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Abstract

Process algebraic architectural description languages provide a formal

means for modeling software systems and assessing their properties.

In order to bridge the gap between system modeling and system im-

plementation, in this thesis an approach is proposed for automatically

generating multithreaded object-oriented code from process algebraic

architectural descriptions, in a way that preserves – under certain

assumptions – the properties proved at the architectural level.

The approach is divided into three phases, which are illustrated

by means of a running example based on an audio processing

system. First, we develop an architecture-driven technique for

thread coordination management, which is completely automated

through a suitable package. Second, we address the translation

of the algebraically-specified behavior of the individual software

units into thread templates, which will have to be filled in by

the software developer according to certain guidelines. Third, we

discuss performance issues related to the suitability of synthesizing

monitors rather than threads from software unit descriptions that

satisfy specific constraints.

In addition to the running example, we present two case studies about

a video animation repainting system and the implementation of a

leader election algorithm, in order to summarize the whole approach.

The outcome of this thesis is the implementation of the proposed

approach in a translator called PADL2Java and its integration in the

architecture-centric verification tool TwoTowers.
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Chapter 1

Introduction

The growing complexity and the increasing size of modern software systems

demand the adoption of notations for formal or semi-formal system modeling

(model-driven approach [60, 30, 53]). The main objective of such notations is to

enable the production of incremental design documents, to be shared by all the

people contributing to the various system development phases.

Another task that the aforementioned notations should carry out is to allow for

the rigorous and hopefully automated analysis of functional and non-functional

system properties, in order to avoid delays and cost increases due to the late

discovery of errors in the system development process. In fact it is widely

recognized that the verification of system properties finds its own rightful place

in the architectural design phase [61, 15]. The reason is that this phase precedes

system implementation, hence it opens the way to early property assessment.

Moreover, this phase provides declarative/behavioral/topological system models

that are complete at a high level of abstraction.

As observed e.g. in [35], one of the big issues in the software engineering field

is guaranteeing that the implementation of a software system conforms to its

architectural description. This amounts to say that a way has to be found to

check whether the properties verified at the architectural level are preserved at

the code level. In this respect, it may be helpful to generate code directly from

architectural descriptions, as these represent abstract models of the final systems.

Indeed, the purpose of automatic code generation should be not only to speed up

system implementation, but also to ensure conformance by construction.
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This is the issue that we wish to address in this thesis in the specific case of

concurrent software systems represented through process algebraic architectural

descriptions.

1.1 Process Algebraic Architectural Descrip-

tion Languages

Several architectural description languages (ADLs) have been proposed in the

literature, see e.g. [55]. Many of them – like Wright [4], Darwin/FSP [51, 52], and

PADL/Æmilia [13, 1, 14, 6] – are based on process algebra (PA) due to its support

to compositional modeling [56, 40, 7]. It is worth noting that PA is compositional,

but not component-oriented. Thus, from the point of view of PA, its architectural

versions are a significant step forward in terms of usability. In fact, they give

special prominence to the main architectural concepts – components, connectors,

and styles – while hiding PA technicalities to the designer.

On the modeling side, this architectural upgrade has three important

consequences. First, it permits to describe the behavior of the components

separately from the system topology, thus overcoming the modeling difficulties

deriving from the direct use of certain PA operators like e.g. parallel composition.

Second, it highlights the interactions among components and the classification of

their communications, thus allowing for static checks to establish the system

model well-formedness. Third, it fosters the reuse of the specification of single

components as well as of entire systems, thus supporting the compositional and

hierarchical modeling of system families.

On the analysis side, process algebraic ADLs inherit all the techniques

applicable to PA, in particular equivalence checking and compositional state space

minimization [23]. In addition, such languages are equipped with ad-hoc analysis

techniques (see, e.g., [4, 43, 20, 1, 6]). These ad-hoc techniques are useful for (i)

detecting architectural mismatches – deriving from components that are correct

if taken separately but that do not satisfy certain requirements when assembled

together – (ii) generating diagnostic information – in order to pinpoint those
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components from which the mismatches arise – and (iii) comparing different

architectural designs on the basis of non-functional aspects.

Such component-oriented analysis techniques rely on notions borrowed from

PA – such as behavioral equivalences [37] – or suitable compositional models –

like queueing networks [48]. They can be used for studying various properties,

among which e.g. deadlock freedom and typical average performance metrics, and

in many cases scale from single architectures to families of architectures called

architectural types [13, 1].

1.2 Code Generation Approaches

Among the various approaches for automatically generating code from ar-

chitectural descriptions, we can distinguish two families on the basis of the

distance between the formalism used for describing software architectures and

the implementation language in which code is generated.

The first family, characterized by an “exogenous” approach, is the long-

distance one. More precisely, in this family the formalism is kept well separated

from the implementation language, and descriptions are entirely translated into

code. To this family belong properly-defined ADLs endowed with code generation

facilities as Aesop [36], C2SADEL [54], and Darwin [51].

The second family, characterized by a “semi-endogenous” approach, is the

short-distance one. In this family, the architectural formalism is embedded in the

implementation code in form of special comments, as in SyncGen [27], or in form

of special keywords and statements, as in ArchJava [3]. Here, only the special

symbols are translated into implementation code, while the rest is left unchanged.

While the latter approach can offer a flexible support for software developers –

as classical programming techniques and patterns can be applied when designing

systems – the level of abstraction of the underlying architectural formalism is

usually low. In the case of process algebraic ADLs, the approach typically

adopted for generating code is the former. The reason is that such languages

are specifically conceived for abstracting high-level properties of entire software

systems, hence they are distant from implementation languages.
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1.3 Multithreaded Programs

Concerning the kind of code to be generated, we observe that the increasing im-

portance of multimedia and real-time applications often causes the development

of concurrent software. This activity is well supported by multithreading. Unlike

traditional concurrent programming, where each code unit is a distinct program

executed as a distinct process, multithreading is based on the simultaneous

execution of several portions of code – often sharing some data – within a single

program. The benefit of this technique is evident in multiprocessor/multicore

systems, where concurrency between quasi-independent threads allows the

running time to be reduced proportionally to the number of processors.

However, even in uniprocessor systems, where parallelism is not real but

simulated by means of time sharing, there are several advantages when employing

multithreading. First, the management of the system resources is more efficient,

because idle times can be reduced by suitably switching the CPU among CPU-

bound and I/O-bound threads. Second, the interaction between the program

and its user is fully supported, in such a way that no execution of previously

started threads must be interrupted or completed before the user needs to interact

with the program again. Third, the exchange of structured data among different

threads is made easier by the use of shared memory and shared variables within

the same program, without resorting to the more complicated data passing

techniques typical of multiprocess software systems.

Multithreading offers a good level of flexibility but, on the other hand, more

attention must be paid to synchronization issues as these are completely entrusted

to the software developer. As a consequence, the software developer should be

provided with a suitable support for being confident in the correctness of the way

in which the thread synchronization is dealt with. This is especially important

when the target is an efficient concurrent program, as this usually requires a

complicated combination of several different synchronization techniques, like e.g.

sleep and wakeup primitives, semaphores, and monitors.
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1.4 Proposed Approach

In order to bridge the gap between system modeling and system implementation,

in this thesis we propose an approach for automatically generating multithreaded

programs from process algebraic architectural descriptions.

While at the architectural level we concentrate on PADL [13, 1, 12] due to

its expressiveness, among the programming languages supporting multithreading

we choose Java like in [52] for the following two reasons. First, Java offers a set

of mechanisms for the well-structured management of threads and their shared

data, which should simplify the code generation task. Second, its object-oriented

nature – and specifically its encapsulation capability – makes Java an appropriate

candidate for coping with the high level of abstraction typical of process algebraic

architectural descriptions during code generation.

The proposed approach is divided into three phases, which will be illustrated

by means of a running example based on the PADL description of an audio

processing system. In the first phase we develop an architecture-driven technique

for thread coordination management. Similarly to previous work (see, e.g., [58]),

we advocate the provision of a suitable software package – which we shall call Sync

– that takes care of the details of thread synchronization by means of architecture-

inspired units, in a way that is completely automated and hence transparent to

the software developer. Following the same architecture-centric spirit, the use

of the package units should be guided by the architectural description of the

systems to be developed, as this description is a well suited tool for achieving

correct thread coordination in the case of concurrent object-oriented programs.

In the second phase we handle the translation of the algebraically-specified

behavior of the individual software components into threads. The separation of

thread synchronization management (first phase) from thread behavior generation

turns out to be particularly appropriate in order to limit human intervention.

In fact, while a completely automated and architecture-driven technique can

guarantee correct thread coordination, only a partial translation based on stubs

is possible for the generation of threads. Furthermore, we shall see that the

preservation of the properties proved on the architectural description of the

systems heavily depends on the way in which the stubs are filled in.
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In the third phase we discuss the suitability of synthesizing monitors rather

than threads from component descriptions that satisfy specific constraints. This

overcomes some limitations with respect to [52], where only certain classes of

process algebraic descriptions are considered, as well as with respect to the

previous two phases, where only threads are taken into account. Since monitors

reduce the thread context switch frequency, the synthesis of monitors can improve

the performance of the generated code. Moreover the presence of monitors results

in a lightweight concurrency control management with respect to package Sync,

with the monitors themselves constituting explicit coordination areas that were

not available in the previous two phases.

The whole approach, implemented as a Sync-based translator that we shall

call PADL2Java, is finally integrated in TwoTowers [9]. This is a tool for the

functional verification, security analysis, and performance evaluation of software

architectures described in Æmilia [14, 6], a performance-oriented variant of PADL.

The aim of this integration is to provide the software developer with a fully fledged

environment for architectural design and code generation.

A further outcome of this research work is the enhancement of the ex-

pressiveness of PADL, in which non-synchronous communications have been

integrated [12] together with the introduction of a new data type for abstracting

and modeling objects and complex data structures in software systems. This

results in an increase of the flexibility and effectiveness of the translator

PADL2Java.

1.5 Structure of the Thesis

This thesis is organized as follows:

• In Chap. 2 we provide an overview of tools and approaches for the automatic

generation of code and for the model transformation.

• In Chap. 3 we recall the process algebraic architectural description language

PADL. In the last section of the chapter, the PADL description of an audio

processing system is presented, which will be used as a running example

throughout the rest of the thesis.
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• In Chap. 4, 5, and 6 we illustrate the three phases of the approach. They

are based, respectively, on a thread communication model, on a thread

behavior model, and on a thread-monitor interaction model, which guide

the automatic generation of code.

• In Chap. 7 we present the translator PADL2Java together with its

integration in TwoTowers.

• In Chap. 8 we report on two case studies showing the application of the

proposed approach to the synthesis of a video animation repainting system

and of an implementation of a leader election algorithm.

• Finally, in Chap. 9 we conclude with a summary of results and some remarks

about related and future work.





Chapter 2

Automatic Code Generation

In 1975, Fred Brooks pointed out the difference between intrinsic and accidental

complexity [18]. Intrinsic complexity is how hard a problem really is. Such a

complexity is inherent in the problem and cannot be eliminated by technological

or methodological means. Accidental complexity is the unnecessary complexity

introduced by a technology or method we adopt. For instance, building

construction without using power tools. In our case, the accidental complexity

could be the translation of designs into programs without the help of computers.

In other words, the intrinsic complexity of a system may be related to the

problem-space, in which designs are expressed in terms of the application domain

as, e.g., high-level abstraction models and descriptions. Accidental complexity

instead may be related to the solution-space – where designs are realized in

terms of the computing technologies domain – when implementation artifacts

are manually written even if higher-level abstraction models are available.

Automatic code generation plays an important role to bridge the gap between

the problem-space and the solution-space. As observed in [60], the ability to

synthesize artifacts from models helps ensure the consistency between application

implementations and analysis information associated with functional and QoS

requirements captured by models. This automated transformation process

is often referred to as “correct-by-construction”, as opposed to conventional

handcrafted “construct-by-correction” software development processes that are

tedious and error prone.

This chapter provides an overview of tools and approaches introduced in the

last decades for automatic code generation, then presents our approach.
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2.1 CASE Tools

Computer-Aided Software Engineering (CASE) methods and tools have been

proposed from early 1980s in order to raise the level of abstraction in programming

and to reduce the time for software development. Using the appropriate tool,

a developer can easily express its designs in terms of graphical programming

representations, such as state machines, dataflow, or entity-relationship diagrams.

The main feature of CASE is to reduce the effort of manually coding, debugging,

and porting programs by means of the synthesis of artifacts from their graphical

representations.

Although CASE tools attracted considerable attention in the research commu-

nity and trade literature, this approach wasn’t widely adopted in practice [60, 50].

The reasons for this include:

• early CASE tools tried to generate entire applications, including the

business logic and the software substrate, which led to inefficient, bloated

code that was hard to optimize, validate, evolve, or integrate with code

from other sources;

• due to the simplicity of the notations for representing behavior, CASE

tools have largely been applicable to a few domains, such as telecom call

processing, that map nicely onto state machines;

• due to the lack of powerful and common middleware, CASE tools targeted

proprietary execution platforms, which made it hard to integrate the code

they generated with other software languages and run-time environments.

However, in 1990s CASE evolved thanks also to the growing expressiveness

and power of the target implementation languages – as the Object-Oriented

C++ and Java – and of their associated libraries, programming techniques, and

patterns [33]. This contributed to raise the level of abstraction of the generated

code (see, e.g., [19]) and to shorten the gap between problem-space and solution-

space. Unfortunately it was too late. As Martin Fowler said [29], �[. . . ] the term

CASE has become a dirty word, and vendors try to avoid it now�.
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2.2 Model-Driven Development and MDA

Model-Driven Development (MDD) [60] refers to a range of development ap-

proaches based on the use of software modeling as a primary form of expression.

Mainly, the concept of a model is an abstraction of the target software system.

Code is generated from the models, ranging from system skeletons to complete

software artifacts.

The most popular form of MDD is known as Model-Driven Architecture

(MDA) [53], a standard defined by the Object Management Group (OMG) [57].

MDA formalizes several concepts about the use of system models in the software

development process. In MDA, a model serves as a prototype and as a proof-

of-concept. Two types of models are defined by MDA at different levels of

abstraction:

• Platform Independent Model (PIM) is a model that describes the target

system without any details about the specifics of the implementation

platform;

• Platform Specific Model (PSM) is a model that describes the target system

on its intended platform, such as e.g. J2EE, .NET, SOAP.

The process of converting a PIM into a PSM is called model transformation.

A PIM can be transformed into multiple PSMs, in order to enable several

implementations of the original model on different platforms. In MDA, models

are first-class artifacts, integrated into the development process through the chain

of transformations from PIM through PSMs to coded applications.

A model, PIM or PSM, is written in a modeling language, and adheres to a

meta-model, i.e., an explicit representation of the construct and rules to build

semantic models. The OMG does not restrict MDA to any particular language,

even though the modeling language must be well defined, which means that

it must be precise to allow interpretation by a computer. In particular, Meta

Object Facility (MOF)-based languages, such as Unified Modeling Language

(UML) [64] or Common Warehouse MetaModel (CWM), are recommended by

MDA for describing models. In order to define a standard for transformations
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among models written in these languages, OMG has recently released the

Query/Views/Transformations (QVT) specification [59].

Some tools have been created to be fully compliant with the QVT specification

– see, e.g., SmartQVT [62]. Other transformation specifications, languages and

frameworks have also been developed with the same purpose of QVT – see, e.g.,

the ATLAS Transformation Language (ATL) [47] and the VIsual Automated

model TRAnsformations (VIATRA) framework [65].

The MDA based on UML seems currently to be the most promising approach

for Model-Driven Development, but some criticisms have been made against it.

For instance, as pointed out in [30], the numerous modeling concepts, poorly

defined semantics, and lightweight extension mechanisms that UML provides,

make learning and applying it in an MDD environment difficult.

2.3 Czarnecki-Helsen Classification of Model

Transformation Approaches

In [25, 26], Krzysztof Czarnecki and Simon Helsen propose an interesting

classification of the major categories of model transformation approaches. Three

categories of transformations are distinguished first:

• Text-to-model or code-to-model. This category comprises parsing and

reverse-engineering technologies.

• Model-to-text or model-to-code. The target of this transformation is

just strings. More precisely, model-to-text approaches usually generate both

code and non-code artifacts such as documents.

• Model-to-model. This transformation produces its target as an instance

of the target meta-model.

Recalled that a meta-model is a precise definition of the constructs and rules

needed for creating semantic models, transforming code to model can be viewed

as a special case of model-to-model transformation. In this case, in fact, the

source meta-model underlying the code is the grammar and the semantics of
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the programming language in which the code is written. In the same way,

transforming model to code can be viewed as a special case of model-to-model

transformation, where a target meta-model is provided for the programming

language in which the code has to be generated. As far as the more general model-

to-model transformation is concerned, it is important to distinguish between

“endogenous” transformations, in which the source and the target meta-models

are the same, and “exogenous” transformations, where the two meta-models are

different.

The Czarnecki-Helsen classification proceeds by analyzing the model-to-text

and the model-to-model transformation approaches. The former is subdivided

into:

• Visitor-based approach. It consists in providing some visitor mechanism

to traverse the internal representation of a model and write text to a text

stream.

• Template-based approach. In this approach a template is provided that

usually consists of the target text containing splices of meta-code to access

information from the source and to perform code selection and iterative

expansion.

Compared with a visitor-based transformation, the structure of a template

resembles more closely the code to be generated.

Model-to-model transformations, instead, are classified into seven different

approaches:

• Direct manipulation approach. It consists in providing an internal

model representation and some mechanisms to manipulate it. It is usually

implemented as an object-oriented framework, which may also provide some

minimal infrastructure to organize the transformations.

• Structure-driven approach. Approaches in this category have two

distinct phases: the first phase is concerned with creating the hierarchical

structure of the target model. The second phase sets the attributes and

references in the target.
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• Operational approach. It is similar to the direct manipulation approach,

but offers more dedicated support for model transformation. Typically, the

meta-modeling formalism is extended through a dedicated language in order

to facilitate computations. An example would be to extend a query language

such as the Object Constraint Language (OCL) with imperative constructs.

• Template-based approach. Model templates are models with embedded

meta-code that compute the variable parts of the resulting template

instances. Model templates are usually expressed in the concrete syntax

of the target language, which helps the developer to predict the result of

template instantiation. The meta-code can have the form of annotations

on model elements. Typical annotations are conditions, iterations, and

expressions, all being part of the meta-language.

• Relational approach. This category groups declarative approaches in

which the main concept is mathematical relations. In general, relational

approaches can be seen as a form of constraint solving.

• Graph-transformation-based approach. This category of model trans-

formation approaches draws on the theoretical work on graph transforma-

tions. In particular, this category operates on typed, attributed, labeled

graphs, which can be thought of as formal representations of simplified

class models.

• Hybrid approach. Hybrid approaches combine different techniques from

the previous categories. The different approaches can be combined as

separate components or, in a more fine-grained fashion, at the level of

individual rules. QVT is an example of a hybrid approach with three

separate components, namely Relations, Operational mappings, and Core.

An Example of the fine-grained combination is ATL.
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2.4 Adopted Model Transformation Approach

The idea at the basis of the first phase of our approach is the provision of a library

of software components, i.e. the Java package Sync, for adding architectural

capabilities to the (target) implementation language in order to shorten the gap

with the architectural description language, i.e. PADL, from which the code will

be generated. Hence, the whole approach proposed in this thesis can be viewed

as a “semi-exogenous” transformation, as opposed to the “semi-endogenous”

approach discussed in 1.2.

On the basis of the Czarnecki-Helsen classification, now it can be said that

if we consider the target model as text, a “semi-endogenous” approach can be

easily tackled by implementing a model-to-text/template-based transformation.

Unfortunately, this transformation cannot be applied with the same facility to

our “semi-exogenous” approach, as the distance from model to text is still long.

However, thanks to the presence of the package Sync, a model-to-text/visitor-

based transformation can be implemented very easily in our work. We have to

take into account also that the generated code will not be verbose, as the presence

of suitable architecture-oriented software components in the target meta-model

severely reduces code redundancy.

As we will see in Sect. 7.1, all the three phases of our approach actually use

a simple model-to-text/visitor-based transformation for generating code. Before

code generation, the third phase also uses a model-to-model/direct manipulation

approach for obtaining endogenous transformations of PADL descriptions. This

choice has been done because the internal representation of the model is made

available by the parser, which is used for reading PADL (textual) descriptions.





Chapter 3

The Architectural Description Language

PADL

The process algebraic description language we choose for modeling concurrent

software systems is PADL [13, 1]. Our choice is motivated by the expressiveness

of the language, which has recently been enhanced thanks also to the contribution

of the research work included in this thesis, in particular for what concerns

asynchronous and semi-synchronous communications [12].

In this chapter some basic notions of process algebra are briefly recalled

(Sect. 3.1) before introducing the textual and graphical notations of PADL

(Sect. 3.2), followed by its formal semantics (Sect. 3.3). The semantic treatment

of the newly introduced non-synchronous communications is then discussed

(Sect. 3.4). In the last section of the chapter (Sect. 3.5) the PADL description of

an audio processing system is presented, which will be used as a running example

throughout the rest of the thesis.

3.1 Process Algebra

Process algebra [56, 40, 7] provides a set of operators by means of which the

behavior of a system can be described in an action-based, compositional way.

Given a set Name of action names including τ for invisible actions, we will

consider a process algebra PA whose syntax is illustrated in Table 3.1.

Standard operational semantic rules map every closed and guarded process

term P of PA to a state-transition graph [[P ]] called labeled transition system. In
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P ::= 0 inactive process

| B process constant (B ∆= P )

| a.P action prefix (a ∈ Name)

| P + P alternative composition

| P ‖S P parallel composition (S ⊆ Name − {τ})

| P/H hiding (H ⊆ Name − {τ})

| P\L restriction (L ⊆ Name − {τ})

| P [ϕ] relabeling (ϕ : Name → Name, ϕ−1(τ) = {τ})

Table 3.1. Process term syntax for PA

this graph the states correspond to the process terms derivable from P , the initial

state corresponds to P , and each transition is labeled with the corresponding

action. Observed that [[0]] is a single-state graph with no transitions, we have one

basic rule for action prefix and several inductive rules for the other operators:

• a.P can execute an action with name a and then behaves as P :

a.P
a

−−−→ P

• B behaves as the process term occurring in its defining equation:

B
∆
= P P

a
−−−→ P ′

B
a

−−−→ P ′

• P1 +P2 behaves as either P1 or P2 depending on which of them executes an

action first (nondeterministic choice):

P1

a
−−−→ P ′

P1 + P2

a
−−−→ P ′

P2

a
−−−→ P ′

P1 + P2

a
−−−→ P ′

• P1 ‖S P2 behaves as P1 in parallel with P2 as long as actions are executed

whose name does not belong to S:

P1

a
−−−→ P ′

1 a /∈ S

P1 ‖S P2

a
−−−→ P ′

1 ‖S P2

P2

a
−−−→ P ′

2 a /∈ S

P1 ‖S P2

a
−−−→ P1 ‖S P ′

2
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Synchronizations are forced between any action executed by P1 and any

action executed by P2 that have the same name belonging to S:

P1

a
−−−→ P ′

1 P2

a
−−−→ P ′

2 a ∈ S

P1 ‖S P2

a
−−−→ P ′

1 ‖S P ′
2

• P/H behaves as P with all the executed actions occurring in H being made

invisible:

P
a

−−−→ P ′ a ∈ H

P/H
τ

−−−→ P ′/H

P
a

−−−→ P ′ a /∈ H

P/H
a

−−−→ P ′/H

• P\L behaves as P with all the actions occurring in L being made disabled:

P
a

−−−→ P ′ a /∈ L

P\L
a

−−−→ P ′\L

• P [ϕ] behaves as P with all the executed actions being relabeled via ϕ:

P
a

−−−→ P ′

P [ϕ]
ϕ(a)

−−−→ P ′[ϕ]

Behavioral equivalences [37] are a formal means to compare and manipulate

process terms – possibly abstracting from invisible actions – in a way that

preserves certain behavioral properties. Among the various equivalences, for PA

we consider weak bisimilarity [56], according to which two process terms are

equivalent if they are able to mimic each other’s visible behavior stepwise.

Definition 3.1 A relation R is a weak bisimulation iff for all (P1, P2) ∈ R and

a ∈ Name − {τ}:

• whenever P1

a
−−−→ P ′

1, then P2
τ∗aτ∗
===⇒ P ′

2 with (P ′
1, P

′
2) ∈ R;

• whenever P1

τ
−−−→ P ′

1, then P2
τ∗

===⇒ P ′
2 with (P ′

1, P
′
2) ∈ R;

• whenever P2

a
−−−→ P ′

2, then P1
τ∗aτ∗
===⇒ P ′

1 with (P ′
1, P

′
2) ∈ R;

• whenever P2

τ
−−−→ P ′

2, then P1
τ∗

===⇒ P ′
1 with (P ′

1, P
′
2) ∈ R.

Weak bisimilarity ≈B is the union of all the weak bisimulations.
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3.2 PADL Descriptions and Notations

PADL [13, 1, 12] is a process algebraic architectural description language. A

PADL description represents an architectural type, which is an intermediate

abstraction between a single system and an architectural style [61]. An

architectural type consists of a family of software systems sharing certain

constraints on the observable behavior of their components as well as on their

topology. PADL descriptions can be expressed using either a textual or a

graphical notation.

Before giving an overview of the two notations, it must be said that a

complete specification of the textual one can be found in [9]. However, the

PADL description of the running example presented in Sect. 3.5, as well as the

PADL descriptions of the two case studies proposed in Sect. 8.1 and 8.2, are

well commented and allow one to understand the whole syntax (both textual and

graphical) of PADL.

3.2.1 PADL Textual Notation

As shown in Table 3.2, the textual description of an architectural type in PADL

starts with the name and the formal parameters of the architectural type and is

composed of three sections.

The first section defines the overall behavior of the system family by means

of types of software components and connectors, which are collectively called

architectural element types. The definition of an AET starts with its name

and its formal parameters and consists of the specification of its behavior and

its interactions. The behavior has to be provided in the form of a sequence of

behavioral equations written in a verbose variant of PA allowing only for the

inactive process (rendered as stop), the action prefix operator, the alternative

composition operator (rendered as choice), and recursion. The available data

types are boolean, bounded/unbounded integer, real, list, array, record, and

generic object1.

1 In the semantic model of PADL, data types having infinite domain, as unbounded integer,
real, list, and array/record containing data types having infinite domain, are treated with
symbolic value passing techniques [8]. The generic object data type, instead, can assume only
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ARCHI TYPE /name and initialized formal data parameters.

ARCHI BEHAVIOR
...

...
ARCHI ELEM TYPE /AET name and formal data parameters.

BEHAVIOR /sequence of process algebraic defining equations
built from stop, action prefix, choice, and recursion.

INPUT INTERACTIONS /input synchronous/semi-synchronous/asynchronous
uni/and/or-interactions.

OUTPUT INTERACTIONS /output synchronous/semi-synchronous/asynchronous
uni/and/or-interactions.

...
...

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES /AEI names and actual data parameters.
ARCHI INTERACTIONS /architecture-level AEI interactions.
ARCHI ATTACHMENTS /attachments between AEI local interactions.

[BEHAV MODIFICATIONS

[BEHAV HIDINGS /names of actions to be hidden.]
[BEHAV RESTRICTIONS /names of actions to be restricted.]
[BEHAV RENAMINGS /names of actions to be changed.]]

END

Table 3.2. Structure of a PADL textual description

The interactions are those actions occurring in the process algebraic specifica-

tion of the behavior that act as interfaces for the AET, while all the other actions

are assumed to represent internal activities. Each interaction has to be equipped

with three qualifiers. The first one establishes whether the interaction is an input

or output interaction.

The second qualifier establishes the degree of synchronicity of the interaction.

We distinguish among synchronous interactions, semi-synchronous interactions

two values, i.e., null or not null, hence it is treated, as the boolean and the bounded integer
data types, with concrete value passing techniques for finite domains.
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(which cause no blocking as they raise an exception if prevented), and asyn-

chronous interactions. The related keywords are SYNC (default value), SSYNC,

and ASYNC, respectively.

The third qualifier describes the multiplicity of the communications in which

the interaction can be involved. We distinguish among uni/and/or-interactions

giving rise to one-to-one, inclusive one-to-many (broadcast-like) and selective

one-to-many (server-clients-like) communications. The related keywords are UNI,

AND, and OR, respectively. It can also be specified that an output or-interaction

depends on an input or-interaction through keyword DEP (or-dependencies).

The second section of the textual description defines the architectural

topology. This is accomplished in three steps. First we have the declaration

of the instances of the AETs – called AEIs – which represent the actual system

components and connectors, together with their actual parameters. Then we have

the declaration of the architectural (as opposed to local) interactions, which are

some of the interactions of the AEIs that act as interfaces for the whole systems

of the family. Finally we have the declaration of the architectural attachments

among the local interactions of the AEIs, which make the AEIs communicate

with each other. An attachment is admissible only if it goes from an output

interaction of an AEI to an input interaction of another AEI. Moreover, a uni-

interaction can be attached only to one interaction, whereas an and/or-interaction

can be attached only to uni-interactions.

A suitable iterative mechanism is available to declare several AEIs of the same

type concisely. Each such AEI can then be identified via an index. The same

iterative mechanism can be exploited when declaring architectural interactions

and attachments involving the AEIs under consideration. From a different

viewpoint, this iterative mechanism results in controlled topological variations

within the architectural type, like changing the number of AEIs in a ring-like

topology or the number of AEIs connected to an and/or-interaction.

The third section, which is optional, defines some variations of the observable

behavior of the system family. This is accomplished by declaring some actions

occurring in the behavior of certain AEIs to be unobservable, prevented from

occurring, or renamed, respectively. This is useful for conducting certain kinds

of analysis.
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3.2.2 PADL Graphical Notation

Besides the textual notation, PADL comes equipped with a graphical notation

that is an extension of the flow graph notation [56]. In an extended flow graph

the AEIs are depicted as boxes, the local (resp. architectural) interactions are

depicted as small black circles (resp. white squares) on the box border, and the

attachments are depicted as directed edges between pairs each composed of a

local output interaction and a local input interaction. The small circle/square of

a non-synchronous interaction is extended with an arc or a buffer inside the AEI

box if the interaction is semi-synchronous or asynchronous, respectively. Finally,

the small circle/square of an interaction is extended with a triangle or a bisected

triangle outside the AEI box if the interaction is an and-interaction or an or-

interaction, respectively.

3.3 The semantics for PADL

The semantics for PADL is given by translation into PA. The meaning of a

PADL description is a process term stemming from the parallel composition of the

process algebraic specifications of its AEIs, with the synchronization sets being

determined by the attachments. This process term is then subject to the possibly

declared behavioral variations, which are rendered through the hiding operator,

the restriction operator, and the relabeling operator, respectively. In this section

we consider only synchronous interactions.

Let C be an AET with formal parameters fp1, . . . , fpm and behavior given

by a sequence E of process algebraic defining equations containing only dynamic

operators. Let C be an AEI of type C with actual data parameters ap1, . . . , apm.

Then the semantics of C in isolation is defined as follows:

[[C]] = or-rewrite∅(E{ap1/fp1, . . . , apm/fpm})

where { / , . . . , / } denotes a syntactical substitution and function or-rewrite

replaces each or-interaction with a choice among as many fresh uni-interaction as

there are attachments involving the or-interaction.
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More precisely, all the or-interactions are rewritten within the body of any

defining equation occurring in an AET definition, with or-dependencies managed

by keeping track of the fresh input uni-interactions that are currently in force via

A ⊆ Name (initially ∅).
If a is an input or-interaction on which an output or-interaction depends and

it is involved in k attachments, we have:

or-rewriteA(a.P ) = choice{a1.or-rewriteA∪{a1}−{aj |1≤j≤k∧j 6=1}(P ),...
ak.or-rewriteA∪{ak}−{aj |1≤j≤k∧j 6=k}(P )}

If b is an output or-interaction depending on the input or-interaction a and

ai ∈ A, we have:

or-rewriteA(b.P ) = bi.or-rewriteA(P )

If a is an input or-interaction on which no output or-interaction depends or an

output or-interaction not depending on any input or-interaction and it is involved

in k attachments, we have:

or-rewriteA(a.P ) = choice{a1.or-rewriteA(P ),...
ak.or-rewriteA(P )}

If a is a uni-/and-interaction or an internal action:

or-rewriteA(a.P ) = a.or-rewriteA(P )

For the remaining operators, the rewriting process works as follows:

or-rewriteA(stop) = stop

or-rewriteA(B(actual par list)) = BA(actual par list)
or-rewriteA(choice{P1, . . . , Pn}) = choice{or-rewriteA(P1),...

or-rewriteA(Pn)}

where B∅ ≡ B, while for A 6= ∅:

BA(formal par list ; local var list) = or-rewriteA(P )

if B(formal par list ; local var list) = P .
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Consider now the AEIs C1, . . . , Cn and let us denote by LICi
the set of local

interactions of Ci and by LICi;C1,...,Cn the set of local interactions of Ci that are

attached to C1, . . . , Cn:

LICi;C1,...,Cn ⊆ LICi

Those interactions need to be rewritten so that each Ci can communicate

with the other AEIs despite the fact that attached interactions may have been

given different names. Then suitable synchronization sets need to be constructed

based on the attachments that contain the renamed interactions. Dot notation

and name concatenation are used to ensure renaming uniqueness (Ci.a1#Cj.a2 if

interaction a1 of Ci attached to interaction a2 of Cj).

More precisely, we introduce as many fresh actions as there are maximal sets

of attached local interactions in C1, . . . , Cn:

S(C1, . . . , Cn)

together with an injective relabeling function for each LICi;C1,...,Cn :

ϕCi;C1,...,Cn : LICi;C1,...,Cn −→ S(C1, . . . , Cn)

such that:

ϕCi;C1,...,Cn(a1) = ϕCj ;C1,...,Cn(a2)

iff Ci.a1 and Cj.a2 are attached to each other or to the same and-interaction.

The interacting semantics of Ci with respect to C1, . . . , Cn is defined as follows:

[[Ci]]C1,...,Cn = [[Ci]][ϕCi;C1,...,Cn ]

Afterwards, we introduce individual synchronization set of Ci with respect to

C1, . . . , Cn:

S(Ci; C1, . . . , Cn) = ϕCi;C1,...,Cn(LICi;C1,...,Cn)

as well as the pairwise synchronization set of Ci and Cj with respect to C1, . . . , Cn:

S(Ci, Cj; C1, . . . , Cn) = S(Ci; C1, . . . , Cn) ∩ S(Cj; C1, . . . , Cn)
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The interacting semantics of C ′
1, . . . , C

′
n′ with respect to C1, . . . , Cn is defined

as follows:

[[C ′
1, . . . , C

′
n′ ]]C1,...,Cn = [[C ′

1]]C1,...,Cn ‖S(C′1,C′2;C1,...,Cn)

[[C ′
2]]C1,...,Cn ‖S(C′1,C′3;C1,...,Cn)∪S(C′2,C′3;C1,...,Cn)

. . . ‖n′−1
∪

i=1
S(C′i,C

′
n′ ;C1,...,Cn)

[[C ′
n′ ]]C1,...,Cn

where left associativity of parallel composition is assumed.

Let A be an architectural description, let C1, . . . , Cn be all of its AEIs, and

H, L, and ϕ be possible behavioral variations enforcing hidden actions, restricted

actions, and action renamings, respectively. Then, the semantics of A before

behavioral variations is defined as follows:

[[A]]bbv = [[C1, . . . , Cn]]C1,...,Cn

whereas the semantics of A after behavioral variations is defined as follows:

[[A]]abv = [[A]]bbv /H \L [ϕ]

3.4 Handling Non-Synchronous Interactions

In this section we discuss the semantic treatment of the newly introduced semi-

synchronous and asynchronous interactions.

Given an output interaction o of an AEI C1 attached to an input interaction i

of an AEI C2, nine different forms of communication can be established between

them, as graphically described in the left-hand side part of Fig. 3.1. The first

form of communication in the figure was the only one available in PADL before

introducing non-synchronous interactions.

A semi-synchronous interaction s executed by an AEI C of an architectural

type A gives rise to a transition labeled with s within [[C]]. In the context of [[A]]

this transition is relabeled with s exception if s cannot be immediately executed.

More formally, suppose that in A the synchronous output interaction o of an

AEI C1 is attached to the semi-synchronous input interaction i of an AEI C2,

which is the second form of communication depicted in Fig. 3.1. Let us denote

by o#i the fresh action name associated with the synchronization of o with i.
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C

Figure 3.1. Synchronous, semi-synchronous and asynchronous communications

Then the communication of C1 with C2 is described by the following two semantic

rules, where P1 (resp. P2) is the process term representing the current state of

[[C1]]C1,C2 (resp. [[C2]]C1,C2) and S = S(C1, C2; C1, C2):

P1

o
−−−→ P ′

1 P2

i
−−−→ P ′

2

P1 ‖S P2

o#i
−−−→ P ′

1 ‖S P ′
2

P1 6
o

−−−→ P ′
1 P2

i
−−−→ P ′

2

P1 ‖S P2

i exception
−−−−−−−−−→ P1 ‖S P ′

2

In the symmetric case of a semi-synchronous output interaction attached

to a synchronous input interaction – which corresponds to the fourth form of

communication depicted in Fig. 3.1 – we have the following two rules:

P1

o
−−−→ P ′

1 P2

i
−−−→ P ′

2

P1 ‖S P2

o#i
−−−→ P ′

1 ‖S P ′
2

P1

o
−−−→ P ′

1 P2 6
i

−−−→ P ′
2

P1 ‖S P2

o exception
−−−−−−−−−→ P ′

1 ‖S P2

Finally, in the case in which both o and i are semi-synchronous – i.e. the fifth

form of communication depicted in Fig. 3.1 – we have all the previous semantic
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rules together:

P1

o
−−−→ P ′

1 P2

i
−−−→ P ′

2

P1 ‖S P2

o#i
−−−→ P ′

1 ‖S P ′
2

P1 6
o

−−−→ P ′
1 P2

i
−−−→ P ′

2

P1 ‖S P2

i exception
−−−−−−−−−→ P1 ‖S P ′

2

P1

o
−−−→ P ′

1 P2 6
i

−−−→ P ′
2

P1 ‖S P2

o exception
−−−−−−−−−→ P ′

1 ‖S P2

While semi-synchronous input/output interactions are dealt with by means of

suitable semantic rules, asynchronous input/output interactions need a different

treatment because of the decoupling between the beginning and the end of the

communications in which those interactions are involved.

For each asynchronous interaction we have to introduce an additional implicit

AEI that behaves as an unbounded buffer, as shown in the third, sixth, seventh,

eighth, and ninth form of communication depicted in Fig. 3.1. This AEI is of the

following type:

ARCHI ELEM TYPE Async Queue(void)

BEHAVIOR Queue(int i := 0; void) =

choice

{
arrive . Queue(i + 1),

cond(i > 0) -> depart . Queue(i - 1),

}

INPUT INTERACTIONS --- arrive

OUTPUT INTERACTIONS --- depart

where arrive is an always-available synchronous interaction, whereas depart is

a synchronous interaction enabled only if the buffer is not empty.

In the case of an asynchronous output interaction o, arrive is attached to

o and depart is attached to the input interactions originally attached to o.

Moreover, o is implicitly converted into a synchronous uni-interaction, arrive is

declared as a uni-interaction, and depart is declared as a uni/and/or-interaction

depending on whether o was a uni/and/or-interaction, respectively.

The case of an asynchronous input interaction i is symmetrical. More

precisely, arrive is attached to the output interactions originally attached to
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i and depart is attached to i. Furthermore, i is implicitly converted into a

semi-synchronous uni-interaction, arrive is declared as a uni/and/or-interaction

depending on whether i was a uni/and/or-interaction, respectively, and depart is

declared as a uni-interaction. Note that i becomes a semi-synchronous interaction

because the communications between depart and i must not block the AEI

executing i whenever the buffer is empty. Thus i is subject to the first group

of semantic rules defined in this section.

Due to the way non-synchronous interaction have been handled, we only need

to revise the definition of the semantics of an AEI, while all the other definitions

in Sect. 3.3 are unchanged. More precisely, we only have to take into account

the possible presence of additional implicit AEIs acting as unbounded buffers for

asynchronous input/output interactions.

Let C be an AET with formal parameters fp1, . . . , fpm and behavior given

by a sequence E of process algebraic defining equations. Let C be an AEI of

type C with actual parameters ap1, . . . , apm. If C has h ∈ NI >0 asynchronous

input interactions i1, . . . , ih – handled through the related additional implicit

AEIs AQ1, . . . ,AQh – and k ∈ NI >0 asynchronous output interactions o1, . . . , ok

– handled through the related additional implicit AEIs AQ ′
1, . . . ,AQ ′

k – then the

semantics of C is defined as follows:

[[C]] = (AQ1 ‖∅ . . . ‖∅ AQh) ‖{depart1#i1,...,departh#ih}

or-rewrite∅(E{ap1/fp1, . . . , apm/fpm})
‖{o1#arrive′1,...,ok#arrive′k}(AQ ′

1 ‖∅ . . . ‖∅ AQ ′
k)

3.5 Running Example: An Audio Processing

System

In this section we provide the PADL description of an audio processing system.

This will be used throughout the thesis as a running example to illustrate the

various phases of our approach to the synthesis of multithreaded Java programs

from process algebraic architectural descriptions.
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3.5.1 Informal Specification of the Audio Processing Sys-

tem

The audio processing system has to acquire and play a digital audio stream,

allowing the user to change in real time the sound effects applied to the stream.

More precisely, a dry audio stream, coming from an input audio device, can be

modified by a software sound processor according to some effect required by the

user and synthesized by an effect generator. Then, the processed audio stream

has to be forwarded to an output audio device, which plays it out. Both audio

streams are sequences of audio samples. In order to avoid frequent accesses to

the audio devices and to allow the sound processor to execute complex operations

– like filtering or convolution – that in general require several audio samples, the

sequences of audio samples have to be segmented.

The sound processor and the effect generator are specified as two different

(and concurrent) entities because the generation of some effects – like high-order

equalization filters – may require a large amount of time that, in order to respect

real-time constraints and deadlines, should not be debited to the same entity that

executes the segment processing.

The audio stream processing can be controlled from outside through a

graphical user interface or a peripheral device – like a mixer or a pedal board

– endowed with an appropriate controller, or event handler, that interacts with

the system console. In particular, the user/controller can start and stop the

process and change the sound effect at audio processing time.

As shown in Fig. 3.2, the considered system is made out of five software

components: the console C, the input audio device driver IADD, the sound

processor SP, the effect generator EG, and the output audio device driver OADD.

Since the five software components work as autonomous entities that com-

municate to each other from time to time, it is natural to implement each of

them as a thread or as a monitor. More precisely, the sound processor and the

effect generator should result in two CPU-bound threads, while the two audio

device drivers should result in two I/O-bound threads. The console may also

result in an I/O-bound thread. However, since its purpose is simply to mediate
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Figure 3.2. Extended flow graph of the audio processing system

the communication among the user/controller – which usually produces a low-

rate sequence of events – and the above mentioned threads, it could also be

implemented as a monitor.

As far as the communication topology is concerned, only the console can

interact with the user/controller by receiving commands related to the start or

the stop of the audio processing (receive start and receive stop) or the effect

to be applied to the input audio stream, described as a configuration change

(receive config). Likewise, only the two audio device drivers can interact

with the two audio devices by exchanging audio samples (open input device,

read dry samples, and close input device for the IADD; open output device,

write processed samples, and close output device for the OADD).

The console forwards the start and stop signals to the IADD (forward start

and forward stop), while a descriptor of the desired effect, which summarizes

the last configuration changes, is sent to the sound processor (send descriptor)

after receiving a request from it (receive descriptor request). The sound

processor forwards descriptors (forward descriptor) to the effect generator
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and, when ready, receives from it an effect (receive effect). The IADD sends

segments of dry audio samples to the sound processor (send dry segment) and

propagates to it the stop signals via end-of-stream signals (send eos). The

sound processor in turn sends segments of processed audio samples to the OADD

(send processed segment) and propagates to it the stop signals via end-of-

stream signals (forward eos).

In order to guarantee the quality of the played audio as well as the correct

application of the effects, the five software components must be kept well

synchronized. This can be achieved by making each of the two audio device drivers

use a standard audio port software utility, like e.g. the Java Media Framework,

implementing an internal buffer.

When the input audio device starts, the input buffer has to grow according

to the sampling frequency of the input audio device. An input instruction will

be used by the IADD to read from the input buffer an audio segment composed

of a given number of dry samples. This input instruction will block if it requires

an audio segment that is longer than the number of unread dry audio samples

contained in the input buffer. If no input is requested for a long time, the input

buffer will saturate and the oldest unread dry audio samples will be lost due to

overwriting.

Conversely, the output buffer has to decrease according to the sampling

frequency of the output audio device, which will be fed by the OADD through an

output instruction that appends to the output buffer an audio segment composed

of a certain number of processed audio samples. This output instruction will block

if it tries to write an audio segment that is longer than the residual capacity of

the output buffer. On the other hand, the output device driver can play out only

if sufficiently many processed audio samples are present in the output buffer.

Since the two instructions for interacting with the two audio devices are

blocking, the two threads that will implement the two audio device drivers must

be kept synchronized at the same sampling frequency, and this synchronization

must not to be disrupted by the sound processor – when applying an effect

– or by the user/controller via the console – when changing the effect. The

synchronization of the two threads is possible if the segment processing time –

i.e. the time to apply an effect to a segment plus other operations like handling
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descriptors and receiving new effects – is less than the segment playout time

(this is an obvious real-time constraint). Moreover, it is demanded that the OADD

introduces an artificial delay before playing out the first received audio segment,

in order to compensate for a possible increase of the segment processing time

incurred by subsequent audio segments to be played out.

3.5.2 PADL Description of the Audio Processing System

The PADL textual description of the audio processing system introduces first of

all three parameters: the number of samples per segment (segment size), the

artificial delay (delay) that will be inserted by the output audio device driver,

and the maximum number of configuration changes (allowed changes) that can

be received by the console between the processing of two contiguous segments.

Here is the PADL description header:

ARCHI TYPE Audio Processing System(const integer segment size := 1024, % samples/segment

const integer delay := 125, % msec

const integer allowed changes := 3)

In the first section of the PADL textual description we specify five AETs. The

first of them, Console, has a single parameter, as shown in its header:

ARCHI ELEM TYPE Console(const integer allowed changes)

This AET is defined by means of three behavioral equations: Start,

Config Handling, and Descriptor Handling. The first equation simply waits

for receiving the start command from the user/controller via the input interaction

receive start, then forwards the start command to the input audio device driver

through the output interaction forward start, and finally invokes the second

equation:

Start(integer(0..allowed changes) config changes := 0;

void) =

receive start . forward start . Config Handling(config changes);

The AET parameter allowed changes is used in the second equation to

prevent what is called “effect bombing”, i.e. a user/controller that transmits too

many configurations to the console in a short period of time:
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Config Handling( integer(0..allowed changes) config changes;

local object(Configuration) console config) =

choice

{
cond(config changes < allowed changes) ->

receive config?(console config) . store config!(console config) .

Config Handling(config changes + 1),

choice

{
cond(config changes > 0) ->

receive descriptor request . Descriptor Handling(),

cond(config changes = 0) ->

receive descriptor request . send descriptor!(null) . Config Handling(0)

},
receive stop . forward stop . Start(config changes)

};

In fact, in the second equation the input interaction receive config can

take place only when the number of configurations config changes received after

the first time that the console starts, or after the last communication with the

sound processor, is less than allowed changes. This condition is checked within

the first branch of the choice building up the second equation. The interaction

receive config receives an object console config of type Configuration,

which is then employed by the internal action store config (symbol “?” is used

for input action parameters, while “!” is used for output action parameters).

The second branch of the second equation is a nested choice. Its first branch

waits for a descriptor request, then invokes the third equation. However, when

no configuration has been received after the first start or after the previous

communication with the sound processor, the second branch of the nested choice

sends an object null to the sound processor, in order to mean that no new effect

has to be applied to the stream.

The third branch of the second equation is not guarded by any condition, and

it allows a stop transmitted by the user/controller to the input audio device driver

to be forwarded as an end-of-stream signal via send eos. This branch terminates

with an invocation of the first equation.

The third equation gets an object effect descriptor of type Descriptor

that summarizes the last configurations received from the user/controller, then

sends it to the sound processor, as shown below:
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Descriptor Handling(void;
local object(Descriptor) effect descriptor) =

get summary descriptor?(effect descriptor) .

send descriptor!(effect descriptor) . Config Handling(0)

Finally, we have the definition of the input and output interactions occurring

in the three behavioral equations:

INPUT INTERACTIONS UNI receive start;

receive config;

receive descriptor request;

receive stop

OUTPUT INTERACTIONS UNI forward start;

send descriptor;

forward stop

In this case all the interactions are declared to be uni and synchronous (the qual-

ifier SYNC can be omitted as it is the default one). All the other actions occurring

in the behavioral equations, i.e. store config and get summary descriptor, are

internal actions.

Then we have the definition of the AET for the input audio device driver,

which is responsible for opening/closing the input audio device according to the

user/controller commands and forwarding the segments of dry audio samples to

the sound processor. Its behavior is described by means of two equations, Idle

and Busy, as shown below:

ARCHI ELEM TYPE Input Audio Device Driver(const integer segment size)

BEHAVIOR

Idle(void;
void) =

receive start . open input device!(segment size) . Busy();

Busy(void;
local object(Segment) segment) =

choice

{
read dry samples?(segment) . send dry segment!(segment) . Busy(),

receive stop . close input device . send eos . Idle()

}
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INPUT INTERACTIONS UNI receive start;

read dry samples;

receive stop

OUTPUT INTERACTIONS UNI open input device;

send dry segment;

close input device;

send eos

The AET for the output audio device driver is complementary to the previous

one, with some behavioral differences in equation Idle. The first difference is that

a choice is present in order to receive a processed segment as a start signal, or

to receive an end-of-stream signal in the case in which no segment is processed,

meaning that a stop signal has been immediately forwarded after the start signal

by the console through the input audio device driver and the sound processor. The

second difference is that this driver uses the internal action sleep to introduce

the specified delay, as shown below:

ARCHI ELEM TYPE Output Audio Device Driver(const integer segment size,

const integer delay)

BEHAVIOR

Idle(void;
local object(Segment) segment) =

choice

{
receive processed segment?(segment) . sleep!(delay) .

open output device!(segment size) . write processed samples!(segment) . Busy(),

receive eos . Idle()

};

Busy(void;
local object(Segment) segment) =

choice

{
receive processed segment?(segment) . write processed samples!(segment) . Busy(),

receive eos . close output device . Idle()

}

INPUT INTERACTIONS UNI receive processed segment;

receive eos

OUTPUT INTERACTIONS UNI open output device;

write processed samples;

close output device
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The AET for the sound processor is at the core of the audio processing system.

It is in charge of applying the effect chosen by the user/controller to the segments

of dry audio samples in order to produce the audio stream to be played out. More

precisely, the sound processor periodically receives from the input audio device

driver a segment of dry audio samples to process, and sends requests to the console

for receiving a descriptor of the effect that has to be applied to the next segments

of the stream. In order to guarantee that only one descriptor request is sent

to the console (and hence only one effect is received from the effect generator)

between the processing of two contiguous dry segments, a boolean variable called

just done is employed as shown below:

ARCHI ELEM TYPE Sound Processor(const integer segment size)

BEHAVIOR

Segment Descriptor Handling( object(Effect) effect := null,

boolean just done := false;

local object(Segment) dry segment,

local object(Segment) processed segment,

local object(Descriptor) effect descriptor) =

choice

{
receive dry segment?(dry segment) .

process dry segment!(dry segment, segment size, effect) .

get processed segment?(processed segment) .

send processed segment!(processed segment) .

Segment Descriptor Handling(effect, false),

cond(!just done) ->

send descriptor request . receive descriptor?(effect descriptor) .

Descriptor Check(effect, effect descriptor),

receive eos . forward eos . Segment Descriptor Handling(effect, false)

};

Descriptor Check(object(Effect) old effect,

object(Descriptor) effect descriptor;

void) =

choice

{
cond(effect descriptor != null) ->

forward descriptor!(effect descriptor) . Segment Effect Handling(old effect),

cond(effect descriptor = null) ->

ignore . Segment Descriptor Handling(old effect, true)

};

Segment Effect Handling( object(Effect) old effect;

local object(Segment) dry segment,
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local object(Segment) processed segment,

local object(Effect) new effect) =

choice

{
receive dry segment?(dry segment) .

process dry segment!(dry segment, segment size, old effect) .

get processed segment?(processed segment) .

send processed segment!(processed segment) .

Segment Effect Handling(old effect),

receive effect?(new effect) . Segment Descriptor Handling(new effect, true),

receive eos . forward eos . receive effect?(new effect) .

Segment Descriptor Handling(new effect, false)

}

INPUT INTERACTIONS UNI receive dry segment;

receive descriptor;

receive effect;

receive eos

OUTPUT INTERACTIONS UNI send processed segment;

send descriptor request;

forward descriptor;

forward eos

The AET for the effect generator simply receives a descriptor from the sound

processor, then creates a new effect and sends it back to the sound processor:

ARCHI ELEM TYPE Effect Generator(void)

BEHAVIOR

Generation(void;
local object(Descriptor) effect descriptor

local object(Effect) effect) =

receive descriptor?(effect descriptor) . create new effect!(effect descriptor) .

get new effect?(effect) . send effect!(effect) . Generation()

INPUT INTERACTIONS UNI receive descriptor

OUTPUT INTERACTIONS UNI send effect

In the second section of the PADL textual description of the audio processing

system we specify the architectural topology of the system according to the

graphical representation of Fig. 3.2. All the input interactions of the console

and all the interactions of the two audio device drivers that deal with the two

audio devices are declared to be architectural interactions, i.e. interfaces of the

whole software system, as shown below:
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ARCHI TOPOLOGY

ARCHI ELEM INSTANCES

C : Console(allowed changes);

IADD : Input Audio Device Driver(segment size);

SP : Sound Processor(segment size);

EG : Effect Generator();

OADD : Output Audio Device Driver(segment size, delay)

ARCHI INTERACTIONS

C.receive start;

C.receive config;

C.receive stop;

IADD.open input device;

IADD.read dry samples;

IADD.close input device;

OADD.open output device;

OADD.write processed samples;

OADD.close output device

ARCHI ATTACHMENTS

FROM C.forward start TO IADD.receive start;

FROM C.send descriptor TO SP.receive descriptor;

FROM C.forward stop TO IADD.receive stop;

FROM IADD.send dry segment TO SP.receive dry segment;

FROM IADD.send eos TO SP.receive eos;

FROM SP.send descriptor request TO C.receive descriptor request;

FROM SP.forward descriptor TO EG.receive descriptor;

FROM SP.send processed segment TO OADD.receive processed segment;

FROM SP.forward eos TO OADD.receive eos;

FROM EG.send effect TO SP.receive effect





Chapter 4

Thread Coordination Management

The first phase of our approach to the generation of multithreaded object-

oriented code from process algebraic architectural descriptions deals with the

thread coordination management. This is accomplished by developing a Java

package that automatically takes care of the details of thread synchronization.

Both the implementation of the package and the use of its units for coordinating

the threads are guided by architecture-level abstractions.

In this chapter we present a reference thread communication model (Sect. 4.1)

and then we illustrate the implementation of the Java package Sync (Sect. 4.2).

Four conceptual layers – Connector, Port, RunnableElem, and RunnableArchi

– that constitute the structure of the package, are presented (Sect. 4.3, 4.4, 4.5,

and 4.6, respectively). The usage of the package is exemplified in the last section

of this chapter (Sect. 4.7) through the audio processing system introduced in

Sect. 3.5.

4.1 Thread Communication Model

The thread communication model adopted by package Sync fully complies with

the interaction qualifiers of PADL and encompasses two different dimensions.

The first dimension is the thread communication synchronicity and comprises

nine values: synchronous to synchronous, synchronous to semi-synchronous, syn-

chronous to asynchronous, semi-synchronous to synchronous, semi-synchronous

to semi-synchronous, semi-synchronous to asynchronous, asynchronous to syn-
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chronous, asynchronous to semi-synchronous, asynchronous to asynchronous. In

a synchronous-to-synchronous communication, both threads wait for the other

to become ready. In the semi-synchronous case, the thread checks whether

the other is ready and, if not, raises an exception without blocking. In the

asynchronous case, the thread simply sends/receives its signal, or message, and

then proceeds independently of the status of the other thread, unless at the

asynchronous receiving side no signal/message is available and then an exception

is raised without blocking.

The second dimension is the thread communication multiplicity and comprises

five values: uni to uni, and to uni, uni to and, or to uni, uni to or. In

a uni-to-uni communication, only two threads are involved. In an and-to-

uni/uni-to-and communication, a thread simultaneously communicates with

several other threads. In an or-to-uni/uni-to-or communication, instead, a thread

communicates with only one thread selected out of a set of other threads.

Finally, in order to avoid undesired side effects, the adopted thread communi-

cation model forbids sharing global variables as well as passing object references

while keeping a copy of the references.

4.2 The Java Package Sync

The Java package Sync, which adheres to the above mentioned communi-

cation model, is structured into four conceptual layers: Connector, Port,

RunnableElem, and RunnableArchi. Each of them corresponds to a different

architectural abstraction and comprises a set of components realized through

Java classes and interfaces, some of which are visible by the software developer.

The bottom-level layer, called Connector, is a set of invisible Java classes

and interfaces that are used within Sync to perform synchronizations and data

transfers between two threads. There are nine classes realizing – consistently

with the adopted thread communication model – the nine cases of communication

synchronicity.

The second layer, called Port, is a set of Java classes and interfaces that realize

the abstraction corresponding to a set of statements through which a thread

interacts with possibly many other threads. There are eighteen classes combining
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– through instances of Connector – the five cases of communication multiplicity

with the nine cases of communication synchronicity. The eighteen classes manage

synchronous/semi-synchronous/asynchronous uni/and/or-interactions both at

the sending and at the receiving side.

The third layer, called RunnableElem, is an interface derived from the

standard Runnable interface that realizes the abstraction corresponding to a

thread (or a monitor) in a concurrent Java program.

The top-level layer, called RunnableArchi, is a RunnableElem-derived inter-

face that realizes the abstraction corresponding to a concurrent Java program.

The Java package Sync will be seen by the PADL2Java translator as a

repository of architectural abstractions guaranteeing the correct and transparent

handling of synchronizations and data exchanges among the Java threads (and

monitors) of the software system being designed. More precisely, starting from

a PADL description, the PADL2Java translator will be in charge of creating as

many instances of RunnableElem as there are AEIs in the PADL description.

Then it will have to create as many instances of Port as there are interactions in

the AEIs synthesized as RunnableElem instances. Finally it will have to create

all the instances of Connector that are needed to make the AEIs synthesized as

RunnableElem instances interact – according to the attachments in the PADL

description – through their interactions synthesized as Port instances.

4.3 The Layer Connector

This layer is inspired by the traditional producer-consumer model, where the

producer and the consumer represent two different threads. This layer is realized

by equipping every Connector class with a buffer shared only by the two related

producer and consumer threads. Each such class also has two interface methods

for accessing the buffer – send() and receive() – and two interface methods for

observing the status of the threads using the Connector in the case of and/or-

interactions – obsSnd() and obsRcv(). All of these methods are employed by

the upper layer Port.

The buffer can store a number of objects that the producer wishes to transfer

to the consumer. In the case of a data exchange the related object represents
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some data structure, whereas in the case of a pure synchronization a null object

is employed. In both cases, mutual exclusion must be enforced on buffer access,

i.e. at any time only one of the two involved threads can access the shared buffer.

This is achieved by declaring methods send() and receive() as synchronized

methods, so that they result in a monitor-like control structure to which the

primitive methods wait() and notify() can be applied.

The layer Connector comprises nine classes realizing the nine cases of

communication synchronicity through the two synchronized interface methods

send() and receive() and a number of suitable flags:

1. Synchronous to Synchronous (S-S). In this case, the buffer capacity is

one and methods send() and receive() are implemented according to the

usual producer-consumer pattern. More precisely, if send() is executed

first, it deposits an object into the buffer, then invokes wait(); when

receive() will be executed, it will withdraw the object from the buffer,

then will invoke notify(). By contrast, if receive() is executed first, it

invokes wait(); when send() will be executed, it will deposit an object

into the buffer and invokes notify(), so that receive() can withdraw the

object from the buffer.

2. Synchronous to Semi-Synchronous (S-SS). In this case, the buffer

capacity is still one. Method send() deposits an object into the buffer, then

invokes wait(). Instead, method receive() checks whether the buffer is

full. If so, receive() withdraws the object from the buffer and then invokes

notify(). If not, receive() raises an exception, which propagates to the

layer Port.

3. Synchronous to Asynchronous (S-A). In this case, the buffer is

unbounded. Method send() simply deposits an object into the buffer,

without invoking any further method. By contrast, method receive()

withdraws the first object from the buffer. If the buffer is empty, receive()

raises an exception, which propagates to the layer Port.

4. Semi-Synchronous to Synchronous (SS-S). In this case, the buffer

capacity is one. Method receive() simply invokes wait(). Instead,
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method send() checks whether the receiving thread is waiting. If so, send()

deposits an object into the buffer and invokes notify(), so that receive()

can withdraw the object from the buffer. If not, send() raises an exception,

which propagates to the layer Port.

5. Semi-Synchronous to Semi-Synchronous (SS-SS). In this case, the

buffer capacity is still one. Method send() checks whether the receiving

thread is waiting. If so, send() deposits an object into the buffer and

invokes notify(), so that receive() can withdraw the object from the

buffer. If not, send() invokes wait() by specifying a timeout; upon the

expiration of the timeout an exception is raised, which propagates to the

layer Port. Instead, method receive() checks whether the sending thread

is waiting. If so, receive() invokes notify() followed by wait(), so that

send() can deposit an object and finally invokes notify(), in order to

cause receive() to withdraw the object from the buffer. If not, receive()

invokes wait() by specifying a timeout; upon the expiration of the timeout

an exception is raised, which propagates to the layer Port.

6. Semi-Synchronous to Asynchronous (SS-A). In this case, the buffer

is unbounded. Method send() simply deposits an object into the buffer,

without invoking any further method. By contrast, method receive()

withdraws the first object from the buffer. If the buffer is empty, receive()

raises an exception, which propagates to the layer Port. Since the buffer is

unbounded, this case behaves as the S-A communication.

7. Asynchronous to Synchronous (A-S). In this case, the buffer is

unbounded. Method send() deposits an object into the buffer, then invokes

notify() only if the receiving thread is waiting. By contrast, method

receive() withdraws the first object from the buffer. If the buffer is empty,

receive() has to invoke wait() before proceeding with the withdrawal.

8. Asynchronous to Semi-Synchronous (A-SS). In this case, the buffer is

still unbounded. Method send() simply deposits an object into the buffer,

without invoking any further method. By contrast, method receive()

withdraws the first object from the buffer. If the buffer is empty, receive()
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raises an exception, which propagates to the layer Port. Since the buffer is

unbounded, this case behaves as the S-A and SS-A communications.

9. Asynchronous to Asynchronous (A-A). In this case, the buffer is

unbounded. Method send() simply deposits an object into the buffer,

without invoking any further method. By contrast, method receive()

withdraws the first object from the buffer. If the buffer is empty, receive()

raises an exception, which propagates to the layer Port. Since the buffer is

unbounded – its capacity has to be considered as the sum of the capacities

of the buffers at the sender and at the receiver side – this case behaves as

the S-A, SS-A, and A-SS communications.

We conclude by commenting on the other two interface methods of layer

Connector. Method obsSnd() is used by a receiving thread, whereas method

obsRcv() is used by a sending thread. These two methods are useful at the layer

Port level for enabling a thread to check the status of a thread connected to it via

a synchronous interaction and wait for the latter to become ready to communicate

(blocking mode), or connected to it via a semi-synchronous interaction (non-

blocking mode). Such two methods are declared as synchronized methods.

4.4 The Layer Port

This layer gives rise to suitable objects, each of which will be attached either

to a single Connector object – if representing a uni-interaction – or to several

Connector objects – if representing an and-interaction or an or-interaction. Every

Port object must be instantiated by specifying its owner thread in the Port

constructor.

The layer Port comprises eighteen classes combining the five cases of

communication multiplicity with the nine cases of communication synchronicity.

Each of the nine Port classes related to the sender side is equipped with a send()

method, whereas each of the nine Port classes related to the receiver side is

equipped with a receive() method. Each of the two methods makes use of the

homonymous method of the associated Connector objects. More precisely:
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• In the case of a Port object associated with a uni-interaction, method

send() (resp. receive()) simply invokes the homonymous method of the

only Connector object involving the Port object itself.

• In the case of a Port object associated with a synchronous and-interaction,

method send() (resp. receive()) polls all the connected receiving (resp.

sending) Port objects through the obsRcv() (resp. obsSnd()) method – in

blocking mode – of the related Connector objects. When all the connected

Port objects are ready to interact, method send() (resp. receive())

invokes the homonymous methods of all the involved Connector ob-

jects. If the and-interaction is semi-synchronous, method obsRcv() (resp.

obsSnd()) is invoked in non-blocking mode. If the and-interaction is

asynchronous, a simple polling phase is needed only for a receiving Port

object in order to check if at least one of the buffers of the involved

Connector objects is empty.

• In the case of a Port object associated with a synchronous or-interaction,

method send() (resp. receive()) creates as many threads as there

are connected Port objects, each of which invokes the obsRcv() (resp.

obsSnd()) method – in blocking mode – of the related Connector object.

The first thread to detect a connected Port object ready to interact

signals the identifier of the involved Connector object, then method send()

(resp. receive()) destroys all the previously created threads and invokes

the homonymous method of the involved Connector object. If the or-

interaction is not synchronous, the additional threads are not needed.

Each of the two methods send() and receive() of a Port object raises an

UnattachedPortException whenever the Port object is not connected to any

other Port object. This happens if the interaction associated with the Port

object is an architectural interaction not attached to any other interaction.

A different exception, NotReadyPortException, is raised if the associated

interaction is semi-synchronous and the connected Port objects are not ready

to communicate. The same exception is raised by a receiver Port object if the
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associated interaction is asynchronous and the buffers of the involved Connector

objects are empty.

Both exceptions are defined as derived classes of a base class called

SyncException, which is defined within package Sync.

4.5 The Layer RunnableElem

In this layer a Runnable-derived interface is defined instead of directly using

the standard Runnable interface. As will become clear in Sect. 5 and 6, this

is necessary to provide abstractions that are useful to support the generation

of Java threads and monitors from the process-algebraically-specified behavior of

the corresponding AETs in a PADL description. In particular, the RunnableElem

interface is equipped with a companion class called ElemMeth, which defines a

static method called choice() for the translation of alternative compositions.

From the code generation viewpoint (i.e. when using package Sync in the

translation process), each of the Java classes that will be synthesized to implement

RunnableElem for a specific AET defined in a PADL description will have the

same name as the AET and will be structured as shown in Table 4.1.

class /architectural element type name. implements RunnableElem {
/Declaring Behavioral Equations Interfaces.
/Instantiating Interactions.
/Declaring Stubs.
/Defining Constructor.
/Defining Behavior.
/Running Element.

}

Table 4.1. Structure of a RunnableElem-implementing class

The first section, Declaring Behavioral Equations Interfaces, defines an

interface called BehavioralEquationInterface and declares an equation object

of such an interface for each behavioral equation occurring in the AET definition.
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The second section, Instantiating Interactions, instantiates various Port

objects of various types (input/output, synchronous/semi-synchronous/asynchro-

nous, uni/and/or) on the basis of the interactions occurring in the AET definition

and their qualifiers.

The third section, Declaring Stubs, declares two stub objects to be manually

filled in later on. As we shall see in Sect. 5.1, one stub object is for the translation

of the internal actions occurring in the AET definition, while the other one is for

handling exceptions related to the interactions occurring in the AET definition.

The fourth section, Defining Constructor, defines the class constructor

together with its parameters, which coincide with the parameters of the AET.

The constructor declares the parameters as non-public members in order to store

their values and make them available throughout the thread execution. Then the

constructor invokes the method defined in the next section.

The fifth section, Defining Behavior, creates instances of anonymous classes

implementing BehavioralEquationInterface and assigns them to the previ-

ously mentioned equation objects. Each anonymous class translates a different

behavioral equation occurring in the AET. The only method declared by the

interface, behavEqCall(), is defined here for each equation object. As we shall

see in Sect. 5, this method implements the behavior formalized by an equation

and terminates by storing information about the next equation to be executed

together with the actual parameters it needs. This permits the execution of an

instance of the class as a state machine, where each state is realized through a

different equation object.

Finally, the sixth section, Running Element, declares the thread associated

with the class itself and defines the public methods start(), which starts the

previously declared thread, and join(), which allows other threads to wait for

the end of the execution of the previously declared thread. The public method

run() is also defined, which is declared in the base interface Runnable and is

executed first when a Java thread is started. Besides instantiating the two stub

classes, this method executes the various equation objects starting from the first

one till the point is reached in which a null equation object – which translates

the process algebraic term stop – is encountered.
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In the case in which the AET is synthesized as a monitor rather than a thread,

two different classes will be generated: a core monitor class and a wrapper class.

The wrapper class, which implements the interface RunnableElem, encapsulates

the monitor class, which translates the behavior of the AET. The translation of

the behavior looks quite different from the code produced for a thread. In fact,

as we shall see in Sect. 6, the process algebraic specification of the AET must

previously be transformed into monitor normal form, from which a Java monitor

can be easily obtained. Another difference between the generation of monitors

and of threads is that in a wrapper class method run() is intended as a simple

starting method, because it only invokes the initialization method of the core

monitor class.

4.6 The Layer RunnableArchi

This layer derives the RunnableArchi interface from the RunnableElem interface

in order to support hierarchical software development. Thus the RunnableArchi

interface is fully compatible with the RunnableElem interface.

In order to hide the implementation details and to avoid the difficulties

stemming from the direct handling of the Connector objects, the RunnableArchi

interface is equipped with a companion class called ArchiMeth, which defines a

family of five static methods called attach(). Each of these methods receives two

parameters, which must be a sending Port object and a receiving Port object,

and connects them only if they refer to two different owner threads/monitors,

otherwise an exception, BadAttachmentException, is raised. According to the

adopted communication model, the connection results in one of the following five

communication forms: uni-uni, and-uni, uni-and, or-uni, uni-or.

If the two Port object parameters are correct, the method attach()

accomplishes its task in two steps. First, it creates a Connector object – and

passes to it the references to the two Port objects – that realizes the connection

between the two Port objects in a way that conforms to the synchronicity and

multiplicity qualifiers of the associated interactions. Second, it passes a reference

to the Connector object to both Port objects. In this way, the two Port objects
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can access their common Connector object, so that they can communicate using

its methods.

In the case in which the connection is between a Port object of a thread and

a Port object of a monitor, method attach() behaves differently. Due to the

differences between the two Port objects, a Connector object cannot be used.

Instead, the Port object of the thread directly invokes the methods defined in

the Port object of the monitor. To accomplish this, method attach() passes a

reference to the Port object of the monitor to the Port object of the thread.

From the code generation viewpoint (i.e. when using package Sync in the

translation process), the Java class that will be synthesized to implement

RunnableArchi for the architectural type defined in a specific PADL description

will have the same name as the architectural type and will be structured as shown

in Table 4.2.

public class /architectural type name. implements RunnableArchi {
/Declaring Runnable Elements.
/Declaring Architectural Interactions.
/Defining Constructor.
/Building Architecture. :

/Instantiating Runnable Elements.
/Assigning Architectural Interactions.
/Attaching Local Interactions.

/Running Architecture.
}

Table 4.2. Structure of the RunnableArchi-implementing class

The first section, Declaring Runnable Elements, declares an object of a

RunnableElem-implementing class – without instantiating it – for each AEI

declared in the PADL description.

The second section, Declaring Architectural Interactions, declares a public

Port object for each architectural interaction declared in the PADL description.

Such objects are public because the architectural interactions are the interfaces
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of the whole system, hence support must be provided for them to be used for the

hierarchical or compositional modeling of complex systems.

The third section, Defining Constructor, defines the class constructor together

with its parameters, which coincide with the parameters of the architectural

type. More precisely, a general class constructor and a default class constructor

are defined. The former declares the parameters as non-public members in

order to store their values and make them available for the instantiation of the

RunnableElem objects, then invokes the method defined in the next section. The

latter simply invokes the former by passing the actual values of the parameters.

The fourth section, Building Architecture, is very similar to the architectural

topology section of the PADL description. It is composed of three subsections that

constitute the definition of a method called buildArchiTopology(), which builds

up the architecture topology. In the first subsection, Instantiating Runnable

Elements, the previously declared RunnableElem objects – which can be threads

or monitors – are instantiated. In the second one, Assigning Architectural

Interactions, the previously declared public Port objects are assigned through

the corresponding Port objects of the newly instantiated RunnableElem objects.

In the third one, Attaching Local Interactions, the static method attach() defined

in the class ArchiMeth of package Sync is invoked to connect the Port objects

of the newly instantiated RunnableElem objects according to the attachments

declared in the PADL description.

Finally, the fifth section, Running Architecture, declares the thread associated

with the class itself and defines the public methods start(), which starts the

previously declared thread, and join(), which allows other threads to wait for

the end of the execution of the previously declared thread. The public method

run() is also defined, which is declared in the base interface Runnable and is

executed first when a Java thread is started. This method starts all the previously

instantiated RunnableElem objects, then waits for the termination of those of

them that are realized as threads.
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4.7 Audio Processing System: Phase 1

We now exemplify the use of package Sync by means of the top-layer file generated

by our approach for the audio processing system introduced in Sect. 3.5. The class

defined in the generated file is the RunnableArchi-implementing one, which is

called Audio Processing System. According to Table 4.2, this class contains

several sections related to the AEIs, their architectural interactions, and the

attachments among them.

In the first section of the class, a RunnableElem object is declared for each of

the five AEIs declared in the PADL description of the audio processing system.

Each such object belongs to a RunnableElem-implementing class – corresponding

to an AET in the PADL description – which will be widely discussed in Sect. 5

and 6.

public class Audio Processing System implements RunnableArchi {

//-------- DECLARING RUNNABLE ELEMENTS --------//

Console C;

Input Audio Device Driver IADD;

Sound Processor SP;

Effect Generator EG;

Output Audio Device Driver OADD;

In the second section, a public Port object is declared for each of the

nine architectural interactions declared in the PADL description of the audio

processing system.

//--- DECLARING ARCHITECTURAL INTERACTIONS ----//

public UniSyncReceiverPort C receive start;

public UniSyncReceiverPort C receive config;

public UniSyncReceiverPort C receive stop;

public UniSyncSenderPort IADD open input device;

public UniSyncReceiverPort IADD read dry samples;

public UniSyncSenderPort IADD close input device;

public UniSyncSenderPort OADD open output device;

public UniSyncSenderPort OADD write processed samples;

public UniSyncSenderPort OADD close output device;

In the third section, a general class constructor and a default class constructor

are defined together with some parameters, which coincide with the parameters of

the architectural type occurring in the PADL description of the audio processing
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system.

//----------- DEFINING CONSTRUCTOR ------------//

protected int segment size;

protected int delay;

protected int allowed changes;

// GENERAL CONSTRUCTOR:

Audio Processing System(int segment size,

int delay,

int allowed changes) {
this.segment size = segment size;

this.delay = delay;

this.allowed changes = allowed changes;

buildArchiTopology();

}

// DEFAULT CONSTRUCTOR:

Audio Processing System() {
this(1024,

125,

3);

}

In the fourth section, method buildArchiTopology() instantiates the pre-

viously declared five RunnableElem objects, assigns the previously declared

nine public Port objects through the corresponding Port objects of the newly

instantiated RunnableElem objects, and invokes method attach() ten times

to connect the Port objects of the newly instantiated RunnableElem objects

according to the ten attachments declared in the PADL description of the audio

processing system.

//----------- BUILDING ARCHITECTURE -----------//

void buildArchiTopology() {

// INSTANTIATING RUNNABLE ELEMENTS:

C = new Console(allowed changes);

IADD = new Input Audio Device Driver(segment size);

SP = new Sound Processor(segment size);

EG = new Effect Generator();

OADD = new Output Audio Device Driver(segment size, delay);

// ASSIGNING ARCHITECTURAL INTERACTIONS:

this.C receive start = C.receive start;

this.C receive config = C.receive config;

this.C receive stop = C.receive stop;

this.IADD open input device = IADD.open input device;

this.IADD read dry samples = IADD.read dry samples;
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this.IADD close input device = IADD.close input device;

this.OADD open output device = OADD.open output device;

this.OADD write processed samples = OADD.write processed samples;

this.OADD close output device = OADD.close output device;

// ATTACHING LOCAL INTERACTIONS:

try {
ArchiMeth.attach(C.forward start, IADD.receive start);

ArchiMeth.attach(C.send descriptor, SP.receive descriptor);

ArchiMeth.attach(C.forward stop, IADD.receive stop);

ArchiMeth.attach(IADD.send dry segment, SP.receive dry segment);

ArchiMeth.attach(IADD.send eos, SP.receive eos);

ArchiMeth.attach(SP.send descriptor request, C.receive descriptor request);

ArchiMeth.attach(SP.forward descriptor, EG.receive descriptor);

ArchiMeth.attach(SP.send processed segment, OADD.receive processed segment);

ArchiMeth.attach(SP.forward eos, OADD.receive eos);

ArchiMeth.attach(EG.send effect, SP.receive effect);

} catch(BadAttachmentException e) {}
}

In the fifth section, the thread associated with the class is declared and

methods start(), join(), and run() are defined, with the last one starting

the execution of the previously instantiated five RunnableElem objects.

//----------- RUNNING ARCHITECTURE ------------//

Thread th Audio Processing System = null;

public void start() {
(th Audio Processing System = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Audio Processing System.join();

}

public void run() {
C.start();

IADD.start();

SP.start();

EG.start();

OADD.start();

try {
C.join();

IADD.join();

SP.join();

EG.join();

OADD.join();

} catch(InterruptedException e) {}
}

}





Chapter 5

Thread Behavior Generation

The second phase of our approach to the generation of multithreaded object-

oriented code from process algebraic architectural descriptions deals with the

translation of the process algebraic specification of the behavior of the AETs

into thread classes. Due to the different level of abstraction of an architectural

description language and of a programming language, only a partial translation

based on stubs is possible, with the preservation of architectural properties

depending on the way in which the stubs are filled in by the software developer.

In this chapter we introduce a reference thread generation model (Sect. 5.1)

and we show how to synthesize thread method run() (Sect. 5.2) and how to

translate process algebraic operators (Sect. 5.3-5.6).

Then we present conditions guaranteeing the preservation of architectural

properties and we discuss some guidelines to be followed when filling in the stubs

(Sect. 5.7). The translation process will be exemplified in the last section of this

chapter (Sect. 5.8) through the audio processing system of Sect. 3.5.

5.1 Thread Generation Model

A finite state machine model is adopted to guide the generation of a thread

from the description of an AET made out of a sequence of process algebraic

defining equations. Large conditional statements or table-based approaches do

not guarantee high efficiency when many conditions or associations have to be
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checked at run time for each behavioral invocation. Therefore we generate code

on the basis of the behavioral pattern “State” [33].

More precisely, each AET is translated into a context class implementing

the interface RunnableElem, in which each state is defined as an inner class

implementing the interface BehavioralEquationInterface and defining the

method behavEqCall(). The idea is that every behavioral equation is translated

into an inner state class having the same name as the equation. The code for

an inner state class is generated by proceeding by induction on the syntactical

structure – stop, behavior invocation, action prefix, and choice – of the process

algebraic term occurring on the right-hand side of the corresponding behavioral

equation.

The context class also defines the member nextBehavEq, a reference to an

object implementing the above mentioned interface, and the member actualPars,

a reference to an array of objects. These references, which are shared and visible

by all the inner state classes, are in charge of defining the state transitions, i.e.

the next behavioral equation to be executed and the actual parameters to be

passed.

We conclude by observing that a different treatment is needed for action

prefixes depending on whether the related actions are interactions or internal

actions. An interaction is involved in communications, hence it is automatically

managed via package Sync. However, as we have seen in Sect. 4.4, the execution

of an interaction may result in two kinds of exception, whose handling is left to

the software developer. Our thread generation model thus includes the possibility

of associating an exception handling stub (EHS) with each interaction, to be filled

in by the software developer. By contrast, an internal action is not involved at all

in communications, as it takes place inside an AET. In this case the architectural

description does not provide any information about how to translate the action

into a sequence of Java statements. As a consequence, our thread generation

model also includes the possibility of associating an internal action stub (IAS)

with each internal action, to be filled in by the software developer.
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5.2 Synthesizing Thread Method run()

The context class corresponding to an AET comprises the constructor and method

run(). While the former instantiates the inner state classes, as shown in Table 5.1

the latter first of all instantiates the EHSs and the IASs declared as members of

the context class.

public void run() {
/EHS instantiation.

/IAS instantiation.

nextBehavEq = /first behavioral equation .;

actualPars = /actual parameters of the first behavioral equation .;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

Table 5.1. Structure of thread method run()

Method run() then assigns the state class instance representing the first be-

havioral equation to nextBehavEq and the associated parameters to actualPars.

A while statement carries out the execution of the behavioral equations starting

from the first one, by repeatedly invoking method behavEqCall() on the state

class instance referenced by nextBehavEq. When nextBehavEq is set to null,

the execution of method run() terminates.

5.3 Translating stop

Process term stop represents the situation in which no further action can be

executed. It is therefore translated by assigning null both to nextBehavEq

and to actualPars. As a consequence, when encountering stop method run()

terminates its execution
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5.4 Translating Behavioral Invocations

The behavioral invocation B(e) represents a process term that behaves as the

behavioral equation whose identifier is B, when passing the possibly empty

sequence of actual parameters e. A behavioral invocation, which can occur only

within the scope of an action prefix operator, is not translated into a method

call, as this may result in the generation of inefficient code in case of recursion.

Instead, a behavioral invocation is translated into an assignment to nextBehavEq

of an instance of the inner state class that corresponds to the next behavioral

equation, followed by an assignment to actualPars of the actual parameters

needed by the next behavioral equation.

5.5 Translating Action Prefixes

The action prefix operator is used to represent a process term that can execute an

action and then behaves as described by another process term. The translation

of the action depends on whether it is an interaction or an internal action.

In the first case, the action is translated into an invocation of method send() –

if it is an output interaction – or method receive() – if it is an input interaction

– of the corresponding instance of a class of layer Port. The translation must

then be completed by filling in the corresponding EHSs.

In the second case, instead, the action translation is completely left to the

software developer, as internal actions cannot be treated automatically at all. A

method for each of them is placed in a distinct IAS, which has to be filled in by the

software developer with the corresponding Java statements. As a consequence,

every occurrence of an internal action is translated into an invocation of the

related method in an IAS.

5.6 Translating Choices

The choice operator expresses a selection among a certain number of alternative

behaviors described through process terms. A choice-based process term is

translated into a switch-case statement, whose condition is given by an
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invocation of the static method choice() defined in the class ElemMeth of package

Sync.

There are two cases that must be addressed in order to translate the choice

operator. The first one is the case where every process term involved in the

choice starts with an action prefix operator. In this case the method choice()

is directly employed, which accepts as input an array of objects of class ChAct,

each of which contains a boolean guard expressing the possible constraint under

which the corresponding starting action is enabled (default value true). Should

one of the starting actions be an interaction, an additional piece of information

is contained in the corresponding object, which is a reference to the Port object

associated with the interaction. Method choice() returns the index (within the

array) of the starting action selected for execution.

A starting action is enabled (and hence can be selected for execution) if its

guard evaluates to true and – in the case of a synchronous interaction – the

corresponding Port object is ready to communicate. If several starting actions are

enabled, a probabilistic mechanism is applied to select one of those actions. If all

the starting actions with guard evaluating to true are synchronous interactions,

method choice() waits – and the thread that contains it passivates – until one

of the associated Port objects is ready to communicate. If all the guards of the

starting actions evaluate to false, method choice() returns a negative value.

Based on the index returned by choice(), the switch-case statement invokes

the method associated with the execution of the selected starting action. This

method is send() or receive() in the case of an interaction, whereas for an

internal action it is the corresponding method in the related IAS. The invocation

of this method is followed in turn by the translation of the process term prefixed by

the selected action. In the default clause, which comes into play when a negative

value is returned by choice(), process term stop is invoked by assigning null

both to nextBehavEq and to actualPars.

The second case is the one in which some of the process terms involved in the

choice do not start with an action prefix operator. If one of these process terms is

stop, then nothing has to be added for it in the ChAct array and the switch-case

statement, because it is selected by default whenever the other involved process

terms cannot be selected. If instead one of these process terms is a nested choice,
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then a flattening of the nested choice takes place during the translation. This

means that the array of objects of class ChAct and the switch-case statement

for the outer choice are extended in order to include all the alternative starting

actions that are contained in the inner choice. The event in which one of the

process terms involved in the choice is a behavioral invocation cannot happen,

because a behavioral invocation can only occur within an action prefix operator.

5.7 Preservation of Architectural Properties

PADL is equipped with a component-oriented technique based on equivalence

checking for verifying the freedom from architectural mismatches [1, 12]. These

are the malfunctionings that arise when assembling together several components

that are correct if considered in isolation. More precisely, the class of properties

dealt with by the technique – which includes for instance deadlock freedom –

is characterized by three constraints. First, the properties must be concerned

with the interactions, as internal actions cannot affect communications among

components. Second, for each property P in the class, there must exist a

behavioral equivalence ≈P coarser than ≈B (weak bisimilarity [56]) that (i) is

able to abstract from internal actions, (ii) preserves P in the sense that it never

equates two process terms such that one of them satisfies P while the other does

not, and (iii) is a congruence with respect to static process algebraic operators.

Third, the (action-based) temporal logic in which the properties of the class are

expressed must not allow the negation to be freely used.

An important issue is to guarantee that the properties proved at the

architectural level are then preserved at the code level. Since we have taken

an approach based on automatic code generation, property preservation should

be achieved by construction. In other words, the translation from PADL to

Java illustrated before should have been defined in a way that ensures property

preservation. We now investigate this issue by separately considering the code

generated for thread management, the code generated for translating behavioral

equations, and the code provided for filling in the stubs.

The code generated for managing the threads cannot infringe the preservation

of architectural properties, up to the methods for handling the exceptions that



Chapter 5. Thread Behavior Generation 63

architectural interactions and semi-synchronous interactions may raise. In fact,

the code for thread coordination is completely generated in an automatic way

by means of package Sync. As far as the system topology is concerned, this is

built in the RunnableArchi-implementing class in the same way as prescribed

by the second section of the PADL description. Moreover, both PADL and Sync

adhere to the same communication model. On the PADL side, each interaction

is given three qualifiers: output vs. input, synchronous vs. semi-synchronous vs.

asynchronous (only in the output case), uni vs. and vs. or. Each interaction is

then translated into an invocation of method send() or receive() defined in

the corresponding Port object, depending on whether it is an output or an input

interaction, respectively. Additionally, the kind of this Port object – synchronous

vs. semi-synchronous vs. asynchronous (only in the output case), uni vs. and vs.

or – is the same as that of the interaction.

Each behavioral equation occurring in the description of an AET is translated

into an inner state class of the corresponding RunnableElem-implementing class.

The translation proceeds by induction on the syntactical structure of the process

term occurring on the right-hand side of the behavioral equation. The way in

which the translation is carried out, together with the way in which the thread

execution flow proceeds according to the order established by the invocations

of the behavioral equations, ensures the preservation of the process algebraic

semantics, up to the methods for translating the internal actions.

As a consequence, the preservation of architectural properties critically

depends on the way in which the software developer manually fills in EHSs and

IASs. Here we shall consider only IASs, as EHSs can be treated similarly.
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Figure 5.1. Internal action refinement and related statement abstraction
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In order to be able to reason about architectural property preservation, we

have to compare the internal actions and the corresponding sequences of Java

statements on the same process algebraic ground. As shown in Fig. 5.1, the Java

statements into which an internal action is refined during the translation process

can be abstractly viewed as fresh actions. The following theorem provides a

sufficient condition for ensuring the preservation of an architectural property of

the considered class. Below, we denote by / the hiding operator and by 'B the

observational congruence of [56].

Theorem 5.1 Let T be the process algebraic description of the behavior of a

thread and let a be an internal action occurring in T . Let a1, a2, . . . , am be the

fresh actions abstracting the statements into which a is translated and let T ′ be

the process algebraic description of the behavior of the thread obtained from T

by replacing every occurrence of a. with a1.a2. . . . .am. . Let H be the set of

internal actions occurring in T or T ′. Whenever T satisfies P and a.stop/H 'B

a1.a2. . . . .am.stop/H, then T ′ satisfies P as well.

Proof: Since 'B is a congruence with respect to all the process algebraic

operators, from a.stop/H 'B a1.a2. . . . .am.stop/H it follows that T/H 'B T ′/H,

hence T/H ≈B T ′/H. Since P must be equipped with a weak equivalence ≈P

coarser than ≈B, it follows that T/H ≈P T ′/H. Since T satisfies P, ≈P preserves

P, and P can only make assertions about the interactions (which do not belong

to H), it follows that T ′ satisfies P as well.

Note that in the theorem above it is not necessarily the case that all of

the actions a1, a2, . . . , am associated with the Java statements provided by the

software developer belong to H. As an example, one of such actions may

correspond to an invocation of send() or receive() or of a method such as

behavEqCall() belonging to a state class. Fortunately, in practice both cases

are prevented from occurring by the fact that the Port objects – which contain

methods send() and receive() – and the RunnableElem-implementing class

instances – which contain the state classes – are not visible within the stubs.

We conclude by providing some guidelines that the developer should follow

when filling in the stubs in order to preserve architectural properties:
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• No synchronized methods – like wait() and notify() – should be defined

within the stubs, as they would be internal to the threads but at the same

time could affect the way threads communicate with each other.

• No further thread should be created within the stubs, as this would have

an observable impact on the system topology and on thread coordination.

• There should be no variables/objects that are visible from several stub

classes. This means that all the data shared by several threads should be

exchanged only through suitable units of package Sync.

• The stub method associated with the first internal action following an

invocation of send() or receive() should copy every object passed in

that invocation, and all the stub methods associated with the subsequent

internal actions should work on those copies of the objects. This would

avoid interferences among threads stemming from the fact that send()

always keeps a reference to the passed objects – so that it can be defined

within Sync in a way that supports arbitrarily many parameters of arbitrary

types – and such objects may be modified by the stub method associated

with some internal action.

• All the exceptions that can be raised when executing a stub method should

be caught, or prevented from being raised, inside the stub method itself.

• Non-terminating statements should not occur within stub methods.

5.8 Audio Processing System: Phase 2

We now illustrate the generation of the thread behavior by means of the synthesis

of the RunnableElem-implementing classes and of their related stub classes for

all of the five AETs of the audio processing system introduced in Sect. 3.5. A

special emphasis will be placed on explaining the AET Console. The reason of

this choice is twofold. First, both IAS classes and EHS classes must be generated,

as AET Console contains both internal actions and architectural interactions.

Second, the same AET will be used in Sect. 6 for exemplifying the third phase of
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our approach, as the console is a good candidate for the generation of a monitor

class. This will permit a comparison between the code generated for a thread

and the code generated for a monitor.

According to Table 4.1, the code generated for the RunnableElem-implementing

class Console is composed of several sections. In the first section, the interface

BehavioralEquationInterface – which declares method behavEqCall() – is

defined and Start, Config Handling, Descriptor Handling – in correspondence

with the three behavioral equations occurring in the definition of AET Console

– and nextBehavEq are declared as references to that interface. The array

actualPars is also declared, which will contain the actual parameters of the

next behavioral equation.

class Console implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Start, Config Handling, Descriptor Handling;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

In the second section, a Port object is declared and instantiated for each

of the four input interactions and the three output interactions declared in the

definition of AET Console.

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort receive start =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive config =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive descriptor request =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive stop =

new UniSyncReceiverPort(this);

UniSyncSenderPort forward start =

new UniSyncSenderPort(this);
UniSyncSenderPort send descriptor =

new UniSyncSenderPort(this);
UniSyncSenderPort forward stop =

new UniSyncSenderPort(this);

In the third section, internal Console and exception Console are declared

as references to the stub classes IAS Console and EHS Console, respectively,
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which will be instantiated later on.

//-------------- DECLARING STUBS --------------//

IAS Console internal Console;

EHS Console exception Console;

In the fourth section, the class constructor is declared together with one

parameter, which coincide with the parameter of AET Console.

//----------- DEFINING CONSTRUCTOR ------------//

protected int allowed changes;

Console(int allowed changes) {
this.allowed changes = allowed changes;

defineBehavEquations();

}

In the fifth section, method defineBehavEquations() is defined, which

assigns the instances of new anonymous BehavioralEquationInterface-imple-

menting classes to the references Start, Config Handling, and

Descriptor Handling. The interactions receive start and forward start

of the first behavioral equation are translated into invocations of methods

receive() and send(), respectively, which are defined in the corresponding Port

objects. Since the first interaction is declared as an architectural interaction

in the PADL description of the audio processing system, the corresponding

invocation of receive() may raise an UnattachedPortException. This is

handled by an invocation of the method receive start() defined in the

EHS class instance exception Console. In the translation of the second

and third equation, the array inputPars of type Object is declared in order

to store the values of the input action parameters, which are declared as

local variables in the behavioral equations themselves. The internal actions

store config and get summary descriptor are translated into invocations of

the homonymous methods defined in the IAS class instance internal Console,

with the appropriate input or output parameters – preceded by “?” and “!” in

the PADL description of the audio processing system, respectively.

//------------ DEFINING BEHAVIOR --------------//

void defineBehavEquations() {
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Start =

new BehavioralEquationInterface() {

public void behavEqCall() {
Start((int)actualPars[0]);

}

private void Start(int config changes) {
try {

receive start.receive();

} catch(UnattachedPortException e) {
exception Console.receive start();

}
try {

forward start.send();

} catch(SyncException e) {}
nextBehavEq = Config Handling;

actualPars = new Object[] {config changes};
}

}; // end of behavioral equation Start

Config Handling =

new BehavioralEquationInterface() {

public void behavEqCall() {
Config Handling((int)actualPars[0]);

}

private void Config Handling(int config changes) {
Interface Configuration console config;

Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(config changes < allowed changes, receive config),

new ChAct(config changes > 0, receive descriptor request),

new ChAct(config changes == 0, receive descriptor request),

new ChAct(true, receive stop)

}
)

)

{
case 0:

try {
inputPars = receive config.receive();

console config = (Interface Configuration)inputPars[0];

} catch(UnattachedPortException e) {
inputPars = exception Console.receive config();

console config = (Interface Configuration)inputPars[0];
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}
internal Console.store config(console config);

nextBehavEq = Config Handling;

actualPars = new Object[] {config changes + 1};
break;

case 1:

try {
receive descriptor request.receive();

} catch(SyncException e) {}
nextBehavEq = Descriptor Handling;

actualPars = null;

break;
case 2:

try {
receive descriptor request.receive();

} catch(SyncException e) {}
try {

send descriptor.send(null);

} catch(SyncException e) {}
nextBehavEq = Config Handling;

actualPars = new Object[] {0};
break;

case 3:

try {
receive stop.receive();

} catch(UnattachedPortException e) {
exception Console.receive stop();

}
try {

forward stop.send();

} catch(SyncException e) {}
nextBehavEq = Start;

actualPars = new Object[] {config changes};
break;

default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Config Handling

Descriptor Handling =

new BehavioralEquationInterface() {

public void behavEqCall() {
Descriptor Handling();

}

private void Descriptor Handling() {
Interface Descriptor effect descriptor;
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Object[] inputPars;

inputPars = internal Console.get summary descriptor();

effect descriptor = (Interface Descriptor)inputPars[0]

try {
send descriptor.send(effect descriptor.clone());

} catch(SyncException e) {}
nextBehavEq = Config Handling;

actualPars = new Object[] {0};
}

}; // end of behavioral equation Descriptor Handling

}

In the sixth section, the thread associated with the class is declared and

methods start(), join(), and run() are defined, with the last one executing

the various behavioral equations through a while statement.

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Console = null;

public void start() {
(th Console = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Console.join();

}

public void run() {
exception Console = new EHS Console();

internal Console = new IAS Console();

nextBehavEq = Start;

actualPars = new Object[] {0};
while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

The stub class IAS Console contains the definition of the methods associated

with the two internal actions occurring in the definition of AET Console. These

methods will have to be filled in by the developer based on the semantics of the

internal actions themselves. The developer is also allowed to fill in the body of the

constructor of the stub class and to add member declarations whenever needed.
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class IAS Console {

IAS Console() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void store config(Interface Configuration console config) {
// FILL IN THE METHOD BODY

}

Object[] get summary descriptor() {
Interface Descriptor effect descriptor = null;

// FILL IN THE METHOD BODY

return new Object[] {effect descriptor};
}

}

Similarly, the stub class EHS Console contains the definition of the methods

associated with the three architectural interactions occurring in the AET Console

definition. These methods handles exceptions of type UnattachedPortException

that may be raised by such architectural interactions. As before, the developer

will have to fill in these methods as well as the body of the constructor if needed,

and is allowed to add member declarations.

class EHS Console {

EHS Console() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void receive start() {
// FILL IN THE METHOD BODY

}

Object[] receive config() {
Interface Configuration console config = null;

// FILL IN THE METHOD BODY

return new Object[] {console config};
}

void receive stop() {
// FILL IN THE METHOD BODY

}

}

The code generated for the second AET of the audio processing system,
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i.e. Input Audio Device Driver, is the following RunnableElem-implementing

class:

class Input Audio Device Driver implements RunnableElem

{
//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }

BehavioralEquationInterface Idle,

Busy;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort receive start =

new UniSyncReceiverPort(this);
UniSyncReceiverPort read dry samples =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive stop =

new UniSyncReceiverPort(this);

UniSyncSenderPort open input device =

new UniSyncSenderPort(this);
UniSyncSenderPort send dry segment =

new UniSyncSenderPort(this);
UniSyncSenderPort close input device =

new UniSyncSenderPort(this);
UniSyncSenderPort send eos =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

// No IAS declaration as there are

// no internal actions.

EHS Input Audio Device Driver exception Input Audio Device Driver;

//----------- DEFINING CONSTRUCTOR ------------//

protected int segment size;

Input Audio Device Driver(int segment size) {
this.segment size = segment size;

defineBehavEquations();

}

//------------ DEFINING BEHAVIOR --------------//

void defineBehavEquations() {

Idle =

new BehavioralEquationInterface() {

public void behavEqCall() {
Idle();
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}

private void Idle() {
try {

receive start.receive();

} catch(SyncException e) {}
try {

open input device.send(segment size);

} catch(UnattachedPortException e) {
exception Input Audio Device Driver.open input device(segment size);

}
nextBehavEq = Busy;

actualPars = null;

}

}; // end of behavioral equation Idle

Busy =

new BehavioralEquationInterface() {

public void behavEqCall() {
Busy();

}

private void Busy() {
Interface Segment segment;

Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(true, read dry samples),

new ChAct(true, receive stop)

}
)

) // Choice body :

{
case 0:

try {
inputPars = read dry samples.receive();

segment = (Interface Segment)inputPars[0];

} catch(UnattachedPortException e) {
inputPars = exception Input Audio Device Driver.read dry samples();

segment = (Interface Segment)inputPars[0];

}
try {

send dry segment.send(segment.clone());

} catch(SyncException e) {}
nextBehavEq = Busy;

actualPars = null;

break;
case 1:
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try {
receive stop.receive();

} catch(SyncException e) {}
try {

close input device.send();

} catch(UnattachedPortException e) {
exception Input Audio Device Driver.close input device();

}
try {

send eos.send();

} catch(SyncException e) {}
nextBehavEq = Idle;

actualPars = null;

break;
default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Busy

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Input Audio Device Driver = null;

public void start() {
(th Input Audio Device Driver = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Input Audio Device Driver.join();

}

public void run() {
exception Input Audio Device Driver =

new EHS Input Audio Device Driver();

nextBehavEq = Idle;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

Note that the AET Input Audio Device Driver does not contain internal

actions. For this reason, no IAS stub class is generated for it, while the

class EHS Input Audio Device Driver is synthesized for handling the excep-
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tion UnattachedPortException that can be raised by open input device,

read dry samples, and close input device:

class EHS Input Audio Device Driver {

EHS Input Audio Device Driver() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void open input device(int segment size) {
// FILL IN THE METHOD BODY

}

Object[] read dry samples() {
Interface Segment segment = null;

// FILL IN THE METHOD BODY

return new Object[] {segment};
}

void close input device() {
// FILL IN THE METHOD BODY

}

}

The third AET – which is very similar to the previous one – occurring in

the audio processing system is the Output Audio Device Driver. The code

generated for it is:

class Output Audio Device Driver implements RunnableElem

{
//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }

BehavioralEquationInterface Idle,

Busy;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort receive processed segment =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive eos =

new UniSyncReceiverPort(this);

UniSyncSenderPort open output device =

new UniSyncSenderPort(this);
UniSyncSenderPort write processed samples =

new UniSyncSenderPort(this);
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UniSyncSenderPort close output device =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Output Audio Device Driver internal Output Audio Device Driver;

EHS Output Audio Device Driver exception Output Audio Device Driver;

//----------- DEFINING CONSTRUCTOR ------------//

protected int segment size;

protected int delay;

Output Audio Device Driver(int segment size,

int delay) {
this.segment size = segment size;

this.delay = delay;

defineBehavEquations();

}

//------------ DEFINING BEHAVIOR --------------//

void defineBehavEquations() {

Idle =

new BehavioralEquationInterface() {

public void behavEqCall() {
Idle();

}

private void Idle() {
Interface Segment segment;

Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(true, receive processed segment),

new ChAct(true, receive eos)

}
)

) // Choice body :

{
case 0:

try {
inputPars = receive processed segment.receive();

segment = (Interface Segment)inputPars[0];

} catch(SyncException e) {}
internal Output Audio Device Driver.sleep(delay);

try {
open output device.send(segment size);

} catch(UnattachedPortException e) {
exception Output Audio Device Driver.open output device(segment size);

}
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try {
write processed samples.send(segment.clone());

} catch(UnattachedPortException e) {
exception Output Audio Device Driver.write processed samples(segment);

}
nextBehavEq = Busy;

actualPars = null;

break;
case 1:

try {
receive eos.receive();

} catch(SyncException e) {}
nextBehavEq = Idle;

actualPars = null;

break;
default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Idle

Busy =

new BehavioralEquationInterface() {

public void behavEqCall() {
Busy();

}

private void Busy() {
Interface Segment segment;

Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(true, receive processed segment),

new ChAct(true, receive eos)

}
)

) // Choice body :

{
case 0:

try {
inputPars = receive processed segment.receive();

segment = (Interface Segment)inputPars[0];

} catch(SyncException e) {}
try {

write processed samples.send(segment.clone());

} catch(UnattachedPortException e) {
exception Output Audio Device Driver.write processed samples(segment);
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}
nextBehavEq = Busy;

actualPars = null;

break;
case 1:

try {
receive eos.receive();

} catch(SyncException e) {}
try {

close output device.send();

} catch(UnattachedPortException e) {
exception Output Audio Device Driver.close output device();

}
nextBehavEq = Idle;

actualPars = null;

break;
default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Busy

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Output Audio Device Driver = null;

public void start() {
(th Output Audio Device Driver = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Output Audio Device Driver.join();

}

public void run() {
internal Output Audio Device Driver =

new IAS Output Audio Device Driver();

exception Output Audio Device Driver =

new EHS Output Audio Device Driver();

nextBehavEq = Idle;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

Since the AET Output Audio Device Driver contains the internal action
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sleep, the stub class IAS Output Audio Device Driver is generated as follows:

class IAS Output Audio Device Driver {

IAS Output Audio Device Driver() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void sleep(int delay) {
// FILL IN THE METHOD BODY

}

}

and the class EHS Output Audio Device Driver for handling the exceptions

UnattachedPortException is also generated:

class EHS Output Audio Device Driver {

EHS Output Audio Device Driver() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void open output device(int segment size) {
// FILL IN THE METHOD BODY

}

void write processed samples(Interface Segment segment) {
// FILL IN THE METHOD BODY

}

void close output device() {
// FILL IN THE METHOD BODY

}

}

The code generated for the fourth AET of the audio processing system,

i.e. Sound Processor, is as follows:

class Sound Processor implements RunnableElem

{
//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }

BehavioralEquationInterface Segment Descriptor Handling,

Descriptor Check,

Segment Effect Handling;

BehavioralEquationInterface nextBehavEq;
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Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort receive dry segment =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive descriptor =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive effect =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive eos =

new UniSyncReceiverPort(this);

UniSyncSenderPort send processed segment =

new UniSyncSenderPort(this);
UniSyncSenderPort send descriptor request =

new UniSyncSenderPort(this);
UniSyncSenderPort forward descriptor =

new UniSyncSenderPort(this);
UniSyncSenderPort forward eos =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Sound Processor internal Sound Processor;

// No EHS declaration as there are

// no architectural interactions and

// no semi-synchronous interactions.

//----------- DEFINING CONSTRUCTOR ------------//

protected int segment size;

Sound Processor(int segment size) {
this.segment size = segment size;

defineBehavEquations();

}

//------------ DEFINING BEHAVIOR --------------//

void defineBehavEquations() {

Segment Descriptor Handling =

new BehavioralEquationInterface() {

public void behavEqCall() {
Segment Descriptor Handling((Interface Effect)actualPars[0],

(boolean)actualPars[1]);
}

private void Segment Descriptor Handling(Interface Effect effect,

boolean just done) {
Interface Segment dry segment;

Interface Segment processed segment;

Interface Descriptor effect descriptor;
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Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(true, receive dry segment),

new ChAct(!just done, send descriptor request),

new ChAct(true, receive eos)

}
)

) // Choice body :

{
case 0:

try {
inputPars = receive dry segment.receive();

dry segment = (Interface Segment)inputPars[0] ;

} catch(SyncException e) {}
internal Sound Processor.process dry segment(dry segment,

segment size,

effect);

inputPars = internal Sound Processor.get processed segment();

processed segment = (Interface Segment)inputPars[0] ;

try {
send processed segment.send(processed segment.clone());

} catch(SyncException e) {}
nextBehavEq = Segment Descriptor Handling;

actualPars = new Object[] {effect,
false};

break;
case 1:

try {
send descriptor request.send();

} catch(SyncException e) {}
try {

inputPars = receive descriptor.receive();

effect descriptor = (Interface Descriptor)inputPars[0];

} catch(SyncException e) {}
nextBehavEq = Descriptor Check;

actualPars = new Object[] {effect,
effect descriptor};

break;
case 2:

try {
receive eos.receive();

} catch(SyncException e) {}
try {

forward eos.send();

} catch(SyncException e) {}
nextBehavEq = Segment Descriptor Handling;

actualPars = new Object[] {effect,
false};

break;
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default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Segment Descriptor Handling

Descriptor Check =

new BehavioralEquationInterface() {

public void behavEqCall() {
Descriptor Check((Interface Effect)actualPars[0],

(Interface Descriptor)actualPars[1]);

}

private void Descriptor Check(Interface Effect old effect,

Interface Descriptor effect descriptor) {
switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(effect descriptor != null, forward descriptor),

new ChAct(effect descriptor == null, null)

}
)

) // Choice body :

{
case 0:

try {
forward descriptor.send(effect descriptor.clone());

} catch(SyncException e) {}
nextBehavEq = Segment Effect Handling;

actualPars = new Object[] {old effect};
break;

case 1:

internal Sound Processor.ignore();

nextBehavEq = Segment Descriptor Handling;

actualPars = new Object[] {old effect,

true};
break;

default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Descriptor Check

Segment Effect Handling =

new BehavioralEquationInterface() {
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public void behavEqCall() {
Segment Effect Handling((Interface Effect)actualPars[0]);

}

private void Segment Effect Handling(Interface Effect old effect) {
Interface Segment dry segment;

Interface Segment processed segment;

Interface Effect effect;

Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(true, receive dry segment),

new ChAct(true, receive effect),

new ChAct(true, receive eos)

}
)

) // Choice body :

{
case 0:

try {
inputPars = receive dry segment.receive();

dry segment = (Interface Segment)inputPars[0];

} catch(SyncException e) {}
internal Sound Processor.process dry segment(dry segment,

segment size,

old effect);

inputPars = internal Sound Processor.get processed segment();

processed segment = (Interface Segment)inputPars[0] ;

try {
send processed segment.send(processed segment.clone());

} catch(SyncException e) {}
nextBehavEq = Segment Effect Handling;

actualPars = new Object[] {old effect};
break;

case 1:

try {
inputPars = receive effect.receive();

effect = (Interface Effect)inputPars[0];

} catch(SyncException e) {}
nextBehavEq = Segment Descriptor Handling;

actualPars = new Object[] {new effect,

true};
break;

case 2:

try {
receive eos.receive();

} catch(SyncException e) {}
try {

forward eos.send();

} catch(SyncException e) {}
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try {
inputPars = receive effect.receive();

effect = (Interface Effect)inputPars[0];

} catch(SyncException e) {}
nextBehavEq = Segment Descriptor Handling;

actualPars = new Object[] {new effect,

false};
break;

default:
nextBehavEq = null;

actualPars = null;

}
}

}; // end of behavioral equation Segment Effect Handling

} // end of method defineBehavEquations()

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Sound Processor = null;

public void start() {
(th Sound Processor = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Sound Processor.join();

}

public void run() {
internal Sound Processor =

new IAS Sound Processor();

nextBehavEq = Segment Descriptor Handling;

actualPars = new Object[] {null,
false};

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

Since the AET Sound Processor does not have unattached ports nor semi-

synchronous interactions, no EHS stub class is synthesized for it. Conversely, the

stub class IAS Sound Processor is generated for filling in the internal actions

process dry segment, get processed segment, and ignore:

class IAS Sound Processor {

IAS Sound Processor() {
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// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void process dry segment(Interface Segment dry segment,

int segment size,

Interface Effect effect) {
// FILL IN THE METHOD BODY

}

Object[] get processed segment() {
Interface Segment processed segment = null;

// FILL IN THE METHOD BODY

return new Object[] {processed segment};
}

void ignore() {
// FILL IN THE METHOD BODY

}

}

The last AET of the audio processing system is Effect Generator. The code

generated for it is as follows:

class Effect Generator implements RunnableElem

{
//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }

BehavioralEquationInterface Generation;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort receive descriptor =

new UniSyncReceiverPort(this);

UniSyncSenderPort send effect =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Effect Generator internal Effect Generator;

// No EHS declaration as there are

// no architectural interactions and

// no semi-synchronous interactions.

//----------- DEFINING CONSTRUCTOR ------------//

Effect Generator() {
defineBehavEquations();

}
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//------------ DEFINING BEHAVIOR --------------//

void defineBehavEquations() {

Generation =

new BehavioralEquationInterface() {

public void behavEqCall() {
Generation();

}

private void Generation() {
Interface Descriptor effect descriptor;

Interface Effect effect;

Object[] inputPars;

try {
inputPars = receive descriptor.receive();

effect descriptor = (Interface Descriptor)inputPars[0];

} catch(SyncException e) {}
internal Effect Generator.create new effect(effect descriptor);

inputPars = internal Effect Generator.get new effect();

effect = (Interface Effect)inputPars[0];

try {
send effect.send(effect.clone());

} catch(SyncException e) {}
nextBehavEq = Generation;

actualPars = null;

}

}; // end of behavioral equation Generation

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Effect Generator = null;

public void start() {
(th Effect Generator = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Effect Generator.join();

}

public void run() {
internal Effect Generator =

new IAS Effect Generator();

nextBehavEq = Generation;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();
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}

} // end of runnable element class Effect Generator

As the previous AET, Effect Generator does not have unattached ports nor

semi-synchronous interactions, then no EHS stub class must be synthesized for

it. The stub class IAS Effect Generator is generated instead for filling in the

internal actions create new effect and get new effect:

class IAS Effect Generator {

IAS Effect Generator() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void create new effect(Interface Descriptor effect descriptor) {
// FILL IN THE METHOD BODY

}

Object[] get new effect() {
Interface Effect effect = null;

// FILL IN THE METHOD BODY

return new Object[] {effect};
}

}





Chapter 6

Monitor Synthesis

The third phase of our approach to the generation of multithreaded object-

oriented code from process algebraic architectural descriptions deals with the

translation of the algebraically-specified behavior of some AETs into monitor

classes. In Chap. 5 we observed that the natural candidate for the target of the

translation of the process algebraic description of a component is a thread. The

approach proposed in the previous chapter, in fact, allows the generation of Java

threads from any AET occurring in a PADL description. In many cases, however,

it may be more efficient to synthesize some software components as monitors

rather than threads. In effect, the performance of the generated code may be

improved thanks to the synthesis of monitors as they reduce the thread context

switch frequency. Moreover the presence of monitors results in a lightweight

concurrency control management with respect to package Sync, with the monitors

themselves constituting explicit coordination areas that were not available in the

previous phases.

What is proposed in this chapter is a general methodology that accompanies

the translation process, which in particular should help understanding when and

how it is possible to implement a software component as a monitor instead

of a thread. A systematic approach is illustrated here for the synthesis of

correctly coordinating Java monitors from arbitrary process algebraic component

descriptions that satisfy some suitable constraints. As will be discussed in

Sect. 6.1, the constraints are related to the fact that a monitor is a passive entity,

which typically encapsulates data in a way that guarantees a mutually exclusive
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access. In other words, a monitor coordinates the access of the threads to its

methods, but its statements are executed by those threads.

Once the above mentioned constraints are satisfied, the process algebraic

description of a component can systematically be transformed into a canonical

form that we call monitor normal form (Sect. 6.2) from which it is easy to

synthesize a Java monitor (Sect. 6.3 and 6.4).

The constraints and the approach will be illustrated in the last section of this

chapter (Sect. 6.5) by means of the process algebraic specification of the console

of the audio processing system introduced in Sect. 3.5.

6.1 Monitor Constraints

In our process algebraic view, both thread and monitor classes should be modeled

as AETs. From the code generation viewpoint, threads and monitors have to

interact with each other as regulated by the mechanisms provided by the object-

oriented target language, i.e. Java. Here, we present a set of constraints under

which it is possible to synthesize a correctly coordinating monitor from the process

algebraic description of a software component. Before doing so, it is worth to

introduce some terminology, then to recall the way in which, in general, threads

and monitors interact, and to illustrate the specific interaction model we adopted

in order to carry out the third phase of our approach.

6.1.1 Terminology

An architectural element type representing a Java class that extends or imple-

ments a thread base class will be called native-thread type and will be translated

into a native-thread component. An architectural element type representing a

Java monitor class will instead be called monitor type and will be translated into

a monitor component.

Furthermore, we distinguish between two kinds of component interactions at

the Java code level. An active-control interaction is performed by a component

whenever it starts communicating with another component. A passive-control

interaction is executed by a component whenever it is waiting for another
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component to start communicating with it. In particular, entry and exit points

of monitor components will be given by passive-control interactions.

6.1.2 Thread-Monitor Interaction Model

Given a native-thread component T and a monitor component M , the commu-

nication between them takes place by means of the component control switch

depicted in the sequence diagram of Fig. 6.1. When T intends to communicate

with M , T invokes a synchronized method of M – which corresponds to

performing an active-control interaction – so that thread t leaves T and waits

until M is ready to communicate.

More precisely, in a synchronous model, t waits outside M if another thread

is currently running inside M , otherwise it immediately enters M and possibly

blocks. This happens when t has to wait for a notification related to a condition

synchronization of M that does not hold upon entering M . In a semi-synchronous

model, instead, an exception is raised if a condition synchronization for t does

not hold and either there is no thread running inside M or the thread currently

running inside M leaves it without notifying such a condition synchronization.

We recall from [52] that a condition synchronization permits a monitor to block

threads until a particular condition holds, such as e.g. a count becoming non-zero,

a buffer becoming empty, or new input becoming available.

When M is ready, t takes the control of M and executes a sequence of

statements of M corresponding to internal actions. Finally, t possibly notifies one

of the threads blocked inside M about the validity of a condition synchronization,

then leaves the monitor. The end of the above mentioned statement sequence

coincides either with the monitor termination or with the execution of the last

statement before a passive-control interaction.

In order to achieve a correct concurrency control, it suffices that the thread

taking the control of the monitor executes finitely many statements without

moving to another monitor or invoking a method of another thread before leaving

the monitor in which it is running. In this way we are guaranteed that a thread

will stay within the monitor for a finite amount of time (up to possible condition
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Figure 6.1. Component control switch from native-thread T to monitor M

synchronizations that will never hold) and will not cause any interference between

the monitor and other monitors.

Below we establish the constraints that must be satisfied by the process

algebraic description of a component in order for it to be synthesized as a correctly

coordinating monitor.

6.1.3 Constraint 1: No Cycles of Internal Actions

Since a monitor is a passive entity that coordinates other components, it is

desirable that a thread taking the control of the monitor runs inside the monitor

only for a finite amount of time. In the worst case, it may happen that the

thread blocks forever inside the monitor because of a condition synchronization

that will never hold. However, this does not prevent other threads from entering

the monitor and running.

In order to achieve finiteness, we need to enforce that the maximum number

of consecutive internal actions that can be performed inside a candidate monitor

type is finite. This can easily be checked on the process algebraic description of

a candidate monitor type by verifying the absence of cycles of internal actions.

With the same approach followed in Sect. 5, each internal action will be
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translated into a method of an IAS class to be manually filled in later on. If

we adhere to the guidelines of Sect. 5.7, according to which non-terminating

statements should be avoided within these methods, a finite sequence of internal

actions will be executed in a finite amount of time. In this way the absence of

cycles of internal actions proved at the process algebraic level is guaranteed to be

preserved at the Java code level.

6.1.4 Constraint 2: No Attached Monitor Type Instances

A thread taking the control of a monitor should not move to another monitor

before leaving the monitor in which it is running, otherwise interferences among

monitors may arise.

This can be achieved by requiring that no instance of the monitor type can

communicate with instances of other monitor types. This can trivially be verified

by examining the attachments in the topological section of the process algebraic

architectural description in which the monitor type is defined.

6.1.5 Constraint 3: No Non-Synchronous Interactions

Since a monitor is a passive entity, it cannot perform active-control interactions.

A monitor can only passively communicate with a thread in a synchronous way

and a thread can communicate only synchronously or semi-synchronously with a

monitor.

This can trivially be verified on the process algebraic descriptions of a

candidate monitor type and of the native-thread types whose instances are

attached to instances of the monitor type, through the qualifiers expressing the

synchronicity of the communications in which those instances are involved.

6.1.6 Constraint 4: No Non-Disjoint Hybrid Choices

A hybrid choice in the process algebraic description of a component is a choice

between a non-empty set of interactions and a non-empty set of internal actions.

The problem with hybrid choices is that they may hamper the detection of the
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action sequence corresponding to the statement sequence that should be executed

by a thread running inside a monitor.

In fact, recalled that the monitor entry and exit points are described through

passive control interactions, to automatically detect the beginning and the end

of the action sequence in a candidate monitor type we need that the sequence is

comprised between two passive-control interactions. A choice between a passive-

control interaction and an internal action would make it impossible to decide

whether the currently running thread has completed its task or not, unless the

two actions are preceded by two disjoint conditions.

As a consequence of this constraint, a candidate monitor type can contain

only choices among all interactions or all internal actions. This can easily be

checked at the process algebraic description level. In addition, hybrid choices

are admitted provided that the involved actions are pairwise preceded by disjoint

boolean conditions (with each pair being composed by an interaction and an

internal action). As we shall see in Sect. 6.2.4, this constraint complies with

Lemma 6.3 by guaranteeing the correctness of the transformation of a candidate

monitor type into its relative monitor normal form.

6.2 Syntactic Transformation into Monitor Nor-

mal Form

Once all the constraints defined in the previous section are satisfied by the process

algebraic description of a candidate monitor type, it is possible to proceed to the

transformation of the description itself into monitor normal form. Starting from

this canonical form, it will be easy to synthesize the Java implementation of the

monitor type.

The basic idea behind the monitor normal form is to rewrite the process

algebraic description of the monitor type in such a way that all the occurrences

of interactions are collected into a single equation. At the code level each of them

will correspond to a passive-control interaction. Therefore, if we place all of them

at the beginning of a different branch of a choice, we exactly characterize the

point at which the monitor is waiting for a thread to take its control.
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The process algebraic description in monitor normal form obtained at the end

of the rewriting process will be formed by:

• An interacting choice equation, which is a choice composed by as many

branches as there are occurrences of interactions, with each branch starting

with an interaction followed only by internal actions and invocations.

• A group of setting equations, which contain the replacement of the branches

of the original defining equations copied to the interacting choice equation

with an invocation of the latter equation with suitably set parameters.

• A group of internal equations, which are the initial parts of the original

defining equations that started with an internal action or a choice among

internal actions. Original defining equations that does not contain any

interactions are internal equations, and are leaved unchanged by the

rewriting process.

This monitor normal form can be achieved through a sequence of five steps:

1. rewriting complex choices;

2. splitting defining equations;

3. building the interacting choice equation;

4. building setting equations;

5. rearranging the interacting choice equation.

These steps will be illustrated on the process algebraic description of the AET

Console of the audio processing system introduced in Sect. 3.5. As anticipated

in Sect. 5.8, in fact, the Console could be implemented as a Java monitor instead

of a thread. In order to do so, now we know we must assess the constraints that

guarantee the derivability of a monitor from the description of the Console. If

this stage succeeds, we can proceed in rewriting the process algebraic description

of the Console into the corresponding monitor normal form.
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But it is very easy to check that the Console satisfies all the moni-

tor constraints. In fact, its only internal actions are store config and

get summary descriptor and the process algebraic description of its behavior

has no cycles involving only occurrences of these two actions. If all the other

AETs except for at most Effect Generator are synthesized as threads, it has

no monitor type instances attached to its only instance C. All of its interactions

are synchronous and no interaction of the AEIs attached to its only instance C

is asynchronous. Finally, the process algebraic description of its behavior has no

hybrid choices.

6.2.1 Step 1: Rewriting Complex Choices

The first step is a preliminary step whose purpose is to facilitate the handling of

the branches of the choices in the subsequent steps. If a choice among interactions

is written in an abbreviated notation, such a choice must be expanded. Likewise,

if a nested choice among interactions occurs, such a choice must be flattened.

Possible nested conditions occurring before a branch of the original choice, in

flattened choices will be logically conjuncted into a single condition guarding the

same branch.

In the description of Console, the outer choice of defining equation

Config Handling contains a nested choice (the choice between two occurrences of

receive descriptor request). The equivalent flattened choice obtained after

the application of the first step is the following:

choice

{
cond(config changes < allowed changes) ->

receive config?(console config) . store config!(console config) .

Config Handling(config changes + 1),

cond(config changes > 0) ->

receive descriptor request . Descriptor Handling(),

cond(config changes = 0) ->

receive descriptor request . send descriptor!(null) . Config Handling(0),

receive stop . forward stop . Start(config changes)

}
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Lemma 6.1 Let M be the original process algebraic description of a monitor type

and M1 be the output of step 1. Then the labeled transition system underlying M1

is isomorphic to the labeled transition system underlying M .

Proof: Trivial, because step 1 simply expands abbreviated choices or flattens

nested choices.

6.2.2 Step 2: Splitting Defining Equations

The second step splits any defining equation at each point in which it contains

an interaction or a (flat) choice among interactions that does not occur at the

beginning of the equation. This is necessary for building the interacting choice

equation, as each of its branches must start with an interaction.

Each inner interaction or choice among interactions is moved together with

what follows it into a new equation. The moved block is replaced by an invocation

of the new equation. At the end of this splitting process, every interaction will

occur only at the beginning of some equation and will be followed only by internal

actions and invocations.

All the defining equations of Console need to be split as they contain some

inner interaction. The equation Start thus becomes:

Start(integer(0..allowed changes) config changes := 0;

void) =

receive start . Split 1 Start(config changes);

Split 1 Start(integer(0..allowed changes) config changes;

void) =

forward start . Config Handling(config changes);

while the equation Config Handling becomes:

Config Handling( integer(0..allowed changes) config changes;

local object(Configuration) console config) =

choice

{
cond(config changes < allowed changes) ->

receive config?(console config) . store config!(console config) .

Config Handling(config changes + 1),

cond(config changes > 0) ->

receive descriptor request . Descriptor Handling(),

cond(config changes = 0) ->

receive descriptor request . Split 1 Config Handling(),

receive stop . Split 2 Config Handling(config changes)
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};

Split 1 Config Handling(void;
void) =

send descriptor!(null) . Config Handling(0);

Split 2 Config Handling(integer(0..allowed changes) config changes;

void) =

forward stop . Start(config changes);

and, finally, the equation Descriptor Handling becomes:

Descriptor Handling(void;
local object(Descriptor) effect descriptor) =

get summary descriptor?(effect descriptor) .

Split 1 Descriptor Handling(effect descriptor);

Split 1 Descriptor Handling(object(Descriptor) effect descriptor;

void) =

send descriptor!(effect descriptor) . Config Handling(0);

Note that the formal parameters and the local variables declared in the original

equations are properly redeclared and passed throughout the splitted ones.

After this step the internal equations, i.e. Descriptor Handling, contain only

internal actions while the other, non-internal, equations start with an interaction

or a choice among interactions.

Lemma 6.2 Let M2 be the output of step 2. Then the labeled transition system

underlying M2 is isomorphic to the labeled transition system underlying M1.

Proof: In the simplest case we split a branch of an original defining equation

that contains an interaction not occurring at the beginning of the branch itself.

More precisely, if a branch of an equation E is of the form:

β1.β2. . . . .βn.α.P

where βk is an internal action for each k = 1, . . . , n and α is an interaction, then

the following new equation is defined:

Split E = α.P

and the branch is rewritten into:

β1.β2. . . . .βn.Split E

The rewritten branch and the new equation considered as a whole are clearly
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isomorphic to the original branch. Similar is the case in which there is a choice

among interactions instead of a single interaction α.

6.2.3 Step 3: Building the Interacting Choice Equation

The third step builds the interacting choice equation by suitably merging into a

single equation all the branches of the non-internal equations obtained at the end

of the second step.

In order to preserve the semantics of the original defining equations, the

interacting choice equation needs to keep track of the current state of the

monitor type. This state can be encoded through a bounded integer parameter

nieq, which represents the non-internal equation describing the current behavior,

and a set of boolean parameters g , which represent the guards expressing the

enabledness of the interactions occurring at the beginning of the considered non-

internal equation.

We observe that parameter nieq is strictly necessary because the same set

of interactions may be enabled in several different non-internal equations. By

contrast, the guards g are useful – once the monitor normal form has been

achieved – to implement the condition synchronizations of the monitor.

If a non-internal equation starts with a single interaction, then the whole right-

hand side of the equation becomes a branch of the interacting choice equation.

Similarly, if it starts with a (flat) choice among interactions, then each branch

of the choice becomes a branch of the interacting choice equation. Finally, if

it starts with a (flat) disjoint hybrid choice, only the branches starting with an

interaction become branches of the interacting choice equation. 1

Each branch of the interacting choice equation is preceded by a boolean

expression, which is the logical conjunction of:

• The equality check for nieq to correspond to the value associated with the

non-internal equation that contained the considered branch.

• The guard g associated with the interaction at the beginning of the branch.

1We will see that this does not disrupt the semantics of the disjoint hybrid choice.
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• A boolean condition possibly inherited from the original branch.

All the equations obtained for Console at the end of the second step are

non-internal except for Descriptor Handling. The non-internal equations are

numbered 0 to 5 according to the order in which they appear in the sequence and

their branches are merged into the following interacting choice equation:

Inter Ch Eq( integer(0..5) nieq,

boolean g receive start,

boolean g receive config,

boolean g receive descriptor request,

boolean g receive stop,

boolean g forward start,

boolean g send descriptor,

boolean g forward stop,

integer(0..allowed changes) config changes,

object(Descriptor) effect descriptor;

local object(Configuration) console config) =

choice

{
cond((nieq = 0) && g receive start) ->

receive start . Split 1 Start(config changes),

cond((nieq = 1) && g forward start) ->

forward start . Config Handling(config changes),

cond((nieq = 2) && g receive config && (config changes < allowed changes)) ->

receive config?(console config) . store config!(console config) .

Config Handling(config changes + 1),

cond((nieq = 2) && g receive descriptor request && (config changes > 0)) ->

receive descriptor request . Descriptor Handling(),

cond((nieq = 2) && g receive descriptor request && (config changes = 0)) ->

receive descriptor request . Split 1 Config Handling(),

cond((nieq = 2) && g receive stop) ->

receive stop . Split 2 Config Handling(config changes),

cond((nieq = 3) && g send descriptor) ->

send descriptor!(null) . Config Handling(0),

cond((nieq = 4) && g forward stop) ->

forward stop . Start(config changes),

cond((nieq = 5) && g send descriptor) ->

send descriptor!(effect descriptor) . Config Handling(0)

}

From the point of view of the correctness of the transformation, this step has

to be considered together with the next one.
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6.2.4 Step 4: Building Setting Equations

The fourth step completes the work done in the previous step as a consequence

of the fact that the interacting choice equation does not replace the non-internal

equations. This step is necessary because invocations of those equations are still

present both in the interacting choice equation and in the internal equations.

The right-hand side of each non-internal equation is rewritten in such a way

that all of its branches that have been copied to the interacting choice equation

are replaced by a single invocation of the latter equation with suitably set actual

values for parameters nieq and g . For this reason we refer to each of these

rewritten equations as a setting equation.

The actual value of nieq passed to the interacting choice equation is the

value associated with the non-internal equation. The actual values of the boolean

guards are set as follows. If an interaction does not occur at the beginning of

any copied branch of the non-internal equation, then the corresponding guard g

is set to false. Instead, if it occurs there and at least one of its occurrences is

not guarded by any boolean condition, the corresponding guard g is set to true.

Finally, if it occurs there and all of its occurrences are guarded by some boolean

condition, then the corresponding guard g is set to the disjunction of these

conditions (if at least one of them holds true, then the interaction is enabled).

If a non-internal equation starts with a single interaction or a (flat) choice

among interactions, its right-hand side is entirely replaced by an invocation

of the interacting choice equation with the actual values for nieq and g set

as explained above. Instead, if a non-internal equation starts with a (flat)

disjoint hybrid choice, all the internal branches are preserved. By contrast,

the interacting branches are replaced by an invocation of the interacting choice

equation, preceded by the disjunction of all the boolean conditions associated with

them. In this way the semantics of the selection between the group of internal

branches and the group of interacting branches is preserved, with the selection

within the latter group being deferred to the interacting choice equation.

The non-internal equations of Console are transformed into the following

setting equations:
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Start(integer(0..allowed changes) config changes := 0;

void) =

Inter Ch Eq(0,

true, false, false, false, false, false, false,

config changes,

null);

Split 1 Start(integer(0..allowed changes) config changes;

void) =

Inter Ch Eq(1,

false, false, false, false, true, false, false,

config changes,

null);

Config Handling(integer(0..allowed changes) config changes;

void) =

Inter Ch Eq(2,

false,

(config changes < allowed changes),

((config changes > 0) || (config changes = 0)),

true, false, false, false,

config changes,

null);

Split 1 Config Handling(void;
void) =

Inter Ch Eq(3,

false, false, false, false, false, true, false,

0,

null);

Split 2 Config Handling(integer(0..allowed changes) config changes;

void) =

Inter Ch Eq(4,

false, false, false, false, false, false, true,

config changes,

null);

Split 1 Descriptor Handling(object(Descriptor) effect descriptor;

void) =

Inter Ch Eq(5,

false, false, false, false, false, true, false,

0,

effect descriptor)

Lemma 6.3 Let M3,4 be the output of the steps 3 and 4. Then the labeled

transition system underlying M3,4 is isomorphic to the labeled transition system

underlying M2.

Proof: The outcome of step 3 is the following interacting choice equation:
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Inter Ch Eq(integer(0..n− 1) nieq , boolean g α0, . . . , boolean g αm−1) =

choice

{
cond((nieq = 0) && g α0,1 && c0,1) → α0,1.P0,1,

...

cond((nieq = i) && g αi,j && ci,j) → αi,j.Pi,j,
...

cond((nieq = n− 1) && g αn−1,bn−1 && cn−1,bn−1) → αn−1,bn−1 .Pn−1,bn−1

}

where:

• n is the number of non-internal equations of M2;

• m is the number of interactions occurring in those non-internal equations;

• bi is the number of interacting branches of non-internal equation i (0 ≤ i ≤
n− 1);

• αi,j ∈ {α0, . . . , αm−1} is the interaction occurring at the beginning of branch

j (0 ≤ j ≤ bi − 1) of non-internal equation i (0 ≤ i ≤ n− 1);

• ci,j is the boolean condition possibly inherited from branch j (0 ≤ j ≤ bi−1)

of non-internal equation i (0 ≤ i ≤ n− 1).

In step 4 non-internal equation i (0 ≤ i ≤ n − 1) is rewritten into a setting

equation with the following right-hand side part:

choice

{

cond(
bi−1∨
j=0

ci,j) →

Inter Ch Eq(i,
∨

j∈{0..bi−1|αi,j=α0} ci,j, . . . ,
∨

j∈{0..bi−1|αi,j=αm−1} ci,j),

cond(ci,bi
) → βi,bi

.Pi,bi
,

...

cond(ci,bi+di−1) → βi,bi+di−1.Pi,bi+di−1

}
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where:

• the first branch replaces all the interacting branches of non-internal equation

i, which have been copied to the interacting choice equation;

•
∨bi−1

j=0 ci,j is the disjunction of the boolean conditions of all the interacting

branches of non-internal equation i;

•
∨

j∈{0..bi−1|αi,j=αk} ci,j is the disjunction of the boolean conditions of the

interacting branches starting with interaction αk (0 ≤ k ≤ m− 1);

• di is the number of internal branches of non-internal equation i (di = 0 if

there are no such branches).

Note that the last monitor constraint guarantees the disjointness of the set

of boolean conditions associated with the interacting branches from the set of

boolean conditions associated with the internal branches:

bi−1∨
j=0

ci,j ∧
bi+di−1∨

j=bi

ci,j = false

The interacting choice equation and the group of setting equations of M3,4

considered as a whole are clearly isomorphic to the group of non-internal equations

of M2.

6.2.5 Step 5: Rearranging the Interacting Choice Equa-

tion

The fifth step performs a number of operations on the interacting choice equation.

On the one hand, the branches are lexicographically sorted on the basis of their

starting interactions. This sorting aims at facilitating code generation, as all

the branches starting with the same interaction shall be translated into a single

synchronized method (corresponding to a passive-control interaction) of a Java

monitor class.

On the other hand, some optimizations are useful to simplify the structure of

the interacting choice equation and thus of the monitor to be synthesized. First,
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if all the branches starting with the same interaction are associated with a single

value of nieq, the check on nieq can be removed from those branches. The reason

is that such an interaction occurred only in a single non-internal equation, hence

the guard g associated with it can be true only when nieq has the considered

value.

Second, if an interaction occurs at the beginning of only one of the branches

associated with a specific value of nieq and that branch is preceded by an

inherited boolean condition, that condition can be removed. In fact, the same

condition is already contained in the actual value for the guard g passed by the

setting equation associated with the considered branch.

Third, if several branches are identical up to their boolean expressions – i.e.

different values of nieq or different inherited boolean conditions – these branches

can be collapsed into a single one. The new branch will be preceded by a boolean

expression that includes, besides the check on g , the disjunction of the checks

on the different values of nieq and the disjunction of the inherited conditions. If

the interaction occurs only at the beginning of this new branch, by virtue of the

first two optimizations the two above-mentioned disjunctions can be removed.

In the case of the interacting choice equation of Console, the first optimization

can be applied to all the branches except for the two branches starting with

send descriptor. Among the three branches preceded by an inherited boolean

condition, the second optimization can be applied only to the branch starting

with receive config. The third optimization does not come into play for the two

branches starting with receive descriptor request and for the two branches

starting with send descriptor, as they are slightly different. The rearranged

interacting choice equation is as follows:

Inter Ch Eq( integer(0..5) nieq,

boolean g receive start,

boolean g receive config,

boolean g receive descriptor request,

boolean g receive stop,

boolean g forward start,

boolean g send descriptor,

boolean g forward stop,

integer(0..allowed changes) config changes,

object(Descriptor) effect descriptor;

local object(Configuration) console config) =
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choice

{
cond(g forward start) ->

forward start . Config Handling(config changes),

cond(g forward stop) ->

forward stop . Start(config changes),

cond(g receive config) ->

receive config?(console config) . store config!(console config) .

Config Handling(config changes + 1),

cond(g receive descriptor request && (config changes > 0)) ->

receive descriptor request . Descriptor Handling(),

cond(g receive descriptor request && (config changes = 0)) ->

receive descriptor request . Split 1 Config Handling(),

cond(g receive start) ->

receive start . Split 1 Start(config changes),

cond(g receive stop) ->

receive stop . Split 2 Config Handling(config changes),

cond((nieq = 3) && g send descriptor) ->

send descriptor!(null) . Config Handling(0),

cond((nieq = 5) && g send descriptor) ->

send descriptor!(effect descriptor) . Config Handling(0)

}

Lemma 6.4 Let M ′ be the output of step 5, i.e. the process algebraic description

in monitor normal form corresponding to M . Then the labeled transition system

underlying M ′ is isomorphic to the labeled transition system underlying M3,4.

Proof: Observed that sorting the branches of the interacting choice equation

does not alter the semantics at all, let us consider the three optimizations. The

first optimization takes place whenever all the branches starting with the same

interaction αk (0 ≤ k ≤ m − 1) are associated with a single value h (0 ≤ h ≤
n− 1) of nieq . In fact, whenever a setting equation i 6= h invokes the interacting

choice equation, then
∨

j∈{0..bi−1|αi,j=αk} ci,j = false because the index set of the

disjunction is empty. This means that i 6= h implies g αk = false. Instead, when

i = h and αi,j = αk for some j = 0..bi − 1, the check on nieq becomes redundant

because (nieq = i) && g αi,j coincides with g αi,j.

The second optimization takes place whenever an interaction αk occurs at

the beginning of only one of the branches associated with a specific value i

(0 ≤ i ≤ n − 1) of nieq and that branch is preceded by an inherited boolean

condition ci,j′ (0 ≤ j′ ≤ bi − 1). In this case, for setting equation i it holds∨
j∈{0..bi−1|αi,j=αk} ci,j = ci,j′ , so g αi,j′ is set to ci,j′ when this setting equation

invokes the interacting choice equation. Therefore g αi,j′ && ci,j′ coincides with



Chapter 6. Monitor Synthesis 107

ci,j′ && ci,j′ and hence the check on ci,j′ becomes redundant.

The third optimization takes place whenever several branches are identical up

to their boolean expressions. In the simplest case we have two branches like the

following:

cond((nieq = i) && g αi,j && ci,j) → αi,j.Pi,j

cond((nieq = h) && g αh,l && ch,l) → αh,l.Ph,l

where αi,j = αh,l = αk and Pi,j = Ph,l = P . The resulting collapsed branch:

cond(((nieq = i) || (nieq = h)) && g αk && (ci,j || ch,l)) → αk.P

is trivially isomorphic to the two original branches considered as a whole. The

same argument applies to an arbitrary number of branches that are identical up

to their boolean expressions.

6.2.6 Correctness of the Transformation

The syntactic transformation of the process algebraic description of a monitor

type into monitor normal form is correct in the following sense:

Theorem 6.1 Let M be the original process algebraic description of a monitor

type and let M ′ be the process algebraic description of the monitor normal

form obtained by applying to M the syntactic transformation. Then the labeled

transition system underlying M ′ is isomorphic to the labeled transition system

underlying M .

Proof: It follows from the Lemmas 6.1, 6.2, 6.3, and 6.4.

6.3 Generating the Core Monitor Class

The application of the steps illustrated in the previous section allows the

process algebraic description of any AET satisfying the monitor constraints to be

rewritten into its semantically equivalent monitor normal form. In this section we

show how to synthesize a Java monitor class from a process algebraic description

in monitor normal form. We will refer to this class as the core monitor class to

distinguish it from the monitor wrapper class. The latter, synthesized in order
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to make a monitor component fully compliant with the communication model

described in Sect. 4.1, will be explained in the Sect. 6.4.

class /architectural element type name. Monitor {
/Declaring Stubs.
/Defining Constructor.
/Defining Behavior.
/Starting Monitor.

}

Table 6.1. Structure of a core monitor class

The core monitor class is structured as shown in Table 6.1. The first section,

Declaring Stubs, declares an object of an external IAS class to be manually filled

in later on for translating the internal actions occurring in the AET definition.

We point out that no EHS classes are declared for a monitor. In fact, exceptions

of type UnattachedPortException do not need to be handled. The reason is that

a monitor can only have passive-control interactions triggered by active-control

interactions of threads, so if one of such monitor interactions is not attached it will

never be activated. Likewise, exceptions of type NotReadyPortException do not

need to be handled because all the monitor interactions must be synchronous.

However, we will see that exceptions may be raised by a monitor if a thread

interacts semi-synchronously with it.

The second section, Defining Constructor, defines the class constructor

together with its parameters. This section starts with the declaration/definition

of some non-public members. First of all we have the declaration of a private

integer variable nieq and of a private boolean array guard[], which translate

the corresponding parameters of the interacting choice equation. Then we have

the definition of some integer symbolic constants, which represent the values

that nieq can take on and the values that an index for guard[] can take on.

Additional protected members are finally declared, which translate the formal

parameters of the AET and all the other parameters occurring in the interacting

choice equation. The constructor simply assigns the value of its parameters to

the homonymous protected members.
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The third section, Defining Behavior, starts with the definition of a private

method called checkGuard(), which checks the condition synchronizations in

order to decide whether a thread can enter the monitor or not. Then this section

contains the translation of the setting and internal equations as a set of non-

public methods, followed by the translation of the interacting choice equation as

a set of public synchronized methods, each corresponding to a different interaction

occurring in the AET definition.

Finally, the fourth section, Starting Monitor, defines the public method

startMonitor(), which instantiates the external IAS object and invokes the

method corresponding to the first (setting or internal) equation occurring in the

description of the AET in monitor normal form. This equation corresponds to

the first equation in the original description of the AET, hence it is the first one

to be executed.

The synthesis of the monitor is accomplished through a sequence of five steps:

1. translating internal actions into stub class methods;

2. declaring IAS stub and synthesizing the monitor class constructor;

3. translating setting and internal equations;

4. translating the interacting choice equation;

5. synthesizing the starting method;

which guide the automated generation of the Java code.

6.3.1 Translating Internal Actions into Stub Class Meth-

ods

With the same approach followed in Sect. 5, each internal action of the process

algebraic description of a monitor type will be synthesized in the Java monitor

class as an invocation of a method defined in an external IAS stub class. In this

way the software developer can subsequently fill in the methods associated with

the internal actions, without any intervention on the main monitor class.
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6.3.2 Declaring IAS Stub and Synthesizing the Monitor

Class Constructor

Besides the definition of the constructor, at the beginning of the monitor class

there is the declaration/definition of some non-public members. The first member

is an object of the stub class for the internal actions, IAS, that will be instantiated

by the method startMonitor(). Then, an integer variable nieq and a boolean

array guard[] are declared as private, which translate the relative parameters

of the interacting choice equation, together with the definition of some integer

constants associated with the setting equations, which represent the values that

nieq can take on and the values that an index for guard[] can take on. Additional

protected members are declared that translate the formal parameters of the AET

and of all the other parameters occurring in the interacting choice equation.

The constructor simply assigns the value of its parameters to the homonymous

protected members of the class translating the AET formal parameters.

6.3.3 Translating Setting and Internal Equations

The setting and internal equations of the monitor normal form are translated

into non-public methods of the Java monitor class. Since these equations do not

contain interactions, only sequences of/choices among internal actions have to be

considered during their translation.

While a sequence of internal actions can easily be synthesized as a sequence of

invocations of the associated stub methods, a choice among internal actions has

to be treated carefully. In fact, even if the branches of the choice can be guarded

by some conditions, it is not necessarily the case that such conditions are disjoint.

In this case the static method ElemMeth.choice() provided by the package Sync,

and introduced in Sect. 5.6, is used and a randomly generated index is employed

in a switch-case statement to select the translation of a branch of the choice,

among the branches whose conditions hold true.

An invocation of a setting or internal equation is simply translated into

an invocation of the monitor class method translating the equation itself. As

far as the setting equations are concerned, each of them always contains an

invocation of the interacting choice equation, which corresponds to the fact that
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the thread currently running inside the monitor is on the verge of leaving it. That

invocation is translated into a sequence of assignment statements in which the

integer variable nieq and the boolean array guard[] are set to the corresponding

actual parameters specified in the invocation. Since before leaving the monitor

the thread has to notify the other threads possibly blocked inside the monitor,

the assignment statement sequence is followed by the invocation of the Java

method notifyAll(). This method wakes up all the threads waiting inside the

monitor but the unblocking conditions – which have just been updated by setting

the boolean array guard[] – will be handled inside the synchronized methods

translating the interacting choice equation.

6.3.4 Translating the Interacting Choice Equation

Any group of branches of the interacting choice equation that start with the same

interaction is translated into a public synchronized method of the monitor class.

The resulting methods basically translate the communication of the passive-

control interactions of the monitor type with the active-control interactions of

native-thread types to which the passive-control ones are attached.

At the beginning of each such method, a private method called checkGuard()

is invoked, which is defined in the Java monitor class as follows:

private void checkGuard(int guardIndex, boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
if (blocking)

while (!guard[guardIndex])

wait();

else
if (!guard[guardIndex])

throw new SemisyncInteractionException();

}

The index of the guard of a public synchronized method associated with an

interaction is passed to checkGuard() together with a boolean value, blocking,

that indicates if a thread intends to communicate synchronously (when true) or

semi-synchronously (when false) with the monitor.

In the synchronous case, if the guard[index] holds true, a thread can

enter the monitor without blocking. Otherwise it blocks on the Java method
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wait() until another thread leaves the monitor by setting the same guard

to true and notifying about this event. Note also that the standard Java

InterruptedException, which must be handled whenever the method wait()

is used, is delegated to a method up the call stack, i.e. a method of the monitor

wrapper class.

In the semi-synchronous case, instead, when the guard[index] evaluates to

false an exception called SemisyncInteractionException 2 is raised by the

method checkGuard(). The reason is that in this case, when the condition

synchronization is false, an entering thread has to exit the monitor without

blocking.

After the invocation of the method checkGuard(), within the method

associated with an interaction we have a chain of if-else if statements, which

handle the selection among the branches (starting with the considered interaction)

based on the value of nieq. For those branches sharing the same value of nieq a

nested selection statement is necessary, which is based on inherited conditions.

It is worth to point out that a more advanced synchronization mechanism, in-

stead of the method checkGuard(), has been designed for observing the condition

synchronization in a blocking or in a non-blocking mode and subsequently – when

the observation succeeds – for reserving the access at the monitor only to the same

client (i.e. a specific port of an external thread) that has made the observation.

This mechanism is useful at the layer RunnableElem, in particular it is exploited

by the monitor wrapper class, when a monitor interaction is attached with and/or

ports belonging to external threads, in order to allow the polling techniques

exposed in Sect. 4.4. However, this requires the generation of a further class

for storing the status of the monitor after any update (i.e. a change of the array

guard[]) and for providing additional methods of observation, of reservation

cancellation, and of actual access to the interactions. Moreover, additional public

methods have to be defined into the core monitor class itself, in order to make

2 Do not confuse the exception SemisyncInteractionException – whose class is
synthesized when at least one RunnableElem is realized as a monitor – with the exception
NotReadyPortException provided by the package Sync. However, we shall see that when the
former propagates to a method send() or receive() of a port of the monitor wrapper class,
it will be re-raised as the latter exception.
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the observation mechanism available to the monitor wrapper class. Due to the

technical details of such a technique, here we have reported only its simplified

version.

6.3.5 Synthesizing the Starting Method

The public method startMonitor() is in charge of the instantiation of the

stub class IAS for the internal actions and of the invocation of the method

corresponding to the – internal or setting – equation of the monitor normal form

associated with the first equation of the original process algebraic description.

6.4 Generating the Monitor Wrapper Class

The core monitor class is accompanied by a further class that wraps it in order

to adapt it to the instances of RunnableElem declared in the RunnableArchi

class. This wrapper class, whose structure is shown in Table 6.2, implements

a RunnableElem interface and declares/defines a set of members that permit

the communication between the monitor and the threads attached to it using

overloaded versions of method attach() of class ArchiMeth of package Sync.

class / architectural element type name . implements RunnableElem {
/Declaring Monitor.
/Instantiating Interactions.
/Defining Constructor.
/Running Element.

}

Table 6.2. Structure of a monitor wrapper class

The first section of the wrapper class, Declaring Monitor, simply contains a

declaration of an object of the core monitor class.

The section Instantiating Interactions is the most important one. A number

of monitor port objects, whose classes and interfaces are defined in the package

Sync as deriving from the thread ports, is declared and instantiated as there are
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the different interactions occurring in the original PADL specification of the AET.

More precisely, to each monitor port object reference an instance of a different

new anonymous class is assigned, which derives from the appropriate monitor

port base class provided by the package Sync.

All the monitor port base classes provide a public method called

setBlocking() that sets a protected boolean variable isBlocking. The value

of isBlocking indicates if an attached thread wants to interact synchronously

(if true) or semi-synchronously (if false). Any anonymous class overrides the

method send() or receive() of its port base class. Such an overridden method

contains an invocation of a public synchronized method of the core monitor object,

which is the method associated to the wanted interaction. The synthesis of the

advanced observation/reservation mechanism discussed in Sect. 6.3.4 also allows

the appropriate overriding of the methods obsSnd() and obsRcv(), which are

exploited by external and/or thread ports for applying the polling techniques

described in Sect. 4.4.

As anticipated in Sect. 4.6, when a monitor port and a thread port are attached

through the method ArchiMeth.attach() no connectors are instantiated. In this

case, in fact, the reference of the monitor port is passed to the thread port, instead

of a reference of a connector. The method ArchiMeth.attach() also sets the

value of the monitor port member isBlocking, accordingly to the synchronicity

degree of the thread port. In this way, the thread port can directly invoke the

method send() or receive() of the monitor port and, through it, the public

synchronized method of the core monitor associated with the interaction. For

this reason, conversely to thread ports, monitor ports implements the method

send() for input interactions, and the method receive() for output interactions.

Actually, monitor ports are driven by external threads of control.

In the third section, Defining Constructor, the monitor wrapper class

constructor is defined with the same formal parameters as declared in the

constructor of the core monitor class. The constructor of the wrapper class simply

instantiates a monitor object by forwarding to it the formal parameters.

The last section, Running Element, defines the methods start(), join(),

and run(). These methods are implemented in order to initialize the core

monitor class and to make the wrapper fully compliant with the code generated
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for the RunnableArchi-implementing class, which invoke these methods on all

RunnableElem objects. In wrapper classes, the method start() simply invokes

the method run() of the class itself. The method join() does nothing, while

the method run() invokes the method startMonitor() of the core monitor

object. Note that the thread of control that invokes the method run() – which

is the thread of the owner RunnableArchi-implementing class – will be released

immediately after executing in the core monitor class a method that translates

a setting equation, possibly preceded by methods translating internal equations.

Therefore, the method run() can be considered as a simple initialization method

for the core monitor class.

6.5 Audio Processing System: Phase 3

In this section, the synthesis of a monitor class and of its wrapper is illustrated for

the AET Console of the audio processing system introduced in Sect. 3.5. Thus

a comparison of the code generated for a monitor with the code generated for a

thread, illustrated in Sect. 5.8, will be allowed.

According to Table 6.1, the code generated for the core monitor class

Console Monitor, is composed of several sections. In the first section,

internal Console is declared as a reference to the stub class IAS Console.

In the second section, instead, the integer variable nieq and the boolean

array guard[] are declared, together with the definition of the integer constants

associated with the setting equations, which represent the values that nieq can

take on and the values that an index for guard[] can take on. Then, the

integer variable allowed changes is declared that translate the homonymous

formal parameter of the Console together with the translation of the parameters

config changes and effect descriptor of the interacting choice equation.

Finally, the constructor assigns the value of its parameter allowed changes to

the homonymous protected class member:

class Console Monitor {

//-------------- DECLARING STUBS --------------//

IAS Console internal Console;
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//----------- DEFINING CONSTRUCTOR ------------//

private int nieq;

private boolean[] guard;

private final static int Start = 0,

Split 1 Start = 1,

Config Handling = 2,

Split 1 Config Handling = 3,

Split 2 Config Handling = 4,

Split 1 Descriptor Handling = 5;

private final static int receive start = 0,

receive config = 1,

receive descriptor request = 2,

receive stop = 3,

forward start = 4,

send descriptor = 5,

forward stop = 6;

protected int allowed changes;

protected int config changes;

protected Interface Descriptor effect descriptor;

Console Monitor(int allowed changes) {
this.allowed changes = allowed changes;

}

The third section of the Console Monitor is composed of the definition of the

method checkGuard(), illustrated in Sect. 6.3:

//------------- DEFINING BEHAVIOR -------------//

private void checkGuard(int guardIndex, boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
if (blocking)

while (!guard[guardIndex])

wait();

else
if (!guard[guardIndex])

throw new SemisyncInteractionException();

}

which is followed by the translation of the setting and of the local equations, and

by the translation of the equations deriving from the interacting choice equation.

The translation of the setting equation Start contains an assignment of the

integer parameter config changes to the homonymous class member, then the

integer variable nieq is set with the integer constant Start associated to the

equation itself, and the array guard[] is set with the boolean values for the

enabling of the seven interactions of the console. The last statement is an
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invocation of the method notifyAll() for notifying the other threads possibly

blocked inside the monitor:

protected synchronized void Start(int config changes) {
this.config changes = config changes;

nieq = Start;

guard = new boolean[] {true, false, false, false, false, false, false};
notifyAll();

}

Similar to Start is the translation of the other setting equations:

protected synchronized void Split 1 Start(int config changes) {
this.config changes = config changes;

nieq = Split 1 Start;

guard = new boolean[] {false, false, false, false, true, false, false};
notifyAll();

}

protected synchronized void Config Handling(int config changes) {
this.config changes = config changes;

nieq = Config Handling;

guard = new boolean[] {false,
(config changes < allowed changes),

((config changes > 0) || (config changes == 0)),

true, false, false, false};
notifyAll();

}

protected synchronized void Split 1 Config Handling() {
nieq = Split 1 Config Handling;

guard = new boolean[] {false, false, false, false, false, true, false};
notifyAll();

}

protected synchronized void Split 2 Config Handling(int config changes) {
this.config changes = config changes;

nieq = Split 2 Config Handling;

guard = new boolean[] {false, false, false, false, false, false, true};
notifyAll();

}

protected synchronized void
Split 1 Descriptor Handling(Interface Descriptor effect descriptor) {

this.effect descriptor = effect descriptor;

nieq = Split 1 Descriptor Handling;

guard = new boolean[] {false, false, false, false, false, true, false};
notifyAll();

}
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The translation of the only internal equation of the monitor normal form of

the console, Descriptor Handling, contains an invocation of the stub method

get summary descriptor() in the IAS class instance internal Console:

protected synchronized void Descriptor Handling() {
Interface Descriptor effect descriptor;

Object[] inputPars;

inputPars = internal Console.get summary descriptor();

effect descriptor = (Interface Descriptor)inputPars[0];

Split 1 Descriptor Handling(effect descriptor);

}

The translation of the first branch of the interacting choice equation is a

public method with the same name as the interaction, receive start(), and

with the boolean parameter blocking which indicates if the interacting thread

communicates in synchronous (when true) or in semi-synchronous (when false)

mode. The first statement of the method is an invocation of CheckGuard(),

where value 0 is the index associated with receive descriptor request within

the array guard[]. Then, the method simply invokes the setting equation

Split 1 Start():

public synchronized void receive start(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( receive start, blocking);

Split 1 Start(this.config changes);

The other branches of the interacting choice equation are translated in

a similar way. Note that the method receive config also contains an

invocation of the method store config() on the object internal Console,

which translates the corresponding internal action. Note also that the methods

receive descriptor request() and send descriptor() contain if-else if

chains in order to handle the selection among the next statements to be executed,

which translates the corresponding original branches of the interacting choice

equation, including their conditions:

public synchronized void receive config(boolean blocking,

Interface Config console config)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( receive config, blocking);
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internal Console.store config(console config);

Config Handling(this.config changes + 1);

}

public synchronized void receive descriptor request(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( receive descriptor request, blocking);

if (this.config changes > 0)

Descriptor Handling();

else if (this.config changes == 0)

Split 1 Config Handling();

}

public synchronized void receive stop(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( receive stop, blocking);

Split 2 Config Handling(this.config changes);

}

public synchronized void forward start(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( forward start, blocking);

Config Handling(this.config changes);

}

public synchronized Object[] send descriptor(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
Interface Descriptor effect descriptor;

checkGuard( send descriptor, blocking);

if (nieq == Split 1 Config Handling) {
effect descriptor = null;

Config Handling(0);

}
else if (nieq == Split 1 Descriptor Handling) {

effect descriptor = this.effect descriptor;

Config Handling(0);

}
return new Object[] {effect descriptor.clone()};

}

public synchronized void forward stop(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( forward stop, blocking);

Start(this.config changes);

}
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In the fourth section of the core monitor class Console Monitor, the public

method startMonitor() is defined that instantiate the object internal Console

of the class IAS Console. Then the method Start() is invoked, which

corresponds to the first equation of the original PADL specification, with the

same initialization parameter:

//------------- STARTING MONITOR --------------//

public void startMonitor() {
internal Console = new IAS Console();

Start(0);

}

}

Recalled that the PADL specification of the console of the audio processing

system contains the local actions store config and get summary descriptor,

the synthesized Java class IAS Console is exactly the same as illustrated in

Sect. 5.8:

class IAS Console {

IAS Console() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void store config(Interface Configuration console config) {
// FILL IN THE METHOD BODY

}

Object[] get summary descriptor() {
Interface Descriptor effect descriptor = null;

// FILL IN THE METHOD BODY

return new Object[] {effect descriptor};
}

}

As far as the monitor wrapper class Console is concerned, it is composed

of four sections according to Table 6.2. In particular, the RunableElem-

implementing class, contains a first section in which the object

core monitor Console of class Console Monitor is declared:

class Console implements RunnableElem {
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//------------- DECLARING MONITOR -------------//

Console Monitor core monitor Console;

Then, in the second section, a set of monitor ports is declared, each

of which handles a different interaction. The input port receive start,

associated to the homonymous interaction, is instantiated as a new class of type

UniSyncReceiverMonitorPort, where the method send() is overridden in order

to invoke the corresponding method on the object core monitor Console:

//-------- INSTANTIATING INTERACTIONS ---------//

public UniSyncReceiverMonitorPort receive start =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,

NotReadyPortException {
try {

core monitor Console.receive start(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

The other ports are declared in the same section. Note that the ports

forward start, send descriptor, and forward ports are output ports of class

UniSyncSenderMonitorPort, an then the method receive() is overridden into

their anonymous classes:

public UniSyncReceiverMonitorPort receive config =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send(Object[] inputPars)

throws InterruptedException,

NotReadyPortException {
try {

core monitor Console.receive config(isBlocking,

(Interface Config)inputPars[0]);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public UniSyncReceiverMonitorPort receive descriptor request =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,
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NotReadyPortException {
try {

core monitor Console.receive descriptor request(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public UniSyncReceiverMonitorPort receive stop =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,

NotReadyPortException {
try {

core monitor Console.receive stop(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public UniSyncSenderMonitorPort = forward start

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
try {

core monitor Console.forward start(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
return null;

}
};

public UniSyncSenderMonitorPort = send descriptor

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
Object[] outputPars;

try {
outputPars = core monitor Console.send descriptor(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
return outputPars;

}
};



Chapter 6. Monitor Synthesis 123

public UniSyncSenderMonitorPort = forward stop

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
try {

core monitor Console.forward stop(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
return null;

}
};

In the third section the monitor wrapper class constructor Console()

is defined with the integer parameter allowed changes. The constructor

instantiates the object core monitor Console of class Console Monitor by

forwarding the parameter to it:

//----------- DEFINING CONSTRUCTOR ------------//

Console(int allowed changes) {
core monitor Console = new Console Monitor(allowed changes);

}

Finally, in the fourth section, the methods start(), join(), and run() are

defined. The method start() simply invokes the method run() of the class itself,

the method join() does nothing, and the method run() invokes the method

startMonitor() of the monitor object core monitor Console:

//--------- RUNNING ELEMENT [monitor] ---------//

public void start() {
run();

}

public void join() throws InterruptedException { }

public void run() {
core monitor Console.startMonitor();

}
}





Chapter 7

The Translator PADL2Java

The approach illustrated in Chap. 4, 5, and 6 has been implemented in a

translator called PADL2Java, which is a command-line application written in

Java – the same language as its target. The implementation of PADL2Java and

the approaches adopted for generating code are discussed in Sect 7.1.

As far as the application of PADL2Java is concerned, the structure of the

code it produces and the related file dependencies are illustrated in Sect. 7.2. In

Sect. 7.3 we discuss some issues concerned with the generated code and with the

translation of data types provided by PADL. Special emphasis will be placed on

the generic object data type, which has recently been introduced in PADL for

abstracting and modeling objects and complex data structures in order to improve

the effectiveness of the code generated by the translator. Then, in Sect. 7.4 we

present the options offered by PADL2Java, and we exemplify them in Sect. 7.5

through the audio processing system of Sect. 3.5. Finally, the architectural

description language Æmilia [14], a performance-oriented variant of PADL, is

briefly introduced in Sect. 7.6 before illustrating, in Sect. 7.7, the integration of

PADL2Java in the architecture-centric verification tool TwoTowers [9].

7.1 Implementation of PADL2Java

The translator PADL2Java is composed of a set of Java classes created by the

parser generator JavaCC [46] from the grammar specification of PADL. Other

classes, based on the pattern “Visitor” [33], have been developed for analyzing
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and transforming the internal representation of a parsed PADL description and

for generating code from it.

In terms of the model transformation approaches, as exposed in Sect. 2.4, the

translator PADL2Java follows a model-to-text/visitor-based approach for gener-

ating code, and a model-to-model/direct manipulation approach for obtaining

the endogenous transformation that rewrites an AET into its relative monitor

normal form.

In order to facilitate the development of the visitor classes, a further

template-based transformation has been adopted during the implementation

of PADL2Java. Since JavaCC generates a visitor interface in which an

overloaded method visit() is declared for each different node-type of the internal

representation, a very simple tool called “visitorExpander” has been developed to

be used in conjunction with JavaCC. This tool is in charge of generating concrete

visitor classes from the visitor interface and from a template where a single generic

method visit() is defined. Each of these classes can then be inherited by a more

advanced visitor class in which only a subset of the visit() methods needs to

be overridden, depending on the specific task to be executed.

In particular, two concrete base classes have been generated with the tool

visitorExpander. The first one, which simply explores the internal representation,

has been employed as a base class for developing a family of analyzer- and code

generator-visitors. The second one, which during its visit duplicates each node of

the internal representation, has been used instead as a base class for developing

a family of manipulator-visitors.

The rules adopted by the two families of visitor for the code generation and

for the internal structure manipulation are those described in Chap. 4, 5, 6, and

in next Sect. 7.3 and 7.4.

7.2 Structure of the Generated Code

As shown in the upper part of Fig. 7.1, PADL2Java synthesizes a class

implementing the interface RunnableArchi plus as many classes implementing

the interface RunnableElem as there are AETs in the PADL description. It is

worth reminding that, in order to provide a Java abstraction for representing
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hierarchical/compound architectural types, the interface RunnableArchi has

been defined by extending the interface RunnableElem, which extends in turn

the standard interface Runnable.

...
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Figure 7.1. Generated Java classes/packages and dependencies from package Sync

The instances generated from the classes implementing RunnableElem, i.e.

threads and monitors, are guaranteed to interact as expected thanks to the

generation of suitable Port and Connector objects from package Sync. While

Port is a family of public interfaces and classes used by the code generated by

PADL2Java, Connector is a family of private pieces of software that are accessible

only within package Sync. Connector classes are transparently instantiated

whenever two thread Port objects are attached to each other.

The lower part of Fig. 7.1 shows the stub classes to be manually filled in.

These are generated for managing the internal actions of the AETs implemented

as thread and monitor classes (IAS) and for handling the exceptions that may

be raised by the interactions implemented within the thread classes (EHS) – i.e.

UnattachedPortException and NotReadyPortException.
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7.3 Translating Data Types

Most of the data types provided by PADL – such as boolean, (bounded) integer,

real, list, and array – can be trivially translated into built-in Java data types.

By contrast, the record data type and the generic object data type provided by

PADL are managed by PADL2Java by generating ad-hoc classes and interfaces

through package Structs depicted in Fig. 7.1.

Each record type occurring in a PADL description is simply realized as a Java

class. Each attribute of this class synthesizes a different record field according to

the data type of the field.

Concerning the generic object data type, this has recently been introduced in

PADL in order to enhance the expressiveness of the language and the flexibility

of the translator. In fact, software systems may require the exchange of complex

data among threads/monitors. The generic object mediation allows the developer

to define easily new data types, which can then be handled by the translator.

From the architectural viewpoint, a datum of type object(/type id.) is an

entity of a not completely specified data type identified by /type id., with no

specific semantics nor specific operations associated with it. Generic objects can

only be declared and checked for equality to null in PADL descriptions. Thanks

to the parametricity of a generic object, type checking can be applied in order to

detect possible mismatches among objects of different generic types.

From the code generation viewpoint, different generic object types are

translated into different interfaces within Structs that provide the abstractions

with which new Java classes can be implemented by the developer. Each new class

realizes – or wraps an instance of – a different Java user-defined data type. Thanks

to the interfaces, instances of these classes can be properly exchanged among

threads/monitors through Connector and Port objects, and can be exchanged

with the stubs that translate the internal actions. In order to manage the

case of instance wrapping, each generated interface declares a method called

getInstance(), which the developer will have to define in such a way that it

returns the desired instance.

Since generic objects to be transferred through Connector/Port objects must

enable the production of deep copies of themselves, all the interfaces generated
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within package Structs extend the standard interface Cloneable and declare the

copy constructor method clone() as public. By doing so, the developer is forced

to define such a method for each different user-defined data type by taking care of

the correctness of the copy. This complies with one of the guidelines of Sect. 5.7

for guaranteeing the preservation of the properties proved at the architectural

design level. In fact, the thread communication model adopted in Sect. 4.1 does

not admit passing object references while keeping a copy of the references.

7.4 Translation Options

Each of the classes generated by PADL2Java for a given PADL description is

stored into a distinct .java file. As shown in Fig. 7.1, all the resulting files are

contained in a single package, which by default has the same name as the PADL

description source file. Further .java files may be generated depending on the

translation option specified upon invoking PADL2Java.

The available options are -c, -p, and -a. Option -c is the default one. When

using this option, no further class is generated outside the package.

If option -p is used, a full Java program is synthesized. This is achieved by

PADL2Java through the generation of a further public class that contains only

method main(). This acts as a wrapper for the RunnableArchi-implementing

class and contains two sections. In the first one an instance of that class is

created, while in the second one that instance is started.

Finally, if option -a is used, a Java applet is synthesized. This is achieved

by PADL2Java through the generation of a further public class that is derived

from the standard JApplet class and contains three sections that give rise to a

wrapper for the RunnableArchi-implementing class.

In the first section, an object of the RunnableArchi-implementing class is

declared. Unlike the program wrapper, here the previously mentioned object is

not instantiated, as this will be done by the developer within a suitable method

defined in the third section.

In the second section, a Port object is declared for each of the architectural

interactions declared in the RunnableArchi-implementing class. These can

be attached to the architectural interactions and then used by the developer
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within suitable methods defined in the third section. The idea behind such

additional interactions is to allow the applet wrapper to dispatch suitable

commands to the right RunnableElem objects depending on the events that

are caught. Each of the additional interactions is semi-synchronous – hence it

cannot block the applet wrapper – and uni – hence it can surely be attached

to the corresponding architectural interaction if necessary. In order to help the

developer to correctly attach the additional interactions to the corresponding

architectural interactions, each additional interaction has the same name as the

corresponding architectural interaction preceded by the prefix to (resp. from ) if

the corresponding architectural interaction is an input (resp. output) interaction.

In the third section, the stubs for the typical methods of applet classes are

added, with some comments to remind the developer to define them if needed.

Such methods are related to the initialization, activation, deactivation, and

destruction of an applet.

7.5 Audio Processing System: Completing Code

Generation

We now exemplify the effect of the three translation options by means of the

audio processing system introduced in Sect. 3.5. We suppose that the PADL

description of the audio processing system is stored in a file called audio.padl.

The following command:

java PADL2Java audio.padl -c

generates a package, i.e. a directory, having the same name as the .padl source

file, which contains all of the classes – some of which have been shown in Sect. 4.7,

5.8, and 6 – that have to be synthesized for the whole architectural type and for

each of its AETs, including the stubs classes and the internal package Structs.

Each class is stored in a .java file having the same name as the class.

The following command:

java PADL2Java audio.padl -p <program name>.java

generates the same package as before plus an external .java file. This contains
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the following code importing the RunnableArchi-implementing class defined in

the package:

import audio.Audio Processing System;

public class <program name> {
public static void main(String args[]) {

//------- INSTANTIATING ARCHITECTURE -------//

Audio Processing System archiInstance = new Audio Processing System();

//---------- RUNNING ARCHITECTURE ----------//

archiInstance.start();

try {
archiInstance.join();

} catch(InterruptedException e) {}

}
}

The following command:

java PADL2Java audio.padl -a <applet name>.java

generates the same package as before plus an external .java file. This contains

the following code, where also package Sync is imported in order to make available

the Port classes implementing semi-synchronous uni-interactions:

import Sync.*;

import audio.Audio Processing System;

import javax.swing.JApplet;

public class <applet name> extends JApplet {

//---------- DECLARING ARCHITECTURE ----------//

Audio Processing System archiInstance;

//---------- DECLARING APPLET PORTS ----------//

UniSemisyncSenderPort to receive start;

UniSemisyncSenderPort to receive config;

UniSemisyncSenderPort to receive stop;

UniSemisyncReceiverPort from open input device;

UniSemisyncSenderPort to read dry samples;

UniSemisyncReceiverPort from close input device;

UniSemisyncReceiverPort from open output device;

UniSemisyncReceiverPort from write processed sample;

UniSemisyncReceiverPort from close output device;
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//---------- DEFINING APPLET MEMBERS ---------//

public void init() {
// FILL IN THE METHOD BODY IF NEEDED

}
public void start() {
// FILL IN THE METHOD BODY IF NEEDED

}
public void stop() {
// FILL IN THE METHOD BODY IF NEEDED

}
public void destroy() {
// FILL IN THE METHOD BODY IF NEEDED

}

}

7.6 Æmilia: A Performance-Oriented Variant of

PADL

Before illustrating the integration of PADL2Java in TwoTowers, it is worth

recalling Æmilia, a performance-oriented variant of PADL. Every action in Æmilia

is composed not only of the name of the action, but also of the duration of the

action. Normally the duration of an action is exponentially distributed, so that

with each Æmilia description it is possible to associate a performance model in

the form of a continuous-time Markov chain. In many cases it is also possible

to associate a more component-oriented model like a queueing network [6]. A

companion language called MSL [2] is available to allow the designer to express

in a component-oriented fashion also the performance measures of interest for an

Æmilia specification.

7.7 Integration of PADL2Java in TwoTowers

In order to implement an architecture-centric approach going from software

specification to software implementation in a way that supports property

prediction and preservation, PADL2Java has been integrated in TwoTowers. This

is an open-source software tool for the functional verification, security analysis,

and performance evaluation of systems modeled in Æmilia.
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.psm

.fsm

.ism

.siz

.lis

.mcr

.evr
− Strong Bisimulation Equivalence Verifier
− Weak Bisimulation Equivalence Verifier
− Strong Markovian Bisimulation Equivalence Verifier
− Weak Markovian Bisimulation Equivalence Verifier

− Parser
− Semantic Model Size Calculator
− Semantic Model Generator

GRAPHICAL USER INTERFACE

EQUIVALENCE VERIFIER:

.aem

.ltl

.sec

SECURITY ANALYZER:

.rew

.sim

.trc

− Simulator

PERFORMANCE EVALUATOR:
.dis

.val
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− Non−Interference Analyzer
− Non−Deducibility on Composition Analyzer

− Stationary/Transient Reward−Based Measure Calculator
− Stationary/Transient Probability Distribution Calculator

− Symbolic LTL Model Checker (via NuSMV)
MODEL CHECKER:

− Applet Generator

JAVA CODE GENERATOR:

AEMILIA COMPILER:

.sar

.java
− Program Generator
− Package Generator

Figure 7.2. Architecture of TwoTowers 6.0
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As shown in Fig. 7.2, TwoTowers is equipped with a simple graphical user

interface through which the user can invoke several routines by means of suitable

menus. The graphical user interface takes care of the integrated management of

the various file types needed by the different routines. These belong to the Æmilia

compiler, the equivalence verifier, the model checker, the security analyzer, the

performance evaluator, and the novel Java code generator.

The compiler is in charge of parsing Æmilia descriptions stored in .aem files

and signaling possible lexical, syntax and static semantic errors through a .lis

file. If an Æmilia description is correct the compiler can generate its integrated,

functional or performance semantic model, which is written to a .ism, .fsm or

.psm file, respectively. As a faster option that does not require printing the state

space onto a file, the compiler can show only the size – in terms of number of

states and transitions – of the semantic model, which is written to a .siz file.

The equivalence verifier [23] checks whether two correct, finite-state Æmilia

descriptions are equivalent according to one of four different behavioral equiv-

alences: strong bisimulation equivalence, weak bisimulation equivalence, strong

Markovian bisimulation equivalence, and weak Markovian bisimulation equiva-

lence. The result of the verification is written to a .evr file. In the case of

non-equivalence a distinguishing modal logic formula is reported as well, which

is expressed in a verbose variant of the Hennessy-Milner logic or one of its

probabilistic extensions.

The model checker [22] verifies through the BDD-based routines of NuSMV [21]

whether a set of functional properties expressed through verbose LTL formulas,

which are stored in a .ltl file, are satisfied by a correct, finite-state Æmilia

description. The result of the check, together with a counterexample for each

property that is not met, is written to a .mcr file.

The security analyzer checks through the equivalence verifier whether a cor-

rect, finite-state Æmilia description satisfies non-interference or non-deducibility

on composition [31], both of which establish the absence of illegal information

flows from high security system components to low security system components.

This requires the classification in an additional .sec file of the system activities

that are high and low with respect to the security level. The result of the analysis
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is written to a .sar file, together with a modal logic formula expressed in a verbose

variant of the Hennessy-Milner logic to explain a possible security violation.

The performance evaluator assesses the quantitative characteristics of correct,

finite-state and performance closed Æmilia descriptions. First, it can calculate

the stationary/transient probability distribution [63] for the state space of the

performance semantic model of an Æmilia description, which is written to a .dis

file. Second, the performance evaluator can calculate for an Æmilia description

a set of instant-of-time, stationary/transient performance measures specified

through state and transition rewards stored in a .rew file [41]. The values of

the measures are written to a .val file. Third, the performance evaluator can

estimate via discrete event simulation [66] the mean, variance or distribution of a

set of performance measures specified through an extension of state and transition

rewards, which are stored in a .sim file together with the number and the length

of the simulation runs. The simulation can be applied also to Æmilia descriptions

with infinitely many states and general distributions and can be trace driven, in

which case the traces are stored in .trc files. The result of the simulation is

written to a .est file together with its confidence interval.

Finally, the new Java code generator is the translator PADL2Java that we

have described in this chapter. Even if PADL2Java has been initially designed

for PADL descriptions, it can also synthesize a Java package out of a correct

Æmilia description. In fact, syntactical differences between PADL and Æmilia

descriptions are ignored during the parsing process. A package synthesized

with PADL2Java can be augmented with a class containing method main()

or a JApplet-derived class, thus resulting in a Java program or a Java applet,

respectively.





Chapter 8

Case Studies

In this chapter two case studies are presented. The first one, illustrated in

Sect. 8.1, is related to the synthesis of a video animation repainting system.

Before generating code, the model checker provided by TwoTowers is used for

verifying some properties of the modeled system.

The second case study, illustrated in Sect. 8.2, is related to the implementation

of a leader election algorithm proposed in [32]. Some probabilistic analysis will

be done both at the process algebraic description level – through the performance

evaluator provided by TwoTowers – and at the implementation level – where the

generated code will be used for producing execution traces.

8.1 A Video Animation Repainting System

This section provides the PADL description of a video animation repainting

system inspired by [52]. The related Java code is then synthesized with

PADL2Java. Before the synthesis, the deadlock freedom of the whole system

will be verified at the process algebraic description level using the model checker

provided by TwoTowers.

8.1.1 Informal Specification of the Video Animation Re-

painting System

The software generated for the implementation of the video animation repainting

system will have to graphically show the behavior and the evolution of a set of
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interacting elements called actors, each of which has its own rules and states. The

state of an actor, which is controlled by an autonomous thread, may be graphically

represented with changing colors, positions, and shapes (as e.g. in videogames,

screen savers, and dynamic diagrams representations). Another feature that the

generated software will have to possess is the ability of taking snapshots of the

graphical animations.

There are several approaches to the design of animation systems. The first one

consists of modeling such systems as discrete-time systems, in which a common

clock coordinates the behavior of the various actors. In such systems a discrete

model is adopted in which the passage of time is signaled by successive ticks of a

clock, so that the actors (threads) become aware of the passage of time by sharing

a global tick action. This model offers a simple mechanism for synchronizing

screen updates with actor activities, and allows a consistent collective actor state

configuration to be visualized.

However, this approach does not apply to actors working in continuous

time whose behavior is required to be visualized in continuous time. In fact,

introducing discrete-time constraints may considerably alter the original system

properties. The problem with continuous-time systems is to take snapshots of

consistent configurations. If one does not care about a perfect consistency, one

of the other approaches that we are going to present can be adopted.

The second approach to visualize the system evolution is to repaint the screen

every time that an actor changes its state. The repainting is driven by the

change event. Note that the consistency of a configuration is not guaranteed

if two or more actors change at the same time, as only a single event at a

time can be captured. This situation usually occurs when the change is due

to a synchronization among the actors. This approach is not efficient in general,

because a high configuration change rate – which can considerably grow during

synchronizations – produces large context-switching and graphical overheads that

degrade the performance of the whole system.

The third approach for visualizing continuous-time systems consists of

sampling periodically the configuration and, if changed, to paint it to the screen.

This approach improves the performance of the previous one, as the repainting

process has a fixed maximum rate. The problem with this solution is that not
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all the configurations will be visualized, but in the case of video animations this

can be overtaken with a suitable sampling rate (e.g. 25 Hz). The consistency of

a configuration is not guaranteed in this case either, in fact the sampling event

may occur when only a subset of the simultaneous mutant actors have notified,

or are able to notify on request, their change.

In order to define a repainting system for video animation endowed with a

snapshot capturer, it is convenient to combine the first approach (discrete-time

systems) with the third one (continuous-time systems with fixed sampling rate).

The advantage of using these two techniques is that it is possible to capture

snapshots of consistent configurations without introducing strong discrete-time

constraints on the underlying dynamic system. In fact, while the animation

requires an actor only to notify information about its state whenever it changes,

the snapshot capturing may be imposed only at significant consistent states, not

for all changes. This means that, in order to discretize the model of a given

dynamic system, it is sufficient to set up a few synchronization points among the

actors (a director will be introduced for this purpose), in which the configuration

has to be consistent and the snapshots can be taken. Note that to obtain a

fully discrete-time system would require, instead, the addition of synchronization

points after each action of each actor.

8.1.2 PADL Description of the Video Animation Repaint-

ing System

The architecture of the video animation repainting system is illustrated in Fig. 8.1.

The lower part of the diagram contains a set of interacting actors (A[1], . . .,

A[n actors]) that constitute the dynamic system to be visualized on the screen.

Each actor can freely interact with any other one, but the director (D),

which can be considered as a generalized system clock but also as a first-class

actor, can sometimes call the other actors in order to synchronize them. The

State Repository SR, represented in the upper part of the diagram, is the core

of the repainting system: it can receive and store at any time the information

about the current state that each actor communicates through the connector



140 Chapter 8. Case Studies

D:

Frame_Generator Snapshot_Generator 

State_Repository

Actor Actor Actor

Director

receive_consistent_config_request

forward_consistent_config

receive_consistency_notification

click_event

write_state

receive_call

wait_for_actors_availability

notify_consistency

receive_config_request

forward_config

require_consistent_config
read_config

read_actor_state

call_actor

notify_actors

require_config
read_consistent_config

communicate_availability

receive_notificationA[1]:

SG:FG:

SR:

A[n_actors]:A[k]:

Figure 8.1. Extended flow graph of the video animation repainting system
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read actor state. In general, the global state configuration stored within the

state repository is inconsistent.

However, since the consistency of the global state configurations is a concern

of the actor community, from time to time the director synchronizes the actors

by calling them one by one (call actor) until the last actor has been called,

and by waiting for their availability (wait for actors availability). When

an actor is called, it communicates its state to the state repository, then

signals its availability to the director. Only when all the actors are available

(communicate availability), the director signals to the state repository that

the configuration is consistent (notify consistency). The state repository

stores and marks as a “consistent global state configuration” the configuration

built from the last state communicated by each actor. After the notifica-

tion of consistency to the state repository, the director releases the actors

(notify actors) all together, so that they can revert to their usual activities.

The two remaining architectural elements involved in the video animation

repainting system are a frame generator (FG) and a snapshot generator (SG).

The former (resp. latter) asks the state repository for the last stored global state

configuration (resp. the last stored consistent global state configuration) via

config request (resp. consistent config request), then waits for a response

via config (resp. consistent config). Other differences between the two

generators are that, for acquiring the configuration, the frame generator is driven

by an internal clock, while the snapshot generator is driven by an external

event (click event). Finally, each configuration will be then exploited by these

generators for creating a frame to be painted on the screen or a snapshot to be

stored somewhere (e.g. the clipboard).

The topology of the system is illustrated in Fig. 8.1. Note that the interaction

receive call with which an actor is attached to the synchronous call of the

director call actor has been modeled as semi-synchronous. By doing so, an

actor must respond to a call only when the director is waiting for, and does not

block otherwise. On the other side, the director blocks until the faster actor

responds, then a new call for the next actor can be done.

The PADL textual description of the system is provided below, in which

n actors and clock period are parameters of the whole specification and
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interaction click event of SG is the only architectural interaction:

ARCHI TYPE Video Animation Repainting System(const integer n actors := 3,

const integer clock rate := 25)

ARCHI BEHAVIOR

ARCHI ELEM TYPE State Repository(void)

BEHAVIOR

Initialization(void;
void) =

store consistent config!(null) .

Receiving(false);

Receiving(boolean consistent config ready;

local object(ActorState) actor state,

local object(Configuration) config) =

choice

{
read actor state?(actor state) .

store actor state!(actor state) .

Receiving(consistent config ready),

receive config request .

get config?(config) .

forward config!(config) .

Receiving(consistent config ready),

receive consistency notification .

mark config as consistent .

Receiving(true),

cond (consistent config ready) ->

receive consistent config request .

get last consistent config?(config) .

forward consistent config!(config) .

Receiving(true)

}

INPUT INTERACTIONS UNI receive config request;

receive consistent config request;

receive consistency notification

OR read actor state

OUTPUT INTERACTIONS UNI forward config;

forward consistent config

ARCHI ELEM TYPE Frame Generator(const integer clock rate)

BEHAVIOR

Initialization(void;
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void) =

start internal clock!(clock rate) .

Generation();

Generation(void;
local object(Configuration) config) =

wait for tick.

require config .

read config?(config) .

generate and print frame!(config) .

Generation()

INPUT INTERACTIONS UNI read config

OUTPUT INTERACTIONS UNI require config

ARCHI ELEM TYPE Snapshot Generator(void)

BEHAVIOR

Snapshot(void;
local object(Configuration) config) =

click event .

require consistent config .

read consistent config?(config) .

generate and print snapshot!(config) .

Snapshot()

INPUT INTERACTIONS UNI click event;

read consistent config

OUTPUT INTERACTIONS UNI require consistent config

ARCHI ELEM TYPE Actor(const integer actor id)

BEHAVIOR

Initialization(void;
void) =

store identifier!(actor id) .

Free Acting();

Free Acting(void;
local object(ActorState) actor state) =

play?(actor state) .

receive call .

choice {
cond(!receive call.success) ->
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write state!(actor state) . Free Acting(),

cond(receive call.success) ->

prepare to snapshot?(actor state) .

write state!(actor state) . Availability()

};

Availability(void;
void) =

communicate availability .

receive notification .

Free Acting()

INPUT INTERACTIONS UNI SSYNC receive call;

SYNC receive notification

OUTPUT INTERACTIONS UNI write state;

communicate availability

ARCHI ELEM TYPE Director(const integer n actors)

BEHAVIOR

Initialization(void;
void) =

start .

Preparation();

Preparation(void;
void) =

do something .

Calling Actors(n actors);

Calling Actors(integer(0..n actors) n actors to call;

void) =

call actor .

choice

{
cond(n actors to call > 0) -> call actor .

Calling Actors(n actors to call - 1),

cond(n actors to call = 0) -> wait for actors availability .

Notification()

};

Notification(void;
void) =

notify consistency .

notify actors .

Preparation()

INPUT INTERACTIONS AND wait for actors availability
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OUTPUT INTERACTIONS UNI notify consistency

AND notify actors

OR call actor

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES

SR: State Repository();

FG: Frame Generator(clock rate);

SG: Snapshot Generator();

FOR ALL i IN 1 .. n actors

A[i] : Actor(i);

D: Director(n actors)

ARCHI INTERACTIONS

SG.click event

ARCHI ATTACHMENTS

FROM SR.forward config TO FG.read config;

FROM SR.forward consistent config TO SG.read consistent config;

FROM FG.require config TO SR.receive config request;

FROM SG.require consistent config TO SR.receive consistent config request;

FOR ALL i IN 1 .. n actors

FROM A[i].write state TO SR.read actor state;

FOR ALL i IN 1 .. n actors

FROM A[i].communicate availability TO D.wait for actors availability;

FOR ALL i IN 1 .. n actors

FROM D.call actor TO A[i].receive call;

FROM D.notify consistency TO SR.receive consistency notification;

FOR ALL i IN 1 .. n actors

FROM D.notify actors TO A[i].receive notification

END

Note that the iterative mechanism presented in Sect.3.2.1 has been used for

declaring several AEIs of type Actor concisely, in a way that any AEI can be

identified via an index. The same iterative mechanism is exploited for declaring

the architectural attachments involving all the instances of Actor and other AEIs

– i.e., the State Repository SR and the Director D.
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8.1.3 Verifying Properties of the Video Animation Re-

painting System

An important property of the PADL specification of the video animation

repainting system has been verified through the LTL model checker of TwoTowers.

This is the deadlock freedom of the whole system. The specification of this

property, written in a .ltl file, is as follows:

PROPERTY deadlock_freedom IS

DEADLOCK_FREE;

and the outcome of its verification is:

Validity of the properties for Video_Animation:

- Property "deadlock_freedom" is satisfied.

Once the property above has been verified at the architectural level, we can

proceed with the synthesis of the Java code thanks to PADL2Java.

8.1.4 Synthesizing the Video Animation Repainting Sys-

tem

The following code is synthesized using PADL2Java. First of all, the class

Video Animation Repainting System is generated that translates the architec-

tural topology of the homonymous architectural type:

public class Video Animation Repainting System implements RunnableArchi {

//-------- DECLARING RUNNABLE ELEMENTS --------//

State Repository SR;

Frame Generator FG;

Snapshot Generator SG;

Sync.util.HashArray<Actor> A;

Director D;

//--- DECLARING ARCHITECTURAL INTERACTIONS ----//

public UniSyncReceiverPort SG click event;

//----------- DEFINING CONSTRUCTOR ------------//

protected int n actors;

protected int clock rate;
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// GENERAL CONSTRUCTOR:

Video Animation Repainting System(int n actors,

int clock rate) {
this.n actors = n actors;

this.clock rate = clock rate;

buildArchiTopology();

}

// DEFAULT CONSTRUCTOR:

Video Animation Repainting System() {
this(3,

25);

}

//----------- BUILDING ARCHITECTURE -----------//

void buildArchiTopology() {

// INSTANTIATING RUNNABLE ELEMENTS:

SR = new State Repository();

FG = new Frame Generator(clock rate);

SG = new Snapshot Generator();

A = new Sync.util.HashArray<Actor>();

for (int i = 1; i <= n actors; i++)

A.put(i,

new Actor(i));

D = new Director(n actors);

// ASSIGNING ARCHITECTURAL INTERACTIONS:

this.SG click event = SG.click event;

// ATTACHING LOCAL INTERACTIONS:

try {
ArchiMeth.attach(SR.forward config, FG.read config);

ArchiMeth.attach(SR.forward consistent config, SG.read consistent config);

ArchiMeth.attach(FG.require config, SR.receive config request);

ArchiMeth.attach(SG.require consistent config, SR.receive consistent config request);

for (int i = 1; i <= n actors; i++)

ArchiMeth.attach(A.get(i).write state, SR.read actor state);

for (int i = 1; i <= n actors; i++)

ArchiMeth.attach(A.get(i).communicate availability, D.wait for actors availability);

for (int i = 1; i <= n actors; i++)

ArchiMeth.attach(D.call actor, A.get(i).receive call);

ArchiMeth.attach(D.notify consistency, SR.receive consistency notification);

for (int i = 1; i <= n actors; i++)

ArchiMeth.attach(D.notify actors, A.get(i).receive notification);

} catch(BadAttachmentException e) {}
}

//----------- RUNNING ARCHITECTURE -----------//

Thread th Video Animation = null;
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public void start() {
(th Video Animation = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Video Animation.join();

}

public void run() {
SR.start();

FG.start();

SG.start();

for (int i = 1; i <= n actors; i++)

A.get(i).start();

D.start();

try {
SR.join();

FG.join();

SG.join();

for (int i = 1; i <= n actors; i++)

A.get(i).join();

D.join();

} catch(InterruptedException e) {}
}

}

Note that the iterative mechanism of PADL for declaring several AEIs of the

same type (Actor) and for declaring their attachments, on the implementation

side is translated into equivalent iterative statements that instantiate objects and

attach their ports. The generic Java class HashArray<> provided by the package

Sync is used by the class Video Animation Repainting System for storing the

instances of Actor. The advantage of using such a hash table-based array instead

of an usual array is that the former works efficiently in presence of sparse indexes,

which can occur in PADL descriptions.

The State Repository of the original PADL description is translated into

a monitor because all the monitor constraints are satisfied for this AET. We

point out, in fact, that its internal actions are store identifier, play, and

prepare to snapshot and the process algebraic description of its behavior has

no cycles involving only occurrences of these actions. If all the other AETs

are synthesized as threads, it has no monitor type instances attached to its only

instance SR. All of its interactions are synchronous and no interaction of the AEIs

attached to its only instance SR is asynchronous. Finally, the process algebraic
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description of its behavior has no hybrid choices.

Once the AET State Repository has been rewritten in monitor normal form,

the core monitor class State Repository Monitor is generated as follows:

class State Repository Monitor {

//-------------- DECLARING STUBS --------------//

IAS State Repository internal State Repository;

//----------- DEFINING CONSTRUCTOR ------------//

private int nieq;

private boolean[] guard;

private final static int Receiving = 0,

Split 1 Receiving = 1,

Split 2 Receiving = 2;

private final static int receive config request = 0,

receive consistent config request = 1,

receive consistency notification = 2,

read actor state = 3,

forward config = 4,

forward consistent config = 5;

protected boolean consistent config ready;

protected Interface Configuration split config;

State Repository Monitor() { }

//------------- DEFINING BEHAVIOR -------------//

private void checkGuard(int guardIndex, boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
if (blocking)

while (!guard[guardIndex])

wait();

else
if (!guard[guardIndex])

throw new SemisyncInteractionException();

}

protected synchronized void Initialization() {
internal State Repository.store consistent config(null);

Receiving(false);

}

protected synchronized void Receiving(boolean consistent config ready) {
this.consistent config ready = consistent config ready;

nieq = Receiving;

guard = new boolean[] {true, true && consistent config ready, true, true, false, false};
notifyAll();

}
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protected synchronized void Split 1 Receiving(boolean consistent config ready,

Interface Configuration split config) {
this.consistent config ready = consistent config ready;

this.split config = split config;

nieq = Split 1 Receiving;

guard = new boolean[] {false, false, false, false, true, false};
notifyAll();

}

protected synchronized void Split 2 Receiving(Interface Configuration split config) {
this.split config = split config;

nieq = Split 2 Receiving;

guard = new boolean[] {false, false, false, false, false, true};
notifyAll();

}

public synchronized void receive config request(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
Object[] inputPars;

checkGuard( receive config request, blocking);

inputPars = internal State Repository.get config();

this.split config = (Interface Configuration)inputPars[0];

Split 1 Receiving(this.consistent config ready,

this.split config);

}

public synchronized void receive consistent config request(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
Object[] inputPars;

checkGuard( receive consistent config request, blocking);

inputPars = internal State Repository.get last consistent config();

this.split config = (Interface Configuration)inputPars[0];

Split 2 Receiving(this.split config);

}

public synchronized void receive consistency notification(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( receive consistency notification, blocking);

internal State Repository.mark config as consistent();

Receiving(true);

}

public synchronized void read actor state(boolean blocking,

Interface ActorState actor state)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( read actor state, blocking);

internal State Repository.store actor state(actor state);
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Receiving(this.consistent config ready);

}

public synchronized Object[] forward config(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
Interface Configuration split config;

checkGuard( forward config, blocking);

split config = (Interface Configuration)this.split config.clone();

Receiving(this.consistent config ready);

return new Object[] {split config};
}

public synchronized Object[] forward consistent config(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
Interface Configuration split config;

checkGuard( forward consistent config, blocking);

split config = (Interface Configuration)this.split config.clone();

Receiving(this.consistent config ready);

return new Object[] {split config};
}

//------------- STARTING MONITOR --------------//

public void startMonitor() {
internal State Repository = new IAS State Repository();

Initialization();

}
}

The monitor wrapper class State Repository associated to the core monitor

class State Repository Monitor is generated as follows:

class State Repository implements RunnableElem {

//------------- DECLARING MONITOR -------------//

State Repository Monitor core monitor State Repository;

//-------- INSTANTIATING INTERACTIONS ---------//

public UniSyncReceiverMonitorPort receive config request =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,

NotReadyPortException {
try {

core monitor State Repository.receive config request(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}
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};

public UniSyncReceiverMonitorPort receive consistent config request =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,

NotReadyPortException {
try {

core monitor State Repository.receive consistent config request(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public UniSyncReceiverMonitorPort receive consistency notification =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,

NotReadyPortException {
try {

core monitor State Repository.receive consistency notification(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public OrSyncReceiverMonitorPort read actor state =

new OrSyncReceiverMonitorPort(this) {
public synchronized void send(Object[] inputPars)

throws InterruptedException,

NotReadyPortException {
try {

core monitor State Repository.read actor state(isBlocking,

(Interface ActorState)inputPars[0]);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public UniSyncSenderMonitorPort forward config =

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
Object[] outputPars;

try {
outputPars = core monitor State Repository.forward config(isBlocking);

} catch(SemisyncInteractionException e) {
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throw new NotReadyPortException(e);

}
return outputPars;

}
};

public UniSyncSenderMonitorPort forward consistent config =

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
Object[] outputPars;

try {
outputPars = core monitor State Repository.forward consistent config(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
return outputPars;

}
};

//----------- DEFINING CONSTRUCTOR ------------//

Console(int allowed changes) {
core monitor State Repository = new State Repository Monitor();

}

//--------- RUNNING ELEMENT [monitor] ---------//

public void start() {
run();

}

public void join() throws InterruptedException { }

public void run() {
core monitor State Repository.startMonitor();

}
}

All the other AETs occurring in the PADL description of the video animation

repainting system are translated into threads. As far as the Frame Generator

and the Snapshot Generator classes are concerned, whose descriptions are very

similar, the code generated for them is:

class Frame Generator implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Initialization,
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Generation;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort read config =

new UniSyncReceiverPort(this);

UniSyncSenderPort require config =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Frame Generator internal Frame Generator;

// No EHS declaration as there are

// no architectural interactions and

// no semi-synchronous interactions.

//----------- DEFINING CONSTRUCTOR ------------//

protected int clock rate;

Frame Generator(int clock rate) {
this.clock rate = clock rate;

defineBehavEquations();

}

//------------- DEFINING BEHAVIOR -------------//

void defineBehavEquations() {

Initialization =

new BehavioralEquationInterface() {

public void behavEqCall() {
Initialization();

}

private void Initialization() {
internal Frame Generator.start internal clock(clock rate);

nextBehavEq = Generation;

actualPars = null;

}

}; // end of behavioral equation Initialization

Generation =

new BehavioralEquationInterface() {

public void behavEqCall() {
Generation();

}
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private void Generation() {
Interface Configuration config;

Object[] inputPars;

internal Frame Generator.wait for tick();

try {
require config.send();

} catch(SyncException e) {}
try {

inputPars = read config.receive();

config = (Interface Configuration)inputPars[0];

} catch(SyncException e) {}
internal Frame Generator.generate and print frame(config);

nextBehavEq = Generation;

actualPars = null;

}

}; // end of behavioral equation Generation

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Frame Generator = null;

public void start() {
(th Frame Generator = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Frame Generator.join();

}

public void run() {
internal Frame Generator =

new IAS Frame Generator();

nextBehavEq = Initialization;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

class Snapshot Generator implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Snapshot;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//
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UniSyncReceiverPort click event =

new UniSyncReceiverPort(this);
UniSyncReceiverPort read consistent config =

new UniSyncReceiverPort(this);

UniSyncSenderPort require consistent config =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Snapshot Generator internal Snapshot Generator;

EHS Snapshot Generator exception Snapshot Generator;

//----------- DEFINING CONSTRUCTOR ------------//

Snapshot Generator() {
defineBehavEquations();

}

//------------- DEFINING BEHAVIOR -------------//

void defineBehavEquations() {

Snapshot =

new BehavioralEquationInterface() {

public void behavEqCall() {
Snapshot();

}

private void Snapshot() {
Interface Configuration config;

Object[] inputPars;

try {
click event.receive();

} catch(UnattachedPortException e) {
exception Snapshot Generator.click event();

}
try {

require consistent config.send();

} catch(SyncException e) {}
try {

inputPars = read consistent config.receive();

config = (Interface Configuration)inputPars[0];

} catch(SyncException e) {}
internal Snapshot Generator.generate and print snapshot(config);

nextBehavEq = Snapshot;

actualPars = null;

}

}; // end of behavioral equation Snapshot

}
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//--------- RUNNING ELEMENT [thread] ----------//

Thread th Snapshot Generator = null;

public void start() {
(th Snapshot Generator = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Snapshot Generator.join();

}

public void run() {
internal Snapshot Generator =

new IAS Snapshot Generator();

exception Snapshot Generator =

new EHS Snapshot Generator();

nextBehavEq = Snapshot;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

The class Actor, generated from the homonymous AET, contains the semi-

synchronous port receive call endowed with the boolean method success()

according to the boolean value success of the related PADL semi-synchronous

interaction. The following code is produced for Actor:

class Actor implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Initialization,

Free Acting,

Availability;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSemisyncReceiverPort receive call =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive notification =

new UniSyncReceiverPort(this);

UniSyncSenderPort write state =

new UniSyncSenderPort(this);
UniSyncSenderPort communicate availability =

new UniSyncSenderPort(this);
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//-------------- DECLARING STUBS --------------//

IAS Actor internal Actor;

EHS Actor exception Actor;

//----------- DEFINING CONSTRUCTOR ------------//

protected int actor id;

Actor(int actor id) {
this.actor id = actor id;

defineBehavEquations();

}

//------------- DEFINING BEHAVIOR -------------//

void defineBehavEquations() {

Initialization =

new BehavioralEquationInterface() {

public void behavEqCall() {
Initialization();

}

private void Initialization() {
internal Actor.store identifier(actor id);

nextBehavEq = Free Acting;

actualPars = null;

}

}; // end of behavioral equation Initialization

Free Acting =

new BehavioralEquationInterface() {

public void behavEqCall() {
Free Acting();

}

private void Free Acting() {
Interface ActorState actor state;

Object[] inputPars;

inputPars = internal Actor.play();

actor state = (Interface ActorState)inputPars[0];

try {
receive call.receive();

catch(NotReadyPortException e) {
exception Actor.receive call();

}
switch (

ElemMeth.choice(

new ChAct[] {
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new ChAct(!receive call.success(), write state),

new ChAct(receive call.success(), null)

}
)

) // Choice body :

{
case 0:

try {
write state.send(actor state);

} catch(SyncException e) {}
nextBehavEq = Free Acting;

actualPars = null;

break;
case 1:

inputPars = internal Actor.prepare to snapshot();

actor state = (Interface ActorState)inputPars[0];

try {
write state.send(actor state);

} catch(SyncException e) {}
nextBehavEq = Availability;

actualPars = null;

break;
default:
nextBehavEq = null; // STOP

actualPars = null;

}
}

}; // end of behavioral equation Free Acting

Availability =

new BehavioralEquationInterface() {

public void behavEqCall() {
Availability();

}

private void Availability() {
try {

communicate availability.send();

} catch(SyncException e) {}
try {

receive notification.receive();

} catch(SyncException e) {}
nextBehavEq = Free Acting;

actualPars = null;

}

}; // end of behavioral equation Availability

}
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//--------- RUNNING ELEMENT [thread] ----------//

Thread th Actor = null;

public void start() {
(th Actor = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Actor.join();

}

public void run() {
internal Actor =

new IAS Actor();

exception Actor =

new EHS Actor();

nextBehavEq = Initialization;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

The last AET, i.e. Director, is translated as follows:

class Director implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Initialization,

Preparation,

Calling Actors,

Notification;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

AndSyncReceiverPort wait for actors availability =

new AndSyncReceiverPort(this);

UniSyncSenderPort notify consistency =

new UniSyncSenderPort(this);
AndSyncSenderPort notify actors =

new AndSyncSenderPort(this);
OrSyncSenderPort call actor =

new OrSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Director internal Director;
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// No EHS declaration as there are

// no architectural interactions and

// no semi-synchronous interactions.

//----------- DEFINING CONSTRUCTOR ------------//

protected int n actors;

Director(int n actors) {
this.n actors = n actors;

defineBehavEquations();

}

//------------- DEFINING BEHAVIOR -------------//

void defineBehavEquations() {

Initialization =

new BehavioralEquationInterface() {

public void behavEqCall() {
Initialization();

}

private void Initialization() {
internal Director.start();

nextBehavEq = Preparation;

actualPars = null;

}

}; // end of behavioral equation Initialization

Preparation =

new BehavioralEquationInterface() {

public void behavEqCall() {
Preparation();

}

private void Preparation() {
internal Director.do something();

nextBehavEq = Calling Actors;

actualPars = new Object[] {n actors};
}

}; // end of behavioral equation Preparation

Calling Actors =

new BehavioralEquationInterface() {

public void behavEqCall() {
Calling Actors((int)actualPars[0]);

}
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private void Calling Actors(int n actors to call) {
try {

call actor.send();

} catch(SyncException e) {}
switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(n actors to call > 0, call actor),

new ChAct(n actors to call == 0, wait for actors availability)

}
)

) // Choice body :

{
case 0:

try {
call actor.send();

} catch(SyncException e) {}
nextBehavEq = Calling Actors;

actualPars = new Object[] {n actors to call - 1};
break;

case 1:

try {
wait for actors availability.receive();

} catch(SyncException e) {}
nextBehavEq = Notification;

actualPars = null;

break;
default:
nextBehavEq = null; // STOP

actualPars = null;

}
}

}; // end of behavioral equation Calling Actors

Notification =

new BehavioralEquationInterface() {

public void behavEqCall() {
Notification();

}

private void Notification() {
try {

notify consistency.send();

} catch(SyncException e) {}
try {

notify actors.send();

} catch(SyncException e) {}
nextBehavEq = Preparation;
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actualPars = null;

}

}; // end of behavioral equation Notification

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Director = null;

public void start() {
(th Director = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Director.join();

}

public void run() {
internal Director =

new IAS Director();

nextBehavEq = Initialization;

actualPars = null;

while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

Finally, seven stub classes are generated for handling the internal actions

and the exceptions of the previous classes. More precisely, five IAS classes are

generated associated to all of the original AETs, while only two EHS classes are

generated associated to Snapshot Generator and to Actor:

class IAS State Repository {

IAS State Repository() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void store consistent config(Interface Configuration config) {
// FILL IN THE METHOD BODY

}

void store actor state(Interface ActorState actor state) {
// FILL IN THE METHOD BODY

}

Object[] get config() {
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Interface Configuration config = null;

// FILL IN THE METHOD BODY

return new Object[] {config};
}

void mark config as consistent() {
// FILL IN THE METHOD BODY

}

Interface Configuration get last consistent config() {
Interface Configuration config = null;

// FILL IN THE METHOD BODY

return new Object[] {config};
}

}

class IAS Frame Generator {

IAS Frame Generator() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void start internal clock(int clock rate) {
// FILL IN THE METHOD BODY

}

void wait for tick() {
// FILL IN THE METHOD BODY

}

void generate and print frame(Interface Configuration config) {
// FILL IN THE METHOD BODY

}
}

class IAS Snapshot Generator {

IAS Snapshot Generator() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void generate and print snapshot(Interface Configuration config) {
// FILL IN THE METHOD BODY

}
}

class EHS Snapshot Generator {
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EHS Snapshot Generator() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void click event() {
// FILL IN THE METHOD BODY

}
}

class IAS Actor {

IAS Actor() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void store identifier(int actor id) {
// FILL IN THE METHOD BODY

}

Object[] play() {
Interface ActorState actor state = null;

// FILL IN THE METHOD BODY

return new Object[] {actor state};
}

Object[] prepare to snapshot() {
Interface ActorState actor state = null;

// FILL IN THE METHOD BODY

return new Object[] {actor state};
}

}

class EHS Actor {

EHS Actor() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void receive call() {
// FILL IN THE METHOD BODY

}
}

class IAS Director {

IAS Director() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}
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void start() {
// FILL IN THE METHOD BODY

}

void do something() {
// FILL IN THE METHOD BODY

}
}

Once the stub classes for handling local actions and exceptions of the

generated video animation repainting system are filled in according to the

guidelines provided in Sect. 5.7, deadlock freedom is preserved at the code level.

8.2 A Leader Election System

Leader election is the problem of electing a unique process leader in a network of

processes. The leader must know that it has been elected and the other processes

must know that they have not been elected. Leader election algorithms require

that all processes have the same local algorithm and that each computation

terminates, with one process elected as leader.

In this section a specification of a leader election system based on an algorithm

proposed in [32] is provided. Then, the related Java code is synthesized from

the specification with PADL2Java. Since some properties will be evaluated at

the process algebraic description level by means of the performance evaluator

provided by TwoTowers, the description language Æmilia will be used instead of

PADL.

8.2.1 The Fokkink-Pang Leader Election Algorithm

In literature, many algorithms have been proposed for the problem of leader elec-

tion. They vary in communication synchronicity (synchronous vs. asynchronous),

process names (unique identities vs. anonymous), and network topology (e.g.

ring, tree, complete graph). Sometimes the processes in a network cannot

be distinguished by means of unique identities. In an “anonymous network”,

processes do not carry an identity. For asynchronous anonymous network, it has
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been proved [5] that there does not exist a terminating algorithm for electing a

leader. According to this result, a “Las Vegas” algorithm – i.e., an algorithm

in which the probability of termination is greater than zero and all terminal

configurations are correct – is the best possible option.

In [32], Fokkink and Pang present two probabilistic leader election algorithms

for anonymous unidirectional rings with asynchronous communication channels

that simplify the algorithm proposed by Itai and Rodeh in [44] by means of

the introduction of FIFO queues as channels. All of these algorithms are “Las

Vegas” with probability of termination equal to one. However, conversely to the

Itai-Rodeh algorithm, the Fokkink-Pang algorithms are finite-state and can be

analyzed using explicit state space exploration. In particular, the probabilistic

symbolic model checker PRISM [49] has been used by the authors for this purpose.

In [44, 32] a probabilistic leader election algorithm for anonymous unidirec-

tional rings is defined as a system in which each process selects a random identity

from a finite domain, and sends a message around the ring bearing its identity.

A process that detect a name clash, meaning that the process receives a message

with its own identity, starts a new election round. A process that receives a

message with an identity larger than its own identity knows that it cannot be a

leader. The process with the largest identity becomes the leader. It is assumed

that the size of the ring is known to all processes, so that each process can

recognize its own message by means of a hop counter that is part of the message.

The Itai-Rodeh algorithm contains a third piece of information in addition to

the random identity and to the hop counter, which is the round number. This

is useful when an old message, that has been overtaken by other messages in the

ring, results in a situation where no leader is elected. This makes the Itai-Rodeh

algorithm infinite-state. Fokkink and Pang claim that round numbers can be

omitted from the message, with the assumption that communication channels

among two contiguous processes are FIFO. Basically, the two algorithms A and

B proposed by Fokkink and Pang are two different adaptations of the Itai-Rodeh

algorithm that are correct in the presence of FIFO channels.

In this case study, only the second one – i.e. the algorithm B – is proposed,

whose steps are summarized as follows:
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• Initially, all processes are active, and each process pi randomly selects its

identity idi ∈ {0, . . . , k − 1} and sends the message (id1, 1).

• Upon receipt of a message (id1, hop), a passive process pi (statei = passive)

passes on the message, increasing the counter hop by one. An active process

pi (statei = active) behaves according to one of the following steps:

– if hop = n, then pi becomes the leader (state′i = leader);

– if id = idi and hop < n, then pi selects a new random identity id′i ∈
{0, . . . , k − 1} and sends the message (id′1, 1);

– if id > idi, then pi becomes passive (state′i = passive) and passes on

the message (id1, hop + 1);

– if id < idi, then pi purges the message.

8.2.2 Modeling a Leader Election System

Before modeling a system based on the algorithm B proposed by Fokkink-Pang,

some considerations must be done in order to allow finite-state analysis and

probabilistic measurement at the process algebraic description level. Through

appropriate analysis and measurement tools, we will then be able to check the

correctness of our model and to estimate the probability of electing a leader at a

certain time, once the election has been started.

The first point to take into consideration is that the communication channels

should be modeled with AETs that behaves as bounded FIFO queues. In fact,

even if asynchronous connectors could be used instead of such AETs, bounded

queues explicitly points out the sequentiality of the communications between

processes and, in particular, leads to a finite-state system.

Second, since processes are anonymous, and since they can exchange messages

among them only through a ring-topology network, it may be useful to introduce

an external supervisor for checking the correctness of the election. In practice,

each process simply communicates to the supervisor if it has been elected or not.

When the last process communicates its status, the supervisor knows if one (and

only one) leader has been elected.
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Third, the description language Æmilia should be used instead of PADL in

order to exploit the performance evaluator provided by TwoTowers, with which

we will be able to accomplish probabilistic measurements on our system. As

explained in [9], in fact, the performance evaluator is based on the performance

semantic model of Æmilia. This model can be extracted in the form of a Markov

chain [63] only when an Æmilia description is performance closed, i.e., when

no passive transitions and no non-determinism arises because of some boolean

condition – occurring in a behavioral choice – that cannot be statically evaluated.

If only immediate transitions occur in the performance semantic model, they are

interpreted as taking one time unit and the model corresponds to a discrete-

time Markov chain, with the transitions labeled with the probabilities of the

corresponding actions.

Hence, in order to analyze a discrete-time performance model of the leader

election system, all the internal actions of the Æmilia description should be

declared as immediate using the qualifier “inf”, which means that they are

performed at infinite rate. As far as the interactions are concerned, since an

immediate action can interact only with a passive one, all the output interactions

should be qualified as “inf”, while all the input interactions should be declared

as passive using the qualifier “ ”.

From the point of view of the code generator PADL2Java, we recall from 7.7

that the syntactical differences between a PADL description and its improved

version in Æmilia are simply ignored during the parsing process.

8.2.3 Æmilia Description of the Leader Election System

The architecture of the leader election system is illustrated in Fig. 8.2. The upper

part of the diagram shows a ring of processes (P[1], . . ., P[n procs]) where

a bounded FIFO queue (BF[1], . . ., BF[n procs]) is interposed between each

couple of contiguous processes. Each process sends a message to a queue through

the interaction send message and receives a message from a queue through the

interaction receive message.

In order to stop all the processes when a leader is elected, all processes and all

queues have been endowed with additional interactions, i.e., an input interaction



170 Chapter 8. Case Studies

S:

Process

Bounded_FIFO

Process

Bounded_FIFO

Process

Bounded_FIFO

withdraw_message

send_message

withdraw_message

receive_leader_notification

wrong_state_too_many_leaderswrong_state_no_leader

Supervisor

receive_message

receive_message

deposit_message

receive_stop

send_stop

receive_stop

send_stop

send_stop

receive_stop

become_leader

become_passive

receive_passive_process_notification

success

P[1]:

BF[1]:

P[k]:

BF[k]:

P[n_procs]:

BF[n_procs]:

Figure 8.2. Extended flow graph of the leader election system
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receive stop and an output interaction send stop. When a process becomes

leader, it forwards (through the queue) the stop-signal to its contiguous process,

which in turn forwards the signal to another process, and then terminates. The

leader process terminates, instead, as soon as the stop-signal has done a whole

round around the ring, coming back to the leader.

In the bottom-right part of the diagram, the Supervisor is shown that re-

ceives the signal receive passive process notification from all the processes

that become passive, and receives the signal receive leader notification from

the process that becomes a leader. The interaction success succeeds if one (and

only one) process communicates its leadership, while wrong state no leader and

wrong state too many leaders should never succeed in a correct specification

of the algorithm.

The whole system, called Leader Election B is described in Æmilia as

follows, where parameters n ids, n procs, and queue capacity are respectively

the number of processes, the number of different identities that the processes can

take, and the maximum size of bounded FIFO queues:

ARCHI TYPE Leader Election B(const integer n ids := 3,

const integer n procs := 3,

const integer queue capacity := 3)

ARCHI BEHAVIOR

ARCHI ELEM TYPE Process(const integer n ids,

const integer n procs)

BEHAVIOR

Start(integer(0..n ids) self id := d uniform(0, n ids - 1);

void) =

<send message!(self id, 1), inf> .

Active Message Receiving(self id);

Active Message Receiving(integer(0..n ids) self id;

local integer(0..n ids) id,

local integer(1..n procs) hop) =

<receive message?(id, hop), > . Evaluation(self id,

id,

hop);

Evaluation(integer(0..n ids) self id,

integer(0..n ids) id,

integer(1..n procs) hop;
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void) =

<count evaluation steps, inf> .

choice

{
cond(hop = n procs) ->

<become leader, inf> . Leadership(),

cond((hop < n procs) && (id = self id)) ->

<new identity, inf> . Start(d uniform(0, n ids - 1)),

cond(id > self id) ->

<become passive, inf> . <send message!(id, hop + 1), inf> .

Passive Message Receiving(),

cond(id < self id) ->

<purge message, inf> .

Active Message Receiving(self id)

};

Leadership(void;
void) =

<announce leadership, inf> .

<send stop, inf> .

<receive stop, > . stop;

Passive Message Receiving(void;
local integer(0..n ids) id,

local integer(1..n procs) hop) =

choice

{
<receive message?(id, hop), > .

<send message!(id, hop + 1), inf> .

Passive Message Receiving(),

<receive stop, > .

<send stop, inf> . stop

}

INPUT INTERACTIONS

UNI receive message;

receive stop

OUTPUT INTERACTIONS

UNI send message;

send stop;

become leader;

become passive

ARCHI ELEM TYPE Bounded FIFO(const integer n ids,

const integer n procs,

const integer capacity)
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BEHAVIOR

Queue(array(capacity, integer(0..n ids)) id arr := array cons(0, 0, 0),

array(capacity, integer(1..n procs)) hop arr := array cons(1, 1, 1),

integer(0..capacity) head index := 0,

integer(0..capacity) size := 0;

local integer(0..n ids) rec id,

local integer(1..n procs) rec hop) =

choice

{
cond(size < capacity) -> % queue is not full

<deposit message?(rec id, rec hop), > .

Queue(write(mod(head index + size, capacity), rec id, id arr) ,

write(mod(head index + size, capacity), rec hop, hop arr),

head index,

size + 1),

cond(size > 0) -> % queue is not empty

<withdraw message!(read(head index, id arr),

read(head index, hop arr)), inf> .

Queue(id arr,

hop arr,

mod(head index + 1, capacity),

size - 1),

<receive stop, > . <send stop, inf> . stop

}

INPUT INTERACTIONS

UNI deposit message;

receive stop

OUTPUT INTERACTIONS

UNI withdraw message;

send stop

ARCHI ELEM TYPE Supervisor(const integer n procs)

BEHAVIOR

Waiting for Leader(integer(0..n procs) active processes := n procs;

void) =

choice

{
cond(active processes > 0) ->

<receive passive process notification, > .

Waiting for Leader(active processes - 1),

cond(active processes > 0) ->

<receive leader notification, > .

Waiting for Processes(active processes - 1),
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cond(active processes = 0) ->

<wrong state no leader, inf> . stop

};

Waiting for Processes(integer(0..n procs) active processes;

void) =

choice

{
cond(active processes > 0) ->

<receive passive process notification, > .

Waiting for Processes(active processes - 1),

cond(active processes > 0) ->

<receive leader notification, > .

<wrong state too many leaders, inf> . stop,

cond(active processes = 0) ->

<success, inf> . stop

}

INPUT INTERACTIONS

OR receive leader notification;

receive passive process notification

OUTPUT INTERACTIONS

UNI success;

wrong state no leader;

wrong state too many leaders

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES

FOR ALL i IN 1..n procs

P[i] : Process(n ids,

n procs);

FOR ALL i IN 1..n procs

BF[i] : Bounded FIFO(n ids,

n procs,

queue capacity);

S : Supervisor(n procs)

ARCHI INTERACTIONS

S.success;

S.wrong state no leader;

S.wrong state too many leaders
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ARCHI ATTACHMENTS

FOR ALL i IN 1..n procs

FROM P[i].send message TO BF[i].deposit message;

FOR ALL i IN 1..n procs

FROM BF[i].withdraw message TO P[mod(i, n procs) + 1].receive message;

FOR ALL i IN 1..n procs

FROM P[i].send stop TO BF[i].receive stop;

FOR ALL i IN 1..n procs

FROM BF[i].send stop TO P[mod(i, n procs) + 1].receive stop;

FOR ALL i IN 1..n procs

FROM P[i].become leader TO S.receive leader notification;

FOR ALL i IN 1..n procs

FROM P[i].become passive TO S.receive passive process notification

END

Note that the defining equation Evaluation of the AET Process contains

the same rules specified in Sect. 8.2.1 for the Fokkink-Pang algorithm B. Also

note that d uniform(), a pseudo-random number generator [45] of PADL, has

been used in order to produce a random number following a discrete uniform

distribution between the two arguments 0 and n ids - 1.

8.2.4 Analyzing the Leader Election System

In this section we assess the correctness of the Æmilia description of the leader

election system. Then, we measure the probability that the underlying Fokkink-

Pang algorithm B terminates within a given number of transitions.

In order to assess the correctness of our description, two properties have

been verified through the LTL model checker of TwoTowers. These prop-

erties refer to the architectural interactions S.wrong state no leader and

S.wrong state too many leaders that should never be executed – no future

state should satisfy the interactions – since one and only one leader must be

elected. The specification of the two properties, written in a .ltl file, is as

follows:

PROPERTY at_least_one IS

NOT(SOME_FUTURE_STATE_SAT(S.wrong_state_no_leader));

PROPERTY at_most_one IS

NOT(SOME_FUTURE_STATE_SAT(S.wrong_state_too_many_leaders))
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and the outcome of their verification is:

Validity of the properties for Leader_Election_B:

- Property "at_least_one" is satisfied.

- Property "at_most_one" is satisfied.

In order to verify the correct termination of the algorithm, the following

specification could be used:

PROPERTY termination IS

SOME_FUTURE_STATE_SAT(S.success);

but it does not lead to a successful result. The following counterexample is
produced by the model checker:

- Property "termination" isn’t satisfied

as demonstrated by the following execution sequence:

...

<<loop starts here>>

...

This is due to the fact that the LTL model checker is not probabilistic, and it

points out a situation in which all the processes always randomly select the same

identity.

However, the performance evaluator of TwoTowers allows the calculation of

the stationary probability distribution for the state space of the performance

semantic model of the Æmilia description. When the number of processes, the

number of identities, and the capacity of the bounded queue are set to 3, the

following (piece of) result is given by the evaluator:

- ...

- Global state 81: 0

- Global state 82: 0

- Global state 83: 1

- Global state 84: 0

- Global state 85: 0

- ...

that means that the algorithm terminates at state 83 with probability one. On

the basis of the performance semantic model produced in a readable text format

by the compiler of TwoTowers, it is possible to verify that such a state, described

as:
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>> Global state 83:

...

- Local state of P[1]:

stop

- Local state of P[2]:

stop

- Local state of P[3]:

stop

- Local state of BF[1]:

stop

- Local state of BF[2]:

stop

- Local state of BF[3]:

stop

- Local state of S:

stop

- No transitions.

is always reached after the action S.success has succeeded in some previous

state. This is sufficient to confirm the correct termination of the algorithm.

In order to estimate the probability of electing a leader within a given

number of transitions, the transient probability calculator of TwoTowers has

been used instead. Recalled that the performance semantic model underlying

our description is a discrete-time one, at different transient instants (0, 5, 10, . . . ,

70) the following table can be obtained for the absorbing state 83:

0 - Global state 83: 0

5 - Global state 83: 0

10 - Global state 83: 0

15 - Global state 83: 0

20 - Global state 83: 7.13628E-05

25 - Global state 83: 0.00406503

30 - Global state 83: 0.0500913

35 - Global state 83: 0.226095

40 - Global state 83: 0.522359

45 - Global state 83: 0.787218

50 - Global state 83: 0.930883

55 - Global state 83: 0.98306

60 - Global state 83: 0.99674

65 - Global state 83: 0.999488

70 - Global state 83: 0.999932

which indicates the probability of electing a leader as a function of discrete-time

steps, when the number of processes and of identities is 3.

Other measurements have been performed by varying the number of processes

and of identities in our Æmilia description. Some results are illustrated in Fig. 8.3.
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Algorithm B - Probability of electing a leader
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Figure 8.3. Probability of electing a leader

8.2.5 Synthesizing the Leader Election System

The translator PADL2Java has been used for generating code from the Æmilia

description of the leader election system (Leader Election B). Note that the

AET Bounded FIFO, whose instances satisfy all the monitor constraints, is

synthesized as a monitor, while all the other AETs are synthesized as threads:

public class Leader Election B implements RunnableArchi {

//-------- DECLARING RUNNABLE ELEMENTS --------//

Sync.util.HashArray<Process> P;

Sync.util.HashArray<Bounded FIFO> BF;

Supervisor S;

//--- DECLARING ARCHITECTURAL INTERACTIONS ----//

public UniSyncSenderPort S success;

public UniSyncSenderPort S wrong state no leader;

public UniSyncSenderPort S wrong state too many leaders;

//----------- DEFINING CONSTRUCTOR ------------//

protected int n ids;

protected int n procs;

protected int queue capacity;

// GENERAL CONSTRUCTOR:

Leader Election B(int n ids,

int n procs,

int queue capacity) {
this.n ids = n ids;

this.n procs = n procs;
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this.queue capacity = queue capacity;

buildArchiTopology();

}

// DEFAULT CONSTRUCTOR:

Leader Election B() {
this(3,

3,

3);

}

//----------- BUILDING ARCHITECTURE -----------//

void buildArchiTopology() {

// INSTANTIATING RUNNABLE ELEMENTS:

P = new Sync.util.HashArray<Process>();

for (int i = 1; i <= n procs; i++)

P.put(i,

new Process(n ids,

n procs));

BF = new Sync.util.HashArray<Bounded FIFO>();

for (int i = 1; i <= n procs; i++)

BF.put(i,

new Bounded FIFO(n ids,

n procs,

queue capacity));

S = new Supervisor(n procs);

// ASSIGNING ARCHITECTURAL INTERACTIONS:

this.S success = S.success;

this.S wrong state no leader = S.wrong state no leader;

this.S wrong state too many leaders = S.wrong state too many leaders;

// ATTACHING LOCAL INTERACTIONS:

try {
for (int i = 1; i <= n procs; i++)

ArchiMeth.attach(P.get(i).send message, BF.get(i).deposit message);

for (int i = 1; i <= n procs; i++)

ArchiMeth.attach(BF.get(i).withdraw message, P.get(i % n procs + 1).receive message);

for (int i = 1; i <= n procs; i++)

ArchiMeth.attach(P.get(i).send stop, BF.get(i).receive stop);

for (int i = 1; i <= n procs; i++)

ArchiMeth.attach(BF.get(i).send stop, P.get(i % n procs + 1).receive stop);

for (int i = 1; i <= n procs; i++)

ArchiMeth.attach(P.get(i).become leader, S.receive leader notification);

for (int i = 1; i <= n procs; i++)

ArchiMeth.attach(P.get(i).become passive, S.receive passive process notification);

} catch(BadAttachmentException e) {}

} // end of method buildArchiTopology()
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//----------- RUNNING ARCHITECTURE -----------//

Thread th Leader Election B = null;

public void start() {
(th Leader Election B = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Leader Election B.join();

}

public void run() {
for (int i = 1; i <= n procs; i++)

P.get(i).start();

for (int i = 1; i <= n procs; i++)

BF.get(i).start();

S.start();

try {
for (int i = 1; i <= n procs; i++)

P.get(i).join();

for (int i = 1; i <= n procs; i++)

BF.get(i).join();

S.join();

} catch(InterruptedException e) {}
}

}

class Process implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Start,

Active Message Receiving,

Evaluation,

Leadership,

Passive Message Receiving;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

UniSyncReceiverPort receive message =

new UniSyncReceiverPort(this);
UniSyncReceiverPort receive stop =

new UniSyncReceiverPort(this);

UniSyncSenderPort send message =

new UniSyncSenderPort(this);
UniSyncSenderPort send stop =

new UniSyncSenderPort(this);
UniSyncSenderPort become leader =

new UniSyncSenderPort(this);
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UniSyncSenderPort become passive =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

IAS Process internal Process;

// No EHS declaration as there are

// no architectural interactions and

// no semi-synchronous interactions.

//----------- DEFINING CONSTRUCTOR ------------//

protected int n ids;

protected int n procs;

Process(int n ids,

int n procs) {
this.n ids = n ids;

this.n procs = n procs;

defineBehavEquations();

}

//------------- DEFINING BEHAVIOR -------------//

void defineBehavEquations() {

Start =

new BehavioralEquationInterface() {

public void behavEqCall() {
Start((int)actualPars[0]);

}

private void Start(int self id) {
try {

send message.send(self id,

1);

} catch(SyncException e) {}
nextBehavEq = Active Message Receiving;

actualPars = new Object[] {self id};
}

}; // end of behavioral equation Start

Active Message Receiving =

new BehavioralEquationInterface() {

public void behavEqCall() {
Active Message Receiving((int)actualPars[0]);

}

private void Active Message Receiving(int self id) {
int id;

int hop;
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Object[] inputPars;

try {
inputPars = receive message.receive();

id = (int)Object[0];
hop = (int)Object[1];

} catch(SyncException e) {}
nextBehavEq = Evaluation;

actualPars = new Object[] {self id,

id,

hop};
}

}; // end of behavioral equation Active Message Receiving

Evaluation =

new BehavioralEquationInterface() {

public void behavEqCall() {
Evaluation((int)actualPars[0],

(int)actualPars[1],
(int)actualPars[2]);

}

private void Evaluation(int self id,

int id,

int hop) {
internal Process.count evaluation steps();

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(hop == n procs, become leader),

new ChAct((hop < n procs) && (id == self id), null),

new ChAct(id > self id, become passive),

new ChAct(id < self id, null)

}
)

) // Choice body :

{
case 0:

try {
become leader.send();

} catch(SyncException e) {}
nextBehavEq = Leadership;

actualPars = null;

break;
case 1:

internal Process.new identity();

nextBehavEq = Start;

actualPars = new Object[] {Sync.random.d uniform(0,

n ids - 1)};
break;
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case 2:

try {
become passive.send();

} catch(SyncException e) {}
try {

send message.send(id,

hop + 1);

} catch(SyncException e) {}
nextBehavEq = Passive Message Receiving;

actualPars = null;

break;
case 3:

internal Process.purge message();

nextBehavEq = Active Message Receiving;

actualPars = new Object[] {self id};
break;

default:
nextBehavEq = null; // STOP

actualPars = null;

}
}

}; // end of behavioral equation Evaluation

Leadership =

new BehavioralEquationInterface() {

public void behavEqCall() {
Leadership();

}

private void Leadership() {
internal Process.announce leadership();

try {
send stop.send();

} catch(SyncException e) {}
try {

receive stop.receive();

} catch(SyncException e) {}
nextBehavEq = null; // STOP

actualPars = null;

}

}; // end of behavioral equation Leadership

Passive Message Receiving =

new BehavioralEquationInterface() {

public void behavEqCall() {
Passive Message Receiving();

}
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private void Passive Message Receiving() {
int id;

int hop;

Object[] inputPars;

switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(true, receive message),

new ChAct(true, receive stop)

}
)

) // Choice body :

{
case 0:

try {
inputPars = receive message.receive();

id = (int)inputPars[0];
hop = (int)inputPars[1];

} catch(SyncException e) {}
try {

send message.send(id,

hop + 1);

} catch(SyncException e) {}
nextBehavEq = Passive Message Receiving;

actualPars = null;

break;
case 1:

try {
receive stop.receive();

} catch(SyncException e) {}
try {

send stop.send();

} catch(SyncException e) {}
nextBehavEq = null; // STOP

actualPars = null;

break;
default:
nextBehavEq = null; // STOP

actualPars = null;

}
}

}; // end of behavioral equation Passive Message Receiving

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Process = null;

public void start() {
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(th Process = new Thread(this)).start();
}

public void join() throws InterruptedException {
th Process.join();

}

public void run() {
internal Process =

new IAS Process();

nextBehavEq = Start;

actualPars = new Object[] {Sync.random.d uniform(0,

n ids - 1)};
while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}

}

class Bounded FIFO Monitor {

//-------------- DECLARING STUBS --------------//

// No IAS declaration as there are

// no internal actions

//----------- DEFINING CONSTRUCTOR ------------//

private boolean[] guard;

private final static int Queue = 0,

Split 1 Queue = 1;

private final static int deposit message = 0,

receive stop = 1,

withdraw message = 2,

send stop = 3;

int[] id arr;

int[] hop arr;

int head index;

int size;

int n ids;

int n procs;

int capacity;

Bounded FIFO Monitor(int n ids,

int n procs,

int capacity) {
this.n ids = n ids;

this.n procs = n procs;

this.capacity = capacity;

}

//------------- DEFINING BEHAVIOR -------------//
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private void checkGuard(int guardIndex, boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
if (blocking)

while (!guard[guardIndex])

wait();

else
if (!guard[guardIndex])

throw new SemisyncInteractionException();

}

protected synchronized void Queue(int[] id arr,

int[] hop arr,

int head index,

int size) {
this.id arr = id arr;

this.hop arr = hop arr;

this.head index = head index;

this.size = size;

guard = new boolean[] {size < capacity, true, size > 0, false};
notifyAll();

}

protected synchronized void Split 1 Queue() {
guard = new boolean[] {false, false, false, true};
notifyAll();

}

public synchronized void deposit message(boolean blocking,

int rec id,

int rec hop)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( deposit message, blocking);

this.id arr[(head index + size) % capacity] = rec id;

this.hop arr[(head index + size) % capacity] = rec hop;

Queue(this.id arr,

this.hop arr,

this.head index,

this.size + 1);

}

public synchronized void receive stop(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( receive stop, blocking);

Split 1 Queue();

}

public synchronized Object[] withdraw message(boolean blocking)

throws InterruptedException,
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SemisyncInteractionException {
int id arr read;

int hop arr read;

checkGuard( withdraw message, blocking);

id arr read = this.id arr[head index];

hop arr read = this.hop arr[head index];

Queue(this.id arr,

this.hop arr,

(this.head index + 1) % this.capacity,
this.size - 1);

return new Object[] {id arr read,

hop arr read};
}

public synchronized void send stop(boolean blocking)

throws InterruptedException,

SemisyncInteractionException {
checkGuard( send stop, blocking);

guard = new boolean[] {false, false, false, false}; // STOP

}

//------------- STARTING MONITOR --------------//

public void startMonitor() {
Queue(new int[] {0,

0,

0},
new int[] {1,

1,

1},
0,

0);

}
}

class Bounded FIFO implements RunnableElem {

//------------- DECLARING MONITOR -------------//

Bounded FIFO Monitor core monitor Bounded FIFO;

//-------- INSTANTIATING INTERACTIONS ---------//

public UniSyncReceiverMonitorPort deposit message =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send(Object[] inputPars)

throws InterruptedException,

NotReadyPortException {
try {

core monitor Bounded FIFO.deposit message(isBlocking,

(int)inputPars[0],
(int)inputPars[1]);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);
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}
}

};

public UniSyncReceiverMonitorPort receive stop =

new UniSyncReceiverMonitorPort(this) {
public synchronized void send()

throws InterruptedException,

NotReadyPortException {
try {

core monitor Bounded FIFO.receive stop(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
}

};

public UniSyncSenderMonitorPort withdraw message =

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
Object[] outputPars;

try {
outputPars = core monitor Bounded FIFO.withdraw message(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
return outputPars;

}
};

public UniSyncSenderMonitorPort send stop =

new UniSyncSenderMonitorPort(this) {
public synchronized Object[] receive()

throws InterruptedException,

NotReadyPortException {
try {

core monitor Bounded FIFO.send stop(isBlocking);

} catch(SemisyncInteractionException e) {
throw new NotReadyPortException(e);

}
return null;

}
};

//----------- DEFINING CONSTRUCTOR ------------//

Bounded FIFO(int n ids,

int n procs,

int capacity) {
core monitor Bounded FIFO = new Bounded FIFO Monitor(n ids,
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n procs,

capacity);

}

//--------- RUNNING ELEMENT [monitor] ---------//

public void start() {
run();

}

public void join() throws InterruptedException { }

public void run() {
core monitor Bounded FIFO.startMonitor();

}
}

class Supervisor implements RunnableElem {

//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//

interface BehavioralEquationInterface { void behavEqCall(); }
BehavioralEquationInterface Waiting for Leader,

Waiting for Processes;

BehavioralEquationInterface nextBehavEq;

Object[] actualPars;

//-------- INSTANTIATING INTERACTIONS ---------//

OrSyncReceiverPort receive leader notification =

new OrSyncReceiverPort(this);
OrSyncReceiverPort receive passive process notification =

new OrSyncReceiverPort(this);

UniSyncSenderPort success =

new UniSyncSenderPort(this);
UniSyncSenderPort wrong state no leader =

new UniSyncSenderPort(this);
UniSyncSenderPort wrong state too many leaders =

new UniSyncSenderPort(this);

//-------------- DECLARING STUBS --------------//

// No IAS declaration as there are

// no internal actions.

EHS Supervisor exception Supervisor;

//----------- DEFINING CONSTRUCTOR ------------//

protected int n procs;

Supervisor(int n procs) {
this.n procs = n procs;

defineBehavEquations();

}
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//------------- DEFINING BEHAVIOR -------------//

void defineBehavEquations() {

Waiting for Leader =

new BehavioralEquationInterface() {

public void behavEqCall() {
Waiting for Leader((int)actualPars[0]);

}

private void Waiting for Leader(int active processes) {
switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(active processes > 0, receive passive process notification),

new ChAct(active processes > 0, receive leader notification),

new ChAct(active processes == 0, wrong state no leader)

}
)

) // Choice body :

{
case 0:

try {
receive passive process notification.receive();

} catch(SyncException e) {}
nextBehavEq = Waiting for Leader;

actualPars = new Object[] {active processes - 1};
break;

case 1:

try {
receive leader notification.receive();

} catch(SyncException e) {}
nextBehavEq = Waiting for Processes;

actualPars = new Object[] {active processes - 1};
break;

case 2:

try {
wrong state no leader.send();

} catch(UnattachedPortException e) {
exception Supervisor.wrong state no leader();

}
nextBehavEq = null; // STOP

actualPars = null;

break;
default:
nextBehavEq = null; // STOP

actualPars = null;

}
}
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}; // end of behavioral equation Waiting for Leader

Waiting for Processes =

new BehavioralEquationInterface() {

public void behavEqCall() {
Waiting for Processes((int)actualPars[0]);

}

private void Waiting for Processes(int active processes) {
switch (

ElemMeth.choice(

new ChAct[] {
new ChAct(active processes > 0, receive passive process notification),

new ChAct(active processes > 0, receive leader notification),

new ChAct(active processes == 0, success)

}
)

) // Choice body :

{
case 0:

try {
receive passive process notification.receive();

} catch(SyncException e) {}
nextBehavEq = Waiting for Processes;

actualPars = new Object[] {active processes - 1};
break;

case 1:

try {
receive leader notification.receive();

} catch(SyncException e) {}
try {

wrong state too many leaders.send();

} catch(UnattachedPortException e) {
exception Supervisor.wrong state too many leaders();

}
nextBehavEq = null; // STOP

actualPars = null;

break;
case 2:

try {
success.send();

} catch(UnattachedPortException e) {
exception Supervisor.success();

}
nextBehavEq = null; // STOP

actualPars = null;

break;
default:
nextBehavEq = null; // STOP

actualPars = null;
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}
}

}; // end of behavioral equation Waiting for Processes

}

//--------- RUNNING ELEMENT [thread] ----------//

Thread th Supervisor = null;

public void start() {
(th Supervisor = new Thread(this)).start();

}

public void join() throws InterruptedException {
th Supervisor.join();

}

public void run() {
exception Supervisor =

new EHS Supervisor();

nextBehavEq = Waiting for Leader;

actualPars = new Object[] {n procs};
while (nextBehavEq != null)

nextBehavEq.behavEqCall();

}
}

class IAS Process {

IAS Process() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void count evaluation steps() {
// FILL IN THE METHOD BODY

}

void new identity() {
// FILL IN THE METHOD BODY

}

void purge message() {
// FILL IN THE METHOD BODY

}

void announce leadership() {
// FILL IN THE METHOD BODY

}
}
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class EHS Supervisor {

EHS Supervisor() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void wrong state no leader() {
// FILL IN THE METHOD BODY

}

void wrong state too many leaders() {
// FILL IN THE METHOD BODY

}

void success() {
// FILL IN THE METHOD BODY

}
}

Finally, note that the random number generator d uniform() used in the

Æmilia description of the AET Process is translated into a call of a function

having the same name (and the same purpose, obviously), provided by the

package Sync.

8.2.6 Results on the Implementation Side

Since the analysis of the leader election system at the process algebraic description

level refers to probabilistic properties, it is not guaranteed that the code generated

by the translator PADL2Java preserves the same properties correctly. In order

to empirically assess the correct termination of the algorithm and to analyze the

probability of electing a leader as a function of discrete-time steps, the generated

code has been used for producing traces of its own execution.

For checking the correct termination of the algorithm on the implementation

side, the stub EHS Supervisor has been filled in as follows:

class EHS Supervisor {

EHS Supervisor() {
// FILL IN THE CONSTRUCTOR BODY IF NEEDED

}

void wrong state no leader() {
System.err.println("ERROR: no leader has been elected");

}
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void wrong state too many leaders() {
System.err.println("ERROR: too many leader have been elected");

}

void success() {
System.err.println("SUCCESS: just one leader has been elected");

}
}

while for the analysis of the probability of electing a leader, the stub IAS Process

has been filled in as follows:

class IAS Process {

int step counter;

IAS Process() {
step counter = 0;

}

void count evaluation steps() {
step counter++;

}

void new identity() {
// FILL IN THE METHOD BODY

}

void purge message() {
// FILL IN THE METHOD BODY

}

void announce leadership() {
System.out.println("-> " + step counter + " steps before becoming a leader");

}
}

Moreover, a program has been written for running the class

Leader Election B several thousand of times for different numbers of processes

and of identities. The same program, then, analyzes the traces that in the

previous phase have been redirected from the standard err and from the standard

out into two different files.

The first trace contained:

SUCCESS: just one leader has been elected

...
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SUCCESS: just one leader has been elected

...

SUCCESS: just one leader has been elected

without any error message. This empirically confirms the correct termination of

the implemented leader election system.

The second trace contained several sections related to different experiments

with varying size of the problem – i.e., number of processes and identities:

...

4 Processes and 4 Identities

-> 12 steps before becoming a leader

-> 18 steps before becoming a leader

-> 15 steps before becoming a leader

...

From this trace, an average value for any section has been calculated. These

values, compared with the values estimated through the transient probability

distribution calculator of TwoTowers, empirically confirm the trend of the

probability curves illustrated in Fig. 8.3.





Chapter 9

Conclusion

9.1 Summary of Results

In this thesis we have presented an approach for automatically generating

multithreaded Java programs from process algebraic architectural descriptions

of concurrent software systems. The approach is divided into three phases.

In the first phase, a package called Sync has been developed to guarantee the

correct thread coordination management according to a general communication

model. The definition and the use of this package is inspired by architectural

concepts.

In the second phase, the translation of the process-algebraically-specified

behavior of the software units has been addressed. Due to the different level of

abstraction of a programming language and an architectural description language,

only a part of the translation can be automated, while for the rest – internal

actions and interaction exceptions – a set of guidelines has been provided in

order to assist the developer.

In the third phase, the suitability of synthesizing monitors rather than threads

has been assessed. Specific constraints have been identified that must be satisfied

by the process algebraic description of a software unit in order for it to be easily

translated into a monitor.

Beyond the mere automatic code generation, an important result of this

approach is that it guarantees – under certain conditions – that the properties

proved at the architectural level are preserved at the code level. These conditions
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only concern the code that has to be manually written by the software developer

for implementing the internal actions and the interaction exceptions. Thus,

following the guidelines provided in Sect. 5.7 completely ensures the preservation

of the architectural properties.

As far as limitations of the proposed approach are concerned, it is worth

reminding that the application of the third phase is subject to the constraints

defined in Sect. 6.1. Since the architectural element types that do not satisfy the

constraints can always be generated as threads instead of monitors, the monitor

constraints are not a real limitation for the application of the whole approach.

However, some of the constraints may appear quite strong. Actually, the main

reason why we have provided sufficient but not (always) necessary conditions for

guaranteeing a correct monitor generation, is that we have preferred to develop

constraints that can be easily checked in architectural topologies using local

criteria. This issue, together with the correct application of the guidelines for

manually writing code at the end of the second and of the third phase, will be

discussed in Sect. 9.3 as a future work.

The whole approach described in this thesis has been implemented in a

translator called PADL2Java that offers three options: package generation,

program generation, and applet generation. The various options and the

structure of the generated code have been illustrated through the architectural

description of an audio processing system. PADL2Java has then been integrated

in TwoTowers, an architecture-centric verification tool. Hence, this integrated

toolset can provide an effective support to bridge the gap between software

modeling and software implementation. Two case studies have been presented

in order to illustrate the usage of the translator PADL2Java and the advantages

deriving from its integration in TwoTowers.

A further result of this thesis is that it has contributed to the enhancement

of the expressiveness of the architectural description language PADL. First, the

communication model provided by the language has been extended thanks to

the introduction of asynchronous and semi-synchronous communications among

architectural elements. Second, the generic object, i.e., object(/type id.), has

been introduced as a new data type of PADL in order to increase the effectiveness

of the code generated by the translator PADL2Java.
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9.2 Related Work

Concerning related work, it is worth to recall [52] where the problem of developing

concurrent software systems is tackled by applying a systematic methodology

based on a PA. More precisely, concurrent Java programs are modeled and

designed using a simple process algebra notation called FSP. The verification

tool LTSA is used for analyzing properties of the models.

The process algebra-based language LOTOS [16] is used instead by the toolbox

CADP (CÆSAR/ALDEBARAN Development Package [28, 34]) for the design of

communication protocols and distributed systems. The toolbox is able to produce

C code for rapid prototyping and testing purposes.

Strictly concerning the automatic code/program generation from architectural

descriptions, first of all we mention ArchJava [3]. This is an extension of Java

aiming at the unification of software architecture with implementation, in order to

ensure that the implementation conforms to the architectural specification with

respect to communication integrity. According to this property, each component

in the implementation may only communicate directly with the components to

which it is connected in the architecture.

Our approach differs from ArchJava in several ways. First, it does not

extend Java, but generates Java code from process algebraic architectural

descriptions. In our approach the developer is then required to fill in some

stubs to complete the code for the behavior of the threads, thus giving a

certain degree of flexibility. The price to be paid is that the guidelines

may be violated, whereas a similar situation is not possible in ArchJava.

Second, our approach adopts a richer communication model, implemented and

transparently made available through package Sync. This guarantees a property

even stronger than communication integrity: implementation threads directly

communicate only with the threads they are connected to in the architectural

description in the way prescribed by the architectural description itself with

respect to communication synchronicity (synchronous, semi-synchronous, and

asynchronous) and communication multiplicity (uni, and, or). Third, since it

keeps the architectural description language separated from the implementation

language, our approach provides a higher-level support than ArchJava for the
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preservation of behavioral properties. On the other hand, the strong integration

between architecture and implementation endows ArchJava with useful dynamic

capabilities, like run-time creation of components – although communication

integrity places restrictions on the way in which their instances can be used –

and connections among them.

Then we mention C2SADEL [54]. This is an architectural description language

tied to the C2 style, which combines the usual architectural concepts with

type theory. Type checking is used to analyze the architectural descriptions

for consistency by unifying corresponding operations required and provided by

different components. Moreover, Java code can be automatically generated from

C2SADEL descriptions. Since type checking is a static analysis technique, while

the architectural features on which we focus are behavioral and concerned with

a rich communication model, we believe that our approach can guarantee the

preservation of more complex properties than C2SADEL.

We also mention [38], where an approach is proposed for automatically

generating Java code from SDL specifications of telecommunication systems.

Although the target of this approach and ours is similar, the framework in which

the two approaches are considered is quite different. In fact, while our approach

deals with the correct thread coordination within a single Java program, the other

approach aims at the generation of distributed Java code whose components are

coordinated via CORBA.

If we restrict ourselves to monitor generation, we have [67], where a tool

equipped with a model checker automatically generates Java monitor classes

from monitor descriptions written in Action Language. The correctness of the

synchronization and of the behavior of a generated Java monitor is guaranteed by

construction, independently of the context of the monitor description. Unlike our

approach, this approach requires that the monitor description conforms a priori

to a specific monitor template.

Finally we have [27], where implementations of synchronization policies are

generated in Java through synchronized methods and lock objects. While in

the previously described approaches the generated Java monitors are obtained

from formal specifications and are correct by construction, in this approach

the code is generated from critical regions delimited by the developer with
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high-level synchronization directives and the correctness of the implemented

synchronization policies is verified at the code level via model checking.

9.3 Future Research

Concerning future work, on the theoretical side we plan to conduct further

investigations on the monitor constraints, in particular with respect to specific

contexts. For instance, one constraint requires that a candidate monitor has no

other monitor attached to it, which is a sufficient condition for avoiding monitor

interferences. However, monitors that invoke methods of other monitors are often

employed in correct concurrent programs. Thus, our constraint does not result in

a necessary condition. If we knew additional information about the components

interacting with the monitor, we could obtain a set of necessary conditions that

would make it possible to weaken the constraints.

On the methodological side we plan to investigate the combination of our

approach with some of those discussed in Sect. 9.2. In particular, we would like

to investigate the applicability of our approach to C2SADEL, in order to take

advantage of both type checking and behavioral analysis from the architectural

level to the code level. Similarly, we would like to experiment our approach with

ArchJava – by generating ArchJava code instead of Java code – in order to exploit

the complementary strengths of the two approaches.

Finally, on the applicative side we would like to further integrate our toolset

with software model checking tools, like Bandera [24], and to define specific

rules for static analysis tools, like Eclipse TPTP [39]. The reason is that the

preservation at the code level of the properties proved at the architectural level

is guaranteed only if (the underlying platform is correct and) the designer follows

the guidelines provided in Sect. 5.7 when filling in the stubs for internal actions

and interaction exceptions. Having a software model checker available within

TwoTowers would strengthen our approach as it would permit the verification of

the overall system after the intervention of the software designer, when customized

static analysis tools will have been suitably applied for guiding the intervention.
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