
Alma Mater Studiorum · Università di Bologna

Computer Science and Engineering
Ciclo XXXII

Settore Concorsuale: 01/B1
Settore Scientifico Disciplinare: INF/01

Interoperability Challenges in Internet of
Things Systems: a Service-Oriented

Computing Approach

Presentata da:
Stefano Pio Zingaro

Supervisore:
Maurizio Gabbrielli

Coordinatore Dottorato:
Davide Sangiorgi

Cosupervisore:
Ivan Lanese

Esame finale anno 2020

Abstract

Internet of Things systems are pervasive systems evolved from cyber-physical
to large-scale systems. Due to the number of technologies involved, software
development involves several integration challenges. Among them, the ones
preventing proper integration are those related to the system heterogeneity,
and thus addressing interoperability issues. From a software engineering
perspective, developers mostly experience the lack of interoperability in the
two phases of software development: programming and deployment. On the
one hand, modern software tends to be distributed in several components,
each adopting its most-appropriate technology stack, pushing programmers to
code in a protocol- and data-agnostic way. On the other hand, each software
component should run in the most appropriate execution environment and, as
a result, system architects strive to automate the deployment in distributed
infrastructures.
This dissertation aims to improve the development process by introducing

proper tools to handle certain aspects of the system heterogeneity. Our effort
focuses on three of these aspects and, for each one of those, we propose a tool
addressing the underlying challenge. The first tool aims to handle heterogeneity
at the transport and application protocol level, the second to manage different
data formats, while the third to obtain optimal deployment.
To realize the tools, we adopted a linguistic approach, i.e. we provided

specific linguistic abstractions that help developers to increase the expressive
power of the programming language they use, writing better solutions in more
straightforward ways. To validate the approach, we implemented use cases to
show that the tools can be used in practice and that they help to achieve the
expected level of interoperability.

In conclusion, to move a step towards the realization of an integrated Internet
of Things ecosystem, we target programmers and architects and propose them
to use the presented tools to ease the software development process.

I

Contents

1 Introduction 3
1.1 Background . 4
1.2 Research Problem . 5
1.3 Approach . 7
1.4 Outline of the Dissertation . 8

2 Protocols Interoperability in IoT 9
2.1 Introduction . 10
2.2 Related Work . 11
2.3 Approach . 12

2.3.1 Contribution . 16
2.3.2 Limitations . 17
2.3.3 The JIoT Programming Language 18
2.3.4 Implementation . 30

2.4 Case Study . 34
2.4.1 Structure of the orchestration 37
2.4.2 Thing Descriptions . 37
2.4.3 System Deployment . 38

2.5 Discussion . 42

3 Data Handling in IoT 45
3.1 Introduction . 46
3.2 Related Work . 49
3.3 Approach . 50

3.3.1 The TQuery Framework 51
3.4 Case Study . 59

3.4.1 Benchmark . 63
3.5 Discussion . 65

4 Deployments Integration in IoT 67
4.1 Introduction . 67
4.2 Related Work . 69

III

Contents

4.3 Approach . 71
4.3.1 Contribution . 75
4.3.2 The Foehn Tool . 75

4.4 Case Study . 79
4.4.1 The Application . 80
4.4.2 The Deployment Infrastructure 84
4.4.3 The Optimal Deployment Plan 86

4.5 Discussion . 87

5 Conclusion 89

Bibliography 93

IV

List of Figures

2.1 Typical publish/subscribe interaction pattern. 23
2.2 Representation of the example in listing 2.5. 25
2.3 Interaction in the temperature automation example in MQTT. 28
2.4 Conceptual representation of the Jolie interpreter. 32
2.5 Conceptual overview of the home automation case study. . . . 34
2.6 Scheme of the orchestration in the case study. 36

3.1 Syntax of TQuery. 53
3.2 Benchmark results for TQuery and MongoDB. 64

4.1 The DevOps “infinite loop” . 76
4.2 Focus of the deployability check phase 76
4.3 The Foehn deployment planner. 78
4.4 Overview of the smart building use case 79

V

Listings

2.1 Example of a Jolie input behaviour. 13
2.2 Example of interface and input port in Jolie. 13
2.3 Code of the Collector Example. 14
2.4 JIoT controller communicating over CoAP/UDP. 19
2.5 Code of the Collector Example, revised for MQTT. 24
2.6 Example of outgoing MQTT OneWay communication. 26
2.7 JIoT controller communicating over MQTT. 27
2.8 JIoT thermostat communicating over MQTT. 29
2.9 Adafruit DHT22 TD. 37
2.10 Philips Hue Lamp TD. 38
2.11 LogicEngine Driver outputPort and getTemperature procedure. . . 39
2.12 LogicEngine setTemperature procedure in the orchestrator. . . . 40
2.13 The Dockerfile used to deploy the LogicEngine. 41

3.1 Environmental and presence logs data structures. 60
3.2 Microservice implementing DetectState algorithm. 60
3.3 Data structure after the unwind application. 62

4.1 Example of Foehn Collector components description. 72
4.2 Example of Foehn Collector infrastructure description. 73
4.3 Dashboard component specification. 81
4.4 Application HVAC component specification. 82
4.5 Application Thermostat thing specification. 83
4.6 Application communication link specification. 83
4.7 Infrastructure Cloud node deployment location specification. . 84
4.8 Infrastructure Fog node deployment location specification. . . . 84
4.9 Infrastructure communication link specification. 85
4.10 Infrastructure Thermostat thing specification. 86
4.11 Optimal deployment plan for smart building IoT application. . 86

1

Chapter 1

Introduction

Among the many visions of people gravitating in the field of Computer Science
one still remains a dream, both for the industry and for the academy, that of
a software application that seamlessly interacts with the environment. In the
last decades, this vision culminated into what the experts call the Internet of
Things, that emerged as the logical continuation of its predecessors (distributed,
pervasive, and ubiquitous computing). As for the previous, it came with no
surprise that the issues raised by the actual implementation of such system
is all but trivial. One of the main problems relies on the very composition
of the environment, the more complex it is the more complex would be the
interaction among its components. Even if we consider the case of a single
piece of software interacting with every part of, lets take for example a house,
we soon realize that thousands of components are involved and the design of
such software becomes a very difficult task. So far, we intentionally avoid to
define what is a system component but we can easily say that it is, following
our example, a lamp, the fridge, a pet, or any other entity in the house.
In the real world there is no such single piece of software that, alone,

interacts with the environment. Instead, several different software applications
exchange information with each other and with the environment using either
human-to-machine interfaces or machine-to-machine interfaces. Extending our
example, suppose that the software is made of several sub-softwares and that
any interaction that happened before with the environment, it happens now
among the components and all the smaller pieces of software. The depicted
scenario is now bigger in terms of number of interactions and the complexity
increased. In practice, software developers deal with this complexity every day
and a careful handling is needed in different aspects of the development. This
happens not just at design time but during coding phase, since communication
technologies update quickly, and at run time, because of ever changing physical
environments. The question then becomes how to help developers to be more
effective in handling the complexity of modern systems, assuming that (almost)
nothing can be done to decrease the inner complexity of the system considered.

3

Chapter 1 Introduction

This question constitutes the very center of this dissertation, that focuses on
the provisioning of proper tools that address the open challenges in software
interoperability, both at coding and run time.
In this chapter, first, we dig into the scientific context of the investigation

(section 1.1) devising the relevant facts in the recent history of Computer
Science that would help us to give a definition for Internet of Things systems.
Secondly, we briefly present the motivation of the research and the questions
that lie behind the matter of discussion in section 1.2. Then, in section 1.3, we
describe the essence of the approach trying to answer the research questions or,
better, trying to address the challenges that arose from the problem analysis.
Finally, we outline the dissertation in section 1.4 to give to the reader a
functional index of the text.

1.1 Background

Since the 1960s, several paradigms determined the progress of computing
architectures spanning from Mainframes to modern systems. In this process,
it is possible to observe a shift in human interaction with programs — i.e.
the objects of computation. At the very beginning of this process, the setup
for a Mainframe architecture required many experts, while, some after, this
relation became one-to-one when Personal Computers (PCs) brought, for the
first time, computation in everyday life [30]. Networking and communication
technologies pushed this interaction even further, allowing one user to control
many devices.

In the early 1980s, the ability to take control over dislocated systems helped
the growth of a global network — i.e. the World Wide Web (WWW) [65],
employed by researchers in distributed computing [121] as a playground for
distributed applications testing.
In the 1990s, cellular technologies allowed portable devices to connect to

available networks while moving in the physical space, thus shifting refer-
ence architectures topology from being almost fixed to be very dynamic and
heterogeneous.

In the 2000s, the explosion of the smartphone market pushed the adoption of
a new computing model that took into account the communication capabilities
of the devices as it was never done before. Both new pervasive systems
(small and constrained devices) and old ones became part of a connected
network exchanging information about the environment, e.g. user analytics,
quality of service. In this ubiquitous scenario [94]1 each vendor tended to

1To disambiguate on the meaning of “pervasive” against “ubiquitous”, we point the reader

4

1.2 Research Problem

develop its own market, along with the communication technology stack
needed to interconnect its devices. In the following years pervasive and
ubiquitous computing fixed in the literature [110], developers begin to discuss
heterogeneity handling problems, and a new notion of the modern system arises
concerning invisible and immersive interactions between humans, machines and
the environment [133] maturing the so-called Cyber-Physical System (CPS).
CPS are large-scale systems whose development focuses on the integration

of computation with physical processes — i.e. they allow mapping the physical
world with the digital one [64]. The full realization of CPS advocates for the
creation of an integrated and self-regulating System of Systems (SoS) that
behaves as a “connected domain”. In modern architectures, the physical entities
that compose the domain map with its cyber/digital version — the Thing —
and the interconnection between Things relies on the set of communication
technologies proper of the Internet [93].

In the following, we refer to such architectural style and the set of technologies
that it underlies with the term “Internet of Things” (IoT) [135].

1.2 Research Problem

IoT emerged in the ubiquitous technologies scenario, as the next logical step
to pervasive systems. Its paradigm states that the connectivity and communi-
cation technologies should be available “for anything, anywhere, and at any
time” [135]. The IoT vision is that of a global network of interacting objects
that accommodate to the environmental context without any human involve-
ment. Such perspective advocates for a system capable of (i) safely connect
any conventional electronic device to the global network (anything), (ii) embed
information and communication in the environment invisibly (anywhere), and
(iii) process relevant information in real-time and continuously feedback the
system (any time).
So far, we described the IoT as an integrated and self-regulated system

behaving as a connected domain where safely interacting entities process data
in real-time in an infinite feedback loop with the environment. Unfortunately,
IoT systems are far to meet the vision yet described.
IoT systems show a high degree of interaction among their components

as well as extremely high heterogeneity. Furthermore, they present a wide
variety of media protocols, standards, data representation formats, and possible
deployment platforms.

to [98].

5

Chapter 1 Introduction

In this babel of technologies, IoT developers hardly manage to program
interoperable applications due to the lack of proper tools supporting system
integration [48]. Here, we consider “integrated” an application for IoT systems
free from communication defects in which all the relevant information reach
the correct place in a way that the recipient can understand what it receives
[135].

Overall, we state that this dissertation aims to improve the effectiveness of
the software development procedure of integrated applications for IoT systems.
To effectively handle such heterogeneity and reach interoperability among

system components, the approach to IoT applications software development
needs to be enriched both in the programming phase and in the deployment-
related practices [72].
On the one hand, programmers need support to enable protocol and data

format -agnostic programming. Agnosticism would allow them to abstract
from the communication technologies, focusing on the application logic rather
than on its deployment. Consequently, developers and IoT architects would
benefit from tools addressing deployment automation. Since IoT network
topologies change rapidly during the application life-cycle, developers need to
check if the application requirements reflect the architecture profile continually.
Summarizing what we depicted so far, we identify the following three chal-

lenges as the leading problems of our research.

• The first (challenge C1), concerns the conceptualization of a solution
that guarantees programmers to code natively applications exploiting
media protocols interoperability.

• The second (challenge C2), relates to providing programmers with a
solution for efficient data handling in IoT applications, tackling the data
format interoperability.

• The third (challenge C3), aims to provide architects with a tool that
automates the deployability check of an IoT application into the existing
architecture, thus enabling continuous integration of software in the IoT
context.

Our claim is that by addressing these challenges in the IoT context and
answering the interoperability related issues would give to the developers a
way to effectively handling at least the three aspects of system heterogeneity
in our focus.

6

1.3 Approach

1.3 Approach

In general, since the research challenges relates to the effectiveness of the
development procedure, it is straightforward to see them as software engineering
problems. To improve the effectiveness of software development we propose
ready-to-use practical tools that can be used to build both prototypes and
mature solutions and allow the integration of these solutions into test or
production pipelines. The problem of integration is not new in the distributed
computing scenario and has been successfully addressed in the field of Service-
Oriented Architectures (SOAs) since the very birth of the pervasive system
paradigm [32]. SOA proved to be one of the most effective techniques to
integrate components in highly heterogeneous systems — e.g. web services
and telecommunication services [32] — and, in recent history, even in the IoT
context [38].

Leveraging the work done in the area of SOAs, we address challenges C1,
C2, and C3 by adopting a Service-Oriented approach applying the concepts on
which SOA relies to programming languages. The linguistic approach to SOA
is known as Service-Oriented Computing (SOC) that aims to use SOA principle
to develop proper language constructs to define service-centric applications.
Concretely, we address C1 by integrating two of the most adopted protocols
for IoT communications into an existing programming language, Jolie. We
adopt a similar approach for C2, extending the Jolie language to include a
query framework for handling modern data formats. Finally, we propose a tool
for C3 that allows to find the optimal deployment plan of an IoT application,
by taking advantage of a declarative specification language to describe both
the application and the infrastructure and a state-of-the-art configuration
optimizer to minimize the total running cost of the application.

The approach that we propose addressing C1, C2, and C3, i.e. the extension
of a programming language, we leverage the work done in SOC [96, 127, 63]
and use linguistic abstractions to reason on IoT systems. Our claim is that
without proper abstractions, guaranteeing interoperability among different
technology stacks is highly complex. Furthermore, the problem intensifies
when one has to modify the technology stack used for some specific interaction.

The thesis of this dissertation asserts that Service-Oriented Architectures
approaches can be successfully extended to support the design, development and
deployment of distributed software application for IoT systems. In conclusion,
the following constitutes the thesis statement: Service-Oriented Computing
can be used to program integrated IoT systems.

7

Chapter 1 Introduction

1.4 Outline of the Dissertation
The reminder of this dissertation is structured in three main chapters in which
we introduce the reasons and issues that motivate our investigations and report
our results. All results have been produced during the course of the PhD
studies and are here presented in an extended form.

• In Chapter 2: we present high-level concepts that are valuable both
for the general implementation of interoperable systems and for the
development of linguistic solutions. The matter of Chapter 2 is to
present a feasible solution to the issue related to challenge C1.

• In Chapter 3: we discuss a solution for effective data handling in IoT
applications, addressing data formats interoperability and performance
stability (challenge C2), following a linguistic approach to service-oriented
computing.

• In Chapter 4: we propose a tool that allows one to find the optimal
deployment plan by using a declarative specification language and a
state-of-the-art configuration optimizer, thus addressing the challenge
C3.

• In Chapter 5: we summarise the contributions of this dissertation and
relate them to similar existing work. We also discuss some interesting
directions of future investigation.

8

Chapter 2

Protocols Interoperability in IoT
Systems

IoT systems show a high degree of interaction among components as well as
extremely high heterogeneity. Programming an IoT application involves a
careful selection of the technology stack to be used since a choice not taking into
account interoperability issues, would prevent the integration in the existing
IoT ecosystem.
This work aims to code IoT systems effectively and to accomplish both

cross-layer and cross-platform seamless integration, we tackle the challenge of
IoT transport and application protocols interoperability, following a linguistic
approach to microservice-oriented computing.

Leveraging the work done in the Service-Oriented Architecture (SOA) area,
we extend the syntax of an existing programming language, Jolie, increasing
its expressive power, and build the JIoT interpreter. We implemented and
integrated into the Jolie interpreter two of the most adopted protocols in IoT
communication: CoAP and MQTT.
On one hand, JIoT supports the leading technologies both from Service-

Oriented Computing and IoT — i.e. TCP/IP, Bluetooth, RMI, and UDP at
the transport level, and HTTP, SOAP, CoAP, and MQTT at the application
level. On the other hand, it provides uniform linguistic abstractions to exploit
heterogeneous communication stacks, allowing the programmer to specify in a
declarative way the desired technologies, and to change them (even at runtime)
easily. To validate our methodology and present the tool features, we design
and implement a smart building automation case study, using the proposed
technology.

In conclusion, in this work we present high-level concepts that are valuable
both for the general implementation of interoperable systems and for the
development of other linguistic solutions.

9

Chapter 2 Protocols Interoperability in IoT

2.1 Introduction

IoT advocates for multi-layered software platforms, each adopting its media
protocols and data formats [48, 93, 36].
The problem of integrating layers of the same IoT platform, as well as

different IoT vertical solutions, involves many levels of the communication
stack, spanning from link-layer communication technologies, such as BLE,
ZigBee and WiFi, to application-layer protocols like HTTP, CoAP [9, 115],
and MQTT [7, 92], reaching the top-most layers of data-format integration
[81].
Technology-wise, developers and IT staff, in charge of the design of IoT

platforms interaction, can choose between two approaches at odds. The first
approach favours optimal in-layer communications — i.e. selecting media
protocols and data formats best suited for the interactions happening among
homogeneous elements, such as edge devices (connectionless protocols and
binary data formats [36]), mid-tier controllers (gateways and aggregators on
the RESTful stack [61]), or Cloud nodes (scalable publish-subscribe message
queues [42]). Following the approach that favours the adoption of fixed
standards is optimal for in-layer communication. However, at the cross-layer
level, the heterogeneity and possible incompatibility of the chosen standards
make enforcing integrity within the IoT system complex and the resulting
integration fragile. The second architectural approach favours cross-layer
consistency, enforcing a unique communication stack over a single IoT platform.
Here cross-layer integration is more straightforward thanks to the adoption of
a single medium and data format. However such enforced uniformity is the
leading cause of the phenomenon known as “IoT island” [119, 45], where IoT
platforms take the shape of vertical solutions that provide little support for
collaboration and integration with each other. How to overcome this limitation
is currently a hot topic, also tackled by ongoing EU projects — e.g. symbiote
[45] and biotope [8].
In this chapter, we tackle the problem of IoT integration (both cross-layer

and cross-platform) following a language-based approach focused on integration
at both the transport (TCP or UDP) and the application layer. To reach
our goal we do not start from scratch, but we leverage the work done in
the area of Service-Oriented Architectures (SOAs) [32], and we build on the
Jolie programming language [86, 88, 89, 60]. In particular, we rely on those
abstractions provided by Jolie that (i) let different communication protocols
seamlessly coexist and interoperate within the same program and (ii) let
programmers dynamically choose which communication stack is the most
suited for any given communication.

10

2.2 Related Work

Concretely, we fork the Jolie interpreter — written in Java — into a prototype
called JIoT [39], standing for “Jolie for IoT”.

JIoT supports all the protocols already supported by the Jolie interpreter.
These protocols consists of TCP at the transport level, and SOAP, RMI and
HTTP at the application level. In addition, JIoT presents support to the
application-level protocols for IoT, namely CoAP (and, as a consequence, UDP
at the transport level) and MQTT.
Notably, when the application protocol supports different representation

formats, such as XML or JSON, of the message payload, as in the case of
HTTP and CoAP, JIoT, like Jolie, can automatically marshal and un-marshal
data as required.

JIoT is available at [39], and released under the GNU GPL v2.1 license. The
code snippets reported in this chapter are based on version 1.2 of JIoT.

We structure the presentation of this work as follows. Section 2.2 describes
the current solutions addressing interoperability issues in the IoT context, and
focusing on approaches closer to ours. In section 2.3, we overview our approach
and summarize our contribution in subsection 2.3.1. In subsection 2.3.3, we
discuss the main challenges we faced in our development and we present
how a programmer can use CoAP/UDP and MQTT in JIoT, detailing our
implementation in subsection 2.3.4. In section 2.4, we describe a smart building
automation scenario where a JIoT architecture coordinates the IoT application.
Finally, we position our contribution with respect to related work and we draw
final remarks in section 2.5.

2.2 Related Work

In the literature, there are many proposals for platforms, middleware, smart
gateways, and general systems, all aimed at solving the interoperability problem
arising from the current “babel” of IoT technologies (protocols, formats, and
languages). Without any claim of being complete, here we mention a few
notable examples which are related to our approach.

Recently the W3C started the Web of Things (WoT) Working Group [131].
WoT aims to define a standard stack of layered technologies, as well as software
architectural styles and programming patterns, to uniform and simplify the
creation of IoT applications. In this context, the W3C is working on a WoT
Architecture [132]. The central concept of the architecture is the notion of
“servient”, a virtual entity that represents a physical IoT device. Servients
provide technology-independent, standard APIs that developers can use to
operate in heterogeneous environments transparently. Remarkably, both the

11

Chapter 2 Protocols Interoperability in IoT

WoT proposal and ours concern high-level abstractions for low-level access to
devices provided via — e.g. HTTP, CoAP, and MQTT.
More in general, there are many proposals for the integration of WoT and

IoT. For example, [51] and [22] define global platforms covering different layers
of IoT, including an accessibility layer which integrates concepts like smart
gateways and proxies to facilitate the connection of (smart) Things into the
Internet infrastructure, using architectural principles based on REST.
Smart gateways and proxies are used in several industrial proposals to

facilitate the development of applications. The common denominator of
some of these proposals — e.g. [117, 109, 107] — is the abstraction of low-
level functionalities provided by embedded devices — e.g. connectivity and
communication over low-level protocols like ZigBee, Z-Wave, Wi/IP/UPnP.
Smart gateways are used also to translate (or integrate) CoAP into HTTP
[120, 70, 82] and to integrate both CoAP and MQTT by means of specific
middleware [123].
Eclipse IoT [124] is an IoT integration framework proposed by the Eclipse

IoT Working Group. Aim of Eclipse IoT is to build an open IoT stack for
Java, including the support for device-to-device and device-to-server protocols,
as well as the provision of protocols, frameworks, and services for device
management. There exist several European projects, notably INTER-IoT
[41] and symbIoTe [45], that address the issue of interoperability in IoT and
have produced several concrete proposals. Finally, a work close to ours is
[130], where a middleware converts IoT heterogeneous networks into a single
homogeneous network.

To conclude our revision, we narrow our focus on language-based integration
solutions for IoT. The work mostly related to ours is SensorML [125]. SensorML,
the abbreviation of Sensor Model Language, is a modelling language for the
description of sensors and, more in general, of measurement processes. Some
features modelled by the language are discovery and geolocalization of sensors,
processing of sensor observations, and functionalities to program sensors and
to subscribe to sensor events.

2.3 Approach

Without proper language abstractions, guaranteeing interoperability among
protocols belonging to different technology stacks is highly complex. Further-
more, the problem intensifies when one has to modify the technology stack
used for some specific interaction. The replacement may be either static —
e.g. because of the deployment of new, heterogeneous devices in a pre-existing

12

2.3 Approach

system — or dynamic — e.g. to support a changing topology of different
mobile devices. Contrarily, with JIoT most of the complexity of guaranteeing
interoperability is managed by the language interpreter and hidden from the
programmer.
As an illustrative example of the proposed approach, let us consider a

scenario where we want to integrate two islands of IoT devices, both collecting
temperature data, but relying on different communication stacks, namely
HTTP over TCP and CoAP over UDP.
The end goal is to program a collector which receives and aggregates tem-

perature measurements from both islands.
Following the structure of Jolie programs, the collector programmed in JIoT

is composed of two parts: (i) a behavior, specifying the logic of the elaboration,
and (ii) a deployment, describing in a declarative way how communication
happens. This separation of concerns is fundamental to let programmers easily
change which communication stack to use, preserving the same logic for the
elaboration.

As an example of program behaviour, let us consider the code in listing 2.1,
where main is the entry point of execution of Jolie programs.

1 main
2 {
3 // ...
4 receiveTemperature (data)
5 // ...
6 }

Listing 2.1: Example of a Jolie input behaviour.

Above, line 5 contains a reception statement. Receptions in Jolie indicate a
point where the program waits to receive a message.
In this case, the collector waits to receive a temperature measurement

on operation receiveTemperature (an operation in Jolie is an abstraction for
technology-specific concepts such as channels, resources, URLs, . . .). Upon
reception, it stores the retrieved value in variable data.
Besides the logic of computation of the collector, we also need to specify

the deployment — i.e. on which technologies the communication happens. In
the example above, it concerns how the collector receives messages from other
devices. In Jolie this information is defined within ports. For example, the
port to receive (denoted with keyword inputPort) HTTP measurements can be
defined as in listing 2.2.

1 interface TemperatureInterface {

13

Chapter 2 Protocols Interoperability in IoT

2 OneWay : receiveTemperature (string)
3 }
4
5 inputPort CollectorPort1 {
6 Location : " socket :// localhost :8000"
7 Protocol : http
8 Interfaces : TemperatureInterface
9 }

Listing 2.2: Example of interface and input port in Jolie.

Port CollectorPort1 specifies that the collector expects inbound communications
via Protocol http using a TCP/IP socket receiving at URL "localhost" on TCP
port 8000. A port exposes a set of operations, collected within a set of Interfaces

. In the example, the input port CollectorPort1 declares to expose interface
TemperatureInterface, which is defined at lines 1–3 of listing 2.2. The interface
declares the operation receiveTemperature, including the type of expected data
(string), as a OneWay operation, namely an asynchronous communication that
does not require any reply from the collector (except the acknowledgement
automatically provided by the TCP implementation).

Thanks to port CollectorPort1, the collector can receive data from the HTTP
island. To integrate the second island, we need to define an additional port,
similar to CollectorPort1, except for using UDP/IP datagrams at the transport
layer and CoAP [115, 9] at the application layer. Hence, the whole code of the
collector becomes:

1 interface TemperatureInterface {
2 OneWay : receiveTemperature (string)
3 }
4
5 inputPort CollectorPort1 {
6 Location : " socket :// localhost :8000"
7 Protocol : http
8 Interfaces : TemperatureInterface
9 }

10
11 inputPort CollectorPort2 {
12 Location : " datagram :// localhost :5683"
13 Protocol : coap
14 Interfaces : TemperatureInterface
15 }
16
17 main {
18 // ...
19 receiveTemperature (data)
20 // ...

14

2.3 Approach

21 }

Listing 2.3: Code of the Collector Example.

The example above highlights how, using the proposed language abstractions,
the programmer can write a unique behaviour and exploit it to receive data
sent over heterogeneous technology stacks.
Indeed, the receiveTemperature operation takes measurements from both

the inputPorts. For instance, if communication over CollectorPort2 fails, port
CollectorPort1 can still receive data.

Programmers can also specify elaborations that depend on the used technolo-
gies by using different operations in different ports. Jolie supports both inbound
and outbound communications, the latter declared with outputPorts, whose
structure follows that of inputPorts. Furthermore, the Location and Protocol of
outputPorts can be changed at runtime, enabling the dynamic selection of the
appropriate technologies for each context.
As mentioned, Jolie enforces a strict separation of concerns between be-

haviour, describing the logic of the application, and deployment, describing
the communication capabilities. The behaviour is defined using the typi-
cal constructs of structured, sequential programming, communication primi-
tives, and operators to deal with concurrency (parallel composition and input
choices [89]). Jolie communication primitives comprise two modalities of in-
teraction. Outbound OneWay communications send a message asynchronously,
while RequestResponse communications send a message and wait for a reply
(they capture the well-known pattern of request-response interactions [129]).
Dually, inbound OneWay communications wait to receive a message, without
sending a reply, while inbound RequestResponses wait for a message and send
back a reply.

Jolie supports many communication media (via keyword Location) and data
protocols (via keyword Protocol) in a simple, uniform way. One of the main
features of the Jolie language and the reason why we base our approach on it
is because of the large number of technologies it already supports.
Each communication port declares the socket and data protocol used to

communicate, hence, to switch to a different technology stack, one needs to
change the declaration of Location and Protocol of a given port.
As expected, the behaviour— i.e. the actual logic of computation — of

any Jolie program is unaffected by any change to its ports. Hence, a Jolie
program can provide the same service — i.e. the same behaviour— through
different media and protocols just by specifying different deployments. Being
born in the field of SOAs, Jolie supports the main technologies from that

15

Chapter 2 Protocols Interoperability in IoT

area: (i) communication media like TCP/IP sockets, Bluetooth L2CAP, Java
RMI, and Unix local sockets; and (ii) data protocols like HTTP, JSON-RPC,
XML-RPC, SOAP and their respective SSL versions.

2.3.1 Contribution

To substantiate the effectiveness of our language-based approach to IoT inte-
gration, we added to Jolie support for the primary communication stacks used
in the IoT setting. Concretely, the added contribution of JIoT with respect to
Jolie is the integration of two application protocols relevant in IoT scenarios,
namely CoAP [115, 9] and MQTT [7, 92]. Notably, in JIoT the usage of such
protocols is supported by the same linguistic abstractions that Jolie uses for
SOA protocols such as HTTP and SOAP.
Even if Jolie provides support for the integration of new protocols, when

set in the context of IoT technology, the task is non-trivial. Indeed, all the
protocols previously supported by Jolie exploit the same internal interface,
based on two assumptions: (i) the usage of underlying technologies that ensure
reliable communications and (ii) a point-to-point communication pattern.
However, those assumptions do not hold when considering the two IoT

technologies we integrated:

• CoAP communications can be unreliable in case of the adoption of
UDP connectionless datagrams (as stated in the reference guide [115]).
CoAP provides options for reliable communications, however, in the IoT
settings, developers usually disable these features since it is crucial to
preserve battery and bandwidth;

• MQTT communications rely on the publish-subscribe paradigm, which
contrasts with the point-to-point paradigm underlying the Jolie com-
munication primitives. Hence, we need to define a mapping to express
publish-subscribe operations in terms of Jolie communication abstrac-
tions. In doing so, we need to balance two factors: (i) preserving the
simplicity of use of the point-to-point communication style and (ii) cap-
turing the typical publish-subscribe flow of communications. Such a
mapping is particularly challenging in the case of request-response com-
munications. Remarkably, the mapping that we present in this work is
general and could also serve other contexts.

In the remainder of this section, we organize the presentation of our contribu-
tions as follows. In subsection 2.3.2 we provide the boundaries of our research

16

2.3 Approach

and investigation on linguistic abstractions for the IoT context. In subsec-
tion 2.3.3 we discuss the relative challenges encountered in the design of the
solutions proposed. Finally, we detail on our implementation in subsection 2.3.4
including:

• a general account on how media and protocols work separately from the
Jolie interpreter and how developers could implement them as indepen-
dent modules;

• extensive details on the implementation of UDP, CoAP, and MQTT
protocols.

2.3.2 Limitations

Here, we briefly discuss the current limitations of JIoT related to its usage in
the programming of low-level Edge devices — like Arduino and other microcon-
trollers. JIoT supports dynamic scenarios where the nodes in the network can
switch among many technology stacks according to internal or environmental
conditions, such as available energy or communication link quality. From
preliminary discussions with collaborators and IoT practitioners, we collected
positive opinions on the idea of using JIoT for low-level programming Edge
devices. Given these remarks, we investigated the feasibility of running JIoT
programs over Edge devices, possibly including additional language abstrac-
tions to provide low-level access to on-board sensors and actuators. However,
our survey revealed a market of devices fragmented over incompatible hardware
architectures and characterized by strong constraints over both computational
power and energy consumption. Considering these limitations, we concluded
that supporting the execution of JIoT-like programs over Edge devices would
require a substantial engineering effort.
While this research direction is promising, we deem it non-urgent, since

currently, developers tend to program elementary behaviours for Edge devices
[36], which usually capture some data — e.g. through one of their sensors —
and then send them to mid-to-top-tier devices. The latter usually process and
coordinate the flow of data: they have powerful hardware, they communicate
over reliable channels, and they have fewer (if any) constraints concerning
battery/energy consumption.
Considered the discussion above, in this chapter we omit the low-level

programming of Edge devices, and we focus on mid-to-top-tier ones, which
can host the JIoT runtime and which, given their topological context, directly
benefit from the flexibility of the approach.

17

Chapter 2 Protocols Interoperability in IoT

2.3.3 The JIoT Programming Language

Jolie currently supports some of the leading technologies used in SOAs — e.g.
HTTP, SOAP. However, only a limited amount of IoT devices uses the media
and protocols already supported by Jolie. Indeed, protocols such as CoAP
and MQTT, which are widely used in IoT scenarios, are not implemented in
Jolie. Integrating these protocols, as we have done, is essential to allow Jolie
programs to directly interact with the majority of IoT devices. We note that
emerging frameworks for interoperability, such as the Web of Things [51], rely
on the same protocols we mentioned for IoT. Thus JIoT is also compliant with
them.
However, there are some challenges linked to the integration of these tech-

nologies within Jolie:

• lossless vs lossy protocols — In SOAs, machine-to-machine communica-
tion relies on lossless protocols: there are no strict constraints on energy
consumption or bandwidth, and it is not critical how many transport-
layer messages are needed to ensure reliable delivery. That is not true in
IoT networks, where communication is constrained by energy consump-
tion, which defines what technology stack is the best suited. Indeed,
many IoT communication technologies, among which the most renowned
CoAP application protocol, rely on the UDP transport protocol — a con-
nectionless protocol that gives no guarantee on the delivery of messages
but allows one to limit message exchanges and, by extension, energy and
bandwidth consumption. Since Jolie assumes lossless communications,
the inclusion of connectionless protocols in the language requires careful
handling to prevent bad behaviours;

• point-to-point vs publish-subscribe — The premise of the Jolie language
is to provide communication constructs that do not depend on a specific
technology. To be able to accomplish the goal, the underlying language
assumes a point-to-point communication abstraction, which is common
to many protocols like HTTP and CoAP. However, to integrate the
MQTT protocol in Jolie, we need to model Jolie point-to-point semantics
as MQTT publish-subscribe operations. Indeed, Jolie already provides
language constructs usable with many communication protocols. Hence,
the less disruptive approach would take advantage of the same constructs,
which ideally suit in point-to-point settings, and thus also for MQTT. In
the depicted context, we require to find, for each point-to-point construct,
a corresponding effect on the publish-subscribe paradigm. The final result

18

2.3 Approach

is that the execution of a given Jolie behaviour is similar under both
point-to-point and publish-subscribe technologies.

Supporting Constrained Application Protocol in Jolie

The Constrained Application Protocol (CoAP) is a specialized web transfer
protocol for constrained scenarios where nodes have low power and networks
are lossy. The goal of CoAP is to import the widely adopted model of REST
architectures [34] into the IoT context, that is, to optimize machine-to-machine
interaction and ease the integration with REST-like protocols, such as HTTP.
In particular, like HTTP, CoAP makes use of GET, PUT, POST, and DELETE
methods.

Following the RFC [115], CoAP is implemented on top of the UDP transport
protocol [102], with optional reliability. Indeed, CoAP provides two communi-
cation modalities: a reliable one, obtained by marking the message type as
Confirmable (CON), and an unreliable one, obtained by marking the message
type as Non-confirmable (NON).
As an example, we consider a scenario with a controller, programmed in

JIoT, that communicates with one of many thermostats in a home automation
scenario. Thermostats are accessible at the generic address "coap://localhost/##

" where "##" is a two-digit number representing the identifier of a specific device.
Each thermostat accepts two kinds of interactions: a GET request on URI "

coap://localhost/##/getTemperature", that returns the current temperature, and
a POST request on URI "coap://localhost/##/setTemperature", that sets the
temperature of the HVAC (heating, ventilation, and air conditioning) system.

We comment below listing 2.4, where we report the code of a possible JIoT
controller that interacts with a specific thermostat.

1 type getTmpType : void { .id: string }
2 type setTmpType : int { .id: string }
3
4 interface ThermostatInterface {
5 RequestResponse : getTmp (getTmpType)(int)
6 OneWay : setTmp (setTmpType)
7 }
8
9 outputPort Thermostat {
10 Location : " datagram :// localhost :5683"
11 Protocol : coap {
12 .osc. getTmp << {
13 . messageCode = "GET",
14 . contentFormat = "text/plain",
15 . messageType = "CON", // or "NON"

19

Chapter 2 Protocols Interoperability in IoT

16 .alias = "/%!{id}/ getTemperature "
17 };
18 .osc. setTmp << {
19 . messageCode = "POST",
20 . messageType = "CON", // or "NON"
21 .alias = "/%!{id}/ setTemperature "
22 }
23 }
24 Interfaces : ThermostatInterface
25 }
26
27 main {
28 getTmp @ Thermostat ({ .id = "42" })(temp);
29 if (temp > 27) {
30 setTmp @ Thermostat (24 { .id = "42" })
31 } else if (temp < 15) {
32 setTmp @ Thermostat (22 { .id = "42" })
33 }
34 }

Listing 2.4: JIoT controller communicating over CoAP/UDP.

Our scenario includes two CoAP resources, referred to as "/getTemperature"

and "/setTemperature".
We model them in JIoT at lines 4–7 of listing 2.4, by defining the interface

ThermostatInterface, which includes a RequestResponse operation getTmp, repre-
senting resource "/getTemperature", and a OneWay operation setTmp, representing
resource "/setTemperature".

By default, we map operation names to resource names, hence in our example
we would need resources named "/getTmp" and "/setTmp", respectively. However,
one can override this default by defining the coupling of resource names and
operations as desired. The freedom that the language guarantees in terms
of names and operations coupling allows programmers to use interfaces as
high-level abstractions for interactions, while the grounding to the specific case
stays a deployment matter.

Here we purposefully choose to use operation names that differ from resource
names to underline that the two concepts are related but loosely coupled.
On the one hand, the coupling between the name of the resource and that

of the operation is a way of quickly binding actions exposed by the CoAP
server with operations. On the other hand, decoupling resource names and
operations permits to handle more complex deployments where, for instance,
a single operation responds for different resources.

At lines 9–25 we define an outputPort to interact with the Thermostat. At line
10, we specify the Location of the thermostat. Recalling that the scheme of

20

2.3 Approach

the resources of the thermostats is "coap://localhost/##/\ldots", we define the
Location of the port using the UDP "datagram://" protocol, followed by the first
part of the resource schema "localhost" and the UDP port on which it accepts
requests. Here we assume thermostats to use CoAP standard UDP port, which
is "5683". Note that, in the Location, we do not define the address of a specific
thermostat — e.g. "datagram://localhost:5683/42". On the contrary, we specify
the generic address to access thermostats in the system, while the specific
binding will be done at runtime, thanks to the .alias parameter of the coap

protocol described later on.
At line 11 we define coap to be the protocol used by the outputPort. At lines

12–22 we specify some parameters of the coap protocol — this matches the
standard way in which Jolie defines parameters for Protocols in ports.

Here, we follow the methodology presented in [86] for the implementation of
the HTTP protocol in Jolie — indeed CoAP adopts HTTP naming schema and
resource interaction methods. In particular, we draw from [86] the parameter
prefix ".osc", whose name is the acronym of “operation-specific configuration”
and which developers generally use for configuration parameters related to a
specific operation.
In the example, we define .osc parameters for both operations getTmp and

setTmp. At line 13 we specify that the CoAP verb used for operation getTmp

is "GET". At line 14 we define, using the .contentFormat parameter that the
encoding of the payload of the message is in text format. Other accepted values
for the .contentFormat parameter are "json" and "xml". Marshalling and un-
marshalling are automatic and transparent to the programmer. The structure
of Jolie variables enables this feature, which is always tree-shaped. Hence they
can be easily translated into representations based on that shape. At line 15 we
set the .messageType parameter to "CON", that stands for Confirmable. Accepted
values for the .messageType parameter are Confirmable and Non-confirmable
("NON"), the latter being the default value. In the first case, the sender will
receive an acknowledgement message from the receiver, in the second case, it
will not. At line 16, following the practice introduced in [86], we specify that
getTmp is an alias for a resource whose path concatenates a static part, given
by the Location, and the instantiation of the template "/%!{id}/getTemperature"

provided by protocol parameter .alias.
The template is instantiated using values from the parameter of the operation

invocation in the behavior, e.g. value 42 at line 281. Hence, the interpretation
of the declaration at line 16 is that when invoking operation getTmp at runtime,

1In Jolie the dot . defines path traversals inside trees. Hence, the notation .id = 42
indicates a tree with an empty root and a sub-node called id, whose value is 42.

21

Chapter 2 Protocols Interoperability in IoT

the element id of the invocation will be removed from the payload and used to
form the address of the requested resource. The aliasing for operation setTmp

(line 21) is similar to that of getTmp, while the operation uses verb POST. Since
here the .contentFormat parameter is omitted, the default "text/plain" is used.

To conclude, we briefly comment on the runtime execution of the example,
described in the behaviour at lines 28–33. At line 28 the controller invokes
operation getTmp. When in the presence of outgoing RequestResponse, the invoca-
tion defines on which port to perform the request (Thermostat) and presents two
pairs of round brackets: the first contains the data for the request, the second
points to the variable that will store the received response. Recalling the alias-
ing defined at line 16, at line 28 we define the value of element id = 42, thus the
URI of the resource invoked at runtime is "coap://localhost/42/getTemperature".
Notably, in the example we hard-coded the id of the device, however in a more
realistic setting the value of id would be retrieved dynamically — e.g. as an
execution parameter, from a configuration file or a database. Once received,
the response from thermostat 42 is assigned to variable temp. The example
concludes with a conditional in which, if the temperature is above 27 degrees
(line 29), the software sets the thermostat to a lower room temperature (24

degrees), while, if the temperature lies below 15 degrees, it sets the thermostat
to 22 degrees.
Dually to outputPorts, inputPorts allow the programmer to specify inbound

communications. The parameters described above are valid also for inputPorts,
with the only difference that messageType works only for RequestResponses, and
specifies whether the communication of the reply is reliable or not.
Note that, concerning the .alias parameter, the template is instantiated

using the address of the incoming communication, and the values take place
among the elements of the payload.

Supporting Message Queue Telemetry Transport in Jolie

Message Queue Telemetry Transport (MQTT) is a publish/subscribe messaging
application protocol built on top of the TCP transport protocol.
A typical publish/subscribe interaction pattern can be diagrammatically

represented as in figure 2.1 where:

1. a Subscriber subscribes to the topic (a) at some Broker;

2. a Publisher publishes a message to the topic (a) at the same Broker;

3. the Broker forwards the message to the topic (a) to the Subscriber.

22

2.3 Approach

Subscriber Broker Publisher

1) Subscribe to (a)
2) Publish at (a)

3) Forward message in (a)

Figure 2.1: Typical publish/subscribe interaction pattern.

More generally, the Broker forwards the messages published on a topic to
all current subscribers.
On top of the underlying mechanism of publishing/subscribing, MQTT

defines three levels of quality of service (QoS) for the delivery of each message
published by a publisher. QoS levels determine whether messages can be lost
or duplicated.

Concretely, QoS levels are as follows:

• At most once — the message can be lost, no duplication can occur.

• At least once — delivery of the message is guaranteed, but duplication
may occur.

• Exactly once — delivery of the message is guaranteed and duplication
cannot occur.

To present how we model the MQTT protocol in JIoT, we first detail the
simpler case of OneWay communications in subsection 2.3.3. Then, we address the
more complex case of RequestResponse communications in listing 2.7. Notably,
our modelling of end-to-end communications over a publish/subscribe channel
is independent of JIoT — i.e. it is a general reference on how to implement
one-way and request-response communications on top of any publish/subscribe
channel.

One-Way Communications in MQTT. We first consider the case of inbound
communications and then the case of outbound communications.
We exemplify OneWay inbound communications using the example in list-

ing 2.5, which is a revision of the example in listing 2.3 by omitting the ports
CollectorPort1 and CollectorPort2 and by adding an MQTT inputPort

named CollectorPort3.

23

Chapter 2 Protocols Interoperability in IoT

1 interface TemperatureInterface {
2 OneWay : receiveTemperature (string)
3 }
4
5 inputPort CollectorPort3 {
6 Location : " socket :// localhost :8050"
7 Protocol : mqtt {
8 . broker = " socket :// localhost :1883"
9 }

10 Interfaces : TemperatureInterface
11 }
12
13 main {
14 // ...
15 receiveTemperature (data)
16 // ...
17 }

Listing 2.5: Code of the Collector Example, revised for MQTT.

As expected, the program behaviour and the structure of the inputPort are
unchanged. Main novelties are:

• the used Location (line 6) has the prefix "socket://" (as seen in the HTTP
port) since MQTT relies on TCP transport protocol;

• the used Protocol (line 7) is mqtt;

• the .broker protocol parameter (line 8), which is compulsory when the
mqtt protocol is used in inputPorts, specifies the address of the Broker.

From the developers perspective, the syntax and the effects of the communi-
cation primitives are the same as listing 2.3. However, we actually exchange
several messages to capture that effect in MQTT, as shown in figure 2.2.
Beyond defining such message exchanges, we also need to decide how to

identify the topic on which the two endpoints perform the message exchange.
Regarding the message exchanges, an inbound OneWay communication receives

a datum from the communication partner. To obtain the same effect using the
publish/subscribe paradigm, one has first to subscribe at the Broker to the
chosen topic and then wait to receive a message on that topic, forwarded by
the Broker. How topics are selected will be detailed later on. The execution
of reception on a OneWay operation comprises two actual communications: a
subscription from the program to the Broker and message delivery in the
opposite direction. However, subscription to topics and the execution of a
message reception are logically separated and happen at different moments.

24

2.3 Approach

Collector Broker Device
1) Subscribe to
(receiveTemperature)

2) Publish on
(receiveTemperature)3) Forward message on

(receiveTemperature)

Figure 2.2: Representation of the example in listing 2.5.

Indeed, the subscription is performed when the JIoT program is launched
for all operations present in MQTT inputPorts. This choice is more in line
with the expected behaviour of Jolie programs — and of Service-Oriented
programs in general. The service stores the messages that belong to operations
whose reception statements are not yet enabled, until the actual execution of
the reception. If the service would perform the subscription along with the
execution of the OneWay operation, previous messages could be no more available.
In JIoT, the compulsory parameter .broker is needed precisely to know the
address at which the subscription occurs. The address for the delivery of the
actual message is the usual Location of the inputPort.

Regarding the selection of topics, similar to what done for CoAP resources,
in MQTT by default we map JIoT operations to topics. Otherwise, we use the
.osc parameter .alias to detach the coupling between operations and topics.
We remark that .alias parameters in inputPorts have a different behavior in
MQTT with respect to HTTP and CoAP. In CoAP the name of the resource
extracted from the received message is used to derive the instantiation of the
.alias template. The interpreter inserts the values resulting from the match
among the elements of the payload before storing it in the target variable
data. Instead, in MQTT, the .alias parameter is used to identify the topic for
subscription. For example, in listing 2.5, one could add the Protocol parameter
.osc.receiveTemperature.alias = "temperature" to specify that the selected topic
for operation receiveTemperature is "temperature". Note that, since there is
no outgoing data, templates in MQTT inputPorts, such as "temperature" in
the example, are constants (we require all such constants defined within
the same inputPort to be distinct). Having only constant aliases is not a
relevant limitation in the context of IoT, where topics are mostly statically
fixed. Addressing this limitation without disrupting the uniformity of the Jolie

25

Chapter 2 Protocols Interoperability in IoT

programming model is not trivial, ans we leave the discussion concerning the
implementation of a new feature as further investigation.

1 type TmpType : int { .id: string }
2
3 interface ThermostatInterface {
4 OneWay : setTmp (TmpType)
5 }
6
7 outputPort Broker {
8 Location : " socket :// localhost :1883"
9 Protocol : mqtt {

10 .osc. setTmp << {
11 . format = "raw",
12 .QoS = 2, // exactly once QoS
13 .alias = "%!{id}/ setTemperature "
14 }
15 }
16 Interfaces : ThermostatInterface
17 }
18
19 main {
20 // ...
21 setTmp @ Broker (24 { .id = "42" })
22 // ...
23 }

Listing 2.6: Example of outgoing MQTT OneWay communication.

To conclude the mapping of OneWay operations in MQTT, we consider here
the case of outbound operations, exemplified in listing 2.6.

Outgoing OneWay operations cause the publication of the value passed as the
parameter of the invocation (line 21) at the Broker. The address of the Broker
is defined by the Location (line 8) of the outputPort Broker. The topic map
with the name of the operation and the parameter of the invocation, using
protocol parameter .alias as usual. Being an MQTT publication, we specify
the .QoS protocol parameter (line 12), which selects the QoS level “Exactly
once” for the operation setTmp. Similarly to what we have done in CoAP with
the contentFormat protocol parameter, we define in .format the encoding of the
message payload, in this case, a “raw” stream of bytes.

Request-Response Communications in MQTT. Let us consider the example in
listing 2.4 to discuss about RequestResponse communications, revising the code
in listing 2.5 by replacing the CoAP protocol with MQTT. We omit OneWay

communications and concentrate on the outbound operation that interact with

26

2.3 Approach

a RequestResponse operation. Afterwards, we will also discuss the dual inbound
RequestResponse.

1 type TmpType : void { .id: string }
2
3 interface ThermostatInterface {
4 RequestResponse : getTmp (TmpType)(int)
5 }
6
7 outputPort Broker {
8 Location : " socket :// localhost :1883"
9 Protocol : mqtt {
10 .osc. getTmp << {
11 . format = "raw",
12 .QoS = 2, // exactly once QoS
13 .alias = "%!{id}/ getTemperature ",
14 . aliasResponse = "%!{id}/ getTempReply "
15 }
16 }
17 Interfaces : ThermostatInterface
18 }
19
20 main {
21 // ...
22 getTmp @ Broker ({ .id = "42" })(temp)
23 // ...
24 }

Listing 2.7: JIoT controller communicating over MQTT.

Syntactically, the main novelty of listing 2.7 with respect to the outputPort in
listing 2.6 is the addition of Protocol parameter .aliasResponse at line 14. This
parameter specifies the name of the topic where the receiver will publish its
response.
For the developers, a RequestResponse, when outbound, is composed of an

outgoing communication followed by an inbound reply. The outgoing com-
munication is implemented using the approach already seen for OneWay com-
munications — i.e. using the .alias Protocol parameter to identify the topic.
Then, one has the issue of relating the outgoing request with its reply. Many
standard point-to-point communication technologies, such as HTTP/TCP and
the already discussed CoAP/UDP, support request-response communications
by defining means to link a given outgoing request to its reply. MQTT, relying
on the Publish/Subscribe paradigm, does not provide dedicated means to do
such a linking. Thus we specify topics for both the request and the response.
To secure the communication, keeping track of the similar topics used between

27

Chapter 2 Protocols Interoperability in IoT

the client and the server remains a developers responsibility. The programmer
can, for instance, send the topic for the response inside the payload of the
request message.
We identify the topic for the reply with the .aliasResponse Protocol pa-

rameter. Like for .alias parameters, the template of the .aliasResponse is
instantiated using the content of the message sent in the behaviour. For
example, in listing 2.7, we use .id at line 22 to obtain "42/getTemperature" and
"42/getTempReply", respectively the publication and reply topics.
We can now describe the pattern of interactions that we use to implement

the outgoing RequestResponse communication at line 22 in listing 2.7. As a
reference, the pattern of interactions is depicted in the left part of figure 2.3.
We will describe the right part later on, after having introduced inbound
request-response communications.

Controller Broker Thermostat

1) Subscribe to
"42/getTemperature"

2) Subscribe to
"42/getTempReply"

3) Publish to
"42/getTemperature" 4) Forward message in

"42/getTemperature"

5) Publish to
"42/getTempReply"6) Forward message in

"42/getTempReply"

Figure 2.3: Interaction in the temperature automation example in MQTT.

First, the controller subscribes to the reply topic "42/getTempReply" at the
Broker. Then, the controller sends to the Broker the request message on topic
"42/getTemperature". The execution of the RequestResponse terminates when the
Broker forwards the reply received on topic "42/getTempReply" to the controller.

Differently from inbound OneWay communications, here we do not subscribe

28

2.3 Approach

to the reply topic at bootstrapping time. Indeed, it would be useless since
no relevant message can arrive on this topic before the controller sends its
message to the Broker, and anticipating the subscription would complicate the
usage of runtime information in templates.

To exemplify inbound RequestResponse communications, we assume that the
thermostat in our example runs the JIoT interpreter. We report its code in
listing 2.8.

1 type TmpType : int { .id: string }
2
3 interface ThermostatInterface {
4 RequestResponse : getTmp (TmpType)(TmpType)
5 }
6
7 inputPort Thermostat {
8 Location : " socket :// localhost :9000"
9 Protocol : mqtt {
10 . broker = " socket :// localhost :1883";
11 .osc. getTmp << {
12 . format = "raw",
13 .alias = "42/ getTemperature ",
14 . aliasResponse = "42/ getTempReply "
15 }
16 }
17 Interfaces : ThermostatInterface
18 }
19
20 main {
21 // receive and store the temperature
22 getTmp (temp)(temp){
23 // update and send back the temp content
24 }
25 }

Listing 2.8: JIoT thermostat communicating over MQTT.

At line 13 in listing 2.8, the .alias parameter "42/getTemperature" must be
defined statically, as required for inputPorts. When the thermostat controller
starts, it subscribes to topic "42/getTemperature". When a message on this topic
arrives, the interpreter passes the payload (empty in this case) to the behaviour.
The body of the RequestResponse (lines 22–25) is executed to compute the return
value.

Finally, the interpreter publishes the content of the variable retrieved on
the reply topic "42/getTempReply", as specified by osc parameter .aliasResponse

. While in this example the parameter .aliasResponse is statically defined,

29

Chapter 2 Protocols Interoperability in IoT

our implementation supports the definition of dynamic .aliasResponses as in
outputPorts — e.g. as seen in listing 2.5.
We summarize the exchange between the controller and the thermostat

(figure 2.3) in the following:

1. when the thermostat is started, it subscribes to topic "42/getTemperature"

at the Broker;

2. when the outgoing RequestResponse is executed, the controller subscribes
to topic "42/getTempReply" at the Broker;

3. the controller publishes the request message to topic "42/getTemperature";

4. the Broker forwards the message in topic "42/getTemperature" to the
thermostat;

5. the thermostat publishes the response, after computing the value, on the
topic "42/getTempReply";

6. the Broker forwards the message on topic "42/getTempReply" to the con-
troller.

We remark that RequestResponse operations in Jolie are meant to be end-
to-end communications. To ensure this in a publish/subscribe setting while
using the approach above, one has to assume that other participants could
subscribe — and thus access pertinent information – to the selected topics,
which essentially act as namespaces.

2.3.4 Implementation

To illustrate the structure of our implementation, we discuss how media and
protocols are separated from the Jolie interpreter and available as indepen-
dent libraries. In the remainder, we proceed describing the highlights of the
implementation of UDP and CoAP and of MQTT.

Programming a Jolie Extension

In Jolie, the implementations of the supported application and transport pro-
tocols are independent. Independency of application and transport protocols
enables the composition of any of the first with any of the latter. Concretely,
the Jolie language is written in Java and provides proper abstract classes that
represent application and transport protocols. Each protocol results from an
implementation of the corresponding abstract classes. Each implementation

30

2.3 Approach

comes as a separate library, that the interpreter loads, just in the case that
the service use it. The compositional nature of the interpreter expedites the
integration of new protocols in the language. Concerning the implementation
strategy, a second aspect that is important to take into account is that we
developed the JIoT communication core, strongly relying on the Netty frame-
work [73]. Indeed, we believe that taking advantage of the Netty provided
solutions has been crucial to meet the requirements of system communication,
high concurrency, and real-time interaction proper of the IoT context. Netty
is based on Non-blocking I/O (NIO), which provides developers with asyn-
chronous, event driven abstractions. The adoption of the Netty technology
has dramatically optimized the handling of stability and scalability of both
the interpreter communication core and the protocols related libraries.
To better illustrate this structure, we report in figure 2.4 a conceptual

representation of the call flow that originates from the execution logic of the
language and interacts with the external libraries present in a given installation.
The flow starts from the Execution Engine, which interprets Jolie commands,
and which is the originator of the communication flows, represented by arrow
0 . From there, the call reaches the Communication Core, which implements
the generic logic of channel creation, in turn relying on the pairing of a
medium and a protocol. In the interpreter, this division is generalized with
abstract factories for media and protocols. At runtime, the Communication
Core proceeds (arrows 1) to load the medium factory requested in the
call from the Execution Engine — in the figure we assume this is Socket —
and, from that, it obtains an implementation of the actual logic of TCP/IP
channels, split between a channel class, to handle outbound communications,
and a listener class, for inbound communications. Finally, the Communication
Core associates (arrows 2) a protocol to the obtained medium. The flow is
similar to that of media: the Communication Core loads the protocol factory
requested in the call from the Execution Engine — in the figure we assume this
is HTTP — and, from that, it obtains an object that implements the logic of
the HTTP protocol.

Implementation of CoAP/UDP in Jolie. Since by specification the CoAP
protocol relies on the UDP medium protocol, in order to integrate CoAP in Jolie
we also had to integrate the UDP medium. As discussed in subsection 2.3.3,
this entailed the creation of two new libraries for the Jolie interpreter: a
medium library for UDP and a protocol library for CoAP.

We remark that since UDP and CoAP are independent libraries, our imple-
mentation of UDP can also be used to support other protocols relying on UDP,

31

Chapter 2 Protocols Interoperability in IoT

Legend

Interpreter

Channel creation
 - Medium creation
 - Protocol creation

Communication Core

Execution logic
Communication logic

Execution Engine

Abstract protocol

Abstract medium

Abstract protocol factory

Abstract medium factory

Socket library
Socket medium

Socket medium factory

UDP library
UDP medium

UDP medium factory

HTTP library
HTTP protocol

HTTP protocol factory

CoAP library
CoAP protocol

CoAP protocol factory

……

… Artefact (jar)

10

1

2

2

Call Flow Instantiation

Figure 2.4: Conceptual representation of the call flow among the Jolie interpreter,
augmented with JIoT protocols, and its communication libraries.

such as MQTT-SN [55]. The implementation of UDP consists of a listener and
a channel class, both based on the Netty framework [74]. Since the structure
expected by Jolie and the one provided by Netty are similar, the integration
of UDP is smooth. One interesting point is that the interpreter captures
exceptions raised by Netty and transforms them into Jolie exceptions. The
application protocol receives a notification for these exceptions, and, eventually,
manage them or raise them at the level of the Jolie program behaviour.
The implementation of the CoAP library consists of a class taking care of

encoding and decoding the message abstraction of Jolie, namely the Commu-

32

2.3 Approach

nication Message, into a CoAP formatted one. A second class, handling the
encoding and decoding of a CoAP message into a buffer of bytes, is based on
the work done in nCoAP [95], an open-source project providing a CoAP im-
plementation for Java, based itself on Netty. CoAP supports request-response
communications and, in particular, CoAP messages include the following fields
[115]. (i) The Uri-Host, Uri-Port, Uri-Path, and Uri-Query options specify
the target resource of a request — i.e. the address where the sender expects
the reply. (ii) The Message ID, to detect message duplication and to match
acknowledgement or reset messages to messages of type Confirmable or Non-
confirmable. (iii) The Token — to match a response with a request. Hence,
the implementation of the Jolie RequestResponse communications abstraction in
CoAP is sound — i.e. valid, consistent — also with a transport protocol which
is not connection-oriented, such as UDP. The not connected-oriented nature of
UDP would be a problem for protocols that do not provide this facility, such
as HTTP, which is indeed not commonly used over UDP.

Notably, Jolie comes with a formal semantics (in terms of a process calculus)
[50], which enables to reason on the behaviour of Jolie programs rigorously.
Formalism has been instrumental in the evolution of the language — e.g. to
specify and prove properties on the fault handling mechanisms of the language
[49] or to correctly implement sessions [87] based on correlation mechanisms
[99]. The semantics in [50] only considers reliable communications and needs
to be also extended to cover the unreliable case.

Implementation of MQTT in Jolie. By specification, MQTT relies on the
TCP/IP protocol, already implemented in Jolie. Support TCP/IP means
that, theoretically, the implementation of MQTT would have only entailed the
creation of a dedicated MQTT protocol library. However, Jolie assumes an
end-to-end communication pattern where the caller initiates the creation of
a communication channel with a server, which in turn expects such inbound
requests. For this reason, given a certain medium, inputPorts and outputPorts
use a medium-specific implementation of, respectively, a listener class and a
channel class.
This pattern, separating listeners from channels, does not apply to pub-

lish/subscribe protocols, where both the subscriber and the publisher need to
establish a connection with the broker. In our implementation, we mediated
between the two approaches with a Publish-Subscribe medium, which is a
wrapper implementing the logic of Publish-Subscribe message handling on any
other point-to-point medium available (TCP socket in the case of MQTT)
to the interpreter. Although we strove to separate the concerns between the

33

Chapter 2 Protocols Interoperability in IoT

Jolie interpreter and this new Public-Subscribe channel, we had to introduce
a minimal update into the Jolie Communication Core so that it could choose
between the standard end-to-end media and the new wrapper.
The MQTT protocol class both encodes and decodes messages and imple-

ments the QoS policies of the MQTT standard. Concretely, as for CoAP, we
based the implementation of MQTT on Netty [74].
The main difficulty in the implementation of the protocol is the definition

of the message patterns needed to implement OneWay and RequestResponse com-
munications. Beyond being invoked at (operation) execution time, to perform
port initialization properly, the interpreter needs to invoke the MQTT class
also at bootstrapping time.

2.4 Case Study

Arduino Uno ESP8266 Philips Hue Hub Samsung
SmartThings Hub

Adafruit
GA1A12S202
Light Sensor

Adafruit DHT22
Temperature

Sensor

Samsung
SmartThings

Motion Sensor

Philips RGB
Hue Lamp

Philips White
Hue Lamp

JIoT
orchestration

HTTP/TCPCoAP/UDP

MQTT/TCP HTTP/TCP

T
hings

Figure 2.5: Conceptual overview of the home automation case study.

In this section, we detail the programming of a home automation case study
with JIoT where we considered:

• local, cross-layer communication among things and mid-tier controllers
(Edge devices and fog nodes);

34

2.4 Case Study

• remote, cross-layer interactions among Cloud nodes and mid-tier con-
trollers.

We remark that the techniques presented in this case study are not specific to
home automation. Any heterogeneous IoT scenario, where different technology
stacks show a high level of interaction, can benefit, in principle, with the
proposed style. The case study is peculiar as a new Thing can be included in
the system at runtime. We released the source code of the system under the
GNU GPL v.3.0 license, making it available at [39]. We report in figure 2.5 a
schematic overview of the case study, where
cloud nodes and mid-tier controllers (represented by the element labeled “JIoT
orchestration” in figure 2.5) are programmed in JIoT and orchestrate the
behavior of a number of heterogeneous Things, whose low-level programming
is omitted here:

• Philips Hue Hub — a hub to control the Philips Hue smart home devices;

• Two Philips Hue Lamps — connected to the hub above;

• Samsung SmartThings Hub — a hub to control devices following the
SmartThings specification [117];

• Samsung SmartThings Motion Sensor — connected to the hub above
and used as a presence sensor;

• Arduino Uno — a general-purpose microcontroller;

• Adafruit GA1A12S202 Analog Light Sensor — connected to the Arduino
above;

• Adafruit DHT22 Temperature Sensor — also connected to the Arduino
above;

• ESP8266 — a Wi-Fi enabled microcontroller to manage a pre-existing
thermostat.

The case study combines commercial solutions — e.g. the Philips Hue Hub
and the Hue Lamps system where the Hub controls the Lamps— with custom
ones — spanning from sensors directly connected to a board, as it happens
for the Adafruit DHT22 temperature sensor, to solutions that integrate a pre-
existing hardware, like the ESP8266 that manages a pre-existing thermostat.
As illustrated in figure 2.5, this heterogeneity of devices provides for a whole
scenario where we need JIoT programs that use a different application and

35

Chapter 2 Protocols Interoperability in IoT

transport protocols. In particular, in the depicted scenario, Philips and
Samsung Hubs communicate with the orchestrator over HTTP/TCP, the
Arduino over MQTT/TCP, and the ESP8266 over CoAP/UDP.

In the case study we build a simple logic providing two functionalities:
lighting and temperature system control. The lighting system turns on the
lights when the motion sensor detects someone at home and the outdoor
luminosity is below some threshold. The temperature control checks the
temperature and turns on the heating system when the temperature is below
some threshold. The latter considered threshold has different values depending
on whether someone is at home or not.

Cloud

Thing

Driver

Thing
Description

File

Thing

Thing
Description

File

Driver

Logic
Engine

Interacts Interacts

Loads

Describes

Loads

Describes

…

…

…

JIoT
 orchestration

Figure 2.6: Scheme of the orchestration in the case study.

36

2.4 Case Study

2.4.1 Structure of the orchestration

We now describe the structure of the orchestration in the case study, as
illustrated in figure 2.6. The orchestration is composed of multiple JIoT
programs. From top to bottom of figure 2.6, the LogicEngine contains the
general logic of system control — i.e. the one that collects the data from
sensors and coordinates the execution of the actuators in the system. Since
the LogicEngine, interacts with a multitude of mid-tier devices, its natural
deployment would be in the Cloud, where it is possible to automatically scale
the service — both vertically and horizontally — according to the number of
managed devices and the computation load. At the mid-tier level we have
JIoT Drivers. Each Driver interacts with a specific Thing and it is deployed
in a mid-tier machine in the proximity of the controlled Thing.

2.4.2 Thing Descriptions

In the case study, the Drivers are statically configured to manage a single
fixed device using a JSON-LD 1.1 (JSON Linkage Data) — a lightweight
Linked Data format for configuration files [21]. The choice of JSON-LD is not
mandatory, but it has the benefit of following the official W3C Web of Things
[131] definition of Thing Description (TD). By using TD in the JSON-LD
format, we aim at making our Drivers already compliant with other WoT
frameworks, simplifying future integrations with other WoT systems.

While discussing the full structure of TD is out of the scope of this chapter,
we chapter in listings 2.9 and 2.10 case studys of TDs used in our case study.
In listing 2.9 we report the TD for the DHT22 temperature sensor. For each
device the JSON-LD file specifies whether it is a sensor or an actuator (key
"type") and provides a textual description (key "description") and its name
(key "name"). Each TD provides a list of properties (key "properties") that can
be read. Each property is described by the property identifier, temperature in
our case study. The property identifier has various sub-elements describing it.
In our case study we use just key label to describe the unit of measure.

1 {
2 "type": " sensor ",
3 " description ": "Thing using JSON -LD 1.1 serialization ",
4 "name": " Adafruit DHT22 Temperature Sensor ",
5 " properties ": [
6 {
7 " temperature ": { "label": " Celsius " }
8 }
9]

37

Chapter 2 Protocols Interoperability in IoT

10 }

Listing 2.9: Adafruit DHT22 TD.

JSON-LD configuration files for MQTT and HTTP devices are similar to the
ones depicted in listing 2.9. Also, configuration files for sensors and actuators
are similar between each other. As an case study, we reported in listing 2.10
the configuration file for Philips Hue Lamps.

1 {
2 "type": " actuator ",
3 " description ": "Thing using JSON -LD 1.1 serialization ",
4 "name": " Philips Hue Lamp",
5 " actions ": {
6 " toggleLight ": {
7 " description ": "Turn on or off the lamp."
8 }
9 }

10 }

Listing 2.10: Philips Hue Lamp TD.

The main differences with respect to the previous TD (listing 2.9) are
(i) the type is now "actuator"; (ii) the key actions replaces the key properties;
(iii) the key description is used also to describe the single action.

In principle, a TD can describe multiple properties belonging to a group of
one or more Things controlled by the same Driver. For simplicity, here we
have one TD for each Thing and, correspondingly, one Driver that controls
one Thing. We also assume that each sensor provides one property.

2.4.3 System Deployment

Deployment-wise, JIoT provides a vast choice regarding the technology stack to
use between the LogicEngine and the Drivers. Moreover, since we developed
both programs in JIoT, it is easy to change their deployment, switching to
the technology stack that best suits a given scenario — e.g. HTTP, to exploit
caching, or binary formats like SODEP [89], to limit bandwidth usage. Here, we
choose to use the HTTP/TCP stack to make our system compatible with the
majority of existing third-party solutions [61]. However, different technology
stacks fit different purposes. The benefit of JIoT is that programmers can
re-use the same software components adapting their deployment to the desired
communication stacks. For case study, if our goal was to be natively compatible
with other JavaScript IoT frameworks, we could have used the JSON-RPC

38

2.4 Case Study

binary protocol; if we wanted to deploy our system as part of a Service-Oriented
Architecture [32], we could have used the SOAP protocol.

While JIoT-to-JIoT deployment is flexible, the technology supported by the
Things define the deployment towards them. Concretely, in our case study each
Driver communicates with its Thing using (one of) the protocol(s) supported
by the latter.

1 interface driverInterface {
2 RequestResponse : engineRequest
3 }
4
5 outputPort Driver {
6 Protocol : http
7 Interfaces : driverInterface
8 }
9
10 define getTemperature {
11 sum = 0 ;
12 n = 0 ;
13 for (device in devices) {
14 if(device .type == " sensor " && is_defined (device .

properties . temperature)) {
15 Driver . location = device . driverLocation ;
16 request . operationName = " getTemperature " ;
17 engineRequest @ Driver (request)(response) ;
18 sum = sum + response . deviceResponse ;
19 n++
20 }
21 } ;
22 if(n!=0) {
23 temperature = sum / n
24 }
25 }

Listing 2.11: LogicEngine Driver outputPort and getTemperature procedure.

Components Behavior

When started, a Driver service loads the TD configuration file of its Thing.
Then, it registers itself to the LogicEngine. In the registration, it sends the
information retrieved from the TD, enriched with two additional pieces of
information: the address where it is possible to contact the Thing — i.e. the
Driver location — and the identifier of the user to which the Thing belongs.
Once registered, the Driver acts as a forwarder between the LogicEngine and
the Thing.

39

Chapter 2 Protocols Interoperability in IoT

The LogicEngine runs, hypothetically, on the Cloud and manages several
sensors and actuators. More precisely, the LogicEngine has one running session
for each user (distinguished according to the user identifier), managing all
her sensors and actuators. Each session is associated with an array of devices
that can be scanned to find the location of devices with specific properties
and interact with them — e.g. at lines 10–25 of listing 2.11 the procedure
getTemperature of the LogicEngine, computing the average temperature recorded
by the sensors of one user.
Briefly, procedure getTemperature, (i) scans the devices structure (line 13)

containing all registered Drivers; (ii) selects those whose type is "sensor" and
have a property (under the sub-structure properties) named exactly temperature.
Note how Jolie tree-shaped variables ease the exploration of structured data;
in this case the one sent by the Drivers at registration time (and read from
their associated JSON-LD file); (iii) it dynamically sets (line 15) the location
of outputPort Driver (lines 5–8) to contact the selected Driver; (iv) it sets the
request operation to getTemperature (line 16); (v) it retrieves the temperature
sensed by the Thing controlled by the selected Driver, invoking it through
operation engineRequest; (vi) it aggregates the sensed temperature in variable
sum and keeps track of the number of requests in variable n (lines 18–19); and
(vii) finally, it computes the mean temperature (lines 22–24).

27 define setTemperature {
28 for (device in devices) {
29 if(device .type == " actuator " && is_defined (device .

properties . temperature)) {
30 Driver . location = device . location ;
31 request . operationName = " setTemperature " ;
32 request . deviceRequest = comfortTemperature ;
33 engineRequest @ Driver (request)(response)
34 }
35 }
36 }

Listing 2.12: LogicEngine setTemperature procedure in the orchestrator.

The procedures that calculate the mean of the sensed external luminosity
and the one to check the presence of people at home are similar to the one in
listing 2.11, except that the searched properties are light in the first case, and
motion in the second.
We report in listing 2.12 one of the procedures managing the actuators,

specifically the one used to set the temperature. The main difference with
respect to the logic in listing 2.11 is that procedure setTemperature, (i) selects
the devices whose type is "actuator" (line 29); (ii) sets the request operation to

40

2.4 Case Study

"setTemperature" (line 31) and passes the value in variable comfortTemperature

as parameter (lines 32–33).
Note that the operation called on the Driver is engineRequest both in list-

ing 2.11 and listing 2.12. This support the extension of the LogicEngine with
new procedure definitions that implement a given goal without requiring to
change the interface between the LogicEngine and the Drivers. In turn, a re-
quest with the same operationName — e.g. "setTemperature" — triggers different
behaviors in different Drivers, as each implements the specific interaction with
its associated Thing.

Any parties would register their devices one-by-one using a suitable security
scheme — e.g. basic, token, API key. One can specify the security scheme in
the JSON-LD TD. Every time a device for a new user is registered, the service
spawns a new session of the LogicEngine managing the devices owned by the
user. Thus, new users and new devices can enter the system at any time.

Cloud Deployment

We conclude this section with the description of the deployment of the Logi-
cEngine, naturally devoted to being in the Cloud. We chose to take advantage
of the state-of-the-art deployment tool Docker [60], principally, to deal with
the packaging of the service along with all of its dependencies. Via proper
configuration, Docker Swarm can automatically deploy the resulting container
(of almost 105MB) to the Amazon Web Service (AWS) EC2 instances two
managed via Docker Swarm [90]. Since the LogicEngine microservice runs on
the worker node, the manager node can balance the load of requests to the
worker. We reported in listing 2.13 the content of the Dockerfile — the entry
point for Docker image configuration — used to deploy the LogicEngine image.
We conclude this section with the description of the deployment of the

LogicEngine, naturally devoted to being in the Cloud. We chose to take advan-
tage of the state-of-the-art deployment tool Docker [79], principally, to deal
with the packaging of the service along with all of its dependencies. Via proper
configuration, Docker Swarm can automatically deploy the resulting container
(of almost 105MB) to the Amazon Web Service (AWS) EC2 instances2 man-
aged via Docker Swarm [118]. Since the LogicEngine microservice runs on the
worker node, the manager node can balance the load of requests to the worker.
We reported in listing 2.13 the content of the Dockerfile — the entry point for
Docker image configuration — used to deploy the LogicEngine image.

1 FROM openjdk :8-jdk - alpine3 .9

2A mini-cluster composed of two free-tier instances tiny flavoured.

41

Chapter 2 Protocols Interoperability in IoT

2
3 RUN java -jar jiot.jar -jh /usr/lib/jolie/ -jl /usr/bin/
4 ENV JOLIE_HOME /usr/local/lib/jolie
5
6 ADD logic_engine .ol /home /.
7 WORKDIR /home
8 RUN jolie logic_engine .ol

Listing 2.13: The Dockerfile used to deploy the LogicEngine.

At line 1 we declared the starting image for the container, which was tested
using the lightweight Linux Alpine distribution (version 3.9) for amd64 archi-
tectures, that comes with the OpenJDK Runtime Environment (version 1.8.0
update 212) pre-installed. At lines, 3–4 we install the JIoT forked interpreter
— copied in the container at runtime — and we set the environmental variable
JOLIE_HOME to point to the location of the installed interpreter. At lines 6–7
we add the source code of the LogicEngine in the home directory of the image.
Finally, at line 8, we bootstrap the execution of the LogicEngine.

2.5 Discussion

IoT advocates for multi-layered platforms, going from Cloud nodes to Edge
devices, where each layer adopts its communication standards. While this
freedom is optimal for in-layer interaction, it puzzles cross-layer integration
due to incompatibilities among protocols. Enforcing a unique communication
stack within the same IoT platform does not provide a feasible solution, as
it leads to the “IoT islands” phenomenon, where disparate platforms hardly
interact with each other.

In this chapter, we proposed a language-based approach for the integration
of disparate IoT platforms. We built our treatment on the Jolie microservice-
oriented programming language. This first result is an initial step towards a
more comprehensive solution for IoT ecosystem integration and management.
Concretely, we developed the JIoT interpreter, a Jolie fork, and implemented
the support for two of the most widely used IoT protocols. The inclusion
enables Jolie programmers to interact with the majority of present IoT devices.
Summarizing our results: (i) we included in Jolie the CoAP application
protocol, also extending the Jolie language to support the UDP transport
protocol, (ii) we added the support for the MQTT protocol and, in doing so,
(iii) , we tackled the challenging problem of mapping the renowned pattern of
request-responses (typical of HTTP and other widely used protocols) into the
publish/subscribe message pattern of MQTT. The mapping abstracts from

42

2.5 Discussion

peculiarities of MQTT and applies to others publish/subscribe protocols.
A specific language, with proper abstractions, offers a single linguistic domain

to integrate disparate low-level IoT devices and intermediate nodes (collectors,
aggregators, gateways) seamlessly. Moreover, Jolie is already successfully
used for building Cloud-based, microservice solutions [38, 78]. The Jolie
microservices-oriented approach makes the language useful also for assembling
advanced architectures for IoT — e.g. to handle real-time streaming and
processing of data from many devices. We claim that, while we propose a
dedicated language, the majority of the comparable approaches provide API
specifications. Although related to our aim, the proposals in the literature
tackle the problem of IoT integration from a framework perspective: they
provide chains of tools, each addressing a specific level of the integration stack.
Differently, we extend a language tailored explicitly for system integration and
advanced flow manipulation, Jolie, to support integration of IoT devices. The
benefit, here, is that, while solutions based on frameworks require dedicated
proficiencies on each of the included tools, Jolie programmers can directly work
at any level of the IoT stack, without the need to acquire specific knowledge on
the tools in a given framework. Lastly, in section 2.2, we pointed to SensorML
as the closest to our approach but, while some traits of SensorML are common
to our proposal, the scopes of the two languages sensibly differ. Indeed,
while Jolie is a high-level language for generic programming architectures,
SensorML only models the lowest layer of the IoT system — implementing
Thing discovery, and processing of sensor observations.

Currently, one of the significant limitations in the proposed approach is
the lack of a light-weight version of the JIoT language, to be used on low-
power IoT devices. Indeed, in this chapter, we assumed that these devices
are programmed with low-level languages since they can support only a very
constrained execution environment. Letting developers implement all the
components of an IoT network in the same language would ease not only its
implementation but also testability, deployment, and maintenance. However,
achieving such a result would require a very challenging engineering endeavour.
Despite of this effort, the industrial interest around IoT led to the spread of
board prototypes (Intel Galileo, Raspberry Pi) and consequently, attracted
big software technology providers, such as Oracle, that started to support the
development of Java software on these low-mid-tier boards with a customized
version of the JDK, namely Java Micro Edition (ME). This technology could
provide a valid compromise between the need of solutions such as JIoT to
program lower-level boards, that would be possible since JIoT interpreter runs
over JDK, and the high engineering effort to rebuild the solution from scratch.

In the future, it would be interesting to investigate the integration of more

43

Chapter 2 Protocols Interoperability in IoT

IoT transport and application protocols [36], in order to extend the usability
of the language in the IoT setting. Another exciting direction is studying how
JIoT can support the testing of IoT technologies — e.g. to test how different
protocol stacks perform over a given IoT topology. Thanks to the simplicity of
changing the combination of the used protocols, experimenters can quickly test
many configurations, also enjoying a more reliable platform to compare them.
Indeed, usually even changing one of the protocols in the configured stack
would require an almost complete rewrite of the logic of network components.
Contrarily, this change requires an update of the deployment part of programs,
leaving the logic unaffected. Furthermore, one could even implement such an
update programmatically, making the practice of repeated experimenting on
IoT networks more accessible and more standardized.

44

Chapter 3

Data Handling in IoT Systems

IoT systems present, along with great transport and application protocols
heterogeneity, an incredible variety of possible data representation formats. A
common practice in programming IoT applications is to encode data in tree-
shaped formats, such as XML and JSON, that usually need to be processed
in real-time and, in some restrictive scenarios, data must not persist in the
system above a certain threshold. While developers prefer to use a query
language to express complex data manipulations, typical execution engines
are external from the main application memory, increasing communication
overhead and application response time.
The aim of this work is to provide a solution for effective data handling in

IoT applications, addressing data formats interoperability and performance
stability, following a linguistic approach to microservice-oriented computing.
Using a query framework integrated with the application language, repre-

sents a better option for ephemeral data handling. We build on our solution,
described in chapter 2, extending the syntax with query operators to manipu-
late tree-shaped, document-oriented data structures. To accomplish a correct
implementation, we first formalise the TQuery framework, that is an instanti-
ation of MQuery, a sound variant of the MongoDB Aggregation Framework.
Then, we integrate the framework operators into the JIoT interpreter.

TQuery benefit from existing development support tools — the Jolie syntax
and type checker — and execute queries within the application memory.
Furthermore, since JIoT natively supports tree data structures and automatic
management of heterogeneous encodings, it provides a uniform way to use
the framework operators on any data format supported by the language. To
validate our approach and describe the new features of the tool, we extend
the case study presented in section 2.4 with an algorithm requesting real-time
handling and ephemerality. Using the very same example, we evaluate the
performance of our implementation, showing interesting low-response times
when compared with state-of-the-art solutions.

In conclusion, in this work we move a step towards a comprehensive solution

45

Chapter 3 Data Handling in IoT

that addresses both protocols interoperability and data handling challenges
for IoT applications programming.

3.1 Introduction

IoT applications, as all modern software systems, need to address two basic
requirements concerning data management. The first requirement is velocity,
intended here as the need for reliable performance, while the second is variety,
that relates to the concept of interoperability between different data manip-
ulation technologies [76]. Velocity concerns managing high throughput and
real-time processing of data [122]. Variety focuses on the data representation
aspects and deals with the problem of formats heterogeneity, that non-trivially
complicates some usual task related to data handling — e.g. aggregation, query,
and storage.
Recently, in addition to velocity and variety, systems pervasiveness high-

lighted the importance of ephemerality, primarily due to the introduction of
the latest international regulations [114]. It is the case of IoT application,
that involves the manipulation of data originating from, for instance, eHealth
scenarios [24] or, more in general, edge computing contexts [116]. Due to
regulations restrictions, developers have to process data in real-time without
relying on persistency.
To disambiguate the different interpretations concerning “ephemerality

handling” given in the IoT literature, we provide here a functional description1.
We denote the term ephemerality, in the context of data handling in IoT
applications, as the transient manipulation of data structures, whose life cycle
never reaches the writing on a disk, nor it involves sending the structure to a
process not controlled by the application that requested the data.
As previously stated, interest in ephemeral handling increased with the

rise of new applicative scenarios, where data persistence represents an is-
sue more than a profit. In the everyday practice, IoT developers deal with
resource-constrained and heterogeneous systems and, with external regulation
requirements that limit their decisional power on data management design,
worsening the development process effectiveness. Recently, the General Data
Protection Regulation (GDPR) [126] imposed restrictions about data provision
and persistence in IT systems. These restrictions often apply to pervasive
scenarios — e.g. smart healthcare [6] and privacy data protection [90] —
challenging developers to implement ephemeral data manipulation.

1Definitions of ephemeral data structures, tend to consider “ephemeral” just as the negation
of “persistent”.

46

3.1 Introduction

To correctly implement data manipulation in IoT context, with a general-
purpose language, in a way that the algorithm respects the intended protocol,
often reveals to be a time consuming and error-prone practice [106, 71]. De-
velopers usually take advantage of proper query languages, paired with a
(sub-system) engine that executes the queries [18]. To the best of our knowl-
edge, developers chose where to execute the engine between two approaches:

1. DBMS approach. — Using a DataBase Management System (DBMS)
that executes queries outside of the application memory [76].

2. In-memory approach. — Including a library that executes queries
within the application memory.

In practice, the DBMS approach is the most common. Since the early
days of Web [21], developers integrated back-end programming languages with
relational “Structured Query Language”s (SQL) for data manipulation and
persistence [134]. In modern software development, developers strongly rely on
the pattern of application language, joined with SQL DBMS. The latest trend2

see Relational SQL DBMSs (RDBMS) share the stage with Non-relational No-
SQL [76] DBMSs. MongoDB [85] and Apache CouchDB [4] are representative
examples of document-oriented DBMSs. Document-oriented databases natively
support tree-like nested data structures, such as XML and JSON. JSON data
format is extensively supported by the most relevant protocols in the web
service and IoT contexts — e.g. HTTP, SOAP, CoAP, and MQTT.
The management of tree-shaped data formats avoids error-prone encoding

and decoding procedures with table-based structures, as it usually happens
with RDBMSs. However, when considering ephemerality in the IoT context,
the challenges related to the DBMS approach (1) overcome its benefits, even
if we consider the NoSQL variant. In the following list, we summarized those
challenges, which we use as the background knowledge to describe our solution.

(I) Dependency. An external DBMS is an additional standalone compo-
nent that needs to be installed, deployed, and maintained. To interact
with the DBMS, the developer needs to import in the application of
specific drivers (libraries, RESTful outlets). As with any software depen-
dency, this exposes the applications to challenges of version incompati-
bility [58].

(II) Security. The companion DBMS is subject to weak security configu-
rations [12] and query injections, increasing the attack surface of the
application.

2Up to 2019.

47

Chapter 3 Data Handling in IoT

(III) Consistency. Queries to the external DBMS are typically black-box
entities — e.g. encoded as plain strings — making them opaque to
analysis tools available for the application language — e.g. type checkers
[18].

(IV) Performance. Integration bottlenecks and overheads degrade the sys-
tem performance. Bottlenecks derive from resource constraints and
slow application-DB interactions — e.g. typical database connection
pools [128] represent a potential bottleneck in the context of high data-
throughput. Also, data must be inserted in the database and eventually
deleted to ensure ephemerality. Overheads also come in the form of data
format conversions (see item (V)).

(V) Heterogeneity. The DBMS typically requires a specific data format
for communication, forcing the programmer to develop ad-hoc data
transformations to encode and decode data in transit — i.e. to insert
incoming data and returning or forwarding the result of queries. We claim
that implementing these procedures (marshalling and un-marshalling) is
cumbersome and error-prone.

On the other side, IoT developers explored less the in-memory approach (2)
that is, using a query engine running within the application memory. The lack
of interest in in-memory data management is, yet, interpretable as a historical
bond between query languages and persistent data storage3.
To conclude, we chose to address all the challenges listed above, leverag-

ing in-memory approach (2), and thus adopting a language-based solution.
Specifically, the proposed methodology addresses challenges (I) and (II) by
design. It aims at sensibly reduce the issue of challenge (III), since developers
can implement both queries and data in the application language. It tackles
by design issue related with challenge (IV), since, in our setting, there are
less resource-dependent bottlenecks and no overhead due to data insertions or
deletions, since the data disappears from the system as the handling process
terminates. It also addresses by design data heterogeneity (V).
Examples of in-memory approaches are LINQ [77, 18] and CQEngine [97].

While LINQ and CQEngine grant good performance — addressing the perfor-
mance challenge — interoperability could still be a problem. Those proposals
either assume an SQL or rely on a table-like format, which entails continu-

3In the writer opinion, the spread of in-memory approaches is, in a way, prevented, by the
high abundance of relatively static, monolithic, and highly-dependable applications still
“out there in the IT jungle”.

48

3.2 Related Work

ous, error-prone conversions between their underlying data model and the
heterogeneous formats of the incoming and outgoing data.

In conclusion, our solution proposes the adoption of JIoT, a specific program-
ming language tailored for the IoT context, that already supports standard
document-oriented formats, and thus it can effectively address interoperability
issues and relieve developers from the burden of variety.

3.2 Related Work

We differentiate among the related work with the same criterion used in
section 3.1. When it comes to select the data handling strategy, developers
can either choose a DBMS approach or an in-memory one.

Concerning the first, we review only those works that target document-based
data structures, as we do, but, in general, these NoSQL systems, can either
target documents, key/value stores, and graphs. As already stated, the DBMS
approach closest to ours is certainly the MongoDB Aggregation Framework
[57], that we extensively describe in out treatment. Similarly to MongoDB
approach is the CouchDB [4] query language — which manipulate JSON
documents through a JavaScript interface — in an external engine.
Among the others comparable DBMS approaches, we cite ArangoDB [5],

Google Big Table [17], and Apache HBase [43]. ArangoDB is a native multi-
model engine for nested structures that comes with its own query language
(the ArangoDB Query Language). Google Big Table and Apache HBase
are external engines explicitly tailored for in big data scenarios, employing
distributed computing to address scalability issues — they usually pair with
clustered operative systems such as Apache Hadoop [35].
Aside from the external engines solutions, we considered in our review six

works that, following the in-memory approach, are directly comparable with
ours. In general, these work aim to integrate in the application language
the data manipulation abstractions and enable data querying within the
application memory. The six frameworks are: the Redis [111] store system, the
Object-relation Mapping (ORM) [37], the Opaleye [31] Haskell library, LevelDB
[56], LINQ [77], and CQEngine [97].
Redis is an in-memory store system that supports string, hashes, lists,

and sets. The Object-Relation Mapping (ORM) framework, actually rely on
DBMS, as they map objects used in the application to entities in the DBMS,
to provide persistence. Similarly to ORM, the Opaleye library provides a
Domain Specific Language (DSL) that generates PostgreSQL code — a famous
RDBMS. LevelDB, inspired by Big Table, provides both on-disk and in-memory

49

Chapter 3 Data Handling in IoT

library for data manipulation in C++, Python, and Javascript. As we cited
in section 3.1, Microsoft developed the LINQ solution, which provides query
operators targeting both SQL tables and XML nested structures using .NET
query operators. Similarly, CQEngine provides a library for querying Java
collections with SQL-like operators.

3.3 Approach

Inspired by the in-memory approaches devised in section 3.1, we implemented
a framework for ephemeral data handling in microservices. The purpose of
the implementation is practical, since we need to model data manipulation
and manage data formats interoperability in IoT systems.

Our framework includes a query language and an execution engine, that can
integrate document-oriented queries into the JIoT chapter 2 interpreter — that
inherits from the Jolie programming language [89, 59]. The interpreter for the
JIoT programming language [39] and the implementation of our framework
[44] are open-source projects.

Notably, JIoT comes with a runtime environment that automatically trans-
lates incoming and outgoing data — e.g. XML, JSON, and raw — into the
native, tree-shaped data values of Jolie — the interpreter always represents
values for variables as tree data structures. By using JIoT, IoT applications
developers do not need to handle data conversion themselves, since the inter-
preter efficiently manages the runtime, that belongs to the same language they
use to program the service application logic. Essentially, by being integrated
in JIoT, our framework addresses challenge (V) by supporting data formats
interoperability by construction.

In this section, we report the formal model, called TQuery, to guide the
implementation of our JIoT framework. TQuery is inspired by MQuery [10], a
sound variant of the MongoDB Aggregation Framework [84]; the most popular
query language for NoSQL data handling.

On the one hand, we abstract away implementation details and reason for the
overall semantics of our model. We favoured a “theory-to-practice” strategy to
avoid inconsistent or counter-intuitive query behaviours. Being this one of the
significant drawbacks of the MongoDB Aggregation Framework implementation
— that, actually, lacks of a proper formalization — as highlighted in [10]. On
the other hand, we believe that formalization provides a general reference for
implementors. We kept an eye on technical development needs while focusing
on the formalism in order to balance our design choices. For instance, in the
formalization of our TQuery we chose to adopt a tree semantic rather than a

50

3.3 Approach

set one (as chosen by MQuery authors).

3.3.1 The TQuery Framework

In this section, we report the formal syntax and semantics of the TQuery
operators. We start denoting trees with the letter t, as data structures
containing two elements. First, trees contains a root value that we denote
with b, and b assumes string, integer, . . . , or null values (denoted with υ).
Second, associated with every root, trees contains a set of one-dimensional
arrays4 filled with sub-trees. Labels identify arrays, and we usually denote a
label with letter k. Formally:

t := b{ki : ai}i with a := [t1, · · · , tn]

We indicate with k(t) the extraction of the array pointed by label k in t: if
k is present in t we retrieve the related array, otherwise we return the null
array α (different from the empty array, instead denoted with []). Formally:

k(b{ki : ai}i) =

{
a if (k : a) ∈ {ki : ai}i

α otherwise

We assume the range of arrays to run from the minimum index (one) to the
maximum, that corresponds to the cardinality of a, denoted with #a, which we
also use to represent the size of the array. We indicate the extraction of the
tree t at index i in array a with the index notation a[i] (in this case a[i] = t).
In case a contains an element at index i we retrieve it, otherwise we retrieve
the null tree, denoted with τ. Formally:

a[i] =

{
ti if a = [t1, · · · , tn] ∧ 1 ≤ i ≤ n
τ otherwise

We denote a path p to express tree traversal. Paths are concatenations of
expressions, indicated with e, or the sequence termination ε5. Each expressions
e evaluates to its label k. Formally:

p := e.p | ε

The application of a path p to a tree t, written [[p]]t, retrieves an array that
contains the sub-trees reached traversing t following p. We indicate with

4Vectors, in the mathematical notation.
5In the remainder, we omit to indicate sequence termination ε when referring to paths.

51

Chapter 3 Data Handling in IoT

e ` k (we read e evaluates to k) that the evaluation of expression e in a
path p results in the label k. Paths neglect array indexes: for a given path
e.p, such that e ` k, we always apply the sub-path p to all trees pointed by
k in t. We report the array concatenation operator, denoted with ::, such
that: [t1, · · · , tn] = [t1] :: · · · :: [tn] and the associated properties. Given
two arrays a′ and a′′, the concatenation operation :: retrieves an array a of
size #a = #a′ + #a′′ where elements a[1], · · · , a[#a′] correspond point-wise to
elements a′[1], · · · , a′[#a′] and elements a[#a′ + 1], · · · , a[#a′ + #a′′] correspond
point-wise to elements a′′[1], · · · , a′′[#a′′].
Finally, we can denote [[p]]t, which either retrieves an array a of trees

t1, · · · , tn or the null array α ,in case the path is not applicable. Formally:

[[p]]t =

[[p′]]t1 :: · · · :: [[p′]]tn if p = e.p′ ∧ e ` k ∧ k(t) = [t1, · · · , tn]

[t] if p = ε

α otherwise

For completeness, we also report the structural equivalences on arrays, that
we will use in the remainder of the formalisation.

α :: α ≡ α

α :: [] ≡ [] :: α ≡ [] :: [] ≡ []

α :: a ≡ a :: α ≡ [] :: a ≡ a :: [] ≡ a

In the following, we first present the general TQuery syntax and, then, we
dedicate the remaining of the section to the semantics of each operator.

The TQuery Syntax

A query in TQuery syntax corresponds to a sequence of stages, each denoted
with the letter s, applied on an array a. We use the staging operator, denoted
with B to evaluate the left expression and pass the result as input to the right
expression. Formally:

a B s1 B · · · B sn

We report in figure 3.1 the syntax of TQuery stages — match (µ), unwind (ω),
project (π), group (γ), and lookup (λ). Besides, we complete the definitions of
the stages with the other four syntactic rules. In particular, rule two completes
the match operator, rules three and four complete the project stage, and rule
five complete the group stage. For those that remain, we already provided a
definition above (the only difference is that p, q and r denote paths too).
In particular, we list the five possible stages, and we briefly discuss their

semantic in the following.

52

3.3 Approach

s := µϕ | ωp | πΠ | γΓ:Γ′ | λq=a.r 〉 p

ϕ := true | p = a | p1 = p2 | ∃p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

Π := p | d 〉 p | p, Π | d 〉 p, Π
d := b | p | [d1, · · · , dn] | ϕ | ϕ?d1 : d2

Γ := p 〉 p′ | p 〉 p′, Γ

Figure 3.1: Syntax of TQuery.

µϕ The purpose pf the match operator is to select trees according to the
criterion ϕ. ϕ criterion is either (i) the boolean truth true, (ii) a
condition expressing the equality of the application of path p and the
array a, (iii) a condition expressing the equality of the application of
path p1 and the application of a second path p2, (iv) the existence of a
path ∃p, or (v) the standard logic connectives negation ¬, conjunction
∧, and disjunction | .

ωp The purpose of the unwind operator is to flatten an array reached through
a path p and outputs a tree for each element of the array.

πΠ The purpose of the project operator is to modify trees by projecting
away paths, renaming paths, or introducing new paths, as described
in the sequence of elements in Π, which are either a path p or a value
definition d inserted into a path p. Value definitions can be: (i) a boolean
value b (true or false), (ii) the application of a path p, (iii) an array of
value definitions, (iv) a criterion ϕ, or (v) the ternary expression which,
depending the satisfiability of criterion ϕ selects either value definition
d1 or d2.

γΓ,Γ′ The purpose of the group operator is to group trees according to a
grouping condition Γ and aggregates values of interest according to Γ′.
Both Γ and Γ′ are sequences of elements of the form p 〉 p′ where p is a
path in the input trees, and p′ a path in the output trees.

λq=a.r 〉 p The purpose of the lookup operator is to join input trees with trees
in an external array a. When we apply λ on an array a, we look for
those applications of paths q and r that are equal both in a and a′ trees,
respectively.

53

Chapter 3 Data Handling in IoT

The Match Operator µ

When applied to an array a, match µϕ returns those elements in a that satisfy
ϕ. If there is no element in a that satisfies ϕ, µϕ it retrieves the empty array
[] (different from the null array α). Below, we mark t |= ϕ (we read t satisfies
ϕ) the satisfiability of criterion ϕ by a tree t.
The application of the two paths satisfies the criterion ϕ = (p1 = p2) both

when the application to the input tree t retrieves the same array a or when
both paths do not exist in t — i.e. their application coincide on α.

The main differences with [10] regard the matching over the equality of an
array — i.e. when ϕ = (p = a). In [10], Botoeva et al. considered the equation
p = v where v can either be a literal, an array or a (JSON) object. In our
setting, instead, the equality p = a means the array equality — i.e. each tree
in the array found under path p in t must be point-wise equal to the elements
in a. Formally:

[t] :: a B µϕ =

[t] :: (a B µϕ) if t |= ϕ

a B µϕ if #a > 0
[] otherwise

t |= ϕ holds iff

ϕ = true
ϕ = (∃p) ∧ [[p]]t 6= α

ϕ = (p = a) ∧ [[p]]t = a
ϕ = (p1 = p2) ∧ t |=

(
(p1 = a) ∧ (p2 = a)

)
ϕ = (¬ϕ′) ∧ t 6|= ϕ′

ϕ = (ϕ1 ∧ ϕ2) ∧ (t |= ϕ1 ∧ t |= ϕ2)

ϕ = (ϕ1 ∨ ϕ2) ∧ (t |= ϕ1 ∨ t |= ϕ2)

The Unwind Operator ω

To report the semantics of the unwind operator ω, we introduce the unwind
expansion operator E (t, a)k (read “unwind t on a under k”). Informally E (t, a)k

retrieves an array of trees with cardinality #a where each element has the
shape of t but, element ai is the only element under label k in the i-th tree of
the resulting array. Formally, given a tree t, an array a, and a key k we denote
E (t, a)k.

E (t, a)k =

[
b
((
{ki : ai}i \ {k : k(t)}

)
∪ {k : [t′]}

)]
:: E (t, a′)k if 6

[] otherwise

54

3.3 Approach

We can now report on the unwind operator, over both a and p. The induction
over a results in the application of the unwind expansion operator E over all
elements of a. The induction over p splits p in the current key k and the
continuation p′. We use key k to retrieve the array in the current element of a
with label k that is, [[k.ε]]t (we omit ε in the formalism below since it does
not add any valuable information). We apply ω′p on this element to continue
the unwind application until we reach the termination with p = ε. Formally,
we report a B ωp:

a B ωp

E (t, [[k]]t B ωp′)

k :: a′ B ωp if p = e.p′ ∧ e ` k ∧ a = [t] :: a′

a if p = ε

[] otherwise

The Project Operator π

We start by defining the auxiliary operators we used in the definition of the
project. Auxiliary operators πp(a) and πp(t) formalise the application of a
branch-selection over a path p. Then, the auxiliary operator eval(d, t) returns
the array resulting from the evaluation of a definition d over a tree t. Finally,
we report the projection of a value (definition) d into a path p over a tree t
that is, πd 〉 p(t).
The projection π for a path p over an array a results in an array πp(a)

whose elements are the projection of the elements of a:

πp(a) = πp([t1, · · · , tn]) = [πp(t1), · · · , πp(tn)]

The projection for a path p over a tree t implements the actual semantics of
branch-selection, where, given a path e.p′, e ` k, we remove all the branches
ki in t = b{ki : ai}, keeping only k (if k ∈ {ki}) and continue to apply the
projection for the continuation p′ over the (array of) sub-trees under k in t
that is, [[k.ε]]t. Formally:

πp(t) =

υ{k : πp′([[k.ε]]t)} if 7

t if p = ε

τ otherwise

6a = [t′] :: a′ ∧ t = b{ki : ai}i
7[[p]]t 6= α ∧ p = e.p′ ∧ t = b{ki : ai}i ∧ e ` k

55

Chapter 3 Data Handling in IoT

The operator eval(d, t) evaluates the value definition d over the tree t and
returns an array containing the result of the evaluation. Formally:

eval(d, t) =

[d{ }] if d ∈ V
[t |= ϕ{ }] if d ∈ ϕ

[[d]]t if d ∈ P
eval(d, t) :: eval(d′, t) if d = [d] :: d′

eval(d′, t) if d = ϕ?dtrue : dfalse ∧ d′ = dt|=ϕ

α otherwise

The projection of a value definition d on a path p retrieves a tree where the
projection inserted, under path p, is the d evaluation over t.

πd 〉 p(t) =

υ
{

k : [πd 〉 p′(t)]
}

if p = e.p′ ∧ e ` k ∧ eval(d, t) 6= α

υ
{

k : eval(d, t)
}

if p = e.ε ∧ e ` k ∧ eval(d, t) 6= α

τ otherwise

Before formalizing the projection, we report the auxiliary operator to merge
trees, denoted with ⊕ , used to merge the result of a sequence of projections
Π. Formally:

([t] :: a) ⊕ ([t′] :: a′) = [t ⊕ t′] :: a ⊕ a′

a ⊕ [] = [] ⊕ a = a ⊕ α = α ⊕ a = a
b {ki : ai}i ⊕ b′ {k j : aj}j = τ if b 6= b′

t ⊕ τ = t
t ⊕ t′ = b{kh : kh(t) ⊕ kh(t′)}h∈I∪J if 8

To conclude, we first report the application of the projection to a tree t
(t B πΠ), which merges the results of projections Π over t into a single tree.
Second, we report the projection operator πΠ to an array a (a B πΠ), which
corresponds to the projection to all elements of a. Respectively, we formally
write:

πΠ(t) =

πp(t) ⊕ (t B πΠ′) if Π = p, Π′

πd 〉 p(t) ⊕ (t B πΠ′) if Π = d 〉 p, Π′

πp(t) if Π = p
πd 〉 p(t) if Π = d 〉 p

8t = b{ki : ai}i∈I ∧ t′ = b{kj : aj}j∈J

56

3.3 Approach

and:
a B πΠ = [t1, · · · , tn] B πΠ = [πΠ(t1), · · · , πΠ(tn)]

The Group Operator γ

The group operator, applied to an array a, is parametric for two sequences
of paths, we write q1 〉 p1, · · · , qn 〉 pn : s1 〉 r1, · · · , sm 〉 rm We call the first
sequence of paths (q 〉 p), ranged [1, n], the aggregation set, while we call the
second sequence (s 〉 r), ranged [1, m], the grouping set.

Intuitively, the γ operator first groups together the trees in a which have the
maximal number of paths s1, · · · , sm in the grouping set whose values coincide.
Then, it projects the values in s1, · · · , sm in the corresponding paths r1, · · · , rm.
Once the operation succeeds and the trees grouped, the γ operator aggregates
all the different values, avoiding duplicates, found in paths q1, · · · , qn from the
aggregation set, projecting them into the corresponding paths p1, · · · , pn.
We start the definition of the γ operator by expanding its application to

an array a. Note that, in the expansion below, on the right, we use the
series-concatenation operator :: and the set H, the element of the power set
2[1,m], to range over all possible combinations of paths in the grouping set.
Namely, the expansion corresponds to the concatenation of the resulting arrays
from the group operator, on a subset of paths in the grouping set. Formally:

γq1 〉 p1,··· ,qn 〉 pn :s1 〉 r1,··· ,sm 〉 rm B a = ::
∀H∈2[1,m]

γH
q1 〉 p1,··· ,qn 〉 pn :s1 〉 r1,··· ,sm 〉 rm

(a)

In the following definition of the expansion, we will mark {{ a }} the casting
of an array a to a set, allowing us to keep only unique elements in a and lose
their relative order. Each γH

q1 〉 p1,··· ,qn 〉 pn :s1 〉 r1,··· ,sm 〉 rm
(a) returns an array that

contains those trees in a that correspond to the grouping illustrated above.
When applied over a set H with h ∈ H, γ considers all the combinations of
values identified by paths sh in the trees present in a. In the formalization’s
condition, we use the array a′ to refer to those combinations of values. In the
definition, we impose that, for each element in a′ in a position h, there must be
at least one tree in a that has a non-null array (6= α) under path sh. Hence, for
each combination a′ of values in a, γ builds a tree that contains under paths rh
the value a′[h] (as encoded in the projection query χ and from the definition of
the operator a′[h] 〉 H, a. It also contains under paths pi, 1 ≤ i ≤ n, the array
containing all the values found under the correspondent path qi in all trees in
a that match the same combination element-path in a′ (as encoded in θi).
The grouping is valid (as encoded in ψi) only if we can match trees in a

where either we have a non-empty value for qi, there are no paths sj that

57

Chapter 3 Data Handling in IoT

are excluded in H, or for all paths considered in H, the value found under
path sh corresponds to the value in the considered combination a′[h]. If the
three previous conditions do not hold, γ returns the empty array []. We now
formalize the expansion writing:

γH
q1 〉 p1,··· ,qn 〉 pn :s1 〉 r1,··· ,sm 〉 rm

(a) =

::∀a′

[n⊕
i=1

πχ,θi
(τ)
]

if 9

[] otherwise

We conclude defining the operator a′[h] 〉 H, a, that we used to unfold the
set of aggregation paths and the related values contained in H, Formally:

a′[h] 〉 H, a =

a′[j] 〉 a[j], (a′[h] 〉 (H \ {j}), a) if |H| > 1 ∧ j ∈ H
a′[j] 〉 a[j] if |H| = 1 ∧ j ∈ H
ε otherwise

Note that, for case where γ∅
··· that is, for H = ∅, a′[h] 〉 H, a retrieves the

empty path ε, which has no effect — i.e. it projects the input tree — in the
projection πχ. Hence, the resulting tree from grouping over ∅ will just include
(and project over p1, · · · , pn) those trees in a that do not include any value
reachable by paths s1, · · · , sm.
Similarly to MongoDB implementation of the aggregation framework, we

chose to allow one to omit paths p1, · · · , pn and r1, · · · , rn in Γ : Γ′. We intend
this omission as an indication of the fact that the user wants to preserve the
structure of qi, provided that the following structural equivalence holds10:

γq1,··· ,qn :s1,··· ,sm ≡ γq1 〉 q1,··· ,qn 〉 qn :s1 〉 s1,··· ,sm 〉 sm

9

h ∈ H ∧ a′[h] ∈
{
[[sh]]

t | t ∈ {{ a }} ∧ [[sh]]
t 6= α

}
∧ χ = (a′[h] 〉 H, [r1, · · · , rn])

∧ θi = ::
∀ti

[[qi]]
ti 〉 pi ∧ ti ∈ {{ a B µψi }} ⊃ ∅

∧ ψi = ∃qi ∧ ¬
∨

j 6∈H
∃sj ∧

∧
h

((
sh = a′[h]

)
∧ ∃sh

)

10In the implementation, we store the values obtained from qis with missing pis within a
default path _id.

58

3.4 Case Study

The Lookup Operator λ

Informally, the lookup operator joins two arrays, a source a and an adjunct
a′, respect to the two source paths q and r, and to the destination path p.
When applied to an array of trees, the lookup retrieves an array where each
of its elements has, under path p, an array of trees obtained from the match
(µr=a′) in expression βi. For each element a[i] (1 ≤ i ≤ n), βi matches those
trees in a′ for which either (i) there is a path r and the array reached under
r equals the array found under [[q]]a[i] or (ii) there exist no path r that it,
its application returns the null array α, and also q does not exist in ti (
[[q]]a[i] = α). Formally:

a B λq=a′.r 〉 p = [πε,β1(a[1])] :: · · · :: [πε,βn(a[n])]

s.t.

βi = (a′ B µr=a′′) 〉 p ∧ a′′ = [[q]]a[i] ∧ 1 ≤ i ≤ n

3.4 Case Study

In this section, we present a non-trivial case study to overview the TQuery im-
plementation and its operators, by means of their JIoT programming interfaces.
Remarkably, the following case study constitutes the first concrete evaluation
of the MQuery framework [10]. Besides the framework formalisation, that we
illustrated in section 3.3, we now describe its implementation details by means
of the case study, that will help us showing the semantics of TQuery.

Our case study leverages the work did in [69], where the authors delineate a
smart thermostat algorithm. This algorithm take advantage of the behavioural
patterns of the building inhabitants to save energy, by automatically turning
off and on the HVAC system. The data handling strategy follows the principle
of “data never leave the building” in compliance with the GDPR privacy policy
[108].

The setting of the case study is the same one we used in section 2.4 that is,
an IoT application taken from a smart building automation scenario, where a
set of heterogeneous devices performs a simple distributed application logic
deployed among Cloud instances, mid-tier controllers, edge and low-level
devices. Although in section 2.4, we omitted to specify a storage system11, it
11We dit not consider a persistence strategy neither we implemented a dashboard-related

service, since we wanted it to be as general as possible, thus allowing one to easily
integrate its own data model.

59

Chapter 3 Data Handling in IoT

is common to provide, along with the logic engine, a persistence strategy, that
allows one to store the sensed data (modulo document-based conversion).
Concerning the case study — to illustrate the formal semantics of TQuery

in an ephemeral data handling scenario — we will focus on the mid-tier, edge,
and low-level entities of the network. Hence, from the framework perspective,
we do not show here the output of TQuery operators, which are reported in
their relative subsections in section 3.3. Concerning the network entities, we
consider the HVAC controller system of figure 2.5 composed by the Arduino
Uno equipped with the temperature and humidity sensors, the SmartThings
motion sensor, and the ESP8266 acting as a gateway for the external connected
and remotely configurable thermostat.

Briefly, the algorithm described in [69] could be summarized in the following.
The smart thermostat uses motion sensors records to infer when occupants are
away from or in specific rooms and turn the HVAC system on or off without
sacrificing occupant comfort. We report in listing 3.1, in a JSON-like format,
code snippets exemplifying the two kinds of data structures. Both structures
are arrays, marked [], containing tree-like elements, marked { }. At line 1,
we have a snippet presenting, for each date, an array of detected temperatures
(t) and humidities (h). At line 2 we show a snippet of the presence logs [69],
where, to each year (y) corresponds an array of monthly (M) measures, to a
month (m), an array of daily (D) logs, and to a day (d), an array of logs (L),
each representing a presence survey with its absolute UTC time (at).

1 [{ date: " 20190829 ", t: ["32",...], h: ["94",...] }, { date:
" 20190830 ", t: ["32",...], h: ["83",...] }, ...]

2 [{ y: "2019", M: [..., { m: "08", D: [{ d: "29", L: [{ at:
"0801", p: "in" }, { at: "0936", p: "out" }, ...] }, { d:
"30", L: [{ at: "0833", "out" }, ...] }, ...] }, ...]

}, ...]

Listing 3.1: Environmental and presence logs data structures.

On the data structures in listing 3.1, we define a JIoT microservice, from
where we reported the main routine in listing 3.2, which describes the handling
of the data and the workflow of the algorithm, using our implementation of
TQuery.

1 getuserPseudoID @ SmartBuilding (userData)(pseudoID);
2 credentials
3 |> getHumidityAndTemperature @ Arduino
4 |> match { date == " 20190829 " || date == " 20190830 " }
5 |> project { t in temperatures , pseudoID in user_id }
6 |> temps ;

60

3.4 Case Study

7 detectComfort @ SmartBuilding (temps)(isComfort);
8 if(! isComfort) {
9 credentials
10 |> getPresencePatterns @ SmartThingsHub
11 |> unwind { M.D.L }
12 |> project { y in year, M.m in month, M.D.d in day, M.D.L.p

in presence }
13 |> match { date == " 20190829 " && date == " 20190830 " }
14 |> group { presence by day, month , year }
15 |> project { presence , pseudoID in user_id }
16 |> lookup { user_id == temps. user_id in temps }
17 |> detectState @ SmartBuilding
18 }

Listing 3.2: Microservice implementing DetectState algorithm.

The example is detailed enough to let us illustrate all the operators in
TQuery: match, unwind, project, group, and lookup. Note that, while in listing 3.2
we hard-codes some data — e.g. strings representing dates, such as 20190829)
— for presentation purposes, we would normally use parametrised variables.

In listing 3.2, line 1 defines an outbound request (a solicit response) to an
external microservice, provided by the SmartBuilding. The service offers
functionality getUserPseudoID which, given some identifying userData (acquired
earlier), provides a pseudo-anonymized identifier — needed to treat data —
saved in variable pseudoID.
At line 2, we evaluate the content of variable credentials, which holds the

certificates that allows the service provider to access the sensors measurements
for a given user. In the routine, credentials is passed by the chaining operator at
line 3 as the input of the external call to functionality getHumidityAndTemperature.
getHumidityAndTemperature operation retrieves the environmental data, as shown
in listing 3.1 at line 1 from the Arduino of the user. At lines 3–6 (and later
at lines 10–17) we use the chaining operator |> to define a sequence of calls,
either to external services, marked by the @ operator, or to the internal TQuery
library. The |> operator takes the result of the left expression and passes it to
the right expression.

While the default syntax of operation call in JIoT is the one with the double
pair of parenthesis — e.g. at line 1 — thanks to the chaining operator |> we
can omit to specify the input of getHumidityAndTemperature (passed by the |>

at line 3) and its output (the environmental data exemplified at listing 3.1)
passed to the |> at line 4.
At line 4 we use the TQuery operator match to filter all the entries of the

environmental data, keeping only those collected in the last two days — i.e.
since 20190830. The result of the match is then passed to the project operator

61

Chapter 3 Data Handling in IoT

at line 5, which removes all nodes but the temperatures, found under t and
renamed in temperatures (this is required by the interface of functionality
detectComfort, explained below). The project also includes in its result the
pseudoID of the user, in node user_id. We finally store (line 6) the prepared
data in variable temps (since it will be used both at line 7 and 16).

At line 7, we call the external operation detectComfort to analyze the temper-
atures and check if the environment conditions, storing the result in variable
isComfort. After the analysis on the temperatures, if the temperature isComfort

retrieves true (line 8) and we stop testing, otherwise we continue for detecting
the environment state — smart thermostat algorithm in [69] identifies three
possible states for a given area, these are Active, Away, and Sleep. To be able
to assess the state, at lines 9–10, we follow the same strategy described for lines
2–3 to pass the credentials to functionality getPresencePatterns, used to collect
the presence logs of the user from the SmartThingsHub. Since the presence
logs is a nested structure, having years, months, and days super-levels, to filter
the logs relative to the last two days, we first flatten the structure through
the unwind operator applied on nodes M.D.L (line 11). For each nested node,
separated by the dot ., the unwind generates a new data structure for each
element in the array reached by that node. Concretely, the array returned
by the unwind operator at line 11 contains all the presence logs in the shape
shown in listing 3.3.

1 { [{ year: "2019", M: [{ m: "08", D: [{ d: "29", L: [{ at:
"0801", p: "in" }] }] }] }, { year: "2019", M: [{ m: "

08", D: [{ d: "29", L: [{ at: "0936", p: "out" }] }] }
] }] }

Listing 3.3: Data structure after the unwind application.

In listing 3.3 there are as many elements as there are presence logs and
the arrays under M, D. After that, L contain only one presence log. Once
flattened, at line 12 we modify the data-structure with the project operator to
simplify the subsequent chained commands by renaming the node y in year,
we move and rename the node M.m in month (bringing it at the same nesting
level of year); similarly, we move M.D.d, renaming it day, and we move M.D.L.p,
renaming it presence — M.D.L.at not included in the project, are discarded.
On the obtained structure, we filter the presence logs relative to the last two
days with the match operator at line 13. At line 14 we use the group operator
to aggregate the sessions recorded in the same day — i.e. grouping them by

day, month, and year. Finally, at line 15 we select, through the project, only
the aggregated values of presence (getting rid of day, month, and year) and we
include under node user_id the pseudoID of the user. That value is used at

62

3.4 Case Study

line 16 to join, with the lookup operator, the obtained presence logs with the
previous values of temperatures (temps). The resulting, merged data-structure
is finally passed to the SmartBuilding services by calling the functionality
detectState (line 17). In conclusion, to correctly set the thermostat on and off,
it would be sufficient to call the relative operation on the ESP8266 outputPort

(properly configured), that we omitted in the case study not being part of this
framework and already discussed in section 2.4.

3.4.1 Benchmark

As a preliminary12 result, we benchmarked the query at lines 4–5 of listing 3.2
against a comparable architecture based on MongoDB. We draw our experiment,
adapting test performed on MongoDB in an IoT setting from the literature
[136]. We programmed two microservices: TQueryService that contains the
implementation at lines 4–5 of listing 3.2; MongoDBService implements the
same logic (lines 4–5) in terms of MongoDB queries. The MongoDBService
implements this simple behaviour: (i) ensures data are in JSON format,
(ii) inserts the data in the database, (iii) sends the query (match and project)
as one instruction to the database, and (iv) deletes the inserted data to ensure
ephemerality.
To run our tests, we use five instances of the JSON data structure at line

1 of listing 3.2. Each instance cover one year of recordings, and instances
include synthetically-derived recordings at increasing sampling rate — i.e. the
first instance contains one sampling per minute (1440 samplings per day), the
second contains two samplings per minute,
We simulate bursts of requests in four subsequent batches, each with ten

concurrent calls, forty requests in total. A third microservice loads the data
and sends the ten separate requests to TQueryService and, respectively,
MongoDBService, at a time, using different available data formats (XML,
JSON, and raw). We draw our benchmarks in the figure below, reporting the
average time over the forty requests for each sampling. In TQueryService,
we start the timer before executing the first query instruction (match), and we
stop it after we obtain the result of the last (project). In MongoDBService,
we start the timer before executing the insertion in the database and stop it
after we queried and deleted the data. We run our benchmarks on a machine
equipped with a 1,7 GHz Intel Core i7 dual-core processor and 16GB RAM,
running macOS 10.15.1, Java 13, JIoT 1.2-beta, and MongoDB Community
Server 4.2.0-build.3.
12We compared and drawn our benchmarks on the solely project operator against a compa-

rable frameworks, since the remaining tests are still an ongoing chapter.

63

Chapter 3 Data Handling in IoT

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[in
 s

ec
on

ds
]

0

10

20

30

40

Number of Temperature and Humidity Samplings
[per minute]

One Two Three Four Five

2,48 2,59
6,45

4,22 5,1413,94

26,79 27,03

32,63 32,39

MongoDB TQuery

1

Figure 3.2: Benchmark results for TQuery and MongoDB.

In figure 3.2 we illustrate the benchmark results, plotting the average execution
times of the query (y axis, time indicated in seconds) for both TQuery (green
squares) and MongoDB (blue triangles), over the different requests (x axis,
labeled from one to five). In all cases, TQuery performs significantly better
than its MongoDB alternative. It is possible to indicate several factors that
justify the behaviour depicted in figure 3.2, among the many, we selected the
ones that, in our opinion, contributed the most.

• Velocity. The TQuery microservice, being implemented as an in-
memory application, presents a lower data transmissions than the antag-
onist.

• Variety. Before to send the requests to the external MongoDB engine,
the data need to be converted in JSON format, for every request except
the one that receives data directly in JSON. This pattern increases
the response time of the MongoDB microservice. On the contrary, the
TQuery microservice avoids the last conversion step, working with the
internal tree representation.

• Ephemerality. TQuery microservice does not rely on any persistence

64

3.5 Discussion

scheme; therefore it does not involve any disk writing I/O operation.
Moreover, the external database engine connection in MongoDB, not
present in the Tquery microservice, generates overheads for each of the
subsequent requests.

Notably, both the framework presents an asymptotic tendency13 — the
dotted polynomial regression lines in figure 3.2. In a test scenario that, ideally,
continues ad infinitum, we would observe a stationary behaviour of both
TQuery and MongoDB frameworks. Still, we empirically proved that the two
performance do not converge and, for a reason above described, our approach is
strongly faster than the MongoDB framework, when tested in IoT application
context.

3.5 Discussion

IoT systems present a specific challenge regarding data handling in resource-
constrained and restrictively regulated applications. In this chapter, we focus
on ephemeral data handling and contrast DBMS-based solutions compared to
integrated query engines within application memory. We indicate the issues
that make DBMS solutions unfit for ephemeral scenarios and propose a formal
model, called TQuery, to express document-based queries over tree-shaped
data structures, such as XML or JSON. TQuery instantiates MQuery [10], a
sound variant of the MongoDB Aggregation Framework [84], one of the leading
NoSQL DBMSes for document-oriented queries.

We adopt a linguistic approach, following microservice-oriented computing
principles, implementing TQuery in JIoT, the language presented in chapter 2.
JIoT offers variety-by-construction — i.e. the language runtime automatically
and efficiently handles data conversion, and all JIoT variables are trees-shaped
data structures. These factors allowed to separate input and output data-
formats from the data handling logic, hence providing programmers with a
single, consistent interface to use TQuery on any data-format supported by
JIoT. Furthermore, to evaluate both the TQuery operators formalization and
the resulting implementation, we present a non-trivial case study.
Regarding the MongoDB Aggregation Framework, we conduct a specific

comparison study, showing that our solution provides a substantial increase
in performance. When compared with other DBMS frameworks, the main
difference with our solution is the adoption of an external engine to execute
13The approximated second grade function, e.g −1.4881 ∗ x2 + 13.203 ∗ x− 3.3177 for Mon-

goDB, has the actual shape of a concave curve.

65

Chapter 3 Data Handling in IoT

queries. Indeed, we believe that this limitation of DBMS unfits for their
usage in IoT ephemeral scenarios. The same hold for ORMs and Opaleye
in-memory frameworks; since the underlying models rely on DBMSs engines,
they present the same issues of those systems. Redis and LevelDB lack support
for tree-shaped data structures, a crucial feature in the IoT context. LINQ and
CQEngine solutions do not provide automatic data-format conversion — e.g.
from JSON to tree object — as we do. The lack of conversion automatisms
require developers to include external library dependencies implementing such
behaviour or to deal with the conversion internally by adopting ad-hoc data
structures.
The main limitation of this work is the lack of an extensive comparison

with other DBMS solutions and, most of all, with more comparable in-memory
proposals — e.g. LINQ and CQEngine. Moreover, a careful evaluation of the
performance (time profiling) of the TQuery implementation would allow us to
get more useful insight concerning the framework’s speed discrepancy.

Furthermore, one can implement the support for new data formats in JIoT,
which makes them automatically available to our TQuery, or, by expanding
the set of available operators in TQuery, it would make possible to express
more complex queries.

66

Chapter 4

Deployments Integration in IoT
Systems

An IoT system is a distributed system where the deployment of software com-
ponents includes power-constrained controllers, middleware (communication)
devices, and computational nodes with a specific location in space. To properly
deploy an IoT application, each software component should run in the most
appropriate execution environment, and satisfying different constraints — e.g.
network bandwidth, location, CPU cores, and memory. This work presents
a tool, Foehn, that aims to compute the optimal configuration for an IoT
application on a given infrastructure, allowing flexibility in the definition of the
objective function. Foehn exploits the FogTorch specification language to define
both the IoT application and the infrastructure, and the ZephyrusDeclarative
Requirement Language to specify the QoS function to optimise and, if needed,
further constraints on the desired deployment. Foehn can be executed both
from the command line and as a service providing its functionality via an
API. The latter execution modality is particularly suited to integrate Foehn
in DevOps pipelines. This aims at automating the transition from package
to release phases, thus improving the effectiveness of software development
process for IoT applications.

4.1 Introduction

Modern applications are highly heterogeneous, not just technology-wise — e.g.
multi-component, polyglot, and multiprotocol — but also for being deployable
in different locations.

Finding the best location where to deploy a specific software component is
not a trivial task and developers cooperate with infrastructure management
staff to provide solutions satisfying the given requirements. These requirements
are usually related to the cost-effectiveness of the final deployment plan, i.e.
they require the total cost to be as low as possible. However, they can also be

67

Chapter 4 Deployments Integration in IoT

related to the quality of the offered service, e.g. requiring it to be above or
below a certain threshold. Finding optimal deployment plans is a combinatorial
task [112], hence the resulting complexity may be very high, in particular
when the number of locations with different features increases, as in the case of
modern IoT systems, which include components deployed in the Cloud and in
the Fog. Hence, such a task cannot be performed manually and developers and
IT staff strive for tools able to exploit configuration selection automatically.
Our solution is based on state-of-the-art SMT (Satisfiability Modulo Theories)
solvers that make the problem tractable in many practical cases [68]. In
particular, our tool, Foehn, allows one to specify the architecture of a software
to be deployed on a hybrid Cloud-Fog/Edge-Thing infrastructure as well as the
facilities and the constraints of the infrastructure itself. It also allows one to
fix a sequence of QoS measures to optimise (with a selected priority) and tries
to find an optimal deployment plan that satisfies all the constraints. More
precisely, since the problem is in general computationally infeasible [26], there
are three possible outcomes: an optimal solution is produced, the non-existence
of the solution is proved, or the SMT solver timeouts.

In order to ensure interoperability with other tools in the area, the input and
output syntaxes of Foehn are compatible with pre-existing tools. In particular,
the description of the architecture of the IoT application as well as the one of
the infrastructure are defined using the FogTorch specification language [13]
(we remark here that the deployment of IoT systems specified in FogTorch has
been also considered in [13, 14], but their approach does not aim at finding
optimal solutions). Similarly, the description of the requirements and of the
QoS measures to optimize as well as the optimal configuration produced by
Foehn follow the syntax provided by Zephyrus2 [26] (we remark that Zephyrus2
produces optimal deployment for Cloud systems, but not for IoT systems).

Foehn is written in Python 3 and it is available at [40], released under the
GNU GPL v3.0 license. The code snippets reported in this chapter are based
on version 1.0 of Foehn.

Foehn can be invoked both from the command line and as a service exposing a
REST API. This second execution modality aims at simplifying the integration
of Foehn in DevOps pipelines. Thus, Foehn contributes to a fully automated
pipeline from package to release phases, as required in modern continuous
deployment [19] and continuous delivery [54] software engineering practices, as
in the DevOps paradigm [53].

More precisely, automatic deployability planning may fit in the three distinct
phases of the software development procedure:

1. at design time, performing what-if analysis to assess application resiliency

68

4.2 Related Work

under changes of the infrastructure or to compare different application
configurations [46],

2. at coding time, selecting the most appropriate technology considering
the deployability of its dependencies, and

3. at run-time, to find possible reconfigurations to answer changes in the
infrastructure (e.g., link failures) or in the required QoS.

In the last case, Foehn can support the interaction between the developers and
IT staff of DevOps teams. Indeed, on the one hand, developers continuously
change QoS requirements, without the guarantee that the infrastructure sat-
isfies the new constraints. On the other hand, IT staff needs to update the
infrastructure and, consequently, its QoS profile, having limited information
about the possible effects on the application. Our tool enforces separation
of concerns: developers can update the description of the IoT application,
IT staff manages the description of the infrastructure, and Foehn ensures that
the two are compatible, that is deployment is possible, also indicating a target
configuration for the application, which may then be reconfigured. Dynamic
reconfiguration is however not considered in the present chapter.
The remainder of this work has the following structure. In Section 4.3 we

describe our approach and our contribution. We then put our tool at work
on a case study which extends the FogTorch one [13] in Section 4.4. We
review related work on the topic of deployment planning in the IoT context
in Section 4.2. Finally, we draw conclusions and discuss future directions in
Section 4.5.

4.2 Related Work
Nowadays, Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)
solutions usually accomplish the goal of application deployment in modern
infrastructures. The first provides a set of low-level resources forming a minimal
computing environment — e.g. to cite some IaaS commercial solution, Red
Hat CloudForms [104] with the support of the OpenStack Platform [105],
Amazon AWS [23], DigitalOcean [29], and Microsoft Azure [80]. With IaaS,
developers pack the whole software stack into VMs along with its dependencies
and execute them on provider’s locations. Exploiting the IaaS allows great
flexibility but also requires significant expertise and knowledge of both the
cloud infrastructure and the application components involved in the process
[38]. The most common solutions for the deployment of the application in the
Cloud is to rely on pre-configured VMs — e.g. Bento Boxes, Cloud Blueprints,

69

Chapter 4 Deployments Integration in IoT

and AWS CloudFormation — or to exploit configuration management tools
such as Puppet [103] or Chef [100].

PaaS level, on the other hand, provides a full development environment: de-
velopers code in a programming language supported by the framework offered
by the provider, and then automatically deployed to the Cloud. Application
in PaaSes are usually natively scalable and can exploit the elasticity of the
Cloud to accommodate more requests. However, we are not aware of PaaSes
that can guarantee the QoS-aware optimal and automatic planning for the
allocation of services in distributed infrastructures. Recently, the emerging
serverless paradigm, better known as Function as a Service (FaaS), resem-
bles the main concepts and benefit of PaaS without the effort of defining
the running environment. The service provider takes care of selecting the
most appropriate deployment architecture, selecting it with internal policies.
However, the “higher” level of automation that FaaS provides to customers
comes at the price of flexibility: in such scenario, developers have nor control
on the underlying architecture neither the available technologies — such as
the supported programming languages or storage engines.

In the attempt to enumerate the different existing approaches that propose
a strategy to select the infrastructure configuration for IoT applications we
realized that Fog and Edge computing paradigms both present a “fuzzy”
definition from the infrastructural point of view.
In the literature, Fog and Edge represent two computational models. The

first was designated as the support model for Cloud computing, bringing
computation closer to data sources. The latter is used as a generic term
indicating where computation should happen in the network — i.e. at the
endpoints of the network.

Nevertheless, to the best of our knowledge, there exists little work concerning
the infrastructural differences between the two, that is the distinction from
Edge deployment locations and Fog nodes ones. Concretely, the majority
of the presented approaches all refers to Fog infrastructures as the reference
architecture for the deployment of IoT applications. This infrastructures
comprise of both Fog nodes and Edge devices.
In our work, we draw inspiration from FogTorch[14], a software prototype

to automatically infer a set of eligible deployment plans for IoT applications.
FogTorch relies on the model defined in [13] to provide the input specifications
that feed the ad-hoc QoS-aware configuration optimizer.
Similar approaches, and thus comparable with our work, also implement

prototypes to deal with IoT applications deployment in Fog infrastructures.
In the first, Saurez et al. [112] proposed a C++ programming framework for
the Fog that provides a public interface (API) for resource discovery and QoS-

70

4.3 Approach

aware incremental deployment via containerization. In the other, Gupta et al.
[52] prototyped a simulator to evaluate resource management and scheduling
policies applicable to Fog environments concerning their impact on latency,
energy consumption and operational cost.
Several projects proposed planning solutions to deploy multi-component

applications to different Cloud IaaS or PaaS. For instance, SeaClouds [15] and
Aeolus [26] provide deployment models in Cloud infrastructure for software
components with specific functional and non-functional requirements. Li et al.
[66] proposed to use OASIS TOSCA [20] to model IoT applications in hybrid
IoT/Cloud scenarios.
Recently, [62] have linked services and networks QoS by proposing a QoS-

and connection-aware Cloud service composition approach to satisfy QoS re-
quirements in the Cloud. Nevertheless, the emerging Fog paradigm, differently
from the Cloud [62], introduces new issues, mainly due to the heterogeneous
nature of its components and the high degree of interaction with the IoT.

To conclude, we report in [83], they aims at modelling QoS profiles for IoT
hybrid infrastructures — Cloud + Edge, with Fog support. These approaches
do not implement any deployment-related tool to select the most appropriate
architecture configuration but serve the purpose of delivering a suitable model
to reason on software component requirements and infrastructure profiles. In
one of such works, Misra and Sarkar [83] aimed at evaluating Fog nodes latency
and energy consumption in IoT scenarios, as compared to traditional Cloud
scenarios.
Concerning models at networking level, several approaches proposed to

include latency and bandwidth QoS in the infrastructure profile to achieve
connectivity and coverage optimization [137, 3], improved resource exploitation
of wireless sensors networks (WSN) [25], and to estimate reliability and cost
[67].

4.3 Approach

IoT systems are deployed in hybrid infrastructures, where Cloud instances,
federated Fog nodes and user-managed Edge devices coexist. Without proper
abstractions to define system specifications, guaranteeing application deploya-
bility in highly heterogeneous architectures is a very complex task. Further-
more, finding a feasible deployment plan for a multi-component application
is an NP-hard problem [75] and, in the worst case of looking for the optimal
deployment plan it is undecidable [26]. Contrarily, Foehn automatically deals
with the exploration of the solutions space hiding the search complexity to the

71

Chapter 4 Deployments Integration in IoT

user.
To illustrate our approach with a running example, let us consider a selected

portion of the case study presented in subsection 2.4.3, where we want to inte-
grate target deployment requirements with actual deployment infrastructure,
disposing of a LogicEngine and a Driver microservices.
The goal is to check deployability of a temperature collector system and

retrieve the optimal plan (if it exists).
Following the FogTorch [13, 14] specification language, the system description

in Foehn would contain: (i) the target application description along with the
application desiderata, and (ii) the existing infrastructure description with the
architecture profile. Indeed, we believe that this separation of concerns, helps
the differentiation among developers and IT staff responsibility in deployment
design.

As an example of target application description let us consider the code in
listing 4.1. To increase readability and comply with the real Foehn specification
input, we will use JSON as the data format for the code snippets.

1 {
2 " components ": [{
3 "name": " LogicEngine ",
4 " hardware ": { "ram": 2 }
5 }, {
6 "name": " Driver ",
7 " hardware ": { "ram": 1 },
8 " things ": [{ "type": " TemperatureSensor " }]
9 }],

10 "links": [{
11 "from": " Driver ",
12 "to": " LogicEngine ",
13 " latency ": 5
14 }]
15 }

Listing 4.1: Example of Foehn Collector components description.

Listing 4.1 contains, at lines 2–9, the specification for the software components,
and at lines 10–14 the communication links. The two microservices connects
via a communication link, defined in one direction only that is, from the
Driver to the LogicEngine. The intended behaviour includes a middleware
collector which sends temperature measurements (from the controlled Thing)
to an external service for further manipulation. Notably, the only link "qos"

requirement is a requested "latency" of five (milliseconds)1.
1In listing 4.1 we deliberately omitted units — e.g. "ram" (GB) and "latency" (ms) since

72

4.3 Approach

In addition, the system description also accounts for the actual infrastructure.
As an example of such existing architecture, we report the description in
listing 4.2.

1 {
2 " infrastructure ": {
3 "nodes": {
4 "cloud": [{
5 "name": " SmallCloud ",
6 " hardware ": { "ram": 2, " ram_cost ": 2 }
7 }],
8 "fog": [
9 { "name": " SmallEdge ",
10 " hardware ": { "ram": 2, " ram_cost ": 2 } },
11 { "name": " TinyEdge ",
12 " hardware ": { "ram": 1, " ram_cost ": 2 } }
13]
14 },
15 "links": [{
16 "from": " SmallEdge ",
17 "to": " SmallCloud ",
18 " upload ": [{ "qos": { " latency ": 5 } }]
19 },
20 {
21 "from": " TinyEdge ",
22 "to": " SmallCloud ",
23 " upload ": [{ "qos": { " latency ": 60 } }]
24 }
25],
26 " things ": [{
27 "name": " SmallTemperatureSensor ",
28 "type": " TemperatureSensor ",
29 " fog_node ": " SmallEdge "
30 },
31 {
32 "name": " TinyTemperatureSensor ",
33 "type": " TemperatureSensor ",
34 " fog_node ": " TinyEdge "
35 }
36]
37 }
38 }

Listing 4.2: Example of Foehn Collector infrastructure description.

Listing 4.2 presents three main specification sections:
we neglect to check them in the Foehn model, assuming that developers are responsible
for unit representation consistency.

73

Chapter 4 Deployments Integration in IoT

1. the available nodes, stating the possible deployment locations in the
underlying infrastructure (lines 3–13) They are denoted with the term
"nodes", and they can be either of type "cloud" or of type "fog";

2. the existing connections, which describes the communication "links"

(lines 15–25), and inform about their "QoS" profile (lines 18 and 23);

3. the deployed Things, that retrieves the information concerning the user-
managed devices, the "things" (lines 26–36) that are already deployed in
the IoT system.

The depicted situation is almost self-explaining: the existing infrastructure
includes, apart from the single "cloud" instance, two possible "fog" deployment
locations, with different "QoS" profiles, and two link connections. Both of "fog"

locations provide two "things" of type "TemperatureSensor" (lines 28 and 33).
Remarkably, "things" are collected via their " type", allowing the decoupling
of the Thing from the service that controls it. This encoding is particularly
useful in case one disposes of several Things exploiting the same pattern of
interaction, and want to find the best suited among them in the application
context, acting as a Domain Name Service (DNS), as advocated, for instance,
by Sensing as a Service [101] or WoT store [113] paradigms.

In the assumption that the resulting deployment plan would strive to mini-
mize the total IoT application cost, and that it does not take into account
the QoS constraints. Here, we take advantage of the Zephyrus notation [2],
derived from the Aeolus model [26], to indicate the objective functions to
minimize. The final configuration for our example would consider to deploy
the "LogicEngine" service into the "SmallCloud" location, and the "Driver" service
into the "TinyEdge" location.
Contrarily, in a QoS-aware scenario, it is clear that the "TinyEdge" location

does not satisfy the communication links QoS requirements, namely the "

latency", and thus resulting in the deployment of the "Driver" service into the
"SmallEdge" location. Keeping in mind that the objective function to minimize
remains the same (M = C), we would indicate the QoS-aware constraints
satisfiability as:

S |= P(SmallEdge,SmallCloud) ≤ R(Driver,LogicEngine)

where, P and R denotes, respectively, the QoS profile of the infrastructure and
the QoS constraints of the application (in both cases it corresponds with the
upload latency). Notably, the previous condition does not hold (S 6|= P ≤ R).
Formally:

P(TinyEdge,SmallCloud) 6≤ R(Driver,LogicEngine)

74

4.3 Approach

Similarly to objective functions notation, we take inspiration from the Zephyrus
specification language to define the deployment constraints (the full grammar
is available in [1]).
In conclusion, the example depicted above highlights how, using proper

linguistic abstractions, DevOps can express, in a declarative way, the appli-
cation and the infrastructure descriptions, and non-trivial associated QoS
constraints. Moreover, we show that having a model for reasoning about
metrics minimization and deployment constraints satisfiability helps to exploit
optimal configuration planning.

4.3.1 Contribution

To provide DevOps with an effective method for the integration of different IoT
application deployments that guarantees components deployability, we used
Zephyrus [68] to support the deployment planning in the IoT context. Con-
cretely, Foehn integrates a specification language for software components and
deployment locations that are relevant in the IoT scenario. Such specifications
are communication links components, with their relative QoS requirements,
and Fog deployment locations. Remarkably, Foehn supports the new specifi-
cations with the same linguistic abstractions provided by FogTorch [13] — a
state-of-the-art tool for IoT application deployment planning.
Zephyrus does not provide a mechanism for the internal integration of

extensions but, following a microservice-oriented approach, provides an easy-
to-use REST interface. We then built a prototype, called Foehn2, that embeds
the Zephyrus functionalities and, in turn, provides a REST interface that
exposes its service.

4.3.2 The Foehn Tool

In figure 4.1 we illustrate a general overview of the approach, introducing a
refined software development procedure in the IoT context3. Each rectangle
relates to a different phase of the procedure. In principle, our approach propose
a refinement focusing at packaging time (at the center of the figure) for the
DevOps loop. This refinement consists of introducing a deployability check-in
between the packaging and the release phases. Foehn performs the check, which
results in deployment feedback. If the deployment plan exists, the feedback is
positive and it is optimal, and the response contains the plan itself. On the

2Foehn, Föhn, or Favonio is the Latin name given to the Zéphyros wind by Greeks.
3We refer to the software development procedure as the set of practices implementing the

Agile lean methodology, namely DevOps, introduced in section 4.1

75

Chapter 4 Deployments Integration in IoT

OpsDev

Monitor

Operate

Release

Verify

Create

Plan

Package

Deployability
Feedback

Figure 4.1: Refined version of the DevOps “infinite loop”.

contrary, the feedback is negative for the given specification if no deployment
plan exists. In this setting, the packaging has two possible outcomes. The
first is to obtain a deployment configuration and, in case it is positive, move
forward to the release phase; the second is to suspend the ongoing procedure
for further refinement of the software components and infrastructure definition
(the blue dotted arrow in between Package and Release rectangles). As shown

Figure 4.2: Focus of the deployability check phase.

in figure 4.2, to get a deployment feedback, Foehn needs a set of specifications
for the IoT application and infrastructure.
Now, we describe the Foehn specification language, following the example

at the beginning of this section. In the remainder of this section we use the
emphasized notation to indicate terms that are part of the Foehn model. In
contrast with the "code" notation to refer to the input specification language
(in JSON format).

76

4.3 Approach

The Application Description

Developers encode the verified software "components" ready to be released as
microservices, along with the communication "links" desiderata. We assume
a microservice-oriented architecture in this setting for secure deployment
independence and smooth integration of functional requirements [68].

Components — "components"

First, we report that a unique "name" identifies a component, which contains
in "softwares" the set of software dependency identifiers, in "hardware" the set
of hardware requirements (in the form {harware1, · · · , hardwaren}), and in
"things" the set of Thing identifiers which are controlled by this component.
"hardware" contains an arbitrary number of consumable or non-consumable
resources, each in the form "name":value.

Links — "links"

Similarly, we report that the target application communication link has the "

from" and the "to" endpoint component identifiers and a list of link requirements.
Every link requirement has the form requirement1, · · · , requirementn, and each
entry is identified by its unique name associated with its value — e.g. the
definition "latency":5 has name "latency" associated with the value 5.

The Infrastructure Description

IT staffs encode the application "infrastructure", that includes information
about available Cloud instances, Fog "nodes", existing communication "links",
and deployed "things".

Nodes — "nodes"

Both Cloud and Fog deployment locations share the same structure, are
identified by a unique "name" and contain a set of "hardware" resources where
the only difference to its application component counterpart is that each
resource, has an associated cost, denoted following the scheme "<resource_name

>_cost".

Links — "links"

Also an existing communication link is identified by the "from" and "to" endpoint
location identifiers. Upload and download QoS profiles for this link are in the
"download" and the "upload", respectively. "code" profile specification includes
the "percentage" and the set of profiles in the form {pro f ile1, · · · , pro f ilen}.
The "qos" is identified by a "name" and has a value associated — e.g. "latency":5.

77

Chapter 4 Deployments Integration in IoT

The percentage associated with each qos allows one to define a reliability model
for the given connection — e.g. a communication link could provide 99% of
the times the profile with latency 5, and 1% of the times the profile with
infinite latency, we would write: { "qos": { "latency":5 }, "percentage":99 },{ "

qos": { "latency":"INF" }, "percentage":1 }.

Things — "things"

The description of each deployed Thing is identified by its unique "name". It
contains the "type" of this Thing and the identifier for the controller node
"fog_node".

Optimization and Satisfiability Specification

response

request
Architecture
con!gurator

Zephyrus2 Z3 SMT solver
determines request

satis!ability, and retrieves
optimal con!guration

(if it exists).

Request
preprocessor

Target application
description encoded to

Aeolus model.

Response
postprocessor

Architecture con!guration
decoded to deployment

plan.

R
E
S
T

A
P
I

Figure 4.3: Pipeline overview of the Foehn deployment planner.

Once DevOps encoded both the application and the infrastructure description
into the Foehn specification language, they can decide either to move to the
deployment plan phase without specifying any additional information or to
define a custom objective function. In the first case of no explicit objective
function provided, Foehn will assume total IoT application cost minimization.
In the second case, Foehn allows them to express a list of objective functions
to minimize in the given order. The specification language for the arithmetic
expression that expresses the function follows the specification grammar of
Zephyrus, available in [1].

Finally, as summarized in figure 4.3 Foehn invokes Zephyrus solver instance
[2], specifically with the Z3 [91] satisfiability-modulo-theories (SMT) solver
option. To let Zephyrus interprets the input, Foehn encodes the application
description and eventually user-defined objective functions into the Zephyrus
Problem Specification Language. In case Zephyrus finds a feasible and optimal

78

4.4 Case Study

solution — i.e. it exists a deployment plan that satisfies the QoS constraints
and minimize the objective function — the deployment plan is collected.
Since Foehn adds artificial specifications in the encoding process, the response
from Zephyrus needs to be further processed to produce the final deployment
plan. In particular, fictitious deployment locations were produced to handle
communication links deployment, and we need to exclude them from the output
architecture configuration.

At this stage, the positive feedback is ready to be delivered to the final user.
Otherwise, the tool retrieves a negative response, meaning that it does not
exist a feasible deployment plan for the IoT application in the infrastructure
with the specified QoS profile.

4.4 Case Study

To exemplify our deployability check method, we consider a smart buildings
IoT application where interaction among components happens both for envi-
ronmental monitoring purpose and to trigger some actuation on the system.

Physical layer

Machine-to-machine interaction layer

User-system interaction layer

 Data storageDashboard

Gateway

Light
controller

HVAC
controller Surveillance

system

Functional: linux, mongoDB
Non-functional: 8 cores, 16GB, 160GB

Functional: linux, PHP, Data storage, Gateway
Non-functional: 1 core, 2GB, 20GB

Functional: Gateway, Thermostat
Non-functional: 1 cores, 1GB, 2GB

Functional: Gateway, Light bulb, Photocell, PIR (motion)
Non-functional: 1 cores, 1GB, 2GB

Functional: Gateway, Video camera, PIR (motion), TVOC/eCO
Non-functional: 1 cores, 4GB, 2GB

Functional: Dashboard, Data storage, HVAC, Surveillance, Light
Non-functional: 2 core, 4GB, 10GB

Thermostat: 1440 invokes/day, 2000ms, (0.1, 0.1)Mbps
Photocell: 72 invokes/day, 200ms, (0.9, 0.1)Mbps
Light bulb: 72 invokes/day, 200ms, (0.9, 0.1)Mbps
PIR (motion): 72 invokes/day, 200ms, (0.9, 0.1)Mbps
Video camera: 86400 invokes/day, 50ms, (0.1, 5)Mbps
TVOC/eCO: 1440 invokes/day, 100ms, (0.1, 0.5)Mbps

<100ms, (0.3, 1.5)Mpbs>

<16
0m

s,
(0.

5,
3.5

)M
pb

s>

<140ms, (0.4, 0.9)Mpbs>

<1
40

ms,
(0.

5,
3.5

)M
pb

s>

<
14

0m
s,

(0
.5

, 3
.5

)M
pb

s>

<140ms, (0.5, 3.5)M
pbs>

Figure 4.4: Overview of the smart building use case.

79

Chapter 4 Deployments Integration in IoT

Notably, the proposed smart building application is an extension of the
case study provided and discussed in section 2.4 and permits to take control over
specific subsystems, monitor environmental variables — such as temperature,
air quality, or luminosity and implement policies for managing potentially
dangerous situations. Main differences with the case study in section 2.4 are:

• The JIoT orchestration in figure 2.6 spreads over multiple components
depicted in figure 4.4: the LogicEngine service of figure 2.5 resides in
the Gateway component. The Driver, being it an abstraction for a
subsystem controller, it takes place in components HVAC, Surveillance,
and Light of figure 4.4.

• The deployment of the system is no longer fixed, since that is the purpose
of the current example — i.e. the LogicEngine service could be deployed
both in a Cloud or Fog node.

• The things with names ESP8266, Adafruit GA1A12S202 Analog Light
Sensor, Hue Lamp, and SmartThings Motion Sensor in described in
section 2.4 map respectively with Thermostat, Photocell, Light bulb, and
PIR (motion) of figure 4.4.

• Two more things compose the IoT system depicted in figure 4.4: a video
camera for security footage recording and a TVOC/eCO gas sensor.

Since the purpose of the example presented in this work is related but
different from the one devised in section 2.4, we illustrate the case study in a
schematic representation in figure 4.4 and describe the IoT application in the
following.

4.4.1 The Application

The case study consists of a smart building control system through a web-based
dashboard that allows to monitor and act on three subsystems controllers:
(i) the first being a heating, ventilation, and air conditioning (HVAC) controller,
(ii) the second being a smart lighting controller hub, and (iii) the third being
a surveillance monitoring subsystem.
The logic of the application spreads over the microservices (depicted as

hexagons) and the low-level devices equipped with sensors or actuators. In
figure 4.4 we identify three layers of interactions (from top to bottom): the
user-system, the machine-to-machine, and the physical. For each layer, we
present a snippet that uses the specification language to describe the IoT
application and the infrastructure. We use the JSON format notation in
compliance with the input format of Foehn.

80

4.4 Case Study

The User-System Interaction Layer

The user-system interaction layer consists of two independent microservices,
the web-based dashboard service and the data storage service. The first allows
infrastructure monitoring, data visualization through web interface running
on a web server, e.g. Apache or Nginx, while the latter implements operations
to enable data persistence through a database engine, e.g. MySQL, MongoDB
[85], or Redis [111].

1 {
2 "name": " dashboard ",
3 " software ": ["linux", "php"],
4 " hardware ": { "vm": "small" }
5 }

Listing 4.3: Dashboard component specification.

In listing 4.3 we report the dashboard software component, where the first
element in the JSON is the identifier (line 2), the second is a list of software
(line 3) prerequisites, and the third is the specification of the hardware non-
functional requirements (line 4) of this component. Concerning the hardware
virtual machine, we indicate the name of identifiers for Cloud-provided VMs,
taken from the literature [14] and listing them in table 4.1. Note that, as
we illustrate in figure 4.4, one can specify hardware capabilities as the list
of resources of the VM, e.g. for the small flavor, {"cores":1, "memory":2, "

storage":20}. The specification for the DataStorage microservice is similar.

VM Identifier Cores Memory Storage
tiny 1 1 8
small 1 2 20
medium 2 4 40
large 4 8 80
xlarge 8 16 160

Table 4.1: VMs flavors adapted from OpenStack Platform [105].

The Machine-to-Machine Interaction Layer

At this machine-to-machine middleware layer, it is possible to find a wide
range of different devices types, from gateways and brokers to data centres and
embedded servers, reaching the edge most level of unplugged personal devices

81

Chapter 4 Deployments Integration in IoT

and microcomputers. The general goal for this entity is to (i) perform local
processing of data when in a proximity network with sensors or actuators — e.g.
measurements aggregation or filtering, and (ii) enable cross- and inter-layer
communication to ensure interoperability among components.

The need for geographically exploiting data processing pushed computation
closer to sensors and actuators, raising the interest in emerging Fog and Edge
computing paradigms. Recently, Ferrández Pastor et al. [33] proposed to use
the Edge and Fog deployed in IoT technologies with two main aims:

1. To ease the integration of interoperable services in automated and non-
automated buildings (providing integration).

2. To allow the distribution of smart services between all of the building’s
subsystems (enabling interoperability).

Similarly to the dashboard component, the definition of a middleware
contains an identifier, a list of software prerequisites, and a specification of
hardware requirements. Moreover, we introduce a new field indicating the
list of connected low-level devices — sensors and actuators — that interact
with this component. Coherently, in listing 4.4 we show the HVAC component
specification and the list of things identifiers (at line 5).

1 {
2 "name": " hvac_controller ",
3 " hardware ": { "cores": 1, "ram": 1, " storage ": 10 },
4 " things ": [" thermostat "]
5 }

Listing 4.4: Application HVAC component specification.

The Physical Layer

Finally, the physical layer consists of software components statically deployed
on power-constrained devices with communication capabilities — i.e. micro-
controllers equipped with sensors and actuators able to connect to a proximity
network.
In our case study, we selected six different things exploiting both sensing

and actuation functionalities. We present them below, grouped in three blocks,
that represent the subsystem they belong (as shown in figure 4.4).

1. The thermostat, as many commercial solutions for home automation,
e.g. the Google Nest Thermostat or Netatmo, consists of a thermostat
equipped with temperature and humidity sensors and an actuator to
control the HVAC system.

82

4.4 Case Study

2. The light monitoring and control system consists of a photocell sensor, a
light bulb, and a motion sensor (PIR), such as the one used by Philips Hue
or Samsung SmartThing commercial solutions where ad-hoc configured
hubs control IP-less devices by using ZigBee or Bluetooth Low Energy
(BLE) technologies.

3. Last, the surveillance monitoring system, deployed for threats detection
and air-quality assessment, consists of a wireless connected security
camera — e.g. Nest Cam or Arlo Ultra — and a gas detector group of
sensors — e.g. Nest Protect Smoke & CO Alarm or Adafruit Air Quality
deployed on Arduino micro-controller.

Note that we selected all the commercial solutions described above according
to their ability to provide public interfaces (in the majority of cases REST-like
API) to access device state. Moreover, state-of-the-art solutions exist to
integrate this API in pre-existing heterogeneous systems and thus permitting
to build interoperable cross-platform applications [51, 72], thus allowing this
system to be easily deployable in a real-world scenario.

1 {
2 "name": " thermostat ",
3 "qos": {
4 "to": { " latency ": 2000, " bandwidth ": 0.1 },
5 "from": { " latency ": 2000, " bandwidth ": 0.1 }
6 },
7 " invokes ": 1440
8 }

Listing 4.5: Application Thermostat thing specification.

We report the thing component, the first element in the JSON is an identifier,
the second the QoS requirements for the communication link with the controller,
and the third a value representing the invocation rate for this component. In
listing 4.5 we show the JSON specification for the thermostat component that,
on the one hand, senses and actuates on temperature and humidity variables
and, on the other hand, it communicates with the HVAC controller. Between
lines 3 and 6, we specify the QoS, in this example, represented by latency
and bandwidth for the incoming communications (line 4), and the outgoing
communications (line 5). Last, we define the invocation rate per-day (line 7)
that is, the maximum number of times that the controller will contact the
thing, 1440 in one day or one time for every minute.

1 {

83

Chapter 4 Deployments Integration in IoT

2 "from": " smart_gateway ",
3 "to": " dashboard ",
4 " latency ": 140,
5 "up": 0.9,
6 "down": 0.4
7 }

Listing 4.6: Application communication link specification.

In listing 4.6 we report the link definition between the two endpoints "

smart_gateway" and "dashboard", defined at lines 2 and 3. QoS requirements are
specified at lines 4–6 and comprise the solely latency, upload, and download
bandwidth.

4.4.2 The Deployment Infrastructure

1 {
2 "name": " cloud_node ",
3 " hardware ": {
4 "cores": 2,
5 " cores_cost ": 2,
6 "ram": 4,
7 " ram_cost ": 3,
8 " storage ": 10,
9 " storage_cost ": 1

10 },
11 " software ": [["linux", 0], ["php", 0], [" mongoDB ", 45]],
12 "x": 52.195097 ,
13 "y": 3.0364791
14 }

Listing 4.7: Infrastructure Cloud node deployment location specification.

In listing 4.7 we report the node definition for a Cloud instance. Lines
3–10 indicates "hardware" capabilities for this node and relative cost models.
"software" is the list of yet provided software, and "x" and "y" indicates the
geo-spatial position of the Cloud provider.

1 {
2 "name": " fog_node ",
3 " hardware ": {
4 "cores": 2,
5 " cores_cost ": 4,
6 "ram": 4,
7 " ram_cost ": 5,
8 " storage ": 32,

84

4.4 Case Study

9 " storage_cost ": 3
10 },
11 " software ": [["linux", 0], ["php", 0], ["mysql", 15]],
12 "x": 44.497106 ,
13 "y": 11.355990
14 }

Listing 4.8: Infrastructure Fog node deployment location specification.

In listing 4.8 we report the Fog node location that, similarly to the "

cloud_node" contains information concerning supported "hardware". "software",
and spatial position.

1 {
2 "from": " fog_node ",
3 "to": " cloud_node ",
4 " download ": [
5 {
6 "qos": { " latency ": 40, " bandwidth ": 5.25 },
7 " percentage ": 0.98
8 },
9 {
10 "qos": { " latency ": "INF", " bandwidth ": 0 },
11 " percentage ": 0.02
12 }
13],
14 " upload ": [
15 {
16 "qos": { " latency ": 40, " bandwidth ": 2.25 },
17 " percentage ": 0.98
18 },
19 {
20 "qos": { " latency ": "INF", " bandwidth ": 0 },
21 " percentage ": 0.02
22 }
23]
24 }

Listing 4.9: Infrastructure communication link specification.

In listing 4.9 we report the link specification and QoS profiling of the
existing connections. Lines 4–13 and 14–23 contains respectively, the definition
"download" and "upload" QoS profiles. We highlight the practical usage of
percentage in reliability modelling (lines 7 and 11 first, lines 17 and 21 then).
In the Foehn model "percentage" must sum to 1, string value that can not be
cast to a digit counts as the infinite value (maximum representable number
depending on the architecture).

85

Chapter 4 Deployments Integration in IoT

1 {
2 "name": " thermostat ",
3 "type": " temperature_actuator ",
4 " fog_node ": " fog_node "
5 }

Listing 4.10: Infrastructure Thermostat thing specification.

In listing 4.10 we report the deployed thing specification for the "thermostat".
At line 3 it is denoted the "type" for the current thing, and at line 4 the linked
fog node specify the unique "fog_node" in charge of interacting with this thing.
4.4.3 The Optimal Deployment Plan

1 {
2 " locations ": {
3 " edge_node_2 ": {
4 "0": {
5 " surveillance_system ": 1,
6 " videocamera ": 1,
7 "tvoc": 1
8 }
9 },

10 " edge_node_1 ": {
11 "0": {
12 " light_controller ": 1,
13 " motion ": 1,
14 " light_bulb ": 1,
15 " photocell ": 1
16 }
17 },
18 " fog_node ": {
19 "0": { " hvac_controller ": 1, " thermostat ": 1 }
20 },
21 " cloud_node ": {
22 "2": { " smart_gateway ": 1 },
23 "1": { " dashboard ": 1, "linux": 1, "php": 1 },
24 "0": { "data storage ": 1, " mongodb ": 1 }
25 }
26 }
27 }

Listing 4.11: Optimal deployment plan for smart building IoT application.

In listing 4.11 we report the final optimal system configuration for the IoT
application. Foehn retrieves a JSON formatted list of deployment locations,
where selected nodes contain, with a progressive identifier, the services chosen

86

4.5 Discussion

for deployment. We note that the "gateway" is planned for deployment in one
of the cloud virtual machines, similarly to the "dashboard" and "data_storage".

4.5 Discussion

In DevOps practice, one the main challenges is to provide both developers and
IT staff of tools capable of automatizing the software development procedure.
The stress on automation is particularly important when it comes to the
release phase, immediately after the application has been packaged. Develop-
ers continuously change QoS requirements during development, without the
guarantee that the infrastructure satisfies the new constraints. On the other
hand, IT staff need to update the infrastructure and, consequently, its QoS
profile, having no clue of the possible drawbacks on the application.
To move to the actual deployment phase, both groups need to check on

the compatibility of their partial specifications. In principle, one can do that
by hand, that is, given the infrastructure QoS profile, to manually check the
software components deployability. Although this is feasible for small-size
projects, in IoT systems, our area of interest, where many components with
different functional and non-functional requirements interact among each other
exposing both teams to a time-consuming, error-prone and costly practice.
We adopt a linguistic approach to define a specification language and use

a state-of-the-art optimizer to solve the Constraint Optimization Problems
(COP). We prototype our solution into a tool for QoS-aware optimal deployment
planning of IoT applications. We called it Foehn, freely available at [40]
under the GNU GPL v3.0 license. Foehn exploits the Microservices-Oriented
Computing paradigm to provide a light-weight and easy-to-integrate tool that
exposes a REST interface.

We validate our approach and the Foehn tool trough a use case from a smart
building automation scenario. Using the proposed specification language to
describe the IoT application we can produce an optimal deployment plan.
We believe that the work most similar to ours, from which we draw in-

spiration, is FogTorch[13]. Nevertheless, differently from our tool, FogTorch
does not guarantee the optimality of the deployment plan found and considers
only the complete application running cost as the objective function for the
optimizer. Since our tool receives input containing rules expressed in the
Aeolus specification language, we can generalize the optimization process to
more complex tasks. Moreover, in case we do not retrieve any deployment
configuration, our approach guarantees that the solution is not deployable for
the given infrastructure.

Other approaches such as [112] or [52] do not model network desiderata and

87

Chapter 4 Deployments Integration in IoT

low-level devices requests. Also, they assume tree-like infrastructure topologies
are not taking into account shared resources among edge devices and Fog nodes.
Furthermore, [52] does not consider QoS requirements among the parameters
defining the set of eligible deployments.
Our approach leverages the work done in [68] for software components

deployment using the Zephyrus tool.
Zephyrus has been already used in different deployment tools [28, 47, 38, 11]

all addressing deployability in the Cloud — i.e. without considering IoT or Fog
locations — and, differently from our approach, without modelling network
links or QoS constraints between final locations.
Since Zephyrus is originated from the Aeolus model [28, 26, 27], a general

component-based system that relies on finite-state automata [16] to model
Cloud applications, the encoding of Foehn specification language into the
Zephyrus one has been straightforward.
The implementation consisted of two Python classes, one in charge of

decode/encode from the Foehn language to the Zephyrus one and the second
acting as a proxy gateway for incoming and outgoing requests.

Foehn does not integrate with Zephyrus optimizer but rather wraps it to be
able to use a customized specification language. In this sense, it would be more
natural to provide those abstractions as part of the specification language.
At the moment, tested configuration for medium-sized IoT applications took
more then thirty seconds to retrieve the architecture configuration (if existing).
This make Foehn unfits for real-time decision-making high scenarios.

Explore new solving paradigms, such as the combination of symbolic and
learning-based artificial intelligence, would raise a new exciting perspective
to both fields of research. A possible solution to the latter mentioned future
direction is the exploitation of local search algorithms to quickly retrieve a
feasible (yet non-optimal) solution.

88

Chapter 5

Conclusion

IoT systems are large-scale modern systems that advocates for multi-layered,
distributed software platforms, each adopting its protocols stack and data
formats. The development of IoT application suffers the same problem of every
large-scale distributed application. The lack of holistic approaches to software
development makes it difficult to integrate the solutions tailored explicitly for
the sub-systems. Contrarily, adopting a holistic approach, permits to deal
with solutions covering the entire development life-cycle.

Among the many integration challenges, our focus narrows to the most
IoT-related interoperability issues of systems heterogeneity handling. We
distinguish between two different phases of the software development procedure
that most suffer from the absence of tools addressing integration problems. On
the one hand, there is the need to support developers with technologies that
enable protocol- (challenge C1) and data- (challenge C2) agnostic programming.
On the other hand, there exists the urgency to provide IT staff with proper
tools to automate the deployability check of IoT applications in the existing
architecture and to test the different QoS profiles deployability (challenge C3).
Programming IoT applications involves the integration of many layers of

the communication stack, from transport to application protocols, reaching
data-format representations. Deploying IoT applications involves the strategic
selection of suitable architecture configurations in distributed, heterogeneous
infrastructures. Once again, we stressed on the necessity of a holistic approach
dealing with C1, C2, and C3 in contrast with solutions that advocates for the
adoption of tailored standards.
We addressed C1, C2, and C3 by adopting a linguistic approach based on

Service-Oriented Computing, leveraging the work done in SOAs. In particular,
to accomplish C1, we extended the syntax of an existing programming language,
Jolie, increasing its expressive power, and build the JIoT interpreter (chapter 2).
Then, after the formalization of an appropriate variant of the MongoDB
Aggregation Framework, named TQuery, we integrated the operators into the
JIoT interpreter to front C2 (chapter 3). Finally, addressing C3, we proposed

89

Chapter 5 Conclusion

a tool, named Foehn, that allows one to find the optimal deployment plan
by using a state-of-the-art configuration optimizer and thus satisfy the QoS
constraints of the IoT application while minimizing user-defined metrics, such
as the total running cost or the network inter-nodes distance (chapter 4).

In chapter 2, we presented high-level concepts for the general implementation
of interoperable IoT systems using linguistic solutions. We integrated the
CoAP and MQTT application protocols and the UDP transport protocol into
the Service-Oriented Jolie language. Doing so, we also faced the mapping of
the publish/subscribe message pattern of MQTT into the request-response
original pattern of Jolie.

In chapter 3, we implemented TQuery in JIoT, offering automatic data format
heterogeneity conversion by-construction and performance-oriented in-memory
data manipulation. These factors allow to separate input and output data
formats from the data handling logic and manage data structure within the
application memory. Hence, we provided programmers with a single, consistent
interface for data manipulation through the TQuery operators (match, unwind,
project, group, and lookup), on any data-format supported by JIoT (XML,
JSON, raw).

In chapter 4, we implemented Foehn, a tool that allows one to find the
optimal deployment plan of IoT distributed applications. When it comes
to IoT systems deployment, proper specification language abstractions are
needed to describe both the application and the infrastructure. Only thanks
to this abstractions both developers and IT staff can cooperate and produce
an appropriate releasing plan, that match QoS constraints with actual QoS
profiles. Hence, we included in our model communication links QoS constraints
specifications, geospatial information for Cloud, Fog, and Things, as well as
user-defined objective function description. We implemented all of the above
in a tool that parses the specifications given in JSON format and instantiates
a state-of-the-art SMT-based optimizer to find the final optimal QoS-aware
deployment plan of the IoT application.
In chapter 2 and chapter 3, we tackle C1 and C2 and build a specific

language, with proper abstractions, to offer a single linguistic domain to
integrate Cloud, Edge and Things computing seamlessly. While we proposed
a dedicated language, comparable approaches provide API specifications [131],
or they faced the problem from a framework perspective, thus providing chains
of tools, each addressing a specific sub-system technology [70]. Differently, we
extended a language (its expressiveness power) with the main benefit of letting
programmers directly work at any level of the IoT application stack, instead of
developing specific knowledge on the usage of a given framework. As an added
value, JIoT is a high-level, declarative language, not intended for modelling

90

a specific layer of the system but built to reason on the (service-Oriented)
architecture as a whole. We gave a notable example of such expressiveness
power for the language-based solution, in the IoT applications ephemeral data
handling scenario, where we conducted a comparison study that shows how
our solution provided a substantial increase in performance (averagely five
times faster).
In chapter 4, we tackled C3 and build a tool to provide DevOps with a

declarative IoT application description language, and an automatic tool that
can be easily integrated into existing DevOps pipelines.

In conclusion, in this dissertation, we moved a step towards a comprehensive,
holistic solution that addressed software development challenges in the IoT
context by adopting a linguistic approach.

From work done in this dissertation, it is possible to draw at least two direc-
tions in future scenarios. First, explore the consolidation of the tools proposed
in this dissertation, moving them to an advanced Technology Readiness Level
(TLR) stage, by prototyping the solutions in industrial settings, and thus
fostering the technological transfer. Finally, the last direction concerns the
augmentation of the expressive power of the proposed language-based solu-
tions. For instance, in JIoT, to investigate the integration of more transport,
application protocols, and data formats in order to extend the usability of the
language. Similarly, one could explore the further generalization of the Foehn
model, to include more complex deployment scenarios.
Without any claim to be complete in any of the above discussed matters,

we believe that the adoption of linguistic approaches, in particular, their
Service-Oriented fashion, can foster the advancement of the Internet of Things
to a new stage of a fully integrated ecosystem.

91

Bibliography

[1] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer,
and Jacopo Mauro. Zephyrus2. 2016. url: https ://bitbucket .org/
jacopomauro/zephyrus2 (visited on August 31, 2019) (cit. on pp. 75,
78).

[2] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer,
and Jacopo Mauro. “Zephyrus2: On the Fly Deployment Optimization
Using SMT and CP Technologies”. In: Dependable Software Engineering:
Theories, Tools, and Applications. Springer International Publishing,
2016, pp. 229–245 (cit. on pp. 74, 78).

[3] Ahmed B. Altamimi and Rabie A. Ramadan. “Towards internet of
things modeling: a gateway approach”. In: Complex Adaptive Systems
Modeling (2016) (cit. on p. 71).

[4] Apache Software Foundation. CouchDB. 2018. url: https://couchdb.
apache.org/ (visited on August 31, 2019) (cit. on pp. 47, 49).

[5] ArangoDB. ArangoDB. 2014. url: https://www.arangodb.com (visited
on August 31, 2019) (cit. on p. 49).

[6] Stephanie B. Baker, Wei Xiang, and Ian Atkinson. “Internet of Things
for Smart Healthcare: Technologies, Challenges, and Opportunities”.
In: IEEE Access 5 (2017), pp. 26521–26544 (cit. on p. 46).

[7] Andrew Banks and Rahul Gupta. MQTT Version 3.1.1. Oasis standard.
Oasis, 2014. url: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
(cit. on pp. 10, 16).

[8] The bIoTope Project. 2017. url: http://www.biotope- project .eu/
(visited on August 31, 2019) (cit. on p. 10).

[9] Carsten Bormann. CoAP website. 2016. url: http://coap.technology/
(visited on August 31, 2019) (cit. on pp. 10, 14, 16).

[10] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao.
“Expressivity and Complexity of MongoDB Queries”. In: CEUR Work-
shop Proceedings. Vol. 2161. Schloss Dagstuhl - LZI, 2018, 9:1–9:23
(cit. on pp. 50, 54, 59, 65).

93

https://bitbucket.org/jacopomauro/zephyrus2
https://bitbucket.org/jacopomauro/zephyrus2
https://couchdb.apache.org/
https://couchdb.apache.org/
https://www.arangodb.com
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
http://www.biotope-project.eu/
http://coap.technology/

Bibliography

[11] Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi,
and Gianluigi Zavattaro. “Optimal and Automated Deployment for
Microservices”. In: Lecture Notes in Computer Science. Vol. 11424 Lncs.
2019, pp. 351–368 (cit. on p. 88).

[12] Brian Krebs. Extortionists Wipe Thousands of Databases, Victims Who
Pay Up Get Stiffed. 2017. url: https://krebsonsecurity.com/2017/01/
extortionists-wipe-thousands-of-databases-victims-who-pay-up-get-
stiffed/ (visited on August 31, 2019) (cit. on p. 47).

[13] Antonio Brogi and Stefano Forti. “QoS-aware deployment of IoT ap-
plications through the fog”. In: IEEE Internet of Things Journal 4.5
(2017), pp. 1–8 (cit. on pp. 68–70, 72, 75, 87).

[14] Antonio Brogi, Stefano Forti, and Ahmad Ibrahim. “Predictive Analysis
to Support Fog Application Deployment”. In: Fog and Edge Computing:
Principles and Paradigms. 2018. Chap. 9, pp. 1–40 (cit. on pp. 68, 70,
72, 81).

[15] Antonio Brogi et al. “SeaClouds: A European Project on Seamless
Management of Multi-cloud Applications”. In: SIGSOFT Softw. Eng.
Notes (2014) (cit. on p. 71).

[16] Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi,
and Moti Yung, eds. Automata, Languages and Programming. Vol. 3580.
2. March 2005, p. 110 (cit. on p. 88).

[17] Fay Chang et al. “Bigtable: A distributed storage system for structured
data”. In: Tocs 26.2 (2008), p. 4 (cit. on p. 49).

[18] James Cheney, Sam Lindley, and Philip Wadler. “A practical theory of
language-integrated query”. In: ACM SIGPLAN Notices 48.9 (2013),
pp. 403–416 (cit. on pp. 47–48).

[19] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum.
“On the journey to continuous deployment: Technical and social chal-
lenges along the way”. In: Information and Software Technology 57.1
(January 2015), pp. 21–31 (cit. on p. 68).

[20] OASIS Committee. Topology and Orchestration Specification for Cloud
Applications (TOSCA)–Committee Specification 01. 2013. url: http:
//docs .oasis - open.org/tosca/TOSCA/v1.0/cs01/TOSCA- v1.0-
cs01.pdf (visited on August 31, 2019) (cit. on p. 71).

[21] World Wide Web Consortium et al. “JSON-LD 1.0: a JSON-based
serialization for linked data”. In: (2014) (cit. on pp. 37, 47).

94

https://krebsonsecurity.com/2017/01/extortionists-wipe-thousands-of-databases-victims-who-pay-up-get-stiffed/
https://krebsonsecurity.com/2017/01/extortionists-wipe-thousands-of-databases-victims-who-pay-up-get-stiffed/
https://krebsonsecurity.com/2017/01/extortionists-wipe-thousands-of-databases-victims-who-pay-up-get-stiffed/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

[22] Iván Corredor, Eduardo Metola, Ana M. Bernardos, Paula Tarrío, and
José R. Casar. “A lightweight web of things open platform to facilitate
context data management and personalized healthcare services creation”.
In: International Journal of Environmental Research and Public Health
11.5 (2014), pp. 4676–4713 (cit. on p. 12).

[23] Ravi Das and Preston de Guise. Amazon Web Services. April 2019.
(Visited on August 31, 2019) (cit. on p. 69).

[24] David M. Eddy. “Evidence on the Costs and Benefits of Health Infor-
mation Technology The”. In: testimony before Congress. Vol. 24. 1990
(cit. on p. 46).

[25] Hui Deng, Jiguo Yu, Dongxiao Yu, Guangshun Li, and Baogui Huang.
“Heuristic Algorithms for One-Slot Link Scheduling in Wireless Sensor
Networks under SINR”. In: International Journal of Distributed Sensor
Networks 11.3 (March 2015), p. 806520 (cit. on p. 71).

[26] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi
Zavattaro. “Aeolus: A component model for the cloud”. In: Information
and Computation 239 (December 2014), pp. 100–121 (cit. on pp. 68, 71,
74, 88).

[27] Roberto Di Cosmo et al. “Automatic application deployment in the
cloud: From practice to theory and back”. In: Leibniz International
Proceedings in Informatics, LIPIcs 42 (2015), pp. 1–16 (cit. on p. 88).

[28] Roberto Di Cosmo et al. “Automatic deployment of services in the
cloud with aeolus blender”. In: Lecture Notes in Computer Science.
Vol. 9435. 2015, p. 397 (cit. on p. 88).

[29] LLC DigitalOcean. Digital Ocean. 2019. url: https://digitalocean.com/
(visited on August 31, 2019) (cit. on p. 69).

[30] William H. Dutton, Everett M. Rogers, and Suk Ho Jun. “Diffusion and
Social Impacts of Personal Computers”. In: Communication Research
14.2 (April 1987), pp. 219–250 (cit. on p. 4).

[31] Tom Ellis. Opaleye. 2014. url: https://github.com/tomjaguarpaw/
haskell-opaleye (visited on August 31, 2019) (cit. on p. 49).

[32] Thomas Erl. SOA: Principles of Service Design. 2005, pp. 116–119
(cit. on pp. 7, 10, 39).

[33] Francisco Javier Ferrández Pastor, Higinio Mora, Antonio Jimeno More-
nilla, and Bruno Volckaert. “Deployment of IoT Edge and Fog Comput-
ing Technologies to Develop Smart Building Services”. In: Sustainability
10.11 (October 2018), p. 3832 (cit. on p. 82).

95

https://digitalocean.com/
https://github.com/tomjaguarpaw/haskell-opaleye
https://github.com/tomjaguarpaw/haskell-opaleye

Bibliography

[34] Roy T Fielding. “Architectural styles and the design of network-based
software architectures”. PhD thesis. University of California, Irvine,
2000 (cit. on p. 19).

[35] The Apache Software Foundation. Apache Hadoop. 2006. url: https:
//hadoop.apache.org (visited on August 31, 2019) (cit. on p. 49).

[36] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aled-
hari, and Moussa Ayyash. “Internet of Things: A Survey on Enabling
Technologies, Protocols, and Applications”. In: IEEE Communications
Surveys and Tutorials 17.4 (2015), pp. 2347–2376 (cit. on pp. 10, 17,
44).

[37] Mark Fussel. “Foundations of object-relational mapping”. In: ChiMu
Corporation (1997) (cit. on p. 49).

[38] Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Jacopo Mauro,
and Fabrizio Montesi. “Self-Reconfiguring microservices”. In: Lecture
Notes in Computer Science. Vol. 9660. Lecture Notes in Computer
Science. Springer, 2016, pp. 194–210 (cit. on pp. 7, 43, 69, 88).

[39] Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Stefano Pio
Zingaro. JIoT web site. 2019. url: http://www.cs.unibo.it/projects/
jolie/jiot.html (visited on August 31, 2019) (cit. on pp. 11, 35, 50).

[40] Maurizio Gabbrielli, Jacopo Mauro, and Stefano Pio Zingaro. Foehn
repository on GitHub. 2019. url: https://github.com/spaces-team/
foehn (visited on August 31, 2019) (cit. on pp. 68, 87).

[41] Maria Ganzha, Marcin Paprzycki, Wieslaw Pawlowski, Pawel Szmeja,
and Katarzyna Wasielewska. “Semantic technologies for the IoT -
An Inter-IoT perspective”. In: Proceedings of the IEEE International
Conference on Internet-of-Things Design and Implementation, IoTDI
(2016), pp. 271–276 (cit. on p. 12).

[42] Nishant Garg. Apache Kafka. Packt Publishing Ltd, 2013 (cit. on p. 10).
[43] Lars George. HBase: the definitive guide: random access to your planet-

size data. " O’Reilly Media, Inc.", 2011 (cit. on p. 49).
[44] Saverio Giallorenzo, Fabrizio Montesi, Larisa Safina, and Stefano Pio

Zingaro. TQuery GitHub repository. 2019. url: https://github.com/
jolie/tquery (visited on August 31, 2019) (cit. on p. 50).

[45] Ivan Gojmerac, Peter Reichl, Ivana Podnar Žarko, and Sergios Soursos.
“Bridging IoT islands: the symbIoTe project”. In: Elektrotechnik und
Informationstechnik 133.7 (2016), pp. 315–318 (cit. on pp. 10, 12).

96

https://hadoop.apache.org
https://hadoop.apache.org
http://www.cs.unibo.it/projects/jolie/jiot.html
http://www.cs.unibo.it/projects/jolie/jiot.html
https://github.com/spaces-team/foehn
https://github.com/spaces-team/foehn
https://github.com/jolie/tquery
https://github.com/jolie/tquery

[46] Matteo Golfarelli, Stefano Rizzi, and Andrea Proli. “Designing what-if
analysis: Towards a methodology”. In: Proceedings of the ACM Inter-
national Workshop on Data Warehousing and OLAP, DOLAP. 2006
(cit. on p. 69).

[47] Stijn de Gouw, Jacopo Mauro, Behrooz Nobakht, and Gianluigi Zavat-
taro. “Declarative elasticity in ABS”. In: Lecture Notes in Computer
Science. Vol. 9846. Springer International Publishing, 2016, pp. 118–134
(cit. on p. 88).

[48] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. “Internet of Things (IoT): A vision, architectural elements,
and future directions”. In: Future Generation Computer Systems 29.7
(September 2013), pp. 1645–1660 (cit. on pp. 6, 10).

[49] Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavat-
taro. “Dynamic Error Handling in Service Oriented Applications”. In:
Fundamenta Informaticae 95.1 (2009), pp. 73–102 (cit. on p. 33).

[50] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and
Gianluigi Zavattaro. “SOCK: A Calculus for Service Oriented Comput-
ing”. In: Lecture Notes in Computer Science. Vol. 4294 Lncs. Springer.
Springer International Publishing, 2006, pp. 327–338 (cit. on p. 33).

[51] Dominique Guinard. “A Web of Things Application Architecture -
Integrating the Real-World into the Web”. In: PhD th., ETH Zurich
19891 (2011), p. 220 (cit. on pp. 12, 18, 83).

[52] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Ra-
jkumar Buyya. “iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and
Fog computing environments”. In: Software - Practice and Experience.
2017 (cit. on pp. 71, 87–88).

[53] Dave Harrison and Knox Lively. Achieving DevOps. Apress, 2019 (cit.
on p. 68).

[54] Jez Humble and David Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley, 2010, p. 463 (cit. on p. 68).

[55] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. “MQTT-
S–A publish/subscribe protocol for Wireless Sensor Networks”. In:
Comsware. IEEE. 2008, pp. 791–798 (cit. on p. 32).

[56] Google Inc. LevelDB. 2017. url: http://leveldb.org (visited on Au-
gust 31, 2019) (cit. on p. 49).

97

http://leveldb.org

Bibliography

[57] MongoDB Inc. MongoDB. 2007. url: https://www.mongodb.com
(visited on August 31, 2019) (cit. on p. 49).

[58] Michael Jang. Linux Annoyances for Geeks: Getting the Most Flexible
System in the World Just the Way You Want It. O’Reilly Media, 2006
(cit. on p. 47).

[59] Jolie Developers Team. Jolie Website. 2018. url: https://www.jolie-
lang.org/ (visited on August 31, 2019) (cit. on p. 50).

[60] Jolie website. 2019. url: http://jolie-lang.org (visited on August 31,
2019) (cit. on p. 10).

[61] Josh Juneau. RESTful Web Services. ACM Press, 2018, pp. 613–653
(cit. on pp. 10, 38).

[62] Adrian Klein, Fuyuki Ishikawa, and Shinichi Honiden. “Towards network
aware service composition in the cloud”. In: Proceedings of the 21st
international conference on World Wide Web. New York, New York,
USA: ACM Press, 2012, p. 959 (cit. on p. 71).

[63] Ivan Lanese, Luca Bedogni, and Marco Di Felice. “Internet of things:
A process calculus approach”. In: Proceedings of the ACM Symposium
on Applied Computing. ACM Press, 2013, pp. 1339–1346 (cit. on p. 7).

[64] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In:
2008 11th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC). IEEE, May 2008,
pp. 363–369 (cit. on p. 5).

[65] Barry M Leiner et al. “A Brief History of the Internet”. In: ACM
SIGCOMM Computer Communication Review 39.5 (2009), pp. 22–31
(cit. on p. 4).

[66] Fei Li, Michael Vogler, Markus Claessens, and Schahram Dustdar.
“Towards Automated Internet of Things Application Deployment by
a Cloud-Based Approach”. In: Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications, ICSOCA.
IEEE, December 2013, pp. 61–68 (cit. on p. 71).

[67] Lixing Li, Zhi Jin, Ge Li, Liwei Zheng, and Qiang Wei. “Modeling and
Analyzing the Reliability and Cost of Service Composition in the IoT: A
Probabilistic Approach”. In: 2012 IEEE 19th International Conference
on Web Services. IEEE, June 2012, pp. 584–591 (cit. on p. 71).

98

https://www.mongodb.com
https://www.jolie-lang.org/
https://www.jolie-lang.org/
http://jolie-lang.org

[68] Debasmita Lohar, Anudeep Dunaboyina, and Dibyendu Das. Dependable
Software Engineering. Theories, Tools, and Applications. Vol. 10606.
Lecture Notes in Computer Science. Springer International Publishing,
2016, pp. 315–322 (cit. on pp. 68, 75, 77, 88).

[69] Jiakang Lu et al. “The smart thermostat”. In: Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems - SenSys ’10.
ACM Press, 2010, p. 211 (cit. on pp. 59–60, 62).

[70] Alessandro Ludovici, Anna Calveras, and Anna Calveras. “A proxy
design to leverage the interconnection of CoAP wireless sensor networks
with web applications”. In: Sensors (Switzerland) 15.1 (2015), pp. 1217–
1244 (cit. on pp. 12, 90).

[71] Meng Ma, Ping Wang, and Chao-Hsien Chu. “Data management for
internet of things: Challenges, approaches and opportunities”. In: 2013
IEEE International conference on green computing and communications
and IEEE Internet of Things and IEEE cyber, physical and social
computing. IEEE. 2013, pp. 1144–1151 (cit. on p. 47).

[72] Tim A Majchrzak and Tor-morten Grønli Eds. Towards Integrated
Web, Mobile, and IoT Technology. Vol. 347. Lecture Notes in Business
Information Processing. Springer International Publishing, 2019 (cit. on
pp. 6, 83).

[73] Norman Maurer. The Netty project. 2003. url: https://netty.io (visited
on August 31, 2019) (cit. on p. 31).

[74] Norman Maurer and Marvin Wolfthal. Netty in Action. Manning Pub-
lications, 2016 (cit. on pp. 32, 34).

[75] Jacopo Mauro and Gianluigi Zavattaro. “On the Complexity of Recon-
figuration in Systems with Legacy Components”. In: Lecture Notes in
Computer Science. 2015, pp. 382–393 (cit. on p. 71).

[76] Dinesh P Mehta and Sartaj Sahni. Handbook of data structures and
applications. Chapman and Hall/CRC, 2004 (cit. on pp. 46–47).

[77] Erik Meijer, Brian Beckman, and Gavin Bierman. “Linq: reconciling
object, relations and xml in the. net framework”. In: Sigmod. Acm.
2006, pp. 706–706 (cit. on pp. 48–49).

[78] Andrea Melis, Marco Prandini, Saverio Giallorenzo, and Franco Calle-
gati. “Insider Threats in Emerging Mobility-as-a-Service Scenarios”. In:
Proceedings of the Hawaii International Conference on System Sciences,
HICSS. AIS Electronic Library (AISeL), 2017 (cit. on p. 43).

99

https://netty.io

Bibliography

[79] Dirk Merkel. “Docker: lightweight linux containers for consistent de-
velopment and deployment”. In: Linux Journal 2014.239 (2014), p. 2
(cit. on p. 41).

[80] Microsoft. Microsoft Azure. 2019. url: https://azure.microsoft.com/
(visited on August 31, 2019) (cit. on p. 69).

[81] Milan Milenkovic. “A Case for Interoperable IoT Sensor Data and Meta-
data Formats”. In: Ubiquity 2015.November (2015), pp. 1–7 (cit. on
p. 10).

[82] E. Mingozzi, G. Tanganelli, and C. Vallati. “CoAP proxy virtualization
for the web of things”. In: Proceedings of the International Conference
on Cloud Computing Technology and Science, CloudCom. Vol. 2015-
Febru. February. IEEE Computer Society, 2015, pp. 577–582 (cit. on
p. 12).

[83] Sudip Misra and Subhadeep Sarkar. “Theoretical modelling of fog
computing: a green computing paradigm to support IoT applications”.
In: IET Networks 5.2 (2016), pp. 23–29 (cit. on p. 71).

[84] MongoDB Inc. MongoDB Aggregation Framework. 2018. url: https:
//docs.mongodb.com/manual/aggregation/ (visited on August 31,
2019) (cit. on pp. 50, 65).

[85] MongoDB Inc. MongoDB Website. 2018. url: https://www.mongodb.
com/ (visited on August 31, 2019) (cit. on pp. 47, 81).

[86] Fabrizio Montesi. “Process-aware web programming with Jolie”. In:
Science of Computer Programming. Vol. 130. ACM Press, 2016, pp. 69–
96 (cit. on pp. 10, 21).

[87] Fabrizio Montesi and Marco Carbone. “Programming services with
correlation sets”. In: Lecture Notes in Computer Science. Vol. 7084
Lncs. Springer, 2011, pp. 125–141 (cit. on p. 33).

[88] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavat-
taro. “JOLIE: a Java Orchestration Language Interpreter Engine”. In:
Electronic Notes in Theoretical Computer Science 181.1 (June 2007),
pp. 19–33 (cit. on p. 10).

[89] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. “Service-
Oriented Programming with Jolie”. In: Web Services Foundations (Sep-
tember 2014), pp. 81–107 (cit. on pp. 10, 15, 38, 50).

100

https://azure.microsoft.com/
https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/manual/aggregation/
https://www.mongodb.com/
https://www.mongodb.com/

[90] Menno Mostert, Annelien L. Bredenoord, Monique C.I.H. Biesaart, and
Johannes J.M. Van Delden. “Big Data in medical research and EU data
protection law: Challenges to the consent or anonymise approach”. In:
European Journal of Human Genetics 24.7 (2016), pp. 956–960 (cit. on
p. 46).

[91] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 4963. 2008, pp. 337–340 (cit. on p. 78).

[92] MQTT community. MQTT website. 2014. url: http://mqtt.org (visited
on August 31, 2019) (cit. on pp. 10, 16).

[93] Rouhollah Nabati and Samira Taheri. “the Internet of Things (IoT) a
Survey”. In: Turkish Online Journal of Design, Art and Communication
6.Jlyspcl (2016), pp. 725–739 (cit. on pp. 5, 10).

[94] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler.
“Everything Old is New Again: Quoted Domain-specific Languages”.
In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation. Pepm ’16. Acm, 2016, pp. 25–36
(cit. on p. 4).

[95] NCoAP A JAVA implementation of CoAP. 2018. url: https://github.
com/okleine/nCoAP (visited on August 31, 2019) (cit. on p. 33).

[96] Julie L. Newcomb, Satish Chandra, Jean Baptiste Jeannin, Cole Schle-
singer, and Manu Sridharan. “IoTa: A calculus for internet of things
automation”. In: Proceedings of the ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software, SIGPLAN. 2017, pp. 119–133 (cit. on p. 7).

[97] Niall Gallagher. CQEngine - Java Collection SQL-like Query Engine.
2018. url: https://github.com/npgall/cqengine (visited on August 31,
2019) (cit. on pp. 48–49).

[98] Eva Nieuwdorp. “The Pervasive discourse: An analysis”. In: Computers
in Entertainment 5.2 (April 2007), p. 13 (cit. on p. 5).

[99] Oasis. Web Services Business Process Execution Language. url: http:
//docs.oasis- open.org/wsbpel/2.0/wsbpel- v2.0.html (visited on
August 31, 2019) (cit. on p. 33).

[100] Opscode. Chef. 2019. url: http://www.opscode.com/chef/ (visited on
August 31, 2019) (cit. on p. 70).

101

http://mqtt.org
https://github.com/okleine/nCoAP
https://github.com/okleine/nCoAP
https://github.com/npgall/cqengine
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.opscode.com/chef/

Bibliography

[101] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. “Sensing as a Service Model for Smart Cities Supported by
Internet of Things”. In: Transactions on Emerging Telecommunications
Technologies 25.1 (July 2013), pp. 81–93 (cit. on p. 74).

[102] Jon Postel. User datagram protocol. Rfc 768. Ietf, 1980 (cit. on p. 19).
[103] Puppetlabs. Puppet. 2019. url: http://puppetlabs.com/ (visited on

August 31, 2019) (cit. on p. 70).
[104] Inc. Red Hat. Red Hat CloudForms. 2019. url: https://www.redhat.

com/en/ resources/ red - hat - cloudforms - unified -management - for -
hybrid-environments (visited on August 31, 2019) (cit. on p. 69).

[105] Inc. Red Hat. Red Hat OpenStack Platform. 2019. url: https://www.
redhat.com/en/resources/openstack-platform-datasheet (visited on
August 31, 2019) (cit. on pp. 69, 81).

[106] Roberto Reda, Filippo Piccinini, and Antonella Carbonaro. “Towards
Consistent Data Representation in the IoT Healthcare Landscape”. In:
Digital Health Conference. 2018, pp. 5–10 (cit. on p. 47).

[107] Telefonica Research and Innovation. Thinking Things. 2016. url: http:
//www.thinkingthings.telefonica.com/ (visited on August 31, 2019)
(cit. on p. 12).

[108] Nikolas Rose. “The human brain project: Social and ethical challenges”.
In: Neuron 82.6 (2014), pp. 1212–1215 (cit. on p. 59).

[109] Libelium Comunicaciones Distribuidas S.L. Meshlium. 2016. url: http:
//www.libelium.com/products/meshlium/ (visited on August 31, 2019)
(cit. on p. 12).

[110] Debashis Saha and Amitava Mukherjee. “Pervasive computing: A
paradigm for the 21st century”. In: Computer 36.3 (March 2003),
pp. 25–31+4 (cit. on p. 5).

[111] Salvatore Sanfilippo and Pieter Noordhuis. Redis. 2018. url: https:
//redis.io/ (visited on August 31, 2019) (cit. on pp. 49, 81).

[112] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachan-
dran, and Beate Ottenwälder. “Incremental deployment and migration
of geo-distributed situation awareness applications in the fog”. In:
Proceedings of the ACM International Conference on Distributed and
Event-Based Systems, DEBS. ACM Press, 2016, pp. 258–269 (cit. on
pp. 68, 70, 87).

102

http://puppetlabs.com/
https://www.redhat.com/en/resources/red-hat-cloudforms-unified-management-for-hybrid-environments
https://www.redhat.com/en/resources/red-hat-cloudforms-unified-management-for-hybrid-environments
https://www.redhat.com/en/resources/red-hat-cloudforms-unified-management-for-hybrid-environments
https://www.redhat.com/en/resources/openstack-platform-datasheet
https://www.redhat.com/en/resources/openstack-platform-datasheet
http://www.thinkingthings.telefonica.com/
http://www.thinkingthings.telefonica.com/
http://www.libelium.com/products/meshlium/
http://www.libelium.com/products/meshlium/
https://redis.io/
https://redis.io/

[113] Luca Sciullo, Cristiano Aguzzi, Marco Di Felice, and Tullio Salmon
Cinotti. “WoT Store: Enabling Things and Applications Discovery
for the W3C Web of Things”. In: 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC). IEEE, January
2019, pp. 1–8 (cit. on p. 74).

[114] Esther Shein. “Ephemeral Data”. In: Communications of the ACM 56.9
(2013), pp. 20–22 (cit. on p. 46).

[115] Z Shelby, K Hartke, and C Bormann. The Constrained Application
Protocol (CoAP). 2014. (Visited on August 31, 2019) (cit. on pp. 10,
14, 16, 19, 33).

[116] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge
Computing: Vision and Challenges”. In: IEEE Internet of Things Jour-
nal 3.5 (2016), pp. 637–646 (cit. on p. 46).

[117] Inc. SmartThings. SmartThings. 2016. url: http://www.smartthings.
com/ (visited on August 31, 2019) (cit. on pp. 12, 35).

[118] Fabrizio Soppelsa and Chanwit Kaewkasi. Native Docker Clustering
with Swarm. Packt Publishing, 2017, p. 248 (cit. on p. 41).

[119] Sergios Soursos et al. “Towards the cross-domain interoperability of IoT
platforms”. In: Proceedings of the European Conference on Networks
and Communications, EUCNC. IEEE, 2016, pp. 398–402 (cit. on p. 10).

[120] Adika Bintang Sulaeman, Fransiskus Astha Ekadiyanto, and Riri Fitri
Sari. “Performance evaluation of HTTP-CoAP proxy for wireless sensor
and actuator networks”. In: Proceedings of the IEEE Asia Pacific
Conference on Wireless and Mobile, APWiMob. IEEE, 2017, pp. 68–73
(cit. on p. 12).

[121] Andrew S Tanenbaum and Maarten Van Steen. “Distributed Systems:
Principles and Paradigms”. In: Angewandte Chemie International Edi-
tion 40.6 (March 2001), p. 9823 (cit. on p. 4).

[122] Omer Tene and Jules Polonetsky. “Big Data for All: Privacy and
User Control in the Age of Analytics”. In: Northwestern Journal of
Technology and Intellectual Property 11.5 (2013), p. 239 (cit. on p. 46).

[123] Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee Xian Tan, and
Colin Keng Yan Tan. “Performance evaluation of MQTT and CoAP
via a common middleware”. In: Proceedings of the IEEE International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing, ISSNIP. IEEE, 2014, pp. 1–6 (cit. on p. 12).

103

http://www.smartthings.com/
http://www.smartthings.com/

Bibliography

[124] The Eclipse for IoT Project. 2017. url: https://iot.eclipse.org/ (visited
on August 31, 2019) (cit. on p. 12).

[125] The SensorML Project. 2017. url: http://www.opengeospatial.org
(visited on August 31, 2019) (cit. on p. 12).

[126] Brendan Van Alsenoy. “General Data Protection Regulation”. In: Data
Protection Law in the EU: Roles, Responsibilities and Liability. Inter-
sentia, March 2019, pp. 279–324 (cit. on p. 46).

[127] Socrates Varakliotis, Peter T. Kirstein, Antonio Jara, and Antonio
Skarmeta. “A process-based Internet of Things”. In: 2014 IEEE World
Forum on Internet of Things (WF-IoT). IEEE, March 2014, pp. 73–78
(cit. on p. 7).

[128] Siva Visveswaran. Dive into connection pooling with J2EE. 2000. url:
https://www.javaworld.com/article/2076221/dive-into-connection-
pooling-with-j2ee.html (visited on August 31, 2019) (cit. on p. 48).

[129] W3c. Transport Message Exchange Pattern: Single-Request-Response.
2001. url: https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-
SRR-Transport%5C_MEP (visited on August 31, 2019) (cit. on p. 15).

[130] Zhiliang Wang, Yi Yang, Lu Wang, and Wei Wang. “A SOA based IOT
communication middleware”. In: Proceedings International Conference
on Mechatronic Science, Electric Engineering and Computer, MEC.
IEEE, August 2011, pp. 2555–2558 (cit. on p. 12).

[131] Web of Things. 2017. url: https://www.w3.org/WoT/ (visited on
August 31, 2019) (cit. on pp. 11, 37, 90).

[132] Web of Things Architecture. 2017. url: https://w3c.github.io/wot/
architecture/wot-architecture.html (visited on August 31, 2019) (cit. on
p. 11).

[133] Mark Weiser. “The Computer for the 21st Century”. In: Scientific
American 265.3 (September 1991), pp. 94–104 (cit. on p. 5).

[134] Luke Welling and Laura Thomson. PHP and MySQL Web development.
Sams Publishing, 2003 (cit. on p. 47).

[135] Lu Yan, Yan Zhang, Laurence T. Yang, and Huansheng Ning. The In-
ternet of things: from RFID to the next-generation pervasive networked
systems. Taylor & Francis, 2008, pp. 1–318 (cit. on pp. 5–6).

104

https://iot.eclipse.org/
http://www.opengeospatial.org
https://www.javaworld.com/article/2076221/dive-into-connection-pooling-with-j2ee.html
https://www.javaworld.com/article/2076221/dive-into-connection-pooling-with-j2ee.html
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport%5C_MEP
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport%5C_MEP
https://www.w3.org/WoT/
https://w3c.github.io/wot/architecture/wot-architecture.html
https://w3c.github.io/wot/architecture/wot-architecture.html

[136] Nazim Yilmaz, Oylum Alatli, Birol Ciloglugil, and Riza Cenk Erdur.
“Evaluation of storage and query performance of sensor based Internet
of Things data with MongoDB”. In: 2018 International Conference on
Artificial Intelligence and Data Processing (IDAP). IEEE, September
2018, pp. 1–6 (cit. on p. 63).

[137] Jiguo Yu, Ying Chen, and Baogui Huang. “On Connected Target k-
Coverage in Heterogeneous Wireless Sensor Networks”. In: Proceedings
of the International Conference on Identification, Information, and
Knowledge in the Internet of Things, IIKI. 2016 (cit. on p. 71).

105

	Introduction
	Background
	Research Problem
	Approach
	Outline of the Dissertation

	Protocols Interoperability in IoT
	Introduction
	Related Work
	Approach
	Contribution
	Limitations
	The JIoT Programming Language
	Implementation

	Case Study
	Structure of the orchestration
	Thing Descriptions
	System Deployment

	Discussion

	Data Handling in IoT
	Introduction
	Related Work
	Approach
	The TQuery Framework

	Case Study
	Benchmark

	Discussion

	Deployments Integration in IoT
	Introduction
	Related Work
	Approach
	Contribution
	The Foehn Tool

	Case Study
	The Application
	The Deployment Infrastructure
	The Optimal Deployment Plan

	Discussion

	Conclusion
	Bibliography

