and 

then the resulting velocities are scaled to adjust the mean kinetic energy to the desired value. In thermal 

equilibrium, the following relation should hold [1]. 

〈𝑣𝑎
2〉 =

𝑘𝐵𝑇

𝑚
 (12) 

Where 𝑣𝑎   is the a component of the velocity of a given particle. The instantaneous temperature T(t) can be 

adjusted to match the desired temperature T by scaling all velocities with a factor (T/T(t))1/2 [1]. The velocities 

themselves are not really used to solve Newton’s equations of motion. Rather, the positions of all particles at 

the present (𝑥) and previous (𝑥𝑚) time steps, combined with the knowledge of the force (𝐹) acting on the 

particles, to predict the positions at the next time are used. With the knowledge of conservation of linear 

momentum, a position 𝑥 for a particle in a direction is approximated by 𝑥𝑚(𝑖) = 𝑥(𝑖) − 𝑣(𝑖) ∗ 𝑑𝑡 [1].  

2.2 Force Calculation 

The calculation of the force acting on every particle is the most time-consuming part of almost all MD 

simulations. In classical MD, it is usually considered a model system with pairwise additive interactions, so it 

is needed to consider the contribution to the force on each particle due to all its neighbours. If only 

interactions between a particle and the nearest image of another particle are considered, this implies that, for a 

system of N particle, it is needed to evaluate 𝑁 ∗ (𝑁 − 1)/2 pair distances. This means that the time needed 

for the evaluation of forces scales as N2. However, there are methods to reduce the time needed to N [1]. As it 
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is presented further, a force field is a set of equations, known as potential functions, which are used to 

generate the potential energies and forces of a simulation system. They are not a part of the simulation method 

itself, and their selection depends on the system of study [3].  

2.3 Integrating the Equations of motion 

Newton’s equations are numerically integrated usually by one of two methods: Verlet and LeapFrog 

algorithms. Both start with a Taylor expansion, but the first one makes it around the position and the second 

one make it around both the position and the velocity. The former algorithm is not only one of the simplest, 

but also usually the best [1]. 

2.3.1 Verlet algorithm 

The Verlet algorithm only uses a numerical integration equation. The acceleration, actual and past positions 

are needed for the integration. Verlet algorithm does not use the velocity to compute the new position. 

However, it can be known using finite differences. Verlet algorithm starts with a Taylor expansion of the 

coordinate of a particle, around time t [1],  

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) +
𝑑𝑟

𝑑𝑡
(𝑡)∆𝑡 +

𝑑2𝑟

𝑑𝑡2
(𝑡)

∆𝑡2

2
                 (13)  

Similarly,  

𝑟(𝑡 − ∆𝑡) = 𝑟(𝑡) −
𝑑𝑟

𝑑𝑡
(𝑡)∆𝑡 +

𝑑2𝑟

𝑑𝑡2
(𝑡)

∆𝑡2

2
               (14) 

Adding these two equations, 

𝑟(𝑡 + ∆𝑡) + 𝑟(𝑡 − ∆𝑡) = 2𝑟(𝑡) + ∆𝑡2
𝑑2𝑟

𝑑𝑡2
(𝑡)              (15) 

Or 

𝑟(𝑡 + ∆𝑡) + 𝑟(𝑡 − ∆𝑡) = 2𝑟(𝑡) + ∆𝑡2
𝑓(𝑡)

𝑚
              (16) 

 

2.3.2 LeapFrog algorithm  

Leapfrog algorithm is analogous to Verlet’s, but it uses the velocity instead of the position. It uses two 

numerical integration equations, and the acceleration, past velocity and actual position must be known [1].   



Chapter 2. Theoretical background 

72 

 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
𝑑𝑣

𝑑𝑡
(𝑡)

∆𝑡

2
 +

1

2

𝑑2𝑣

𝑑𝑡2
(𝑡)

∆𝑡2

2
            (17) 

Similarly,  

𝑣(𝑡 − ∆𝑡) = 𝑣(𝑡) −
𝑑𝑣

𝑑𝑡
(𝑡)

∆𝑡

2
 +

1

2

𝑑2𝑣

𝑑𝑡2
(𝑡)

∆𝑡2

2
             (18) 

Subtracting these two equations, 

𝑣(𝑡 + ∆𝑡) + 𝑣(𝑡 − ∆𝑡) = ∆𝑡
𝑑𝑣

𝑑𝑡
(𝑡)                (19) 

or 

𝑟(𝑡 + ∆𝑡) + 𝑟(𝑡 − ∆𝑡) = ∆𝑡
𝑓(𝑡)

𝑚
              (20)  

2.4 Commonly used software for MD simulations 

There are different MD software differing on the possibility of modelling different molecular systems, solvent 

environment, flexibility, computation efficiency, implementation, tools or modules for trajectory analyses, 

among many others. Some common molecular dynamics engines that can satisfy the above criteria are 

LAMMPS, CHARMM, GROMACS, NAMD, AMBER, DESMOND, and TINKER, among others. In this 

work, MD simulations were carried out using the GROMACS [4-8]package versions 5.1.2 and 2016.3.  

2.4.1 GROMACS 

The Groningen Machine for Chemical Simulations (GROMACS) is primarily designed for biochemical 

molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded interactions. 

GROMACS is extremely fast at calculating the non-bonded interactions, that usually dominate simulations. 

Therefore, it has been used for research on non-biological systems as polymers. The entire GROMACS 

package is available under the GNU General Public License and the source code and selected set of binary 

packages are available on the home page [4-8]. A Molecular Dynamics simulation in GROMACS usually 

comprises a set of steps that involve the preparation, minimization and equilibration of the system and finally 

a molecular dynamics production. Those steps are described in detail in the computational details of each 

chapter thought this manuscript.  

2.5 Force Field 

As mentioned before, a force field is a set of equations known as potential functions, which are used to 

generate the potential energies and forces of a simulation system. They are not a part of the simulation method 
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itself, and their selection depends on the system of study.  The potential functions can be subdivided into three 

parts: non-bonded, bonded and restraints interactions [3]. 

2.5.1 Non-bonded interactions 

The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term. The repulsion 

and dispersion term are usually combined in the Lennard-Jones (6-12) interaction. In addition, partially 

charged atoms act through the Coulomb term. These interactions are computed on the basis of a neighbour list 

(a list of non-bonded atoms within a certain radius), in which exclusions are already removed. Non-bonded 

interactions are pair-additive and centrosymmetric [3]: 

𝑈𝑁𝐵(𝑟1, … , 𝑟𝑁) = ∑ 𝑉𝑖𝑗(𝑟𝑖𝑗)

𝑖<𝑗

               (21) 

𝐹𝑖 = − ∑
𝑑𝑈𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗
𝑗

𝒓𝒊𝒋

𝑟𝑖𝑗
= −𝐹𝑗              (22) 

Lennard-Jones potential 

The Lennard-Jones (LJ) potential ULJ between two atoms is: 

𝑈𝐿𝐽(𝑟𝑖𝑗) =
𝐶𝑖𝑗

12

𝑟𝑖𝑗
12 −

𝐶𝑖𝑗
6

𝑟𝑖𝑗
6              (23) 

The parameters Cij
12 and Cij

6 depend on a pair of atom types; consequently, they are taken from a matrix of LJ 

parameters. The force derived from this potential is [3]: 

𝐹𝑖(𝑟𝑖𝑗) = (12
𝐶𝑖𝑗

12

𝑟𝑖𝑗
13 − 6

𝐶𝑖𝑗
6

𝑟𝑖𝑗
7 ) 

𝒓𝒊𝒋

𝑟𝑖𝑗
            (23) 

Coulomb interaction 

The Coulomb interaction between [3] two charged particles is given by [3]: 

𝑈𝑐(𝑟𝑖𝑗) = 𝑓
𝑞𝑖𝑞𝑗

ℰ𝑟𝑟𝑖𝑗
          (24) 

The force derived from this potential is [3]: 

𝐹𝑖(𝑟𝑖𝑗) = 𝑓
𝑞𝑖𝑞𝑗

ℰ𝑟𝑟𝑖𝑗
2  

𝒓𝒊𝒋

𝑟𝑖𝑗
         (25) 



Chapter 2. Theoretical background 

74 

 

Where   𝑓 =
1

4𝜋ℰ0
= 138.935    

2.5.2 Bonded interactions 

Bonded interactions are based on a fixed list of atoms. They include not only pair interactions but also include 

3- and 4-body interactions. There are bond stretching, bond angle and dihedral angle for 2-, 3- and 4-body 

interactions, respectively. The improper dihedral is a special type of dihedral interaction in which the atoms 

are forced to remain in a plane. It is also used to prevent transition to a configuration of opposite chirality (a 

mirror image) [3]. 

Bond stretching 

The harmonic potential for the bond stretching between two covalently bonded atoms i and j is represented by 

[3]: 

𝑈𝑏(𝑟𝑖𝑗) =
1

2
𝑘𝑖𝑗𝑏𝑜𝑛𝑑(𝑟𝑖𝑗 − 𝑏𝑖𝑗)

2
         (26) 

The force derived from this potential is [3]: 

𝐹𝑖(𝑟𝑖𝑗) = 𝑘𝑖𝑗𝑏𝑜𝑛𝑑(𝑟𝑖𝑗 − 𝑏𝑖𝑗) 
𝒓𝒊𝒋

𝑟𝑖𝑗
        (27) 

Harmonic angle potential 

The bond-angle vibration between a triplet of atoms i-j-k is also represented by a harmonic potential on the 

angle θijk  [3]: 

𝑈𝑎(𝜃𝑖𝑗𝑘) =
1

2
𝑘𝑖𝑗𝑘𝑎𝑛𝑔𝑙𝑒 (𝜃𝑖𝑗𝑘 − 𝜃0𝑖𝑗𝑘

)
2

         (28) 

The force equations are given by:  

𝐹𝑖 = −
𝑑𝑉𝑎(𝜃𝑖𝑗𝑘)

𝑑𝑟𝑖
         (29) 

𝐹𝑘 = −
𝑑𝑉𝑎(𝜃𝑖𝑗𝑘)

𝑑𝑟𝑘
 𝑤ℎ𝑒𝑟𝑒 𝜃𝑖𝑗𝑘 = 𝑎𝑟𝑐𝑜𝑠

(𝒓𝒊𝒋 ∙ 𝒓𝒌𝒋)

𝑟𝑖𝑗𝑟𝑘𝑗
                 (30) 

𝐹𝑗 = −𝐹𝑖 − 𝐹𝑘          (31) 

Dihedral angle potential 
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The form of the dihedral angle potential follows a fourth-order polynomial [3]: 

𝑈𝑑(𝜃𝑖𝑗𝑘) = ∑ 𝐶𝑛 (𝜃𝑖𝑗𝑘 − 𝜃0𝑖𝑗𝑘
)

𝑛

𝑛=0

           (32)  

Improper dihedrals  

Improper dihedrals are meant to keep planar groups (like aromatic rings) planar or to prevent molecules from 

flipping over their mirror images. The harmonic potential is the simplest of all, and it is discontinuous [3].  

𝑈𝑖𝑑(𝜀𝑖𝑗𝑘𝑙) =
1

2
𝑘𝜀(𝜀𝑖𝑗𝑘𝑙 − 𝜀0)

2
         (33) 

Proper dihedrals 

A proper dihedral consists of four atoms, joined linearly through bonds. These dihedrals can be represented by 

a periodic potential. A periodic dihedral is represented by a cosine function of the form [3] 

𝑈𝑑(𝜑𝑖𝑗𝑘𝑙) = 𝑘𝜑(1 + cos(𝑛𝜑 − 𝜑𝑠))         (34) 

2.5.3 Restraints  

Restrains must be imposed on the motion of the system, either to avoid extreme deviations or to include 

knowledge from experimental data. There are position, angle, dihedral, distance, and orientation restraints. 

They are not really part of the force field. Some of these restraints are used to restrain particles to fixed 

reference positions, to restrain the angles and dihedrals between particles and to add penalties to the potential 

when the distance/angle/dihedral between specified atoms exceeds a threshold value [3].  

2.5.4 Commonly used Force Fields 

A force field is built up from the combination of the set of equations included on the potential functions and of 

the parameters used in each set of equations. These parameters are usually derived from experiments and will 

depend on the type of atoms involved in the system [3]. There are different fields of forces differing in the 

expression of the potential energy and the parameters used. The most used set of force fields are AMBER[9], 

CHARMM [10-12], OPLS [13, 14], GROMOS [15, 16]. 

Throughout this work, we used the CHARMM36 and the OPLS force fields. The first was used to compute 

the potential energies of lignocellulose  and the solvent molecules in MD using GROMACS, whereas the 

second was used during the QM/MM simulations (see below) of lignin and cellulose in the presence of 

ethanol and acetonitrile in deMon2q. Furthermore, we used the TIP3P and TIP4 models of water. The former 

was used with both Gromacs and deMon2k, whereas the second was only used with Gromacs.  
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All-atom MD simulations were carried out using the GROMACS [4-8] package versions 5.1.2 and 2016.3, 

along with the CHARMM36 additive force field [17, 18] and the CHARMM-compatible force field for lignin. 

These force fields enable the modelling of hexopyranose monosaccharides and linear, branched, or cyclic 

glycosidic-linked hexopyranose polysaccharides, both alone and in heterogeneous systems, along with other 

organic molecules and biomolecules including proteins, nucleic acids, and/or lipids. The lignin force field has 

been parametrized to model all the monomers and linkages available in the lignin polymers. 

In this study, we consider the 3 and 4-sites Transferable Intermolecular Potential (TIP) for liquid water [19-

21], in order to asses the potential that reproduces better the target properties. TIP3P is a 3-sites model, with 

charges located in the centre of mass of the atoms (Figure 2.1), whereas TIP4P is a 4-sites model with a 

delocalized charge (dummy atom M) for oxygen. TIP3P is widely used in simulation and, in addition, it has 

been selected for parameterization of the CHARMM force field. Thus, parameters for the solvent-solute 

interactions should have been optimized for this potential. However, this model has been previously studied 

by several authors and has been found that it poorly reproduces properties such as the density and structure of 

water, and for this reason, a more sophisticated potential for water may be useful.  TIP4P has been 

parameterized to better reproduce the electrostatic distribution around the water molecule. Thus, liquid density 

and structure at 298 K and 1 bar reproduces better than some 3-sites models, including the TIP3P. However, 

this is achieved by adding a 4th site to the model which makes it more time-consuming. Nevertheless, during 

the GROMACS implementation has been found that it is only 7% slower than the other 3-sites potential [22]. 

The parameters describing each one of the models are presented in Table 1. 

 

Figure 2.1. Representation of water models 

 

Table 1. Parameters for TIP3P and TIP4P models of water. r(OH) and HOH are the bond distance and bond 

angle, respectively, in a water molecule, A and B are the constants in the Lennard-Jones potential, and q denotes 

the atomic charge parameters.  

TIP3P TIP4P 

r(OH), Å 0.9572 r(OH), Å 0.9572 

HOH, degrees 104.52 HOH, degrees 104.52 

  r(OM), Å 0.15 

A x 10-3, kcal Å12/mol 582.0 A x 10-3, kcal Å12/mol 600.0 

B, kcal Å6/mol 595.0 B, kcal Å6/mol 610.0 

q(O) -0.834 q(M) -1.04 

q(H) +0.417 q(H) +0.52 
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On the other hand, the OPLS force field of Jorgensen [13] has a simple form and have been parameterized 

directly to reproduce experimental thermodynamic and structural data on fluids. The parameters were 

obtained and tested primarily in conjunction with Monte Carlo statistical mechanics simulations of organic 

liquids and aqueous solutions of organic ions representative of subunits in the side chains and backbones of 

proteins. Bond stretch, angle bend, and torsional terms have been adopted from the AMBER united atom force 

field [14].  

3. Quantum Chemistry (QC) background 

The main objective of quantum chemistry is to solve the time-independent non-relativistic Schrödinger 

equation for many-electron systems [23-28]: 

( ) ( )
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21212121 =

=
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where Ĥ  is the Hamilton operator for a molecular system of M nuclei with a radius-vector MR


 and N 

electrons with radius-vectors Nx


 in the absence of magnetic or electric field. The Hamiltonian, expressed in 

atomic units, is of the type:  
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In the above formula, A and B label the atomic nuclei, and i and j label the electrons. First, two terms are the 

kinetic energy operators of the electrons and the nuclei, where the Laplace operator is of the following type 

( )

( ) ( ) ( )
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zyx 


+




+




=

, and AM  ZA are the mass and the charge at nucleus A, respectively. The other 

three terms are the potential energy operators, which describe the Coulomb nucleus-electron attraction 

potential, the repulsion potential between each couple (i,j) electrons and the repulsion between each (A, B) 

nuclei, respectively.    

The solution of the Schrödinger equation gives the energy and wave function, from which a large variety of 

properties can be computed. 

The mass, MA of a nucleus is nearly 2000 larger than that of an electron. This allows to consider the nuclei as 

static, with zero kinetic energy and constant potential energy of the nucleus-nucleus repulsion, and to separate 

the variables of the nuclei and electrons. This is the well-known Principe of Born-Oppenheimer [29, 30].  

Applying the Principe of Born-Oppenheimer allows to reduce the above Hamiltonian (Eq. 36) to an only 

electronic part:  
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Therefore, solving the electronic Schrödinger equation consists of finding the eigenvalues (the electron energy 

Eelec) and the eigenfunctions (the electron wave function eleĉ ) of the Hamiltonian elecĤ . 

According to the Variational principle, the true solution will give us the minimum energy 0E  (the lowest 

possible energy), which corresponds to the system wave function 0  of this minimum energy state. This is 

mathematically expressed as follows: 

  ++==
→→

eeNe
NN

VVTEE ˆˆˆminmin0
      (34)  

The anti-symmetric wave function of an N-electron system expressed by the one-electron wave functions 

(spin-orbits) ( )i ix  is represented by the slater determinant (
SD ). 
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Each spin-orbit is the product of the space wave function ( )ri


  and either the spin-function with spin s = 1/2, 

( )s , or that with spin s=-1/2, ( )s . 

( ) ( ) ( )x r s  = , ,  =         (36)  

An important property of these spin-functions is that they are normalized and orthogonal functions

1   = =  и 0   = = . Spin orbitals have the following physical meaning: ( )
2

x dx  

presents the probability of finding an electron with spin-function   in a volume dr . The normalization 

factor ( )
1

2!N
−

 in eq. 2.6 ensures the satisfaction of the 
SD  normalization condition: 

( )
2

1 2 1 2... , ,..., ... 1N Nx x x dx dx dx =         (36)  

In the following part, we give a brief introduction to the single-determinant Hartree-Fock (HF) theory as the 

basic method for solving approximately the Schrödinger equation for a many-electron system. 
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The main goal is by applying the variational principle to find the ground-state Slater determinant. In other 

words, to obtain a set of spin-orbits that produces the minimum energy for the N-electron system in its 

ground-state. To this aim, we vary the HF-spin orbits  i  while maintaining the conditions for orthogonal 

and normalized spin-orbits up to the finding of a set of spin-orbits producing the lowest possible energy:  

 min
SD

HF SD
N

E E
 →

=            (37)  

The Hartree-Fock energy is represented as: 

( ) ( ) ( )
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is the kinetic plus nuclear-electron attraction energies. The two-electron interactions are described by the 

Coulomb (ii|jj) and exchange (ij|ji) integrals as given below with eq. 40). 
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To satisfy the normalization conditions,  i  a Lagrange multiplier i  is introduced in the initial set of 

equations: 

i i if   = , 1,2,...,i N=          (40)  

Equations 39 are called Hartree-Fock equations. They represent a system of N equations with i , being the 

eigenvalues of the Fock operator f . The physical meaning of i  is the orbital energy, and the Fock operator 

is the effective one-electron operator defined as:.  

( )21
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M
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i i HF

A iA

Z
f V i

r
= −  − +         (41) 
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The first two members are the kinetic and electron-nuclear Coulomb operators. ( )HFV i  is the so-called 

Hartree-Fock potential. This is the mean repulsion potential of electron i with the N-1 electrons in the N-

electronic system. 

In this way, the exact, but explicitly unknown bi-electron operator 1
ijr

 in the Hamiltonian is approximated 

by the one-electron operator ( )HFV i , accounting in an averaged way for the bi-electron repulsion. HFV  

consists of two terms: 

( ) ( ) ( )( )1 1 1

N

HF j j

j

V x J x K x= −         (42) 

The Coulomb operator is given by ( ) ( )
2

1 2 2

12

1
j jJ x x dx

r
=  , and the exchange operator by 

( ) ( ) ( ) ( ) ( )1 1 2 2 2 1

12

1
j i j i jK x x x x dx x

r
   =   . 

Numerically, the HF equations are solved iteratively. The procedures proposed by Roothaan [31, 32]  and 

known as restricted HF (RHF) method for the closed-shell systems, is applied, and for the open-shell systems 

– the Pople-Nesbet approach , known as unrestricted HF method (UHF) is applied [33]: 

FC SC=            (43)  

F C SC

F C SC

   

   





=

=
          (44) 

In the above equations, F is the Fock matrix, and S is the overlap matrix build from the atomic wave 

functions, called basis functions.  

3.1 Density Functional Theory  

3.1.1 Thomas-Fermi Model 

The Density Functional Theory [34, 35] has its conceptual root in the semi-classical model of Thomas- Fermi, 

which was proposed for the electronic structure computations of many-electron system in 1927. In this model 

quantum statistical theory is employed to describe the kinetic energy of the electrons, whereas the potential 

energy due to the electron-electron repulsion and electron-nuclei attraction is computed classically:   
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KeeNeelec TVVH ˆˆˆˆ ++=          (45) 

In this model, the density, ( ) , is a statistically averaged quantity and the model is derived by assuming that : 

1) the electrons are homogeneously distributed in a 6-dimensional phase-space defined by the electron 

coordinates zyx qqq ,,  and electron momenta ),,( zyx pppp


 in a (volume) cell ( )= dxdydzqqqhh zyx

33
; 

2) each electron moves in the mean-field of all the other electrons and the nuclei. 

For the N-electronic system in the phase-space with a volume , the mean density can be easily computed as

ne

N

−

=


 . The maximum momentum of these electrons will be that of the fastest electron (Fermi electron), 

noted as fp


. The momenta of all other electrons are lower than fp


, fpp


 . Thus, the volume of the 

occupied energy levels in the momentum space is:   

3

3

4
focc p =            (46) 

The total volume of those states in the phase space will be thus 

VpV foccT

3

3
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 ==          (47) 

According to the indetermination principle of Heisenberg, the phase space can be divided into 
3h cells, and 

each cell could contain a maximum of only two electrons with opposite spin (Pauli principle). Then: 
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By replacing in eq. 48 N with VN =  one obtains: 
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By defining as a constant c1, 
31
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h
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= , it follows that: 
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The total energy, pV
mV

+=
2

2

 , of all moving electrons in this space will be thus obtained after some 

algebra in the following way:        
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This shows that the kinetic energy is proportional only to 3
2

 . Form eq. 51 follows that the total energy   

can be analogously interpreted as a chemical potential. 

The energy of any electron in position r and with a momentum in an interval (p, p + dp) is: 
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, in this way the kinetic energy density t (the kinetic energy in a unit 

volume) can be obtained as follows: 
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And the total kinetic energy thus becomes a function of the density defined by:  

( ) = rdrcTK


3

5

2
ˆ            (53) 

3.1.2 Hohenberg-Kohn theorems 

The idea behind DFT is to show that the ground state observables of a many-particle quantum system can be 

described exactly by the total density. It should, however, be noted already now, that although the theory in 

itself is exact, approximations will still enter in actual calculation due to our inability to find an exact 

functional which describes any system. The first actual formulation of a density functional theory was derived 

by Hohenberg and Kohn in 1964 [36]. It is based on two theorems – the Hohenberg-Kohn theorems.  

First theorem:  The first theorem states that the external potential  ( )r


  of any many-electron system in its 

ground state  is uniquely determined by the true electron density ( )r


 , up to an additive constant. The first 
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Hohenberg-Kohn theorem provides the fundamental theoretical bases for all modern variants of Density 

Functional Theory. It assures that the total energy depends explicitly on the electron density as it was 

suggested in the Thomas-Fermi model.  

Second theorem: The total energy  E of an N-electron system is the minimum energy of the system for 

the true electron density. This implies that there exists a unique map between the external potential   and the 

ground state density.  This implies that all the energies, including the total energy, is a function of the density,

 E . The density determines the Hamiltonian, and thereby, the wavefunction. 

3.1.3 Kohn-Sham Self Consistent Equations 

The ground state energy can be obtained as the minimum of the energy functional: 

  ( ) ( )   FdE +=  rrr          (54) 

where 

      eeVTF +=           (55) 

The ground-state electron density is the density for which Е[] has a minimum and satisfies the Euler’ 

equation: 

( )
 
( )r

r





F
+=           (56) 

with  being the Lagrange multiplier, introduced because the energy minimization is carried out under the 

condition that the electron density is constant in the system 

( ) Nd = rr            (57) 

Among all the possible solutions of eq. 56 there is a unique solution that minimizes  E . 

In the Thomas-Fermi model, the functionals  T  и  eeV  are introduced as density functionals, but with a 

classical treatment of  eeV . In 1965 Kohn and Sham (KS) [37] suggested an original approach to obtain the 

kinetic energy functional by introducing the so-called “non-interacting” system. For such a system, the kinetic 

energy is known: 
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The kinetic energy of the interacting systems is added to the equation in the way:  

        xcs EJTF ++=          (60) 

where: 

          JVTTE eesxc −+−          

 XCE  is called exchange-correlation energy and contains the difference between the unknown exact kinetic 

energy and the known kinetic energy for the non-interacting system      STT − . This difference is 

expected to be very small compared to the other energy terms. Analogously, the difference     JVee −  

accounts also for the interaction in the systems due to the coulomb and Pauli repulsion. 

The Euler equation can be thus re-written as: 
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Where the effective Kohn-sham potential is defined as follows:   
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and 
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In the canonical form, the Kohn-Sham equations can be written as:  
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The above equations are non-linear equations and are solved iteratively. 

The total KS energy is obtained as: 
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where : 
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 Analogously to the HF SCF equations, in the KS equations the spin-orbitals are built as a linear 

combination of the atomic wave functions (basis functions):  
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 The iterative computations proceed by solving the equations sets below 
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The KSh  operator is analogous to the HF one and is called Kohn-Sham operator.  
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3.1.4 Approximations for the exchange-correlation formula 

Although DFT is an exact theory, the explicit mathematical expression of the exchange-correlation functional 

for interacting electron systems is not known. There exists however approximations, allowing to build 

computational tools based on the DFT. 

Usually, the exchange-correlation energy, 
XCE , is written as a sum of the exchange energy, 

XE , and the 

correlation energy, CE , analogously as the exchange-correlation hole. The exchange-correlation energy is 

also represented by the exchange (
X ) and correlation (

C ) energy densities:  

      ( )  ( )  drrrdrrrEEE CXCXXC )()(   +=+=         (70)  

The exchange (correlation) energy is defined as the sum of the exchange energy of the electrons with spin   

and that of the electrons with spin  : 
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In the local density approximation (LDA) [38, 39]the density is assumed to be a density of uniform 

homogeneous electron gas. The Dirak formula [40]is used to describe the exchange energy: 
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In the case of spin polarization, this approximation is: 
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The X  method of Slater [41]includes the correlation energy by introducing the appropriately fitted 

parameter: 
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The LDA functional mostly implement in the DFT based computer programs are based on the general 

formula: 

( )
( )

( ) ( )
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Where rs is the Wigner-Seitz radius 
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Sr and hx is the exchange hole. 

For the spin-polarised case the density is given as: 
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The generalized gradient approximations methods (GGA) [42, 43] includes a correction as a density 

gradient in order to represent better the inhomogeneous electron density. The general formula is: 

( ) ( ) ( ) ( ) rdBrdrЕ XCXCXC

2
 +=       (76) 

Bxc is usually computed within the random phase approximations  
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Many different GGA approximations have been so far proposed that have been parameterised for specific 

property computations. 

For a better description of the exchange part, an appropriate combination between the exact Hartree-Fock 

exchange and GGA type of the correlation energy have been proposed. These functionals are called hybrid 

exchange-correlation functionals. It was firstly introduced by Becke [44, 45], who developed a formula 

including a portion of the exact HF exchange energy and several approximations of the exchange, and of the 

correlation energies as shown below:  
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   (77) 

Various improvements to the above formula 76 and 77 have been proposed. For example, in the meta-GGA 

functionals, the density Laplacian and the kinetic energy dependence (the orbital energy Laplacian) are 

included in addition to the energy gradients. Functionals derived in the frame of the optimized effective 
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potential formalism have also shown promising. For a recent review, we refer to the work of S. Kummel and 

L. Kronik [46]. 

3.1.5 Advantages and drawbacks of DFT 

The DFT theory has become the method of choice in many solid-state and molecular electronic structure 

calculations. Its original formulation for the ground-state electron system in the absence of electric and 

magnetic field have been extended. Electron structure computations of higher electron energy states can be 

now performed with sufficient accuracy based on the Time-Dependent Density Functional Formalism 

(TDDFT) [47]. Methodologies to include magnetic property calculations have been also developed [48].  

The main drawbacks lie in the description of the electron density in systems with inhomogeneous and non-

local density. This includes a description of weakly bound non-covalently interacting systems. Various 

developments in this direction by separating the interaction range and applying a proper combination between 

the DFT based methodologies and post-Hartree Fock methods have been very recently proposed, and the 

computer realization of this approaches are in progress. 

3.2 Multiconfigurational Methods  

Multiconfiurational methods generate qualitatively correct reference state of molecules in cases where the 

Hartree-Fock  and density functional theory are not adequate. The Configurational Interaction (CI) Theory is a 

post-HF method that provides the correct electronic structure of molecules, not only at the equilibrium and the 

dissociation limit, but for the full potential energy surface (PES).  This  theory has been applied successfully 

to many chemical applications, such as spectroscopy,photochemistry and excited states, among others [49]. 

The calculation of electronic excited states (in the scope of this work) is typically a multiconfigurational 

problem, and therefore it should preferably be treated with multiconfigurational methods such as CASSCF 

and CASPT2. 

3.2.1 The Multiconfigurational (MC) Self-Consistent Field (SCF) method 

One of the different variants of the CI theory is the multiconfigurational self-consistent field (MCSCF) 

methods. Here, the wave function comprises several electronic configurations in order to qualitatively 

describe situations where the electrons undergo substantial arrangements [50]. The MCSCF method [51] 

involves the simultaneous optimization of both the CI vector and  the  molecular orbitals (MO)  coefficients. 

The coefficients from a CI calculation which comprises all single excitations of the reference MC function are 

used to construct a unitary rotation of the orbitals in each iteration [50]. Then, the MOs are optimized based 

on a linear combination of  electronic  configurations [49]. 
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3.2.2 Complete active space self-consistent field (CASSCF)  

In the CASSCF method [50] the number of determinants or CSFs used in the expansion of the CI vector are 

defined by dividing the orbitals into three subspaces (Fig. 2.2). In the first subspace, termed as inactive space, 

all orbitals are doubly occupied. The second subspace is known as the active space, and within this orbital 

space, a full-CI expansion is considered. The electrons and orbitals included in the active space are those that 

contribute most to the multireference character of the particular system of study. The occupation number of 

the orbitals in the active space will be a noninteger number between 0 and 2. Finally, the third subspace, 

known as the virtual space, consists of orbitals that are kept unoccupied. This method decreases the number of 

determinants or CSFs in the CI expansion since it limits the MC wave function within a specific subset of 

electrons and orbitals rather than on all electrons in all orbitals. The number of electrons and orbitals that can 

be included in the active space of a CASSCF calculation, however, is limited since the CI expansion increases 

exponentially with respect to the number of electrons and orbitals. The current limitations of the conventional 

CASSCF implementations are 18 active electrons in 18 orbitals. [49] 

 

Figure 2.2. Schematic representation of the three orbital subspaces of a CASSCF set of orbitals. The arrow 

represents the electron excitations from the occupied orbitals to the empty orbitals in the active space.   

3.2.3 Restricted Active Space (RASSCF) 

The number of CSFs or Slater determinants and, thus, the computational cost quickly increases with the 

number of active orbitals. Therefore, it may be desirable to use a smaller set of CSFs.The RASCF method [52] 

is an extension of the CASSCF formalism, where the inactive orbitals are doubly occupied in all 

configuration, and active orbitals are partitioned into three subspaces (Fig. 2.3). The subspace RAS1 contains 

orbitals that are doubly occupied up to a given maximum number of holes; in RAS2, all possible distributions 

of electrons are allowed, as in the CASSCF orbitals; and RAS3 contains orbitals that are unoccupied except 

up to a given maximum number of electrons.  
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Figure 2.3 Schematic representation of the active spaces (RAS1, RAS2, and RAS3) used in RASSCF calculations. 

Curved arrows denote excitations from occupied to virtual orbitals. 

3.3.4 Complete active space perturbation theory CASPT2 

CASSCF wave functions are typically good enough, but this is not the case for electronic energies, and the 

dynamic correlation effects have to be included. The CASPT2 [53, 54] method uses as reference the states 

described with the CASSCF or RASSCF wave function and applies the second-order multiconfigurational 

perturbation theory to compute the correlation energy. The implementation and theory of the method can be 

further revised in ref. [55] 

3.3 QM program packages used in this work 

3.3.1 deMon2k 

deMon2k is a program specialized in Kohn-Sham [56] Density Functional Theory(DFT) within the Auxiliary 

DFT framework [57]. The latter permits remarkably fast evaluation of energies, potentials and properties. It is, 

therefore, a very promising basis for conducting hybrid QM/MM simulations with DFT as the electronic-

structure method. Details of the program and implementation can be found in ref [58, 59].   

3.3.2 MOLCAS 

Molcas is an ab initio quantum chemistry software package able to treat general electronic structures for 

molecules consisting of atoms from most of the periodic table. Thus, the primary focus of the package is on 

multiconfigurational methods with applications typically connected to the treatment of highly degenerate 

states. Details of the program and implementation can be found in refs. [60-62]. 
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4. QM/MM Hybrid methods  

The size and complexity of a typical biomolecule, but also the time scale that must be reached make the ab 

initio calculations of biomolecules is difficult to access and make the use of molecular mechanics a necessity. 

However, molecular mechanics methods, heavily parameterized, do not allow a proper study of phenomena 

involving significant electronic rearrangement. The idea proposed by Warshel and Levitt [63] is to combine 

the QM method and MM method. This hybrid approach has the abbreviation QM/MM and has been promising 

in mani fields spanning biomolecules,  inorganic / organometallic systems, solids and the study of processes 

solvent medium 86-93 [64-67]   

In the QM / MM methods, this involves dividing the modelled system into two parts: a precisely described 

region (QM method) and a region described with conventional methods (MM) that is less computationally 

expensive. The region described in a quantum way corresponds to the region where the chemical reactions 

take place (formation, breaking of bonds, excited state, etc.) while regions which undergo little chemical 

change (typically solvents) are described in a conventional manner thus allowing a saving of computing time 

very important. A third region can be used to describe the border area. The spatial division of the system into 

sub-regions is justified by the fact that most chemical reactions have a very local character. 

The potential energy of the quantum region and the classical region are calculated in the usual way, but the 

total energy of the system can not be limited to the sum of the energies of these two regions since the latter 

interact together. We must, therefore, deal with the interaction between these two regions and this challenge is 

even more difficult if the border between these two regions intercepts a chemical bond. The border region 

may then contain additional atoms that do not exist in the base model. The QM / MM energy of a system can 

be evaluated according to two major schemes: additive schemes and subtractive schemes. 

4.1 QM/MM Energy: subtractive scheme 

In subtractive schemes, QM / MM energy is obtained in three steps. First, the energy of the total system is 

evaluated at the MM level. Then the QM energy of the QM region is added. Finally, the MM energy of the 

QM region is subtracted from the total energy obtained in order to correct the fact that the energy of the QM 

region is counted twice: 

𝐸𝑄𝑀/𝑀𝑀 =  𝐸𝑀𝑀(𝑄𝑀 + 𝑀𝑀) + 𝐸𝑄𝑀(𝑄𝑀) − 𝐸𝑀𝑀(𝑄𝑀)           (77) 

The main advantage of this scheme is the lack of communication between the QM and MM routines making 

the implementation relatively simple. But in return, a field of force is required for the part QM, but this force 

field is not always existing. Moreover, this method does not simulate the polarization of the electronic cloud 

in the QM part by the environment MM. 
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4.2 QM/MM Energy: additive scheme 

In additive schemes, the total energy of the system is the sum of the QM energy of the QM region, the MM 

energy of the MM region, and a QM / MM coupling term. The interaction between region QM and region 

MM, at the origin of this term of coupling, can be described with different levels of sophistication: 

𝐸𝑄𝑀/𝑀𝑀 =  𝐸𝑀𝑀(𝑀𝑀) + 𝐸𝑄𝑀(𝑄𝑀) + 𝐸𝑄𝑀−𝑀𝑀(𝑄𝑀 + 𝑀𝑀)          (78) 

4.3 Mechanical inclusion 

In this approach, all the interactions between the atoms of the region QM and MM are described by the force 

field: the bonds between atoms QM and MM are modelled by a harmonic potential, the non-binding 

interactions are described by a potential of Lennard-Jones etc. With this approach, the position of the atoms 

QM is directly influenced by the environment MM, but the electronic cloud QM is not polarized by this same 

environment. 

To calculate the electrostatic interactions between the subsystems, it is possible either to attribute the charges 

from the force field to the QM atoms or to recalculate the charges of the QM atoms at each simulation stage. 

Concerning the van der Waals interactions, these are simply described by the force field, van der Waals 

parameters are therefore necessary for the active region (the QM atoms). When they do not exist, these 

parameters can be borrowed from similar atoms. And even when they exist, the state of the QM atoms may 

change during the reaction, and one may wonder whether these parameters should not be recalculated. In 

practice, the Lennard Jones parameters are usually not updated during the calculation, but this probably does 

not involve big problems since the Lennard Jones potential is a short-range function and only near-border 

atoms QM / MM are important. Riccardi et al.94 show that the van der Waals parameters have almost no 

influence on the thermodynamic parameters calculated from QM / MM simulation but that they slightly 

influence certain geometrical details around the QM region. 

4.4 Electrostatic inclusion 

A first improvement of the mechanical inclusion is to include the polarization effects of the electron density in 

the QM part by the MM [68] environment by incorporating, for example, the point electric charges of the MM 

cores. In the electrostatic inclusion scheme, the electrostatic interactions between the two regions are 

considered during the ab-initio calculation. The charged MM atoms are considered in the QM Hamiltonian as 

a mono-electronic operator: 

𝐻𝑖
𝑄𝑀−𝑀𝑀 = 𝐻𝑖

𝑄𝑀 − ∑
𝑒²𝑄𝐴

4𝜋𝜀0|𝑟𝑖−𝑅𝐴|
𝑀
𝐴                (79) 
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𝑟𝑖et 𝑅𝐴are the positions of the electron i and the atom MM A of partial charge QA. 𝐻𝑖
𝑄𝑀

 is the original mono-

electronic operator for kinetic energy and nuclear attraction energy. 

In this approach, the MM atoms polarize the electron density according to their partial loads QA from the 

force field. However, these partial loads are set to give correct MM simulations rather than a physically 

correct load distribution. One can then wonder if the polarization induced by these loads MM is realistic or 

not. Electrostatic inclusion is, nevertheless, the most popular method.  

4.5 Polarisable inclusion 

The next step in sophistication is to include the polarizability of the MM atoms allowing the polarization of 

the two regions (QM and MM). For this, different approaches have been developed [69, 70], but there are still 

no well-established polarizable force fields for biomolecules. Moreover, the inclusion of the polarization 

requires the calculation of the polarization of the region MM at each step of the self-consistent iterative 

calculations QM. In addition, the polarization itself is determined in a self-consistent manner, making the 

calculations particularly heavy. 

4.6 Saturation of broken bonds at the QM / MM boundary 

If the QM and MM subsystems are connected by chemical bonds, particular attention should be paid when 

evaluating the QM energy. Indeed, if the boundary between region QM and MM cuts a chemical bond, it 

would leave in the QM region one or more unbound electrons which are actually bound with MM atoms. The 

simplest solution to this problem is to introduce a monovalent atom at an appropriate position along the cut 

bond and which would then be covalently bound to the QM atom whose bond has been broken. Hydrogen can 

fulfil this role, but it is not forbidden to use a group such as the methyl group. A popular alternative to this 

solution is to replace the chemical bond with saturated orbitals [71, 72]. 

4.7 QM/MM program packages used in this work 

4.7.1 deMon2k 

deMon2k is a program specialized in Kohn-Sham [56] Density Functional Theory(DFT) within the Auxiliary 

DFT framework [57-59] (vide supra). deMon2k allows QM/MM simulations with either non-polarizable or 

polarizable force fields and includes a polarizable continuum model for remote environments. Link atoms and 

capping potentials are incorporated to deal with QM/MM frontiers that cut covalent bonds. Both Born-

Oppenheimer molecular dynamics (MD) simulations and Ehrenfest non-adiabatic MD simulations can be 

performed with this software. deMon2k also provides one of the very few implementations for conducting 

attosecond electron dynamics within polarizable MM environments. Further details can be found in ref. [73]. 
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Molecular dynamics simulations at QM/MM level (BOMD/MD)   with demon2k        

Born Oppenheimer Molecular Dynamics (BOMD)/MD  simulations can be useful to gain a better 

understanding of the stability solutes in a solvent medium [74, 75] [76]. In this hybrid approach, the solute of 

interest is included in the QM layer, whereas the solvents atoms are treated classically with the OPLS-AA 

force field [13]. A BOMD step in deMon2k consists of solving the time-independent electronic Schrödinger 

equation to get the forces on the nuclei, followed by a classical velocity Verlet [77, 78] propagation of the 

nuclei according to those forces. For each BOMD step, the step time, molecular energies, atomic coordinates, 

and velocities are written to the trajectory file. deMon2k records the time and the instantaneous temperature as 

well as the instantaneous kinetic, potential, and total energies. It also records averages of temperature and 

(total) energy. Furthermore, the mechanical interaction between the QM and MM regions is expressed by a 

Lennard-Jones potential. Therefore, Lennard-Jones parameters must be assigned to the QM atoms, and they 

are taken from the force field. These atom types serve only for the assignment of van der Waals radii and 

potential depths [73]. 

4.7.2 COBRAMM 

COBRAMM is a software interface for tailoring molecular electronic structure calculations and running 

nanoscale simulations [79]. It is designed for hybrid QM/MM computations and accurate non-adiabatic 

dynamics in the excited state. It is well coupled with the Molcas suite of programs [80] and, along with the 

development of  approaches to speed-up multi-reference perturbative calculations [81], it allows optimizations 

and non-adiabatic on-the-fly excited states dynamics at a full correlated level. Moreover, COBRAMM has 

recently integrated tools for accurate modelling of non-linear and bi-dimensional electronic spectroscopy in 

multichromophoric (bio)organic systems (e.g., DNA, proteins) [82, 83] .   

Ab Initio Simulations of Two-Dimensional Electronic Spectra 

Two-dimensional (2D) UV electronic spectroscopy (2DES) [84-88] is a recently developed technique, which 

can disentangle signals arising from different intermolecular interactions that remain hidden in the 1D pump-

probe spectra. 2DUV electronic spectroscopy can target the π-π* transitions of aromatic residues, and can be 

employed for tracking all sorts of localised, delocalised, energy and charge-transfer photo-induced 

phenomena; however, their interpretation proves to be challenging. Alternatively, computational simulation of 

2DES can be used to separate the different peaks into their contributing specific electronic transitions, thus 

providing a tool to recognise, understand, and interpret the observed primary fingerprints  [89].  In this 

approach, an explicit mixed quantum mechanics/molecular mechanics (QM/MM) methodology is employed 

for the evaluation of electronic excited state energies and transition dipole moments, in which different 

photochemical outcomes are associated with specific molecular conformations.  
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The Sum-Over-States (SOS) approach [90] and the QM/MM scheme (SOS//QM/MM) [89, 91] have shown 

great potential to simulate 2DES and to characterise different conformations in DNA and proteins. It has been 

shown that 2DES obtained with this approach can distinguish between two configurations of a peptide 

containing both unstacked (non-interacting) and π or T-stacked (interacting) peptide motifs containing 

phenolic side chains in proteins or DNA/RNA [82, 92-94]. Multiconfigurational and multireference 

perturbation methods, such as complete active space self-consisted field (CASSCF) and second-order 

multireference perturbation theory (CASPT2) techniques, can be applied to calculate the electronic properties 

of multichromophoric system reliably. Hybrid  QM/MM   methods and  molecular  dynamics  techniques  can  

be  used  to  assess  environmental  and  conformational  effects,  respectively,  that  shape the  2D  electronic  

spectra. Further details of the theory, implementation, and generation of 2D-ES can be found in refs. [82, 89, 

92-94] 
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Abstract 

The evolution of structural properties, thermodynamics and averaged (dynamic) total hardness values as a 

function of the composition of binary water-organic solvents, is rationalized in view of the intermolecular 

interactions. The considered organic solvents are ethanol, acetonitrile, and isopropanol at 0.25, 0.5, 0.75, and 

1 mass fractions, and the results are obtained using molecular dynamics simulations. The site-to-site radial 

distribution functions reveal a well-defined peak for the first coordination shell in all the solvents. The 

characteristic peak of the second coordination shell exists in aqueous mixtures of acetonitrile, whereas in the 

water-alcohol solvents, a second peak develops with the increase of the alcohol content.  From the computed 

coordination numbers, averaged hydrogen bonds and their lifetimes, we found that water mixed with 

acetonitrile largely preserves its structural features and promotes the acetonitrile structuring. Both the water 

and alcohol structures in their mixtures are disturbed and form hydrogen bonds between molecules of different 

kinds. The dynamic hardness values are obtained as the average over the total hardness values of 1200 

snapshots per solvent type, extracted from the equilibrium dynamics. The dynamic hardness profile has a non-

linear evolution with the liquid compositions, similarly to the thermodynamic properties of these non-ideal 

solvents. 

1. Introduction 

The intermolecular interactions between water and organic solvents are driving the microstructuring in 

aqueous mixtures of simple organic solvents, which determines their thermodynamic properties [1]. In recent 

years, the studies of structural organization and the mixing behavior at the molecular level in binary water-

simple organic solvents has gained a revived interest, because of their use in the  biomass fractionation 

processes [2-6], in the formation of membranes for CO2/flue gases (N2) separation [7], in addition to the 

plethora of well-established applications in electrochemistry, organic synthesis, chromatography, and solvent 

extractions. Moreover, the individual properties of the organic components confer them distinctive features 

when mixed with water at various contents, temperature and pressure conditions. 

In this work, we will focus on aqueous mixtures of ethanol (EtOH), isopropanol (2PrOH), and acetonitrile 

(AN). A variety of physical [8-12], thermodynamic [13-16], transport [9, 17-19], electronic [12, 20-23], and 

structure properties [24-28] are available from the  experimental and computational studies. Simple alcohols, 

such as EtOH and 2PrOH, are miscible in water, form strong hydrogen bonds with water molecules, and are 

thought to be inhibitors for clathrate hydrate formation. Thermodynamics of short (methanol and ethanol) 

alcohol-water mixtures have been shown to depend on the solvent composition in a very complex way [29-

38]. Study of 1H NMR measurements [33] at -10° C found that the decrease of the alcohol mole fraction to 

~0.2, strengthens the H-bonds between water and hydroxyl OH groups in ethanol while enhancing the water 

structure through H-bonding.  Pozar et al. 2016 [34] used NMR techniques to understand the 
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microheterogeneity of EtOH-water mixtures [34] and suggested that ethanol is entirely structured by hydrogen 

bonding, whereas this is not true for water. The calculated structure factors pointed to the conclusion that 

water is less hydrogen bonded when EtOH concentration increases, even if the change in intensities is smooth. 

Petong et al. [35] observed non-linear changes of ethanol dipole moment with the changes of the mixture 

concentration. From the molecular dynamics simulations by Saiz et al. [1, 36] of pure liquid ethanol,  the role 

of H-bonding on the structural and dynamical properties was evidenced. The hydrogen bonding study in 

water-alcohol mixtures by X-ray absorption spectroscopy of Lam et al.  [37] suggests that the additional 

hydrogen bonding interactions generated from the interaction of water-alcohol would result in superior 

ordering in the liquid structures, leading to a reduction in entropy and a negative enthalpy of mixing. This 

would be true for EtOH. However, the spectra of the 2PrOH-water mixtures exhibit an increase in the number 

of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction. Therefore,  this 

explanation does not account for the negative excess entropy of the 2PrOH-water mixtures, and still needs to 

be addressed. Finneran et al. [38] succeeded to register the rotational spectrum of an isolated EtOH-dimer 

using Fourier transform microwave spectroscopy and identified the presence of only gauche EtOH  

conformer, stabilized by H-bonding with water. These measurements confirm that ethanol is a better 

hydrogen-bond acceptor than donor. Ab initio calculations [38] idientified water and EtOH as donor and 

acceptor, respectively. 

Acetonitrile, on the other hand, although miscible with water, is not a hydrogen bond donor and the water-

acetonitrile mixture is known to present a microheterogeneity [39]. The term microheterogeneity has been 

introduced to define the structural organizations of multi-component liquids, where the molecules of each 

component are surrounded by the molecules of the same kind. The various patterns, hitherto proposed [16, 26, 

40-47]  for microstructural organization in water-AN mixtures revealed that the structuring of this binary 

solvent is a complex function of the liquid compositions, similarly to the short alcohols - water mixtures. 

Starting with the earlier thermodynamics study of  Robertson and Sugamori [41] on the temperature 

dependence of the enthalpy (ΔH) and of the specific heat capacity at constant pressure (Cp), the water 

structure was found broken, or partially molt, due to the presence of the acetonitrile component in the liquid. 

Moreau and Douheret [42] established the existence of three interaction regions with different structural 

patterns in water-AN mixtures. In the water-rich region, below 0.2 mol fraction of AN, the voids of the 

aqueous structure are progressively filled by AN, without enhancement of the water cluster. The geometry of 

the acetonitrile molecules could not easily fit into the void, which led to the disruption of the H-bond network. 

By increasing the AN concentration, an intermediate region between ~0.2 to ~0.8-mole fraction was 

characterized by a progressive break of the H-bonds, which resulted in a reduction of the water aggregates and 

gave rise to a region of microheterogeneity. In this region water molecules were mostly surrounded by water, 

and AN molecules were surrounded by AN. At AN concentrations, above ~0.8 mol, the domains of 

predominanlty AN molecules are progressively disrupted by the addition of water molecules. Nevertheless, 

the aqueous mixtures of AN are characterized by microheterogeneity, the formation of water clusters has been 
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excluded from the analysis of IR spectra for the mixtures above 0.15 mol concentration [45]. Moreover, above 

the equimolar mixture, water solvated preferably AN than other water molecules, which suggested that water 

molecules form short water chains and rings [45]. In mixtures with high AN content, water molecules can gain 

a motional freedom, whereas at lower AN concentration water dimers and trimers are observed [44]. 

Formation of true H-bonds between water and AN molecules at low AN concentration have been concluded 

from X-ray Diffraction and IR spectroscopy [46] and radial distribution functions [26]. The H-bond lifetime is 

found to increase with the decrease of water content from the molecular dynamics simulations [47]. The 

dipole-dipole dimers between water and AN are suggested to co-exists with the first-shell H-bonds in the 

mixtures with AN content between 0.2 - 0.6 mol [46]. This correlates with the ab-initio results [43] that 

established two types of water-AN dimers, one favouring the hydrogen bonding with water and another 

favoring the dipole-dipole interaction. However, the dipole-dipole interactions in pure AN clusters is reduced 

in the presence of water because hydrogen-bonded AN dimers appear [48]. 

Тhis work aims to provide a systematic comparative study of the structural, dynamic and thermodynamic 

properties of aqueous mixtures of three organic solvents (called cosolvent throughout this paper), and namely 

ethanol (EtOH), isopropanol (2PrOH) and acetonitrile (AN) at 0.25, 0.50, and 0.75 mass fraction 

concentrations (XCosol), using molecular dynamics simulations. The results for the four pure liquids obtained at 

the same theoretical level are also included. In addition, for the first time, it is proposed to evaluate the 

chemical hardness at the equilibrium dynamics and to analyze its behaviour as a function of cosolvent mass 

concentration.  

2. Methods and computational details 

2.1 Molecular dynamics simulations  

All-atom molecular dynamics (MD) simulations were carried out using the GROMACS [49-53] package 

version 2016.3, along with the CHARMM36 additive force field [54, 55] and the TIP4P model for liquid 

water [56-58], which better reproduces the electrostatic distribution around water molecules in comparison 

with other 3-sites models. Solvent structures for EtOH, 2PrOH, and AN are available in the GROMACS 

molecule and liquid database [59]. The compositions of the cubic boxes of 4 nm, used in our simulations, are 

presented in Table 3.1 with the calculated number of molecules to reproduce the experimental densities at 

each concentration. 

For each simulation box, energy minimization was performed using the steepest descent algorithm until 

convergence to a tolerance of 100 kJ.mol-1.nm-1. After minimization, unconstrained simulations to stabilize 

and distribute the solvent molecules were performed for 200 ps at 298.15 K and 1 bar with a 0.5-fs time step, 

and a frame-saving rate (for analysis) of 1ps. Temperature and pressure coupling was handled using the leap-

frog stochastic dynamics integrator and the Parrinello-Rahman method [60, 61], respectively. Initial velocities 
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were generated from a Maxwell distribution at 298.15 K, and 15-ns MD simulations were performed.  The 

isothermal-isobaric (NPT) ensemble was considered for data collection. Neighbour searching and short-range 

nonbonded interactions were handled with the Verlet cut-off scheme.  

Table 3.2. Compositions of the simulated systems in 4 nm cubic boxes for the modelled solvent mixtures, studied 

in this work. The cosolvent mass fraction (XCosol) and the cosolvent molar fraction ( Cosol), the number of 

cosolvent molecules (N Cosol) and the number of water molecules (N water) are reported.  

Solvent system XCosol Cosol NCosol Nwater 

Pure water 0 0 0 2133a 

Pure EtOH 1 1 657b 0 

Pure 2PrOH 1 1 501c 0 

Pure AN 1 1 730d 0 

EtOH-water mixture 
 

0.25 0.115 201 1539 

0.50 0.281 381 973 

0.75 0.540 534 455 

2PrOH-water mixture 
 

0.25 0.910 153 1531 

0.50 0.231 288 960 

0.75 0.473 448 851 

AN-water mixture 
 

0.25 0.128 224 1534 

0.50 0.305 417 950 

0.75 0.568 582 442 

a) 6399 atoms + 2133 virtual sites. b) 5913 atoms. c) 6012 atoms. d) 4380 atoms. 

Electrostatics were treated with the Fast, smooth Particle-Mesh Ewald (SPME) method, with a Coulomb cut-

off of 1.2 nm, a fourth-order interpolation and Fourier spacing of 0.12 nm. Van der Waals (vdW) interactions 

were treated using the Lennard-Jones potential with a cut-off distance of 1.2 nm. The potential was decreased 

over the whole range, whereas the forces were decayed smoothly to zero between 1.0 nm to the cut-off 

distance. A LINCS algorithm was used to constrain the bonds when constraints applied, 12 being the highest 

order in the expansion of the constraint coupling matrix.  

The structure and dynamics of the water-cosolvent mixtures, using the GROMACS analysis tools, were 

characterized by the site-to-site radial distribution functions (RDFs), coordination numbers (CN), the average 

number of hydrogen bonds (HBs), HB lifetimes, and intermolecular energies. Each of these descriptors was 

calculated for all the water-cosolvent concentrations considered in this study, using the last 5-ns trajectory for 

analysis. Site-to-site RDFs were computed for the water-water, cosolvent-cosolvent, and cosolvent-water pairs 

using the water oxygen, EtOH oxygen, 2PrOH oxygen, and AN nitrogen. The number of neighbour molecules 

was obtained by integration of the RDFs up to a 2-nm correlation distance, from where the CN can be 
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extracted at the first minimum of RDF. HBs were calculated using a geometrical criterion with a maximum 

donor-acceptor distance of 0.35 nm and a hydrogen-donor-acceptor angle of 30°. The forward HB lifetimes 

were computed from the autocorrelation function of each H-bond type, using the theory of Luzar and 

Chandler [62, 63], as described by van der Spoel et al. [64]. 

2.2 Dynamic total hardness 

The concepts of chemical hardness and softness, introduced by Pearson  [65], have been proven useful to 

classify the acids and bases as hard or soft in many chemical reactions with the aim to predict the product's 

stability prior to the laboratory work. The hard (soft) chemical species are characterized as hardly (easily) 

polarizable. Since the formulation of the hard-soft-acid-base principle of Pearson [65], the chemical hardness 

and softness concepts have been widely explored in organic chemistry and homogeneous catalysis [66]. The 

theoretical formulation of the chemical hardness and softness, was derived in the frame of Density Functional 

Theory (DFT) by Parr et al. [67], followed by developments and implementations of various algorithms for 

their numerical calculations [68-72]. Various reactivity indices within DFT were derived from the chemical 

hardness/softness giving rise to the entire research field called conceptual DFT (see, for example, the 

exhaustive recent review in ref. [73]). 

Among these algorithms, the reactivity indices, computed with the orbitally resolved hardness tensor approach 

(ORHT) [74] were successfully applied in isomerization [75, 76] and protonation [77] reactions, as selectivity 

descriptors [78], and in the framework of Pearson's hard-soft-acid-base principle [77, 78]. A simplification of 

the ORHT method was proposed as well, where the diagonal orbital hardness elements are replaced by the 

atomic hardnesses, either computed at the DFT level from the energies of orbitals with fractional electron 

occupations [69, 74-80], or, obtained from the experiments as the sum of the measured ionization potential (I) 

and the electronic affinity (A) [66]. This approach, which is called the atomically resolved hardness tensor 

(ARHT), provides an efficient scheme for easy and relatively fast calculations of the reactivity indices in large 

scale systems. Here, for the first time we apply the ARHT approach to large scale dynamic systems, as are the 

4 nm boxes, used in the present MD simulations, in order to compute the averaged tot,al hardness. In the 

present ARHT calculations the hardness value (A) of each constituent atom A is the experimental atomic 

hardness, taken from ref. [66]. In a molecular system at equilibrium the electronegativity equalization 

principle (EEP) holds, which allows to estimate the interactions between every AB atom pair from their 

interatomic distances in a molecule. Keeping in mind that EEP holds for the molecular structures (snapshots), 

extracted from the equilibrium dynamics simulations, the interatomic hardness (AB) can be obtained from the 

atomic hardness values, A and B, and the interatomic distances RAB. RAB distances are provided by MD 

simulations and AB are computed from the empirical relation proposed by Ohno [81]: 
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The elements of the inverse hardness tensor are the atomic softness elements  sAB,  [69, 74-80], their sum gives 

the total softness (S), from which the total hardness can be computed as follows: 
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The dynamic hardness is then easily derived as the average over the total hardnesses i, i=1,...N computed 

from ARHT approach for every snapshot, extracted from the equilibrium dynamics trajectories. Each 

snapshot, thus, provides the RAB distances, used in Eq. (1). For N trajectories, the dynamic total hardness is 

〈𝜂〉 =  (∑ 𝜂𝑖)𝑁
𝑖=1 𝑁⁄ . In this first study, we use only the experimental atomic hardnesses, taken from ref [66]. 

The total hardness for each solvent model and content was calculated for a set of 1200 snapshots extracted 

from the last 300 ps of the simulation trajectories, recorded at every 0.25 ps. The number of molecules in each 

box, used for the ARHT computations, is provided in Table 3.1. The experimental atomic hardness values, A 

in eV, are  6.43 for H, 5.00 for C, 7.23 for N, and 6.08 for O [66].   

3. Results and discussion 

3.1 Thermodynamic properties: validation of the MD simulations  

The models used in the MD simulations were first validated for the pure water, EtOH, 2PrOH and AN 

solvents from a comparison between the computed and experimental density (ρ), diffusivity (D), enthalpy of 

vaporization (ΔHvap), and the averaged number of H-bonds. These thermodynamic properties were obtained 

over 5 ns of the equilibrium MD trajectories. The theoretical results, collected in Table S3.1 in the Supporting 

Information (SI) section, reproduce closely the reference experimental data. This demonstrates the very good 

performance of TIP4P water model and CHARMM36 additive force field [82]. The thermodynamic 

properties, calculated for the three aqueous mixtures of EtOH, 2PrOH, and AN are collected in Table S3.2 (SI 

Materials). All the simulated solvent mixtures reproduced closely the reference experimental conditions, 

which are T= 298.15 K and P=1, similarly to the pure solvents (see Table S3.1).  
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Figure 3.1. Computed densities for solvents and their aqueous mixtures. Experimental curves are included for 

comparison and were taken from ref. [8, 9], ref. [10], and ref. [11, 12] for EtOH, 2PrOH, and AN, respectively. 

 

Figure 3.2. Computed enthalpy of mixing, ΔHvap, for the water- a) EtOH, b) 2PrOH, and c) AN solvent mixtures at 

different cosolvent mass fractions, Xcosol 

The density profile as a function of the binary mixture composition plotted in Fig. 3.1, demonstrates the non-

ideality of the water - cosolvent mixtures. Again a good reproduction (with errors below 3% for all mixed 

solvents) of the experimental density profile in Fig. 3.1 is obtained. Similar are the conclusions from the 

mixing enthalpy (Fig. 3.2), calculated as 

 𝛥𝐻𝑚𝑖𝑥 = 𝐻𝑙𝑖𝑞,𝑚𝑖𝑥 − 𝐻𝑙𝑖𝑞,1 ∗ 𝑦1 − 𝐻𝑙𝑖𝑞2 ∗ 𝑦2 =(𝑈 + 𝑃𝑉)𝑙𝑖𝑞,𝑚𝑖𝑥 − (𝑈 + 𝑃𝑉)𝑙𝑖𝑞,1 ∗ 𝑦1 − (𝑈 + 𝑃𝑉)𝑙𝑖𝑞2 ∗ 𝑦2  , 

The internal energy, U, of the liquid mixture is obtained directly from the potential energy (see Tables S3.1 

and S2) during the simulation and yi is the molar fraction of component i. The ΔHmix profiles reported in Fig. 

3.2, display correctly the expected non-ideal behaviour for all the solvent mixtures, in agreement with the 

experiment [14-16]. The curves show that the mixing of EtOH and water is exothermic at all concentrations, 

whereas 2PrOH-water mixing becomes endothermic with increasing the cosolvent content. The AN mixing 

with water is endothermic, since the penetration of AN molecules into the water H-bond network requires 

additional energy to break the water-water H-bonds. In conclusion, we note that this excellent comparison 



Chapter 3 

109 

 

between the calculated and known experimental thermodynamic features demonstrate the very good 

performance of the chosen force-fields and numerical details. 

3.2 Structures of the aqueous binary solvents 

 

Figure 3.3 Radial distribution functions, g(r), of the a) cosolvent-cosolvent, b) water-water, and c) cosolvent-water 

pairs. The water oxygen, EtOH oxygen, 2PrOH oxygen, and AN nitrogen are the reference sites.  

In order to analyse the structural properties, we computed the RDFs of the cosolvent-cosolvent, water-water, 

and cosolvent-water pairs at each solvent composition. The radial distribution functions of the cosolvent-

cosolvent pairs displayed in Fig. 3.3. Fig. 3.3a compare well with previously studied RDFs in pure and mixed 

solvents [36, 83-86]. The EtOH O-O radial distribution curve (in Fig. 3.3a, left panel) attains a maximum of 
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4.7 at a distance of 0.284 nm, thus agreeing with the results of Saiz et al. [36]. The 2PrOH O-O RDF (in Fig. 

3.3a, middle panel) displays a peak of 5.9 at a distance of 0.286 nm and compares well with the results of 

Anisimov et al. [83]. In the acetonitrile N-N RDF profile in Fig. 3.3a, right panel,  the first peak has a height 

of 1.36 and appears at 0.398 nm, followed by a second peak of height 1.2 at 0.58 nm, similarly to the N-N 

RDF obtained from 3 and 6-sites model potentials [84, 85]. In Fig. 3.3b, the RDF of the distances between 

oxygen atoms in H2O molecules (Owater) displays a sharp first peak with an intensity of 3.00 at 0.276 nm, 

which reproduces well the experimental 3.09 peak probability [86]. Moreover, the second and third peaks, 

experimentally observed around 0.452 nm and 0.677 can be appreciated near the same values. The Owater-

Ocosolv RDFs are presented in Fig. 3.3c.  

From all the  RDFs in Fig. 3.3 we conclude that the solvent content does not affect the positions of the 

maximum peaks of the mixed solvents, but only their heights and depths. On the contrary, the secondary 

peaks in the RFFs are significantly affected by the presence of water. It is evident that the ordering in the 

solvents disappears beyond the first coordination shell with the increase of the water content. In Fig. 3.3a, left 

panel, the second shell structure of EtOH is gradually recovered as the content of EtOH increases. Similarly, 

the second shell structure in 2PrOH (Fig. 3.1 a, middle) rises with the 2PrOH concentration. Moreover, the 

2PrOH shell is found to be more extended in comparison to EtOH, which indicates that the 2PrOH aggregates 

formed in the mixture have a more complex organisation than in EtOH. Following NAN-NAN RDFs, we note 

that the second coordination sphere is preserved with the increase of the water content. Moreover, a visual 

inspection of the trajectories (see Fig. S3.1) showed predominantly an anti-parallel mutual displacement 

between the CH3CN molecules in the first shell. Perpendicular mutual orientations are also observed in the 

first coordination shell. Parallel orientations between the units dominate in the second shell. The RDF profiles 

in the alcohol-water mixtures display significantly sharper peaks than the RDF profile in the water-AN 

solvents.  

With the increase of the alcohol contents, the first-coordination peak develops and has a well distinguishable 

high intensity in the pure alcohol solvents. The opposite behaviour of RDF peaks is established for the 

acetonitrile co-solvent. In addition, the RDFs profiles in the AN-water mixtures are not characterised by sharp 

peaks (Fig 3.3a and c), and the intensity ratio between the first and second peak decreases with the amount of 

AN up to the pure solvent. It seems that the presence of water promotes the structural ordering in acetonitrile 

at variance to the alcohols. The large overlapping area between the first and second peaks in the acetonitrile 

RDF indicate high numbers of AN and water molecules between the first and second coordination shells, 

increasing with the AN content.  

The cumulative numbers of molecules as a function of distances are calculated from the integration of RDFs 

and plotted in Fig. 3.4 in the range of r = 0.5 nm for the cosolvents and r = 0.35 nm for OW-OW pairs. At the 

first coordination sphere distances, the cumulative number corresponds to the coordination number within the 

first coordination sphere (Table 3.2).  
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Fig. 3.4 Cumulative numbers, n(r), in the short-range distance (r <0.5 nm) of the a) cosolvent-cosolvent, b) water-

water, and c) cosolvent-water pairs. The water oxygen, EtOH oxygen, 2PrOH oxygen, and AN nitrogen are the 

reference sites  

The cumulative numbers of AN - AN neighbours increase with their concentration, whereas the number of 

water-water neighbours decreases. For acetonitrile, this finding is in a very good agreement with acoustic and 

positron annihilation measurements of aqueous solutions of acetonitrile reporting a destabilization of AN- 

clathrates with the increase of the AN concentration in water [87]. It also points to microheterogeneity, 

hitherto largely accepted in the literature (see Introduction section). Moreover, the number of water-water 

neighbour molecules is higher in AN mixture than in the alcohol mixtures. We attribute this behaviour to the 
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chemical nature of the intermolecular interactions of the solvents that define the local homogeneity of the 

mixture. In the AN liquid, the dipole-dipole interactions dominate, whereas in EtOH and in 2PrOH the 

network of hydrogen bonds is formed. Since acetonitrile is less polar than the other solvents, does not make 

hydrogen bonds with itself, and can interact with water only as an H-bond acceptor, the individual molecules 

will repel each other as the mixture becomes more concentrated, leading therefore to a local phase separation, 

as exemplified in Fig. S3.1. As observed by mass spectrometry [16], several aprotic solvents exhibited 

‘additional mixing’, in which AN molecules cannot substitute water molecules inside their clusters; thus they 

interact with the water cluster as an external agent.  

Table 3.2. Cutoff distance of the first coordination peak (rmin) and coordination numbers (CN) of each interaction 

pair, calculated from the cumulative numbers, c(r), at rmin.  

 
Cosolvent-

Cosolvent 

Water-Water Cosolvent-

Water 

XEtOH rmin (nm) CN rmin 

(nm) 

CN rmin 

(nm) 

CN 

0 - - 0.338 4.6 - - 

0.25 0.352 0.3 0.338 3.9 0.344 2.6 

0.50 0.346 0.6 0.346 3.3 0.348 2.1 

0.75 0.358 1.1 0.35 2.2 0.35 1.3 

1 0.364 2.0 - - - - 

X2PrOH rmin (nm) CN rmin 

(nm) 

CN rmin 

(nm) 

CN 

0 - - 0.338 4.6 - - 

0.25 0.348 0.2 0.338 4.0 0.354 2.7 

0.50 0.356 0.5 0.344 3.5 0.346 2.1 

0.75 0.364 1.0 0.35 2.6 0.354 1.4 

1 0.378 2.0 - - - - 

XAN rmin (nm) CN rmin 

(nm) 

CN rmin 

(nm) 

CN 

0 - - 0.338 4.6 - - 

0.25 0.53 2.7 0.34 4.1 0.338 1.6 

0.50 0.524 4.1 0.344 3.8 0.342 0.9 

0.75 0.516 4.6 0.352 3.0 0.35 0.6 

1 0.51 5.2 - - - - 
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The cumulative numbers of AN - AN neighbours increase with the AN concentration, whereas the number of 

water-water neighbours decreases. This suggests an increase in water-acetonitrile interactions. For 

acetonitrile, this finding is in a very good agreement with acoustic and positron annihilation measurements of 

aqueous solutions of acetonitrile reporting a destabilization of AN- clathrates with the increase of the AN 

concentration in water [87]. Moreover, the number of water-water neighbour molecules is higher in AN 

mixture than in the alcohol mixtures. It, therefore, points to microheterogeneity of the water-AN solvents, 

hitherto largely accepted in the literature (see Introduction section). This behaviour is attributed to the 

chemical nature of the intermolecular interactions of the solvents that define the microstructure organisation in 

the mixtures. In the AN liquid, the dipole-dipole interactions dominate, whereas in EtOH and in 2PrOH the 

network of hydrogen bonds is formed. Since acetonitrile is less polar than the other solvents, does not make 

hydrogen bonds with itself, and can interact with water only as an H-bond acceptor, the individual molecules 

will repel each other as the mixture becomes more concentrated, leading therefore to a local phase separation, 

as exemplified in Fig. S3.1. As observed by mass spectrometry [16], several aprotic solvents exhibited 

‘additional mixing’, in which AN molecules cannot substitute water molecules inside their clusters; thus they 

interact with the water cluster as an external agent.  

The number of water to water neighbours (Fig. 3.4b) decreases as the cosolvent concentration increases. This 

means that water structures are experiencing rupture due to the presence of the cosolvents. Alcohols, known to 

be strong structure breakers, particularly EtOH, interact with water molecules by substitution, contrary to the 

AN-water interactions. At all the concentrations, AN molecules display the lowest structure breaker power. 

Also, from the values of the coordination numbers, it can be inferred that water is a strong structure breaker 

for alcohol structures, but promotes partially the ordering of the AN liquid component. On the other hand, the 

number of cosolvent molecules surrounding water molecules increases with the cosolvent concentration. At 

short distances, < 0.35 nm, the coordination of cosolvent to water neighbours is controlled by hydrogen bonds. 

At this distance, the number of alcohol neighbours to the water molecules increases if the alcohol content > 

0.5 mass concentration (see Fig. 3.4c), which shows that the alcohols are H-bonded with water. The number 

of AN neighbouring the water molecules is significantly smaller at r < 0.35 nm and increases faster than the 

alcohol-water neighbours at larger distances, r ≥ 0.7 nm, as follows from the cumulative numbers in the range 

of 2 nm, presented in Fig. S3.2. This indicates that water-AN interactions are not dominated by H-bonding. 

The much faster increase of NAN-NAN cumulative number in comparison to NEtOH-NEtOH and N2PrOH-N2PrOH in 

the interval of 0.35 - 0.5 nm, suggests an enhanced microheterogeneity of the water-AN mixture in this region.  

3.3 Analysis of the intermolecular interaction types 

The variations of the Coulomb and Lenard-Jones (LJ) energies and H-bonds with the kind and content of the 

cosolvent are used to infer the effect of the mixture compositions on the intermolecular interactions. In Fig. 

3.5 the water-water, cosolvent-cosolvent, and cosolvent-water Coulomb and LJ energies are plotted for the 
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considered mixed and pure liquids. The cosolvent-cosolvent energies (Fig. 3.5a) decrease fast (meaning the 

electrostatic interactions increased) with the content of the organic solvents, which is expected. In ethanol, the 

water-EtOH coulombic interactions (Fig. 3.5b) attain their maximum at X=0.75 mass fraction content. In 

isopropanol, the maximum of the electrostatic and LJ interactions (minimum in Fig. 3.5a) is observed near 0.5 

XCosol. This suggests a decrease of the 2PrOH-water interactions occurring already at concentrations of about 

0.5 XCosol most probably because of predominant 2PrOH-2PrOH interactions. This leads to conclude that 

2PrOH aggregations start to occur between 0.5-0.75 Xcosol.  The water-acetonitrile interactions find a minimum 

of the LJ interactions at the same concentration; however, the Coulomb interactions increases up to 0.75 XCosol. 

This points to the conclusion that the electrostatic interactions between the water and the organic component 

have not a linear behaviour with the liquid composition, and they are cosolvent specific. The electrostatic and 

LJ energies (Fig. 3.5c) computed for the water-water component of the solvents do not experience any 

significant variations in the presence of cosolvents.  

 

Figure 3.5. Coulomb and Lennard-Jones (LJ) interaction energies of the a) cosolvent-cosolvent, b) cosolvent-

water, and c) water-water types.  
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The H-bonds evolution with the liquid compositions can be analysed from the computed averaged number of 

H-bonds reported in Table 3.3. Our simulations reproduce well the average H-bonds per molecule obtained by 

previous MD simulations for the same water potential [64, 88, 89]. For example, Noskov et al. [90] obtained 

an average H-bonds per water molecule of 3.03 but using the SWM4-DP polarizable water model. Likewise, 

our results for the calculated H-bond numbers (HB) in EtOH agreed closely with the results of  Noskov et al. 

[90], reporting HB = 1.65 using a polarizable potential, and of Saiz et al. [36], who found a value of 1.9 using 

the united atom OPLS force field. We did not find reference values for HB in 2PrOH; however, this value 

should be similar to EtOH since the two compounds have the same number of OH groups, even though 

2PrOH is less polar. Acetonitrile does not make any hydrogen bonds with itself since no hydrogen is bonded 

to any N atom.  

The H-bonds between water molecules dominate in the three binary solvents up to 0.50 Xcosol. The averaged 

number of alcohol-water H-bonds becomes greater than HBw-w only when alcohols attain a concentration of 

0.75 Xcosol. Interestingly, the presence of water, even at its minimal concentration, disturbs the H-bonding 

network in the alcohols. This follows from the significantly smaller values of HBEtOH-EtOH and HB2PrOH-2PrOH in 

the mixed solvents than in the pure alcohol liquids. Both alcohols interact in a similar manner with water; that 

is, they preferably form H-bonds with H2O than between themselves for cosolvent concentrations ≤ 0.75. This 

leads to conclude that a molecular aggregation of the short alcohols in water is not evidenced by the present 

MD simulations. We believe that in mixtures above 0.50 Xcosol, the water molecules optimise the number of H-

bonding sites available in order to reduce the non-favourable interactions with the alcohol solvents. This is 

also an indication of the more hydrophobic character of EtOH and 2PrOH alcohols. 

Table 3.3. Calculated average numbers of hydrogen bonds per molecule (HB) from the MD simulations of 

cosolvent-water mixtures at 0.25, 0.50, 0.75, and 1 cosolvent mass fraction (Xcoso). 

 EtOH 

Xcosol  0.25  0.50  0.75  1 

HBsys 3.35 3.06 2.60 1.84 

HBW-W 2.83 1.93 0.85 - 

HBEtOH-EtOH  0.03 0.14 0.50 1.84 

HBEtOH-W 0.50 0.98 1.25 - 

 2POH 

Xcosol 0.25  0.50  0.75  1 

HBsys 3.38 3.12 2.67 1.83 

HBW-W 2.97 2.20 1.12 - 

HB2PrOH-2PrOH  0.02 0.10 0.39 1.83 

HB2PrOH-W 0.39 0.82 1.16 - 
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 AN 

Xcosol 0.25  0.50  0.75  1 

HBsys  3.08 2.44 1.50 - 

HBW-W 2.83 2.07 1.05 - 

HBAN-AN  - - - - 

HBAN-W  0.24 0.37 0.45 - 

 

The acetonitrile, as stated above, does not form H-bonds with itself. Note that the AN-AN HBs were not taken 

into consideration. The AN-water HB grow with the increase of AN content, which confirms experimental 

studies, reporting on the existence of H-bonds between water and AN molecules [46]. The H-bonded water-

alcohol molecules are however significantly fewer in comparison to H-bonded water-alcohol molecules, thus 

confirming the microheterogeneity of this mixture and the predominant dipole-dipole interactions. 

Furthermore, we calculated the HB autocorrelation functions and hydrogen bond lifetimes, as previously 

described in the computational details. The HBs autocorrelation functions (see Fig. S3.3) display a fast decay 

of the hydrogen bonds studied here, and the velocity of this decay is influenced by the cosolvent 

concentration. The lifetimes of the H-bonds are summarised in Table 3.4. 

Table 3.4. Hydrogen bond (HB) lifetimes for the water-water (w-w), water-cosolvent (w-cosol), and cosolvent-

cosolvent (cosol-cosol) interaction types, obtained from the HB autocorrelation functions of each HB type. 

 HB lifetimes (ps) 

Solvent 

mixture 

Water-EtOH Water-2PrOH Water-AN 

Xcosol W-W Cosol- W Cosol-

Cosol 

W-W Cosol- W Cosol-

Cosol 

W-W Cosol- W 

0 4.3 - - 4.3 - - 4.3 - 

0.25 7.1 8.3 8.5 7.5 11.3 16.7 6.0 2.3 

0.50 12.4 13.1 13.2 11.1 14.5 26.3 7.3 3.1 

0.75 21.7 21.3 20.4 21.4 28.6 44.3 10.2 3.9 

1 - - 40.3 - - 119.1 - - 

In all the cases, we note an increase of the H-bond lifetime with the cosolvent content in line with the results 

in ref. [4, 47]. This tendency is well pronounced for the water and alcohol liquids and their mixtures at 

variance to water-AN solvents. Our computed H-bond lifetimes display lengths in line with those obtained by 

other authors [4, 91]. Very recent 2D infrared spectroscopy studies of diluted alcohol solutions (≤ 0.09 mol 
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fraction) [91] revealed a vibrational lifetime of ~ 3ps of the OH stretching mode, comparable with the 

expected values of our alcohol-alcohol HB lifetimes if extrapolated for diluted alcohol concentrations. 

Furthermore, we obtained water-AN and water-water HB lifetimes comparable to those obtained for water- 

tetrahydrofuran mixtures, another aprotic solvent [4], reporting HB lifetimes in the range between ~2 and ~4.5 

ps. As inferred from the water diffusivities in THF mixtures [4], the increase of the water-water H-bond 

lifetimes obeys to a reduction in the free movement of water molecules in the solvent mixtures.  

The significantly longer H-bond lifetimes in the pure EtOH (40.3 ps) and 2PrOH (119.1 ps) solvents, in 

comparison to those in their water mixtures, points to conclude a strong perturbation of the alcohols structures 

when mixed with water. Again, relatively short lifetimes of water-AN H-bonds corroborates the 

microheterogeneity. Moreover, the H-bond lifetimes vary only little with the increase of the AN content. This 

is in agreement with the observations of X-ray Diffraction and IR spectroscopy [46]. This authors established 

that the water and acetonitrile HB interactions play an important role in the formation of a large interface 

between water agglomeration domains and AN agglomeration domains. In summary, the water structure 

mixed with acetonitrile appears to be only slightly perturbed, whereas this structure perturbation is stronger in 

alcohol mixtures. Furthermore, the alcohol structure experiences a significant change in their H-bonding 

networks.  

3.4 Averaged hardness from MD simulations 

The characterisation of mixed liquids as hard and soft might find its interest in providing a  qualitative 

prediction of the reactivity and product stability of numerous chemical reactions that take place in solvents. 

The main problem faced in using the gas-phase reactivity indices (including the chemical hardness) for the 

reactivity predictions of reactions in solvents, was associated with the modulation of the gas-phase reactivity 

because of the hydration energies [66].  This effect causes failures of the hard-soft-acid-base principle [65], 

stating that hard (soft) acids (bases) preferably reacts with hard (soft) bases (acids). Examples are described in 

ref. [66] together with the difficulties associated with the experimental estimations of the chemical hardness 

(or, equivalently, the chemical softness). It is therefore of interest to establish a methodology for theoretical 

computations of the total chemical hardness, or, total chemical softness, of solvents by explicitly considering 

their atomic structures along the equilibrium dynamics.  

In Fig. 3.6 and Table S3.3, the computed dynamic total hardness values, <,  as a function of the liquid 

composition, are presented. As follows, the variations of  in the three binary mixtures are nonlinear with 

the increase of the cosolvent content, similar to the nonlinear behaviour of the enthalpy of mixing in Fig. 3.2. 

Therefore, the dynamic hardness can also be considered as a measure for the non-ideal behaviour of the binary 

solvents, analogously to the thermodynamic properties (vide supra).  
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Figure 3.6 Computed dynamic total hardnesses, ,  as a function of the cosolvent composition, Xcosol. 

We first note that the dynamic hardnesses of the pure solvents remain close to the available experimental 

values [66], which are obtained from the measured ionisation potential and electron affinity of the molecules 

of water (9.4 eV), 2PrOH (8.0 eV) and AN (7.5 eV). In comparison to the pure water solvents, the addition of 

the organic component causes a decrease of  up to 0.50 Xcosol of the three cosolvents, but the water-EtOH 

mixture becomes softer also at 0.75 XEtOH. The behaviour of the other two cosolvents is the opposite -  the 

addition of X=0.75 2PrOH and AN into water liquid increases the hardnesses of these mixtures. The mixed 

solvents have systematically smaller <  values, compared to < =  8.38 eV of the pure water, with the 

exception of the dynamic hardness of water-2PrOH at 0.75 Xcosol. In the latter case, <   increases notably up 

to 8.94 eV.  

With an attempt to better understand this behaviour, we computed with density-functional theory (DFT) 

approach the total hardness for the two simplest molecular patterns that appear in the mixed solvents, namely 

the water-cosolvent and cosolvent - cosolvent dimers. Their total hardness values, reported in Table 3.5, are 

obtained from the HOMO-LUMO energy differences and labelled as H-L. For the DFT calculations, we used 

PBE exchange-correlation functional with DZVP and TZVP basis sets. For these simple dimers, exactly the 

same trend of H-L was found with both bases. 

Table 3.5. DFT total hardness (H-L) in eV computed as HOMO-LUMO energy difference using DFT-PBE and 

TZVP basis for the water-water (w-w), water-cosolvent, and cosolvent-cosolvent dimers. The cosolvent molecules 

are ethanol (EtOH), isopropanol (2PrOH) and acetonitrile (AN). 

Dimer w-w w-EtOH EtOH-EtOH w-2PrOH 2PrOH-2PrOH w-AN AN-AN 

H-L 6.38 5.28 5.63 6.21 5.71 5.18 6.94 

The water-EtOH dimer is found to be softer than EtOH-EtOH dimer. The observed softening of the w-EtOH 

solvent mixture with the increase of EtOH concentration (see Fig. 3.6) can be thus explained with a continues 
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increase of water-EtOH interactions when increasing the EtOH concentration. In the pure EtOH solvent, the 

hardness increases because of the harder EtOH-EtOH pair interactions. Contrary to the ethanol cosolvent, H-L 

reveals that the dimer of water and isopropanol (w-2PrOH) is harder than the dimer of 2PrOH-2PrOH. This 

correlates with the strong increase of  <> = 8.94 eV at X2PrOH =0.75, which suggests that mixed water-

isopropanol interactions are predominant at this concentration and the isopropanol solvent structure is 

significantly disrupted by H2O molecules. At the smaller X2PrOH = 0.25 and 0.5 concentrations, the 2PrOH-

2PrOH interactions dominate, because these mixtures are softer and their <> values are close to the hardness 

of the pure isopropanol solvent. In the case of acetonitrile, the relation H-L (w-AN) < H-L (AN-AN) generally 

correlates with the decrease of the dynamic hardness profile in Fig. 3.6, but does not explain the softer pure 

AN-solvent. For the acetonitrile solvent with dipole-dipole interactions (not H-bonding as in the case of 

alcohol-containing solvents) the total hardness seems to be dependent on the size of the cluster. We computed 

H-L for a cluster of 20 AN molecules, extracted from MD simulations and optimized at DFT level, and found 

H-L = 6. 24 eV, being smaller than H-L of the dimer. Therefore, a decrease of the total hardness as a function 

of the acetonitrile solvent structure and size of the box seems plausible. 

Furthermore, comparing  <  between the pure solvents, the following trend holds: water ≥ 2PrOH > EtOH > 

AN. It, therefore, appears that mixtures with predominant HB interactions between the constituent molecules 

are harder than those with predominant dipole-dipole interactions. The < tendency in the pure solvents 

respects the molecular hardness trend [66], which is in line with the fact that the individual molecular 

properties in the studied liquids are well preserved. However, mixing with water alters non-negligibly this 

<  tendency, moreover in a non-linear manner. Therefore, the variation of the averaged dynamic hardness 

appears to be a complex function of the mixed solvents compositions, analogously to the structural and 

thermodynamical features. The latter conclusion justifies the need of tools for relatively easy, but robust, 

estimations of hardnesses (respectively softnesses) in complex solvents, which will enable a rational reactivity 

predictions of various chemical processes in liquids within the HSAB principle, providing the chemical 

hardness (or, equivalently, the softnesses) of the solute systems are also computed.  

4. Conclusions 

This work covered a systematic comparative study of structural and thermodynamic properties of selected 

pure solvents (water, ethanol, acetonitrile, and isopropanol) and their aqueous mixtures at different 

concentrations, using the tools of the molecular dynamics simulations. In addition, a simple method for the 

averaged, dynamic, total hardness computations is suggested. The obtained thermodynamic properties are in a 

good agreement with the experimental and previous theoretical studies (see the text), demonstrating the 

excellent performance of the TIP4P (water) and CHARMM36 (organic solvents) model potentials for these 

types of binary mixtures.    
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The site-to-site radial distribution functions reveal that the concentrations of the mixed solvents do not affect 

the positions in the peaks and valleys, but only their heights and depths. The latter effect is particularly 

pronounced for the peaks, characteristics for the second coordination shells. The analysis of the average 

numbers of HBs with the liquid composition shows that the maximum of the interactions between the water 

and the organic solvents occurs at the mass fractions of 0.75. At this concentration, alcohol molecules tend to 

substitute water molecules, allowing compensating for the loss of H-bonds in the water solvent domains. The 

alcohol structures experience significant changes at all the concentrations. Acetonitrile is not an H-bond 

donor, and it is inferred that the presence of water and the formation of H-bonds helps it to reduce the strong 

dipole-dipole interactions while preserving the microheterogeneity of the mixture.  

The averaged hardness, similar to the other dynamic and thermodynamic properties, has a nonlinear profile 

with the solvent compositions. As a general trend, a softening of the water solvent by introducing the organic 

cosolvents is obtained with the only exception for the isopropanol-water mixture at X = 0.75. The proposed 

method could be applicable within the HSAB principle to rationalise the behaviour of complex solute systems 

in mixed solvents, providing dynamic hardness values of the solutes are also assessed.   
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Abstract 

The effect of binary water-organic solvents on the conformations of cellulose, hemicellulose, and lignin was 

studied with molecular dynamics simulations (MM), quantum chemistry calculations (QM), and hybrid 

QM/MM simulations considering ethanol and acetonitrile as organic co-solvents in binary water-organic 

solvent mixtures. The polymers interactions were examined in the pure water, ethanol and acetonitrile 

solvents as well. At the classical level, we assessed the evolution of the polymers using the following metrics: 

(i) interaction energies; (ii) number of H-bonds; (iii) site-to-site radial distribution functions (RDFs) and 

cumulative numbers (cn); and (iv) torsion angles analysis and solvent accessible surface areas (SASA). 

Furthermore, at the QM and QM/MM level, we analysed the DFT potential energies and the polarization 

effect on cellulose and lignin atoms. The computed cumulative numbers used to estimate the number of 

different types of solvent molecules in the polymer’s coordination shell are found to correlate with the profiles 

of the polymer-solvent and polymer-polymer interaction energies. The results suggest that energy gain due to 

H-bond interactions with the solvent greatly compensates the loss of intramolecular H-bonding, allowing the 

existence of low energy conformers in the presence of water. Moreover, the lignin-solvent interactions pass 

through an optimization, and the most stable and more solvent-interacting structure is found in ethanol-water 

mixtures, i.e., 75 wt% EtOH.   

1. Introduction 

The variety of the organic polymers present in wood –i.e., lignocellulosic biomass- , makes it desirable for a 

broad variety of applications [1, 2]. However, the complex and versatile nature of lignocellulose presents a 

challenge and limits the understanding of the factors responsible for its properties and behaviour when in 

contact with a solvent medium, such as shrinking and swelling [3]. Molecular-scale studies achieved by 

computational methods often in combination with experimental investigations have been promising to 

understand the conformations of the principal wood components –i.e. cellulose [4-16], hemicellulose [17-21], 

and lignin [22-31]-, but the solvent effect on lignocellulosic biomass remains widely unexplored [32-40]. 

The ordered and crystalline structure of cellulose has facilitated to some extent studies of the bulk and the 

solvent-accessible surfaces of this material. Molecular dynamics (MD) simulations along with experimental 

studies have provided valuable information about the cellulose bulk structure [4, 5], the orientation of the 

hydroxymethyl group of pure crystalline,  amorphous cellulose, and the hydrophilic /hydrophobic cellulose 

surface site interactions with water  [6-16],and the degree of water structuring due to hydrogen bonding with 

the cellulose surfaces [14, 15]. Both QM  [4] and MD  [5] have shown that the orientation of the 

hydroxymethyl group is determined by the distinct cellulose-solvent interactions. It has been observed that in 

amorphous cellulose [16] the torsion angles explore a very large angular range and hydroxymethyl groups 

explore mostly the gg and gt orientations, in contrast with the crystal structure.  



Chapter 4 

129 

 

Although the study of lignin and hemicellulose has proven to be a considerable challenge due to the lack of a 

regular and ordered structure, theoretical studies have provided valuable information about the most common 

units and linkages present in these polymer structures [17-31, 41, 42]. The most abundant hemicellulose 

backbone components have served as a model to study the conformation and flexibility of hemicelluloses [17-

21]. Simulations of low molecular weight of polysaccharides  [17] have shown that conformation of the 

glycosidic linkage is highly flexible in xylose and can undergo  conformational changes that depend on the 

surrounding environment. It has been reported that free xylan adopts a left-hand threefold helical (32) 

conformation in water, whereas a twofold helical (21) conformation is stabilized in the presence of cellulose 

[18-20]. This conformation emerges from the distortion of the OH3 rotamer allowing water molecules to 

move freely around the glycosidic region and exchange with bulk water [19]. Moreover, simulations of 

polysaccharides [21] have shown lower solute-water and solute-solute hydrogen bonds and less hydrated 

surfaces in xylose when compared to glucose polymers.  

Meanwhile, the work on lignin includes  studies of its structure  [22-24], temperature effects [25, 26], and 

lignin aggregation [27]. The β-O-4 linkage in lignin represents the predominant inter-unit linkage, and it has 

been used as a model for studying major conformation features such as H-bonding and flexibility [22, 23]. 

Both experimental and theoretical studies suggest that β-O-4 structures are flexible molecules that can adopt a 

large number of conformations [23, 28-30]. Durbeej and Eriksson [31] have shown that intramolecular 

hydrogen bonding has a stabilizing effect on different dimeric structures in the absence of external hydrogen 

bonds. Moreover, it has been observed the tendency of softwood lignin polymers (degree of polymerization 

from 6 to 41) to self-aggregate in aqueous medium, even at high temperature. [24].   

Whereas an extensive work on lignocellulosic components (mostly cellulose) in water has been carried out, 

only a hand of computational studies approaches the interactions of the above-mentioned wood components 

with non-water or mixed solvents [32-40]. Simulations of a methyl β-cellobioside [32] have shown that the 

intramolecular O3-H…O5’ H-bond over the glycosidic linkage is present in apolar solvents but absent in polar 

solvents.  More recently, simulation of cellulose with  ethylenediamine (EDA) [33] shows that the solvent 

strongly disrupts the naturally occurring hydrogen bond pattern, including the well-preserved O3-H…O5’ H-

bond, as O3 prefers to donate to EDA. Simulation of glucose solvation in water, THF, DMSO, and DMF [37] 

showed that the organic solvents compete with water to be in the first solvation shell of glucose and a 

significant amount of water is pushed to the second solvation shell. Moreover, a phase separation of binary 

water-organic solvents (THF, acetone, ethanol, and γ-valerolactone) on cellulose surfaces was reported [38, 

39]. Hemicelluloses have been reported experimentally to turn into a gel with the addition of ethanol [43, 44], 

and previous MD have also reported a decrease of xylan’s diffusion coefficient in ethanol-water mixture [40]. 

Recently, all-atom MD simulations [35, 36] showed that tetrahydrofuran (THF) - a polar aprotic ether - 

preferentially solvates lignin, which shifts the equilibrium conformational distribution from a crumpled 
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globule to coil lignin conformer. Whereas pure water is a bad solvent for lignin, the THF-water cosolvent acts 

as a ɵ-solvent, thus providing a mechanism for the observed lignin solubilisation [35].  

Thus, the aim of this chapter is to study the conformation and dynamics of wood components models – 

cellulose, hemicellulose, and lignin- in pure and mixed solvents. In the present chapter, we assess the 

evolution of cellulose, xylan, and lignin models in the presence of water-ethanol and water-acetonitrile binary 

solvents at 25, 50, and 75 wt% concentrations. The results are compared to those obtained for the respective 

pure mono-component solvents. To achieve the scope we carried out a detailed analysis of the MD dynamics 

of the polymers and the solvents using the following metrics: (i) torsion angles analysis and solvent accessible 

surface areas (SASA); (ii) number of H-bonds and H-bond lifetimes; (iii) site-to-site radial distribution 

functions (RDFs) and cumulative numbers (cn); and (iv) interaction energies. The distance and angle between 

the lignin monomers has been measured additionally to describe the stacking, and the xylan’s diffusivities 

have been computed to measure its mobility. 

2. Computational details 

2.1 Models 

A model of truncated cellulose crystal (cellulose nano-crystallite) was built with seven cellulose chains, eight-

monomers long (56 anhydroglucose units, Figure 4.1A), using the crystallographic structure of cellulose Iβ 

reported by Nishiyama et al.[45] and built with the cellulose-builder tool of Gomes and Skaf [46]. Oxygen 

terminal residues were capped with hydrogen atoms, and carbon terminal residues were capped with OH 

groups to obtain a finite chain. A single cellulose chain with eight monomers was also studied (Figure 4.1B), 

but only the QM results are presented for the sake of concise presentation. The model reproduces correctly the 

intramolecular and intermolecular hydrogen bond patterns expected for cellulose Iβ chains[47]. 

Hemicellulose is regarded as a tetramer of xylose, the most abundant hemicellulose in plants [48]. The 

backbone of xylan consists of poly β-(1→4) linked D-xylopyranosyl units, to which are attached a variety of 

side group. Here, we consider a xylan tetramer (Figure 4.1C) and its structure was obtained with the 

GLYCAM Carbohydrate builder [49]. Lignin is represented by a dimer and a tetramer of guaiacyl (G) 

monomer units with oxygen terminal residues capped with hydrogen atoms (Figure 4.1D-E, respectively). The 

G monomers are β-O-4 linked, this being the most frequent linkage found in natural lignin, connecting the β-

carbon in one unit with the oxygen of the C4 on the phenyl ring of the other unit. The polymers were centred 

in cubic boxes, leaving at least one nm to the longest side of the model to avoid interactions between the 

cellulose or lignin models and their images in the neighbouring boxes. We used this rim spacing to determine 

the size of the box. Each system was further solvated with the number of solvent molecules needed to fill the 

box size, as summarized in Table 4.1. Each organic solvent, i.e. ethanol and acetonitrile, was examined at four 
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different concentrations: pure, 75 wt%, 50 wt%, and 25% wt% of organic solvent, and compared with the 

simulations in pure water.  

 

Figure 4.2  (A) Cellulose nanocrystal model with 7 chains (ABCDEFG). The solvent-accessible surface (SASA) of 

chains BDEG is referred to as the hydrophobic surface because the exposure to the solvent of their less polar 

aliphatic hydrogen atoms of the glucose rings and the glycosidic bonds between monomers. On the other hand, 

SASA of chains AF is referred to as the hydrophilic surface because the polar hydroxyl groups of the glucose 

monomers are exposed to the solvent. (B) Individual cellulose chain with 8 glucose monomers. Intramolecular 

hydrogen bonds O2-H…O6’ and O5…H-O3’ cover the glycosidic bond and keep the chain planar. (C) xylose 

tetramer formed with a β-(1→4) bonds. (D) Optimized structure in gas phase from quantum-chemistry DFT-PBE 

calculations of a lignin dimer model formed by two guaiacyl (G-G) monomers, linked with a β-O-4 bond. (D) 

Structure of a guaiacyl lignin tetramer obtained from a MD simulation in the gas phase. Colour code CPK and 

Bonds representations: oxygen (red), hydrogen (white), and carbon (cyan). Hydrogen bonds are shown in dashed 

red lines.  

2.2 Classical Molecular Dynamics simulations 

All-atom Molecular Dynamics (MD) simulations of each system described in Table 4.1 were carried out using 

the GROMACS package version 2016.3[50-54], along with the 4-sites Transferable Intermolecular Potential 

(TIP4) for liquid water[55-57], the CHARMM36 additive force field[58, 59], and the CHARMM-compatible 

force field for lignin[60, 61]. Solvent structure for the organic solvents was available at the GROMACS 

molecule and liquid database[62]. For each simulation box, energy minimization was performed using the 

steepest descent algorithm until convergence to a tolerance of 100 kJ mol-1 nm-1. After minimization, 

restrained simulations were performed for 200 ps at 298.15 K to allow solvent equilibration around the 
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polymers.  Afterwards, 20-ns MD simulations were performed with a frame-saving rate (for analysis) of 1 ps, 

in order to study the interaction of cellulose and the cellulose-lignin complex in the solvent mixtures. 10-ns 

MD simulations were performed for the lignin, xylan, and the xylan-lignin complex due to the reduced size of 

the models in comparison with the cellulose nanocrystal. Temperature and pressure coupling was handled 

using the leap-frog stochastic dynamics integrator and the Parrinello-Rahman method, respectively. Initial 

velocities were generated from a Maxwell distribution at 298.15 K, and the isothermal-isobaric (NPT) 

ensemble was considered for data collection. Neighbour searching and short-range nonbonded interactions 

were handled with the Verlet cut-off scheme. Electrostatics were treated with the Fast smooth Particle-Mesh 

Ewald (SPME) method, with a Coulomb cut-off of 1.2 nm, a fourth-order interpolation and Fourier spacing of 

0.12 nm. Vander Waals (vdW) interactions were treated using the Lennard- Jones potential with a cut-off 

distance of 1.2 nm. Simulations were carried out in an Intel Xeon CPU with 2.10Gz with 32 logical cores. 

Table 4.3. Configuration of simulated systems and equilibrium size of simulation boxes for the polymers studied in 

this work:(i) cellulose nanocrystal (7 chains, 8 glucose monomers each), (ii) cellulose chain (8 glucose monomers), 

(iii) xylan tetramer, (iv) lignin dimer and (v) lignin tetramer. Solvents studied include water, ethanol (EtOH), 

acetonitrile (ACN), and their binary aqueous mixtures. 

Model wood 

component 

Solvent 

system 

Cosolvent 

fraction 

(wt%) 

Number of 

cosolvent 

molecules 

Number of 

water 

molecules 

Cubic box 

side length 

(nm) 

Volume 

(nm3) 

Cellulose 

nanocrystal    

(7 chains, 56 

glucose 

monomers) 

water 0 0 9764 6.73 306.03 

 

EtOH-water 

25 1373 10559 7.69 456.32 

50 2607 6674 7.69 456.34 

75 3693 3151 7.69 456.40 

ACN-water 

25 1512 10304 7.69 456.11 

50 2829 6451 7.69 455.88 

75 3990 3033 7.69 455.79 

EtOH 100 4321 0 7.54 429.92 

ACN 100 4874 0 7.60 440.43 

Cellulose 

chain (8 

monomers) 

water 0 0 7872 6.20 238.43 

 

EtOH-water 

25 1156 8877 7.23 377.42 

50 2196 5621 7.23 377.48 

75 3111 2654 7.23 377.64 
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Model wood 

component 

Solvent 

system 

Cosolvent 

fraction 

(wt%) 

Number of 

cosolvent 

molecules 

Number of 

water 

molecules 

Cubic box 

side length 

(nm) 

Volume 

(nm3) 

ACN-water 

25 1273 8712 7.23 377.24 

50 2382 5433 7.22 377.04 

75 3360 2555 7.23 377.17 

EtOH 100 2314 0 6.05 211.76 

ACN 100 2633 0 6.12 229.20 

Xylose 

tetramer 

water 0 0 2469 4.22 75.47 

 

EtOH-water 

25 224 1717 4.19 73.37 

50 425 1087 4.19 73.41 

75 602 513 4.19 73.48 

ACN-water 

25 246 1685 4.19 73.48 

50 461 1051 4.19 73.35 

75 650 494 4.19 73.37 

EtOH 100 0 648 3.99 63.77 

ACN 100 0 737 4.04 65.9 

 

 

Lignin dimer 

pure water 0 0 1448 3.54 44.55 

 

EtOH-water 

25 132 1012 3.51 43.45 

50 250 641 3.51 43.41 

75 355 302 3.51 43.55 

ACN-water 

25 
145 993 3.51 43.38 

50 
272 619 3.51 43.46 

75 
383 291 3.51 43.46 

EtOH 100 399 0 3.4 39.48 

ACN 100 
456 0 3.45 41.01 

Lignin pure water 0 
0 3362 4.69 103.02 
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Model wood 

component 

Solvent 

system 

Cosolvent 

fraction 

(wt%) 

Number of 

cosolvent 

molecules 

Number of 

water 

molecules 

Cubic box 

side length 

(nm) 

Volume 

(nm3) 

tetramer 

 

EtOH-water 

25 
307 2357 4.65 100.92 

50 
583 1493 4.66 100.95 

75 
826 705 4.66 101.03 

ACN-water 

25 
338 2313 4.65 100.83 

50 
633 1443 4.65 100.91 

75 
892 678 4.65 100.91 

EtOH 100 
934 0 4.51 92.02 

ACN 100 
1074 0 4.58 96.14 

The structure, dynamics, and interactions of the wood component models with the pure and water-organic 

solvent mixtures were characterized using the incorporated tools within GROMACS. To quantify the solvent 

effect, we computed intermolecular energies, radial distribution functions g(r), cumulative numbers cn(r), and 

the average number of hydrogen bonds.The polymer structures were characterized by means of solvent 

accessible surface areas (SASA)[63], and characteristic torsion angles. For the lignin dimer, we computed the 

distance between the centres of mass of the two-chromophore rings, dCoM, as an indicator of stacking between 

the chromophores. The angle between the planes of the two chromophore rings, α, is also measured to 

differentiate between co-planarity (α ~0°, α ~180°) and T-stacking (α ~90°). Each of these descriptors was 

calculated for all the water-organic solvent concentrations considered in this study. Site-to-site g(r) were 

computed for the water-polymer and organic solvent-polymer pairs (see Fig. 4.2 for atom numbering) 

considering the polymer sites as follows: in cellulose and xylan, we considered the hydroxyl (O2 and O3) and 

hydroxymethyl (O6, only cellulose)), the glycosidic bond (O4), and the monosaccharide ring (O5)). In lignin, 

we studied the solvation around the β-O-4 bond (Oα, Oβ, andOγ) and the methoxy groups (OMe). The solvent 

sites considered here are the water O, ethanol O, and acetonitrile N, along with the methyl C of ethanol and 

acetonitrile. Here, g(r) is normalized by the number of reference points and the volume of the shell. Thus, g(r) 

is expressed as number density (atoms/nm3) per monomer, and it tends to the bulk density of the particle as r 

increases. 
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Figure 4. 3. (A) Cellulose topology and oxygen notation. Three hydroxymethyl group conformers tg (bulk, plain 

line), gt, and gg (dashed lines), and their gauche or trans positions of O6 relative to both O5 and C4 are present in 

cellulose. Ideal tg, gt, and gg conformations are characterized by the hydroxymethyl torsion angle ω = 180°, 60°, 

and -60° with respect to O5, respectively[45]. (B) Topology and carbon notation of fundamental unit of xylan 

hemicellulose, a xylosyl dimer, bonded with a β-(1→4) linkage. (C) Topology and carbon notation of a guaiacyl 

dimer (G-G) connected with a β-O’-4’ linkage. 

The integration of g(r) from 0 to r,  cn(r), gives the cumulative number of particles within a distance r from 

the cellulose/lignin surface atoms. The cumulative numbers were obtained from the integration of the g(r) up 

to a 1.5 nm correlation distance. H-bonds were calculated using a geometrical criterion with a maximum 

donor-acceptor distance of 0.35 nm and a hydrogen-donor-acceptor angle of 30°, and they were further 

normalized by the number of monomers. The forward H-bond lifetimes were computed from the 

autocorrelation function of each H-bond type, using the theory of Luzar and Chandler [64, 65], as described 

by van der Spoel et al. [66]. Solvent accessible surfaces were computed using a solvent probe radius of 0.14 

nm. The angle between lignin rings planes was evaluated by means of the angle between the normal of the 

planes defined by the C1, C3, and C5 (Fig. 4.1B) atoms in each lignin monomer. Diffusivities were obtained 

from the evolution of the mean squared displacement and using the following equation  

𝐷 = lim
𝑡→∞

1

6
(|𝑟(𝑟) − 𝑟(0)|2), 

where t and r(t) denote the time and the position of the centre of mass of the studied polymer at time t, 

respectively. 

Furthermore, MD snapshots containing the representative polymer structures, studied here in each solvent, 

were extracted from the trajectories for a graphical description of the results. For this purpose, we performed a 

root mean square deviation (RMSD)-based cluster analysis. First, the RMSD of atom positions between all 

pairs in the polymer structure was determined. For cellulose and hemicellulose, we varied the RMSD cut-off 

between 0.10 to 0.15 nm in 0.01 nm increments and performed cluster analysis for each RMSD value. For the 

lignin dimers and tetramers, we varied the RMSD cut-off between 0.10 to 0.40 nm in 0.1 increments, and we 

included the 0.15 nm cut-off.  For all RMSD clusters, we found similar representative structures as centroids 

of the most populated clusters. In cases when more than one cluster was significantly populated, we selected 

the centroid of the cluster closest to the end of the simulation.  
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2.3 Density Functional Theory calculations 

Classical MD (MM) simulations are a promising and reliable tool to study the statistically averaged physical 

properties and dynamics of many diverse molecular systems. However, the bigger drawback persists despite 

the efforts to improve the force fields description of molecular systems. As the force fields are parameterized, 

regular MD does not allow the simulation of covalent bond breaking or formation or the polarization effects of 

the single atoms interacting with neighbour molecules or solvents. Therefore, some valuable information is 

lost due to the classical approximation. Thus, quantum mechanics (QM) calculations are desirable in order to 

elucidate the origin of the specific interactions of the solute-solvent systems. However, the accuracy of the 

QM calculations comes with an increase of demanded computational resources, and this puts a limit on the 

number of atoms that can be studied in a QM calculation.  

To study the polarization effects, we performed quantum chemical DFT calculations of cellulose single chains 

and lignin tetramers. The cluster analysis centroid of cellulose single chains and lignin tetramers were 

extracted, along with a 3.5-Å radius solvent shell from any atom of the polymer surface. Snapshot refinement 

was then performed at the QM level using DFT based methods with the deMon2k computer package (for the 

calculations we used the developers 4.4.5, based on the descriptions in ref. [67] and 6.0.2 versions, used as 

well for the QM/MM dynamics simulations (vide infra). The detailed description of the last implementation in 

this version can be found in ref. [68]. Geometry optimizations were performed using the revised version of the 

PBE functional [69-71] referred throughout this manuscript as revPBE and LYP correlation functional [72]. 

The electrons in all the atoms were described with double- quality wave functions (DZVP) [73], with and 

without the solvent shell. In deMon2k code, automatically generated auxiliary functions up to l = 2 (for the 

metal atom) and 3 (for H, C and O atoms) were used for fitting the density with the GGA functionals, thus 

decreasing the computational time with a comparable accuracy to density calculations from the molecular 

orbitals [74]. We computed the partial Mulliken charges of all atoms, and we report only charges of the O2, 

O3, O4, O5, and O6 oxygens in cellulose and the OMe, Oα, Oβ, and Oγ oxygens in lignin. Furthermore, we 

compared the obtained charges against the oxygen charges in the MM force fields [58-61].  

2.4 Molecular dynamics simulations at the QM/MM level (BOMD/MD)           

We performed Born Oppenheimer Molecular Dynamics (BOMD)/MD simulations of the lignin dimer 

structures obtained from the classical MD simulations in water, ethanol, acetonitrile, and 75% water-cosolvent 

(ethanol and acetonitrile) mixtures for 12 ps simulation time for each solvent composition. MD snapshots 

were extracted containing the lignin dimers, along with a 15-Å radius solvent drop. The lignin dimer was 

included in the QM layer, whereas the solvents atoms were treated classically with the OPLS-AA force field 

[75]. Moreover, the Onsager reaction field model is applied to represent the solvent as a continuum medium 

outside the solvent drop within BOMD/MD/PCM(Onsager) approach  [68]. BOMD/MD/PCM(Onsager) 
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simulations were carried out at 300 K in the canonical ensemble using a Nosé-Hoover chain of 5 thermostats 

with frequencies of 400 cm-1. The integration time-step was set equal to 1 fs and geometries at every 3rd fs 

were registered. The linear and the angular momenta of the whole lignin-explicit solvent system were 

conserved with a threshold of 10−8, and therefore the rotational and translational degrees of freedom of the 

whole QM/MM system  were kept frozen to avoid spurious translation or rotation in the space.  These 

simulations were carried out with deMon2k.6.0.2 developer’s version. 

3. Results and discussion 

3.1 Modelling of the interaction of water-organic solvents with cellulose 

nanocrystal 

Various physical and chemical descriptors have been hitherto proposed in the literature to describe the 

biopolymer-solvent interactions (vide supra). First, information about cellulose-solvent interactions can be 

gathered from the conformational changes of the polymer upon coordination to different solvent molecules in 

the mixtures. To follow the variations of cellulose conformations, we measured the evolution of the solvent-

accessible surface area, SASA, along the dynamics, as illustrated in Figure 4.3.  

3.1.1 Solvent accessible surface area 

The SASA of the cellulose nanocrystal (Fig. 4.1A) is initially 42.5 nm2, and it increases upon solvation to an 

area that amounts to ~45 nm2 (Fig. 4.3A,B), which means there is a 4-6% increase upon interacting with the 

solvent. The average cellulose SASA in solvents is found to vary in a very small range in the considered 

solvents and their aqueous mixtures, but a general trend following the order: mixed 

solvents>water>ethanol>acetonitrile can be observed. Furthermore, the cellulose SASA in concentrated 

water-acetonitrile mixtures is in an average greater (Fig. 4.3C) than in water-ethanol mixtures. In the pure 

organic solvents; however, inversion is observed. Moreover, we identify a maximum SASA near ~46 nm2in 

50% acetonitrile solution. In ethanol mixtures, the highest SASA is observed at 25-50% ethanol concentration.  
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Figure 4.4. Solvent accessible surface area (SASA) distributions in (A) ethanol and (B) acetonitrile pure and mixed 

solvents, and their (C) averaged values along the dynamics.  

3.1.2 Cellulose conformational changes upon solvent effect 

We measured the characteristic torsion angles of cellulose to understand better the solvent effect on cellulose 

conformational changes. First, we measured the glycosidic torsion angle Φ (O5-C1-O4′-C4′), which describes 

the relative orientation of adjacent glycosyl residues in the same chain[45]. The maximum of the probability 

distributions of the glycosidic torsion angle Φ (not shown) falls near ~-88° in water, whereas narrower 

distributions profiles (by 1-2°) are found for the organic pure and mixed water-organic solvents, but these 

small variation doesn’t allow to draw any trend.These distributions are shifted by 10° in comparison  to the Φ 

value for the crystal-like cellulose (-98.7°), and describe a twisting of the chain’s backbone, as reported  in 

previous MD simulations of cellulose [9-12, 14, 15]. It has been discussed that, in simulations of finite length 

crystals with explicit chain ends, the chirality amplification can result in a twist along the cellulose chain axis 

[11]. Nonetheless, Hadden et al. [12] suggest that the microfibril twisting is favoured by vdW interactions, 

and counteracted by both intra-chain hydrogen bonds and solvents effects at the surface. Furthermore, 

Matthews et al. [10] suggest that this event seems to be promoted by surface-mediated conformational 

changes, which result in an expanded unit cell upon conformational change of the hydroxymethyl group. It is 

expected that this twisting has an effect on the cellulose SASA; however, the backbone access to solvent is 

limited. We, therefore, suggest that changes of orientation of the hydroxymethyl and hydroxyl groups of the 

cellulose chain, driven by selective water-organosolv interactions are more likely to be responible for 

conformational changes of the cellulose backbone in the surface.   
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Figure 4.5. Hydroxymethyl dihedral conformer (gg-gt-tg) occurrence (in %)  in (A) all surface cellulose residues, 

(B) glucose monomers in hydrophilic cellulose surfaces (chains AF) only, and (C) glucose monomers in 

hydrophobic cellulose surfaces (chains BDEG) only, in pure organic and mixed water-organic solvents. For the gg, 

gt and tg conformers  the following colour code is used: gg (blue), gt (red), tg (green). The symbols used for the 

two  organic Cosolvents are: ethanol, EtOH (square, full line); acetonitrile, ACN (circle, pointed line) 

For this reason, we monitored the characteristic hydroxymethyl torsion angle ω, ω=O5-C5-C6-O6 [45], as 

illustrated in Figure 4.2A. Three low-energy conformations are possible: tg, gt, and gg, referring to the gauche 

or trans positions of O6 relative to both O5 and C4 in cellulose. Ideal tg, gt, and gg conformations are 

characterized by ω = 180°, 60°, and -60°, respectively [45, 76, 77]. In the tg and gt conformations, the position 

of the C6-O6 bond is equatorial relative to the glucose ring. In the gg conformation,on the contrary, the C6-O6 

bond is axial. In the bulk crystalline cellulose Iβ[45, 46], the hydroxymethyl groups adopt the tg conformation 

with an average value of ω =169.4°.  

We first computed the probability distributions of ω at each cosolvent concentration. Then, angle intervals 

were attributed to each conformation in order to compute the gg-gt-tg conformer occurrence frequency at each 

solvent concentration. These angle intervals were defined as following: gg=(-120, 0), gt=(0, 120), and 

tg=(±180, ±120). Figure 4.4A shows the gg-gt-tg dihedral occurrence of all surface monomers (in %) at each 

organic cosolvent concentration. As it follows, the crystal-like buried tg conformer is more preserved in the 

presence of organic solvents (acetonitrile > ethanol) which correlates well with the observed lower cellulose 

SASA in the pure organic solvents. A  transition of  from tg to the equatorial gt, or to the more solvent-

exposed gg  is enhanced in the presence of water, increasing the access of the solvent to the cellulose surface. 

In water, the gt conformer prevails, and an increase of the gg conformers is observed.  A non-linear behaviour 

is observed in the mixed solvents:  the gg conformer is significantly favoured in the 75 wt% water-acetonitrile 

mixture, whereas the gt conformer is mostly favoured in water-ethanol.  

Furthermore, due to the amphiphilic nature of cellulose chains in our model, we examined separately the 

hydrophobic and hydrophilic surfaces labelled as BDEG and AF chains (Fig. 4.1A), respectively. The dihedral 

conformation of the hydrophilic AF surfaces in pure and mixed solvents (Fig. 4.4B) follows the trend 

gg>gt>tg, e.i. in the AF chains, the hydroxymethyl groups have predominantly gg and gt conformations.The 
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hydroxymethyls of the hydrophobic surface chains BDEG, on the contrary, display mostly an equatorial 

orientation, following the order tg-gt>gg (Fig. 4.4C). Thus, the hydroxymethyl groups of cellulose chains 

BDEG are mainly buried inside the cellulose nanocrystal. Consequently, these chains display more 

hydrophobic behaviour than cellulose chains AF, whose hydroxymethyl groups stand exposed to the surface. 

Furthermore, the hydroxymethyl group follows the tg→gg transition in the hydrophilic surface (chains AF) 

with the decrease of the organic component (or, equivalently, increase of water) in the  binary solvent 

mixtures. At the hydrophobic surface, the tg and gt conformations dominate; thus, the hydroxymethyl groups 

in BDGE chains remain mostly buried. 

 

Figure 4.6. (A) Average number of cellulose intra-molecular H-bonds per anhydroglucose monomer at different 

organic solvent concentrations. Average number of hydrogen bonds per monomer between cellulose and water (B) 

or cellulose and organic solvent (C) at different organic solvent concentrations at both hydrophilic (chains AF, red 

series) and hydrophobic surfaces (BDEG). green series). Ethanol: squares and full lines; Acetonitrile: circles and 

pointed lines.  

The increased cellulose SASA and the above-mentioned backbone twist are a result of the disruption of the H-

bond network of the surface nanocrystal. In the tg conformation, the hydroxymethyl group participates in an 

intramolecular H-bond with the adjacent glucose monomer (O2-H…O6’); therefore, it is less available to 

participate in bridging hydrogen bonds with the solvent [13], thus keeping the cellulose chains planar [45, 46]. 

Because the tg conformer dominates in the two pure organic solvents (acetonitrile > ethanol), we expect that 

the intra-chain and inter-chain H-bond network is better preserved in ethanol and acetonitrile than in water to 

their binary aqueous mixtures, where gg and the gt conformers are more frequent. To better quantify this, we 

monitored the average number of (i) intramolecular (intra-chain and inter-chain) cellulose H-bonds and (2) the 

intermolecular cellulose-water, and (3) cellulose-organic solvent H-bonds, using a geometrical criterium as 

described in the computational details.  

3.1.3 Intermolecular H-bonds in cellulose and between cellulose and solvents molecules 

The results concerning the three types of intermolecular H-bonds are summarized in Figure 4.5. First, we 

found a general tendency showing that the frequency of cellulose intramolecular H-bonds (Fig. 4.5A) slightly 
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increases from water to binary aqueous mixtures, but increases strongly in pure ethanol and acetonitrile. The 

only exception is H2O-75wt% ACN mixture, where a minimum of cellulose H-bonds is observed. Further on, 

comparing the two organic solvents, a higher number of intramolecular H-bonds is obtained in ethanol than in 

acetonitrile. This correlates with the slightly lower number of tg hydroxymethyl conformations in pure 

acetonitrile (XCosol=1) in Fig. 4.4A. The gt conformations are also slightly less present in acetonitrile in 

ethanol, which suggests that in the absence of strong interactions with water, the surface cellulose chains are 

more reoriented towards the core of the nanocrystal in ethanol than in acetonitrile. This leads to an increase of 

the cohesion of the sub-surface layer and their participation  in intra-chain H-bonds. 

 Furthermore, the intermolecular cellulose-water and cellulose-cosolvent H-bonds in each water-organic 

solvent system are summarized in Figures 5B and 5C, respectively. The cellulose-water interactions have a 

major contribution to the intermolecular hydrogen bonding. More cellulose-water H-bonds are found on the 

hydrophilic surfaces (chains AF) than on the hydrophobic surfaces (chains BDEG), as expected. The 

cellulose-water H-bonds in ethanol-water systems linearly decrease with the ethanol concentration, as a 

response to water displacement due to alcohol competition for H-bonding sites, as can be inferred from the 

cellulose-ethanol H-bonds in Figure 4.5B. The cellulose-water H-bonds in acetonitrile-water mixtures display 

a similar behaviour with higher occurrence frequency in the hydrophilic surface (AF), whereas at the 

hydrophobic surfaces (BDEG), the cellulose-water H-bonds strongly decrease upon addition of acetonitrile for 

all the water-acetonitrile mixtures. The frequency of cellulose-acetonitrile H-bonds (in Fig. 4.5C) is 

significantly lower than the cellulose-ethanol H-bond frequency, as expected in regard to the aprotic nature of 

acetonitrile. The higher frequency of H-bonds in the hydrophobic than in the hydrophilic surface suggests that 

acetonitrile has a higher affinity towards the hydrophobic surface, whereas ethanol shows a higher affinity for 

the hydrophilic surface.  

Table 4.4. H-bond lifetimes for the cellulose-water (C-W) and cellulose-cosolvent (C-Cosol), interaction types, obtained 

from the H-bond autocorrelation functions of each H-bond type, for the hydrophobic (chains BDEG) and the hydrophilic 

(chains AF) cellulose surfaces, respectively.  

 HB lifetimes (ps) 

Solvent 

mixture 

Water-EtOH Water-ACN 

 Hydrophilic Hydrophobic Hydrophilic Hydrophobic 

Xcosol C-W C-Cosol C-W C-Cosol C-W C-Cosol C-W C-Cosol 

0 9.8 - 12.3 - 9.8 - 12.3 - 

0.25 18.6 21.5 23.6 34.5 17.6 9.7 22.6 28.6 

0.50 32.2 30.3 32.6 30.3 20.3 9.9 30.7 22.1 

0.75 49.0 44.0 57.9 57.4 20.7 10.4 24.7 27.2 
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1 - 43.8 - 94.5 - 12.0 - 41.7 

In addition to the information we could gather from the number of H-bonds between various solvent 

molecules and cellulose, the lifetime of H-bonds can also provide knowledge about the solvent mobility 

around the cellulose surface.  We, therefore, analyzed the lifetimes of the H-bonds in Fig. 4.5 from the 

autoccorrelation functions and the results are summarized in Table 4.2. The lifetime of cellulose-water H-

bonds increase with the organic fraction and longer-lasting H-bonds are observed in water-ethanol than in 

water-acetonitrile mixtures. Moreover, shorter lifetimes are observed for the H-bonds between water and the 

hydrophilic surface in comparison to the hydrophobic surface, which is in line with the higher H-bonds 

frequency between water and hydrophilic AF chains. This suggests richer water –AF interface. As we showed 

in the previous chapter, the water H-bond lifetimes are shorter when richer water interfaces exist, since this 

allows faster water exchange between the bulk and surface water. Furthermore, we also observe that the 

cellulose-water H-bond lifetimes in water-ethanol mixtures are longer lasting than in water-acetonitrile 

mixtures. As we showed in the previous chapter, this is explained by the higher frequency of H-bond 

formation between water and ethanol than with acetonitrile. Thus, we believe that the cellulose-water H-bond 

lifetimes are longer-lasting in ethanol mixtures than in acetonitrile ones because of the continuous interactions 

between water and ethanol that constrains the water movements. Finally, the cellulose-ethanol H-bond 

lifetimes are always longer-lasting than the cellulose-acetonitrile ones due to their higher frequency. This can 

be explained by the ethanol’s capacity to act as an H-bond donor and H-bond acceptor, whereas acetonitrile is 

only an H-bond acceptor.  

3.1.4 Solvents organization around the cellulose surface. 

Other information about cellulose-solvents can be gathered from the correlation of the solvent and specific 

cellulose sites. The cellulose solvation is described by the radial distribution function (RDF), that describes 

the number of particles at distance r from a reference site. The coordination of solvent molecules to O2, O3, 

O4, O5, and O6 sites in cellulose is identified from Ocell-Xsolv (Xsolv=Owater; OEtOH and NACN) radial distribution 

functions 𝑔(𝑟Ocell-Xsolv). In this analysis, we distinguish between the hydrophilic AF and hydrophobic BDEG 

chains by computing 𝑔(𝑟Ocell-Xsolv) for glucose monomers in AF and in BDEG chains separately. The 

𝑔(𝑟Ocell-Xsolv)results for the pure water, EtOH and ACN solvents are summarized in Fig. 4.6 A, C, and E for Ocell 

belonging to AF cellulose chains and in Fig. 4.6 B, D and F for Ocell belonging to BDEG chains. A well-

structured water layer forms around both hydrophilic and hydrophobic surfaces in agreement with previous 

cellulose-water RDF studies,[7] mainly because of water structuring around O6, O2 and O3 sites. This follows 

from the sharp peak in O6, O2 and O3 𝑔(𝑟Ocell-OWater) profiles at ~0.28 nm and a minimum of the first 

coordination shell near 0.35 nm. The coordination order is O6>O2>03. The other two oxygen sites (O4 and 

O5) do not display well-defined coordination to water oxygen, except a somewhat increased coordination 
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between O5 and O(H2O) in AF chains. Moreover, chains AF display a somewhat higher hydration than chains 

BDEG. 

 

Figure 4.7 Solvation of cellulose in pure solvents. Radial distribution functions, g(r), of the Ocellulose-Xsolvent 

pairs (Ocell-Owater, Ocell-OEtOH, Ocell-NACN), for hydrophilic (chains AF) and hydrophobic (chains BDEG) 

surfaces. The reference site, X, in the solvents are water oxygen, EtOH oxygen, and ACN nitrogen. The colour 

code for the respective cellulose oxygen sites is O2 (black), O3 (red), O4 (green), O5 (blue), and O6 (orange), see 

the inset in A for oxygen numbering.  

Similarly, O6, O2 and O3 cellulose sites play a role in the ethanol structuring around the cellulose surfaces, as 

concluded from the sharp peaks in 𝑔(𝑟Ocell-OEtOH) at ~0.29 nm and their minima of the first coordination shells 

between ~0.36-0.37 nm. As water, ethanol shows a slight preferential coordination to the hydrophilic AF 

cellulose surface. At the hydrophobic surface (chains BDEG), the peak intensity is decreased, and O6 

coordination is reduced to the coordination with O2. Note that the number density between Ocell and OEtOH 

decreases, as shown by the lower 𝑔(𝑟Ocell-OEtOH)intensity, in comparison with that with Owater, as expected from 

the larger ethanol molecular size. In acetonitrile solvent, the 𝑔(rOcell-NACN) profiles in Figure 4.6 C,F indicate 

that only cellulose oxygens O2 and O6 coordinate to NACN  below 0.35 nm, at ~0.29-0.30 nm, whereas O3-N 

peak is at ~0.36 nm. The acetonitrile nitrogen prefers to coordinate to O2 instead to O6, contrary to water and 

ethanol solvents and has a higher preference to the hydrophobic cellulose surfaces, in which the coordination 

for O6 is significantly reduced. 
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The organization of the water-organic solvent mixtures at 25, 50, and 75 wt% is also described with g(r) 

between Ocell-Xsolv, and the results are reported in the Supporting Materials, Figures S4.1 and S4.2. These g(r) 

display similar coordination-site trends in comparison with those found for the pure solvents, except for the 

𝑔(𝑟Ocell-OEtOH) in the cellulose hydrophobic surface (Fig S4.1B) and the hydrophilic surface at 25% ethanol. 

Particularly, the Ocell-OEtOH coordination is inverted and follows the order O2>O6>03, in contrast with the 

ethanol coordination in the hydrophilic surfaces. This change of ethanol preference is most likely enhanced 

due to the presence of water, which competes with ethanol for the same coordination sites. Furthermore, we 

observed that the Ocell-Owater g(r)s (Fig S4.1-A and S4.1-A ) display always higher water number densities in 

the hydrophilic surface than in the hydrophobic ones. While the water number density is expected to decrease 

with the addition of organic solvent, the water exclusion in acetonitrile mixtures (see Fig. S4.2-A) from the 

first cellulose solvation shell, especially in the hydrophobic surface, is stronger than for ethanol mixtures (See 

Fig. S4.1-A). 

This observation is in agreement with the computed cn(r) of water and organic solvent molecules within r = 

0.7 nm from the glycosidic oxygen of cellulose, O4, as a function of organic solvent concentration, which is 

illustrated in Figure 4.7A. The number of water molecules in the first solvation shell (Figure 4.7A, top) in 

water-organic solvent mixtures decreases with the organic cosolvent concentration; however, there is a faster 

decrease of water molecules in the first cellulose solvation shell of AF (hydrophilic) chains when mixing 

water and acetonitrile, than in water-ethanol mixtures. Moreover, in water-acetonitrile mixtures, the water 

molecules coordinated to cellulose hydrophobic surfaces remain practically unchanged and even display a 

slight increase in the hydrophobic surface at 75 wt% cosolvent concentration. At this concentration, a 

somewhat large number of water molecules coordinate to the cellulose surfaces in the acetonitrile mixtures 

than in ethanol-water mixture (Fig. 4.8A, top). Also, we observe that only at 75% water-acetonitrile, the Ocell-

NACN coordination to O6 increases and it is equivalent to O2 (Figure S4.2B). On the other hand, in Figure 

4.8A, bottom, the number of ethanol molecules surrounding the cellulose surfaces increases with the cosolvent 

concentration, whereas the numbers of ACN molecules surrounding the hydrophobic surface remains nearly 

the same for 50 and 75% cosolvent concentration. As evidenced by cn(r), acetonitrile accumulates preferably 

at the hydrophobic cellulose sites, thus showing a more hydrophobic character. The cn(r) values of ethanol 

coordinated to either AF or BDEG chains is similar; thus, ethanol has rather an amphiphilic character.   
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Figure 4.8.(A) Cumulative number (cn) of molecules of water (top) and organic cosolvent (Cosol, bottom) within 

0.7 nm from the cellulose glycosidic oxygen, as a function of organic solvent concentration. Circles denote 

acetonitrile and squares denote ethanol cosolvents. Cumulative numbers at the hydrophobic surface sites (chains 

BEDG) are in green, and those at the hydrophilic surface (chains AF) are in red. Snapshots are illustrating 0.5 nm 

solvation shell around cellulose surfaces in 75 wt% ethanol (B) and 75 wt% acetonitrile (C) mixtures. Beads 

represent glucose monomers; water and cosolvents are represented by red and blue vdW surfaces, respectively. 
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Figure 4.9. Ocellulose-Corganic solvent radial distribution functions, g(r), between the cellulose oxygens (Ocell) in 

hydrophilic (chains AF) and hydrophobic (chains BDEG) surfaces, and methyl carbons of the ethanol, CEtOH (A 

and B) and acetonitrile,CACN (C and D), respectively. Ocellulose colour code is O2 (black), O3 (red), O4 (green), 

O5 (blue), and O6 (orange), as in Figure 4.6. 

The stronger water exclusion from the first solvation shell in cellulose hydrophobic surfaces for water-

acetonitrile mixtures is explained by the coordination of the cellulose hydroxymethyl to the methyl group of 

acetonitrile, as Illustrated by the Ocell-CMe g(r) in Figure 4.8. This is possible due to the dipole-dipole 

interactions of acetonitrile molecules, which bring methyl groups closer to cellulose as acetonitrile nitrogens 

are H-bonded with cellulose hydroxyls. This is also enhanced by the local microheterogeneity of water-

acetonitrile mixtures[78], which results in phase-separation when in contact with the different cellulose 

surfaces as illustrated in Figure 4.8B,C. This observation is consistent with the results of previous MD studies 

[38, 39].Thus, an increase of the co-solvent phase could yield a more hydrated and more extended water shell 
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around cellulose hydrophilic surfaces. Ethanol mixtures, on the contrary, remain less separated as ethanol-

water mixtures are more homogeneous and also share a similar affinity for a specific oxygen site in cellulose. 

3.2 Dynamics of xylan tetramer model in water-organic solvents 

3.2.1 Solvent effect on xylan conformational freedom 

 

Figure 4.10. MD snapshots of representative xylose structures obtained from the cluster analysis in (A) water (B), 

75 wt% ethanol-water, (C) ethanol, (D) 75% wt acetonitrile-water, and (E) acetonitrile, along with a 3.5 Å solvent 

shell. Bonds and CPK colour code: oxygen (red), hydrogen (white), carbon (cyan), and nitrogen (blue). Hydrogen 

bonds are shown as dashed red lines.  

The simulated conformations of xylan in pure and binary mixtures (Figure 4.9) is described by the distribution 

of the SASA and the glycosidic torsion angles Φ (O5-C1-O4’-C4’), and Ψ (C1-O4’-C4’-C5’). The SASA 

distribution (Figure 4.10 A, D) falls at ~8.0 nm2 in all solvent mixtures and varies less than ~0.1 nm2 between 

all the ranges of solvent compositions. Despite this small variation, the hygroscopic nature of xylose results in 

a trend to find the lowest surface area in pure acetonitrile and ethanol, whereas a tendency of a more extended 

surface is observed in pure water and the diluted aqueous solvent mixtures. We tracked down the origin of this 

trend to the configuration of the glycosidic torsion angles Φ and Ψ, as shown in Figure 4.10 B,E and Figure 

4.10 C,F,  respectively.  In comparison to cellulose, a hydroxymethyl group is absent in the xylose monomers, 

which participate in less intra-chain H-bonding and the chain’s flexibility increases. The torsion angle Φ in the 

β-(1→4) xylan tetramer has an average value of -69° ± 4° in the initial structure. During dynamics, the torsion 

angle Φ falls mostly near ~-74° at all solvents and mixtures, thus preserving the β-(1→4) linkage; however, 

there is a small amount of  Φ ~55°  in pure and 75 wt% acetonitrile (Fig. 4.10 E), which  reveals an 

occurrence of α-(1→4) linkage in these two solvents.  



Chapter 4 

148 

 

 

Figure 4.11. Distributions of solvent accessible surface area, SASA, of xylan tetramer (A), distribution of 

glycosidic torsion angle  = O5-C1-O4’-C4 (B) and distribution of glycosidic torsion angle Ψ = C1-O4’-C4’-C5’ 

(C) at different ethanol concentrations. Distributions of SASA (D), the torsion angles  (E) and  (F)  of xylan 

tetramer at different acetonitrile concentrations 

Furthermore, the torsion angle Ψ falls mainly in two distributions that describe the β-(1→4) angle. In water 

and mixed solvents up to 50% concentration, the distribution falls near ~-90°, corresponding to a left-hand 

threefold helical (32) conformation [18]; whereas in pure and concentrated organic solvents, the distribution 

mostly falls near ~-130°, describing a twofold (21) conformation. In the latter solvents, xylan adopts a 21 

conformation as a hydrophobic response to the pure and concentrated organic solvents, resulting in a more 

compact packing and slightly lower SASA. Our results of the simulated conformation of xylose in water are 

consistent with the previous MD results [19, 20], revealing that xylan adopts a  32 conformation, whereas the 

21conformation does not appear in water solvent.  

3.2.1 Solvents organization around xylan tetramer. 
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Figure 4.12. Oxylan-Xsolvent (Xsolvent = Owater, OEtOH, NACN, CEtOH and CACN) radial distribution 

functions, g(r), between the xylan oxygens and (A) water oxygen, (B) ethanol oxygen, (C) acetonitrile nitrogen, 

and methyl carbons of the ethanol (D) and acetonitrile (E).. Oxylan colour code is O2 (black), O3 (red), O4 

(green), and O5 (blue), as in Figure 4.2B.  

The xylan solvation is described by the radial distribution function between the oxygens in xylan and Xsolvent 

sites (Xsolv=Owater, OEtOH,  CEtOH, NACN, and CACN). The Oxyl-Xsolv g(r)s (Figure 4.11A-E) describe well-

structured solvation layers that follow a similar behaviour as that of Ocell-Xsol g(r)s, presented in Figs 4.6 and 

4.8. In the absence of the hydroxymethyl group, water coordinates almost equally O2 and O3, whereas OEtOH 

and NACN show a higher preference towards O2. Moreover, the Oxyl-CEtOH/ACN g(r)s in Figures 4.11D and 

4.11E for pure ethanol and acetonitrile, respectively, show that the O2 and O3 are also equally coordinated.  

The organization of the water-organic solvent mixtures at 25, 50, and 75 wt% is also described with g(r) 

between Oxyl-Xsol, and the results are reported in the Supporting Materials, Figures S4.3 and S4.4. The Oxyl-

Owater g(r)s display similar coordination-site trends in comparison with those found for the pure water, varying 

in the magnitude of the g(r) as a function of solvent content. The Oxyl-OEtOH g(r) and Oxyl-NACN also display 

similar trends as in the pure organic solvents, but the Oxyl-CEtOH and the Oxyl-CACN display a coordination-site 

inversion and follows the order O3 > O2 in all water-organic solvent mixtures.  
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Figure 4.13. Cumulative number of molecules (N) of water (A) and organic cosolvent (B) within 0.7 nm from the 

xylose glycosidic oxygen, as a function of organic solvent concentration. Green: acetonitrile; red: ethanol. 

The computed cn(r) of water and organic solvent molecules within r = 0.7 nm from the glycosidic oxygen of 

xylose, O4, as a function of organic solvent concentration, are summarized in Figure 4.12. The number of 

water molecules surrounding the xylan surface (Figure 4.12A) decreases with cosolvent concentration, and 

show similar behaviour in ethanol and acetonitrile mixtures, being slightly more abundant in the presence of 

acetonitrile. Correspondingly, in Figure 4.12B, the number of organic solvent molecules surrounding the 

surface increases with the solvent concentration. At low organic solvent fraction, there is a slightly higher 

number of acetonitrile molecules than ethanol. However, at 75 % ethanol, an inversion of the cn(r) is 

observed, in which more ethanol molecules are found near the xylose surface than acetonitrile molecules. 

When compared with the cn(r) obtained for cellulose, we observe that approximately ~35 water molecules 

surround each xylose monomer, whereas this number is significantly reduced for each glucose monomer in 

cellulose. Due to the assembly of the cellulose chains in the nanocrystals,  the solvent access in cellulose is 

more limited and only about ~18 water molecules are found in pure water in the most hydrophilic surface. 

Correspondently, ~12 organic solvent molecules are found surrounding each xylose monomers in comparison 

with  ~6 ethanol or acetonitrile molecules surrounding glucose monomers.  
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3.2.3 H-bonds analysis 

 

Figure 4.14(A) Average number of xylan intra-molecular H-bonds per xylose monomer at different ethanol and 

acetonitrile concentrations.  Average number of H-bonds per xylose monomer between xylan and water (B) or 

xylan and organic solvent (C) at different organic solvent concentrations. Green circles: acetonitrile; red squares: 

ethanol 

We monitored the average number of intramolecular hemicellulose (xylan) H-bonds and the intermolecular 

hemicellulose-water and hemicellulose-organic solvent H-bonds, and the results are summarized in Figure 

4.13. As in the case of cellulose, the frequency of hemicellulose intramolecular H-bonds (Figure 4.13A) 

increases from water to pure ethanol and acetonitrile. Contrary to the cellulose nanocrystal, the intramolecular 

H-bonds frequency in acetonitrile is higher than in pure ethanol. The number of xylose-water H-bonds, in 

Figure 4.13B, show a decrease as the organic fraction increases and seem to be equivalent in the presence of 

ethanol or acetonitrile co-solvents. On the contrary, the difference between the number xylose-cosolvent H-

bonds (Figure 4.13C) evidences the adhesiveness of ethanol to hemicellulose, due to its H-bond donor 

capacity. The aprotic nature of acetonitrile is reflected in the reduced intermolecular H-bonds.  

We analyzed also the H-bond lifetimes of the xylan-water and xylan-organic solvent H-bond types from the 

autoccorrelation functions (Table 4.3). As found for  cellulose, the lifetime of xylan-water H-bonds increases 

with the organic fraction and longer-lasting H-bonds are observed in water-ethanol than in water-acetonitrile 

mixtures. Shorter lifetimes are observed for the xylan-water H-bonds than for the cellulose-water H-bonds, 

due to richer water interfaces with xylose. This allows water exchange between the bulk and surface water, 

along with the extra flexibility of the xylose tetramer chain and the access of the hydroxyl groups. 

Table 4.5. H-bond lifetimes for the hemicellulose-water (H-W) and hemicellulose-cosolvent (H-Cosol), interaction 

types, obtained from the H-bond autocorrelation functions of each H-bond type. 

 HB lifetimes (ps) 

Solvent 

mixture 

Water-EtOH Water-ACN 
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Xcosol H-W H-Cosol H-W H-Cosol 

0 5.3 - 5.3 - 

0.25 9.6 11.3 6.7 4.2 

0.50 14.8 15.9 8.9 5.8 

0.75 23.4 20.5 11.8 5.4 

1 - 22.9 - 5.5 

3.2.4. Solvent effect on diffusivity of xylan 

 

Figure 4.15-Computed diffusivity of xylan tetramers in water-organic solvent mixtures. Green: acetonitrile; red: 

ethanol 

Finally, we described the dynamics of the xylose tetramer in the different solvents by computing the xylan 

diffusivities, shown in Figure 4.14. These were obtained from the evolution of the mean squared 

displacement, as described in the computational details.  The evolution of the computed diffusivities as a 

function of the organic solvent fraction shows a non-linear behaviour and opposite trends are observed in 

ethanol and acetonitrile solvents. The mobility of xylan in water-ethanol mixtures increases at low 

concentration, .i.e. 25 wt%, and then decreases below the water limit upon addition of ethanol. Hemicelluloses 

have been reported experimentally to turn into a gel with the addition of ethanol [43, 44]. Previous MD 

analysis have also reported a decrease of hemicellulose diffusion coefficient in the ethanol-water mixture [40]. 

In water-acetonitrile mixtures, on the other hand, the diffusivity of xylan remains almost unchanged at low 

acetonitrile content, but it strongly increases beyond 50 wt% thus showing an opposite behaviour than that in 

the presence of ethanol. In water, hemicelluloses are highly soluble, and no gelation has been experimentally 

reported [43, 44]. 
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3.3 Dynamics of lignin in water-organic solvents 

3.3.1 Solvent effect on lignin conformations 

 

Figure 4.16. Lignin dimer conformers from the cluster analysis in (A) water, (B) 75% ethanol, and (C) 25% 

acetonitrile from MD simulations (solvent molecules are not shown). The distance between the centres of mass of 

the two-chromophore rings, dCoM, is shown as an indicator of stacking between the chromophores. The angle 

between the planes of the two chromophore rings, α, is also measured to differentiate between co-planarity (α ~0°, 

α ~180°) and T-stacking (α ~90°). 

The lignin dimer conformations in the solvents (Figure 4.15) were described considering the mutual 

displacement of the phenolic rings in lignin. This analysis was carried out by means of distributions of the 

solvent-accessible surface area (SASA), the ring-ring distance between the phenolic lignin rings (dCoM,), the 

angle between the planes of these rings (α), and the torsion angle of the dimer θ (θ=C4’-O4-Cβ-Cα),  

summarized in Figure 4.16. In water, a bad solvent for lignin, the lignin dimer has the smallest average SASA 

(Fig 16 A, E) and the interactions with water remain highly hydrophobic as revealed from the most stacked 

lignin conformation (Figure 4.15A) with the closest ring-ring dCoM of 0.32 nm (see Figure 4.16B, F) and an 

angle between the ring planes that falls at α  150° (10C, G). The torsion angle of the dimer θ (θ=C4’-O4-Cβ-

Cα) shows a dihedral conformation distribution near θ  -90° in pure water and diluted ethanol (Figure 4.16C). 

For the pure ethanol and acetonitrile, and concentrated mixtures, the dihedral conformation is mostly found 

near θ  -150°. 
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Figure 4.17  Lignin dimer distributions  of (A,E) solvent accessible surface area, SASA, (B,F) average centre-of-

mass ring-ring distance, dCoM,, (C,G) α angle between ring planes of lignin models (D,H) torsion angle θ (θ=C4’-

O4-Cβ-Cα) . (A-D) in water-ethanol and (E-H) in water-acetonitrile, respectively, at different concentrations. 

In the mixed solvents, the SASA increases, thus indicating more favourable interactions between the solvents 

and the lignin dimer. The lignin dimer adopts a less stacked conformation with a ring-ring dCoM of ~0.4 nm 

(Fig. 416B, D), and the angle between the phenolic rings α  90°, corresponding to a T-shaped staking. 

Furthermore, the torsional angle distribution with a maximum of θ   -150° (Fig. 4.16 D, H) is narrower in 

75% ethanol and 25% acetonitrile solution than in pure organic solvent and the other solvent mixtures.  

 

Figure 4.18. MD snapshots of representative lignin tetramer structures obtained from the cluster analysis in pure 

and mixed solvents, along with a 3.5 Å solvent shell. CPK colour code: oxygen (red), hydrogen (white), carbon 

(cyan), and nitrogen (blue). Hydrogen bonds are shown in dashed red lines. 
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It is worth noting that, despite the SASA distributions in Figures 4.16A,C fall in a very narrow range,  the 

surface area of lignin tends to be larger in the mixed solvents than in the pure organic solvents. To follow this 

observation, we computed the SASA distributions of the lignin tetramer in pure and mixed solvents. The 

tetramer structures in the considered solvents are illustrated in Fig. 4.17, and the results are summarized in 

Fig. 4.18. In agreement with our previous observation, the SASA of the lignin tetramer in pure organic 

solvents falls in a wider distribution between ~10-12 nm2, whereas a narrower distribution that falls near ~12 

nm2 is obtained in 75% ethanol and 25% acetonitrile. A somewhat narrow SASA distributions fall at ~11 nm2 

in 50% ethanol and 75% acetonitrile, while the SASA distributions in 25% ethanol and 50% acetonitrile 

behaves as their pure organic counterparts.   

 

Figure 4.19 – Average distributions of solvent accessible surface area, SASA, of lignin tetramer models in (A) pure 

ethanol and (B) acetonitrile, and their respective aqueous mixtures. 

These results suggest that concentrated mixtures ethanol near 75 w% and 25% acetonitrile solutions are better 

solvents than the pure organic solvents for lignin molecules with guaiacyl groups and β-O-4 linkages. Another 

point is to notice that the surface area of the lignin models, here studied, vary in a wide range (particularly 

when compared with the surface of the cellulose nanocrystal), as both experimental and theoretical studies 

suggest that β-O-4 structures are flexible molecules that can adopt a large number of conformations [23, 28, 

29]. These results, although obtained for limited lignin size models, agree reasonably well with the results of 

Smith et al.[35], showing that lignin polymers containing up to 60 units in water-tetrahydrofuran (THF) 

mixtures adopt an unfolded conformation with increased SASA, whereas, in pure water, lignin polymers adopt 

a crumbled globular-like shape, with a considerably reduced SASA. Additionally, very recent studies of lignin 

solubility in water-ethanol mixtures have identified a solubilisation maximum at 60 wt% ethanol [79], which 

is expected to result in more extended conformations of lignin polymers, in agreement with our observations.  



Chapter 4 

156 

 

3.3.2 Organization of solvents around lignin models 

 

Figure 4.20 - Solvation of lignin in pure solvents. Radial distribution functions, g(r), of the Olig-Xsolv pairs. The 

reference site, X, in the solvents are water oxygen (A), EtOH oxygen (B), and ACN nitrogen (C), and g(r) of 

Olignin-CMe with CMe, the carbon of methyl groups, in ethanol (D) and in acetonitrile (E). Olig colour code is 

OMe (red), Oβ (black), Oα (green), and Oγ (blue), see Figure 4.1 for lignin O notation 

The organization of solvent molecules around the lignin dimer has been studied from the computed RDF 

𝑔(𝑟Olig-Xsolv) between lignin oxygens (Oα, Oγ, OMe, and Oβ) and the solvents. Here X indicates O and CMe 

atoms in ethanol, O atom in water, and N and CMe atoms in acetonitrile. The 𝑔(𝑟Olig-Xsolv)results for the pure 

solvents in Figure 4.19 reveal well-structured solvation layers around the lignin dimer. Higher coordination is 

found between solvents sites and Oα and Oγ of the propyl alcohol chains, whereas the Oβ and OMe are 

significantly less coordinated. Water and ethanol oxygen atoms display the highest number density when 

coordinating  Oα and Oγ. This observation is in agreement with the lignin-water H-bond frequencies reported 

by Charlier and Mazeau [30], who showed that hydroxyl groups (Oα and Oγ) are 5 times more involved in H-

bonds than OMe and 10 times more than the backbone Oβ. On the other hand, acetonitrile coordination 

towards Oα and Oγ is much weaker when compared with water and ethanol solvents. This is evidenced by 

nearly two times lower peak intensity at ~0.30 nm in 𝑔(𝑟Olig-NACN) profiles. On the other hand, 
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𝑔(𝑟Olig-CACN)acetonitrile shows a significant number density of methyl carbons, which interact through the 

aliphatic hydrogens with the lignin alcohol groups. Thus, acetonitrile displays ahead (N, H-bond acceptor) and 

tail (methyl) interaction with lignin (as with cellulose), whereas ethanol shows predominantly a head-type (O, 

H-bond acceptor/donor) interaction. 

The organization of the water-organic solvent mixtures at 25, 50, and 75 wt% is also described with g(r) 

between Olig-Xsolv, and the results are reported in the Supporting Materials, Figure S4.5 and S4.6. The Olig-

Osolvlignin-water and lignin-ethanol g(r)s display similar coordination-site trends in comparison with those 

found for the pure solvents, varying in the magnitude of the g(r) as a function of solvent content. The lignin-

acetonitrile g(r) in water-acetonitrile mixtures, however, show a significant decrease of the Oγ coordination as 

it becomes rapidly coordinated by water. Thus, the Olignin-NACN coordination is inverted and follows the order 

Oα > Oγ, whereas OMe and Oβ remain mostly coordinated from the second shell. Moreover, the Olignin-

CMecoordination in 25% acetonitrile and ethanol is also inverted and follows the order OMe> Oγ > Oa> Oβ, 

being this more evident in the acetonitrile mixture.  

 

Figure 4.21. Cumulative number of molecules (N)  of water (A) and organic solvent (B) within 0.7 nm from the 

lignin methoxy oxygen, as a function of cosolvent concentration. Green circles: acetonitrile; red squares: ethanol. 

Furthermore, we computed the cn (0.7), i.e., the number of water and organic solvent (cosol) molecules within 

r = 0.7 nm from the methoxy oxygen, OMe, as a function of organic solvent concentration, as summarized in 

Figure 4.20. The number of water molecules surrounding the lignin monomers (Figure 4.20A) decreases with 

cosolvent concentration, as a result of the water displacement by the cosolvent. Moreover, more water 

molecules within this solvent shell are present in ethanol than in acetonitrile at all mixed solvent 

concentrations. In Figure 4.20B, correspondently, the number of organic molecules surrounding the lignin 

monomer decreases with the organic fraction. Moreover, more acetonitrile molecules are found near the lignin 

surface than ethanol molecules at all concentrations (Fig. 4.20 C). We note that keeping in mind that the 

volume of an H2O molecule is about 1/3 of the volume of an EtOH or ACN molecule, at 100% organic 

solvent concentration approximately three water molecules should be replaced by one ethanol molecule. Our 
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analysis in Fig. 4.5, indeed, indicates that nearly 2.7  and 2.6 water molecules are replaced by one EtOH and 

ACN molecule, respectively.   

3.2.3 H-bonds analysis 

 

Figure 4.22-(A) Average number of lignin tetramer intra-molecular H-bonds per guaiacyl monomer at different 

ethanol and acetonitrile concentrations.  Average number of H-bonds per guaiacyl monomer between lignin and 

water (B) or lignin and organic solvent (C) at different organic solvent concentrations. Green circles: acetonitrile; 

blue squares: ethanol 

We monitored the average number of intra- and intermolecular H-bonds between the lignin tetramer and the 

solvents, and the results are summarized in Figure 4.21. As with cellulose and the xylan tetramer, the 

frequency of lignin intramolecular H-bonds (Figure 4.21A) increases from water to pure organic solvent, 

except at 75% ethanol where a minimum is observed. Also, at 25% organic solvent, the intramolecular H-

bonds remain practically unchanged compared to water. As with xylan, the frequency of intramolecular H-

bonds is lower in pure ethanol than in pure acetonitrile. Furthermore, this trend is maintained throughout all 

the mixed solvent range.  The number of lignin-water H-bonds, in Figure 4.18B, show a decrease as the 

organic fraction increases and a higher frequency is observed in the presence of ethanol than acetonitrile. In 

agreement with the cellulose-cosolvent and xylan-cosolvent H-bonds, the frequency of lignin-cosolvent 

increases with the organic fraction and significantly less H-bonds are formed between lignin and acetonitrile 

at all concentrations, due to its aprotic nature. Nonetheless, the cumulative numbers in Figure 4.20 show that 

more acetonitrile molecules are surrounding lignin than ethanol molecules. Therefore, this suggests the lignin-

acetonitrile interactions are mainly driven by van der Waals rather than electrostatic interactions and play a 

significant role in stabilizing lignin.  

Table 4.6. H-bond lifetimes for the lignin-water (L-W) and lignin-cosolvent (L-Cosol) interaction types, obtained 

from the H-bond autocorrelation functions of each H-bond type. 

 HB lifetimes (ps) 

Solvent Water-EtOH Water-ACN 
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mixture 

Xcosol L-W L-Cosol L-W L-Cosol 

0 8.1 - 8.1 - 

0.25 17.7 22.7 12.5 9.9 

0.50 24.9 30.1 17.8 11.3 

0.75 48.1 43.3 25.7 10.4 

1 - 53.1 - 8.0 

We analyzed the H-bond lifetimes of the lignin-water and lignin-organic solvent H-bond types from the 

autoccorrelation functions, and the results are summarized in Table 4.4. In agreement with the results of 

cellulose (Table 4.2) and xylan (Table 4.3) in the previous sections, the lifetime of lignin-water H-bonds 

increase with the organic fraction. As we showed in the previous chapter, the water H-bond lifetimes are 

shorter when richer water interfaces exist, since this allows faster water exchange between the bulk and 

surface water. Correspondently, shorter polymer-water lifetimes are observed for the xylan-water (5.3 ps) than 

the lignin-water (8.1 ps) H-bonds, followed by the cellulose-water H-bonds (9.8 and 12.3 ps for chains AF and 

BDEG, respectively). Water-rich interfaces with xylose (cn(0.7 nm) = ~35) allow water exchange between the 

bulk and surface water faster than lignin, whose number of water molecules at 0.7 nm is ~28. More water 

molecules surrounding xylose and lignin are observed since the monomers of the polymers are considerably 

exposed, in comparison with the glucose monomer in cellulose that remain less solvent-exposed in the 

nanocrystal assembly. Therefore, cellulose-water H-bonds last longer, even at the water-rich surface (chain 

AF), whose number of water molecules at 0.7 nm is ~18. Furthermore, we also observed that the polymer-

water H-bond lifetimes in water-ethanol mixtures are longer lasting than in water-acetonitrile mixtures. As we 

showed in the previous chapter, this is explained by the higher frequency of H-bond formation between water 

and ethanol than with acetonitrile and water. Thus, we believe that the polymer-water H-bond lifetimes are 

longer-lasting in ethanol mixtures than in acetonitrile mixtures, despite having richer water interfaces in 

ethanol mixtures, because the constant interaction between water and ethanol that constrains the water 

movement. Finally, the polymer-ethanol H-bond lifetimes are always longer-lasting than the polymer-

acetonitrile ones due to their higher frequency, given ethanol’s H-bond donor and acceptor capacity, whereas 

acetonitrile remains only as an H-bond acceptor.  
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3.4 Polarization effects on lignocellulose polymers, evaluated at the QM (DFT) 

level 

 

Figure 4.23. MD snapshots of single cellulose chain structures obtained from the cluster analysis in pure and 

mixed solvents, along with a 3.5 Å solvent shell. CPK colour code: oxygen (red), hydrogen (white), carbon (cyan), 

and nitrogen (blue). Hydrogen bonds are shown in dashed red lines. 

We studied at the QM level the solvent effects on the structures of cellulose chains (Figure 4.22) and the 

lignin tetramers (Figure 4.17) obtained from MD simulations. The scope was to obtain an estimation of the 

trends of charge polarizations of the selected oxygen atoms (vide supra) in cellulose and lignin models in the 

presence of the considered pure and binary aqueous organic solvents. Whereas from MD simulations we could 

gain knowledge about the statistical accessibility and the dynamic evolution of H-binding of solvent 

molecules to specific oxygens in the truncated lignocellulosic polymers models, we completely neglect the 

mutual charge polarization using non-polarizable force fields (FF) methods. Note that the use of polarisable 
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FF approaches is not practical for the present studies, because of the significant computational demand. To 

provide a better insight into the polarization effect we therefore evaluated the atomic charges using DFT 

methods (see the Computational details section in this chapter) on the energy minimized structures, taken 

from the cluster analysis of the MD simulations, and analyzed these charges in relation to the MD results, 

presented in the previous sections. The atomic charges were computed using the Mulliken population scheme, 

which provides reliable results for not extended basis sets, as are the double- types bases, used by us. We 

have considered the cellulose single chain dynamics in various solvents as a reasonable approximation 

because all the OH sites are accessible to the solvent molecules.  

 The oxygen partial atomic charges (qO) obtained for the cellulose chain are illustrated in Figure 4.23, and the 

selected average qO and qH (for hydrogen atoms in OH groups) values are reported in Table 4.5, without 

considering the reducing and non-reducing ends of the cellulose chain in the absence of the solvent. The O 

partial charges in Figure 4.23 are displayed by following the number index in the topology file in the periodic 

order O5-O2-O3-O4-O6. Well-formed repetitive patterns are found along the cellulose chain in gas face. O2 

shows the lowest charge value, with qO2 = -0.542 e-. In contrast, the less negative value is found for O4, with a 

charge of -0.380 e-. Moreover, the H-bond donor/acceptor character of each hydroxyl oxygen can be deduced 

from the partial charges. Among the oxygen sites of interest, the O2-H is the most polarized, because O2 is 

the most negative O-site (qO = -0.542 e-) and H is slightly more positive than the other hydrogen sites of 

interest (qH(HO2) = 0.288), as follows from the QM results in Table 4.5. Therefore, the O2-H group is more 

prone to lose its H, which revealsO2 as a better  H-bond donor  than O3 and O6 sites. This correlates well 

with the observed behaviour reported for the Ocell-NACN RDF (Figure 4.6), which shows the highest 

coordination of acetonitrile N for O2 in cellulose. On the contrary, cellulose O6 is the less negative alcohol 

oxygen, and its H has a slightly less positive charge than the other hydrogen alcohols. Thus, it would perform 

better as H acceptor, which correlates well with the observed preferential interactions of water and ethanol 

oxygens for this site. 

 

Figure 4.24. Mulliken charges in e- of a cellulose chain  with 8 glucose monomers. Charges of the reducing and 

not-reducing ends are not shown.  
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We also examined the charges of the cellulose oxygen in the presence of explicit solvents. First, we compared 

the average partial charges obtained in water with the charges used in the force field during the MD 

simulations (Table 4.5 and Figure 4.24A) . The partial charges used for the alcohol H (0.42 e-) and O (-0.65 e-) 

are the same for O2, O3, and O6 in the MM force-field, whereas different polarization effects can be observed 

for each of these atoms at QM level. Moreover, O partial charges are more negative in the MM force field 

than the ones reported at the QM level. The water solvent effect is more prominent for O3 and O6, which 

become rapidly coordinated and more negative, and participate in hydrogen bonding with water. The 

glycosidic oxygen O4 is significantly affected by the polarization effects, despite being poorly coordinated by 

water according to our MD Ocell-Owater g(r) analysis, because of its relatively lower accessibility to the solvent. 

The result that despite its lower coordination O4 polarization changes with the solvents, suggests that the 

solvent to cellulose OH group coordination causes a non-negligible charge redistribution within the glucose 

monomer(s). 

Table 4.7. Average partial Mulliken charges in e- of On (n=2, 3, 4, 5 and 6) and HOm (m=2,3, and 6) atoms in a 

cellulose chain  with 8 glucose monomers,  in gas phase and in water. Mulliken charges of the reducing and not-

reducing ends are not included in the averages. The standard deviations of the average QM charges are reported 

in parentheses. MM [58, 59]charges used during simulation have been included for comparison.  

Ocell 

 

QM MM 

[58, 59] Gas Water 

O2 -0.542 -0.548(0.017) -0.65 

O3 -0.430 -0.536(0.030) -0.65 

O4 -0.380 -0.432(0.033) -0.36 

O5 -0.414 -0.438(0.045) -0.40 

O6 -0.399 -0.513(0.015) -0.65 

HO2 0.288 0.308(0.021) 0.42 

HO3 0.281 0.346(0.021) 0.42 

HO6 0.268 0.305(0.018) 0.42 
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Figure 4.25. Mulliken charges in e- of a 8DP cellulose chain in pure and mixed solvents. Charges of the reducing 

and not-reducing ends are not shown. 

We further compared the polarization effects in water with those in pure and mixed water-organic solvents. 

The polarization effects in diluted water-cosolvent mixtures (Figure 4.24.B, E) show a similar behaviour to 

those observed in water, with a lower effect on O5 and this effect persist with the addition of the organic 

phase. In 75% acetonitrile (Figure 4.24 D) the polarization effect of O5 and O4 is significantly decreased, 

whereas O2, O3, and O6 show significant interactions with the solvent. Moreover, the polarization effects are 

significantly reduced in the presence of the pure organic solvents, particularly in acetonitrile. As shown for the 

RDFs previously, the O5 coordination by the methyl group of acetonitrile seems to provide additional order of 

the cellulose chain, since the number of O3-H…O5 hydrogen bonds is better preserved for acetonitrile 

mixtures than in the other solvents. Although our static charge analysis is made on one minimum energy 

structure, obtained from the cluster analysis of the MD simulations, it is in line with the MD statistical 

analysis for the specific coordination of solvent molecules to distinct oxygen sites of glucose monomers. This 

underlines the microscopic nature of the preferential cellulose-solvent interactions. 

We now perform the same partial-charge analysis on the lignin tetramer structures, again extracted from the 

MD cluster analysis, in mixed solvents (Figure 4.17). We observe that the stronger polarization occurs in the 

presence of water. The Oα and Oγ atoms are more affected than in ethanol and acetonitrile. A strong 

polarization of Oβ and OMe is observed in water and ethanol, whereas this is significantly lower in 

acetonitrile. Thus, our results show that different polarization patterns result due to the interactions between 

the solutes and the solvents. This has a direct effect on the magnitude of non-covalent interactions and 

highlights the need for more accurate than non-polarizable force-field methods when understanding 

molecular-scale phenomena.  
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Figure 4.26. Mulliken charges in e- of OMe, Oα, Oβ , and Oγ oxygens of the lignin tetramer in pure and mixed 

solvents.  

Table 4.8. Average partial Mulliken charges in e- of On (n= Me, , , and ) and HOm (m=Me, , and ) atoms in 

lignin tetramers in water. The standard deviations of the average QM charges are reported in parentheses. MM 

[60] charges used during simulation have been included for comparison.  

Atom QMwater MM[60] 

OMe -0.368(0.033) -0.28 

Oα -0.526(0.034) -0.66a 

Oβ -0.420(0.098) -0.28 

Oγ -0.483(0.013) -0.66a 

HOMe 0.116(0.022) 0.09 

HOα 0.310(0.023) 0.43 

HOγ 0.309(0.023) 0.43 

aThe author in ref. [60] kindly provided us with the lignin force field. In all β-O-4 linked monomers, a charge of -

0.66 is used for Oα and Oγ atoms; however, a partial charge of -0.54 is in our opinion wrongly reported in ref. [60] 

Nonetheless, and despite the differences found between the charges obtained by our DFT calculations and the 

ones reported by the MM force fields, our statistical MD results reproduce correctly the cellulose-water RDFs 

profiles. Moreover, they allowed us to gain insight on the preferential interactions of the organic solvents with 

specific sites of the lignocellulosic truncated model polymers. Furthermore, the correlation trend between the 

static atomic charges at QM level, with the established from the MD solvent preferential interactions to 

cellulose and lignin O-sites evidences better the local, microscopic nature of  those H-bond interactions types.  

3.5 MD and BOMD/MD evaluation of the stability of lignin dimer structures 

In this last section of the chapter devoted to the atomistic study of the physicochemical solvent-lignocelluloses 

interactions, we present the interaction energies between the considered solvents and the lignocellulosic 
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truncated polymer models. The lignin dimer energies in the pure organic and mixed aqueous solvents, relative 

to the water solvent, are also evaluated from the BOMD/MD simulations in order to gain better insight on the 

effect of ethanol and acetonitrile solvent components on the energy stability of lignin dimer.  

First, we analyzed the interaction energies between the individual lignocellulosic components and the solvents 

at the MM level. The interaction energies are computed from the sum of the non-covalent interactions (LJ and 

Coulomb) of the individual polymer-water and polymer-cosolvent energies, and the complete results are 

summarized in Figures S4.7 to S4.9. Overall, we found that the polymer -water interactions are always 

electrostatically driven (Fig. 4.25A, C). In pure ethanol, all the interactions with the lignocellulosic 

components display a stronger Coulomb character. In the presence of water, however, ethanol interactions 

have stronger LJ contributions with lignin, whereas this contribution is almost equivalent to hemicellulose and 

cellulose. On the other hand, acetonitrile interactions display always stronger LJ energies. The total polymer-

solvent interactions energies summarized in Figure 4.25 show that cellulose and hemicellulose interact 

strongest with pure water, and this interaction gradually decreases with the addition of the organic phase. 

Moreover, the interactions with ethanol are stronger than with acetonitrile. On the contrary, the lignin-solvent 

interactions are stronger than the lignin-pure water interactions in solvent mixtures of ethanol and water, and 

in 25% acetonitrile-water. Notably, the polymer-solvent interactions inversely correlate with the 

intramolecular H-bond frequencies in Figures 4.5, 4.13, and 4.21, indicating that non-covalent intramolecular 

interactions are weaker in pure water than in the organic solvents.  

 

Figure 4.27. Solute-solvent (water+cosolvent) interaction energies for (A) cellulose, (B) xylan, and (C) lignin 

tetramer, normalized by the number of monomers in each model.  
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Figure 4.28. DFT relative energies, ΔE, of lignin dimers per monomer computed in the MM explicit solvents. 

ΔE=(Elig-solvent-Elig-water)/Nmonomers. Reference energy of lignin in water is  Elig-water =1454.616162 Ha. 

1Ha=2625.5 kJ/mol.  

To gain better understanding of the stability and non-linear behaviour of the lignin structures in the solvent 

mixtures we performed QM/MM (BOMD/MD) dynamics for 12 ps, treating lignin at DFT level and the 

solvents at MM level. Note that the comparison between the full DFT/MM energy was not possible because of 

the different number of MM solvent molecules due to the different solvent compositions. The DFT energies of 

the lignin in the QM/MM systems were considered for the last 330 frames, corresponding to the last 1 ps 

dynamics of the total 12 ps BOMD/MD trajectory length.  As reference energy, we chose the lignin DFT 

energy in MM water (see Computational Details section). The DFT lignin energies in the pure organic and 

water-organic solvents (solvent molecules treated at MM level), relative to the DFT lignin energy in water 

were subsequently normalized by the number of lignin monomers. The equation, used by us, to compute these 

relative DFT energies is reported in the Figure caption of Fig. 4.27. The relative DFT energies in Figure 4.27 

show that the stability of the lignin dimers in the MM solvents follows the order 0.75 EtOH > Water > EtOH 

> 0.75 ACN > ACN. The lignin structure in 75% EtOH is stabilized by ~30 kJ/mol per monomer in 

comparison to the structure of lignin in water. On the contrary, the lignin structure of lignin in 75% 

acetonitrile, EtOH and ACN is destabilized by ~90, 120, and 190 kJ/mol per monomer, relative to water. It is 

well known that water is a bad solvent for lignin; therefore, the trend of our observations can be contradictory 

at first glance. Moreover, the lignin intra-molecular hydrogen bonding profiles in Figure 4.21 show a 

frequency of H-bonds in the order  ACN > EtOH > 0.75 ACN > Water > 0.75 EtOH, indicating that the non-

covalent intramolecular interactions are weaker in 0.75 EtOH than in the pure ACN. However, we observe 

that the lignin-solvent interaction profiles, computed from the MD simulations, in Figure 4.26C reveal that the 

stronger lignin-solvent interaction follows the same trends obtained from the BOMD/MD simulations. Thus, 
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the strongest lignin-solvent interaction is observed in 75% ethanol, whereas the weakest lignin-solvent 

interactions are observed in pure organic solvents, particularly in acetonitrile. Therefore, our results indicate 

that solvent interactions can stabilize the structure, and the energetic gain of forming H-bonds with the solvent 

compensates the loss of intramolecular H-bonds. In the case of 75% ethanol (and all water-ethanol and 25% 

acetonitrile) the lignin-solvent interactions are maximized due to favourable interactions that result in a more 

stable and more extended structure. The lignin structure in water, however, gains stability by reducing the 

surface-accessible area and reducing the hydrophobic interactions with water.  

4. Conclusions 

Classical molecular dynamics simulations (MD), quantum chemistry calculations (QM-DFT), and combined 

QM/MM (BOMD/MD) approaches were employed to describe at the atomistic level the effect of the solvents 

on the structure and dynamics of lignocellulose compounds - cellulose, hemicellulose, and lignin, truncated 

polymer models. The considered solvents are first pure water, ethanol and acetonitrile, and second, the binary 

mixtures of water with the two organic solvents.  

At the classic level, the structure and solvation of the cellulose nanocrystal, lignin dimer and tetramer, and 

xylose were investigated through solvent accessible surface area (SASA), conformational analysis, H-bonding 

and H-bond lifetimes, and radial distribution functions. The conclusions drawn from the analysis of these 

properties are the following: 

1. The SASA distributions analysis shows the largest cellulose nanocrystal solvent-accessible surfaces in the 

presence of mixed solvents, whereas it has a minimum in the presence of pure acetonitrile, followed by pure 

ethanol and water. Likewise, lignin displays the highest surface area in the presence of mixed solvents, while 

water remains a bad solvent for lignin.  On the contrary, the hygroscopic nature of xylose results in a trend to 

find the lowest surface area in pure acetonitrile and ethanol, whereas a tendency of a more extended surface is 

observed in pure water and the diluted mixtures. 

2. The analysis of the hydroxymethyl group conformations in cellulose shows a higher frequency of tg 

conformers in pure organic solvents indicating lower capacity of hydroxymethyl to form intramolecular H-

bonds; following a transition from tg to more solvent-exposed gg conformation in the mixed solvents. In the 

pure water solvent, the solvent-exposed gg-hydroxymethyl conformer is predominant. The torsion angle 

analysis of the xylose glycosidic bond has shown that xylose adopts a left-handed threefold conformation in 

water and diluted mixtures, whereas a twofold conformation is favoured in pure and concentrated organic 

solvents. The analysis of the β-O-4 torsion angle in lignin shows a dihedral conformation distribution near 

θ=~-90° in pure water and diluted ethanol which corresponds to a stacked conformation. In contrast, a more 

extended T-stacked conformation with a distribution that falls near θ=~-150° is found in pure and 

concentrated organic solvents.  
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3. The polymer-solvent correlation analysis using the radial distribution functions show that lignin-water and 

lignin-ethanol display similar coordination-site trends in pure and mixed solvents, favouring the electrostatic 

interactions and coordinating preferentially the Oγ > Oa sites. In acetonitrile-water mixtures, however, the Oγ 

site becomes rapidly coordinated by water; therefore, the lignin-acetonitrile coordination is inverted and 

follows the order Oα > Oγ, whereas OMe becomes coordinated at diluted acetonitrile content by the methyl 

group of acetonitrile. Likewise, the xylan coordination analysis shows that water and ethanol interact mostly 

electrostatically with the O2 and O3 sites, whereas apolar interactions between the methyl group of 

acetonitrile and O2 are preferred. Moreover, the Oxylose-CEtOH and the Oxylose-CACN display a coordination-site 

inversion and follow the order O3 > O2 in all water-organic solvent mixtures. On the other hand, the 

cellulose-water coordination follows the order O6 > O2> and displays higher number densities in the 

hydrophilic than the hydrophobic surfaces. Similarly, ethanol follows the order O6 > O2 whereas acetonitrile 

shows higher coordination for O2 than O6. Furthermore, while the water number density is expected to 

decrease with the addition of organic solvent, the water exclusion in acetonitrile mixtures from the first 

cellulose solvation shell, especially in the hydrophobic surface, is stronger than for ethanol mixtures. An 

increase of the co-solvent phase could yield a more hydrated and more extended water shell around cellulose 

hydrophilic surfaces, which, enhanced by local microheterogeneity of water-acetonitrile mixtures[78], results 

in phase-separation when in contact with the different cellulose surfaces. Ethanol mixtures, on the contrary, 

remain less separated as ethanol-water mixtures are more homogeneous and also share a similar affinity for a 

specific oxygen site in cellulose. 

Quantum chemistry calculations were used to study the polarization effect of solvents in the partial charges of 

lignin tetramers and cellulose chains. The Mulliken charges of cellulose oxygens in the presence of water are 

considerably affected by the solvent, whereas the effect is significantly reduced in the presence of acetonitrile. 

The partial charge of the glycosidic oxygen is affected despite the significant lower coordination reported in 

the RDFs. Similarly, the partial charges of  OMe, Oβ, Oγ, and Oα oxygens in lignin tetramers show that water 

strongly interacts with Oγ, and Oα oxygens, while the others remain less disrupted in the presence of 

acetonitrile than water or ethanol.  

DFT energies of lignin dimers obtained from BOMD/MD dynamics showed that low energy conformations 

with a low number of intramolecular H-bonds can exist thanks to a stabilization effect of the solvent. The 

results suggest that energy gain due to H-bond interactions with the solvent greatly compensates the loss of 

intramolecular H-bonding, allowing the existence of low energy conformers in the presence of water. 

Moreover, the lignin-solvent interactions pass through an optimization when adding ethanol to water solvent, 

as found for the most energetically stable and more solvent-interacting lignin dimer in 75wt% ethanol-water 

mixtures.  Despite the relatively small lignin models, our results are in a qualitative agreement with recent 

studies that show an increase of lignin solubility in water-ethanol mixtures[79]. 
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Abstract 

Understanding the factors that drive the interaction of lignocellulose components with different solvents is the 

key to successful optimisation of fractionation processes. The effect of binary water-organic solvents on the 

adhesion of lignocellulose components was studied with molecular dynamics simulations, considering ethanol 

and acetonitrile as organic co-solvents in binary water-organic solvent mixtures. The lignin-xylan and lignin-

cellulose binding is significantly disrupted in the mixed solvents, which could be explained with preferential 

interactions between different solvent components and the individual polymers. In pure water, lignin-cellulose 

interactions are enhanced, and long-lasting H-bonds between lignin and cellulose are observed. On the 

contrary, xylose-lignin interactions are rapidly interrupted upon hydration of the xylose chain. The analysis of 

the radial distribution functions and interaction energies shows that water-organic solvent mixtures act 

together to disrupt more effectively the cellulose-lignin interactions. However, our analyses show that the 

presence of the organic phase can enhance and slow down the detachment between xylose and lignin. This 

suggests that a detailed description of the intermolecular interactions between lignocellulose models and 

solvent molecules can provide better insight into the effect of water-organic mixtures on the xylan-lignin and 

lignin-cellulose adhesion.  

1. Introduction 

Understanding how pre-treatment will affect biomass chemical and physical features can offer meaningful 

improvements in biomass conversion [1]. The use of non-aqueous solvents has provided remarkable results in 

fractionation processes of several levels of severity, ranging from swelling, dilute acid, hydrothermal, steam 

explosion, alkaline treatment, to organosolv pulping [2-13]. Non-linear effects of aqueous solutions of 

organics have been observed in solvent fractionation techniques, where aqueous-organic solvent solutions led 

to higher lignin solubilisation and extraction of polyphenols than pure solvents [14, 15]. Recent experimental 

work based on optical microscopy experiments has evidenced a detachment between the primary wall and 

middle lamella of wood cells in pure and ethanol aqueous solutions [16]. However, the current understanding 

of the solvent effect on the interactions within the cell wall is limited. Hence, molecular-scale studies achieved 

by experimental and theoretical approaches are needed for the understanding and optimisation of biorefinery 

processes[17-21]. 

Molecular dynamics (MD) simulations, often in combination with experimental investigations, have provided 

valuable information about the adhesion between lignocellulose components -i.e., cellulose, hemicellulose, 

and lignin-[22-42]. The complexity and variability of both lignin and hemicelluloses present a challenge, but 

significant advances have been developed to lower the barrier for modelling these biomolecules [36, 37, 43]. 

Considerable theoretical work has been performed in aqueous phase to gain understanding of the interactions 

between components of the cell wall and the mechanisms for wood deconstruction during fractionation [22-
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42, 44]. This is motivated by the intrinsic presence of water in the cell wall structure and the extensive use of 

steam explosion pre-treatment [45] for biorefineries. The theoretical and experimental results of Langan et al. 

[39, 44] sensitive at different scales, for example, have elucidated processes responsible for morphological 

changes in biomass during pretreatment, through cellulose dehydration and lignin-hemicellulose phase 

separation. It is highlighted that strong van de Waals forces between lignin molecules and cellulose 

microfibrils are responsible for higher adhesion energy in the complex [25, 28] showing that hemicellulose 

has stronger mechanical properties than lignin whereas lignin exhibits greater tendency to adhere to cellulose 

microfibrils.  

Because of the amount of solvents available, and the computational cost to consider different non-aqueous 

solvents and compositions, only few theoretical studies approach the interactions of the biomass components 

with pure or binary mixed solvents [46-57]. However, the non-aqueous solvent effect on the adhesion between 

lignocellulose components is still unexplored. The non-aqueous solvent effect has been addressed in studies of 

conformation and dynamics of individual lignocellulose compounds, and the results have provided insight on 

the mechanisms of biomass deconstruction of the lignocellulose compounds in water-cosolvent mixtures at 

different scales [46-57]. Nonetheless, the variety and complexity of the lignocellulose biomass makes the 

modelling of all component interactions complex and somewhat impractical. 

However, the systematic modelling of pairwise interactions between the main lignocellulose compounds can 

provide insight into the fundamental interactions on the cell wall. Recently, Yang et al. [25] studied at the 

quantum level the solvent effect on the pairwise adhesion between several tetramer models of cell wall 

components using polarised continuum models to represent water, methanol, and clrorophrom. Their results 

show that implicit solvation methods does not replicate the interaction energies calculated with explicit 

solvation of water molecules, as expected, because polarised continuum models do not consider the strong 

short-range interactions such as hydrogen bonding or vdW interactions.  Moreover, their results show that the 

variations in model interaction with the solvent dielectric constant in the polarised continuum model are 

significant and non-systematic [25]. Thus, the explicit inclusion of the solvent is fundamental to consider the 

strong short-range interactions. The quantum inclusion of the solvent is computationally expensive and can 

result in local potential energy minima [25]; however, MD simulation of explicitly solvated interactions can 

provide a compromise between cost and accuracy.  

Thus, we aim to gain understanding at the molecular level of the interactions between wood components in 

the presence of pure and water-organic solvent mixtures. In the present Chapter, we assess the evolution of 

xylose-lignin and cellulose-lignin complexes in the presence of water-ethanol and water-acetonitrile binary 

solvents at 25wt. % (only xylose-lignin), 50wt. % and 75wt. % concentrations. The results are compared to 

those obtained for the respective pure solvents. To achieve the scope, we carried out a detailed analysis of the 

MD dynamics of the model polymer complexes using the non-covalent interaction energies, number of H-

bonds, and distribution functions (RDFs) as indicators. 



Chapter 5 

177 

 

2. Computational details 

2.1 Models 

To study the cellulose-lignin interactions, we used the cellulose nanocrystal (reported in Chapter 4) in 

complex with four lignin dimers, illustrated in Figure 5.1A. The cellulose Iβ nano-crystallite [58-60] was built 

with seven cellulose chains, eight-monomers long (56 anhydroglucose units) and two β-O-4 linked guaiacyl 

monomers formed the lignin dimers. Each lignin dimer was placed close to the cellulose surfaces, at a distance 

below 3 Å of the atomic centre of the closest atom in order to favour the initial cellulose-lignin interactions.  

To study the xylan-lignin interactions, we used the complex of the xylan (β-(1→4) linked xylose) [43] and 

lignin (β-O-4 linked guaiacyl) tetramer models studied in chapter 4. The xylan-lignin complex was built by 

aligning the tetramer molecules at a distance below 3 Å. Then, we performed a 10-ns MD in gas phase to let 

the xylan-lignin system to complex in the absence of solvent. This equilibration resulted in a folded lignin 

conformer wrapped by the xylan tetramer, as shown in Figure 5.1 B. In the absence of the solvent, xylan 

undergoes a transition from β-(1→4) to α-(1→4) bonds to favour the intermolecular interactions. However, 

the β-(1→4) conformation is recovered during the solvated simulations.  

The xylan-lignin and cellulose-lignin complexes were centred in cubic boxes, leaving at least one nm to the 

longest side of the model, avoiding interactions between the cellulose or lignin models and their images in the 

neighbouring boxes. We used this rim spacing to determine the size of the box. Each system was further 

solvated with the number of solvent molecules needed to fill the box size, summarised in Table 5.1. Each 

organic solvent, i.e. ethanol and acetonitrile, was examined at three different concentrations: pure, 75 wt.%, 

and 50 wt.% of organic solvent (25% was also evaluated for the xylan-lignin complex), and compared with 

the simulations in pure water.  
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Figure 5. 1. (A) lignin-cellulose complex between the cellulose nanocrystal model with seven chains (ABCDEFG) 

and four lignin dimers. Cellulose chains AF are referred to as the hydrophilic surface while chains BDEG are 

referred to as the hydrophobic surface. Lignin dimer colour code of each of the four dimers in the complex: L1 

(purple), L2 (red), L3 (green), and L4 (blue). Top: front view; Down: side view. (B) xylan-lignin complex between 

β-(1→4) xylan and β-O-4 guaiacyl tetramers.Top: view of bent xylan and stacked lignin; down: detail of lignin 

ring-ring stacking in side view. Colour code CPK and licorice representations: oxygen (red), hydrogen (white), 

and carbon (cyan). Hydrogen bonds are shown in red dashed lines.  

2.2 Molecular Dynamics simulations 

All-atom Molecular Dynamics (MD) simulations of each system described in Table 5.1 were carried out using 

the GROMACS package version 2016.3 [61-65], along with the 4-sites Transferable Intermolecular Potential 

(TIP4) for liquid water [66-68], the CHARMM36 additive force field [69, 70], and the CHARMM-compatible 

force field for lignin [71]. Solvent structure for the organic solvents was available at the GROMACS molecule 

and liquid database [72]. For each simulation box, energy minimisation was performed using the steepest 

descent algorithm until convergence to a tolerance of 100 kJ mol-1 nm-1. After minimisation, restrained 

simulations were performed for 200 ps at 298.15 K to allow solvent equilibration around the polymers.  

Afterwards, 20-ns MD simulations were performed with a frame-saving rate (for analysis) of 1 ps, in order to 

study the interaction of the cellulose-lignin complex in the solvent mixtures. 10-ns MD simulations were 

performed for xylan-lignin complex due to the reduced size of the models in comparison with the cellulose 

nanocrystal. Temperature and pressure coupling were handled using the leap-frog stochastic dynamics 

integrator and the Parrinello-Rahman method, respectively. Initial velocities were generated from a Maxwell 

distribution at 298.15 K and the isothermal-isobaric (NPT) ensemble was consider for data collection. 
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Neighbour searching and short-range non-bonded interactions were handled with the Verlet cut-off scheme. 

Electrostatics were treated with the Fast smooth Particle-Mesh Ewald (SPME) method, with a Coulomb cut-

off of 1.2 nm, a fourth order interpolation and Fourier spacing of 0.12 nm. Vander Waals (vdW) interactions 

were treated using the Lennard- Jones potential with a cut-off distance of 1.2 nm. Simulations were carried out 

in an Intel Xeon CPU with 2.10Gz with 32 logical cores. 

Table 5.1. Configuration of simulated systems and equilibrium size of simulation boxes for the xylan-lignin and 

cellulose-lignin complexes studied in this work Solvents studied include water, ethanol (EtOH), acetonitrile 

(ACN), and their binary aqueous mixtures. 

Model wood 

component 

Solvent 

system 

Cosolvent 

fraction 

(wt. %) 

Number of 

cosolvent 

molecules 

Number of 

water 

molecules 

Cubic box 

side length 

(nm) 

Volume 

(nm3) 

Xylan + 

lignin 

tetramers 

water 0 0 5578 5.55 170.82 

EtOH-water 

50 513 3941 5.52 168.54 

75 975 2496 5.52 168.66 

50 1381 1178 5.52 168.72 

ACN-water 

25 565 3868 5.52 168.48 

50 1058 2412 5.52 168.53 

75 1492 1134 5.52 168.57 

EtOH 100 1621 0 5.42 159.42 

ACN 100 1843 0 5.48 164.67 

Cellulose 

nanocrystal + 

4 lignin 

dimers 

 

water 0 0 10370 6.886 326.56 

EtOH-water 
50 1725 4415 6.749 307.46 

75 2443 2084 6.749 307.48 

ACN-water 

50 1760 4013 6.615  

75 2639 2006 6.746 307.056 

EtOH 100 2985 0 6.711 302.31 

ACN 100 3442 0 6.813 316.266 

The structure, dynamics, and interactions of the wood component models with the pure and water-organic 

solvent mixtures were characterised using the incorporated tools within GROMACS. To quantify the solvent 

effect, we computed intermolecular energies, radial distribution functions g(r), and the average number of 
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hydrogen bonds. Each of these descriptors was calculated for all the water-organic solvent concentrations 

considered in this study. Site-to-site g(r) were computed for the water-polymer and organic solvent-polymer 

pairs (see Figure 5.2 for atom numbering) considering the polymer sites as follows: in cellulose, we 

considered the hydroxyl (O2 and O3) and hydroxymethyl (O6), the glycosidic bond (O4), and the 

monosaccharide ring (O5)). In lignin, we studied the solvation around the β-O-4 bond (Oα, Oβ, andOγ) and 

the methoxy groups (OMe). The solvent sites considered here are the water O, ethanol O, and acetonitrile N, 

along with the methyl group carbon of ethanol and acetonitrile. Here, g(r) is normalised by the number of 

reference points and the volume of the shell. Thus, g(r) is expressed as number density (atoms/nm3) per 

monomer, and it tends to the bulk density of the particle as r increases.H-bonds were calculated using a 

geometrical criterion with a maximum donor-acceptor distance of 0.35 nm and a hydrogen-donor-acceptor 

angle of 30°. 

 

Figure 5.2. (A) Cellulose cellobiose fundamental unit. (B) Fundamental unit of xylan hemicellulose, a xylosyl 

dimer, bonded with a β-(1→4) linkage. (C) A guaiacyl dimer (G-G) connected with a β-O’-4’ linkage. 
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3. Results and discussion 

3.1 Solvent effect on the adhesion between lignin and cellulose 

3.1.1 Assessment of the interaction strength between lignin and cellulose in solvents and the 

gas-phase. 

 

Figure 5.3. Cellulose-lignin interactions in the presence of water-ethanol (A-C) and water-acetonitrile (D-F) 

solvent mixtures at 50 wt. % and 75 wt. % and pure concentrations. (A, D) Cellulose-lignin radial distribution 

function, g(r), between the surface cellulose monomers and the lignin phenolic rings, in pure and aqueous organic 

solvent mixtures. Only the carbons of glucose and the aromatic ring, respectively, have been used in this 

calculation. (B, E) Probability distribution of hydrogen bonds between lignin dimers and surface cellulose, in pure 

and aqueous organic solvent mixtures. H-bond intervals are discrete, but lines have been added to describe better 

the trends. (C, F) Average lignin-cellulose intermolecular energies along the 20-ns MD normalised by the number 

of lignin dimers in the simulation along the 20-ns MD simulations.  

We evaluated the dynamics of the cellulose nanocrystal initially in complex with four lignin dimers shown in 

Figure 5.1A, in pure and binary mixtures of water-ethanol and water-acetonitrile. The interaction between 

cellulose and lignin dimers was estimated from the computed cellulose-lignin radial distribution functions (i.e. 

g(r), in Figure 5.3A, D), the cellulose-lignin H-bond distributions (Figure 5.3B, E), and the averaged 

interaction energies during the dynamics (Figures 5.3C, F and Table 5.2). The cellulose-lignin g(r) between 

the carbons of the aromatic and saccharide rings show that it is more likely to find lignin coordinating 
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cellulose in pure water. The presence of ethanol and acetonitrile decrease the cellulose-lignin coordination 

significantly, and the effect becomes more notorious in water-organic mixtures, particularly in the water- 

acetonitrile solvents. 

The cellulose-lignin adhesion is controlled by both van der Waals and  H-bond interactions [33]; therefore, we 

analysed the H-bond frequency since the radial distribution functions do not explicitly describe hydrogen 

bonding. As follows from the H-bond analysis, the cellulose-lignin H-bond distribution (Figure 5.3B) shows 

the highest probability of finding lignin hydrogen-bonded to cellulose (H-bond ≥ 1) in water during more than 

~75% of the simulation time, followed by ethanol, in which lignin remains bounded to cellulose more than 

65% of the time. In pure acetonitrile, the bounded state is reduced to ~50%; however, lignin remains mostly 

unbounded in the mixed solvents, and the probability of forming H-bond with cellulose is less than ~40%. 

Accordingly, the average cellulose-lignin interaction energies in Figure 5.3C show the strongest average 

cellulose-lignin interaction in the presence of water and pure ethanol. We observe that while the adhesion 

between lignin and cellulose decreases rapidly in the presence of acetonitrile and mixed water-organic solvent, 

it tends to increase as a first response in the presence of pure water and ethanol. The cellulose-lignin adhesion 

in water stabilises after five ns, whereas the interaction in the presence of ethanol decreases slowly. Thus, the 

lignin-cellulose interactions are in average stronger in pure water and ethanol than in pure acetonitrile and 

mixed water-acetonitrile or water-ethanol solutions (Figure 3C, 3F and Table 5.2, column 3). The weakest 

adhesion between cellulose and acetonitrile is obtained in 50% acetonitrile-water mixture.  Moreover, the 

interaction energies curves pass through a minimum interaction at 50% acetonitrile-water mixtures and 75% 

ethanol-water (also 50% ethanol during the first ns). 

Table 5.2. Average Lennard-Jones (LJ) and Coulomb (Coul) lignin-cellulose energies with total standard 

deviation errors. Values are normalised by the number of lignin dimers and presented in kJ/mol. 

 Average Energies and standard deviation errors   

Solvent LJ Coul Total 

Water -17.0 ± 6.5 -11.2 ± 5.5 -28.2 ± 8.3 

0.50 EtOH -9.0 ± 5.8 -4.8 ± 4.8 -13.8 ± 9.3 

0.75 EtOH -6.7 ± 7.5 -4.7 ± 6.6 -11.4 ± 13.0 

EtOH -13.7 ± 11.6 -10.9 ± 10.7 -24.6 ± 21.3 

0.5 ACN -5.2 ± 7.1 -3.0 ± 5.0 -8.2 ± 11.2 

0.75 ACN -5.5 ± 7.1 -6.1 ± 9.1 -11.6 ± 15.1 

ACN -6.1 ± 6.9 -7.4 ± 8.2 -13.5 ± 13.6 

No Solvent  -65.1 ± 4.0 -86.1 ± 8.5 -151.2 ± 9.4 
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Figure 5.1. Lennard-Jones (LJ, black) and Coulomb (Coul, red) average lignin-cellulose energies along the 20-ns 

MD normalised by the number of lignin dimers. 

To understand the factors responsible for the lignin-cellulose adhesion in the presence of the solvent we 

computed the Lennard-Jones (LJ) and Coulomb (Coul) contributions to the cellulose-lignin interaction 

energies, and the results are summarized in Table 5.2 and Figure 5.4. In the same Figure and Table, the 

standard deviation is reported, thus assessing the error bars of the calculated energies, averaged over the 

interaction energies of the 7-chain cellulose with the four lignin dimmers. As follows, the error bars for pure 

organic and aqueous organic binary mixtures are as large as the magnitude of the energy values. These large 

magnitudes of the errors are because of the enhanced mobility of three of the four lignin dimers, not adhering 

to cellulose (vide infra). Although the error bars are significant, the energy trends, representative for the whole 

model and the conclusions remain unaltered due to the predominant contribution of only one lignin dimer, 

which adheres to cellulose.  

The LJ contribution to the interaction energy is stronger than the Coulomb electrostatic interaction in water, 

ethanol, water-ethanol mixtures and 50 wt. % water-acetonitrile mixture. However, the Coulomb electrostatic 

interaction is slightly stronger in pure and 75 wt. % acetonitrile. The stronger affinity of lignin to cellulose can 

be easily explained by their stronger association (LJ) and the reduction of the hydrophobic lignin-water 

interactions, in agreement with the observation that lignin binding to cellulose is favoured in the presence of 

water [42]. The evolution of the LJ and Coulomb energies along the trajectory (Figure 5.4) shows that 

whereas the presence of pure water tends to enhance the associative LJ interactions, the cosolvents act at the 

first contact by reducing them. However, we notice that the Coulomb interaction in the cellulose-lignin 

ensemble prevails in water and ethanol, and this effect is less evident in pure acetonitrile and the water-

organic mixtures. Thus, our results suggest that while the van der Waals (i.e., LJ) lignin -cellulose interactions 

are more disrupted in the presence of cosolvents, protic solvents such as water and ethanol are less effective 
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disruptors than the aprotic acetonitrile. This can be explained with the enhancement of the Coulomb 

electrostatic interactions in the lignin-cellulose ensemble.  

 

Figure 5.2. Cellulose-lignin interaction in the absence of solvent. (A) Cellulose-lignin radial distribution function, 

g(r), between the surface cellulose monomers and the lignin phenolic rings, in pure and aqueous organic solvent 

mixtures. Only the carbons of glucose and the aromatic ring, respectively, have been used in this calculation. (B) 

Distribution of hydrogen bonds between lignin dimers and surface cellulose. H-bond intervals are discrete, but 

lines have been added to describe better the trends. (C) Average lignin-cellulose Lennard-Jones (LJ) and Coulomb 

(Coul)  intermolecular energies per lignin dimer along the 20-ns MD simulations. (D) Lignin-cellulose 

intermolecular energies for each lignin dimer and their average along the 20-ns MD simulations. 

Furthermore, we studied the cellulose-lignin (C-L) interactions in the absence of the solvents (Figure 5.5) to 

understand better the solvent effect. The descriptors of this C-L interaction in gas phase are the cellulose-

lignin g(r) (Figure 5.5A), the H-bond distribution (Figure 5.5B), the average interaction energies (Figure 5.5C 

and Table 5.2), and the cellulose-lignin interactions for each lignin dimer (Figure 5.5D) in the absence of the 

solvent. As expected, in the gas phase, the coordination between cellulose saccharides and phenolic lignin 

rings (Figure 5.5A) is 5-times higher when compared to the cellulose-lignin coordination in water (Figure 

5.3A). Moreover, the first maximum in the RDF distribution falls at 5.0 Å, while in the presence of the solvent 

the first RDF maximum is below, at ~4.6 in all solvents studied (except ethanol). Thus, the presence of the 
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solvent results in a reduced coordination of lignin dimers to cellulose, which means less dimers are in contact 

with cellulose. The presence of the solvents, however, slightly improves the C-L complexation of the 

remaining lignin dimers as suggested from the g(r) first maximum falling at a somewhat shorter distance. The 

H-bond distribution falls at 9-10 H-bonds; therefore, the hydrogen bond interactions are maximised in the 

absence of the solvent and strongly disrupted upon its addition (Figure 5.3B). Furthermore, the average 

interaction energies are also 5-times higher compared to water (Table 5.2) and are dominated by Coulomb 

interactions because of the high frequency of H-bonds, as illustrated in Figure 5.5C. Moreover, the cellulose-

lignin LJ interactions without solvent are on average up to 4 times stronger than in water, but the Coulomb 

interactions are up to 8 times stronger. Thus, the addition of solvent is to primarily decrease the electrostatic 

interactions by disrupting the hydrogen bonding between lignin and cellulose, which separates the two 

polymers and subsequently decreases their LJ interactions.  

 

Figure 5.3. Evolution of average lignin-cellulose intermolecular energies between each lignin dimer along the 20-

ns MD simulation. The colour code for each lignin dimer is L1 (purple), L2 (red), L3 (green), and L4 (blue), as in 

Figure 5.1A. 

Furthermore, the cellulose-lignin interactions for each lignin dimer (see Figure 5.1B for notation) in the 

absence of solvent(Figure 5.5D) shows that lignin dimers L1(purple) and L3 (green) initially in contact with 

the hydrophilic chains tend to interact stronger than L2 and L4. The evolution of the interactions between each 

lignin dimer and cellulose in the presence of solvents (Figure 5.6 and Table 5.3), on the contrary, shows that 

lignin dimers L2 (red) and L4 (blue) display in average stronger interaction energies with cellulose than lignin 

dimers L1 and L3. The interaction energies between lignin and the hydrophobic and hydrophilic cellulose 

surfaces summarised in Table 5.3, indeed, show that L1 interacts stronger with the hydrophilic cellulose 

surface whereas L2 and L4 interact preferentially with the hydrophobic surface in the absence of the solvent. 

L3, on the other hand, shows a tendency to interact stronger as it becomes closer to the hydrophobic chains. 

Furthermore, these observations are in agreement with previous authors that have shown that lignin molecules 



Chapter 5 

186 

 

preferentially aggregate into the hydrophobic faces of crystalline cellulose fibres [38, 42]. In the absence of 

solvent, however, the interactions with the hydrophilic surfaces are favoured. This is most likely because the 

lack of cellulose-solvent or lignin-solvent interactions modifies both the cellulose and lignin conformations 

and therefore their characteristics as hydrophilic or hydrophobic in gas phase become obsolete.  

Table 5.3. Average lignin-cellulose intermolecular energies in kJ/mol between each lignin dimer and the 

hydrophilic (chains AF) or hydrophobic (chains BDEG) surface chains of cellulose, as a function of cosolvent 

fraction (Xcosol). Lignin number and colour code is L1 (purple), L2 (red), L3 (green), and L4 (blue), as in Figure 

5.1A.  

Solvent No Solvent Water Ethanol Acetonitrile 

Xcosol - 0 0.50 0.75 1 0.50 0.75 1 

H
y

d
ro

p
h

il
ic

 L1 -132.0 ± 1.9 -1.6 ± 1.0 -3.9 ± 2.0 -6.5 ± 4.3 -13.0 ± 4.9 -2.5 ± 1.2 -4.2 ± 2.8 -0.5 ± 0.3 

L2 -7.6 ± 0.1 -1.1 ± 0.2 -1.0 ± 0.8 -0.4 ± 0.2 -0.9 ± 0.2 -0.2 ± 0.2 -0.3 ± 0.3 -12.8 ± 6.3 

L3 -61.5 ± 3.8 -3.9 ± 1.5 -4.0 ± 1.9 -1.6 ± 1.2 -0.1 ± 0.1 -1.2 ± 0.6 -6.9 ± 3.9 -2.4 ± 1.5 

L4 -4.4 ± 0.2 -1.6 ± 0.8 -1.8 ± 0.9 0.0 ± 0.0 -1.0 ± 0.1 -2.2 ± 1.1 -15.7 ± 5.9 -8.1 ± 4.4 

H
y

d
ro

p
h

o
b

ic
 L1 -42.0 ± 0.2 -1.0 ± 0.7 -2.6 ± 1.8 -2.6 ± 1.2 -1.8 ± 0.8 -2.1 ± 1.0 -1.5 ± 1.1 -3.7 ± 2.8 

L2 -137.5 ± 1.3 -75.7 ± 9.1 -2.7 ± 2.1 -31.0 ± 12.0 -32.5 ± 13.2 -5.9 ± 4.2 -5.8 ± 3.5 -17.4 ± 6.2 

L3 -92.5 ± 8.4 -4.6 ± 1.8 -12.6 ± 8.7 0.0 ± 0.0 -0.1 ± 0.1 -5.5 ± 3.8 -4.2 ± 1.6 -0.5 ± 0.3 

L4 -127.4 ± 2.0 -23.2 ± 9.5 -26.6 ± 7.9 -3.3 ± 2.4 -48.9 ± 14.3 -13.1 ± 4.0 -7.7 ± 3.0 -8.7 ± 4.6 

In the presence of solvent, moreover, the interactions of L1 and L3 with both cellulose surfaces are drastically 

reduced, accordingly with the reduction of the hydrogen bonding in Figure 3B and 5B. Moreover, lignin 

dimers L2 and L4 display the highest recalcitrance in all the solvents, and they are found to interact 

preferentially with the hydrophobic surfaces, except in pure and 75 wt. % acetonitrile. L2 and L4 in pure and 

75 wt. % acetonitrile, respectively, are found to have a significant interaction with the hydrophilic surface, 

which can explain the slightly stronger electrostatic interaction observed in these solvents (Figure 5.4 and 

Table 5.2). Thus, our results suggest that the preferential interaction of acetonitrile with hydrophobic surfaces 

of cellulose (discussed in chapter 4) disrupts the lignin-cellulose adhesion, but due to acetonitrile protic 

character, this solvent also enhances the interaction of lignin with the surfaces with solvent-exposed polar 

groups due to its aprotic character. Pure water and ethanol, on the other hand, disrupt more effectively the 

cellulose-lignin interactions with hydrophilic surfaces, but are less effective at disrupting the associative 

interactions with the saccharide rings in hydrophobic cellulose surfaces. Thus, our results demonstrate that the 

action of water-organic solvent mixtures is more efficient at disrupting both electrostatic and associative 

interactions with hydrophilic and hydrophobic cellulose surfaces.  
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3.1.2 Structural characteristics of cellulose-lignin complexation in solvents. 

 

Figure 5.4. Cellulose-lignin radial distribution functions, g(r), of the Ocellulose-Oαlignin pairs. Ocellulose colour 

code is O2 (black), O3 (red), O4 (green), O5 (blue), and O6 (orange), see Figure 5.2A for cellulose oxygen notation. 

To disentangle the origin of the lignin-cellulose coordination in the pure and mixed solvents, we computed the 

site-to-site radial distribution functions between the cellulose oxygen sites (O2, O3, O4, O5, and O6, see 

Figure 5.2A for notation) and the lignin oxygens (Oα, Oγ, and OMe, see Figure 5.2B for notation). The Ocell-

Oαlig g(r)s in Figure 5.7, and the Ocell-Oγlig and Ocell-OMelig g(r)s in Supplementary Information (Figure S5.1) 

show the highest probability of coordination for the O3cell-Oαlig and O2cell-Oγlig in pure water. In ethanol and 

ethanol mixtures (Figures 5.7B-D), the O3cell-Oαlig coordination is significantly disrupted, but in pure ethanol, 

a residual coordination towards O2 is observed. Similarly, water-acetonitrile mixtures (Figures 5.7E-F) prove 

to be more effective at disrupting the lignin-cellulose coordination, and, as in ethanol, a residual coordination 

towards the O6 remains in pure acetonitrile (Figure 5.8G). Thus, water-organic solvents mixtures act together 

to disrupt more effectively the cellulose-lignin interactions not only by preferential interactions with different 

cellulose surfaces but also by selective coordination of specific cellulose and lignin sites. Organic solvents 

disrupt both stacking and hydrogen bonding, but their combination with water seems to enhance the cleavage 

of the remaining cellulose-lignin H-bonds. This suggests that preferential interactions between cellulose and 

lignin with water-organic solvent molecules influences the lignin-cellulose adhesion. 
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Figure 5.5. MD snapshots of most stable cellulose-lignin complexes to illustrate the binding of lignin to cellulose in 

water (A), ethanol (B), and acetonitrile (C) solvents (solvents not shown). Stacking between cellulose glucose and 

lignin phenol rings, and hydrogen bonding between cellulose-lignin alcohol groups is observed. H-bonds are 

shown with red dashed lines. 

Furthermore, we have extracted the most stable cellulose-lignin complexes from the trajectories, as displayed 

in Figure 5.8, and the detailed example of the lignin-cellulose binding of the most strongly interacting dimer, 

accordingly to Figure 5.6, Table5.3 and Figure 5.7, is shown in pure water, ethanol, and acetonitrile solvents. 

As illustrated in Figure 5.8A, aromatic rings of lignin adopt a preferential parallel orientation relative to the 

cellulose surface in water, as already reported previously [33, 34], and electrostatic interactions between the 

alcohol groups (i.e. OαH and OγH) of lignin and the hydroxyls of cellulose are favoured. Lignin acts as an H-

bond donor[33], and the Oαlig-H… O3celland Oγlig-H…O2cell H-bonds are formed. In ethanol (Figure 5.8B), the 

H-bond between Oα of the lignin vinyl group and O3 of cellulose prevails. Regardless of the H-bond formed 

between lignin vinyl Oα and the glucose O6 in cellulose, significantly less stacking between the lignin 

aromatic ring and the cellulose glucose is observed in the presence of acetonitrile. In mixed solvents, 

moreover, the cellulose-lignin complex remains mostly unbounded.  
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3.2 Solvent effect on the adhesion between xylan and lignin 

 

Figure 5.6. (A) xylose-lignin radial distribution function, g(r), between the surface xylosyl monomers and the 

lignin phenolic rings, in pure and aqueous ethanol mixtures. Only the carbons of xylose and the aromatic ring, 

respectively, have been used in this calculation. B) Probability distribution of hydrogen bonds between xylan and 

lignin tetramers, in pure and aqueous organic solvent mixtures. H-bond intervals are discrete, but lines have been 

added to describe better the trends. C) Average xylan-lignin intermolecular energies per lignin monomer, in pure 

and binary ethanol mixtures. , The radial distribution function, g(r), the probability distribution of H-bonds and 

the average xylan-lignin intermolecular energies in acetonitrile and water-acetonitrile mixtures are reported in 

(D), (E) and (F), respectively.  

We evaluated the dynamics of the xylose tetramer initially in complex with a guaiacyl tetramer (Figure 5.1D) 

in pure and binary mixtures of water-ethanol and water-acetonitrile. The interaction between the xylan and the 

lignin tetramers was estimated from the computed xylose-lignin radial distribution functions (i.e. g(r)s, in 

Figure 5.9A, D), the xylose-lignin H-bond distributions (Figure 5.9B, E), and the average interaction energies 

during the dynamics (Figures 5.9C, F).  The xylan-lignin g(r)s show that it is less likely to find lignin 

coordinating xylan in pure water, as the hemicellulose becomes rapidly hydrated. The addition of the organic 

solvent increases the xylose-lignin coordination, and the effect becomes more notorious in the presence of 

75% ethanol and 25% and 75% acetonitrile solutions. Very recent NMR spectroscopy and dynamic nuclear 

polarisation experiments have revealed that lignin has abundant electrostatic interactions with the polar motifs 

of xylan [19]. Accordingly, the xylose-lignin H-bond distributions (Figure 5.9B, E) show the formation of H-

bonds between the xylan and lignin in pure and mixed solvents. Moreover, it indicates that lignin remains 

unbounded (H-bond =0) to xylan in water during ~90% of the simulation time, followed by pure and 50% 

acetonitrile, in which ~80-85% of the time the unbounded state is observed. On the contrary, the bounded 
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state (H-bond ≥ 1) is more favoured in pure ethanol, ethanol mixtures, and 25% acetonitrile solution (~40% of 

the simulation time). It is worth mentioning that we expect the polymer interactions in our simulations to be 

rapidly affected by the solvent since the simulated systems contain excess solvent.  

As follows from the xylose-lignin interaction energies (Figure 5.9 C, F and Table S5-1), the xylose-lignin 

interactions energies show a non-linear behaviour relative to the organic solvent composition, in agreement 

with our observations of the H-bond distributions and the xylose-lignin radial distribution functions. In water, 

a bad solvent for lignin but with high affinity for hemicellulose, the xylose-lignin complex displays the 

weakest binding energy during all the simulation. In the presence of ethanol, we observe that the strongest 

adhesion between xylose and lignin is found in 75% ethanol mixture and pure ethanol during all the 

simulation, while the weakest adhesion is found in 25 % and 50% ethanol-water mixtures. Overall, 

acetonitrile and acetonitrile mixtures are more effective at disrupting xylan-lignin interactions than ethanol 

and ethanol mixtures. Nonetheless, we observe an inversion of the xylan-lignin adhesion above 2-ns 

simulation time in the presence of acetonitrile. The xylan-lignin adhesion below 2-ns MD increases linearly 

with the acetonitrile concentration; however, it follows the order 25% > 75 % > pure >50% at the end of the 

10 ns dynamics, where we find that the statistical difference between the interactions energies in the presence 

of the solvent is not significant (Table S5-1). We further followed the evolution of the Lennard-Jones (LJ) and 

Coulomb (Coul) interactions to the xylan-lignin interaction energies (Figure 5.4 and Table S5-1), and we 

observe that the relative intensity of the van der Waals interactions (LJ) is correlated to the intensity of the 

electrostatic Coulomb interactions. Moreover, we find a trend for stronger Coulomb energies than LJ 

interactions between xylan and lignin (Figure 5.10). 
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Figure 5.7. Evolution of the Lennard-Jones (LJ, black) and Coulomb (Coul, red) average lignin-xylan energies 

along the 10-ns MD normalised by the number of lignin dimers, in pure and mixed water-organic solvent 

mixtures. 

 

Figure 5.8. Trajectory analysis of xylan-lignin tetramers in the gas phase. (A) xylose-lignin radial distribution 

function, g(r), between the surface xylosyl monomers and the lignin phenolic rings. Only the carbons of xylose and 

the aromatic ring, respectively, have been used in this calculation. B) Probability distribution of hydrogen bonds 

between xylan and lignin tetramers. H-bond intervals are discrete, but lines have been added to describe better 

the trends. C) Average xylan-lignin intermolecular energies.  

To understand better the origin of the detachment between the xylan-cellulose complex, we analysed the 

trajectories in gas phase (Figure 5.11) and the presence of the solvents, and we extracted the xylose-lignin 

complexes at different simulation times in water, 75% ethanol, and 25% acetonitrile, illustrated in Figure 5.11. 

First, the initial structure of the xylose-lignin, obtained from the equilibration in gas phase (no solvent) of the 



Chapter 5 

192 

 

polymers (Fig. 5.1D) shows a folded lignin tetramer wrapped by a bent xylan tetramer. The initial SASA of 

the xylan and lignin tetramers in this complex are 7.7 and 9.2 nm2, respectively. Furthermore, xylan adopts a 

conformation in which three out of the four xylose monomers are in the α-form (glycosidic torsion angle ~ 64 

°) with the hydroxyl groups on the same side. In lignin, two pairs of rings are stacked with torsion angles 

equal to -65° and -85°, respectively, whereas the third pair adopts a T-stacked conformation with a torsion 

angle of -139°. Moreover, the xylan-lignin complex interact both trough H-bonding and stacking. The 

coordination between xylan and lignin rings (Figure 5.11A) is almost 5-fold higher when compared to the 

xylan-lignin coordination in 75% ethanol (Figure 5.9A). The H-bond distribution falls at 3 H-bonds; therefore, 

the hydrogen bond interactions are maximised in the absence of the solvent and strongly disrupted upon the 

solvent addition (Figure 5.9B). Furthermore, the average interaction energies are also almost 4- to 13-times 

stronger compared to 75% ethanol and water, respectively, (Table S5-1) and are dominated by Coulomb 

interactions as a result of the higher frequency of H-bonds, as illustrated in Figure 5.9 C. Moreover, the 

cellulose-lignin LJ interactions without solvent are on average up to 4 to 13 times stronger than in the 

solvents, but the Coulomb interactions increase even more - up to 4 to 22 times. Thus, the addition of solvent 

has the strongest effect on the disruption of the electrostatic interactions by disrupting the hydrogen bonding 

between lignin and cellulose, similarly as found bove for cellulose-lignin.  
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Figure 5.9. MD snapshots of xylan-lignin complexes to illustrate A) the initial xylan-lignin cluster and equilibrated 

3.5 nm shell solvent, B) xylan-lignin cluster within 2-ns simulation time and C) detachment between xylose and 

lignin at the end of the 10-ns dynamics in water, 75% ethanol, and 25% acetonitrile. The lignin tetramer is 

represented by CPK and the xylose tetramer by Bonds. H-bonds are shown with red dashed lines. Atom colour 

code: cyan=carbon, white=hydrogen, red=oxygen, and blue=nitrogen.  

Furthermore, we also analysed the trajectories in the presence of the solvents to understand the factors 

responsible for the xylan-lignin detachment in our simulations. We extracted the xylose-lignin complexes at 

different simulation times in water, 75% ethanol, and 25% acetonitrile, illustrated in Figure 5.12. Figure 

5.12A shows the solvent-equilibrated xylan-complex along with a 3.5 nm solvent shell at t=0 ns. The 

structures of the xylan-lignin complex within the first 2-ns of simulation (Figure 5.12 B) show that xylan 

rapidly undergoes a conformation change. In water, a hydrated and detached xylan molecule from lignin is 

observed, whereas in 75 % ethanol and 25% acetonitrile the xylan-lignin complex remains. Finally, in Figure 

5.12 C, the xylan detaches from lignin in all solvent mixtures at the end of the 10-ns MD, accordingly with the 

interactions energies shown in Figure 5.9 C, F.  
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Figure 5.10. Average distributions of glycosidic torsional angles (A) θ (O5-C1-O4’-C4’)  and (B) Ψ (C1-O4’-C4’-

C5’ and (C) Average distributions of solvent accessible surface area (SASA) of lignin tetramers at different 

ethanol concentrations. (D-F) idem as (A-C) in water-acetonitrile mixtures.  

We analysed the glycosidic torsional angles of xylan and the SASA of lignin within the first 2-ns MD to 

understand the origin of the detachment, and the results are summarised in Figure 5.13. The distribution of the 

torsion angle θ (O5-C1-O4’-C4’)  during the first 2-ns (Figure 5.13A, D) falls mostly at ~-74° recovering the 

β-(1→4) bond form. This conformational change occurs almost spontaneously in the presence of water, 

whereas the somewhat higher frequency of α-(1→4) bonds is an indication that this conformational change is 

slowed down in the presence of the organic solvents and the mixtures, particularly at pure and 75% ethanol, in 

which the adhesion is stronger. Thus, the first factor responsible for the detachment of the xylan-lignin 

tetramer is the rearrangement of the xylan conformation upon solvation, without the restraints imposed during 

the equilibration. Furthermore, the distribution of the torsion angle Ψ (C1-O4’-C4’-C5’, Figure 5.13B, E) in 

water falls near ~90°, whereas the distributions in pure and 75% ethanol are narrower and fall near ~110°, 

possibly describing the twofold conformation, as we reported in Chapter 4. Falcoz-Vigne et al. [22] have 

observed that the interaction between xylan and cellulose is stronger when xylan is in the twofold 

conformation than when it is in the threefold one. Our results have shown that xylose adopts the twofold 

conformation in the presence of the organic solvent. Thus, our results suggest that the interaction between 

xylan and lignin is also enhanced in the presence of the organic solvent arising from a hydrophobic 

interaction, which results in the stabilisation of lignin in the presence of xylan. Our results are in qualitative 

agreement with the experimental and theoretical observations of Smith et al. [57] who showed that the 

presence of tetrahydrofuran (THF) in THF-water mixtures delays the xylan’s solubility when compared to the 

solubility in water.  
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Moreover, the SASA distribution of lignin during the first 2-ns show a rather compact structure, that falls near 

~10 nm2 in water, acetonitrile, 75% acetonitrile, and 25% ethanol,  but SASA falls below ~9.2  in 50 and 75% 

ethanol. The SASA distributions in pure ethanol and 25 and 50% acetonitrile are broader and show more 

extended conformations. Thus, another factor responsible for the detachment of the xylan-lignin tetramers is 

the conformational change of lignin upon solvation, particularly at 50% acetonitrile. Furthermore, as we 

discussed in Chapter 4, the decrease of the xylan mobility upon addition of ethanol, and the gel-like behaviour 

could enhance the lignin adhesion to xylose, by slowing down also conformational changes of lignin upon 

solvation. Moreover, our results in chapter 4 suggest that acetonitrile enhance xylan mobility when compared 

to ethanol. Thus, this can contribute to the overall reduced adhesion between xylan and lignin in acetonitrile 

than in ethanol. 

4. Conclusions 

Molecular dynamics simulations were employed to describe at the atomistic level the effect of the solvents on 

the adhesion of lignin to cellulose and hemicellulose. The considered solvents are first pure water, ethanol and 

acetonitrile, and second, the binary mixtures of water with the two organic solvents. We evaluated the 

cellulose-lignin and xylose-lignin interactions in the absence of the solvent as well. The polymer-polymer 

adhesion was investigated through radial distribution functions, hydrogen bonding, and intermolecular 

interaction energies at the classical level. 

We followed the adhesion behaviour between xylose and lignin tetramers and the radial distribution analysis 

show that it is less likely to find lignin coordinating xylan in pure water, as the hemicellulose becomes rapidly 

hydrated. The addition of the organic phase, however, increases the xylose-lignin coordination and the effect 

becomes more notorious in the presence of the organic solvent. The xylose-lignin interactions energies show a 

non-linear behaviour to the organic solvent composition, in agreement with our observations of the H-bond 

distributions and the xylose-lignin radial distribution functions. In water, a bad solvent for lignin but with a 

high affinity for hemicellulose, the xylose-lignin complex displays the weakest binding energy, followed by 

50% acetonitrile. The strongest adhesion between xylose and lignin is observed at 75% ethanol mixture, 

followed by 25% and 75% acetonitrile mixture, which we have reported to be good solvents for lignin as the 

SASA distribution of lignin tetramers reaches a maximum. 

Furthermore, at these concentrations, the presence of the organic phase seems to slow down the xylose 

conformational changes and, thus, the detachment to lignin.  Concerning the adsorption behaviour of lignin 

dimer on the cellulose hydrophobic and hydrophilic surfaces, we found that lignin could be stabilised in the 

presence of water by stacking interactions between the phenolic groups and the saccharide groups. 

Furthermore, lignin dimers were found to preferentially interact with the hydrophilic chains of cellulose, 

whose less polar aliphatic hydrogen atoms of the glucose rings are exposed. The computed radial distribution 

functions g(r), and average number of hydrogen bonds were analysed concerning cellulose and lignin 
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conformational changes and cellulose-lignin interaction energies in the mono-component and 50, and 75wt% 

water-organic solvents. Water is the medium that favours mostly the adhesion of lignin on cellulose, followed 

by pure ethanol and acetonitrile solvents.  

In the mixed solvents, the cellulose-lignin adhesion is strongly disrupted. The specific organisation of the 

solvent molecules in the binary mixtures around the cellulose-lignin complex is identified as the most crucial 

factor affecting the cellulose-lignin conformations and their interaction energies.  Moreover, the preferential 

interactions of the two organic components in the presence of water depending on their chemical nature and 

concentration. The weakest (or no adhesion) of lignin on cellulose is found in the 50% acetonitrile-water 

solvent, and at 75% ethanol-water solvent. Despite the relatively small cellulose-lignin model, our MD results 

are in a qualitative agreement with recent studies that show an increase of lignin solubility in water-ethanol 

mixtures[73]. 
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Abstract 

In this chapter, we discuss the possible implications of the results reported in Chapters3-5. We discuss (i) the 

correlation between the interaction energies and the preferential interactions of the solvents; (ii) the driving 

forces controlling the solvent-cellulose interactions; (iii) the solvent effects on molecular wood structures and 

their possible implication in lignocellulose interactions; and (iv) the scope of this work and limitations of the 

chosen models.  

1. Cellulose-lignin adhesion: correlation between interaction energies 

and the solvent’s preferential interaction 

The cellulose-lignin interaction energies and their evolution along dynamics simulations, presented in Chapter 

5 (Figs. 5.4 and 5.5,) demonstrate that the introduction of the solvent results in a substantial disruption of 

cellulose-lignin interactions, particularly the Coulomb electrostatic ones, predominantly associated with H-

bonds interactions. Moreover, the energy profiles indicate different solvent effects for water, ethanol, 

acetonitrile, and the solvent mixtures on the lignin-cellulose adhesion. In water, the hydrophobic lignin-water 

interactions enhance the lignin-cellulose association, which results in stronger LJ interactions. Moreover, this 

association facilitates the occurrence of hydrogen bonding between lignin and cellulose, and long-lasting H-

bonds are observed. In ethanol, the cellulose-lignin coordination decreases significantly compared to water (2-

times) because of the amphiphilic nature of ethanol. However, its presence enhances the Coulomb 

electrostatic interactions of the complex that results in non-effective disruption of the cellulose-lignin 

interactions. On the contrary, the presence of acetonitrile results in a more effective disruption of the 

cellulose-lignin interactions compared to water or ethanol, due to stronger disruption of both LJ and Coulomb 

interactions. Furthermore, our results show that the lowest adhesion between lignin and cellulose is found in 

the presence of binary water-organic solvent mixtures. Moreover, the interaction energies pass through a 

minimum interaction in 50% acetonitrile-water and 75% ethanol-water mixtures.  

To understand the origin of the cellulose-lignin adhesion, we compare the results obtained for the cellulose-

solvent and lignin-solvent g(r)s, studied in Chapter 4 and the cellulose-lignin g(r) in Chapter 5. The g(r)s 

between the solvents and the individual wood components in Chapter 4 (Fig. 6 and Fig. 16), reveal well-

defined solvent coordination shells around the cellulose and lignin models, in pure and water-ethanol and 

water-acetonitrile mixtures. For comparison, we studied the solvent organisation around the lignin-cellulose 

complex studied in Chapter 5 (Figs. S6.1 to S6.5). The cellulose-solvent and lignin-solvent g(r)s in pure, 50 

wt%, and 75% cosolvent concentration reasonably reproduce the trends of the profiles obtained in Chapter 4. 

The detailed analysis of the coordination of these solvents to particular oxygen sites in cellulose (O2, O3, O4, 

O5 and O6)  and lignin (O, O, O and OMe) indicates different preferred coordinations of water, ethanol 
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and acetonitrile. A schematic summary of preferred coordination sites of water, ethanol, acetonitrile and lignin 

to the cellulose oxygens, is presented in Fig. 6.1 

In cellulose, the Ocell-Owater g(r)s show that water preferentially coordinates O6 (hydroxymethyl group), which 

makes this oxygen site less accessible to other molecules. Thus, the strong  O6cell-Owater  coordination governs 

the lignin interaction towards O3 and O2 in the pure water, as shown from Ocell-Olig g(r) in Figure 5.7. The 

amphiphilic nature of ethanol limits the lignin interaction with the O6 and O2 sites, but the same amphiphilic 

behaviour results in the non-effective disruption of the cellulose-lignin interactions in pure ethanol. Moreover, 

comparing the Ocell-Xsol preferential coordination, the solvent coordination of O6 sites in cellulose is mostly 

electrostatically driven, whereas coordination of less exposed O2 or O3 sites require higher affinity with the 

less polar aliphatic hydrogen atoms of the glucose rings. Thus, acetonitrile can limit the lignin interaction with 

the O2 and O3 sites and reduce the LJ and Coulomb interactions better than ethanol due to its less polar 

character. However, ACN is less effective to entirely disrupt the cellulose-lignin interaction with the cellulose 

O6 site in pure acetonitrile due to its aprotic character, resulting in residual electrostatic Coulomb lignin-

cellulose.  In the water-organic mixtures, acetonitrile preserve up to the largest extent its preferred 

coordinations towards the cellulose sites found in the pure organic solvents; contrary to ethanol, which 

changes its preferential coordination in both cellulose surfaces as a result of water-ethanol competition.  

 

Figure 6.1 Preferred coordination of water (H2O), ethanol (EtOH) and acetonitrile (ACN) to cellulose O-sites, and 

preferred coordination of lignin to cellulose O-sites in 100% water, ethanol and acetonitrile solvents. C-L denotes 

cellulose-lignin complex, which is not observed in the mixed water-organic solvents. 
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In lignin, the Olig-Xsolg(r)s show that all pure water, ethanol, and acetonitrile solvents display the highest 

coordination towards Oγ and Oα. The slightly stronger preferential interaction of the solvents with the Oγ site 

in lignin limits its interaction with the cellulose sites. Nonetheless, Fig. 5.7 displays a significant  Oγlig-O2cell 

coordination in the presence of water. This can be easily explained due to the enhanced lignin-cellulose 

association in order to reduce the hydrophobic interactions with water. Moreover, in the absence of the 

intramolecular H-bond between Oγ-Oα sites, lignin stabilises its conformation by participating in hydrogen 

bonds with cellulose. Furthermore, Figs. S4-5 show that the water-lignin and water-ethanol site coordination 

order is preserved. On the contrary, the acetonitrile coordination in water-acetonitrile mixtures of 25 wt% and 

50 wt% displays a higher preference for the Oα site than Oγ. Thus, our results suggest that the preferential 

interactions of water and acetonitrile for different sites in both lignin and cellulose results in a more effective 

disruption of the lignin-cellulose interactions in water-acetonitrile solvents than in ethanol-water mixtures, and 

the pure solvents. 

2. Cellulose-solvent interactions: the water exclusion and the entropic 

effect 

Furthermore, the presence of two solvent components in the mixtures modifies the number of coordinated 

solvent molecules depending on the chemical nature of the organic component. As demonstrated by the 

cumulative numbers (Figs. 4.7 and S6-6), the addition of EtOH and ACN in water leads to the exclusion of 

H2O from the solvation shell of the cellulose and lignin. The ratio of water molecules between hydrophilic and 

hydrophobic surfaces is ~1.2-1.3 in water-ethanol, whereas it is 1.5-1.8 in water-acetonitrile mixtures (Figs. 

4.7 and S6-6).  Moreover,  the ratio of cosolvent molecules between hydrophilic and hydrophobic surfaces is 

0.9-1 in water-ethanol, whereas it is 0.6-0.8 in water-acetonitrile. Thus, our results indicate that there is an 

accumulation of acetonitrile molecules around the hydrophobic surface, whereas the substantial exclusion of 

water from the hydrophobic surface results in more hydrated hydrophilic surfaces, compared to the water-

ethanol mixtures. Moreover, a saturation-like behaviour of acetonitrile and water molecules around the 

hydrophobic surface is observed.  

We showed in Chapter 4 (Fig. S4.7-9) that Lennard-Jones interactions are the driving force for cellulose-

acetonitrile interactions at all concentrations, whereas the cellulose-water interactions are always 

electrostatically driven. On the other hand, ethanol-cellulose are mainly contributions from Coulomb 

electrostatics in the pure solvent, and they are further equivalent to LJ in the presence of water. Chen et al. [1] 

demonstrated that the primary molecular mechanisms for urea absorption on cellulose are the Lennard-Jones 

dispersion energies as well as the gain in the translational entropy of water expelled from the cellulose 

surface, in water-urea mixtures. Moreover, the authors show that the decrease in the entropy of urea adsorbed 

on the cellulose surface is always lower than the increase in the entropy of water.  
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In this work, we do not study explicitly the entropy contributions caused by the solvents and their interactions 

with the wood compounds. However, we can qualitatively compare our hydrogen bond and cumulative 

numbers analysis, since the H-bond lifetimes implicitly describe the freedom of water molecules in the first 

solvation shell of cellulose.  The cellulose-water H-bond lifetimes' analyses from the autocorrelation function 

in Chapter 6 (Table 4-2) indicate that cellulose-water H-bonds last longer in the presence of ethanol than in 

acetonitrile. The addition of the organic phase to water results in a reduction of the translational freedom of 

water molecules. This is because the water molecules participate in hydrogen bonding with ethanol and 

acetonitrile  (Table 3.3), which results in longer-lasting water-water hydrogen bond lifetimes in the mixture 

than in bulk water (Table 3.4). Moreover, the higher frequency of H-bonds in water-ethanol than in water-

acetonitrile mixtures results in a higher restriction of water motion in the presence of water than in 

acetonitrile. Correspondently, the cellulose-water H-bonds are also longer lasting in the presence of ethanol 

than in acetonitrile (Table 4.2), restricting the motion of water in the first solvation shell. As outlined by Chen 

et al. [1], the water exclusion from the first solvation shell of cellulose results in a higher entropic gain than 

the decrease in the entropy the cosolvent adsorbed on the cellulose surface. Thus, the water exclusion at the 

hydrophobic surface described above is expected to result in an entropic gain, particularly in the presence of 

acetonitrile than in ethanol because of the stronger water exclusion from the hydrophobic cellulose surface. 

Furthermore, the variety of the polymers present in wood, with different amphiphilic behaviours, demands 

almost different solvent characteristics to optimise and stabilise the different wood polymers. Hemicellulose 

and the hydrophilic domains of cellulose and lignin (the propyl alcohol groups) will interact preferentially 

with water.  Whereas, the presence of the organic solvent can stabilise the most hydrophobic domains of 

cellulose and lignin. Thus, the water-organic solvent mixture act together to optimise the interactions with the 

wood polymers. While the presence of water is useful to disrupt the electrostatic interactions within and 

between the polymers, its hydrophobic nature probably causes a less potent effect with the less polar domains 

of cellulose and lignin; therefore, enhancing the cellulose-cellulose, lignin-lignin, and cellulose-lignin 

interactions. The presence of the organic phase, however, reduces the hydrophobic response of lignin and 

cellulose to the mixed water-organic solvent by destabilising their stacking interactions. Thus, this results in a 

reduction of the stacking forces between the cellulose and lignin, and an increase of the surface area of lignin 

and the hydrophobic domain of cellulose.  Therefore, a synergetic effect to disrupt both electrostatic and 

stacking interactions is achieved in the presence of both water and the organic solvent.  

3. Solvent effects on molecular wood structures: possible implications in 

lignocellulose adhesion and wood swelling 

The average solvent-accessible surface area (SASA) of cellulose (Figure 3.3) revealed an increase of the 

surface upon solvation compared with the initial bulk-crystal, particularly in the mixed solvent region. 

Furthermore, a higher increase of the cellulose SASA is observed in acetonitrile than in ethanol mixtures, 



Chapter 6 

            206 

whereas this trend is inversed in the pure organic solvents. This behaviour correlates qualitatively with the 

hyper-swelling profiles of Chang et al. [2] ( Figure 1.7), which show a nonlinear relation between the volume 

swollen and the concentration of the organic solvent. Thus, our results suggest that the increase of the surface 

area of cellulose in mixed water-organic solvents could have some implications on the observed swelling in 

wood. Moreover, aside from the changes in the hydroxymethyl group conformations and the H-bond network, 

the cellulose nanocrystal studied in this work remains intact in all the studied solvents.  

The conformation changes of the lignin dimers and tetramers studied through the SASA, dihedral angles, and 

stacking (Figures 4.15 and 4.16) suggest that water-organic mixtures increase the lignin solubility. Our results 

are in a qualitative agreement with recent studies that show an increase of lignin solubility in water-ethanol 

mixtures[3]. The effect of water-solvent mixtures on the cellulose-lignin interaction is concomitant with the 

changes from stacked to more extended lignin conformations most likely resulting from the decreased 

interaction with cellulose chains. A broader lignin SASA distribution observed for the 4 dimers in complex 

with cellulose (Fig S6.7) compared to the SASA distribution of a single lignin dimer in water (Fig. 4.16) 

shows that cellulose stabilises lignin at reducing the hydrophobic interactions, which allows the exposure of a 

more extended lignin surface when interacting with cellulose than with water alone. Nonetheless, the 

interactions of lignin with water remain highly hydrophobic, the inclusion of the organic component lowers 

these hydrophobic interactions while disrupting the cellulose-lignin complex.  

Notably, the surface area of the lignin models, here studied, vary in a wide range (particularly when compared 

with the surface of the cellulose nanocrystal), as both experimental and theoretical studies suggest that β-O-4 

structures are flexible molecules that can adopt a large number of conformations [4-6]. Thus, our results 

suggest that solubilization of lignin-rich domains and the detachment of polymer-lignin interfaces can 

influence the wood swelling, in agreement with previous experimental and computational observations [7-11]. 

Indeed, it has been evidenced that morphological changes of lignocellulosic biomass as exposed to pure and 

mixed solvents plays an essential role in the increase the swelling, therefore, promoting the fractionation of 

the material. Langan et al.[7, 8] showed in steam explosion pretreatment of poplar chips that cellulose 

dehydration (of the macrofibrilar bundles) and the separation of the lignin-hemicellulose complex, followed 

by pressure of lignin globules to separate, seem to cause swelling and will expand the size of small voids by a 

few nanometers. Furthermore, other authors have observed changes in the wood structure thanks disruption of 

the compound middle lamella, thus suggesting a partial dissolution of lignin from the matrix [9, 10]. 

However, the presence of the organic phase can also cause undesirable effects on the interactions between 

wood compounds. In this work, we have shown that the presence of the organic solvent slows down the 

detachment between xylan and lignin, particularly in the presence of ethanol, by decreasing xylan’s mobility 

and showing a gel-like behaviour[12-14]. The presence of acetonitrile at low concentration also tends to have 

a similar effect, despite our results show that it increases the xylan’s mobility when compared to water. 

Moreover, acetonitrile-water mixtures seem to perform overall better at disrupting the cellulose-lignin and the 
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xylan-lignin interactions than ethanol-water mixtures. Furthermore, our results have shown that xylose adopts 

the twofold conformation in the presence of the organic solvent. Falcoz-Vigne et al.[15] have observed that 

the interaction between xylan and cellulose is stronger when xylan is in the twofold conformation than when it 

is in the threefold one. Thus, our results suggest that the interaction between xylan and lignin is also enhanced 

in the presence of the organic solvent arising from a hydrophobic interaction, which results in the stabilisation 

of lignin in the presence of xylan. Therefore, the outcome of swelling in pure and mixed solvents depends on 

the synergetic interactions in the macromolecular arrangement of the different wood polymers, and their 

interaction with the solvents, which we have shown to follow a non-linear behaviour.  

4. Assessment of the achieved scope of this work, the reliability of model 

size and simulation time scales, and future perspectives. 

The variety and structural heterogeneity of the lignocellulose biomass is too complex and not yet entirely 

resolved. Moreover, it varies with the origins of biomass resources [16]. This makes the complete 

understanding of lignocellulosic interactions far from trivial for both experimental and theoretical efforts. 

Nonetheless, providing detailed and systematic descriptions of pieces of lignocellulosic components, and in 

particular, at the atomistic (micro) scale, is highly desirable to unveil fundamental Physico-chemical 

properties being yet largely in-understood despite recent efforts [17-19].   

For all these reasons, the systematic modelling of inter-atomic interactions between the main lignocellulose 

compounds can provide insight into the fundamental interactions on the cell wall. MD or even QM (or 

QM/MM) simulations of the pairwise interactions between lignocellulose compounds in explicit solvent 

mixtures can be useful to gain understanding at the molecular level of the interactions between wood 

components in the presence of pure and water-organic solvent mixtures. The lignocellulose interactions 

evaluated in this work were assessed using rather simple models of cellulose, hemicellulose, and lignin. We 

do not consider that these models may wholly correlate the entire complex behaviour in the biomass structure. 

Nevertheless, we estimate that the properties and trends, we assessed here and established for the first time, 

are not biased by the size of the models, because of their predominantly local, pairwise atomistic character. 

For example, the distinct molecular groups in cellulose, lignin and xylan, revealed by our studies to undergo 

solvent-dependent conformational changes, allowing to form or deform solvent-dependent intra- or 

intermolecular H-bonds, and the characteristic oxygen sites competing for H-bond bindings with a specific 

type of solvent molecule in the binary water mixtures are well captured with the sizes of the models 

considered here. The sizes are also limited by the fact that we wanted to study the phenomena with all-atom 

MD models, in order to describe the H-bonds correctly. The absolute values of SASA or the interaction 

energies are evidently model-size dependent, but the established trends are not expected to alter with the size 

of the models. This is indeed what we established comparing our results, for instance about lignin ring 

conformations, with a recent study of lignin in THF –water solvent of [20] with much larger lignin polymer 
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representation. The good agreement between our conclusion with the conclusions of the authors in ref. [20] 

[17] demonstrates that indeed, the trend is captured even lignin is considered as a dimer. This is not surprising 

and can be anticipated keeping in mind that the primary interactions in polymers structures are largely 

determined by the interactions between adjacent individual molecular units (polymer building blocks). The 

higher-order structuring and properties, such as polymer chains organisations, cellulose crystallinity and its 

mechanical properties, among others, will undoubtedly need to envisage much larger size and time scales 

modelling with coarse grain or finite element based theoretical methods. In any case, such rather macro-scale 

properties are behind the scope of the present work and to our humble opinion are better studied with the 

today available experimental spectroscopy techniques. Here, we aim to capture local interatomic effects, 

hardly accessible even with the modern experimental techniques.  

Further on, we note that the cellulose nanocrystal consists of seven strands in our model, while cellulose in 

primary walls contains 18-36 strands. The much smaller model size, considered by us, does not prohibit 

understanding the solvent-induced conformational freedom of cellulose and the specific solvent-cellulose 

pairwise interactions at a short-range. We admit that smaller size models could suffer to estimate precisely the 

true vdW interactions; however as demonstrated previously from DFT augmented with empirical London 

dispersion term [], the dispersion interactions in alkane chains is beared by CH2 unit, being of about 3 

kcal/mol and increases linearly with the increase of CH2 number in the alkane chains. Therefore, the 

conclusions, reported in Chapter 5 are valid lower limit of vdW interactions, which also makes valid our 

conclusions about the vdW trends in the different solvents and the effect of solvents. 

Moreover, we built the smallest possible cellulose model to represent the solvent-accessible polar groups, in 

both hydrophilic and hydrophobic surfaces. As it is demonstrated in Chapter 4, the aliphatic groups are only 

surface accessible in cellulose hydrophobic chains (BDEG), which confers the more hydrophobic character to 

this surface than to cellulose chains AF. Thus, cellulose model can capture the more hydrophilic and 

hydrophobic characters of the different surfaces correctly. Again, our results are in line with those available 

for larger models and more extended dynamics simulation: the cosolvent accumulation at the hydrophobic 

surfaces and the water accumulation at the hydrophilic surface of our 7-strand nano-crystal model in the 

presence of water and acetonitrile reasonably reproduce the observations of Smith et al. in water-

tetrahydrofuran mixtures [20]. Moreover, the spontaneous phase separation comes as a result of the observed 

microheterogeneity reported in Chapter 3 and in agreement with previous studies of binary water-acetonitrile 

solvents, in which a non-uniform mixing of water-acetonitrile results on isolated water-rich and acetonitrile-

rich domains.  

To be considered is that the cellulose-lignin and xylan-lignin adhesion were studied with guaiacyl dimer and 

tetramer, respectively, but not with longer lignin polymers. The size and complexity of the model is an 

important factor when studying their solubility since such property depends on the molecular weight.  Here, 

we did not study the solubility or the cellulose-lignin adhesion in true wood materials. Again, this was beyond 
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our aims and is beyond our modelling interests. Moreover, the lignin polymer is composed of a variety of 

lignin monomers and linkages, and we estimate that any model considered will be very limited to describe 

observed macro-scale effects. We therefore, assessed the effect of pure water and organic solvents as well as 

their mixtures on the primary lignin dimer on cellulose adsorption and provided estimates about the 

intermolecular energy evolution in few tenths of ns time-scale in order to capture the nature of inter-atomic 

forces keeping together lignin to cellulose and the effect on these forces of solvent compositions. The analysis 

of our results about the more macroscopic understandings as the hydrophobic or hydrophilic interactions 

logically confirmed that the intra-molecular interactions are driving the well accepted in chemistry 

hydrophilic/hydrophobic behaviours of macromolecules. Thus, our results do not  fully capture all the features 

that dominate the lignocellulose interactions, but they clearly provide a well-founded picture about the 

intrinsic, atomistic trends of the solvent-dependent inter- and intramolecular interactions, not previously 

reported   

It is essential to comment on the simulation time lengths. The phenomena we studied (torsion angle molecular 

conformational changes, H-bond formations, non-bonded interactions) typically occur in the ps to ns time 

scale. As most of the results were achieved with parameters based methods, as are the MD simulations, to 

obtain a reasonably good ensemble description we performed the simulations within few tenths of ns time 

scale for each lignocellulosic component in a distinct solvent composition. As shown from the energy error 

bars in Chapter 5, the confidence in the energies of the adsorbed lignin dimer to cellulose is rather 

satisfactory. Besides, the well-emphasised differences in terms of interaction energies and structures, between 

in gas-phase adsorbed lignin on cellulose and in the considered solvents, clearly supports the conclusion the 

methodology used here in terms of force-field parameters, size of the models, and the chosen simulation time 

lengths are appropriate. Indeed, we found the same tendency as those reported in few works devoted to similar 

investigations but applying larger size and longer simulation time scales. Besides, we note that the results, 

presented and analysed in Chapters 4 and 5, were issued from more than 1.2 s of total simulation production 

time, which could have been sufficient to sample the conformational space of more complex and more 

significant MD systems, but in significantly  fewer solvents, meaning that we could not capture the trends of 

solvent composition effects. Instead, we performed shorter production runs that could lead to the equilibrium 

of the solvent molecules around lignocellulose components. Moreover, the smaller models allow to reduce the 

correlation times and observe some configurational changes faster than in a bigger complex. Thus, the 

considered simulation time of our production runs lead to the equilibrium of the solvent molecules. Moreover,  

it adequately samples the conformational space of lignocellulose components as follows from the results 

evidencing the evolution over time and the relatively small error bars of the lignin dimer-cellulose interaction 

energies. The latter results show that the current simulation reasonably converged for the simulation times 

studied.  
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Our results have been obtained utilising the CHARMM force field, the solvent parameters within the force 

field, and the CHARMM-compatible lignin force field and, which have been recurrently used in the modelling 

of lignocellulose interactions [21-23]. The MD simulations of liquids can be more convenient if using the  

OPLS FF since this has been optimised for simulation of liquids. However, the results in Chapter 3 show that 

the CHARMM force field reproduce reasonable well the thermodynamic and structural properties of interest 

for this work. Moreover, CHARMM atom charges are parameterised based on the optimisation of H-bond 

networks, which can be advantageous in the analysis of H-bonds and the coordination of the solvent oxygens 

in the solvent. Furthermore, the computational modelling of lignocellulose is a promising field, and better and 

more accurate methods and parameters are developing every day [23, 24]. Moreover, the perspective of this 

work goes further in the QM/MM direction, where DFT techniques can model the solute, whereas the solvent 

can be modelled by the at classical level by the OPLS force field, as illustrated in Chapter 4.  
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Abstract 

In this work, we studied the electronic structure and conformations in water of a guaiacyl lignin dimer 

employing 2D electronic spectroscopy in the UV-VIS region, using the SOS//QM/MM methodology, with 

QM = CASSCF and RASSCF approaches. First, vertical excitation energies and 2D-UV/VIS excitation 

spectra were obtained for all lignin model monomers (guaiacol, creosol, homoveratrole) in gas phase, 

including all π and lone-pair electrons and orbitals in the active space. They were further compared against 

anisole and previously studied benzene and phenol, to aid in excited state assignments. We found an excellent 

agreement between the 2DEF obtained by both QM schemes for the monomers. Besides, we studied the 2D 

electronic spectra of stacked and unstacked lignin conformers in solution taken from MD simulations of the 

lignin dimer in water studied in Chapter 4. The 2DUV spectra show that charge transfer (CT) states become 

bright upon coupling, allowing to distinguish between two conformers with different degrees of stacking. 

1. Introduction 

Lignin is the most abundant natural aromatic polymer on earth, being one of the significant cell-wall 

components of wood and grass species, after cellulose [1]. Thus, its availability renders it the most abundant 

renewable source of aromatics and platform chemicals [2-8]. It is a three dimensional, highly branched, and 

polyphenolic molecule complex structure with high molecular weight, as illustrated in Figure 7. 1A, with a 

variety of lignin units and linkages. The phenylpropanoid unit is the basic structure of lignin, consisting of an 

aromatic ring and a 3-C side chain [9]. The monolignol subunits are derived from coniferyl, p-coumaryl, and 

sinapyl alcohols (Figure 7. 1B), and are referred to as, after polymerisation, p-hydroxyphenyl (H), guaiacyl 

(G), and syringyl (S) residues, respectively [10]. Two types of inter-unit linkages (C-O and C-C linkages) link 

several aromatic units, being the β-O-4 ether bond the predominant inter-unit linkage in the structure of lignin 

(Figure 7. 1C) [11].  

Characterisation is essential because the chemical structure and composition of lignin varies with source, type 

of lignin, and isolation method. Chemical structure characterisation can be useful in determining lignin 

sources, degradation of lignin samples, and the relationship between physical and thermal properties, among 

others [12]. However, the study of lignin is a considerable challenge for experimental techniques due to the 

lack of a regular and ordered structure. The β-O-4 linkage represents the predominant inter-unit linkage in 

lignin, and it is an excellent model for studying major conformation features such as H-bonding and flexibility 

[13]. Thus, concerning the complexity of the lignin network, we have chosen here to study the guaiacyl β-O-4 

dimer model compound. Nonetheless, the study of such model compounds can lead to the understanding of 

the behaviour of larger and more complex molecular systems.  
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Figure 7. 1. (A) Chemical structure of a lignin polymer with different linkages and monomer units. Taken from 

‘ACS molecule of the week’, July 2012 [10]. (B) The three monolignols before polymerisation: p-coumaryl 

(R1=R2=H), coniferyl (R1=H, R2=OMe), and sinapyl (R1=R2=OMe) alcohols. (C) Lignin dimer studied in this 

work, formed by two guaiacyl (G, G’) units linked with a β-O-4 ether bond. (D) Chemical structure of guaiacol 

(GUA), creosol (CRE), and homoveratrole (HVER) model lignin monomers studied in this work (in box), and 

benzene, phenol, and anisole molecules, to which they were compared.  

Molecular modelling holds great potential for studying lignin and can provide valuable conformational 

information that remains experimentally unavailable. Both experimental and theoretical studies suggest that β-

O-4 structures are flexible molecules that can adopt a large number of conformations [13-15]. We have shown 

that the interaction of lignin dimers in water remains highly hydrophobic. The lignin dimer adopts a stacked 

conformation, whereas it adopts a more unstacked conformation in pure ethanol and water-ethanol mixtures 

(Chapter 4)  [16]. Nonetheless, our MD simulations of lignin dimers in complex with cellulose have shown 

that cellulose stabilises lignin allowing a more extended lignin surface when interacting with cellulose than in 

water alone (Chapter 5). Therefore, characterisation of the chemical structure of lignin conformers can be 

useful for determination of different degrees of aggregation in wood cells walls or when dissolved in solvents.  

The aromatic nature of lignin makes it a great candidate for UV-VIS spectra studies as each of its aromatic 

rings provides native local probes for tracking lignin dynamics in solution. Two-dimensional (2D) UV 

electronic spectroscopy (2DES) [17-21] is a recently developed technique, which can disentangle signals 



Chapter 7 

215 

 

arising from different intermolecular interactions that remain hidden in the 1D pump-probe spectra. 2DUV 

electronic spectroscopy can target the π-π* transitions of aromatic residues, and can be employed for tracking 

all sorts of localised, delocalised, energy and charge-transfer photoinduced phenomena; however, their 

interpretation proves to be challenging. Alternatively, computational simulation of 2DES can be used to 

separate the different peaks into their contributing specific electronic transitions, thus providing a tool to 

recognise, understand, and interpret the observed primary fingerprints  [22].  In this approach, an explicit 

mixed quantum mechanics/molecular mechanics (QM/MM) methodology is employed for the evaluation of 

electronic excited state energies and transition dipole moments, in which different photochemical outcomes 

are associated with specific molecular conformations.  

The Sum-Over-States (SOS) approach [23] and the QM/MM scheme (SOS//QM/MM) [22, 24] have shown 

great potential to simulate 2DES and to characterise different conformations in DNA and proteins. It has been 

shown that 2DES obtained with this approach can distinguish between two configurations of a peptide 

containing both unstacked (non-interacting) and π or T-stacked (interacting) peptide motifs containing 

phenolic side chains in proteins or DNA/RNA [25-28]. Multiconfigurational and multireference perturbation 

methods, such as complete active space self-consisted field (CASSCF) and second-order multireference 

perturbation theory (CASPT2) techniques, can be applied to calculate the electronic properties of 

multichromophoric system reliably.  

The UV-VIS spectra of lignin polymers [12]  and the lignin model compounds [29-32] have been studied 

recently, but the number of studies remain scarcely available. Experimentally, only the first and second 

transition states of lignin model monomers has been obtained, and their electronic nature and some 

spectroscopic signatures have been described at different levels of theory [32]. The GS-Lb transition of lignin 

dimer with a β-O-4 ether bond has also been studied; however, the electronic structure characterisation of 

lignin remains widely unexplored. In this work, we studied the electronic structure and conformations in water 

of a guaiacyl lignin dimer (Figure 7.1C) employing 2D electronic spectroscopy in the UV-VIS region, using 

the SOS//QM/MM approach.   

First, we obtained the vertical excitation energies and 2D-UV/VIS excitation spectra at the CASSCF(10,8)/6-

31G* level for all lignin monomers (Figure 7. 1D) in the gas phase. We further compared them against anisole 

and previously studied benzene and phenol to aid in excited state assignments. Furthermore, we compare the 

computed spectra and excitation energies with the calculations at the RASSCF(4,5|0,0|4,3)/6-31G* level, a  

less computational demanding scheme in comparison with the complete active space calculations. We found 

an excellent agreement between the 2DEF obtained by both schemes for the monomers. Furthermore, we 

studied the 2D electronic spectra of stacked and unstacked lignin conformers in solution taken from 

previously reported MD simulations. We were able to track spectroscopic fingerprints between them, showing 

that 2D electronic spectroscopy has excellent potential as a novel diagnostic tool to track the folding state of 

different polymer types.  
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2. Computational methods 

2.1 Selected structures 

Guaiacol (GUA), shown in Figure 7. 1D, has been recently used as a minimal chromophore monomer of 

guaiacyl [32]. In order to mimic better the para-alkylation in lignin, we have also studied creosol (CRE). 

Notably, guaiacyl rings in our lignin dimer model are not identical. The lignin ring G’ (Figure 7. 1C), which is 

more like a monomer found in native lignin, includes the ether bond rather than the hydroxyl group. Thus, to 

include both the para-alkylation and the β-O-4 ether bond effect, we studied 3,4-dimethoxytoluene, also 

known as homoveratrole (HVER). We built the GUA, CRE, and HVER monomers with Molden and their 

geometry was initially optimised in the gas phase at the PBE/6-31G* level. Subsequently, MP2/6-31G* level 

optimisation using Gaussian was achieved. An active space of ten electrons and eight orbitals (i.e. CASSCF 

(10,8)) was further used for the QM calculations, using MOLCAS.   

 

Figure 7. 2. Lignin dimer structures of stacked (A) and unstacked (B) conformers in solution from MD 

simulations (water molecules are not shown). The distance between the centres of mass of the two-chromophore 

rings, dCoM, is shown as an indicator of stacking between the chromophores. The angle between the planes of the 

two chromophore rings, α, is also measured to differentiate between co-planarity (α ~0°, α ~180°) and T-stacking 

(α ~90°). 

Lignin dimer structures (stacked and unstacked) were selected from the previously reported MD of lignin in 

water (Chapter 4)  [16]. We performed a root mean square deviation (RMSD)-based cluster analysis using the 

analysis tool of GROMACS. First, the RMSD of atom positions between all pairs in the lignin dimer structure 

was determined. We varied the RMSD cut-off between 0.10 to 0.15 nm in 0.01 nm increments and performed 

cluster analysis for each RMSD value. For all RMSD clusters, we found the same representative structure as 

the centroid of the most populated clusters, having a stacked conformer, as shown in Figure 7. 2A. An 

unstacked dimer, a less populated cluster structure (Figure 7. 2B), was chosen for comparison and for testing 

the method accuracy concerning the monomer calculations. After selection, MD snapshots were extracted 
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containing the lignin dimers, along with a 15-Å radius water drop. Snapshot refinement was performed at the 

QM/MM level with the Cobramm package. The lignin dimer was included in the QM layer, whereas the water 

atoms were treated classically and were kept frozen. As with the monomers, PBE/6-31G* followed by MP2/6-

31G* level optimisations was performed. An active space of twenty electrons and sixteen orbitals, i.e., 

CASSCF (20,16), was used for the QM calculations at the QM/MM level with the Cobramm package, using 

MOLCAS (QM) and Amber (MM).   

2.2 Excited-State calculations of monomers and dimers 

Multiconfigurational calculations were performed using state-average (SA)-CASSCF or –RASSCF 

methodology as implemented in the Molcas 8.1 code, including up to 30 and 50 states in the state-averaging 

procedure for monomers and dimers, respectively. SA-CASSFC and SA-RASSCF calculations were followed 

by single state (ss)-CASPT2 calculations to account for dynamic correlations. Transition dipole moments 

(TDMs) were calculated at SA-CASSCF or SA-RASSCF level using the RASSI routine of the Molcas code. 

Cholesky decomposition was used to accelerate the computations of two-electron integrals.  

Calculations of GUA, CRE, and HVER monomers in the gas phase were performed at the SA50-ss-

CASPT2//CASSCF(10,8)/ 6-31G*  level including all valence π-electrons and the lone oxygen pairs, and the n 

and π-orbitals of the monomer chromophores. Furthermore, we compare the computed spectra and excitation 

energies with the calculations at the SA50-ss-CASPT2//RASSCF(4,5|0,0|4,3)/6-31G* level, a  less 

computational demanding scheme in comparison with the CAS calculations. In the RAS scheme, three virtual 

orbitals were included in the RAS3 space, where up to quadruple transitions are allowed. Similarly, five 

occupied orbitals were included in the RAS1, where a maximum number of four holes is allowed.  

As with the monomers, reference SA10- ss-CASPT2//CASSCF(20,16)/6-31G*  calculations for the unstacked 

dimer in water were performed to establish a frame of comparison with the SA50-ss-CASPT2// 

RASSCF(4,10|0,0|4,6)/6-31G* scheme.  The 6-31G*  basis set was used with the following contraction 

scheme: C, O/[3s2p1d] and H/[2s].  

2.3 Simulations of 2D Electronic Spectra 

The transition dipole moments (TDMs) and energies were obtained at the multiconfigurational (CASSCF and 

RASSCF) and multireference level (PT2). The SOS//QM/MM approach has been already used for resolving 

the 2DUV/VIS spectra of a CFYC tetrapeptide solvated in water [22, 27]. The theory and methods have been 

summarised in the Theoretical Backgroud and can be found in detail in refs [22, 25-28].  
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3. Results and discussion 

3.1 Electronic spectra of anisole and lignin monomers 

In this section, we compare the calculations at the ss-CASPT2/CASSFC(10,8)/6-31G* level of lignin 

monomers guaiacol (GUA), creosol (CRE) and homoveratrole (HVER) (Figure 7. 1D) below and above their 

ionization limits with the available experimental data and with reference CASSFC(8,7) electronic spectra 

calculations of anisole (this work), and the benzene and  phenol monomers [28]. All valence π-electrons and 

lone pairs, and n and π-orbitals of the monomer chromophores have been included in the active space of each 

molecule monomer, as Illustrated in Figure 7. 3.  

 

Figure 7. 3. Active space orbitals for the SA30-CAS(8,7) calculations of anisole and the SA30-CAS(10,8) 

calculations of GUA, CRE, and HVER monomers in the gas phase, organised by occupancy number at the CAS 

level. As expected, the molecular orbitals (MOs) of anisole and the lignin monomers GUA, CRE, and HVER in the 

active space share similar features, differing mainly in their symmetry. Anisole has a single oxygen lone pair 

orbital (O) localized in the oxygen and coupled with the aromatic ring, whereas GUA, CRE, and HVER have two 

delocalized oxygen lone pairs orbitals orbitals; the first has a bonding character (Ob) and displays a similar 

geometry as in anisole, and the second (Oa) is anti-bonding orbital. Furthermore, we notice that MO 5 in anisole 

resembles closely MO4 in GUA, CRE and HVER.  
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The fist valence states below the first ionization energy of anisole, GUA, CRE and HVER monomers (labels 

1-6, Table 7.1) have a similar nature to those of benzene and phenol [28] and for this reason we use the D6h 

benzene notation to refer to them, although phenol, anisole and the lignin monomers have a different 

symmetry. The two lowest energy (π-π*) excited states of GUA, labelled 1B2u and 1B1u, have been 

experimentally detected at  4.44-4.59 eV [29-35] and 5.74-5.79 eV [33, 34], respectively. Furthermore, the 

GS→ 1B2u  excited state transition of CRE has been experimentally reported at 4.35 eV [32]. As shown in 

Table 1, our ss-CASPT2/CASSCF(10,8)/6-31G* level calculation is in good agreement with these 

experimental data with a minor overestimation of the vertical transitions by ~0.13 eV. Furthermore, the 

experimental GS→ 1B2u  transition energy red-shift difference of about 0.1 eV from GUA to CRE [32] is 

reasonably reproduced in our calculation (~0.08 eV). In the case of HVER, there is a moderate blue-shift 

(~0.01 eV) from the GS→ 1B2u  transition of CREO  due to the absence of the intramolecular hydrogen bond 

when replacing the –OH by a –OMe group, as it is the case of previously reported for catechol in comparison 

with GUA [31]. 

Table 7.9. Vertical GS→SN  Excitation Energies (eV) and Transition Dipole Moments Magnitudes (au) in the 

anisole, guaiacyl, creosol, and homoveratrole. Anisole calculations were obtained at the CAS (7,8), while the rest 

of the monomers were obtained at level. 

 Anisole  Guaiacol  
  

TDM 
 

TDM 
 

State EE Trans. Coeff GS Lb EE Trans. Coeff GS Lb label 
1B2u 4.66 3->5 0.67 0.29 

 
4.58 3->5 -0.67 0.32   1  

(4.59) 2->4 0.52 
  

(4.45) 2->4 0.53 
   

1B1u 6.07 3->4 -0.67 0.68 0.18 5.86 3->4 -0.71 0.62 0.15 2  
(5.78) 2->5 0.41 

   
2->5 -0.38 

   
  

3->5 0.27 
   

1->4 -0.25 
   

  
1->4 -0.24 

   
3->6 0.22 

   
            

1E1u 6.64 2->5 0.76 2.27 0.11 6.69 2->4 0.5 2.18 0.18 3  
(6.68) 3->4 0.46 

   
2->5 -0.44 

   
       

3->5 0.36 
   

       
3->4 0.32 

   
       

2,3-->5,4 0.24 
   

1E1u 6.96 2->4 -0.66 1.89 0.38 6.7 2->5 -0.51 1.99 0.25 4  
(6.9) 3->5 0.53 

   
3->4 0.43 

   
  

0->5 -0.24 
   

2->4 -0.39 
   

       
3->5 -0.32 

   

11E2g 7.2 1->5 0.53 0.55 0.34 7.16 1->5 -0.55 0.89 0.31 5   
2,3-->5 -0.42 

   
2-->5 -0.36 

   
  

2-->5,4 0.32 
   

2->6 0.3 
   

  
2->6 0.3 

   
2->4 -0.27 

   
  

2->4 -0.26 
   

3->5 -0.27 
   

  
3->4 0.24 

   
2,3-->5,4 0.24 

   

11E2g 7.67 1->4 -0.45 0.2 0.1 7.22 2->5 0.47 0.24 0.16 6   
3-->4 0.44 

   
1->4 -0.42 

   
  

3->6 0.35 
   

3-->5,4 0.37 
   

  
3->4 0.26 

   
3->6 0.32 

   

  
2,3-->5,4 0.26 

   
2,3-->4 0.28 

   

 Creosol Homoveratrole  

  TDM  TDM  

State EE Trans. Coeff GS Lb EE Trans. Coeff GS Lb label 
1B2u 4.5 3->5 -0.67 0.37   4.51 3->5 -0.68 0.39   1 

 (4.35) 2p->4 -0.51    2->4 0.54    

1B1u 5.83 3->4 0.68 0.66 0.12 5.65 3->4 0.73 0.72 0.18 2 

  2p->5 -0.39    2->5 0.38    

  3->5 0.27    1->4 0.27    

  1->4 -0.25         

  3->6 -0.23         

1E1u 6.51 2p->4 -0.54 2.28 0.13 6.42 2->5 -0.62 2 0.34 3 
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  2p->5 0.42    3->4 0.49    

  3->5 0.37    2->4 -0.24    

  3->4 0.31         

            

1E1u 6.52 2p->5 0.5 1.99 0.24 6.49 2->4 -0.58 2.14 0.18 4 

  3->4 0.47    3->5 -0.45    

  2p->4 0.4    2,3-->5,4 0.29    

  3->5 -0.31    2->5 0.25    

11E2g 7.09 1->5 0.57 0.65 0.27 6.95 1->5 0.56 0.93 0.27 5 

  2p-->5 0.35    2-->5 -0.36    

  2p->6 -0.28    2->4 0.28    

  2p->4 0.25    2->6 -0.25    

  2p,3-->5 -0.23    3-->5 0.23    

  2p,3-->5,4 0.22         

11E2g 7.09 1->4 0.45 0.45 0.19 7.02 1->4 0.42 0.51 0.21 6 

  2p->5 -0.44    2->5 -0.42    

  3-->5,4 -0.36    3-->5,4 0.37    

  3->6 0.3    2,3-->4 0.31    

aDominant configurations (referred to orbitals in Figure 7. X) and corresponding CI coefficients. States 

nomenclature refers to the ideal D6h symmetry of benzene (Table 7.X). Experimental transition energies are 

reported, when available, in parentheses.  

Using a minimal active space only, our ss-CASPT2/CASSFC(10,8)/6-31G* calculations achieve excellent 

agreement with the most widely accepted experimental GS→1B2u  transition values (i.e., 4.45 eV for GUA and 

4.35 for CREO) in comparison with previous theoretical studies at the TD-DFT B3LYP/6-31G(d,p) level, 

which report the first vertical excitation energy of GUA and CREO at 4.70-5.29 eV and 4.78-5.18eV, 

respectively [31, 32]. In agreement with the molecular orbitals in the active space in our calculations, the 

ground state (GS)→ 1B2u  transition of GUA involves primarily a HOMO-LUMO+1 (MOs 3→5, Figure 7. 3 ) 

excitation with a minor contribution from HOMO-1 to LUMO (MOs 2→4), which is a classical ππ∗ excitation 

of a 1B2u state [32]  

In the energy region below the GUA ionization limit ( ~7.93 eV ), where the 1B2u, 
1B1u, and the pairs of  1E1u 

and 11E2g  states are detected (Table 7.1),  red-shifted absorptions and almost no splitting of the 1E1u and 11E2g  

doublets is observed for GUAI and CREO, with respect to the benzene absorption energies. HVER, on the 

contrary, displays a somewhat higher splitting than the substituted phenols studied here, but this splitting is 

not as dramatic as in phenol or anisole. Furthermore, contrary to benzene, the 1B2u, 
1B1u

, and the 11E2 states are 

dipole allowed.  The methoxy and methyl functionalization of benzene in the lignin monomers induces an 

increase in the TDMs of almost all transitions, including those from the GS and the 1B2u as also observed for 

phenol. The oscillator strength of the GUA 1B2u is ~0.01 (|TDM|=0.32 au) in comparison with an oscillator 

strength of ~0.02 (|TDM|=0.37 au) and ~0.02 (|TDM|=0.39 au) for CREO and HVER, respectively.  

As we have shown, the energy region below the ionisation limit of phenol, anisole, and the lignin model 

compounds have a similar nature as benzene and are described by the transitions of the π-orbitals of the 

monomer chromophores. The region above the ionisation limit, however, shares some common features but 

signature bands of each molecule define it (Table 7.S1 and Figure 7. 4). First, we summarise the excited state 

transitions above the ionisation limit previously reported for benzene and phenol  [28]. The broad band found 

experimentally in benzene at 4.60 eV [36] from the 1B2u state has been assigned to the 1B2u→ 21E2g bright 
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transitions (TMD=0.64) and the symmetry forbidden 1B2u→ 1D transition (the first doubly excited state). 

Previous reference RAS(0,0/6,6/2,12) calculations of benzene, the 1B2u→ 21E2g and 1B2u→ 1D transitions were 

found near ~5.02 eV (40490 cm-1). For phenol, similarly, the absorption experimentally found around 9.0 eV 

can be associated with the primary double 1D excitation and the two single-electron 21E2g excitations, which 

can be located at 9.03 and 9.1-9.15 eV, respectively. As in benzene, the 1B2u→21E2g states (37300-37700 cm-

1) are bright and display large TDMs in the range of 0.46-0.73 au. The electronic structures of benzene and 

phenol in the 10-11 eV range are characterised by other doubly excited states (denoted as 2D and 3D), but two 

bands arising from single excitations involving the oxygen lone pair (O) of the hydroxyl group, denoted 1Olp 

and 2Olp are signature fingerprints of phenol in the far-UV. The 1B2u→1 Olp and 1B2u→2 Olp transitions are 

bright (TMD=0.50-0.42) and clearly defined, and are found near 45400 and 48400 cm-1 respectively.  

The two-colour 2DUV spectra of anisole in Figure 7. 4 obtained from our ss-PT2/CAS(8,7) calculations of 

anisole show that the 1B2u →1D transition lies far from the two single-electron 1B2u →21E2g transitions and can 

be found at 37590 and 32100-32340 cm-1, respectively. Moreover, we notice that the  21E2g states in anisole 

are highly mixed with single excitations involving the oxygen lone pair of the methoxy group. As in phenol, 

two closely lying signature bands arising from single excitations involving the oxygen lone pair of the 

methoxy group are bright, and the 1B2u→1 Olp and 1B2u→2 Olp transitions can be found at 42990-43550 cm-1. 

Moreover, the electronic structure of anisole in the 44000-48000 cm-1 range is characterised by the presence 

of other doubly excited states. Thus, both phenol and anisole exhibit the  1 Olp and 
2 Olp bands, and whereas the 

1B2u→1 Olp and 1B2u→2 Olp transition in phenol remain in the far-UV, in anisole they are red-shifted by up to 

2000-5000 cm-1 and lie close together.  
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Figure 7. 4. Simulated two-colour 2DUV spectra of anisole, guaiacol, creosol, and homoveratrole at the ss-

PT2/CAS(8,7) level. Calculations at the CAS level of theory are shown, highlighting the different positions of the 

ESAs (positive peaks) above the ionisation energy. Excited-state assignment corresponds to the labels reported in 

Table 7.S2. 

The electronic structure of guaiacol (Table 7.S1 and Figure 7. 4) shares some features of the mono-substituted 

compounds, but its electronic structure beyond the ionisation energy is greatly affected by the presence of 

both hydroxyl and methoxy groups that participate in intramolecular H-bonding. A new state just above the 

ionisation potential (i.e., nw) is associated with a single-electron excitation involving the delocalized oxygen 

lone pair described by an anti-bonding n-orbital (i.e. Oa), as illustrated in Figure 7. 3. This state is also present 

in the electronic structure of CRE and HVER and can be found at 8.48 and 8.11 eV, respectively, and at 8.44 

eV in GUA. The 21E2g transitions, as in anisole, are bright and are highly mixed with single excitations 

involving the same delocalized oxygen lone pair in the anti-bonding Oa orbital. As illustrated in Figure 7. 4, 

the 1B2u→ 21E2g and 1B2u→ 1D transition in GUA and HVER are less split than anisole, except for CRE, 

whose 1B2u→ 1D is red-shifted below the 1B2u→ 21E2g transitions.  

In all lignin monomers, the 1B2u→1 Olp and 1B2u→2 Olp transitions can be associated with single excitations 

involving the delocalized oxygen lone pair, described by the bonding orbital (Ob) in Figure 7. 3, which 

closely resembles the orbital involved in the 1 Olp and 
2 Olp states in phenol and anisole. Contrary to anisole, 



Chapter 7 

223 

 

these states split significantly by up to 8000 in GUA and by up to 10000 cm-1 in CRE and HVER. 

Furthermore, in the three lignin monomers, the 2 Olp band splits in two transitions arising from the same Ob 

orbital. Only in CRE, splitting of the  2 Olp band is observed. Notably, the 1Olp and 
2Olp bands are red-shifted in 

comparison with CRE and GUA. Furthermore, the 2 Olp states in HVER become dark (TMD=0.03 and 0.04), 

probably due to the substitution of the –OH by another –OMe group, thus, removing the intramolecular H-

bond present in GUA and CRE molecules.   

3.2 CAS vs RAS 2D electronic spectra of lignin monomers  

In the previous section, we have shown how the ss-CASPT2/CASSFC(10,8)/6-31G* calculations can provide 

transition energies of the lignin monomers studied here with absolute errors below 0.13 eV, compared to their 

experimental reference values. However, when dealing with di-chromophore aggregates (i.e., lignin dimers), 

the use of complete active spaces for each monomer results in unaffordable calculations, due to all the 

possible configuration state functions (CSFs) in the larger active space. A CAS(14,13) calculation, such as 

that for benzene-phenol dimer, requires 736,164 CSFs and such calculation would require a high 

computational cost. As we will discuss in the next section, we computed a lignin dimer with CREO and 

HVER monomers using a minimal active space SA10-CAS(20,16) computation (14’158144 CSFs), which is 

computationally very demanding.  A large number of excited states more significant than a SA10 have to be 

included in the state-average procedure in order to provide a better picture of the transition energies and dipole 

moments for simulations of 2DUV spectra, which render these computations unaffordable and unpractical.  

In order to find a compromise between the computation cost and the accuracy of the computed transition 

energies, we now explore the possibility of reducing the size of the multiconfigurational problem. As 

previously demonstrated in benzene-phenol monomers and dimers, the number of the CFSs can be 

significantly decreased by restriction of the active space. The wave function analysis of GUA, CREO, and 

HVER monomer calculations with the  CAS(10,8) active space, and the benzene and phenol (CAS(6,6) 

CAS(7,6), respectively) calculations [28] show that the frontier π-orbitals (the three highest occupied π-

orbitals and the three lowest occupied π-orbitals) and n-orbitals for each oxygen lone pair are essential for the 

description of the singly and doubly excited state manifolds of the chromophores. Therefore, decreasing the 

size of the active space would not provide accurate results. However, by restricting the total number of 

simultaneously excited electrons within the active orbitals, the RAS technique reduces the computational cost 

by reducing the number of CSFs, while maintaining the total of active electrons. Here, we have employed the 

ss-CASPT2/RASSCF(4,5|0,0|4,3)/6-31G* level scheme. As summarised in Table S7-2 and Figure 7. 5, the 

differences between the RASSCF(4,5|0,0|4,3) (901 CSFs) and CAS(10,8) (1176 CSFs ) transition energies of 

the monomers do not significantly affect their two-colour 2DUV spectra. Furthermore, the   

RASSCF(4,5|0,0|4,3)  schemes yield GS→Lb transition energies that are within 0.01 eV of their 

corresponding CAS calculations.  
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Figure 7. 5. PT2 vertical GS-Sn excitation energies (eV) of monomers at different levels of theory. Values obtained 

with the restricted active space (RAS) are compared with its corresponding complete active spaces (CAS) 

calculations. States nomenclature refers to the ideal D6h symmetry of benzene and follow the label order as 

reported in Table 7.S2. 

3.3 2D Electronic spectra of unstacked and stacked lignin dimer conformers 

The calibration results given in the previous section show how the computational cost of simulating 2D 

spectra of lignin monomers can be reduced by employing the RAS schemes, without significant loss of 

accuracy for the monomers. We use, therefore, the RASSCF(4,10|0,0|4,6)  scheme  (221,116 CSFs) in order to 

extend our calculations to the study of lignin dimer in water solution, a more realistic system, with CREO and 

HVER as chromophores (i.e. G and G’ in Figure 7. 1C, respectively). We analysed two structures selected 

from classical molecular dynamics reported in Chapter 4 [16]: a stacked lignin dimer, the most populated 

conformation from the cluster analysis of the lignin dynamics in water, as described in the Computational 

Details sections. Second, a less populated cluster structure, an unstacked dimer that allows for testing the 

method accuracy concerning the monomer calculations. MOs in the active space of the stacked and unstacked 

dimers are shown in Figure 7. 6 and Figure 7. 7, respectively.  
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Figure 7. 6. Active space orbitals for the SA50- RASSCF(4,10|0,0|4,6)  calculations of the stacked lignin dimer in 

solution. 

As we mentioned in the previous section, we achieved an SA10 ss-CASPT2/CAS(20,16) reference calculation 

of the unstacked lignin dimer in solution. Because only a small number of states can be sampled for the lignin 

conformer using the CAS calculations, the computed excited states at the  SA10 ss-CASPT2/CAS(20,16) 

reference calculation of the unstacked lignin dimers in solution will be only used to assess the method 

accuracy by comparison of the 1B2u  states of each chromophore with the RAS calculation. Excellent 

agreement between the RAS and CAS schemes for the computation of the GS→1B2u  (further on referred to as 

GS→Lb ) transitions in each monomer is achieved (Table S7-3 and S7-4). The first excited state in the 

unstacked lignin dimer corresponds to the GS→ Lb transition in lignin monomer HVER at 4.51 eV at the CAS 

level vs 4.50 eV at the RAS level. The second excited state, the GS→ Lb transition in lignin monomer CRE is 

found at 4.55 eV at both levels of theory [29]. As it has previously reported for phenol and benzene [28], the 

use of the RAS scheme does not affect the energies of the covalent states (i.e., Lb states), whereas an over 

stabilization is expected in the energies of the ionic and doubly excited states since the σ-π polarization effect 

is too significant to be corrected at the perturbation level .  
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Figure 7. 7. Active space orbitals for the SA50- RASSCF(4,10|0,0|4,6)   calculations of the unstacked lignin dimer 

in solution. 

Figure 7.8 and 7.9, respectively, show a comparison between the one colour (UV-UV) and the two-colour 

(UV-vis)  2D spectra obtained with the explicit SOS//QM/MM approach for the unstacked and stacked lignin 

dimer, that contain clear spectroscopic fingerprints characterising the different stacking states. The first 

excited states of CRE and HVER representing the Lb of each ring were selected as targets for the incoming 

pulses. Probing was performed in two spectral windows: NUV (34500-37500 cm-1, Figure 7.8) and visible 

(15000-29000 cm-1, Figure 7. 9). Probing in this regions resolves correlated transitions and weak quartic 

couplings in coupled aggregates, whereas probing in the visible region covers the spectral region near the 

ionisation potential and permits the collection of background-free signals of charge-transfer(CT) transitions in 

coupled chromophore aggregates[27]. The SOS//QM/MM spectrum of the unstacked dimer with xxxx 

polarisation (one colour, Figure 7. 8A and Figure 7. S7-6 with enhanced dipole) shows the diagonal (negative) 

bleach signal of the GS→Lb transition in the HVER monomer at ~36300 cm-1 (TDM=0.23). The closely lying 

diagonal bleach signal (blue-shifted by ~400 cm-1 of the Lb of G’) of the GS→Lb transition in the CRE 

monomer is stronger and more visible, at ~36700 cm-1 (TDM=0.27). Moreover, the diagonal (positive) signals 

of the LbCRE →LbHVER and LbHVER →LbCRE (2Lb) transitions are found at ~36500 and ~36100, respectively. 

However, as shown previously for the cyclic Cysteine-Phenylalanine-Tyrosine-Cysteine (CYTC) tetrapeptide 

[22], the 2D spectra shows that the excitation from the Lb to the 2Lb states are covered by the intense Lb 
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bleach (negative) of each monomer. Thus, as expected, the unstacked dimer excited states are mostly localised 

on the single chromophores.  Furthermore, we notice that the TDMs of the Lbs of CRE and HVER in the 

lignin dimer and solution decrease in comparison with their values in the gas phase (0.37 and 0.39, 

respectively). The CAS and RAS schemes yield TMDs that are comparable for both for the monomers in the 

gas phase and the lignin dimers in solution (Figure 7.s S7-1-4). Thus, as signalled previous by Nenov et al. 

[27], the decrease of signal intensity is an environmental effect related to the conformation and the solvent 

arrangement.  

 

Figure 7. 8. Simulated one-colour 2DUV spectra of unstacked (A) and stacked (B) lignin dimer in solution.  

Positions of the ESAs and GS bleaching relative to the GS are labelled according to Table 7.1.  

Due to the chromophore-chromophore interaction in the stacked configuration, the GS→Lb transitions of 

HVER and CRE are coupled at ~35700 cm-1 (TDM=0.27), red-shifted by about 700 and 800 cm-1 in 

comparison with the GS→Lb transitions in CREO and HVER monomers. This observation agrees with the 

formation of a J-aggregate with a head-to-tail arrangement, which exhibit red-shifted absorptions compared to 

their free monomers according to the exciton theory [37, 38]. Moreover, the corresponding second pump is 

found blue-shifted from the combined GS→LbHVER, CRE at ~36400 cm-1 and its signal is much weaker than the 

GS→ LbHVER, CRE, as expected (TDM=0.14). 

Furthermore, two positive signals at ~35200 and 37100 cm-1 are revealed. Wavefunction analysis indicates 

that the later corresponds to what seems a new state due to the mixing of the orbitals in the coupled dimer. 

The former corresponds to a nπ*transition from one of the oxygen lone pair of the HVER ring (Ob→5), also 

present in the lowest optimised HVER monomer in the gas phase, with both methoxy groups in plane with the 

benzene ring at ~33200. This nπ*transition is not present in the one-colour region of the unstacked dimer due 

to a conformational and solvent arrangement of HVER, where  both methoxy and ether bonds groups are 

found out of plane of the phenolic rings, and this gives rise to shift in this transition, found at ~25000, in the 

two-colour region, as illustrated in Figure 7. 9 This band assignment is confirmed by analysing the reference 
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monomer 2D spectra of both HVER monomers (in and out-of-plane) and can be found in Figure S7-5 for 

reference.  

Excitations from local excited states cause off-diagonal contributions to the 2DUV spectrum to high-lying 

singly excited states, whose molecular orbitals involved in the excitations out of the Lb states can be localized 

(L), delocalized (D), or they can have a charge transfer character (CT) depending on the permanent dipole 

moment of the final excited state [22]. From the comparison of the two-colour 2D spectra in Figure 7. 9, the 

differences between SOS//QM/MM spectra of the stacked and unstacked dimers of lignin is deducible. The 

most determinant signature of coupled chromophore aggregates is the presence of charge transfer (CT) state 

signals in the visible probing region of the 2D electronic spectra, as previously demonstrated for the coupling 

of side groups of a CFYC tetrapeptide in solution [26-28].  In the selected probing window between 15000 

and 24000 cm-1, only ESAs involving the 5,6 and X states of the monomer chromophores can be found in the 

unstacked dimer (See Table S7-2 and S7-3 for label assignment). Wave function analysis shows that new 

signals that are dominant in this regime arise from CTs or new transitions due to orbital mixing and 

delocalisation. Upon stacking, CT states can be reached from the Lb of both chromophores, while in non-

interacting aggregates the CTs are darks and often inaccessible. When stacked, the overlap of the π orbitals 

may stabilise the energies by more than 1000 cm-1, thus enhancing the TDM both from the GS and the Lb 

bands [27]. Therefore, CT states are strongly dependent on the relative geometric orientation, distance of the 

chromophores, and orbital overlap.   



Chapter 7 

229 

 

 

Figure 7. 9. Simulated two-colour 2DUV spectra of unstacked (A) and stacked (B) lignin dimer in solution.  The 

signals are labelled, according to Table 7.X.  

Here, we can track spectroscopic fingerprint between two aggregation states of lignin. The results obtained 

with the SOS//QM/MM methodology show that 2D electronic spectroscopy has excellent potential as a novel 

diagnostic tool to track the folding state of polymers and DNA. Moreover, they can be used as a guide for 

conducting 2D spectroscopy experiments of several macromolecules including proteins, and RNA/DNA  and, 

as shown here, aromatic motifs present in complex materials, such as lignin.   

4. Conclusions 

In this work, we studied the electronic structure and conformations in water of a guaiacyl lignin dimer 

employing 2D electronic spectroscopy in the UV-VIS region, using the SOS//QM/MM methodology at the 

CASSCF and RASSCF level of theory. First, vertical excitation energies and 2D-UV/VIS excitation spectra 
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were obtained for all lignin model monomers (guaiacol, creosol, homoveratrole) in gas phase, including all π 

and lone-pair electrons and orbitals in the active space. They were further compared against anisole and 

previously studied benzene and phenol, to aid in excited state assignments. The excited states below the 

ionization potential correspond to classical ππ∗ excitations of a 1B2u state. In the energy region below 

ionisation potential, red-shifted absorptions and almost no splitting of the 1E1u and 11E2g  doublets is observed 

for GUA and CREO, relative to the benzene absorption energies. HVER, on the contrary, displays a 

somewhat higher splitting than the substituted phenols studied here, but this splitting is not as dramatic as in 

phenol or anisole. Furthermore, the 1B2u, 
1B1u

, and the 11E2 states are dipole allowed.  The methoxy and methyl 

functionalization of benzene in the lignin monomers induces an increase in the TDMs of almost all transitions, 

including those from the GS and the 1B2u as also observed for phenol. Furthermore, we found an excellent 

agreement between the 2DEF obtained with CAS and RAS schemes for the monomers.  

We studied the 1-colour and 2-colour 2D electronic spectra of stacked and unstacked lignin conformers in 

solution and gas-phase taken from MD simulations of the lignin dimer studied in Chapter 4. Excellent 

agreement between the RAS and CAS schemes for the computation of GS→Lb transitions in each monomer is 

achieved. The CAS and RAS schemes yield TMDs that are comparable for both for the monomers in the gas 

phase and the lignin dimers in solution. Thus, as established previously by Nenov et al. [27], the decrease of 

signal intensity is an environmental effect related to the conformation and the solvent arrangement. Moreover, 

The 1-colour 2D spectra of the unstacked dimer show that the Lb states of each lignin monomer are uncoupled 

and localised in each chromophore. 

Moreover, the 2D spectra of the stacked dimer shows that the Lb states are coupled and delocalized in the 

rings. Furthermore, the 2-colour 2DUV spectra show that charge transfer (CT) states become bright upon 

stacking, allowing to distinguish between two conformers with different degrees of stacking. Thus, our results 

provide evidence that the use of the SOS//QM/MM approach employed here is suitable for studying 2DUV-

vis spectra of different degrees of aggregation of lignin dimers.  
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Chapter 8. Summary of the conclusions and perspectives 

Classical molecular dynamics simulations (MD), quantum chemistry calculations (QM-DFT), and combined 

QM/MM (BOMD/MD) approaches were employed to describe at the atomistic level the effect of the solvents on 

the structure and dynamics of truncated polymer models of lignocellulose compounds - cellulose, hemicellulose, 

and lignin. 

1. First, the structures of solvent mixtures, their thermodynamic properties and their global chemical hardness, 

which can be used as estimate of the solvents reactivity, were described at solvents equilibrium dynamics, 

obtained with MD simulations. A non-linear behaviour with the increase of the organic component in the aqueous 

mixture was established. The organic components are ethanol, acetonitrile and isopropanol at 0, 25, 50, 75 and 

100 wt% organic cosolvent concentrations.  

1.1 The solvent structures experience significant changes at all the concentrations. Acetonitrile is not an H-bond 

donor, and it is inferred that the presence of water and the formation of H-bonds helps it to reduce the strong 

dipole-dipole interactions while preserving the microheterogeneity of the mixture.  

1.2 The proposed by us simple method for the averaged, dynamic, chemical hardness computations revealed that 

the water-ethanol mixture becomes softer with increasing ethanol content up to 75%, whereas water-acetonitrile 

mixtures are nearly equally soft at 50 wt% and 75wt% water-acetonitrile mixtures and the pure acetonitrile is even 

softer.  

1.3 As a general trend, a softening of the water solvent by introducing the organic cosolvents is obtained with the 

only exception for the isopropanol-water mixture at X = 0.75. This trend correlates in overall with the deduced 

from the hydrogen bonds (HB) analysis maximum of water and the organic solvent interactions at 75% mixtures.  

1.4 The proposed method for dynamic chemical hardness computations could be further explored to rationalize 

the behaviour of complex solute systems in mixed solvents, providing dynamic hardness values of the solutes are 

also assessed.   

2. Second,  the structure and solvation of the cellulose nanocrystal, lignin dimer and tetramer, and xylose were 

investigated through solvent accessible surface area (SASA), conformational analysis, H-bonding and H-bond 

lifetimes, and radial distribution functions. The considered solvents are first pure water, ethanol and acetonitrile, 

and second, the binary mixtures of water with the two organic solvents at 25, 50 and 75 wt% concentrations. The 

lignocelluloses-solvent specific interactions were established, depending on the lignocellulose molecular structure 

and the solvent compositions. In more details: 
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2.1 The SASA distributions analysis shows the largest cellulose nanocrystal solvent accessible surfaces in the 

presence of mixed solvents, whereas it has a minimum in the presence of pure acetonitrile, followed by pure 

ethanol and water. Likewise, lignin displays the highest surface area in the presence of mixed solvents, while 

water remains a bad solvent for lignin.  On the contrary, the hygroscopic nature of xylose results in the lowest 

surface area in pure acetonitrile and ethanol, whereas a tendency of a more extended surface is observed in pure 

water and the diluted mixtures. 

2.2 The analysis of the hydroxymethyl group conformations in cellulose shows a higher frequency of tg 

conformers in pure organic solvents indicating lower capacity of hydroxymethyl to form intramolecular H-bonds; 

following a transition from tg to more solvent exposed gg conformation in the mixed solvents. In the pure water 

solvent, the solvent exposed gg-hydroxymethyl conformer is predominant.  

2.3 The torsion angle analysis of the xylose glycosidic bond has shown that xylose adopts a left-handed threefold 

conformation in water and diluted mixtures, whereas a twofold conformation is favoured in pure and concentrated 

organic solvents.  

2.4 The analysis of the β-O-4 torsion angle in lignin shows a dihedral conformation distribution near θ=~-90° in 

pure water and diluted ethanol which corresponds to a stacked conformation. In contrast, a more extended T-

stacked conformation with a distribution that falls near θ equal to ~-150° is found in pure and concentrated 

organic solvents.  

2.5 The polymer-solvent correlation analysis using the radial distribution functions show that lignin-water and 

lignin-ethanol display similar coordination-site trends in pure and mixed solvents, favouring the electrostatic 

interactions and coordinating preferentially the Oγ sites. In acetonitrile-water mixtures, however, the Oγ site 

becomes rapidly coordinated by water; therefore, the lignin-acetonitrile coordination is inverted and follows the 

order Oα > Oγ, whereas OMe becomes coordinated at diluted acetonitrile content by the methyl group of 

acetonitrile.  

2.6 Likewise, the xylan coordination analysis shows that water and ethanol interact mostly electrostatically with 

the O2 and O3 sites, whereas apolar interactions between the methyl group of acetonitrile and O2 are preferred. 

Moreover, the Oxylose-CEtOH and the Oxylose-CACN display a coordination-site inversion and follow the order O3 > O2 

in all water-organic solvent mixtures. On the other hand, the cellulose-water coordination follows the order O6 > 

O2> and displays higher number densities in the hydrophilic than the hydrophobic surfaces. Similarly, ethanol 

follows the order O6 > O2 whereas acetonitrile shows higher coordination for O2 than O6. Furthermore, while the 

water number density is expected to decrease with the addition of organic solvent, the water exclusion in 

acetonitrile mixtures from the first cellulose solvation shell, especially in the hydrophobic surface, is stronger than 
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for ethanol mixtures. An increase of the co-solvent phase could yield a more hydrated and more extended water 

shell around cellulose hydrophilic surfaces, which, enhanced by local microheterogeneity of water-acetonitrile 

mixtures[1], results in phase-separation when in contact with the different cellulose surfaces. Ethanol mixtures, on 

the contrary, remain less separated as ethanol-water mixtures are more homogeneous and also share a similar 

affinity for a specific oxygen site in cellulose. 

2.7 Quantum chemistry calculations were used to study the polarization effect of solvents in the partial charges of 

lignin tetramers and cellulose chains. The Mulliken charges of cellulose oxygens in the presence of water are 

considerably affected by the solvent in comparison to the gas phase, whereas the effect is significantly reduced in 

the presence of acetonitrile. The partial charge of the glycosidic oxygen is affected despite the significant lower 

coordination reported in the RDFs. Similarly, the partial charges of  OMe, Oβ, Oγ, and Oα oxygens in lignin 

tetramers show that water strongly interacts with Oγ, and Oα oxygens, while the others remain less disrupted in 

the presence of acetonitrile than in the presence of water or ethanol.  

2.8 DFT energies of lignin dimers obtained from BOMD/MD dynamics showed that low energy conformations 

with a low number of intramolecular H-bonds can exist thanks to a stabilization effect of the solvent. The energy 

gain due to H-bond interactions with the solvent greatly compensates the loss of intramolecular H-bonding, 

allowing the existence of low energy conformers in the presence of water. Moreover, the lignin-solvent 

interactions pass through an optimization when adding ethanol to water solvent, as found for the most 

energetically stable and more solvent-interacting lignin dimer in 75wt%-ethanol-water mixtures.  Despite the 

relatively small lignin models, our results are in a qualitative agreement with recent studies that show an increase 

of lignin solubility in water-ethanol mixtures[2]. 

3. Molecular dynamics simulations were employed to describe at the atomistic level the effect of the solvents on 

the adhesion of lignin to cellulose and to hemicelluloses, while considering the same solvent compositions as for 

the individual lignocelluloses compounds.  

3.1 We followed the adhesion behaviour between xylose and lignin tetramers and the radial distribution analysis 

show that it is less likely to find lignin coordinating xylan in pure water, as the hemicellulose becomes rapidly 

hydrated. The addition of the organic phase, however, increases the xylose-lignin coordination and the effect 

becomes more notorious in the presence of the pure organic solvents.  

3.2 The xylose-lignin interactions energies profiles have a non-linear behaviour to the organic solvent 

composition, in agreement with our observations of the H-bond distributions and the xylose-lignin radial 

distribution functions. In water, a bad solvent for lignin but with a high affinity for hemicellulose, the xylose-

lignin complex displays the weakest binding energy, followed by 50% acetonitrile. The strongest adhesion 
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between xylose and lignin is observed at 75% ethanol mixture, followed by 25% and 75% acetonitrile mixture, 

which we have reported to be good solvents for lignin as the SASA distribution of lignin tetramers reaches a 

maximum. Furthermore, at these concentrations, the presence of the organic phase seems to slow down the xylose 

conformational changes and, thus, the detachment to lignin.   

3.3 Concerning the adsorption behaviour of lignin dimer on the cellulose hydrophobic and hydrophilic surfaces, 

we found that lignin could be stabilized in the presence of water by stacking interactions between the phenolic 

groups and the saccharide groups. Lignin dimers were found to preferentially interact with the hydrophilic chains 

of cellulose, whose less polar aliphatic hydrogen atoms of the glucose rings are exposed.  

3.4 Water is the medium that favours mostly the adhesion of lignin on cellulose, followed by ethanol and 

acetonitrile pure solvents. In the mixed solvents, the cellulose-lignin adhesion is strongly disrupted.  

3.5 The specific organization of the solvent molecules in the binary mixtures around the cellulose-lignin complex 

is identified as the most important factor affecting the cellulose-lignin conformations and their interaction 

energies.  Moreover, the preferential interactions of the two organic components in the presence of water 

depending on their chemical nature and concentration. The weakest (or no adhesion) of lignin on cellulose is 

found in the 50% acetonitrile-water solvent, and at 75% ethanol-water solvent. Despite the relatively small 

cellulose-lignin model, our MD results are in a qualitative agreement with recent studies that show an increase of 

lignin solubility in water-ethanol mixtures [2]. 

4. Finally,  we studied the electronic structure and conformations in water of a guaiacyl lignin dimer employing 

2D electronic spectroscopy in the UV-VIS region, using the SOS//QM/MM methodology at the CASSCF and 

RASSCF level of theory. First, vertical excitation energies and 2D-UV/VIS excitation spectra were obtained for 

all lignin model monomers (guaiacol, creosol, homoveratrole) in gas phase, including all π and lone-pair electrons 

and orbitals in the active space. They were further compared against anisole and previously studied benzene and 

phenol, to aid in excited state assignments.  

4.1 The excited states below the ionization potential correspond to classical ππ∗ excitations of a 1B2u state. In the 

energy region below ionisation potential, red-shifted absorptions and almost no splitting of the 1E1u and 11E2g  

doublets is observed for GUA and CREO, relative to the benzene absorption energies.  

4.2 HVER, on the contrary, displays a somewhat higher splitting than the substituted phenols studied here, but 

this splitting is not as dramatic as in phenol or anisole. Furthermore, the 1B2u, 
1B1u

, and the 11E2 states are dipole 

allowed.  The methoxy and methyl functionalization of benzene in the lignin monomers induces an increase in the 
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TDMs of almost all transitions, including those from the GS and the 1B2u as also observed for phenol.Furthermore, 

we found an excellent agreement between the 2DEF obtained with CAS and RAS schemes for the monomers.  

4.3 We studied the 1-colour and 2-colour 2D electronic spectra of stacked and unstacked lignin conformers in 

solution and gas-phase taken from MD simulations of the lignin dimer studied in Chapter 4. Excellent agreement 

between the RAS and CAS schemes for the computation of GS→Lb transitions in each monomer is achieved. The 

CAS and RAS schemes yield TMDs that are comparable for both, the monomers in the gas phase and the lignin 

dimers in solution. Thus, as established previously by Nenov et al. [3], the decrease of signal intensity is an 

environmental effect related to the conformation and the solvent arrangement. Moreover, The 1-colour 2D spectra 

of the unstacked dimer show that the Lb states of each lignin monomer are uncoupled and localised in each 

chromophore. 

4.4 Moreover, the 2D spectra of the stacked dimer shows that the Lb states are coupled and delocalized in the 

rings. Furthermore, the 2-colour 2DUV spectra show that charge transfer (CT) states become bright upon 

stacking, allowing to distinguish between two conformers with different degrees of stacking.Thus, our results 

provide evidence that the use of the SOS//QM/MM approach employed here is suitable for studying 2DUV-vis 

spectra of different degrees of aggregation of lignin dimers.  

Perspectives: This proposed methodologies, results and conclusions from this thesis work open several 

directions for future investigations of biomass at atomistic levels: 

1. The method for dynamic chemical reactivity descriptors, as is the chemical hardness, opens the possibility 

to explore the principle of hard-soft-acid-base relations by comparing the evolutions of the reactivity 

descriptors a wide range of complex solute molecular systems in solvents, while taking in consideration 

the dynamics of the solutes and solvent structures. Moreover, this is a simple scheme, and in this first 

study, we demonstrated its applicability, which opens the possibility for further verification and 

applications to more complex molecular systems. 

 

2. The understood specific interactions of the here investigated solvents evidences the complexity of the 

lignocellulose matrices in various solvents, but paved the way for more studies on larger systems or might 

be used as input knowledge in the machine-learning algorithms. To feed up these algorithms a more 

extensive calculations on small and simple models of lignocellulosic compounds are needed. 

 

 

3. The BOMD/MD simulations demonstrated the applicability of the QM/MM scheme and opened the 

perspectives of  increasing the precision of computations on lignocelluloses-explicit solvents by including 

a less parameter-dependent approach to large size of systems. 
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4. The generation of MD trajectories of relatively complex systems, as those presented here, and the 

implementation of QM/MM schemes allow to apply theoretical chemistry not only to averaged reactivity 

descriptors, but also to various spectroscopic properties in solution. In this way, one can provide 

additional bases for assignments and interpretation of spectroscopic fingerprints that start to be available 

from experiments of various lignocellulose compounds in different solvent media.  
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2. SI Chapter 3. Structures, intermolecular interactions and chemical 

hardness of binary water- organic solvents 

3.1 Thermodynamic properties of pure solvents 

The simulations for the aqueous mixtures of ethanol, isopropanol, and acetonitrile were performed on 4-nm boxes, using the 

NPT ensemble at 298.15 K and 1 bar. As follows from the results in Error! Reference source not found., all simulated s

olvents reproduced closely the reference experimental temperature and pressure conditions, as well as the experimental 

thermodynamic properties (see main text).  

Table S 2-1. Calculated thermodynamic properties from MD simulations: pressure (P), temperature (T), density (ρ), 

enthalpy of vaporization (ΔHvap), average number of hydrogen bonds per molecule (HB) and diffusivity (D). The 

number of molecules (N) is reported as well as the experimental values when available. For the references see the 

reference list in the main paper. 

 

Water EtOH 2PrOH AN 

N 2133 657 501 730 

a)T (K) ref. 298.15 298.13 300.9 301.9 299.6 

a) P (bar) Ref. 1 bar 1.3 1.2 1.4 1.6 

ρ (g/L) 986.3 787 786.3 771.8 

ρ (g/L) expt. 997 [1, 2] 785 [1, 3] 781.1 [4] 777 [2, 5] 

ΔHvap (kJ/mol) 43.64 42.88 45.46 33.63 

ΔHvap (kJ/mol) expt. 43.98 [6] 42.32 [6] 45.39 [6] 32.94 [6] 

HB 3.54 1.84 1.83 0 

D (105 cm2/s) 3.061 0.98 0.49 2.60 

D (105 cm2/s) expt. 2.272 [7] 1.075 [3] 0.462 [8] 4.31 [9] 

                                         a) The reference temperature and pressure are, respectively, 298.15 K and 1bar. 

 

The ΔHvap  was calculated by using equation S1.  

 

𝛥𝐻𝑣𝑎𝑝 = 𝐻𝑔𝑎𝑠 − 𝐻𝑙𝑖𝑞 = (𝑈 + 𝑃𝑉)𝑔𝑎𝑠 − (𝑈 + 𝑃𝑉)𝑙𝑖𝑞 =̂ 𝐸𝑖𝑛𝑡𝑟𝑎(𝑔) + 𝑅𝑇 − 𝐸𝑖𝑛𝑡𝑟𝑎(𝑙)    (S1) 

 

Assuming the gas behaves as an ideal gas, and that the volume of the liquid phase is negligible in comparison to the volume 

of the gas phase, the internal energy of liquid can be obtained directly from the potential energy during the simulation and the 

internal energy of the gas can be computed separately. To this end, one solvent molecule was placed in a cubic box in 
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vacuum and it was simulated during 20 ns-MD without using cut-off’s and with no periodic boundary conditions. Potential 

energies were computed for each solvent. For all simulated solvent systems, the calculated ΔHvap values agree with the 

experimental values with errors within 0.4%, 1.3%, 0.2%, and 2.1% for ethanol, isopropanol, and acetonitrile solvents, 

respectively.  

 

Table S 2-2. Calculated thermodynamic properties from MD simulations: pressure (P), temperature (T), density (ρ), 

enthalpy of vaporization (ΔHvap), potential energy (Epot) average, and number of hydrogen bonds per molecule 

(HB). 

EtOH 

Xcosol  0.25  0.50  0.75  1 

N EtOH  201 381 534 657 
N Water  1539 973 455 0 
N Total  1740 1354 989 657 
T (K)  298.62 299.40 300.23 300.9 
P (bar)  1.26 1.70 1.35 1.2 
 ρ (g/L) 941.80 894.53 844.68 787 
Epot (kJ/mol) -40.60 -39.36 -37.26 -33.15 

ΔHmix (kJ/mol) -0.36 -0.48 -0.47 - 
HBsys 3.35 3.06 2.60 1.84 
HBW-W 2.83 1.93 0.85 - 
HBEtOH-EtOH  0.03 0.14 0.50 1.84 
HBEtOH-W 0.50 0.98 1.25 - 

2PrOH 

Xcosol  0.25  0.50  0.75  1 
N 2PrOH 153 288 403 501 
N Water  1531 960 448 0 
N Total  1684 1248 851 501 
T (K)  298.87 299.82 300.97 301.9 
P (bar)  1.43 1.41 1.20 1.4 
 ρ (g/L) 941.70 890.83 839.43 786.3 
Epot.mix (kJ/mol) -52.68 -70.46 -100.88 -167.57 

ΔHmix (kJ/mol) -0.24 -0.15 0.08 - 
HBsys 3.38 3.12 2.67 1.83 
HBW-W 2.97 2.20 1.12 - 
HB2PrOH-2PrOH  0.02 0.10 0.39 1.83 
HB2PrOH-W 0.39 0.82 1.16 - 

AN 

Xcosol  0.25  0.50  0.75  1 
N AN 224 417 582 730 
N Water  1534 950 442 0 
N Total  1758 1367 1024 730 
T (K)  298.36 298.80 299.11 299.6 
P (bar)  0.82 0.71 1.15 1.6 
 ρ (g/L) 924.33 864.67 813.06 771.8 
Epot.mix (kJ/mol) -44.57 -49.55 -57.11 -70.94 

ΔH.mix (kJ/mol) 0.38 0.72 0.96 - 
HBsys  3.08 2.44 1.50 - 
HBW-W 2.83 2.07 1.05 - 
HBAN-AN  - - - - 
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HBAN-W  0.24 0.37 0.45 - 

 

3.2 Structures of the aqueous binary solvents 

 
Figure S 2-1. Trajectory snapshot, illustrating the acetonitrile molecular orientations. Ball-and-stick representation is 

used for a visualization of the parallel and antiparallel intermolecular arrangement. The number of acetonitrile 

(ACN) residues and the N-N distances are reported in the Figure.   

 

 

Figure S 2-2. Fig. S1 Trajectory frames for water- a) EtOH, b) 2PrOH, and c) AN mixtures at X0.75. Oxygen water 

molecules are represented by red balls, whereas cosolvent molecules are depicted as a solvent dot mesh. Alcohol 

mixtures display an uniform distribution of molecules, whereas local phase separation (microheterogeneity) is 

observed in acetonitrile mixtures. 

Water-EtOH Water-2PrOH Water-AN 

a) b) c) 
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Figure S 2-3. Fig. S2 Cumulative numbers, n(r) in the range of 2nm for the a) cosolvent-cosolvent, b) water-water, and 

c) cosolvent-water pairs. The water oxygen, ethanol oxygen, isopropanol oxygen, and acetonitrile nitrogen are the 

reference sites  

3.3 Hydrogen bond autocorrelation functions  

 

Figure S 2-4. Fig. S3 Hydrogen bond autocorrelation functions, C(t), of the a) cosolvent-cosolvent, b) water-water, and 

c) cosolvent-water types.   

 

 

3.4 Dynamic hardness as a function of solvent composition 

Table S 2-3. Computed averaged hardness in eV from MD simulations of water-ethanol, water-isopropanol and 

water-acetonitrile mixtures with different cosolvent fraction Xcosol.  

 

a) b) c) 

a) b) c) 
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Xcosol EtOH 2PrOH AN 

0 8.38 8.38 8.38 

0.25 8.34 7.84 7.62 

0.50 6.96 7.30 7.16 

0.75 6.26 8.94 7.28 

1 7.24 8.28 6.76 
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3. SI Chapter 4. Solvent effect on the structure and dynamics of 

lignocellulose model compounds 

4.1 Cellulose-solvent radial distribution functions in mixed solvents 

 

Figure S 3-1. Ocell-Owater (A) and Ocell-OEtOH  (B) g(r)s in water-EtOH mixtures (wt%) 
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Figure S 3-2. Figure S1. Ocell-Owater (A) and Ocell-OACN (B) g(r)s in water-ACN mixtures (wt%) 
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4.2 Xylose-solvent radial distribution functions in mixed solvents 

 

Figure S 3-3. Oxylose-Owater and Oxylose-CEtOH  in water-EtOH mixtures (wt%) 
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Figure S 3-4. Figure S4. Oxylose-Owater and Oxylose-CACN  in water-ACN mixtures (wt%) 
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4.3 Lignin-solvent radial distribution functions in mixed solvents 

 

Figure S 3-5. Figure S5. Olig-Owater and Olig-OEtOH  in water-EtOH mixtures (wt%) 

 

Figure S 3-6.  Olig-Owater and Olig-NACN  in water-ACN mixtures (wt%) 

 

 



Supporting Information 

252 

 

4.4 Polymer-solvent LJ and Coulomb interactions energies   

 

Figure S 3-7. Cellulose-solvent Lennard Jones (LJ) and Coulomb (Coul) energies of interaction as a function of 

cosolvent fraction 
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Figure S 3-8. Figure S8. lignin-solvent Lennard Jones (LJ) and Coulomb (Coul) energies of interaction as a 

function of cosolvent fraction 
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Figure S 3-9. Figure S8. Hemicellulose-solvent Lennard Jones (LJ) and Coulomb (Coul) energies of interaction as a 

function of cosolvent fraction
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4. SI Chapter 5. Solvent effect on the adhesion between 

lignocellulose compounds 

5.1 Cellulose-lignin radial distribution functions  

 

 

Figure S 4-1. Ocell-Oγlig (A) and Ocell-OMelig (B) in water-EtOH and water-ACN mixtures 
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5.2 LJ, Coulomb and Total xylan-lignin interaction energies 

Table S5-1. Average Lennard-Jones (LJ) , Coulomb (Coul) energies, and Total (LJ+Coul) lignin-cellulose energies in 

kJ/mol at 2-ns and 10-ns MD. 

Average Energies (kJ/mol) 

    2ns         10 ns      

Solvent LJ 
  

Coul 
  

Total 
  

LJ 
  

Coul 
  

Total 
  

water -13.5 ± 17.0 -14.8 ± 21.3 -28.3 ± 34.3 -5.0 ± 10.6 -4.2 ± 12.2 -9.2 ± 20.7 

0.25 EtOH -30.4 ± 15.5 -34.6 ± 26.2 -65.0 ± 37.0 -13.1 ± 14.9 -13.8 ± 20.1 -27.0 ± 32.6 

0.50 EtOH -26.3 ± 16.6 -25.5 ± 20.4 -51.8 ± 32.3 -9.2 ± 13.7 -10.6 ± 17.4 -19.8 ± 28.8 

0.75 EtOH -57.3 ± 11.7 -68.3 ± 15.1 -125.6 ± 20.3 -16.6 ± 24.1 -20.7 ± 29.7 -37.3 ± 52.7 

EtOH -44.2 ± 13.5 -39.9 ± 26.6 -84.1 ± 35.8 -13.0 ± 18.3 -17.9 ± 22.9 -30.8 ± 37.4 

0.25 ACN -24.3 ± 21.4 -25.5 ± 21.3 -49.8 ± 38.3 -14.4 ± 16.0 -14.9 ± 18.5 -29.3 ± 30.9 

0.50 ACN -23.5 ± 20.9 -30.1 ± 28.3 -53.6 ± 46.5 -5.1 ± 13.7 -6.5 ± 18.1 -11.6 ± 30.9 

0.75 ACN -34.8 ± 20.8 -35.3 ± 28.0 -70.1 ± 45.1 -13.6 ± 21.4 -13.4 ± 23.2 -27.1 ± 42.0 

ACN -33.4 ± 17.7 -49.4 ± 32.1 -82.8 ± 45.2 -7.2 ± 15.8 -10.4 ± 24.9 -17.5 ± 39.5 

Vacuo -74.1 ± 13.4 -84.6 ± 22.2 -158.7 ± 22.2 -65.9 ± 14.9 -94.3 ± 20.0 -160.1 ± 22.0 
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5. SI Chapter 6. General discussion: the solvent effect on 

lignocellulose compounds interactions, conformations, and 

dynamics 

6.1 Radial distributions of cellulose-solvent and lignin-solvent in cellulose-lignin complex 

 
Figure S5-1-1- Solvation of cellulose in pure solvents. Radial distribution functions, g(r), of the Ocellulose-

Xsolvent pairs, for hydrophilic (chains AF) and hydrophobic (chains BDEG) surfaces. Ocellulose colour code is 

O2 (black), O3 (red), O4 (green), O5 (blue), and O6 (orange), see Figure 2 for oxygen notation. The reference site, 

X, in the solvents are water oxygen, EtOH oxygen, and ACN nitrogen. 
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Figure S6-2. Ocell-Owater (A) and Ocell-OEtOH  (B) g(r)s in water-EtOH mixtures (wt%) 
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Figure S6-3. Ocell-Owater (A) and Ocell-OACN (B) g(r)s in water-ACN mixtures (wt%) 
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Figure S6-4. Olig-Owater and Olig-OEtOH  in water-EtOH mixtures (wt%) 
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Figure S6-5. Olig-Owater and Olig-OACN  in water-ACN mixtures (wt%) 

6.2 Number of solvent molecules within 0.7 nm cellulose-solvent shell in cellulose-lignin complex 

 

Figure S6-6. Olig-Owater and Olig-OACN  in water-ACN mixtures (wt%)
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6. SI Chapter 7. First-Principles Simulations of Two-Dimensional 

Electronic Spectroscopy of lignin model monomers and their β-

O-4 linked dimer 

7.1 Vertical  excitation energies of lignin monomers 

Table S 6-1. Vertical GS→SN  Excitation Energies (eV) and Transition Dipole Moments Magnitudes (au) in the  anisole, guaiacyl, 

creosol, and homoveratrole above the first ionization potential. Anisole calculations were obtained at the CAS (7,8), while the rest 

of the monomers were obtained at the CAS(8,10) level. aDominant configurations (referred to orbitals in Figure X) and 

corresponding CI coefficients. States nomenclature refers to the ideal D6h symmetry of benzene (Table X). Experimental transition 

energies are reported, when available, in parentheses.  
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Table S 6-2. Vertical GS→SN  Excitation Energies (eV) and Transition Dipole Moments Magnitudes (au) in the  

anisole, guaiacyl, creosol, and homoveratrole  at the CASSCF and RASSCF level. States nomenclature refers to the 

ideal D6h symmetry of benzene (Table X).  

 
GUA CRE HVER 

State CAS(10,8) RAS(4,5|0,0|4,3) Δ CAS(10,8 RAS(4,5|0,0|4,3) Δ CAS(10,8) RAS(4,5|0,0|4,3) Δ 

1B2u 4.58 4.59 -0.01 4.5 4.5 0 4.51 4.51 0 

1B1u 5.86 5.86 0 5.83 5.81 0.02 5.65 5.64 0.01 

1E1u 6.69 6.62 0.07 6.51 6.45 0.06 6.42 6.36 0.06 

1E1u 6.7 6.65 0.05 6.52 6.46 0.06 6.49 6.42 0.07 

11E2g 7.16 7.16 0 7.09 7.07 0.02 6.95 6.95 0 

11E2g 7.22 7.19 0.03 7.09 7.08 0.01 7.02 6.99 0.03 

Nw 8.44 8.44 0 8.48 8.48 0 8.11 8.09 0.02 

1D 9 9.03 -0.03 8.52 8.56 -0.04 8.39 8.41 -0.02 

21E2g 8.82 8.86 -0.04 8.95 8.99 -0.04 8.42 8.41 0.01 

21E2g 8.98 8.98 0 9.05 9.06 -0.01 8.46 8.46 0 

1O 9.45 9.42 0.03 9.15 9.14 0.01 8.62 8.64 -0.02 

1O  
   

9.19 9.16 0.03 
   

2D 9.6 9.62 -0.02 9.56 9.58 -0.02 9.49 9.5 -0.01 

3D 9.63 9.7 -0.07 
   

10.07 10.08 -0.01 

2O 10.36 10.38 -0.02 10.31 10.32 -0.01 9.87 9.87 0 

2O  10.34 10.35 -0.01 10.29 10.29 0 9.98 9.99 -0.01 

4D 10.65 10.67 -0.02 10.6 10.61 -0.01 10.35 10.35 0 

7.2 Vertical excitation energies of the unstacked lignin dimer 

Table S 6-3. Vertical excitation energies of the unstacked lignin dimer 

SA10-ss-PT2-CAS(20,16) SA-50-ssPT2-RAS(4,10|0,0|4,6) 

Lb*→Sn   Lb*→Sn Lb→Sn Lb*→Sn   Lb*→Sn Lb→Sn 

E(eV) 
TDM 

Trans. Label 
E 

(cm-1) TDM 

E 

(cm-1) TDM 
E(eV) 

TDM 
Trans. Label 

E 

(cm-1) TDM 

E 

(cm-1) TDM 

0   GS -36.38 0.21 -36.70 0.25 0   GS -36.29 0.23 -36.70 0.27                 
4.51 0.21 3*->5* 1*, Lb* 0.00  -0.32 0.00 4.5 0.23 3*->5n* 1*, Lb* 0.00  -0.32 0.00 

  2*->4*        2*->4*      

  3->5*        3*->4*       

  2*->4                              
4.55 0.25 3->5 1, Lb 0.32 0.00 0.00  4.55 0.27 3->5n 1, Lb 0.32 0.00 0.00  

  2->4         2->4       

  3*->5        3->4       

  2->4*        2->5n                                       
5.77 0.71 3->4* 2*? 10.16 0.18   0.03 5.47 0.72 3*->4* 2* 7.82 0.15 7.50 0.02 

  3*->4*        2*->5n*      

  1*->4*        3*->5n*      

  3*->4        1*->4*      
5.87 0.49 3->4 2 10.97 0.03 10.65 0.17 5.61 0.50 3->4 2(1) 8.95 0.02 8.63 0.15 

  3*->4        3->5n      

  2->5        2->5n      

  3*->4*         2->4       

  1->4        1->4      
                5.99 2.41 2*->4* 3* 12.02 0.08 11.70 0.03 

          3*->5n*      

          2->4       
6.7 0.35 2*->5* 4* 17.66 0.11 17.34 0.03 6.13 1.01 2*->5n* 4* 13.15 0.16 12.82 0.03 

  3->4*        3*->4*      

  3*->4*        2->5n      
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SA10-ss-PT2-CAS(20,16) SA-50-ssPT2-RAS(4,10|0,0|4,6) 

Lb*→Sn   Lb*→Sn Lb→Sn Lb*→Sn   Lb*→Sn Lb→Sn 

E(eV) 
TDM 

Trans. Label 
E 

(cm-1) TDM 

E 

(cm-1) TDM 
E(eV) 

TDM 
Trans. Label 

E 

(cm-1) TDM 

E 

(cm-1) TDM 

  1*->4*        3->4      
6.81 0.33 2->5 4 18.47 0.02 18.23 0.11 6.19 2.38 2*->5n* 4*(4) 13.63 0.14 13.31 0.05 

  3->4        2->5n      

  1->4        3->4      

          3*->4*      

          2->4      
                6.22 1.76 3->5n* Ct1.1 13.87 0.02 13.55 0.11 

          2->5n      

          2->4      
                6.36 1.39 3->5n* 3->5n* 14.92 0.03 14.60 0.12 

          2->4      

          3->5n      

          2->5n      
7.21 0.53 1*->5* 6* 21.78 0.22 21.45 0.01 7.02 0.60 1*->5n* 6* 20.33 0.22 19.92 0.01 

  2*->6*        2*-->5n*      

  2*-->4*,5*       2*->6*      

          3*->4*      

          3*-->5n*      
                7.03 0.42 1*->4* 5*?new? 20.33 0.19 20.00 0.04 

          2*->5n*      

          2*,3*-->4*      

          3*-->4*,5n*      

          3*->6*      
                7.08 0.19 3->4* Ct2.1 20.73 0.03 20.41 0.02 

                7.1 0.37 1->4 5?new? 20.97 0.01 20.57 0.16 

          2->5n      

          3->6      

          2,3-->4      

          3->5n      

          3-->4                      
                7.23 0.25 0as*->5n* 1Ss*.1 22.02 0.22 21.62 0.02 

          0bs*->4*       

          1*->4*       

          0bs*->5n*      

          3*->6*                      
7.32 0.64 1->5 6 22.66 0.01 22.42 0.23 7.23 0.73 1->5n 6 22.02 0.03 21.70 0.24 

  2-->5        2-->4,5n      

  2->6        2->6      

          1->4      

          2-->5n      

          3-->5n      

           2->4                      
7.49 0.02 3,3*-->4*,4 ? 24.04 0.00 23.71 0.00 7.48 0.02 3*,3-->4*,4 2*+2 24.04 0.00 23.71 0.01 

  3-->4*        3*,3-→4*,5n      

          2*,3-→5n*,4      

          2,3*-→4*,5n                                      
                7.3 0.10 3*->5 n Ct1.3 22.58 0.03 22.26 0.05 

          3*->4                      
                7.52 0.79 0as*->5n* 1Ss*.2 24.36 0.49 24.04 0.04 

          0bs*->4*      

          1*->4*                       
                7.6 0.15 2→5n* ct4 24.92 0.07 24.60 0.09                 
                7.62 0.39 0bs*->5n* 3Ss* 25.16 0.77 24.84 0.01 

          0bs*->4*       

          1*->5n*       

          0as*->4*                      
                7.63 0.12 3->4* ct2(ct1) 25.16 0.02 24.84 0.02 

          3*,3-->5n*,5n     

          3*,3-→5n*,4      

          2*,3-→4*,5n                      
                7.64 0.28 0as*->4*  2Ss*.1 25.33 0.13 25.00 0.08                 
                7.66 0.05 2->4* Ct3.1 25.41 0.09 25.08 0.12                 

              dark 8.15   2,3*-→4*,5n 1D?         

          2*,3-→5n*,4      

          2,3*-->4*,4      

          2*,3-→5n*,5n                     
              dark 8.15   2*,2-→5n*,5n 4*+4         

          3*,3-->4*,4      

          2*,2-->5n*,4      



Supporting Information 

266 

 

SA10-ss-PT2-CAS(20,16) SA-50-ssPT2-RAS(4,10|0,0|4,6) 

Lb*→Sn   Lb*→Sn Lb→Sn Lb*→Sn   Lb*→Sn Lb→Sn 

E(eV) 
TDM 

Trans. Label 
E 

(cm-1) TDM 

E 

(cm-1) TDM 
E(eV) 

TDM 
Trans. Label 

E 

(cm-1) TDM 

E 

(cm-1) TDM 

          2*,3-→5n*,4      

          3*,3-→4*,5n      

           2*,3-→5n*,5n                     
                8.27 0.52 3-->4,5n 2Ss*.2 30.41 0.14 30.00 0.18 

          0as*->4*      

          2,3-->4      

          2,3-->5n      

          GS                      
                8.47 0.09 1->4 4D?new? 32.02 0.01 31.70 0.28 

          3-->4      

          3->6       

           0b->4      

          2,3-->4,5n      

          3-->5n      

          1->5n                      
                8.69 0.06 2*->4 Ct3.2 33.79 0.12 33.39 0.03 

          2*→5n                      
                8.74 0.37 3*-->4* 4D*() 34.12 0.02 33.79 0.07 

          3*-→4*,5n*      

          2*-→5n*      

          2*,3*-->5*      

          3-->4,5       

          2*,3*-->4*,5*                     
                9.02 0.02 3*,3-→5n*,5n 1*+1 36.46 0.27 36.13 0.24 

          3*,3-→5n*,4      

          2*,3-→4*,5n      

          2,3*-->5n*,4                      
                9.5 0.17 3*-→5n* 3D* 40.25 0.24 39.92 0.02 

          2*,3*-→4*,5n*      

          2*,3*-→5n*                      
                10.07 0.05 2*,3*-→4*,5n* 1D* 44.93 0.17 44.60 0.01 

          3*-->4*       

          2*-->5*       

          3*-->4*,5*      

          3*-->5*      

7.3 Vertical excitation energies of the stacked lignin dimer 

Table S 6-4. Vertical excitation energies of the unstacked lignin dimer 

SA10-ss-PT2-CAS(20,16) SA-50-ssPT2-RAS(4,10|0,0|4,6) 

GS→Sn S1→Sn S2-Sn GS→Sn S1→Sn S2-Sn 

E(eV) 
TDM 

Trans. 
E 

(cm-1) TDM 

E 

(cm-1) TDM 
E(eV) 

TDM 
Trans. Label 

E 

(cm-1) TDM 

E 

(cm-1) TDM 

0   -35.81 0.25 -36.46 0.12 0   GS -35.73 0.27 -36.38 0.14 

4.44 0.25 3->5 0.00  -0.65 0.01 4.43 0.27 3d->5m 1(1*)  0.00  -0.65 0.01 

  2->4        3d*->5m* Lb(Lb*)     

  3*->4*       2d*->4m       

  2*->4*       2d->4d      

  3*->5*       3d->5m*      

  2*->5*       3d*->5m      
4.52 0.12 3->5* 0.65 0.01 0.00  4.51 0.14 3d->4m 2(1*) 0.65 0.01 0.00  

  2->4*       3d*->5m* 2(Lb*)     

  3*->5       3d*->4d      

  2*->4       2d->5m*      

  3*->4       2d*->4d      

  2*->5       2d->5m      

         2d*->5m      

         3d->5m      
              5.6 0.45 3d->5m* Ct1.1 9.52 0.05 8.79 0.08 

         3d->5m      
5.53 0.51 3->4* 8.79 0.03 8.15 0.12 5.74 0.27 3d->4d 2(ct2.1) 10.65 0.13 9.92 0.03 

  3*->4       3d*->4m      

         2d*->5m*      

         2d->5m*      
              6.12 2.75 2d->5m 4 13.71 0.07 12.99 0.06 

         2d*->5m*      

         3d->4m      



Supporting Information 

267 

 

         3d*->4d      
6.16 0.35 1->4* 13.87 0.17 13.23 0.03 6.38 0.40 2d*->5m* 4* 15.73 0.30 15.08 0.03 

  3*->4*       3d->4m       

  3->4       3d*->5m      

  1*->4       3d*->5m*      
6.5 0.31 3->4 16.62 0.08 15.97 0.05                 

  2->5             

  2*->4*             
6.79 0.28 3->4* 18.95 0.07 18.31 0.12                 

              6.45 0.74 3d*->5m Ct1.2 16.37 0.04 15.73 0.04 

         3d->5m*      

         3d*->5m*      
              6.48 0.26 3d->5m* Ct1.3 16.53 0.12 15.89 0.07 

         3d*->5m*      

         3d*->5m      

         3d->5m      
              6.52 0.54 3d->4d 2 16.94 0.45 16.21 0.07 

         3d->4m      

         2d*->5m      
6.87 0.20 1->5 19.60 0.16 18.95 0.12                 

7.23 0.43 1->5 22.50 0.15 21.78 0.16                 

  1*->5              

  1->5*             
7.23 0.12 3-->4* 22.50 0.02 21.86 0.03                 

              6.59 1.24 2d->5m* Ct4.1 17.42 0.39 16.78 0.11 

          3d*->4m      

               
              6.59 2.38 3d*->4m  ct2.1(ct4) 17.42 0.15 16.78 0.07 

         2d*->5m      

         2d*->4m      

         3d*->5m      

         2d->4d       
              6.79 1.26 3d*->4d Ct2.2 19.03 0.18 18.39 0.04 

         2d*->4m       

         2d*->5m*      
              6.79 0.25 1->4m 5.1? 19.12 0.14 18.47 0.07 

         2d->5m      

         2d*->5m      
              6.83 0.56 0s*->5m* 1SS* 19.44 0.07 18.79 0.08 

         0s*->4d       
              6.85 0.28 1*->5m* 6* 19.52 0.19 18.87 0.14 

         1->5m*      
              6.93 0.23 no m.1 20.16 0.02 19.52 0.04 

              7 0.28 1->4d 5.2? 20.73 0.09 20.08 0.14 

         3d->5m*      

         1*->5m       

         3d->6d      
              7.1 0.39 3d*->4d Ct2.3 21.54 0.26 20.89 0.03 

         2d*->4m      
              7.12 0.19 3d->5m 1(1*)? 21.70 0.11 21.05 0.04 

         3d*->5m*      
              7.13 0.34 3d->5m 1? 21.86 0.05 21.13 0.01 

              7.15 0.30 2d*->5m* 4*(1?) 21.94 0.04 21.29 0.06 

         3d->5m      
              7.19 0.52 1->5m 6 22.26 0.17 21.62 0.17 

         1->4m      
              7.24 0.32 0s*->5m 1SS? 22.66 0.17 22.02 0.15 

         0s*->4m      

          0s*->4d      
              7.35 0.19 2d*->4d Ct3(3) 23.55 0.13 22.91 0.09 

         2d->4d      

         2d*->4m      
              7.35 0.43 2d->4m 3? 23.63 0.21 22.91 0.05 

         3d*->5m      
              7.72 0.23 2d->4d 3(ct2) 26.62 0.27 25.89 0.09 

         3d*->4m      

         2d*->5m      
              7.87 0.13 2d->4m Ct4.2? 27.83 0.18 27.10 0.10 

         2d*->5m      

         2d->5m      

         2d*->4m      
              7.88 0.13 2d*->4d Ct4.3 27.91 0.16 27.18 0.05 

         2d->4d      

         2d*->4m      
              7.91 0.21 no m.2 28.07 0.07 27.42 0.02 
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              7.92 0.22 no m.3 28.15 0.06 27.50 0.02 

              8.28 0.11 2d*,3d-->5m,4m 1D? 31.05 0.25 30.41 0.11 

         2d,3d*-->5m*,4d     
              8.42 0.21 no m.4 32.18 0.09 31.54 0.02 

               
              8.5 0.21 GS GS 32.91 0.14 32.26 0.11 

               
              8.76 0.09 1->5m* Ct6.1 34.92 0.16 34.28 0.15 

              8.79 0.29 0b*->5m* 3S*(6*) 35.17 0.38 34.52 0.34 

         1*->5m*      
              8.96 0.57 no m.5 36.54 0.12 35.89 0.12 

              9.03 0.10 1->5m 6 37.10 0.15 36.46 0.12 

              9.2 0.04 no m.5 38.47 0.13 37.83 0.07 

              9.4 0.08 no m.6 40.09 0.11 39.44 0.04 

              9.43 0.07 no m.7 40.41 0.14 39.68 0.04 

              10.25 0.10 no m.8 47.02 0.05 46.30 0.03 

7.4 Comparison of 2D spectra of lignin dimer in gas phase and in water 

 

Figure S 6-1. 2D spectra of lignin dimer in gas phase and water at the SA10-CAS(20,16) level 
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Figure S 6-2. 2-color (15000-24000 cm-1) 2D spectra of lignin dimer in gas phase and water at the SA50-

RAS(4,10/0,0/4,6) level 
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Figure S 6-3. 2-color (24000-34000 cm-1) 2D spectra of lignin dimer in gas phase and water at the SA50-

RAS(4,10/0,0/4,6) level 
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Figure S 6-4. 1-color 2D spectra of lignin dimer in gas phase and water at the SA50-RAS(4,10/0,0/4,6) level 
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7.5 2D spectra of HVER monomer and monomer G’ from the unstacked lignin dimer in gas phase   

 

Figure S 6-5. 2-color 2D spectra of HVER monomer and monomer G’ from the unstacked lignin dimer in gas phase   
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7.6 TDM Modified 1-color 2D spectra of unstacked and stacked lignin dimer in solution 

 

 

Figure S 6-6. TDM Modified 1-color 2D spectra of unstacked and stacked lignin dimer in solution 
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Abstract 

Extraction of cellulose and lignin from plant biomass remains a major issue for enabling more economic and green 

production of lignocellulosic renewable fuels and byproducts. Although the use of multicomponent solvents has provided 

remarkable results in wood fractionation processes most of the currently used methods rely on empirically elaborated 

protocols. Understanding the physicochemical mechanisms of biomass breakdown and its interactions with solvent medium 

during fractionation will lead to more efficient use of biomass. This defined the focus in this thesis work on a systematic and 

detailed description of the interactions between ligoncellulose components with binary water-organic mixtures of ethanol and 

acetonitrile. Our results and their analysis were obtained predominantly with molecular dynamics (MD) simulations, and 

supported by additional studies of quantum chemical (Density Functional Theory) and mixed quantum mechanical (QM) and 

classical MD scheme (QM/MM). With these tools we first established a non-linear behavior of the mixed solvent structures, 

thermodynamic properties and dynamic hardness, as a measure for their global reactivity.  The analysis of the average 

numbers of HBs with the liquid composition shows that alcohol molecules tend to substitute water molecules, allowing 

compensating for the loss of H-bonds in the water solvent domains. The role of organic component in water solvent mixtures 

on the conformational changes induced in the main wood components (cellulose, lignin and hemicellulose) is highlighted and 

their dependence on distinct solvent compositions is unveiled for each organic solvent component and its content in water. 

This dependence is explained by preferential solute-solvent interatomic interactions as a function of solvent compositions. 

Subsequently, the evolution of interaction forces in lignin-cellulose and lignin-xylan complexes are also found to have 

solvent-dependent profiles. All this supports the general conclusion about specific solvent actions on lignocellulose 

compounds being the driving factors in the observed macroscopic non-linear behavior in wood swelling in mixed water-

organic solvents.   

Key-words: binary water-organic solvents; lignocelluloses; molecular dynamics, QM/MM 

Résumé 

L'extraction de la cellulose et de la  lignine à partir de la biomasse végétale reste un enjeu majeur pour une production plus 

économique et verte de carburants et de sous-produits lignocellulosiques renouvelables. Bien que l'utilisation de mélanges de 

solvants ait donné des résultats remarquables dans les processus de fractionnement du bois, la plupart des méthodes 

actuellement utilisées reposent sur des protocoles empiriques. Comprendre les mécanismes physico-chimiques de la 

décomposition de la biomasse et ses interactions avec les solvants lors du fractionnement permettra d’améliorer l’efficacité 

de ces méthodes. Dans cette perspective, cette thèse porte sur la description systématique et détaillée des interactions entre les 

composantes de la lignocellulose et des mélanges binaires eau-solvant organique (éthanol ou acétonitrile). Nos résultats et 

leur analyse ont été obtenus principalement avec des simulations de dynamique moléculaire (MD) et étayés par des études 

supplémentaires basées sur la chimie quantique (théorie de la densité fonctionnelle) et la mécanique quantique (QM) et le 

schéma mixte mecanique quantique/mécanique classique (QM/MM). Avec ces outils, nous avons d’abord établi un 

comportement non linéaire des structures avec des solvants mixtes, de leurs propriétés thermodynamiques et de la dureté 

dynamique, en relation avec leur réactivité globale. L'analyse du nombre moyen de liaisons H avec la composition du liquide 

montre que les molécules d'alcool ont tendance à se substituer aux molécules d'eau, ce qui permet de compenser la perte de 

liaisons H dans les domaines solvatés par l'eau. Le rôle des groupements organiques dans les mélanges de solvants sur les 

changements de conformation induits dans les principaux composantes du bois (cellulose, lignine et hémicellulose) est mis en 

évidence et leur dépendance vis-à-vis de la composition en solvants distincts est dévoilée pour chaque solvant organique et sa 

concentration dans l’eau. Cette dépendance est expliquée par les interactions interatomiques préférentielles soluté-solvant en 

fonction des compositions en solvants. Par la suite, l’évolution des forces d’interaction dans les complexes de lignine-

cellulose et de lignine-xylane s’avère également présenter des profils dépendant des solvants. Tout ceci conforte la 

conclusion générale selon laquelle les actions spécifiques des mélanges de solvants à base d’eau et de composés organiques 

sur les composantes de la lignocellulose sont des facteurs déterminants dans le comportement non linéaire macroscopique 

observé dans le gonflement du bois  

Mots-clefs : mélanges binaires eau-solvant organique; lignocellulose; dynamique moléculaire, QM / MM 



 

 

Abstract 

L'estrazione di cellulosa e lignina dalla biomassa vegetale rimane una grande sfida per consentire una produzione più 

economica ed ecocompatibile di carburanti e sottoprodotti lignocellulosici rinnovabili. Sebbene l'uso di solventi 

multicomponente abbia prodotto risultati notevoli nei processi di frazionamento del legno, la maggior parte dei metodi 

attualmente utilizzati si basa su protocolli sviluppati empiricamente. Comprendere i meccanismi fisico-chimici della 

decomposizione della biomassa e le sue interazioni con il solvente durante il frazionamento consentirà un uso più efficiente 

della biomassa. Questa la motivazione del lavoro di tesi su una descrizione sistematica e dettagliata delle interazioni tra i 

componenti della lignocellulosa con miscele binarie acqua-organicocon etanolo e acetonitrile. I nostri risultati e le nostre 

analisi sono stati ottenuti principalmente con simulazioni di dinamica molecolare (MD) e supportati da ulteriori studi sulla 

chimica quantistica (teoria del funzionaledella densità), sulla meccanica quantistica (QM) e sullo schema mistomeccanica 

quantistica / meccanica classica (QM / MM). Con questi strumenti, abbiamo prima definito un comportamento non lineare 

delle strutture dei solventi misti, le loro proprietà termodinamiche e la durezza dinamica, che misura la loro reattività 

complessiva. L'analisi del numero medio di legami idrogeno con la composizione mostra che le molecole di alcol tendono a 

sostituire le molecole di acqua, il che rende possibile compensare la perdita di legami H nelle frazioni acqua del solvente. 

Viene evidenziato il ruolo dei componenti organici delle miscele di solventi acquosi sui cambiamenti conformazionali indotti 

nei principali componenti del legno (cellulosa, lignina ed emicellulosa) e la loro dipendenza dalla composizione di diversi 

solventi misti viene chiarito per ciascun componente di solvente organico e per il suo contenuto in acqua. Questa dipendenza 

è spiegata dalle interazioni interatomiche preferenzialisoluto-solvente in funzione delle composizioni del solvente. Anche 

l'evoluzione delle forze di interazione nei complessi lignina-cellulosa e lignina-xilano sembra mostrare profili dipendenti dal 

solvente. Tutto ciò supporta la conclusione generale che le azioni specifiche di solventi misti a base di acqua e organici su 

composti di lignocellulosa sono determinanti nel comportamento macroscopico non lineare osservato nel gonfiamento del 

legno. 

Parole chiave: solventi binari idro-organici; lignocellulosica; dinamica molecolare, QM / MM 

 


