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Abstract

In this thesis we investigate aspects of the theory of minimum relative entropy models (MRE
in the sequel) within the class of exponential-family distributions. We use this technique
for an application in portfolio management to compute Bayesian-like statistical features that
incorporate fully general views on multivariate markets.

The remainder of this dissertation is structured in three connected chapters.
In Chapter 1 we focus on the parametric implementation of MRE under the normal as-

sumption of the market variables and equality views on linear combinations of their first
two moments. Under these special assumptions, we compute the analytical formulations
of the Lagrange multipliers that steer the canonical MRE updated distribution within the
exponential-family class. This allows to represent the MRE solution through a more parsi-
monious parametrization and to generalize the current and notable results on the parametric
implementation of MRE.
In Chapter 2 we generalize results in Chapter 1 under more flexible (in)equality views

on linear combinations of the first two moments of the market variables. To this purpose,
we supply the analytical derivatives of the dual Lagrangian objective in order to compute
numerically the Lagrange multipliers identifying the MRE solution. Finally, we use this im-
plementation for the construction of quantitative trading strategies based on ranking signals
for alpha-generation, the so-called “portfolios from sorts”.
In Chapter 3 we address the MRE problem under no assumption on the market vari-

ables and (in)equality views on their generalized expectations. In such circumstances the
exact computation of the solution is not practically possible. For this reason, we introduce
a numerical implementation through iterated Hamiltonian Monte Carlo simulations which
effi ciently addresses the parameter estimation of the MRE updated distribution within the
exponential-family class. This yields a generalization of the non-parametric implementation
of MRE that reduces the statistical error of the estimators for a given sample size.
Fully documented code is available on GitHub.

JEL Classification: C1, G11

Keywords: Black-Litterman, Bayesian estimation, Regression, Minimum Relative En-
tropy, Flexible Probabilities, views, Kullback-Leibler, Hamiltonian Monte Carlo, portfolios
from sorts, exponential-family distributions.

2

https://github.com/MarcelloColasante/Essays-in-MRE


General introduction

In this thesis we generalize aspects of the theory of minimum relative entropy in [Meucci, 2008].
We use minimum relative entropy approach to combine traditional econometric techniques
for statistical prediction with regularization methods which allow to embed any possible in-
formations in our market models. Such informations may arrive in the form of new data,
subjective beliefs, trading signals, extreme scenarios etc. In order to cover all such instances
in full generality, we summarize all these informations with the generic nomenclature of
“views”. See also [Meucci, 2019].
The reason why we need to overlay views is multiple.
As a matter of fact, classical estimates, such as sample means and covariances, are highly

unstable, or more precisely ineffi cient, in that they are too sensitive to the observed empiri-
cal data [Stein, 1955], [Lehmann and Casella, 1998]. Hence, pure classical estimates are not
suitable for portfolio management: they cannot be simply “plugged in”portfolio optimiza-
tions, such as optimal portfolio choices a-la “Modern Portfolio Theory” [Markowitz, 1952].
See for instance [DeMiguel et al., 2009] and [Kan and Zhou, 2006].
However, pure Bayesian approaches that only take into account views without considering

the observed empirical data can be inaccurate, or more precisely biased : the outcomes are
concentrated around a value, which may be far from the true property to be estimated.
Processing views in a statistically correct way is not an easy task. Most notable tech-

niques, including regression-based [RiskMetrics, 1996], Bayesian
[Aitchison and Dunsmore, 1975] and Black-Litterman approach [Black and Litterman, 1990],
can only process global informations and often rely on restrictive assumptions (linear approx-
imations, truncations, normality etc.). Hence these approaches are not enough flexible to
perform generalized stress-testing and scenario analysis (say on correlations or volatilities).
Here we focus on the minimum relative entropy approach (MRE), also known as principle

of minimum discrimination information (MINXENT) or maximum entropy principle (MAX-
ENT) [Jaynes, 1957a], [Jaynes, 1957b], which has been notably applied also in physics, sta-
tistics and information theory [Cover and Thomas, 2006], machine learning [Malouf, 2002]
and other areas of finance [Hansen and Sargent, 2007],
[Glasserman and Xu, 2013], [Avellaneda, 1999], [D’Amico et al., 2003], [Cont, 2007],
[Breuer and Csiszar, 2013], [Pezier, 2007], [Friedman et al., 2012].
MRE, generalizes the well-known linear conditioning/regression [Meucci, 2008], the Bayesian

methodology [Caticha and Giffi n, 2006], the maximum likelihood approach
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[Kriz and Talacko, 1968], the Black-Litterman approach [Meucci, 2010], and can be mainly
implemented either non-parametrically, or parametrically, as summarized in table below.
Refer also to [Meucci, 2008] for more details.

MRE Parametric Non-parametric

Model normal MC scenarios

Views linear equalities on exp. and cov. general (in)equalities on exp.

Solution analytical numerical

Table 1: Approaches to MRE

In the parametric approach, the MRE problem is addressed analytically under equality
views in the format of linear expectation/covariance-based conditions. However the imple-
mentation requires the normality of the market variables.
From the other hand, in the non-parametric approach the MRE problem is addressed

numerically via Monte Carlo simulations under (in)equality views in the format of general-
ized expectation-based conditions. However the statistical precision of the non-parametric
implementation becomes low in large dimensions.
The main focus of this thesis is to further extend theoretical and numerical results behind

these two implementations.

Outline

This thesis is structured as follows.

Chapter 1

In Chapter 1 we prove the invariance of the MRE solution within the exponential-family class.
Then we describe the parametric implementation of the MRE under normality assumption,
addressing the problem specifically for the cases of views on linear combinations of i) first
moments; ii) second moments; and iii) first two moments of the market variables. Here we also
show how it is possible to derive analytically the canonical exponential-family parametrization
of the MRE solution when we consider central moment conditions, generalizing the original
formulation by [Meucci, 2010].

Chapter 2

In Chapter 2 we generalize the parametric implementation of the MRE introduced in Chapter
1 to the case of more general (in)equality views. In this case, we show how to derive the MRE
solution addressing numerically the dual Lagrangian problem. We also supply the analytical

4
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derivatives of the objective in order to enhance the precision of such computation. Finally,
we use this implementation of MRE to build and backtest a systematic strategy based on
ranking views stemming from trading signals.

Chapter 3

In Chapter 3 we describe a numerical implementation of the MRE via iterative Hamiltonian
Monte Carlo simulations which allows effi cient estimation of the parameters, or Lagrange
multipliers, driving the MRE solution under generalized (in)equality views on expectations
and arbitrary market model. Then we compare the performance of this approach with the
non-parametric implementation of the MRE showing how the iterative implementation can
significantly better reduce the estimation error of the Lagrange multipliers.

Background

In this section we briefly introduce the basic notions behind views processing problems,
drawing notations and results from [Meucci, 2019]. Refer also to [Cover and Thomas, 2006]
for further details.

Base distribution and view variables

In order to start, let us consider the main ingredients:

1. an n̄ × 1 random variable X ≡ (X1, . . . , Xn̄)′, the market, representing the future
randomness we want to model, say tomorrow’s returns of the stocks in the S&P 500.
The market variables are associated with a reference base distribution, as represented
by their joint probability density function (pdf), which we denote by

X ∼ f
X
. (1)

The base has to be thought as the initial guess for the true and unknown market
distribution and in practice is the outcome of classical estimation techniques (historical,
maximum likelihood, GMM etc.). In real applications the number n̄ of market variables
is large (say, of the order of hundreds or thousands).

2. a k̄×1 random variable Z ≡ (Z1, . . . , Zk̄)
′, the factors or view variables, on which we

have new informations or views that have a potential impact on the market variables,
say the return of the S&P 500 index. Without loss of generality, we can assume the
view variables to be endogenous, in that they can be expressed as a transformation of
the market variables

Z ≡ ζview(X), (2)

5
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for a suitable multivariate function ζview : Rn̄ → Rk̄. Then the base distribution of the
market variables (1) naturally implies a (base) distribution for the view variables

X ∼ f
X

⇒ Z ∼ f
Z
, (3)

In real applications the view variables are significantly less than the market variables
(say, of the order of dozens)

k̄ � n̄. (4)

Point, distributional and partial views

The views are statements on the view variables Z (2) that potentially perturb the initial
state, implied by the base distribution, into a new state, as represented by the conditional
distribution given the views, also known as updated distribution

Original state (base) Views New state (updated)

f
Z
(3) statements on Z⇒ f̄Z

(5)

Such statements are assumed to affect the market variables X in turn

Original state (base) Views New state (updated)

f
X
(1) statements on Z⇒ f̄X

(6)

According to the most classical literature in finance and, more in general, in statistics, the
simplest views processing problems we usually face are simple statements on the outcomes
of the view variables (“How will behave tomorrow’s returns of the S&P 500, if the today’s
index return is 0.01%?”).
Such problems can be formalized in the following format.

What is the conditional distribution of the market variables, given a point view, i.e.
a realization zview of the factors

X|{Z = zview} ∼ ? (7)

Views processing problems as in (7) can be easily generalized. To this purpose we first
notice that a point view can be interpreted as a statement on the updated distribution f̄Z of
the view variables

Z = zview ⇔ f̄Z = δ(zview ), (8)

where δ(zview ) denotes a Dirac delta centered at zview . Hence, more in general, we could
wonder how to process a different statement by simply replacing the Dirac delta δ(zview ) with
another arbitrary distribution f viewZ (“How will behave tomorrow’s returns of the S&P 500,
if the index return is normally distributed N (0, 1)?”).
To summarize our new problem can be formulated in full generality as follows.

6
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What is the conditional distribution of the market variables, given a distributional
view, i.e. a distribution f viewZ for the factors

X|{f̄Z = f viewZ } ∼ ? (9)

Following the same rationale, we can further generalize views processing problems as in
(9). As a matter of fact, a distributional view can be interpreted as a statement on the
features that the updated distribution f̄Z of the view variables has to satisfy

Z ∼ f viewZ ⇔ f̄Z ∈ {f viewZ }. (10)

Hence, more in general, we could wonder how to process a different statement by simply
replacing the one-element set {f viewZ } with an arbitrary family of distributions CZ specified
by a collection features or constraints that the view variables have to satisfy (“How will
behave tomorrow’s returns of the S&P 500, if the expected index return is 0%?”).
Then the problem can be formulated as follows.

What is the conditional distribution of the market variables, given a partial view,
i.e. a set of constraints CZ on the factors

X|{f̄Z ∈ CZ} ∼ ? (11)

A relevant class of partial views as in (11) are those that can be expressed in terms of
equality or inequality expectation conditions

CZ ≡ {fZ : EfZ{Z} 5 ηview}. (12)

where ηview ≡ (ηview1 , . . . , ηview
k̄

)′ are the features, i.e. the k̄×1 vector quantifying the views.
In practice the variables ηview have a different meaning depending on the application we

are pursuing, such as for prediction or stress testing (what-if analysis) purposes. When we
perform prediction, ηview is a vector of numbers that can be computed from current data,
say trading signals. When we perform stress testing, ηview is a vector of parameters that we
let span in a given range of extreme scenarios (“How will behave tomorrow’s returns of the
S&P 500, if the tomorrow’s expected index return is less than -0.10%?”).
The (in)equality conditions (12), though very simple, cover a wide range of practical

views, such as on volatilities, correlations, tail behaviors, etc. See also [Meucci, 2008].

General updated distribution

According to the general intuition in (6), the updated distribution f̄X is by definition the
conditional distribution of the market variables, given the views, which in full generality we

7
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can assume to be partial (11)
X|{f̄Z ∈ CZ} ∼ f̄X , (13)

since both point (7) and distributional (9) views are simpler sub-cases.
In the case of point views as in (7), the updated distribution is defined through the

well-known Bayes’rule

f̄X(x) ≡ f
X

(x|zview) =
f
X,Z

(x, zview)∫
Rn̄fX,Z

(y, zview)dy
. (14)

In the case of distributional views as in (7), the updated distribution is defined through
conditioning-marginalization

f̄X(x) ≡
∫
f
X

(x|z)f viewZ (z)dz, (15)

which naturally extends the Bayes’rule (14).
In the case of partial views as in (11), we can define a suitable conditioning rule through

the minimum relative entropy principle (MRE).
More precisely, the updated distribution through MRE, orMRE updated distribution,

is defined as the one distribution which is the most similar to the base f
X
(1), but at the

same time satisfies the views

f̄X ≡ argminfX∈CX E(fX‖fX). (16)

In (16) E denotes the relative entropy, which is a pseudo-distance between distributions

E(fX‖fX) ≡
∫
Rn̄
fX (x) ln(

fX (x)

f
X

(x)
)dx; (17)

while CX denotes the set of constraints which are implicitly induced by the views1

CX ≡ {fX : fZ ∈ CZ}. (18)

Hence, the MRE updated distribution by definition (16) satisfies the constraints (18)

f̄X ∈ CX . (19)

MRE approach naturally extends the conditioning-marginalization (15) and hence the
Bayes’rule (14) in turn. See also [Caticha and Giffi n, 2006]. Moreover, MRE is a consistent
conditioning rule, in that it does not perturb the base (1) if it already satisfies the views (18)

f
X
∈ CX ⇒ f̄X = f

X
. (20)

1We remember that the view variables are endogenous according to (2).
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Exponential family updated distribution

In practice, performing conditioning either via Bayes’rule (14) or conditioning-marginalization
(16) or, more in general, via MRE (16) is typically diffi cult. As a matter of fact, each con-
ditioning techniques requires a large multivariate integration that in general cannot be simply
addressed either analytically or numerically. However, according to [Cover and Thomas, 2006],
there exists a very special situation where the solution of the MRE problem (16) can be para-
metrized within a suitable distributional class, see also Figure 1.

Figure 1: Minimum Relative Entropy problem and sub-cases. We highlight in light blue the
conditions under which the MRE updated distribution (16) belongs to the exponential family
class (23). In this thesis we investigate special cases under normal base (Chapters 1-2) and
scenario-probability base (Chapter 3)

More precisely we have the following theoretical result.

Suppose:
- an arbitrary base distribution (1)

X ∼ f
X
. (21)

- (in)equality views on generalized expectation (12)

fX ∈ CX : EfX
{
ζview(X)

}
5 ηview . (22)

9
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Then, the MRE updated distribution (16) belong to the exponential family
Exp(θview , ζview , f

X
), i.e.

X ∼ f̄X : f̄X (x) ∝ f
X

(x)eθ
view′ζview (x), (23)

where the canonical coordinates θview ≡ (θview1 , . . . , θviewk̄ )′ are Lagrange multipliers.

The exponential family (23) is widely flexible for any practical modelling and includes
many of the most common distributions, such as the normal, exponential, chi-squared,
Wishart, etc.
In particular, an element in the generic exponential family Exp(t, ζview , f

X
) as in (23)

explicitly reads
ln ft(x) = ln f

X
(x) + t′ζview(x)− ψ(t), (24)

where ψ denotes the log-partition function, which normalizes ft to integrate to one

ψ(t) ≡ ln

∫
Rn̄
et
′ζview (x)f

X
(x) dx. (25)

Note that the base (1) belongs to the same exponential family class (23), since we have

f
X

= f0. (26)

Hence, the distributional model Exp(t, ζview , f
X

) naturally embeds both base f
X
and up-

dated f̄X .
Finally, in (24) the optimal Lagrange multipliers θview identifying the MRE updated

distribution f̄X ≡ fθview (23) are the solutions of the following dual Lagrangian problem (see
also [Jaakkola, 1999])

θview ≡ argmin
t50

L(t;ηview), (27)

where L(t;ηview) denotes the dual Lagrangian

L(t;ηview) ≡ ψ(t)− t′ηview , (28)

which is an instance of convex programming, since the log-partition function ψ(t) is convex,
and as such, it admits a unique solution. As a matter of fact, the gradient of the dual
Lagrangian explicitly reads

∇tL(t;ηview) = Eft{ζview(X)} − ηview ; (29)

which shows that at the minimum θview for the Lagrangian the views (22) are satisfied; and
its Hessian reads

∇2
t,tL(t;ηview) = Cvft{ζview(X)}, (30)

10
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see also [Amari and Nagaoka, 2000], [Amari, 2016] and [Schofield, 2007].
Note that the dual Lagrangian problem (27) is an instance of maximum likelihood op-

timization, as follows because the expected log-likelihood is equivalent to the negative dual
Lagrangian (28)

Ef̄X{ln ft(X)} = Ef̄X{ln f
X

(X)} − L(t;ηview). (31)

However, the dual Lagrangian L(t;ηview), as well as its derivatives, is not analytically
tractable in general, and for this reason it is impossible to explicitly solve the optimization
(27), unless for a very specific class of base distributions. Refer to Figure 1.

11
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Chapter 1

Analytical solutions for fitting MRE
models under normality

1.1 Introduction

In 1990, [Black and Litterman, 1990] (BL in the sequel) provided a mathematical framework
for portfolio allocation developed to overcome the problem of computing reasonable estimates
of expected returns in the implementations of the “Modern Portfolio Theory”, or mean-
variance approach, introduced by [Markowitz, 1952]. This model starts with the assumption
that the initial, or base, expected returns are set implicitly in terms of CAPM-like market
equilibrium, and then updated analytically through Bayesian methodology in order to take
into account bullish/bearish views on arbitrary portfolios and corresponding users’s degree
of confidence about such views.
The main ingredients behind BL approach are: i) the normality underlying the base

reference model; ii) the linearity of the functions specifying the view variables; and iii) the
format of the views as equality (distributional (10)) statements, where the uncertainty around
the view-implied expectations is the same as the one induced by the base distribution.
According to this setup, the BL method generalizes also the standard scenario analysis

a-la RiskMetrics (see [RiskMetrics, 1996], [Mina and Xiao, 2001]), which processes equality
statements, or point views (7), on the future realizations of the view variables (special case
of no uncertainty on the expected view variables).
In the following years many other advanced implementations for view-processing have

been developed, see for instance [Pezier, 2007], [Almgren and Chriss, 2006]. In particular,
under the normal assumption, [Qian and Gorman, 2001] proposed a Bayesian-like approach
allowing to process any arbitrary normal view (10), generalizing BL in turn.
Accordingly, [Meucci, 2008] showed how the above normal implementations were all in-

stances of the MRE principle (see also [Meucci, 2010]) and generalized the formulations by
[Black and Litterman, 1990], [Qian and Gorman, 2001] to handle partial views (11) on arbi-
trary linear combinations of expectations and covariances.
Here we enhance and generalize results from [Meucci, 2008]. More precisely, we present
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how to derive the canonical formulation of the MRE updated distribution within the exponential-
family class and according to the parametric implementations of the MRE. In particular, we
compute the optimal Lagrange multipliers driving the MRE updated distribution under views
on linear combinations of the first two moments of the market variables.
This will provide a background for covering more general (in)equality views, such as on

ranking, as we discuss in Chapter 2, and a benchmark for sample-based implementations of
MRE under non-normal markets, as we discuss in Chapter 3.
The remainder of this chapter is organized as follows.
In Section 1.2 we introduce the MRE theoretical framework for exponential family base

distributions and equality views on moments conditions. In Section 1.3 we present an analyt-
ical solutions for linear views on first moments, which include [Black and Litterman, 1990]
and [Mina and Xiao, 2001] as special case. In Section 1.4 we discuss the case of linear views
on (non-central) second moments and show how to address the MRE solution via numerical
recursions or analytically under views second central moments. In Section 1.5 we illustrate
the more general solutions under joint views on the first two (non-central) moments, which
are addressed similar to Section 1.4 and extend formulations by [Qian and Gorman, 2001]
and [Meucci, 2008] in turn. Finally, in Section 1.6 we list the main contributions.
Fully documented code is available on GitHub.

1.2 The model

Following the theoretical framework (4), here we address analytically the MRE problem (16)
under the assumption that the base distribution (1) belongs to a specific exponential family
class, see Figure 1. Refer to [Amari and Nagaoka, 2000] and [Amari, 2016] for more details.
More precisely, let us consider the following setup.

Suppose:
- a base distribution (1) which belongs to an exponential family class Exp(θX , τ , h)

X ∼ f
X

: f
X

(x) ∝ h(x)eθ
′
Xτ(x), (1.1)

where θX ≡ (θX;1, . . . , θX;l̄)
′ is a vector of base canonical parameters; τ(x) ≡

(τ 1(x), . . . , τ l̄(x))′ are suffi cient statistics and h(x) > 0 is a reference measure;
- equality views on generalized expectation as in (22)

fX ∈ CX : EfX
{
ζview(X)

}
= ηview , (1.2)

where the view function ζview is linear in the suffi cient statistics τ , or

ζview(x) ≡ ζτ(x), (1.3)

14
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and where ζ is a k̄ × l̄ matrix.
Then, the MRE updated distribution (23) must belong to the same exponential family
class as the base [A.1.1]

X ∼ f̄X : f̄X (x) ∝ h(x)eθ̄
′
Xτ(x), (1.4)

where θ̄X ≡ (θ̄X;1, . . . , θ̄X;l̄)
′ is a vector of updated canonical parameters

θ̄X = θX + ζ ′θview , (1.5)

and θview ≡ (θview1 , . . . , θviewk̄ )′ is a k̄× 1 vector of optimal Lagrange multipliers (27), that
needs to be computed.

In particular, here we focus on:
- a multivariate normal base distribution (1)

f
X

⇔ N (µ
X
,σ2

X), (1.6)

where µ
X
is an n̄× 1 vector and σ2

X is an n̄× n̄ symmetric and positive definite matrix;
- views on the first two moments of the market variables

fX ∈ CX :

{
EfX{ζµX} = ηviewµ

EfX{ζσ,σvec(XX ′)} = vec(ηviewσ,σ ),
(1.7)

where ηviewµ is a k̄µ× 1 vector and ζµ is a k̄µ× n̄ matrix; ηviewσ,σ is a k̄σ × k̄σ symmetric matrix
(without loss of generality) and ζσ,σ is a k̄

2
σ × n̄2 matrix. Then the effective number of views

is k̄µ + k̄σ(k̄σ + 1)/2. Equivalently, we can always assume ζσ,σ to be arranged as follows

ζσ,σ ≡ ζσ ⊗ ζσ, (1.8)

for a suitable k̄σ × n̄ matrix ζσ, so that the views (1.7) becomes

fX ∈ CX :

{
EfX{ζµX} = ηviewµ

EfX{ζσXX ′ζ ′σ} = ηviewσ,σ ,
(1.9)

as follows from the properties of the Kronecker product [Magnus and Neudecker, 1979].
The assumption of a normal base distribution with views on the first two moments (1.6)-

(1.9) is a special case of (1.1)-(1.2). Indeed, the normal distribution is a special exponential
family distribution as in (1.1)

N (µ
X
,σ2

X) ⇔ Exp(θX , τ , h), (1.10)

where the n̄× 1 vector canonical coordinates θX read

θX ≡
(

θX;µ

vec(θX;σ,σ)

)
=

(
(σ2

X)−1µ
X

−1
2
vec((σ2

X)−1)

)
; (1.11)

15
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the suffi cient statistics read

τ(x) ≡
(

τµ(x)
τσ,σ(x)

)
≡
(

x
vec(xx′)

)
; (1.12)

and the reference measure reads h(x) ≡ (2π)−n̄/2.
Furthermore, the k̄ ≡ k̄µ + k̄2

σ views on the first two moments (1.9) are special views on
generalized expectation as in (1.2), where:
- the k̄ × (n̄+ n̄2) matrix ζ in (1.3) reads as follows

ζ ≡
(
ζµ 0k̄µ×n̄2

0k̄2
σ×n̄ ζσ,σ

)
; (1.13)

- the k̄ × 1 vector ηview in (1.2) reads as follows

ηview ≡
(

ηviewµ

vec(ηviewσ,σ )

)
. (1.14)

Then, according to the general framework (1.4), the ensuing updated distribution (23)
must be normal in turn

f̄X ⇔ Exp(θ̄X , τ , h) ⇔ N (µ̄X , σ̄
2
X), (1.15)

see also [Cover and Thomas, 2006]. In (1.15) the n̄× 1 vector updated canonical coordinates
θ̄X read as in (1.5) and where θ

view is the k̄× 1 vector of optimal Lagrange multipliers (27),
which we arrange as follows

θview ≡
(

θviewµ

vec(θviewσ,σ )

)
. (1.16)

Finally, the updated expectation in (1.15) follows from the updated canonical coordinates
θ̄X (1.5) [A.1.2]

µ̄X = −1

2
(θ̄X;σ,σ)−1θ̄X;µ, (1.17)

and similar for the updated covariance in (1.15)

σ̄2
X = −1

2
(θ̄X;σ,σ)−1. (1.18)

Refer to [A.1.3] for a more explicit expression of (1.17)-(1.18).
Now our goal is to compute the optimal Lagrange multipliers θview . To this purpose we

proceed step by step.

16
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1.3 Views on first moments

Let us suppose the case of only “views on portfolios”a-la Black-Litterman, i.e. equality views
(18) on linear combinations of the first moments

fX ∈ CX : EfX{ζµX} = ηviewµ , (1.19)

where ζµ is a k̄× n̄ full rank matrix. Then the optimal Lagrange multipliers θview = θviewµ in
(1.16) can be computed analytically and read [A.1.4]

θviewµ = (ζµσ
2
Xζ
′
µ)−1(ηviewµ − ζµµX). (1.20)

From (1.5) we obtain explicitly the updated expectation (1.17) [A.1.4]

µ̄X = µ
X

+ ζ†′µ (ηviewµ − ζµµX), (1.21)

where ζ†µ is a k̄ × n̄ pseudo-inverse matrix for ζ ′µ

ζ†µ ≡ (ζµσ
2
Xζ
′
µ)−1ζµσ

2
X ; (1.22)

and the updated covariance (1.18)
σ̄2
X = σ2

X . (1.23)

To summarize

Optimal Lagr. mult.
θviewµ = (ζµσ

2
Xζ
′
µ)−1(ηviewµ − ζµµX) θviewσ,σ = ∅

Updated exp. and cov.
µ̄X = µ

X
+ ζ†′µ (ηviewµ − ζµµX) σ̄2

X = σ2
X

Table 1.1: Views on first moments: MRE solutions

Note how the pseudo-inverse ζ†µ (1.22) can be equivalently weighted using either i) the
base covariance σ2

X , or ii) the updated covariance σ̄
2
X , since in this case they both coincide

(1.23). As we will show later, this feature will persist even in more general situations, where
the identity (1.23) does not hold.
Finally, we observe that the updated expectation (1.21) can be interpreted as a projection.

Indeed, consider the (n̄− k̄)-hyperplane defined as follows

Sζµ ≡ {µ ∈ R
n̄ such that ζµµ = 0}; (1.24)

and the projection operator of an n̄× 1 vector x onto Sζµ

Pµ[x] ≡ (In̄ − ζ†′µζµ)x, (1.25)

17



18 Chapter 1. Analytical solutions for fitting MRE models under normality

Figure 1.1: Updated expectation as orthogonal projection

which is orthogonal with respect to the inner product 〈x,y〉 ≡ x′(σ2
X)−1y induced by the

inverse base, or updated, covariance (1.23).
Then the updated expectation (1.21) reads [A.1.5]

µ̄X = ζ†′µη
view
µ +Pµ[µ

X
− ζ†′µηviewµ ], (1.26)

see also Figure 1.1.
Not surprisingly, when we consider views on expectations as in (1.19), the only expecta-

tion is updated in order to satisfy the views, while the covariance is the same as the base
counterpart.
This is consistent with the Black-Litterman solution [Black and Litterman, 1990], which

is a special case of [Meucci, 2010].

Example 1.1. Consider n̄ ≡ 3 market variables X ≡ (X1, X2, X3)′ with joint normal
base distribution

X ∼ N (µ
X
,σ2

X), (1.27)

where
µ
X
≡
(

0.26
0.29
0.33

)
, σ2

X ≡
(

0.18 0.11 0.13
0.11 0.23 0.16
0.13 0.16 0.23

)
, (1.28)

18



1.4. Views on second moments 19

and assume the true updated distribution X ∼ Exp(θview∗µ , ζview , f
X

) (1.15) to be steered by
the following Lagrange multipliers

θview∗µ = ( 5.71
0.38 ) ; (1.29)

with k̄ = 2 view variables specified by ζview(x) ≡ ζµx (1.3), where

ζµ ≡
(

1 −1 0
0 1 −1

)
. (1.30)

Then, if we input the true k̄ × 1 vector of features (1.19) implied by the true updated
distribution

ηviewµ ≡ ζµµ̄∗X = ( 1.02
−0.50 ) , (1.31)

in the formulation of the optimal Lagrange multipliers θviewµ (1.20), we obtain back the true
counterpart

||θview∗µ − θviewµ || = 2.79× 10−15. (1.32)

Similar results follow for expectation µ̄X (1.21) and covariance σ̄2
X (1.23).

1.4 Views on second moments

Let us suppose the case of only equality views (18) on linear combinations of the second
non-central moments

fX ∈ CX : EfX {ζσXX ′ζ ′σ} = ηviewσ,σ , (1.33)

where ζσ is a k̄ × n̄ full rank matrix.
Then, it turns out that the optimal Lagrange multipliers θview = θviewσ,σ in (1.16) are defined

implicitly in terms of the updated expectation implied by the view variables (2)

ηviewσ ≡ Ef̄X{ζσX} = ζσµ̄X , (1.34)

which is not known a priori.
More precisely, if we define the k̄ × k̄ matrix-variate function with respect to ηviewσ

σ2view(ηviewσ ) ≡ ηviewσ,σ − ηviewσ ηview ′σ (1.35)

= ζσσ̄
2
Xζ
′
σ,

then we have [A.1.6]

θviewσ,σ =
1

2
((ζσσ

2
Xζ
′
σ)−1 − (σ2view(ηviewσ ))−1). (1.36)

19



20 Chapter 1. Analytical solutions for fitting MRE models under normality

Similar to the above, from the updated canonical coordinates (1.5), we can deduce also
the updated expectation (1.17) [A.1.6]

µ̄X = µ
X

+ ζ†′σ (ηviewσ − ζσµX), (1.37)

and the updated covariance (1.17)

σ̄2
X = σ2

X + ζ†′σ (σ2view(ηviewσ )− ζσσ2
Xζ
′
σ)ζ†σ, (1.38)

where ζ†σ is a k̄ × n̄ pseudo-inverse matrix for ζ ′σ as in (1.22).
Also, it turns out that the pseudo-inverse ζ†σ can be equivalently weighted using either i)

the base covariance σ2
X , or ii) the updated covariance σ̄

2
X , even though they do not coincide

[A.1.7]
ζ†σ ≡ (ζσσ

2
Xζ
′
σ)−1ζσσ

2
X = (ζσσ̄

2
Xζ
′
σ)−1ζσσ̄

2
X . (1.39)

In conclusion, differently from the case of views on first moments in Section 1.3, when
we consider views on second moments as in (1.33), not only the covariance, but also the
expectation is updated.

1.4.1 Numerical solution via recursion

We can address the MRE solutions (1.36)-(1.37)-(1.38) numerically through a simple fixed-
point recursion in the view-implied expectation (1.34) as follows from (1.37) [A.1.6]

ηviewσ = g(ηviewσ ) ≡ (ηviewσ,σ − ηviewσ ηview ′σ )(ζσσ
2
Xζ
′
σ)−1ζσµX . (1.40)

Then, the routine can be set up as follows.

(θviewσ,σ , µ̄X , σ̄
2
X)← Fit .MRE .Second .Moments .N (ζσ,η

view
σ,σ ,µX ,σ

2
X)

0. Initialize ηviewσ ← ζσµX

1. Update feat. ηviewσ ← g(ηviewσ ) (1.40)

2. If convergence, output (θviewσ,σ , µ̄X , σ̄
2
X) (1.36)-(1.37)-(1.40); else go to 1

Table 1.2: Iterative routine for optimal Lagrange multipliers under views on second non-
central moments

If the true stationary point ηviewσ is an attractive fixed point for (1.40), the convergence
in the above routine occurs when the relative norm between two subsequent updates ηview(i)

σ

and ηview(i+1)
σ is smaller than a required threshold. See [Coxeter, 1998] for more details.

20



1.4. Views on second moments 21

Example 1.2. Consider the same base model as in Example 1.1 and assume the true up-
dated distribution X ∼ Exp(θview∗σ,σ , ζview , f

X
) (1.15) to be steered by the following Lagrange

multipliers
θview∗σ,σ =

( −1.83 −2.82
−2.82 −3.13

)
; (1.41)

with k̄2 = 4 view variables specified by ζview(x) ≡ (ζσ ⊗ ζσ)vec(xx′) (1.3), where

ζσ ≡ ( 1 0 −1
0 1 1 ) . (1.42)

Then, if we input the true k̄ × k̄ vector of features (1.19) implied by the true updated
distribution

ηviewσ,σ ≡ ζσ(σ̄2∗ + µ̄∗Xµ̄
∗′
X)ζ ′σ =

(
0.19 −0.19
−0.19 0.32

)
, (1.43)

in the recursion in Table 1.2, we obtain back from the optimal Lagrange multipliers θviewσ,σ

(1.36) the true counterpart

||θview∗σ,σ − θviewσ,σ || = 1.55× 10−8. (1.44)

Similar results follow for expectation µ̄X (1.37) and covariance σ̄2
X (1.40).

1.4.2 Analytical solution under special assumptions

We can address the MRE solutions (1.36)-(1.37)-(1.38) analytically under special assumptions
on the base distribution and views.

Zero base expectation

In the special case where the base expectation is null, or

µ
X
≡ 0, (1.45)

no recursion is needed. Indeed, the view-implied expectation (1.40) becomes null

ηviewσ ≡ Ef̄X{ζσX} = 0, (1.46)

and then both Lagrange multipliers θviewσ,σ (1.36), updated expectation µ̄X (1.37) and covari-
ance σ̄2

X (1.38) follow in turn, as summarized in the table below.
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22 Chapter 1. Analytical solutions for fitting MRE models under normality

Optimal Lagr. mult.
θviewµ = ∅ θviewσ,σ = 1

2
((ζσσ

2
Xζ
′
σ)−1 − (ηviewσ,σ )−1)

Updated exp. and cov.
µ̄X = 0 σ̄2

X = σ2
X + ζ†′σ (ηviewσ,σ − ζσσ2

Xζ
′
σ)ζ†σ

Table 1.3: Views on second moments: MRE solutions under null base expectation

Example 1.3. Consider the same base model as in Example 1.1, but with zero base
expectation

µ
X
≡
(

0
0
0

)
, (1.47)

and assume the same true updated distribution X ∼ Exp(θview∗σ,σ , ζview , f
X

) as specified in
Example 1.2. Then, also the true updated expectation is null

µ̄∗X =
(

0
0
0

)
, (1.48)

and if we input the true k̄×k̄ vector of features (1.19) implied by the true updated distribution

ηviewσ,σ ≡ ζσσ̄2∗ζ ′σ =
(

0.19 −0.17
−0.17 0.29

)
, (1.49)

in the formulation of the optimal Lagrange multipliers θviewσ,σ in Table 1.3, we obtain back the
true counterpart

||θview∗σ,σ − θviewσ,σ || = 9.93× 10−16. (1.50)

Similar results follow for the covariance σ̄2
X in Table 1.3.

Views on covariances

Suppose the case of joint equality views (18) on linear combinations of covariances

fX ∈ CX : CvfX {ζσX} = σ2view . (1.51)

Then the views can be easily re-written as linear combinations of second non-central moments
(1.33)

fX ∈ CX : EfX {ζσXX ′ζσ} = ηviewσ,σ , (1.52)

where the k̄ × k̄ matrix of features ηviewσ,σ is defined implicitly in terms of the yet-to-be-
determined view-implied expectations EfX{ζσX} = ζσµ as follows

ηviewσ,σ ≡ σ2view + (ζσµ)(ζσµ)′. (1.53)
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1.4. Views on second moments 23

For this reason, under views on covariances as in (1.51), the updated distribution (17) is
still normal (1.15) and no recursion is needed. Indeed, the view-implied expectation (1.40)
becomes explicit

ηviewσ ≡ Ef̄X{ζσX} = σ2view(ζσσ
2
Xζ
′
σ)−1ζσµX , (1.54)

and then both Lagrange multipliers θviewσ,σ (1.36), updated expectation µ̄X (1.37) and covari-
ance σ̄2

X (1.38) follow in turn, as summarized in the table below.

Optimal Lagr. mult.
θviewµ = ∅ θviewσ,σ = 1

2
((ζσσ

2
Xζ
′
σ)−1 − (σ2view)−1)

Updated exp. and cov.
µ̄X = µ

X
+ ζ†′σ (σ2view(ζσσ

2
Xζ
′
σ)−1 − Ik̄×k̄)ζσµX σ̄2

X = σ2
X + ζ†′σ (σ2view − ζσσ2

Xζ
′
σ)ζ†σ

Table 1.4: Views on second moments: MRE solutions under views on covariances

Note that the updated expectation in Table 1.4 is consistent with its counterpart under
equality views on first moments (1.21) and can be interpreted again as a projection similar
to (1.26). Indeed, consider the (n̄− k̄)-hyperplane Sζσ defined as follows

Sζσ ≡ {µ ∈ R
n̄ such that ζσµ = 0}, (1.55)

and the projection operator of an n̄× 1 vector x onto Sζσ

Pσ[x] = (In̄ − ζ†′σζσ)x, (1.56)

which because of (1.39) is orthogonal with respect to the inner product 〈x,y〉ω2 ≡ x′ω2y
induced by either i) the inverse base covariance ω2 ≡ (σ2

X)−1, or ii) the inverse updated
covariance ω2 ≡ (σ̄2

X)−1 (1.38).
Then, the updated expectation in Table 1.4 reads [A.1.7]

µ̄X = ζ†′ση
view
σ +Pσ[µ

X
− ζ†′σηviewσ ]; (1.57)

and similar formulation follows for the updated covariance (1.38), up to vectorization

vec(σ̄2
X) = ζ†′σ,σvec(σ

2view) +Pσ,σ[vec(σ2
X)− ζ†′σ,σvec(σ2view)]. (1.58)

Example 1.4. Consider the same setup as in Example 1.2. Then, if we input the true
k̄ × 1 vector of features (1.19) implied by the true updated distribution

σ2view ≡ ζσσ̄2∗ζ ′σ =
(

0.19 −0.17
−0.17 0.29

)
, (1.59)

23



24 Chapter 1. Analytical solutions for fitting MRE models under normality

in the formulation of the optimal Lagrange multipliers θviewσ,σ in Table 1.4, we obtain back the
true counterpart

||θview∗σ,σ − θviewσ,σ || = 9.93× 10−16. (1.60)

Similar results follow for expectation µ̄X and covariance σ̄2
X in Table 1.4.

1.5 Views on first and second moments

Let us now suppose the general case of joint equality views (18) on linear combinations of
expectations and second non-central moments as in (1.9), where ζµ and ζσ are a k̄µ × n̄
and a k̄σ × n̄ full rank matrices respectively. Then, similar to the case of views on second
non-central moments (1.33), it turns out that the optimal Lagrange multipliers θviewµ (1.16)
are defined implicitly in terms of the updated expectation of the view variables (1.34) [A.1.8]

θviewµ = (ζµσ̄
2
Xζ
′
µ)−1(ηviewµ − ζµµ̄X;σ), (1.61)

where σ̄2
X is the updated covariance (1.38); µ̄X;σ is the following n̄× 1 vector

µ̄X;σ ≡ µX + ζ†′σ (σ2view(ηviewσ )(ζσσ
2
Xζ
′
σ)−1ζσµX − ζσµX); (1.62)

and σ2view(ηviewσ ) ≡ ηviewσ,σ −ηviewσ ηview ′σ (1.35); and similar for the optimal Lagrange multipliers
θviewσ,σ (1.16), which reads as in (1.36)

θviewσ,σ =
1

2
((ζσσ

2
Xζ
′
σ)−1 − (σ2view(ηviewσ ))−1). (1.63)

Similar to the above, from the updated canonical coordinates (1.5), we can deduce also
the updated expectation (1.17) [A.1.8]

µ̄X = µ̄X;σ + ζ̄µ
†′

(ηviewµ − ζµµ̄X;σ), (1.64)

where ζ̄µ
† is a k̄µ × n̄ pseudo-inverse matrix for ζ ′µ

ζ̄µ
† ≡ (ζµσ̄

2
Xζ
′
µ)−1ζµσ̄

2
X ; (1.65)

and the updated covariance (1.38) reads as in (1.38)

σ̄2
X = σ2

X + ζ†′σ (σ2view(ηviewσ )− ζσσ2
Xζ
′
σ)ζ†σ. (1.66)

Note how µ̄X;σ is consistent with the updated expectation under only views on second mo-
ments (1.37)-(1.40). Indeed, in the case of no views on expectations or ζµ = 0, from (1.64)
we would obtain µ̄X = µ̄X;σ.
In conclusion, similar to the case of views on second moments in Section 1.4, when we

consider views on first and second moments as in (18), not only the covariance, but also the
expectation is updated.
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1.5. Views on first and second moments 25

1.5.1 Numerical solution via recursion

Similar to the case of views on second non-central moments (1.40), we can address the MRE
solutions (1.61)-(1.63)-(1.64)-(1.66) numerically through a simple fixed-point recursion in the
view-implied expectation (1.34) as follows from (1.64) [A.1.8]

ηviewσ = g(ηviewσ ) ≡ (ηviewσ,σ −ηviewσ ηview ′σ )(ζσσ
2
Xζ
′
σ)−1ζσµX + ζσζ̄µ

†′
(ηviewµ − ζµµ̄X;σ)), (1.67)

where µ̄X;σ is defined in (1.62). Note how (1.67) generalizes the recursion in the case of only
views on second moments (1.40).
Then, the routine can be set up as follows.

(θviewµ ,θviewσ,σ , µ̄X , σ̄
2
X)← Fit .MRE .First .Second .Moments .N (ζµ, ζσ,η

view
µ ,ηviewσ,σ ,µX ,σ

2
X)

0. Initialize ηviewσ ← ζσµX

1. Update feat. ηviewσ ← g(ηviewσ ) (1.67)

2. If convergence, output (θviewµ ,θviewσ,σ , µ̄X , σ̄
2
X) (1.61)-(1.63)-(1.64)-(1.66); else go to 1

Table 1.5: Iterative routine for optimal Lagrange multipliers under views on expectations
and second non-central moments

Even here, If the true stationary point ηviewσ is an attractive fixed point for (1.40), the
convergence in the above routine occurs when the relative norm between two subsequent
updates ηview(i)

σ and ηview(i+1)
σ is smaller than a required threshold. See [Coxeter, 1998] for

more details.

Example 1.5. Consider the same base model as in Example 1.1 and assume the true up-
dated distribution X ∼ Exp(θview∗µ , ζview , f

X
) (1.15) to be steered by the following Lagrange

multipliers

θview∗µ ≡
(
θview∗µ

θview∗σ,σ

)
= ( 1.73

3.04 ) ; (1.68)

with k̄ = 2 view variables specified by ζview(x) as in (1.3), where

ζµ ≡ ( 1 −1 0 ) , ζσ ≡ ( 0 1 −1 ) . (1.69)

Then, if we input the true k̄ × 1 vector of features (1.19) implied by the true updated
distribution

ηview ≡
(
ηviewµ

ηviewσ,σ

)
(1.70)

≡
(

ζµµ̄X
ζσ(σ̄2

X+µ̄X µ̄
′
X)ζ′σ

)
= ( 1.02

2.67 ) ,
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26 Chapter 1. Analytical solutions for fitting MRE models under normality

in the recursion in Table 1.5, we obtain back from the optimal Lagrange multipliers θview∗ ≡
(θview∗µ , θview∗σ,σ )′ (1.61)-(1.63) the true counterpart

||θview∗ − θview || = 2.94× 10−7. (1.71)

Similar results follow for expectation µ̄X (1.64) and covariance σ̄2
X (1.66).

1.5.2 Analytical solution under special assumptions

We can address the MRE solutions (1.61)-(1.63)-(1.64)-(1.66) analytically under special as-
sumptions on the base distribution and views.

Same view variables

Let us suppose the case of joint equality views (18) on same linear combinations (ζµ = ζσ)
of expectations and second non-central moments (1.9), or

fX ∈ CX :

{
EfX{ζX} = ηviewµ

EfX {ζXX ′ζ} = ηviewσ,σ

(1.72)

where ζ is a k̄ × n̄ full rank matrix.
Then no recursion is needed. Indeed, the view-implied expectation (1.67) is explicit by

construction
Ef̄X{ζX} = ηviewµ , (1.73)

and then both Lagrange multipliers θviewµ (1.61), θviewσ,σ (1.63), updated expectation µ̄X (1.64)
and covariance σ̄2

X (1.66) follow in turn, as summarized in the table below [A.1.9].

Optimal Lagr. mult.
θviewµ = (ηviewσ,σ − ηviewµ ηview ′µ )−1ηviewµ − (ζσ2

Xζ
′)−1ζµ

X
θviewσ,σ = 1

2
((ζσ2

Xζ
′)−1 − (ηviewσ,σ − ηviewµ ηview ′µ )−1)

Updated exp. and cov.
µ̄X = µ

X
+ ζ†′(ηviewµ − ζµ

X
) σ̄2

X = σ2
X + ζ†′(ηviewσ,σ − ηviewµ ηview ′µ − ζσ2

Xζ
′)ζ†

Table 1.6: Views on first two moments: MRE solutions under same combinations

This is consistent with [Qian and Gorman, 2001] which generalizes [Mina and Xiao, 2001].
Indeed the views (1.72) are equivalent to equality views (18) on linear combinations of ex-
pectations and covariances

fX ∈ CX :

{
EfX{ζX} = µview

CvfX {ζX} = σ2view (1.74)
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1.5. Views on first and second moments 27

up to redefine the view features as follows

ηviewµ ≡ µview , ηviewσ,σ ≡ σ2view + ηviewµ ηview ′µ . (1.75)

Example 1.6. Consider the same base model as in Example 1.1 and assume the true up-
dated distribution X ∼ Exp(θview∗, ζview , f

X
) (1.15) to be steered by the following Lagrange

multipliers
θview∗µ = ( 5.71

0.38 ) , θview∗σ,σ =
( −1.83 −2.82
−2.82 −3.13

)
; (1.76)

with k̄ = 6 view variables specified by ζview(x) as in (1.3) on the same linear combination

ζ ≡
(

1 −1 0
0 1 −1

)
. (1.77)

Then, if we input the true k̄ × 1 vector of features (1.19) implied by the true updated
distribution

ηviewµ = ζµ̄X = ( 1.18
−0.76 ) , ηviewσ,σ = ζ(σ̄2

X + µ̄Xµ̄
′
X)ζ ′ =

(
1.62 −1.04
−1.04 0.73

)
, (1.78)

in the formulations of the optimal Lagrange multipliers θview ≡ (θviewµ , vec(θviewσ,σ ))′ in Table
1.6, we obtain back the true counterpart

||θview∗ − θview || = 6.15× 10−15. (1.79)

Similar results follow for expectation µ̄X and covariance σ̄2
X in Table 1.6.

Views on expectations and covariances

Let us suppose the case of joint equality views (18) on linear combinations of expectations
and covariances

fX ∈ CX :

{
EfX{ζµX} = µview

CvfX {ζσX} = σ2view (1.80)

Then, similar to the case of views of covariances (1.51), the views can be easily re-written as
linear combinations of expectations and second non-central moments (1.9)

fX ∈ CX :

{
EfX{ζµX} = ηviewµ

EfX {ζσXX ′ζσ} = ηviewσ,σ

(1.81)

where the k̄σ × k̄σ matrix of features ηviewσ,σ is defined implicitly in terms of the yet-to-be-
determined view-implied expectations EfX{ζσX} = ζσµ as follows

ηviewµ ≡ µview , ηviewσ,σ ≡ σ2view + (ζσµ)(ζσµ)′. (1.82)
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28 Chapter 1. Analytical solutions for fitting MRE models under normality

For this reason, under views on expectations and covariances as in (1.80), the updated distri-
bution (17) is still normal (1.15) and in these circumstances no recursion is needed. Indeed,
the view-implied expectation (1.67) becomes explicit

ηviewσ = σ2view(ζσσ
2
Xζ
′
σ)−1ζσµX + ζσζ̄µ

†′
(ηviewµ − ζµµ̄X;σ), (1.83)

where µ̄X;σ (1.62) becomes

µ̄X;σ = µ
X

+ ζ†′σ (σ2view(ζσσ
2
Xζ
′
σ)−1ζσµX − ζσµX), (1.84)

and then both Lagrange multipliers θviewµ (1.61), θviewσ,σ (1.63), updated expectation µ̄X (1.64)
and covariance σ̄2

X (1.66) follow in turn, as summarized in the table below [A.1.10].

Optimal Lagr. mult.
θviewµ = (ζµσ̄

2
Xζ
′
µ)−1(µview − ζµµ̄X;σ) θviewσ,σ = 1

2
((ζσσ

2
Xζ
′
σ)−1 − (σ2view)−1)

Updated exp. and cov.
µ̄X = µ̄X;σ + ζ̄µ

†′
(µview − ζµµ̄X;σ) σ̄2

X = σ2
X + ζ†′σ (σ2view − ζσσ2

Xζ
′
σ)ζ†σ

Table 1.7: Views on first two moments: MRE solutions under views on expectations and
covariances

In particular, the updated expectation is again consistent with its counterpart under
equality views on first moments (1.21) and can be interpreted as a sequential projection:
first onto the (n̄ − k̄σ)-hyperplane Sζσ (1.56) and then onto the (n̄ − k̄µ)-hyperplane Sζµ
(1.24)

µ̄X = ζ̄µ
†′
ηviewµ +Pµ[ζ†′ση

view
σ +Pσ[µ

X
− ζ†′σηviewσ ]− ζ̄µ

†′
ηviewµ ]. (1.85)

Note how in this case the covariances σ̄2
X and σ

2
X have a significant role in both projections.

This because the sequential projection is not commutative, as showed in Figure 1.2 and
highlighted also in the definition of pseudo inverse ζ̄µ

† (1.65), which is weighted according to
the updated covariance σ̄2

X .
As a matter of fact, differently from the case of only views on first moments, the pseudo

inverses ζ̄µ
† and ζ†µ (1.22) are different

ζ̄µ
† 6= ζ†µ. (1.86)

Example 1.7. Consider the same case study as in Example 1.5. Then, if we input the
features (1.80) implied by the true updated distribution

µview ≡ ηviewµ = 1.02, σ2view ≡ ζσσ̄2
Xζ
′
σ = 0.94, (1.87)
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1.5. Views on first and second moments 29

Figure 1.2: Views on expectations and covariances: updated expectation via sequential pro-
jections

in the formulations of the optimal Lagrange multipliers θview ≡ (θviewµ , θviewσ,σ )′ in Table 1.7,
we obtain back the true counterparts

||θview∗ − θview || = 9.93× 10−16. (1.88)

Similar results follow for expectation µ̄X and covariance σ̄2
X in Table 1.7.

However, if the view variables are statistically independent under the base distribution
(1.6), or

CvfX{ζµX, ζσX} = ζµσ
2
Xζ
′
σ = 0, (1.89)

then several properties follows [A.1.11]:
- the pseudo inverses ζ̄µ

† and ζ†µ becomes the same

ζ̄µ
†

= ζ†µ; (1.90)

- the projectors commutes
Pµ[Pσ[x]] = Pσ[Pµ[x]]; (1.91)

- the view variables are statistically independent also under the updated distribution (1.15)

Cvf̄X{ζµX, ζσX} = ζµσ̄
2
Xζ
′
σ = 0; (1.92)
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- the updated parameters in Table 1.7 simplifies to the below [A.1.10]

Optimal Lagr. mult.
θviewµ = (ζµσ

2
Xζ
′
µ)−1(µview − ζµµX) θviewσ,σ = 1

2
((ζσσ

2
Xζ
′
σ)−1 − (σ2view)−1)

Updated exp. and cov.
µ̄X = µ̄X;σ + ζ†′µ (µview − ζµµX) σ̄2

X = σ2
X + ζ†′σ (σ2view − ζσσ2

Xζ
′
σ)ζ†σ

Table 1.8: Views on first two moments: MRE solutions under views on expectations and
covariances and independent views

This is consistent with [Meucci, 2010], up to a correction term in the updated expectation

µ̄X = µ
X

+ ζ†′µ (µview − ζµµX)︸ ︷︷ ︸
mean-view update

+ ζ†′σ (σ2view(ζσσ
2
Xζ
′
σ)−1ζσµX − ζσµX)︸ ︷︷ ︸

mean correction

. (1.93)

Example 1.8. Consider the same case study as in Example 1.5, but with k̄ = 2 view
variables specified by ζview(x) as in (1.3), where ζµ and ζσ are specified as the first two
eigenvectors of the base covariance σ2

X

ζµ ≡ ( 0.43 0.46 −0.78 ) , ζσ ≡ ( 0.76 −0.65 0.03 ) . (1.94)

Then the view variables are statistically independent (1.89), since we have

ζµσ
2
Xζ
′
σ = 0. (1.95)

In particular, if we input the features (1.80) implied by the true updated distribution

µview ≡ ηviewµ = 0.09, σ2view ≡ ζσσ̄2
Xζ
′
σ = 0.21, (1.96)

in the formulations of the optimal Lagrange multipliers θview ≡ (θviewµ , θviewσ,σ )′ in Table 1.8,
we obtain back the true counterparts

||θview∗ − θview || = 2.23× 10−15. (1.97)

Similar results follow for expectation µ̄X and covariance σ̄2
X in Table 1.8.

1.6 Conclusions

In this chapter we showed how to solve analytically the MRE problem under normality as-
sumption of the base distribution and views on linear combinations of the first two moments.
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In such a setting, we derived the explicit solutions of the updated expectation and covari-
ance rephrasing the notable results of [Mina and Xiao, 2001], [Black and Litterman, 1990],
[Qian and Gorman, 2001], [Meucci, 2010] in the more canonical parametrization via optimal
Lagrange multipliers within the exponential-family class.
The main theoretical result is about conjugate distributions which shows, consistently

with Bayesian theory [Murphy, 2007], how the exponential family distributions (and hence
also the normal, as special case) are invariant under the MRE principle: when the base
belongs to an exponential family class and the functions specifying the views are linear
in the suffi cient statistics, the MRE updated distribution belongs to the same exponential
family class. In particular, under normality, we provided the formulations of the updated
expectations and covariances, which are obtained either numerically via suitable fixed-point
recursions, under views on non-central moments; or analytically, under views on central
moments, much like in [Meucci, 2010].
Under normality, another relevant insight is the interpretation of MRE solution in terms

of orthogonal projections which commute when the view variables are statistically orthogonal.
In these circumstances we surprisingly found that the original updating rule for expectation
derived in [Meucci, 2010] is imprecise and must be adjusted with an additional component
implied by the views on covariances.
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Chapter 2

Advanced portfolio construction via
MRE approach

2.1 Introduction

In portfolio management, the traditional implementation a-la “Modern Portfolio Theory”
pioneered by [Markowitz, 1952] is typically performed in two steps: i) estimate the moments
of the market variables, such as returns, from realized historical data; and ii) plug-in the
estimates, such as sample mean and covariance, as they were the true parameters in the
mean-variance problem.
However, the estimation risk is central in this procedure. As matter of fact, [DeMiguel et al., 2009]

illustrated how implementing optimal portfolios with sample moments gives rise to extreme
fluctuating holdings, which perform poorly out of sample. For this reason a significant effort
in finance has been devoted for handling the estimation error with the aim of improving the
performance of the original portfolio selection model pioneered by [Markowitz, 1952]. In this
context, modern literature shows how to reduce the impact of estimation error and the ex-
tent of possible outperformance over classical sample estimators via Bayesian or more general
Shrinkage estimators, see for instance [Ben-Tal and Nemirovski, 2001], [Jagannathan and Ma, 2003],
[Kan and Zhou, 2006], [Meucci, 2005].
Similar to the James-Stein estimator [Stein, 1955], the MRE framework provides a sound

rationale for shrinkage estimates, which blend a pure statistical estimate, such as the histor-
ical variance, in order to satisfy additional constraints implied by the market views, such as
target bounds on volatilities. MRE approach have already been extensively used in finance
for applications including derivatives pricing ([Avellaneda, 1999], [D’Amico et al., 2003]),
portfolio allocation ([Pezier, 2007]), stress-testing ([Breuer and Csiszar, 2013]), and, more
broadly, in risk and portfolio management [Meucci, 2008], [Meucci, 2013], [Meucci, 2011],
[Meucci, 2012b], [Meucci and Nicolosi, 2016].
A relevant application of the MRE is for the construction of a quantitative trading strat-

egy, by processing ranking signals for alpha-generation. In the standard approach, discussed
for instance in [Grinold and Kahn, 1999], the expected return of all the financial instruments
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in a given market is set proportional to the z-score of a given predictive signal. However,
this procedure imposes restrictions in the optimization process. [Almgren and Chriss, 2006]
address this issue, obtaining expected returns that do not overlay spurious informations.
Instead, [Meucci et al., 2011] propose a parametric implementation of the MRE under a
low-rank-diagonal structure of the covariance matrix, which is suitable for handling large
dimensional markets and starts from the empirical observations. However this implemen-
tation presents several problems: the updated distribution is not represented in its (low-
dimensional) canonical form via Lagrange multipliers, but parametrized directly in terms
of (large-dimensional) expectation and covariance; the low-rank-diagonal parametrization of
the covariance is affected by problems of identifications; the updated expectation and covari-
ance are computed according to a non-convex optimization problem which does not admit a
unique solution.
Here, we generalize the results of the parametric implementation of MRE in Chapter 1 and

propose an alternative approach to [Meucci et al., 2011] for processing complex (in)equality
views on first and second moments of the market variables, including views on ranking as
special case.
The remainder of this chapter is organized as follows.
In Section 2.2 we review MRE theoretical framework for normal base distributions and

(in)equality views on first two moments, which we then optimize numerically. In Section 2.3
we rephrase the MRE problem for (in)equality linear views on first moments as a linearly
constrained quadratic programming problem. In Section 2.4 we review the more general
case of (in)equality linear views on the first two second moments and derive the analytical
expressions for the derivatives to feed in the optimization solver. In Section 2.5, we evaluate
the performance, in terms of P&L Sharpe ratios, of optimal portfolio policies calibrated to
U.S. stock market data in the Dow Jones Index, n̄ = 30 assets, which embed in the estimation
process the views on ranking via: i) common approach by [Grinold and Kahn, 1999]; ii)
Factor Entropy Pooling by [Meucci et al., 2011]; and iii) MRE, and compare the results with
respect to the benchmark strategy of investing a fraction 1/n̄ of budget in each of the n̄
financial instruments available. Finally, in Section 2.6 we list the main contributions.
Fully documented code is available on GitHub.

2.2 The model

Following the theoretical framework (4), here we address the MRE problem (16) under nor-
mality (1.6) and general (in)equality views. See also Figure 1.
More precisely, let us consider the following setup.

Suppose:
- a normal base distribution (1) as in the analytical approach (1.6)

X ∼ N (µ
X
,σ2

X); (2.1)
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- (in)equality views on the first two moments of the market variables

fX ∈ CX :

{
EfX{ζµX} 5 ηviewµ

EfX{ζσXX ′ζ ′σ} 5 ηviewσ,σ .
(2.2)

Then, under normal base assumption (2.1) and inequality views (2.2), the MRE updated
distribution (23) must be normal in turn as in the analytical counterpart (1.15) [A.1.3]

X ∼ N (µ̄X , σ̄
2
X), (2.3)

where the updated expectation (1.17) reads

µ̄X = µ(θview) ≡ σ̄2
X((σ2

X)−1µ
X

+ ζ ′µθ
view
µ ), (2.4)

and the updated covariance (1.18) reads

σ̄2
X = σ2(θview) ≡ σ2

X + σ2
Xζ
′
σ(

1

2
(θviewσ,σ )−1 − ζσσ2

Xζ
′
σ)−1ζσσ

2
X . (2.5)

In practice, θview in (2.4)-(2.5) are the optimal Lagrange multipliers as in (27), which we
report here

θview ≡
(

θviewµ

vec(θviewσ,σ )

)
≡ argmin

t50

L(t;ηview), (2.6)

where dual Lagrangian (28) explicitly reads [A.1.3]

L(t;ηview) ≡ ψN (µ(t), σ2(t))− ψN (µ
X
,σ2

X)− t′µηviewµ − tr(t′σ,ση
view
σ,σ ), (2.7)

µ(t) is the (n̄ × 1)-valued function defined as in (2.4); σ2(t) is the (n̄ × n̄)-valued function
defined as in (2.5); and where ψN (µX ,σ

2
X) denotes the log-partition function of a multivariate

normal distribution parametrized in terms of expectation and covariance [A.1.2]

ψN (µX ,σ
2
X) ≡ 1

2
[µ′X(σ2

X)−1µX −
1

2
ln det((σ2

X)−1)]. (2.8)

In these circumstances the dual Lagrangian problem (2.6) cannot be solved analytically
as in Chapter 1.
However, as we proceed to discuss, since the large-dimensional location and dispersion

(µ̄X , σ̄
2
X) (2.4)-(2.5), which identify the updated distribution (2.3), are fully determined by

a relatively small number k̄µ + k̄2
σ of parameters θ

view (1.16), we can provide very effi ciently
the optimal solution (2.6) via numerical approximation.
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2.3 (In)equality views on first moments

Let us suppose the case of only (in)equality views (18) on linear combinations of the first
moments

fX ∈ CX : EfX{ζµX} 5 ηviewµ , (2.9)

where ζµ is a k̄ × n̄ full rank matrix.
Then the updated expectation (2.4) becomes

µ̄X = µ
X

+ σ2
Xζ
′
µθ

view
µ , (2.10)

and the updated covariance (2.5) becomes as the base counterpart

σ̄2
X = σ2

X . (2.11)

Moreover, the dual Lagrangian (2.7) explicitly reads [A.2.2]

L(tµ;ηviewµ ) =
1

2
t′µ(ζµσ

2
Xζ
′
µ)tµ + t′µ(ζµµX − η

view
µ ). (2.12)

Hence the dual Lagrangian problem (2.6) is an instance of a linearly constrained quadratic
programming problem, and as such, we can address it numerically via a built-in quadratic
programming solver.
In particular, we can interpret the dual Lagrangian optimization (2.6) as in instance of

mean-variance allocation problem.
Indeed, let us define the factor portfolios, or factors, as the excess view variables over the

features
Z ≡ ζµX − ηviewµ . (2.13)

Then we can re-write (2.6) as follows [A.2.3]

hλ∗ ≡ argmax
h=0

E{Zh} − λ∗V{Zh}, (2.14)

where we defined Zh ≡ h′Z and λ∗ ≡ 1
2
; and where E{·} and V{·} denotes the expecta-

tion and variance operators respectively under the base distribution (2.1). The the optimal
Lagrange multipliers θviewµ satisfies

θviewµ = −hλ∗. (2.15)

Example 2.1. Consider n̄ ≡ 3 market variables X ≡ (X1, X2, X3)′ with joint normal
base distribution

X ∼ N (µ
X
,σ2

X), (2.16)
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where
µ
X
≡
(

0.26
0.29
0.33

)
, σ2

X ≡
(

0.18 0.11 0.13
0.11 0.23 0.16
0.13 0.16 0.23

)
, (2.17)

and assume inequality and equality views as follows

fX ∈ CX :


EfX{X1 −X2} ≤ −0.01
EfX{X2 −X3} ≤ −0.01
EfX{X3} = 0.3.

(2.18)

Then the views are in the linear format as in (2.9), where

ζµ ≡
(

1 −1 0
0 1 −1
0 0 1

)
, ηviewµ ≡

( −0.01
−0.01

0.3

)
. (2.19)

Then, if we solve numerically the ensuing dual Lagrangian optimization (2.6)-(2.12), the
updated expectation (2.10) reads

µ̄X =
(

0.24
0.27
0.3

)
, (2.20)

which is consistent with the views since we have
[µ̄X ]1 − [µ̄X ]2 = −0.02 ≤ −0.01
[µ̄X ]2 − [µ̄X ]3 = −0.03 ≤ −0.01
[µ̄X ]3 = 0.3.

(2.21)

2.4 (In)equality views on first and second moments

In the more general case of (in)equality views on the first two moments as in (2.2), the
dual Lagrangian problem (2.6) is an instance of a linearly constrained convex programming
problem, since the dual Lagrangian L(t;ηview) (2.7) is a convex objective (30) in general.
In particular, it turns out that the (k̄µ + k̄2

σ)× 1 gradient vector explicitly reads [A.2.1]

∇tL(t;ηview) ≡
(
∇tµL(t;ηview )

∇tσ,σL(t;ηview )

)
(2.22)

=
(

ζµ 0k̄µ×n̄2

0
k̄2
σ×n̄

ζσ,σ

)(
µ(t)

vec(σ2(t)+µ(t)µ(t)′)

)
−
(

ηviewµ

vec(ηviewσ,σ )

)
.

where (µ(t), σ2(t)) are the multivariate functions as in (2.4)-(2.5); and ζσ,σ is the k̄
2
σ × n̄2

matrix as in (1.8).
Similar to the above, the (k̄µ + k̄2

σ)× (k̄µ + k̄2
σ) Hessian matrix explicitly reads [A.2.1]

∇2
t,tL(t;ηview) ≡

(
∇2
tµ,tµ

L(t;ηview ) ∇2
tσ,tµ

L(t;ηview )′

∇2
tσ,tµ

L(t;ηview ) ∇2
tσ,σ
L(t;ηview )

)
(2.23)

=
(

ζµ 0k̄µ×n̄2

0
k̄2
σ×n̄

ζσ,σ

)(
σ2(t) (µ(t)′⊗σ2(t))+(σ2(t)⊗µ(t)′)

(µ(t)⊗σ2(t))+(σ2(t)⊗µ(t)) (In̄2+Kn̄,n̄)(σ2(t)⊗σ2(t))+ε(t)

)(
ζµ 0k̄µ×n̄2

0
k̄2
σ×n̄

ζσ,σ

)′
,
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Figure 2.1: Approximation errors of the true MRE solution (Lagrange multipliers, expecta-
tion and covariance) via numerical implementation applied to 100 randomly chosen configu-
rations of base parameters, equality views on first and second moments.

where Kn̄,n̄ denotes the n̄2× n̄2 commutation matrix [Magnus and Neudecker, 1979] and ε(t)
is a multivariate function which we can write in terms of (µ(t), σ2(t)). Refer to [A.2.1] for
more details.
According to the above, even in this case we can address numerically the dual Lagrangian

problem via a built-in convex programming solver and we can further enhance its compu-
tation by feeding the analytical expressions of the first and second derivatives of the dual
Lagrangian L(t;ηview) (2.22)-(2.23) in the optimization algorithm. In Figure 2.1 we compare
the numerical MRE solutions with the analytical counterparts in Chapter 1 for a random
pool of normal base distributions (2.3).

Example 2.2. Consider n̄ ≡ 6 market variables X ≡ (X1, . . . , X6)′ with joint normal
base distribution

X ∼ N (µ
X
,σ2

X), (2.24)

where

µ
X
≡

 −1.14
0.10
0.72
2.58
−0.66
0.18

 , σ2
X ≡

 1 0.24 0.22 −0.63 0.05 −0.57
· 1 0.33 0.42 −0.63 0.28
· · 1 −0.29 −0.79 0.03
· · · 1 −0.20 0.80
· · · · 1 −0.30
· · · · · 1

 , (2.25)

38



2.5. Case study: ranking views 39

and assume inequality and equality views as follows

fX ∈ CX :


EfX{ζineqµ X} ≤ ηview_ineqµ

EfX{ζeqµ X} = η
view_eq
µ

EfX{ζσXX ′ζ ′σ} ≤ ηviewσ,σ .
(2.26)

for specific combinations ζineqµ , ζeqµ , ζσ; and features as follows

ηview_ineqµ ≡
(

0.52
−0.02
−0.03

)
, ηview_ineqµ ≡ ( 0.30

−1.25 ) (2.27)

ηviewσ,σ ≡
(

1.09 −0.95
−0.95 2.58

)
(2.28)

Then, if we solve numerically the ensuing dual Lagrangian optimization (2.6)-(2.12), the
updated expectation (2.4) reads

µ̄X =

 −0.87
0.23
0.20
2.79
0.00
0.39

 , (2.29)

which is consistent with the views since we have{
ζineqµ µ̄X =

(
0.52
−6.48
−0.38

)
≤
(

0.52
−0.02
−0.03

)
ζineqµ µ̄X = ( 0.30

−1.25 )
(2.30)

Similar to the above, the updated covariance (2.5) reads

σ̄2
X =

 1.66 0.52 0.52 −0.78 −0.15 −0.33
· 0.91 0.14 0.21 −0.37 0.00
· · 0.65 −0.58 −0.35 −0.44
· · · 0.92 0.09 0.48
· · · · 0.48 0.25
· · · · · 0.38

 , (2.31)

which is consistent with the views since we have

ζσ(σ̄2
X + µ̄Xµ̄

′
X)ζ ′σ =

(
1.09 −0.95
−0.95 2.48

)
≤
(

1.09 −0.95
−0.95 2.58

)
. (2.32)

2.5 Case study: ranking views

In this section we use MRE to build enhanced systematic strategies, optimally processing
ranking (inequality) trading signals in the equity market. More precisely, following the most
standard approach to this problem popularized by [Meucci et al., 2011], here we proceed at
each generic time t by backtesting signal, as follows.
Step 1.We denote by Xn ≡ Πn,t→t+1 the next-step P&L of the n-th instrument, and we

assume the joint (base) distribution to be normal as in (2.1), where the base expectation µ
X
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and covariance σ2
X are estimated from the past observations of the linear returns, say using

exponentially weighted moving average.

Example 2.3. Let us consider a market based on n̄ = 30 instruments, say stocks
or total return indexes, where the true dynamic for the dividend-adjusted values follows
a simple geometric Brownian motion according to a standard Black-Merton-Scholes model
[Black and Scholes, 1973].
This means that the log-values follow a random walk at discrete times

lnVn,t+1 = lnVn,t + εn,t→t+1, (2.33)

with normal shocks, or compounded returns

εt→t+1 ∼ i.i.d. N (µ∗ε,σ
2∗
ε ). (2.34)

According to this framework, we generate fake data from January 2002 to January 2017 with
a weekly time step t→ t+ 1, so that linear returns behave similarly to compounded returns,
and hence can be assumed normal in first approximation

Rn,t→t+1 ≡
Vn,t+1 − Vn,t

Vn,t
≈ εn,t→t+1 ≡ ln(Vn,t+1/Vn,t). (2.35)

We start collecting data in January 2012 estimate every week the expectation µ
ε
and co-

variance σ2
ε via historical approach, rolling on one year of data from the past series of linear

returns, and deduce the ensuing estimate for the next-step P&L’s

Πt→t+1 ∼ N (µ
Π
,σ2

Π), (2.36)

where
µ

Π
= Diag(vt)µε, σ2

Π = Diag(vt)σ
2
εDiag(vt). (2.37)

We repeat the procedure up to January 2017.

Step 2. We focus on an observable characteristic of a set of n̄ instruments, which is deemed
to have predictive power, say for instance, for stocks, a momentum/reversal indicator, or a
value indicator such as the price/earnings ratio. Then we sort the n̄ assets according to the
value of the given characteristic. In our example, the stock n = 1 has the lowest momentum,
the stock n = 2 has the second-lowest momentum, and so on, until the stock n = n̄ has the
highest momentum. The rationale of this step is that, if the signal is truly predictive, a lower
ranking should give rise to a lower information ratios.
This is clearly a view in the following format

fX ∈ CX :
EfX{X1}
Sd fX{X1}

≤ EfX{X2}
Sd fX{X2}

≤ · · · ≤ EfX{Xn̄}
Sd fX{Xn̄}

, (2.38)
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where Xn ≡ Πn,t→t+1 denotes the next-step P&L of the n-th instrument.

Example 2.4. We continue from Example 2.3. In each week, we suppose to know the
exact ranking of the Sharpe ratios behind the true P&L’s distribution

n→ rank(n) :
µ∗Π;rank(n)

σ∗Π;rank(n)

≤
µ∗Π;rank(n+1)

σ∗Π;rank(n+1)

, (2.39)

which hence implies the views (2.38), up to re-ordering the stocks n = 1, . . . , n̄.

Step 3. The most common approach to address the views as in (2.38) popularized by
[Grinold and Kahn, 1999], and later by [Park, 2010], [Wang and Kochard, 2011],
[Moskowitz et al., 2012], [Asness et al., 2013a], [Asness et al., 2013b], [Menchero et al., 2013],
updates the expectations, setting them to be proportional to their relative ranking and volatil-
ity, as follows

[µ̄X ]n ≡ η
√

[σ̄2
X ]n,n,(n−

n̄+ 1

2
), n = 1, . . . , n̄, (2.40)

leaving the covariances the same as the base counterparts (2.11), or

σ̄2
X ≡ σ2

X ; (2.41)

where the constant η is set as 2/(n̄ − 1) so that the ex-ante Sharpe ratios are bounded as
follows

− 1 =
[µ̄X ]1√
[σ̄2
X ]1,1

≤ · · · ≤ [µ̄X ]n̄√
[σ̄2
X ]n̄,n̄

= 1. (2.42)

The above procedure presents several problems. First, the approach gives rise to ex-ante
Sharpe ratios which are always bounded between −1 and 1 across time, which is a more
strict restriction than what the views state (2.38). Second the expectation update (2.40)
does not take into account the whole informations of the past data, as represented by the
base expectations µ

X
. Finally the approach does not change the volatilities (2.41), whereas

the views (2.38) clearly also involves the volatilities. [Almgren and Chriss, 2006] provide an
alternative approach to process inequality views. However, this implementation presents
similar problems as in [Grinold and Kahn, 1999].
To address these issues, [Meucci et al., 2011] and [Meucci et al., 2014] propose a more en-

hanced solution via the so-called Factor Entropy Pooling (FEP) methodology. More precisely,
the authors consider the relative entropy among normal distributions

E(µ,σ2‖µ,σ2) = 1
2
(tr(σ2(σ2)−1)− ln |σ2(σ2)−1| (2.43)

+ (µ− µ)′(σ2)−1(µ− µ)− n̄),
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as distance between expectations and covariances and solve numerically the following mini-
mization

(µ̄X , σ̄
2
X) ≡ argmin

(µ,σ2)∈C
E(µ,σ2‖µ

X
,σ2

X), (2.44)

under the constraints implied by the views on the ex-ante Sharpe ratios (2.38)

C :
µn
σn
≤ µn+1

σn+1

− η, n = 1, . . . , n̄− 1. (2.45)

Finally, in order to simplify the problem (2.44) and substantially reduce the large number of
parameters (µ,σ2) to optimize, they reformulate the covariances according to a "low-rank-
diagonal" (factor) structure

σ2 ≡ bb′ + Diag(d ◦ d), (2.46)

where b is an n̄× h̄ matrix (h̄� n̄), and d is an n̄× 1 vector. However, this implementation
is not consistent with the actual MRE solution (16), which is based on the dual Lagrangian
optimization (27), as explained in details in Chapter 1. Moreover, the low-rank-diagonal
parametrization is affected by identification problems: the parameters b identifies σ2 up to
a h̄ × h̄ rotation matrix. Finally, the FEP implementation acts also on correlations, while
the views (2.38) refer only to expectations and volatilities. Instead, it is more plausible that
the minimal MRE distortion from the base, according to the views (2.38), does not involve
correlations.
For the above reasons, here we propose to address the problem via MRE (2.6).
More precisely, we reformulate the ranking views (2.38) as follows

fX ∈ CX :

{
EfX {X1}
SdfX {X1}

≤ EfX {X2}
SdfX {X2}

≤ · · · ≤ EfX {Xn̄}
SdfX {Xn̄}

CvfX{X} = σ̄2view
X ,

(2.47)

where we require σ̄2
X the updated covariance to not alter only the original base correlations

σ̄2view
X ≡ Diag(σ̄viewX;vol)× c2

X × Diag(σ̄viewX;vol), (2.48)

where σ̄viewX;vol is a suitable n̄ × 1 vector of new target volatilities, which we can calibrate or
set exogenously.
Then, the reformulated views (2.47) are equivalent to inequality views on only expecta-

tions [A.2.4] as in (2.9), where ζµ is an (n̄− 1)× n̄ matrix defined as follows

ζµ ≡


1

[σ̄viewX;vol ]1
− 1

[σ̄viewX;vol ]2
0 · · · 0

0 1
[σ̄viewX;vol ]2

− 1
[σ̄viewX;vol ]3

· · · 0

· · . . . . . . ·
0 0 · · · 1

[σ̄viewX;vol ]n̄−1
− 1

[σ̄viewX;vol ]n̄

 , (2.49)
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and ηviewµ is an (n̄− 1)× 1 vector defined as follows

ηviewµ ≡


−η1

−η2

·
−ηn̄

 , (2.50)

where ηn are a positive scalar which we set to induce stronger inequalities in (2.47).
In this way we can compute numerically the updated expectation µ̄X as in (2.10), up-

dating the covariance as in (2.48).

Figure 2.2: In-sample r-squared between the true P&L’s distribution and updated distrib-
utions. Approaches: Minimum Relative Entropy (red); Factor Entropy Pooling (magenta);
common approach (blue).

Example 2.5. We continue from Example 2.4 and we update parameters via Com-
mon approach (2.40); and FEP approach (2.44); and MRE via dual Lagrangian optimization
(2.6)-(2.12), setting the inequality buffer in (2.50) as in the common approach (2.40), i.e.
ηn = 2/(n̄− 1) and the target volatilities σ̄viewX;vol as the base standard deviation.
We display in Figure 2.2 the in-sample r-squared from the true P&L’s distribution, as
measured by the relative entropy between the updated and true parameters r2 = 1 −
1
n̄
E(µ̄X , σ̄

2
X‖µ∗X ,σ2∗

X).
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Step 4. We construct an optimal portfolio, based on the updated expectation µ̄X , such as
maximum-expected long-short portfolio with constant target volatility, imposing constraints
on the portfolio concentration similar to [Lobo et al., 2007]

h∗ ≡ argmax
h∈C

( µ̄′Xh︸ ︷︷ ︸
exp. P&L

− t′h︸︷︷︸
trans. cost

), (2.51)

Refer [Meucci et al., 2011] for more details.

Figure 2.3: Cumulative P&L’s of systematic strategies on Black-Scholes generated data.
Approaches: Minimum Relative Entropy (red); Factor Entropy Pooling (magenta); common
approach (blue); true (green); base (black).

Example 2.6. We continue from Example 2.5 and compute the optimal portfolio
(2.51), where we set the transaction costs t as 5 basis points of the market value, and where
we set the volatility target such that the dollar volatility is bounded at 10,000$.
In Figure 2.3 we display the cumulative P&L ensuing the optimal portfolios computed from
the common approach (2.40)-(2.41), FEP approach (2.44)-(2.45) and the MRE approach
for a total of 260 rebalancing dates. For comparison, we display the performance of the
optimal portfolios stemming from the base P&L’s distribution and true counterpart, which
we consider as our benchmark.
In table below we report the weekly out-of-sample Sharpe ratio for the true optimal strategy,
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and for the respective other strategies. In parenthesis we also report the p-value of the
difference between the Sharpe ratio of each strategy from the benchmark, which is computed
using the methodology by [Jobson and Korkie, 1981] and [DeMiguel et al., 2009].

Strategy (n̄ = 30) Sharpe ratios Mean Std. Dev.
True 0.22 103 × 1.79 104 × 0.79

MRE 0.23
(0.80)

103 × 2.37 104 × 0.99

Common 0.18
(0.45)

103 × 1.95 104 × 1.08

FEP 0.19
(0.51)

103 × 2.81 104 × 1.47

Base (no views) 0.13
(0.17)

103 × 1.41 104 × 1.02

Table 2.1: Sharpe ratios and p-values of systematic strategies on Black-Scholes generated
data

Example 2.7. To illustrate the backtesting strategy on real data, we consider a market
of n̄ = 30 equities in the Dow Jones Index (constituents as of June 2012). For those equities,
we consider weekly prices from January 2002 to January 2017. Within this framework we
construct a predictive signal similarly to [Park, 2010]. More precisely, for each stock n, at
the current time t, we define as "momentum" the quotient of a short term momentum and a
long term standard deviation estimated by exponentially weighted moving average

momλ,γ
n,t ≡

∑
s≥0

e−λsrn,t−s∑
s≥0

e−λs
/

√∑
s≥0

e−γsr2
n,t−s∑

s≥0
e−γs

. (2.52)

In the above expression, values for the short-term decay coeffi cient λ correspond to a half-life
of the order of a few days to a few weeks and typical values for the long-term decay coeffi cient
γ correspond to a half-life of the order of a few weeks to a few months. Then, we reorder
the stocks in such a way that −momλ,γ

1,t ≤ · · · ≤ −mom
λ,γ
n̄,t , where the minus sign is set to

implement a "reversal" strategy (plus sign for "momentum" strategy). The new ordering
of stocks n = 1, . . . , n̄ implies the views (2.38). The backtest starts in January 2006 and
portfolios are constructed every Wednesday for a total of 573 rebalancing dates similar to
Example 2.6. In Figure 2.4 we display the cumulative P&L ensuing the optimal portfolios
computed from the common approach (2.40)-(2.41), FEP approach (2.44)-(2.45) and the
MRE approach. In order to visualize the predictive power of the signal (2.52) we also plot
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46 Chapter 2. Advanced portfolio construction via MRE approach

Figure 2.4: Cumulative P&L’s of systematic strategies on Dow Jones index: Minimum Rel-
ative Entropy (red); Factor Entropy Pooling (magenta); common approach (blue); equally
weighted (green); base (black).

the cumulative P&L of the optimal portfolios computed according to the base distribution
(2.37), which hence do not take into account the views (2.38); and display the performance of
an equally weighted portfolio which we consider as our benchmark. In table below we report
the weekly out-of-sample Sharpe ratio for the true optimal strategy, and for the respective
other strategies. In parenthesis we also report the p-value of the difference between the
Sharpe ratios and p-values computed as in Table 2.1.

Strategy (n̄ = 30) Sharpe ratios Mean Std. Dev.
Equally weighted 0.07 103 × 0.75 104 × 1.02

MRE 0.05
(0.63)

103 × 1.24 104 × 2.64

Common 0.04
(0.57)

103 × 0.55 104 × 1.32

FEP 0.01
(0.30)

103 × 0.40 104 × 2.19

Base (no views) −0.01
(0.15)

−103 × 0.25 104 × 1.48

Table 2.2: Sharpe ratios and p-values of systematic strategies on Dow Jones data
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Figure 2.5: Fanplot of the backtested strategies on Dow Jones equity index using different
decay parameters for the estimation of base expectations and base covariances, spanning a
half-life from from 52 to 208 weeks. Approaches: Minimum Relative Entropy (red); Factor
Entropy Pooling (magenta); common approach (blue).

Example 2.8. We continue from Example 2.7. For fairness of comparison among com-
mon, FEP and MRE approaches, we also performed the backtest with different values for
the decay parameters in the base estimation, see Figure 2.5. The plot reports the median
(solid line), the 50% percentile range (dim shading) and the 90% percentile range (dimmer
shading) for each approach.
Finally, within this setup, we also plot the evolution of the respective Sharpe ratios and
p-values computed as in Table 2.2, see Figure 2.6.
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48 Chapter 2. Advanced portfolio construction via MRE approach

Figure 2.6: Sharpe ratios and p-values of a quantitative systematic strategy on Dow Jones
equity index using different decay parameters for the estimation of base expectations and
base covariances, spanning a half-life from from 52 to 208 weeks. Approaches: Minimum
Relative Entropy (red); Factor Entropy Pooling (magenta); common approach (blue); equally
weighted (green); base (black).

2.6 Conclusions

In this chapter we introduced a numerical approach for the parametric implementation of
MRE under inequality views on the first two moments, generalizing results in Chapter 1.
An interesting insight of portfolio theory is the formulation of dual Lagrangian problem in
terms of mean-variance allocation. Other contributions are the analytical expressions of the
gradient and the Hessian of the dual Lagrangian which allows to enhance the computational
effi ciency of the optimization algorithm.
Finally, we studied the effect of implementing the MRE into a systematic strategy based on

ranking trade signals with respect to the former approaches introduced by [Grinold and Kahn, 1999]
and [Meucci et al., 2011]. This comparison is undertaken using the Dow Jones empirical
dataset from 2002 to 2017 as well as using simulated data. We found out that, as long as
the signals are truly predictive, the in-sample errors in estimating means and covariances
is significantly lower for the MRE implementation. Also we showed how the out-of-sample
performance of MRE strategy, though lower than the equally weighted counterpart, tends to
be definitely better than the classical implementation, which ignores the views; and higher
with respect to the other approaches to views processing.
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These results highlight the following facts. One, is the relevance of using not just empirical
data but also other sources of informations, for instance cross-sectional characteristics, such
as momentum/reversal indicators, or value indicators such as the price/earnings ratios. Two,
when performing a particular signal-induced strategy for optimal allocation, the forecast of
the right views plays a key role. Indeed, we stress that we are not proposing the MRE strategy
as the best for all implementations, but only a consistent approach to suitably capture the
signal informations, which can be used to test its predictive power in turn.
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Chapter 3

A numerical implementation for
fitting MRE models via stochastic
approximation

3.1 Introduction

In problems for statistical modelling and inference, the principle of MRE have become popular
through the years because of the relevant contributions by [Jaynes, 1957a], [Jaynes, 1957b].
The principle explains how to infer in our statistical models new informations that arise in the
form of beliefs, or more precisely views. Such views are, in many cases, incomplete or partial,
meaning that several distributional models for the variables of interest can take into account
the views. In these circumstances, similar to Bayesian inference, the principle of MRE in-
structs us to choose the most plausible model displaying the minimal discrepancy, as measured
by the relative entropy (17), from a prior knowledge, as represented by a reference (base)
distribution (1), which is consistent with the views (16). See also [Cover and Thomas, 2006].
One cost imposed by this methodology is that the MRE solution (16) cannot be fitted

analytically for general distributional models and arbitrary views, such as moment conditions
on non-linear combinations of the variables. As a matter of fact, the parametric implemen-
tation of MRE, as introduced in Chapter 1 and 2, presents two barriers: the requirements
of i) normality of the base distribution; and ii) views on the first two moments of linear
combinations of the variables.
This implies the need to use numerical methods to fit the resulting MRE models in more

general frameworks.
Most applications of MRE to date have involved numerical implementations via Monte

Carlo sampling methods, such as stochastic approximation, or sample path optimization
algorithms, see for instance [Schofield, 2007]. Among these techniques, the non-parametric
implementation of MRE introduced in [Meucci, 2008] is very effi cient, but typically inaccurate
in particular when dealing with large dimensional markets.
Here we enhance and generalize [Meucci, 2008]. In particular, we show how through
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iterative Hamiltonian Monte Carlo iterative sampling [Chao et al., 2015], [Neal et al., 2011]
we can fit the parameters of the MRE solution yielding a higher statistical significance than
the non-parametric implementation. This can allow significant precision of the estimators
especially when dealing with extreme scenarios.
The remainder of this chapter is organized as follows.
In Section 3.2 we introduce the MRE non-parametric framework for base distributions

whose analytical expression is known modulo a normalizing constants and (in)equality views
on arbitrary moments conditions, see Figure 1. In Section 3.3 we introduce the non-parametric
implementation by [Meucci, 2008] and how to fit the MRE solution via Hamiltonian Monte
Carlo simulations by [Chao et al., 2015], [Neal et al., 2011]. In Section 3.4 we show how to
iterate the non-parametric procedure because of the invariance of the MRE solution under
exponential tiltings and how to suitably set up stopping criteria. In Section 3.5 we compare
the iterative approach with the non-parametric counterpart using the normal framework in
Chapter 1 as benchmark. Finally, in Section 3.6 we draw some conclusions on the enhance-
ments developed in this chapter.
Fully documented code is available on GitHub.

3.2 The model

Following the theoretical framework (4), here we address numerically the MRE problem (16)
under no assumption on the base distribution and view function, see Figure 1.
More precisely, let us consider the following setup.

Suppose:
- a base distribution (1) whose analytical expression is perfectly known modulo a multi-
plicative constant term

X ∼ f
X

: f
X

(x) ∝ g
X

(x); (3.1)

- (in)equality views on generalized expectation as in (22)

fX ∈ CX : EfX
{
ζview(X)

}
5 ηview , (3.2)

with an arbitrary view function ζview .
Then, the MRE updated distribution (23) must be an exponential twist of the base
distribution (23)

X ∼ f̄X : f̄X ∝ ḡX , (3.3)

where
ḡX(x) ≡ g

X
(x)eθ

view′ζview (x), (3.4)

and where the optimal Lagrange multipliers θview ≡ (θview1 , . . . , θviewk̄ )′ are the solutions of
the following dual Lagrangian problem (27), which we report here

θview ≡ argmin
t50

L(t;ηview). (3.5)
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Now our goal is to compute:
i) the optimal Lagrange multipliers θview (3.5);
ii) the updated distribution f̄X (3.3).
Since in full generality we cannot proceed via analytical computations as in Chapter 1

and 2, here we focus on addressing the MRE problem via simulations. To this purpose we
rely on approximations through scenario-probability distributions

fX(x) ≈
∑j̄

j=1 p
(j)δ(x(j))(x) ⇔ {X ,p}, (3.6)

which are fully identified by:
- an n̄× j̄ panel-matrix of joint scenarios

X ≡

 x
(1)
1 · x(j)

1 · x(j̄)
1· · ·

x
(1)
n · x(j)

n x
(j̄)
n· · ·

x
(1)
n̄ x

(j)
n̄ x

(j̄)
n̄

 ; (3.7)

- a j̄ × 1 vector of probabilities p ≡ (p(1), . . . , p(j̄))′ which are positive and sum to one

p ≥ 0,
∑j̄

j=1 p
(j) = 1. (3.8)

See also [Meucci, 2019] for more details.

Then, we proceed as follows.
First, we generate via Hamiltonian Monte Carlo (HMC) simulations [Chao et al., 2015],

[Neal et al., 2011] a scenario-probability distribution (3.6) that approximates the base distri-
bution f

X
(3.1)

{X ,p} ≈ f
X

HMC⇐ g
X
. (3.9)

Next, according to the non-parametric MRE [Meucci, 2008], given {X ,p} we can approx-
imate both i) the optimal Lagrange multipliers θview (3.5); and ii) the updated distribution
f̄X (3.3)

θ̂
view ≈ θview
{X , p̄} ≈ f̄X

}
⇐

{
{X ,p} ≈ f

X

{ζview ,ηview} . (3.10)

However, the statistical approximation of the scenario-probability distribution (3.6) rep-
resented by {X , p̄} can be significantly poor due to the curse of dimensionality. Moreover,
as we proceed to show, the approximation error for the Lagrange multipliers θview can be
significantly large, in particular when we deal with extreme views.
To solve these issues, here we propose to iterate the non-parametric MRE:

1) perform the steps (3.9) and (3.10);
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2) compute the analytical approximation for the generator ḡX of the updated distribution
(3.4)

ĝX(x)← g
X

(x)eθ̂
view′

ζview (x); (3.11)

3) if convergence criteria are satisfied, output the fitted generator and the updated distribu-
tion

ĝX , {X , p̄} ≈ f̄X , (3.12)

otherwise update the base generator (3.1)

g
X

(x)← ĝX(x), (3.13)

and go to 1).

3.3 Non-parametric MRE

Here we see step by step how to build the outputs X , θ̂view and p̄ for the non-parametric
MRE (3.10).

3.3.1 HMC sampling

In order to address the dual Lagrangian optimization (3.5), we start from the computation
of the dual Lagrangian L(t;ηview) (27), or the log-partition function ψ(t) (25), which is a
functional of the base distribution [A.3.1]

ψ(t) = ψ[f
X

](t) ≡ lnE{et′ζview (X)}, (3.14)

where E{·} denotes the expectation under the base distribution f
X
(1). Hence, in the first

step (3.9)-(3.10) we look for solving the expectation in (3.14) via Monte Carlo integration.
More precisely, here we rely on the so called Hamiltonian Monte Carlo (HMC) sam-

pling approach [Chao et al., 2015], [Neal et al., 2011], which is a Markov chain Monte Carlo
(MCMC) method that is more effi cient than the Metropolis-Hastings algorithm [Berg, 2004].
Refer also to [Chib and Greenberg, 1995] and [Geweke, 1999] for more details.
As a matter of fact, the core feature of MCMC implementations, including HMC, is that

they are “unaffected by scaling”, i.e. they allow to sample from an arbitrary distribution fX
of the form

fX(x) ≡ γ × gX(x), (3.15)

with the only knowledge of g(x). This is particularly useful to sample from an exponential
family distribution (24)

fX ∝ g
X

(x)et
′ζview (x), (3.16)

for a given t, including hence both base distribution (3.1) (case t = 0) and updated counter-
part (3.3) (case t = θview).
Then, the HMC algorithm needs two inputs:
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1. the log-pdf modulo constant terms

u(x) = t′ζview(x) + ln f
X

(x); (3.17)

2. (optionally) the respective gradient, which reads [A.3.3]

∇xu(x) =
1

f
X

(x)
∇xfX(x) + Jζview (x)′t, (3.18)

and where Jζview (x) denotes the k̄ × n̄ Jacobian matrix of the view function ζview(x).

According to the above, we can safely sample a large number j̄ of simulations from the
base distribution f

X
∝ g

X
(3.1)

X ≡ HMC .sampler(g
X
, j̄), (3.19)

and set uniform probabilities p ≡ (p(1), . . . , p(j̄))′

p(j) ≡ 1

j̄
, j = 1, . . . , j̄, (3.20)

so that we can approximate the original base f
X
with its sample counterpart, because of the

law of large numbers (LLN)

f
X
≈ f̂X ≡

∑j̄
j=1 p

(j)δ(x(j))(x) ⇔ {X ,p}. (3.21)

This allows also to approximate the log-partition function ψ(t) with its sample counterpart

ψ[f
X

](t) ≈ ψ[f̂X ](t) = ψ̂(t; {{X ,p}) ≡ ln(
∑j̄

j=1 p
(j)et

′ζview (x(j))). (3.22)

3.3.2 Lagrange multipliers fit

Once we approximated the log-partition function ψ(t) (3.22), we proceed with the approxi-
mation of the optimal Lagrange multipliers θview (3.5).
More precisely, we estimate θview through the solution of the sample counterpart of the

dual Lagrangian problem (3.5)

θ̂
view ≡ argmin

t50

ψ̂(t; {X ,p})− t′ηview . (3.23)

and fit in turn the updated distribution (3.3) through the ensuing exponential family distri-
bution, or generator

ĝX(x) ≡ g
X

(x)eθ̂
view′

ζview (x) ≈ ḡX(x). (3.24)

55



56
Chapter 3. A numerical implementation for fitting MRE models via stochastic

approximation

Note that, similar to its theoretical counterpart (27), the optimization (3.23) is a low-
dimensional convex programming problem and as such can be performed numerically via
standard built-in solvers for minimization problems.
Moreover, the numerical computation can be further enhanced using the analytical ex-

pression of the gradient and Hessian of the sample dual Lagrangian L̂(t;ηview) [A.3.2]. Refer
also to [Meucci, 2008], [Kleywegt and Shapiro, 2001] and [Schofield, 2007] for more details.

Example 3.1. Consider n̄ ≡ 2 market variables X ≡ (X1, X2)′ with joint normal base
distribution

X ∼ N (µ
X
,σ2

X), (3.25)

where
µ
X
≡ ( 0.26

0.29 ) , σ2
X ≡ ( 0.18 0.11

0.11 0.23 ) , (3.26)

and suppose k̄ = 1 views on linear combinations of expectations as in (1.19), where

ζ ≡ ( 1 −1 ) , ηview ≡ 1.02. (3.27)

In this special case the true optimal Lagrange multipliers (3.3) can be computed analytically
and reads (1.20)

θview∗ = 5.53. (3.28)

From the other hand, if we approximate the optimal Lagrange multipliers as in (3.23) we
obtain

θ̂
view

= 5.59. (3.29)

3.3.3 Probabilities update

Once fitted the optimal Lagrange multipliers as in (3.23), the final step is to approximate
the updated distribution f̄X (3.3), since the fitted distribution as in (3.24) is not analytically
tractable in practice for computing statistical features, such as expectations, volatilities,
quantiles etc.
Then we proceed as follows.
First, given the i.i.d. simulations X stemming from the base distribution in (3.19), we

arrange the base scenarios for the view variables Z ≡ ζview(X) (2) into a k̄× j̄ panel matrix

Z ≡

 ζview1 (x(1)) · ζview1 (x(j)) · ζview1 (x(j̄))
· · ·

ζviewk (x(1)) · ζviewk (x(j)) ζviewk (x(j̄))
· · ·

ζview
k̄

(x(1)) ζview
k̄

(x(j)) ζview
k̄

(x(j̄))

 . (3.30)

Next, we estimate f̄X through a suitable scenario-probability distribution (3.6).

f̂X(x) ≡
∑j̄

j=1 p̄
(j)δ(x(j))(x) ⇔ {X , p̄}, (3.31)
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where the probabilities p̄ are positive weights which sum to one, defined via softmax function

p̄ = softmax (ln(p) + θ̂
view ′Z) (3.32)

≡ eln(p)+θ̂
view′Z∑j̄

j=1 p
(j)eθ̂

view′
[Z]·,j

,

similar to the theoretical counterpart (24). Indeed note that the sample log-partition function
(3.22) reads

ψ̂(θ̂
view

; {X ,p}) = ln(
∑j̄

j=1 p
(j)eθ̂

view′
[Z]·,j). (3.33)

To summarize, the output of the non-parametric approach is given by a scenario-probability
set {X , p̄} with same old (base) scenarios and new (updated) probabilities (3.32).
In particular, the non-parametric updated distribution (3.31) allows to approximate any

statistical feature of the updated distribution, such as its expectation and covariance, simply
through the sample counterparts stemming from {X , p̄}. In particular, it is easy to verify
that under the non-parametric updated distribution (3.31) the view variables Z ≡ ζview(X)
satisfy the views (3.2), which means that the non-parametric mean of the view variables is
constant with respect to the base scenarios X

Ef̂X
{
ζview(X)

}
= p̄′Z = ηview . (3.34)

Example 3.2. We continue from Example 3.1. Since we consider views on expectations
as in (1.19), we already know that the true updated distribution is normally distributed
(1.15)

X ∼ N (µ̄X , σ̄
2
X), (3.35)

and in this case the updated expectation (1.21) and covariance (1.23) read

µ̄X ≡ ( 0.65
−0.37 ) , σ̄2

X ≡ ( 0.18 0.11
0.11 0.23 ) (3.36)

Instead, if we compute the updated probabilities (3.32), then the scenario-probability expec-
tation and covariance are different

µ̂X = ( 0.66
−0.36 ) , σ̂2

X = ( 0.18 0.10
0.10 0.21 ) , (3.37)

though the views are still satisfied
ζµ̂X = 1.02. (3.38)

Moreover, also the whole non-parametric distribution significantly differs from the true up-
dated distribution, see Figure 3.1.
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Figure 3.1: Comparison between true and non-parametric updated distributions.

3.4 Iterative MRE

In Section 3.3 we illustrated how to solve the MRE problem (16) for: i) a base distribution
as in (1); and ii) (in)equality views on expectation (3.2) via the non-parametric MRE (3.10),
as summarized in the following table.

({X , p̄}, θ̂view) = Scenarios .MRE (ζview ,ηview , g
X
, j̄)

1. Sample base scenarios {X ,p} HMC⇐ (g
X
, j̄) (3.19)

2. Compute Lagr. mult. θ̂
view ⇐ (ζview ,ηview , {X ,p}) (3.23)

3. Compute prob. p̄⇐ (θ̂
view

, ζview , {X ,p}) (3.32)

Table 3.1: Non-parametric MRE algorithm

Now we see the details behind the iterative approach described in steps from (3.11) to
(3.13).

3.4.1 Invariance of the updated distribution under iteration

Let us denote by θview(1) ≡ θ̂
view

the first-step Lagrange multipliers we approximated via
non-parametric MRE (3.1).
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It turns out that, as long as the views (3.2), which are identified by the function ζview and
features ηview , are the same, we can always consider the ensuing fitted exponential family
distribution (3.11) as a new base distribution (3.1)

f
X

(x)← f
(1)
X (x) ∝ g

(1)
X (x) ≡ g

X
(x)eθ

view(1)′ζview (x), (3.39)

to input again in the non-parametric MRE routine (3.1). Then, the output of this first
iteration is a new exponential family distribution (3.12) steered by a new vector of Lagrange
multipliers εview(2)

f
(2)
X (x) ∝ g

(2)
X (x) ≡ g

(1)
X (x)eε

view(2)′ζview (x). (3.40)

The above procedure is perfectly consistent, in that it does not alter the distributional
form of true updated distribution (3.3) we are looking for, because of the properties of the
exponential family distributions.
As a matter of fact, f (2)

X (3.40) is still an exponential family distribution under the original
base f

X
(23), or [A.3.7]

g
(2)
X (x) = g

X
(x)eθ

view(2)′ζview (x), (3.41)

where the new Lagrange multipliers θview(2) split into the sum of the new one εview(2) and
older one θview(1) (3.23)

θview(2) ≡ θview(1) + εview(2). (3.42)

This automatically implies that, if we consider f (1)
X as our new base distribution (3.39), then

the true MRE updated distribution f̄X (3.3) must be the same [A.3.8]

f̄X ≡ argmin
fX∈CX

E(fX‖fX) = argmin
fX∈CX

E(fX‖f (1)
X ). (3.43)

Hence the MRE updated distribution f̄X is invariant under exponential tiltings of the base
distribution. This means that we can iteratively repeat the non-parametric MRE routine
(3.1) yielding each time a new exponential family distribution f (i)

X as in (3.40)

f
(i)
X (x) ∝ g

(i)
X (x) ≡ g

(i−1)
X (x)eε

view(i)′ζview (x) = g
X

(x)eθ
view(i)′ζview (x), (3.44)

where
θview(i) ≡ θview(i−1) + εview(i), (3.45)

that is always a new potential candidate approximating the true unknown MRE updated
distribution f̄X .
In particular, it turns out that the sequence of distributions f̄ (i)

X converges to the true
updated distribution [A.3.9]

f
(i)
X →

i→∞
f̄X ⇔ E(f̄X ||f (i)

X ) →
i→∞

0, (3.46)

if the next-step Lagrange multipliers εview(i) enough quickly converge to zero

εview(i) →
i→∞

0. (3.47)
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Then, if the above holds the Lagrange multipliers θview(i) =
∑i

l=1 ε
view(l) converge in turn to

the true counterpart
θview(i) →

i→∞
θview . (3.48)

Figure 3.2: Comparison between true and one-step scenario-probability distributions.

Example 3.3. We continue from Example 3.2. If we perform one iteration we obtain
the next-step Lagrange multipliers (3.42)

θview(2) = 5.52, (3.49)

and then the scenario-probability expectation and covariance reads

µ
(2)
X ≡ ( 0.66

−0.39 ) , σ
2(2)
X ≡ ( 0.18 0.11

0.11 0.23 ) . (3.50)

Note how the new estimate θ̂
view(2)

is closer to the true parameter θ̄view than the older one

θ̂
view(1) ≡ θ̂

view

|θview∗ − θview(2)| = 0.1 < 0.6 = |θview∗ − θview(1)|. (3.51)

Indeed the whole new scenario-probability distribution is much more similar to true MRE
updated distribution than its older counterpart, compare Figure 3.2 with Figure 3.1.
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3.4.2 Equivalent stopping criteria

According to the above discussion, an indicator of convergence for the iterative approach are
the next-step Lagrange multipliers εview(i+1): the more the Euclidean norm (3.47) is close to
zero the more the new i-th base f (i)

X (3.44) is close to the true MRE updated distribution f̄X .
In particular, it turns out that the number of iterations needed to reach a given confidence
level of accuracy of f̄X depends on how much the views (3.2), as quantified by the features
ηview , are far from being satisfied by the new base i-th f (i)

X .
This intuition is enforced by computing the views intensity [Meucci, 2019], which is

defined, for a given base distribution f
X
(3.1), as the Euclidean norm of gradient of the min-

imal relative entropy E(f̄X ||fX) (17) with respect to the features ηview and which explicitly
reads [A.3.5]

Intensity(ηview , f
X

) ≡ ||∇ηviewE(f̄X ||fX)|| = ||θview ||. (3.52)

In particular, if we consider f (i)
X (3.44) as base distribution, the views intensity is fully iden-

tified by the norm of the next-step Lagrange multipliers ||εview(i+1)||. This is not surprising,
indeed if the new base f̄ (i)

X satisfied the views, then the updated f̄X should coincide with
the base distribution itself, or εview(i+1) = 0 (26). This would imply that the views intensity
would be null in turn, or Intensity(ηview , f

(i)
X ) = 0.

Example 3.4. We continue from Example 3.3. The views intensity from going to the
original base f (0)

X ≡ f
X
to the updated distribution

Intensity(ηview , f
X

) ≈ |θview(1)| = 5.59 (3.53)

is higher than the views intensity from going to the new base f (1)
X to the updated distribution

Intensity(ηview , f
(1)
X ) ≈ |θview(2) − θview(1)| = 0.02. (3.54)

Another indicator of convergence for the iterative approach is the statistical significance
of the updated probabilities as in (3.32)

p(i+1) ∝ p ◦ eεview(i+1)′ζview (X (i)), (3.55)

where X (i) denote the i-th i.i.d. HMC scenarios stemming from the new i-th base f (i)
X (3.44)

as in (3.19), or
X (i) ≡ hmc_sampler(g(i)

X , j̄); (3.56)

and p are the uniform probabilities (3.20).
As a matter of fact, the intuition suggests that the update of the probabilities from p

should be mild once f (i)
X is enough close to f̄X .
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This intuition is enforced by computing the relative effective number of scenarios
(ENS) [Meucci, 2012a] which is an index between 0 and 1 defined as the exponential of the
discrete Shannon entropy over the number of scenarios j̄

ENS (p) ≡ e−p
′ lnp

j̄
, (3.57)

and quantifying how far the probabilities are from being uniform.

It turns out that the ENS of the updated probabilities (3.32) explicitly reads [A.3.6]

ENS (p(i+1)) ≈ e−E(f
(i+1)
X ‖f (i)

X ). (3.58)

Hence, the relative effective number of scenarios is fully identified by the relative entropy
E(f

(i+1)
X ‖f (i)

X ). This is not surprising, as a matter of fact, if E(f
(i+1)
X ‖f (i)

X ) were null, then the
(i+1)-th update f (i+1)

X would be the same as the i-th f (i)
X in turn, or εview(i+1) = 0 (26). This

would imply that the relative effective number of scenarios would be one, or p(i+1) = p.

From (3.58) it is easy to verify empirically that two indicators we introduced are equiv-
alent: the lower the views intensity (3.52) and the higher the effective number of scenarios
(3.58)

||εview(i+1)|| ≈ 0 ⇔ ENS (p(i+1)) ≈ 1. (3.59)

Example 3.5. We continue from Example 3.4. The effective number of scenarios (3.58)
of the updated probabilities p(1) ≡ p̄ (3.32) stemming from the original HMC base scenarios
X (0) ≡ X

ENS (p(1)) = 5.49%, (3.60)

is lower than the effective number of scenarios of the updated probabilities p(2) (3.55) stem-
ming from the new HMC scenarios X (1)

ENS (p(2)) = 99.99%. (3.61)

To conclude, we summarize the steps from (3.11) to (3.13) of the iterative MRE in the
following table.
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({X , p̄}, θ̂view) = Iterative.MRE (ζview ,ηview , g
X
, j̄)

0. Initialize θ̂
view ← 0k̄×1

1. Update scenarios {X ,p} HMC⇐ (g
X

(·)eθ̂
view′

ζview (·), j̄) (3.56)

2. Update Lagr. mult.

{
ε̂view ⇐ (ζview ,ηview , {X ,p}) (3.23)
θ̂
view ← θ̂

view
+ ε̂view (3.42)

3. Update prob. p̄⇐ (ε̂view , ζview , {X ,p}) (3.55)
4. If convergence, output ({X , p̄}, θ̂view); else and go to 1

Table 3.2: Iterative MRE algorithm

Convergence in the above routine occurs when the Euclidean norm ||ε̂view ||, is smaller
than a required threshold 0 < δ � 1, or equivalently (3.59), the relative effective number
of scenarios ENS (p̄) is higher than 1 − δ. Note in particular note that, according to the
non-parametric counterpart (3.34), by construction the views (3.2) are satisfied in sample by
the scenario-probability distribution (3.6) identified by the outcome {X , p̄}.

3.5 Comparison

In order to highlight the benefits of the iterative MRE (3.2) we consider the respective i-th
estimators of the Lagrange multipliers, which are a function of the randomized base sample
(3.19) representing the data generating process (DGP)

Θview(i) = d(i)({X(j)}j̄j=1). (3.62)

In particular, we can summarize the accuracy and dispersion of the estimators through their
bias

bias(i) ≡ ||E{Θview(i)} − θview ||, (3.63)

and ineffi ciency

inef (i) ≡
√
E{||Θview(i) − E{Θview(i)}||2}. (3.64)

Moreover, we can also consider the distribution of the loss implied by the estimator

Loss (i) ≡ ||Θview(i) − θview ||2, (3.65)

and we evaluate the goodness of ours estimators, through its expectation, or error er ≡
Ef{Loss}, which is connected to the bias and ineffi ciency according to the following relation-
ship

er (i) = inef (i)2 + bias(i)2. (3.66)
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Figure 3.3: Non-parametric vs iterative semi-parametric: estimator distributions for the
Lagrange multipliers

Figure 3.4: Non-parametric vs iterative semi-parametric: loss distributions for the Lagrange
multipliers
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It turns out empirically that at each iteration the distribution of the estimators, or equiva-
lently the loss, becomes closer to the true Lagrange multipliers, or equivalently to zero, hence
yielding a better approximation than the non-parametric approach (3.23).

Example 3.6. We continue from Example 3.3. We resort to simulations and compute
the error (3.66), bias (3.63) and ineffi ciency (3.64) corresponding to the estimators of both
non-parametric and iterative semi-parametric approach. As highlighted in the following
table, the iterative semi-parametric approach provide estimates with lower bias and ineffi -
ciency (and hence a lower error) than the non-parametric counterpart.

Non-parametric MRE Iterative MRE

bias 4.81× 10−2 1.78× 10−4

inef 2.12× 10−1 7.64× 10−3

err 4.72× 10−2 5.83× 10−5

Table 3.3: Non-parametric vs iterative MRE: bias, ineffi ciency and error

See also Figures 3.3 and 3.4.

3.6 Conclusions

We investigated how minimum relative entropy models can be estimated in a non-parametric
setting within the exponential family class. The main insight is the numerical approximation
of the updated solution via Hamiltonian Monte Carlo simulations that can be iterated in order
to reach a good approximation of the parameters that drive the MRE updated distribution,
i.e. the Lagrange multipliers. Another theoretical contribution is the equivalence relationship
between of the statistical significance of the non-parametric framework with respect to the
intensity of the views.
Finally within the normal framework introduced in Chapter 1, we showed how the iterative

implementation significantly reduces the estimation error of the estimators of the true un-
known Lagrange multipliers, yielding a more precise approximation than the non-parametric
approach by [Meucci, 2008].
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Appendix 1

Here we discuss some technical results of Chapter 1.

A.1.1 Exponential family distributions: MRE update
under exponential-family base

Let us suppose the case where the base distribution (1) belongs to an exponential family
class as in (23)

f
X

⇔ Exp(θX , τ , h), (A.1.1)

for some vector θX ≡ (θX;1, . . . , θX;l̄)
′ ∈ Rl̄ of base canonical parameters; suffi cient statistics

τ(x) ≡ (τ 1(x), . . . , τ l̄(x))′ and reference measure h(x) > 0.
Then, under views on generalized expectations (22), the updated distribution f̄X (16) is

an exponential family distribution (23) with respect to the base f
X
as reference measure.

In particular, since the base distribution belongs to the exponential family in turn (A.1.1),
the updated distribution f̄X is also an exponential family distribution with respect to the
reference measure h.
Indeed it is easy to verify that the updated distribution f̄X (24) can be written as follows

f̄X(x) = f
X

(x)e
θview′ζview (x)−ψf

X
,ζview (θview )

= h(x) exp(θ′Xτ(x)− ψh,τ (θX))× exp(θview ′ζview(x)− ψf
X
,ζview (θview))

= h(x) exp(θ̄
′
X τ̄(x)− ψh,τ̄ (θ̄X)), (A.1.2)

where we defined the new canonical parameters θ̄X and suffi cient statistics τ̄ via juxtaposition

θ̄X ≡
(
θX
θview

)
, τ̄(x) ≡

(
τ(x)

ζview(x)

)
; (A.1.3)

and where we defined ψh,τ̄ as the sum of log-partition functions

ψh,τ̄ (θ̄X) ≡ ψh,τ (θX) + ψf
X
,ζview (θview). (A.1.4)

This means that the updated distribution f̄X is also an exponential family distribution
of the form

f̄X ⇔ Exp(θview , ζview , f
X

) ⇔ Exp(θ̄X , τ̄ , h). (A.1.5)
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As a matter of fact note that ψh,τ̄ (A.1.4) is a log-partition function in turn, since we have

ψh,τ̄ (θ̄X) = ψh,τ (θX) + ln

∫
Rn̄
f
X

(x) eθ
view′ζview (x)dx

= ψh,τ (θX) + ln

∫
Rn̄
h (x) eθ

′
Xτ(x)−ψh,τ (θX)eθ

view′ζview (x)dx

= ψh,τ (θX)− ψh,τ (θX) + ln

∫
Rn̄
h (x) eθ̄

′
X τ̄(x)dx

= ln

∫
Rn̄
h (x) eθ̄

′
X τ̄(x)dx. (A.1.6)

This means that in general the updated distribution f̄X does not belong necessarily to
the same exponential family class of the base counterpart f

X
(A.1.1).

However, if the view functions ζview can be expressed as a linear combination of the
suffi cient statistics τ , or

ζview(x) = ζτ(x), (A.1.7)

for some suitable k̄× l̄ matrix ζ, then we can redefine the new canonical parameters θ̄X and
suffi cient statistics τ̄ as follows

θ̄X ≡ θX + ζ ′θview , τ̄(x) ≡ τ(x), (A.1.8)

which means that the updated distribution f̄X and the base counterpart f
X
are conjugate,

i.e. f̄X belongs to the same exponential family class of f
X

f̄X ⇔ Exp(θview , ζview , f
X

) ⇔ Exp(θX + ζθview , τ , h). (A.1.9)

This also means from (A.1.4)

ψh,τ (θ̄X) = ψh,τ (θX) + ψf
X
,ζview (θview). (A.1.10)

Note how this result generalizes the normal case (1.15)-(1.5).

A.1.2 Normal MRE update: canonical representation

The pdf of the normal base distribution (1.10) can be rewritten in canonical form as in (24)

f
X

(x) = (2π)−
n̄
2 exp(θ′X;µx+ vec(θX;σ,σ)′vec(xx′)− ψN (θX)), (A.1.11)

where θX;µ and θX;σ,σ are the base canonical coordinates (1.11) and where ψ
N denotes the

log-partition function as in (25) with respect to the reference measure h(x) ≡ (2π)−n̄/2 and
statistics τ (1.12), which explicitly reads

ψN (θX) ≡ ψh,τ (θX) ≡ ln

∫
Rn̄
eθ
′
Xτ(x)h (x) dx (A.1.12)

= −1
4
θ′X;µ(θX;σ,σ)−1θX;µ − 1

2
ln det(−2θX;σ,σ),
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see also [Amari and Nagaoka, 2000] and [Amari, 2016].
Now, since the moments conditions (1.9) are in the expectation format (22), the ensuing

updated distribution is an exponentially-twisted normal (23), and must read

f̄X(x) = f
X

(x)eθ
view′ζview (x)−ψ(θview )

= f
X

(x) exp(θview ′µ ζµx+ vec(θviewσ )′(ζσ ⊗ ζσ)vec(xx′)− ψ(θview))

= (2π)−
n̄
2 exp(θ̄

′
X;µx+ vec(θ̄X;σ)′vec(xx′)− (ψ(θview) + ψN (θX))),(A.1.13)

as follows by replacing the normal base f
X
(A.1.11) and using the definition of updated

canonical coordinates θ̄X (1.5).
Hence, according to the canonical representation of normal distributions as in (A.1.11),

the updated f̄X must be normal as in (1.15).
Moreover, because of the uniqueness of the canonical representation, the log-partition

function of the updated distribution as in (25) must satisfy the following condition

ψN (θ̄X) = ψ(θview) + ψN (θX). (A.1.14)

See more details in [A.1.3] and generalizations in [A.1.1].

A.1.3 Normal MRE update: dual Lagrangian, location
and dispersion

From the canonical representation of the normal updated distribution (A.1.13), we obtain
the dual Lagrangian (28) corresponding to the views (1.9)

L(t;ηview) ≡ ψ(t)− t′µηviewµ − tr(t′σ,ση
view
σ,σ )

= ψN (

(
θX;µ + ζ ′µtµ

vec(θX;σ,σ + ζ ′σtσ,σζσ)

)
)− ψN (θX)− t′µηviewµ − tr(t′σ,ση

view
σ,σ ),(A.1.15)

where ψN denotes the canonical normal log-partition function (A.1.12).
Now, using the relationship between canonical coordinates and expectation (1.17)

µX = −1

2
(θX;σ,σ + ζ ′σtσ,σζσ)−1(θX;µ + ζ ′µtµ), (A.1.16)

and covariance (1.18)

σ2
X = −1

2
(θX;σ,σ + ζ ′σtσ,σζσ)−1, (A.1.17)
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we can write the difference in (A.1.15) as follows

ψN (

(
θX;µ + ζ ′µtµ

vec(θX;σ,σ + ζ ′σtσ,σζσ)

)
)− ψN (θX) =

1

2
µ′X(σ2

X)−1µX −
1

2
ln det((σ2

X)−1) (A.1.18)

−1

2
µ′
X

(σ2
X)−1µ

X
+

1

2
ln det((σ2

X)−1)

=
1

2
[µ′X(σ2

X)−1µX − µ′X(σ2
X)−1µ

X
]

−1

2
[ln det((σ2

X)−1)− ln det((σ2
X)−1)]

=
1

2
[µ′X(σ2

X)−1µX − µ′X(σ2
X)−1µ

X
]

−1

2
[ln det((σ2

X)−1σ2
X)]

=
1

2
µ′X(σ2

X)−1µX − µ′X(ζ ′σtσ,σζσ)µX

−1

2
µ′
X

(σ2
X)−1µ

X
− 1

2
ln det(In̄ − 2(ζ ′σtσ,σζσ)σ2

X)],

where in the last row we used the relationship between canonical coordinates and covariance
(1.18)-(1.11)

(σ2
X)−1 = −2(θX;σ,σ + ζ ′σtσ,σζσ) (A.1.19)

= −2(−1

2
(σ2

X)−1 + ζ ′σtσ,σζσ)

= (σ2
X)−1 − 2ζ ′σtσ,σζσ.

Also, from (θX;σ,σ)−1 = −2σ2
X (1.11) and the binomial inverse theorem [Magnus and Neudecker, 1979]

the yet-to-be-defined covariance also reads

σ2
X = −1

2
(θX;σ,σ + ζ ′σtσ,σζσ)−1

= −1

2
((θX;σ,σ)−1 − (θX;σ,σ)−1ζ ′σ[(ζσ(θX;σ,σ)−1ζ ′σ + (tσ,σ)−1)−1ζσ(θX;σ,σ)−1]

= σ2
X + pσσ

2
X , (A.1.20)

where we defined the n̄× n̄ matrix

pσ ≡ σ2
Xζ
′
σ(

1

2
(tσ,σ)−1 − ζσσ2

Xζ
′
σ)−1ζσ; (A.1.21)

from which follows, using µ
X

= σ2
XθX;µ (A.1.42), the yet-to-be-defined expectation in turn

µX = σ2
X(θX;µ + ζ ′µtµ)

= (σ2
X + pσσ

2
X)(θX;µ + ζ ′µtµ) (A.1.22)

= µ
X

+ pσµX + (σ2
X + pσσ

2
X)ζ ′µtµ.
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A.1.4 Normal MRE update: views on expectations

In the case of only views on expectations as in (1.19) the updated canonical coordinates
corresponding to the covariance must be the same as the base counterpart

θ̄X;σ = θX;σ,σ, (A.1.23)

or θviewσ = 0k̄×k̄.
Then the gradient of the dual Lagrangian (29) reads

∇tµL(tµ;ηviewµ ) = ζµEfX {X} − ηviewµ . (A.1.24)

In particular, since we know that the updated distribution must be normal (1.15), from
(A.1.23) the gradient (A.1.24) becomes

∇tµL(tµ;ηviewµ ) = −1

2
ζµ(θX;σ,σ)−1(θX;µ + ζ ′µtµ)− ηviewµ . (A.1.25)

Now if we set the above to zero, we obtain an exactly identified linear system of equations
in the k̄ yet-to-be-determined Lagrange multipliers tµ

− 1

2
ζµ(θX;σ,σ)−1(θX;µ + ζ ′µtµ)− ηviewµ = 0k̄×1. (A.1.26)

The above can be easily re-written as follows

tµ = −(ζµ(θX;σ,σ)−1θX;µ + 2ηviewµ ). (A.1.27)

Then, as long as ζµ is a full rank k̄ matrix, the optimal Lagrange multipliers is unique
and reads

θviewµ = −(ζµ(θX;σ,σ)−1ζ ′µ)−1(ζµ(θX;σ,σ)−1θX;µ + 2ηviewµ )

= (ζµσ
2
Xζ
′
µ)−1(ηviewµ − ζµµX), (A.1.28)

where the last row follows from the relationship between base normal parameters and canon-
ical coordinates (1.11).
Finally the updated canonical coordinates becomes

θ̄X =

(
θX;µ + ζ ′µ(ζµσ

2
Xζ
′
µ)−1(ηviewµ − ζµµX)

vec(θX;σ,σ)

)
, (A.1.29)

and hence, using (A.1.22) and (A.1.20), easily follows expectation µ̄X (1.21) and covariance
σ̄2
X (1.23) in turn.
Note how the uniqueness of the solution is connected to the invertibility of the component

ζµ(θX;σ,σ)−1ζ ′µ. This is not surprising, since the Hessian of the dual Lagrangian (30) reads

∇2
tµ,tµL(tµ;ηviewµ ) = ζµσ

2
Xζ
′
µ, (A.1.30)

and hence it is positive definite if and only if ζµ(θX;σ,σ)−1ζ ′µ is negative definite.
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A.1.5 Normal MRE update: views on expectations as
projection

It is easy to verify that the operator Pζµ [x] (1.25) is a projector.

IndeedPζµ [x] is a linear transformation of the formPζµ [x] = pµx, where pµ ≡ (In̄−ζ†′µζµ)
is an n̄× n̄ idempotent matrix

p2
µ = (In̄ − ζ†′µζµ)(In̄ − ζ†′µζµ)

= In̄ − ζ†′µζµ = pµ, (A.1.31)

as follows because the pseudo-inverse ζ†µ (1.22) satisfies

ζµζ
†′
µ = Ik̄. (A.1.32)

Then (1.26) simply follows because we have

Pζµ [µ
X
− ζ†′µηviewµ ] = (In̄ − ζ†′µζµ)(µ

X
− ζ†′µηviewµ )

= µ
X

+ ζ†′µ (ηviewµ − ζµµX)− ζ†′µηviewµ

= µ̄X − ζ†′µηviewµ , (A.1.33)

where in the last row we used the expression for the updated expectation (1.21).
Moreover the Pζµ [x] is orthogonal with respect to the inner product 〈x,y〉ω2 ≡ x′ω2y

induced by the inverse base or updated covariance ω2 ≡ (σ2
X)−1 = (σ̄2

X)−1 (1.23).
Indeed if we define the complementary projector

Pc
ζµ

[y] ≡ In̄ −Pζµ [x], (A.1.34)

then for any given n̄× 1 vector x,y, we have

〈Pζµ [x],Pc
ζµ

[y]〉(σ2
X)−1 = x′(In̄ − ζ†′µζµ)′(σ2

X)−1(ζ†′µζµ)y = 0, (A.1.35)

as follows because the pseudo-inverse ζ†µ (1.22) satisfies

(σ2
X)−1(ζ†′µζµ) = ζ ′µ(ζµσ

2
Xζ
′
µ)−1ζµ (A.1.36)

which implies

(In̄ − ζ†′µζµ)′(σ2
X)−1(ζ†′µζµ) = ζ ′µ(ζµσ

2
Xζ
′
µ)−1ζµ − ζ ′µ(ζµσ

2
Xζ
′
µ)−1ζµσ

2
Xζ
′
µ(ζµσ

2
Xζ
′
µ)−1ζµ

= ζ ′µ(ζµσ
2
Xζ
′
µ)−1ζµ − ζ ′µ(ζµσ

2
Xζ
′
µ)−1ζµ = 0. (A.1.37)
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A.1.6 Normal MRE update: views on second non-central
moments

In the case of only views on non-central second moments as in (1.33) the updated canonical
coordinates corresponding to the expectation must be the same as the base counterpart

θ̄X;µ = θX;µ, (A.1.38)

or θviewµ = 0k̄×1.
Then the gradient of the dual Lagrangian (29) reads

∇tσ,σL(tσ,σ;ηviewσ,σ ) = ζσEfX {XX ′} ζ ′σ − ηviewσ,σ . (A.1.39)

In particular, since we know that the updated distribution must be normal (1.15), from
(A.1.38) the gradient (A.1.39) becomes

∇tσ,σL(tσ,σ;ηviewσ,σ ) = −1

2
ζσ(tσ,σ)−1ζ ′σ + ζσµX(ζσµX)′ − ηviewσ,σ , (A.1.40)

where we defined
θX;σ ≡ θX;σ,σ + ζ ′σtσ,σζσ, (A.1.41)

and where the view-implied expectation ζσµX also reads

ζσµX = −1

2
ζσ(θX;σ)−1θX;µ. (A.1.42)

Now, from the binomial inverse theorem [Magnus and Neudecker, 1979] we can easily
invert (A.1.41) as follows

(θX;σ)−1 = (θX;σ,σ)−1 − (θX;σ,σ)−1ζ ′σ(ζσ(θX;σ,σ)−1ζσ + (tσ,σ)−1)−1ζσ(θX;σ,σ)−1. (A.1.43)

Then, if we set (A.1.40) to zero, we obtain a system of equations in (θX;σ)−1

− 1

2
ζσ(θX;σ)−1ζ ′σ + ζσµX(ζσµX)′ − ηviewσ,σ = 0k̄×1. (A.1.44)

In particular, from (A.1.43), if we define

α ≡ ζσ(θX;σ,σ)−1ζ ′σ, (A.1.45)

we can re-write the term ζσ(θX;σ)−1ζ ′σ as follows

ζσ(θX;σ)−1ζ ′σ = α−α(α+ (tσ,σ)−1)−1α, (A.1.46)

which allows to re-write (A.1.43) as

α(α+ (tσ,σ)−1)−1α = α+ 2(ηviewσ,σ − ζσµX(ζσµX)′). (A.1.47)
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Then, as long as ζσ is a full rank k̄ matrix, we can invert the k̄ × k̄ matrix α and obtain

(α+ (tσ,σ)−1)−1 = α−1 + 2α−1(ηviewσ,σ − ζσµX(ζσµX)′)α−1, (A.1.48)

which means again from the binomial inverse theorem

α+ (tσ,σ)−1 = α− (α+
1

2
(ηviewσ,σ − ζσµX(ζσµX)′)−1)−1. (A.1.49)

Then from the above we have

(tσ,σ)−1 = −(α+
1

2
(ηviewσ,σ − ζσµX(ζσµX)′)−1)−1

= 2((ζσσ
2
Xζ
′
σ)−1 − (ηviewσ,σ − ζσµX(ζσµX)′)−1)−1, (A.1.50)

and hence
tσ,σ =

1

2
((ζσσ

2
Xζ
′
σ)−1 − (ηviewσ,σ − ζσµX(ζσµX)′)−1), (A.1.51)

as follows from (A.1.45) and the relationship between base normal parameters and canonical
coordinates (1.11)

α = −2(ζσσ
2
Xζ
′
σ). (A.1.52)

Finally, from the yet-to-be-determined Lagrange multipliers tσ,σ we can also deduce the
yet-to-be-determined covariance σ2

X = σ2
X+pσσ

2
X (A.1.20) from the n̄×n̄matrix pσ (A.1.21)

which simplifies to

pσ = σ2
Xζ
′
σ(ζσσ

2
Xζ
′
σ)−1(ηviewσ,σ − ζσµX(ζσµX)′ − ζσσ2

Xζ
′
σ)(ζσσ

2
Xζ
′
σ)−1ζσ(A.1.53)

= ζ†′σ (ηviewσ,σ − ζσµX(ζσµX)′ − ζσσ2
Xζ
′
σ)(ζσσ

2
Xζ
′
σ)−1ζσ,

as follows from (A.1.51) and the binomial inverse theorem [Magnus and Neudecker, 1979], or

1

2
(tσ,σ)−1 = ((ζσσ

2
Xζ
′
σ)−1 − (ηviewσ,σ − ζσµX(ζσµX)′)−1)−1 (A.1.54)

= ζσσ
2
Xζ
′
σ + (ζσσ

2
Xζ
′
σ)(ηviewσ,σ − ζσµX(ζσµX)′ − ζσσ2

Xζ
′
σ)−1(ζσσ

2
Xζ
′
σ).

Then, the yet-to-be-determined expectation µX = µ
X

+ pσµX (A.1.22) follows accordingly.
Moreover, it is easy to verify that the following identity holds

ζσµX = ζσµX + ζσpσµX (A.1.55)

= ζσµX + (ηviewσ,σ − ζσµX(ζσµX)′ − ζσσ2
Xζ
′
σ)(ζσσ

2
Xζ
′
σ)−1ζσµX

= (ηviewσ,σ − ζσµX(ζσµX)′)(ζσσ
2
Xζ
′
σ)−1ζσµX ,

as follows from

µX = µ
X

+ pσµX (A.1.56)

= µ
X

+ ζ†′σ ((ηviewσ,σ − ζσµX(ζσµX)′)(ζσσ
2
Xζ
′
σ)−1ζσµX − ζσµX).

To conclude, to find the optimal Lagrange multipliers tσ,σ we need to solve an implicit
system of equations. This can be done numerically via recursion, as explained in Table 1.2.
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A.1.7 Normal MRE update: views on covariance as
projection

First of all, it is easy to verify that the pseudo-inverse ζ†σ ≡ (ζσσ
2
Xζ
′
σ)−1ζσσ

2
X satisfies (1.39).

Indeed, from the expression of the updated covariance σ̄2
X (1.38), we have

(ζσσ̄
2
Xζ
′
σ)−1ζσσ̄

2
X = (σ2view)−1ζσ(σ2

X + ζ†′σ (σ2view − ζσσ2
Xζ
′
σ)ζ†σ)

= (σ2view)−1ζσσ
2
X + ζ†σ − (σ2view)−1ζσσ

2
X

= ζ†σ, (A.1.57)

where the second row follows because ζσζ
†′
σ = Ik̄.

Then, following similar arguments as in [A.1.5], we obtain that Pζσ [x] (1.56) is an or-
thogonal projector with respect to the inner product 〈x,y〉ω2 ≡ x′ω2y induced by either i)
the inverse base covariance ω2 ≡ (σ2

X)−1, or ii) the inverse updated covariance ω2 ≡ (σ̄2
X)−1

(1.38).
Also, it turns out that the pseudo-inverse ζ†σ ≡ (ζσσ

2
Xζ
′
σ)−1ζσσ

2
X satisfies

ζ†σ ⊗ ζ†σ = ((ζσσ
2
Xζ
′
σ)−1 ⊗ (ζσσ

2
Xζ
′
σ)−1)(ζσσ

2
X ⊗ ζσσ2

X) (A.1.58)

= (ζσσ
2
Xζ
′
σ ⊗ ζσσ2

Xζ
′
σ)−1(ζσσ

2
X ⊗ ζσσ2

X)

= ((ζσ ⊗ ζσ)(σ2
Xζ
′
σ ⊗ σ2

Xζ
′
σ))−1(ζσ ⊗ ζσ)(σ2

X ⊗ σ2
X)

= ((ζσ ⊗ ζσ)(σ2
X ⊗ σ2

X)(ζσ ⊗ ζσ)′)−1(ζσ ⊗ ζσ)(σ2
X ⊗ σ2

X)

≡ (ζσ ⊗ ζσ)†,

as follows from the properties of the Kronecker product, see [Magnus and Neudecker, 1979].
Note that according to (1.39), the pseudo inverse (ζσ⊗ζσ)† can be also equivalently weighted
via the Kronecker product of updated covariances (σ̄2

X ⊗ σ̄2
X).

This implies that the vectorized updated covariance σ̄2
X (1.38) satisfies (1.58).

Indeed we have

vec(σ̄2
X) = vec(σ2

X) + vec(ζ†′σ (σ2view − ζσσ2
Xζ
′
σ)ζ†σ) (A.1.59)

= vec(σ2
X) + (ζ†σ ⊗ ζ†σ)′vec(σ2view − ζσσ2

Xζ
′
σ)

= vec(σ2
X) + (ζσ ⊗ ζσ)†′vec(σ2view − ζσσ2

Xζ
′
σ),

as follows from the properties of the Kronecker product, see [Magnus and Neudecker, 1979],
and (A.1.58).
Then since (A.1.59) is of the same form as the updated expectation (1.37), we can use

similar arguments to obtain (1.58).
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A.1.8 Normal MRE update: views on expectations and
second non-central moments

In the case of joint views on expectations and second non-central moments as in (1.9) the
gradient of the dual Lagrangian (29) reads

∇tL(t;ηview) ≡
(

∇tµL(tµ;ηviewµ )
vec(∇tσ,σL(tσ,σ;ηviewσ,σ ))

)
(A.1.60)

=

(
ζµEfX {X} − ηviewµ

vec(ζσEfX {XX ′} ζ ′σ − ηviewσ,σ )

)
,

Then, following similar arguments as in Appendix A.1.4 and A.1.6, it is easy to verify the
following holds true

∇tµL(tµ;ηviewµ ) = ζµσ
2
X(θX;µ + ζ ′µtµ)− ηviewµ , (A.1.61)

and

∇tσ,σL(tσ,σ;ηviewσ,σ ) = −1

2
ζσ(θX;σ,σ + ζ ′σtσ,σζσ)−1ζ ′σ + ζσµX(ζσµX)′ − ηviewσ,σ , (A.1.62)

where σ2
X = σ2

X + pσσ
2
X is the yet-to-be-determined covariance as in (A.1.20) and ζσµX

follows from (A.1.22)

ηviewσ ≡ ζσµX ≡ −
1

2
ζσ(θX;σ,σ + ζ ′σtσ,σζσ)−1(θX;µ + ζ ′µtµ). (A.1.63)

In particular, if we set (A.1.61) to zero and follow similar arguments as in Appendix A.1.4,
the optimal Lagrange multipliers corresponding to the views on expectations must satisfy the
following

tµ = (ζµσ
2
Xζ
′
µ)−1(ηviewµ − ζµσ2

X(σ2
X)−1µ

X
). (A.1.64)

From the other hand, if we set (A.1.62) to zero and follow similar computations as in
Appendix A.1.6, the optimal Lagrange multipliers corresponding to the views on second
non-central moments must satisfy the following

tσ,σ =
1

2
((ζσσ

2
Xζ
′
σ)−1 − (ηviewσ,σ − ζσµX(ζσµX)′)−1). (A.1.65)

This implies that the yet-to-be-determined expectation (A.1.22) becomes

µX = σ2
X(σ2

X)−1µ
X

+ σ2
Xζ
′
µ(ζµσ

2
Xζ
′
µ)−1(ηviewµ − ζµσ2

X(σ2
X)−1µ

X
) (A.1.66)

= µX;σ + σ2
Xζ
′
µ(ζµσ

2
Xζ
′
µ)−1(ηviewµ − ζµµX;σ),

as follows from similar arguments as in [A.1.6] and

σ2
X(σ2

X)−1µ
X

= (σ2
X + pσσ

2
X)(σ2

X)−1µ
X

= µ
X

+ pσµX . (A.1.67)
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Finally, the following identity holds

ζσµX = ζσ(µ
X

+ pσµX) + ζσσ
2
Xζ
′
µ(ζµσ

2
Xζ
′
µ)−1(ηviewµ − ζµ(µ

X
+ pσµX)), (A.1.68)

where, following similar arguments as in [A.1.6], we have

µ
X

+ pσµX = µ
X

+ ζ†′σ ((ηviewσ,σ − ζσµX(ζσµX)′)(ζσσ
2
Xζ
′
σ)−1ζσµX − ζσµX)

= µX;σ, (A.1.69)

which implies also

ζσµX;σ = ζσ(µ
X

+ pσµX) (A.1.70)

= (ηviewσ,σ − ζσµX(ζσµX)′)(ζσσ
2
Xζ
′
σ)−1ζσµX .

To conclude, to find the optimal Lagrange multipliers (tµ, tσ,σ) we need to solve an implicit
system of equations. This can be done numerically via recursion, as explained in Table 1.5.

A.1.9 Normal MRE update: same view variables

Consider joint equality views (18) on same linear combinations as in (1.72).
In this case, the updated expectation of the view variables ηviewσ (1.34) becomes explicit

(1.73). This means that formulas in Table 1.6 can be easily recovered by replacing

ηviewσ = ηviewµ , (A.1.71)

in the respective general MRE solutions (1.61)-(1.63)-(1.64)-(1.66).
Namely, it is immediate that the updated covariance (1.66) becomes

σ̄2
X = σ2

X + ζ†′(ηviewσ,σ − ηviewµ ηview ′µ − ζσ2
Xζ
′)ζ†, (A.1.72)

since by construction we have

σ2view(ηviewσ ) = ηviewσ,σ − ηviewµ ηview ′µ . (A.1.73)

Then, the optimal Lagrange multipliers θviewσ,σ (1.63) reads

θviewσ,σ =
1

2
((ζσ2

Xζ
′)−1 − (ηviewσ,σ − ηviewµ ηview ′µ )−1); (A.1.74)

and the optimal Lagrange multipliers θviewµ (1.61) reads

θviewµ = (ηviewσ,σ − ηviewµ ηview ′µ )−1ηviewµ − (ζσ2
Xζ
′)−1ζµ

X
, (A.1.75)

as follows because

µ̄X;σ = µ
X

+ ζ†′((ηviewσ,σ − ηviewµ ηview ′µ )(ζσ2
Xζ
′)−1ζµ

X
− ζµ

X
), (A.1.76)
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and hence
ζµ̄X;σ = (ηviewσ,σ − ηviewµ ηview ′µ )(ζσ2

Xζ
′)−1ζµ

X
. (A.1.77)

Finally the updated expectation (1.64) easily follows from (1.64)

µ̄X = µ̄X;σ + ζ†′(ηviewµ − ζµ̄X;σ)

= µ
X

+ ζ†′((ηviewσ,σ − ηviewµ ηview ′µ )(ζσ2
Xζ
′)−1ζµ

X
− ζµ

X
)

+ζ†′(ηviewµ − (ηviewσ,σ − ηviewµ ηview ′µ )(ζσ2
Xζ
′)−1ζµ

X
)

= µ
X

+ ζ†′(ηviewµ − ζµ
X

). (A.1.78)

A.1.10 Normal MRE update: views on expectations
and covariances

Consider joint equality views (18) on expectation and covariance as in (1.80).
In this case, the updated covariance of the view variables σ2view(ηviewσ ) (1.35) becomes

explicit (1.82). This means that formulas in Table 1.7 can be easily recovered by replacing

σ2view(ηviewσ ) = σ2view , (A.1.79)

in the respective general MRE solutions (1.61)-(1.63)-(1.64)-(1.66).
Namely, it is immediate that the updated covariance (1.66) becomes

σ̄2
X = σ2

X + ζ†′σ (σ2view − ζσσ2
Xζ
′
σ)ζ†σ, (A.1.80)

Then, the optimal Lagrange multipliers θviewσ,σ (1.63) reads

θviewσ,σ =
1

2
((ζσ2

Xζ
′)−1 − (σ2view)−1); (A.1.81)

and the optimal Lagrange multipliers θviewµ (1.61) reads

θviewµ = (ζµσ̄
2
Xζ
′
µ)−1(µview − ζµµ̄X;σ), (A.1.82)

where
µ̄X;σ = µ

X
+ ζ†′σ (σ2view(ζσσ

2
Xζ
′
σ)−1ζσµX − ζσµX), (A.1.83)

and similar follows for the updated expectation µ̄X .
Finally, it turns out that if view variables are statistically independent ζµσ

2
Xζ
′
σ (1.89),

then
ζµµ̄X;σ = ζµµX , (A.1.84)

as follows because ζµζ
†′
σ = ζµσ

2
Xζ
′
σ(ζσσ

2
Xζ
′
σ)−1 = 0, which implies the optimal Lagrange

multipliers θviewµ (1.61)
θviewµ = (ζµσ

2
Xζ
′
µ)−1(µview − ζµµX), (A.1.85)
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and the updated expectation

µ̄X = µ̄X;σ + ζ†′µ (µview − ζµµX), (A.1.86)

according to Table 1.8, where here the pseudo-inverse ζ†µ is under the base covariance σ
2
X

according to (1.90).

A.1.11 Normal MRE update: views on expectations
and covariances as projection

If we define the following n̄× 1 vector

µ̄X;σ ≡ µX + ζ†′σ (σ2view(ζσσ
2
Xζ
′
σ)−1 − Ik̄×k̄)ζσµX (A.1.87)

then, according to (1.57), we have

µ̄X;σ = ζ†′σσ
2view(ζσσ

2
Xζ
′
σ)−1ζσµX +Pζσ [µ

X
− ζ†′σσ2view(ζσσ

2
Xζ
′
σ)−1ζσµX ]. (A.1.88)

Next, since we can rewrite the updated expectation (1.64) as follows

µ̄X = µ̄X;σ + ζ̄µ
†′

(ηviewµ − ζµµ̄X;σ), (A.1.89)

which is consistent with the updating formula for the expectation (1.21) underX ∼ N (µ̄X;σ, σ̄
2
X)

as new base distribution (1.6).
Hence (1.85) simply follows from (1.26).
Now, let us assume that the view variables are statistically independent under the base

distribution as in (1.89).
Then, the pseudo inverses ζ̄µ

† (1.65) and ζ†µ (1.22) are the same (1.90) since from (1.66)
we have

ζµσ̄
2
Xζ
′
µ = ζµσ

2
Xζ
′
µ. (A.1.90)

Also, the projectors Pζµ and Pζσ commutes (1.91), since we have

Pζµ [Pζσ [x]] = (In̄ − ζ†′µζµ)(In̄ − ζ†′σζσ)x

= (In̄ − ζ†′µζµ − ζ†′σζσ)x

= Pζσ [Pζµ [x]], (A.1.91)

as follows because
ζµζ

†′
σ = ζµσ

2
Xζ
′
σ(ζσσ

2
Xζ
′
σ)−1 = 0. (A.1.92)

Finally, the view variables are statistically independent also under the updated distribu-
tion (1.92), since from (1.66) we have

ζµσ̄
2
Xζ
′
σ = ζµσ

2
Xζ
′
σ + ζµζ

†′
σ (σ2view − ζσσ2

Xζ
′
σ)ζ†σζ

′
σ (A.1.93)

= 0,

where the last row follows from the statistical independence under the base (1.89) and
(A.1.92).
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Here we discuss some technical results of Chapter 2.

A.2.1 Dual Lagrangian: gradient and Hessian

According to the arguments in [A.1.3] the dual Lagrangian L(t;ηview) (2.7) is a convex
function which we can write in terms of the yet-to-be defined expectation (A.1.22)

µX ≡ µ(t) = σ2
X(θX;µ + ζ ′µtµ) (A.2.1)

= µ
X

+ pσµX + σ2
Xζ
′
µtµ,

and the yet-to-be defined covariance (A.1.20)

σ2
X ≡ σ2(t) = σ2

X + pσσ
2
X , (A.2.2)

where pσ is the following n̄× n̄ matrix (A.1.21)

pσ ≡ σ2
Xζ
′
σ(

1

2
(tσ,σ)−1 − ζσσ2

Xζ
′
σ)−1ζσ. (A.2.3)

According to the above, note that µX depends on both tµ and tσ,σ, while σ2
X depends only

on tσ,σ.
Let us focus on the first derivatives.
We recall that the view variables in this context reads

ζview(X) ≡
(

ζµX
ζσ,σvec(XX

′)

)
, (A.2.4)

and, according to (29), the gradient of the dual Lagrangian is the expectation of the shifted
view variables ζview(X)− ηview , under the yet-to-be-defined distribution fX = ft (24).
This means in particular that the gradient with respect to tµ must read

∇tµL(t;ηview) = EfX{ζµX − ηviewµ } (A.2.5)

= ζµµX − ηviewµ ;
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and similar the gradient with respect to tσ,σ must read

∇tσ,σL(t;ηview) = EfX{ζσ,σvec(XX ′)− vec(ηviewσ,σ )} (A.2.6)

= ζσ,σvec(EfX{XX ′})− vec(ηviewσ,σ )

= ζσ,σvec(σ
2
X + µXµ

′
X)− vec(ηviewσ,σ )

= vec(ζσ(σ2
X + µXµ

′
X)ζ ′σ − ηviewσ,σ ),

where we used the definition of the k̄2
σ×n̄2 matrix ζσ,σ (1.8) and the property of the Kronecker

product ⊗ with respect to the vectorization operator vec, or

vec(xyz) = (z′ ⊗ x)vec(y), (A.2.7)

for any conformable matrices x, y and z. Refer to [Magnus and Neudecker, 1979] for details.
Let us focus on the second derivatives.
We recall, according to (30), that the Hessian of the dual Lagrangian is the covariance of

the view variables ζview(X), under the yet-to-be-defined distribution fX = ft (24)

X ∼ fX ⇔ N (µX ,σ
2
X). (A.2.8)

Then the Hessian with respect to tµ reads

∇2
tµ,tµ
L(t;ηview) = CvfX{ζµX}

= ζµσ
2
Xζ
′
µ. (A.2.9)

In order to compute Hessian with respect to the cross-variables (tσ,σ, tµ), we start noting
from (A.2.6) that the sequential differential of the dual Lagrangian L(t;ηview) (2.7) reads

dtµ(dtσ,σL(t;ηview)) = dtµvec((ζσ(σ2
X + µXµ

′
X)ζ ′σ − ηviewσ,σ ))′vec(dtσ,σ)

= vec(ζσdtµ(µXµ
′
X)ζ ′σ)′vec(dtσ,σ)

= vec(ζσ(dtµµXµ
′
X + µXdtµµ

′
X)ζ ′σ)′vec(dtσ,σ), (A.2.10)

where the second row follows because σ2
X does not depend only on tµ.

Now, since the first order differential of yet-to-be defined expectation (A.2.1) with respect
to tµ reads

dtµµX = σ2
Xζ
′
µdtµ, (A.2.11)

we derive
dtµµXµ

′
X = σ2

Xζ
′
µdtµµ

′
X , (A.2.12)

and
µXdtµµ

′
X = µXdt

′
µζµσ

2
X . (A.2.13)
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This means that

vec(ζσ(dtµµXµ
′
X + µXdtµµ

′
X)ζ ′σ) = vec(ζσ(σ2

Xζ
′
µdtµµ

′
X + µXdt

′
µζµσ

2
X)ζ ′σ) (A.2.14)

= ((ζσµX ⊗ ζσσ2
Xζ
′
µ) + (ζσσ

2
Xζ
′
µ ⊗ ζσµX))dtµ

= (ζσ,σ(µX ⊗ σ2
Xζ
′
µ) + (ζσ,σ(σ2

Xζ
′
µ ⊗ µX))dtµ

= ζσ,σ[(µX ⊗ σ2
Xζ
′
µ) + (σ2

Xζ
′
µ ⊗ µX)]dtµ

= ζσ,σ[(µX ⊗ σ2
X) + (σ2

X ⊗ µX)]ζ ′µdtµ,

where in the second row we applied (A.2.7), or

vec(ζσσ
2
Xζ
′
µdtµµ

′
Xζ
′
σ) = (ζσµX ⊗ ζσσ2

Xζ
′
µ)dtµ, (A.2.15)

and
vec(ζσµXdt

′
µζµσ

2
Xζ
′
σ) = (ζσσ

2
Xζ
′
µ ⊗ ζσµX)dtµ, (A.2.16)

note that vec(dtµ) = vec(dt′µ) = dtµ; and in the third and fifth row we used the property of
the Kronecker product ⊗ with respect to standard matrices product

(x⊗ y)(w ⊗ z) = (xw)⊗ (yz), (A.2.17)

for any conformable matrices x, y, w and z. Refer to [Magnus and Neudecker, 1979] for
details.
To conclude, since

dtµ(dtσ,σL(t;ηview)) = dt′µ(∇2
tσ,σ ,tµL(t;ηview))′vec(dtσ,σ), (A.2.18)

then we must have

∇2
tσ,σ ,tµL(t;ηview) = ζσ,σ[(µX ⊗ σ2

X) + (σ2
X ⊗ µX)]ζ ′µ (A.2.19)

This structure is consistent with what we expect. Indeed from (30) the Hessian∇2
tσ,σ ,tµL(t;ηview)

is the cross-covariance the view variables ζσ,σvec(XX
′) and ζµX

∇2
tσ,σ ,tµL(t;ηview) = CvfX{ζσ,σvec(XX ′), ζµX}ζ ′µ (A.2.20)

= ζσ,σCvfX{vec(XX ′),X}ζ ′µ.

Finally, according to (30), the Hessian with respect to tσ,σ reads

∇2
tσ,σ ,tσ,σL(t;ηview) = CvfX{ζσ,σvec(XX ′)}

= ζσ,σCvfX{vec(XX ′)}ζσ,σ. (A.2.21)

In order to develop the covariance in (A.2.21), we define the following n̄×n̄ matrix-variate
variable

W 2 ≡ (X − µX)(X − µX)′, (A.2.22)
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which, under the yet-to-be-defined distribution fX = ft (24), follows by construction a
Wishart distribution with 1 degree of freedom and dispersion parameter σ2

X

W 2 ∼Wishart(1,σ2
X). (A.2.23)

Refer also to [Anderson, 1984] for more details.
From (A.2.22), we can decompose the variableW 2 as the sum of the following terms

W 2 = XX ′ − µXX ′ −Xµ′X + µXµ
′
X , (A.2.24)

from which we recover

CvfX
{
vec(W 2)

}
= CvfX {vec(XX ′ − µXX ′ −Xµ′X + µXµ

′
X)} (A.2.25)

= CvfX {vec(XX ′)− vec(µXX ′ −Xµ′X)}
= CvfX {vec(XX ′)}+α2 − β − β′;

where we defined

α2 ≡ CvfX {vec(µXX ′ +Xµ′X)} β ≡ CvfX {vec(XX ′), vec(µXX ′ +Xµ′X)} ;
(A.2.26)

and where we used the bilinearity of the covariance operator

Cv{X + Y } = Cv{X}+ Cv{X,Y }+ Cv{X,Y }′ + Cv{Y }. (A.2.27)

Hence the desired covariance in (A.2.21) reads

CvfX {vec(XX ′)} = CvfX
{
vec(W 2)

}
+ β + β′ −α2. (A.2.28)

Now the covariance of the Wishart distribution (A.2.23) reads

CvfX
{
vec(W 2)

}
= (In̄2 +Kn̄,n̄)(σ2

X ⊗ σ2
X), (A.2.29)

where Kn̄,n̄ denotes the n̄2 × n̄2 commutation matrix [Magnus and Neudecker, 1979]. Refer
also to [Anderson, 1984] for more details.
From the other hand, the term β in (A.2.26) explicitly reads

β = CvfX {vec(XX ′), vec(µXX ′)}+ CvfX {vec(XX ′), vec(Xµ′X)} (A.2.30)

= CvfX {vec(XX ′), (In ⊗ µX)X}+ CvfX {vec(XX ′), (µX ⊗ In̄)X}
= CvfX {vec(XX ′),X} (In̄ ⊗ µX)′ + CvfX {vec(XX ′),X} (µX ⊗ In̄)′

= [(µX ⊗ σ2
X) + (σ2

X ⊗ µX)][(In̄ ⊗ µ′X) + (µ′X ⊗ In̄)],

where in the second row we used (A.2.7), i.e.

vec(µXX
′) = (In ⊗ µX)vec(X ′) (A.2.31)

= (In ⊗ µX)X,
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and

vec(Xµ′X) = (µX ⊗ In̄)vec(X) (A.2.32)

= (µX ⊗ In̄)X,

and the expression of the cross-covariance CvfX{vec(XX ′),X} = (µX ⊗σ2
X) + (σ2

X ⊗µX)
as follows from (A.2.19)-(A.2.20); and in the last row we used the property of the Kronecker
product ⊗ with respect to transpositions

(x⊗ y)′ = x′ ⊗ y′. (A.2.33)

Finally the term α2 in (A.2.26) becomes

α2 = CvfX {vec(µXX ′) + vec(Xµ′X)} (A.2.34)

= CvfX {(In ⊗ µX)X + (µX ⊗ In̄)X}
= CvfX {[(In ⊗ µX) + (µX ⊗ In̄)]X}
= [(In ⊗ µX) + (µX ⊗ In̄)]σ2

X [(In ⊗ µ′X) + (µ′X ⊗ In̄)], (A.2.35)

as follows from (A.2.31)-(A.2.32) and (A.2.33).
To conclude, from the above results it is easy to verify that the Hessian reads as in (2.23),

where the multivariate function ε(t) is

ε(t) ≡ β + β′ −α2. (A.2.36)

A.2.2 Inequality views on expectations

Under normality of the base distribution (2.1) and inequality views of expectations as in (2.9)

fX ∈ CX : EfX{ζµX} ≤ ηviewµ , (A.2.37)

the yet-to-be-defined MRE updated distribution (23) must be normal in turn [A.1.1]

X ∼ N (µX ,σ
2
X), (A.2.38)

with the yet-to-be-defined expectation (A.1.22)

µX = µ
X

+ σ2
Xζ
′
µtµ, (A.2.39)

and yet-to-be-defined covariance (A.1.20)

σ2
X = σ2

X . (A.2.40)

In particular, the optimal Lagrange multipliers θviewµ are defined as follows (27)

θview ≡ argmin
tµ50

L(tµ;ηviewµ ), (A.2.41)
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where the dual Lagrangian (28), which here reads as in (A.1.15), simplifies to

L(tµ;ηview) =
1

2
[µ′X(σ2

X)−1µX − µ′X(σ2
X)−1µ

X
]− t′µηviewµ

=
1

2
(σ2

Xζ
′
µtµ)′(σ2

X)−1σ2
Xζ
′
µtµ + t′µζµµX − t

′
µη

view
µ

=
1

2
t′µ(ζµσ

2
Xζ
′
µ)tµ + t′µ(ζµµX − η

view
µ ), (A.2.42)

where in the second row we used (A.2.39).

A.2.3 Inequality views on expectations as mean-variance
problem

By definition of factor portfolios Z ≡ ζµX − ηviewµ (2.13) and affi ne equivariance of the
expectation operator, we obtain

E{Z} = ζµE{X} − ηviewµ = ζµµX − η
view
µ . (A.2.43)

Similar to the above, using the affi ne equivariance of the covariance operator, we obtain

Cv{Z} = ζµCv{X}ζ ′µ = ζµσ
2
Xζ
′
µ. (A.2.44)

Then changing the optimizing variable as follows

h ≡ −tµ, (A.2.45)

we can rewrite the dual Lagrangian (2.12) as follows

L(tµ;ηviewµ ) =
1

2
h′(ζµσ

2
Xζ
′
µ)h− h′(ζµµX − η

view
µ )

=
1

2
V{Zh} − E{Zh}, (A.2.46)

where in the last row we applied again the affi ne equivariance to the variable Zh ≡ h′Z.
Finally, since minimizing the dual Lagrangian as in (2.6) is equivalent to maximizing its

opposite, we easily obtain the desired result (2.14).

A.2.4 Ranking views as inequality views on expecta-
tions

Under the restriction CvfX{X} = σ2
X , the ranking views (2.38) are equivalent to the follow-

ing inequality statements
EfX{Xn}
[σ2
X;vol ]n

− E
fX{Xn+1}

[σ2
X;vol ]n+1

≤ 0, (A.2.47)
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for any n = 1, . . . , n̄− 1, which are clearly equivalent to the inequality views of expectations
(2.9) for ηviewµ = 0 (and strict inequalities for ηviewµ < 0).
Moreover, since the condition CvfX{X} = σ2

X is already satisfied by the MRE solution
under the only inequality views of expectations (2.9) [A.2.2], this implies the equivalence
between (2.47) and (2.9).
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Here we discuss some technical results of Chapter 3.

A.3.1 Log-partition function: equivalent formulation

From the law of the unconscious statistician the following properties holds

E{ζview(X)} =

∫
Rn̄
ζview(x)fX(x)dx, (A.3.1)

for any arbitrary distribution X ∼ fX and transformation ζview .
Hence the log-partition function (25) can be re-written as follows

ψ(t) ≡ ln

∫
Rn̄
f
X

(x) et
′ζview (x)dx = E{et′ζview (X)}, (A.3.2)

where E{·} denotes the expectation under the base distribution f
X
(1), or E{·} ≡ EfX{·}.

A.3.2 Sample dual Lagrangian: gradient and Hessian

Due to the relationship ψ̂(t; {X ,p}) = ψ[f̂
X

](t) (3.22), the gradient and Hessian of the

sample dual Lagrangian L̂(t;ηview) ≡ ψ̂(t; {X ,p})− t′ηview can be derived as the sample of
counterpart of the true dual Lagrangian L(t;ηview) ≡ ψ(t)− t′ηview (28).
More precisely, the gradient is obtained by replacing the expectation in (29) with its

sample counterpart, or

∇tL̂(t;ηview) = ∇tψ̂(t; {X ,p})− ηview (A.3.3)

= Êft{ζview(X)} − ηview

=
∑j̄

j=1 p
(j)
t ζ

view(x(j))− ηview ,

where pt = softmax (ln(p) + t′Z) are defined as in (3.32).
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Similarly, the Hessian is obtained by replacing the covariance in (30) with its sample
counterpart, or

∇2
t,tL̂(t;ηview) = ∇2

t,tψ̂(t; {X ,p}) (A.3.4)

= Ĉv
ft{ζview(X)}

=
∑j̄

j=1 p
(j)
t (ζview(x(j))−∇tψ̂(t; {X ,p}))(ζview(x(j))−∇tψ̂(t; {X ,p}))′,

Hence, as long as ζview(X ) = {ζview(x(j))}j̄j=1 (3.30) is a full rank matrix, the Hessian
∇2
t,tL̂(t;ηview) is a positive definite matrix and hence the sample dual Lagrangian L̂(t;ηview)

is a convex function.

A.3.3 Exponential family distributions: gradient of log-
pdf

The generic n-th partial derivative of the log-pdf u(x) = t′ζview(x) + ln f
X

(x) (3.17) reads

[∇xu(x)]n ≡
∂

∂xn
ut(x) =

∂

∂xn
[
∑k̄

k=1 tkζ
view
k (x) +

∂

∂xn
ln f

X
(x)]

=
∑k̄

k=1 tk
∂

∂xn
ζviewk (x) +

1

f
X

(x)

∂

∂xn
f
X

(x)

=
∑k̄

k=1 tk[Jζview (x)]k,n +
1

f
X

(x)
[∇xfX(x)]n

= [Jζview (x)′t]n +
1

f
X

(x)
[∇xfX(x)]n, (A.3.5)

where in the third row we used the definition of Jacobian matrix

[Jζview (x)]k,n ≡
∂

∂xn
ζviewk (x). (A.3.6)

Hence comparing both sides of the above identity we obtain the desired result (3.18).

A.3.4 Dual Lagrangian: relationship with relative en-
tropy

Since the updated distribution is an exponential family distributionX ∼ Exp(θview , ζview , f
X

)
(3.3), it is immediate to verify that the relative entropy (17) between the base and the up-
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dated distribution is the negative dual Lagrangian (28)

E(f̄X‖fX) =

∫
Rn̄
fθview (x) ln(

fθview (x)

f
X

(x)
)dx (A.3.7)

=

∫
Rn̄
f
X

(x) eθ
view′ζview (x)−ψ(θview )(θview ′ζview(x)− ψ(θview))dx

= θview ′
∫
Rn̄
ζview(x)fθview (x) dx− ψ(θview)

= θview ′ηview − ψ(θview) = −L(θview ;ηview),

where in the second row we used the explicit expression of the updated pdf f̄X(x) ≡
fθview (x) = f

X
(x) eθ

view′ζview (x)−ψ(θview ) (24); and where in the last row we used the fact that

the updated distribution by definition (16) satisfies the views (3.2), or Ef̄X
{
ζview(X)

}
=

ηview .

A.3.5 Dual Lagrangian: gradient and Hessian with re-
spect to features

First of all, let us consider the optimal Lagrange multipliers θview (3.5) which are a suitable
function θview of the features

θview = θview(ηview) ≡ ∇tψ−1(ηview), (A.3.8)

also known as link function. See also [Amari and Nagaoka, 2000] and [Amari, 2016] for de-
tails.
From the chain rule, the gradient with respect to ηview of the minimal dual Lagrangian

reads

∇ηviewL(θview(ηview);ηview) = ∇ηview [ψ(θview(ηview))− θview(ηview)′ηview ]

= (Jθview (ηview))′[∇tψ(θ(ηview))− ηview ]− θview(ηview)

= −θview(ηview), (A.3.9)

as follows from the fact that by definition of Lagrange multipliers θview(ηview) (27)

∇tψ(θview(ηview))− ηview = 0k̄×1. (A.3.10)

This easily implies the expression of the views intensity (3.52) from the relationship between
minimal relative entropy and dual Lagrangian [A.3.4].
Moreover, from the chain rule the Hessian with respect to ηview of the minimal dual

Lagrangian reads

∇2
ηview ,ηviewL(θview(ηview);ηview) = (Jθview (ηview))′ ×∇2

t,tL(θview(ηview);ηview)× (Jθview (ηview))′

= (∇2
t,tψ(θview(ηview)))−1 (A.3.11)

97



98 Appendix 3

as follows from the fact that the k̄ × k̄ Jacobian matrix of θview(ηview) reads

Jθview (ηview) = (∇2
t,tψ(θview(ηview)))−1, (A.3.12)

because of the inverse function differentiation; and∇2
t,tL(θview(ηview);ηview) = ∇2

t,tψ(θview(ηview))
(30).

A.3.6 ENS: relationship with relative entropy

Let us consider the discrete differential Shannon entropy, which for a generic vector of prob-
abilities reads

H(p) ≡ −
∑j̄

j=1 p
(j) ln p(j). (A.3.13)

Then, let us consider the exponential probabilities p̄ ≡ softmax (ln(p) + θ̂
view ′Z) (3.32), then

the generic case (3.55) will follow similarly.
We have the following identities hold

H(p̄) ≡ −
∑j̄

j=1 p̄
(j) ln p̄(j)

= −
∑j̄

j=1 p̄
(j)[ln p(j) + θ̂

view ′
ζview(x(j))− ψ̂(θ̂

view
; {X ,p})]

= ln j̄(
∑j̄

j=1 p̄
(j))− θ̂view ′

∑j̄
j=1 p̄

(j)ζview(x(j)) + ψ̂(θ̂
view

; {X ,p})

= ln j̄ − θ̂view ′ηview + ψ̂(θ̂
view

; {X ,p})
= ln j̄ − E(p̄||p), (A.3.14)

where in the fourth row we used the fact that
∑j̄

j=1 p̄
(j)ζview(x(j)) = ηview (3.34); and in the

last row we used E(p̄||p) ≡ −L̂(θ̂
view

;ηview) = −ψ̂(θ̂
view

; {X ,p}) + θ̂
view ′

ηview (which follows
using similar arguments as for the true counterpart [A.3.4])
Then by taking the exponential of (A.3.13) we obtain

eH(p̄) = j̄e−E(p̄||p), (A.3.15)

Finally, because of the law of large numbers we can approximate

E(p̄||p) ≈ E(f̄X‖fX), (A.3.16)

which implies the desired result (3.58).

A.3.7 Exponential family distributions: iterative up-
date

Suppose that fX belongs to the exponential family class (23) under the base distribution
f
X
(1),

fX ∼ Exp(t, ζview , f
X

), (A.3.17)
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for some arbitrary k̄ × 1 vector of Lagrange multipliers t ≡ (t1, . . . , tk̄)
′.

Then, according to the conjugate property (A.1.9), given any other vector θview ≡
(θview1 , . . . , θviewk̄ )′, the exponential family distribution f̄X ∼ Exp(θview , ζview , fX) (23) is also
an exponential family distribution (23) under f

X
as reference measure, or

f̄X ∼ Exp(t+ θview , ζview , f
X

). (A.3.18)

This also means from (A.1.10)

ψf
X
,ζview (t+ θview) = ψf

X
,ζview (t) + ψfX ,ζview (θview). (A.3.19)

Then by induction, given any arbitrary sequence of Lagrange multipliers θview(i), where
θview(0) ≡ 0, and defining a recursive sequence of exponential family distributions (23)

f
(i)
X ∼ Exp(θview(i), ζview , f

(i−1)
X ), (A.3.20)

where f (0)

X
≡ f

X
, it is immediate to verify that the following holds

f
(ı̄)
X ∼ Exp(θview , ζview , f

X
) (A.3.21)

where
θview ≡

∑ı̄
i=1 θ

view(i). (A.3.22)

A.3.8 Exponential family distributions: invariance of
the updated distribution

Suppose that our base distribution (1) is an exponential family distribution (23)

f
X
∼ Exp(θ, ζview , h), (A.3.23)

for some base vector θ ≡ (θ1, . . . , θk̄)
′ of canonical coordinates and arbitrary reference mea-

sure h(x) > 0, which without loss of generality we can assume to be normalized
∫
h(x)dx = 1.

Then, under views on generalized expectations CX : EfX
{
ζview(X)

}
= ηview as in (3.2),

the updated f̄X (16) is an exponential family distribution (3.3) of the following form

f̄X ∼ Exp(θview , ζview , f
X

), (A.3.24)

where the optimal Lagrange multipliers θview ≡ (θview1 , . . . , θviewk̄ )′ are the solutions of the dual
Lagrangian problem (3.5)

θview ≡ argmin
t

ψf
X
,ζview (t)− t′ηview , (A.3.25)

where ψf
X
,ζview (t) ≡ ln

∫
Rn̄ e

t′ζview (x)f
X

(x) dx is the log-partition function (25)
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Moreover, from the property of composition of exponential family distributions [A.3.7],
the updated f̄X (16) can be expressed also as an exponential family distribution under the
reference measure h, or

f̄X ∼ Exp(θ + θview , ζview , h). (A.3.26)

Finally, it is easy to verify that f̄X (A.3.26) is also the updated distribution (3.3) under
the same views CX on generalized expectations as above and reference measure h as base
distribution (1).
To this purpose, we just need to verify that the vector θ+θview is the solution of the dual

Lagrangian problem (3.5)

θ + θview = ϑ̄ ≡ argmin
ϑ

ψh(ϑ)− ϑ′ηview , (A.3.27)

where ψh,ζview (ϑ) ≡ ln
∫
Rn̄ e

ϑ′ζview (x)h (x) dx denotes the log-partition function as in (25) under
the reference measure h.
Indeed, the following two optimizations are equivalent

θview ≡ argmin
t

ψf
X
,ζview (t)− t′ηview

= argmin
t

ψh,ζview (θ + t)− ψh,ζview (θ)− t′ηview

= argmin
t

ψh,ζview (θ + t)− (θ + t)′ηview , (A.3.28)

where the second row follows from (A.3.19)

ψf
X
,ζview (t) = ψh,ζview (θ + t)− ψh,ζview (θ); (A.3.29)

and the last row follows because the constant terms ψh,ζview (θ) and θ′ηview do not alter the
optimization problem.
Hence, changing the coordinates in (A.3.27) via shifting

ϑ ≡ θ + t, (A.3.30)

we obtain the desired result (A.3.26).

A.3.9 Convergence of the iterative approach

Because of the invariance of the updated distribution (3.43), for a given i-th base distribution
f

(i)
X (3.44), the true updated distribution f̄X (3.3) reads

f̄X(x) = f
(i)
X (x)eε

view(i+1)′ζview (x)−ψ(i)(εview(i+1)), (A.3.31)

for some vector of optimal Lagrange multipliers εview(i+1) (3.5) and where ψ(i) is the i-th
log-partition function (25)

ψ(i)(εview(i+1)) ≡ ψ
f

(i)
X ,ζview

(εview(i+1)).
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Now, let us assume that the infinite sum of Lagrange multipliers is finite∑∞
i=1 ε

view(i) <∞, (A.3.32)

and hence that the sequence εview(i) converges to zero suffi ciently fast

||εview(i)|| →
i→∞

0. (A.3.33)

Then, it turns out that the sequence f (i)
X converges to f̄X (3.46).

Indeed, according to [A.3.4], the relative entropy (17) between the true updated distrib-
ution f̄X and i-th base distribution f (i)

X reads

E(f̄X‖f (i)
X ) = εview(i+1)′ηview − ψ(i)(εview(i+1)), (A.3.34)

and hence must converge to zero

E(f̄X‖f (i)
X ) →

i→∞
0, (A.3.35)

for continuity, since we have for any i

ψ(i)(0) = 0. (A.3.36)
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