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1. Abstract 
 

Neural prosthetics represent a promising approach to restore movements in patients affected by 

spinal cord lesions. Intact signals recorded from cerebral cortex can be decoded and used to drive 

neural prostheses. Understanding how the brain codes information and how different cortical 

areas could contribute to prosthesis operation is still a critical point. To drive a full capable, brain 

controlled, prosthetic arm, reaching and grasping components of prehension have to be accurately 

reconstructed from neural activity. The posterior parietal cortex (PPC) mediates sensorimotor 

transformations, spatial attention, and motor planning. In PPC several areas encode for different 

aspects of prehension acts, with reaching and grasping often assigned to separate regions. PPC 

signals were already used in a clinical trial on paraplegic patients to move a prosthetic arm. Two 

implants have been placed on different areas to use on one side reach directional signals and on 

the other grip related information, and still the prosthetic movement was slow and clumsy.  

Neurons in the dorsomedial area V6A of macaque show sensitivity to reaching direction 

accounting also for depth dimension, thus encoding positions in the entire 3D space. Moreover, 

many neurons are sensible to grips types and wrist orientations. To assess whether these signals 

are adequate to drive a full capable neural prosthetic arm, we recorded spiking activity of neurons 

in area V6A, spike counts were used to train machine learning algorithms to reconstruct reaching 

and grasping. In a first work, two Macaca fascicularis monkeys were trained to perform an 

instructed-delay reach-to-grasp task in the dark and in the light toward objects of different shapes. 

Population neural activity was extracted at various time intervals on vision of the objects, the 

delay before movement, and grasp execution. The activity of 89 neurons was used to train and 

validate a Bayes classifier used for decoding objects and grip types. Recognition rates were well 

above chance level for all the epochs analyzed in this study. In a second work, monkeys were 

trained to perform reaches to targets located at various depths and directions and the classifier 

was tested whether it could correctly predict the reach goal position from V6A signals. The reach 

goal location was reliably decoded with accuracy close to optimal (>90%) throughout the task. I 

then compared population-level representation along task using a generalization approach; that is, 

I trained a decoder on the spike data from the initial fixation and then tested its performance on 

the data from the movement interval. This was useful to study the dynamics of sensorimotor 

transformations. For both reaching and grasping, codes progressively evolve from a visual (spatial) 

to motor encoding with a mixed code during the delay period before movement execution.  
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Together these results, show a reliable decoding of hand grips and spatial location of reaching 

goals in the same area, suggesting that V6A is a suitable site to decode the entire prehension 

action with obvious advantages in terms of implant invasiveness. This new PPC site useful for 

decoding both reaching and grasping opens new perspectives in the development of human brain-

computer interfaces.  
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2. Introduction 
 

During our entire life, we constantly interact with surrounding objects. Reaching for food, handling 

tools at work, playing with our children or helping our relatives. All these natural activities require 

complex interactions driven by our nervous system that finely controls body effectors. However, 

unpredictable events could dramatically hinder everyday activities. A car crash can be the cause of 

severe spinal cord injury (SCI) that can often result in the permanent loss of functions, causing 

enormous personal, social and economic problems. A recent report from American National Spinal 

Cord Injury Statistical Center (National Spinal Cord Injury Statistical Center, Birmingham, 2018) 

stated an annual incidence of spinal cord injury (SCI) approximately of 54 cases per one million 

people in the United States, with 17,730 new SCI cases each year. In Europe, an estimated number 

of 330,000 people are living with the consequences of spinal cord injury, with 11,000 new injuries 

occurring per year (Rupp, 2014). The bilateral loss of the grasp function in individuals suffering 

from a cervical SCI severely limits the affected individuals’ ability to live independently and retain 

gainful employment post injury. Therefore, one of the main priorities of these patients is to 

improve a missing grasping and reaching function (Anderson, 2004; Simpson et al., 2012; Collinger 

et al., 2013).  

Although nerve regeneration may be a possible solution, a deep understanding of molecular basis 

of tissue regeneration is still missing and clinical applications are still far (Young, 2014; Sofroniew, 

2018). Brain Computer Interfaces (BCIs) offer a viable alternative, with promising human 

applications (Hochberg et al., 2012; Collinger et al., 2013; Aflalo et al., 2015). BCIs record 

bioelectrical signals generated by brain circuits, these signals are informative about volitional 

movement. Next, a computer algorithm, the neural decoder, translates recorded brain activity into 

signals capable of driving prosthetics (effector). Neural prosthetic is ‘mind controlled’ and under 

strict control of patient to replace the real body and restore mobility (Fig. 1). Critical points of BMI 

technology are the bandwidth between the brain and the decoder (this is related to the number of 

recording channels), and the ability of the decoder to extract key information to move correctly 

each of prosthetic’s degrees of freedom (DOF). Different input have been used to drive BMIs: EEG, 

ECoG and fMRI signals (Rupp, 2014; Bockbrader et al., 2018) but intracortical recording 

outperform others in term of temporal resolution and signal to noise ratio (Waldert, 2016). 

Temporal resolution is a key point to return a natural feeling to BMI user. Downside of 

intracortical recordings is implant invasiveness (Murphy et al., 2016).  
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The current state of art for human cortical recording is the Utah Array, a 96 multielectrode array, 

4x4mm size (Fig. 1.1), inserted in the cortex and connected to a dock fixed on the patient skull. 

Connector pins are exposed to enable a direct link between electrodes and amplifier. Moreover, 

insertion of electrodes within the cortex triggers inflammatory response, which ultimately reduces 

signals yield over time (Kozai et al., 2015; Salatino et al., 2017). Increasing the number of 

electrodes to sample more and more neurons is still possible, yet a fair trade-off between number 

of neurons required to dexterously drive a BMI and implant invasiveness should be pursued. 

 

Figure 1. Main components of a neural interface system: (1) a recording array that extracts neural signals, 

(2) a decoding algorithm that translates these neural signals into a set of command signals, (3) an output 

device that is controlled by these command signals, and (4) sensory feedback in the form of vision and 

potentially other sensory modalities. Figure modified from (Hatsopoulos and Donoghue, 2009). 

 

    



  

7 
 

Extracting high valuable information from brain regions strictly correlated with the movement, 

helps to reduce the number of recording channels needed to efficiently drive neural prosthetic. 

Signals from different human brain regions were successfully used to decode motor intentions and 

actions in neuroprosthetic. The first attempts demonstrated that it was possible drive a full 7 DOF 

robotic arm using signals from motor cortex (Collinger et al., 2013) (Fig. 2ABC). Motor cortex 

signals give easy access to information on arm position, velocity and acceleration (Georgopoulos 

et al., 1982; Schwartz, 1994; Paninski et al., 2004). Given the rich repertory of movement our limbs 

can perform (our hand is capable of 22 DOF), many channels are required to extract this 

information in detail. In contrast to motor BCIs, BCIs based on signals from upstream areas like 

PPC have intriguing attractions (cognitive BCI). Aflalo and colleagues showed that also signals from 

posterior parietal cortex (PPC) were adequate to drive a high DOF prosthesis (Aflalo et al., 2015) 

(Fig. 2DE). Indeed, PPC is implicated in the processing of spatial awareness, attention and action 

planning (Galletti and Fattori, 2018; Gallivan and Goodale, 2018), information is here encoded in a 

more abstract form but still available, not linked to a specific effector and is described with few 

neurons (Andersen et al., 2010, 2014). 

 

 

 

 
 

Figure 2. (A) Array location and preoperative functional MRI activation maps of a participant specific brain 

model during video-guided attempted movement. The colors in the activation maps represent blood-
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oxygenation-dependent activities during video-guided attempted movements. Two Utah arrays were 

implanted in primary motor cortex. (B) Neural control of a prosthetic limb with signals from human motor 

cortex. (C) Diagram of the prosthetic limb and translation targets (red and blue spheres) for the seven-

dimensional sequence task. (D) Functional results rendered on a reconstructed cortical surface.  Areas with 

significantly greater activation for the reach condition (red) as compared to areas showing greater 

activation for the grasping condition (blue). In opposition to (A) where arrays were placed into motor 

cortex, here PPC was targeted: a first array was implanted in area BA5, the second array in human anterior 

intraparietal area (AIP). (E) Neural control of a prosthetic limb with signals from human posterior parietal 

cortex. CS=central sulcus. Figures A, B, C modified from Collinger et al. 2013, figures D, E, from Aflalo et al. 

2015. 

 

2.1. Posterior Parietal Cortex (PPC) 
 

The posterior parietal cortex provides a bridge between sensory areas in the caudal cortex and 

motor areas in more rostral cortex. Neurons in this region cannot be classified as simply sensory or 

motor, but rather they have properties of both and are involved in sensorimotor transformation. 

According to the “Two Visual Systems Hypothesis” (Goodale and Milner, 1992) visual information 

flows from the primary visual cortex to several areas of the extrastriate visual cortex along two 

separate channels called the dorsal and ventral visual streams (Ungerleider and Mishkin, 1982). 

The dorsal visual stream leads toward the PPC where visual information is mainly exploited to 

guide action. Alternatively, the ventral visual stream projects toward the inferior temporal cortex, 

where visual information is analyzed for the purpose of recognizing, analyzing, and categorizing 

visual objects (Milner and Goodale, 2006). Within the dorsal visual stream, different areas have 

attracted attention of the scientific community. For example, AIP has been associated with the 

control of hand-object interactions required for grasping, LIP for the guidance of eye movements 

(Taira et al., 1990; Gallese et al., 1994; Murata et al., 2000; Cui and Andersen, 2007; Gardner et al., 

2007; Sakata et al., 2012). In opposition, planning and execution of reaching movements involve 

mainly areas of the superior parietal lobe (Snyder et al., 1997; Battaglia-Mayer et al., 2000, 2007; 

Fattori et al., 2005; McGuire and Sabes, 2011; Hadjidimitrakis et al., 2012, 2015).  

The traditional model, considered valid till recently (Fig. 3, Kandel et al., 2013), separates reaching 

and grasping processing in two different parietal-frontal networks within the dorsal visual stream: 

the dorso-medial belongs to the reaching network, the dorso-lateral to the grasping network 

(Jeannerod and Decety, 1995; Matelli and Luppino, 2001). Accordingly, reach-related signals flow 

from the superior parietal areas to the dorsal premotor cortex, grasp-related signals are conveyed 

from lateral parietal cortex to ventral premotor cortex. Finally, both streams converge on the 
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primary motor cortex (Burman et al., 2014; Dea et al., 2016). However, recent literature reported 

that grasping parameters can be coded in the traditionally reaching domains of the superior 

parietal cortex (Chen et al., 2009; Fattori et al., 2010), or single neurons from anterior intraparietal 

area (AIP) encoded both the reaching direction and grip type (Lehmann and Scherberger, 2013). 

Also premotor areas show bimodal encoding of reaching and grasping information (Raos et al., 

2004; Stark et al., 2007). In the light of these new results traditional models should be updated.  

The superior parietal lobule (SPL) is located in the medial part of PPC. SPL hosts several areas: PE 

and PEc, located nearby on the exposed surface of SPL, area PGm (or 7 m), on the mesial surface 

of the hemisphere, MIP in the medial bank of intraparietal sulcus, area V6A, located posterior to 

PEc and hidden in the parieto-occipital sulcus. All these areas have been implicated in arm 

reaching movements (Ferraina et al., 1997; Snyder et al., 1997; Battaglia-Mayer et al., 2001; 

Fattori et al., 2001, 2005; McGuire and Sabes, 2011; Hadjidimitrakis et al., 2015; De Vitis et al., 

2019). Area V6A, in the caudal part of SPL, is a crucial node of the dorsal visual stream, at the 

origin of several pathways for visuo-spatial processing and hand action control (Rizzolatti and 

Matelli, 2003; Kravitz et al., 2011; Galletti and Fattori, 2018). 

 

  
 

Figure 3. The traditional view separates parieto-frontal pathways involved in the visuomotor 

transformations for reaching and grasping. A. The visuomotor transformation necessary for reaching is 

mediated by the parietofrontal network shown here. The areas located within the intraparietal sulcus are 

shown in an unfolded view of the sulcus. Two serial pathways are involved in the organization of reaching 

movements. The ventral stream has its principal nodes in the ventral intraparietal area (VIP) and area F4 of 

the ventral premotor cortex, whereas the dorsal stream has synaptic relays in the superior parietal lobe 

(MIP, V6A) and the dorsal premotor cortex (PMd), which includes area F2. (Parietal areas include AIP, 

anterior intraparietal area; LIP, lateral intraparietal area; and V6A, the parietal portion of the parieto-

occipital area.) B. The visuomotor transformations necessary for grasping is mediated by the parieto-frontal 
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network shown here. The AIP and PFG areas are concerned mostly with hand movements, whereas area PF 

is concerned with mouth movements. Area F5 in PMv is concerned with both hand and mouth motor acts. 

Some grasping neurons have been found in F2, the ventral part of PMd. Area M1 (or F1) contains a large 

sector that controls the fingers, hand, and wrist. Figure modified from Kandel 2013. 

 

2.2. Area V6A of macaque PPC  
 

V6A is a visuomotor area that contains about 60% of visual neurons, about 30% of somatic cells, 

about 70% of V6A cells show arm movement-related activity and approximately 60% of neurons 

are sensitive to wrist orientation and to grip formation (Gamberini et al., 2011).  The receptive 

fields of visual cells cover a large part of the visual field, but retinotopic organization is not clear 

and nearby neurons often represent different parts of the visual field (Galletti et al., 1999a). The 

representation of the lower contralateral quadrant is particularly emphasized, the strong 

representation of lower part of visual field is indicative for an advantageous reaching planning and 

control. Somatic receptive fields are denser for the proximal part of the arm, a smaller fraction on 

the distal segment, including the hand, with the head and legs not represented. Proprioception 

(75% of neurons) is more strongly represented than touch (25%) (Breveglieri et al., 2002). The 

richer representation of the arm joints in V6A points toward a strong involvement of arm reaching 

movements which requires somatosensory information for a finer control. What is more relevant 

for neuro prosthetic control are the motor-related properties of area V6A. Indeed, most of the 

neurons of V6A are tuned by reaching and grasping movements (Gamberini et al., 2011). In 

reaching neurons, the neural discharge is tuned by the direction of arm movement (Fattori et al., 

2005, Fig. 4A) and by the distance reached by the hand (Hadjidimitrakis et al., 2014a, 2015). In 

figure 4B an example of a reaching-related V6A neuron showing an activity modulation according 

to different depth levels. In V6A presence or absence of visual feedback can modulate neuronal 

activity, comparing reaching of targets performed in dark versus light conditions different neural 

subpopulations can be identified. Neurons insensitive to visual background have been labeled 

motor neurons, yet visuomotor neurons show peculiar modulations depending on availability of 

visual information (Bosco et al., 2010). The presence of these separate classes of cells suggests 

that V6A may be involved in a system able of comparison of the motor plan with current sensory 

feedback produced by the moving arm, this system could handle online control of movements.  
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V6A also contains neurons sensitive to wrist orientation (Fattori et al., 2010) and the grip used by 

the animal to grasp the object (Fattori et al., 2010, 2012). In figure 4C there is an example of 

neuron coding for wrist orientation (top) and another neuron modulated by grip type (down). In 

contradiction with the model of two separate networks for reach and grasping (Jeannerod, 1986; 

Kandel et al., 2013), V6A hosts neurons coding both transport and grip components of prehension. 

Moreover, when the same neurons were tested for both reaching directions and wrist orientation, 

75% of neurons sensitive to reach were also modulated by different wrist orientations (Fattori et 

al., 2009). Thus, area V6A is involved in all aspects of reach to grasp movements supporting the 

whole prehension (Fattori et al., 2017). 
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Figure 4. (A) Reaching activity in V6A. Top: neural discharge of a V6A cell tuned for the direction of 

reaching. Response is shown by spike density functions aligned at the movement onset and placed 

according to the reaching direction: left, ipsiversive; right, contraversive to the recording side. Bottom: 

experimental setup. Reaching movements were performed in the dark from a home button (black 
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rectangle) toward one of three targets located on a panel in front of the animal. The task was a foveal reach 

toward a visual target. Three time intervals were of particular interest: Fix, the monkey was fixating the 

target and no interactions were required, Mov, the monkey performed the reach toward the target, Hold, 

the hand was held on target button. An increase in discharge for the right position indicates a clear spatial 

tuning for right reach direction . Modified from Fattori et al. 2005. (B) Spatial signals for reaching in V6A. 

Left: experimental set-up used for testing reaching discharges when the arm is directed towards different 

directions and depths (different colors: near is blue, far is red). Eye and hand movements are performed 

toward one of the 9 targets located at eye level at different depths and directions. Right: Example neuron 

with depth tuning in several epochs. From top to bottom in each panel: spike histograms, version (1st 

trace) and vergence (2nd) eye traces. The 9 panels illustrate neural responses and eye signals for the 9 

target positions arranged in 3 directions (columns) and 3 depths (rows). Vertical bars indicate the alignment 

of neural activity and eye traces at the start of arm movement. In color: the epochs coincident with the 

execution of reaching: red is the farthest, blue the nearest. Spatial modulations occur during both planning 

and execution of arm movement, showing a preference for reaches towards targets near the body. 

Modified from Fig. 3 of Hadjidimitrakis et al., 2014. (C) V6A grasp-related properties. Two examples of cells 

modulated by wrist orientation (top) and by finger prehension (bottom). Horizontal bars below the spike 

density functions indicate the duration of the movement epoch considered. On the sides, the sketches of 

the hand actions performed by the monkey are shown. Modified from Fattori et al. (2009, 2010). 

 

2.3. Cognitive Neural Prosthetics from PPC 
 

Cognitive neural prosthetic relates not to the brain location of the recording but rather the type of 

signal that is being extracted (Andersen et al., 2004, 2010). Motor imagery, planning, attention, 

decision making are examples of signals that could support cognitive neural prosthetic. In 

associative cortical areas this information in broadly represented. As PPC is implicated in sensory-

motor integration, this region is particularly interesting for the extraction of cognitive signals 

supporting movement planning and control. So far, most of neural prosthetic applications focused 

on decoding trajectory to move a cursor or a robotic arm to a goal (Taylor et al., 2002; Carmena et 

al., 2003; Serruya et al., 2003). However full neural control of prosthetic arm is still far to be 

optimal, movements are slow and clumsy (Collinger et al., 2013; Wodlinger et al., 2015; Downey et 

al., 2017). An alternative approach is extracting information from areas that carry the intention to 

make movements at a higher cognitive level like PPC, movement trajectories could be 

reconstructed with computer vision algorithms.  

PPC signals are particularly advantageous for neuro prosthetic control. Neurons in this region 

often encode for movement goals, but also Baldouf and collegue found that two goals and their 

sequence were represented simultaneously (Baldauf et al., 2008). This could be convenient to 

instruct the prosthetic arm to quickly perform complex movements. Furthermore, PPC can also 

encode trajectories, combining decoding of trajectory with decoding of reaching goal helps to 
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build a more robust model (Mulliken et al., 2008a). Another advantage in using PPC signals is the 

bilateral representation of limb movement (Quian Quiroga et al., 2006; Chang and Snyder, 2012); 

although to a certain extent this is also present in primary motor cortex (Donchin et al., 1998), in 

PPC representation of limbs is continuous from pure contralateral to bimanual (Chang et al., 

2008). Alternative to spikes, local field potentials (LFPs) are acquired from raw voltage signals. LFPs 

average electrical fields generated from thousands of neurons firing simultaneously (Buzsáki et al., 

2012). Specific frequency bands are correlated with motor control and could be used as input for 

neural decoding (Spinks et al., 2008; Zhuang et al., 2010; Bansal et al., 2012; Flint et al., 2012; 

Stavisky et al., 2015). Local field potentials are very strong in PPC and could be used to improve 

decoding performance combined with single unit activity, or when deterioration of single unit 

yield arises (Hwang and Andersen, 2013). This is another reason to choose PPC for cognitive BCIs. 

Different PPC areas were successfully used to decode motor intentions mostly in monkey, but also 

in humans. The parietal reach region (PRR), roughly located in caudal SPL, was defined on 

functional basis as a region encoding the direction of reaching movement, as well as the intention 

to move the arm (Snyder 1997). Area 5d is located on the gyral surface in monkey and humans, 

encodes for reaching goals and trajectories. Neurons from monkey area 5d were used to 

volitionally move a cursor on a computer screen (Mulliken et al., 2008a) and a 3D space (Hauschild 

et al., 2012). A tetraplegic patient implanted with a 96 electrodes in putative human area 5d was 

able to control the position of a robotic arm (Fig. 2DE, Aflalo et al., 2015). The same patient was 

implanted with a second array in human putative area AIP. Previous study on monkeys found 

neurons in area AIP sensitive to objects shape and hand configurations required to grasp them 

(Murata et al., 2000; Schaffelhofer et al., 2015). Also from human AIP it was possible the decoding 

of 5 stereotyped hand configurations (Klaes et al., 2015). Located on the lateral wall of caudal 

intraparietal solcus, area LIP in monkey encodes for saccades. The target of a reaching movement 

often coincided with gaze position, thus saccade decoding could support decoding of reaching 

(Graf and Andersen, 2014). Saccade-related and gaze position signals have been demonstrated to 

be important not only for reaching movement, but also for orienting responses i.e. coordinated 

eye-head movements (Hadjidimitrakis et al., 2019). 
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2.4. Aim of the thesis: decoding full prehension signals from V6A for cognitive BCIs 
 

As summarized above, neurons in dorsomedial area V6A of monkey encode for different aspects 

of reach-to-grasp actions. Neural discharge in this area is tuned by the direction of arm movement 

(Fattori et al., 2005) and by the distance reached by the hand (Hadjidimitrakis et al., 2011, 2014b). 

V6A also contains neurons sensitive to wrist orientation (Fattori et al., 2009) and the grip used by 

the animal to grasp the object (Fattori et al., 2010, 2012). A single area that encodes for all aspects 

of reach-to-grasp actions is of great interest for BCI applications, indeed a single electrodes array 

inserted in area V6A could potentially extract all the information needed to drive a prosthetic arm 

under volitional control of the patient. To reach this goal, the first step is to decode signals for the 

entire prehension from V6A. In this thesis an extensively decoding analysis is proposed with the 

final goal of understanding whether V6A signals are virtually capable to drive a neuro prosthetic 

arm. To convert information encoded by neurons as firing rates into more computer friendly 

variables (decoding process), peculiar computer algorithms are trained to recognize firing rate 

patterns and to relate them with the investigated motor aspect (e.g. reaching direction or grasp 

type). Neural decoding is a critical step in BCI technology: this process aims to convert high-

dimensional neural data (number of neurons recorded) to a lower dimension representation. The 

output signals could be used to drive prosthetic limbs, in this case, the number of reduced 

dimensions which represent neural activity usually match with the degrees of freedom of 

prosthesis. Neural decoding is a valuable tool not only for neural prosthetic applications, but also 

to study the neural representation of cognitive functions, expressing the ongoing neural activity of 

recorded population in a reduced and more readable form. 

To the purpose of using signals from V6A, we first recorded spiking activity of single neurons of 

area V6A of monkey. Then neural datasets were used to train a neural decoder to retrieve spatial 

position of 3D reaching goals, a second dataset was used to decode the types of grips. Having 

decoded both reach and grasp component of prehension we studied whether signals from area 

V6A may possibly support neural prosthetic applications.        

To obtain spiking activity of single neurons intracortical recording are required. In intracortical 

recording, acquisition system records electric potential difference from electrodes inserted within 

the cortex. Signals from electrodes are amplified and action potential of single neurons are 

detected with a spike sorting process. Most of neural decoders assume that information is 

contained in neuron spiking rate. Accordingly timing of action potentials are binned in small time 
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intervals. An alternative way is to model precise spike time as important, temporal coding is a 

significant element in neural coding (Thorpe, 1990; Gautrais and Thorpe, 1998) but rate coding 

seems to be a fair approximation of ongoing neural activity (Stein et al., 2005). Rate coding was 

assumed in my analysis.  

Several decoding algorithms have been used to decode motor and cognitive aspects of reach-to-

grasp movements. From the simplest to the most complex, it does not exist a best decoding 

algorithm, instead each algorithm has its strengths to adapt to the context where applied to solve 

a particular problem. For example, neurons from primary motor cortex could be described using a 

cosine tuning function while the monkey move a manipulandum to one of eight different 

directions (Georgopoulos et al., 1982). Each neuron has a preferred direction (phase offset), the 

firing rate of each neuron is used to describe its preferred direction vector, the sum of all vectors 

over the population (population vector) is the lower dimensional output. Although this is the 

simplest decoding algorithm that could be described, it was shown to be successful in monkeys 

(Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Jarosiewicz et al., 2008; Velliste et 

al., 2008) and also allowed a tetraplegic human patient to move a prosthetic arm (Collinger et al., 

2013; Wodlinger et al., 2015). Kalman filter can take advantage of cosine tuning of neurons, this 

recursive algorithm has been implemented for controlling a cursor on a computer monitor 

(Jarosiewicz et al., 2008; Kim et al., 2008; Simeral et al., 2011; Gilja et al., 2015) and volitional 

control of a robotic arm (Hochberg et al., 2012). Firing rate can be also modeled as a time-evolving 

hidden variable using a hidden Markov model. Hidden variables are cognitive states or target goals 

to be decoded (Kemere et al., 2008). 

In the proposed analysis, a different class of neural decoder were used. Thanks to the increase in 

computational power of the last decades, machine learning algorithms are a valid alternative to 

linear methods previously described. These algorithms are intelligent in the way that they can 

learn patterns in big dataset and find non-linear correlation between input and dimension reduced 

output. Neural datasets, given their intrinsic high dimensionality (each recorded neuron is a 

dimension), are well suited to being analyzed with machine learning techniques. Here we used 

naïve Bayes classifiers to reconstruct from population firing rates: 1) the spatial position of 

reaching goals or 2) the correct grip type used by the monkey during a grasping task. I found that 

both reaching and grasping can be decoded with very high accuracy throughout the task 

execution. These results support a decoding of full prehension from area V6A. Here I suggest that 



  

17 
 

decoded signals from V6A can be exploited to control reaching and grasping aspects of a 

prosthetic limb. In the following chapters, two works I first authored are reported, with all the 

details of these studies. 
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3.1. Abstract 
 

Neuro-decoders have been developed by researchers mostly to control neuro-prosthetic devices, 

but also to shed new light on neural functions. In this study, we show that signals representing grip 

configurations can be reliably decoded from neural data acquired from area V6A of the monkey 

medial posterior parietal cortex (PPC). Two Macaca fascicularis were trained to perform an 

instructed-delay reach-to-grasp task in the dark and in the light towards objects of different 

shapes. Population neural activity was extracted at various time intervals; on vision of the objects, 

the delay before movement, and grasp execution. This activity was used to train and validate a 

Bayes classifier used for decoding objects and grip types. Recognition rates were well over chance 

level for all the epochs analyzed in this study. Furthermore, we detected slightly different 

decoding accuracies depending on the task’s visual condition. Generalization analysis was 

performed by training and testing the system during different time intervals. This analysis 

demonstrated that a change of code occurred during the course of the task. Noteworthy, the 

ability of our classifier to discriminate grasp types was fairly well in advance with respect to 

grasping onset. This feature might be important when the timing is critical to send signals to 

external devices before the movement start. Our results suggest that the neural signals from the 

dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile 

actions.  
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3.2. Introduction 
 

Artificial systems have not yet achieved the ability of the primate hand to reach, grasp and 

manipulate objects. The fine performance of the human hand has also inspired research on 

humanoid robots in order to achieve dexterous grasping and manipulation of objects (Mattar, 

2013; Chinellato and del Pobil, 2016). Decoding neural population signals from motor-related 

areas of the monkey, and recently from human brains, constitutes a promising way to implement 

modern Brain-Computer Interfaces (BCIs) able to finely control arm actions (Wessberg et al., 2000; 

Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004; Santhanam et 

al., 2006; Schwartz et al., 2006; Hochberg et al., 2006, 2012; Kim et al., 2006; Fetz, 2007; Mulliken 

et al., 2008a; Velliste et al., 2008; Nicolelis and Lebedev, 2009; Scherberger, 2009; Hatsopoulos 

and Donoghue, 2009; Carpaneto et al., 2011; Shenoy et al., 2011; Townsend et al., 2011; Collinger 

et al., 2013; Sandberg et al., 2014; Aflalo et al., 2015; Schaffelhofer et al., 2015; Milekovic et al., 

2015; Schwartz, 2016). 

The medial subdivision of the dorsal visual stream (dorsomedial fronto-parietal network, Galletti 

et al., 2003) has traditionally been considered as being involved in controlling the transport 

component of prehension (Caminiti et al., 1996; Jeannerod, 1997; Wise et al., 1997) and its 

neuronal activity has been successfully exploited to decode reach endpoints, goals and trajectories 

(Hatsopoulos et al., 2004; Musallam et al., 2004; Santhanam et al., 2006; Mulliken et al., 2008a; 

Aggarwal et al., 2009; Chinellato et al., 2011; Aflalo et al., 2015). However, the dorsomedial stream 

has also been determined recently as one of the candidate cortical areas involved in encoding 

grasping (Raos et al., 2004; Stark et al., 2007; Fattori et al., 2010; Breveglieri et al., 2016). This 

opens new perspectives on the problem of neural signal decoding for hand configurations. In the 

present work, we analyzed the decoding potential of a parietal node of the dorsomedial stream 

(area V6A, Galletti et al., 1999) for grasping actions. 

Neural decoding analyses typically have two complementary objectives: selecting potential brain 

areas for driving BCIs, and achieving a deeper understanding of the function of neurons in the 

studied region. In particular, we wanted to ascertain whether the same neural code is employed 

throughout a grasping task, or if it changes within the time-course of the action generation. We 

applied a generalization analysis to investigate this issue. The system was trained and tested 

during different time intervals, and, to the best of our knowledge, has never been employed 

before in related studies.  
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In addition, we wanted to investigate the dependence of the decoding performance of the 

proposed neuro-decoder on the task condition; more precisely, when grasping is planned and 

executed either in the dark or in the light. Recent papers show that in V6A there is an interplay 

between vision and movement, both in reaching (Bosco et al., 2010) and in grasping (Breveglieri et 

al., 2016), given that most V6A cells are modulated by both motor-related and visual components. 

We wanted to see whether there are differences in decoding performance when the visual 

information is present or absent before and during grasping and, in that case, to look for 

differences in the time course of the neural codes employed by V6A cells during the preparation 

and execution of grasping actions in the dark and in the light.  

The results of our analysis show that V6A neural signals can be reliably used to decode grasps, and 

that the neural code used by V6A cells during object vision is not maintained during the 

subsequent phases of the task (i.e., grasping preparation and execution), where a different code is 

employed. We demonstrated that the neuro-decoder performance is slightly influenced by the 

presence of visual information regarding the object to be subsequently grasped and regarding the 

hand-object interaction, which gives a clear view of the role of vision before and during grasping in 

V6A. 

 

3.3. Materials and Methods 
 

3.3.1. Experimental procedure 
 

The study was performed in accordance with the guidelines of the EU Directives (EU 116-92; EU 

63-2010) and the Italian national law (D.L. 116-92, D.L. 26-2014) on the use of animals in scientific 

research. During training and recording sessions, particular attention was paid to any behavioral 

and clinical sign of pain or distress. We involved two male Macaca fascicularis monkeys, weighing 

3.650 and 2.450 kg. A head-restraint system and a recording chamber were surgically implanted in 

asepsis and under general anesthesia (sodium thiopental, 8 mg/kg/h, i.v.) following the 

procedures reported in (Galletti et al., 1995). Adequate measures were taken to minimize pain or 

discomfort. A full program of postoperative analgesia (ketorolac trometazyn, 1mg/kg i.m. 

immediately after surgery, and 1.6 mg/kg i.m. on the following days) and antibiotic care 
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(Ritardomicina ® (benzatinic benzylpenicillin plus dihydrostreptomycin plus streptomycin) 1-1.5 

ml/10kg every 5-6 days) followed the surgery. 

We performed extracellular recordings from the posterior parietal area V6A (Galletti et al., 1999b) 

using single microelectrode penetrations with home-made glass-coated metal microelectrodes (tip 

impedance of 0.8-2MOhms at 1KHz) and multiple electrode penetrations using a 5 channel 

multielectrode recording minimatrix (Thomas Recording, GMbH, Giessen, Germany). The 

electrode signals were amplified (at a gain of 10,000) and filtered (bandpass between 0.5 and 5 

kHz). Action potentials in each channel were isolated with a dual time-amplitude window 

discriminator (DDIS-1, Bak electronics, Mount Airy, MD, USA) or with a waveform discriminator 

(Multi Spike Detector, Alpha Omega Engineering, Nazareth, Israel). Spikes were sampled at 100 

KHz and eye position was simultaneously recorded at 500 Hz with a Voss eyetracker. All neurons 

were assigned to area V6A following the criteria defined by Luppino et al. (2005) and described in 

detail in Gamberini et al. (2011). 

 

3.3.2. Behavioral task 
 

The monkey sat in a primate chair (Crist instruments) with its head fixed, in front of a personal 

computer-controlled rotating panel containing five different objects. The objects were presented 

to the animal one at a time, in a random order. During the inter-trial period, the panel was 

reconfigured by the computer to present a new object at the next trial in the same spatial position 

occupied by the previous object (22.5 cm away from the animal, in the midsagittal plane). The 

view of the remaining 4 objects was occluded. The same task has been used since we started this 

line of research in our lab (Fattori et al., 2010). 

The reach-to-grasp movements were performed in the light and in the dark, in separate blocks. 

The Reach-to-grasp task is sketched in Fig. 5A and its time-course in Fig. 5B. In the dark condition 

(Fig. 5A, top) the animal was allowed to see the object to be grasped only for 0.5 s at the 

beginning of the trial, and then the grasping action was prepared and performed in the dark. In 

this way, the monkey was able to accomplish the reach-to-grasp movement adapting the grip to 

the object shape using a memory signal based on the visual information it had received at the 

beginning of each trial, well before the go signal. In the light condition (Fig. 5A, bottom), the two 

white LEDs illuminated a circular area (diameter 8 cm) centered on the object to be grasped, so 
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the monkey could see the object during the grasping preparation, and the object and its own hand 

during grasp execution and object holding. 

The time sequence of the task is illustrated in fig 5B: the trial began when the monkey pressed the 

home button in complete darkness. After button pressing, the animal awaited instructions in 

darkness (FREE). It was free to look around and was not required to perform any eye or arm 

movement. After 1s, the fixation LED lit up green and the monkey had to wait for the LED change 

color (to red) without performing any eye or arm movement. After a fixation period of 0.5–1s, the 

two white lateral LEDs were turned on and the object was illuminated for a period of 0.5s (OBJ-

VIS); the lights were then switched off for the rest of the trial in the dark (Fig. 5A, top). For the task 

in the light (Fig. 5A bottom), the lights stayed on for the rest of the trial (see “illumination light” 

line in Fig. 5B). After a delay period of 1-1.5s, during which the monkey was required to maintain 

fixation on the LED without releasing the home button (DELAY), the LED color changed. This was 

the go-signal for the monkey to release the button and perform a reach-to-grasp movement 

(GRASP) toward the object, to grasp it and to keep hold of it till the LED switched off (after 0.8-

1.2s). The LED switch-off cued the monkey to release the object and to press the home-button 

again. Home-button pressing ended the trial, allowed the monkey to be rewarded, and started 

another trial (FREE) in which another object, randomly chosen, was presented. 

In both task conditions, the monkey was required to look at the fixation point. If fixation was 

broken (5°5° electronic window), trials were interrupted on-line and discarded. The correct 

performance of movements was monitored by pulses from microswitches (monopolar 

microswitches, RS Components, UK) mounted under the home button and the object. 

Button/object presses/releases were recorded with 1 ms resolution (see Kutz et al. (2005) for a 

detailed description of the control system of trial execution). In addition, the monkey’s arm 

movements were continuously video-monitored by means of miniature, infrared-illumination–

sensitive videocameras.  

 

3.3.4. Tested objects 
 

The objects and the grip types used for grasping are illustrated in Fig. 5C.  

The objects were chosen such that they could evoke reach-to-grasp actions with different hand 

configurations.  
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Handle: thickness 2 mm, width 34 mm, depth 13 mm; gap dimensions: 28x11x2 mm. It was 

grasped with finger prehension, by inserting all the fingers (but not the thumb) into the gap.  

Stick-in-groove: cylinder with base diameter of 10 mm and length of 11 mm, in a slot 12 mm wide, 

15 mm deep and 30 mm long. It was grasped with the advanced precision grip, with the pulpar 

surface of the last phalanx of the index finger opposed to the pulpar surface of the last phalanx of 

the thumb. 

Ring: external diameter: 17 mm; internal diameter: 12 mm. It was grasped with the hook grip, in 

which the index finger was inserted into the object. 

Plate: thickness 4 mm, width 30 mm, length 14 mm. It was grasped with the primitive precision 

grip, using the thumb and the distal phalanges of the other fingers. 

Ball: diameter: 30 mm. It was grasped with whole-hand prehension, with all the fingers wrapped 

around the object and with the palm in contact with it.  

 

3.3.5. Data analysis 
 

The analyses were performed with customized scripts in Matlab (Mathworks, Natick, USA, RRID 

SCR_001622) and Python (using open source machine learning toolkit scikit-learn, http://scikit-

learn.org, RRID SCR_002577). The neural activity was analyzed by quantifying the discharge in 

each trial in four different epochs: 

FREE: from button pressing to LED illumination. 

OBJ-VIS: response to object presentation, from object illumination onset to illumination offset. 

This epoch lasted 500 ms. 

DELAY: from the end of OBJ-VIS to movement onset. Epoch duration assumed random values 

between 1s and 1.5s. 

GRASP: from movement onset (defined as the time of home button release) to movement end 

(defined as the time of object pulling). Movement period was not fixed over trials as it depended 

on the action execution time of the animal: Handle, 355.1ms; Stick-in-groove, 770.2ms; Ring, 

421.7ms; Plate, 581.9ms; Ball, 576.1ms (average movement times). 

http://scikit-learn.org/
http://scikit-learn.org/
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We describe below the two types of analyses we performed on the data: population response and 

neural decoding.  

All the analyses, neural information processing, and modeling were done offline. 

 

3.3.6. Population response 
 

We sequentially recorded 170 cells from two animals. We performed 3-way ANOVA (factor 1: 

epoch; FREE, OBJ-VIS, GRASP; factor 2: object/grip; 5 levels; factor 3, visual conditions; light/dark, 

p<0.05). In this study, we included the cells with significant main effects of epoch and object/grip 

in the decoding and population analyses. Among these cells, we considered only cells with 10 trials 

for each of the 5 objects, in each visual condition.  

Population response was calculated as averaged Spike Density Function (SDF, see Fig. 6B). An SDF 

was calculated (Gaussian kernel, half-width 40ms) for each neuron included in the analysis, and 

averaged across all the trials for each tested grip. The neuron peak discharge found over all grip 

types during the GRASP epoch and during the OBJ-VIS epoch was used to normalize all SDFs for 

that neuron. The normalized SDFs were then averaged to obtain population responses (Marzocchi 

et al., 2008). Each condition was ranked and aligned twice in each plot, one based on the OBJ-VIS 

discharge (first alignment), and the other on GRASP discharge (second alignment).  

 

3.3.7. Neural Decoding 
 

Feature extraction and selection are crucial and challenging processes in machine learning. The 

goal is to select features that constitute a compact but informative representation of the 

phenomenon in order to analyze the neural coding in this study. For the purpose of our analysis, 

we assumed that neural information is coded as spike trains of firing neurons belonging to the 

same neural network. For each neuron of the population (79 neurons) we computed the Mean 

Firing Rate (mFR – number of spikes per time units) over a selected timespan using a trial-by-trial 

approach. The resulting feature vector thus consisted of the 79 mFRs of the entire neural 

population. Every trial was evaluated as a sample for the decoding algorithm. Thus, each trial, 

represented as a feature vector of 79 elements, was vertically concatenated with the other trials 
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to build the feature space. Since there were 10 trials for each of the 5 objects, the feature space 

was made up of 50 samples. The decoder outputs were the 5 objects or grip types. 5-fold cross-

validation was performed by using 40 samples (8 for each condition) for training and 10 (2 for each 

condition) for testing for each neuron, so to ensure that the classifier was trained and tested on 

different data. 

With the purpose of computing more robust and precise means of the classifier performance, we 

decided to computationally increase the number of test samples. Since neurons were recorded in 

separate sessions, and thus activity correlations between single neurons were already lost, we 

were able to expand the number of samples by shuffling the feature contributions of single 

neurons between trials, potentially obtaining 1079 different vectors. We choose to randomly 

extend our dataset 10 times, thus performing our experiments on 400/100 training/test samples 

(100 per each of the 5 conditions), instead of the original 40/10. This procedure produced mean 

and standard deviation of object/grip classification accuracy based on firing rates. It is worth 

clarifying that artificially extending the dataset is not expected to improve classification accuracy, 

since no new information is added to the system, but it enables to compute a more precise mean 

given the few initial trials available. Non-normalized data were used for the decoding procedure. 

We used a Naive Bayesian classifier as a neuro-decoder. Naive Bayes methods are a set of 

supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of 

independence between every pair of features. This technique has been shown to achieve 

performance closer to optimal compared to other classifiers when analyzing this kind of neural 

data (Scherberger et al., 2005; Townsend et al., 2011; Lehmann and Scherberger, 2013; 

Schaffelhofer et al., 2015). In our Python custom scripts we implemented the module of Naïve 

Bayes classifiers proposed by scikit-learn libraries. The statistical formulation can be found here 

(http://scikit-learn.org/stable/modules/naive_bayes.html, derived from Zhang, 2004). Under the 

assumption of Poisson distribution of features, we reinforced the model as suggested here 

(github.com/scikit-learn/scikit-learn/pull/3708/files, Ma et al., 2006). To calculate the running 

time of the decoding algorithm, we used the time module embedded in Python. 

We performed three types of analysis, computing the feature vectors over different epochs and 

timespans: 

http://scikit-learn.org/stable/modules/naive_bayes.html
https://github.com/scikit-learn/scikit-learn/pull/3708/files#diff-dff46bc51c084c731bcbe4cb9b6aa243R36
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Whole epoch: mFR was computed over the whole OBJ-VIS, DELAY and GRASP epochs. Neuro-

decoder predictions against real class, for each object or type of grip, are plotted as confusion 

matrices in Fig. 3. 

Sliding window: mFR was computed over a window of 300ms which progressively slides over the 

reference period with a moving step of 10 ms (similarly to Carpaneto et al., 2011). As in the 

previous case, training and testing sets were computed over the same time interval. This approach 

(Fig. 8) was used to see how the recognition rate changed dynamically over time. 

Generalization analysis: mFR was computed over different intervals for training and testing sets: 

the system was trained over the whole OBJ-VIS and GRASP epochs and over four portions of the 

DELAY epoch; after having trained the system for an epoch, it was tested over all the epochs. This 

was done with the purpose of verifying whether the same code is used from object vision to 

movement execution, or alternatively trying to devise how the code changes during the delay 

epoch, before the movement and during movement execution. As the DELAY epoch varied in 

length from trial to trial, we performed the generalization analysis on 25% fractions of DELAY 

rather than on fixed size intervals.  

In all experiments, classification performance was assessed by the rate of correct recognitions, and 

confusion matrices. These representations helped in understanding the most common error 

patterns of the classifier. 
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Figure 5. Reach-to-grasp task. A) Sequence of events in the Reach-to-grasp task in the dark (top) and in the 
light (bottom). The animal was trained to fixate at a constant location (fixation LED) shown as a small circle 
in front of the animal. It reached for and grasped an object (a ring, in this example) visible only in the OBJ-
VIS epoch (dark condition) or in OBJ-VIS, DELAY, and GRASP epochs (light condition). In the dark, the Reach-
to-Grasp action was executed in darkness, after a delay in darkness; in the light, the action preparation and 
execution were in the light with full vision of the object and of the hand interacting with the object. B) Time 
course of the Reach-to-Grasp task. The sequence of status of the home button, color of the fixation point 
(Fixation LED), status of the light illuminating the object (illumination), status of the target object (Target 
object, pulling and off) are shown. Below the scheme, typical examples of eye traces during a single trial 
and time epochs are shown. Dashed lines indicate task and behavioral markers: trial start (Home Button 
push), fixation target appearance (Fixation LED green), eye traces entering the fixation window, object 
illumination on and off (illumination on and illumination off, respectively), go signal for reach-to-grasp 
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execution (fixation LED red), start and end of the reach-to-grasp movement (Home Button release, and 
Target object pulling, respectively), go signal for return movement (fixation LED off), start of return 
movement to the home button (Target object off). C) Drawing (derived from videoframes) of the five 
objects and grip types used by the monkey. The object to be grasped changed from trial to trial, thus 
requiring different hand preshaping for the accomplishment of the grip. The orientation of the objects was 
chosen so that wrist orientation was similar in all cases. The five objects were grasped with five different 
grips: from the left, the handle with fingers only, the stick-in-groove with an advanced precision grip with 
precise index-finger/thumb opposition, the ring with the index finger only (hook grip), the plate with a 
primitive precision grip with fingers/thumb opposition, and the ball with the whole hand. 

 

3.4. Results 
 

Area V6A is known to contain grasp-related neurons (Fattori et al., 2004, 2009, 2010, 2012, 2017; 

Breveglieri et al., 2016). These cells are modulated by the different grip types required to grasp 

different objects and/or by the vision of the objects to be grasped. An example of one of these 

cells is shown in Fig. 6A. This cell fires when the monkey sees the object to be grasped and when 

the monkey plans and performs the reach-to-grasp action. These discharges are also different if 

the grasping was planned and executed in different visual conditions, the discharge being stronger 

in the light than in the dark (compare left with right columns). The visual discharge to object 

presentation (OBJ-VIS epoch) is tuned to the different objects, being strong for the ball and the 

plate, and maximal for the handle. Moreover, the motor-related discharges (GRASP epoch, G) are 

tuned to grasps occurring with different grips, from a maximum for grasping the handle to an 

almost null response for grasping the stick in groove.  

Out of 170 V6A neurons recorded from 2 monkeys, 79 cells (47 from Case 1; 32 from Case 2) 

satisfied all the inclusion criteria (see Methods).  The population discharge of the 79 grasp-related 

cells (3 way ANOVA, p<0.05, see Methods) used for the decoding analysis is shown in Fig. 6B, 

where the activity of each neuron for each of the five tested objects was ranked in descending 

order to obtain the population response for the best (object or grip), the second best, and so on, 

up to the fifth, worst, grip. Each condition was ranked and aligned twice in each plot, one based on 

the OBJ-VIS discharge (first alignment), and the other on GRASP discharge (second alignment) for 

each individual background condition. The plot shows a clear distinction among the activations 

during the vision of the object, the preparation and the execution of reach-to-grasp actions. 

Moreover, Fig 6B shows that the V6A neural population starts discriminating between different 

objects/grips as soon as the object becomes visible to the animal (OBJ-VIS). The discrimination 
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power of the population remains constant when the monkey is preparing the action (DELAY), and 

has a second peak when the action is executed (GRASP), as the huge difference between best (red 

line) and worst (blue line) responses shows. This trend is common to population activity in the 

dark and in the light.  
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Figure 6. Object and grip selectivity in V6A. A) An example of a V6A neuron selective for object and for grip 
type and influenced by the vision of the object and of the action. Left: objects and types of grips. Right: 
activity is illustrated as peristimulus time histograms (PSTHs) and raster displays of impulse activity, left in 
the light and right in the dark. Below each discharge there is a record of horizontal (upper trace) and 
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vertical components (lower trace) of eye movements. Neural activity and eye traces are aligned (long 
vertical line) twice, on object illumination onset and on movement onset. Long vertical ticks in raster 
displays are behavioral markers, as indicated in Fig. 1B. Rectangles under the PSTH of the first object 
represent the duration of epochs (G=GRASP). The cell displays selectivity for the task conditions during the 
times of object presentation, delay and the execution of grasp action. Vertical scale on histogram: 76 
spikes/s; time scale: 1 tick=200ms. Eye traces: 60°/division. B) Population data. Activity of 79 grip-selective 
V6A neurons used for the decoding procedure expressed as averaged normalized SDFs (thick lines) with 
variability bands (light lines), constructed by ranking the response of each neuron for each individual object 
according to the intensity of the response elicited in the OBJ-VIS epoch (left, activities aligned with the 
onset of the object illumination) and according to the intensity of the response elicited in the GRASP epoch 
(right, activities aligned with the onset of the reach-to-grasp movement) in descending order (from 
magenta to blue). In other words, each condition was ranked and aligned twice in each plot, one based on 
the OBJ-VIS discharge (first alignment), and the other on the GRASP discharge (second alignment). The SDFs 
of each alignment were calculated on the same population of cells. Each cell of the population was taken 
into account five times, once for each object/grip. Scale on abscissa: 200ms/division (tick); vertical scale: 
80% of normalized activity. 

 

3.4.1. Decoding results 
 

The neural activity of 79 grasp-related V6A neurons was analyzed offline in three main epochs: 

OBJ-VIS, DELAY, and GRASP, corresponding to the period of visual stimulation provided by the 

object, the planning phase of the subsequent reach-to-grasp action and the execution phase, 

respectively. It is worth remembering that, in the dark condition, the animal was in darkness 

during DELAY and GRASP (except for the fixation LED), whereas in the light condition the animal 

prepared and executed the grasping action in the light, thus with the availability of visual 

information on the object and its hand/arm approaching and interacting with the object. The 

results, obtained from two cases, were similar for individual animals. Thus, the results of the two 

cases are presented jointly. 

Although we performed decoding off-line, having in mind a future possible application of this 

methodology in a real-time loop, we calculated the running time of the decoding algorithm. Since 

in this setting only the prediction phase is relevant, we parsed the time required to run that phase 

only, given the already trained classifier. We found that the running time was extremely short, 

with a mean required time of 0.26 ms (sd 0.04), calculated on 100 iterations. 
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3.4.2. Object recognition within the object presentation epoch  
 

The decoding results of the time span in which the object was illuminated in both visual conditions 

(OBJ-VIS epoch) are presented in Fig. 7AB. Using a Naïve Bayes classifier as neuro-decoder (see 

Materials and Methods), we found a high correlation between the actual conditions and the 

decoded conditions, as illustrated in the confusion matrices. The mean accuracy, obtained using 

leave-p-out cross-validation testing over 20% of trials, was lower in the decoding in dark than in 

light conditions: in the dark, the mean accuracy was 81.6%, whereas in the light it was 91.8% (+/-

0.8%). However, the decoding performance in the dark is highly variant (standard deviation=12%), 

whereas in the light the variance is almost null (standard deviation=0.8%). The apparently odd 

difference in performance in OBJ-VIS, where the visual conditions are identical, and the high 

variance in the dark can be explained by the presence of other factors influencing the discharge 

during OBJ-VIS. We suggest that the attentional level of the monkeys is higher in the dark than in 

the light (where the monkeys know that the visual information of the object will be available until 

the end of the trial), and this can add noise to the system, causing a decrease and a higher 

variance in decoding performance. 

Considering each animal separately, the performance slightly decreases in the light as well as in 

the dark, although in both individual cases the level remained well above chance (see Table 1). 

 

 OBJ-VIS DELAY GRASP 

 Dark Light Dark Light Dark Light 

Cases 

1+2 

81.6 +/-12% 91.8 +/- 0.8% 97.2+/2.9%, 100 +/-0.0%, 98.4 +/-2.1% 100+/-0.0% 

Case 1 67.6 +/-10.2% 78.6 +/-10.4% 81.6 +/-11% 98.8 +/-0.9% 91.4 +/-2.7% 98 +/- 0.4% 

Case 2 74.4 +/-12.7% 68.6 +/-10.5% 86.8 +/3.7% 93.6 +/-5% 84.6 +/-4.3% 96.2 +/-3.7% 

 

Table 1. Performance, expressed as mean accuracy +/- standard deviation, of the classifier in the 

two cases (together and separated). 
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Figure 7. Confusion matrices describing the pattern of errors made by the Naïve Bayes classifier in the 
recognition of tested objects or grip types. Mean firing rates were calculated for different epochs (A-B, OBJ-
VIS; C-D, DELAY; E-F GRASP) and conditions (DARK left, and LIGHT right). The matrices summarize the 
results of cross-validation iterations plotted as real class (observation) against predicted class (prediction). 
Contributions of 79 neurons from V6A area were included in the dataset for the decoding analysis. Blue 
color scale indicates the accuracy yield by the algorithm as reported in the side indices, mean recognition 
rates are reported together with standard deviations below the indices. 
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3.4.3. Time-course of the decoding performance 
 

Although confusion matrices are very informative about the decoding performance, they do not 

provide any insight on the temporal dimension. To fill this gap, we estimated the time course of 

the classifier performance by computing firing rates in time intervals around light and movement 

onset. Fig. 8AB shows the classification performance in the dark and in the light, respectively, 

when the feature was extracted from a time window of 300 ms, which progressively slides over 

the trial timespan from 500 ms before illumination onset to 1 second after the movement onset, 

with a moving step of 10 ms. We employed a double alignment because of the variability in the 

delay duration.  

In the dark and in the light, the time course of the recognition rates was slightly different. In the 

dark (fig. 8A) there was a quick increase of the decoding performance, up to 80% occurring after 

the illumination onset related to the object’s vision. About 600 ms after the illumination onset 

(that corresponds to 100 ms after the switch-off of the object illumination), the recognition rate 

decreased to about 75%, and this performance remained constant in the subsequent delay and 

slightly increased at the end of the delay. In the light (fig. 8B), the accuracy was higher than in the 

dark during object observation, whereas in the delay it was similar to the dark condition. However, 

the recognition rate increased more pronouncedly during the last part of the delay (see the curve 

in the right part of Fig. 8B before the second alignment). During grasp execution, the recognition 

rate was particularly high, especially in the light, and remained high till the end of grasp execution. 

To summarize, we found a ramp-up trend of the decoding performance in both conditions. After 

object illumination, the accuracy increased with time as movement onset approached, reaching 

maximum values at the end of the delay period, particularly in the light. We can reliably say that 

the accuracy reaches the maximum value when the hand is approaching the object, better if the 

animal is able to see the action. 
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Figure 8. Sliding window analysis. Time course of the decoding accuracy (recognition rates) based on the 
firing rates extracted during the period starting 500ms before the light onset, through 1s after the 
movement onset. Due to the variable duration of the delay (1-1.5s), double alignment result plots are 
shown. The first alignment coincides with the object illumination onset, the second one with the movement 
onset. Firing rates were calculated for a 300ms sliding window, moving forward with a 10ms step. Each dot 
on the graphs was plotted at the beginning of each 300ms window. The mean line (black) was calculated as 
the arithmetic mean between recognition rates of individual objects (colored lines). For each object, 
variability bands are shown, representing standard deviations based on 5-fold cross-validation. 
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3.4.4. Generalization analysis 
 

To evaluate whether the neural code used during object observation was retained or changed 

during the subsequent delay before the grasping onset, we performed a generalization analysis by 

training classifiers either in OBJ-VIS or in GRASP, and we applied both codes on portions of the 

DELAY epoch. Fig. 9 shows the results of this analysis in the dark (Fig. 9AC) and the light (Fig. 9BD). 

The performance of the decoding algorithm trained using the neural activity during OBJ-VIS is 

indicated in blue (Fig. 9AB). The performance using GRASP activity is shown in red (Fig.9AB). The 

performance using DELAY portions is shown in greyscale (Fig. 9CD). In the dark, the code learned 

during OBJ-VIS and generalized during DELAY gave much lower accuracy (fig 9A, blue line). The 

accuracy subsequently dropped to much lower values (around 40%) during movement execution. 

This suggests that the neural code employed during object observation quickly became weaker as 

soon as the animal began to prepare the movement. In the light, the accuracy obtained by training 

the algorithm using the OBJ-VIS epoch and tested on the DELAY fractions (fig 9B, blue line) was 

almost as high as during the vision of the object, so the same code was maintained during the 

DELAY in the light. This is likely because the visual information regarding the object was still 

available in the delay of the light condition. Again, as seen for the dark, the decoding performance 

dropped to about 40% during grasp execution. 

In the dark, the time-course of the accuracy obtained by training the algorithm with the GRASP 

neural activity (Fig. 9A, red curve) and tested in the DELAY demonstrated that the neural code 

used during action execution was partially present also during the last fraction of the delay, but 

dropped abruptly immediately before it. So, the same code seems not applicable during object 

observation (OBJ-VIS) and during the first parts of the DELAY. In the light (fig 9B, red line), on the 

other hand, the code obtained by decoding from GRASP dropped gradually during the DELAY: a 

decreasing trend of accuracy is apparent throughout the DELAY.  

When analyzing the accuracy of the classifier trained in the different fractions of the DELAY (grey 

lines in Fig. 9 CD), code similarities are highlighted. In the dark, a noticeable difference between 

the first part of the delay (lighter grey) and the subsequent fractions (darker greys) is evident: the 

late codes share similarities, whereas the initial code is quite different. This highlights that, after 

object disappearance, there is a gradual transformation of the code from object observation to 

motor execution. On the other hand, in the light, the code, presumably related to visual 

information, was maintained longer, probably thanks to the availability of visual information. 
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Overall, in the light, code differences were minimized, conceivably because information collected 

was more similar through portions of the DELAY. 

To summarize, different codes were present from object observation to movement execution, but 

their relative influence on the overall neural activity varied over time. In both visual conditions 

there was a switch between the codes during the last parts of the delay. Moreover, this analysis 

shows that the neural population during the DELAY epoch switched its preferential coding feature, 

and this likely suggested that a transformation from visual information into motor representation 

was performed at that time and encoded by these neurons. In this study, in the five task 

conditions, each of the different objects was grasped with a clearly distinct grip. Therefore, 

selectivity for object and for grip type is necessarily strongly correlated and cannot be 

distinguished in our task. So, the change of coding observed in the generalization analysis does not 

necessarily imply a change of representation, i.e., from a code representing objects to one 

representing grip type. However, a possible explanation is that the decoded discharge from V6A 

reflects the visuo-to-motor transformations occurring in the DELAY period in which the visual 

information regarding the object (visual/object coding) is transformed into motor commands 

(motor/grip coding).  
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Figure 9. Generalization analysis. Generalization of codes derived from different epochs for dark (A, C) and 
light (B, D) conditions. The neuro-decoder trained with the firing rates extracted from one epoch was used 
to decode all epochs. The trend of mean recognition rates together with the standard deviation bars 
through different epochs are plotted as coloured lines: in A and B, red= the classifier was trained on OBJ-
VIS; blue=the classifier was trained on GRASP; in C, D, greyscale= the classifier was trained on fractions of 
the DELAY epoch. The DELAY epoch was split in portions due to variable time duration between the trials: 
D1= 0-25% of the DELAY epoch; D2= 25-50%; D3=50-75%; D4=75-100%. The accuracy obtained from the 
activity of each time interval is shown under each plot. 
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3.5. Discussion 
 

The above experimental results show that the posterior parietal area V6A of the dorsomedial 

visual stream represents a reliable site for decoding information for grasping in the presence and 

in the absence of visual information regarding object and hand/object interaction available when 

the action is prepared and executed. This opens new perspectives and possibilities about the 

source of grasp-related signals that may be used to implement BCIs. 

In our experiment, each tested object was grasped with a clearly distinct grip. In these conditions, 

selectivity for object shape and for grip type cannot be distinguished, unlike other studies (e.g. 

Schaffelhofer and Scherberger, 2016) where more objects and a larger variability of grip types 

were tested. Although an inherent decoding ambiguity cannot be avoided in our study, good 

decoding results have been achieved from a restricted number of grasp-related neurons from V6A, 

in accordance with what was found in PMv by Carpaneto and colleagues (Carpaneto et al., 2011), 

and PPC itself, for decoding reach trajectories (Aflalo et al., 2015). In addition, the number of trials, 

10 in our case, is low for decoding; despite this, we still obtained an extremely high classification 

accuracy. 

We found high recognition rates in different time epochs: the visual presentation of the object 

(OBJ-VIS), the delay before the movement (DELAY), and the period of reach-to-grasp execution 

(GRASP). In addition, the different visual conditions used show that combining visual and motor 

information could slightly modulate the power of the classification.  

A very good recognition rate was obtained during the vision of the object well before grasping 

execution. This could indicate the presence in V6A of covert motor commands for the upcoming 

grasp, because animals were overtrained to grasp the objects used in this task. However, we are 

more inclined to suggest that the encoding occurring during the vision of the object reflects object 

recognition for action, as already shown for V6A in a work where visual responses to objects with 

different shapes evoking different grips were demonstrated to reflect object affordance 

(Breveglieri et al., 2015). The slightly higher accuracy obtained during movement execution in the 

light compared with the dark is suggestive of a weak effect of the vision of hand-object interaction 

in V6A.  



  

40 
 

The delay period between object presentation and grasp execution proved to be a good source of 

decoding in V6A (see Fig. 5 CD). Generalization analysis showed that in the first part of the delay, 

spanning some hundreds of milliseconds after the end of object illumination, well beyond 

transient visual responses (Thorpe et al., 1996; Schmolesky et al., 1998), the decoding was mostly 

effective if performed through an OBJ-VIS epoch derived code, likely representing a visual/object 

code (see Fig. 9). This epoch is followed by an intermediate visuo-motor transformation stage, in 

which the brain likely converts the visual information into motor commands. Here we illustrated 

that decoding from V6A is still possible, but with a lower accuracy. Then, in the third part of the 

delay, we can obtain a higher decoding accuracy than the two first intervals. In this last phase, the 

decoding is most successful when using a GRASP derived code, possibly representing a motor/grip 

code. This last period, close to motor execution, but well in advance with respect to possible 

afferent feedback signals (known to be present in V6A, see Breveglieri et al. 2002; Fattori et al. 

2005; 2015), could reflect an efferent command or an action plan where planned grasp coding 

information is present. These results from the performance of the neuro-decoder parallel those 

found simply by analyzing mean frequencies of discharge in this same area: in V6A there is an 

encoding of the visual attributes of objects at the beginning of the DELAY period that switches to a 

grip type encoding during the DELAY period, when the prehension action is planned, and later 

during movement execution (see Fig.8 Fattori et al., 2012). For the purpose of decoding, at first 

glance, the coexistence of different coding schemes can be seen as a disadvantage, due to the lack 

of a clear distinction between employed codes and the resulting increase in the data complexity. 

Potentially, however, properly trained multiple decoders can efficiently recover visual and motor 

attributes from the same dataset. Conceivably with the aid of a post processing algorithm, the 

decoder results can be integrated together in order to obtain more accuracy and/or additional 

data for a visuomotor guided robotic prosthetic arm.  

This anticipated decoding ability seems to be typical of the parietal cortex (see Andersen et al. 

2010) where the reaching goals and trajectories were decoded 190 ms after target presentation 

(Aflalo et al., 2015), thus comparable with V6A for grasping decoding (Fig. 4A). Precocious 

decoding from PPC would allow signals to be sent to the computer interfaces well before the 

movement needs to be initiated. Together with the short time required to run the classifier 

algorithm (a few tenths of a millisecond for the prediction phase, in our work), this fits well with a 

real time decoding implementation. 
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3.5.1. Offline decoding from single cells in dorso-medial fronto-parietal areas: perspectives on BCIs 
 

In this study, as in some others in the dorsolateral visual stream (see also Carpaneto et al. 2011; 

Townsend et al. 2011), the neural decoding with a high accuracy for grasping was performed 

offline from single cells, thus confirming that this kind of signal is adequate to be exploited for 

successful decoding. In addition, this work adds a novel area in the panorama of the brain areas 

useful for BCIs. So far, all the studies aimed at decoding grasps used signals from the primary 

motor cortex (Carmena et al., 2003; Hochberg et al., 2006, 2012; Kim et al., 2006; Ben Hamed et 

al., 2007; Velliste et al., 2008; Vargas-Irwin et al., 2010) or the dorsolateral fronto-parietal 

network, specifically the lateral premotor area F5 (Carpaneto et al., 2011, 2012; Townsend et al., 

2011; Schaffelhofer et al., 2015) and the lateral posterior parietal area AIP (Townsend et al., 2011; 

Klaes et al., 2015; Schaffelhofer et al., 2015).  

In area AIP, the best performance was achieved during the reach to grasp task in the Cue epoch 

(Schaffelhofer et al., 2015). Conversely, in V6A, the best performance occurs in the GRASP epoch. 

This feature is similar to area F5, where the best performance was obtained during grasping 

execution (Carpaneto et al., 2011; Schaffelhofer et al., 2015), especially in the light. These results 

suggest that, although areas V6A and AIP are both grasp-related parietal areas which share many 

functional properties (see also Breveglieri et al. 2016), AIP seems to be more involved during the 

vision of the object and V6A during movement execution.  

Recently, Andersen’s lab decoded visual and motor aspects of complex hand shaping from human 

area AIP (Klaes et al., 2015). Decoding of grasp information from monkey’s AIP is well supported 

(Townsend et al., 2011; Schaffelhofer et al., 2015), and these very recent data on human AIP 

suggest a good functional affinity between monkeys and human PPC. The present data on 

decoding of objects and grasps from this other parietal site promises a future for decoding grasps 

from human dorsomedial parietal cortex. 

Indeed, so far, decoding neural signals from dorsomedial areas has been done in the context of 

reconstructing hand position in space (Hatsopoulos et al., 2004), or finger flexion/extension 

movements (Aggarwal et al., 2009) and reach trajectories (Musallam et al., 2004; Mulliken et al., 

2008a; Hwang and Andersen, 2013; Aflalo et al., 2015). This is the first work in which an area of 
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the dorsomedial visual stream is used successfully to decode grasps. It encourages researchers to 

look at other dorsomedial stream areas involved in grasping, such as PMd (Raos et al., 2004; Stark 

et al., 2007), as possible targets of decoding for prehensile actions.  

 

3.5.2. Future directions 
 

Since the first demonstrations of monkey medial PPC as a site encoding intentions for reaches 

(Snyder et al., 1997), attention has been given to this region as a site useful for translating basic 

research on monkey neural recordings into applications useful for BCIs (Musallam et al., 2004; 

Mulliken et al., 2008a). Recent evidence shows that non-human primate and human PPC share a 

similar sensorimotor function (Aflalo et al., 2015; Klaes et al., 2015). In fact, by recording from the 

PPC of tetraplegic subjects, Andersen and coworkers showed that neural signals from human 

medial PPC may be used for BCIs to guide reaching movements to appropriate goals with 

appropriate trajectories (Aflalo et al., 2015) and from lateral PPC to control hand shaping (Klaes et 

al., 2015). The present results indicate that monkey medial PPC hosts neural signals that could be 

used to implement BCIs to guide prehensile actions to grasp objects of different shapes with 

different grips. Future studies might obtain similar advantages by applying the decoding 

algorithms to neural signals from human medial PPC to control signals in assistive devices for 

impaired patients (tetraplegics or subjects affected by neurodegenerative diseases that impair 

hand functions). This might be useful in recovering full control of a hand. 
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4.1. Summary 
 

The posterior parietal cortex is well known to mediate sensorimotor transformations during the 

generation of movement plans, but its ability to control prosthetic limbs in 3D environments has 

not yet been fully demonstrated. With this aim, we trained monkeys to perform reaches to targets 

located at various depths and directions and tested whether the reach goal position can be 

extracted from parietal signals. The reach goal location was reliably decoded with accuracy close 

to optimal (>90%) and this occurred also well before the movement onset. These results, together 

with recent work showing a reliable decoding of hand grip in the same area, suggest that this is a 

suitable site to decode the entire prehension action, to be considered in the development of new 

brain computer interfaces. 
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4.2. Introduction 
 

When a spinal cord injury or other diseases do not allow motor commands to reach the muscles, 

the patient is unable to perform voluntary actions, despite an intact brain. In cases like these, the 

advent of Brain Computer Interfaces (BCIs) has offered a possibility to gain control of external 

devices (neural prostheses) by using the patient’s own brain activity (Brandman et al., 2017). 

Although in the last decade several technical advances provided impressive examples of successful 

human applications, the performances achieved are still far from enabling widespread clinical 

application (Cui, 2016). So far, the majority of studies have used primary motor and premotor 

cortex signals to reconstruct reach trajectories in order to guide robotic limbs in monkeys 

(Wessberg et al., 2000; Velliste et al., 2008) and humans (Hochberg et al., 2012; Collinger et al., 

2013). Although decoding of trajectories is still essential in order to provide the user with natural 

interfaces, progress in computer vision and robotics is leading to prostheses that do not require 

trajectory information, as simple algorithms can reconstruct this information from reach endpoint 

goals (Andersen et al., 2014; Katyal et al., 2014; Hotson et al., 2016). 

The posterior parietal cortex (PPC) in humans and monkeys is involved in the sensorimotor 

transformations required to generate action plans (Andersen et al., 2014; Cui, 2016; Gardner, 

2017), so it is a good source for retrieving movement intentions and goals. Pioneering studies 

demonstrated that reach endpoints (Serruya et al., 2003; Musallam et al., 2004), trajectories 

(Mulliken et al., 2008, Fig. 10A), and grips (Schaffelhofer et al., 2015, Fig. 10A) can be extracted 

from monkey PPC. Translational work in humans gave similar results (Aflalo et al., 2015, Fig. 10B), 

together with reliable hand shape decoding (Klaes et al., 2015, Fig. 10B). In the aforementioned 

studies, reaches were performed on a single plane. To the best of our knowledge, only one study 

in monkey PPC performed decoding of reach goal and trajectory information in a virtual 3D 

environment (Hauschild et al., 2012).  

A medial PPC area termed V6A (Fig. 1A) is known to encode not only goals and reach movement 

directions (Bosco et al., 2010, 2016; Breveglieri et al., 2014; Hadjidimitrakis et al., 2014a), but also 

several grasping parameters (Fattori et al., 2017). Previous research suggested that V6A could 

integrate the arm transport and hand grip components of a reach-to-grasp action. (Galletti and 

Fattori, 2018). While a reliable decoding of hand grip from V6A signals has recently been shown 

(Filippini et al., 2017), decoding of reach-related information has not yet been performed (Fig. 1A). 

We addressed this issue, with the aim of finding a parietal region where both grasping and 
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reaching signals can be decoded. In a different way to most previous related studies, we varied 

reaches not only on a frontoparallel plane, but using a naturalistic environment also involving 

depth (distance from the body). 

 

Figure 10. A. Decoding for reaching and grasping by the monkey posterior parietal cortex. Top left: Dorsal 
view of the left hemisphere of a macaque brain. Highlighted hot spots in the parietal cortex represent areas 
used in recent literature to extract signals useful to decode grasp (area AIP, anterior intraparietal area from 
Schaffelhofer et al., 2015) and/or movement trajectories (PRR –parietal reach region-MIP, medial 
intraparietal area, from Mulliken et al., 2008). V6A signals have recently been used to decode grasping 
(Filippini et al., 2017). The goal of the present study was to decode reaching targets by the V6A. A, anterior; 
L, lateral. B. Decoding in the human posterior parietal cortex for reach on a frontal plane (Aflalo et al., 
2015) and hand shapes (Klaes et al., 2015) separately. A5, Brodmann’s area 5; modified from Aflalo et al 
(2015) and Klaes et al (2015). C. Scheme of the setup used for the task in the present study. Left: nine light-
emitting diodes (LEDs) that were used as fixation and reaching targets (orange) were located at eye level. 
The distances from the eyes of the 3 targets of the central row are shown. HB, home button. Right: top 
view of the target configuration showing the values of version (top) and vergence angles (left). Targets in 
different positions on the horizontal axis have a different laterality (direction); on the horizontal axis, 
targets change in distance from the body (depth). D. Cartoon of the fixation-to-reach task performed by 
monkeys. Left: in the first part of the task (FIX epoch), the monkey had to fixate one of 9 targets. In the 
DELAY epoch (center) the monkey had to maintain fixation on the target and wait for the go signal (i.e. 
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target color changing from green to red) while planning the action. Right: REACH, the monkey released the 
home button to perform the reaching movement toward the target. 

 

4.3. Results 
 

Data were recorded from two monkeys while they performed a Fixation-to-reach task toward nine 

spatial positions with three different direction angles and three different depth levels (see Fig. 

10C), covering a wide range of positions in peripersonal space. Target elevation was kept constant, 

at eye level. We sequentially recorded 264 V6A cells, 181 neurons in monkey 1 (M1) and 83 in 

monkey 2 (M2). Parts of this dataset have already been published in previous studies aimed at 

exploring the encoding of depth and direction in V6A activity (Hadjidimitrakis et al., 2014a, 2017). 

The population discharge of the whole dataset is shown in Fig. S1A. The plot shows a clear 

distinction among the activations during the early vision of the target, then during the preparation 

and finally during the execution of reaching action. Moreover, Figure S1A shows that the V6A 

neural population starts discriminating among different targets as soon as the LED is illuminated. 

The discrimination power of the population increases slightly when the monkey is preparing the 

action (epoch DELAY, from 450 ms after the fixation onset to the arm movement onset), and has a 

second peak when the action is executed (REACH). Population tuning properties were confirmed 

by a sliding window ANOVA (Figure S1B).  

 

4.3.1. Whole epoch decoding. The activity of each neuron was quantified in the three main epochs 

depicted in Fig. 10D: FIX, DELAY and REACH, corresponding to the period of early fixation of the 

target, the planning phase of the subsequent reach action and the execution phase, respectively. 

Subsequently, population decoding analysis was performed using a naive Bayes classifier (see 

Experimental Procedures). The results are presented separately for the two monkeys. In each 

monkey, all recorded cells were included in the analysis, irrespectively of whether they responded 

differently depending on the position of the target or not.  

Our decoder correctly classified target positions well before movement onset: we found a high 

correlation between the actual and the decoded spatial positions during FIX (Fig. 11A). The mean 

accuracies, obtained using a ‘leave-p-out’ fivefold cross-validation (p value 20% of trials), were 

excellent in both monkeys (91-92%) and well above chance level (11%, the conditions being 9). 
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Misclassifications were very few and occurred between adjacent targets. The decoding accuracies 

during both reach planning (DELAY) and execution (REACH) were even higher than during FIX, 

again in both monkeys.  

4.3.2. Neuron Dropping Analysis. Figure 11B depicts the decoding accuracy as a function of the 

population size. Results varied across epochs and monkeys: in FIX (Fig. 11B, left), a sample of 20 to 

40 neurons (median: 40) was sufficient to achieve 70% accuracy, whereas in REACH (Fig. 11B 

center), 20-30 neurons (median: 26) and DELAY (Fig. 11B right), between 10 and 20 neurons 

(median: 15) were required. In all cases, a small number of neurons was enough to obtain 

accurate decoding. 
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Figure 11. A. Whole epoch decoding. Confusion matrices describing the pattern of errors made by the naïve 
Bayes classifier in the recognition of target positions. Mean firing rates were calculated for different epochs 
(left, FIX; center, DELAY; right, REACH) and monkeys (first row, monkey 1 (M1), middle row, monkey 2 
(M2)). In each 3x3 sub-matrix, the actual goal location is indicated as a white asterisk according to its 
position in the monkey’s workspace (near/intermediate/far and left/central/right). For each real class, 
decoder predictions (recognition rate) were plotted with a color scale. Mean recognition rates are reported 
together with SDs (standard deviations) below the indices. These matrices show the highly successful 
decoding and that the few not perfect classifications involve spatially close target positions. 

B. Neuron Dropping Analysis. Accuracy of decoding as a function of the number of neurons included in the 
analysis. Dotted line, chance level (0.11). For each step (0 to neurons available per monkey), we randomly 
caught an increasing number of neurons from the pool, to include in the analysis. This procedure was 
repeated 100 times per step to calculate SD values. Results are shown for the two cases (green, M1; blue, 
M2) and the three epochs analyzed. All in all, it is evident that a maximum of 20-40 neurons is required to 
efficiently decode reach goals. 

 

4.3.3. Time course of the decoding performance. To evaluate the temporal evolution of decoding 

accuracy, we estimated the decoding performance using activity in smaller time intervals 

compared to the whole epochs. A rapid increase of the decoding performance, occurring around 

the time of the LED onset (LED ON), is evident in Fig. 12. At fixation onset (FIX epoch), the 

recognition rate reached its peak and remained constant in the subsequent delay interval (DELAY) 

and in the reaching execution (REACH). Interestingly, after the reaching, the gaze and the hand still 

remained on the target, whereas the decoding accuracy decreased. This suggests that the 

decoding performance is strictly linked to the preparation and execution of reaching, instead of 

being linked to the gaze fixation of the target, as documented by decoding results shown from a 

control experiment in Fig. S2. In the task used in the main text (see Fig. 10 C-D), gaze position and 

reach goal were coincident. Rather than related to reach goals, one could argue that the 

predictions of our classifier were related to gaze position-and/or reach preparation-related activity 

(Hadjidimitrakis et al., 2011, 2012; Breveglieri et al., 2012, 2014). To uncouple the decoding of 

gaze and reach goals, 67 neurons out of 83 of the original population were recorded while monkey 

M2 performed a delayed reaching task towards the same nine targets of the original task with the 

gaze fixed on the central position (Constant-gaze task). A yellow flash (Cue), in the early phase of 

the delay, instructed the monkey about which target should be reached for. In the Constant-gaze 

task the increase of tuned cells occurs at cue onset, i.e. when the monkey receives instruction 

about the location of the target to be subsequently reached for. On the contrary, in the same 

neurons (N=67) tested in the Fixation-to-reach task, the increase of tuned cells occurred at the 

fixation onset, because in this task the fixation LED per se instructed the monkey about the reach 
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goal location. The same trend was also observed in the decoding performance: the accuracy was 

very low during fixation before the cue and increased immediately after the cue was given. This 

rules out the possibility that gaze fixation per se is responsible for the high decoding performance 

achieved in the Fixation-to-reach task. The accuracy shown in the confusion matrices from the 

Constant-gaze task is not significantly different from the results of the same population of cells 

when tested for the Fixation-to-reach task (results for the Fixation-to-reach task for the 67 cells 

tested for both tasks: 90% (SD 4.1) for FIX epoch, 98% (SD 2.2) for DELAY epoch and 88% (SD 4.9) 

for REACH epoch, t-test p>0.05). Neuron dropping and sliding window analyses (fig. S2D-E) 

support the evidence that, as soon as the visual cue was provided, the decoding performance 

reached optimal values for both Constant-gaze and Fixation-to-reach tasks. The data of the control 

experiment highlight that gaze information is not necessary to obtain high decoding accuracy from 

area V6A.   

 

Figure 12. Sliding window decoding analysis. Time course of the decoding accuracy (recognition rates) 
based on the firing rates extracted during the period starting 1 s before the target illumination (LED ON), till 
2 s after the movement onset (REACH). Due to the variable duration of the delay interval (1.3–2.1s), double 
alignment result plots are shown. Firing rates were calculated for a 300 ms sliding window, moving forward 
with a 10 ms step. Each dot on the graph was plotted at the beginning of the 300 ms window. The mean 
lines were calculated as the arithmetic mean between recognition rates of individual target positions. For 
each position, variability bands are shown, representing standard deviations based on a five-fold cross-
validation.  
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4.3.4. Generalization analysis. To evaluate whether the neural code used during the early fixation 

period was retained or changed during the subsequent planning interval before the reach 

movement, we performed a generalization analysis by training decoders either in FIX or in REACH 

epochs, then we applied both codes on these epochs and portions of the DELAY epoch. Figure 13 

shows the results of this analysis for the two monkeys. The code learned during the early fixation 

period (FIX, blue line) was gradually lost in the DELAY intervals; the accuracy then dropped during 

movement execution (~20%). This suggests that the neural code used during the earliest fixation 

phase became progressively weaker as soon as the animal began to prepare the movement. The 

time course of the accuracy obtained by training the algorithm with the movement neural activity 

(REACH, red line in Fig. 13), and testing the algorithm with the DELAY activity demonstrated that 

the neural code used during the action execution was partially preserved also during the last part 

of the planning period, but not in the earlier planning phases and initial fixation. In summary, by 

looking at the activity during early fixation, it was not possible to predict the spatial position 

during reach execution and vice versa. When the accuracy of the classifier trained in the different 

fractions of the DELAY was analyzed (grey lines in Fig. 13C, D), progressive code transformations 

were present. Both monkeys depicted a smooth transition between an earlier code, possibly 

related to the gaze location information, and a later code correlated with the movement 

preparation. 
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Figure 13. Generalization analysis. Generalization of codes derived from different epochs: the decoder was 
trained with the mean firing rates during one epoch and then tested to decode the other epochs. The trend 
of mean recognition rates together with the SD bars through different epochs are plotted as colored lines. 
Results are shown for the two monkeys M1 (A, C) and M2 (B, D). The DELAY epoch was split in portions due 
to variable time duration between the trials: D1, 0–25% of the delay epoch; D2, 25–50%; D3, 50–75%; D4, 
75–100%. (A, B) Blue line shows the decoder trained on FIX, red line shows the decoder trained on REACH. 
(C, D) the decoder was trained on fractions (different grey scales) of the DELAY epoch. 

 

4.4. Discussion 
 

In this study, we demonstrated that neural signals from area V6A can be successfully used for the 

offline decoding of reach goals located at different depths and directions, in conditions similar to 

everyday life, where reaching movements are performed not only on a single plane, but also in 3D. 

In most cases, just a few neurons (~20) were sufficient to achieve a correct prediction. The 

accuracy of decoding was optimal from early target fixation to the end of reaching. 

We used a task configuration where the monkeys fixated the goal of reaching movement, which is 

the most physiological condition (Neggers and Bekkering, 2001; Hayhoe et al., 2003). However, 

this setup cannot distinguish whether decoding uses gaze signals or arm movement-related 

activity. To exclude gaze-related activity from decoded signals, we performed decoding in another 
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experiment in which the monkey performed a task where gaze and reaching targets were not 

coincident (figure S2). In this case too, decoding performance was very high. This result is in line 

with the strong spatial tuning in V6A reach-related activity when gaze is dissociated from the reach 

target position (Bosco et al., 2016). However, in our study, we did not test decoding in a free gaze 

condition, where gaze was truly independent. Thus, we cannot exclude the possibility that eye 

movements could potentially disturb the decoding from V6A. However, the very similar results 

obtained between tasks (fig. 12 and fig. S2E) suggest that free gaze should not interfere with 

decoding reliability from V6A. Nevertheless, these results suggest V6A as a source for brain 

computer interfaces (BCIs), not only when the patient can move his/her eyes to the reaching 

target, but also in the absence of ocular motility.  

 

4.4.1. Decoding reach goals from parietal cortex 
 

Several monkey studies performed decoding of reach goals (Shenoy et al., 2003; Musallam et al., 

2004; Scherberger et al., 2005) and trajectories (Mulliken et al., 2008a) in 2D space from activity in 

PPC (specifically, from the parietal reach region, PRR). Here, we decoded reach goal from another 

part of PPC, while also considering the depth dimension. 

In V6A, target location was decoded from neural responses occurring not only during reaching 

execution, but also well before the movement onset. This is similar to the neighboring PRR area, 

where neural signals during reach planning were used to online decode up to 6 reach goals on a 

screen and to guide a cursor (Musallam et al., 2004). Accuracy obtained in PRR was lower than in 

V6A (from 25% to 60% in PRR, (Musallam et al., 2004) vs about 90-100% in V6A, present results). 

However, differences in the experimental design may account for these discrepancies.  

Here, the trajectory of the reaching movement could not be extracted, since only information on 

the reach goal location was available. Nevertheless, it was demonstrated that goal specificity is 

advantageous for ballistic operations (Musallam et al., 2004) and that by incorporating 

information about the reach goal (target position), the decoding accuracy of the trajectory 

estimation from PRR signals improved by 17% (goal-based Kalman filter, Mulliken et al. 2008). 

Alternatively, the optimal reconstruction of movement trajectories could be performed by 

computer vision (Andersen et al., 2014; Katyal et al., 2014). 
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Looking at current state-of-the-art neural prosthesis technology, in order to increase prosthesis 

reliability we need to increment the number of neurons sampled. This involves overcoming several 

technical limitations and using more invasive implants. Intuitively, a mixed neural signals-

computer vision driven BCI looks more feasible. From the PPC region we can retrieve intention of 

movements, and this information could aid computer vision systems to be ‘mind controlled’ or 

classic motor BCIs (i.e. BCIs driven by motor cortex) to reconstruct the movement smoothly, 

knowing movement goals in advance. Exploiting higher-order, multidimensional information for 

decoding purposes could allow the development of more natural and user-friendly brain-machine 

interfaces to achieve fully integrated prehensile actions.  

 

4.4.2. Decoding of depth information for reaching 
 

An important novelty of our study is the decoding of reaching goals from signals in PPC, also taking 

into account the depth dimension. Several studies demonstrated the feasibility of retrieving 

instantaneous movement attributes, such as position, velocity and acceleration useful to drive 

artificial limbs in 3D space (Brandman et al., 2017). This has been achieved using activity from 

motor and premotor regions in monkeys (Taylor et al., 2002; Carmena et al., 2003; Jarosiewicz et 

al., 2008; Velliste et al., 2008) and in humans (Hochberg et al., 2012; Collinger et al., 2013). In 

monkey PPC (areas PRR and 5d), continuous trajectory reconstruction of cursor movements in a 

3D virtual space was demonstrated by Hauschild and coworkers (Hauschild et al., 2012). In that 

study, a good decoding performance (R2 ~40%) was obtained using ensembles of about sixty 

neurons. 

BCI applications that restore basic interaction with objects in tetraplegic patients have recently 

been reported (Hochberg et al., 2012; Collinger et al., 2013; Aflalo et al., 2015). These studies 

demonstrated the feasibility of BCIs in humans, but there is much work still to be done. When the 

depth information was added, movements became reasonably slower and clumsier (Collinger et 

al., 2013). Thus, our results showing reliable decoding not only in 2D, but also in depth, are of 

particular importance.  
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4.4.3. Decoding entire prehension from V6A 
 

V6A has recently been suggested as a site of convergence of arm signals for reaching and grip 

signals for grasping to direct our hands towards efficient prehensile actions (Gardner, 2017; 

Galletti and Fattori, 2018). In humans, fMRI signals from a region that is a likely homologue of 

monkey V6A (Pitzalis et al., 2013) were used to successfully predict the direction of an upcoming 

reach, but not of a saccade (Gallivan et al., 2011b). In a recent study, Nelissen et al (Nelissen et al., 

2018) decoded grasping-related information from fMRI signals in monkey area V6A. This finding 

complements the decoding of the type of grasp (Filippini et al., 2017) and reach goals (present 

results) and suggests that V6A could be a useful site for the neuroprosthetic control of the entire 

prehension action. 

 

4.4.4. Potential applications and future directions 
 

Despite the tremendous advances in neural prosthetics based on signals from the motor cortex, 

the future of BCIs relies on the acquisition of neural signals that also reflect the cognitive state of 

the patient, i.e. intentions and movement goals (Andersen et al., 2014). These cognitive 

prostheses may be implemented by decoding neural signals from parietal regions, like V6A, so as 

to have signals related to movement intention and execution from the same area. V6A 

incorporates signals typical of parietal regions (intentions of movement), but also signals coding 

for some useful details of the movement, such as depth and direction of reaching, and even grip 

type (Filippini et al., 2017). This intelligent prosthetics is one potential application of the results 

presented here. 

Another potential and promising application of decoding arm actions from V6A is in the emerging 

field of soft robotics, a technology born mimicking natural beings, to replace classical rigid-bodied 

robots with limbs that are more comfortable and easy-to-handle (Rus and Tolley, 2015). Although 

soft robotics is becoming more and more popular, the potential of soft machines in the clinical 

field is still greatly under-exploited, mainly because of limited functionality and versatility caused 

by the lack of intelligent, natural control systems. Indeed, so far soft robots have been relying on 

classic control approaches that reduce the advantages of “soft” robotics in terms of flexible 

interaction with a variable environment. A direction for the very near future is to design more 

intelligent soft robots taking advantage of bio-inspired controllers that will be developed thanks to 
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advances in artificial intelligence and inspired by the neurophysiology of our bodies (Fani et al., 

2016; Santello et al., 2016). For a new generation of user friendly prostheses like these biomorphic 

robots, natural signals with multiple neural information like those from V6A might be exploited for 

a more dexterous control of artificial limbs.              

 

4.5. Experimental procedures 
 

4.5.1. Experimental procedure. The study was performed in accordance with the guidelines of EU 

Directives (86/609/EEC; 2010/63/EU) and Italian national laws (D.L. 116-92, D.L. 26-2014) on the 

protection of animals used for scientific purposes. Protocols were approved by the Animal-Welfare 

Body of the University of Bologna. During training and recording sessions, particular attention was 

paid to any behavioral and clinical sign of pain or distress. For surgical and electrophysiological 

procedures, see Hadjidimitrakis et al., (2014). Two male monkeys (M1 and M2, aged 5 and 8 years) 

were involved in the study. 

4.5.2. Equipment and Behavioral Task. Electrophysiological data were collected while monkeys 

were performing a Fixation-to-reach task with the contralateral limb (with respect to the recording 

hemisphere), with the head restrained, in darkness, while maintaining steady fixation of the 

target. Reaches were performed to one of nine light-emitting diodes (LEDs; 6 mm in diameter, Fig. 

10C). The LEDs were mounted on a panel located in front of the animal, at different distances and 

directions with respect to the eyes, but always at eye level.  

Given that the interocular distance for both animals was 30 mm, the nearest targets were located 

at 10 cm from the eyes, whereas the LEDs placed at intermediate and far positions were at a 

distance of 15 and 25 cm, respectively. Because targets were aligned at eye level, they could 

potentially obscure each other. We solved the problem by masking the nearest LEDs to be visibly 

thinner than second line LEDs and the latter thinner than the farthest line. Thus, the monkeys 

were able to easily discriminate them.  

In the task, the monkeys pressed a button located close to their chest (HB, Fig. 10C), fixated one of 

the targets for a variable period (FIX, Fig. 10D left), prepared the movement (DELAY; Fig. 10D 

center) and started the reaching movement (REACH, Fig. 10D right) towards the foveated target.  
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4.5.3. Data analysis. The analyses were performed with customized scripts in Matlab (Mathworks; 

RRID:SCR_001622) and Python (using open-source machine learning toolkit scikit-learn, 

http://scikit-learn.org; RRID:SCR_002577). The neural activity was analyzed by quantifying the 

discharge in each trial in the following three different epochs (Fig. 10D). 

Fixation-to-reach task:  

1) the early fixation epoch (FIX), from 50 ms after the end of the saccade performed to gaze at the 

LED till 450 ms after it;  

2) the preparation epoch (DELAY), from 450 ms after the end of the saccade to the arm movement 

onset. Given the task structure and the variable reaction time of the monkeys, this epoch had a 

variable duration (from about 1.3s up to 2.1s);  

3) the reach epoch (REACH), from the arm movement onset (M) till the end of it, signaled by the 

pressing of the LED target.  

All the analyses and modeling were done off-line. Among the original set of recorded neurons, we 

considered only cells with at least 10 trials for each of the nine targets. All recorded neurons, 

either modulated in the reaching task or not (see Supplemental Experimental Procedures), were 

used in the decoding analysis. 

4.5.4. Neural decoding. For each neuron of the population (181 neurons for M1, 83 for M2, 

respectively), we computed the mean firing rate (mFR; number of spikes per time units) over a 

selected timespan using a trial-by-trial approach. The decoder outputs were the 9 targets. Fivefold 

cross-validation was performed by using 72 samples (eight for each condition) for training and 18 

(two for each condition) for testing for each neuron, to ensure that the classifier was trained and 

tested on different data. Recognition rates and SD were calculated as means over the five folds’ 

iterations. Not normalized data were used for the decoding procedure.  

We used a naive Bayesian classifier as decoding algorithm. Naive Bayes methods are a set of 

supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of 

independence between every pair of features. This technique has been shown to achieve 

performance closer to optimal compared with other classifiers such as Support Vector Machine 

(SVM) when analyzing neural data (Carpaneto et al., 2011; Schaffelhofer et al., 2015). In our 

Python custom scripts, we implemented the module of naïve Bayes classifiers proposed by scikit-

learn libraries (the statistical formulation can be found at http://scikit-

http://scikit-learn.org/
http://scikit-learn.org/stable/modules/naive_bayes.html
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learn.org/stable/modules/naive_bayes.html, (Zhang, 2004)). Under the assumption of Poisson 

distribution of features, we reinforced the model as suggested at the following site: 

http://github.com/scikit-learn/scikit-learn/pull/3708/files (Ma et al., 2006). We performed three 

types of analysis, computing the following feature vectors over different epochs and timespans: 

whole epoch, sliding window, and generalization analysis. The same kinds of analyses have been 

performed in area V6A from different sets of neurons recorded in a grasping task (Filippini et al., 

2017). 

 

4.6. Supplemental Experimental Procedures. 
 

Two male macaque monkeys (Macaca fascicularis, monkeys M1 and M2) with a weight ranging 

between 4 and 4.4 kg were involved in this study. A head-restraint system and a recording 

chamber were surgically implanted in asepsis and under general anesthesia (sodium thiopental, 

8mg/kg/h, i.v.) following the procedures reported by Galletti et al., (1995) and Hadjidimitrakis et 

al., (2014). Adequate measures were taken to minimize pain or discomfort. A full program of 

postoperative analgesia (ketorolac trometazyn, 1mg/kg, i.m., immediately after surgery, and 1.6 

mg/kg, i.m., on the following days) and antibiotic care [Ritardomicina (benzathine benzylpenicillin 

plus dihydrostreptomycin plus streptomycin), 1–1.5 ml/10 kg every 5–6 d] followed the surgery. 

We performed extracellular recordings from the posterior parietal area V6A (Galletti et al., 1999b) 

using single-microelectrode penetrations with home-made glass-coated metal microelectrodes 

(tip impedance of 0.8–2 MOhm at 1 kHz) and multiple electrode penetrations using a five-channel 

multielectrode recording mini matrix (Thomas Recording). The electrode signals were amplified (at 

a gain of 10,000) and filtered (band pass between 0.5 and 5 kHz). Action potentials in each channel 

were isolated with a dual time–amplitude window discriminator (DDIS-1, Bak Electronics) or with a 

waveform discriminator (Multi Spike Detector, Alpha Omega Engineering). Spikes were sampled at 

100 kHz and eye movements were simultaneously recorded using an infrared oculometer (Dr 

Bouis, Germany, for M1, and ISCAN for M2) and sampled at 100 Hz. All neurons were assigned to 

area V6A following the criteria defined by Luppino et al. (Luppino et al., 2005) and described in 

detail by Gamberini et al. (Gamberini et al., 2011). 

4.6.1. Behavioral task. The time sequence of the task was the same used in Hadjidimitrakis et al., 

(2014). A trial began when the monkey pressed a home button (HB; 2.5 cm in diameter) located 

http://scikit-learn.org/stable/modules/naive_bayes.html
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next to its trunk (Fig. 10C). After 1 s, one of the nine LEDs was switched on to green. The monkey 

had to fixate the LED while keeping the HB button pressed. The monkey then had to wait 1.5–2.5s 

for a change in the color of the same LED (from green to red) without performing any eye or arm 

movement. The color change was the go signal for the animal to release the HB and to start an 

arm movement toward the target. The monkey then reached the target and held its hand on the 

target for 0.8–1.2s. The switching off of the target cued the monkey to release it and to return to 

the HB, which ended the trial and allowed the monkey to receive its reward. The presentation of 

stimuli and the animal's performance were monitored using custom software written in LabVIEW 

(National Instruments), as described previously (Kutz et al., 2005). Eye position signals were 

sampled with two cameras (1 for each eye) and were controlled by an electronic window (4° × 4°) 

centered on the fixation target. If the monkey fixated outside this window, the trial was aborted. 

The task was performed in darkness, in blocks of 90 randomized trials, 10 for each target position. 

The luminance of the LEDs was adjusted to compensate for difference in retinal size between LEDs 

located at different distances. The background light was switched on between blocks to avoid dark 

adaptation. 

At the beginning of each recording session, the monkey was required to perform a calibration task 

gazing at targets on a frontal panel placed at a distance of 15 cm from the eyes. For each eye, 

signals to be used for calibration were extracted during fixation of five LEDs arranged in the shape 

of a cross, one centrally aligned with the eye's straight-ahead position and four peripherally placed 

at an angle of ±15° (distance 4 cm) in both the horizontal and vertical directions. From the two 

individual calibrated eye position signals, we derived the mean of the two eyes (conjugate or 

version signal) and the difference between the two eyes (disconjugate or vergence signal) using 

the following equations: version = (R + L)/2 and vergence = R − L, where R and L are the gaze 

direction of the right and left eye, respectively, expressed in degrees of visual angle from the 

straight-ahead direction. The version and vergence values were also used by the LabVIEW 

software to control the gaze position.  

In the Fixation-to-reach task, the fixation target was always coincident with the reaching target. 

Given that the target was foveated in all epochs of interest, its depth and direction in space were 

equal to the vergence and version angles of the eyes, respectively.  

4.6.2. Control task. In one case (M2), we performed an additional task. The monkey performed a 

Constant-gaze reaching task (fig. S2), where the reaching movement was executed maintaining 
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gaze fixation on the central, straight-ahead position. Keeping the fixation point constant allowed 

constant vergence and version eye signals and precluded cell responses resulting from the eye 

vergence and version signals, known to affect V6A neural discharges (Breveglieri et al., 2012, 

2015). The monkey was instructed to fixate the central position during the task execution. After 

700 ms from the onset of the fixation LED, a yellow LED (CUE) was illuminated for 150 ms in the 

location where the monkey then had to subsequently reach. After the switching off of the CUE, 

the monkey had to wait for the change in color of the fixation LED to perform the reaching 

movement, in the same way as the Fixation-to-reach task. In the Constant-gaze task, the neural 

activity was analyzed by quantifying the discharge in each trial in the following different epochs 

(fig. S2): 

1) FIX_CG epoch: from 50 ms after the end of the saccade performed to gaze at the LED till 450 ms 

after it; 

2) CUE epoch: from cue onset till 400ms after it; 

3) DELAY_CG epoch: from 400ms after the cue onset till the movement onset; 

4) the reach epoch (REACH_CG), from the arm movement onset till the end of it, signaled by the 

pressing of the LED target.  

4.6.3. Neuron dropping. The number of units required to give a sufficient amount of information to 

efficiently decode the target position in space is not a trivial amount of information for the 

development of BMI applications. This is why we performed the neuron dropping analysis that 

measures the decoding accuracy as a function of neurons used for decoding (Figs. 11B and S2D). 

This analysis was performed on all the epochs of interests. This algorithm started by training the 

decoder with a randomly selected neuron. The number of cells included for decoding was then 

increased in steps of 1 until all available neurons were included. At each step, the random 

selection of cells used for decoding was repeated 100 times. 

4.6.4. Sliding window decoding. For the sliding window analysis, mFRs were computed over a 

window of 300 ms, which progressively slid over the reference period with a moving step of 10 ms. 

As in the previous case, training and testing sets were computed over the same time interval. This 

approach (Figs. 12 and S2E) was used to see how the recognition rate changed dynamically over 

time.  
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4.6.5. Generalization analysis. We employed a generalization analysis, also used in one of our 

recent reports (Filippini et al., 2017). For the generalization analysis (Fig. 13), mFRs were 

computed over different intervals for training and testing sets: the system was trained over the 

whole FIX and REACH epochs and over four parts of the DELAY epoch; after training the system for 

an epoch, it was tested over all the epochs. This was done to verify whether the same code is used 

from early target fixation to movement execution, or to discover how the code changes during the 

epoch, before the movement, and during movement execution. As the DELAY epoch varied in 

duration from trial to trial (~1.3-2.1s; with a mean of 1.72s, SD 0.29), we performed the 

generalization analysis on 25% fractions of DELAY rather than on fixed size intervals. In all 

experiments, classification performance was assessed by the rate of correct recognitions, and 

confusion matrices. These representations helped to reveal the most common error patterns of 

the classifier. 

4.6.6. Population response. Population response of all the recorded cells was calculated as 

averaged spike density function (SDF; Fig. S10A). An SDF was calculated (Gaussian kernel, half-

width 40 ms) for each neuron included in the analysis, and averaged across all the trials for each 

tested target. The neuron peak discharge found over all targets during the REACH epoch was used 

to normalize all SDFs for that neuron. The normalized SDFs were then averaged to obtain 

population responses (Marzocchi et al., 2008). Each condition was ranked based on REACH 

discharge and aligned twice in each plot, one on LED onset, and the other on movement onset. 

Double alignment was required because of the variable duration of the DELAY epoch.  

We performed a sliding one-way ANOVA (factor: LED position, 9 levels, p<0.05, figs. S1B and S2B) 

to investigate the tuning of the population for the spatial position across the time course of the 

task. Mean firing rates of each neuron were calculated for an arbitrary chosen 300 ms window 

which slid forward with a 10 ms step. The incidence of ANOVA significant cells is plotted in Figures 

S1B and S2B. 

4.6.7. Comparison between the results of Fixation-to-reach task and Constant-gaze task. We 

statistically compared the results of the Fixation-to-reach task and Constant-gaze task with a 

permutation test (10,000 iterations) comparing the sum of squared errors of the actual and 

randomly permuted data (see (Marzocchi et al., 2008)). 
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4.7. Supplemental Figures 
 

 

Figure S1. Population discharge and tuned cells during the reaching task, Related to Figure 3. A) Activity of 
V6A neurons used for the decoding procedure expressed as averaged normalized SDFs (thick lines) with 
variability bands (Standard error of the mean, thin lines), constructed by ranking and normalizing the 
response of each neuron for each individual target according to the intensity of the response elicited in the 
REACH epoch in descending order (from violet to dark blue). Data have been aligned twice, one (left) on 
LED onset (LED ON), one (right) on movement onset (REACH). The SDFs of each alignment were calculated 
on the same population of cells. Each cell of the population was taken into account nine times, once for 
each target position. Scale on abscissa, 200 ms/division (tick); vertical scale, normalized firing rate 
frequency. B) Tuned cells during the Fixation-to-reach task. Individual curves describe the fraction of tuned 
units versus time (sliding window ANOVA, factor: LED position, 9 levels, p<0.05, 300 ms window sliding with 
a 10 ms step) separately for M1 (green line) and M2 (blue line). Each dot on the graph was plotted at the 
beginning of the 300 ms window used for the sliding ANOVA. Other conventions as in Fig. 3. The plot shows 
changes in the fraction of tuned cells as the task progresses. Many V6A neurons responded significantly to 
target fixation. The peak was reached around 500 ms after the LED onset (that drove the fixation onset), 
then the fraction of tuned cells remained quite stable in the DELAY and REACH epochs. Finally, the number 
of tuned cells began to decrease at the end of the reaching movement, after the target touching, i.e. at the 
end of the REACH epoch. Overall, ~65% of cells were modulated by the spatial position of the target in 
monkey 1 (M1) and ~80% in the second monkey (M2), with similar trends over time. 
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Figure S2. Results of the control experiment run for M2, Related to Figures 2-3. A) Constant-gaze task 
setup. The monkey had to keep the fixation on a central position (cross) while performing instructed-
reaching toward goals placed in the positions indicated by the little hands, located at 3 depths and 3 
directions around the central gaze position (circles). B) Sliding ANOVA describes the percentage of tuned 
neurons (p<0.05) as a function of time. Asterisks under the x-axis indicate statistically significant differences 
between lines (permutation test, 1000 iteration, p<0.05). Alignments from left to right: fixation onset, cue 
onset, reach onset. C) Confusion matrices calculated in the Constant-gaze reaching task for epoch FIX 
(FIX_CG), CUE, DELAY (DELAY_CG) and REACH (REACH_CG). The matrices summarize the results of cross-
validation iterations plotted as real class (Observation) against predicted class (Prediction). Position of the 
reach goals: N_L=Near left; N_C= Near central; N_R= Near right; I_L= Intermediate left; I_C= Intermediate 
central; I_R= Intermediate right; F_L= Far left; F_C= Far central; F_R= Far right. D) Comparison of neuron 
dropping results between Fixation-to-reach (black line) and Constant-gaze task (red line). Standard 
Deviation is reported as colored shadows. Asterisks under the x-axis: statistically significant differences 
between lines (t-test, p<0.05). Below 50 neurons the 2 curves do not show any difference. E) Sliding 
window analysis for Constant-gaze task (red line) superimposed to Fixation-to-reach task results (black 
line). Cue onset is also shown (Cue). Asterisks under the x-axis: statistically significant differences between 
lines (t-test, p<0.05). Other conventions as in figs S2, 3. The neural coding during the Fixation-to-reach task 
and the Constant-gaze reaching task was not consistent. This is in agreement with the strong influence of 
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the reference frames in V6A cells (Bosco et al., 2015, 2016). In these studies, we documented that the 
discharge of many V6A cells changed according to the relative positions of gaze and arm. We also found 
that the decoder trained on the Fixation-to-reach task could not predict the correct position using data 
from the Constant-gaze task (data not shown). This suggests that a different code was used through the 
two different tasks. 
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5. General discussion 

 
The posterior parietal cortex participates in multiple cognitive processes including sensorimotor 

integration, spatial attention, decision making, working memory, motor planning (Whitlock, 2017). 

Signals from different areas of PPC have been used to decode potential reach plans, from parietal 

reach region (PRR), spatial positions of reaching goals and trajectories, from area 5d, hand 

postures for grasping, anterior intraparietal area (AIP), and saccades, from lateral intraparietal 

area (LIP) (see Andersen et al., 2014 for a review). Traditionally, reaching and grasping networks 

were separated into dorsomedial and dorsolateral visual stream, respectively (Kandel et al., 2013). 

Area V6A, located in the caudal PPC is one of the first nodes of the reaching network, but has been 

found to encode for both reach and grasp components of prehension (Fattori et al., 2005, 2009, 

2010; Breveglieri et al., 2016, 2018). The aim of my project was to test whether reaching and 

grasping signals recorded from V6A can be decoded and so to demonstrate that a single area can 

potentially be used to guide prosthetic arms performing full prehension. For this purpose, we 

conducted two separate experiments where monkeys were trained to either perform a reaching 

or a grasping task.  

In a first experiment monkeys had to grasp five objects; the five objects were chosen with 

different shapes to induce different grips from the most rudimentary to the most skilled. The 

spatial position of the objects was identical for all objects, a rotating panel presenting one object 

at time, so no spatial parameters were encountered. Before the actual movement, the monkey 

had to wait for a go signal. This was useful to study preparatory neural activity and, in the case of 

dark condition, where the object was illuminated only for 500ms and the movement was 

performed in the dark, it permitted to uncouple visual- from motor-related activity. Population 

activity ranked for preferred object (SDF, Fig. 6B) suggested that most of neurons modulated their 

activity according to the object observed or grasped by the monkey. This was a good hint on the 

possible application of machine learning techniques. Pooling together mean firing rates of the 

neural population (features vector), a ML algorithm can learn the activation patterns of neurons in 

a given condition. The trained model could be used to predict the correct object, given population 

firing rates. Doing so (Filippini et al., 2017), results showed that firing rates of 79 neurons recorded 

from V6A were predictive of the object observed or grasped, misclassifications were very 



  

65 
 

uncommon (see Fig. 7). Although limited to 5 types of grips, this was the first evidence that signals 

from dorsomedial visual stream may be used to control grasp aspects of a prosthetic hand.  

In a second experiment monkey had to reach for 9 different targets arranged in the peripersonal 

space. The reaching task was once again a delayed task: the movement was preceded by a waiting 

interval where the animal fixated only the target, no movements were permitted. Firing rates from 

264 neurons were used to train a classifier to predict the position reached by the monkey (Filippini 

et al., 2018). The decoder was very accurate in predicting the right position, even though the 9 

targets were distributed over a limited 12x15cm spatial volume 10cm away from monkey. Targets 

were always foveated so a good question was whether the decoder was just predicting the eye 

position. Eye signals are present in V6A (Galletti et al., 1995; Breveglieri et al., 2012) but decoding 

results on a control task confirmed that this was not the case, predictions were still accurate 

though reaching goal and eye position were uncoupled (fig S2E). Several monkey studies decoded 

reaching goals (Shenoy et al., 2003; Musallam et al., 2004) and trajectories (Mulliken et al., 2008a; 

Torres et al., 2013) from PPC. In these studies, targets were displayed on a screen or showed on a 

2D LEDs matrix, the depth dimension was always neglected. Area V6A encodes for directions and 

depth (Hadjidimitrakis et al., 2011, 2014a), accordingly the decoder accurately discriminated 

positions on different depth levels. Together, decoding of direction and depth allow the fine 

reconstruction of reaching in the 3D space.  

 

5.1. PPC for decoding 
 

One of the main advantages for using PPC as source for decoding and neuroprosthetic is that 

preparatory activity carries the information of intended goals. Indeed, we were able to decode 

reaching goals and type of grips well before the actual movement was performed. Having this 

information as soon as possible is desirable for neuro prosthetic applications (Andersen et al., 

2010, 2014; Hadjidimitrakis et al., 2019). Signal acquisition, preprocessing, decoding and the actual 

movement of the prosthesis are steps that require time, the accumulated latency can make the 

use of the prosthesis unnatural. Besides neuro prosthetics, neural decoding is a powerful tool to 

gain new insight on dynamics of neural encoding. Generalization analysis showed that different 

codes alternate during task execution. In both grasping and reaching, a decoder trained with data 

from the first part of the task (object vision or early target fixation) could not be generalized for 
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the movement phase and vice versa. This supports the model of a sensorimotor transformation 

that occurs in PPC (Gail and Andersen, 2006). The simultaneous presence of sensory input and 

motor-related activity found in V6A suggested a model where V6A could contribute to online 

control of the movement. Working as comparator between the expected state of arm movement 

and the visual/somatosensory feedback evoked by the movement itself, V6A could compute the 

mismatch supporting the movement correction (Fig.14) (Bosco et al., 2010; Fattori et al., 2017). 

 

Figure 14. Neural circuitry involving area V6A in the neural control of movement. A flow chart of a possible 
circuit involving V6A in the control of reach-to-grasp movements. Sensory information may be sent by V6A 
to dorsal premotor cortex (PMd), to which it is directly connected. V6A may be involved in the comparison 
of the anticipated motor plan with the current sensory feedback produced by moving hand and by visual 
background. Figure modified from Fattori et al., 2017. 

 

A possible problem is the delay between movements and the resulting sensory feedback: visual 

signals take approximately 90ms (Raiguel et al., 1999) and somatosensory signals take 20 to 40ms 

(Allison et al., 1991) to reach the PPC. Inevitably this latency is increased due to sensorimotor 

integration (Flanders and Cordo, 1989; Wolpert and Miall, 1996). Our brain could predict the 

sensory consequences of a movement integrating an efferent copy of motor control coming from 
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premotor areas with the delayed sensory input. This forward model could compensate such 

latency and has been proposed to be integrated in PPC.  

Mulliken and collegues found that PRR neurons encoded for movement goal but also for dynamic 

heading angle toward the target, with a zero lag timing (Mulliken et al., 2008b). Consistent with a 

forward model, this was too late to be an output motor command and too early to come from a 

sensory input. Forward estimate has interesting implications for neuro prosthetic applications. A 

goal-based Kalman filter which combined forward estimate for trajectory and reaching goal 

information was superior to other decoders to move a cursor in a brain controlled task (Mulliken 

et al., 2008a). Considering that those data derived from a reaching area (the Parietal Reach 

Region), we can speculate that V6A could additionally provide information about grip type and 

other hand kinematics to be added to PRR performance.      

 

5.2. Full prehension 
 

Results here presented point toward a decoding of both reach and grasp components of 

prehension from a single area, V6A. A single site encoding for all the aspects of reach-to-grasp 

movement is advantageous for neural prosthetics. A single implant could potentially be sufficient 

to finely control a prosthesis to reproduce naturalistic movement. Furthermore, this implant could 

allow to achieve the control of both reaching and grasping. To my knowledge only another work 

tried to decode both reaching and grasping from PPC. Area AIP has been extensively studied by 

different authors and evidence relates this area with hand shaping for grasping (Taira et al., 1990; 

Sakata et al., 1995, 1997; Murata et al., 2000). To be noticed that area AIP is one of the critical 

nodes of dorsolateral visual stream, the traditional grasping network. Lehmann and Scherberger 

found that neurons in AIP represent grip type together with spatial signals, including gaze and 

retinotopic and spatial target positions (Lehmann and Scherberger, 2013). Approximately half of 

all neurons recorded contained spatial information, whereas grip type was encoded only by 30%. 

Decoding was very accurate, recognition rates were over 80% for combinations of different grip 

types and spatial reach positions. Chemical inactivation of AIP (Gallese et al., 1994) resulted in 

deficits in hand preshaping and grasping without impairment of reaching. This suggests that 

signals related to target position in AIP are not necessary for reaching. Instead these signals might 

assist the selection or generation of appropriate grasp movements (Lehmann and Scherberger 
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2013). Lesion of V6A resulted in deficit in reaching and also in grasping  (Battaglini et al., 2002). 

Recently a tetraplegic human volunteer has been implanted with 2 Utah arrays in human putative 

AIP and Broadmann’s Area 5. The two sites were pre-selected thanks to functional MRI scanning as 

areas particularly active during a grasping (AIP) and reaching (BA5) tasks (Fig. 10B). The patient 

was able to point different targets on a computer screen using a robotic arm under his volitional 

control (Aflalo et al., 2015). Moreover, up to 5 hand postures were decoded from the same neural 

signals (Klaes et al., 2015). Because of low yield of single unit from BA5 array, neurons from AIP 

and BA5 were pooled together to increase the decoder robustness. Unfortunately, performance of 

decoding for separate arrays was not available, yet this first attempt to decode both reach and 

grasp actions from PPC was promising. The alternative to solve the problem of recording from 

separate reaching (BA5) and grasping (AIP) areas could be recording from area V6A. Indeed, 

present results suggest that both components of prehension act can be reliably decoded from this 

area. Critical for BCI technology is implant invasiveness: electrodes inevitably damage the brain 

tissue, foreign materials trigger immune reaction, reducing the number of electrodes needed to 

guide prosthetics is always desirable. Thus recording from a single area all the information 

necessary to move a prosthesis is advantageous for clinical applications. 

 

5.3. Limitations and Future directions 
 

The joint results of reaching and grasping decoding demonstrated that simple classifiers can be 

used as neuro decoder to reconstruct reaching goals and type of grips. Although the classifiers are 

ideal in their simplicity for feasibility studies, they show their limitations in real applications. 

Indeed, especially for reaching problem, the space is a continuous physical quantity, reducing it to 

discrete quantity could be an excessive simplification. Decreasing the size of discretized spatial 

spots and increasing their number can be a fair trade off to model continuous space into easier to 

handle discrete space. Using this stratagem Bayesian decoder are still attractive and widely 

applied in research (some examples, Gao et al., 2002.; Shenoy et al., 2003; Scherberger et al., 

2005; Bokil et al., 2006). Bayesian decoder are robust to intrinsic noise of neurons spiking activity. 

Interestingly they show parallels with brain function: modeling studies suggested that cortical 

areas may use Bayesian inference for decision making (Beck et al., 2008). The current state of art 

for continuous decoding are Kalman filters and modern derivatives. Again this class of decoder 

shows parallels with brain function. Kalman filter mimic the forward model and sensory feedback 
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with additive Gaussian noise (Kalman, 1960). As suggested above this “observer” function is 

probably located in the PPC (Andersen et al., 2010; Cui, 2016). A new class of emerging neural 

decoding algorithm are neural networks. Neural networks can model complex and nonlinear 

interactions, which is very desirable for decoding (Glaser et al., 2017). They are also particularly 

efficient in dealing with large datasets, which is advantageous given the ever-increasing number of 

neurons that we can simultaneously record. The drawback is a longer time (hours) required for 

training that is hardly compatible with a real application. Nevertheless, the potential is promising 

and several studies are ongoing (Burrow et al., 1997; Sussillo et al., 2016; Molano-Mazon et al., 

2018; Rao, 2019).   

Another crucial point is the detection of the intention to start the movement. In this study 

decoding of reach and grasp properties was pursued to reconstruct the movement but, a possible 

prosthesis would still miss the information about resting and action states. This information is 

necessary to trigger the movement of prosthetic arm. Firing rates of neurons in PPC are 

modulated by the task states, neural activity is different for resting state, movement planning or 

actual movement (Cui and Andersen, 2007; Stetson and Andersen, 2015). This information can be 

used to instruct the decoder to detect transitions between planning to movement states (Shenoy 

et al., 2003). Also neurons in V6A exhibit this modulation (Santandrea et al., 2018), preliminary 

results show that movement intention can be decoded from V6A (Filippini et al., 2018), thus 

completing the set of information needed to potentially move a prosthetic arm.        

Finally, functional MRI studies proposed a putative human homologue of area V6A (Pitzalis et al., 

2013), which is likely located in the anterior part of the superior parieto-occipital cortex (aSPOC) 

(Gallivan and Culham, 2015). aSPOC shows enhanced visual activation to objects presented within 

the peripersonal space, even when the potential action is not actually executed (Gallivan et al., 

2011a). Decoding of pre-movement activity of aSPOC with fMRI pattern analysis allowed reliable 

classification of specific actions that were subsequently performed, with a clear distinction 

between reaching and grasping movements (Gallivan et al., 2011b). This evidence points toward 

an area in human brain which shares similar function with monkey area V6A. 
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6. Conclusions 
 

Neurons in dorsomedial area V6A of macaque encode for several aspects of reach and grasp 

movements. In this thesis neural signals were decoded to reconstruct reaching goals and type of 

grips. Decoding is a critical step of Brain Computer Interfaces technology. BCIs aim to restore basic 

movements in patients who suffer of impaired movement due to spinal cord damage or other 

neurodegenerative disorders. Signals decoded from V6A are potentially adequate to control 

reaching and grasping components required to move a prosthetic arm. Furthermore, these results 

undermine the traditional view of two separate networks for reaching and grasping, both reach 

and grasp properties were decoded with high accuracy from V6A. This has intriguing application 

for BCIs: a single area is enough to extract information about the whole prehension act, with 

attractive advantages in term of implant invasiveness. The proposal of a human homologue of 

area V6A opens new perspectives for reach and grasp related signals that may be used to improve 

BCIs.      
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