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Abstract 

Application of variable crop inputs in the right quantity and place is very 

important for optimizing plant growth and final yield through efficient use of finite 

resources and minimum environmental impacts. Precision agriculture (PA) 

practices have a great potential to enhance the global food demand, as well as sustain 

the environmental resources. Among sustainable farming, remote sensing (RS) and 

site-specific crop management (SSCM) have been considered the core of modern PA 

practices, involving crop inputs to be applied according to the inherent spatio-

temporal characteristics within field. Under variable rate technology, the profit 

highly depends on the input rates based on the specific factors which influence crop 

productivity. 

In this framework, actions were carried out to support the adoption of PA: In 

Chapter 1 several remotely sensed vegetation indices (VIs) from Landsat 5, 7 and 8 

missions were used to estimate the spatial crop yields of winter cereals (durum and 

bread wheat) and spring dicots (sunflower and coriander) over five consecutive 

years. Crop growth stages showing highest correlations between studied VIs and 

final yield were considered as the critical growing periods for each crop. Pixel level 

correlations through spatial maps were also investigated between original VIs data 

and kriged crop yield data. Results showed that spatial variability of crops can be 

effectively assessed through Landsat imagery with 30 m resolution even on a 

relatively small area (11.07 ha). Simple ratio (SR) and normalized difference 

vegetation index (NDVI) were shown slightly better indices during vegetative to 

reproductive stages as compared to enhanced vegetation index (EVI), soil adjusted 

vegetation index (SAVI), green normalized difference vegetation index (GNDVI) 

and green chlorophyll index (GCI). Pixel level study also demonstrated a good 

agreement between five classes of VIs and grain yield (GY). Past literature 

demonstrated that correlation between VIs and GY highly depends on the stage of 

crop growth, hot and cold weather conditions, lodging, pest and disease attacks. 

Furthermore, the high value of VIs before grain filling stage, alone, cannot always 

be a predictor for estimating the final yield: sometimes higher values only contribute 

to the development of plant biomass structure because of proper water availability 

to crop plants during early stages. 

In Chapter 2, three yield stability classes (YSCs) were developed using spatio-

temporal yield maps over five years: high yielding and stable (HYS, relative yield > 

100 %; CV < 30 %), low yielding and stable (LYS, relative yield < 100 %; CV < 30 %) 

and unstable class (Unstable, CV > 30 %). Thereafter, we evaluated the YSCs by 
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following the simple correlations between stable soil properties and spatiotemporal 

yield variability within YSCs,  and as a function of the differences in soil properties 

among the three classified classes. In addition, we examined the time trends of 

ambient moisture, i.e. the balance between precipitation and evapo-transpiration 

during the five growing seasons. Results showed that spatial maps were more 

consistent with the YSCs map than the temporal stability map. Unstable class was 

found to be slightly more productive than LYS class. Yield classes were found 

considerably consistent with soil properties. Lower values of soil apparent electrical 

conductivity (ECa), in the average, were consistent with HYS class featuring 

maximum crop yield (122 %), compared to LYS and unstable class. However, higher 

soil ECa and sand content in unstable class were associated with slightly higher yield 

(83 %) than LYS (80 %), implying that higher ECa and sand content had not exerted 

a negative influence on crop yield, despite higher variability in the unstable area, in 

the given field conditions. It is perceived, therefore, that ECa has complex 

interactions with soil properties and environmental factors, which may influence 

ECa values and the final yield performance. The balance between precipitation and 

evapo-transpiration, and temperature erratic patterns support the fluctuations of 

yield across years in the unstable area. Owing to this uncertainty, the establishment 

of yield stability classes based on spatio-temporal maps over multiple years appears 

the best practice for delineating SSCM, as these maps apparently comprise all factors 

influencing crop yield. 
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0. General Introduction 

Precision agriculture (PA), also known as satellite farming or site specific crop 

management (SSCM), is a modern agricultural crop management paradigm in 

which all field operations, from sowing to harvesting, are carried out by information 

technology to manage the future crop farming based on spatiotemporal variability 

of past or current field history. (Neményi et al., 2003; Yousefi and Razdari, 2015; 

Shah and Wu, 2019). Amid information technology, computer based softwares such 

as GPS (Global Positioning System), QGIS (Quantum Geographic Information 

System) and ArcGIS are commonly used for the collection, spatial mapping, storing, 

processing, retrieving and geostatistical analysis of numerical variables, as well as 

to help in the decision making process related to PA practices (Gupta et al., 2010; 

Zhang et al., 2010). Specifically, PA uses a combination of advanced technologies 

such as soil and crop sensors, satellite navigation system, remote sensing 

technology, site-specific crop management (SSCM), various internet sources and 

interactions among them (Gibbons, 2000; Andreo, 2013; Schrijver et al., 2016). 

0.1. Remote Sensing 

Remote sensing (RS), approach widely used in PA, is the art and science of 

collecting information’s of the earth surface without physical contact through 

sensors on satellites or airplanes (Elachi, 1987; Jensen, 2007; Basso et al., 2016; 

Toscano et al., 2019). Remote sensing is contributing an essential role in global issues 

related to agriculture, environment, forestry, and natural ecosystems, etc. This 

technology is considered as an efficient tool to solve above-mentioned issues at the 

earth’s surface (Baghdadi and Zribi, 2016). Innovations in machine learning, 

artificial intelligence, and deep image analysis made it necessary to further analyze 

and better understand the remote data at the same time (Ma et al., 2019). All this 

information indicated that RS is serving as a major development opportunity in PA. 

There are many platforms used in retrieving the data from the earth’s surface. In 

the past, only visible spectrum of light was used in satellite sensing but current 

modern technologies made possible for retrieving spectral data from the 

wavelengths of infrared, thermal and microwave spectrum of a target object. Data 

collection using many different types of wavelengths referred to as hyperspectral 

data. Currently, modern satellite-missions are successfully providing enough 

information at lower cost over a large area at the same time. However, monitoring 

the land surfaces and environmental data have greatly increased during the last 

years, and probably remote sensing is an important approach for enhancing the 

agricultural yield and sustaining the natural resources. 
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0.1.1. Electromagnetic spectrum 

The electromagnetic (EM) spectrum is the EM radiations. The EM spectrum has 

seven regions ranging from gamma to radio waves as shown in Figure 1. Remote 

sensing measures the wavelength embedded in different regions of the EM 

spectrum, for example, visible lights reflected or emitted infrared and microwave 

wavelengths, which are important in satellite sensing information (Table 1). 

However, the most important regions are visible light. The measurement of visible 

spectrum of light proceeds in spectral bands, these spectral bands known as a 

discrete interlude of the EM spectrum. Sensors in satellite configuration were 

designed in such a manner that sense the respond from spectral bands to allow the 

differentiation of target object. Researchers choose particular spectral bands, 

depending on what they want to investigate.  

Source: NASA 

Figure 1. Electromagnetic spectrum                                                      

Table 1. Wavebands of the Electromagnetic Spectrum 

EM Bands Wavelengths Comments 

Gamma Rays < 0.03 nm 
Absorbed by earth surface 

X-rays 0.03 to 30 nm 

Extreme 

Ultraviolet 
0.03 to 0.4 μm Absorbed by the ozone layer. 

Near Ultraviolet 0.3 to 0.4 μm 

    Available for remote sensing, the reflected from 

earth surface. 

Visible light 0.4 to 0.7 μm 

Near-Infrared 0.7 to 100 μm 

Far Infrared 0.7 to 3.0 μm 

Thermal waves 3.0 to 14 μm 

Microwaves 0.1 to 100 cm 
  Images can be made with sensors that actively emit 

microwaves. 

Radio waves > 100 cm Normally not used for remote sensing. 
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Source: NASA 

0.1.2. Reflection and absorption  

When radiations from the sun reach on the earth surfaces, some part of it is 

absorbed by earth surface and other reflected back to the atmosphere at certain 

wavelengths, this phenomenon occurs if earth surface become true reflector or fully 

black body. Anyway, these surfaces existed rarely on the earth planet. During 

photosynthesis, blue and red wavelengths are absorbed, whereas green light 

reflected back to the atmosphere. In RS, a detector measures the reflected 

wavelengths from the earth. These readings may support to differentiate the 

vegetation type on the earth's surface. The soil, water, and vegetation have different 

sensitivity levels to EM wavelengths. The sensitivity of one object varies to the range 

of EM wavelengths, this phenomenon known as the spectral signature of an object. 

A sensor is a RS device that measures the wavelength of the EM spectrum. There 

are two types of sensors (Figure 2). The passive sensor depends on external energy, 

the sunlight, and acquires optical images of various spatial and spectral resolution.  

The active sensor has its own energy, radio waves, produces radar imagery. This 

type of sensor measures the amount of radiations that reflected back through the 

earth surfaces. Active sensors are more controlled as compare to passive ones 

because they do not depend and receive different light conditions. In general, these 

sensors collect spatial data in the form of images and provide specialized capabilities 

for analysis, processing, and visualizing those images by using GIS software.  

Remote sensors produce the image based on the source of reflected light from 

the earth surface. This sensation helps us to easily visualize the differences between 

the earth surfaces based on green vegetation cover. In order to extract information 

contained in such images and use it accordingly, one needs special tools - a GIS 

software (QGIS and ArcGIS). Free images can be downloaded from the USGS 

website, or from cloud-based platforms like EOS Land Viewer with a more user-

friendly interface. There you can preview, filter, and download images to a 

computer or save to cloud storage. These GIS tool allows analyzing the spectral 

characteristics of images and downloading results according to your needs and 

specification.  
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Figure 2. Passive and active sensors of remote sensing 

0.1.3. Satellite sensor 

The satellite sensors collect the informative data from reflected radiation in a 

specific path, referred to as field of view (FOV). The smallest region on the earth's 

surface called the sampled area, known as instantaneous field of view (IFOV) or 

pixel size of the sensor. This measurement takes place in one or more spectral bands. 

The measurement collected by each satellite sensor known as spatial, spectral or 

temporal resolution (Table 2). 

0.1.3.1. Spatial resolution  

The spatial resolution (SpR) is the surface area imaged by a remote sensing 

device for the IFOV. The IFOV of the Landsat-Thematic Map (TM) sensor i.e. 30m. 

Weather satellite sensors have larger SR than kilometer square. Some commercial or 

military satellites have less than 1m SR that are available at expensive price. 

0.1.3.2. Temporal resolution  

Temporal resolution is a measure of the frequency at which a satellite sensor 

revisits the same area of the earth's surface. However, revisiting frequency varies 

many times over a day: in typical satellites for a weather forecast, from 8- 20 times 

per year, for example, Landsat-TM satellite, for a moderate ground-based satellite. 
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0.1.3.3. Spectral resolution 

The spectral resolution is the number and width of the spectral bands in the 

satellite sensor. The simplest sensor of a spectral resolution consisted on one band, 

senses only visible portion of the EM spectrum. A sensor having 3 bands (red, green 

and blue) in visible portion of light spectrum gathers the same information as human 

vision. By using different types of visual resolutions (RGB composites, multi-

temporal NDVI index), a researcher can identify the problems associated with their 

crops and apply the proper solutions to affected areas. This can help the farmers to 

apply less or more crop inputs to the areas according to a specific need, rather than 

treating a whole field with evenly distributed input dosages. 

Table 2. Comparison of Landsat satellite sensors 

Landsat Resolution MSS (LS 1-5) TM (Landsat 4-5) ETM+ (LS 7) OLI (LS 8) 

Spectral (μm) 

   1. 0.44-0.45, Coastal/Aerosol 

1. 0.50-0.60, G 1. 0.45-0.52, B 1. 0.45-0.52,B 2. 0.45-0.51, B 

2. 0.60-0.70, R 2. 0.52-0.60, G 2. 0.53-0.61, G 3. 0.53-0.59, G 

3. 0.70-0.80, NIR 3. 0.63-0.69, R 3. 0.63-0.69, R 4. 0.64-0.67, R 

4. 0.80-1.10, NIR 4. 0.76-0.90, NIR 4. 0.78-0.90, NIR 5. 0.85-0.88, NIR 
 5. 1.55-1.75, SWIR-1 5. 1.55-1.75, SWIR-1 6. 1.57-1.65, SWIR-1 
 6. 2.08-2.35, SWIR-1 6. 10.31-12.36, TIR 7. 2.11-2.29, SWIR-2 
 7. 10.4-12.5, TIR 7. 2.06-2.35, SWIR-2 8. 0.50-0.68, Pan 
  8. 0.52-0.90 (Pan) 9. 1.36-1.38, Cirrus 
   10. 10.60-11.19, TIR-1 
   11. 11.50-11.51, TIR-2 

Spatial (m) 79X79 

30x30 30X30 30X30 
 15X15 (Pan) 15 (Pan) 

120x120 (TIR) 60x60 (TIR) 100 (TIR) 

Temporal (revisit in 

days) 
18 16 16 16 

LS, landsat; MSS, multi-spectral scanner; TM, thematic map; ETM+, enhanced thematic  map plus; 

OLI, operational land imager; G, green; R, red; B, blue; NIR, near infrared; SWIR, panchromatic and 

shortwave infrared; TIR, thermal infrared, Pan, panchromatic band. 

0.1.4. Satellite remote sensing 

Nowadays, satellite remote sensing (RS) has introduced more commonly in PA. 

The Landsat-TM and the National Oceanic and Atmospheric 

Administration (NOAA) provide multi-spectral images that can be successfully 

used to estimate the crop vegetation and acreage, where the normalized difference 

vegetative index (NDVI) is used to verify the soil factors that influence the crop 

yields and nutrient status. 

The Advanced Very High-Resolution Radiometer (AVHRR) satellite measures 

the reflectance of plant canopy in the visible, near-infrared and thermal infrared 
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spectrum. This spectral sensitivity of the satellite sensor can be used to estimate the 

rapid changes in crop vegetation because the revisiting frequency of this satellite is 

twice a day. Unfortunately, this satellite is hardly used in PA, because the SR of this 

satellite goes to 1.1 km. However, thermal infrared could be used for this sensor to 

determine the range of temperatures; these estimations could be further used to 

calculate the growing degree-days of insect pests and crop plants for their model 

development. These models could be used in integrated pest management (IPM) 

programs. These predictions of spatial variability provided by satellites would allow 

us to use degree-day models in a better way, rather than time-spaced data from 

weather stations used until recently in these models. Some handheld optical sensors 

are also used in RS science. Handheld sensors are easy tools that can be used 

according to specific day and time with high spectral resolution. Remote data are 

also used to determine irrigation scheduling.  

Through satellite RS, various other vegetation indices (VIs) have been developed 

to address crop growth status through specific relationships with chlorophyll, 

carotenoids or biomass (Sims and Gamon, 2003). These VIs provide information on 

biotic and abiotic stresses affecting crop growth, to be used in the prediction of final 

crop yield (Zarco-Tejada et al., 2005). More recent VIs have been developed to 

counterbalance NDVI limitations, e.g. the interference of soil reflectance with sparse 

canopy cover, and the low sensitivity to chlorophyll content in mature canopies. 

Mulla (2013) found that VIs were outperformed in specific applications to PA. 

Landsat satellites measure the reflected radiation from the visible EM spectrum by 

thermal infrared. The high SR (30 m) of Landsat sensors makes it applicable in PA. 

This satellite is suitable for estimating the spatial vegetation of an individual field 

because of its high SR and spectral response. Remotely sensed data from Landsat 

TM is becoming more popular in existing precision agricultural support systems. 
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0.1.5. Other common satellites and earth observatory missions 

Table 3. Spatial, temporal and spectral resolution of commonly used satellites and earth 

observatory  

 

Satellite 

and earth 

observatory 

Full name and description 
Spatial 

resolution 

Temporal 

resolution 

(revisit in 

days) 

Spectral 

resolution 

 
Geos-5 

Geostationary operational 

environmental satellite-5 
1-41 km 20 

multi-

bands 

 
NOAA 

National oceanic and atmospheric 

administration 
1.1 km 1 - 

 
MODIS 

Moderate-resolution imaging spectro-

radiometer 

250-1000 

m 
1 - 

 IKNOS Earth observatory satellite 4m 3 to 5 - 

 SAR Synthetic Aperture Radar 1 to 80 m 0.2 to 7 - 

 

Sentinels  

(1-5) 
Satellite platform 10m 5 & 10 - 

0.1.6. Remote sensing process 

Remote sensing gives the possibility to form images by detecting the reflected 

radiation of visible, near and short-wave infrared spectrum from target objects on 

the earth's surface (Figure 3). Different materials of the earth’s surface absorb and 

reflect differently depending upon the type of wavelength. However, the targets 

could be identified by examining the spectral signature of remote imagery. 

Figure 3. Sunlight (A); Atmosphere (B); Target object (C); Satellite sensor (D); Data transmission (E); 

Data interpretation/analysis (F); Computer application (G) 



 18 of 113 

 

 

0.1.7. UAVs (Unmanned Aerial Vehicles) or Drones 

 

An unmanned aerial vehicle (UAV) (also known as a drone) is a flying craft that 

can fly a preset course without the help of on-board pilot, but with GPS coordinates 

(Figure 4). UAVs are a component of an unmanned aircraft system (UAS); which 

include a UAV, a ground-based controller, and a system of communications 

between them. Sometimes the term UAV is referred to as a complete system, like 

ground stations and video systems. However, UAVs are commonly known as model 

planes and helicopters, i.e. aircrafts with both fixed and rotary wings. The flight of 

UAVs may be operated either under remote controller by a human operator or by 

onboard computer system (Pajares, 2015). 

The rapid development of UAVs in agricultural field has resulted in increasing 

uptake of this technology in the remote sensing platform. These vehicles are 

providing a new possibility for the near-surface remote sensing of plant behaviour. 

Acquiring aerial photography with the help of UAVs offers high resolution, high 

accuracy, time saving, and low cost, which lead to more timely and accurate crop 

monitoring (Klosterman and Richardson, 2017; Maimaitijiang et al., 2017). Its spatial 

resolution exceeds that provided by Landsat satellite sensing, moreover it can be 

used for generating the orthophotographies (Yue et al., 2018). UAV remote sensing 

is more advantageous as compared to traditional remote sensing as it concerns flight 

pattern, time and cost (Geipel et al., 2014). 

Drones can be regarded as the third generation of platforms providing remotely 

sensed data for addressing a particular problem involving detailed spatial and 

temporal resolution. The drone particularly addresses the spatiotemporal resolution 

in the acquisition of data.  

Anyhow, some regulations across the world may still limit the use of UAVs in 

PA. This section of the general introduction will broaden the awareness, advantages 

of UAV in remote sensing and associated sensor technology. 

 

https://en.wikipedia.org/wiki/Aircraft_pilot
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle#Terminology
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Figure 4. Image of UAV aircraft 

 

0.1.7.1. Advantages of using drones 

1. Drones present less pressure on natural environment, and ensures the 

environmental safety. 

2. This technology is used for better decision making in PA. UAVs help farmers 

to obtain access to a wealth of data such as crops yield data, livestock health, 

soil nutrient status, nutrient measurements, results of weather and rainfall, 

and much more. This reliable data can be used to get accurate site specific 

maps of existing issues. In this way, farmers can adopt better management 

practices in PA, and increase crop production efficiency. 

3. In RS, it offers unprecedented spatial, spectral, and temporal resolution, but 

can also provide detailed vegetation height data and multi-angular 

observations. 

4. Help in chemical spraying: spraying system is attached to the lower region of 

the UAV which has a nozzle beneath the liquid container to spray the 

pesticide or any other kind of liquid fertilizer downwards (Mogili and 

Deepak, 2018). 

5. The UAVs technology can cover the whole ground and deliver the right 

amount of liquid in real time for even distribution to particular regions. In 

this way, correct amount of chemicals are sprayed in a better way increasing 

the production efficiency of crops. In fact, scientists estimate that sprinkler 

spray is five times faster with drones than traditional machinery.  

6. These vehicles can stay in the air for up to 30 hours, doing repetitive tasks, 

day-after-day. Flight can be possible in the complete darkness or in the fog 

under computer control. Hence, these vehicles can fly longer hours on the 

areas of interest, and in this way there is no human fatigue in the plane. 
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7. These vehicles can perform geological survey, visual or thermal imaging of 

the region at the same time. 

8. UAVs are capable of observing the crop with different indices (Simelli et al., 

2015). 

9. The drones can have more pinpoint accuracy over greater distances. 

10. Through drone planting systems, plant nutrients uptake efficiency may 

achieve up-to 75% and decrease planting costs up-to 85% (Ahirwar et al., 

2019). These systems provide all necessary nutrients in right amount to crop 

plants throughout the whole life cycle. 

11. It is very important to monitor plant health, namely, virus, bacterial and 

fungal diseases during crop growing cycle. Scanning of crop plants with 

drones assembled with both visible and near-infrared light can determine 

which plants reflect the different amounts of green and NIR light. This 

information can produce multispectral images and identify their health 

status. 

12. Now a days, comparatively cheap agricultural drones with advanced 

imagery and sensors are providing specific data to farming community. 

Through this data, farmers can enhance their productivity by reducing crop 

damages. With the application of UAVs, farmers can reduce their crop inputs 

such as irrigation water, pesticides, etc., and maintain their same output by 

using minimum economic resources. Finally, we can say that the UAVs 

(drones), which started as a military technology, may end as a green-tech 

technology. 

 

0.2. Site-Specific Crop Management  

Site-specific crop management is defined as the management of field spatial 

variability based on soil, environmental, topographical, anthropogenic and 

biological factors influencing the crop yields for optimizing the crop productivity 

and environmental impacts (Yakowitz et al., 1993; Oshunsanya et al., 2017). More 

specifically, “a sub-region within the same piece of land showing similar yield 

limiting factors within which different crop production practices are carried out.” 

However, conventional agricultural practices are not following the complexity of 

yield-limiting factors, spatially and temporally, so it cannot fulfill the food demand 

of the escalating world population, as well as challenges of the future limited 

resource. Adopting modern farming, like PA or more precisely SSCM practices, is 

the only way to understand the complexity of spatial and temporal variability within 
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field using various approaches (Blackmore et al., 2003; Smith et al., 2009; Maestrini 

and Basso, 2018b; Marino and Alvino, 2019). 

0.2.1. Factors responsible for yield variations within field  

The soil physical-chemical properties significantly affect the crop behavior at 

field scale (Nielson et al., 1973). Recently, with the breakthrough of new technologies 

such as GPS and yield monitoring tools, various studies demonstrated that the 

spatial variability was influenced by the soil or other external factors under field 

scale (Verhagen et al., 1995; Corwin, 2013). There are many factors such as soil, 

biological entities, field topography, or meteorological data that could be 

responsible for spatiotemporal variability in crop yields. These factors might be 

varied, i.e. temporally, and become difficult to be measured by soil or plant sample, 

or an instrument. 

0.2.2. Comparison between conventional vs site-specific crop management  

In conventional agriculture, the whole field is treated with uniform cultivation, 

planting density, fertilizers, pesticides, herbicides, soil modifications, irrigation 

scheduling, and other inputs, without considering the inherent field variations. 

These farming practices may result in over dosages, but also in under dosages, of 

crop inputs such as seed rate, fertilizers, pesticides or irrigation water in some field 

parts. Consequently, lack of the knowledge of spatial and temporal variability at 

field scale, linked with soil internal and external factors that significantly influence 

the crop yields, results in reduced economic crop yield in certain parts of a field as 

well as increase in detrimental effects on the environment due to over dose of 

fertilizers, pesticides and other agro-chemicals. Furthermore, this situation leads to 

the wastage of public money, depletion of available resources, and degradation of 

soil, surface and ground water resources (Khosla et al., 2002; De Caires et al., 2015). 

In contrast, SSCM helps in managing the agricultural crops based on the spatial and 

temporal variability of soil and crop data within field to enhance crop productivity 

and limit the detrimental environmental impacts (Lindblom et al., 2017). SSCM is a 

premise of PA in which all agronomic practices and decisions take place according 

to field variability and crop requirements within specific sub-section within the 

same field (McKinion et al., 2001). However, every input must be applied to a 

particular zone with sound knowledge of site-specific variability.  

0.2.3. Need for SSCM  

World food demand poses a great challenge for agricultural scientist due to 

limited finite resources. Likewise, there are many negative impacts on the 
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environment affecting the sustainability of the crops, together with changing the 

climatic pattern, which resulted in limit the agricultural commodities and water 

scarcity. Unfortunately, conventional farming is not able to solve these issues. In 

addition, conventional farming continuously contributes to degradation of the 

natural habitat, excessive usages of fertilizers and pesticides, as well as promoting 

the degradation of fauna and flora. Globally, approximately 1.5 billion ha cropland 

has degraded under conventional agriculture (poor agriculture practices), and 

annual losses estimated over 5–6 million ha (World Resources Institute, 1998). SSCM 

addresses the drawbacks of conventional agriculture, such as spatial and temporal 

variation within the same piece of land. Hence, site-specific agriculture has a great 

potential to meet the world food demand of the escalating population through 

sustaining the resources and minimizing environmental impacts (Demirbaş, 2018).  

0.2.4. Components of SSCM 

There are five important components in SSCM: (1) spatial referencing; (2) 

monitoring of crop, soil and weather data; (3) mapping; (4) decision support system 

(DSS); and (5) differential actions. The technologies have been combined in SSCM as 

followed: global navigation satellite systems (GNSS), satellite sensor technology, 

GIS, yield monitoring and variable-rate technology (VRT) (Neupane and Guo, 2019). 

Geo-referenced data of soil, plant and environmental variables can be obtained 

through GIS, yield monitoring tools, proximal and satellite sensors (Odeha et al., 

1994). Global navigation satellite systems, as the GPS, are a technology through 

which geo-referencing is made possible from several meters to sub-meter for 

accurate information that is important for downstream sensor technology, GIS and 

VRT. Similarly, in real-time kinetics (RTK), GPS tool is used for the measurement of 

field coordinates at a micro-level accuracy that can be detected during crop 

cultivation or harvesting, which are helpful in strip tillage, drainage or digital 

elevation mapping (DEM). Veris pH Manager (Veris Technologies, Salinas, KS) is a 

sensor technology that is used where pH is too acid or alkaline within field for 

variable-rate lime application or sulphur application to those areas, respectively.  

Recently, apparent soil electrical conductivity (ECa) measured by EM induction 

(Geonics EM-38) or electrical resistivity (Veris-3100) has been successfully used to 

delineate the spatial map of soil physical-chemical properties (Corwin et al., 2003). 

Soil ECa sensors are affected by the soluble salts (as salinity) and other soil-related 

properties, and finally, ECa becomes measured ECa values result from a complex 

mixture interaction of all different soil properties (Corwin et al., 2003). In addition, 

ECa is influenced by various soil properties, so sensors that measure the ECa could 
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be considered an effective tool for delineating the management zones. This 

argument is supported only if ECa maps correlate with spatial yield maps. 

Generally, ECa map is not consistent with spatial yield in rainfed agriculture. In arid 

agriculture, crop sensors can provide enough information, whereas ECa sensors 

provide only appropriate results for irrigated crops grown under arid as well as 

semi-arid conditions. Generally, a DSS is an informative system that helps in the 

decision-making process. In SSCM context, a DSS supports us to determine the 

spatial and temporal variability associated with crop growth and yield parameters 

(Kersten et al., 2000). Through DSS system, site-specific areas are developed within 

field, in which variable inputs are required. Furthermore, these site-specific areas 

provide enough information to farmers linked to management practices during crop 

growing period. These areas denote a quite similar yield-limiting factor, giving the 

same pattern of yield over each year, in which a specific rate of crop input is fitting 

(Khosla et al., 2010). Variable-rate inputs such as planting density, fertilizers or 

irrigation time, etc., use the information from the SSMZs to increase the production 

efficiency of crops through the economic use of resources. SSMZs may or may not 

be stable over temporal variability. However, technologies are available for the 

development of management zones, but spatial and temporal information is still 

under question (van Uffelen et al., 1997). In this case, yield mapping based on 

spatiotemporal variability could be an effective tool for site-specific crop 

management, which determines the effectiveness of field productivity as influenced 

by physical, chemical and biological processes (Long, 1998). However, yield 

mapping for SSCM is a challenging task because several biotic and abiotic factors, 

as well as interaction among them, affected the spatiotemporal yield within each 

specific year (Huggins et al., 1995; Khosla et al., 2010). Therefore, multi-sensor 

platforms such as satellite, airborne imagery or digital photography, etc. can be an 

effective approach to differentiate the high and low productive areas (Inman et al., 

2008; Schmidhalter et al., 2008; Rab et al., 2009; Corwin, 2013). 

0.2.5. Management zones 

The most important step in SSCM is the development of management zones. 

Delineating the management zones is not easy because of complex interactions 

among factors that affect the agricultural crop yields. Site-specific management 

zones (SSMZs) describe the spatial and temporal variability of the factors 

influencing the variations in crop behavior, such as soil, biological, meteorological 

or topographic factors. These factors have great influence in the optimization of crop 

production, environmental impacts, and utilization of natural resources. There are 

many strategies for the development of SSMZs as followed: ECa survey directed to 
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soil sampling (Corwin et al., 2003)., mapping of soil analysis based on inherent soil 

properties (Kitchen et al., 1998; Chang et al., 2004)., soil and crop proximal sensors 

for the establishment of variable rate inputs (VRI) in the frame of VRT (Nawar et al., 

2017; Barbanti et al., 2018)., phosphorus, potassium management, pH and organic 

matter zones rely on general soil analysis, ECa maps and soil elevation (Mallarino 

and Wittry, 2004)., nitrogen and manure management zones are developed based 

on nitric nitrogen (NO3-N), crop vegetation indices, spatiotemporal yield and soil 

properties such as soil texture, organic carbon, pH or ECa (Moshia et al., 2014; 

Moshia et al., 2015; Peralta et al., 2015; Basso et al., 2016)., lime and gypsum 

management zones originate from yield maps, soil tests, ECa maps, and sometimes 

farmer’s knowledge (Corwin, 2013)., seeding rate management zones come from 

past yields, spatially and temporally, or could be from topsoil information 

(Gunzenhauser and Shanahan, 2011; Holmes, 2017)., and at the end, irrigation 

scheduling management zones are based on soil topography, soil, yield and ECa 

data (Bellingham, 2009; Hedley et al., 2010; Duncan, 2012; Ayankojo et al., 2019; 

Neupane and Guo, 2019). 

0.2.6. Soil Spatial Variability 

Managing the spatial variability based on soil, biological or climatic factors is also 

considered the main premise in SSCM, supporting the soil-plant relationship, 

minimizing the variable crop inputs and harmful environmental impacts (Bullock 

and Bullock, 2000; Di Virgilio et al., 2007; Maestrini and Basso, 2018a). Corwin and 

Lesch (2003) explained that the soil ECa survey directed to soil sampling is 

considered a reliable method for assessing the characteristic of soils variability. 

Various soil properties such as soil texture, organic matter, CEC, ECa, trace 

elements, NPK, topography, and climatic factors have showed their influence on 

yield and its associated traits (Hanks and Ritchie, 1991; Tanjii, 1990). However, 

spatial variability of soil is influenced by pedogenetic (a process of soil formation) 

and anthropogenic (caused by human activities) factors (Corwin et al., 2003). As a 

result, ECa variability is not always showing the same spatial pattern as that of yield, 

due to the complex interaction of soil properties, measured by soil ECa data, with 

crop yield (Corwin and Lesch, 2003).  

0.3. Reason of PhD Research 

Uniform field management practices may result in over dosages of crop inputs 

such as seed, fertilizers, pesticides and irrigation water, in some field parts. 

Furthermore, lack of the knowledge of spatiotemporal variability at field scale 
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results in reduced economic yields in certain parts of the field, and detrimental 

effects on the environment due to over dosages of crop inputs. Hence, this scenario 

may result in increased production cost, limitations in the available agriculture 

resources, and depletion of soil and ground water resources (Khosla et al., 2002; De 

Caires et al., 2015). Therefore, it is very important to increase the production 

efficiency of agricultural crops, improving the food quality, sustaining the finite 

resources and minimizing the detrimental effects on the environment (Corwin, 2005; 

Schrijver et al., 2016; Lindblom et al., 2017). The PA practices help in managing the 

spatial and temporal variability of crop and soil variables to enhance crop 

production efficiency under the finite resources scenario, and limit the detrimental 

environmental impacts (Lindblom et al., 2017). Data retrieving, computational 

clouds and artificial intelligence techniques have been already introduced into 

precision agriculture. However, the implementation of PA faces the challenge in 

farming due to the diversity and size of agricultural lands. Anyhow, modern 

farming practices are improving agriculture to support the precision agricultural 

concept (Blackmore, 2000; Fraisse et al., 2001; Johnson et al., 2003; Li  et al., 2008; 

Georgi et al., 2018; Maestrini and Basso, 2018a; Scudiero et al., 2018; Toscano et al., 

2019 ). However, these practices are widely known in modern agriculture, but their 

level of implementation is still low. 

To achieve PA goals, we used precision agriculture practices, such as RS and 

SSCM zones, using integration of advanced technologies for improving the 

agricultural productivity and sustainability with minimum economic resources and 

environmental impacts. Moreover, supervised and unsupervised learning 

techniques have been applied on a big dataset of agricultural crops and converted 

into useful knowledge. This PhD work has provided a sustainable solution to the 

inherent problems of agricultural industry through using the advanced technologies 

and state-of-art processing a big dataset.  

0.4. Research Objectives 

The key objectives of the PhD research were: 1). Training: i) to the use of multi-

purpose GIS software’s namely Quantum GIS and ArcGIS which are very important 

tools to learn in the wide spectrum of PA approaches. We selected these software’s 

based on economic cost, powerful inter-operable platform, multi-purpose analysis 

tools such as handling of big dataset, interpolation, mapping, geostatistical/cluster 

analysis, etc., configured with user friendly templates, open source (QGIS), best 

alternative to open source (ArcGIS), most advanced tools in computer based GIS 

technology i.e. PA  ii) retrieving of spatial dataset using open source platforms, i.e. 
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USGS-Earth Explorer and Sentinels hub; spatial data pre-processing of crops, soil, 

ECa survey and remotely sensed platform; iii) creation of thematic maps through 

geostatistic approach; iv) hands-on use of equipment for multi-purpose geospatial 

analysis such as operation and calibration of the Geonics dual-dipole EM-38 

electromagnetic induction conductivity meter, coupling EM38 to GPS, conducting 

an EM-38 survey, use of GPS and model based response surface sampling technique 

(ESAP software). 2). Application of remote sensing to assess the spatial variability of 

crop yields during growing seasons, such as winter cereals (durum and bread 

wheat) and spring dicots (sunflower and coriander), using satellite vegetation 

indices. 3). Detection of the critical growth period of surveyed crops through 

remotely sensed data. 4). Application of geostatistics on georeferenced crop yield 

and remote sensing data to study the spatial dependence (SpD) between their data 

distribution in terms of semivariogram 5). Investigating the spatiotemporal 

characteristics of crops over multiple years. 6). A conceptual approach to delineate 

the spatial variability of soil properties. 7). Validating the spatiotemporal behavior 

of crops as a function of soil variability within yield stability classes. 8). Examining 

the meteorological data during the growing season of crops, which affect crop 

productivity over each specified year. 
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Chapter 1 

Assessing Multiple Years’ Spatial Variability of Crop 

Yields Using Satellite Vegetation Indices 

Abstract 

Assessing crop yield trends over years is a key step in site specific 

management, in view of improving the economic and environmental profile of 

agriculture. This study was conducted in a 11.07 ha area under Mediterranean 

climate in Northern Italy to evaluate the spatial variability and the relationships 

between six remotely sensed vegetation indices (VIs) and grain yield (GY) in five 

consecutive years. A total of 25 satellite (Landsat 5, 7 and 8) images were 

downloaded during crop growth to obtain the following VIs: Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted 

Vegetation Index (SAVI), Green Normalized Difference Vegetation Index (GNDVI), 

Green Chlorophyll Index (GCI), and Simple Ratio (SR). The surveyed crops were 

durum wheat in 2010, sunflower in 2011, bread wheat in 2012 and 2014, and 

coriander in 2013. Geo-referenced GY and VI data were used to generate spatial 

trend maps across the experimental field through geostatistical analysis. Crop stages 

featuring the best correlations between VIs and GY at the same spatial resolution (30 

m) were acknowledged as the best periods for GY prediction. Based on this, 2-4 VIs 

were selected each year, totalling 15 VIs in the five years with r values with GY 

between 0.729** and 0.935**. SR and NDVI were most frequently chosen (six and 

four times, respectively) across stages from mid-vegetative to mid-reproductive 

growth. Conversely, SAVI never had correlations high enough to be selected. 

Correspondence analysis between remote VIs and GY based on quantile ranking in 

the 126 (30 m size) pixels exhibited a final agreement between 64% and 86%. 

Therefore, Landsat imagery with its spatial and temporal resolution proved a good 

potential for estimating final GY over different crops in a rotation, at a relatively 

small field scale. 

1. Introduction  

Investigation of problems associated with agricultural yield, before 

harvesting, most commonly involves observing in-season growth variations, 

scouting areas at different fertility, and defining optimum soil sampling design 

according to needs of individual field. All this helps to increase the agricultural 
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economic yield. However, current traditional methods for estimating the crop yield 

during the growing season may lead to poor yield assessment and inaccurate area 

appraisal. These methods rely on the precise and detailed collection of crop data, 

which is cost-intensive and time-consuming (Dadhwal and Ray, 2000; Reynolds et 

al., 2000). In addition, extensive use of nitrogen (N) fertilizers poses a problem of 

growing concern in agriculture. Surplus N drains into groundwater affecting the 

quality of drinking water, or seeps into superficial water bodies determining 

eutrophication (Rütting et al., 2018). This scenario makes it necessary to adopt 

efficient crop production methods assuring minimum environmental impact and 

concurrent optimization of crop yields (Tilman, 1999). Remote sensing has proved 

to be an efficient technology in precision agriculture for estimating crop status 

during the growing season. This, specifically, consists in evaluating the relationship 

between spectral vegetation indices during growth and final crop yield (Taylor et 

al., 1997; Gitelson, 2016). 

Crop yield varies spatially and temporally within a single field (Blackmore, 

2003; Griffin et al., 2004), which makes it important to assess the spatial pattern of 

grain yield (GY) over the entire field in view of specific management practices 

(Blackmore, 2003). GY variation within a field depends on intrinsic characteristics as 

soil type, physical-chemical and topographic properties, and external characteristics 

as amount of applied fertilizers, irrigation, etc. (Hanna et al., 1982; Steiner et al., 

2018). Spatial maps of crop yield have been extensively used to interpret the causes 

of yield variation across the field (Amado et al., 2007). 

Identifying growth stages of any crop is very important for timely crop 

management decisions that maximize the final crop profitability. There are many 

scales used to identify crop growth and development of cereals (wheat), oilseed 

(sunflower) and grain crops (coriander). Mostly used scales are Feekes scale, Haun 

scale, Zadoks scale and BBCH scale. In this research paper, we used BBCH scale, 

commonly used in Europe (Botarelli et al., 1999). This is two-digit decimal scale and 

consists of one hundred stages, each allowing the description of well-defined 

development level of primary stages (0-9) and secondary stages (00-99) of 

monocotyledonous as well as dicotyledonous crops (Meier, 2001). 

The principal growth stages along with their BBCH code for wheat crop are 

as follows (Meier, 2001): 0. Germination (00-09), 1. Leaf development (10-19), 2. 

Tillering (20-29), 3. Stem elongation (30-39), 4. Booting (41-49), 5. Heading (51-59), 6. 

Flowering (61-69), 7. Grain development (71-77), 8. Ripening (83-89), 9. Senescence 

(92-99). For sunflower (Lancashire et al., 1991): 0. Germination (00-09), 1. Leaf 

development (10-19), 3. Stem elongation (30-39), 5. Inflorescence emergence (51-59), 

6. Flowering (61-69), 7. Fruit development (71-79), 8. Ripening (80-89), 9. Senescence 
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(92-99). For coriander (forming heads) (Feller et al., 1995): 0. Germination (00-09), 1. 

Leaf development (10-19), 4. Development of harvestable plant parts (41-49), 5. 

Inflorescence emergence (51-59), 6. Flowering (60-69), 7. Fruit development (71-79), 

8. Ripening (81-89), 9. Senescence (92-99). 

However, many issues in the spatial and temporal relationship between crop 

yields and vegetation indices (VIs) obtained from remote sensing need to be 

investigated, depending on crop stage and the specific management practice. To 

capture the distinguishing characteristics of an agricultural crop, it is advisable to 

use more vegetation indices, as each VI has a unique combination of wavebands that 

can be related to specific crop parameters and growth stages (Hatfield and Prueger, 

2010). 

Remotely sensed data can cover a large area to retrieve the spectral 

information in real time during crop growing period (Sadrykia et al., 2017). Landsat 

missions have been collecting and archiving imagery worldwide with multispectral 

sensors providing insights into plant response to solar radiation, opening the era of 

remote vegetation indices (VIs). Specific VIs, obtained by combining single 

wavebands of a multispectral image, offer the farming community clues to crop 

growth status in time to predict higher/lower productions in specific areas (Taylor 

et al., 1997; Mirik et al., 2006). However, various VIs have been developed at canopy 

scale (Hatfield et al., 2008), which are more sensitive to canopy reflectance, 

compared to individual bands (Qi et al., 1993). 

We have selected six among the many VIs available at present (Table 1.3), 

which are commonly addressed in the literature, and could be helpful in estimating 

changes at canopy level of agricultural crops, and ultimate yield. Normalized 

Difference Vegetation Index (NDVI) was first proposed by Rouse et al. (1974). It is 

defined as the ratio between the difference and the sum of reflectance values in the 

near-infrared (RNIR) and red (RRED) spectrum, which is indicative of the 

photosynthetically active vegetation (Slayback et al., 2003; Tucker et al., 2005). NDVI 

is widely used to estimate crop biomass at different growth stages. Many scientists 

claim that NDVI is the best estimator for light interception, although its values 

fluctuate during crop cycle (Hatfield et al., 1984; Wiegand et al., 1992). In cultivated 

soils NDVI ranges from zero (bare soil) to 1; values of 0.6-1.0 indicate dense 

vegetation at peak growth stages (Militino et al., 2017). 

Beside NDVI, various VIs have been developed to address crop growth status 

through specific relationship with chlorophyll, carotenoids or biomass (Sims and 

Gamon, 2003). These VIs provide information on biotic and abiotic stresses affecting 

crop yields (Zarco-Tejada et al., 2005). More recent VIs have been developed to 

counterbalance NDVI limitations, e.g. the interference of soil reflectance with sparse 
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canopy cover, and the low sensitivity to chlorophyll content in mature canopies. 

These VIs demonstrated higher performances in specific applications to precision 

agriculture (Mulla, 2013). 

Enhanced Vegetation Index (EVI) has been developed to improve the 

sensitivity of canopy reflectance under high biomass regions, as it gives a more 

linear correlation with green leaf biomass that is directly related to final GY (Boegh 

et al., 2002). In addition to red and NIR bands, EVI utilizes a blue band compared to 

NDVI, which enhances vegetation appraisal through de-coupling of canopy 

reflectance signal and reducing the atmospheric influence (Rocha and Shaver, 2009). 

EVI ranges from -1 to +1 (Huete et al., 2002).  

Soil background effects may create problems in the reflectance of crop 

canopy, so to overcome these effects in the application of VIs a Soil Adjusted 

Vegetation Index (SAVI) has been proposed (Huete, 1988) for applications in total 

biomass and crop yield prediction (Elwadie et al., 2005; Simões et al., 2005; Panda et 

al., 2010). SAVI involves an adjustment factor (L) in the NDVI equation to remove 

the soil noise, whose value depends on vegetation density (L=1, 0.5 and 0.25 for low, 

intermediate and high vegetation density, respectively). SAVI ranges from -1 to +1.  

The Green Normalized Difference Vegetation Index (GNDVI) is designed as a 

modification of NDVI, where the red band is substituted with a green band (Gitelson 

et al., 1996), which might be more useful for assessing the green biomass variations 

at canopy scale. GNDVI ranges from -1 to +1.  

The estimation of chlorophyll concentration at leaf canopy involves the Green 

Chlorophyll Index (GCI), which is directly related to leaf area index and final GY. It 

ranges from 0 to 6 (Gitelson et al., 2003). 

Lastly, the Simple Ratio (SR), also known as ratio vegetation index (RVI) 

(Jordan, 1969), is used to eliminate albedo effects in the atmosphere, as it is 

calculated by band ratio of light scattered in the NIR to light absorbed in the red 

reflectance (Rred). Hence, SR is close to 1 if the object gets similar reflectance in both 

red and NIR bands. For a green object, the value ranges from 0 to infinity (Pearson 

and Miller, 1972). SR, which is the simplest VI, owns nonetheless a higher sensitivity 

to high biomass and LAI values, compared to NDVI (Viña et al., 2011). 

Many studies have successfully addressed various issues through remote 

sensing: leaf nitrogen content (Daughtry et al., 2000; Mulla, 2013), leaf area index 

(Huete et al., 2002; Gitelson et al., 2005), chlorophyll content (Plant et al., 2000), total 

biomass (Jordan, 1969), and final crop yield (Plant et al., 2000). Landsat satellite data 

at 30 m resolution have already been used to successfully predict crop yields (Basso 

et al., 2004; Kayad et al., 2016). The strength of the relationships between VIs and 

crop yield is the fundamental premise to this. However, crop spectral reflectance 
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varies with species and depends on the concentration of leaf pigments, soil moisture, 

biomass structure and ratio of light absorption to transmittance, management 

practices, pest and disease outbreaks during crop growth (Van Leeuwen and Huete, 

1996; Hatfield et al., 2008). 

Geostatistics encompasses a series of techniques of crucial importance in the 

assessment of spatial variability with both ground based and remotely sensed data 

(Journel, 1989). Owing to the discrete assessment of several crop traits, geostatistics 

serves to adapt them to the same grid size in order to compare them. In spatial 

studies, variograms are used as main geostatistical tool in the process of kriging. 

Kriging is one of the commonest techniques to estimate the prediction values from 

neighbouring actual values, a process known as interpolation (Woodcock et al., 1988; 

Isaaks and Srivastava, 1989). Therefore, geostatistics was seen a valuable tool in the 

perspective of studying the relationship between remote VIs and ground based crop 

features, as GY in this work. 

Given the ample variation in the spectral composition of VIs, their variable 

performance at different growth stages of crops, and the resulting uncertainty, this 

study was intended to explore a significant number of remotely available VIs over a 

five-year period in a field hosting winter cereals and spring dicots alternating 

annually. Our specific objectives were to: (i) assess the spatial variability of the 

surveyed crop yields over five years; (ii) compare the behaviour of the targeted VIs 

during the growing season of each crop, in view of predicting final yield; (iii) select 

the best VIs in the five crops as cases for the study of spatial and temporal variability, 

and relationship with final grain yield.  

1.2. Materials and Methods  

1.2.1. Experimental site 

The field site was located in the plain near Ravenna, Italy (44° 29’ 26” N, 12° 

07’44” E, 0 m above sea level), a few kilometres from the Adriatic coast (Figure 1.1). 

An 11.07 ha experimental area was chosen within a larger field (ca. 25 ha) of the 

Agrisfera Cooperative. Soils in this area have a variable texture depending on 

changes in sediment dispersal patterns in response to fluctuating sea level (Amorosi 

et al., 2002). To cope with the limited elevation and shallow water table, a network 

of underground draining pipes discharging into a ditch on the north side serves the 

field. The climate falls in the Mediterranean North environmental zone (Metzger et 

al., 2005), with mild winter and a long growing season, although precipitation is 

mostly concentrated in the cold semester. 
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Figure 1.1. Study area location map. Detail framed by red trapezium, whose coordinates are: 

44°29'35.05"N, 12° 7'41.86"E (NW corner); 44°29'37.33"N, 12° 7'50.05"E (NE corner); 

44°29'14.71"N, 12° 7'46.31"E (SE corner); 44°29'15.52"N, 12° 7'38.81"E (SW corner). 

 
 

1.2.2. Field data collection  

Five crops were cultivated in a rotation system in the crop seasons 2010-2014: 

durum wheat in 2010 (DW 2010), sunflower in 2011 (SF 2011), bread wheat in 2012 

(BW 2012), coriander in 2013 (CO 2013), and bread wheat in 2014 (BW 2014). Seeding 

and harvest dates, and the resulting crop cycle durations are reported in Table 1.1. 

Cultivation was based on the good practice for each specific crop, according to local 

conditions. Each year the field was ploughed in the summertime; harrowed in the 

autumn (the three years with DW or BW) or winter (SF and CO) for seedbed 

preparation.  

At maturity, yield data were collected by a New Holland CR 9080 (CNH 

Industrial N.V., Basildon, UK) combine harvester using specific headers according 

to the crop (Figure 1.2). An average 6170 GY data points per year were registered in 

the 11.07 ha experimental area. Therefore, each GY pixel covered an average 18 m². 

The combine harvester was equipped with assisted guiding system based on real 

time kinematic GPS, yield mapping system consisting of a Pektron flow meter 

(Pektron Group Ltd, Derby, UK) and Ag Leader moisture sensor (Ag Leader 

Technology, Ames, IA, USA).  
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Figure 1.2. New Holland CR 9080 

 

Spatial data of raw yield were saved through the Farm Works™ Mapping 

software (Figure 1.3) (Trimble Navigation Ltd., Sunnyvale, CA, USA), and exported 

to ESRI shape file format to be handled in QGIS 2.18.20. Yield data were filtered 

using Yield Editor Software to detect and remove outliers (Sudduth and 

Drummond, 2007), and adjusted at 13% moisture for DW and BW; at 9% moisture 

for SF and CO. The crop data of each year were intersected with polygon field 

boundary layer.  

 

Figure 1.3. Software for yield data management by Trimble Navigation Ltd., Sunnyvale, 

California, USA 
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Table 1.1. Seeding and harvest dates, and crop cycle duration of cultivated crops. 

Crop and Year Botanical Name Seeding Harvest Duration (d) 

DW 2010 Triticum turgidum ssp. durum L. 30 October (2009) 10 July 253 

SF 2011 Helianthus annuus L. 5 April 7 September 155 

BW 2012 Triticum aestivum L. 14 October (2011) 1 July 261 

C0 2013 Coriandrum sativum L. 11 April 10 July 90 

BW 2014 Triticum aestivum L. 9 November (2013) 7 July 240 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander. 

1.2.3. Imagery acquisition and processing 

Remotely sensed data from Landsat missions were used, due to their frequency 

ensuring a dense time coverage in the investigated period. Landsat 5-Thematic 

Mapper (TM), Landsat 7-Enhanced Thematic Mapper Plus (ETM+) and Landsat 8-

Operational Land Imager (OLI) have already been used in the monitoring of field 

crops over relatively small areas (6-11.5 ha) (Kumhálová et al., 2014; Rodriguez et 

al., 2014; Herbei and Sala, 2015). 

Collected Landsat (LS) images covered the following growth periods: 1 

February–30 June for DW 2010 and BW 2012 and 2014; 1 May-31 August for SF 2011; 

1 May–15 July for CO 2013. Landsat remote imagery were downloaded through US 

Geological Survey (USGS)-Earth Explorer website, a largest remote data network, 

using Collection Level-1, Tier 1, Precision Terrain (LITP) platform. This is an 

inventory structure for data collection, containing the highest quality Level-1 data 

suitable for time-series data record. Moreover, it gives access to all data as originally 

acquired and has an average revisiting time of 16 days. Landsat data archive 

equipped with 30 m spatial resolution (SpR) was used for vegetation monitoring in 

the five years of the survey. 
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Table 1.2. Acquisition dates of Landsat satellite images and corresponding days after 

sowing (DAS) and growth stages (BBCH scale) in the five years. 

Crop and Year LS-Mission Date DAS BBCH Stage Description 

DW 2010 LS-5 TM 

13 March 134 31 Stem elongation (1st node visible)  

29 March 150 32 Stem elongation (2nd node visible)  

14 April 166 36 Stem elongation (6th node visible)  

30 April 182 43 Mid booting (flag leaf sheath initial swelling) 

7 May 189 55 Mid heading (half inflorescence emerged) 

SF 2011 LS-5 TM 

4 June 60 30 Beginning of stem elongation 

20 June 76 32 Two visibly extended internodes 

27 June 83 51 Inflorescence just visible amid young leaves 

22 July 108 67 Flowering decline (inner 3rd florets in bloom) 

14 August 131 75 Middle inflorescence seeds grey, at final size 

BW 2012 LS-7 ETM+ 

17 March 155 33 Stem elongation (3rd node visible) 

26 March 164 36 Stem elongation (6th node visible) 

11 April 180 41 Early booting (flag leaf sheath extending) 

4 May 203 63 Flowering begun; anthers visible 

29 May 228 83 Early dough 

CO 2013 LS-8 OLI 

24 May 43 34 Main shoot reaching 30% of expected height 

9 June 59 55 First flowers of main inflorescence visible 

16 June 66 63 30% of flowers open 

25 June 75 71 First fruits formed 

2 July 82 81 Beginning of ripening (10% fruits ripe) 

BW 2014 LS-8 OLI 

8 March 119 32 Stem elongation (2nd node visible)  

31 March 142 37 Flag leaf just visible, still rolled 

25 April 167 55 Mid heading (half inflorescence emerged)  

18 May 190 77 Late milk 

3 June 206 85 Soft dough (grain content soft but dry) 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; DAS, days after sowing. 

Specifically, multispectral images were retrieved by selecting the most recent 

Landsat mission available for each investigated year: LS-5 (TM) was used for DW 

2010 and SF 2011, LS-7 (ETM+) for BW 2012, and lastly LS-8 OLI for SF 2013 and BW 

2014 (Table 1.2). Landsat satellite scenes selection was carried out by accurately 

evaluating clear sky conditions and the quality of pixels in the field, by using the 

available data and metadata for each Landsat product.  

Raster spectral bands (DNs) were converted to surface reflectance values by 

using the Semi-Automatic Classification Plugin (Congedo, 2016) in QGIS by 

applying simple atmospheric correction under DOS1 method (Dark Object 

Subtraction 1) (Chaves, 1988; Lu et al., 2002). Although atmospheric correction for 

collection level-1 data is not univocally advised, it leads to an improvement in the 

results, and makes the surface reflectance comparable among multi-temporal 

images (Lu et al., 2002). 

Corrected raster images were intersected with polygon field boundary (11.07 

ha), resulting in 126 data points extracted from each remote imagery with 30 m SpR. 
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Crop stages at the respective dates were expressed with the BBCH scale that assigns 

a decimal code to the growth stages of mono- and di-cotyledonous plants 

(Lancashire et al., 1991). A total of 25 images were used, i.e., 5 dates × 5 years.  

All VIs were calculated through the algebraic combinations of reflectance values 

of red, infra-red and green portions of the electro-magnetic spectrum (Basso et al., 

2004), based on the formulas presented in Table 1.3.  

Table 1.3. Vegetation indices used in this study, respective formulas and literary sources. 

Index Description Formula Source 

NDVI 
Normalized difference vegetation 

index 
(RNIR - RRed)/(RNIR + RRed) 

(Amado et 

al., 2007) 

EVI Enhanced vegetation index 2.5(RNIR − Rred)/(RNIR + 6Rred – 7.5Rblue + 1) 
(Militino et 

al., 2017) 

SAVI Soil adjusted vegetation index (RNIR − Rred)(1 + L)/(RNIR + Rred + L) 

(Sims and 

Gamon, 

2003) 

GNDVI 
Green normalized difference 

vegetation index 
(RNIR − Rgreen)/(RNIR + Rgreen) 

(Zarco-

Tejada et 

al., 2005) 

GCI Green chlorophyll index (RNIR/Rgreen) − 1 

(Mulla, 

2013; Panda 

et al., 2010) 

SR Simple ratio RNIR / Rred 
(Boegh et 

al., 2002) 

RNIR, reflectance in the near infrared band: Rred, reflectance in the red band: Rblue, reflectance in the 

blue band: Rgreen, reflectance in the green band: L, weighting coefficient = 0.25 (high vegetation 

density). 

1.2.4. Analysis methods 

Georeferenced GY and remote VI data were subjected to geostatistical 

analysis (ArcGIS software version 10.3) to study the degree of spatial dependence 

(DSpD) in data distribution. The spatial dependence (SpD) was calculated by means 

of empirical semivariogram, according to the following equation: 

𝛾(ℎ) =
1

2𝑁(ℎ)
𝑋 ∑[Z(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)

𝑁(ℎ)

𝑖=1

]2 (1) 

Where, 𝛾(h) is the semi-variance at a specified distance, h represents lag distance 

between two paired points, N(h) is the number of paired points at distance h, Z(𝑥𝑖) 

is the measured value at location xi, and Z(xi + h) denotes the secondary value 

measured at locations 𝑥𝑖 + h separated by the given distance (h) (Goovaerts, 1997).  

The experimental variogram was fitted by means of the spherical, 

exponential, linear and Gaussian models. The spherical model exhibited a goodness 

of fit that was not surpassed by the other models and was, therefore, chosen. The 

spherical model, thanks to a well-defined sill, easily-interpreted range and 
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mathematical simplicity, is considered one of the best models for soil or plant 

variability fitting (Clark, 1979; Woodcock et al., 1988; Isaaks and Srivastava, 1989; 

Maynou, 1998; Guedes Filho et al., 2010). 

Directional sample variograms were also computed for the canonical 

directions 0, 22.5, 45, 90, 135 degrees. Resulting variograms exhibited similar shapes, 

leading to the conclusion that directional effects were negligible/absent. Therefore, 

there was no evidence of spatial anisotropy potentially leading to wrong 

interpretation in data analysis. 

In the spherical model, the following equations are applied:  

𝛾(ℎ) = 0    for < h = 0 (2) 

𝛾(ℎ) = 𝐶0 + 𝐶 (
3ℎ

2𝑎
− 

ℎ3

2𝑎3
)      for 0 < h ≤ a (3) 

𝛾(ℎ) = 𝐶0 + 𝐶     for h > a  (4) 

Where: C0 is the nugget, C0+C is the sill, a is the range, and h is the separation lag 

distance (Isaaks and Srivastava, 1989). 

Three parameters need to be defined while fitting the theoretical model to the 

experimental semivariogram: (i) nugget effect (C0), representing the error or 

variation in the measurement at minimum sampling distance (h=0), i.e. the 

background effect; (ii) sill variance (C0 + C), composed of C0 (nugget variance) and C 

(structural variance), which is the maximum y-axis value increase with lag distance, 

and remains constant beyond distance h; (iii) SpD range (a), indicating the maximum 

limit at which data points are still spatially correlated and the semi-variogram 

reaches the sill value; beyond that limit no spatial auto-correlation can be 

demonstrated.  

We classified the strength of SpD into three groups by calculating the percent 

nugget (C0) to sill (C0+C) ratio according to Cambardella et al. (1994): (i) < 25 %, 

indicating strong SD; (ii) 25-75 %, moderate SD; (iii) >75 %, weak SD. 

Through semivariograms, spatial yield maps were produced by simple 

kriging with 10 m cell size to extrapolate the values to non-sampled field parts 

(Moral et al., 2010). Simple kriging was preferred over ordinary kriging because the 

mean value was known, which is the premise for a better estimate of the variance. 

Simple kriging is considered a realistic interpolation method: it provided highest R² 

and minimal error parameters among seven methods in environmental 

characteristics (Maynou, 1998; Xiao et al., 2016), and in the estimation of crop yield 

(Mckinion et al., 2010). 

GY data referred to 1106 pixels (10 m cell size), and VI data referred to 126 

pixels (30 m cell size) acquired in the 11.07 ha experimental field were submitted to 
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descriptive statistics including mean, median, minimum, maximum, standard 

deviation (SD) and coefficient of variation (CV). Kolmogorov-Smirnov test was 

applied to ascertain the normal distribution in the data sets.  

Kriged maps of crop yield were aggregated at the same 30 m cell size as the 

SpR of satellite imagery (Kayad et al., 2016). Then, raster maps were converted into 

point data to assess the relationships between remote imagery and crop yields, i.e. 

between VIs and GY in each respective year, by means of Pearson’s correlation 

(Shanahan et al., 2001). The best times/crop stages for the prediction of final yields 

were acknowledged as those featuring the highest correlations for all the indices 

averaged (Brian McConkey et al., 2004; Singla et al., 2018). The vegetation index 

showing the highest correlation with yield was selected from each date falling 

within these stages in each crop. When two VIs exhibited the same r value, both were 

selected. Based on this, a series of representative VIs were retained as study cases 

for each year, and further processed. 

Geostatistics (ArcGIS software version 10.3) was applied on GY and selected 

VIs, in order to describe the data distribution of remote VIs and GY data in terms of 

semivariogram through the above described spherical model. The intrinsic variation 

in these two sets of variables was assessed based on their SpD across the field. 

Geostatistics also served in the analysis between original VI data and kriged GY data 

for the determination of correspondence levels and final agreement between them. 

Spatial maps of remote VIs and GY were shown with the same 30 m cell size 

(Moral et al., 2010). A colour scale was chosen based on quantile classification for all 

maps produced in this study. All maps were georeferenced and co-registered in 

reference system of WGS 84/UTM zone 32N-EPSG: 32632. 

The prediction accuracy of VI and GY data was assessed with the spherical 

model in terms of coefficient of determination (R2) of model-predicted vs. actual 

observations (Robertson, 1998; Leopold et al., 2006), while mean absolute error 

(MAE) and root mean square error (RMSE) were calculated through kriged residuals 

(Pebesma, 2004). The mean relative error (MRE) and relative RMSE (RRMSE) were 

calculated as percent ratios on the average VIs and GY values, respectively. 

Maximum R2 and minimal error parameters are associated with best model accuracy 

(Xiao et al., 2016). 

After analysing the SpD within VIs and GY data, we investigated the 

correspondence between them. The correspondence levels were calculated as the 

proportion of pixels belonging to same remote imagery and crop yield class. To 

represent the relative similarity between them, remote imagery and crop yield data 

were classified from lowest to highest values into five classes (i.e., quintiles) of equal 

frequency over the entire field. Then, the correspondence levels and final agreement 
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(%) between each VI and GY were determined as described by Stępień et al. (2016): 

for a given pixel, if the class of VI quantile was the same as that of GY quantile, the 

correspondence was considered ‘high’ with value 1; if the class of VI and GY 

belonged to adjacent quantiles, the correspondence was considered ‘medium’ with 

value 0.5; if the class of VI and GY quantile were separated by more than one class, 

the correspondence was considered ‘low’ with value 0. Based on this, final 

agreement was calculated as the sum of pixel agreement scores, according to the 

formula: 

Fa =
(Ph ∙ 1.0) + (Pm ∙ 0.5) + (Pl ∙ 0)

Pt ∙ 100
 (5) 

Where: Fa = final agreement (%); Ph = number of pixels with high agreement; Pm = 

number of pixels with medium agreement; Pl = number of pixels with low 

agreement; Pt = total number of pixels 

The coefficient of variation of Fa was also calculated as the standard deviation 

of correspondence levels in percent of their mean. 

1.3. Results 

1.3.1. Descriptive statistics of crop yields 

Descriptive statistics of crop yields in the five years is reported in Table 1.4. In 

wheat, mean GY ranged between 4.26 and 5.91 t ha-1. The lower GY was referred to 

DW 2010 and BW 2012 that showed the same mean data, whereas the higher GY was 

related to BW 2014. The two dicots (SF 2011 and CO 2013) were comparatively much 

less productive, attaining less than 2 t ha-1 mean GY. An ample variation in yield 

data was described by all crops, resulting in a standard deviation that, proportioned 

to GY, determined a CV value ranging between 23.2% (DW 2010) and 31.7% (CO 

2013).  

Table 1.4. Descriptive statistics of crop yields (t ha-1) in the five years. 

Crop and year Mean Median Min. Max. SD CV % K-S 

DW 2010 4.26 4.26 1.77 6.05 0.99 23.2 ** 

SF 2011 1.45 1.44 0.23 2.99 0.41 28.6 ** 

BW 2012 4.26 4.27 1.68 6.07 0.99 23.3 ** 

CO 2013 1.83 1.90 0.71 2.86 0.58 31.7 ** 

BW 2014 5.91 5.81 2.50 9.08 1.66 28.2 ** 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; Min., minimum; Max., 

maximum; SD, standard deviation: CV, coefficient of variation: K-S, Kolmogorov-Smirnov test for 

normal distribution; **, significant at P ≤ 0.01. 
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1.3.2. Descriptive statistics of remote indices 

The five years’ remote indices are described in table 1.5. The complete descriptive statistics of each 

year's data are provided in the supplementary materials at the end of the thesis (Table S1.1. for DW 

2010, Table S1.2 for SF 2011, Table S1.3 for BW 2012, Table S1.4. for CO 2013, and Table S1.5 for BW 

2014). 

 

 



 

 

 

Table 1.5. Mean value of remote vegetation indices, and Pearson’s correlations (r) with crop yields in the five years. VIs with best correlations with GY are 

highlighted. 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; ns, non-significant; **, significant at P ≤ 0.01. 

Crop and 

year 

BBCH 

stage 

NDVI  EVI  SAVI  GNDVI  GCI  SR 

mean r  mean r  mean r  mean r  mean r  mean r 

DW 2010 

31 0.29 0.843**  0.31 0.755**  0.17 0.764**  0.21 0.767**  0.53 0.764**  1.72 0.762** 

32 0.29 0.814**  0.33 0.795**  0.19 0.783**  0.23 0.778**  0.60 0.774**  1.72 0.788** 

36 0.59 0.878**  0.49 0.816**  0.30 0.818**  0.39 0.822**  1.33 0.816**  2.93 0.816** 

43 0.71 0.878**  0.66 0.819**  0.40 0.822**  0.49 0.826**  2.06 0.823**  4.14 0.825** 

55 0.66 0.294**  0.73 0.444**  0.44 0.454**  0.51 0.400**  2.10 0.431**  4.01 0.405** 

SF 2011 

30 0.47 0.395**  0.51 0.509**  0.32 0.475**  0.37 0.429**  1.19 0.446**  2.42 0.536** 

32 0.66 0.614**  0.90 0.707**  0.52 0.700**  0.53 0.688**  2.33 0.687**  4.17 0.684** 

51 0.70 0.736**  0.76 0.745**  0.49 0.749**  0.55 0.751**  2.49 0.748**  4.53 0.742** 

67 0.52 0.672**  0.54 0.725**  0.34 0.716**  0.40 0.712**  1.39 0.718**  2.81 0.729** 

75 0.28 0.317**  0.24 0.375**  0.16 0.351**  0.22 0.341**  0.57 0.320**  1.62 0.459** 

BW 2012 

33 0.47 0.793**  0.45 0.801**  0.25 0.788**  0.33 0.767**  1.00 0.766**  2.28 0.801** 

36 0.54 0.710**  0.34 0.854**  0.18 0.852**  0.14 0.838**  0.60 0.852**  1.89 0.854** 

41 0.52 0.783**  0.30 0.773**  0.10 0.742**  -0.73 0.698**  0.21 0.639**  1.21 0.631** 

63 0.80 0.870**  0.11 0.611**  0.45 0.586**  0.53 0.519**  2.61 0.717**  4.87 0.760** 

83 0.51 0.307**  0.54 -0.273ns  0.28 -0.317ns  0.32 -0.332ns  1.05 -0.324ns  2.33 -0.294ns 

CO 2013 

34 0.08 0.555**  0.27 0.268**  0.08 0.377**  0.11 0.213**  0.24 0.214**  1.17 0.555** 

55 0.33 0.800**  0.43 0.480**  0.28 0.805**  0.37 0.793**  1.16 0.806**  2.01 0.812** 

63 0.62 0.856**  0.59 0.920**  0.43 0.917**  0.60 0.907**  3.06 0.911**  3.34 0.915** 

71 0.68 0.902**  0.64 0.861**  0.53 0.861**  0.67 0.861**  4.19 0.866**  5.86 0.868** 

81 0.65 0.914**  0.63 0.886**  0.45 0.879**  0.62 0.912**  3.36 0.927**  4.52 0.932** 

BW 2014 

32 0.69 0.886**  0.45 0.844**  0.41 0.844**  0.60 0.849**  3.11 0.843**  5.05 0.845** 

37 0.79 0.932**  0.59 0.922**  0.61 0.925**  0.59 0.930**  2.97 0.925**  7.49 0.935** 

55 0.84 0.926**  0.78 0.873**  0.57 0.870**  0.72 0.879**  5.13 0.881**  6.26 0.873** 

77 0.81 0.909**  0.59 0.927**  0.49 0.925**  0.65 0.918**  3.85 0.934**  4.78 0.934** 

85 0.40 -0.681ns  0.38 0.562**  0.28 0.167ns  0.40 -0.482ns  1.43 -0.404ns  2.43 -0.540ns 
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In DW 2010, the six VIs in the five growth stages ranging from beginning of stem 

elongation to heading (Table 1.2) outlined the mean values reported in Table 1.5. Mean 

values augmented until a peak at BBCH stage 43-55. Mean and median values were 

always very close, never diverging by more than 5%. VI variation was more contained 

than GY variation in the same year (Table 1.4): average CV was 12.3%, and highest CV 

reached 23.9%. Lastly, data were more often normally distributed (non-significant 

Kolmogorov-Smirnov test in 23 cases out of 30). 

In SF 2011, the six VIs in the five growth stages ranging from beginning of stem 

elongation to seed ripening (Table 1.2) exhibited the mean values reported in Table 1.5. 

Mean values increased until a peak at approximately BBCH stage 51 (inflorescence just 

visible), although EVI staged higher value at BBCH stage 30. Mean and median values 

never diverged by more than 6%. VI variation was more contained than GY variation in 

the same year (Table 1.4): average CV was 11.2%, and highest CV was 20.5%. Data were 

almost equally divided between normally distributed (17 cases out of 30) and non-

normally distributed (the remaining 13 cases). 

In BW 2012, the six VIs in the five growth stages ranging from mid-stem elongation 

to early dough ripening (Table 1.2) staged the mean values reported in Table 1.5. Mean 

values increased until a peak at BBCH stage 63 (anthesis), except EVI that showed a very 

low value at this stage and peaked at BBCH stage 83 (early dough). Mean and median 

values sometimes diverged, especially at BBCH stage 41. Data variation was also 

fluctuating: average CV was 31.9%, but CV values above 100% were also recorded. Lastly, 

data were normally distributed only in 2 cases out of 30.  

In CO 2013, the six VIs in the five growth stages ranging from mid-stem elongation 

to beginning of ripening (Table 1.2) showed the mean values reported in Table 1.5. Mean 

values increased until BBCH stage 71 (fruiting). Mean and median values never diverged 

by more than 4%. VI variation was more contained than GY variation in the same year 

(Table 1.4): average CV was 9.4%, and highest CV was 22.5%. Despite this, data were 

normally distributed only in 5 cases out of 30. 

In BW 2014, the six VIs in the five growth stages ranging from early stem 

elongation to soft dough ripening (Table 1.2) featured the mean values reported in Table 

1.5. Mean values increased until BBCH stage 55 (heading). Mean and median values were 

generally similar; only in three cases they diverged by 10-13%. VI variation was more 

contained than GY variation in the same year (Table 1.4): average CV was 13.2%, and 

highest CV was 30.2%. Nonetheless, data were normally distributed only in 3 cases out 

of 30. 
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1.3.3. Correlations and choice of representative vegetation indices 

In this experiment, Pearson’s correlations between VIs and GY in the five years are 

reported in Table 1.5. High, statistically significant r values were generally obtained, 

indicating that remote indices across variable growth stages were aligned with final 

yields. We visually checked all correlations (graphs not reported in MS) to spot if any 

cloud of data outlined a curvilinear relation, finding none. 

At growth stages of incipient senescence (BBCH>80), VIs were insignificantly/negatively 

correlated with GY (BW 2012 and 2014), because senescence encourages the breakdown 

of pigments that influence the reflectance properties of leaf canopy.  

Overall, the three wheat crops (DW 2010, BW 2012 and 2014) staged r values above 

0.700 in the average of the six VIs at BBCH stages not exceeding 50, i.e. before heading 

(Table 1.5). Afterwards, the r values sharply declined in DW 2010 (at BBCH 55, average r 

= 0.405), whereas in BW 2012 and 2014 they remained quite high until the mid-60’s and 

mid-70’s BBCH stages, respectively. Owing to the morph-physiological similarity 

between durum and bread wheat, it is sensed that the different behaviour was due to 

different ambient conditions during the reproductive phase in 2010 vs. 2012 and 2014.  

In contrast to wheat, the two dicot species (SF 2011 and CO 2013) staged r values 

above 0.700 in the average of the six VIs at BBCH stages > 50, i.e. during the reproductive 

phase (Table 1.5). SF 2011 maintained r values above 0.700 until the mid-reproductive 

phase (BBCH 67), whereas CO 2013 remained well above this threshold until later stages 

(BBCH 81). 

Based on the procedure described in sub-section 2.4, the 2-4 VIs with best 

correlations with GY (highlighted in Table 1.5) were selected each year as representative 

study cases. They covered growth stages from BBCH 33 to BBCH 81. SR and NDVI were 

the two indices most frequently chosen: six and four times, respectively. At the opposite 

end, SAVI never exhibited correlations high enough to be included in the list. 

1.3.4. Spatial variability in crop yields 

Analysis of the spherical semivariogram fitted to GY data is reported in Table 1.6. 

The lag distance was between 6.79 and 9.97 m, (data omitted in Table 1.6), depending on 

a particular crop of the year. SF 2011 was the crop showing the strongest background 

effect (C0) on total (C0+C) variance, associated with a high CV (Table 1.4). Compared to 

this, the very low C0 weight on C0+C indicates almost no discontinuity in the other four 

crops’ spatial structure. The five crops exhibited a sill comprised between 0.92 (DW 2010 

and BW 2012) and 1.09 (CO 2013), meaning a quite similar total variance. However, the 
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range of the SpD varied amply, being comprised between 65.90 m (BW 2012) and 99.87 

m (CO 2013). Finally, the proportion between the two components, nugget to sill 

variance, varied considerably between SF 2011 where C0 represented 34% of C0+C, and 

the other four crops where C0 represented 0-2% of C0+C. As a result, SF 2011 can be 

considered a case of moderate SpD, whereas the other four crops featured strong SpD 

(Cambardella et al., 1994). 

Table 1.6. Parameters of the spherical model used to fit the experimental semivariograms of 

crop yields, and model performance in the five years. 

Crop and 

year 

C0 C0+C a  

(m) 

SpD R² MAE RME 

(%) 

RMSE RRMSE 

(%) 

DW 2010 0 0.92 66.96 S 0.98** 0.09 2.2 0.14 3.3 

SF 2011 0.35 1.02 73.59 M 0.71** 0.15 10.6 0.22 15.5 

BW 2012 0 0.92 65.90 S 0.98** 0.09 2.2 0.14 3.3 

CO 2013 0.02 1.09 99.87 S 0.99** 0.05 2.6 0.07 3.6 

BW 2014 0.007 1.08 85.89 S 0.99** 0.13 2.2 0.18 3.1 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; C0, nugget effect; C, structural 

variance; C0+C, sill variance; a, range; SpD, spatial dependence (S, strong; M, moderate); **, significant at 

P ≤ 0.01; MAE, mean absolute error; MRE, mean relative error; RMSE, root mean square error; RRMSE, 

relative root mean square error. 

The performance of the spherical model in the 5 years was generally good (Table 

1.6). R² was always highly significant, ranging between 0.71 and 0.99, while the two error 

terms (MAE and RMSE) were low. This is especially true with respect to GY means (Table 

1.4), resulting in relative error terms (MRE and RRMSE) that were between 2.2% and 

10.6% (MRE), and between 3.1% and 15.5% (RRMSE).  

Yield maps exhibited a quite similar pattern in the five years, as shown in Figure 

1.2. The north side of the field always featured a lower GY than the south side. Especially 

the three years with wheat (DW 2010, BW 2012 and 2014) behaved in a similar way with 

lowest yield rank in the north-central portion of the field, and highest yield rank in the 

south – southwestern portion. Compared to this, the two spring sown crops (SF 2011 and 

CO 2013) exhibited a slightly wider area of low GY in the north portion of the field. These 

two crops also featured higher CV’s (Table 1.4), i.e. higher yield variation than the three 

wheat crops.  
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Figure 1.2. Spatial variability maps of crop yields in the five years with 10 m cell size (1106 

pixels in the 11.07 ha field). 

1.3.5. Spatial variability in remote vegetation indices 

Analysis of the spherical semivariogram fitted to VI data is reported in Table 1.7. 

The lag distance was between 8.17 and 15.30 m (data omitted in Table 1.7), depending on 

specific VI, crop and stage. The nugget (C0) was always nil, indicating continuous SpD of 

data over distance (Journel, 1989). The sill (C0+C) was comprised between 1.18 (NDVI in 

BW 2014 at BBCH stage 55) and 1.42 (GNDVI in SF 2011 at BBCH stage 51). The range 

was comprised between 108.84 m (EVI in BW 2012 at BBCH stage 36) and 154.25 (NDVI 

and SR in CO 2013 at the respective BBCH stage 71 and 81). Finally, owing to nil nugget 

effect, the SpD was always strong, i.e. 100% of the sill was associated with the structural 

component (C). 

The performance of the spherical model in the 15 cases was good under all 

viewpoints (Table 1.7). R² was always ≥0.95, and the two error terms (MAE and RMSE) 
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were low, especially with respect to mean VI values (Table 1.5). In fact, the relative error 

terms (MRE and RRMSE) were comprised between 0.6% and 5.6% of the mean.  

In Figure 1.3, remote VI maps and the respective GY maps are depicted at the same 

cell size (30 m). A palette of five colours indicates values ranging from very low (red) to 

very high (dark green), passing through low (orange), medium (yellow) and high (light 

green). The 15 VIs, whose choice was based on their correlations with yield (Table 1.5), 

also from a spatial viewpoint described a pattern across the study area consistent with 

crop yield pattern: lower values in the north portion of the field, and conversely higher 

values in the south – southwestern portion. 

Some VIs at specific growth stages evidenced sharp differences between the two 

areas, as in the case of EVI and SR at BBCH 36 in BW 2012. Some other VIs depicted faded 

differences, as SR at BBCH 67 in SF 2011. However, spatial maps visually demonstrate 

that a small number of high remote VIs were associated with low final GY, and vice versa. 
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Table 1.7. Parameters of the spherical model used to fit the experimental semivariograms of 

remote vegetation indices, and model performance in the five years. 

Crop and 

Year 

BBCH 

Stage 
C0 C0+C 

a  

(m) 
SpD R² MAE 

RME 

(%) 
RMSE 

RRMSE 

(%) 
      NDVI    

DW 2010 36 0 1.32 142.50 S 0.99** 0.006 1.0 0.009 1.5 
 43 0 1.23 142.50 S 0.99** 0.007 1.0 0.010 1.4 
      GNDVI    

SF 2011 
51 0 1.42 149.43 S 0.99** 0.004 0.7 0.005 0.9 

     SR    
 67 0 1.27 115.97 S 0.98** 0.050 1.8 0.070 2.5 
      EVI    
 33 0 1.29 149.43 S 0.99** 0.006 1.2 0.007 1.6 

BW 2012 
36 0 1.23 108.84 S 0.99** 0.011 3.2 0.019 5.6 

     SR    
 33 0 1.25 147.08 S 0.99** 0.016 0.7 0.020 0.9 
 36 0 1.28 115.05 S 0.99** 0.037 2.0 0.060 3.2 
      EVI    
 63 0 1.38 149.43 S 0.99** 0.005 0.8 0.007 1.2 

CO 2013 
     NDVI    

71 0 1.31 154.25 S 0.98** 0.006 1.0 0.010 1.5 
      SR    
 81 0 1.35 154.25 S 0.99** 0.038 0.8 0.060 0.8 
      SR    
 37 0 1.25 134.67 S 0.99** 0.069 0.9 0.14 1.9 
      NDVI    

BW 2014 
55 0 1.18 113.91 S 0.95** 0.004 0.5 0.005 0.6 

     GCI    
 77 0 1.32 149.43 S 0.99** 0.025 0.6 0.050 1.3 
      SR    
 77 0 1.32 149.43 S 0.99** 0.030 0.6 0.060 1.3 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; C0, nugget effect; C, structural 

variance; C0+C, sill variance; a, range; SpD, spatial dependence (S, strong) **, significant at P ≤ 0.01; MAE, 

mean absolute error; MRE, mean relative error; RMSE, root mean square error; RRMSE, relative root 

mean square error. 
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Figure 1.3. Spatial variability maps of remote VIs and crop yields with 30 m cell size. 

1.3.6. Correspondence between remote vegetation indices and crop yields 

The apparent similarity in spatial pattern and geostatistical structure between VIs 

and GY is the premise for assessing the correspondence between remote indices and crop 

yields at the same pixel level (Table 1.8). In the 15 cases, high correspondence ranged 

between 42% and 72%, medium correspondence between 27% and 50%, and low 

correspondence between 1% and 16%. The resulting Fa ranged between 64% and 86%. 

Highest agreement was observed in BW 2014 (average of 4 VIs, 83%); lowest in SF 2011 

(average of two VIs, 65%).  
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Table 1.8. R², correspondence levels, final agreements and respective coefficients of variation 

between VIs and GY. 

Crop and 

year 

BBCH 

stage 

R² Correspondence level (%) Fa  

(%) 

CV  

(%)  high medium low 

    NDVI    

DW 2010 36 0.77** 53 41 6 73 41.9 

 43 0.77** 51 42 7 72 43.6 

    GNDVI    

SF 2011 
51 0.56** 42 47 11 65 50.6 
   SR    

 67 0.53** 44 40 16 64 56.4 

    EVI    

 33 0.49** 40 50 10 65 49.9 

BW 2012 
36 0.73** 49 41 10 70 47.1 
   SR    

 33 0.64** 43 48 9 67 47.3 

 36 0.73** 48 43 9 70 46.2 

    EVI    

 63 0.85** 53 43 4 75 38.6 

CO 2013 
   NDVI    

71 0.81** 58 36 6 76 39.6 

    SR    

 81 0.87** 71 26 3 84 31.9 

    SR    

 37 0.87** 70 30 0 85 27.1 

    NDVI    

BW 2014 
55 0.86** 59 38 3 78 36.0 
   GCI    

 77 0.87** 67 30 3 83 31.9 

    SR    

 77 0.87** 72 27 1 86 27.5 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; Fa, final agreement; CV., coefficient 

of variation; **, significant at P≤0.01 (n=126). 

1.4. Discussion 

The CV data related to mean GY in the five years (Table 1.4) denote high yield 

variation, based on a CV threshold of 20% indicating high variation in field attributes 

(Gomes, 1985). This was a favourable circumstance in the present study, allowing us to 

appraise crop behaviour under conditions of sizeable spatial variability. Despite high CV, 

median GY in the five years was quite close to mean GY, differing from this latter by no 

more than ±4%. However, in all five years GY data were not normally distributed 
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(significant Kolmogorov-Smirnov test), although normality is not a prerequisite for 

kriging interpolation (Goovaerts, 1997). 

In general, crop yield variation reflects the interactions among soil-related factors 

or topography (Kravchenko and Bullock, 2000). Moreover, variation within the same 

plant genus (e.g., wheat) may be due to several factors as growth response to the amount 

of rainfall during specific crop stages, owing to the fact that wet years favour biomass 

accumulation thanks to higher soil water availability (Guedes Filho et al., 2010). 

The similar spatial patter exhibited by yield maps across the five years (Figure 1.2) is 

echoed in a previous survey on a narrower portion (4.15 ha) of the same field (Barbanti 

et al., 2018). In that work, soils in the northern part were shown to be quite sandy and 

poor in organic matter. It is evinced, therefore, that under rainfed cultivation the two 

spring crops (SF and CO) may have suffered stronger drought during the reproductive 

stage in the summer time, compared to the three wheat crops sown in the autumn and 

maturing in the springtime. 

High values of the six VIs in the respective scales indicate healthy, well growing 

crops. However, high VI values alone are not always good predictors for high GY, 

because higher canopy biomass prior to grain filling only contributes to good growth 

status, possibly due to adequate water availability, which is not always a prerequisite for 

maximum grain production (Benedetti and Rossini, 1993).  

Notwithstanding this, the good correlations between VIs and GY (Table 1.5) are a 

remarkable outcome, considering that mono-cotyledonous (DW and BW) and di-

cotyledonous (SF and CO) crops have different reflectance properties due to differences 

in leaf mesophyll cells and structure of front and back leaf side (Woolley, 1971). In other 

works, this has resulted in remote VIs behaving crop specifically according to leaf canopy 

structure (Viña et al., 2011). 

The different relationships between VIs and GY in winter wheat (DW 2010, BW 

2012 and 2014) vs. the two spring dicots (SF 2011 and CO 2013), consisting in the former 

crop showing better correlations in the vegetative phase, and the latter two crops in the 

reproductive phase (Table 1.5), is at least partially associated with the time elapsed from 

seeding to the stage at which good correlations were found. In fact, wheat is cultivated 

as winter crop while sunflower and coriander can only be cultivated as spring crops in 

the specific climate (Metzger et al., 2005). It results that wheat cycle lasted an average 251 

days from seeding to harvest, while sunflower cycle lasted 155 days, and coriander cycle 

only 90 days (Table 1.1). Wheat scored the best correlations in the three years combined 

(Table 1.5) between 120 DAS (BBCH 32 in BW 2014) and 180 DAS (BBCH 41 in BW 2012) 
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(Table 1.2). Sunflower scored the best correlations from 83 to 108 DAS, and coriander 

from 59 to 82 DAS (Table 1.2). Thus, the two dicots had been living for a shorter time, 

although they had reached a more advanced stage (Table 1.2). It is perceived, therefore, 

that the long time passed when the first VIs were acquired in wheat may have served the 

plant to better sense the environmental differences within the field, and translate them 

into a spectral response in agreement with the final yield. The two spring dicots featuring 

a shorter cycle, also necessitated a certain amount of time to experience the same 

differences, and good correlations between VIs and GY were achieved at later stages. 

However, we have not found other works addressing this point, meaning that these 

findings are not echoed in the literature, to our best knowledge. Therefore, further 

evidence is needed to corroborate this hypothesis. 

All the VIs acquired in these two time frames specific for wheat and spring dicots 

performed in a similar way. Assuming r = 0,700 as the threshold for good correlation, 

NDVI, GNDVI, GCI, SR and EVI fell below this value only once (Table 1.5). However, 

even in that case NDVI, GNDVI, GCI, SR decreased to levels slightly lower than this 

threshold (r between 0.631 and 0.698, depending on VI), whereas EVI plummeted to r = 

0.480 in CO 2013 at BBCH 55 (Table 1.5). Compared to them, SAVI never fell below this 

threshold. Therefore, the choice of the best VI was not so critical within a suitable time 

frame, despite relevant differences in spectral composition and calculation formula. 

Several works were found similar to our study, i.e. remote VIs successfully 

estimated spatial crop yields, Labus et al. (2002) found a strong relationship (R²=75.3%) 

between NDVI and wheat yield. Herbei and Sala (2015) studied the relationship between 

growth stages and VIs in sunflower, and found a maximum correlation with NDVI (R2 

>0.97) at flowering, followed by a decline at maturity. Plant et al. (2000) explained that 

NDVI is sensitive to canopy reflectance decreasing its correlation with cotton yield over 

a small field area. Yields of wheat, maize, rice, sugarcane and soybean were also 

successfully estimated by means of NDVI (Prasad et al., 2006; Pinheiro Lisboa et al., 2018; 

Singla et al., 2018). After positive achievements with NDVI, other VIs proved also 

effective in the estimation of different crop yields (Basso et al., 2004; Zarco-Tejada et al., 

2005; Hatfield et al., 2008; Kumhálová et al., 2014; Kayad et al., 2016; Kuiawski et al., 2017; 

Domínguez et al., 2017). 

The good performance of the spherical model in fitting GY experimental 

semivariograms (Table 1.6) is consistent with the equally good performance of the same 

model in fitting VI experimental semivariograms (Table 1.7). The higher sill values in the 

model structure of VI semivariograms is assumed to indicate a higher percentage of 
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canopy cover, because young plants have less contrast in reflected light spectra resulting 

in lower sill variance (Cohen et al., 1990). However, at growth stages > BBCH 30, as in 

our 15 cases (Table 1.7), full canopy cover is normally achieved, resulting in a random 

variation of sill data. Additionally, VI ranges largely exceeded GY ranges (Table 1.6), 

indicating a farther reaching SpD of VI vs. GY data. This, in turn, supports the adoption 

of the 30 m Landsat resolution also for GY data to be compared (Cohen et al., 1990). 

Lastly, geostatistical analysis indicates a strong SpD of VIs over distance (h), and the same 

was shown in GY data. In both cases, this is the premise for a continuous appraisal of the 

investigated traits over field surface. 

In accordance with the similarities shown in spatial pattern and geostatistical 

analysis, final agreement between remote indices and crop yields at pixel level (Table 1.8) 

was, unsurprisingly, related to the R² values between VIs and GY obtained from the r 

values reported in Table 1.5. More surprisingly, Fa data appeared to be adversely related 

to Fa coefficient of variation (Table 1.8). In other words, very good agreement was 

obtained when the variation among the three correspondence levels (high, medium, low) 

was limited, as in the case of SR at BBCH stage 37 and 77 in BW 2014 (Fa, 85-86% with 

respective CV, 27.1-27.5%). Conversely, a modest agreement was obtained when strong 

variation occurred among the three correspondence levels, as in the case of SR at BBCH 

stage 67 in SF 2011 (Fa, 64% with CV, 56.4%). In theory, Fa and CV are reciprocally 

independent, i.e. high Fa could also be obtained with high CV, and vice versa. This finding 

is of non-univocal interpretation and, to our knowledge, has not been reported so far in 

the literature. 

Several reasons can explain why VI ranking into quintiles does not fully match the 

same ranking of GY data. Water availability, nutrient uptake, crop management 

practices, weather conditions, pests and diseases, etc., can influence growth status and 

final yield to a different extent: resilience can be shown when a crop withstands 

unfavourable growth conditions (low VI values), attaining a fairly good yield. 

Conversely, rigidity is shown when slightly unfavourable growth conditions (relatively 

high VI values) result in poor yield. This latter case is also determined by the fact that GY 

may be reduced also when above-ground biomass is not significantly reduced. 

An overall Fa of 74% (Table 1.8) is nevertheless a good outcome: it means that 

almost ¾ of the 126 cells belong to the same VI and GY quintile, despite ample variation 

in both VI and GY data. 

There is still no general consensus in the use of rank comparison between spatially 

variable GY and remotely sensed VIs. In soybean (Kuiawski et al., 2017), the combined 
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SR and SAVI, together with soil elevation concurred to delineate management zones 

reflecting significant differences in final yield and soil properties. More generally, in 

winter cereals (barley and wheat), NDVI from Landsat as well as higher resolution 

satellites (QuickBird and WorldView-2) proved effective in describing yield spatial 

variability, especially at the onset of the reproductive stage (Kumhálová and Matějková, 

2017). The same happened in winter oilseed rape with the Enhanced Moisture Stress 

Index (Domínguez et al., 2017). No other hint of rank comparisons between VIs and GY 

can be found in the literature, to our best knowledge.  

The relationships (r and R² values) between VIs and final GY in the three cited 

sources (Domínguez et al., 2017; Kuiawski et al., 2017; Kumhálová and Matějková, 2017) 

are no better, in general, than those found in the present study (Table 1.8). In this light, 

the above discussed data of Fa (Table 1.8) may be considered encouraging, and set the 

premise for a larger use of remote (satellite) imagery in the interpretation and subsequent 

management of crop spatial variation. 

1.5. Conclusions  

Landsat satellite imagery with its spatial and temporal resolution exhibited a good 

potential for estimating the final GY over different crops in a chronological rotation, at a 

relatively small field scale (11.07 ha). This is further stressed by the circumstance that the 

spatial resolution provided by the Landsat system (30 m) was shown sufficient to 

characterize crop variation across a field of moderate extension. This sets the premise for 

a wider use of satellite data in yield predictions during the growing season, beside their 

role in supporting site specific management of crop practices. 

Simple ratio and NDVI were the two VIs most frequently selected as best indices, 

compared to EVI, SAVI, GNDVI and GCI across stages ranging from vegetative (BBCH 

~30’s) to reproductive phase (BBCH ~70’s). In contrast to this, SAVI never exhibited 

correlations with yield high enough during these stages, to be included among best VIs. 

Pixel level study demonstrated a generally good agreement between the five classes of 

VIs, on one side, and those of GY, on the other side.  

Beside these 15 cases showing the best correlations with yield, two specific time 

frames were identified for winter wheat and the two spring dicots, showing high and 

consistent correlations between all remote indices, in general, and final yields. Based on 

our data, this sets the premise for a reliable use of VIS in yield predictions. Outside these 

time frames, the relationships between VIs and GY are less consistent, and subjected to 

factors of difficult interpretation. 
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Chapter 2 

Soil and Weather Factors Drive Spatio-temporal Variability 

of Yields in a Crop-Rotation Field under Uniform 

Management 

Abstract 

Spatial variability in crop yield within agricultural lands is the premise for site 

specific crop management (SSCM) intended as means to enhance the crop output while 

reducing unneccessary costs and minimizing the environmental impact. In this study, 

standardised crop yields over five year (2010-2014) were used to characterize the spatio-

temporal field variability covering 11.07 ha area under rainfed conditions, cultivating 

winter cereals and spring dicots in a crop rotation system. The interpolated yield for each 

crop was classified into spatial and temporal variability across the field. Then, 

standardised yield maps were produced over single and multiple crops. Yield stability 

classes (YSCs) were produced over multiple crops based on the information of spatio-

temporal characteristics within field, each class identified by specific features that can be 

managed in a site specific way. These classes were as followed: high yielding and stable 

(HYS, relative yield > 100 %; CV < 30 %), low yielding and stable (LYS, relative yield < 

100 %; CV < 30 %), and unstable class (unstable, CV > 30 %). After that, we evaluated the 

YSCs by following the statistical simple correlations between stable soil properties and 

spatiotemporal yield within YSCs,  and as a function of the differences in soil properties 

among the three classes. In addition, we investigated the weather data within growing 

season of each crop for evaluating the temporal yield variability within years. Results 

demonstrate that spatial variability maps were more consistent with YSCs map than the 

temporal stability map. However, unstable class was found to be slightly more 

productive than the LYS class, but inconsistent over time. For the YSCs, the proportion 

of the three respective classes was 46, 30 and 24 %. Preliminary correlation analysis 

showed that relative yield variability within YSCs was fairly positively correlated with 

stable soil properties. Moreover, YSCs were also found to be relatively consistent vs. soil 

properties. Lower values of soil ECa, in the average, were found consistent with HYS, 

whereas higher ECa values were found inconsistent with LYS and unstable class yield. 

More specifically, the higher values of sand and ECa under unstable class did not 

significantly influence crop yields, resulting in a slightly higher relative yield (83 %) 

attained by unstable vs. the LYS class (80 %). Weather data showed an erratic behaviour 
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among the growing seasons of the surveyed crops, supporting the yield variability 

among years. Consequently, establishing YSCs based on spatial and temporal variability 

of crop yields may be considered the best approach for delineating the SSCM  zones, as 

it comprises all the factors influencing crop yield. 

2. Introduction 
Precision agriculture has a great potential to increase crop growth and final yield 

at minimum cost and detrimental environmental impacts through the application of 

variable crop inputs (Basso et al., 2017). Variable crop inputs at right time and place to a 

particular area, where yield is consistently high or low over time than average, based on 

previous field history to input response, is highly encouraged in today’s agriculture. 

Therefore, it is necessary to manage the areas within field through the observation of 

temporal behaviour of crops, in-season weather conditions, and determine soil nutrient 

status for optimizing the crop productivity and sustaining the finite natural resources 

(Blackmore, 2000; Maestrini and Basso, 2018a). However, soil properties significantly 

affect crop yield, but their interaction with yield depending on the interaction between 

soil physical-chemical properties and other external factors such as meteorological, 

topographic, anthropogenic factors and living entities within soil (Sys et al., 1991; Corwin 

et al., 2003). Bullock and Bullock (2000) stated that it is very important to adopt the most 

efficient methodology to characterize the spatial variability of soil for site specific crop 

management (SSCM). Apparent soil electrical conductivity (ECa) directed to soil 

sampling has been proved one of the most reliable method to characterize the field 

variability inflenced by soil properties and other external factors (Corwin and Lesch, 

2003). However, ECa has not shown always consistent results with crop yield due to 

complex interactions of ECa with soil data and other external sources (Corwin et al., 

2003).  

Variation of climatic factors, i.e. precipitation and temperature, has been found 

paramount to influence the variability in rainfed conditions over each year (Iizumi and 

Ramankutty, 2015; Asfaw et al., 2018). Currently, enough attention is being paid to 

minimize the uncertainty of crop yield within seasons (unstable zones) caused by the 

erractic pattern of climate variables, namely precipitation. Several factors combine to 

aggravate the situation of low yielding areas such as: a reduction in winter rainfall 

hampering soil moisture profile to be fully recharged, or on the contrary excess winter 

rainfall restricting rooting, flowering or heading stage are more susceptile to water deficit 

as compared to excess rain, lack of spring rain, very low radiation at the time of 
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fertilization of the flowers, and finally inadequate frost hardening of wheat associated 

with very severe cycles of frost and thawing (Brisson et al., 2010). Impacts of climate on 

crop yield also depend on latitude and topography of the area, as well as irrigation 

practices. According to the 5th Report of the Intergovernmental Panel on Climate Change 

(Field et al., 2014), as compared to the 20th century, average annual temperature will 

increase by more than 2 degree in South Asia in the middle of 21st century. Acoording to 

an estimation, increasing temperature will exceed 3-6  degree under high CO2 emission 

in the 21st century, whereas less than 2 or upto 3 degree under low emission scenario. 

However, the rate of increasing temperature will be higher under Himalaya regions as 

compared to global rate. Increasing temperature may influence the occurrence of 

precipitation, and ultimately availability of water to crop plants (Mishra et al., 2014). Crop 

yields can be increased through the application of irrigation water or precipitation during 

growing season. However, precipitation has more impact on grain yield than 

temperature (Kang et al., 2009). We should shorten the growing season of cultivated crops 

through changing the sowing time of crops in current changing environment, for 

enhancing crop adaptation to changing external conditions. However, it is very 

important to observe the climatic variables during growing season of crops to provide 

the insight for farmers to think critically about the selection of varieties, sowing time, 

plant population and dosages of fertilizers for crop cultivation (Cuculeanu et al., 2002; 

Barbanti et al., 2012; Asfaw et al., 2018).  

Furthermore, biotic (living entities) and abiotic stresses (non-living entities) are 

also equally contributing to affect crop growth and development, and ultimately yield. 

The impact of living entities such as insects, molluscs, higher animal, fungi, bacteria, virus 

and nematodes may or may not be advantageous to plant health, but it depends on the 

interaction between them (Higley and Peterson, 2001; Flynn, 2003; Dresselhaus and 

Hückelhoven, 2018). Shrestha et al. (2012) explained that sudden changes in climatic 

variables have shown greater influence on occurrence of insect pests, diseases and water 

availability during the growing season. Among abiotic stress, low water availability, heat, 

high salinity, flooding, high or low temperatures, hypoxia/anoxia, and nutrient 

deficiency have shown their influence on crop productivity (Mariani and Ferrante, 2017; 

Schlenker and Roberts, 2008), depending on crop genotype adaptation capabilities 

(Zandalinas et al., 2018; Dresselhaus and Hückelhoven, 2018). 

The field area of this study, 11.07 ha located near Ravenna, Italy, was managed in 

3 separate fields from 1976 to 2005: north part of the field was cultivated with peach 

orchard and vineyard, whereas the lower two fields were cultivated with grain crops. In 
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2006, a contractor modified the field into a single management unit and started the 

cultivation as a traditional farming in vertical position. However, this research work 

highlights the current status of field productivity based on spatio-temporal yield over 

five years data, and guidelines for field management practices in site speciifc way. 

Many past studies demonstrated the different methods for delineating the SSCM 

within same piece of land. Stafford et al. (1998) concluded that yield maps play an 

important role in precision agriculture for making site specific decisions. Using a yield 

map based on spatio-temporal characteristics is important for field management 

guidelines to enhance the agricultural commodities (Amado et al., 2007). Lark and 

Stafford (1996a & b) produced management zones (MZs) using multiple years’ yield data 

through unsupervised fuzzy clustering method. Swindell (1997) analyzed the spatial 

variability based on several crop harvest index over single year. Fraisse et al. (1999) 

contributed by adding topographical and soil EC data through unsupervised cluster 

analysis. Basnet et al. (2003) used several years’standardised yield to define the MZs 

through overlapping similar grid resolutions. Da Silva (2006) determined the 

homogenous zones based on spatio-temporal yields of irrigated maize over three years. 

Jaynes et al. (2005) defined the MZs using several years’ temporal yield of soybean, soil 

elevation and apparent soil ECa. Maestrini and Basso (2018b) went further and developed 

MZs based on spatio-temporal yield of maize, soybean, wheat and cotton over multiple 

years through considering the topography, crop vegetation indices and climatic factors 

within season. Hereafter, we delineated the yield stability classes (YSCs) based on spatio-

temporal yield over five years’ in a similar way as described by (Blackmore, 2000; 

Panneton et al., 2001; Panneton and Brouillard, 2002; Blackmore et al., 2003). Furthermore, 

we analyzed the crop spatio-temporal variability based on simple correlations and 

statistical differences of spatial soil data within YSCs; and additionally we examined the 

meteorological data trends during growing seasons of crops, which influence the 

temporal yield behaviour over each specific year (unstable zones). 

The key objectives of present research were to: i). Characterize the spatio-temporal 

patterns of yield in rainfed conditions under crop rotation and uniform management; ii). 

Follow the protocol of apparent ECa survey directed to soil sampling for examining the 

spatial variability of general soil physical-chemical properties within field; iii). 

Investigate the crops’ spatio-temporal variability as a function of simple correlations and 

statistical differences of stable soil properties within yield stability classes; iv). Examine 

the meteorological data during growing seasons of surveyed crops, which affect the 

temporal yield varaiability across years. 

https://www.sciencedirect.com/science/article/pii/S1537511003000382#BIB6
https://www.sciencedirect.com/science/article/pii/S1537511003000382#BIB6
https://www.sciencedirect.com/science/article/pii/S1537511003000382#BIB13
https://www.sciencedirect.com/science/article/pii/S1537511003000382#BIB4
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2.1. Materials and Methods 

2.1.1. Study site description 

A 11.07 field area of the Agrisfera Cooperative, located in the Mediterranean North 

environmental Zone (Metzger et al., 2005), was chosen as experimental field near 

Ravenna, Italy (Figure 2.1). This site is located at N 44° 29’ 26”, E 12° 07’ 44” and 0 m 

above sea level, showing flat landmass with predominantly sandy to clayey soil texture 

(up to 60 cm depth), depending on sub-field position. The field was managed in a 

chronological rotation with winter cereals, namely Durum Wheat 2010 (DW 2010) and 

Bread Wheat 2012 and 2014 (BW 2012 & 2014), and spring dicots, namely Sunflower 2011 

(SF 2011) and Coriander 2013 (CO 2013). Cultivation was based on the good agronomic 

practices for each specific crop, according to local conditions. 

 

 

Figure 2.1. Study site location in northern Italy 

2.1.2. Crop data collection and management 

Five years’ crop data were collected by a New Holland CR 9080 (CNH Industrial 

N.V., Basildon, UK) combine harvester using specific headers according to the crop. The 

combine was equipped with assisted guiding system based on real time kinematic GPS, 

yield mapping system consisting of a Pektron flow meter (Pektron Group Ltd, Derby, 

UK) and Ag Leader moisture sensor (Ag Leader Technology, Ames, IA, USA).  
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All raw yield data were processed for each crop, removing the data points that were 

beyond our projection (Blackmore, 1999). Resulting from this, an average 6170 GY data 

points were archived each year in the experimental area. The sowing and harvesting 

dates were: DW 2010, Oct. 30 (2009) – Jul. 10; SF 2011, Apr. 5 – Sep. 7; BW 2012, Oct. 14 

(2011) – Jul. 1; CO 2013, Apr. 11 – Jul. 10; BW 2014, Nov. 9 (2013) – Jul. 7. For each crop, 

standardised crop yield was used for comparison among years, by removing the yield 

units (t/ha) and replacing them with relative percentage (%) giving 100 % to field average 

yield, and calculated as follows: 

𝑆𝑖 = (
𝑦𝑖

�̅�
)  ×  100                                                              1 

Where, 𝑆𝑖=standardised yield (%) at point i within field, 𝑦𝑖=yield at point i (t/ha), and 

�̅�=mean yield of all data points of that year.  

Then, we employed the geostatistical analysis (ArcGIS version 10.3) on 

standardised crop data of each year for 3 purposes: i) to examine the degree of spatial 

dependence (SpD) in term of semivariogram between crop yields over five years, ii) to 

produce the continuous grid points over entire field before mapping, iii) to allow the 

calculations between years to be carried out in a excel sheet using the data from 

coincident grid points for spatial and temporal maps. The semivariogram is a function of 

dissimilarity between measured data points from each other over a distance (h). The SpD 

was calculated according to following equation: 

𝛾(ℎ) =
1

2𝑁(ℎ)
𝑋∑ [Z(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)

𝑁(ℎ)

𝑖=1
]2                                           2 

Where, 𝛾(h) is semi-variance, h represents a lag distance between two data points, N(h) is 

the number of paired points at distance (h), Z(𝑥𝑖) and Z(xi + h) are measured values at 

two separate locations namely (xi), (𝑥𝑖 + h) over defined distance.  

To describe the semivariogram properties, 3 parameters are necessary to be 

defined: nugget (C0), measurement errors at 0 distance (h=0) that could not be identified; 

sill (C0 + C1), the maximum value at y-axis that increases with increasing lag distance (h) 

and remains constant at higher distance; range (a), maximum value at which data points 

still correlated and semivariogram touches the maximum sill value at y-axis; beyond that 

maximum distance there is no more spatial correlation. We calculated the degree of 

spatial dependence (DSpD) as given by Cambardella et al. (1994): < 25 %, indicating 

strong SD; (ii) 25-75 %, moderate SD; (iii) >75 %, weak SD.  

Iterative cross validation technique was used to choose the best fitting 

semivariogram model among Circular, Spherical, Exponential, Gaussian and Stable one, 

based on the highest coefficient of determination (R2) and minimum mean absolute error 

(MAE) (Xiao et al., 2016). The maximum R2 and minimum errors is the criteria for 
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choosing a best-fitting interpolation model (Cornell & Berger, 1987; Dashtpagerdi et al., 

2013). Standardised maps over single crop were produced by simple kriging (SK) with 10 

m cell size, giving 22 columns and 70 rows, through best fitting semivariogram models 

(Moral et al., 2010). Simple kriging is an interpolation method providing maximum R² 

and minimal error parameters (Maynou, 1998; Xiao et al., 2016). Based on these principles, 

each map was obtained with 1156 regular grid points having 100 % field average yield, 

hence each sampling point could be compared to mean yield of all data points within 

field to identify how much the yield points in the field differ from the 100 % field average. 

For multiple crops, a spatial variability map was produced by simply calculating the 

interpolated yield at each point from standardised data, laid over the same grid over the 

five years: 

𝑆�̅� =
∑ 𝑆𝑛
𝑡=1 𝑖𝐼

𝑛
                                                                                   3 

Where, 𝑆̅i= mean of interpolated Si (%), Si= interpolated standardised GY (%) at point i 

over n years. 

For multiple crops, a temporal variability map was produced to assess the stability 

of GY over the five years, demonstrating how much GY varied at each single point over 

time. In this case, we calculated the coefficient of variation (CV) of each grid point from 

standardised crop data over the 5 years (Blackmore, 2000): 

𝐶𝑉𝑆𝑖 =
(

 
 
∑ 𝑆2𝑖𝑡−(∑ 𝑆2𝑖𝑡

𝑡=𝑛

𝑡=1
)

2
𝑡=𝑛

𝑡=1
)

 
 

𝑛(𝑛−1)

0.5

𝑆�̅�
  ×  100                                                             4 

Where, 𝐶𝑉𝑆𝑖= interpolated standardised CV (%) at point i over n years. 

For the threshold level of spatial maps over single and multiple crops and 

temporal map over multiple crops, the four class boundaries were assigned based on the 

natural break classification technique in which the data values are arranged in order and 

grouped together based on statistically adjacent data points. Two classes were defined at 

either side of the 100 % field average for spatial maps, whereas four classes were 

produced for temporal map defined between 2-73 % CV. With this method, each class 

showed a relatively large difference as compared to another, which in turn minimizes the 

standard deviation (SD) within the data of each class. 

2.1.3. Spatio-temporal yield variability analyses  

The YSCs were produced through combining both spatial and temporal maps over 

the five consecutive years. Three YSCs were produced as followed: high yielding and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828368/#CR6
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stable (HYS), low yielding and stable (LYS), and unstable. Each class derived from the 

spatio-temporal data set of multiple crops (equations 3 & 4), with 3 years winter cereals 

(bread and durum wheat) and 2 years spring dicots (sunflower and coriander), by 

applying the combinational logic statement (Blackmore, 2000). A GY point was 

considered to belong to a particular class if both conditions shown in table 2.1 were 

fulfilled.  

Table 2.1. Yield stability classes and their logical statement 

Yield stability classes 
              Multiple crops 

Logic 1 Logic 2 

HYS 

LYS 

Unstable 

si>100 

si<100 

- 

CVsi<30 

CVsi<30 

CVsi>30 

HYS, high yielding and stable; LYS, low yielding and stable; si, interpolated standardised grain yield at 

point (i); CVsi, interpolated standardised coefficient of variation at point (i). 

 

Logic 1 indicated whether GY point was above or below the mean yield of all 

points in the field (100 % field average), whereas logic 2 defined the stability of the yield 

at that GY point over the five years, by comparing the CV with a given threshold (30 %) 

within field. 

All georeferenced maps and data anaylsis were carried out by ArcGIS software 

under the reference system WGS 84/UTM zone 32N-EPSG: 32632 

2.1.4. Soil characterization 

For soil analysis, a procedure developed by Corwin and Lesch (2003, 2005) was 

used for ECa directed to soil sampling. Soil ECa survey was conducted by using mobile 

based electrical resistivity (ER) over the 11.07 ha field area (Figure 2.2). The fixed ER 

electrodes were adjusted to measure ECa to a depth of 0.60 cm. The raw ECa data points 

were projected to Universe Transverse Mercator (UTM) reference system in the EPSG: 

32632 with 32° N by using ArcMap version 10.3. Then raw ECa data were cleaned and 

total 2651 points (dS/m) were obtained across the field. After ECa survey, the ESAP-95 

version 2.01 statistical software developed by Lesch et al. (2000) was used to determine 

the variable positions where soil cores were taken based on ECa measurements. Twenty 

soil sampling positions (Figure 2.2) were chosen using model based response surface 

(ESAP software) sampling type (Lesch et al., 1995). Sampling positions were searched out 

through GeoGIS mobile-based GPS Stonex version 14.097. Soil cores from the 20 sites 

were taken with a drilling rig from 0-60 cm depth with the increment of 30 cm: 0-30 and 
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30-60 cm. Soil samples were collected in muslin cotton bags then air-dried at 40 °C, and 

sieved with 2 mm diameter mesh. 

 

Figure 2.2. Map of extensive soil ECa survey and 20 soil sampling sites. Positions of soil sampling are 

indicated by green circle. 

2.1.5. Soil physio-chemical analysis 

In lab, sieved soil (200-250 g) was taken from 20 designated sampling sites for the 

analysis of general soil properties: soil texture (sand, silt and clay), pH, total carbonate 

(CaCO3), total organic carbon (C), total nitrogen (N), available P (Olsen), exchangeable 

cations (K, Ca, Mg, Na), cation exchange capacity (CEC), and soil electrical conductivity 

(ECe). Soil analysis was determined by using the analytical methods of the Italian 

protocol for soil analysis (D.M. 13/09, 1999), apart from CEC that was measured by cobalt 

hexamine trichloride method (Orsini and Rémy, 1976), and C and N by dry combustion 

method (CHNS-O mod. EA 1110, Thermo Scientific GmbH, Dreieich, Germany), by 

means of acetanilide as a standard for C and N concentration.  
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2.1.6. Evaluation of spatio-temporal YSCs 

Simple correlations were calculated between spatiotemporal yield variability 

(within YSCs) and stable soil properties (soil texture, CEC, standardised ECa). 

Correlation between soil properties, soil properties and ECa, and between spatiotemporal 

yield and ECa were also determined. Thereafter, we went further and determined 

whether historical spatio-temporal yield (within YSCs) could effectively describe the 

statistical differences of stable soil properties  using one-way analysis of variance. Once 

the soil data (avg. depth 0-60 cm) were classified to each of the three YSCs, then 

differences were evaluated in the same way as described by Li et al. (2008) and Scudiero 

et al. (2018). In addition, we examined the in-season weather data during the growing 

season of the surveyed crops to evaluate the temporal yield variability within years. To 

do so, five years’ meteorological data of Agrisfera Cooperative Farm, Ravenna Italy,  was 

obtained from the Hydro-meteorological Services of the Emilia-Romagna region. We 

investigated the wet and dry periods from initial to late developmental stages, Feekes 

growth scale by Large (1954), during growing period of each crop, by computing crop 

evapo-traspiration (ETc) according to Allen et al. (1998), and its balance with precipitation 

(P). We also observed the total precipitation and average temperature trends on monthly 

basis during cropping period according to Bagnouls and Gaussen (1953). Many past 

studies demonstrated that climatic variables such as moisture levels, drought periods, 

precipitation and temperature trends significantly influence the temporal yield stability 

within growing season of the specific year (Homdee et al., 2016; Barbanti et al., 2012; 

Frieler et al., 2017; Mkonda and He, 2017; Asfaw et al., 2018; Kukal and Irmak, 2018; 

Mohsenipour et al., 2018; Maestrini and Basso, 2018a; Shiru et al., 2018; Tian et al., 2018). 

2.2. Results and Discussion 

2.2.1. Descriptive statistics of crop yields  

Table 2.2 summarizes the differences between crop yield traits (mean, minimum, 

maximum, coefficient of variation (CV), kurtosis and skewness) over the five years. Crop 

yield varied greatly in minimum and maximum level during the study period. However, 

the largest min.-max. range (183) was found in BW 2012, whereas the tightest range (143) 

was shown in DW 2010. During the study period, the CV was high, ranging from 29 % 

for DW 2010 to 38 % for SF 2011 and CO 2013 (Blackmore, 2000; Gomes, 1985). These 

variations might be due to the influence of soil edaphic (physiochemical properties), 

anthropogenic (human activity influencing environment), biological (living entities), 
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meteorological (short-term climatic conditions) factors, as well as interactions among 

them (Yang et al., 1998; Kravchenko & Bullock, 2000). Lastly, the five years’ yields were 

shown to be non-normally distributed, as the significant Kolmogorov-Smirnov test 

demonstrates. 

Table 2.2. Descriptive statistics of standardised crop yield 

Crop 

yields 

(relative %) 

Mean Min. Max. CV Kurtosis Skewness K-S 

DW 2010 100 13 156 29 -0.1 -0.6 * 

SF 2011 100 12 190 38 -0.7 0.2 * 

BW 2012 100 14 197 32 0.1 -0.1 ** 

CO 2013 100 19 181 38 -1.0 -0.3 * 

BW 2014 100 21 178 33 -0.9 -0.2 * 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; Min., minimum; Max., maximum; 

CV, coefficient of variation; K-S, Kolmogorov-Smirnov test for normal distribution; **, significant at P ≤ 

0.05; *, significant at P ≤ 0.01. 

2.2.2. Geostatistics 

The spatial behavior of crop yields was evaluated in terms of semivariogram 

along with their model fitting (Table 2.3). DW 2014 showed a zero nugget effect followed 

by SF 2011 (0.01) and DW 2010 (0.03). Zero nugget effect indicates a high spatial 

continuity between data points. All crops exhibited a sill variance (C0+C) ranging from 

0.92 to 1.17, indicating a relatively similar total variance. However, the range of SpD 

varied enough, starting from 64 to 121 m. High range described the continuity between 

dataset to a maximum limit, whereas continuity disappeared very fast in the case of low 

range of data points. The degree of SpD explained the nugget to sill ratio: values less 

than 25 % indicate strong spatial continuity in their data distribution (Cambardella et 

al., 1994). Based on this, crop data showed ‘strong’ continuity in their SpD, except BW 

2012. The results of semivariogram model fitting (R2 and MAE) confirmed the good 

performance over the analyzed empirical data (Maynou, 1998; Xiao et al., 2016; Bhunia 

et al., 2018). 
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Table 2.3. Analysis of semivariogram parameters of standardised crop yields 

Crop 

yields 
Model C0 C0+C 

a  

(m)  

C0/ C0+C  

(%) 
DSpD R2 MAE 

DW 2010 Stable 0.03 1.05 64 2.5 S 0.91 5.46 

SF 2011 Exponential 0.01 1.01 38 1.0 S 0.92 7.51 

BW 2012 Exponential 0.31 1.17 121 26.5 M 0.86 5.39 

CO 2013 Stable 0.13 0.96 66 13.5 S 0.90 7.58 

BW 2014 Stable 0.00 0.92 51 0.00 S 0.95 5.13 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; C0, nugget; C, partial sill; C0+C, sill; a, 

range; C0/ C0+C, SpD; DSpD, degree of spatial dependence; S, strong; M, moderate. 

2.2.3. Yield maps and spatio-temporal variability 

Standardised GY maps were produced over single and multiple crops showing 

four classes either above or below the field average (Figure 2.3), namely: high yielding 

(HY), above average (AA), below average (BA) and low yielding (LY). For single crops, 

the upper and lower limits and their ranges were indicated in Table 2.2. Compared to 

single crops, in multiple crops a higher minimum (27) and lower maximum (148) relative 

yield were found, resulting in a narrower range (121). It can be seen that single-crop 

spatial variability maps and multiple-crop yield stability map were relatively consistent 

(Figure 2.3). This information indicates that low yield was found in the north part of the 

field, which covered an area of approximately 2.8 ha out of 11.07. Importance of stability 

becomes increased over multiple crops as compared to single crop. However, spatial 

variability maps were influenced more by high GY values than consistent changes over 

certain field parts (temporal yield). 

Compared to the spatial variability maps for the single and multiple years, the 

temporal stability map that was produced by calculating the CV at each of the 

standardised grid points over multiple crops (Figure 2.3) indicated good stability in the 

five years over an area of 8.26 ha (76 %), while a 2.8 ha (24 %) area was seen unstable. 

This area can be considered significant for crop management practices, as it covers almost 

one fourth of the field surface. We observed that unstable portion of the field gave high 

yield as compared to LYS (Table 2.7). Therefore, this part of the field can be sufficiently 

productive as to non-significantly affect the overall crop yields, but it showed uncertainty 

over time, depending on management practices and, especially, in-season weather 

conditions.  

Yield stability map depicts the features of spatio-temporal maps (Figure 2.3). The 

threshold level of each of the three YSCs were based on the logical statement (Table 2.1). 

All data points (1156) were converted to excel sheet to identify these three classes, HYS, 
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LYS and unstable, which were identified and exported by applying the logical statement 

(Table 2.1). The two yield stability classes HYS and LYS were shown stable and more 

reliable, consistently indicating the size and position of spatio-temporal variability across 

the field as compared to unstable class which changed over time and space. The YSCs 

identified the southern and northern part of the field to be consistently high and low 

yielding area, respectively. Therefore, they could be managed separately for maximizing 

the crop productivity in a site specific manner.  
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Figure 2.3. Consolidated spatio-temporal yield maps:  LY, low yielding; BA, below average; AA, above 

average; HY, high yielding; a (spatial variability map of DW 2010); b (spatial variability map of SF 2011); 

c (spatial variability map of BW 2012); d (spatial variability map of CO 2013); e (spatial variability map of 

BW 2014); f (spatial variability map over 5 years’ multiple crop); g (temporal variability map over 5 years’ 

multiple crop); h (yield stability classes over spatiotemporal variability over 5 years’ multiple crops). 
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2.2.4. Yield data distribution within spatio-temporal yield stability classes  

Data distribution within the classes of spatio-temporal maps is shown in Table 2.4.  

For spatial variability, in DW 2010 GY data distribution was found more skewed 

towards high yielding class, i.e. more grid points belonged to classes above average than 

below average. However, more grid points were found in above average yield in BW 

2012, CO 2013 than below average class. Finally, more yield grid points were found under 

below average class than above average and high yielding classes, respectively, in case of 

SF 2011, DW 2014 and spatial map of multiple crops. The differences between the GY 

points over single and multiple crop maps highlight the circumstance that class limits are 

not coincident between single and multiple dataset. Both single and multiple crop 

distribution have units of percentage.  

For temporal variability, CV limits range from 2 to 73 %. Based on this, out of 1156 

data points, 334 points (29 % or 3.3 ha) were in the highly stable class (2-14 % CV), 310 

points (27 % or 3.1 ha) were in the medium stable class (14-22 % CV), 310 points (27 % or 

3.1 ha) in the lowly stable class (22-30 % CV), whereas 277 data points (24 % or 2.8 ha) 

were found in the unstable class (30-73 % % CV). Data distribution within each class is 

skewed towards lower stability class, except unstable class.  

For yield stability classes, 527 data points (46 % or 5.3 ha) were found in HYS class, 

352 (30 % or 3.5 ha) were grouped into LYS, and 277 points (24 % or 2.8 ha) were classified 

as unstable. No data point was found outside the three yield stability classes. 
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Table 2.4. Grain yield and CV data distribution within each class of spatio-temporal and yield stability 

classes 

Variables 
Relative yield (avg. 100 

%) or CV 
Yield or CV classes  Grid points 

DW 2010 

13-61 LY 134 

61-100 BA 317 

100-116 AA 301 

116-156 HY 404 

SF 2011 

12-61 LY 161 

61-100 BA 439 

100-134 AA 293 

134-190 HY 263 

BW 2012 

14-67 LY 176 

67-100 BA 374 

100-138 AA 506 

138-197 HY 100 

CO 2013 

19-60 LY 213 

60-100 BA 323 

100-131 AA 335 

131-181 HY 285 

BW 2014 

21-64 LY 176 

64-100 BA 387 

100-127 AA 304 

127-178 HY 289 

Spatial map 

27-66 LY 135 

66-100 BA 402 

100-120 AA 325 

120-148 HY 294 

Temporal map (CV 

data) 

2-14 Highly stable 334 

14-22 Medium stable 310 

22-30 Lowly stable 325 

30-73 Unstable 277 

Yield stability classes 

HYS  527 

LYS  352 

Unstable 277 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; CV., coefficient of variation; LY, low 

yielding; BA, below average; AA, above average; HY, high yielding; HYS, high yielding and stable; LYS, 

low yielding and stable. 

2.2.5. Spatial variability of general soil properties 

Table 2.5 shows the physical-chemical soil properties depicting two depths that 

influence soil ECa and crop yield variability. The soil properties, namely sand, CaCO3, C, 

N, C:N ratio, P, K, Ca, CEC and ECe decreased in the deeper (30-60 cm) vs. shallower (0-

30 cm) soil layer, whereas silt, clay pH, Mg were increased with depth. However, silt and 
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clay reached in average 38.2 and 12.1 % at 30-60 cm depth, respectively, while sand 

attained 52.7 % at 0-30 cm depth. The pH range was 8.02-8.67, which demonstrates the 

alkaline characteristics of the soil. The highest organic carbon (6.56 g/kg) was observed 

in the top soil (0-30 cm). The CEC value decreased from 11.8 to 9.34 with depth increment 

(30-60 cm vs. 0-30 cm), while EC decreased from 178 to 160 with the same depth 

increment. Overall, the soil physical-chemical properties showed a variation (CV) 

ranging from only 0.4 % of pH up to 34.0 % of silt, affecting crop behaviour and final 

yield to a potentially different degree. 
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Table 2.5. Descriptive statistics of soil physical-chemical properties for two depths (0-30 & 30-60 cm). 

Soil traits Mean Min Max SD 
CV  

(%) 
Kurtosis Skewness 

Depth 0-30 cm       
% sand 52.7 32.3 77.9 15.8 29.9 -1.5 0.2 

% silt 36.3 16.5 53.1 12.3 34.0 -1.5 -0.1 

% clay 11.0 5.57 17.4 3.70 33.5 -1.4 -0.2 

pH 8.02 7.78 8.39 0.04 0.46 0.0 0.7 

CaCO3 (g/kg) 185 142 218 4.63 2.50 -0.8 0.0 

C (g/kg) 6.56 3.79 9.35 0.37 5.69 -1.0 0.0 

N (g/kg) 0.82 0.51 1.06 0.04 4.65 -0.9 -0.4 

C:N 7.94 6.84 10.3 0.84 10.6 1.9 1.2 

P (mg/kg) 6.45 3.80 9.60 0.37 5.78 -0.8 0.3 

K (cmol+/kg) 0.17 0.09 0.36 0.01 7.83 5.4 2.0 

Ca (cmol+/kg) 8.51 5.46 11.0 0.40 4.65 -1.2 -0.4 

Mg (cmol+/kg) 0.70 0.28 1.05 0.06 8.25 -1.4 -0.4 

Na (cmol+/kg) 0.07 0.03 0.16 0.01 9.08 3.7 1.3 

CEC (cmol+/kg) 11.8 7.09 15.6 0.55 4.67 -0.8 -0.3 

EC (μS/cm) 178 120 209 5.56 3.13 0.0 -0.8 

Depth 30-60 cm       
% sand 49.7 30.1 75.7 15.5 31.2 -1.5 0.4 

% silt 38.2 18.1 53.8 12.5 32.8 -1.6 -0.3 

% clay 12.1 4.3 16.2 3.54 29.4 -0.2 -0.8 

pH 8.67 8.39 9.02 0.03 0.37 0.8 0.5 

CaCO3 (g/kg) 179 153 205 3.12 1.75 0.0 0.0 

C (g/kg) 5.54 2.96 7.41 0.30 5.39 -0.9 -0.5 

N (g/kg) 0.73 0.45 0.93 0.04 5.00 -1.3 -0.5 

C:N 7.56 6.45 8.08 0.36 4.77 3.8 -1.4 

P (mg/kg) 6.32 3.40 10.2 0.47 7.41 -0.5 0.6 

K (cmol+/kg) 0.13 0.07 0.27 0.01 7.88 2.9 1.2 

Ca (cmol+/kg) 8.24 5.35 10.3 0.39 4.69 -1.4 -0.5 

Mg (cmol+/kg) 0.73 0.30 1.12 0.06 8.66 -1.4 -0.3 

Na (cmol+/kg) 0.07 0.04 0.13 0.01 8.47 1.3 1.3 

CEC (cmol+/kg) 9.34 5.09 13.2 0.54 5.83 -1.0 -0.2 

EC (μS/cm) 160 136 187 2.76 1.73 0.1 0.2 

Min, minimum; Max, maximum; CV, coefficient of variation. 

 

To cover the whole soil depth, Table 2.6 reports the averaged values of soil 

physical-chemical properties (0-60 cm) collected at the experimental field from the 20 

positions. Exchangeable magnesium (Mg) and silt showed greater degree of spatial 

variability over the study area, as these contents exhibited the highest coefficient of 

variation (37.2 and 33.4 %), followed by clay and sand contents (31.1 and 30.2 %), 
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respectively. Exchangeable sodium (Na) did not change with depth, but showed a 

considerable variability (CV = 30.1 %) followed by P (CV = 28.3 %), K (CV = 26.7 %) and 

CEC (CV = 21.8 %). In contrast to this, pH, the C:N ratio and CaCO3 staged the lowest 

variability across the field (CV < 10 %). 

Table 2.6. Descriptive statistics of soil physical-chemical properties averaged in the two soil layers (0-60 

cm). 

Soil traits Mean Min Max SD 
CV  

(%) 
Kurtosis Skewness K-S 

Depth 0-60 cm        

% sand 51.7 31.7 76.1 15.6 30.2 -1.6 0.2 * 

% silt 36.9 17.0 53.3 12.3 33.4 -1.5 -0.2 * 

% clay 11.4 5.70 17.0 3.54 31.1 -1.3 -0.3 * 

pH 8.34 8.16 8.65 0.15 1.76 -0.3 0.8 * 

CaCO3 (g/kg) 182 160 203 11.7 6.42 -0.7 -0.2 * 

C (g/kg) 6.05 3.59 7.93 1.45 23.9 -1.2 -0.4 * 

N (g/kg) 0.78 0.48 0.98 0.16 20.9 -1.2 -0.6 * 

C:N 7.76 7.17 8.99 0.48 6.19 0.6 0.9 * 

P (mg/kg) 6.38 3.60 9.70 1.81 28.3 -0.6 0.4 * 

K (cmol+/kg) 0.15 0.11 0.25 0.04 26.7 0.2 0.8 * 

Ca (cmol+/kg) 8.38 5.44 10.4 1.74 20.7 -1.3 -0.5 * 

Mg (cmol+/kg) 0.71 0.30 1.03 0.27 37.2 -1.4 -0.4 * 

Na (cmol+/kg) 0.07 0.04 0.11 0.02 30.1 -0.3 0.4 * 

CEC (cmol+/kg) 10.5 6.09 13.7 2.30 21.8 -0.9 -0.5 * 

EC (μS/cm) 169 128 187 14.7 8.70 1.7 -1.2 * 

Min, minimum; Max, maximum; CV, coefficient of variation; K-S, significance of Kolmogorov-Smirnov 

test for normal distribution; *, significant at P ≤ 0.05. 

 

2.2.6. Quality control of Spatio-temporal YSCs 

 

Simple correlation analysis between spatial soil data and crop yield is a first step 

to understand the yield variability at field level in PA. In this way, correlation provides 

the direct evidence to study the causes of yield variability through linear relationship 

between variables. Hence, simple correlations provide the initial information to 

determine what factors influence the crop yield. 

There were significant correlation coefficients were exhibited between selected soil 

properties (Table 2.7). However, sand contents showed inverse correlation with other soil 

properties. The soil parameters (% silt and % clay) exhibited positive relations with each 

other showing the correlation coefficient ranging between 0.87-0.91. Furthermore, ECa is 

positvely correlated with sand content (r = 0.50), and negatively correlated with silt (-

0.52), clay (-0.40) and CEC (-0.20) contents. Hence, ECa relationship with soil parameters 
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showed that they could be measured by ECa, because ECa is highly co-related with soil 

texture and CEC. The highest correlation between single soil property and relative yield 

(YSCs) was found in case of % silt (0.49) followed by CEC (0.42) (Table 2.7). However, 

sand contents showed an inverse correlation (-0.47) with yield. Correlation between ECa  

and yield was also negative (r = -0.71), meaning that ECa is highly correlated with studied 

crop yields which explained 71 % yield variability. However, ECa is a measure of several 

other soil properties which may or may not affect the crop yield, depending on the level 

of ECa at field scale. Moreover, there were also other soil or external factors influencing 

the yield beyond those measured by ECa (Corwin et al., 2003). At this particular site, ECa 

was found to be a useful parameter for studied crops variability i.e. wheat, sunflower and 

coriander. A scatter plot showed linear correlation with relative yield (%) through 

increasing or decreasing levels with respect to specific soil property (Figure 2.4). The 

relative yield within YSCs showed negative linear correlation with % sand and ECa, 

whereas positive correlation with silt, clay and CEC contents. Positive linear correlation 

showed that there were no yield limiting effects contributing to decrease crop yield, 

whereas factors which showed negative correlation with yield exhibited yield limiting 

effects on particular crop. In this study site, soil texture (% sand, % silt and % clay) and 

CEC showed linear correlation with yield data to various degrees (Figure 2.4: 2.4a, 2.4b, 

2.4c, 2.4d and 2.4e). In this research the considerable variation in crop yields (within 

YSCs) across the field was fairly correlated to the parallel variation of selected soil 

properties. The present results are in line with the findings of Di Virgilio et al. (2007). 

Therefore, it is important to understand the causes of yield variability through soil related 

factors for delineating the appropriate management zones that may be expected to 

substantially improve the final crop productivity. 
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Table 2.7. Pearson correlations between selected soil properties, ECa and spatio-temporal yield within 

YSCs 

Variables % sand % silt % clay 
CEC  

(cmol+/kg) 

ECa 

(dS/m) 

Relative yield 

(%) 

% sand 1      

% silt -1.00 1     

% clay -0.94 0.91 1    

CEC (cmol+/kg) -0.89 0.87 0.90 1   

ECa (dS/m) 0.50 -0.52 -0.40 -0.20 1  

Relative yield 

(%) 
-0.47 0.49 0.40 0.42 -0.71 1 

Significant correlations are shown based on 20 soil data point at P ≤ 0.05 

 

 

 
Figure 2.4. Scatter plots of stable soil properties, ECa and spatio-temporal yield (%) within YSCs based on 

20 soil data points 
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Classification of stable soil physiochemical properties (soil depth 0-60 cm) related 

to spatio-temporal yield variation depicted statistical differences of soil data within each 

YSCs (Table 2.7). The lowest mean value of sand content (42.9 %) was found consistent 

with HYS class, performing maximum GY (122 % of average yield), whereas intermediate 

sand content (54.4 %) was recorded under LYS giving only 80 % yield. However, 

maximum mean sand (58.1 %) was observed under unstable class at high field 

uncertainty (CV>30 %), where the relative GY was slightly more (83 %) than LYS class. 

This fact demonstrates that higher mean value of sand contents did not significantly affect 

the overall yield within unstable field part  under current field conditions (Table 2.7). 

Compared to this, mean contents of silt, clay and CEC were found to be consistent with 

the three YSCs. In addition, the values of these soil properties (silt, clay and CEC) were 

found high in HYS, intermediate in LYS and lowest in unstable class. It is therefore 

evinced that these soil traits increased the crop yield at higher contents, whereas lower 

contents had not showed significant adverse effects on crop yields within unstable, as 

compared to LYS class. The minimum soil ECa was found consistent with HYS class, 

giving maximum crop yield (122 %) as compared to LYS and unstable. However, slightly 

higher values of ECa were found in unstable class in which more grain yield was attained 

83 % than LYS, meaning that higher ECa under higher variability area (CV>30 %) had not 

shown the significant negative affects on crop yields. Corwin and Lesch (2003) explained 

that soil ECa values are not always consistent with crop yield variability, due to complex 

interactions of soil properties, environmental factors or interaction among them with 

ECa, influencing final yield. Furthermore, stable soil properties evidenced higher 

variations (CV) within LYS class, demonstrating that these soil indices had shown slightly 

negative effects on spatiotemporal crop yields, giving lower yield (80 %) than HYS and 

unstable class. Consequently, mean values of spatial soil properties had shown 

considerable statistical differences and were aligned with the spatio-temporal variability 

within yield stability classes. 
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Table 2.7. Differences in soil variables among YSCs. 

Variables 
Yield 

classes 

Data 

points 
Mean Min Max 

CV  

(%) 
K-S 

% sand 

HYS 7 42.9 33.8 69.7 29 *** 

LYS 6 54.5 31.7 76.1 36 *** 

Unstable 7 58.1 39.6 74.7 21 *** 

% silt 

HYS 7 44.2 24.7 49.5 21 *** 

LYS 6 34.7 17 53.3 46 *** 

Unstable 7 31.5 19.3 45.7 29 *** 

% clay 

HYS 7 12.9 5.67 17 28 *** 

LYS 6 10.8 6.77 15.4 35 *** 

Unstable 7 10.4 5.93 14.7 31 *** 

CEC (cmol+/kg) 

HYS 7 11.4 8.62 13.4 14 *** 

LYS 6 10.1 7.09 13.7 28 *** 

Unstable 7 10.1 6.09 12.9 24 *** 

Standardised ECa 

(ds/m) 

HYS 1202 -0.01 -3.56 3.56 -1 *** 

LYS 815 0.01 -3.11 3.01 1 *** 

Unstable 634 0.02 -2.93 2.66 0.5 *** 

Crop yields (relative %) 

within YSCs 

HYS 527 122 100 148 9 *** 

LYS 352 80 27 100 19 *** 

Unstable 277 83 29 136 32 *** 

HYS, high yielding and stable; LYS, low yielding and stable; Min, minimum; Max, maximum; CV, 

coefficient of variation; K-S, signficance of Kolmogorov-Smirnov test for normal distribution; *, 

significant at P ≤ 0.05; **, significant at P ≤  0.01; ***, significant at P ≤ 0.001. 

 

At the end, the interesting question is why some areas of the field produced high 

yield over others, and why other areas changed over time, some years producing high 

yield and other years producing low yield (unstable zones). To address these questions, 

we investigated the balance of ambient moisture during the five growing seasons (Table 

2.8). During DW 2010, the crop growing period from tillering to heading (initial to mid-

season) received total precipitation (206 mm) and was considered a wet period, 

whereas late-season (ripening stage) suffered from a dry period (-68 mm). Bread wheat 
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2012 and 2014 also received enough precipitation from tillering to stem elongation 

stages (initial to developmental stages) (28 and 212 mm, respectively), thereafter a dry 

period was registered approaching from heading to ripening (maturity stages). The 

combined results of temperature and precipitation were also investigated for winter 

cereals and spring dicots (Figure 2.4 and 2.5). The range of total precipitation for winter 

cereals (DW & BW) was 212-702 mm from October to June, whereas the range for 

spring dicots (SF & CO) was 222-300 mm from March to August. In some months 

during mid growing season, very low precipitation occurred as in case of BW 2012. 

DW 2010 and BW 2014 received enough precipitation during the peak developmental 

stages (Jan-April). During winter cereals, temperature pattern also changed over 

seasonal growth among years, exhibiting very low values in winter months (Nov-

March) and then increasing values during later months. In spring dicots, the average 

temperature ranges were from 10 to 25 °C during the growing period. We observed 

that precipitation in the given region varied greatly from one crop season to another, 

affecting crop growth and development, and utimately yield. Many past studies 

indicated that crop yields significantly varied between years over erratic behaviour of 

water availability during the growing season (Kang et al., 2009; Kukal and Irmak, 2018). 

However, timing, frequency and intensity of climatic variables, especially precipitation, 

had also considerable effects on crop growth and yield components (Poudel and Shaw, 

2016; Kukal, and Irmak, 2018). 

In our study, spring dicots (SF 2011 and CO 2013) suffered more with water 

deficit periods during whole growing period, and exhibited higher variation (CV = 38 

%) during growing season as compared to winter cereals (CV = 29-33 %) (Table 2.2). 

Moreover, higher rains at early growth stages of winter wheat might be responsible for 

water logging, denitrification, etc., and in turn limit the final productivity. In the case of 

the two short cycle spring dicots, precipitation was recorded below potential needs 

(ETc) during the whole growing period that was, therefore, considered a continuously 

dry period, because of higher evapotranspiration due to higher temperature during the 

spring/summer period. Hence, dry periods of spring dicots are more responsible for 

influences on the grain yield pattern over years, which highly contributed in temporal 

variability during cropping seasons. Based on the ambient moisture conditions during 

growing seasons, it appears that wet and dry periods depending on total rainfall, crop 

evapotranspiration and temperature had a considerable effect on crop behaviour. 

Generally, crops need more water at heading or ripening stages for successfully 

completing the growth cycle towards maturity, whereas early stages are less sensitive to 
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scarce water because crops are only initiated to reproductive stage (Butts-Wilmsmeyer et 

al., 2019). Karim et al. (2000) stated that dry period at ripening of winter wheat 

decreased the grain yield upto 65% as compared to irrigated wheat (Karim et al., 2000). 

Mirzaei et al. (2011) stated that moisture stress at any growth stage of wheat 

significantly reduced the yield and yield related components, however maturity stages 

are considered to be more sensitive. Wang et al. (1995) found that moisture stress at 

maturity decreased nitrogen use efficiency in wheat plants, which considerably limits 

crop productivity. Nel et al. (2001) concluded that water stress decreased the sunflower 

seed yield up to 23 %. Moisture stress during growing period of coriander significantly 

decreased the biomass, plant height, seed yield and even oil contents (Unlukara et al., 

2016).  
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Table 2.8. Meteorological data during the length of growing seasons of the five surveyed crops. 

 

Crop and year 
Growth 

period 

Growth 

stages 

(Feekes) 

Time 

(days) 

P  

(mm) 

ETc  

(mm) 

P-ETc 

(mm) 

Moisture 

conditions 

DW 2010 

Ini Tillering 24 17 9 8 Wet 

Dev 
Stem 

elongation 
65 180 26 154 Wet 

Mid Heading 100 265 221 44 Wet 

Late Ripening 64 127 195 -68 Dry 

SF 2011 

Ini Tillering 35 31 41 -10 Dry 

Dev 
Stem 

elongation 
40 29 142 -113 Dry 

Mid Heading 50 67 278 -211 Dry 

Late Ripening 30 2 101 -99 Dry 

BW 2012 

Ini Tillering 19 35 10 25 Wet  

Dev 
Stem 

elongation 
68 43 40 3 Wet 

Mid Heading 116 77 245 -168 Dry 

Late Ripening 58 50 180 -130 Dry 

CO 2013 

Ini Tillering 20 22 23 -1 Dry 

Dev 
Stem 

elongation 
30 36 83 -47 Dry 

Mid Heading 25 5 141 -136 Dry 

Late Ripening 15 17 52 -35 Dry 

BW 2014 

Ini Tillering 44 96 13 83 Wet 

Dev 
Stem 

elongation 
74 188 59 129 Wet 

Mid Heading 79 86 273 -187 Dry 

Late Ripening 43 77 139 -62 Dry 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; CV., coefficient of variation; P, 

precipitation; ETc, crop evapotranspiration; Ini, Initial; Dev, crop development; Mid, mid-season; Late, 

late-season. 

 

It is also acknowledged that rainfall or temperature fluctuations during critical 

growth stages of crops can have substantial influences on final crop productivity 

(Asfaw et al., 2018). In addition, previous results also showed that minute temperature 

differences during gowing period cannot significantly affect crop yield, as compared 

to irrigation or rainfall (Kang et al., 2009; Carter et al., 2016). Iizumi and Ramankutty 

(2015) demonstrated that higher temperature during spring season suggests to plant first 

crop ‘winter barley’ earlier than before, so that farmers can grow second crop as rapeseed 

and mustard during the remaining part of the growing period to enhance the soil nutrient 
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status and profit. Our study suggests that, if the weather condition are favorable in a 

specific year, then unstable zones could be managed as high yielding; otherwise, as low 

yielding. Additionally, if the dry period occurs during winter wheat heading and then 

flowering, the following nitrogen doses should be increase to enhance grain protein 

content of cereals, anyhow this practice is most common in rainfed area’s and vary from 

country to country. We recommended that farmers should use uniform fertilizer rates 

with respect to space and time by considering the in-season weather conditions. We 

believe that stable yield zones must be managed by strategic planning, whereas unstable 

zones by tactical approach, i.e. considering the meteorological conditions during the 

specific growing season. Therefore, it is very important to receive timely in-season 

weather information for alternative strategies, keeping the unique set of moisture 

conditions in mind during the growing season of crops (Basso et al., 2011). 
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Figure 2.4. Precipitation and temperature patterns extending from October to June according to Bagnouls 

and Gaussen (1953) in the 3 years with winter cereals (DW 2010, and BW 2012 and 2014). Months where 

average temperature exceeds the double of total precipitation are considered a dry period. Grey arrows  

indicate seeding and maturation time. 
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Figure 2.5. Precipitation and temperature patterns extending from March to August according to 

Bagnouls and Gaussen (1953) in the 2 years with spring dicot (SF 2011 and CO 2013). Months where 

average temperature exceeds the double of total precipitation are considered a dry period. Grey arrows 

indicate seeding and maturation time. 

2.3. Summary and Conclusions 

Site-specific YSCs are the basis in precision agriculture by understanding where 

variable cropping inputs are needed, based on spatial and temporal characteristics of the 

field. This paper defined the YSCs based on spatial and temporal maps depicted across 

the field over a series of five-year crop yields. Spatial variability maps were shown 

relatively stable, exhibiting high yield in southern part and low yield in the norther part 

of the field.   

Crop spatio-temporal variability over a series of years is considerably alinged with 

the spatial soil properties and apparent electrical conductivity (ECa) classification within 

YSCs. However, each single factor may or may not affect the ECa and ultimate yield, 

which increases the difficulty to understand causes and effects on crop growth and 
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development. These factors could be related to soil, pests and diseases, meteorology, 

human activities, and interactions among them influencing crop yields. Thus, varying 

crop yield within field is a challenge for farming community, unless which factors 

influence the yield over each year are known.  

The consistent low yield in the north part of the field could be cultivated separately 

from the south part, with tree plantation or vineyear as cultivated in the past (Figure 2.6). 

Moreover, this area is economically important, covering 2.8 ha, to maximize the yield 

productivity over existing cultivation. Hence,  unstable class does not require the separate 

cultivation because this area gives enough yield, but changed with time. Preliminary 

correlation analysis, and classification of selected soil properties with spatiotemporal 

yield confirmed that YSCs were relatively consistent with spatial soil data. However, in-

season information is helpful to understand whether an unstable field area (class) will 

behave as high or low yielding area in a particular year, hence providing farmers with 

useful insights about the application of fertilizers in a site-specific way. If the weather 

pattern of the year is favorable, then unstable classes could be managed as high 

yielding zones; otherwise, as low yielding zones. The present study demonstrates that 

YSCs are more practical, cost-effective for variable rate inputs, and target soil-sampling 

plans for optimizing the crop yields with minimum economic resources and 

environmental impacts.  
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Figure 2.6. Field history (1976-2006). 
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General Discussion and Conclusions 

Application of precision agriculture for variable rate decisions within the same 

field is already being successfully used in farming practices, with the aim of using 

minimum economic resources involving low environmental impacts. The appraisal of 

soil and crop characteristics is an important premise to this goal, as precision agriculture 

relies on timely information to produce crop inputs/practices to be implemented out site 

specifically.  

In this framework, in the first part of this thesis various Landsat imagery were 

downloaded from different Landsat missions such as Landsat 5, 7 and 8 during the five 

growing season of DW 2010, SF 2011, BW 2012, CO 2013 and BW 2014. The following 

vegetation indices (Vis) were calculated: Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), Green 

Normalized Difference Vegetation Index (GNDVI), Green Chlorophyll Index (GCI), and 

Simple Ratio (SR). The first simple correlation was assessed to determine the consistency 

between vegetation indices and final georeferenced yield data, using the 30 m spatial 

resolution (SpR) of the above referred satellite missions, for the determination of critical 

growth stages for each crop. Furthermore, a geostatistical analysis was applied to 

georeferenced crop yield and remote vegetation data, to determine the SpD in their data 

distribution and GY maps. For DW 2010, NDVI was shown the best index during 

elongation stages from node 6 to mid-booting (BBCH growth stage 36-43), indicating a 

very high consistency with wheat yield. For SF 2011, we found that GNDVI and SR 

showed the highest correlations from inflorescence to flower declining (BBCH 51-67). For 

BW 2012, stem elongation from 3rd to 6th node emergence (BBCH 33-36) showed 

consistent high correlations under all studied VIs, although EVI and SR exhibited slightly 

higher correlations during the wheat prediction period. For CO 2013, flowering to the 

beginning of seed ripening (BBCH 63-81) was found a critical time because of enough 

biomass structure during maturity stages, and EVI, NDVI, and SR were found topmost 

indices during these stages. For BW 2014, all studied VIs showed the highest correlation 

from flag leaf to grain filling, where NDVI, GCI, and SR were found best ones (BBCH 37-

77). Higher correlations during initial growth stages of surveyed winter cereals are 

associated with showing the fact that the long-time elapsed from seeding to the time 

when the first imagery was acquired may have served the plant to better sense the 

environmental differences, and translate them into a spectral response in good agreement 

with final GY. Winter wheat showed minimum correlations during maturity stages 
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because wheat plants go into senescence during maturity, thus decreasing their reactivity 

to different ambient conditions. The two spring dicots featuring a shorter cycle also 

necessitated a certain amount of time to attain maximum biomass structure, and good 

correlations between VIs and GY were achieved at later stages than cereals. Pixel level 

study showed strong agreements between five classes (i.e., quintiles) of VIs and the 

corresponding five classes of GY, resulting in a final agreement between 64 and 86 %. It 

is generally sensed that water availability, nutrient uptake, crop management practices, 

weather conditions, and diseases may influence crop canopy reflectance to a varying 

extent, also interacting among them. Therefore, remote VIs cannot 100 % correspond to 

GY data due to abundant variations in reflectance properties of crop canopy during the 

growing period. 

In this respect, the combined use of Sentinel-2A and Landsat data, providing a larger 

number of data and a higher SpR, would foster a more detailed assessment that could be 

especially useful in identifying growth stages in different crops (Griffiths et al., 2019). 

Data fusion from different platforms would overcome drawbacks related to the use of a 

single, medium resolution satellite by improving the field temporal sampling. 

Future monitoring possibilities fostered by the Copernicus Sentinel 2 mission from 

the European Space Agency will allow imagery to be acquired from the year 2015 

onwards, with spectral channels aligned with Landsat and Spot satellites. Improvements 

are expected from a higher SpR (10-20 m) and radiometric resolution (reflectance 

registered with 16 bit). This is coupled with a revisit frequency of 2-3 days, ensuring the 

creation of dense time series for crop growth monitoring.  

Lastly, the use of Landsat collection level-1 data raises the issue of atmospheric data 

correction. In our study, we decided to apply a simple correction as the DOS1 method 

despite the good quality data (Tier 1 Level-1 Precision Terrain data), to ensure 

comparability of surface reflectance among multi-temporal images (Song et al., 2001; Lu 

et al., 2002). More sophisticated models for atmospheric correction, as those distributed 

by USGS under Climate Data Records, were not adopted as we could not collect specific 

in-field measurements. However, usefulness of atmospheric correction is questioned due 

to the risk of adding more errors (Young et al, 2017), which is especially true in the case 

of large areas surveyed. 

Based on this, good prospects may be envisaged for improved yield forecasts over 

large agricultural areas, as well as better support to farmers for specific decision 

management strategies. 
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In the 2nd part of this thesis, yield stability classes (YSCs) were delineated based on 

spatio-temporal variability of crop yield over multiple years, as a different approach to 

site-specific field management. The following three YSCs were produced: high yielding 

and stable (HYS), low yielding and stable (LYS) and unstable. Crop spatio-temporal 

variation was investigated in terms of simple correlation and statistical differences of 

stable soil properties within YSCs. In addition, we examined the moisture balance, i.e. the 

relationship between precipitation and evapo-transpiration, and temperature trends 

during the growing season of surveyed crops, as potential factors determining temporal 

yield variation among years (unstable zones). Yield stability map showed that the 

southern part of the field always produced high yield, whereas the northern part 

consistently produced lower yield. Yield stability classes have been showing well-defined 

size and position of the spatial variability within field, as premise for future field 

management practices to be deployed in a site-specific way. 

Soil analysis determined that a higher level of sand affected crop yield in the 

northern field portion, whereas a lower sand content did not show a sizeable effect on 

the spatial pattern of crop yield. YSCs were positively correlated with stable soil 

properties. However, we observed that higher contents of silt, clay and CEC were 

consistent with HYS class, giving maximum yield (122 %). However, lowest contents 

were found in unstable class, given slightly higher yield (83 %) than LYS. The lowest soil 

apparent electrical conductivity (ECa) was also found consistent with HYS class, and 

produced highest yield (122 %) than LYS and unstable classes. However, higher ECa 

values were found inconsistent with LYS and unstable class., which might be due to the 

complex interaction of soil and environmental factors influencing ECa and ultimate yield.  

Observation of meteorological data indicate that the five rainfed crops suffered 

from an erratic pattern of weather elements, which varied the crop productivity among 

years. Therefore, in-season weather information is a very important clue for farmers to 

decide whether unstable zones should be treated as high yielding or low yielding zones 

during a specific time period. If the weather pattern of the year is favorable, then 

unstable zones could be managed as high yielding; otherwise, as low yielding. For 

fertilization, crop simulation models are used for calculating the amount of nitrogen 

fertilizer based on the crop condition till the time of side-dressing, and on the 

environmental scenario envisaged for the remaining part of the crop season. In this way, 

farmers can reduce their risk while making decisions, while at the same time following 

the principle of applying optimal dosage of nitrogen by considering the profit and 

environmental impact. Generally, if the drought stress occurs during heading or 
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flowering, the following nitrogen doses should be increase to enhance protein contents 

of grain crops, but this practice is most common in dry part of the world and depends on 

the geographical location of specified country. Hence, farmers should use recommended 

uniform fertilizer rates with respect to space and time by considering the in-season 

weather conditions. We have found that stable yield zones must be managed by strategic 

planning, whereas unstable zones by tactical approach, i.e. following the remote sensing 

approach or weather scenario within season to determine the management clue with 

tactical strategic approach. 
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Supplementary Materials 

Table S1.1. Descriptive statistics of remote VIs derived from Landsat imagery during growing 

period of durum wheat in 2010. 

BBCH Mean Median Min Max SD CV% K-S 
      NDVI         

31 0.29 0.29 0.23 0.35 0.03 8.8 ns 

32 0.29 0.29 0.24 0.36 0.03 11.5 ns 

36 0.59 0.58 0.44 0.71 0.08 13.6 * 

43 0.71 0.72 0.5 0.83 0.10 14.2 * 

55 0.66 0.68 0.51 0.73 0.06 8.7 ns 
      EVI         

31 0.31 0.31 0.24 0.36 0.03 9.8 ns 

32 0.33 0.33 0.27 0.4 0.04 10.9 ns 

36 0.49 0.49 0.34 0.63 0.09 17.4 ** 

43 0.66 0.65 0.44 0.83 0.12 17.7 ns 

55 0.73 0.74 0.48 0.83 0.07 10.1 ** 
      SAVI         

31 0.17 0.17 0.14 0.2 0.02 9.1 ns 

32 0.19 0.19 0.16 0.23 0.02 9.3 ns 

36 0.30 0.30 0.22 0.37 0.05 15.3 ** 

43 0.40 0.40 0.29 0.49 0.06 14.8 ns 

55 0.44 0.45 0.3 0.5 0.04 9.3 ns 
      GNDVI         

31 0.21 0.21 0.18 0.24 0.02 7.4 ns 

32 0.23 0.23 0.2 0.27 0.02 8.1 ns 

36 0.39 0.39 0.3 0.48 0.05 13.1 ns 

43 0.49 0.49 0.37 0.58 0.06 12.9 ns 

55 0.51 0.51 0.37 0.55 0.04 7.9 ** 
      GCI         

31 0.53 0.54 0.44 0.62 0.05 9.3 ns 

32 0.60 0.60 0.5 0.72 0.06 10.5 ns 

36 1.33 1.30 0.88 1.83 0.28 21.1 ns 

43 2.06 2.00 1.24 2.83 0.49 23.9 ns 

55 2.10 2.10 1.21 2.47 0.29 13.7 ns 
      SR         

31 1.72 1.73 1.57 1.87 0.08 4.6 ns 

32 1.72 1.71 1.55 1.91 0.1 5.8 ns 

36 2.93 2.84 2.17 3.73 0.48 16.4 ** 

43 4.14 3.95 2.63 5.64 0.94 22.7 ns 

55 4.01 4.03 2.65 4.55 0.43 10.7 ns 

SD, standard deviation: CV, coefficient of variation: K-S, Kolmogorov-Smirnov test for normal 

distribution; ns, non-significant; *, significant at P ≤ 0.05; **, significant at P ≤ 0.01.  
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Table S1.2. Descriptive statistics of remote VIs derived from Landsat imagery during growing 

period of sunflower in 2011. 

BBCH Mean Median Min Max SD CV% K-S 
   NDVI     

30 0.47 0.48 0.39 0.54 0.02 4.8 ns 

32 0.66 0.66 0.57 0.73 0.04 6.5 ns 

51 0.70 0.7 0.56 0.79 0.06 9.2 ** 

67 0.52 0.55 0.35 0.64 0.09 16.2 ** 

75 0.28 0.28 0.21 0.38 0.03 12.2 ns 
      EVI         

30 0.51 0.52 0.44 0.56 0.03 5.8 * 

32 0.90 0.91 0.7 1.09 0.12 12.8 ** 

51 0.76 0.76 0.55 0.92 0.11 14.4 ** 

67 0.54 0.55 0.35 0.71 0.1 19 ns 

75 0.24 0.24 0.19 0.31 0.02 10.2 ns 
      SAVI         

30 0.32 0.33 0.28 0.35 0.02 5.4 ** 

32 0.52 0.52 0.4 0.61 0.06 10.7 ns 

51 0.49 0.49 0.37 0.58 0.06 12.4 ** 

67 0.34 0.35 0.24 0.44 0.06 16.5 ns 

75 0.16 0.16 0.13 0.19 0.01 9.3 ns 
      GNDVI         

30 0.37 0.38 0.33 0.39 0.02 4.2 ** 

32 0.53 0.54 0.45 0.6 0.04 7.5 ns 

51 0.55 0.55 0.45 0.62 0.05 8.5 ** 

67 0.40 0.41 0.31 0.48 0.05 12.8 ** 

75 0.22 0.22 0.19 0.26 0.02 7.7 ns 
      GCI         

30 1.19 1.21 1.01 1.31 0.08 6.4 ns 

32 2.33 2.33 1.64 3 0.37 15.8 ns 

51 2.49 2.51 1.72 3.23 0.45 18.2 * 

67 1.39 1.42 0.91 1.9 0.28 20.5 ns 

75 0.57 0.56 0.46 0.72 0.06 9.8 ns 
      SR         

30 2.42 2.43 2.23 2.6 0.09 3.9 ns 

32 4.17 4.16 3.15 5.3 0.61 14.7 ** 

51 4.53 4.53 3.15 5.95 0.86 19 * 

67 2.81 2.85 2 3.72 0.49 17.5 ns 

75 1.62 1.62 1.46 1.81 0.08 5.2 ns 

SD, standard deviation: CV, coefficient of variation: K-S, Kolmogorov-Smirnov test for normal 

distribution; ns, non-significant; *, significant at P ≤ 0.05; **, significant at P ≤ 0.01. 
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Table S1.3. Descriptive statistics of remote VIs derived from Landsat imagery during growing 

period of bread wheat in 2012. 

BBCH Mean Median Min Max SD CV% K-S 

       NDVI         

33 0.47 0.46 0.37 0.61 0.07 14.6 ** 

36 0.54 0.50 0.44 0.67 0.08 14.1 * 

41 0.52 0.51 0.4 0.61 0.06 12.3 * 

63 0.80 0.81 0.64 0.88 0.06 7.3 ** 

83 0.51 0.51 0.46 0.56 0.03 5.3 ns 
      EVI         

33 0.45 0.43 0.35 0.58 0.07 16.7 ** 

36 0.34 0.38 0.01 0.71 0.27 79.2 * 

41 0.30 0.43 -0.12 0.5 0.2 67.8 * 

63 0.11 0.11 0.02 0.13 0.03 23.8 * 

83 0.54 0.58 0.14 0.65 0.11 19.8 * 
       SAVI         

33 0.25 0.24 0.21 0.32 0.04 14.4 ** 

36 0.18 0.20 0 0.36 0.14 80.0 * 

41 0.10 0.15 -0.01 0.18 0.07 69.4 * 

63 0.45 0.47 0.1 0.54 0.1 23.3 * 

83 0.28 0.30 0.07 0.34 0.06 20.3 * 
      GNDVI         

33 0.33 0.32 0.28 0.39 0.04 11.1 * 

36 0.14 0.22 -0.27 0.42 0.24 168.3 * 

41 -0.73 -0.16 -11.14 0.14 1.31 179.3 * 

63 0.53 0.57 0.06 0.63 0.13 25.1 * 

83 0.32 0.35 -0.08 0.41 0.1 31.4 * 
      GCI         

33 1.00 0.95 0.78 1.31 0.17 17.0 * 

36 0.60 0.73 -0.25 1.5 0.69 114.4 * 

41 0.21 0.38 -0.27 0.44 0.26 122.7 * 

63 2.61 2.69 0.45 3.49 0.75 29.0 ** 

83 1.05 1.10 0.12 1.39 0.27 25.5 * 
      SR         

33 2.28 2.20 1.91 2.84 0.3 13.1 ** 

36 1.89 1.97 0.77 3.25 0.94 49.6 * 

41 1.21 1.37 0.73 1.46 0.26 21.9 * 

63 4.87 5.00 1.68 6.37 1.2 24.7 ns 

83 2.33 2.38 1.2 2.79 0.32 13.6 * 

SD, standard deviation: CV, coefficient of variation: K-S, Kolmogorov-Smirnov test for normal 

distribution; ns, non-significant; *, significant at P ≤ 0.05; **, significant at P ≤ 0.01. 
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Table S1.4. Descriptive statistics of remote VIs derived from Landsat imagery during growing period of 

coriander in 2013. 

BBCH Mean Median Min Max SD CV% K-S 
      NDVI         

34 0.08 0.08 0.07 0.08 0 2.7 ** 

55 0.33 0.34 0.25 0.38 0.04 10.6 ** 

63 0.62 0.63 0.46 0.7 0.07 11.2 * 

71 0.68 0.70 0.5 0.78 0.08 12.0 * 

81 0.65 0.66 0.51 0.74 0.07 10.3 * 
      EVI         

34 0.27 0.27 0.25 0.29 0.01 3.3 ns 

55 0.43 0.43 0.4 0.45 0.01 2.6 ns 

63 0.59 0.60 0.43 0.71 0.09 15.8 * 

71 0.64 0.66 0.5 0.73 0.07 11.1 * 

81 0.63 0.65 0.5 0.69 0.05 8.4 * 
      SAVI         

34 0.08 0.08 0.08 0.09 0 2.0 ns 

55 0.28 0.29 0.23 0.32 0.02 8.3 ** 

63 0.43 0.44 0.34 0.51 0.06 13.0 * 

71 0.53 0.54 0.43 0.59 0.05 9.5 * 

81 0.45 0.46 0.38 0.49 0.03 6.7 * 
      GNDVI         

34 0.11 0.11 0.1 0.11 0 1.9 ns 

55 0.37 0.37 0.29 0.41 0.03 8.1 * 

63 0.60 0.61 0.52 0.65 0.04 7.3 * 

71 0.67 0.68 0.57 0.72 0.05 7.0 * 

81 0.62 0.63 0.55 0.66 0.03 5.3 * 
      GCI         

34 0.24 0.24 0.23 0.25 0.01 2.2 ns 

55 1.16 1.20 0.83 1.38 0.14 12.3 * 

63 3.06 3.12 2.19 3.74 0.52 17.1 * 

71 4.19 4.33 2.82 5.31 0.8 19.0 * 

81 3.36 3.49 2.49 3.92 0.43 12.9 * 
      SR         

34 1.17 1.16 1.15 1.18 0 0.4 ** 

55 2.01 2.05 1.67 2.24 0.15 7.7 ** 

63 3.34 3.40 2.52 3.99 0.5 14.9 * 

71 5.86 6.02 3.73 7.9 1.32 22.5 * 

81 4.52 4.68 3.24 5.36 0.66 14.6 * 

SD, standard deviation: CV, coefficient of variation: K-S, Kolmogorov-Smirnov test for normal 

distribution; ns, non-significant; *, significant at P ≤ 0.05; **, significant at P ≤ 0.01. 
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Table S1.5. Descriptive statistics of remote VIs derived from Landsat imagery during growing period of 

bread wheat in 2014. 

BBCH Mean Median Min Max SD CV% K-S 
      NDVI         

32 0.69 0.68 0.57 0.8 0.07 10.8 ** 

37 0.79 0.78 0.69 0.85 0.05 6.0 ** 

55 0.84 0.84 0.78 0.87 0.03 3.0 ** 

77 0.81 0.83 0.7 0.87 0.05 5.7 * 

85 0.40 0.45 0.19 0.55 0.1 25.6 * 
      EVI         

32 0.45 0.43 0.35 0.55 0.07 15.6 ** 

37 0.59 0.57 0.48 0.69 0.07 12.2 * 

55 0.78 0.78 0.69 0.85 0.05 5.9 ns 

77 0.59 0.60 0.47 0.67 0.05 9.2 ** 

85 0.38 0.41 0.24 0.5 0.08 20.9 * 
      SAVI         

32 0.41 0.39 0.32 0.49 0.05 13.3 ** 

37 0.61 0.60 0.52 0.7 0.06 9.9 * 

55 0.57 0.57 0.52 0.61 0.03 4.9 ** 

77 0.49 0.50 0.41 0.54 0.04 7.7 ** 

85 0.28 0.28 0.2 0.38 0.05 19.2 ns 
      GNDVI         

32 0.60 0.59 0.52 0.67 0.05 8.3 ** 

37 0.59 0.58 0.52 0.65 0.05 7.6 ** 

55 0.72 0.72 0.67 0.75 0.02 3.4 ** 

77 0.65 0.66 0.57 0.7 0.03 5.2 ** 

85 0.40 0.38 0.29 0.53 0.07 17.2 * 
      GCI         

32 3.11 2.86 2.24 4.18 0.65 21.1 * 

37 2.97 2.81 2.2 3.82 0.55 18.7 * 

55 5.13 5.15 4.09 6 0.6 11.6 ** 

77 3.85 3.90 2.79 4.62 0.53 13.8 ** 

85 1.43 1.27 0.86 2.37 0.43 30.2 * 
      SR         

32 5.05 4.53 3.43 7.23 1.29 25.6 * 

37 7.49 7.12 5.21 10.09 1.68 22.4 * 

55 6.26 6.31 5.25 7.09 0.57 9.1 ** 

77 4.78 4.87 3.58 5.6 0.57 12.0 ** 

85 2.43 2.45 1.72 3.5 0.48 19.7 ns 

SD, standard deviation: CV, coefficient of variation: K-S, Kolmogorov-Smirnov test for normal 

distribution; ns, non-significant; *, significant at P ≤ 0.05; **, significant at P ≤ 0.01. 
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