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Abstract

Most of the human-made and physical signals have nonstationary spectra that evolve
rapidly with time. To study and characterize such signals, the classic time-domain
and frequency-domain representations are inadequate, since they do not provide joint
time and frequency information; meaning that, they are signal representations in
which the time and frequency variables are mutually exclusive. Time-frequency (TF)
signal analysis (TFSA) concerns the processing of signals with time-varying spectral
content. It allows for the construction of a signal representation in which the time and
frequency variables are not averaged with respect to each other, but rather present
together.

This doctoral thesis has two main points of focus: TFSA based on a linear TF
transform with progressive frequency-dependent resolution in the TF domain, known
in the literature as the S-transform (ST), and designing adaptive methods for instan-
taneous frequency (IF) estimation, which is a fundamental concept in TFSA with
numerous practical applications. The main original contributions are:

∙ Modifications in the existing discrete definitions for implementing and inverting
the ST to ensure exact invertibility and eliminate artifacts in the synthesized
signal (Chapter 2).

∙ Derivation of an algorithm for least-squares signal synthesis form a modified
discrete ST (Chapter 2).

∙ Formulation of a computationally efficient, fully discrete, and exactly invertible
ST with a controllable TF sampling scheme, providing frequency resolution
that can be varied and made as high as required. This transform is denoted
by the controlled converge discrete ST (CC-DST), and it is tested in various
applications using real-world data (Chapter 2).

∙ Accuracy analysis of IF estimation based on a family of linear TF transforms
that use Gaussian observation windows to localize the Fourier oscillatory kernel
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with arbitrarily defined standard deviations, and derivation of closed-form easily
interpreted expressions for the bias and the variance of the estimation error.

∙ Design of adaptive (i.e., signal-dependent) methods for IF estimation based on
linear and quadratic TF representations (Chapter 3).

The first three topics are addressed in Chapter 2, while the last two in Chapter 3.
Chapter 1 provides a brief introduction to TFSA in terms of theory and algorithms
for the general reader. In Chapter 4, we discuss briefly three promising applications
in which TFASP has been proven to bring significant improvements over conven-
tional approaches, which are: jamming suppression for the global navigation satellite
systems, automatic signal abnormality detection, and array signal processing for non-
stationary signals, in order to give the reader further perspective.

Thesis Supervisor: Giovanni Emanuele Corazza
Title: Full Professor

4



Acknowledgments

Foremost, I would like to thank my family for their unlimited support, love, and

encouragement. My sincere appreciation goes to my supervisor, Prof. Giovanni

Emanuele Corazza, for giving me the trust to keep working on my research and

explore new ideas; his patience, professional help, and the encouragement he pro-

vided greatly eased the work on this thesis. I thank Jose Garcia-Molina and Prof.

Alessandro Vanelli Coralli for facilitating my internship with the European Space

Research and Technology Center (ESTEC), The Netherlands. I am so grateful to

the University of Bologna and the European Union’s Erasmus Mundus program for

their scholarship, which made it possible for me to pursue the master’s and Ph.D.

studies here in Italy. Last but not least, I would like to thank my good friends Ali

Shbeeb, Elias Mouty, Gyimóthi László, Mohannad O. Zughayer, and Nicolas Mass-

loub for their support, generosity, and advice, which aided me to continue this work

and overcome difficult times in the last three years.

5



6



Contents

1 Introduction to time-frequency analysis 21

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Windowed Fourier transform . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Cohen’s class of TFRs . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 The Wigner distribution . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Quadratic TFRs . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.3 Cross and inner artifacts . . . . . . . . . . . . . . . . . . . . . 28

1.3.4 Role of the kernel . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.5 Generalized Wigner distribution . . . . . . . . . . . . . . . . . 32

1.4 Reassignment method . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Discrete implementation . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6 Objective assessment of TFRs . . . . . . . . . . . . . . . . . . . . . . 37

1.7 Other advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 The S-transform 41

2.1 Background theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Inverting the ST . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Discrete ST and exact inevitability . . . . . . . . . . . . . . . . . . . 45

2.3 Least-squares signal synthesis . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Information redundancy . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Controlled-coverage discrete S-transform . . . . . . . . . . . . . . . . 56

2.4.1 Limitations of the uniformly sampled ST . . . . . . . . . . . . 56

7



2.4.2 The ST as a filter bank . . . . . . . . . . . . . . . . . . . . . . 58

2.4.3 Controlled spectral partitioning scheme . . . . . . . . . . . . . 61

2.4.4 Spectral windowing . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.5 DFT-based implementation . . . . . . . . . . . . . . . . . . . 69

2.4.6 Exact reconstruction . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.7 Quality-factor and complexity . . . . . . . . . . . . . . . . . . 74

2.4.8 Application: IF estimation . . . . . . . . . . . . . . . . . . . . 78

2.4.9 Application: time-scaling audio signal . . . . . . . . . . . . . . 82

2.4.10 Application: denoising ECG signal . . . . . . . . . . . . . . . 84

2.4.11 Application: visual representation . . . . . . . . . . . . . . . . 85

3 Adaptive methods for instantaneous frequency estimation 91

3.1 Background theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1.1 Analytic signals . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1.2 Bandwidth-duration product . . . . . . . . . . . . . . . . . . . 93

3.1.3 The instantaneous frequency . . . . . . . . . . . . . . . . . . . 94

3.2 Adaptive IF estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.1 Adaptive design of TFRs . . . . . . . . . . . . . . . . . . . . . 95

3.2.2 Accuracy analysis of IF estimation based on linear TFRs . . . 97

3.2.3 Three-step method for adaptive IF estimation . . . . . . . . . 106

3.2.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 113

3.3 Adaptive IF estimation based on QTFRs . . . . . . . . . . . . . . . . 123

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.3.2 Background theory . . . . . . . . . . . . . . . . . . . . . . . . 124

3.3.3 IF estimation based on the ICI rule . . . . . . . . . . . . . . . 126

3.3.4 Motivation for the proposed approach . . . . . . . . . . . . . . 126

3.3.5 Selecting a PTFR . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3.6 Derivative approximation by the CWT . . . . . . . . . . . . . 130

3.3.7 Numerical evaluation . . . . . . . . . . . . . . . . . . . . . . . 132

3.3.8 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 133

8



4 Applications of time-frequency representations 137

4.1 Jamming mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1.2 Jamming mitigation . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Abnormalities detection . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.1 TF-based features for classifying nonstationary signals . . . . 143

4.3 Multisensor TF signal processing . . . . . . . . . . . . . . . . . . . . 144

4.3.1 Extension to multisensor TFRs . . . . . . . . . . . . . . . . . 144

5 Conclusion 147

A Proof of Lemma 1 151

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Noise properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B Proof of Lemma 2 155

B.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9



10



List of Figures

1-1 Comparison between STFT and ST of signal with two sinusoidal com-

ponents. The ST provides progressive TF resolution: the higher spec-

tral component is projected onto the TF domain with lower frequency

resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-2 Artifacts in the WD. Cross-terms are present in (a) because the signal

is composed of two linear components, and inner-terms are present in

(b) because the signal IF law in nonlinear . . . . . . . . . . . . . . . 30

1-3 Comparison between selected TFRs using a sinusoidal FM signal. . . 33

1-4 Comparison between spectrogram and reassigned spectrogram using a

sinusoidal FM signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2-1 Reconstruction errors (in absolute value) resulting from transforming a

signal to the TF domain then back-transforming it to the time domain

through different forward and backward ST algorithms. . . . . . . . . 48

2-2 Examples of TF filtering through the ST. Magnitude of STs of two test

signals in (a) and (c). Corresponding binary masks in (b) and (d). . . 54

2-3 Filter-based representation of one voice provided by the DST. �̄�𝑘0 [𝑛]

represents the utilized window up-converted by the exponential mod-

ulator exp (𝑖2𝜋𝑛𝑘0/𝑁). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2-4 Progression of the segment size 𝐿𝑐(𝜄, 𝑗0) (in logarithmic scale) as a

function of 𝜄. Increasing 𝛾 leads to faster growth in the segment size. 62

2-5 Prototype of the proposed asymmetric raised-cosine window. . . . . . 66

11



2-6 Comparison between asymmetric raised-cosine window with roll-off fac-

tor equal to 0.5, rectangular window, and truncated Gaussian window

in the frequency and the time domain. Frequency responses in (a).

Absolute values of time responses in (b). . . . . . . . . . . . . . . . . 68

2-7 Spectral coverage provided by the CC-DST with four different param-

eter settings. (a) 𝑁0 = 16, 𝛾 = 2, 𝛼 = 0 (in this case, CC-DST samples

the TF domain dyadically). (b) 𝑁0 = 16, 𝛾 = 2, 𝛼 = 0.8. (c) 𝑁0 = 16,

𝛾 = 1.3, 𝛼 = 0.8 (these values provide finer spectral decomposition

compared with previous cases). (d) 𝑁0 = 64, 𝛾 = 1.0001, 𝛼 = 0.8

(CC-DST in this case acts as STFT). . . . . . . . . . . . . . . . . . . 71

2-8 Variations of the Q-factor of the CC-DST. By reducing 𝛾, Q(𝜄) in-

creases, but, on the other hand, larger 𝛾 leads to smaller variations in

the Q-factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2-9 Comparison between efficiently sampled DSTs and the original uni-

formly sampled DST in terms of computation time. Computation

speed of FFT is added as a reference point. The largest signal pro-

cessed by original DST was of size 214 samples, due to memory limita-

tions. The CC-DST is slightly slower than the one-to-one DOST, but

both have computation speeds comparable to those of FFT and show

similar growth rate in computation time. This experiment was run on

an Intel Core i-5 platform having 6 GB RAM and MATLAB was used

for implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2-10 Comparison between several DSTs in terms of IF estimation. Figure

shows the NMSE (in dB) of the IF estimates of a sinusoidally FM signal

as a function of SNR (in dB). Starting from SNR = 5 dB, CC-DST

(𝑁0 = 64, 𝛾 = 1.1, 𝛼 = 0.8) provided the most accurate IF estimates. 77

12



2-11 IF estimation of a sinusoidally FM signal using the CC-DST with a

moving average filter of various sizes. The filter aims at reducing the

noise power in the local phase estimates. Figure shows the NMSE of

the IF estimates as a function of SNR. Results demonstrate that a filter

with a moderate smoothing length should be used. . . . . . . . . . . . 78

2-12 Performance of IF estimators based on selected DSTs. Results illus-

trate the impact of the period of sinusoidal frequency modulation, con-

trolled by the parameter 𝑇 , on the accuracy of the IF estimates. In-

creasing 𝑇 leads to shorter IF periods. Figure shows the NMSE of the

IF estimates as a function of 𝑇 at SNR = 10 dB using log-scales for

clarity. At low 𝑇 , the CC-DST (𝑁0 = 64, 𝛾 = 1.1, 𝛼 = 0.8) returns

accurate IF estimates, while at large 𝑇 , the ADSTs are superior. . . . 81

2-13 Denoising ECG signal via hard thresholding using selected DSTs. Fig-

ure shows results of RMSE with different thresholds. CC-DST (𝑁0 = 64,

𝛾 = 1.1, 𝛼 = 0.8) is the best performing non-adaptive DST. The ADST

provides better denoising performance but requires far more computa-

tion time than the CC-DST. . . . . . . . . . . . . . . . . . . . . . . . 84

2-14 Denoising ECG signal contaminated by AWGN at SNR=10 dB using

the CC-DST and hard thresholding. Noisy ECG signal (without DC

component) in (a) and the enhanced signal in (b). . . . . . . . . . . . 86

2-15 TFRs of ECG signal using the CC-DST. After interpolating the CC-

DST voices in time, the resulting matrix is interpolated in frequency to

create 𝑁 × 𝑁 TFR. Interpolation using the nearest neighbor method

in (a) and spline in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13



2-16 TFRs of a real-world bat echolocation sound signal using: (a) the

original DST, (b) ADST [1], (c) ADST [2], (d) DOST [3], (e) DST of

Brown et al. [4], (f) the CC-DST (𝑁0 = 8, 𝛾 = 1.1, 𝛼 = 0.8) with

the nearest neighbor interpolation method, and (g) the CC-DST with

spline interpolation. All the TFRs are given with the same MATLAB

colormap. The CC-DST is superior to all the non-adaptive DSTs.

Parameters of the CC-DST were selected based on visual inspection. . 88

2-17 TFRs of a synthetic signal with crossing IF components using: (a)

original DST, (b) ADST [1], (c) ADST [2], (d) DOST [3], (e) DST of

Brown et al. [4], (f) the CC-DST (𝑁0 = 16, 𝛾 = 1.15, 𝛼 = 0.8) with

the nearest neighbor interpolation method, and (g) the CC-DST with

spline interpolation algorithm. All the TFRs are given with the same

MATLAB colormap. Parameters of the CC-DST were selected based

on visual inspection. The TFRs obtained with the CC-DST feature

improved EC compared with those based on the DOST and the DST

of Brown et al.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3-1 Flowchart of procedure used to construct adaptive TFRs based on

linear TF transforms belonging to (3.17). . . . . . . . . . . . . . . . . 104

3-2 Theoretical and experimental performance of IF estimators based on

STFT and ST using FM signals belonging to three different classes. In

upper subplots, STFT with 𝜎 equal to 16, 16, 10, respectively, is used.

In the last subplots, we use ST with 𝜎(𝑓) equal to 1/(0.1 + 0.6|𝑓 |),
1/(0.1 + |𝑓 |), 1/(0.1 + |𝑓 |), respectively. . . . . . . . . . . . . . . . . . 105

14



3-3 Comparison between TFRs based on ECMs with that based on the

proposed regular rate. Analyzed signal is given in (3.51) and corrupted

by AWGN (SNR equal to 10 dB). TFRs are based on STFT the width

of its observation window is set based on (a) ECM of Stanković [5],

(b) ECM of Pei and Huang [6], and (c) proposed regular rate. TFRs

based on ECMs fail to concentrate enough energy along sinusoidal IF

component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3-4 TFRs of synthetic signal composed of two components given in (3.51)

and corrupted by AWGN (SNR equal to 12 dB). Respective parameters

of TFRs are adjusted based on visual inspection as provided in Table

3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3-5 TFRs of synthetic signal of 4 components given in (3.52) corrupted

by AWGN (SNR equal to 12 dB). Respective parameters of TFRs are

optimized based on visual inspection as provided in Table 3.1. . . . . 115

3-6 Comparison between selected TFRs in terms of the NMSE of IF esti-

mation. Figure shows the NMSE (in decibels) as function of SNR (in

decibels). We normalize both the true and estimated IFs by the sam-

pling frequency before computing the NMSE. Results of Test Signal

A in (a), and results of Test Signal B in (b). TFRs of Test Signal A

and Test Signal B are depicted in Fig. 3-4 and Fig. 3-5, respectively.

Results of the MDD with Test Signal A are not shown, because the

MDD does not resolve the sinusoidally modulated component. . . . . 117

3-7 Comparison between selected TFRs in terms of IF estimation. Ana-

lyzed signal is real-world EEG seizure signal corrupted by AWGN at

SNR equal to 15 dB. Figure shows TFRs and corresponding IF esti-

mates extracted using an algorithm based on image processing. . . . . 118

15



3-8 TFRs of real-world bat echolocation sound corrupted by AWGN (SNR

equal to 20 dB). Respective parameters of TFRs are provided in Table

3.1. Parameters of EMBD and ADTFD are adjusted based on the

results in [7], while those of the SM and the Re-Spec are based on visual

inspection. Proposed methods do not require parameter optimization

and are fully automated . . . . . . . . . . . . . . . . . . . . . . . . . 119

3-9 Variations of 𝐿1(𝜌) and 𝐿2(𝜌) (in dB). Function 𝐿2(𝜌) increases above

the stationary point at 𝜌 = 1 much slower compared with 𝐿1(𝜌). Note,

for example, 𝐿1(𝜌 = 2) is more than 5 times larger than 𝐿2(𝜌 = 2). . . 127

3-10 Example of computing the second-order derivative of a noisy sine wave-

form (SNR=15 dB). (a) Derivative computed by the conventional finite-

difference method. (b) Spectral response amplitude of the filter Θ𝑠(𝑡)

given by the second-order derivative of a Gaussian and SG second-order

differential filter (note the high side lobes of SG filter). Parameters of

the filters are set such that they have the same cutoff frequency. Deriva-

tive computed by: SG differential filter in (c), and the CWT in (d).

Most accurate result is provided by CWT. . . . . . . . . . . . . . . . 129

3-11 Flowchart of proposed method for adaptive IF estimation based on

QTFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3-12 Comparison between IF estimation methods in terms of the NMSE

using two test signals. All the considered methods are implemented

using the WD and the SM. . . . . . . . . . . . . . . . . . . . . . . . . 133

3-13 IF estimation for Signal A. Proposed method is compared with the

modified ICI-based algorithm. First and second columns from left:

SNR = 11 dB and the WD is used for TFR. Third and forth columns

from left: SNR = 0 dB and the SM is used for TFR. First row from

top: estimated IF (solid line) and true IF (red dashed line). Second

row: absolute error. Third row from top: the window width. . . . . . 134

16



3-14 IF estimation for Signal B. Proposed method is compared with the

modified ICI-based algorithm. First and second columns from left:

SNR = 11 dB and the WD is used for TFR. Third and forth columns

from left: SNR = 0 dB and the SM is used for TFR. First row from

top: estimated IF (solid line) and true IF (red dashed line). Second

row: absolute error. Third row from top: the window width. . . . . . 135

4-1 Sample of jammers for sale online (https://www.jammer-store.com/). 140

4-2 Block diagram of abnormality detection methodology using TF-based

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

17

https://www.jammer-store.com/


18



List of Tables

1.1 Definitions of selected popular Doppler-lag kernels. . . . . . . . . . . 31

2.1 MSETF and MSET of two signals synthesized from modified STs through

selected inverting algorithms. . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Parameters used to construct TFRs of test signals. . . . . . . . . . . 110

3.2 Coefficients of Test Signal B given in (3.52). . . . . . . . . . . . . . . 113

3.3 ECM of selected TFRs of a real-world bat echolocation sound. . . . . 121

3.4 Comparison between selected TFRs in terms of computation time. . . 122

3.5 Comparison between adaptive IF estimation methods in terms of com-

putation time. SNR is set to 11 dB, and the WD is used as TFR.

The results are given in seconds, and the experiments were run on

Windows-7 Intel Core i-5 platform with 6 GB RAM. Proposed method

is the most computationally efficient. . . . . . . . . . . . . . . . . . . 136

19



20



Chapter 1

Introduction to time-frequency

analysis

21



1.1 Introduction

The spectral analysis of signals is a crucial task in countless scientific applications.

As well known, the Fourier transform (FT) is the conventional tool for decomposing

a signal into individual spectral components by projecting it onto sinusoidal basis

functions. The Fourier analysis allows for effective feature extraction from signals

whose spectra can be regarded stationary, or slowly changing, during the processing

time. However, most of the real physical signals have nonstationary spectra, meaning

that they cannot be completely characterized in the time domain or frequency domain

alone: the time domain lacks any frequency information, while, on the other hand,

the frequency domain does not provide the necessary time description of varying

spectra. Therefore, nonstationary signals are best represented in the time-frequency

(TF) plane where the time and frequency variables are present together without being

mutually exclusive. The signal TF representation (TFR) should reveal the spectral

variations in time; that is, the constant-time cross-section of a TFR should depict

the frequencies that emerge at the respective time instant. By doing so, a TFR may

provide comprehensive information about nonstationary signals including the time

variations, the frequency variations, and the number of components; it enables sepa-

ration of the signal components from each other, and effective time-varying filtering

1.2 Windowed Fourier transform

The simplest approach to include a sort of time description within the Fourier analysis

is by localizing the oscillatory Fourier basis in the time domain through a windowing

function. Namely, at a certain time instant 𝑡, we may multiply the signal by a window

centered at 𝑡 and perform the conventional FT on the windowed signal to obtain a

localized spectrum. The resulting transform is called the short-time Fourier transform

(STFT) and is given according to

STFT𝑥(𝑡, 𝑓) =

∫︁ ∞

−∞
𝑥(𝜏)𝑤(𝑡− 𝜏) exp(−𝑖2𝜋𝑓𝜏) 𝑑𝜏, (1.1)
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where 𝑥(𝜏) is the signal under analysis, and 𝑤(𝜏) is a localizing window, which is usu-

ally a real-valued even function. To represent the energy distribution in the TF plane,

we may use the squared magnitude of the STFT, which is called the spectrogram:

SPEC𝑥(𝑡, 𝑓) = |STFT𝑥(𝑡, 𝑓)|2

=

⃒⃒
⃒⃒
∫︁ ∞

−∞
𝑥(𝜏)𝑤(𝑡− 𝜏) exp(−𝑖2𝜋𝑓𝜏) 𝑑𝜏

⃒⃒
⃒⃒
2

.
(1.2)

The concept behind the STFT is simple, and it can be realized in the discrete case

efficiently through the Fast FT (FFT) algorithm. It localizes the signal amplitude

and phase information independently, and it is easily invertible; therefore, it has been

always a classic choice whenever a simple straightforward TF analysis is needed [8, 9].

However, the main limitation of the STFT lies in its use of a fixed observation window,

which imposes an unavoidable trade-off between time and frequency resolution. That

is, if a large window is used, the frequency resolution is sufficient, since in this case,

the FT works upon a large signal, hence providing precise frequency information.

If a short window is used, on the other hand, the time resolution is improved and

distinguishing fast temporal events becomes possible, but at the expense of smeared

spectral resolution.

The S-transform (ST) was originally proposed by Stockwell et al. in [10] to improve

on the STFT by localizing the signal components in the TF plane with frequency-

dependent resolution. This objective is achieved by replacing the fixed observation

window in (1.2) with one whose width reduces with increasing frequency. The ra-

tionale behind the ST is that, low spectral contents represent slowly varying signal

components, hence it is reasonable to sacrifice the time resolution for better frequency

resolution. On the contrary, high frequencies represent components with rapid vari-

ations in the time domain, where accurate time information can be considered more

valuable. A general description of the ST may be given as [4, 11]

ST𝑥(𝑡, 𝑓) =

∫︁ ∞

−∞
𝑥(𝜏)𝑤(𝑡− 𝜏, 𝑓) exp(−𝑖2𝜋𝑓𝜏) 𝑑𝜏, (1.3)
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Figure 1-1: Comparison between STFT and ST of signal with two sinusoidal compo-
nents. The ST provides progressive TF resolution: the higher spectral component is
projected onto the TF domain with lower frequency resolution.

in which 𝑤(𝑡, 𝑓) is a frequency-dependent observation window. A comparison be-

tween the TFRs provided by the spectrogram and the ST (as squared magnitude) is

illustrated in Fig. 1-1 using a signal composed of two sinusoids.

1.3 Cohen’s class of TFRs

1.3.1 The Wigner distribution

Ideal TFRs would concentrate energy exactly at the signal instantaneous spectrum.

Assuming that the analyzed signal is monocomponent frequency modulated (FM)

with unitary amplitude and an arbitrary differentiable phase 𝜑(𝑡) defined as:

𝑧(𝑡) = exp(𝑖𝜑(𝑡)), (1.4)
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the ideal TFR, which would be concentrated exactly along the trajectory of the signal

instantaneous frequency (IF), can be given by the following form [12]:

TFR𝑧(𝑡, 𝑓) = 𝛿(𝑓 − 𝑓𝑖(𝑡)), (1.5)

where 𝛿(𝑡) is a the Delta function, and 𝑓𝑖(𝑡) is the signal IF. The concept of the

IF is addressed in detail in Chapter 3; here, we will just present the mathematical

definition [13, 14]:

𝑓𝑖(𝑡) =
1

2𝜋

𝑑𝜑

𝑑𝑡
(𝑡) ≡ 𝜑′(𝑡)

2𝜋
. (1.6)

Clearly, the IF represents the instantaneous rate of change of the signal phase function.

The time derivative of the phase function can be written as

𝜑′(𝑡) = lim
𝜏→0

𝜑(𝑡+ 𝜏/2) − 𝜑(𝑡− 𝜏/2)

𝜏
. (1.7)

If (1.7) is approximated by

𝜑′(𝑡) ≈ 𝜑(𝑡+ 𝜏/2) − 𝜑(𝑡− 𝜏/2)

𝜏
(1.8)

and substituted into (1.5), TFR𝑧(𝑡, 𝑓) can be given by [15]

TFR𝑧(𝑡, 𝑓) = FT
𝜏→𝑓

{exp (𝑖𝜑(𝑡+ 𝜏/2)) exp (−𝑖𝜑(𝑡− 𝜏/2))}

= FT
𝜏→𝑓

{𝑧(𝑡+ 𝜏/2)𝑧*(𝑡− 𝜏/2)}

= FT
𝜏→𝑓

{𝐾𝑧(𝑡, 𝜏)} ,

(1.9)

where FT{·} is the FT operator. The 2-D function 𝐾(𝑡, 𝜏) is called the signal instan-

taneous autocorrelation function (IAF) [16] and is defined for a general signal 𝑧(𝑡)

according to

𝐾𝑧(𝑡, 𝜏) = 𝑧(𝑡+ 𝜏/2)𝑧*(𝑡− 𝜏/2). (1.10)
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The TFR given by (1.9) is the Wigner distribution1(WD) [17], denoted by WD𝑧(𝑡, 𝑓).

Since the approximation (1.8) is exact when the IF law of the analyzed signal is

a linear function of time, we may conclude that the WD is indeed the ideal TFR

for monocomponent LFM signals [18, 19]. The FT of the WD with respect to the

time variable 𝑡 results in another 2-D function called the spectral autocorrelation

function(SAF):

𝑘𝑧(𝜈, 𝑓) = FT
𝑡→𝜈

{WD𝑧(𝑡, 𝑓)}

= 𝑍(𝑓 + 𝜈/2)𝑍*(𝑓 − 𝜈/2),

(1.11)

where 𝑍(𝑓) is the FT of the analyzed signal 𝑧(𝑡), and 𝜏 and 𝜈 are variables called lag

and Doppler, respectively. According to the previous expression, an equivalent form

of the WD in (1.9) may be defined as

WD𝑧(𝑡, 𝑓) = IFT
𝜈→𝑡

{𝑘𝑧(𝜈, 𝑓)} , (1.12)

where IFT{·} is the inverse FT operator.

1.3.2 Quadratic TFRs

A general form of TFRs that are quadratic in signal can be derived from the WD by

applying a smoothing kernel according to [15, 17, 16, 20]:

TFR𝑧(𝑡, 𝑓) = 𝛾(𝑡, 𝑓) *
𝑡
*
𝑓
WD𝑧(𝑡, 𝑓), (1.13)

where 𝛾(𝑡, 𝑓) is a 2-D kernel that acts upon the WD as a 2-D TF filter. The IFT of

the kernel with respect to frequency is a time-lag function called the time-lag kernel,

1If the analyzed signal is analytic, this TFR is also called the Wigner-Ville distribution.
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denoted by 𝐺(𝑡, 𝜏), using which the TFR in (1.13) can be also defined as

TFR𝑧(𝑡, 𝑓) = FT
𝜏→𝑓

{︁
𝐺(𝑡, 𝜏) *

𝑡
𝐾𝑧(𝑡, 𝜏)

}︁

= FT
𝜏→𝑓

{𝑅𝑧(𝑡, 𝜏)} .
(1.14)

Note that for the WD, we have that 𝑅𝑧(𝑡, 𝜏) = 𝐾𝑧(𝑡, 𝜏). We can now introduce the

FT of the IAF with respect to the time variable 𝑡:

𝐴𝑧(𝜈, 𝜏) = FT
𝑡→𝜈

{𝐾𝑧(𝑡, 𝜏)}

= IFT
𝑓→𝜏

{𝑘𝑧(𝜈, 𝑓)} ,
(1.15)

which is called the ambiguity function (AF). Now, by applying the convolution theo-

rem to (1.14), we obtain

TFR𝑧(𝑡, 𝑓) = IFT
𝜈→𝑡

{︂
FT
𝜏→𝑓

{𝑔(𝜈, 𝜏)𝐴𝑧(𝜈, 𝜏)}
}︂
, (1.16)

in which

𝑔(𝜈, 𝜏) = FT
𝑡→𝜈

{𝐺(𝑡, 𝜏)} (1.17)

is called the Doppler-lag kernel. One more form of TFR𝑧(𝑡, 𝑓) can be also derived

from (1.16) and (1.15) according to

TFR𝑧(𝑡, 𝑓) = IFT
𝜈→𝑡

{︂
𝜒(𝜈, 𝑓) *

𝑓
𝑘𝑧(𝜈, 𝑓)

}︂
, (1.18)

where

𝜒(𝜈, 𝑓) = FT
𝜏→𝑓

{𝑔(𝜈, 𝜏)} (1.19)

is called the Doppler-frequency kernel.

To sum up, the quadratic TFRs (QTFRs) can be constructed through 4 different

domains, which are:
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Time-Frequency construction

TFR𝑧(𝑡, 𝑓) = 𝛾(𝑡, 𝑓) *
𝑡
*
𝑓
WD𝑧(𝑡, 𝑓); (1.20)

Doppler-lag construction

TFR𝑧(𝑡, 𝑓) = IFT
𝜈→𝑡

{︂
FT
𝜏→𝑓

{𝑔(𝜈, 𝜏)𝐴𝑧(𝜈, 𝜏)}
}︂

=

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑔(𝜈, 𝜏)𝐴𝑧(𝜈, 𝜏) exp (𝑖2𝜋(𝜈𝑡− 𝑓𝜏)) 𝑑𝜏 𝑑𝜈;

(1.21)

Doppler-frequency construction

TFR𝑧(𝑡, 𝑓) = IFT
𝜈→𝑡

{︂
𝜒(𝜈, 𝑓) *

𝑓
𝑘𝑧(𝜈, 𝑓)

}︂

=

∫︁ ∞

−∞

∫︁ ∞

−∞
𝜒(𝜈, 𝑓 − 𝜂)𝑍(𝜂 + 𝜈/2)𝑍*(𝜂 − 𝜈/2) exp(𝑖2𝜋𝜈𝑡) 𝑑𝜂 𝑑𝜈;

(1.22)

Time-lag construction

TFR𝑧(𝑡, 𝑓) = FT
𝜏→𝑓

{︁
𝐺(𝑡, 𝜏) *

𝑡
𝐾𝑧(𝑡, 𝜏)

}︁

=

∫︁ ∞

−∞

∫︁ ∞

−∞
𝐺(𝑡− 𝜉, 𝜏)𝑧(𝜉 + 𝜏/2)𝑧*(𝜉 − 𝜏/2) exp(−𝑖2𝜋𝜏𝑓) 𝑑𝜉 𝑑𝜏.

(1.23)

This family of QTFRs is called Cohen’s family [16].

1.3.3 Cross and inner artifacts

The WD and all other QTFRs, which are essentially smoothed versions of the WD

according to (1.20), are bilinear in the analyzed signal. As a result of bilinearity,

they are inevitably accompanied by undesirable spurious artifacts that represent the

interactions between different signal components.

The first sort of artifacts arises if the signal IF law is nonlinear. To explain this,

consider a signal 𝑧(𝑡) = exp(𝑖𝜑(𝑡)), the WD of this signal can be written as [21]

WD𝑧(𝑡, 𝑓) = 𝛿(𝑡− 𝑓𝑖(𝑡)) * FT
{︃

exp

(︃
𝑖

∞∑︁

𝑛=2

𝜑(𝑛)(𝑡)𝜏
𝐾𝑛

𝑛!

)︃}︃
, (1.24)
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where

𝐾𝑛 =
𝑛−1∑︁

𝑗=0

(︁𝜏
2

)︁𝑛−1−𝑗
(︂−𝜏

2

)︂𝑗

. (1.25)

The above equation makes clear that if the signal is LFM, meaning that the IF law is

a linear function of time, then the term between parentheses in (1.24) is zero. In other

words, the WD is the ideal TFR for LFM signals, as mentioned before. However, if

the signal phase is of order higher than second, the disturbing term in (1.24) is not

zero and, as a result, spurious artifacts in the WD arise; they are called inner-terms.

The same conclusions apply to any QTFR.

If the signal is composed of multiple components, the QTFRs will contain spurious

features, called cross-terms. For simplicity, let us assume that the analyzed signal

is composed of two components, that is 𝑧(𝑡) = 𝑧1(𝑡) + 𝑧2(𝑡), then the IAF of 𝑧(𝑡) is

given by

𝐾𝑧(𝑡, 𝜏) = 𝐾𝑧1(𝑡, 𝜏) +𝐾𝑧2(𝑡, 𝜏) +𝐾𝑧1𝑧2(𝑡, 𝜏) +𝐾𝑧2𝑧1(𝑡, 𝜏), (1.26)

where

𝐾𝑧𝑖𝑧𝑗(𝑡, 𝜏) = 𝑧𝑖(𝑡+ 𝜏/2)𝑧*𝑗 (𝑡− 𝜏/2). (1.27)

As a result of (1.26), the WD of 𝑧(𝑡) is given by

WD𝑧(𝑡, 𝑓) = WD𝑧1(𝑡, 𝑓) + WD𝑧2(𝑡, 𝑓) + 2ℜ{WD𝑧1𝑧2(𝑡, 𝑓)} . (1.28)

WD𝑧1 and WD𝑧2 are called auto-terms. This result can be generalized to any member

of Cohen’s class of TFRs. The problem of cross and inner artifacts is illustrated on

the WD in Fig. 1-2. In (a), we use a signal composed of two LFM chips, where

cross-terms can be clearly observed oscillating between the signal components, while

in (b), the signal is nonlinearly modulated and inner artifacts are clearly manifested

in the TFR.
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Figure 1-2: Artifacts in the WD. Cross-terms are present in (a) because the signal is
composed of two linear components, and inner-terms are present in (b) because the
signal IF law in nonlinear

1.3.4 Role of the kernel

The presence of inner- and cross-terms represent the main limitation of the QTFRs.

When the signal is composed of multiple nonlinear components, these interfering

terms make interpretation of a TFR an exhausting and sometimes impossible task.

The shapes, locations, and other properties of the inner- and cross-terms have been

studied extensively (e.g. [21]). Recently, Boashash and Ouelha in [22] derived exact

analytical formulas giving the locations of cross-terms in the ambiguity domain of

multicomponent piecewise LFM signals. Generally, it was shown that the cross-terms

are oscillatory in nature along their major axis, meaning that they have high-pass

characteristics. The auto-terms, on the other hand, have slowly changing amplitudes

along their major axis. Since the QTFRs are smoothed versions of the WD, by

selecting a proper signal kernel 𝛾(𝑡, 𝑓) (i.e., one that matches the signal structure), the

impact of cross- and inner-terms can be alleviated [15, 23, 24]. These kernels can be

designed using basic filter design principles with the goal to eliminate the interfering

artifacts, while at the same time preserving the useful signal components as much

as possible. Alternatively, one may characterize the location and behavior of the
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QTFR

Doppler-lag kernel

𝑔(𝜈, 𝜏)

WD 1

Spectrogram FT
𝑡→𝜈

{𝑤(𝑡+ 𝜏/2)𝑤(𝑡− 𝜏/2)}

Modified B (MB) [15] |Γ(𝛽+𝑗𝜈𝜋)|2
Γ2(𝛽)

Extended Modified B (EMB) [26] |Γ(𝛽+𝑗𝜈𝜋)|2
Γ2(𝛽)

|Γ(𝛼+𝑗𝜈𝜋)|2
Γ2(𝛼)

pseudo WD (PWD) [27] 𝑤(𝜏)

Choi-Williams (CW) [28] exp(−𝜈2𝜏 2/𝑎)

Born-Jordan (BJ) [29] sinc(2𝑎𝜈𝜏)

Table 1.1: Definitions of selected popular Doppler-lag kernels.

inner- and cross-terms in the ambiguity domain (𝜈, 𝜏), and through a careful design

of the Doppler-lag kernel 𝑔(𝜈, 𝜏), the undesirable terms can be filtered out. In the

ambiguity domain, it was shown that the auto-terms are concentrated close to or pass

through the origin as opposed to the cross-terms, which are placed far from the origin

[22, 21, 25]. Filtering out the undesired cross-terms is perhaps easier and commonly

done in the ambiguity domain because the filtering operation is multiplicative.

Boashash showed that the properties of a QTFR are related to those of the kernel

[15], implying that the process of designing a QTFR with certain desirable properties

boils down to designing the kernel that produces such properties. The kernel 𝑔(𝜈, 𝜏)

could be:

∙ non-separable;

∙ separable 𝑔(𝜈, 𝜏) = 𝑔1(𝜈)𝑔2(𝜏);

∙ Doppler-independent 𝑔(𝜈, 𝜏) = 𝑔1(𝜈);

∙ lag-independent 𝑔(𝜈, 𝜏) = 𝑔2(𝜏).

The advantage of using separable kernels lies in the ability to smooth the WD in

time and frequency almost independently. Some of the popular kernels are listed

in table 1.1. In the same context, we should also mention the compact support
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kernel proposed in [30] and its extended separable version presented in [23], which

are designed to vanish outside a given range in the ambiguity domain.

Stanković in [31] introduced an interesting TFR, usually called the S-method

(SM). This TFR can be considered as a mixture between the spectrogram and the

WD, combining the advantages of both; it is defined by

SM𝑧(𝑡, 𝑓) =

∫︁ ∞

−∞
𝑔(𝜃) STFT𝑧(𝑡, 𝑓 + 𝜃) STFT*

𝑧(𝑡, 𝑓 − 𝜃) 𝑑𝜃, (1.29)

where 𝑔(𝜃) is a short frequency window. By properly choosing the length of 𝑔(𝜃),

we can preserve the high resolution of the WD, while at the same time having an

immunity to cross-terms likewise the spectrogram. Further, the SM can be computed

using the STFT, which makes it more computationally efficient than other QTFRs.

Although designing QTFRs that have certain mathematical properties, such as

non-negativity and preservation of time and frequency marginals (see [16]) could be

desired for some applications, we see that most of the research in the field of TF

signal processing aimed at designing TFRs with high resolution. That is, the main

goal in practice is having high energy concentration along the signal IF law with a

significant reduction in the amplitudes of the inner- and cross-terms.

1.3.5 Generalized Wigner distribution

A generalization to the WD, called the L-WD, was presented by Stanković in [32, 12]

to reduce the impact of high-order derivatives of the signal phase function on the

WD; it is defined by

LWD𝑧(𝑡, 𝑓) =

∫︁ ∞

−∞
𝑧𝐿(𝑡+ 𝜏/2)𝑧*𝐿(𝑡− 𝜏/2) exp(−𝑖2𝜋𝜏𝑓) 𝑑𝜏, (1.30)

where 𝐿 is an integer greater than zero. The LWD is simply a scaled WD of the

analyzed signal raised to the 𝐿th power. If we assume that the analyzed signal

is 𝑧(𝑡) = exp(𝑖𝜑(𝑡)), then by expanding the phase function 𝜑(𝑡) into Taylor series
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(b): PWD
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(c): MB
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(d): EMB
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(e): CW
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(f): BJ

0 50 100 150 200 250

Time (S)

0

0.1

0.2

0.3

0.4

0.5

F
re

q
u
e
n
c
y
 (

H
z
)

(g): SM

0 50 100 150 200 250

Time (S)

0

0.1

0.2

0.3

0.4

F
re

q
u
e
n
c
y
 (

H
z
)

(h): Spectrogram
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Figure 1-3: Comparison between selected TFRs using a sinusoidal FM signal.

around 𝑡, the LWD can be given in the following form:

LWD(𝑡, 𝑓) = 𝛿(𝑓 − 𝑓𝑖(𝑡)) * FT
{︃

exp

(︃
2𝑖

∞∑︁

𝑛=3,5,...

𝜑(𝑛)(𝑡)
𝜏𝑛

2𝑛𝐿𝑛−1𝑛!

)︃}︃
. (1.31)

The above equation is a generalization to (1.24); it shows that the ideal TFR, which

locates energy in the TF plane exactly at the signal IF, is convolved with higher-

order terms of the derivatives of 𝜑(𝑡), which causes a spread of energy around the IF

trajectory. As is the case with the WD, only odd terms of order higher than third

exist, but different from the WD, in the LWD, these disturbing terms are divided

by a positive factor 𝐿𝑛−1, meaning that their impact can be significantly reduced by

increasing the distribution order 𝐿. Stanković applied the same idea to Cohen’s class

of TFRs in [32]. He also presented a simple and efficient implementation method to
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reduce cross-terms, which, if not dealt with properly, can be more emphatic in the

LWD. In a similar research stream, TFRs with complex-time signal arguments were

introduced [33, 34, 35] to improve the energy concentration in the TF plane for signals

with rapid variations in their IF laws.

Several TFRs of a signal with sinusoidally modulated frequency is shown in Fig.

1-3.

1.4 Reassignment method

Improving the localization of the signal components in the TF plane and attenuating

the misleading interference terms was addressed from a different perspective through

the reassignment method ; it was originally proposed for the spectrogram in [36] and

substantially developed by Auger [37] and applied with other members of Cohen’s

class. In short, this method reassigns each value of a TFR to a different location.

Consider a TFR, which, as we saw before, results by convolving the WD with a kernel

𝛾(𝑡, 𝑓) according to

TFR𝑧(𝑡, 𝑓) =

∫︁ ∞

−∞

∫︁ ∞

−∞
WD𝑧(𝜏, 𝜈)𝛾(𝑡− 𝜏, 𝑓 − 𝜈) 𝑑𝜏 𝑑𝜈. (1.32)

The above equation shows that 𝛾(𝑡 − 𝜏, 𝑓 − 𝜈) delimits a TF region at the vicinity

of the (𝑡, 𝑓) point, inside which, the WD values are weighted by the kernel and the

average is assigned at the point (𝑡, 𝑓). The basic principle of the reassignment method

is to move this average from the point (𝑡, 𝑓) and reassign it at the center of gravity

of its composing distribution (𝑡′, 𝑓 ′) given by

𝑡′ =

∫︀∞
−∞

∫︀∞
−∞ 𝜏𝛾(𝑡− 𝜏, 𝑓 − 𝜈) WD𝑧(𝜏, 𝜈) 𝑑𝜏 𝑑𝜈∫︀∞

−∞

∫︀∞
−∞ 𝛾(𝑡− 𝜏, 𝑓 − 𝜈) WD𝑧(𝜏, 𝜈) 𝑑𝜏 𝑑𝜈

,

𝑓 ′ =

∫︀∞
−∞

∫︀∞
−∞ 𝜈𝛾(𝑡− 𝜏, 𝑓 − 𝜈) WD𝑧(𝜏, 𝜈) 𝑑𝜏 𝑑𝜈∫︀∞

−∞

∫︀∞
−∞ 𝛾(𝑡− 𝜏, 𝑓 − 𝜈) WD𝑧(𝜏, 𝜈) 𝑑𝜏 𝑑𝜈

.

(1.33)
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(b): Reassigned Spectrogram

Figure 1-4: Comparison between spectrogram and reassigned spectrogram using a
sinusoidal FM signal.

Given these centers of gravities, the reassigned TFR, denoted RTFR𝑧(𝑡, 𝑓), is obtained

as

RTFR𝑧(𝑡
′, 𝑓 ′) =

∫︁ ∞

−∞

∫︁ ∞

−∞
TFR𝑧(𝜏, 𝜈)𝛿(𝑡′ − 𝜏)𝛿(𝑓 ′ − 𝜈) 𝑑𝜏 𝑑𝜈. (1.34)

Through the reassignment method, excellent energy concentration can be obtained,

but the method was shown to be sensitive to noise. A spectrogram and a reassigned

spectrogram of a signal with sinusoidal FM are shown in Fig. 1-4.

1.5 Discrete implementation

We explained previously that any TFR of Cohn’s class can be expressed as a con-

volution between the WD and a kernel. Also, the transformation to the TF domain

can be via different domains: lag-Doppler, time-lag, or Doppler-frequency. Sampling

the kernel in any of the previous domains is an easy task, provided that the exact

definition exists (which is the case with all the kernels previously mentioned), and

because the kernel is usually time and frequency bandlimited, no aliasing problems

arise. Therefore, the main challenge is sampling the WD, or more specifically, sam-

pling the IAF 𝐾𝑧(𝑡, 𝜏). Perhaps the most popular time-lag sampling scheme is the

one proposed by Claasen and Mecklenbrauker [17], where 𝐾𝑧(𝑡, 𝜏) is sampled in time

with a sampling frequency equal to 1/𝑇 and in lag with a sampling frequency equal
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to 1/(2𝑇 ). Let 𝑧[𝑛] be a discrete complex-valued time series defined as

𝑧[𝑛] =

⎧
⎪⎨
⎪⎩
𝑧𝑎[𝑛], 𝑁 ≤ 2𝑁 − 1

0, 0 ≤ 𝑁 − 1,

(1.35)

where 𝑧𝑎[𝑛] is the analytic associate of the input real-valued signal, the discretization

of (1.10) results in

𝐾𝑧[𝑛,𝑚] = 𝑧[𝑛+𝑚]𝑧*[𝑛−𝑚]. (1.36)

Hence, the discrete WD can be defined as

WD𝑧[𝑛, 𝑘] =
𝑁−1∑︁

𝑚=0

𝑧[𝑛+𝑚]𝑧*[𝑛−𝑚] exp

(︂
−𝑖𝜋𝑚𝑘

𝑁

)︂

= DFT
𝑚→𝑘

{𝐾𝑧[𝑛,𝑚]} .
(1.37)

Now, using (1.36) and (1.37), we can numerically realize any of the definitions given

in (1.20)-(1.23), keeping in mind that the convolution operation can be implemented

through the DFT. We remark that the use of the analytic signal for the discrete

realization of the WD, as well as any QTFR, is necessary to avoid aliasing problems

[38]; otherwise, the signal should be sampled at double the Nyquist rate. The time-

lag domain is often used for the discrete-time implementation of TFRs, due to the

computational efficiency of this realization, according to the following steps [39]:

∙ Generate 𝐾[𝑛,𝑚] using (1.36);

∙ Obtain the time-lag function 𝑅𝑧[𝑛,𝑚] as follows:

𝑅𝑧[𝑛,𝑚] = IDFT
𝑙→𝑛

{︁
DFT
𝑛→𝑙

{𝑘𝑧[𝑛,𝑚]} 𝑔[𝑙,𝑚]
}︁
, (1.38)

where 𝑔[𝑙,𝑚] is a discrete Doppler-lag kernel;

∙ Form the discrete TFD according to

TFR𝑧[𝑛, 𝑘] = DFT
𝑚→𝑘

{𝑅𝑧[𝑛,𝑚]} . (1.39)
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In the above equations, 𝑚, 𝑙, and 𝑘 are indicative of lag, Doppler, and frequency,

respectively. We should also mention that other definitions of discrete TFRs that

satisfy some desirable mathematical properties can be found in [39, 40]. Algorithms

that minimize both the computation and memory loads required to realize discrete

TFRs are developed by Toole and Boashash in [41].

1.6 Objective assessment of TFRs

Comparing TFRs on the basis of visual inspection can be difficult and somehow sub-

jective. The need to objectively compare and assess the quality of TFRs motivated

the development of objective quantitative measures [42]. More importantly, when

meaningful quantitative measures are available, they can be used as criteria of good-

ness to automate the selection of proper kernel parameters without interference from

a user. Different measures have been proposed; they are reviewed by Stanković in

[5]. Perhaps the most important measures are those that measure the energy concen-

tration in the TF domain. In this regard, Jones and Parks [43] proposed an energy

concentration measure (ECM) based on the fourth power of the 𝐿4 norm of a TFR

divided by its 𝐿2 norm:

ECM1 =

∑︀
𝑛

∑︀
𝑘 TFR

4
𝑧[𝑛, 𝑘]

(︀∑︀
𝑛

∑︀
𝑘 TFR

2
𝑧[𝑛, 𝑘]

)︀2 . (1.40)

A high value of the above ratio indicates that the TFR is highly concentrated. It

was shown, however, that this measure favors the selection of a TFR in which one

component is highly concentrated at the expense of other poorly localized components

[5]. To solve this problem, Stanković in [5] proposed a simpler measure based on the

support region of a TFR:

ECM2(𝑝) =

[︃∑︁

𝑛

∑︁

𝑘

|NTFR𝑧[𝑛, 𝑘]|1/𝑝
]︃𝑝
, (1.41)
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where NTFR𝑧[𝑛, 𝑘] is a normalized TFR such that
∑︀

𝑛

∑︀
𝑘 NTFR𝑧[𝑛, 𝑘] = 1, and 𝑝 is

a positive parameter larger than 1 (𝑝 = 2 was shown to provide good results). In the

same context, the Renyi entropy (RE) [44] is a quantitative measure sensitive to the

number of signal components and their time durations [45]; it is defined by

RE(𝛼) =
1

1 − 𝛼
log2

[︃∑︁

𝑛

∑︁

𝑘

TFR𝛼
𝑧 [𝑛, 𝑘]

]︃
, (1.42)

where 𝛼 > 0. For even 𝛼, cross-terms will contribute positively to the above measure,

leading to false conclusion that the concentration improves, whereas for odd 𝛼, the

measure is insensitive to zero-mean cross-terms. Therefore, normalized Renyi entropy

(NRE) was introduced in [46]. Also, Boashash and Sucic in [42] proposed a resolution

performance measure suitable to design TFRs of multicomponent signals with high

resolution, but it requires careful measuring of some attributes of a given TFR, which

may be difficult to obtain in some situations.

1.7 Other advances

Rotating the TF plane to be aligned with the principal axis of the analyzed signal was

shown to improve the energy concentration [47]. The rationale behind this approach

is that in several cases, the signal under analysis has its energy concentrated along

specific directions in the TF plane (or the ambiguity domain). In this context, a

WD with Radon transform, called Radon WD (RWD), was introduced for detection

and classification of multicomponent LFM signals in noisy environments [25, 48]. In

a similar stream of research, the local polynomial Fourier transform (LPFT) was

proposed to estimate both the IF and its derivatives [49, 50]. More, recently, a multi-

directional rotating kernel was introduced by Boashash and Ouelha [22] for signals

that can be modeled as multicomponent piecewise LFM chirps having their energy

distributed along multiple directions in the TF plane.

Obtaining TFRs with high clarity is of primary interest to allow for correct ex-

traction of relevant signal features [26]. Unfortunately, TFRs inherently compromise
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between cross-term suppression and auto-term resolution. To improve the clarity and

readability of TFRs, image processing techniques were successfully applied by some

researchers. The resolution of the spectrogram is improved through a de-blurring

mechanism in [51], while in a different approach, image de-noising algorithms in-

cluding wavelet-based denoising [52], singular value decomposition (SVD) [53], and

morphological processing [54] showed promising results in some cases. Khan and

Sandsten [55] proposed an image processing technique to smooth a given TFR with

a kernel that adapts its direction at each location in the TFR to remain aligned

along its dominant ridges [24]. This technique is effective in eliminating the cross-

terms without blurring the auto-terms; it is useful particularly to resolve close signal

components, but it is highly expensive in terms of computations.
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Chapter 2

The S-transform
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2.1 Background theory

The S-transform (ST) [10] is a linear time-frequency representation (TFR) with hy-

brid characteristics from the short-time Fourier transform (STFT) and the wavelet

transform (WT) [56]. Like the classic STFT [57], the ST provides a TF representation

by projecting the analyzed signal onto local TF functions derived from the Fourier

basis by a simple windowing operation. Therefore, the ST independently localizes the

real and imaginary parts of the spectrum and provides globally referenced local phase

information, thereby preserving the intuitive meaning of phase given by the Fourier

transform (FT). Unlike the STFT, however, and similarly to the WT, the ST enables

a multi-resolution analysis by using an observation window the temporal width of

which reduces with increasing frequency. In doing so, the ST captures local varia-

tions in the global spectrum with progressive trade-off between time and frequency

resolution in accordance with Heisenberg’s uncertainty principle1. Furthermore, the

analytic Fourier-similar basis functions of the ST makes certain tasks relevant to os-

cillatory signal processing, such as the instantaneous frequency (IF) estimation, easier

to handle compared with the WT. In addition, the progressive resolution renders a TF

representation that is more consistent than that presented by a constant-bandwidth

transform, like the STFT. The previous desirable features have made the ST a pop-

ular TF tool in various fields of study, such as medicine [58, 59] seismology [60], and

power engineering [61, 62], just to name a few.

The ST of a continuous-time signal 𝑥(𝑡) can be given according to

ST𝑥(𝑡, 𝑓) =

∫︁ +∞

−∞
𝑥(𝜏)𝑤

(︀
𝑡− 𝜏, 𝜎(𝑓)

)︀
exp (−𝑖2𝜋𝑓𝜏) 𝑑𝜏, (2.1)

where 𝑤
(︀
𝑡, 𝜎(𝑓)

)︀
is a Gaussian analysis window with unitary area and standard de-

viation 𝜎(𝑓), which is frequency dependent. The Gaussian window is a classic choice

to perform TF analysis, since it features the minimum time-bandwidth product [15];

1Heisenberg’s uncertainty principle states that there exists a fundamental limit to the precision
with which certain pairs of physical properties can be known.
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this window is defined as

𝑤(𝑡, 𝜎(𝑓)) =
1√

2𝜋𝜎(𝑓)
exp

(︂ −𝑡2
2𝜎2(𝑓)

)︂
. (2.2)

In the original paper [10], the standard deviation of the observation window is given

as 𝜎(𝑓) = 1/|𝑓 |. In subsequent works, other forms of 𝜎(𝑓) are used to meet dif-

ferent requirements depending on the signal under analysis, such as: 𝑘/|𝑓 |, and

(𝑘0 + 𝑘1𝑓)/|𝑓 | [63, 64]. In general, any form of 𝜎(𝑓) can be adopted, provided that

it is a decreasing function of frequency to achieve progressive trade-off between time

and frequency resolution, which is useful when analyzing some nonstationary signals

[65]. We wish to mention that STs with windows other than Gaussian were pro-

posed, and indeed, improving the transform analysis window attracted much research

interest. A bi-Gaussian window [66], a window based on the 𝑡-student distribution

[67], a frequency-dependent Kaiser window [68], a compact support kernel [69], and

a frequency-dependent window having hyperbolic asymmetry [11] were utilized for

different applications–the STs employing these windows admit the general definition

given in (2.1). Note that the Fourier oscillatory exponential kernel in (2.1) remains

stationary and, unlike the window, does not translate in time, which results in ab-

solutely referenced phase information. Meaning that the local phase information

returned by the ST can be interpreted exactly as those provided by the FT. Overall,

the ST can be regarded as a bridge between the STFT and the WT, maintaining the

appealing features of both.

Through the convolution theorem, the FT of the analyzed signal 𝑋(𝑓) together

with the FT of the localizing window 𝑊 (𝑓, 𝜎(𝑓)) can be exploited to arrive at a form

equivalent to (2.1) according to

ST𝑥(𝑡, 𝑓) = [𝑥(𝑡) exp (−𝑖2𝜋𝑓𝑡)] * 𝑤(𝑡, 𝜎(𝑓)) = IFT
{︀
𝑋(𝑓 + 𝜈)𝑊

(︀
𝜈, 𝜎(𝑓)

)︀}︀

=

∫︁ +∞

−∞
𝑋(𝑓 + 𝜈)𝑊

(︀
𝜈, 𝜎(𝑓)

)︀
exp (𝑖2𝜋𝜈𝑡) 𝑑𝜈,

(2.3)

where IFT{·} is the inverse FT (IFT) operator.
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2.1.1 Inverting the ST

Linearity of the ST naturally leads to exact inevitability. Under the assumption that

the analysis window satisfies

∫︁ ∞

−∞
𝑤(𝑡, 𝜎(𝑓)) 𝑑𝑡 = 1, (2.4)

averaging the ST over time results in the FT of the analyzed signal according to

∫︁ ∞

−∞
ST𝑥(𝑡, 𝑓) 𝑑𝑡 =

∫︁ +∞

−∞

∫︁ +∞

−∞
𝑥(𝜏)𝑤

(︀
𝑡− 𝜏, 𝜎(𝑓)

)︀
exp (−𝑖2𝜋𝑓𝜏) 𝑑𝜏 𝑑𝑡

=

∫︁ ∞

−∞
𝑥(𝜏) exp (−𝑖2𝜋𝑓𝜏)

[︂∫︁ ∞

−∞
𝑤
(︀
𝑡− 𝜏, 𝜎(𝑓)

)︀
𝑑𝑡

]︂
𝑑𝜏

=

∫︁ ∞

−∞
𝑥(𝜏) exp (−𝑖2𝜋𝑓𝜏) 𝑑𝜏

= 𝑋(𝑓).

(2.5)

Equation (2.5) establishes a direct relationship between the ST and the FT, which

permits a fast and simple retrieval of signals from their ST representations. The

inverse ST described by (2.5) is usually referred to in the literature as the frequency

inverse ST (FIST). Another inverting method that avoids averaging the ST over time

is presented in [70] according to:

�̃�(𝑡) =

∫︁ ∞

−∞
ST𝑥(𝑡, 𝑓)𝑐(𝑓) exp(𝑖2𝜋𝑓𝑡) 𝑑𝑓, (2.6)

where 𝑐(𝑓) is given by 𝑐(𝑓) = 𝜎(𝑓)
√

2𝜋. For a Gaussian analysis window with a

standard deviation given by 𝜎(𝑓) = 𝑘/|𝑓 |, Simon et al. in [71] proved that the inverse

ST given by (2.6) is an approximation. Eq. (2.6) can be written according to

�̃�(𝑡) =

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑥(𝜏) exp

(︂−(𝑡− 𝜏)2

2𝜎2(𝑓)

)︂
exp (𝑖2𝜋𝑓(𝑡− 𝜏)) 𝑑𝜏 𝑑𝑓

=

∫︁ ∞

−∞
𝑥(𝜏)

[︂∫︁ ∞

−∞
exp

(︂−(𝑡− 𝜏)2

2𝜎2(𝑓)

)︂
exp (𝑖2𝜋𝑓(𝑡− 𝜏)) 𝑑𝑓

]︂
𝑑𝜏

= 𝑥(𝑡) * ℎ(𝑡),

(2.7)
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where

ℎ(𝑡) =

∫︁ ∞

−∞
exp

(︂ −𝑡2
2𝜎2(𝑓)

)︂
exp (𝑖2𝜋𝑓𝑡) 𝑑𝑓. (2.8)

Hence, for the inverse to be exact, ℎ(𝑡) should be equal to the Dirac function, which

is not exactly satisfied, but rather approximately. Following this consideration, the

exact input signal can be retrieved from �̃�(𝑡) according to [72]

𝑥(𝑡) = IFT

{︃
�̃�(𝑓)

𝐻(𝑓)

}︃
, (2.9)

in which �̃�(𝑓) and 𝐻(𝑓) are the FTs of �̃�(𝑡) and ℎ(𝑡), respectively. Inverting the ST

via (2.6) is referred to as the time inverse ST (TIST).

2.2 Discrete ST and exact inevitability

Let 𝑥[𝑛𝑇 ], 𝑛 = 0, 1, . . . 𝑁 − 1 denote a discrete time series corresponding to 𝑥(𝑡) with

a time sampling interval 𝑇 . The discrete FT (DFT) is given by [10]

𝑋[𝑘] =
𝑁−1∑︁

𝑛=0

𝑥[𝑛] exp
(︁
−𝑖2𝜋𝑘 𝑛

𝑁

)︁
, (2.10)

where 𝑛 = 0, 1, . . . 𝑁−1, 𝑥[𝑛] ≡ 𝑥[𝑛𝑇 ], 𝑋[𝑘] ≡ 𝑋 [𝑘/𝑁𝑇 ], and 𝑘 = −𝑁/2, . . . , 𝑁/2−1

is frequency index. Using (2.3), the ST of a discrete time series 𝑥[𝑛] is given by

DST𝑥[𝑛, 𝑘] =
𝑁−1∑︁

𝑚=0

𝑥[𝑚]𝑤𝑘[𝑛−𝑚] exp

(︂
−𝑖2𝜋𝑚𝑘

𝑁

)︂
, (2.11)

where 𝑤𝑘[𝑛] denotes the discrete-time version of the analysis window 𝑤(𝑡, 𝜎(𝑓)).

When the frequency variable is fixed, the 1-dimensional (1-D) function defined by

DST𝑥[𝑛, 𝑘] is called a voice; it represents the time evolution of the spectral content

associated with the analyzed frequency. Each voice is a signal consisting of 𝑁 sam-

ples, meaning that the DST defined in (2.11) is a 𝑁 × 𝑁 TF representation, which

samples the continuous ST with a uniform sampling scheme. An equivalent form of
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(2.11) is given according to

DST𝑥[𝑛, 𝑘] =

𝑁/2−1∑︁

𝜈=−𝑁/2

𝑋[𝜈 + 𝑘]𝑊𝑘[𝜈] exp
(︁
𝑖2𝜋

𝜈𝑛

𝑁

)︁

= IDFT {𝑋[𝜈 + 𝑘]𝑊𝑘[𝜈]} ,

(2.12)

where IDFT{·} is the inverse DFT (IDFT) operator, and 𝑋[𝜈] and 𝑊𝑘[𝜈] are the

DFTs of 𝑥[𝑛] and 𝑤𝑘[𝑛], respectively. The discretized version of the FIST is given by

𝑥[𝑛] =
1

𝑁

𝑁/2−1∑︁

𝑘=−𝑁/2

𝑁−1∑︁

𝑛′=0

DST𝑥[𝑛′, 𝑘] exp

(︂
𝑖2𝜋

𝑛𝑘

𝑁

)︂
, (2.13)

while the discretized associate of the TIST is defined as

�̃�[𝑛] =
1

𝑁

𝑁/2−1∑︁

𝑘=−𝑁/2

DST𝑥[𝑛, 𝑘]𝑐[𝑘] exp

(︂
𝑖2𝜋

𝑛𝑘

𝑁

)︂
, (2.14)

in which 𝑐[𝑘] =
∑︀𝑁−1

𝑛=0

(︀
𝑤𝑘[𝑛]

⧸︀
𝑤𝑘[𝑁/2]

)︀
= 1

⧸︀
𝑤𝑘[𝑁/2]. Substituting (2.12) into the

equation above, we obtain

�̃�[𝑛] = 𝑥[𝑛] ~ ℎ[𝑛], (2.15)

where

ℎ[𝑛] =
1

𝑁

𝑁/2−1∑︁

𝑘=−𝑁/2

𝑐[𝑘]𝑤𝑘[𝑛] exp

(︂
𝑖2𝜋

𝑛𝑘

𝑁

)︂
. (2.16)

We note that in several works, the fact that the FT of a Gaussian function is also

Gaussian is exploited when implementing the DST through (2.12), that is 𝑊𝑘[𝜈]

is substituted with exp (−2𝜋2𝜈2𝜎2[𝑘]). While it is true that the continuous FT of a

Gaussian function is also Gaussian, this is not necessarily true anymore in the discrete

case. Neglecting this fact leads to artifacts in the signal reconstructed via the FIST,

as shown in [71]. The implementation in (2.12) in which 𝑊𝑘[𝜈] is given by the DFT

of 𝑤𝑘[𝑛] and not by a direct discretization of the respective Gaussian function in the

frequency domain ensures exact invertibility via (2.13). Similarly, 𝑐[𝑘] in (2.14) is

defined using the actual discrete summation of the window weights; this is because
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the Gaussian windowing function used to realize the DST is in fact truncated to

have the same size as the input time series, meaning that 1/𝑤𝑘[𝑁/2] is slightly less

than
√

2𝜋𝜎[𝑘]. Following the previous consideration, we can recover the input signal

exactly from �̃�[𝑛] by

𝑥[𝑛] = IDFT

{︃
�̃�[𝑘]

𝐻[𝑘]

}︃
, (2.17)

where 𝐻[𝑘] is the DFT of ℎ[𝑛]. The previous simple modifications eliminate the

reconstruction errors irrespective of the methods used to invert the DST, given of

course that the TFR is not modified before the signal is synthesized. Fig. 2-1 shows

the reconstruction errors (in squared magnitude) between a LFM chirp and signals

retrieved from its DST representation after mixing between different forward and

backward algorithms; namely, we use the time domain-based implementation (TST)

in (2.11) or the frequency domain-based implementation (FST) in (2.12), and the

FIST in (2.13) or the TIST with reconstruction error correction according to (2.17).

We see clearly from Fig. 2-1 that the synthesized signals differ from the original

signal no more than what would be expected from machine precision round-off errors,

regardless of the implementation or reconstruction algorithms.

2.3 Least-squares signal synthesis

One reason behind the popularity of linear TFRs, such as the ST, is that they enable

flexible and efficient TF filtering through the analysis modification-synthesis (AMS)

method in which the TFR of the signal under analysis is computed, a filtering mask is

imposed, and then the filtered signal is synthesized from the modified representation.

The higher weights of the mask localize regions in the TF domain which are expected

to be the desired signal components, while the lower weights attenuate undesired

components. Filtering with a filter 𝐹 [𝑛, 𝑘], then back-transforming the DST, leads to
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Figure 2-1: Reconstruction errors (in absolute value) resulting from transforming
a signal to the TF domain then back-transforming it to the time domain through
different forward and backward ST algorithms.

the following signals:

𝑥𝐹1 [𝑛] = IDFT

{︃
𝑁−1∑︁

𝑛0=0

DST𝑥[𝑛0, 𝑘]𝐹 [𝑛0, 𝑘]

}︃
(2.18)

𝑥𝐹2 [𝑛] =
1

𝑁

𝑁/2−1∑︁

𝑘=−𝑁/2

DST𝑥[𝑛, 𝑘]𝐹 [𝑛, 𝑘]𝑐[𝑘] exp

(︂
𝑖2𝜋

𝑛𝑘

𝑁

)︂
. (2.19)

While the signals synthesized using the FIST and the TIST are equivalent and coincide

with the input time series to machine precision (assuming that the modifications

previously introduced to eliminate artifacts are adopted), these two inverses differ

in their results if the DST is to be modified before constructing a filtered version of

the input time series, producing different artifacts. Simon et al. in [71] and Pei and

Wang in [72] studied the performance of the FIST and the TIST in filtering. These
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works demonstrated that the FIST does not translate the time localization imposed

by the filter 𝐹 [𝑛, 𝑘] directly into the time domain because of the averaging performed

in time. The TIST, on the other hand, by-passes the need to averaging the ST over

time, but it causes frequency leakage when filtering. Overall, it was concluded that

the TIST may often be preferred if one is interested in time-domain post-processing.

Conversely, the FIST can be more advantageous whenever frequency separation is

given higher priority.

A common problem with the AMS method is that in most cases, the modified

representation is not valid in the sense that no signal has the desired TFR. Therefore,

Pei and Wang [73] presented a new inverse DST to construct a signal whose DST is

the closest to a desired representation in the least-squared-error (LSE) sense; we recall

this inverse briefly here. Let T be a 𝑁2 ×𝑁 matrix representing the transformation

matrix of the DST given by (2.12) [or the one given by (2.11)], and let x be a 𝑁 × 1

vector and S be a 𝑁2 × 1 vector representing the discrete signal and its unfolded ST,

respectively. Now, we can model the ST of 𝑥[𝑛] as the matrix multiplication S = Tx.

Accordingly, the vector x can be recovered using

x = T+S, (2.20)

where T+ = (T*T)−1
T*, and T* is the conjugate transpose of the matrix T. From

linear algebra, it is well known that if the vector S is modified, then the reconstruction

given in (2.20) provides a vector whose DST is as close as possible to the desired one

in the LSE sense. Obviously, synthesizing a signal based on (2.20) requires computa-

tional complexity of order 𝑂(𝑁3), and if the matrixT+ is stored, 𝑁3 memory elements

should be allocated. To improve on complexity, we present now the mathematical

derivation of the LSE inverse DST [74]. Let DST𝑧[𝑛, 𝑘] be a generic modified DST;

we may define a distance measure between DST𝑧[𝑛, 𝑘] and another representation of
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a generic signal 𝑦[𝑛] denoted as DST𝑦[𝑛, 𝑘] as the following:

𝐷 {DST𝑧[𝑛, 𝑘] −DST𝑦[𝑛, 𝑘]} =
𝑁−1∑︁

𝑛=0

𝑁
2
−1∑︁

𝑘=−𝑁
2

|DST𝑧[𝑛, 𝑘] −DST𝑦[𝑛, 𝑘]|2 . (2.21)

Using (2.12), the DST can be written as

DST𝑦[𝑛, 𝑘] = exp
(︁
−𝑖2𝜋𝑘 𝑛

𝑁

)︁ 𝑘+𝑁
2
−1∑︁

𝜈=𝑘−𝑁
2

𝑌 [𝜈]𝑊𝑘[𝜈 − 𝑘] exp
(︁
𝑖2𝜋𝑛

𝜈

𝑁

)︁

= exp
(︁
−𝑖2𝜋𝑘 𝑛

𝑁

)︁
IDFT {𝑌 [𝜈]𝑊𝑘[𝜈 − 𝑘]} ,

(2.22)

which results in

𝐷 {DST𝑧[𝑛, 𝑘] −DST𝑦[𝑛, 𝑘]} =
𝑁−1∑︁

𝑛=0

𝑁
2
−1∑︁

𝑘=−𝑁
2

|IDFT {𝑍[𝜈]𝑊𝑘[𝜈 − 𝑘] − 𝑌 [𝜈]𝑊𝑘[𝜈 − 𝑘]}|2 .

(2.23)

Now, by Parseval’s theorem, (2.21) can be written equivalently as

𝐷 {DST𝑧[𝑛, 𝑘] −DST𝑦[𝑛, 𝑘]} =
1

𝑁

𝑁
2
−1∑︁

𝜈=−𝑁
2

𝑁
2
−1∑︁

𝑘=−𝑁
2

|𝑍𝑊 [𝜈, 𝑘] − 𝑌 [𝜈]𝑊𝑘[𝜈 − 𝑘]|2 , (2.24)

where 𝑍𝑊 [𝜈, 𝑘] = 𝑍[𝜈]𝑊𝑘[𝜈 − 𝑘]. Accordingly, 𝑌 [𝜈] that minimizes the distance

measure in (2.24) is the one that minimizes the following expression:

𝑁
2
−1∑︁

𝑘=−𝑁
2

[𝑍𝑊 [𝜈, 𝑘] − 𝑌 [𝜈]𝑊𝑘[𝜈 − 𝑘]]2 (2.25)

at each 𝜈. To determine 𝑌 [𝜈], we set the gradient of (2.25) to zero and solve in 𝑌 [𝜈],

we obtain

𝑌 [𝜈] =

𝑁
2
−1∑︀

𝑘=−𝑁
2

𝑍𝑊 [𝜈, 𝑘]𝑊𝑘[𝜈 − 𝑘]

𝑁
2
−1∑︀

𝑘=−𝑁
2

𝑊 2
𝑘 [𝜈 − 𝑘]

. (2.26)
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The above formula defines the DFT of the signal whose DST is as close as possible to

DST𝑧[𝑛, 𝑘] in the LSE sense. Consequently, computation of the discrete LSE inverse

DST can be given according to Algorithm 1, which has computational complexity of

order 𝑂(𝑁2 log𝑁).

Algorithm 1 The LSE discrete inverse DST

1: for 𝑘 = −𝑁/2 to 𝑁/2 − 1 do
2: compute the FFT of the following signal:

𝑍𝑊 [𝜈 + 𝑘, 𝑘] = FFT𝑛→𝜈 {DST𝑧[𝑛, 𝑘]}

3: compute 𝑌 [𝜈] according to (2.26)
4: end for

5: compute the Inverse FFT of 𝑌 [𝜈]:

𝑦[𝑛] = IFFT𝜈→𝑛 {𝑌 [𝜈]}

2.3.1 Information redundancy

The DST of a finite-energy sequence of size 𝑁 is a linear transformation from the

space 𝐿2
(︀
C𝑁
)︀
to the space 𝐿2

(︀
C𝑁×𝑁

)︀
. The transformation matrix T is of size 𝑁2×𝑁

with a rank equal to 𝑁 . Accordingly, the DST is a one-to-one transform but not a

cover of 𝐿2
(︀
C𝑁×𝑁

)︀
. Each row of T is a vector of size 1 ×𝑁 representing the Fourier

kernel windowed by a Gaussian function according to:

𝑤𝑖 =

[︂
1√

2𝜋𝜎[𝑘]
exp

(︂−(𝑛−𝑚)2

2𝜎2[𝑘]

)︂
exp

(︂
−𝑖2𝜋𝑚 𝑘

𝑁

)︂]︂

𝑚=0,··· ,𝑁−1

. (2.27)

The matrix T can be written now in the following form:

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑤1

𝑤2

...

𝑤𝑁2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.28)
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Since the rank of T is 𝑁 , recovering the vector x by using (2.20) is an overdetermined

problem: x can be recovered using only 𝑁 elements of the vector S corresponding

to any 𝑁 independent rows of the matrix T. To determine these rows, the rank-

revealing QR factorization (RRQRF) method or the singular value decomposition

(SVD) can be employed. However, because the size of T grows fast with 𝑁 , the

previous algorithms are very expensive in terms of computation. Alternatively, we

propose a fast method that searches for the semi-orthogonal row vectors of T, which

we define as those having the minimum dot products. Since each of these vectors has

a Gaussian envelope, as evident from (2.27), it is possible to define an effective time

width (ETW), denoted by 𝐵𝑡[𝑘] and given in time samples, to refer to the significant

part of the Gaussian envelope. This width is set according to an arbitrary attenuation

in the envelope amplitude equal to 10 log10(𝛼) dB, that is 𝐵𝑡[𝑘] = 2
⌊︁√︀

2 log(𝛼)𝜎[𝑘]
⌋︁
,

where 𝛼 is a dimensionless positive parameter to control the value of 𝐵𝑡[𝑘]. Let us

consider now two rows of T associated to the same frequency bin (say 𝑘0) and to

different time samples (say 𝑛𝑖 and 𝑛𝑗), for their dot product to be negligent, their

Gaussian envelopes should not overlap within the relative ETWs; hence, they should

be shifted in time by at least |𝑛𝑖−𝑛𝑗| = 𝐵𝑡[𝑘0]+1 samples. According to the previous

relation, for each frequency bin, a set of semi-orthogonal vectors can be determined.

Similarly, at each time sample, a set of semi-orthogonal vectors can be identified

starting from the following dot product:

𝑤𝑖 · 𝑤𝑗 =
1

𝑁

(︀
𝑊 𝑖 ·𝑊 𝑗

)︀
, (2.29)

where 𝑊 𝑖 and 𝑊 𝑗 are the DFTs (over 𝑚) of 𝑤𝑖 and 𝑤𝑗, respectively. The DFT of

the vector in (2.27) is given by

𝑊 𝑖 =

[︂
exp

(︀
−2𝜋2(𝑘 + 𝜈)2𝜎2[𝑘]

)︀
exp

(︂
−𝑖2𝜋𝑛𝑘 + 𝜈

𝑁

)︂]︂

𝜈=−𝑁/2,··· ,𝑁/2−1

. (2.30)

It is plain to see that𝑊 𝑖 has a Gaussian envelope with a standard deviation 1/(2𝜋𝜎[𝑘]),

thus, and as for 𝑤𝑖, an effective frequency width (EFW) given in frequency samples
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can be defined as 𝐵𝑓 [𝑘] = 2𝑁
⌊︁√︀

log(𝛼)/ (𝜋𝜎[𝑘])
⌋︁
in order to isolate the significant

part of this envelop. Now, any two vectors associated to different frequency bins

(say 𝑘𝑖 and 𝑘𝑗) are regarded semi-orthogonal if their DFTs have non-overlapping

EFWs, which is satisfied when the spectral distance between their envelopes is at

least (𝐵𝑓 [𝑘𝑖] +𝐵𝑓 [𝑘𝑗])/2 + 1 frequency samples. By means of the procedure described

above, the semi-orthogonal row vectors of T can be easily identified. The parameter

𝛼 controls the number of these vectors; by increasing it, the dot products between

the vectors reduce and also the possibility that some of them are linear dependent.

But on the other hand, exaggeration with the value assigned to 𝛼 makes the number

of obtained vectors less than the rank of T. The suggested working methodology is

to try some values around 𝛼 = 2, then the one that provides a number of vectors

equal to or slightly larger than 𝑁 (i.e., few linearly dependent vectors) is selected.

The remaining vectors are discarded from T, and the resulting matrix is denoted by

Tf. It is important to note that this matrix is signal-independent, hence constructed

only once. Let Sf be the ST matrix whose elements are those corresponding to the

rows of Tf, then the vector x can be synthesized from Sf according to

x = Tf
+Sf. (2.31)

2.3.2 Examples

Example 1: signal separation

Consider a signal composed of seven Gaussian components according to

𝑥(𝑡) =
7∑︁

𝑛=1

exp

[︃
−𝜋
(︂
𝑡− 𝑡𝑛
𝑇

)︂2
]︃

exp (𝑖2𝜋𝑓𝑛(𝑡− 𝑡𝑛)) (2.32)

where 𝑇 = 12, 𝑡1 = 𝑡2 = 64, 𝑡3 = 𝑡4 = 176, 𝑡5 = 𝑡6 = 𝑡7 = 120, 𝑓1 = 𝑓3 = 0.17,

and 𝑓2 = 𝑓4 = 0.35, 𝑓5 = 0.225, 𝑓6 = 0.4 and 𝑓7 = 0.07. The signal is sampled with

unitary sampling frequency and the number of signal samples is 𝑁 = 256. The task is

to separate the Gaussian atom associated to 𝑡1 and 𝑓1 from the composite signal 𝑥(𝑡).
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(a): TFR (example 1)
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(b): Mask (example 1)
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(c): TFR (example 2)
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(d): Mask (example 2)

Figure 2-2: Examples of TF filtering through the ST. Magnitude of STs of two test
signals in (a) and (c). Corresponding binary masks in (b) and (d).

For this purpose, the DST of 𝑥(𝑡) is first computed using a Gaussian observation

window with a standard deviation defined as 𝜎[𝑘] = 1/ (0.1 + 0.3|𝑘|/𝑁). Then, a

binary mask is designed to pass the desired part of the representation and nullify the

undesired one; finally, a filtered signal is retrieved from the masked representation

through a designated inverting method. The performance of filtering is quantified in

terms of the TF-MSE (MSETF), which is defined as

MSETF =
1

𝑁2

𝑁−1∑︁

𝑛=0

𝑁
2
−1∑︁

𝑘=−𝑁
2

⃒⃒
DST0[𝑛, 𝑘] −DST𝑥𝑓

[𝑛, 𝑘]
⃒⃒2
, (2.33)

with DST0[𝑛, 𝑘] and DST𝑥𝑓
[𝑛, 𝑘] representing the masked representation and the DST

of a signal 𝑥𝑓 [𝑛] synthesized using the modified representation, respectively. We use

also in the evaluation the time-domain MSE computed between the desired time series
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𝑥0[𝑛] and the one obtained by filtering 𝑥𝑓 [𝑛]:

MSET =
1

𝑁

𝑁−1∑︁

𝑛=0

|𝑥0[𝑛] − 𝑥𝑓 [𝑛]|2 . (2.34)

The magnitude of the DST of the analyzed signal and the binary filter are displayed

in (a) and (b) of Fig. 2-2.

Example 2: noise reduction

In this example we consider the following chirp:

𝑥(𝑡) = exp

[︂
𝑖

(︂
8𝜋𝑡− 𝜋(𝑡− 8)3

72

)︂]︂
. (2.35)

The sampling frequency is 10 Hz and the number of samples is 𝑁 = 256. Additive

white Gaussian noise (AWGN) is added to the noiseless signal at signal-to-noise ratio

(SNR) equal to 10 dB. The DST of the analyzed signal is computed using a Gaussian

observation window with the same standard deviation as in the previous example.

The DST of the noisy signal is filtered with a binary mask, then a filtered signal is

synthesized from the masked TFR. The criterion used to define the pass-region of

the binary filter is: |DST𝑥𝑛 [𝑛, 𝑘]|
⧸︀
max (|DST𝑥𝑛 [𝑛, 𝑘]|) > 0.6, where DST𝑥𝑛 [𝑛, 𝑘] is

the DST of the noisy signal. The quality of denoising is quantified by using MSETF

and MSET, defined in the previous example. The magnitudes of DST𝑥𝑛 [𝑛, 𝑘] and the

binary filter are displayed in (c) and (d) of Fig. 2-2.

Results

The results of MSETF and MSET by using different inverting methods are reported

in Table 2.1. These results show that the LSE discrete IST given by Algorithm 1

provides the minimum errors, outperforming all the other methods, at least for the

two considered examples. Also, by increasing the size of the vector Sf (i.e., by reducing

𝛼), the errors of the discrete IST in (2.31) decrease. This result is explained by the

fact that the signal is synthesized from a filtered TFR, thus by incorporating more
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Example 1 Example 2

Algorithm MSETF MSET MSETF MSET

FIST (2.13) 29 × 10−6 8.6 × 10−5 0.012 0.28
TIST (2.14) 26 × 10−6 14 × 10−5 0.01 0.32

LSE IST (Algorithm 1) 24 × 10−6 5.7 × 10−5 0.008 0.24
IST in (2.31) (𝛼 = 2) 60 × 10−6 73 × 10−5 0.017 0.43
IST in (2.31) (𝛼 = 1.5) 27 × 10−6 6 × 10−5 0.01 0.3

Table 2.1: MSETF and MSET of two signals synthesized from modified STs through
selected inverting algorithms.

samples into the vector Sf, a signal closer to the theoretical one in the LSE sense is

obtained. With 𝛼 = 2, the vector Sf has 283 elements (roughly equal to 𝑁), while

with 𝛼 = 1.5 the size of this vector increases to 485 elements (less than 2𝑁). Note

that with 𝛼 = 1.5, the errors of the IST in (2.31) are close to or less than those of

the FIST and the TIST. The locations of the DST coefficients that constitute the

vector Sf are independent from the analyzed signal, depending only on the employed

set of windows (recall that the matrix T is signal-independent). These locations can

be stored and used with other signals.

2.4 Controlled-coverage discrete S-transform

2.4.1 Limitations of the uniformly sampled ST

We explained in the previous sections how the ST uniquely combines the appealing

characteristics of the STFT and the WT. However, sampling the continuous ST with

a uniform TF lattice according to (2.12) or (2.11) leads to a discrete TFR with huge

amount of redundant information, and, furthermore, it obliges the analysis of as

many frequencies as time slots, which is a major inconvenience when dealing with

large datasets, requiring computation of 𝑁 × 𝑁 TF coefficients. Unlike the STFT

and the WT, developing efficient sampling schemes for the ST is a topic that has

not been explored enough and needs more research in our opinion. In this context,

Stockwell in [3] and Brown et al. in [4] presented dyadically sampled one-to-one

DSTs. The core idea is based on partitioning the signal spectrum into non-overlapping
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subbands whose bandwidths double from each subband to the next one. The time-

domain signals carrying these subbands are sampled at the Nyquist rate, meaning

that the rate is also doubled from one subband signal to the next one. To divide

the spectrum this way, non-overlapping boxcar functions are used in [3], whereas in

[4], truncated non-overlapping Gaussian windows are employed for their improved

time localization. Over-redundancy of the TF information provided by the ST is

also recognized in [75]. The authors therein proposed a harmonic sampling scheme

tailored for power applications. Because of the rigid manner in which they partition

the frequency domain, all the previous transforms are characterized by having low

spectral resolution (i.e., they have a low Q-factor, as explained later), which limits

their effectiveness in processing signals of clear oscillatory behavior, such as audio,

frequency-modulated, and some biomedical signals, as is the case with the dyadic

WT. To process such signals, we are indeed interested in a transform that allows for

a finer frequency analysis, where the spectral resolution increases more gradually. To

the best of our knowledge, such a DST has not been developed yet.

Our main contribution in the coming sections is the construction of a DST with a

controllable covering of the TF domain. By means of the proposed transform, the fre-

quency domain is divided into subbands through asymmetric raised-cosine windows

whose bandwidths grow progressively but in a fully controllable manner. That is,

two parameters are introduced in the developed transform: one defines the size of the

narrowest frequency window, while the second controls the relative frequency spacing

between two successive windows. The time domain is sampled non-uniformly in ac-

cordance with the Nyquist Theorem, meaning that each subband channel has its own

data rate, which is equivalent to the double-sided bandwidth of the respective parti-

tioning window. With this level of control on its sampling scheme, the presented DST

can be made a dyadic transform, and by choosing particular parameter settings, it can

provide spectral resolution as high as desired. This transform requires low computa-

tional resources and produces a modest number of TF coefficients, comparable to the

number of signal samples. Moreover, the windows by which the frequency domain is

partitioned have unitary composite amplitude, making the proposed transform easily
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exp
(
−i2πnk0

N

)
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[n]

x[n] DSTx[n, k0]

Figure 2-3: Filter-based representation of one voice provided by the DST. �̄�𝑘0 [𝑛] repre-
sents the utilized window up-converted by the exponential modulator exp (𝑖2𝜋𝑛𝑘0/𝑁).

and exactly invertible through a simple method, which resembles the overlap addition

(OLA) algorithm used for inverting the STFT.

2.4.2 The ST as a filter bank

Fixing the frequency index to 𝑘0, the voice in (2.11) may be expressed using the

circular convolution operator according to:

DST𝑥[𝑛, 𝑘0] =
𝑁−1∑︁

𝑚=0

𝑥[𝑚]𝑤𝑘0 [𝑛−𝑚] exp

[︂
𝑖2𝜋

(𝑛−𝑚)𝑘0
𝑁

]︂
exp

(︂
−𝑖2𝜋𝑛𝑘0

𝑁

)︂

=

[︂
𝑥[𝑛] ~ 𝑤𝑘0 [𝑛] exp

(︁
𝑖2𝜋

𝑛𝑘0
𝑁

)︁]︂
exp

(︁
− 𝑖2𝜋

𝑛𝑘0
𝑁

)︁
.

(2.36)

The complex exponential modulator exp (𝑖2𝜋𝑛𝑘0/𝑁) up-converts the spectral re-

sponse of the analysis window, centering it at the frequency 𝑘0, to act upon the

analyzed signal as a passband filter. The result of this filtering operation is multi-

plied by a phase factor, which performs the necessary phase corrections, returning

absolutely referenced phase information. Hence, the DST in (2.11) may be looked

upon as a bank of digital filters in which each channel isolates one out of 𝑁 uniformly

spaced spectral subbands, and the output of each filter is phase-corrected, as shown

in Fig. 2-3. The fact that these filters are nonidentical, but have bandwidths depen-

dent on the analyzed frequencies, provides non-uniform TF resolution, distinguishing

this interpretation from that of the STFT. This system of passband filters covers the

signal spectrum excessively, where the number of output channels (or voices) is equal
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to the signal size 𝑁 . Moreover, the rates of the voices are identical and equal to the

input rate, despite the fact that they have different bandwidths, in a clear departure

from the uncertainty principle. With this uniform sampling lattice, the DST pro-

vides over-redundant TF information and requires expensive computational power,

which overshadows its other attractive features and poses the main barrier to more

widespread use of this transform.

Besides identifying the source of information redundancy, the previous filter-bank

interpretation creates a roadmap to designing efficient sampling schemes for the ST.

Namely, to address the aforementioned shortcomings, the filter bank should split the

Fourier analysis into subbands with bandwidths that increase gradually from one

voice to the next one in order to retain progressive TF resolution. These subbands

should cover the signal spectrum entirely to guarantee that the transform is exactly

invertible, but should not do so excessively to limit the information redundancy, hence

also the computational complexity. At the outputs of these filters, the signal rates

should not be identical, but rather proportional to the corresponding bandwidths,

where a lower bound on the rate is imposed by the Nyquist Theorem. According to the

previous considerations, a one-to-one DST, as an example, can be constructed through

a filter bank whose channels are bandlimited with non-overlapping bandwidths and

the output of each is critically sampled at the Nyquist rate, and if the bandwidth

doubles as the channel center frequency increases, then the DST will sample the TF

domain dyadically.

Stockwell in [3] develops a discrete orthonormal ST (DOST) with a dyadic sam-

pling scheme. This transform is presented as a projection of the input time series

onto basis functions constructed by linear combinations of the Fourier basis in non-

overlapping frequency bands whose sizes double from one band to the next one. We

shall show explicitly how this DOST results from the filter bank interpretation pre-

viously presented. If we let 𝑤𝑘0 [𝑛] in (2.36) be a filter with a rectangular spectral

response such that 𝑊𝑘0 [𝜈] =
√
𝛽 for 𝜈 ∈ [−𝛽0/2, 𝛽0/2 − 1] and zero otherwise, it
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follows that:

𝑤𝑘0 [𝑛] exp

(︂
𝑖2𝜋

𝑛𝑘0
𝑁

)︂
=

𝑘0+𝛽0/2−1∑︁

𝜈=𝑘0−𝛽0/2

1√
𝛽0

exp
(︁
𝑖2𝜋

𝜈𝑛

𝑁

)︁
. (2.37)

Based on (2.36), the voice 𝑘0 can be given by:

DST𝑥[𝑛, 𝑘0] =
𝑁−1∑︁

𝑚=0

𝑥[𝑚]

𝑘0+𝛽0/2−1∑︁

𝜈=𝑘0−𝛽0/2

1√
𝛽0

exp
(︁
𝑖2𝜋

𝜈

𝑁
(𝑛−𝑚)

)︁
exp

(︂
−𝑖2𝜋𝑛𝑘0

𝑁

)︂
. (2.38)

Since the voice in (2.38) is bandlimited to [−𝛽0/2, 𝛽0/2− 1] in the frequency domain,

it can be decimated in time by 𝑁/𝛽0 without causing aliasing, equating the data rate

with the Nyquist rate, which results in:

DST↓𝑥[𝑛, 𝑘0] =
𝑁−1∑︁

𝑚=0

𝑥[𝑚]

𝑘0+𝛽0/2−1∑︁

𝜈=𝑘0−𝛽0/2

1√
𝛽0

exp

(︂
𝑖2𝜋𝜈

(︂
𝑛

𝛽0
− 𝑚

𝑁

)︂)︂
exp

(︂
−𝑖2𝜋𝑛𝑘0

𝛽0

)︂
.

(2.39)

Stockwell divides the frequency domain into non-overlapping subbands using the for-

mulas in [3, (7-10)] by which the center frequency of a subband and its bandwidth

are related by: 𝑘0/𝛽0 = 3/2. Inserting this relation between 𝑘0 and 𝛽0 into (2.39), we

see that DST↓𝑥[𝑛, 𝑘0] is the inner products between the input time series and basis

functions defined as:

𝑆[𝑛,𝑘0,𝛽0][𝑚] =
1√
𝛽0

exp (𝑖𝜋𝑛)

𝑘0+𝛽0/2−1∑︁

𝜈=𝑘0−𝛽0/2

exp

(︂
𝑖2𝜋𝜈

(︂
𝑚

𝑁
− 𝑛

𝛽0

)︂)︂
, (2.40)

where 1/
√
𝛽0 is a normalization factor to insure orthonormality. The functions in

(2.40) are identical to those presented in [3, (15)]. We conclude that Stockwell DOST

is indeed a special configuration of the previously presented filter bank by using

rectangular filters that divide the signal spectrum into non-overlapping bandlimited

subbands in a dyadic manner, and at the output of each filter, the signal is down-

sampled such that it is at the Nyquist rate.

Computing the DOST in (2.39) through inner products is less efficient compared
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with an implementation that makes use of the Fast FT (FFT) algorithm. Namely,

when 𝑊𝑘0 [𝜈] is strictly bandlimited to a bandwidth 𝛽0, the voice 𝑘0 can be given

according to

DST↓𝑥[𝑛, 𝑘0] = IDFT
{︁
𝑋𝑊𝑘0

[𝜈]
}︁
, (2.41)

where IDFT{·} is the inverse DFT operator, usually implemented by the FFT algo-

rithm, and 𝑋𝑊𝑘0
[𝜈] is a slice of the spectrum centered at the frequency 𝑘0 bandlimited

to [−𝛽0/2, 𝛽0/2 − 1] and windowed by 𝑊𝑘0 [𝜈], that is 𝑋𝑊𝑘0
[𝜈] = 𝑋[𝜈 + 𝑘0]𝑊𝑘0 [𝜈],

where 𝜈 ∈ [−𝛽0/2, 𝛽0/2 − 1]. The voice obtained using (2.41) is at the Nyquist rate,

but it can be easily interpolated in time by widening the spectral portion 𝑋𝑊𝑘0
[𝜈]

through zero-padding before performing the IDFT operation. It is clear now that

the time-domain data rate of the DST can be increased easily, and in the extreme

case, each voice can be fully interpolated in time by zero-padding the corresponding

spectral subband until it has the same length as the input sequence. Because the win-

dows proposed by Stockwell for partitioning the spectrum are rectangular, they have

compact supports in frequency, but, via the uncertainty principle, they are poorly

localized in time (they oscillate as sinc functions). In [4], the spectrum is partitioned

in the same way as with the DOST but by using truncated Gaussian functions instead

of boxcar windows in order to improve the time localization of the transform basis

functions, resulting in another one-to-one DST.

2.4.3 Controlled spectral partitioning scheme

Because of the rigid and uncontrollable manner by which it decomposes the spectrum,

the dyadic DST provides a TF representation with poor frequency resolution (it has a

low Q-factor, as explained later), which makes it of limited effectiveness for processing

signals with clear oscillatory behavior. Indeed, in many practical applications, we

require a TF transform by which the spectral decomposition is controllable, thus can

be made denser compared with what the dyadic DST provides.

For the sake of argument, consider the positive semi-axis of a generic continuous

variable. We may use a real parameter 𝛾 > 1 to segment this domain indefinitely
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Figure 2-4: Progression of the segment size 𝐿𝑐(𝜄, 𝑗0) (in logarithmic scale) as a function
of 𝜄. Increasing 𝛾 leads to faster growth in the segment size.

into partitions of increasing sizes as follows. We start by defining for each segment a

positive quantity, we call it identity, defined as 𝑗𝜄 = 𝑗0 + 𝜄− 1, where 𝑗0 is a positive

constant and the parameter 𝜄 is indicative of the segment index. That is, the identity

of the first segment is 𝑗0, the identity of the second segment is 𝑗0 + 1, and so on and

so forth. We delimit these partitions in the continuous domain such that the left-

and right-hand edges of a generic partition are at the coordinates 𝐷𝐿(𝜄, 𝑗0) = 𝛾𝑗𝜄−1

and 𝐷𝑅(𝜄, 𝑗0) = 𝛾𝑗𝜄 , respectively. It follows from the last two relations that the

width of a generic segment is 𝐿(𝜄, 𝑗0) = 𝛾𝑗𝜄−1(𝛾 − 1) and its midpoint is at the

coordinate 𝐷𝐶(𝑗𝜄) = 𝛾𝑗𝜄−1(𝛾 + 1)/2 (note that both are dependent on the segment

identity). Clearly, the width 𝐿(𝜄, 𝑗0) grows exponentially as 𝜄 increases, where the

speed of growth is governed by the parameter 𝛾. With a large 𝛾, segment 𝜄 will have

a size significantly wider than that of the segment 𝜄 − 1, while as 𝛾 approaches 1,

the difference in size becomes smaller. For example, when 𝛾 = 2, the width doubles

from one partition to the next one, and by using a smaller 𝛾, we achieve a finer

segmentation of the domain, as illustrated in Fig. 2-4. Furthermore, the parameter

𝑗0 controls the size of the first segment (whose identity is 𝑗0). If we ask that the first

segment has a particular size, say 𝐿0, we set 𝑗0 = 1 + log𝛾 (𝐿0/(𝛾 − 1)). Note that
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every two successive partitions overlap only at their common border, meaning that

𝐷𝑅(𝜄, 𝑗0) = 𝐷𝐿(𝜄+ 1, 𝑗0).

The previous scheme offers features that are particularly desirable for decomposing

the spectrum by the DST. Namely, the midpoint of a partition 𝐷𝐶(𝜄, 𝑗0) may be

looked upon as the center frequency of a voice, where the width 𝐿(𝜄, 𝑗0) is seen as

the bandwidth of this voice. To make this scheme return frequency indices, we shall

modify the previous formulas by restricting them to produce integer values as follows.

The signal spectrum is partitioned into subbands, each of which is assigned a unique

positive quantity called identity, which we now define it as

𝑗𝜄 = 𝑗0 + |𝜄| − 1. (2.42)

As before, 𝛾 is a parameter larger than 1 to control the frequency spacing between the

subbands, and 𝜄 is a parameter used for indexing these subbands. The value of 𝜄 is

positive when the corresponding subband spans positive frequencies, and vice versa,

as explained later. The parameter 𝑗0 is a positive constant, determined such that the

first subband contains a predefined number of frequency samples 𝑁0:

𝑗0 = 1 + log𝛾

(︂
𝑁0 − 1

𝛾 − 1

)︂
. (2.43)

Let us assume for now that 𝜄 > 0, considering only the positive side of the spectrum.

The frequency indices corresponding to the lower and upper edges of a generic subband

are respectively given by

𝜈𝐿(𝜄, 𝑗0) = Round
(︀
𝛾𝑗𝜄−1

)︀
− 𝜈0, 𝜄 > 0,

𝜈𝑅(𝜄, 𝑗0) = Round
(︀
𝛾𝑗𝜄
)︀
− 𝜈0, 𝜄 > 0,

with 𝜈0 being defined as 𝜈0 = Round (𝛾𝑗0−1). The previous formulas are unnumbered,

as more general forms will be given later. Note that 𝜈𝐿(𝜄, 𝑗0) and 𝜈𝑅(𝜄, 𝑗0) are modified

forms of 𝐷𝐿(𝜄, 𝑗0) and 𝐷𝑅(𝜄, 𝑗0), respectively, to ensure that the lower edge of the first

subband is aligned with the frequency zero. The center frequency of a subband is
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given as

𝜈𝐶(𝜄, 𝑗0) = Round

(︂
𝜈𝐿(𝜄, 𝑗0) + 𝜈𝑅(𝜄, 𝑗0)

2

)︂
. (2.44)

The bandwidth of a subband is defined as the difference between its upper and lower

edges:

𝛽(𝜄, 𝑗0) = 𝜈𝑅(𝜄, 𝑗0) − 𝜈𝐿(𝜄, 𝑗0). (2.45)

Note that the number of frequency samples covered by a subband is

𝑁𝛽(𝜄, 𝑗0) = 𝛽(𝜄, 𝑗0) + 1. (2.46)

The number of subbands should ensure a full coverage of the signal spectrum;

this number can be derived as follows. Let us assume that the upper edge of the last

subband is aligned with the highest frequency of the analyzed signal. Then, for this

subband, whose identity is denoted herein by 𝑗𝑚𝑎𝑥, we have that: 𝛾
𝑗𝑚𝑎𝑥 − 𝜈0 = 𝑁/2.

From this relation, it follows that: 𝑗𝑚𝑎𝑥 = log𝛾 (𝑁/2 + 𝜈0). However, depending on

the value of 𝛾 and the number of samples 𝑁 , it might not be possible to achieve

a spectral decomposition satisfying the previous relation. Therefore, it suffices to

formulate a condition requiring the signal highest frequency to fall within the last

subband. It is straightforward to see that this condition is always satisfied if the

identity of the last subband is given by 𝑗0 + Round (𝑗𝑚𝑎𝑥 − 𝑗0) + 1, which implies,

using (2.43), that the positive spectrum is partitioned into subbands the number of

which is given by

𝐽 = Round

{︃
log𝛾

[︂
𝛾 − 1

𝑁0 − 1

(︂
𝑁

2
+ 𝜈0

)︂]︂}︃
+ 1. (2.47)

Because of the implicit periodicity in the DFT-domain, one can see that the last

subband overlaps into the next DFT-period, causing what is known as self-aliasing,

which is a familiar phenomenon in discrete-transform analysis. Once the positive

spectrum is partitioned, the negative part is segmented likewise into subbands that

mirror those spanning the positive spectrum. That is, for a subband centered at a
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generic frequency 𝜈𝐶(𝜄, 𝑗0) covering the band [𝜈𝐿(𝜄, 𝑗0), 𝜈𝑅(𝜄, 𝑗0)], there is a counterpart

centered at −𝜈𝐶(𝜄, 𝑗0) spanning the frequencies [−𝜈𝑅(𝜄, 𝑗0),−𝜈𝐿(𝜄, 𝑗0)]. To ensure

the foregoing, these subbands are indexed by 𝜄 ∈ {−𝐽, . . . ,−1, 1, . . . , 𝐽}, where the

quantities 𝜈𝐿(𝜄, 𝑗0), and 𝜈𝑅(𝜄, 𝑗0) can be given now general definitions valid for positive

and negative values of 𝜄, according to

𝜈𝐿(𝜄, 𝑗0) = sgn(𝜄)
[︀
Round

(︀
𝛾𝑗𝜄+𝑜

)︀
− 𝜈0

]︀
, (2.48)

𝜈𝑅(𝜄, 𝑗0) = sgn(𝜄)
[︀
Round

(︀
𝛾𝑗𝜄−𝑜−1

)︀
− 𝜈0

]︀
, (2.49)

where sgn(·) is the signum function, and

𝑜 =

⎧
⎪⎨
⎪⎩

0, 𝜄 ∈ {−𝐽, . . . ,−1}

−1, 𝜄 ∈ {1, . . . , 𝐽}.
(2.50)

Note that (2.44)-(2.46) are valid for positive and negative values of 𝜄. The parameters

𝑗0 and 𝜄 characterize a subband completely, since they determine its center, lowest,

and highest frequencies by application of (2.44), (2.48), (2.49). Overall, the signal

spectrum is divided into 2𝐽 subbands, which progressively increase in size starting

from a predefined bandwidth in a manner tuned by 𝛾.

2.4.4 Spectral windowing

The scheme explained above divides the signal spectrum into segments, where contigu-

ous subbands overlap only at their common edge. These frequency slices determine

the support regions of the filters that constitute the DST filter bank. A weighting

function (or a window) should be applied to each segment in order to shape the fre-

quency response of the corresponding filter. The DOST of Stockwell, for example,

uses rectangular windows, while, alternatively, truncated Gaussian functions are em-

ployed in [16]. The adopted weighting function defines the spectral response of the

filter, and thus also its impulse response and selectivity in the time domain. Here, we

propose to use asymmetric raised-cosine windows as apodization functions, defined
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Frequency Index

Figure 2-5: Prototype of the proposed asymmetric raised-cosine window.

by the following piecewise function:

𝑊[𝜄,𝑗0,𝛼][𝜈] =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.5
[︀
1 + cos

(︀
𝜋
2𝛼

(𝑡1(𝜈) + 𝛼− 1)
)︀]︀
,

−𝑁𝛽(𝜄,𝑗0)−𝑇1(𝜄,𝑗0,𝛼)

2
+ 1 ≤ 𝜈 ≤ −𝑁𝛽(𝜄,𝑗0)+𝑇1(𝜄,𝑗0,𝛼)

2

1,
−𝑁𝛽(𝜄,𝑗0)+𝑇1(𝜄,𝑗0,𝛼)

2
< 𝜈 <

𝑁𝛽(𝜄,𝑗0)−𝑇2(𝜄,𝑗0,𝛼)

2

0.5
[︀
1 + cos

(︀
𝜋
2𝛼

(𝑡2(𝜈) + 𝛼− 1)
)︀]︀
,

𝑁𝛽(𝜄,𝑗0)−𝑇2(𝜄,𝑗0,𝛼)

2
≤ 𝜈 ≤ 𝑁𝛽(𝜄,𝑗0)+𝑇2(𝜄,𝑗0,𝛼)

2
− 1,

(2.51)

where 𝑁𝛽(𝜄, 𝑗0), given in (2.46), is assumed to be an odd number in the above defini-

tion, and 𝛼 is the roll-off factor, which is assigned a value between 0 and 1. 𝑇1(𝜄, 𝑗0, 𝛼)

and 𝑇2(𝜄, 𝑗0, 𝛼) are the widths (in frequency samples) of transition bands, and 𝑡1(𝜈)

and 𝑡2(𝜈) are auxiliary variables defined according to:

𝑡1(𝜈) = 1 +
𝛼(1−𝑁𝛽(𝜄,𝑗0)−2𝜈)

𝑇1(𝜄,𝑗0,𝛼)−1
,

−𝑁𝛽(𝜄,𝑗0)−𝑇1(𝜄,𝑗0,𝛼)

2
+ 1 ≤ 𝜈 ≤ −𝑁𝛽(𝜄,𝑗0)+𝑇1(𝜄,𝑗0,𝛼)

2
,

(2.52)

𝑡2(𝜈) = 1 +
𝛼(1−𝑁𝛽(𝜄,𝑗0)+2𝜈)

𝑇2(𝜄,𝑗0,𝛼)−1
,

𝑁𝛽(𝜄,𝑗0)−𝑇2(𝜄,𝑗0,𝛼)

2
≤ 𝜈 ≤ 𝑁𝛽(𝜄,𝑗0)+𝑇2(𝜄,𝑗0,𝛼)

2
− 1.

(2.53)
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The transition bands are defined as:

𝑇1(𝜄, 𝑗0, 𝛼) =

⎧
⎪⎨
⎪⎩
𝑇𝑅(𝜄, 𝑗0, 𝛼), 𝜄 ∈ {−𝐽, . . . ,−1}

𝑇𝐿(𝜄, 𝑗0, 𝛼), 𝜄 ∈ {1, . . . , 𝐽},
(2.54)

𝑇2(𝜄, 𝑗0, 𝛼) =

⎧
⎪⎨
⎪⎩
𝑇𝐿(𝜄, 𝑗0, 𝛼), 𝜄 ∈ {−𝐽, . . . ,−1}

𝑇𝑅(𝜄, 𝑗0, 𝛼), 𝜄 ∈ {1, . . . , 𝐽},
(2.55)

where

𝑇𝑅(𝜄, 𝑗0, 𝛼) =

⎧
⎪⎨
⎪⎩
𝑇 (𝜄, 𝑗0, 𝛼), 𝑇 (𝜄, 𝑗0, 𝛼) > 1

0, otherwise

(2.56)

𝑇𝐿(𝜄, 𝑗0, 𝛼) =

⎧
⎪⎨
⎪⎩
𝑇𝑅(𝜄, 𝑗0, 𝛼), |𝜄| = 1

𝑇𝑅 (|𝜄| − 1, 𝑗0, 𝛼) , otherwise

(2.57)

𝑇 (𝜄, 𝑗0, 𝛼) = 2Round
[︁𝛼

2
(𝑁𝛽(𝜄, 𝑗0) − 1)

]︁
+ 1. (2.58)

Note that our definitions of 𝑇𝑅(𝜄, 𝑗0, 𝛼) and 𝑇𝐿(𝜄, 𝑗0, 𝛼) ensure that both are odd

numbers so as to equate the window amplitude with 0.5 at 𝜈 = ±1
2

(𝑁𝛽(𝜄, 𝑗0) − 1),

while 𝑇1(𝜄, 𝑗0, 𝛼) and 𝑇2(𝜄, 𝑗0, 𝛼) are defined as in (2.54) and (2.55), respectively, be-

cause we require that the negative side of the spectrum be segmented by windows

that mirror their counterparts on the positive side. The roll-off factor controls the

lengths of transition bands, hence measuring the bandwidth occupied by 𝑊[𝜄,𝑗0,𝛼][𝜈]

beyond the fundamental width determined by the spectral partitioning scheme pre-

viously presented. For example, when 𝛼 = 0, the proposed window transforms into

an ideal brick-wall filter, which has a sinc-shaped time-domain response with a very

slow decay. Therefore, the presence of transition bands is indeed important to im-

prove the time-domain localization of the transform basis functions. It is important to

notice that, unlike 𝑇𝑅(𝜄, 𝑗0, 𝛼), the length 𝑇𝐿(𝜄, 𝑗0, 𝛼) is defined as a percentage of the

bandwidth of the subband prior to 𝜄, making all the frequency windows asymmetric,

except for the first window and its counterpart on the other side of the spectrum (i.e.,
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Figure 2-6: Comparison between asymmetric raised-cosine window with roll-off factor
equal to 0.5, rectangular window, and truncated Gaussian window in the frequency
and the time domain. Frequency responses in (a). Absolute values of time responses
in (b).

for 𝜄 = ±1). Therefore, based on the proposed scheme for spectral segmentation, it

is always true that 𝑇𝐿(𝜄, 𝑗0, 𝛼) ≤ 𝑇𝑅(𝜄, 𝑗0, 𝛼), hence with larger 𝛾, the asymmetry of

the window becomes more evident. A prototype of the proposed window is shown

in Fig. 2-5. Due to the presence of transition bands, the size of 𝑊[𝜄,𝑗0,𝛼][𝜈] elongates

beyond 𝑁𝛽(𝜄, 𝑗0). Note that 𝑁𝛽(𝜄, 𝑗0) determines the number of frequency samples in

the corresponding window at which it is true that 𝑊[𝜄,𝑗0,𝛼][𝜈] ≥ 0.5. Consequently,

one can see that the windowed subbands overlap, providing an over-complete spectral

coverage. In Fig. 2-6, we compare an asymmetric raised-cosine window with a roll-off

factor equal to 0.5 with a rectangular and truncated Gaussian windows. The spectral

responses of the rectangular and Gaussian windows are confined within the band at

which the amplitude of the asymmetric raised-cosine window equal to or larger than

0.5 to resemble the windows used with the dyadic one-to-one DSTs in [3, 4]. Ob-

serving the impulse responses, we find that even with a moderate value of the roll-off

factor, the proposed window has a fast decay and is better localized in the time do-

main compared with the other two. To account for the presence of transition bands,

the center frequency and the boundaries of a windowed subband should generalize
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those presented in (2.44), (2.48), (2.49), respectively, according to

𝜈𝐶(𝜄, 𝑗0, 𝛼) = Round

(︂
𝜈𝐿(𝜄, 𝑗0, 𝛼) + 𝜈𝑅(𝜄, 𝑗0, 𝛼)

2

)︂
, (2.59)

𝜈𝐿(𝜄, 𝑗0, 𝛼) = sgn(𝜄)
[︀
Round

(︀
𝛾𝑗𝜄+𝑜

)︀
− 𝜈0

]︀
− floor

(︂
𝑇1(𝜄, 𝑗0, 𝛼)

2

)︂
, (2.60)

𝜈𝑅(𝜄, 𝑗0, 𝛼) = sgn(𝜄)
[︀
Round

(︀
𝛾𝑗𝜄−𝑜−1

)︀
− 𝜈0

]︀
+ floor

(︂
𝑇2(𝜄, 𝑗0, 𝛼)

2

)︂
, (2.61)

where we recall (2.50), (2.54), (2.55). The number of frequency samples covered by a

generic subband is now given by

𝑁𝑊 (𝜄, 𝑗0, 𝛼) = 𝑁𝛽(𝜄, 𝑗0) + floor

(︂
𝑇𝐿(𝜄, 𝑗0, 𝛼)

2

)︂
+ floor

(︂
𝑇𝑅(𝜄, 𝑗0, 𝛼)

2

)︂
. (2.62)

2.4.5 DFT-based implementation

The previously explained partitioning scheme offers controlled coverage of the signal

spectrum. Therefore, henceforth, the DST that employs this scheme is referred to

by the controlled-coverage DST (CC-DST). Adopting the notation introduced before,

the CC-DST separates the input signal into 2𝐽 channels, each one carrying a voice

defined similarly to (2.41) according to:

CC-DST𝑥[𝑛; 𝜄, 𝑗0, 𝛼] =
𝑁𝑊 (𝜄, 𝑗0, 𝛼)

𝑁
IDFT

{︁
𝑋𝑊[𝜄,𝑗0,𝛼]

[𝜈]
}︁
, (2.63)

in which 𝑁𝑊 (𝜄, 𝑗0, 𝛼)/𝑁 is a normalization factor, and 𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈] is the spectral seg-

ment confined within the band [𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)] and weighted by 𝑊[𝜄,𝑗0,𝛼][𝜈];

but here, we should differentiate whether the previous band contains an even or odd

number of frequency samples. To explain this, let us consider a complex sinusoid

ℎ[𝑛] = cos(2𝜋𝑓𝑛 + 𝜑) with a frequency 𝑓 that falls within the passband of a generic

subband 𝜄, meaning that we can write 𝑓 = 𝜈𝐶(𝜄, 𝑗0, 𝛼) + ∆𝑓 . To confirm our under-

standing of the CC-DST as a local image of the DFT, we expect to obtain (assuming
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no phase-wrapping problems):

CC-DST𝑥[𝑛; 𝜄, 𝑗0, 𝛼] = 0.5 exp

[︂
𝑖
(︁

2𝜋∆𝑓
𝑛𝑁

𝑁𝑊 (𝜄, 𝑗0, 𝛼)
+ 𝜑
)︁]︂

CC-DST𝑥[𝑛;−𝜄, 𝑗0, 𝛼] = 0.5 exp

[︂
−𝑖
(︁

2𝜋∆𝑓
𝑛𝑁

𝑁𝑊 (𝜄, 𝑗0, 𝛼)
+ 𝜑
)︁]︂

.

To have this result, 𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈] should preserve the complex conjugate symmetry

characterizing the DFT, and thus be defined as following:

𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈] =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑋 [𝜈 + 𝜈𝐶(𝜄, 𝑗0, 𝛼)]𝑊[𝜄,𝑗0,𝛼][𝜈], 𝜄 > 0 or 𝑁𝑊 (𝜄, 𝑗0, 𝛼)

is odd

ShiftR

{︁
𝑋 [𝜈 + 𝜈𝐶(𝜄, 𝑗0, 𝛼) + 1]𝑊[𝜄,𝑗0,𝛼][𝜈], 1

}︁
, otherwise,

(2.64)

where in the above definition, the frequency index belongs to the following range:

𝜈 ∈

⎧
⎪⎨
⎪⎩

[︁
−𝑁𝑊 (𝜄,𝑗0,𝛼)+1

2
, 𝑁𝑊 (𝜄,𝑗0,𝛼)−1

2

]︁
, 𝑁𝑊 (𝜄, 𝑗0, 𝛼) is odd

[︁
−𝑁𝑊 (𝜄,𝑗0,𝛼)

2
, 𝑁𝑊 (𝜄,𝑗0,𝛼)

2
− 1
]︁
, 𝑁𝑊 (𝜄, 𝑗0, 𝛼) is even

(2.65)

and the operator ShiftR {·,𝑚} shifts a generic sequence circularly by 𝑚 locations to

the right. Hence, in simpler words, the sequence 𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈] is a weighted slice of

𝑋[𝜈] confined within the band [𝜈𝐿(𝜄, 𝑗0), 𝜈𝑅(𝜄, 𝑗0)] and applied to it a one-point right

circular shift in case 𝜄 is negative and 𝑁𝑤(𝜄, 𝑗0, 𝛼) is even. The parameters 𝑗0, 𝛾, and

𝛼 give full control on the spectral partitioning scheme and determine, therefore, the

lattice by which the CC-DST samples the TF domain. For example, if we ask that

the subbands do not overlap, we set 𝛼 = 0, and if we additionally require that the

bandwidth of one subband be double that of the one prior to it, we select 𝛾 = 2. The

narrowest bandwidth is specified through the parameter 𝑗0. If we set 𝛾 = 2, 𝛼 = 0,

and 𝑗0 = 1, the CC-DST covers the TF domain as does the DOST of Stockwell.

Reducing 𝛾 allows for a finer segmentation of the spectrum and, as a result, a higher

frequency resolution is achieved. When 𝛾 → 1, the voices returned by the CC-DST

will have, roughly, equal bandwidths (because of rounding, the bandwidths might
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Figure 2-7: Spectral coverage provided by the CC-DST with four different parameter
settings. (a) 𝑁0 = 16, 𝛾 = 2, 𝛼 = 0 (in this case, CC-DST samples the TF domain
dyadically). (b) 𝑁0 = 16, 𝛾 = 2, 𝛼 = 0.8. (c) 𝑁0 = 16, 𝛾 = 1.3, 𝛼 = 0.8 (these values
provide finer spectral decomposition compared with previous cases). (d) 𝑁0 = 64,
𝛾 = 1.0001, 𝛼 = 0.8 (CC-DST in this case acts as STFT).

differ in a few frequency samples), which transforms the CC-DST into a STFT with

the conventional raised-cosine filter. Since 𝛾 must be larger than 1, we may select

𝛾 = 1+1/𝑁 to meet the previous purpose. The IDFT-based implementation in (2.63)

ties up the data rate of each voice with the bandwidth of the corresponding spectral

segment via the Nyquist Theorem. That is, as the partitioning window is exactly

bandlimited, its bandwidth defines the minimum density of time samples required

to represent the respective voice without aliasing. It is simple, however, to change

this data rate and interpolate a voice information through zero-padding 𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈]

before performing the IDFT operation, as previously mentioned. The flexibility of
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the CC-DST is illustrated in Fig. 2-7, which depicts the spectral coverage provided

by this transform with different parameter settings.

2.4.6 Exact reconstruction

The linear relationship between the DST and the DFT implies that the DST is exactly

invertible, which makes it is a valuable tool not only for TF analysis but also synthesis.

As we established before, a voice of the DST is essentially the IDFT of a weighted slice

of the spectrum. Consequently, provided that the weighting windows have nonzero

values, by taking the DFTs of the voices then dividing out the corresponding windows,

the spectral portions that are used in the DST analysis can be exactly recovered.

These segments should be reconnected carefully to synthesize back the spectrum. If

the voices are computed using the entire spectrum, as is the case with the original

uniformly sampled DST, the reconstruction method is further simplified as one voice

is enough to retrieve back the spectrum. As for the CC-DST, the inverting process

is straightforward: all that is required to synthesize the signal spectrum is taking

the DFT of each voice, placing the resulting sequence within the corresponding band

[𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)], then adding up these frames together. From (2.63), we see

that 𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈] results by taking the DFT of CC-DST𝑥[𝑛; 𝜄, 𝑗0, 𝛼]. Once the result is

available, we can construct a signal defined as

�̃�[𝜄,𝑗0,𝛼][𝜈] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋𝑊[𝜄,𝑗0,𝛼]
[𝜈 − 𝜈𝐶(𝜄, 𝑗0, 𝛼)], 𝜈 ∈ [𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)] and

{𝑁𝑤(𝜄, 𝑗0, 𝛼) is odd or 𝜄 > 0}

𝑌𝑊[𝜄,𝑗0,𝛼]
[𝜈 − 𝜈𝐶(𝜄, 𝑗0, 𝛼) − 1], 𝜈 ∈ [𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)] and

𝑁𝑤(𝜄, 𝑗0, 𝛼) is even and 𝜄 < 0

0, otherwise,

(2.66)

where 𝑌𝑊[𝜄,𝑗0,𝛼]
[𝜈] = ShiftR

{︁
𝑋𝑊[𝜄,𝑗0,𝛼]

[𝜈],−1
}︁
(i.e., circularly shifting 𝑋𝑊[𝜄,𝑗0,𝛼]

[𝜈] by 1

position to the left). Clearly, the signal �̃�[𝜄,𝑗0,𝛼][𝜈] can be given equivalently according
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to the following formulation: �̃�[𝜄,𝑗0,𝛼][𝜈] = 𝑋[𝜈]�̃�[𝜄,𝑗0,𝛼][𝜈], where

�̃�[𝜄,𝑗0,𝛼][𝜈] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑊[𝜄,𝑗0,𝛼][𝜈 − 𝜈𝐶(𝜄, 𝑗0, 𝛼)], 𝜈 ∈ [𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)] and

{𝑁𝑤(𝜄, 𝑗0, 𝛼) is odd or 𝜄 > 0}

𝑊[𝜄,𝑗0,𝛼][𝜈 − 𝜈𝐶(𝜄, 𝑗0, 𝛼) − 1], 𝜈 ∈ [𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)] and

𝑁𝑤(𝜄, 𝑗0, 𝛼) is even and 𝜄 < 0

0, otherwise.

(2.67)

Now, if we sum up �̃�[𝜄,𝑗0,𝛼][𝜈] for each 𝜄 at which the CC-DST was computed, we get

𝑌 [𝜈] =
∑︁

𝜄

�̃�[𝜄,𝑗0,𝛼][𝜈] =
∑︁

𝜄

𝑋[𝜈]�̃�[𝜄,𝑗0,𝛼][𝜈]

= 𝑋[𝜈]
∑︁

𝜄

�̃�[𝜄,𝑗0,𝛼][𝜈].
(2.68)

This equation makes clear that, for 𝑌 [𝜈] to be identical to 𝑋[𝜈] within one DFT-

period, the sum of all the overlapping windows �̃�[𝜄,𝑗0,𝛼][𝜈] should add up to unity at

the frequencies −𝑁/2 ≤ 𝜈 ≤ 𝑁/2− 1. If this condition is satisfied, the synthesis pro-

cedure becomes a matter of summing up overlapping sections, each of which results by

taking the DFT of one of the CC-DST voices. The proposed asymmetric raised-cosine

windows are constructed in a way so as to satisfy the previous condition. Namely,

these frequency windows are unitary in their passbands and null in their stopbands,

but they have asymmetric transition bands, which are cosine-tapered sections. For

every two successive windows, the right-hand transition band of the former and the

left-hand transition band of the later are identical in length and sum up to unity. The

procedure described above is the frequency-domain counterpart of the OLA method

[57], which is widely used for inverting the STFT. The difference between the two is

that, with the OLA method, overlapping time-domain frames are used to reconstruct

the input signal, while with the one presented here, the spectrum is retrieved by sum-

ming up overlapping sections and then the time-domain signal is obtained by taking
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Figure 2-8: Variations of the Q-factor of the CC-DST. By reducing 𝛾, Q(𝜄) increases,
but, on the other hand, larger 𝛾 leads to smaller variations in the Q-factor.

the IDFT of the resulting sequence.

2.4.7 Quality-factor and complexity

The main motivation behind developing the CC-DST is to have a low-complexity DST

with high spectral resolution. The Q-factor (i.e., quality factor) of a function, which is

defined as the ratio of its center frequency to its bandwidth, describes quantitatively

the resonance behavior of this function. A TF transform is said to be constant-Q if all

of its voices have the same Q-factor [76]. In the original DST, the employed frequency

window is a Gaussian function with a standard deviation that is proportional to

frequency. Therefore, it is a constant-Q transform, as opposed to the STFT, which is

a constant-bandwidth transform. For the dyadic DSTs presented by Stockwell in [3]

and Brown et al. in [4], the ratio of the center frequency of a voice to its bandwidth is

constant and equal to 3/2 [3, (7-10)]. Accordingly, these two transforms are constant-

Q, but they both have a low and uncontrollable Q-factor, which makes them of limited

effectiveness for processing oscillatory signals. Let us now compute the Q-factor of the

proposed CC-DST. As we previously explained, this transform splits the spectrum

into 2𝐽 subbands, each is weighted by an asymmetric raised-cosine window whose
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frequency support is [𝜈𝐿(𝜄, 𝑗0, 𝛼), 𝜈𝑅(𝜄, 𝑗0, 𝛼)]. We define for this window an effective

bandwidth BW(𝜄, 𝑗0) as the full width at half maximum (FWHM), meaning that it is

the difference between the two frequencies at which the amplitude of the window is

0.5. Clearly, the effective bandwidth of a window (or a voice) is equal to the width of

the band [Round (𝛾𝑗𝜄−1) − 𝜈0,Round (𝛾𝑗𝜄) − 𝜈0] (assuming 𝜄 is positive). To simplify

the calculations, in what follows, we forgo the rounding function. Hence, the effective

bandwidth of a voice is given by

BW(𝜄, 𝑗0) = 𝛾𝑗𝜄−1 (𝛾 − 1) . (2.69)

As for the resonance frequency, we define it as the midpoint of the previous band:

RF(𝜄, 𝑗0) =
1

2
𝛾𝑗𝜄−1 (𝛾 + 1) − 𝛾𝑗0−1. (2.70)

The Q-factor of a CC-DST voice can be given now according to

Q𝛾(𝜄) =
RF(𝜄, 𝑗0)

BW(𝜄, 𝑗0)
=
𝛾|𝜄|−1(𝛾 + 1) − 2

2𝛾|𝜄|−1(𝛾 − 1)
. (2.71)

This formula reveals two important properties of the CC-DST. First, the Q-factor can

be tuned by 𝛾, and the smaller is 𝛾, the larger is Q𝛾(𝜄). Second, the Q-factor is not

constant, but rather increases with 𝜄, which implies that the high-frequency voices

have larger Q-factors than those that resonate at lower frequencies. However, as the

center frequency of the voice increases, the value of 𝛾|𝜄|−1(𝛾 + 1) in the numerator of

Q𝛾(𝜄) becomes much larger than 2, which implies that the growth of Q𝛾(𝜄) at higher-

frequency voices (i.e., those with larger 𝜄) is small. That is, after some voices, the

CC-DST becomes approximately a constant-Q transform. Note that when choosing a

value for 𝛾, there is always a trade-off between having a large Q-factor, which requires

a small 𝛾, and having a transform with rapidly stabilizing Q-factor, which is achieved

through a large 𝛾, but at the expense of lowering the value of Q𝛾(𝜄), as illustrated in

Fig. 2-8.

The CC-DST is implemented based on the DFT, which is usually realized through
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Figure 2-9: Comparison between efficiently sampled DSTs and the original uniformly
sampled DST in terms of computation time. Computation speed of FFT is added
as a reference point. The largest signal processed by original DST was of size 214

samples, due to memory limitations. The CC-DST is slightly slower than the one-to-
one DOST, but both have computation speeds comparable to those of FFT and show
similar growth rate in computation time. This experiment was run on an Intel Core
i-5 platform having 6 GB RAM and MATLAB was used for implementation.

the FFT algorithm. Particularly, this transform requires 2𝐽 FFTs, each of which is

of length equal to the corresponding 𝑁𝑤(𝜄, 𝑗0, 𝛼), which is not a power of two in most

cases, meaning that the FFT-based implementation might be suboptimal. Nonethe-

less, the CC-DST works fast and is used in the next section to analyze signals of large

numbers of samples. It is also worthy of noting that by using the chirp Z-transform

algorithm, the DFT can be implemented with a computational cost equivalent to that

in which the number of signal samples is a power of 2. Using straightforward compu-

tations, the number of TF coefficients returned by the CC-DST can be approximated

by:

𝑅(𝛾, 𝑗0, 𝛼, 𝐽) ≈ Round
{︀

[2 + 𝛼(1 + 1/𝛾)]
[︀
𝐽 + 𝛾𝑗0−1(𝛾𝐽 − 1)

]︀}︀
. (2.72)

As one might expect, the number of coefficients increases with the roll-off factor

𝛼, and even with 𝛼 = 0 (i.e., brick-wall filters), this number exceeds the number

of signal samples 𝑁 , since the spectral coverage of the CC-DST extends beyond one
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Figure 2-10: Comparison between several DSTs in terms of IF estimation. Figure
shows the NMSE (in dB) of the IF estimates of a sinusoidally FM signal as a function
of SNR (in dB). Starting from SNR = 5 dB, CC-DST (𝑁0 = 64, 𝛾 = 1.1, 𝛼 = 0.8)
provided the most accurate IF estimates.

period in the DFT-domain because of the self-aliasing. We note that the phenomenon

of self-aliasing can be eliminated by truncating the last frequency window and its

counterpart on the negative spectrum so that they do not overlap into contiguous

DFT-periods. Generally, the CC-DST produces a modest number of TF coefficients.

Actual computation times for the CC-DST, the DOST, the original DST, and the

FFT algorithm are compared in Fig. 2-9. Due to memory limitations, the largest

signal processed by the original DST was of size 214 samples. The DST of Brown

et al. was not included in the benchmark comparison for brevity, since it requires

computation times similar to those of the DOST. Typical values for the CC-DST

parameters were selected: 𝑁0 = 𝑁/16, 𝛾 = 1.2, and 𝛼 = 0.8. The depicted results

demonstrate the numerical efficiency of the CC-DST. This transform requires slightly

more computation times with respect to the one-to-one DOST, and, furthermore, the

computation time shows a growth rate similar to that of the DOST and the FFT,

which is 𝑂(𝑁 log2𝑁).
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moving average filter of various sizes. The filter aims at reducing the noise power in
the local phase estimates. Figure shows the NMSE of the IF estimates as a function
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2.4.8 Application: IF estimation

The instantaneous frequency (IF) estimation is a fundamental application of the

TFRs [13, 14]. The concept of the IF is explained in depth in the next chap-

ter; here, the aim is just to illustrate how the CC-DST can be used for IF esti-

mation. Let 𝑥(𝑡) = 𝐴(𝑡) exp(𝑖𝜑(𝑡)) be the analytic associate of a continuous-time

real-valued monocomponent signal whose time-varying amplitude and instantaneous

phase (IP) are denoted by 𝐴(𝑡) and 𝜑(𝑡), respectively. The IF of 𝑥(𝑡) is defined

as IF(𝑡) = 𝜑′(𝑡)/(2𝜋). Thanks to its absolutely referenced phase information, the

CC-DST extends the concept of the IF, formulating a definition of the channel IF

(CIF) [3]. That is, the CIF is simply the IF of a channel (or a voice) isolated by the

CC-DST. Let us consider one of the 2𝐽 voices provided by the CC-DST, say 𝜄0, the

returned local amplitude and phase information enables one to write the voice 𝜄0 in

the following form:

CC-DST𝑥[𝑛; 𝜄0, 𝑗0, 𝛼] = 𝐴[𝑛; 𝜄0, 𝑗0, 𝛼] exp
[︁
𝑖𝜑[𝑛; 𝜄0, 𝑗0, 𝛼]

]︁
. (2.73)
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We may use the local phase information in (2.73) to define the CIF according to

CIF[𝑛; 𝜄0, 𝑗0, 𝛼] =
1

𝑁
𝜈𝐶(𝜄0, 𝑗0, 𝛼) +

1

2𝜋
deriv

{︀
unwrap {𝜑[𝑛; 𝜄0, 𝑗0, 𝛼]}

}︀
, (2.74)

in which deriv{·} is a function that computes the numerical derivative, and unwrap{·}
is a phase unwrapping function. Note that the CIF in (2.74) is given normalized to

the sampling frequency. As for estimating the signal IF, an effective and widely

used method for nonparametric IF estimation is based on the maxima positions of a

TFR. This method, however, cannot be used directly with the CC-DST, since this

transform does not provide a uniformly sampled TFR (i.e., the CC-DST cannot be

put in a matrix form). The maxima-based method, nonetheless, can be adapted to

work with the CC-DST as follows. First, the voices are interpolated in time so that

they all have the same rate as the analyzed signal. In other words, the data rate of a

generic voice 𝜄0 is raised by 𝑁/𝑁𝑊 (𝜄0, 𝑗0, 𝛼). Second, at a given time instant 𝑛0, we

identify the voice at which the CC-DST peaks in power according to:

𝜄max = arg max
𝜄

|CC-DST[𝑛0; 𝜄, 𝑗0, 𝛼]|2 . (2.75)

The IF falls within the subband 𝜄𝑚𝑎𝑥. Now, to account for the deviation of the IF

from the center frequency of the voice 𝜄𝑚𝑎𝑥, at the considered time instant, the IF is

estimated as the CIF of the voice 𝜄max:

IF[𝑛0] = CIF[𝑛0; 𝜄max, 𝑗0, 𝛼]. (2.76)

If the signal is not contaminated by noise, the derivative in (2.74) can be computed

simply through the finite-difference method. In the presence of noise, however, the

phase samples should be smoothed by a filter before applying the finite-difference

method in order to suppress the noise power. We remark that numerical differenti-

ation of a noisy process is known to be an ill-posed problem, meaning that without

a smoothing filter for noise suppression, the accuracy of the IF estimate would be

poor. To illustrate applicability of the proposed method, let us consider an analytic
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frequency modulated (FM) signal with a unitary amplitude and a sinusoidal IF law

corrupted by complex-valued additive white Gaussian noise (AWGN). The signal IF

law is defined as

IF[𝑛] = 0.175 + 0.125 cos

[︂
2𝜋𝑇 (𝑛− 511)

𝑁
− 𝜋

2

]︂
, 0 ≤ 𝑛 < 1024, (2.77)

where 𝑇 is a parameter to control the period of the sinusoidal frequency modulation,

set here to 1. The signal is analyzed using the CC-DST with 𝑁0 = 64, 𝛾 = 1.1,

and 𝛼 = 0.8, then the IF is estimated through the previously explained algorithm.

The phase samples are smoothed using an average moving filter of length 𝐿 = 11

before differentiating the result through the conventional finite-difference method, as

explained before. Results of the normalized mean squared error (NMSE) of the IF

estimates are depicted in Fig. 2-10 as a function of the signal-to-noise ratio (SNR).

The statistical data are obtained by 200 realizations. For comparative purposes,

we provide the results of the DOST of Stockwell, the DST of Brown et al., and the

original DST. Moreover, we include in the benchmark compression two adaptive DSTs

(ADSTs) optimized based on energy concentration (EC) measures proposed by Sejdić

et al. in [1] and Pei and Wang in [2]. Note that the DSTs of Stockwell and Brown et

al. are used to estimate the IF following the method proposed here, while with the

original DST and the ADSTs, the IF is estimated based on the maxima positions of

the computed TFR. The results in Fig. 2-10 show that at moderate and high SNRs

(i.e., SNR > 5 dB), the CC-DST returns the most accurate IF estimates, at least for

this signal and with the selected set of parameters, outperforming the original DST

and the ADST. However, at lower SNRs, the uniformly sampled DSTs, particularly

the ADST of [1], appear to provide more accurate IF estimates, but, of course, they

require much more involved computations. This example clearly demonstrates the

improvement achieved by the CC-DST over the DSTs of Stockwell and Brown et al.

in IF estimation accuracy; it also shows that the proposed method for IF estimation

requires moderate to high SNRs to be effective.

The length of the smoothing filter 𝐿 is an important parameter of the proposed
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Figure 2-12: Performance of IF estimators based on selected DSTs. Results illus-
trate the impact of the period of sinusoidal frequency modulation, controlled by the
parameter 𝑇 , on the accuracy of the IF estimates. Increasing 𝑇 leads to shorter IF
periods. Figure shows the NMSE of the IF estimates as a function of 𝑇 at SNR = 10
dB using log-scales for clarity. At low 𝑇 , the CC-DST (𝑁0 = 64, 𝛾 = 1.1, 𝛼 = 0.8)
returns accurate IF estimates, while at large 𝑇 , the ADSTs are superior.

algorithm for IF estimation. As previously mentioned, the smoothing filter aims at

reducing the noise power in the local phase samples before computing the derivative

in (2.74). Although larger 𝐿 might lead to higher reduction in the noise power, it

causes distortion in the differentiated signal, due to loss of derivative details. More

importantly, the use of overlapped frequency windows to construct the CC-DST im-

plies that the errors in the phase samples are correlated, hence effectiveness of the

smoothing filter is limited. To illustrate the impact of the parameter 𝐿 on the accu-

racy of the IF estimate obtained through the CC-DST, we display in Fig. 2-11 the

NMSE of the IF estimates of a sinusoidally FM signal, defined in (2.77) with 𝑇 = 1.5,

as a function of the SNR using a small (𝐿 = 3), medium (𝐿 = 11), and large value of

𝐿 (𝐿 = 31), and also with no smoothing (i.e., 𝐿 = 0). The results show that starting

from a SNR equal to 5 dB, the use of an average moving filter of medium size 𝐿 = 11

significantly improves the accuracy of the IF estimate compared with filters of shorter

or larger lengths. However, at high SNRs (i.e., SNR > 25 dB), smoothing the phase
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samples with a short- or moderate- length filter does not result in reduction of the

NMSE, whereas excessive smoothing worsens the accuracy of the IF estimate. This

example confirms that the smoothing size should be moderate.

In the last experiment, we evaluate the impact of the parameter 𝑇 on the accuracy

of the IF estimate. In Fig. 2-12, we depict the NMSE of the IF estimates, obtained

through the same STs used in the previous experiment, as a function of the parameter

𝑇 , fixing the SNR to 10 dB. The results show that reducing the period of the sinusoidal

frequency modulation (i.e., increasing 𝑇 ) leads to increase in the NMSE. At low values

of 𝑇 , the CC-DST, with the selected set of parameters (𝑁0 = 64, 𝛾 = 1.1, 𝛼 = 0.8)

returns more accurate IF estimates compared with the other considered forms of the

ST, whereas at high 𝑇 , the ADSTs, particularly the ADST of Sejdić et al., are superior

in terms of IF estimation, thanks to their adaptive adjustment of the observation

window. It is important to point out that the results of the CC-DST are dependent

on the used set of parameters; hence, all the comparisons made here are relative.

2.4.9 Application: time-scaling audio signal

Time-scaling audio signals is one of those applications that require a tool for signal

analysis as well as synthesis, like the CC-DST. The goal is to slow down or speed

up the temporal evolution of a given audio signal without altering its harmonic con-

tent. At each time instant, the analyzed audio signal can be modeled as the sum of

sinusoids, each of which has a time-varying amplitude and an IP according to [77]:

𝑓(𝑡) =
𝐼∑︁

𝑙=0

𝐴𝑙(𝑡) exp (𝑖𝜑𝑙(𝑡)) . (2.78)

Ideally, scaling 𝑓(𝑡) in time by a constant modification factor 𝛿 would give:

𝑓𝛿(𝑡) =
𝐼∑︁

𝑙=0

𝐴𝑙(𝛿𝑡) exp

[︂
2𝜋𝑖

∫︁ 𝑡

0

IF𝑙(𝛿𝜏) d𝜏

]︂
. (2.79)

Through the CC-DST, one can expand the input signal into channels, each carry-

ing a portion of the spectrum. If the spectral segmentation is dense enough, the
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channels will have slowly varying spectra, and thus, each subband channel can be

regarded as a single harmonic component. By modifying the phase and amplitude of

each of these components according to (2.79), then collapsing the resulting CC-DST

into a time-domain signal, we can obtain a time-scaled replica of the input audio

signal. This application shows the necessity for a DST with high frequency resolution

in order to scale the audio signal with high fidelity. Employing a dyadic DST for

this application is ineffective because of its poor spectral resolution. Traditionally,

time-scaling a recorded sound is performed through the STFT-based phase vocoder,

which has found many commercial applications. This technique, however, introduces

a well-known perceptual artifact known as phasiness (or loss of presence), due to

which, the time-scaled audio signal is perceived as if the source is much farther from

the microphone compared with original recording [77]. Moreover, being a constant-

bandwidth transform, the STFT is not consistent with the human auditory system,

which is rather modeled as a constant-Q device [76]. These two aspects constitute

an incentive for using the CC-DST in this application in place of the STFT. As an

example, we time-scaled a three-second audio signal sampled at 16 kHz using the CC-

DST with 𝑁0 = 128, 𝛾 = 1.06, and 𝛼 = 0.8. For comparison, we applied the DSTs

of Stockwell and Brown et al., the STFT, and the complex WT (CWT) proposed in

[78] for the same task. Because of their low spectral resolution, it is unsurprising that

the dyadic one-to-one DSTs perform poorly in this application. The STFT-based

phase vocoder2 is fast and performs well, but the resulting audio signal suffers from

clear phasiness. The CC-DST with the previous set of parameters time-scales the

audio signal with high fidelity without producing phasiness. This phenomenon is also

eliminated by using the CWT3, but this transform requires about 5 times the time

required by the CC-DST to time-scale the considered signal, and, furthermore, it

introduces some audible distortion, which is not present when the CC-DST is used.

Because the considered signal is of a large number of samples, processing it with a

uniformly sampled 𝑁 ×𝑁 DST is impractical on a regular workstation.

2MATLAB code is available at http://www.ee.columbia.edu/~dpwe/resources/matlab/

pvoc/
3MATLAB code is available at http://web.itu.edu.tr/ibayram/DtRadwt/
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Figure 2-13: Denoising ECG signal via hard thresholding using selected DSTs. Fig-
ure shows results of RMSE with different thresholds. CC-DST (𝑁0 = 64, 𝛾 = 1.1,
𝛼 = 0.8) is the best performing non-adaptive DST. The ADST provides better de-
noising performance but requires far more computation time than the CC-DST.

2.4.10 Application: denoising ECG signal

Electrocardiogram (ECG) is a noninvasive and widely used technique for diagnos-

ing cardiovascular diseases; it provides important information about the structure

and function of the heart. During acquisition and transmission, ECG recordings are

exposed to different sources of noise, which may hinder the correct analysis of these

signals, leading to unreliable and possibly wrong diagnosis [79]. Although other meth-

ods exist, TF-based techniques have been proven highly effective for denoising ECG

signals. Particularly, methods that employ the original DST were shown to outper-

form others based on WTs [79]. One clear limitation when using the ST, however, is

the high computational requirements, which is further magnified by the fact that the

ECG signals might be provided as long-duration records. To evaluate the proposed

CC-DST, we perform a simple signal denoising via hard thresholding on a ten-second

ECG recording (without the DC component) sampled at 250 Hz and available pub-

licly from Physionet database4. AWGN is added to the ECG signal at SNR equal to

4http://physionet.org
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10 dB to resemble poor channel conditions, then the noisy signal is analyzed with the

CC-DST. TF coefficients with amplitudes that do not exceed a predefined threshold

are set to zero, then an enhanced version of the ECG signal is obtained by inverting

the modified transform. The parameters used with the CC-DST are 𝑁0 = 64, 𝛽 = 1.1,

and 𝛼 = 0.8, which have been chosen based on visual evaluation of the resulting ECG

signal. For the sake of comparison, the previous steps are repeated using the DOST

of Stockwell, the DST of Brown et al., the original 𝑁 × 𝑁 DST, and the EC-based

ADST presented in [1]. The denoising performance is quantitatively evaluated based

on the root MSE (RMSE) between the noise-free signal and the enhanced one. Using

100 noise realizations and various values of the threshold, we obtain the curves in Fig

2-13. The results demonstrate that the CC-DST outperforms all the non-adaptive

DSTs in this application, at least with the selected set of parameters, but it is slightly

surpassed by the ADST. However, the computation speed of the CC-DST is a lot

faster than that of the ADST, hence the CC-DST might be preferred in practice.

Even though the original DST provides far more redundant TF information com-

pared with the employed CC-DST, requiring much more computational resources, it

is less effective for this application. The noisy ECG signal and the enhanced one

using the CC-DST with a threshold equal to 6 are shown in Fig. 2-14.

2.4.11 Application: visual representation

In several applications, a TF transform is computed to obtain a visual 2-D representa-

tion (or image) of a signal of interest in the TF domain. In medical signal processing

applications, for example, TFRs are frequently used for signal classification through

either visual analysis, or, alternatively, this task can be automated using a machine

learning approach [23, 80]. The CC-DST, likewise the DOST, is a discrete non-

uniformly sampled TF transform, meaning that it cannot be represented in a matrix

form, hence not directly comparable with the original or other uniformly sampled

DSTs on a pixel-by-pixel basis. Nonetheless, an 𝑁 ×𝑁 point image (or TFR) can be

formed using the CC-DST through interpolation over time and frequency. As previ-

ously explained, a voice of the CC-DST can be interpolated in time by a FFT-based
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Figure 2-14: Denoising ECG signal contaminated by AWGN at SNR=10 dB using
the CC-DST and hard thresholding. Noisy ECG signal (without DC component) in
(a) and the enhanced signal in (b).

method: zero padding the voice spectrum, then transforming the result back to the

time domain to produce 𝑁 equally spaced points. Thence, the resulting matrix, of

size 2𝐽 ×𝑁 , can be interpolated in frequency, forming an 𝑁 ×𝑁 point TFR, using a

linear or nonlinear interpolation method, depending on the available computational

and storage resources. We remark that to construct a visual TFR, only the ampli-

tudes of the CC-DST samples are used for interpolation, while the phase samples

are discarded to reduce the number of computations. It should be noted that the

continuous 2-D approximation obtained through interpolation does not contain any

extra information over the CC-DST. An example of constructing a TFR using the

CC-DST is illustrated using the ECG signal used in the previous application in Fig.

2-15.

Let us now examine selected DSTs in terms of readability of their TFRs. We will

use in this example a real-world bat echolocation signal of size 400 samples taken

from [15], and compare the CC-DST with the original DST, the DSTs of Stockwell
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Figure 2-15: TFRs of ECG signal using the CC-DST. After interpolating the CC-
DST voices in time, the resulting matrix is interpolated in frequency to create 𝑁 ×𝑁
TFR. Interpolation using the nearest neighbor method in (a) and spline in (b).

and Brown et al., and the ADSTs developed in [1, 2]. Observing the TFRs in Fig.

2-16, it is plain to see that the original DST provides a TFR with smeared and

poorly localized energy. The DSTs of Stockwell and Brown et al. are very poor: the

signal components are completely blurred, and no useful information can be extracted

from the TFRs. The proposed CC-DST, with proper parameter settings, was able

to achieve a very good TFR, clearly outperforming the original DST. As for the

interpolation methods used with the CC-DST, spline results in a smoother TFR

compared with the nearest neighbor method but, of course, at the expense of heavier

computational requirements. The ADSTs provided sharper TFRs with impressive

EC. These algorithms, however, vary the observation window of the DST iteratively

for each frequency to select the most suitable window, making them of prohibitive

computational complexity for applications that involve processing large datasets.

As a second example, we consider a multicomponent synthetic signal with fast

frequency variation and crossing components. The signal is composed of two compo-
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Figure 2-16: TFRs of a real-world bat echolocation sound signal using: (a) the original
DST, (b) ADST [1], (c) ADST [2], (d) DOST [3], (e) DST of Brown et al. [4], (f)
the CC-DST (𝑁0 = 8, 𝛾 = 1.1, 𝛼 = 0.8) with the nearest neighbor interpolation
method, and (g) the CC-DST with spline interpolation. All the TFRs are given with
the same MATLAB colormap. The CC-DST is superior to all the non-adaptive DSTs.
Parameters of the CC-DST were selected based on visual inspection.

nents: a linear chirp and a hyperbolic component, defined as

𝑥(𝑡) = cos (75𝑡+ 20𝜋 log(50𝑡+ 1)) + cos(100𝜋𝑡+ 200𝜋𝑡2). (2.80)

The above signal is sampled between 0 ≤ 𝑡 < 1 with a sampling frequency equal to

1024 Hz. The signal is analyzed using the DSTs used in the previous example, and

the obtained TFRs are displayed in Fig. 2-17. We see from the figure that the origi-

nal DST concentrates high energy along the hyperbolic component but with notably

decreased resolution for the linear chirp, hence failing to compromise fairly between

the signal components. The ADSTs, namely the DSTs of [1] and [2], improves the

EC at middle and high frequencies, but with poorer resolution at low frequencies.
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Figure 2-17: TFRs of a synthetic signal with crossing IF components using: (a)
original DST, (b) ADST [1], (c) ADST [2], (d) DOST [3], (e) DST of Brown et al. [4],
(f) the CC-DST (𝑁0 = 16, 𝛾 = 1.15, 𝛼 = 0.8) with the nearest neighbor interpolation
method, and (g) the CC-DST with spline interpolation algorithm. All the TFRs are
given with the same MATLAB colormap. Parameters of the CC-DST were selected
based on visual inspection. The TFRs obtained with the CC-DST feature improved
EC compared with those based on the DOST and the DST of Brown et al..

As for the non-uniformly sampled DSTs, the proposed CC-DST provides the best

TFR in terms of EC; the IF components are not blurred, rather easily distinguish-

able. Furthermore, the TF resolution at low frequencies is somehow better compared

with the ADSTs. The previous two examples demonstrate visually that the CC-DST

significantly improves the quality of the signal TFR compared with other forms of

efficiently sampled STs. This result is attributed to the CC-DST parameters, which

allow for controlling the CC-DST coverage of the TF domain. These examples also

show that the more ample sampling of the TF domain provided by the CC-DST

compared with orthogonal DSTs is desirable in many situations as it allows one to

build up a smoother TFR with improved readability, without exaggerative computa-
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tional requirements. Of course, it should not be expected that the CC-DST, or other

forms of efficiently sampled STs, would render TFRs smoother than those obtained

with a fully redundant 𝑁 ×𝑁 DST, such as optimized DSTs based on EC measures.

These TF transforms, however, are effective when processing short-duration signals,

but for large datasets, the computational efficiency of the CC-DST becomes of higher

priority.
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Chapter 3

Adaptive methods for instantaneous

frequency estimation
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3.1 Background theory

3.1.1 Analytic signals

A signal 𝑧(𝑡) is said to be analytic if it contains no negative frequencies, hence satis-

fying the following condition:

𝑍(𝑓) = 0 if 𝑓 < 0, (3.1)

where 𝑍(𝑓) is the Fourier transform (FT) of 𝑧(𝑡). Note that a real signal does not

satisfy the previous condition, because it is well known that for a real signal 𝑠(𝑡), we

have that

𝑆(𝑓) = 𝑆*(−𝑓). (3.2)

The analytic associate of a real signal can be constructed as

𝑧(𝑡) = 𝑠(𝑡) + 𝑖𝑠0(𝑡) (3.3)

in which 𝑠(𝑡) and 𝑠0(𝑡) are real signals whose FTs 𝑆(𝑓) and 𝑆0(𝑓), respectively, satisfy

𝑆0(𝑓) = (−𝑖 sgn(𝑓))𝑆(𝑓), (3.4)

where sgn(·) is the signum function. Now, we can think of a linear operator that

takes the real signal 𝑠(𝑡) as an input to produce at the output the signal 𝑠0(𝑡); this

operator is the Hilbert transform. That is, the Hilbert transform of a real signal 𝑠(𝑡)

whose FT is 𝑆(𝑓) is defined as

ℋ{𝑠(𝑡)} = IFT {(−𝑖 sgn(𝑓))𝑆(𝑓)} , (3.5)

where IFT{·} is the inverse FT (IFT) operator. The analytic signal given in (3.3)

can be rewritten as

𝑧(𝑡) = 𝑠(𝑡) + 𝑖ℋ{𝑠(𝑡)} . (3.6)
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It can be shown that for a signal defined as

𝑠(𝑡) = 𝐴(𝑡) cos(𝜑(𝑡)) (3.7)

whose real-valued instantaneous amplitude 𝐴(𝑡) varies sufficiently slower compared

to its instantaneous phase 𝜑(𝑡) such that there is no overlap between the FTs of 𝐴(𝑡)

and cos(𝜑(𝑡)), we have that

ℋ{𝑠(𝑡)} = 𝐴(𝑡) sin(𝜑(𝑡)), (3.8)

which implies that the analytic associate of 𝑠(𝑡) under the previous condition is given

as

𝑧(𝑡) = 𝐴(𝑡) exp (𝑖(𝜑(𝑡))) . (3.9)

3.1.2 Bandwidth-duration product

In practice, all records of observations are finite, meaning that the spectral analysis

ever done on measured data is always restricted to the time duration of observation.

Also, signals are processed with devices of finite bandwidths. As well known from

the Fourier analysis, the bandwidth of a time-limited signal is infinite. On the other

hand, signals whose bandwidths are finite have infinite durations. For a signal 𝑠(𝑡)

whose FT is denoted by 𝑆(𝑓), we may define an effective bandwidth 𝐵eff and an

effective time duration 𝑇eff according to

𝐵eff =

[︂
1

𝐸𝑠

∫︁ ∞

−∞
𝑓 2|𝑆(𝑓)|2 𝑑𝑓

]︂ 1
2

, 𝑇eff =

[︂
1

𝐸𝑠

∫︁ ∞

−∞
𝑡2|𝑠(𝑡)|2 𝑑𝑡

]︂ 1
2

, (3.10)

where 𝐸𝑠 is the total energy of the signal, given by

𝐸𝑠 =

∫︁ ∞

−∞
|𝑆(𝑓)| 𝑑𝑓. (3.11)

Note that 𝐵2
eff

is the second moment of |𝑆(𝑓)|2 with respect to frequency, and, simi-

larly, 𝑇 2
eff

is the second moment of |𝑆(𝑡)|2 with respect to time. The definitions 𝐵eff
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and 𝑇eff may be used to obtain finite bandwidth and duration. Now, the bandwidth-

duration product 𝐵eff𝑇eff can be used to measure the temporal and spectral spreads

of the signal. As noted by Boashash [15], this product can be thought of as a repre-

sentative of the number of samples at the sampling rate 𝐵eff from which the signal

can be reconstructed, and thus 𝐵eff𝑇eff is a measure of the information richness of

the signal. It can be proved that any signal satisfies the following relation:

𝐵eff𝑇eff ≥ 1

4𝜋
, (3.12)

where the equality holds only for the case of a Gaussian pulse.

3.1.3 The instantaneous frequency

Most of the physical signals have spectra that evolve rapidly with time. Therefore,

analyzing and characterizing nonstationary signals in the time or frequency domain

alone is inadequate, and the signal analyst would naturally seek representing such

signals in the 2-dimensional (2-D) time-frequency (TF) plane. The fact that the

spectra of nonstationary signals change with time implicates that for the concept of

frequency to be meaningful, it should also include time description, thus be defined

with respect to time. To clarify this point, consider a complex-valued sinusoid with

a constant amplitude 𝐴, frequency 𝑓 , and phase shift 𝜑0 described as:

𝑠(𝑡) = 𝐴 exp [𝑖(2𝜋𝑓𝑡+ 𝜑0)] . (3.13)

Since its frequency is constant, for the signal 𝑠(𝑡), the concept of frequency can

be completely described by the FT: the FT of 𝑠(𝑡) at the frequency 𝑓 returns the

amplitude 𝐴 and the phase constant 𝜑0. The phase function of 𝑠(𝑡) is linear in time

𝜑(𝑡) = 2𝜋𝑓𝑡+ 𝜑0, (3.14)

hence, its derivative with respect to time is constant and can be used to define the

signal frequency. Accordingly, the frequency 𝑓 can be interpreted as the constant
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rate of change of the phase function in (3.14), and the signal 𝑠(𝑡) can be though of

as a rotating vector in the complex plane making 𝑓 cycles per second. Now, our

understanding of the frequency as the rate of change of the phase can be generalized

to signals whose phase law is an arbitrary differentiable function of time, but in this

case, we should define the signal frequency as the instantaneous rate of change of the

signal phase. That is, for a signal defined as

𝑧(𝑡) = 𝐴 exp (𝑖𝜑(𝑡)) , (3.15)

where 𝜑(𝑡) represents the instantaneous phase, the previous interpretation of the

signal frequency naturally suggests a definition of the instantaneous frequency (IF)

according to:

𝑓𝑖(𝑡) =
1

2𝜋

𝑑𝜑

𝑑𝑡
(𝑡). (3.16)

The signal 𝑧(𝑡) can be considered as the analytic associate of the real-valued sig-

nal 𝑠(𝑡), whose amplitude changes significantly slower compared to its instantaneous

phase. At a given time instant 𝑡0, 𝑓𝑖(𝑡0) can be considered as the frequency of a

sinusoid defined by 𝐴 exp (𝑖2𝜋𝑓𝑖(𝑡0)) that fits locally the signal 𝑧(𝑡). It should be

emphasized that defining the IF according to (3.16) is meaningful only for the case of

a monocomponent signal. That is, if the signal is composed of different components,

each of which is given as in (3.15) and has its own IF, then (3.16) results in a single

value that generally does not correspond to any of the IFs of the signal components.

3.2 Adaptive IF estimation

3.2.1 Adaptive design of TFRs

The IF is a fundamental concept in TF analysis. A simple and very well-known

method for IF estimation is based on the maxima position of a TF representation

(TFR) [13], [14]. Developing TFRs that reveal accurately the signal IF law often re-

quires a signal-dependent design, since no TFR can be optimized for all signals [15],
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[20], as is the case with all fixed mappings. Therefore, numerous research focused on

developing adaptive TFRs whose respective parameter(s) can be adjusted according

to the signal at hand, sometimes without interference by a user. In this context,

energy concentration measures (ECMs) have been widely used to define criteria for

automating the selection of good TFRs, where the distribution of energy is highly

concentrated along the signal components [43, 5, 1, 2]. The multi-view approach

for adaptive TFRs is based on constructing multiple TFRs, then combining them

according to a predetermined criterion. One example of this approach is the multi-

view adaptive fractional spectrogram (AFS) [81]. Further, it has been observed that

many signals of interest have their energy distributed along specific directions in the

TF domain. Therefore, some researchers developed adaptive TFRs that account for

the directions of energy concentration. This stream of research includes the multi-

directional distribution (MDD), proposed in [22] for signals approximated as piecewise

linear frequency modulated (LFM) chirps, and the locally adaptive directional TFD

(ADTFD) [24], [82], which is based on optimized directional filtering. Improving

localization of the signal components in the TF domain while at the same time at-

tenuating the interfering cross-terms can be tackled by the reassignment method [37],

which, as described in Chapter 1, reassigns each point in the TF domain to the center

of gravity of a region located in its vicinity.

Since the accuracy of IF estimation is one of the most important performance cri-

teria in TF analysis, perhaps a more rigorous approach to obtain adaptive TFRs can

be built around their statistical performance as IF estimators. Evaluating the accu-

racy of IF estimation based on TFRs is addressed in several works [83], [65], where it

has been demonstrated that the estimation accuracy depends on the width of the used

observation window, and optimizing this width requires unknown information about

the IF derivatives. To tackle this limitation, a method that approximates the optimal

width based on the intersection of confidence intervals (ICI) rule was proposed in

[84]; it requires implementation of multiple TFRs, each with a different window size,

adding up to a significant computational burden. Aiming at reducing the computa-

tions required to obtain linear adaptive TFRs, a three-step adaptation procedure was
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introduced in [85] and later improved by Pei and Huang in [6]. It consists of three

steps: a preliminary TFR (PTFR) is first constructed and the peaks of its dominant

ridges are used to obtain a coarse estimate the IF trajectory; an operator to compute

the first derivative of the IF [here is called the IF rate (IFR)] is then employed; and the

IFR is finally utilized to adjust the width of the observation window of a final TFR.

Neither in [85] nor in [6], however, the criterion used for the optimal width selection

is based on the statistical performance of the IF estimator. Namely, the authors did

not consider signals contaminated by noise, and, furthermore, the optimal window

size was not derived for the general case of a multicomponent signal, whose TFR

represents more than one time-varying ridge. The study presented here improves on

the previous works by deriving the optimal window width of linear TFRs using novel

general formulas that describe the bias and the variance of the IF estimation error

in noisy environments. We will arrive at these closed-form expressions in the next

section by considering a general form of a TF transform that uses Gaussian window-

ing functions and the Fourier kernel, assuming that the standard deviation of the

window is an arbitrary function of time and/or frequency. Besides being interesting

from a theoretical point of view, our results will be incorporated into the previously

mentioned adaptation procedure to develop two fully automated linear TFRs. The

first TFR employs a time-adaptive window to minimize the sum of the mean squared

errors (MSEs) of all the IF estimates at each time instant, while in the second TFR,

the window is TF-adaptive, minimizing the estimation MSE at each location in the

TF domain.

3.2.2 Accuracy analysis of IF estimation based on linear TFRs

Terminology

The general short Fourier transform (GSFT) encompasses a family of linear trans-

forms that employ Gaussian observation windows to localize the oscillatory Fourier

97



kernel. This transform is formulated as1

GSFT𝑥(𝑡, 𝑓) =

∫︁ +∞

−∞
𝑥(𝜏)𝑤 (𝑡− 𝜏, 𝜎(𝑡, 𝑓)) exp (−𝑖2𝜋𝑓𝜏) 𝑑𝜏, (3.17)

where 𝑥(𝑡) is a signal under analysis, and 𝑤(𝑡, 𝜎(𝑡, 𝑓)) is a Gaussian window (usually of

unitary area), whose standard deviation is an arbitrary function of time and frequency,

denoted by 𝜎(𝑡, 𝑓). As mentioned before, the Gaussian window is a classic choice for

TF analysis because it features the minimum time-bandwidth product [15]. If the

window width2 is independent from time and frequency [i.e., 𝜎(𝑡, 𝑓) is constant],

(3.17) describes the STFT, whereas if this width is a function of only frequency [i.e.,

𝜎(𝑡, 𝑓) = 𝜎(𝑓)], then the transform in (3.17) is an ST. We remark that the ST was

originally presented in [10] with a specific form of the window standard deviation that

is 1/|𝑓 |. Various forms of 𝜎(𝑓) were later presented in the literature (e.g., [11]) to

meet specific requirements. The adaptive STFT (ASTFT) is also a member of the

family in (3.17), it employs a Gaussian window the standard deviation of which varies

in time [i.e., 𝜎(𝑡, 𝑓) = 𝜎(𝑡)]. Besides the aforementioned cases, the window width may

change in both time and frequency, hence making the representation adaptive over

the TF domain.

Estimation model

Let 𝑥(𝑡) be an analytic frequency modulated (FM) signal whose amplitude 𝐴 varies

significantly slower than its phase 𝜑(𝑡); this signal is given by

𝑥(𝑡) = 𝐴 exp(𝑖𝜑(𝑡)). (3.18)

The IF is defined as in (3.16), where we assume that 𝜑(𝑡) is an arbitrary smooth

differentiable function of time with bounded derivatives, as in [83], [65]. The GSFT

1We wish to mention that the formalism in (3.17) was firstly introduced in [4] under the name of
“general Fourier family”. We chose to slightly modify this name to emphasize that the interest here
is in Fourier-like transforms in which 𝜎(𝑡, 𝑓) is much shorter than the signal duration.

2The term “width” is used loosely to refer to the standard deviation of the Gaussian observation
window.
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of 𝑥(𝑡) is given by

GSFT𝑥(𝑡, 𝑓) = 𝐴

∫︁ +∞

−∞
𝑤(𝑡− 𝜏, 𝜎(𝑡, 𝑓)) exp (𝑖𝜃𝑓 (𝜏)) , (3.19)

where 𝜃𝑓 (𝜏) = 𝜑(𝜏) − 2𝜋𝑓𝜏 , and the Gaussian window is defined as

𝑤(𝑡, 𝜎(𝑡, 𝑓)) =
1√

2𝜋𝜎(𝑡, 𝑓)
exp

(︂ −𝑡2
2𝜎2(𝑡, 𝑓)

)︂
. (3.20)

While in practice we deal with discrete signals, continuous transforms are used in

this analysis to obtain easily interpreted closed-form results. By expanding 𝜃𝑓 (𝜏) into

Taylor series around a generic time instant 𝑡, neglecting the terms of order higher

than second, we obtain

𝜃𝑓 (𝜏) ≈ 𝑎0 + 𝑎1(𝜏 − 𝑡) + 𝑎2(𝜏 − 𝑡)2, (3.21)

where

𝑎0 = 𝜃𝑓 (𝑡);

𝑎1 = 𝜕𝜃𝑓/𝜕𝜏(𝑡);

𝑎2 = 1/2 𝜕2𝜃𝑓/𝜕𝜏
2(𝑡).

Note that (3.21) is exact and not an approximation for sinusoidal and LFM signals,

whereas it contains an approximation error when the phase law is of higher order.

After substituting (3.20) and (3.21) into (3.19), the resultant integral can be resolved

giving

GSFT𝑥(𝑡, 𝑓) =
𝐴 exp

[︁
𝑖𝑎0 − 𝑖𝑎21𝜎

2(𝑡,𝑓)

2𝑖+4𝑎22𝜎
2(𝑡,𝑓)

]︁

√︀
1 − 2𝑖𝑎2𝜎2(𝑡, 𝑓)

. (3.22)

The same integral was evaluated in [6] for the specific case of LFM signal. It can be

easily shown that the result presented therein is a special case of the more general

expression in (3.22). We consider the signal as contaminated by complex-valued

AWGN, denoted by 𝑛0(𝑡), with i.i.d. real and imaginary parts. Due to linearity, the
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GSFT of a noisy signal 𝑥𝑛(𝑡) = 𝑥(𝑡) + 𝑛0(𝑡) is given by:

GSFT𝑥𝑛(𝑡, 𝑓) = GSFT𝑥(𝑡, 𝑓) + GSFT𝑛0(𝑡, 𝑓). (3.23)

At each time instant, the IF estimate coincides with the frequency at which a TFR

concentrates most of the energy according to[13], [83], [65]:

𝑓𝑖(𝑡) = arg max
𝑓

|GSFT𝑥𝑛(𝑡, 𝑓)|2. (3.24)

Equivalently, 𝑓𝑖(𝑡) is the frequency corresponding to

𝜕|GSFT𝑥𝑛|2
𝜕𝑓

(︁
𝑡, 𝑓𝑖(𝑡)

)︁
= 0. (3.25)

|GSFT𝑥𝑛(𝑡, 𝑓)|2 can be written as a summation of two terms: 𝑆𝑥(𝑡, 𝑓) + 𝑆𝑛(𝑡, 𝑓) in

which 𝑆𝑥(𝑡, 𝑓) represents the noiseless part of |GSFT𝑥𝑛(𝑡, 𝑓)|2 and 𝑆𝑛(𝑡, 𝑓) is the part

affected by noise according to

𝑆𝑛(𝑡, 𝑓) =|GSFT𝑛0(𝑡, 𝑓)|2 + 2ℜ (GSFT𝑥(𝑡, 𝑓))ℜ (GSFT𝑛0(𝑡, 𝑓)) + 2ℑ (GSFT𝑥(𝑡, 𝑓))

×ℑ (GSFT𝑛0(𝑡, 𝑓))

(3.26)

with ℜ(.) and ℑ(.) representing the real and imaginary parts, respectively. When the

useful signal dominates noise in terms of power, we can expand |GSFT𝑥𝑛(𝑡, 𝑓)|2 at a
generic time instant 𝑡 into Taylor series up to the second-order term around the true

IF to obtain

|GSFT𝑥𝑛(𝑡, 𝑓)|2 = |GSFT𝑥𝑛 (𝑡, 𝑓𝑖(𝑡)) |2 + (𝑓 − 𝑓𝑖(𝑡))
𝜕|GSFT𝑥𝑛|2

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

+
1

2
(𝑓 − 𝑓𝑖(𝑡))

2 𝜕
2|GSFT𝑥𝑛|2

𝜕𝑓 2
(𝑡, 𝑓𝑖(𝑡)) .

(3.27)
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By taking the first-order frequency derivative of the right- and left-hand sides of

(3.27), and after recalling (3.23) and (3.25), we arrive at

𝑓𝑖(𝑡) = 𝑓𝑖(𝑡) −
𝜕𝑆𝑥

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡)) + 𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

𝜕2(𝑆𝑥+𝑆𝑛)
𝜕𝑓2 (𝑡, 𝑓𝑖(𝑡))

. (3.28)

Assuming that 𝑆𝑥(𝑡, 𝑓𝑖(𝑡)) ≫ 𝑆𝑛(𝑡, 𝑓𝑖(𝑡)), we can write (3.28) at moderate to high

signal-to-noise ratios (SNRs) as

𝑓𝑖(𝑡) = 𝑓𝑖(𝑡) −
𝜕𝑆𝑥

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡)) + 𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

𝜕2𝑆𝑥

𝜕𝑓2 (𝑡, 𝑓𝑖(𝑡))
. (3.29)

Consequently, the estimate 𝑓𝑖(𝑡) contains the following error:

𝜉(𝑡, 𝑓𝑖(𝑡)) =

𝜕𝑆𝑥

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡)) + 𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

𝜕2𝑆𝑥

𝜕𝑓2 (𝑡, 𝑓𝑖(𝑡))
. (3.30)

Estimation bias

The estimation bias is by definition the expected value of the estimation error 𝜉(𝑡, 𝑓𝑖(𝑡)),

which is equal to

𝜉 (𝑡, 𝑓𝑖(𝑡)) =

𝜕𝑆𝑥

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡)) + 𝐸

{︁
𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

}︁

𝜕2𝑆𝑥

𝜕𝑓2 (𝑡, 𝑓𝑖(𝑡))
. (3.31)

Lemma 1. For a signal defined as in (3.18) and contaminated by AWGN, whose

double-sided power spectral density is denoted by 𝑁0, we have the following identity:

𝐸

[︂
𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

]︂
= −

𝑁0
𝜕𝜎
𝜕𝑓

(𝑡, 𝑓𝑖(𝑡))

2
√
𝜋𝜎2 (𝑡, 𝑓𝑖(𝑡))

. (3.32)

Proof of Lemma 1 is provided in Appendix A.

Proposition 1. The bias of the IF estimation error based on a transform of the form
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in (3.17) is given by

𝜉(𝑡, 𝑓𝑖(𝑡)) =
𝑘21𝜎

′
𝑖 (𝑘31/𝐶0 + 4

√
𝜋𝑘2𝜎𝑖)

4
√
𝜋
(︀
4𝜋2𝑘21𝜎

4
𝑖 − 3𝑘3𝜎′

𝑖
2 + 𝑘21𝑘2𝜎𝑖𝜎

′′
𝑖

)︀ , (3.33)

where

𝑘1 =
√︁

1 + (2𝜋𝑓 ′
𝑖(𝑡)𝜎𝑖

2)2;

𝑘2 = 𝑘21 − 1;

𝑘3 = 𝑘41 − 3𝑘21 + 2;

𝑓 ′
𝑖(𝑡) = 𝜕𝑓𝑖/𝜕𝑡(𝑡);

𝜎𝑖 = 𝜎(𝑡, 𝑓𝑖(𝑡));

𝜎′
𝑖 = 𝜕𝜎/𝜕𝑓(𝑡, 𝑓𝑖(𝑡));

𝜎′′
𝑖 = 𝜕2𝜎/𝜕𝑓 2(𝑡, 𝑓𝑖(𝑡));

𝐶0 is the signal-to-noise-spectral-density ratio: 𝐴2/𝑁0.

Proof. From (3.22), the squared magnitude of GSFT𝑥(𝑡, 𝑓) (i.e., 𝑆𝑥(𝑡, 𝑓)) can be given

by

𝑆𝑥(𝑡, 𝑓) =
𝐴2 exp

[︁
−𝑎21𝜎

2(𝑡,𝑓)

1+(2𝑎2𝜎2(𝑡,𝑓))2

]︁

√︁
1 + (2𝑎2𝜎2(𝑡, 𝑓))2

. (3.34)

In (3.31), the first and second derivatives of 𝑆𝑥(𝑡, 𝑓) with respect to frequency at

𝑓 = 𝑓𝑖(𝑡) can be computed using (3.34), by substituting their values therein, together

with the result of Lemma 1, we prove Proposition 1.

It is plain to see that the bias depends on the first derivative of the IF (i.e, the

IFR), and also on the values of the first- and second-order frequency derivatives of

𝜎(𝑡, 𝑓) at the IF.

Remark. Any transform of the form in (3.17) with a frequency-dependent window

provides a biased IF estimate, unless it is designed such that 𝜎′
𝑖 = 0.

This remark follows directly from (3.33). Consequently, while the STFT and the

ASTFT provide unbiased IF estimation, this fact does not hold for the ST whose IF

estimate is essentially biased.
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Estimation variance

The estimation variance is defined as

𝜎2
𝜉

(︀
𝑡, 𝑓𝑖(𝑡)

)︀
= 𝐸

[︁(︀
𝜉
(︀
𝑡, 𝑓𝑖(𝑡)

)︀
− 𝜉
(︀
𝑡, 𝑓𝑖(𝑡)

)︀)︀2]︁
. (3.35)

Using (3.29) and (3.31), the variance at a moderate to high SNR can be written as

𝜎2
𝜉 (𝑓𝑖) =

𝐸

[︂(︁
𝜕𝑆𝑛

𝜕𝑓

(︀
𝑡, 𝑓𝑖(𝑡)

)︀)︁2]︂
− 𝐸2

[︁
𝜕𝑆𝑛

𝜕𝑓

(︀
𝑡, 𝑓𝑖(𝑡)

)︀]︁

(︁
𝜕2𝑆𝑥

𝜕𝑓2

(︀
𝑡, 𝑓𝑖(𝑡)

)︀)︁2 . (3.36)

Lemma 2. For a signal defined as in (3.18) and contaminated by complex-valued

AWGN, we have the following identity:

𝐸

[︃(︂
𝜕𝑆𝑛

𝜕𝑓

(︀
𝑡, 𝑓𝑖(𝑡)

)︀)︂2
]︃

=
8𝜋2𝑘21𝜎

4
𝑖 + (11𝑘21 − 8)𝜎′

𝑖
2

4
√
𝜋𝑘31𝜎

3
𝑖 𝐶0

+
𝜋

𝐶2
0

+
(11

√
2 + 12

√
𝜋𝜎𝑖)𝜎

′
𝑖
2

16𝜋
3
2𝜎5

𝑖𝐶
2
0

.

(3.37)

Proof of Lemma 2 is provided in Appendix B.

Proposition 2. The variance of the IF estimation error based on a transform of the

form in (3.17) is given by

𝜎2
𝜉 (𝑡, 𝑓𝑖(𝑡)) =

𝑘71𝜎𝑖(8𝜋
2𝑘21𝜎

4
𝑖 + 𝑘4𝜎

′
𝑖
2)

16
√
𝜋 𝐶0

(︀
4𝑘21𝜋

2𝜎4
𝑖 + 𝑘5𝜎′

𝑖
2 + 𝑘6𝜎𝑖𝜎′′

𝑖

)︀2 , (3.38)

where

𝑘4 = 11𝑘21 − 8;

𝑘5 = −3𝑘2(𝑘2 − 1);

𝑘6 = 𝑘21𝑘2.

Proof. The second-order derivative in the denominator of (3.36) can be computed

using (3.34); by substituting its value therein, together with the results of Lemma 1
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Construct a PTFR

Extract the IF components and
estimate the corresponding IFRs

Use the IFRs to adjust the win-
dow sise of a final adaptive TFR

Figure 3-1: Flowchart of procedure used to construct adaptive TFRs based on linear
TF transforms belonging to (3.17).

and Lemma 2, and after discarding the terms divided by 𝐶2
0 under the assumption of

high SNR, we prove Proposition 2.

As the bias, the estimation variance is signal-dependent, because it is a function of

the IF derivatives. It is worth noting that if the truncated Taylor series incorporates

more terms, then higher-order time derivatives of the IF and higher-order frequency

derivatives of 𝜎(𝑡, 𝑓) enter the expressions of the bias and the variance, unless the

analyzed signal is a sinusoid or a LFM chirp.

Corollary 1. The IF estimate obtained through a transform of the form in (3.17)

with a frequency-independent window attains the least MSE if

𝜎(𝑡) =
(3
7
)
1
4

√︀
2𝜋 |𝑓 ′

𝑖(𝑡)|
. (3.39)

Proof. When the window is fixed in frequency, the IF estimate is unbiased (see Re-

mark), and thus the estimation MSE, defined as the sum of the squared bias and the

variance, is identical to the variance in (3.38). We replace 𝜎′
𝑖 and 𝜎

′′
𝑖 in (3.38) with

zeros, and 𝜎𝑖 with 𝜎𝑖(𝑡) to emphasize that the standard deviation is constant over

frequency and changes only in time. By taking the first derivative of the resultant
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Figure 3-2: Theoretical and experimental performance of IF estimators based on
STFT and ST using FM signals belonging to three different classes. In upper subplots,
STFT with 𝜎 equal to 16, 16, 10, respectively, is used. In the last subplots, we use
ST with 𝜎(𝑓) equal to 1/(0.1 + 0.6|𝑓 |), 1/(0.1 + |𝑓 |), 1/(0.1 + |𝑓 |), respectively.

equation with respect to 𝜎(𝑡), we obtain

𝜕𝜎2
𝜉

𝜕𝜎(𝑡)

(︀
𝑡, 𝑓𝑖(𝑡)

)︀
=
𝑘31

[︁
7 (2𝜋𝑓 ′

𝑖(𝑡)𝜎
2(𝑡))

2 − 3
]︁

32𝜎4(𝑡)𝜋
5
2 𝐶0

. (3.40)

Also, it can be easily shown that

𝜕2𝜎2
𝜉

𝜕𝜎2(𝑡)

(︀
𝑡, 𝑓𝑖(𝑡)

)︀
> 0 ∀𝜎(𝑡) > 0. (3.41)

Therefore, to find the value of 𝜎(𝑡) at which the estimation variance is minimum, we

put (3.40) to zero and solve in 𝜎(𝑡); one positive real solution can be found, which is

given by (3.39).
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Deriving the optimal window width of linear TF transforms with frequency-

independent windows in absence of noise is straightforward. Indeed, for such trans-

forms in a noiseless environment, it is immediate to see that 𝑆𝑥(𝑡, 𝑓) in (3.34) is a

Gaussian function centered around the IF. Hence, the optimal choice of 𝜎(𝑡) shall

minimize the variance of 𝑆𝑥(𝑡, 𝑓) to maximize the energy concentration around the

IF. The expression of the standard deviation in this case is slightly different than that

given by (3.39) and can be readily found to be

𝜎(𝑡) =
1√︀

2𝜋 |𝑓 ′
𝑖(𝑡)|

. (3.42)

In [6], the above relation was evaluated explicitly for noiseless LFM signals.

To confirm the validity of the previously derived expressions, we run Monte-Carlo

simulations to estimate the IFs of FM signals belonging to 3 different classes contam-

inated by AWGN using the STFT and the ST. The signals used in the experiments

are: a LFM chirp with the following IF law: 𝑓𝑖𝐿(𝑡) = 0.1 + (0.3/1024) 𝑡, a quadratic

FM (QFM) signal with the following IF law: 𝑓𝑖𝑄(𝑡) = 0.05 + (0.4/10242) 𝑡2, and a

hyperbolic FM (HFM) signal whose IF law is given by: 𝑓𝑖𝐻(𝑡) = 459/ [32 (𝑡+ 255/8)].

The results of the numerical analysis along with the theoretical values are depicted

in Fig. 3-2. The upper three subplots depict the numerical and theoretical variance

of the IF estimate obtained through the STFT, while in the last three subplots, we

show the experimental and theoretical MSE of the IF estimate of the ST. The sta-

tistical data are obtained by 300 trials for 3 SNR values (5, 10, and 15 dB). A good

agreement between the theoretical results and the statistical results can be observed.

3.2.3 Three-step method for adaptive IF estimation

The previous section introduces general formulas that relate the bias and the variance

of the IF estimation error to the observation window and the smoothness of the IF

itself. Therefore, accurate IF estimation requires a data-driven method to select the

optimal, or at least a reasonable, window width. To this end, our work recalls and

extends a low-complexity adaptation procedure presented in [85], [6]; it consists of
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Figure 3-3: Comparison between TFRs based on ECMs with that based on the pro-
posed regular rate. Analyzed signal is given in (3.51) and corrupted by AWGN (SNR
equal to 10 dB). TFRs are based on STFT the width of its observation window is set
based on (a) ECM of Stanković [5], (b) ECM of Pei and Huang [6], and (c) proposed
regular rate. TFRs based on ECMs fail to concentrate enough energy along sinusoidal
IF component.

three steps, discussed in this section and summarized by the flowchart in Fig. 3-1.

Based on this adaptation procedure, we propose two novel linear TFRs suitable for IF

estimation of noisy multicomponent signals, relying on the closed-form expressions

of the estimator bias and variance derived in the previous section. The first TFR

employs a time-adaptive window that minimizes the sum of the MSEs of the IF

estimates at each time instant, whereas in the second TFR, the window width is

TF-adaptive, minimizing the estimation MSE at each location in the TF domain.

For the sake of practicality, we shall restrict ourselves now to the discrete version

of the GSFT, which we define as3

GSFT𝑥[𝑛,𝑚] =
𝑁−1∑︁

𝑙=0

𝑥[𝑙]𝑤
[︀
𝑛− 𝑙, 𝜎[𝑛,𝑚]

]︀
exp

(︂
−𝑖2𝜋𝑚 𝑙

𝑁

)︂
, (3.43)

3The convention that the sampling frequency is normalized to unity is adopted.
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where 𝑥[𝑛] denotes a discrete time series of length 𝑁 corresponding to 𝑥(𝑛𝑇𝑠), with

sampling interval 𝑇𝑠 and 𝑚 = −𝑁/2, . . . , 𝑁/2−1 representing frequency range index.

Preliminary TFR

Optimizing the window width of any TFR of the form in (3.43) requires knowledge

about the IF itself. Therefore, the first step of the adaptation procedure is to construct

a PTFR, which provides a rough estimate of the IF trajectory. While small estimation

errors are tolerable at this stage [6], serious ones may propagate to the next stages,

degrading the accuracy of the final IF estimate. For this reason, Pei and Huang in [6]

employed a STFT whose window width is optimized for the signal at hand according

to an ECM defined in [6, (16)]. Despite the good performance shown therein, after

examining this ECM with different multicomponent signals, we observed that in noisy

environments, the measure favors slow-varying components to the detriment of those

that change faster. In other words, it tends to favor the selection of TFRs where only

quasi-stationary components are extremely highly concentrated. Here, as a PTFR,

we propose a STFT the standard deviation of its Gaussian observation window is

set based on so-called regular rate. We define this rate to be the ratio between the

effective bandwidth 𝐵eff and the effective time duration 𝑇eff of the signal under analysis

according to

𝜈0 =
𝐵eff

𝑇eff
=

[︃
1

𝑁

∑︀𝑁/2−1
𝑘=−𝑁/2(𝑘 − 𝑘0)

2|𝑋[𝑘]|2
∑︀𝑁−1

𝑛=0 (𝑛− 𝑛0)2|𝑥[𝑛]|2

]︃ 1
2

, (3.44)

where 𝑋[𝑘] is the discrete FT (DFT) of 𝑥[𝑛], and

𝑘0 =

∑︀𝑁/2−1
𝑘=−𝑁/2 𝑘|𝑋[𝑘]|2
∑︀𝑁/2−1

𝑘=−𝑁/2 |𝑋[𝑘]|2
, 𝑛0 =

∑︀𝑁−1
𝑛=0 𝑛|𝑥[𝑛]|2∑︀𝑁−1
𝑛=0 |𝑥[𝑛]|2

. (3.45)

If we think of the signal normalized power spectral density (i.e., normalized to unity)

as a probability mass function, then 𝐵2
eff would be its second central moment with

respect to frequency and 𝐵eff is its standard deviation, which is a quantity indicative

of the signal bandwidth [15]. We may think of 𝑇eff in the same previous manner

as a measure of the signal temporal width. The regular rate 𝜈0, therefore, may be

108



interpreted as the rate of a linear chirp that sweeps a frequency range of 𝐵eff during

𝑇eff. We make use of the regular rate to define a global constant rate of change for

the signal IF law, which, when inserted into (3.39), can be used to set the standard

deviation of the fixed observation window of a STFT, used as a PTFR, according to

𝜎 = (3/7)
1
4/
√

2𝜋𝜈0. A comparison between the proposed PTFR and TFRs optimized

using the ECMs of [5] and [6] is provided in Fig. 3-3. The results show that the

ECM-based TFRs fail to concentrate enough energy along a sinusoidal IF component,

whereas the TFR whose window width is set based on the regular rate reveals all signal

components, in addition to being more computationally efficient, because, unlike in

the ECM-based approach, it does not require computation of multiple TFRs to select

the optimal one.

IFR estimation

In the second step of the adaptation procedure, we obtain a rough estimate of the IFR.

To this end, the peaks of the dominant ridges of a PTFR are used to estimate the IF

trajectory, then an operator that computes the first-order time derivative is employed

to retrieve an estimate of the IFR. If the signal is multicomponent, an algorithm

to extract separately all components is needed before computing the derivative of

each extracted IF ridge. Here, IF components separation is performed through an

algorithm based on image processing presented in [86]. It consists of a transformation

of a TFR into a binary image followed by a process called component linking, which

extracts linked crests of a TFR based on a neighborhood-connectivity criterion if

their time duration is longer than a predetermined threshold. This algorithm does

not require prior information about the number of components, but it assumes that

the IF ridges are separable in a TFR, which is a characteristic shared by many real-

world signals, including most physiological signals [87].

As for derivative computations, in [85], the conventional difference operator is

used. However, it is well known that differentiating a noisy discrete signal by means

of this method is highly sensitive to noise. Namely, the SNR of the differentiated

signal is almost always much lower than that of the original signal. Therefore, the
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Signal SM EMBD Re-Spec ADTFD

Test Signal A 𝑁𝑤 = 55 𝐿 = 12 𝛼 = 0.12 𝛽 = 0.12 𝑁𝑤 = 55 𝑎 = 4 𝑏 = 9 𝐹𝑤 = 81

Test Signal B, real-world EEG 𝑁𝑤 = 85 𝐿 = 6 𝛼 = 0.075 𝛽 = 0.5 𝑁𝑤 = 85 𝑎 = 3 𝑏 = 15 𝐹𝑤 = 101

Real-world bat sound 𝑁𝑤 = 65 𝐿 = 10 𝛼 = 0.19 𝛽 = 0.47 𝑁𝑤 = 65 𝑎 = 3 𝑏 = 15 𝐹𝑤 = 101

Table 3.1: Parameters used to construct TFRs of test signals.

difference operator was replaced in [6] by the principal component analysis (PCA),

which performs eigenvalue decomposition on the 2𝐾 estimates surrounding 𝑓𝑖[𝑛] in

order to approximate 𝑓 ′
𝑖 [𝑛]. Our approach here for computing the first derivative is

simpler. First, the estimates 𝑓𝑖[𝑛] are smoothed according to

∼

𝑓𝑖[𝑛] =
1

2𝐾 + 1

𝑛+𝐾∑︁

𝑛−𝐾

𝑓𝑖[𝑛], 𝑛 = 𝐾, ..., 𝑁 − 1 −𝐾, (3.46)

where 𝐾 is a positive integer. The above smoother is a simple moving average filter,

which aims at increasing the SNR of the differentiated signal [88]. After smoothing,

the conventional difference operator is applied to estimate the IFR. The larger is

𝐾, the greater is the noise reduction, but also the larger is the attenuation in the

derivative amplitude. Furthermore, filtering the IF estimates according to (3.46) helps

remove possible outliers before the derivative is calculated, but the accuracy of this

process is limited, due to existing correlation between errors at consecutive samples

in the TFR [14]. Therefore, 𝐾 should be chosen with caution. The smoother width

is set here to 11 (i.e., 𝐾 = 5) and three passes are used to smooth the coarse IF

estimates.

Window width optimization

Once the IF components are extracted and the respective IFRs are estimated, the

window width can be optimized accordingly. At this stage, there are two possibilities

for adapting the width of the TFR observation window: univariate and multivariate

width optimization. In the first possibility, the width of the window may be defined

as a function of time (i.e. ASTFT) or frequency (i.e., ST). This approach to width

optimization boils down to searching for the width that achieves the best compromise
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for all signal components at each time instant or frequency. Therefore, it requires a

meaningful cost function (e.g., MSE) that is minimum if the window width is optimal.

One clear advantage of this approach is its limited complexity, as both the ASTFT

and the ST can be implemented efficiently by means of FFTs. On the other hand,

the observation window can be set to vary in both time and frequency. This second

option entails more flexibility by allowing for width adjustment at each location in

the TF domain; however, it requires higher computational complexity because the

GSFT in (3.43) cannot be realized by using FFTs when 𝜎[𝑛,𝑚] is dependent on both

𝑛 and 𝑚.

Univariate width optimization

We propose an ASTFT the width of its observation window is optimized at each time

instant to minimize the sum of the MSEs of the IF estimates of all signal compo-

nents. Since the ASTFT yields a TFR that is generally free from cross-terms, it can

be approximated by superimposing the TFRs corresponding to all the signal mono-

components (see [83] for an argument). In this context, the formulas derived before

can be extended to the case of multicomponent signals whose IF ridges are separable

in the TF domain. Namely, using an ASTFT, unbiased IF estimates are obtained,

and the total MSE can be derived from (3.38) to give:

MSEtot
[︀
𝑛, 𝜎[𝑛]

]︀
=

𝐿𝑛∑︁

𝑙=1

[︁(︀
2𝜋𝑓 ′

𝑖 𝑙[𝑛]𝜎2[𝑛]
)︀2

+ 1
]︁ 5

2

32𝜋
5
2𝜎3[𝑛]𝐶0

, (3.47)

where 𝐿𝑛 is the number of signal components at the time instant 𝑛𝑇𝑠, and 𝑓 ′
𝑖 𝑙[𝑛]

stands for the IFR of a single IF component 𝑙. We define the optimal window width

as that minimizing MSEtot
[︀
𝑛, 𝜎[𝑛]

]︀
, which may be approximated by

𝜎opt[𝑛] ≈ arg min
𝜎[𝑛]

𝐿𝑛∑︁

𝑙=1

[︁(︀
2𝜋𝑓 ′

𝑖 𝑙[𝑛]𝜎2[𝑛]
)︀2

+ 1
]︁ 5

2

𝜎3[𝑛]
. (3.48)
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Note that MSEtot
[︀
𝑛, 𝜎[𝑛]

]︀
is the sum of functions each of which is strictly convex and

has a global minimum at 𝜎𝑙[𝑛], which is returned by (3.39). Therefore, there also

exists a global minimum to MSEtot
[︀
𝑛, 𝜎[𝑛]

]︀
, and it belongs to the following band:

𝜎opt[𝑛] ∈
[︁
min {𝜎1[𝑛], ..., 𝜎𝐿𝑛 [𝑛]} ,max {𝜎1[𝑛], ..., 𝜎𝐿𝑛 [𝑛]}

]︁
. (3.49)

A good approximation of 𝜎opt[𝑛] can be found by executing the following two steps:

first, the values of 𝜎𝑙[𝑛] corresponding to the minimum and maximum estimated IFRs

are computed; thence, between these two limits, candidates for the optimal width are

tested based on the objective function in (3.48) from a small set (a set of 10 elements

is used in the numerical examples of the next section). We refer to the resultant TFR

as the optimized ASTFT (OASTFT).

Optimizing the width of a frequency-dependent window within an ST to minimize

the sum of the MSEs of the IF estimates requires information about the first- and

second-order frequency derivatives of the window width [recall that (3.33) and (3.38)

are dependent on both 𝜎′
𝑖 and 𝜎

′′
𝑖 ]. These derivatives are unknown, since the width

function itself is unknown and to be designed, which makes this optimization approach

impractical; for this reason, we will not proceed with it.

Multivariate width optimization

The OASTFT presented before compromises meaningfully between all signal compo-

nents in the TF domain, but to further improve adaptivity, the observation window

could vary in both time and frequency. If the IF ridges are separable in the TF

domain, the window width of the GSFT can be adjusted for each component inde-

pendently. At this stage, coarse estimates of the IFs and the corresponding IFRs are

available, hence the question is how to set the window standard deviation at the on-

and off-ridge points. We proved before that the standard deviation given in (3.39) is

optimal (in the MSE sense) in case its first- and second-order derivatives with respect

to frequency are null at the IF. Therefore, for each on-ridge point of an IF component,
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𝑖 1 2 3 4

𝑏𝑖 1.2 1 0.9 0.8
𝑐𝑖 -0.0033 -0.0033 -0.009 -0.014
𝑑𝑖 1.6 3.2 6.4 9.6

Table 3.2: Coefficients of Test Signal B given in (3.52).

we define a spectral interval ∆𝑓 within which the window width is fixed according to

𝜎[𝑛,𝑚] =
(3
7
)
1
4

√︂
2𝜋
⃒⃒
⃒𝑓 ′

𝑖 𝑙[𝑛]
⃒⃒
⃒
, 0 ≤

⃒⃒
𝑚− 𝑓𝑖𝑙[𝑛]

⃒⃒
≤ ∆𝑓

2
,

(3.50)

whereas outside this interval, the width is interpolated using 2-D linear interpolation

as in [6]. The previous interpolation guarantees that the first- and second-order

frequency derivatives of 𝜎[𝑛,𝑚] are zeros around 𝑓𝑖𝑙[𝑛], and thus the selected width is

optimal in the MSE sense. Furthermore, due to noise, the coarse IF estimate is likely

to be shifted from its true value, thus it is preferable to assign the width in (3.50)

not only to 𝑓𝑖𝑙[𝑛] but also to the frequencies in its vicinity. Experimentally, we found

that a width of few frequency bins yields an accurate IF estimate (∆𝑓 is set to 8 in

the numerical examples of the next section). The resultant transform is denoted by

the optimized GSFT (OGSFT).

3.2.4 Performance evaluation

In this section, the proposed methods are evaluated and compared with popular state-

of-the-art algorithms. The comparison includes the methods proposed by Pei and

Huang in [6], denoted here by the chirp rate-based ASTFT (CR-ASTFT), the chirp

rate-based ST (CR-ST), and the chirp rate-based GSFT (CR-GSFT), and also two of

the most promising QTFRs reported in the literature: the S-method (SM) [31], and

the extended modified B-distribution (EMBD) [23]. Furthermore, four adaptive TFRs

are considered: the MDD [22], the AFS [81], the ADTFD [24], and an adaptive ST

based on energy concentration optimization [2], denoted by EC-ST. For completeness,

a reassigned spectrogram (Re-Spec) is also included in the benchmark comparison
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Figure 3-4: TFRs of synthetic signal composed of two components given in (3.51)
and corrupted by AWGN (SNR equal to 12 dB). Respective parameters of TFRs are
adjusted based on visual inspection as provided in Table 3.1.

representing the reassignment method. The algorithms of [6] require a PTFR; for the

sake of a fair and meaningful comparison, they are realized here using the proposed

PTFR based on the regular rate.

Evaluation on synthetic signals

IF estimation of two multicomponent test signals is carried out in AWGN environ-

ments characterized by SNR ranging from 0 to 30 dB with a 2-dB step. The normal-

ized MSE (NMSE) of IF estimation over a large number of Monte-Carlo simulations
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Figure 3-5: TFRs of synthetic signal of 4 components given in (3.52) corrupted by
AWGN (SNR equal to 12 dB). Respective parameters of TFRs are optimized based
on visual inspection as provided in Table 3.1.

(here is set to 100) is chosen to quantitatively evaluate the precision of the selected

methods. As mentioned before, the employed algorithm for IF components separation

and tracking is presented in [86]; in our simulation, IF components whose durations

are less than 20 samples will be discarded. Moreover, to reduce the quantization error

in the final IF estimate, we interpolate the cross-section of a TFR corresponding to

a given time instant between the two frequency samples surrounding its peak using

a parabolic function.
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Test Signal A

This synthetic signal is composed of two components: a LFM chirp, and a sinusoidal

FM component; it is defined as

𝑥𝐴(𝑡) = cos [2𝜋𝑡 (𝑎1 + 𝑎2𝑡)] + cos (2𝜋𝑎3𝑡+ 4 sin(2𝜋𝑎4𝑡)) , (3.51)

where 𝑎1 = 0.03 , 𝑎2 = 0.025/256, 𝑎3 = 0.18, 𝑎4 = 0.01, 0 ≤ 𝑡 < 256 seconds, and the

sampling frequency is 𝑓𝑠 = 1 Hz. TFRs of Test Signal A with AWGN at SNR equal

to 12 dB are shown in Fig. 3-4 using the same colormap. The parameters used to

construct these TFRs are reported in Table 3.1; they were optimized based on visual

inspection. Results of the NMSE are shown in Fig. 3-6.

Test Signal B

Test Signal B is of four components with significant variations in their relative am-

plitudes and FM laws in order to resemble real EEG data; it is defined as:

𝑥𝐵(𝑡) =
4∑︁

𝑖=1

𝑏𝑖 cos
[︀
2𝜋
(︀
𝑐𝑖(𝑡− 4)4 + 𝑑𝑖𝑡

)︀]︀
, 0 ≤ 𝑡 < 8, (3.52)

where the coefficients 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are given in Table 3.2, and the sampling frequency

is 𝑓𝑠 = 32 Hz. TFRs of Test Signal B with AWGN at SNR equal to 12 dB are

shown in Fig. 3-5 using the same colormap. Parameters of the considered TFRs

are optimized based on visual inspection and tabulated in Table 3.1. Results of the

NMSE are shown in Fig. 3-6.

Discussion of results

From the TFRs in Fig. 3-4, we may observe the following. The proposed OASTFT

compromises more fairly between the two signal components in terms of energy dis-

tribution in the TF domain compared with the CR-ASTFT. The EC-ST appears to

provide a cleaner TFR than that achieved by the CR-ST. The SM seems to be more

effective in attenuating the spurious cross-terms in the TF domain while keeping good
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Figure 3-6: Comparison between selected TFRs in terms of the NMSE of IF esti-
mation. Figure shows the NMSE (in decibels) as function of SNR (in decibels). We
normalize both the true and estimated IFs by the sampling frequency before com-
puting the NMSE. Results of Test Signal A in (a), and results of Test Signal B in
(b). TFRs of Test Signal A and Test Signal B are depicted in Fig. 3-4 and Fig. 3-5,
respectively. Results of the MDD with Test Signal A are not shown, because the
MDD does not resolve the sinusoidally modulated component.

energy concentration along the IF ridges compared with the EMBD, where these ar-

tifacts are more evident. The MDD fails to resolve the sinusoidal FM component,

because it is a TFR suitable for signals that can be modeled based on piecewise LFM

chirps, whereas the AFS tends to linearize this FM segment and introduces some fake

artifacts. Perhaps the best visual representations are provided by the Re-Spec and

the ADTFD, but those obtained by the OGSFT and the SM are also sharp and eas-

ily readable; they feature high energy concentration along the IF ridges with almost

complete cross-terms suppression.

Moving now to the TFRs of Test Signal B in Fig. 3-5, as far as the ST-based

methods are concerned, we see again that the TFR achieved by means of the EC-

ST is much cleaner than that provided by the CR-ST. The ASTFT-based TFRs,

namely the OASTFT and the CR-ASTFT, seem to yield TFRs somehow close to
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Figure 3-7: Comparison between selected TFRs in terms of IF estimation. Analyzed
signal is real-world EEG seizure signal corrupted by AWGN at SNR equal to 15 dB.
Figure shows TFRs and corresponding IF estimates extracted using an algorithm
based on image processing.

those provided by the OGSFT and the CR-GSFT, respectively, which is a result

justified by the fact that the differences in the IFR between the signal components

are not as significant as in the previous example. Among the linear TF transforms,

the OGSFT achieves the sharpest TFR. The SM, once again, appears to outperform

the EMBD in terms of the quality of the visual representation. The linearization

effect of the MDD is clear with this test signal, where the four IF ridges appear as

linear functions in the TF domain, while the AFS produces notable artifacts, yet the

IF components can be visually identified. The TFR returned by the ADTFD (with
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Figure 3-8: TFRs of real-world bat echolocation sound corrupted by AWGN (SNR
equal to 20 dB). Respective parameters of TFRs are provided in Table 3.1. Parameters
of EMBD and ADTFD are adjusted based on the results in [7], while those of the SM
and the Re-Spec are based on visual inspection. Proposed methods do not require
parameter optimization and are fully automated

optimized parameter setting) is perhaps the most impressive.

As one can clearly see, evaluating a TFR based on visual inspection could be hard

and somehow subjective. This work considers the accuracy of IF estimation as the

primary criterion of goodness. Observing the NMSE curves in Fig. 3-6, the following

conclusions can be drawn.

1. The proposed methods outperform all the other considered algorithms in IF

estimation starting from about 10 dB of SNR, at least for these two examples.

This result is explained by the facts that the OASTFT and the OGSFT are lin-

ear, hence returning TFRs almost free from cross-terms, and their IF estimates

are approximately unbiased.

2. The OASTFT and the OGSFT provide more accurate IF estimates compared
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with their counterparts presented in [6], thanks to their statistically optimized

window sizes. Note that, unlike the OGSFT, the performance of the CR-GSFT

degrades significantly with Signal A compared with Signal B, indicating the

sensitivity of the 2-D interpolation used in [6] to the IF ridges in the TF domain.

3. The ST-based methods, namely the CR-ST and the EC-ST, are significantly

less accurate in IF estimation than those that adapt the TFR window in time

or time and frequency. Indeed, it turns out that the CR-ST is sensitive to errors

in the coarse IF estimates, which may require some sort of post-processing.

4. Generally, the OASTFT and the OGSFT seem to perform closely at SNR larger

than 10 dB, although the latter is more adaptive and renders a TFR that is,

in general, more impressive in terms of readability and energy concentration

compared with the former.

5. The SM and the ADTFD seem to be superior to the other methods based

on QTFRs in terms of IF estimation; their estimates, nonetheless, are less

accurate than those returned by the proposed methods for the considered test

signals. Their good performance, moreover, is dependent on proper setting of

their respective parameters. Note also that the accuracy of the IF estimates

of the AFS and those of the Re-Spec differ significantly between Signal A and

Signal B.

Evaluation on real signals

Here, the proposed methods are evaluated using real-world data. Although, as men-

tioned before, this work considers the accuracy of IF estimation to be the primary

evaluation criterion, this criterion cannot be used with real signals, since the true IF

is not exactly known.

Real-world EEG seizure signal

We consider a newborn EEG seizure signal of duration 8 seconds acquired at sampling

frequency of 32 Hz taken from [80]. AWGN is added to this signal at SNR equal to
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Method OASTFT OGSFT SM EMBD MDD AFS Re-Spec ADTFD

EMC 1.8 × 104 1.6 × 104 2.2 × 104 3.2 × 104 1.5 × 104 8.4 × 104 1.6 × 103 1 × 104

Table 3.3: ECM of selected TFRs of a real-world bat echolocation sound.

15 dB, and the noisy EEG signal is analyzed using the OASTFT, the OGSFT, the

SM, the MDD, the Re-Spec, and the ADTFD. Figure 3-7 shows the resultant TFRs

with the corresponding IF ridges estimated using the connected component linking

algorithm. Observing Fig. 3-7, we see that the IF trajectories estimated by the

OASTFT and the OGSFT are almost identical and free from spurious components.

The SM and the MDD concentrate high energy along the IF components in the TF

domain, but they also produce some cross-terms, which can be seen in Fig. 3-7(f)

and Fig. 3-7(h), respectively. The Re-Spec does not estimate accurately the IF

trajectories of the weaker signal components, as can be seen in Fig. 3-7(j). The

ADTFD provides a TFR with very high energy concentration and almost no cross-

terms, but the previous example, which uses a synthetic signal, shows that the IF

estimates of the ADTFD are less accurate than those provided by the OASTFT

and the OGSFT. This example demonstrates that the proposed methods do not

yield TFRs with the highest energy concentration, but their IF estimates are very

accurate. More importantly, these methods are completely automatic in the sense

that they do not require interference by a user to properly set any parameter, while

the good performance of other algorithms is conditioned by appropriate parameter

tuning, which might be tedious when performed manually or requires an optimization

algorithm, as proposed in [7] and [82] for the ADTFD.

Bat echolocation sound

To further illustrate the performance of the developed methods on real-world data,

we consider now a bat echolocation sound signal of 400 samples taken from [15]. To

analyze this signal, we employ the OASTFT and the OGSFT, representing TFRs

based on linear transforms, and for comparative purposes, the SM, the EMBD, the

MDD, the AFS, the Re-Spec, and the ADTFD are also considered (see the parameters

used to implement these TFRs in Table 3.1). TFRs of the analyzed signal with AWGN
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Method OASTFT OGSFT SM EMBD MDD AFS Re-Spec ADTFD

time (s) 0.46 2.9 0.09 0.24 0.18 1.5 0.21 9.3

Table 3.4: Comparison between selected TFRs in terms of computation time.

set at SNR equal to 20 dB are displayed in Fig. 3-8 using the same colormap. The

accuracy of IF estimation cannot be used to objectively quantify the performance

of a TFR of a real-world signal; therefore, we use instead Stanković’s ECM [5]. A

low value of this measure indicates a TFR with high energy concentration. Table

3.3 reports results of the ECM for the selected TFRs. They show that the Re-Spec

has the minimum ECM, followed by the ADTFD, thus implying maximum energy

concentration, which is also confirmed by visual inspection. Note that the proposed

methods achieve lower ECMs than the EMBD, which gives rise to notable cross-terms,

and also the SM.

A comparison between the previous methods in terms of computation time (av-

eraged over 50 realizations) is provided in Table 3.4. The experiments were run on

Windows-7 Intel Core i-5 platform with 6 GB RAM. The results confirm that the

OASTFT is more computationally efficient than the OGSFT. They also show that

the SM is the fastest algorithm, but it is nonadaptive, while the ADTFD is the most

computationally demanding, since it locally optimizes the direction of a smoothing

kernel. It is important to note that the results reported in Table 3.4 do not ac-

count for the time and numerical complexity required to properly tune, or possibly

optimize, the parameters of the TFRs given in Table 3.1, which can be significantly

demanding. On the other hand, and as mentioned before, the proposed methods are

completely automated. It is useful to mention that in this example, around 96% of

the computation time of the OASTFT and 15% of that of the OGSFT is spent in the

IF extraction and tracking algorithm.
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3.3 Adaptive IF estimation based on QTFRs

3.3.1 Introduction

The focus in this section is on adaptive IF estimation through QTFRs. As previously

explained, when accurate signal models are not available, a simple yet effective method

for nonparametric IF estimation is established based on the maxima position of a

TFR [15, 20, 16]. Identified sources of error are: 1. bias, originating from the IF

high-order derivatives; 2. small noise because of which the TFR local maxima remain

within corresponding auto-terms; and 3. large noise, causing the local maxima to be

located outside the signal components. The first two sources of error are analyzed

in [83], whereas the last is considered in [89]. Analysis of the error caused by small

disturbances demonstrates that the estimation bias and variance are monotonically

increasing and decreasing functions of the TFR window size, respectively. For the

Wigner distribution (WD), the window size that resolves the bias-variance trade-off

in the least MSE sense was derived in [84], but was deemed of impractical value for

being a function of the IF second-order derivative, which is, of course, unknown, since

the IF itself is to be estimated. An algorithm for adaptive IF estimation which does

not require a priori knowledge of the IF derivatives was presented in [84, 90] based on

the ICI rule. In short, this method tests adaptively candidates for the window length

from a predefined discrete set, and for each size, a confidence interval, within which

the true IF exists with a certain probability, is defined using the asymptotic formula

of the estimation variance. An estimate of the optimal width is determined as the

largest width in the set for which two successive intervals have at least one point in

common. The ICI-based method was proven to provide good estimation accuracy in

working environments characterized by moderate to high SNRs; its performance was

analyzed in [91] and procedures to properly adjust its parameters were presented.

It was subsequently applied with other TFRs, including higher-order ones, in [92,

93, 94]. A modification of this method was proposed in [95], where the amount of

overlap between the current and previous confidence intervals is tested to improve the

accuracy of estimation. Djurović and Stanković in [96] refined the method behavior
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in high-noise environments by excluding narrow windows that produce large errors

and applying a median filter to the estimates returned by middle-size windows to

remover possible outliers.

Despite the fact that the ICI-based method is of central importance in adaptive IF

estimation of monocomponent signals, as accentuated in [14], the following limitations

remain. First, since the method nature is based on statistical hypothesis testing, the

IF estimation accuracy depends, obviously, on the cardinality of the set of windows

used by the ICI rule. Second, if we make use of a larger set of window widths, we

may improve on accuracy but at the expense of higher computational complexity,

compromising the method practicality. Tackling the previous shortcomings, in this

section, we take a different approach to adaptive IF estimation. Essentially, we argue

that the closed-form formula which relates the optimal width (in the MSE sense) to

the IF second-order derivative can be used directly as a criterion for width selection

once a reasonable estimate of the second-order derivative is available. To this end, we

first construct a preliminary PTFR, which is a WD or one based on the SM [31], and

use the peaks of its dominant ridges as a rough estimate of the IF trajectory. Thence,

the continuous wavelet transform (CWT) is introduced to accommodate an estimate

of the IF second-order derivative. Although numerical differentiation of noisy process

is known to be a classical ill-posed problem, we will show that, by a proper selection

of a wavelet mother, the CWT combines smoothing with high-order differentiation,

providing a good approximation of derivatives.

3.3.2 Background theory

Let 𝑦(𝑛) = 𝑥(𝑛) + 𝜖(𝑛) be a noisy signal, where 𝑥(𝑛) ≡ 𝑥(𝑛𝑇 ) is a sampled version

of the continuous-time and noise-free signal 𝑥(𝑡) = 𝐴 exp(𝑗𝜑(𝑡)) with 𝑇 being the

sampling interval. 𝜖(𝑛) ≡ 𝜖(𝑛𝑇 ) is a complex-valued AWGN of variance 𝜎2
𝜖 . The

signal phase is 𝜑(𝑡) and 𝐴 is a constant real-valued amplitude. By definition, the

signal IF is the first-order derivative of its phase [13, 14, 15]: 𝜔(𝑛) , 𝜑′(𝑡)|𝑡=𝑛𝑇 .

Here, the IF is estimated based on the maxima position of the WD according to:
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�̂�(𝑛) = arg max
𝜔

WD𝑦(𝑛, 𝜔), where WD𝑦(𝑛, 𝜔) denotes the WD of 𝑦(𝑛) which is given

by [84]:

WD𝑦(𝑛, 𝜔) =

ℎ/2−1∑︁

𝑘=−ℎ/2

𝑤ℎ(𝑘)𝑦(𝑛+ 𝑘)𝑦*(𝑛− 𝑘) exp (−𝑗2𝜔𝑘) (3.53)

in which 𝑤ℎ(𝑘) ≡ 𝑤ℎ(𝑘𝑇 ) is a real-valued symmetric window of length ℎ. The es-

timation error, defined as ∆�̂�(𝑛) = �̂�(𝑛) − 𝜔(𝑛), is analyzed in [84]; therein, it is

demonstrated that the error has the following bias and variance, respectively:

Bias(𝑛, ℎ) ∼= 𝑐1ℎ
2𝜔′′(𝑛), Var(ℎ) = 𝜎2(ℎ) ∼= 𝑐2

𝜎2
𝜖

𝐴2

1

ℎ3
, (3.54)

where 𝑐1 and 𝑐2 are window-dependent parameters. The contradictory behavior be-

tween the bias and the variance with respect to the length ℎ is made clear by (3.54),

and the fact that the estimation bias is dependent on the IF itself establishes that any

reasonable choice of the length ℎ should be data-driven. Optimizing ℎ by minimizing

the estimation MSE, defined as the sum of the squared bias and the variance, results

in [90]:

ℎ𝑜𝑝𝑡(𝑛) =

[︂
3𝑐2𝜎

2
𝜖/𝐴

2

(2𝑐1𝜔′′(𝑛))2

]︂1/7
. (3.55)

If the signal is highly contaminated by noise, the previous analysis loses its validity.

In such a case, it was demonstrated in [89] that the estimation error exhibits an

impulsive nature, and the WD peaks in any location outside the auto-term position

with the following probability:

𝑃𝑒(ℎ) = 1 − 1√
2𝜋𝜎WD

∫︁ +∞

−∞

(︂
1 − 0.5 erfc

(︂
𝑧√

2𝜎WD

)︂)︂ℎ−1

exp

(︂−(𝑧 − 𝐴WD)2

2𝜎2
WD

)︂
d𝑧,

(3.56)

where 𝐴WD = 𝐸0𝐴
2 and 𝜎2

WD = 𝐸1𝜎
2
𝜖 (2𝐴2 + 𝜎2

𝜖 ) with

𝐸0 =

ℎ/2−1∑︁

𝑘=−ℎ/2

𝑤ℎ(𝑘), 𝐸1 =

ℎ/2−1∑︁

𝑘=−ℎ/2

𝑤2
ℎ(𝑘). (3.57)

125



3.3.3 IF estimation based on the ICI rule

The fact that the estimation bias and variance are dependent on the IF itself estab-

lishes that any reasonable choice of the length ℎ should be data-driven. Katkovnik

and Stanković in [84] presented an algorithm for adaptive IF estimation using the

WD that does not require prior knowledge of the bias; we briefly recall it here. Let

𝐻 = {ℎ1 < ℎ2 < · · · < ℎ𝑗} be a finite-length set of increasing window lengths. A confi-

dence interval associated with a length ℎ𝑗 is defined given by𝐷ℎ𝑗
(𝑛) = [𝐿ℎ𝑗

(𝑛), 𝑈ℎ𝑗
(𝑛)]

where 𝐿ℎ𝑗
(𝑛) = �̂�ℎ𝑗

(𝑛)−𝐾𝜎(ℎ𝑗), 𝑈ℎ𝑗
(𝑛) = �̂�ℎ𝑗

(𝑛) +𝐾𝜎(ℎ𝑗), and with �̂�ℎ𝑗
and 𝜎(ℎ𝑗)

indicating the IF estimate, obtained using a window of length ℎ𝑗, and its standard

deviation, respectively, and 𝐾 is a constant. At each time instant 𝑛𝑇 , the ICI-based

method takes window width adaptively, approximating the optimal width ℎ𝑜𝑝𝑡(𝑛) by

the largest member of 𝐻 for which the following condition is still satisfied:

𝐷ℎ𝑗
(𝑛) ∩𝐷ℎ𝑗−1

(𝑛− 1) ̸= 0. (3.58)

For computation of 𝜎(ℎ𝑗), the quantities 𝐴 and 𝜎𝜖 are usually estimated through

[97, (23-24)]. Accuracy of the IF estimate returned by the ICI-based method shows

some improvement by introducing an additional condition, requiring the quantity
⃒⃒
𝐷ℎ𝑗

(𝑛) ∩𝐷ℎ𝑗−1
(𝑛)
⃒⃒
/|𝐷𝑘𝑗(𝑛)| to be larger than or equal to a predefined threshold,

as shown in [95]. Applicability of the ICI-based method was extended to high-noise

environments in [96]. The authors essentially proposed to exclude the members of 𝐻

that are prone to high noise, identifying them as those for which 𝑃𝑒(ℎ) < 𝑃1. Also,

the IF estimates obtained by windows whose widths satisfy 𝑃1 ≤ 𝑃𝑒(ℎ) ≤ 𝑃2 are

smoothed using a median filter to remove possible outliers. 𝑃1 and 𝑃2 are predefined

probabilities. For the other windows in 𝐻, the IF estimates are left unchanged.

3.3.4 Motivation for the proposed approach

Essentially, we try to obtain an estimate of the IF second-order derivative, which,

once available, can be used directly to adjust the window size by a direct application

of (3.55). The main argument in support of this alternative approach comes from
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Figure 3-9: Variations of 𝐿1(𝜌) and 𝐿2(𝜌) (in dB). Function 𝐿2(𝜌) increases above
the stationary point at 𝜌 = 1 much slower compared with 𝐿1(𝜌). Note, for example,
𝐿1(𝜌 = 2) is more than 5 times larger than 𝐿2(𝜌 = 2).

observing that, by letting a reasonable estimate of the IF second-order derivative

control the width selection according to (3.55), variations of the MSE around its

minimal value become significantly slower compared with the case in which the MSE

changes directly as a function of ℎ. To clarify this point, we begin by writing the

MSE in two forms. In the first one, the bias and the variance are given by the set of

equations (3.54), resulting in:

MSE1(𝑛, ℎ) =
(︀
𝑐1𝜔

′′(𝑛)ℎ2
)︀2

+
𝑐2𝜎

2
𝜖/𝐴

2

ℎ3
. (3.59)

While in the second formulation, ℎ is substituted by

[︂(︀
3𝑐2𝜎

2
𝜖/𝐴

2
)︀⧸︁(︁

2𝑐1̂︁𝜔′′(𝑛)
)︁2]︂1/7

with ̂︁𝜔′′(𝑛) denoting an estimate of the IF second-order derivative:

MSE2

(︁
̂︁𝜔′′(𝑛)

)︁
=

[︂
3 (𝜔′′(𝑛))

2
+ 4

(︁
̂︁𝜔′′(𝑛)

)︁2]︂
⎡
⎢⎣𝑐 (𝜎2

𝜖/𝐴
2)

4

(︁
̂︁𝜔′′(𝑛)

)︁8

⎤
⎥⎦

1/7

, (3.60)
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where 𝑐 = (𝑐31𝑐
2
2)

2
/108. At a given time instant, the minimum MSE, denoted by

MSE𝑚𝑖𝑛(𝑛), results from (3.59) by the substitution ℎ = ℎ𝑜𝑝𝑡(𝑛), or from (3.60)

by replacing ̂︁𝜔′′(𝑛) with 𝜔′′(𝑛). Now, to understand how the functions in (3.59)

and (3.60) varies around MSE𝑚𝑖𝑛(𝑛) as a result of ℎ(𝑛) and ̂︁𝜔′′(𝑛) deviating from

their respective optimal values, we start by defining the following two quantities:

𝐿1(𝜌) = MSE1 (𝑛, 𝜌ℎ𝑜𝑝𝑡(𝑛))
⧸︀
MSE𝑚𝑖𝑛(𝑛) and 𝐿2(𝜌) = MSE2 (𝜌𝜔′′(𝑛))

⧸︀
MSE𝑚𝑖𝑛(𝑛),

where the deviations of ℎ(𝑛) and ̂︁𝜔′′(𝑛) from ℎ𝑜𝑝𝑡(𝑛) and 𝜔′′(𝑛), respectively, are de-

scribed by a real parameter 𝜌. It can be shown that the ratios 𝐿1(𝜌) and 𝐿2(𝜌) change

as functions of 𝜌 according to: 𝐿1(𝜌) = (4+3𝜌7)/(7𝜌3) and 𝐿2(𝜌) = (3+4𝜌2)/(7𝜌8/7).

These expressions, in turn, make clear that, as 𝜌 shifts away from 1, 𝐿1(𝑛) and 𝐿2(𝑛)

increase above their stationary point (at 𝜌 = 1) with a rate being significantly larger

for 𝐿1(𝑛) than it is for 𝐿2(𝑛), as illustrated in Fig. 3-9. We conclude that, the IF

estimation approach in which an estimate of the IF second-order derivative controls

the size of the TFR observation window using (3.55) can tolerate error in the deriva-

tive estimation larger than the error an approach based on adaptive length selection

from a discrete scheme (like the ICI method) can endure in its search for the most

suitable length. The evident flatness of 𝐿2(𝜌) around its stationary point indicates

that the estimate ̂︁𝜔′′(𝑛) does not have to be highly accurate in order to achieve a low

MSE, but rather reasonable. To obtain such an estimate, the method proposed in

this communication constructs first a PTFR and uses its dominant ridges as a rough

estimate of the IF trajectory. Then, the IF second-order derivative is estimated by

the CWT. This estimate is finally inserted in (3.55) to adjust the window size of an

improved TFR, whose local peaks provide a more accurate estimation of the IF.

3.3.5 Selecting a PTFR

The PTFR is aimed to provide a rough estimate of the IF trajectory, which, once

available, is used by the CWT for derivative calculations. We stress again that this

preliminary estimation does not have to be highly accurate, since, as explained before,

an IF estimate with small MSE can be obtained even with an error in the derivative

estimate, provided that this error is not very large. Indeed, it turns out that only
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Figure 3-10: Example of computing the second-order derivative of a noisy sine wave-
form (SNR=15 dB). (a) Derivative computed by the conventional finite-difference
method. (b) Spectral response amplitude of the filter Θ𝑠(𝑡) given by the second-order
derivative of a Gaussian and SG second-order differential filter (note the high side
lobes of SG filter). Parameters of the filters are set such that they have the same
cutoff frequency. Derivative computed by: SG differential filter in (c), and the CWT
in (d). Most accurate result is provided by CWT.

large errors, which dislocate the PTFR peaks far from the corresponding auto-terms,

impair the quality of the final IF estimates. To avoid the occurrence of such errors,

based on an estimate of 𝐴 and 𝜎𝜖 obtained following [84, (23, 24)], the PTFR win-

dow size, denoted henceforth by ℎ𝑖𝑛𝑡, is determined as the smallest in a predefined

discrete set of window widths such that the probability of large error is smaller than

a threshold: 𝑃𝑒(ℎ𝑖𝑛𝑡) < 𝑃𝑡ℎ. By satisfying this requirement on 𝑃𝑒(ℎ𝑖𝑛𝑡), large errors

occur with a small probability so as to allow for the smoothing offered by the CWT

to effectively alleviate their impact on derivative calculations. We remark that the

reasons behind selecting the narrowest window among those that satisfy the previous

accuracy requirement are: 1. to avoid IF estimation with large bias, because large bi-

129



asedness in the initial IF estimate is more detrimental to derivative calculations than

variance, whose impact can be better mitigated by smoothing; 2. abrupt changes in

the IF trajectory cannot be revealed by a wide observation window, leading to serious

errors in derivative estimation. In the numerical realization, 𝑃𝑡ℎ is set to 0.1% at high

values of SNR (SNR ≥ 5 dB), while at lower SNRs (SNR < 5 dB), to avoid selection

of very large windows, which are prone to inner-artifacts, 𝑃𝑡ℎ is increased to 1/3 (sim-

ilar probability thresholds were used in [96]). For signals with highly nonlinear IF

laws in high-noise environments, the WD is contaminated by aggravating interfering

inner-terms, which constitute in this case the dominant source of estimation errors.

As a possible remedy to inner-terms, we may apply the proposed algorithm with the

SM, which is a reduced-interference TFR containing the appealing features of the

WD and the STFT. We note that the SM was also used for adaptive IF estimation

in [96]. The proposed method is summarized by the flowchart in Fig. 3-11.

3.3.6 Derivative approximation by the CWT

Despite being of fundamental importance in various fields of study, numerical differ-

entiation (ND) is known to be an ill-posed problem, meaning that small perturbations

lead to large error in the approximate solution. In this context, several works have

reported the potential offered by the CWT to derivative calculation [98, 99], which

originates from its intrinsic capability to combine smoothing with differentiation, as

briefly explained in what follows.

The CWT of a continuous-time signal 𝑓(𝑡) is defined by

CWT𝑓 (𝑡, 𝑠;𝜓) =

∫︁ +∞

−∞
𝑓(𝑢)

1√
𝑠
𝜓

(︂
𝑢− 𝑡

𝑠

)︂
𝑑𝑢, (3.61)

where the analyzing wavelet (assumed real in the previous definition) results from

a mother wavelet 𝜓(𝑢) by dilation and translation through 𝑠 and 𝑡, respectively.

The transform in (3.61) can be written equivalently using the convolution operator

according to: CWT𝑓 (𝑡, 𝑠;𝜓) = 1/
√
𝑠𝑓(𝑡) * 𝜓(−𝑡/𝑠). For a wavelet characterized by

𝑚 vanishing moments, there exists a function 𝜃(𝑡) whose 𝑚th-order derivative relates
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Estimate A2 and σ2
ε

Choose a suitable hint satisfying the
accuracy requirement on Pe(hint)

Construct a PTFD using
hint and obtain a rough es-
timate of the IF trajectory

Estimate the IF-second
order derivative using the CWT

Use the derivative esti-
mates to calculate ĥopt(n)

Compute an adaptive TFD using ĥopt(n)

Estimate the IF
using the adaptive TFD

Figure 3-11: Flowchart of proposed method for adaptive IF estimation based on
QTFR.

to this wavelet by [100]:

∫︁ +∞

−∞
𝑡𝑖𝜓(𝑡) 𝑑𝑡 = 0, 𝑖 = 0, . . . ,𝑚− 1 ⇐⇒ 𝜓(𝑡) = (−1)𝑚

𝑑𝑚

𝑑𝑡𝑚
𝜃(𝑡). (3.62)

It was also proven that 𝜃(𝑡) satisfies the conditions of a smoothing function by having

a fast decay and nonzero integral, which establishes that 𝜃(𝑡) behaves as a lowpass

filter in the spectral domain. By the theory of convolution, the CWT of 𝑓(𝑡) can be

written now as:

CWT𝑓 (𝑡, 𝑠;𝜓) = 𝑠𝑚+1/2 𝑑
𝑚

𝑑𝑡𝑚

[︂
𝑓(𝑡) * 1

𝑠
𝜃

(︂−𝑡
𝑠

)︂]︂
. (3.63)
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Rearranging (3.63) gives:

CWT𝑓 (𝑡, 𝑠;𝜓)

𝑠𝑚+1/2
= 𝑓(𝑡) * 𝑑𝑚

𝑑𝑡𝑚

[︂
1

𝑠
𝜃

(︂−𝑡
𝑠

)︂]︂
= 𝑓(𝑡) * Θ𝑠(𝑡). (3.64)

Equations (3.63, 3.64) clearly demonstrate that the CWT through a mother wavelet

with 𝑚 vanishing moments is intrinsically equivalent to the 𝑚th-order derivative of a

lowpass-filtered version of the analyzed signal (up to a constant factor). We remark

that the lowpass behavior exhibited by Θ𝑠(𝑡) is certainly desirable if the signal to be

differentiated is noisy. This behavior is controlled by the dilation parameter, which

sets the filter cutoff frequency. With increasing 𝑠, the spectral response of Θ𝑠(𝑡)

becomes narrower, suppressing a larger amount of noise power. On the other hand,

excessive smoothing leads to loss of important derivative details. Therefore, a trade-

off should be adopted when selecting a suitable value for 𝑠, but, in general, the sole

constraint on the chosen mother wavelet is given in (3.62). Note also that the 𝑚th-

order derivative can be computed by one transform procedure. For the purpose of

this work, we selected the second-order derivative of a Gaussian as mother wavelet,

namely: 𝜃(𝑡) = 1/
√
𝜋 exp(−𝑡2). Example of computing the second-order derivative

of a noisy sine waveform with a comparison using Savitzky-Golay (SG) filter [101] is

illustrated in Fig. 3-10.

3.3.7 Numerical evaluation

In this section, the proposed IF estimation method is evaluated and compared with

that based on the ICI rule [84] and its modified version described in [96] with the

extra condition of [95]. The performance is quantified by means of the NMSE of the

IF estimates over a large number of Monte-Carlo simulations (here is set to 100); in

each iteration, AWGN is added to a noiseless signal at SNR (SNR = 𝐴2/𝜎2
𝜖 ) ranging

from 0 to 25 dB with a 2-dB step. For numerical evaluation, we use two signals,
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Figure 3-12: Comparison between IF estimation methods in terms of the NMSE using
two test signals. All the considered methods are implemented using the WD and the
SM.

Signal A and Signal B, with IF laws, 𝜔𝐴(𝑛) and 𝜔𝐵(𝑛), given according to:

𝜔A(𝑛) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.58𝜋
3
, for 𝑛 ∈ {0, 127}

1.5𝜋
3

+ 𝜋
3

cos (4𝜋(𝑛1 − 1)) , for 𝑛 ∈ {128, 255}
1.5𝜋
3

+ 𝜋
3

cos (2𝜋(𝑛1 − 2)) , for 𝑛 ∈ {256, 383}
2.5𝜋
3

+ (0.5𝜋 − 2.5𝜋
3

)(𝑛1 − 3), for 𝑛 ∈ {384, 511}

(3.65)

𝜔B(𝑛) = 0.5𝜋 + 0.4𝜋
[︁

cos(4𝜋𝑛2) −
1

3
cos(12𝜋𝑛2) +

1

3
cos(20𝜋𝑛2)

]︁
, 𝑛 ∈ {0, 255},

(3.66)

where 𝑛1 = 𝑛/128, 𝑛2 = (𝑛− 128)/256. The amplitude of both signals is set to unity.

3.3.8 Simulation results

In all experiments, the proposed method and the ICI-based algorithms are imple-

mented using the WD and the SM as well. Results of the NMSE (in decibels) of

133



0 100 200 300 400 500

Time (S)

0

2
I
F

 
(
r
a
d

/
S

)

ICI

0 100 200 300 400 500

Time (S)

0

1

2

3

I
F

 
(
r
a
d
/
S

)
Proposed

0 100 200 300 400 500

Time (S)

0

2

I
F

 
(
r
a
d

/
S

)

ICI

0 100 200 300 400 500

Time (S)

0

2

I
F

 
(
r
a
d

/
S

)

Proposed

0 100 200 300 400 500

Time (S)

0

5

E
r
r
o

r

10
-4

ICI

0 100 200 300 400 500

Time (S)

0

1

E
r
r
o

r

10
-4

Poposed

0 200 400

Time (S)

0

0.02

0.04

E
r
r
o

r

ICI

0 200 400

Time (S)

0

0.005

0.01

E
r
r
o

r

Proposed

0 100 200 300 400 500

Time (S)

0

500

W
i
d

t
h

ICI

0 100 200 300 400 500

Time (S)

0

50

100

W
i
d

t
h

Proposed

0 100 200 300 400 500

Time (S)

0

200

400

W
i
d

t
h

ICI

0 100 200 300 400 500

Time (S)

0

50

100

W
i
d

t
h

Proposed

Figure 3-13: IF estimation for Signal A. Proposed method is compared with the
modified ICI-based algorithm. First and second columns from left: SNR = 11 dB
and the WD is used for TFR. Third and forth columns from left: SNR = 0 dB and
the SM is used for TFR. First row from top: estimated IF (solid line) and true IF (red
dashed line). Second row: absolute error. Third row from top: the window width.

IF estimation are shown in Fig. 3-12 as functions of SNR. The following conclu-

sions can be drawn from the experimental results. 1. The proposed method using

the WD outperforms the ICI-based algorithms at SNRs larger than 5 dB, whereas

at lower SNRs, the modified ICI method provides more accurate IF estimates. The

performance shortcoming in high-noise environments is due to emphatic inner-inter-
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Figure 3-14: IF estimation for Signal B. Proposed method is compared with the
modified ICI-based algorithm. First and second columns from left: SNR = 11 dB
and the WD is used for TFR. Third and forth columns from left: SNR = 0 dB and
the SM is used for TFR. First row from top: estimated IF (solid line) and true IF (red
dashed line). Second row: absolute error. Third row from top: the window width.

ference presented in the WD, which impairs the validity of (3.55). 2. When the TFRs

are implemented using the SM instead of the WD for inner-terms suppression, the

proposed method regains its effectiveness, improving on the ICI-based algorithms in

terms of the accuracy of IF estimates. Note that the SM has also lead to significant

improvements in the results of the ICI-based methods at SNRs below 5 dB. 3. At
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Signal Original ICI Modified ICI Proposed method

Signal A (𝑁 = 512) 2.09 4.59 0.55
Signal B (𝑁 = 256) 0.81 1.94 0.34

Table 3.5: Comparison between adaptive IF estimation methods in terms of compu-
tation time. SNR is set to 11 dB, and the WD is used as TFR. The results are given
in seconds, and the experiments were run on Windows-7 Intel Core i-5 platform with
6 GB RAM. Proposed method is the most computationally efficient.

SNRs larger than 5 dB, where the inner-terms are less prominent, the accuracy of the

proposed method estimates is slightly degraded when the SM is used instead of the

WD (this degradation is more evident with Signal B). Nonetheless, these estimates

are still more accurate than those of the ICI-based algorithms. Therefore, the sugges-

tion is to use the SM only at SNRs less than 5 dB; otherwise, the WD is preferred.

We illustrate in Fig. 3-13 a single trial of IF estimation using Signal A at two values

of SNR (0 and 11 dB). Fig. 3-14 replicates the results in Fig. 3-13 for Signal B.

Another advantage of the proposed method is reduced computational complexity,

since only two TFRs are implemented (PTFR and final TFR), each of which requires

computational complexity of order 𝑂(𝑁2 log2𝑁), besides the CWT for derivative

calculation, which can be realized with 𝑂(𝑁) computational complexity. With the

ICI-based algorithm, on the other hand, various TFRs should be constructed, de-

pending on the size of the used set of widths. A comparison between the developed

method and the ICI-based algorithms in terms of computation time is provided in

Table 3.5. Results demonstrate the computational efficiency of the proposed method

with respect to its counterparts.
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Chapter 4

Applications of time-frequency

representations
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4.1 Jamming mitigation

4.1.1 Introduction

The global navigation satellite systems (GNSS) deliver precise position and time in-

formation with global coverage. Accurate and worldwide positioning is enabling an

ever-growing number of applications, such as location-based services, agriculture, sur-

veying, synchronization, just to name a few. The over-reliance of vital applications

and systems on the GNSS poses a significant concern about the vulnerability of these

satellite-based systems. Indeed, the susceptibility to interference is arguably the ma-

jor threat to reliability and availability of the GNSS [104]. Most of the GNSS are

based on the direct sequence spread spectrum (DS-SS), where the navigation bits are

modulated by a faster PRN code, which spreads the signal spectrum over a bandwidth

much larger than that imposed by the Nyquist Theorem. This modulation technique

grants the GNSS inherent and limited immunity against interference; however, these

systems are not completely interference-proof. Namely, the GNSS signals have ex-

tremely low power levels (i.e., about -160 dBW) once they arrive on the Earth’s

surface, thus they are likely to be overpowered by any source of interference in the

surroundings, causing a large deterioration in the carrier-to-noise-density ratio. The

sources of interference may be categorized according to their purpose as unintentional

(e.g. solar activities, malfunctions of equipment, etc.) and intentional. Intentional

interference is unauthorized jamming attempts that consist in brute-force emission

of powerful interfering signals, which can be generated with basic hardware and no

specific software with the aim of causing denial of GNSS services over a certain area.

In this context, the prevalence of low-cost jamming devices has been reported [105],

increasing awareness about susceptibility of the GNSS to interference. These devices

are commercialized as Personal Privacy Devices (PPD), and although their usage is

illegal, they are gaining popularity among the public due to privacy concerns related

to the GNSS localization services. According to experimental surveys [106, 107], the

vast majority of jammers on the market are arrays of transmitters (see sample in Fig.

4-1) that broadcast a wideband interference with periodic sawtooth-like modulations
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in order to maximize the ratio between the average energy and the peak power. In

the last decade, low-cost portable jammers have become more and more widespread;

outages of the GNSS operation due to such devices have been experienced and re-

ported. In late 2009, the ground-base augmentation system (GBAS) of the Newark

Liberty International Airport, United States, was suffering from daily breaks, due to

uninformed usage of an in-car jammer. In April 2012, in Kent, England, the police

arrested members of a criminal gang responsible for the theft of some 150 high-value

vehicles using jammers to disable the in-car tracking systems. In November 2013, in

Australia, a Melbourne newspapers reported that more than 100 cabs in the city were

suspected of using GPS jammers in order to fool the fleet management [108].

4.1.2 Jamming mitigation

The consequences of jamming onto the GNSS range from degradation of the accuracy

and integrity of the navigation messages to disruption of the availability and continu-

ity of the system. We refer the reader to [109, 110, 111], where the impact of jamming

attempts onto GNSS receivers is investigated. These studies show that jammers can

impair both the acquisition and tracking performance of consumer-grade receivers

in a range up to 9 km, approximately. Therefore, equipping GNSS receivers with

anti-jamming modules is a crucial upgrade to guarantee the reliability and availabil-

ity of these systems. The demand for cost-effective implementations has motivated

research on digital-signal-processing techniques for the excision of received jamming

waveforms in order to avoid additional hardware, such as expensive antenna arrays

or inertial measurement units. The majority of jamming mitigation methods pro-

cess the raw I/Q samples at the output of the ADC/AGC loop in a domain where

the powerful interference exhibits distinguishable characteristics; depending on the

domain of processing, these methods may be classified as in the following.
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Figure 4-1: Sample of jammers for sale online (https://www.jammer-store.com/).

Time-domain techniques

Time-domain techniques include adaptive notch filtering through FIR or IIR filters

[112]. This approach is effective as long as the modulation waveform of the jamming

signal is slowly changing in time. Within this category falls also the pulse blanking

(PB) method, which was suggested in [113] for narrowband GNSS receivers. This

low-complexity mitigation algorithm capitalizes on the fact that when the bandwidth

of the jamming signal is much wider than that of the receiver front-end, the jamming

signal will resemble a periodic sequence of wideband pulses.

Frequency-domain techniques

These techniques analyze the GNSS signal in the Fourier domain [114]; they are

effective only when a small number of spectral components are contaminated by

interference, which makes them useful against narrowband jamming signals.

Time-frequency techniques

The jamming signal may be synthesized from a time-frequency representation (TFR),

then subtracted from the input signal [115]. Alternatively, a weighting filter can be

used to attenuate the TF components corresponding to the interfering signal in a

TFR, and then a cleaner signal can be retrieved by inverting the modified TFR
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[116]. The previous rejection methods are nonparametric, meaning that they do not

rely on any a priori models or knowledge about the jamming signal, while other TF-

based methods assume that a parametric model is known [117]. The most challenging

aspect shared by all anti-jamming modules based on TF analysis is the demanding

computational complexity, especially considering that the mitigation unit is supposed

to run in nearly real time. The ultimate goal is to develop an anti-jamming technique

that is indeed a practical add-on for GNSS receivers. Furthermore, an important

point regarding equipping the GNSS receivers with a jamming excision unit is that

the quantizer of the receiver ADC should have sufficient resolution. That is, low-

end mass-market receivers equipped with 1/2-bit ADCs are prone to saturation in

the presence of powerful interference, and their short dynamic range frustrates the

effectiveness of any interference mitigation technique based on digital signal processing

[108].

Aiming at providing the GNSS receivers with a low-complexity interference exci-

sion unit, the authors of [118] developed a mitigation technique based on an adaptive

S-transform (ST), called the frequency-adaptive ST (FAST), which can be summa-

rized by the following steps. 1. In a preliminary detection stage, the frequency bins

at which the power spectral density exceeds a predefined level are identified; 2. com-

putation of the ST is restricted to the voices corresponding to the frequency bins

detected in the previous stage; 3. a TF detection stage determines the timings of the

TF components affected by interference; 4. once detected in time and frequency, the

interference components are blanked; 5. thence, the TF components in the masked

ST are time-averaged to recover the corresponding bins of the Fourier spectrum with

reduced interference power. A block diagram of the previous method is shown in

[118, Fig. 2]. Obviously, when the bandwidth of the interfering signal is wide and

comparable to that of the receiver front-end, as in the case of a wideband noise-like

interference, the previous method will not provide a significant saving in terms of

computations, since the spectrum of the GNSS signal will be entirely wiped out by

interference.

Overall, it is the author’s opinion that the TF analysis and signal processing has
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the potential to provide very effective solutions for the problem of jamming mitigation

and jamming localization [119]; the main challenge, however, is the computational

complexity, which is a very important aspect often overlooked, unfortunately. Devel-

oping nonparametric algorithms able to provide effective low-complexity TF-based

solutions for the problem of jamming suppression requires more research in our view,

and the available methods are not mature enough to be translated into commercial

solutions.

4.2 Abnormalities detection

TF signal and image processing is an effective and widely used technique for abnor-

mality detection and classification of physiological signals, because they exploit the

nonstationary and multi-component characteristics of such signals. The early and

automated detection of abnormalities in physiological signals avoids the laborious

intervention from experts, hence bringing significant improvements to the medical

practice. TF-based features extracted from a TFR have been shown to effectively

characterize newborn electroencephalogram (EEG)1 seizures, which are harmful to

the brain if inadequately treated. The TF-based approach was proven to outper-

form the conventional time-only or frequency-only classification approaches [26, 80].

Generally, TF-based feature detection and classification are applicable to all types

of nonstationary signals regardless of their nature or origin, and can be exploited to

build decision-based systems in various fields of study.

A general TF-based scheme for abnormalities detection in shown in Fig. 4-2; it

includes [120]: 1. TF signal analysis; 2. features extraction to characterize different

abnormalities; 3. classification of these features and assigning them to different types.

The first step may entail multichannel analysis (EEG data, for example, often come

from multiple electrodes on the patient’s scalp), which usually offers a much more

accurate model, but at the expense of higher computational requirements.

1EEG is a representative signal containing information about the electrical activity generated by
the cerebral cortex nerve cells [120].
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TFR Construction

Feature Extraction

Feature Selection
and Classification

Figure 4-2: Block diagram of abnormality detection methodology using TF-based
approach

4.2.1 TF-based features for classifying nonstationary signals

Discriminatory features pertaining to nonstationary signals can be extracted from

TFRs. To provide accurate features for detection, the selected TFR needs to have

high resolution and low interference [23]. Extraction of relevant features is the key

stage of any schemes for pattern recognition and classification. Once extracted, these

features may be used for automated classification using a machine learning approach

[80] for example. We may differentiate between two sorts of features as explained

below.

Signal related features

The following features, which are directly related to the signal parameters, have been

defined: 1. IF-based features: the mean and deviation of the IF; 2. singular value de-

composition (SVD)-based features: the singular values and vectors of the TFR matrix

have been proven useful in characterizing abnormalities [120]; 3. TF complexity: a

measure that uses both SVD and Shannon entropy; 4. energy concentration measure:

this measure is discussed in Chapter 1; 5. TF flux: to measure the rate of change of

the signal energy in the TF domain; 6. subbands energies: features representative of

the energy concentrated in the subbands where most of the energy is concentrated in
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the TFR.

Image related features

These features can be thought of as visual descriptors extracted using TFRs treated as

images using image-processing techniques. Morphometric features can be extracted

from TFRs after transforming them into binary images, such as area, perimeter,

compactness, coordinates of the centroid, and convex hull, which can be used then

for classification [121, 120, 80].

4.3 Multisensor TF signal processing

In several practical applications, the data under analysis are collected from an array

of measurement sensors, such as in radar, sonar, audio, and medical applications, in

order to take advantage of any spatial diversity that might be present in the avail-

able data. In many real-world situations, the spectral characteristics of the signals

acquired by the deployed sensors are nonstationary and vary with time. Therefore,

combining array signal processing with TF analysis may provide a significant ad-

vantage in processing signals acquired by multichannel systems. The multisensor

TF signal processing is concerned with representing signals in a 3-dimensional (3-D)

domain that is space, time, and frequency [122].

4.3.1 Extension to multisensor TFRs

We consider a non-stationary zero-mean real signal vector of 𝑚 elements given by

𝑥𝑥𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑚(𝑡)]𝑇 , and vector 𝑧𝑧𝑧(𝑡) representing the analytic associate

of 𝑥𝑥𝑥(𝑡), which is obtained by Hilbert-transforming each element of 𝑥𝑥𝑥(𝑡). Here, we

extend the formulations of TFRs given in Chapter 1 to the multisensor case to form
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the so-called multisensor TFR (MTFR) for an analytic vector 𝑧𝑧𝑧(𝑡) according to [122]:

MTFR𝑧𝑧(𝑡, 𝑓) =

⎡
⎢⎢⎢⎢⎢⎢⎣

TFR𝑧1𝑧1(𝑡, 𝑓) TFR𝑧1𝑧2(𝑡, 𝑓) . . . TFR𝑧1𝑧𝑚(𝑡, 𝑓)

TFR𝑧2𝑧1(𝑡, 𝑓) TFR𝑧2𝑧2(𝑡, 𝑓) . . . TFR𝑧2𝑧𝑚(𝑡, 𝑓)
...

...
. . .

...

TFR𝑧𝑚𝑧1(𝑡, 𝑓) TFR𝑧𝑚𝑧2(𝑡, 𝑓) . . . TFR𝑧𝑚𝑧𝑚(𝑡, 𝑓)

⎤
⎥⎥⎥⎥⎥⎥⎦

= FT𝜏→𝑓

{︁
𝐺(𝑡, 𝜏) *

𝑡
𝐾𝐾𝐾𝑧𝑧(𝑡, 𝜏)

}︁
,

(4.1)

where 𝐺(𝑡, 𝜏) is a time-lag kernel and𝐾𝐾𝐾𝑧𝑧(𝑡, 𝜏) is the instantaneous correlation matrix

(ICM) defined by

𝐾𝐾𝐾𝑧𝑧(𝑡, 𝜏) =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝐾𝑧1𝑧1(𝑡, 𝜏) 𝐾𝑧1𝑧2(𝑡, 𝜏) . . . 𝐾𝑧1𝑧𝑚(𝑡, 𝜏)

𝐾𝑧2𝑧1(𝑡, 𝜏) 𝐾𝑧2𝑧2(𝑡, 𝜏) . . . 𝐾𝑧2𝑧𝑚(𝑡, 𝜏)
...

...
. . .

...

𝐾𝑧𝑚𝑧1(𝑡, 𝜏) 𝐾𝑧𝑚𝑧2(𝑡, 𝜏) . . . 𝐾𝑧𝑚𝑧𝑚(𝑡, 𝜏)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 𝑧𝑧𝑧(𝑡+ 𝜏/2)𝑧𝑧𝑧𝐻(𝑡− 𝜏/2).

(4.2)

Note that each element of (4.2) is given by (1.27). The diagonal elements of (4.1) are

called auto-TFRs and those that are off-diagonal are called cross-TFRs. Therefore, in

addition to the conventional cross-terms associated with auto-TFRs, in the MTFRs,

we have cross-terms generated by the cross-TFRs, which represent the interaction

between components belonging to different source signals.

The multisensor Winger distribution (MWD) of an analytic vector 𝑧𝑧𝑧(𝑡) is defined

as:

MWD𝑧𝑧(𝑡, 𝑓) = FT
𝜏→𝑓

{𝐾𝐾𝐾𝑧𝑧(𝑡, 𝜏)} . (4.3)

The MWD is the core MTFR and from which an infinite number of representations

can be generated through smoothing kernels, as is the case with the monochannel

TFRs. Therefore, a MTFR can be defined as

MTFR𝑧𝑧(𝑡, 𝑓) = 𝛾(𝑡, 𝑓) *
𝑡
*
𝑓
MWD𝑧𝑧(𝑡, 𝑓). (4.4)
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In a similar manner, we can extend (1.22), (1.23) to the multisensor case, constructing

quadratic MTFRs (QMTFRs). That is, we can define the spatial ambiguity function

(SAF) according to

𝐴𝐴𝐴𝑧𝑧(𝜈, 𝜏) =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝐴𝑧1𝑧2(𝜈, 𝜏) 𝐴𝑧1𝑧2(𝜈, 𝜏) . . . 𝐴𝑧1𝑧𝑚(𝜈, 𝜏)

𝐴𝑧2𝑧1(𝜈, 𝜏) 𝐴𝑧2𝑧2(𝜈, 𝜏) . . . 𝐴𝑧2𝑧𝑚(𝜈, 𝜏)
...

...
. . .

...

𝐴𝑧𝑚𝑧1(𝜈, 𝜏) 𝐴𝑧𝑚𝑧2(𝜈, 𝜏) . . . 𝐴𝑧𝑚𝑧𝑚(𝜈, 𝜏)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.5)

where the elements of the𝐴𝐴𝐴𝑧𝑧(𝜈, 𝜏) matrix are given by𝐴𝑧𝑖𝑧𝑗(𝜈, 𝜏) = IFT𝑡→𝜈

{︀
𝐾𝑧𝑖𝑧𝑗(𝑡, 𝜏)

}︀
.

We may define a MTFR according to

MTFR𝑧𝑧(𝑡, 𝑓) = IFT
𝜈→𝑡

{︂
FT
𝜏→𝑓

{𝑔(𝜈, 𝜏)𝐴𝐴𝐴𝑧𝑧(𝜈, 𝜏)}
}︂
, (4.6)

in which 𝑔(𝜈, 𝜏) is a Doppler-lag kernel. Applying the kernels introduced in Chapter

1, we may now extend any 2-D TFR to the multisensor (i.e., multichannel) case.

In [122], multisensor TF signal processing is applied for blind source separation

(BSS), direction of arrival (DOA) estimation, causality analysis, and analysis of EEG

signals, where the authors demonstrated improved results with respect to conven-

tional approaches. Therefore, it is expected that there is a lot of potential for multi-

sensor/multichannel TF signal processing in a wide range of fields; one possible and

interesting application could be multisensor-based jamming localization.
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Chapter 5

Conclusion
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The focus of this PhD dissertation was on time-frequency (TF) analysis and

adaptive instantaneous frequency (IF) estimation. We started our study with the

S-transform (ST) in Chapter 2, a linear TF transform with hybrid characteristics

from the short-time Fourier transform (STFT) and the wavelet transform (WT), and

with absolutely reference local phase information. We demonstrated that simple mod-

ifications in the existing definitions of the discrete ST (DST) can ensure exact signal

recovery. The DST should be realized as in (2.12), using the discrete Fourier trans-

form (DFT) of the observation window, to enable exact signal synthesis through the

frequency inverse ST (FIST) (2.13), whereas the time inverse ST (TIST) in (2.17)

eliminates any artifacts in the reconstructed signal. For TF filtering applications, the

previous inverting methods produce different results. If the quality of filtering is to be

evaluated by the similarity between the targeted DST and that of the reconstructed

signal, we derived a novel algorithm for least squares signal synthesis from a modified

DST (2.26). It requires the same computational complexity as the forward DST, and

its effectiveness was demonstrated using numerical examples, where it outperformed

other already available inverse ST (IST) methods.

The uniform sampling scheme of the original DST is inconsistent with Heisen-

berg’s uncertainty principle and produces exaggerated amount of redundant TF in-

formation. This limitation poses the main barrier to more widespread use of the

ST for applications that involve processing large datasets (e.g., audio and medical

signal processing). The already existing dyadic DSTs sample the TF domain in a

rigid uncontrollable manner, which makes them of limited effectiveness for processing

signals of clear oscillatory behavior. Indeed, we showed that these transforms fail to

provide appropriate results in various applications. Tackling the previous problems,

we developed a DST with controlled TF sampling scheme, denoted controlled cover-

age DST (CC-DST). The CC-DST allows for finer frequency resolution, and thanks

to its controllable coverage of the TF domain, it is effective in processing a wider

class of signals, including those with no oscillatory behavior as well as signals aris-

ing from vibration phenomena. The CC-DST is exactly invertible through a simple

method, because it employs asymmetric raised-cosine windows for spectral decom-
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position, and it is numerically efficient with computational complexity close to that

of the fast Fourier transform (FFT). We demonstrated its performance in different

applications using real-world data. It is expected, therefore, that the CC-DST will be

viable in many practical applications, allowing for a wider usage of efficient TF tools

to process arbitrarily large datasets. Future research directions could involve devel-

oping methods for automating the proper selection of the CC-DST parameters based

on the signal under analysis, and combining the CC-DST with compressive sensing

(CS) and sparse reconstruction techniques to efficiently process signals suffering from

missing observations.

The second part of this work (Chapter 3) was dedicated to designing adaptive

methods for instantaneous frequency (IF) estimation based on TF representations

(TFRs). We presented first a statistical analysis to derive the bias and the variance

of the error of the IF estimate obtained through a linear TF transform that uses a

Gaussian observation window with an arbitrarily defined standard deviation. Results

of the analysis were then incorporated into a low-complexity three-step adaptation

procedure to develop two fully automated linear TFRs. The first TFR is an adaptive

STFT (ASTFT) with an observation window that minimizes the sum of the mean

squared errors (MSEs) of the IF estimates at each time instant. While in the second

TFR, the width of the observation window is adaptive over time and frequency, mini-

mizing the MSE of the IF estimate at each location in the TF domain. The proposed

algorithms were carefully evaluated and compared with state-of-the-art methods us-

ing synthetic as well as real-world signals. Our results demonstrated that, when

dealing with noisy multicomponent signals whose IF ridges are well separated in the

TF domain at moderate to high signal-to-noise ratios (SNRs), the developed TFRs

may outperform many popular and more sophisticated methods, including those that

are signal-adaptive, in terms of IF estimation. Furthermore, the presented algorithms

are fully automated, thus avoiding a procedure for parameter optimization, whereas

the good performance of most of their already existing counterparts necessitates an

appropriate parameter tuning. On the other hand, the presented methods are not

the best-performing TFRs in terms of energy contraction, meaning that other tech-
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niques, such as the reassignment method and the adaptive directional TF distribution

(ADTFD), may render TFRs that are sharper with improved readability. Overall,

the derived methods provide attractive solutions for various applications in which the

accuracy of IF estimation is of primary interest. Furthermore, the fact that these

algorithms are based on linear TF transforms could be an additional reason for pre-

ferring them to their counterparts based on quadratic TFRs (QTFRs) in applications

involving signal analysis and synthesis.

Then, the three-step adaptation procedure was applied with QTFRs. An estimate

of the IF second-order derivative, provided by the continuous WT (CWT), was used to

approximate the optimal window width of a winger distribution (WD). At moderate

to high SNRs, numerical results demonstrated superiority of the developed method

over those based on the intersection-of-confidence-intervals (ICI) rule. Also, at lower

SNRs and with application of the S-method (SM) instead of the WD for suppression of

inner-terms, the proposed method provided more accurate IF estimates. Furthermore,

the computational complexity of the developed method is significantly less than that

of the ICI-based algorithm. Future research could involve 1. applying the presented

method with high-order TFRs, 2. extending it for IF estimation of multicomponent

signals using an algorithm for component extraction and tracking, and comparing

it with the quasi-maximum-likelihood (QML) [103] estimator for polynomial phase

signals.

Overall, the presence of cross-terms, which may surpass the auto-terms in terms

of power, constitutes the dominant source of IF estimation error, especially at low

SNRs. Therefore, the proposed adaptive QTFR is recommended for IF estimation of

monocomponent signals, while when the analyzed signal is of multiple components,

the presented methods based on linear TFRs are preferred.
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Appendix A

Proof of Lemma 1

A.1 Notation

For the sake of brevity and clarity, we will use the following notation:

𝑛0𝑅(𝑡) = ℜ(𝑛0(𝑡))

𝑛0𝐼(𝑡) = ℑ(𝑛0(𝑡))

𝑊 (𝑡, 𝜏, 𝑓, 𝜎) =
1√

2𝜋𝜎(𝑡, 𝑓)
exp

(︂−(𝑡− 𝜏)2

2𝜎2(𝑡, 𝑓)

)︂
𝑒−𝑖2𝜋𝑓𝜏

𝑊 *(𝑡, 𝜏, 𝑓, 𝜎) =
1√

2𝜋𝜎(𝑡, 𝑓)
exp

(︂−(𝑡− 𝜏)2

2𝜎2(𝑡, 𝑓)

)︂
𝑒𝑖2𝜋𝑓𝜏

𝑊𝑅(𝑡, 𝜏, 𝑓, 𝜎) =
1√

2𝜋𝜎(𝑡, 𝑓)
exp

(︂−(𝑡− 𝜏)2

2𝜎2(𝑡, 𝑓)

)︂
cos(−𝑖2𝜋𝑓𝜏)

𝑊𝐼(𝑡, 𝜏, 𝑓, 𝜎) =
1√

2𝜋𝜎(𝑡, 𝑓)
exp

(︂−(𝑡− 𝜏)2

2𝜎2(𝑡, 𝑓)

)︂
sin(−𝑖2𝜋𝑓𝜏)

𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎) =
𝜕𝑊

𝜕𝑓
(𝑡, 𝜏, 𝑓, 𝜎)

𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎) =
𝜕𝑊 *

𝜕𝑓
(𝑡, 𝜏, 𝑓, 𝜎)

𝑊 ′
𝑅(𝑡, 𝜏, 𝑓, 𝜎) =

𝜕𝑊𝑅

𝜕𝑓
(𝑡, 𝜏, 𝑓, 𝜎)

𝑊 ′
𝐼(𝑡, 𝜏, 𝑓, 𝜎) =

𝜕𝑊𝐼

𝜕𝑓
(𝑡, 𝜏, 𝑓, 𝜎)
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GSFT𝑦𝑅(𝑡, 𝑓) = ℜ (GSFT𝑦(𝑡, 𝑓))

GSFT𝑦𝐼(𝑡, 𝑓) = ℑ (GSFT𝑦(𝑡, 𝑓))

GSFT*
𝑦(𝑡, 𝑓) = (GSFT𝑦(𝑡, 𝑓))*

GSFT*′
𝑦 (𝑡, 𝑓) =

𝜕GSFT*
𝑦

𝜕𝑓
(𝑡, 𝑓)

GSFT′
𝑦𝑅

(𝑡, 𝑓) =
𝜕GSFT𝑦𝑅

𝜕𝑓
(𝑡, 𝑓)

GSFT′
𝑦𝐼

(𝑡, 𝑓) =
𝜕GSFT𝑦𝐼

𝜕𝑓
(𝑡, 𝑓)

A.2 Noise properties

The noise 𝑛0(𝑡) is complex-valued AWGN with i.i.d. real and imaginary parts, thus

satisfying the following properties [18]:

𝐸 [𝑛0(𝑡1)𝑛0(𝑡2)] = 0, (A.1)

𝐸 [𝑛0(𝑡1)𝑛
*
0(𝑡2)] = 𝑁0𝛿(𝑡2 − 𝑡1), (A.2)

𝐸 [𝑛0(𝑡1)𝑛
*
0(𝑡2)𝑛0(𝑡3)] = 0, (A.3)

𝐸
[︀
𝑛0(𝑡1)𝑛

*
0(𝑡2)𝑛0(𝑡3)𝑛

*
0(𝑡4)

]︀
= 𝑁2

0 [𝛿(𝑡2 − 𝑡1)𝛿(𝑡4 − 𝑡3) + 𝛿(𝑡4 − 𝑡1)𝛿(𝑡3 − 𝑡2)]. (A.4)

A.3 Proof

Proof. We start from

𝐸

[︂
𝜕 (GSFT𝑥𝑅GSFT𝑛0𝑅)

𝜕𝑓
(𝑡, 𝑓)

]︂
= GSFT′

𝑥𝑅(𝑡, 𝑓)𝐸 [GSFT𝑛0𝑅(𝑡, 𝑓)]

+ 𝐸
[︀
GSFT′

𝑛0𝑅
(𝑡, 𝑓)

]︀
GSFT𝑥𝑅(𝑡, 𝑓),

(A.5)
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which results in1

𝐸 [GSFT𝑛0𝑅(𝑡, 𝑓)] =

∫︁
𝐸 [𝑛0𝑅(𝜏)]𝑊𝑅(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏 −

∫︁
𝐸 [𝑛0𝐼(𝜏)]𝑊𝐼(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

= 0.

(A.6)

Similarly, we can prove that

𝐸
[︀
GSFT′

𝑛0𝑅
(𝑡, 𝑓)

]︀
=

∫︁
𝐸 [𝑛0𝑅(𝜏)]𝑊 ′

𝑅(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏 −
∫︁
𝐸 [𝑛0𝐼(𝜏)]

×𝑊 ′
𝐼(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏 = 0.

(A.7)

By substituting (A.6) and (A.7) into (A.5), we get that that

𝐸

[︂
𝜕 (GSFT𝑥𝑅GSFT𝑛0𝑅)

𝜕𝑓
(𝑡, 𝑓)

]︂
= 0. (A.8)

Following the same previous steps, we prove that

𝐸

[︂
𝜕 (GSFT𝑥𝐼GSFT𝑛0𝐼)

𝜕𝑓
(𝑡, 𝑓)

]︂
= 0. (A.9)

By the results given in (A.8) and (A.9), we arrive at

𝐸

{︂
𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

}︂
= 𝐸

[︂
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

]︂
. (A.10)

𝐸

[︂
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓)

]︂
=𝐸

[︀
GSFT′

𝑛0
(𝑡, 𝑓)GSFT*

𝑛0
(𝑡, 𝑓)

]︀
+ 𝐸

[︀
GSFT*′

𝑛0
(𝑡, 𝑓)

× GSFT𝑛0(𝑡, 𝑓)
]︀
,

(A.11)

1
∫︀
≡
∫︀∞
−∞ unless otherwise stated.
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which results in

𝐸
[︀
GSFT′

𝑛0
(𝑡, 𝑓)GSFT*

𝑛0
(𝑡, 𝑓)

]︀

=

∫︁ ∫︁
𝐸 [𝑛0(𝜏1)𝑛

*
0(𝜏2)]𝑊

′(𝑡, 𝜏1, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏2, 𝑓, 𝜎) 𝑑𝜏1 𝑑𝜏2

= 𝑁0

∫︁
𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏.

(A.12)

Similarly,

𝐸
[︁
GSFT*′

𝑛0
(𝑡, 𝑓)GSFT𝑛0(𝑡, 𝑓)

]︁
= 𝑁0

∫︁
𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 (𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏. (A.13)

The integrals (A.12) and (A.13) can be computed easily, by substituting their values

into (A.11), and after recalling (A.10), we prove Lemma 1.
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Appendix B

Proof of Lemma 2

B.1 Proof

Proof. We will use the same notation provided in Section A.1, and the properties of

the complexed-valued AWGN are given in Section A.2.

By taking the first-order frequency derivative of (3.26) at 𝑓 = 𝑓𝑖(𝑡), squaring the

result, then taking its expected value, we obtain

𝐸

[︃(︂
𝜕𝑆𝑛

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

)︂2
]︃

= 𝐸

{︃(︂
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

)︂2
}︃

+ 4𝐸

{︃[︂
𝜕 (GSFT𝑥𝑅GSFT𝑛0𝑅)

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

]︂2}︃

+ 4𝐸

{︃[︂
𝜕 (GSFT𝑥𝐼 GSFT𝑛0𝐼)

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

]︂2}︃
+ 8𝐸

{︃
𝜕
(︁
GSFT𝑥𝑅GSFT𝑛0𝑅

)︁

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

×
𝜕
(︁
GSFT𝑥𝐼 GSFT𝑛0𝐼

)︁

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

}︃
+ 4𝐸

⎧
⎨
⎩
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

𝜕
(︁
GSFT𝑥𝑅GSFT𝑛0𝑅

)︁

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

⎫
⎬
⎭

+ 4𝐸

⎧
⎨
⎩
𝜕|GSFT𝑛0 |2

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

𝜕
(︁
GSFT𝑥𝐼 GSFT𝑛0𝐼

)︁

𝜕𝑓
(𝑡, 𝑓𝑖(𝑡))

⎫
⎬
⎭ .

(B.1)

In what follows, all the noise-dependent terms in (B.1) will be evaluated1.

1
∫︀
≡
∫︀ +∞
−∞ unless otherwise stated.
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Term 1:

𝐸

[︃(︂
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓)

)︂2
]︃

= 𝐸
{︁ [︀

GSFT′
𝑛0

(𝑡, 𝑓)GSFT*
𝑛0

(𝑡, 𝑓)
]︀2

⏟  ⏞  
𝐼1

}︁

+ 𝐸

{︂[︁
GSFT*′

𝑛0
(𝑡, 𝑓)GSFT𝑛0(𝑡, 𝑓)

]︁2

⏟  ⏞  
𝐼2

}︂

+ 2𝐸

[︂
GSFT𝑛0(𝑡, 𝑓)GSFT*

𝑛0
(𝑡, 𝑓)GSFT′

𝑛0
(𝑡, 𝑓)GSFT*′

𝑛0
(𝑡, 𝑓)⏟  ⏞  

𝐼3

]︂
.

(B.2)

𝐸[𝐼1] =

∫︁ ∫︁ ∫︁ ∫︁
𝐸 [𝑛0(𝜏1)𝑛

*
0(𝜏2)𝑛0(𝜏3)𝑛

*
0(𝜏4)]𝑊

′(𝑡, 𝜏1, 𝑓, 𝜎)

×𝑊 *(𝑡, 𝜏2, 𝑓, 𝜎)𝑊 ′(𝑡, 𝜏3, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏4, 𝑓, 𝜎) 𝑑𝜏1 𝜏2 𝑑𝜏3 𝑑𝜏4.

By (A.4 ), 𝐸[𝐼1] is given by the sum of the following integrals: 𝐸 [𝐼1] = 𝐼1,1+𝐼1,2+𝐼1,3

where

𝐼1,1 = 𝑁2
0

[︂∫︁
𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

]︂2
,

𝐼1,2 = 𝐼1,1,

𝐼1,3 = 2𝑁2
0

∫︁
[𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏, 𝑓, 𝜎)]

2
𝑑𝜏.

Following the same previous steps, we prove that 𝐸 [𝐼2] = 𝐼2,1 + 𝐼2,2 + 𝐼2,3 where

𝐼2,1 = 𝑁2
0

[︂∫︁
𝑊 (𝑡, 𝜏, 𝑓, 𝜎)𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

]︂2
,

𝐼2,2 = 𝐼2,1,

𝐼2,3 = 2𝑁2
0

∫︁ [︀
𝑊 (𝑡, 𝜏, 𝑓, 𝜎)𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎)

]︀2
𝑑𝜏.

and 𝐸 [𝐼3] = 𝐼3,1 + 𝐼3,2 + 𝐼3,3 where

𝐼3,1 = 𝑁2
0

∫︁
𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

∫︁
𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 (𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏,

𝐼3,2 = 𝑁2
0

∫︁
𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

∫︁
𝑊 *(𝑡, 𝜏, 𝑓, 𝜎)𝑊 (𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏,
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𝐼3,3 = 2𝑁2
0

∫︁
𝑊 (𝑡, 𝜏, 𝑓, 𝜎)𝑊 ′(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *(𝑡, 𝜏, 𝑓, 𝜎)𝑊 *′(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏.

The previous integrals can be computed easily, by substituting their values into

(A.10), we obtain

𝐸

[︃(︂
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓)

)︂2
]︃

= 𝑁2
0

[︃(︀
12
√
𝜋𝜎(𝑡, 𝑓) + 11

√
2
)︀
𝜎′2(𝑡, 𝑓)

16𝜋
3
2𝜎5(𝑡, 𝑓)

+ 𝜋

]︃
.

Term 2

𝐸

{︃[︂
𝜕 (GSFT𝑥𝑅GSFT𝑛0𝑅)

𝜕𝑓
(𝑡, 𝑓)

]︂2}︃
= GSFT′2

𝑥𝑅(𝑡, 𝑓)

× 𝐸
[︀
GSFT2

𝑛0𝑅
(𝑡, 𝑓)

]︀
+ 𝐸

[︁
GSFT′2

𝑛0𝑅
(𝑡, 𝑓)

]︁

×GSFT2
𝑥𝑅(𝑡, 𝑓) + 2𝐸

[︀
GSFT𝑛0𝑅(𝑡, 𝑓)GSFT′

𝑛0𝑅
(𝑡, 𝑓)

]︀

×GSFT𝑥𝑅(𝑡, 𝑓)GSFT′
𝑥𝑅(𝑡, 𝑓).

(B.3)

GSFT2
𝑛0𝑅

(𝑡, 𝑓) =

∫︁ ∫︁ [︀
𝑛0𝑅(𝜏1)𝑊𝑅(𝑡, 𝜏1, 𝑓, 𝜎) − 𝑛0𝐼(𝜏1)𝑊𝐼(𝑡, 𝜏1, 𝑓, 𝜎)

]︀

×
[︀
𝑛0𝑅(𝜏2)𝑊𝑅(𝑡, 𝜏2, 𝑓, 𝜎) − 𝑛0𝐼(𝜏2)𝑊𝐼(𝑡, 𝜏2, 𝑓, 𝜎)

]︀

𝑑𝜏1 𝑑𝜏2.

By expanding the above expression then taking the expected value of the result, we

obtain

𝐸
[︀
GSFT2

𝑛0𝑅
(𝑡, 𝑓)

]︀
=
𝑁0

2

∫︁
𝑊 2

𝑅(𝑡, 𝜏, 𝑓, 𝜎) +𝑊 2
𝐼 (𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

=
𝑁0

4
√
𝜋𝜎(𝑡, 𝑓)

.
(B.4)

Similarly, we may prove that

𝐸
[︀
GSFT2

𝑛0𝐼
(𝑡, 𝑓)

]︀
=

𝑁0

4
√
𝜋𝜎(𝑡, 𝑓)

.
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Following the same previous steps, we obtain:

𝐸
[︁
GSFT′2

𝑛0𝑅
(𝑡, 𝑓)

]︁
= 𝐸

[︁
GSFT′2

𝑛0𝐼
(𝑡, 𝑓)

]︁
=
𝑁0

2

∫︁
𝑊 ′

𝑅
2
(𝑡, 𝜏, 𝑓, 𝜎) +𝑊 ′

𝐼
2
(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

=
𝑁0

[︀
8𝜋2𝜎2(𝑡, 𝑓) (𝜎2(𝑡, 𝑓) + 2𝑡2) + 3𝜎′2(𝑡, 𝑓)

]︀

16
√
𝜋𝜎3(𝑡, 𝑓)

,

(B.5)

and

𝐸
[︀
GSFT𝑛0𝑅(𝑡, 𝑓)GSFT′

𝑛0𝑅
(𝑡, 𝑓)

]︀
= 𝐸

[︀
GSFT𝑛0𝐼(𝑡, 𝑓)GSFT′

𝑛0𝐼
(𝑡, 𝑓)

]︀

=
𝑁0

2

∫︁
𝑊𝑅(𝑡, 𝜏, 𝑓, 𝜎)𝑊 ′

𝑅(𝑡, 𝜏, 𝑓, 𝜎) +𝑊𝐼(𝑡, 𝜏, 𝑓, 𝜎)

×𝑊 ′
𝐼(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏 = − 𝑁0𝜎

′(𝑡, 𝑓)

8
√
𝜋𝜎2(𝑡, 𝑓)

.

(B.6)

Term 3

𝐸

⎡
⎣
𝜕
(︁
GSFT𝑥𝑅GSFT𝑛0𝑅

)︁

𝜕𝑓
(𝑡, 𝑓)

𝜕
(︁
GSFT𝑥𝐼 GSFT𝑛0𝐼

)︁

𝜕𝑓
(𝑡, 𝑓)

⎤
⎦ =

GSFT′
𝑥𝑅(𝑡, 𝑓)GSFT′

𝑥𝐼(𝑡, 𝑓)𝐸 [GSFT𝑛0𝑅(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)]

+ GSFT′
𝑥𝑅(𝑡, 𝑓)GSFT𝑥𝐼(𝑡, 𝑓)𝐸

[︀
GSFT′

𝑛0𝐼
(𝑡, 𝑓)GSFT𝑛0𝑅(𝑡, 𝑓)

]︀

+ GSFT′
𝑥𝐼(𝑡, 𝑓)GSFT𝑥𝑅(𝑡, 𝑓)𝐸

[︀
GSFT′

𝑛0𝑅
(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)

]︀

+ GSFT𝑥𝑅(𝑡, 𝑓)GSFT𝑥𝐼(𝑡, 𝑓)𝐸
[︀
GSFT′

𝑛0𝑅
(𝑡, 𝑓)GSFT′

𝑛0𝐼
(𝑡, 𝑓)

]︀
.

(B.7)

It can be easily shown that:

𝐸 [GSFT𝑛0𝑅(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)] = 0,

𝐸
[︀
GSFT′

𝑛0𝑅
(𝑡, 𝑓)GSFT′

𝑛0𝐼
(𝑡, 𝑓)

]︀
= 0,

(B.8)
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𝐸
[︀
GSFT′

𝑛0𝐼
(𝑡, 𝑓)GSFT𝑛0𝑅(𝑡, 𝑓)

]︀
=

𝑁0

2

∫︁
𝑊𝑅(𝑡, 𝜏, 𝑓, 𝜎)𝑊 ′

𝐼(𝑡, 𝜏, 𝑓, 𝜎) −𝑊𝐼(𝑡, 𝜏, 𝑓, 𝜎)

×𝑊 ′
𝑅(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏

= −𝑁0

√
𝜋t

2𝜎(𝑡, 𝑓)
,

(B.9)

and

𝐸
[︀
GSFT′

𝑛0𝑅
(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)

]︀
=

=
𝑁0

2

∫︁
𝑊 ′

𝑅(𝑡, 𝜏, 𝑓, 𝜎)𝑊𝐼(𝑡, 𝜏, 𝑓, 𝜎) −𝑊𝑅(𝑡, 𝜏, 𝑓, 𝜎)

×𝑊 ′
𝐼(𝑡, 𝜏, 𝑓, 𝜎) 𝑑𝜏.

=
𝑁0

√
𝜋t

2𝜎(𝑡, 𝑓)
.

(B.10)

Term 4

𝐸

⎧
⎨
⎩
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓)

𝜕
(︁
GSFT𝑥𝑅GSFT𝑛0𝑅

)︁

𝜕𝑓
(𝑡, 𝑓)

⎫
⎬
⎭ =

2GSFT𝑥𝑅(𝑡, 𝑓)𝐸
[︁
GSFT𝑛0𝑅(𝑡, 𝑓)GSFT′2

𝑛0𝑅
(𝑡, 𝑓)

]︁

+ 2GSFT′
𝑥𝑅(𝑡, 𝑓)𝐸

[︀
GSFT2

𝑛0𝑅
(𝑡, 𝑓)GSFT′

𝑛0𝑅
(𝑡, 𝑓)

]︀

+ 2GSFT𝑥𝑅(𝑡, 𝑓)𝐸
[︁
GSFT′

𝑛0𝑅
(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)

×GSFT′
𝑛0𝐼

(𝑡, 𝑓)
]︁

+ 2GSFT′
𝑥𝑅(𝑡, 𝑓)𝐸

[︁
GSFT𝑛0𝑅(𝑡, 𝑓)

×GSFT𝑛0𝐼(𝑡, 𝑓)GSFT′
𝑛0𝐼

(𝑡, 𝑓)
]︁
.

Using the AWGN property given in (A.3), we may prove that

𝐸
[︁
GSFT𝑛0𝑅(𝑡, 𝑓)GSFT′2

𝑛0𝑅
(𝑡, 𝑓)

]︁
= 0,

𝐸
[︀
GSFT2

𝑛0𝑅
(𝑡, 𝑓)GSFT′

𝑛0𝑅
(𝑡, 𝑓)

]︀
= 0,

𝐸
[︁
GSFT′

𝑛0𝑅
(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)GSFT′

𝑛0𝐼
(𝑡, 𝑓)

]︁
= 0,

𝐸
[︁
GSFT𝑛0𝑅(𝑡, 𝑓)GSFT𝑛0𝐼(𝑡, 𝑓)GSFT′

𝑛0𝐼
(𝑡, 𝑓)

]︁
= 0,
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which results in

𝐸

⎧
⎨
⎩
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓)

𝜕
(︁
GSFT𝑥𝑅GSFT𝑛0𝑅

)︁

𝜕𝑓
(𝑡, 𝑓)

⎫
⎬
⎭ = 0. (B.11)

Similarly, we may prove that:

𝐸

⎧
⎨
⎩
𝜕|GSFT𝑛0|2

𝜕𝑓
(𝑡, 𝑓)

𝜕
(︁
GSFT𝑥𝐼 GSFT𝑛0𝐼

)︁

𝜕𝑓
(𝑡, 𝑓)

⎫
⎬
⎭ = 0. (B.12)

At this point, all the noise-dependent terms in (B.1) are evaluated. To complete the

computation, the real and imaginary parts of GSFT𝑥(𝑡, 𝑓𝑖(𝑡)), together with their first-

order frequency derivatives should evaluate and substituted into (B.1). By complex

expanding (7), GSFT𝑥𝑅(𝑡, 𝑓𝑖(𝑡)) and GSFT𝑥𝐼(𝑡, 𝑓𝑖(𝑡)) can be evaluated giving the

following results:

GSFT𝑥𝑅(𝑡, 𝑓𝑖(𝑡)) =
𝐴 cos(𝑎0 − 𝜃0)

4

√︁
1 + [2𝜋𝑓 ′

𝑖(𝑡)𝜎
2(𝑡, 𝑓𝑖(𝑡))]

2

GSFT𝑥𝐼(𝑡, 𝑓𝑖(𝑡)) =
𝐴 sin(𝑎0 − 𝜃0)

4

√︁
1 + [2𝜋𝑓 ′

𝑖(𝑡)𝜎
2 (𝑡, 𝑓𝑖(𝑡))]

2

where

𝜃0 =
1

2
tan−1

[︀
−2𝜋𝑓 ′

𝑖(𝑡)𝜎
2 (𝑡, 𝑓𝑖(𝑡))

]︀
.

The derivatives GSFT′
𝑥𝑅(𝑡, 𝑓𝑖(𝑡)) and GSFT′

𝑥𝐼 (𝑡, 𝑓𝑖(𝑡)) can also be computed using

(7), by substituting their values into (B.1) and after some algebraic simplifications

we prove Lemma 2.
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