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“We may regard the present state of the universe as the effect of the past and the cause of the

future. An intellect which at any given moment knew all of the forces that animate nature and

the mutual positions of the beings that compose it, if this intellect were vast enough to submit the

data to analysis, could condense into a single formula the movement of the greatest bodies of the

universe and that of the lightest atom; for such an intellect nothing could be uncertain and the

future just like the past would be present before its eyes.”

Pierre Simon Laplace, A Philosophical Essay on Probabilities, 1814
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Continual Learning with Deep Architectures
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Humans have the extraordinary ability to learn continually from experience. Not only we can

apply previously learned knowledge and skills to new situations, we can also use these as the

foundation for later learning. One of the grand goals of Artificial Intelligence (AI) is building an

artificial “continual learning” agent that constructs a sophisticated understanding of the world

from its own experience through the autonomous incremental development of ever more complex

knowledge and skills.

However, despite early speculations and few pioneering works, very little research and effort

has been devoted to address this vision. Current AI systems greatly suffer from the exposure

to new data or environments which even slightly differ from the ones for which they have been

trained for. Moreover, the learning process is usually constrained on fixed datasets within narrow

and isolated tasks which may hardly lead to the emergence of more complex and autonomous

intelligent behaviors. In essence, continual learning and adaptation capabilities, while more than

often thought as fundamental pillars of every intelligent agent, have been mostly left out of the

main AI research focus.

In this dissertation, we study the application of these ideas in light of the more recent advances

in machine learning research and in the context of deep architectures for AI. We propose a

comprehensive and unifying framework for continual learning, new metrics, benchmarks and

algorithms, as well as providing substantial experimental evaluations in different supervised,

unsupervised and reinforcement learning tasks.
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Introduction

The notion of learning continually from experience has alway been present in AI and Machine

Learning (ML) since their births, as justified by an evident observation of our biological counter-

parts [Chen and Liu, 2018; Jantke, 1993; Michalski and Larson, 1978]. Nevertheless, given the

(relatively) limited amount of digital data available up to the last two decade and the complex-

ity of the early tackled problems, essentially every machine learning problem could have been

framed as a “static” one (i.e. without the need to update the AI system over time).

With the 21st century and the Big Data revolution, this appears to be less and less realistic

for an increasingly amount of applications, due to data volume, variability and velocity [Laney,

2001]. However, in the first decade of the century, the AI and Machine Learning research

community have been focusing on more immediate problems like numerical optimization and

ad-hoc feature engineering which were fundamental for scaling up the complexity of AI learning

systems to high-dimensional domains like computer vision and speech recognition, among many

others [Goodfellow et al., 2016].

After rise of Deep Learning (DL) [LeCun et al., 2015], especially after 2012 and the ground-

braking work by Krizhevsky et al. [2012], the increasingly general and robust ability of learning

representations from raw data has open the path to a broader range of applications, whose

complexity was even unthinkable to tackle a few decades ago. Learning problems are now difficult

to encapsulate and isolate into single domains or tasks. In fact, novel learning algorithms, like

their biological counterpart, would ideally need access to large volumes of high-dimensional,

multi-domain, streaming data from complex and ever-changing environments in order to scale

in terms of intelligence [Kaiser et al., 2017] and being able to adapt to new circumstances over

time.

This has motivated a renewed and rapidly growing interest in Continual Learning (CL), especially

after 2016 [Parisi et al., 2018a]. Unfortunately, current deep learning techniques face today a

number of concrete issues in learning over a continuous stream of data [French, 1999; Goodfellow

et al., 2013; McCloskey and Cohen, 1989], with prediction models generally trained only on fixed

and representative datasets collected a-priori and whose capabilities are very difficult to efficiently

generalize or adapt over time.

In this dissertation, we propose a comprehensive overview on recent advancements in continual

learning for deep architectures [Bengio, 2009] and a number of original contributions at different

levels which can be summarized as follow:
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• A Comprehensive framework for continual learning: We formalize what does it

mean to learn continually in a machine learning setting, taking into account different for-

mulations that have been proposed in the past in order to find a more shared understanding

and common ground for the development of novel continual learning algorithms.

• Four regularization strategies: We propose a number of regularization strategies (namely

SST, CWR, CWR+ and AR1) especially targeting “Single-Incremental-Task” scenarios,

which have had little attention in the recent deep continual learning literature.

• Five novel benchmark for CL: We propose a number of re-designed computer vision

benchmarks as well as completely original datasets for assessing different continual learning

strategies in various contexts and applications. In particular the Seq-NORB, Seq-COIL100,

Seq-IcubWorld28, CORe50 and 3D VizDOOM Maze benchmarks are proposed.

• New and comprehensive evaluation metrics: The lack of consensus in evaluating

continual learning algorithms and the almost exclusive focus on catastrophic forgetting

motivate us to propose a more comprehensive set of implementation independent metrics

accounting for different factors we believe have practical implications worth considering

in the deployment of real AI systems that learn continually: accuracy or performance

over time, backward and forward knowledge transfer, memory overhead as well as com-

putational efficiency. We further draw inspiration from standard Multi-Attribute Value

Theory (MAVT) [Ishizaka and Nemery, 2013] to fuse these metrics into a single CL score

for ranking purposes.

• Extensive CL strategies evaluation: We evaluate the aforementioned strategies on the

classic and proposed benchmarks for continual learning and we show limits and potentials

of state-of-the-art approaches in various supervised, semi-supervised and reinforcement

learning settings.

The dissertation is organized as follows. Chapter 1 introduces the relative background on bio-

logical and artificial learning systems, focusing on continual learning and the main motivation

behind it. Chapter 2 presents the general (and more formal) framework for continual learning,

while Chapter 3, one of the most important chapter of the dissertation, describes the most pop-

ular continual learning strategies targeting deep architectures. Originally designed strategies are

also introduced and explained. In Chapter 4, commonly used and newly proposed benchmarks

along with their evaluation protocols and metrics are described. Finally, in Chapter 5, an ex-

tensive experimental evaluation is conducted, while in Chapter 6, conclusions of the dissertation

and future challenges of continual learning are discussed.
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Background and Motivation

“We are not looking for incremental improvements in state-of-the-art AI and neural

networks, but rather paradigm-changing approaches to machine learning that will enable

systems to continuously improve based on experience.”

– Hava Siegelmann, 2018

Humans have the extraordinary ability to learn continually from experience. Not only can

we apply previously learned knowledge and skills to new situations, we can also use these as

the foundation for later learning. One of the grand goals of AI is building an artificial continual

learning agent that constructs a sophisticated understanding of the world from its own experience

through the autonomous incremental development of ever more complex skills and knowledge

[Ring, 1994].

However, artificial learning systems today seems very far from that goal. While during the

last few years we have witnessed formidable progress in the context of semi-supervised and

reinforcement learning (i.e. being able to operate with less and less direct supervision) with the

ability to learn more autonomously [Goodfellow et al., 2016; LeCun et al., 2015; Mnih et al.,

2013], very little has been done in deep learning with the idea of learning continuously.

State-of-the-art AI systems still show very limited capabilities in terms of adaptation, scalability,

autonomy, common sense and reasoning [Marcus, 2018; Pearl, 2018]. However, as we will see

later on in this chapter, continual learning could be of great value not only for the more intuitive

adaptability, but also for the others.

Neural networks and their latest reincarnation in deep learning models already took a loosely

inspiration from biological learning systems, especially in their architectures (e.g. the visual

hierarchies in the human cortex) [Hubel and Wiesel, 1962; LeCun et al., 2015; Poggio and

Riesenhuber, 1999]. However, state-of-the-art training procedures (often gradient based) differ

significantly from the little we know about what happens in the brain. Should we take more

insights from biology, and if yes, to what extent? In this chapter we will tackle these among

many other important questions.
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1.1 Natural and Artificial Intelligence

Intelligence is a word of multiple facets. Many are the theories developed in the attempt to define

what intelligence is and what are its basic principles or core objectives [Russell and Norvig, 2016].

Humphreys [1979] in his “The construct of general intelligence” define it as: “The resultant of

the process of acquiring, storing in memory, retrieving, combining, comparing, and using in new

contexts information and conceptual skills.”

In the book “Dynamic assessments of cognitive modifiability”, Feuerstein [2003] prefers to define

intelligence as: “The unique propensity of human beings to change or modify the structure of

their cognitive functioning to adapt to the changing demands of a life situation.”

A more focused and concise definition by Sternberg [1982] in his book “Handbook of Human

Intelligence” cite as follows: “Goal-directed adaptive behavior.”

While different in terms of style and perspective, a common and central idea can be noticed: the

idea of adaptation, the ability to mold our cognitive system to deal with the always changing

demanding circumstances [Schulz, 2012].

Scalability is one of the most important concept in computer science and, we argue, among

the computational principles of intelligence. As we’ll see in the next sections, in CL this idea

force us to think at intelligence and develop algorithms which can already deal with real-world

computational and memory constraints. If the long-term goal of research in AI is developing

machines which are endowed with versatility and common sense, we better make sure they are

scalable in terms of intelligence while being sustainable in terms of computational and memory

resources [Lake et al., 2016].

Another import characteristic of intelligent agents is autonomy, which can be seen as the

ability to learn about the external world without any direct supervision, from an external entity

or oracle. While parents teaching in humans and other animals is evidently essential for fast

and robust learning, especially in the early stages of life, being able to learn new knowledge and

skills through autonomous trials/errors, exploration and reasoning is generally acknowledged as

a core property of intelligence [Lake et al., 2016].

Common sense is one of the most debated (and important) concept in AI, consisting of “knowl-

edge, judgment, and taste which is more or less universal and which is held more or less without

reflection or argument” [van Holthoon and Olson, 1987]. It turns out that endowing machines

with commons sense, while generally assumed aprioristically for humans, is particularly chal-

lenging, implying a number of deeply interconnected abilities that can be developed after years

of learning and functioning as the basis for later learning.

Last but not least, reasoning, one of the fist problems tackled in AI and arguably one of the

highest demonstration of intelligence, which can be generally thought as the ability to infer new

knowledge based on previous knowledge through deduction, induction and abduction rules [Lake

et al., 2016].

These, non exhaustive set of abilities are, we believe, of fundamental value for every Intelligent

agent, regardless of whether it is natural or artificial.
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1.1.1 Limits and Potentials of Deep Learning

Artificial Intelligence is conventionally recognized as a field in its own right starting from a

workshop at Dartmouth College in 1956. Allen Newell, Herbert Simon, John McCarthy, Marvin

Minsky and Arthur Samuel, who became the founders and scientific fathers of AI research were

among the organizers. They and their students produced programs that the press described as

“astonishing” at the time [Russell and Norvig, 2016] and were related essentially to reasoning

skills like solving the game of checkers, proving basic algebra theorems or speaking English

[Samuel, 1959].

By the middle of the 1960s (especially in the U.S.), research was heavily funded by the Depart-

ment of Defense and laboratories had been established around the world. However, despite the

initial excitement and overoptimistic predictions, progress rapidly slowed down and in 1974, in

response to the criticism of Sir James Lighthill and ongoing pressure from the US Congress to

fund more productive projects, both the U.S. and British governments (two of the leading coun-

tries in Computer Science and AI technologies) cut off funding for exploratory research in this

area. The next few years would be later recognized as an “AI winter”, a period when obtaining

funding for AI projects was difficult and research progresses were moderate.

In the early 1980s, AI research was revived by the commercial success of Expert Systems [Liao,

2005], a form of AI programs that simulated the knowledge and analytical skills of human

experts based on symbolic approaches [Russell and Norvig, 2016]. It was only in the last decade

of the 20th century and early years of the next that the more analytical approaches of statistical

machine learning started to gain real traction due to its increasing applicability to real-word,

industrial problems.

However, much of these techniques were conceived ad-hoc for each separate task they were

aimed at solving. More general learning methods, like the successful Support Vector Machines

(SVM ) algorithms and related kernel methods [Steinwart and Christmann, 2008], were used

only in conjunction with specific “features extraction” techniques, especially for more complex,

high-dimensional problems such as object recognition in computer vision.

This also lead to the development of a rich set of techniques in machine learning to directly learn

the best representations for solving specific tasks eliminating the need for manual feature engi-

neering (which also required substantial domain expertise). This sub-field of machine learning

is often called “Feature Learning” or “Representation learning” [Goodfellow et al., 2016].

Deep Learning can be seen as part of this broader family, but it takes its specific characterization

in the idea of learning deep hierarchies (many subsequent layers) of learned representation, which

turned out to be fundamental, especially for high dimensional raw data like images in computer

vision [Bengio, 2009; Goodfellow et al., 2016]. But maybe more importantly of the notion of

depth for learning representation, deep architectures have opened the door to the concept of

end-to-end learning, i.e. the idea of assembling parameterized functional blocks and optimizing

them homogeneously (often with gradient-based methods) from input raw data to output. On

one hand, this means a great comeback of the connectionists theory of intelligence (and much

nearer to biology as we will see in the next section). On the other hand, it has enormous practical
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implications. It means that with a single, elegant and homogeneous algorithm we can now tackle

(in principle) every learning problem and without any human expert intervention.

Multi-modal and multi-task algorithmic integration has never been easier and numerous are the

attempt combining more than one domain at tackling complex tasks such as image captioning

[Karpathy and Li, 2013], bimodal speech recognition [Hannun et al., 2014; Hinton et al., 2012]

and syntheses [Simonyan et al., 2016], and many other more specific applications. However,

despite this great advancement and great practical success of deep learning, much of its early

progress was still in the supervised domain. This is why much of the recent efforts of the AI

community have been devoted for enhancing deep learning in the unsupervised and reinforcement

learning context with many impressive progresses [Mnih et al., 2013; Wang and Gupta, 2015].

But now we could certainly ask ourselves: can current deep learning approach be the answer for

improving our intelligent agents with respect to the five biggest manifestation of intelligence we

outlined in the previous section?

Recent advancements in reinforcement and unsupervised learning can be surely seen as major

steps ahead in the autonomy of AI agents, and progresses in this areas seems to have not

slowed down yet. The other properties, instead, seems to be far ahead for current deep learning

techniques to grasp. For adaptation, even though in the past it has been tackled repeatedly

over time and with different degree of success, very little has been done after the deep learning

revolution [Long et al., 2015; Yosinski et al., 2014]. Only in recent years, after 2016, the focus of

the community has started to value this attribute but with very limited success and underlining

an evident need for novel approaches in this area [Parisi et al., 2018a]. The same could be said

for scalability. Current deep learning algorithms are rarely considered as efficient and scalable

with respect to biological systems, especially considering multi-domain, high-dimensional data

streams, context in which, for example, the human brain excels [Marcus, 2018].

Since a big part of Common sense can be simply considered as the ability to “contextualize”

information, we can safely affirm that deep learning has contributed significantly with this re-

spect. In fact, being able to train a single model in a multi-modal and multi-task fashion and

taking into account temporal dependences is surely something possible to tackle only thanks

to deep learning [Kaiser et al., 2017]. However, long-term temporal dependences and efficient

memory management more in general constitute a difficult challenge for current learners abilities.

Finally reasoning, understandably constitutes one of the more difficult challenge for analytics

approaches such as deep learning [Pearl, 2018]. Despite early attempts in recent years [Andreas

et al., 2015; Santoro et al., 2017], we can still consider complex reasoning at a whole different

level of complexity from what can be tackled today by deep learning algorithms.

Hence, current deep learning approaches seem to be insufficient for tackling many of the biggest

questions in AI that still remain open. In which direction should we move to improve our ability

to tackle them? Can we find (again) some inspiration from our biological counterpart? In the

following sections we will try to answer to these questions.
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1.1.2 Biological Learning Systems

Reverse engineering and uncovering the principles of intelligence from complex biological systems

is a hard task. Our current understanding of animal brain circuits is, in fact, still very limited.

This is due not only to the narrowness of our technologies for observing and recording the

information signals flowing into this systems at the synapses level [Seymour et al., 2017], but

also for the immense complexity of it and from which intelligent behaviors seem to emerge almost

magically.

Many discussion and debates about the right level of abstraction and how much inspiration

to take from biology have always been central to the world of AI [Lake et al., 2016; Russell

and Norvig, 2016], but, after the deep learning revolution, this discussion has been particularly

revitalized. This because, as already discussed in the previous section, deep learning can be

already seen as loosely inspired by the human brain, where hierarchies of more and more abstract

concepts have been demonstrated repeatedly, especially in the visual brain areas [Poggio and

Riesenhuber, 1999].

On the other hand, taking inspiration from biology may not always be beneficial. An classic

example often cited for appreciating this counter argument is the history of the early flying

machines of the 19th century. In the Musée des Arts et Métiers, in Paris, is still possible to

see the majestic primitive steam-powered aircraft “Avion III” built between 1892 and 1897

by Clément Ader (see Fig. 1.1). This aircraft prototype had a bat-like configuration, with

biologically inspired wings and bone structures. Yet, it was unable to fly due to its weights. It

was only in 1903 that the Wright brothers, after figuring out the principles of aerodynamics built

the first successful powered airplane [Anderson Jr. et al., 1999]. Now we can fly over continents

in a matter of ours, something which has never been achieved by any biological system before.

Figure 1.1: “Avion III” built between 1892 and 1897 by Clément Ader, exposed at the Musée
des Arts et Métiers in Paris, France.

Nevertheless, many scientists are starting to raise concerns about the future of of back-propagation

and gradient-based optimization techniques, the most successful and go-to learning algorithms
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for current deep learning research, which suffer from severe limitations and open questions, es-

pecially in terms of efficiency and scalability. It is ironic that G. Hinton, one of the fathers of

deep learning and among the authors of back-propagation [David E. Rumelhart et al., 1986], is

also one of its harshest critic today, suggesting to “throw it all away and start again” [LeVine,

2017].

Spike-Timing-Dependent Plasticity (STDP), which is believed to be the main form of synaptic

change in neurons [Gerstner et al., 1996], relates the expected change in synaptic weights to

the timing difference between post-synaptic spikes and pre-synaptic spikes and it’s considered

to be extremely efficient (since local) and effective. Although it is the result of experimental

observations in biological neurons, its interpretation, as part of a learning procedure that could

explain learning in deep networks, remains unclear. In particular: (1) the back-propagation

computation (coming down from the output layer to lower hidden layers) is purely linear, whereas

biological neurons interleave linear and non-linear operations, (2) if the feedback paths known to

exist in the brain (with their own synapses and maybe their own neurons) were used to propagate

credit assignment by back-propagation, they would need precise knowledge of the derivatives of

the non-linearities at the operating point used in the corresponding feed-forward computation

on the feed-forward path, (3) similarly, these feedback paths would have to use exact symmetric

weights (with the same connectivity, transposed) of the feed-forward connections, (4) real neurons

communicate by (possibly stochastic) binary values (spikes), not by clean continuous values, (5)

the computation would have to be precisely clocked to alternate between feed-forward and back-

propagation phases (since the latter needs the former results), and (6) it is not clear where the

output targets would come from [Bengio et al., 2015].

Many other solutions have been tried over the years [Cui et al., 2015; Ghosh-Dastidar and Adeli,

2009] but the question stays open: is this a feature worth integrating and pursuing in our future

learning algorithms?

Nevertheless, synaptic plasticity is not the only brilliant feature we envy biological learning

systems to posses. Efficient memory management is another issue for deep learning and many

attempts has been made over the recent past for tackling the problem of factual learning and

long-term memory [Graves et al., 2014; Weston et al., 2015].

The recent complementary learning systems (CLS) theory [McClelland et al., 1995], explains

how the complex interplay of hippocampal and neocortical functionality is crucial to concur-

rently learn regularities (statistics of the environment) and specifics (episodic memories). Both

brain areas are known to learn via hebbian and error-driven mechanisms [O’reilly and Rudy,

2001]. In the neocortex, feedback signals will yield task-relevant representations while, in the

case of the hippocampus, error-driven modulation can switch its functionality between pattern

discrimination and completion for recalling information [O’reilly, 2004]. Memory consolidation

is also known to happen at various levels (other than at the synapses level) and at different

timescales [Benna and Fusi, 2016; Clopath, 2012].

All these complex features of our brain we do not fully understand, are there for a reason or are

just a product of a random evolutionary process? No one knows the answer to these questions
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but a deep understanding of our biological learning system will sure be of great help moving

towards strong artificial intelligence systems.

1.2 Continual Learning

Continual Learning is based on the simple, yet fundamental idea of learning continually over

time [Chen and Liu, 2018; Ring, 1994; Thrun, 1996]. The basic intuition is that data are not

aprioristically available, like generally assumed in machine learning research, but only in a time-

delayed fashion. Acknowledging the dynamical nature of data with its volume, variety and

velocity is, indeed, at the core of continual learning. This methodologically means focusing on

learning techniques that can efficiently handle a possible unlimited stream of high-dimensional

ever-changing data within bounded computational and memory resources, in order to maximize

a pre-defined measure of performance at each point in time.

These, often ignored, real-world constraints put an hard limit to theoretically learnable problems.

Indeed, intuitively, if A is a Probably Approximately Correct (PAC) learnable problem [Haussler,

1990] (i.e. we can reach an adequate level of performances in polynomial time), this may still

not be learnable in practice if data are only available in small (under representative) portions

over time (with an unknown idle time between them).

Moreover, being able to learn efficiently without access to future data (and possibly past data)

pose a number of new challenging questions like the stability-plasticity dilemma, well-know to

both artificial and biological learning systems [Mermillod et al., 2013]. Being able to integrate

new knowledge, preserving the old one with the final objective of a greater generalization over

time is not a straightforward process.

Nevertheless, continual learning may bring us surprisingly near to biological learning systems,

which are known to cope with similar constraints and share the same goals. In the following

sections, we will take a deeper look at continual learning, better motivating its necessity both

from a theoretical and practical point of view, looking at what has been done over the past and

discussing major challenges and opportunities ahead.

1.2.1 Motivation

Let us now contextualize the impact of continual learning with respect to the five characteristic

traits of intelligence we discussed above.

The ability to adapt and generalize to new circumstances and environments is strictly related

to the ability of learning continuously. In fact, adaptation may be framed as the ability to

contextualize and specify already learned behaviors but also facing very different situations and

data we have never seen before and from which we need to learn new behaviors, improving our

ability to face them if encountered again in the future [Chen and Liu, 2018].

Adaptation capabilities may be useful for many circumstances. The simplest scenario would

be the one in which input and output data distributions are invariant but new data become



Chapter 1. Introduction 10

available over time. A considerable amount of real-world applications (e.g. recommendation or

anomaly detection systems), which are supposed to process a constant flow of new data over

time, may benefit from learning continually to adapt and refine the prediction model and, in the

end, improve the global performance of the model. On the same line of reasoning, only a relative

modest amount of problems (also very constrained and well defined a priori) would not benefit

from new data which becomes available later in time.

However, nowadays, for most of the practical or commercial deep learning application, re-training

the model from scratch with the data accumulated over time is still a viable option. The challenge

arises in scenarios which keep changing over time. This is where continual learning may have

a profound impact and other techniques are facing strong issues. Most of the time, it is very

hard to collect a large and representative dataset a priori, but it can be even impossible when

the “semantics” of these data keeps changing over time (i.e. we are actually solving a different

task, known as “concept drift” [Gepperth and Hammer, 2016]). For example, we can think to

a reinforcement learning system in a complex environment in which the reward function keeps

changing based on a hidden variable we can not observe nor model.

Adapting with respect to a continuous stream of data is also deeply connected with learning

from non i.i.d. training data [Gepperth and Hammer, 2016; Hayes et al., 2018b; Pentina and

Lampert, 2015]. Even tough this is fairly common if not the rule in nature, this assumption

has always been present in machine learning and generally overcome by randomly shuffling data

(after they have been collected) so that they are independent and identically distributed (i.i.d.).

However, this assumes that possibility of collecting a big and representative dataset a-priori,

which may be not realistic.

Figure 1.2: As the dimensionality increases, the space of all the possible input examples
increases so fast that the available data become sparse. This sparsity is problematic for
any method that requires statistical significance and is often referred to as the “curse of
dimensionality”. In the abstract representation the number of examples needed to cover the
entire space starts from 5 and ends up with 125 different examples when we increase the
number of dimension from 1 to 3.

Indeed, as we would like to tackle more and more complex problems, we are subject to what

is known in literature as the “curse of dimensionality”. The expression, coined by Richard E.

Bellman in the context of dynamic optimization, refers to the fast increase in the data space

volume when the dimensionality of the problem increases, hence making exponentially harder

to collect a representative dataset covering the entire space of possibilities (see Fig.1.2). Con-

tinual learning, is not a solution to this issue but rather a methodological approach to tame its
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catastrophic implications. Like natural intelligence we do not expect to learn, once and for all,

a definitive and perfect model of the universe, but rather to learn useful sub-spaces of it, only

when we need them, trying to better consolidate and generalize our knowledge and skills over

time.

Figure 1.3: Two examples of knowledge bias on state-of-the-art deep neural networks train
on large training sets. On the left four automatically generated images that maximize the
activation of the barbell class for a standard Imagenet classification task are reported. As it
is possible to see in the pictures, the notion of barbell is biased to include visual features of
human arms. On the right, a captioning neural network mistakenly description is reported for
an uncommon picture of a flooding which is misunderstood as a beach given the biased over-
representation of seaside landscapes in the training set (image originally contained in [Lake
et al., 2016]).

“All models are wrong but some are useful” is a well-known aphorism in the statistics and machine

learning community, and firstly introduced by Box [1979], essentially emphasizing the fact that

every model is a biased simplification or approximation of reality. In Fig. 1.3 two examples

of knowledge bias on state-of-the-art deep neural networks are reported. Even though trained

on millions of images, the networks show a knowledge bias that is directly related to the bias

present in the data. In the first example (on the left) of a standard classification task with 1000

classes, four automatically generated images that maximize the activation of the barbell class

are reported. As it is possible to see in the pictures, the notion of barbell is biased to include

visual features of human arms as most of the images present in the training set related to this

class [Russakovsky et al., 2015]. On the right, instead, a captioning neural network mistakenly

description is reported, where an uncommon picture of a flooding is misunderstood as a beach

given the biased over-representation of seaside landscapes in the training set. These are just

two examples of specific sub-volumes which are not well-represented despite the breadth of the

training datasets.

Hence, how can we ensure that our artificial systems scale in terms of intelligence (while process-

ing more and more data) and are efficient (i.e. maintaining computational/memory bounded)

like our brain? This is critical in nature since the more efficient is the process of learning, the

faster we can adapt to new circumstances and memorize important information which may be

useful for survival. The same can be said about machine intelligence.

One of the key hallmark of continual learning is to process data only once without the need

of storing them for later re-processing [Parisi et al., 2018a]. Like biological systems storing
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perception data (given their high-dimensionality and noise rate) would be impossible to maintain

and process cumulatively on a long time scale. The continual learning approach may be more

appropriately interpreted as a learning system which filters perception data and retain only the

most important information.

While is not clear if in the future the growth in computational power will exceed the growth

in data production rate, it is a possibility worth considering. A study conducted by Reinsel

et al. [2017] pointed out that by 2025, data generation rate will grow from the 16 ZB per year

(zettabytes or a trillion gigabytes) we register today, to 160 ZB. The projections estimate that

only between the 3% and 12% of the total amount of data produced we will be storable. This

would mean that continual learning may not only constitute a more scalable and efficient solution

but the only possible way of learning. On the other hand, even without considering futuristic

scenarios, data may be not storable due to legal, security or privacy obligations. For these data,

which we can call ephemeral, the idea of not storing data is not only motivated by reasonable

efficiency assumptions but actually demanded by the application itself.

However, continual learning is not only about data that cannot be stored. The same problem

can arise with very big dataset for which the cost of recovering and re-processing the same

data multiple times may be too high. An example may be the difficulty on training an object

classifier on datasets like ImageNet [Russakovsky et al., 2015] for which memory on common

GPU hardware is generally insufficient to contain the whole training set and a moving data from

the hard disk to the GPU is a strict bottleneck. In this case, being able to process data once (or

less times as possible) would greatly improve learning efficiency and reduce computation time.

With high-dimensional and high-velocity streaming data (around 25% of the global datasphere

in 2025 [Reinsel et al., 2017]) the problem appears even clearer since it would become impractical

or even impossible to keep the data in memory and re-training the entire prediction model from

scratch as soon as a new piece of data becomes available. CL is ideal for streaming perceptual

data since it embeds the idea of continually updating the model with the new available data. Of

course, in a supervised setting it would be very hard to couple real-time perception data with

a supervised signal (i.e. labels), however, in an unsupervised, semi-supervised or reinforcement

setting learning continually becomes quickly more appealing.

If we do not have a single stream of perception data but many of them coming from different

sensors (with different input modalities) and at the same time we would like to tackle multiple

tasks, continual learning may become even more interesing solution. Kaiser et al. [2017], from

Google Brain, recently shown for the first time that is possible to learn, with a single deep

learning model, very different tasks in very different domains (live vision and language) and

with many input modalities. The model has been trained on a composition of huge training

sets for each of the task considered. Updating such a model may be practically impossible in a

reasonable amount of time, especially in real-world applications and with current DL techniques

since requiring to re-train the entire model from scratch as soon as a new piece of data is available

from one of the many input streaming sources.
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Yet, we regard at multi-modal and multi-task Learning as essential ingredients towards the

creation of strong AI systems, endowing machines with common sense and basic, implicit, “rea-

soning” skills. In Fig. 1.4 a very famous and somehow hilarious mistake made by an Automatic

Image Captioning system [Karpathy and Li, 2013] based on state-of-the-art deep learning tech-

niques is reported.

Figure 1.4: One of the mistakes made by the Multi-modal Captioning Network firstly pro-
posed by Karpathy and Li [2013].

In this case, the Multi-Modal Recurrent Neural Network (RNN), based on the training set

composed of multiple <image, caption> pairs, had wrongly identified the toothbrush as baseball

bat. However, why this mistake arouse hilarity and amazement from a human perspective?

Possibly because, as humans, we regard at the concept of a child holding the weight of a baseball

bat be highly unlikely. As we regard as unlikely that an object of that relative dimension could

be identified as a baseball bat.

We argue that all these basic inferences (which can be intended as a simple version of reasoning)

could be also a identified as a good portion of what we have defined as common sense. In fact,

if in the same system, other than just captioning images, we would have also trained the model

to evaluate more precisely the age of a person in the picture and trying to infer the weight/size

of each particular object in a scene, disambiguating the toothbrush from the baseball bat would

have become much easier, since the co-occurrences of a very young boy holding that weight and an

object of that relative size being classified as a baseball would be much less frequent. Of course,

for even more complex tasks, multiple input modalities are also needed (e.g. disambiguating

type of birds based on visual but also auditory cues).

Hence, we believe, multi-modal/multi-task learning could really have a strong impact on the

creation of smarter AI systems but only if enabled through continual learning algorithms, which

essentially make asynchronous, alternate training of such tasks possible, updating the model on

the real-time data available from one or more streaming sources in a particular moment.

Finally, while not at its core definition we could also consider continual learning as a matter

of interest for reasoning. In fact, even if reasoning is generally focused on the idea of inferring

new knowledge from data, this process can rarely considered as static [Pham and Dimov, 1970;

Reinke and Michalski, 1985]. The availability of novel pieces of evidence may trigger not only
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a continual reasoning process but also the consolidation and integration of knowledge which is

one of the core aspect of state-of-the-art research in continual learning today.

Even considering the young and unripe state of continual learning research today, we believe

that early results shown by the research community in recent years and in this dissertation,

point it out as a direction worth pursuing in the integration of the most characteristic traits of

intelligence in our future AI systems.

1.2.2 An Example

Figure 1.5: SpotMini, the new smaller version of the Spot robot from Boston Dynamics
weighing around 14 kg [BostonDynamics, 2018].

An example of the real need of a continual learning system can once again be made in the context

of robotics [Thrun and Mitchell, 1995]. As shown by Thrun [1996] in is doctoral dissertation

real-world embedded robotic settings, are in strong needs of learning over time, specializing and

adapting their behaviors locally (operating off-line) and efficiently, depending on the specific

tasks and environment in which they are supposed to operate.

Indeed, is it clear that in this scenario, collecting data beforehand which can be representative for

all the possible situations and tasks she may encounter is rather difficult if not impossible. Giving

the high-dimensional, multi-modal and streaming nature of the perceptual data which will flow

through the robot sensors and cameras (valued around 50 GB/s for humans [Dispenza, 2008]),

with state-of-the-art hardware capabilities, would be impossible other then incredibly inefficient

to think of collecting all the data during the day (around 4,320 TB) and re-training the entire

robotic brain from scratch each night with the accumulated data acquired until then (especially

if we want her to stay in its environment indefinitely). Indeed, just after a week we would already

have encountered around 30,240 TB of data from which to train our model the following night.

This is why learning continually and adaptively about the external world in this setting may be

not only practical but essential: what are needed are scalable and efficient techniques which (as

for biological learning systems) can learn online for the autonomous incremental development of

ever more complex skills and knowledge.
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1.2.3 Brief History

The concept of learning continually from experience has always been present in artificial intelli-

gence and robotics since their birth [Turing, 1950; Weng, 2001]. However, it is only at the end

of the 20th century that it has began to be explored more systematically. Within the machine

learning community, the lifelong learning paradigm has been popularized around 1995 by Thrun

[1996]; Thrun and Mitchell [1995] and Ring [1994]. Since then it has been researched in four

main areas. Here we give a brief history of the CL research in each of these areas.

Continual Supervised Learning. Thrun [1996] was one of the first to study continual learning

within a supervised context, where each previous or new task aims at recognizing a particular

concept using binary classification. Several CL techniques were then proposed in the contexts

of memory-based learning and artificial neural networks. The neural networks approach was

improved by Silver and Mercer [2002]; Silver and Poirier [2004]. Ruvolo and Eaton [2013b]

proposed an “Efficient lifelong learning algorithm” (ELLA) to improve the multi-task learning

method proposed by Kumar and Daume III [2012]. Here the learning tasks are independent from

each other and a regularization strategy based on the Fisher Information was firstly introduced.

Ruvolo and Eaton [2013a], however, were among the first who considered ELLA also in an active

task selection setting. Cheng, Hao and Fang, Hao and Ostendorf [2015] further proposed a

continual learning technique in the context of Näıve Bayesian classification. A more theoretical

study of continual learning was firstly accomplished by Pentina and Lampert [2015] within the

PAC-learning framework.

Continual Unsupervised Learning. While intuitively better suited for unsupervised learning,

continual learning research in this area have not been extensive and mainly focused on topic

modeling and information extraction. Chen and Liu [2014a,b] and Wang et al. [2016] proposed

several continual topic modeling techniques that extract knowledge from topics produced within

many previously encountered tasks and use it to help generate better topics in the new tasks. Liu

et al. [1999] proposed a continual learning approach based on recommendation for information

extraction in the context of opinion mining. Shu et al. [2016], instead, proposed a continual

relaxation labeling method to solve a unsupervised classification problem.

Continual Semi-Supervised Learning. The work in this area is well represented by the Never-

Ending Language Learner (NELL) system by Carlson et al. [2010]; Mitchell et al. [1998], which

has been reading the Web continuously for information extraction and learning since January

2010, and it has accumulated millions of entities and relations.

Continual Reinforcement Learning. Mitchell and Thrun [1993] first proposed some CL algorithms

for robot learning which tried to capture the invariant knowledge about each individual task.

Tanaka and Yamamura [1997] treated each environment as a task for continual learning. Ring

[1994] proposed a continual learning agent that aims to gradually solve complicated tasks by

learning easy tasks first withing an extensive and general approach to continual reinforcement

learning. Wilson et al. [2007] proposed a hierarchical Bayesian continual reinforcement learning

method in the framework of Markov Decision Process (MDP). Fernández and Veloso [2013],

instead, specifically worked on policy reuse in a multi-task setting. A nonlinear feedback policy

that generalizes across multiple tasks was proposed in [Deisenroth et al., 2014]. Ammar et al.
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[2014] proposed, instead, a policy gradient efficient continual learning algorithm following the

idea presented with ELLA [Ruvolo and Eaton, 2013b]. This work was further enhanced with

cross-domain continual reinforcement learning by Ammar et al. [2015a] and with constraints for

safe continual reinforcement learning [Ammar et al., 2015b].

Continual Learning techniques working in other areas also exist. For example, Kapoor and

Horvitz [2009] studied predictive user modeling under continual learning, and worked on man-

aging and using user feedback with the help of CL. Silver et al. [2013] wrote a survey of continual

learning trying to encourage more researchers to work in this area.

As we can see, although continual or incremental learning has been proposed for more than 20

years, research in the area has not been extensive. At this point a question normally arise: why

continual learning despite its intuitiveness and naturalness is becoming a solid interest of the

machine learning and AI community only now? As we already hinted in the introduction, there

were more complex and fundamental problems to solve before the deep learning revolution and

a number of additional constraints:

• Lack of a systemic approach: machine learning research for the past 20 years has focused

on statistical and algorithmic approaches on simple tasks. CL typically needs a systems

approach that combines multiple components and learning algorithms. Moreover, contin-

ual learning greatly complicate training and evaluation procedures. Disentangling “static”

learning performance from continual learning side effects was important for the very incre-

mental nature of the research in this area.

• Limited amount of data and computational power : digital data are a luxury of the 21th

century. Before the big data revolution collecting, processing data was a daunting task.

Moreover, the limited amount of compute power available at the time, did not allow com-

plex and expensive algorithmic solution to run effectively, especially in a continual learning

setting which undoubtedly makes learning more complex dealing with multiple task at the

same time and incorporating the concept of time into the learning process.

• Manual engineered features and had hoc solution: Before early 2000 and early works on

representation learning creating a machine learning system would mean to handcraft fea-

tures and finding had-hoc solution which may differ significantly depending on the task

or domain [Russell and Norvig, 2016]. Having a general algorithm for a more systemic

approach seemed for a long time a very distant goal.

• Focus on supervised learning : creating labeled data is probably the slowest and the most

expensive step in most machine learning systems. This is why learning continuously has

been for a long time not a viable and practical option.

The relaxation of these constraints thanks to recent advancements and results in machine learning

research as well and the rapid technological progress witnessed in the last 20 years, have opened

the door for starting tackling more complex problems like learning continually.

In the following chapters we will focus on recent continual learning developments in the context

of deep learning, as generally known from 2012. For a more detailed description of many other
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classic approaches to continual learning with shallow architectures please refer to [Chen and Liu,

2018].

1.2.4 Related Learning Paradigms

Continual learning key characteristics like explicit knowledge retention and accumulation or the

use of the previously learned knowledge to help new future learning are not exclusive to this

paradigm. To many different extents, there are several machine learning paradigms that have

related characteristics and goals. This section discusses the most related ones, i.e., transfer

learning, multi-task learning, online learning, reinforcement learning, meta-learning, curriculum

learning, sequence learning and their difference from continual learning. The first two paradigms

are more closely related to CL since they both involve some form of knowledge transfer across

domains or tasks, but they do not aim at learning continually and do not retain or accumulate

learned knowledge in any explicit way. Online learning and reinforcement learning involves con-

tinual learning processes but, most of the times, they focus on the same learning task and posses

some peculiarities. These differences will become clearer after the review of some representative

techniques for each of these related learning paradigms.

Transfer Learning. Transfer learning is a popular research topic in machine learning and

especially deep learning. It is also commonly known as domain adaptation in computer vision,

natural language processing and many other domains. It usually involves two domains: a source

domain and a target domain. Although there can be more than one source domain, in almost

all existing research only one source domain is used. In typical transfer learning settings the

source domain has a large amount of labeled training data while the target domain has little or

no labeled training data. The aim of transfer learning is to use the labeled data of the source

domain (and possibly a mode pre-trained on it) to help learning in the target domain [Long

et al., 2015; Pan et al., 2010; Taylor and Stone, 2009].

Transfer learning is different from continual learning in the following aspects. Firstly, transfer

learning is not concerned with continual learning or knowledge accumulation. Its transfer of

information or knowledge from the source domain to the target domain is accomplished in a

single step in time. Moreover, It does not retain the transferred knowledge or information for

future use, meaning that the ability to solve the task in the source domain is generally lost

or ignored. Knowledge retention and accumulation are essential for continual learning as they

not only enable the system to become more and more knowledgeable over time, but also allow

it to learn additional knowledge and skills more accurately and easily in the future. Another

distinction is that generally transfer learning is unidirectional. It transfers knowledge only from

the source domain to the target domain, but not on the opposite direction since the target

domain has little or no training data. However, in CL, learning results from the new domain

or task can be used to improve learning in previous domains or tasks if needed. Moreover, in

transfer learning it is generally assumed that that the source domain is very similar to the target

domain (otherwise the results may be detrimental) and two similar domains are usually selected

by human experts. CL, on the other hand, normally considers a large (possibly unlimited)
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sequence of unknown tasks/data. When solving a new problem, the learner is able to exploit

past knowledge and skills in current learning.

Multi-Task Learning. Multi-task learning learns multiple (often related) tasks simultaneously,

aiming at achieving a better performance by using the relevant information shared by multiple

tasks [Caruana, 1997]. The rationale is to introduce inductive bias in the joint hypothesis space

of all tasks by exploiting the task relatedness structure. This helps also to prevent overfitting of

the individual task and thus gaining better generalization capabilities. Unlike transfer learning,

we mostly use the term multiple tasks rather than multiple domains as much of the existing

research (especially before deep learning) in the area is based on multiple similar tasks from the

same domain of application.

The similarity of multi-task learning and continual learning is that they both aim to use some

shared information across tasks to help learning. The difference is that multi-task learning

is still working in the traditional paradigm. Instead of optimizing a single task, it optimizes

several tasks simultaneously. If we regard the several tasks as one bigger task, it reduces to

the traditional optimization which is actually the case in most optimization formulations of

multi-task learning. Although we could argue that multi-task learning can jointly optimize all

tasks whenever a new task is added, as we have described in the previous section, optimizing

all tasks simultaneously rather than asynchronously would mean retaining all the training data

encountered so far, making it impractical and inefficient for many applications and long-term

scalability goals.

Meta-Learning. Meta learning is a learning process that uses meta-data about the past expe-

riences in order to improve its capacity of learning on new experiences. It is also called “learning

to learn”, and can be very much related to continual learning [Andrychowicz et al., 2016; Thrun

and Pratt, 2012]. Indeed, it entertains the same central idea that learning is not a static process

but rather a continuous process. However, while it seems to share an important part of the con-

tinual learning objectives, operatively, much of the research done in this area has been devoted

to speed-up learning on fixed datasets or on specific target domain without considering anymore

the source domain like in transfer learning. One constant of this approach is the presence of a

dual system, one for actually learning and the second to guide the learning process.

Online Learning. Online learning is a learning paradigm where the training data are processed

one example at a time. When a new data point arrives, the existing model is quickly updated to

produce the best model so far. Its goal is thus the same as classic learning, i.e., to optimize the

performance on the given learning task. However, it is normally used when it is computationally

infeasible to train over the entire dataset or learning with mini-batches or it is impractical for

hardware constraints or data availability. Online learning methods are typically memory and run-

time efficient due to the latency requirement in a real-world scenario. However, online learning

per se, does not imply that data are not processable twice as generally assumed in continual

learning even though the term does not exclude either this option.

There are a large number of existing online learning algorithms. For example, Kivinen et al.

[2004] proposed some online learning algorithms for kernel-based learning like SVM. By extending

the classic stochastic gradient descent, they developed computationally efficient online learning
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algorithms for classification, regression, and novelty detection. Mairal et al. [2009] proposed some

online dictionary learning approaches for sparse coding, which model data vectors as sparse

linear combinations of some basic elements. Hoffman et al. [2010] also proposed an online

variational Bayes algorithm for topic modeling. Much of the online learning research focuses on

one domain/task. Dredze et al. [2008] developed a multi-domain online learning method, which

is based on parameter combination of multiple classifiers. In their setting, the model receives a

new instance/example as well as its domain.

Although online learning deals with streaming of data, its objective is very different from con-

tinual learning. Online learning still performs the same learning over time but its objective is

rather to learn more efficiently when a new piece of data becomes available. Continual learning,

on the other hand, aims at learning from a sequence of different batches/tasks, retaining the

knowledge and skills learned so far, and using the knowledge to help future task learning.

Reinforcement Learning. Reinforcement Learning [Sutton et al., 1998] is the problem where

an agent learns actions through trial and error interacting with a dynamic environment. In

each interaction step, the agent receives as input the current state of the environment and a

possible reward. The agent then has to choose an action from a set of possible actions. The

action changes the state of the environment. This process keeps repeating as the agent learns a

trajectory of actions which optimize its objective. The goal of reinforcement learning is to learn

an optimal policy that maps states to actions and maximizes the future expected reward [Sutton

et al., 1998; Wiering and Van Otterlo, 2012].

Transfer learning and multi-task learning have also been applied to reinforcement learning.

Banerjee and Stone [2007], for example, demonstrated that feature-based value function trans-

fer learning learns optimal policies faster than without knowledge transfer. Taylor et al. [2008]

proposed a method to transfer data instances from the source to the target in a model-based

reinforcement learning setting. An excellent survey of transfer learning applied to reinforcement

learning can be found in [Taylor et al., 2008].

A reinforcement learning agent learns by trial and error in its interactions with the environment

which would appear, by definition, a continual learning process. However, most of the times,

learning is limited to one task and one environment without the explicit accumulation of knowl-

edge to help future learning tasks. Moreover, environments are often stationary, loosing the need

for more specific and explicit incremental learning and adaptation algorithmic capabilities given

that pretty much all the correlation patterns are automatically refreshed by the environment.

Transfer and multi-task reinforcement learning paradigms have similar differences from continual

learning as supervised transfer and multi-task learning discussed above.

Curriculum Learning. Curriculum learning [Bengio et al., 2009] is a training process that

proposes a sequence of data/tasks to a learning algorithm in order to make it able to learn, at

last, a generally harder task. Both CL and curriculum learning learn on a sequence of tasks

(or partial experience). However, in curriculum learning, task are chosen and structured in a

way that make possible to learn the last more efficiently, by taking into account the different

difficulty and functional dependences among them, while in CL, tasks are not voluntarily chosen
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nor ordered. Furthermore, in CL the algorithm is interested on being able to solve all tasks at

the end of the training process, and not only the last one.

Sequential Learning. Sequential Learning, often also called “time-series forecasting” or “pre-

dictive learning” is different from other types of supervised learning problems [Sutskever et al.,

2014]. The sequence imposes an order on the observations that must be preserved when training

models and making predictions. Generally, prediction problems that involve sequence data are

referred to as sequence prediction problems, although there are a suite of problems that differ

based on the input and output sequences.

What we have described under the name of continual learning is now a fast emerging topic in AI

which have been often branded as Lifelong Learning or Continuous Learning and the terminology

seems not well consolidated yet in the machine learning research community. The term “Lifelong

Learning” has been around for years in the AI community, but prevalently used in areas somehow

distant from the field of Deep Learning [Chen and Liu, 2018]. This is why a more recent research

trend refers to this setting as “Continuous” or “Continual Learning” targeting specifically Deep

Learning algorithms [Parisi et al., 2018a]. “Continuous Learning” makes explicit the idea of a

smooth and continuous adaptation process that never stops. The distinction with continual is

subtle but important as beautifully put in the Oxford Dictionaries1:

Both can mean roughly “without interruption” [. . . ] however, Continuous is much more promi-

nent in this sense and, unlike Continual, can be used to refer to space as well as time [. . . ].

Continual, on the other hand, typically means “happening frequently, with intervals between”

[. . . ].

Even though current research focuses on rigid task sequences problems where we actually stop

learning at the end of each task, we argue that “Continuous Learning” would be more appropriate

in the long term with the developments of algorithms which can deal with a continuous stream

of perception data like the real world. On the other hand, the term “Continuous” may result too

confusing in many contexts (especially in Reinforcement Learning) as often used as the opposite

of “Discrete”. This is why the DL community seems to start converging to the use of the term

“Continual” instead.

The term “Online”, as we have seen in the online learning related paradigm can be considered as

opposed to “Batch Learning” with the technical acceptation of processing data in an algorithm

rather than a paradigm of learning [Cui et al., 2015]. The term “Incremental Learning”, instead,

while still focuses on the idea of building knowledge incrementally, doesn’t really express the idea

of adaptation which sometimes means also to temper or erase what has been previously learned.

1.2.5 State-of-the-art and Current Challenges

While not already at its explosion, Continual Learning has been getting more and more atten-

tion in the deep learning community over the last few years with key contributions over a short

period of time ([Kirkpatrick et al., 2017; Li and Hoiem, 2016; Rebuffi et al., 2017; Zenke et al.,

1https://en.oxforddictionaries.com/usage/continual-or-continuous

https://en.oxforddictionaries.com/usage/continual-or-continuous
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2017]). The biggest problem faced today by continual learning algorithms is known in litera-

ture as Catastrophic Forgetting or Catastrophic Inference [French, 1999; McCloskey and Cohen,

1989]. Neural networks almost often trained with gradient-based optimization methods suffer

dramatically from this problem, experiencing a rapid overriding of the model parameters when

learning from different data distributions over time. This is why almost every recent work in

the context of deep continual learning has been focusing on such a problem, one of the biggest

obstacle to the adoption of AI systems that learn continually.

Contrasting catastrophic forgetting is possible in many ways, and not only through careful hyper-

parametrizations or basic regularization techniques. As we will later discuss in Chapter 3, many

different strategies have been proposed, showing, with different degree of success, that CL can

be used in complex domains like computer vision and natural language modeling [Parisi et al.,

2018a]. Early results in this area are promising, even though still to be proven over a long

sequence of batches or tasks.

Much of the attention over the last few years in deep continual learning research has been devoted

to the multi-task scenario where there is a clear distinction between the tasks encountered over

time. However, as discussed in the previous sections, many are the scenarios where learning

continually does not necessary imply learning a sequence of tasks in rigid separation. A good

portion of this dissertation has been devoted instead in the development of novel continual

learning algorithms that can work essentially without the notion of task, in what have been

called in Chapter 2 Single-Incremental-Task scenarios.

Given the relative novelty of the subject into the deep learning community, another important

issue in continual learning research is the difficulty on finding a consensus in defining com-

mon constraints and desiderata for developing and evaluating continual learning algorithms.

In Chapter 2 and Chapter 4, we propose a comprehensive continual learning framework, novel

benchmarks, protocols and metrics to help addressing this issue.

1.2.6 Applications

While not the focus of this dissertation, for further motivating the practical interest in continual

learning, a short review of the large number of domains in which continual learning could have

an impact is here summarized. Applications accounting for streams of data (e.g. applications

running on smart-phones devices) or any other kind of real-time ephemeral signal that results

impractical to store and re-process are the ones which would benefit the most from the integration

of CL features. A non-comprehensive and unordered list of applications in which continual

learning may be beneficial or has been already applied con be found below:

• Computer Vision: given the high-dimensionality and high-velocity of visual information,

computer vision tasks are one of more suitable domains to prove the importance of continual

learning and to actually benefit from it also from a practical point of view. Object detection,

recognition and segmentation [Shmelkov et al., 2017] are simple examples of horizontal

applications which are in high need of more efficiency and scalability, often dealing with

limited hardware resources (e.g. smart cameras) and with the necessity to customize and
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adapt (possibly offline) their behaviors over time (e.g. for surveillance purposes or for

providing better, customer-centered specialized services).

• Natural Language Processing and Speech Recognition: after a period of early

enthusiasm and subsequent disappointment during the second AI winter, conversational

agents (or chatbots) [Lee, 2017] and virtual assistants are slowing regaining ground in the

AI applications landscape. Their latest incarnations in Siri, Alexa, Google Now, Cor-

tana, etc. are showing today rapidly growing application scope and success [Omale, 2019]

mostly due to the recent improvements in speech recognition and natural language pro-

cessing. Continual learning may substantially improve the human-to-machine interaction

through efficient on-device personalization/adaptation. This may not only reduce the com-

putational burden on the server side (and improve the adaptation speed), but given the

highly personal nature of the information being processed by the virtual assistants, it may

also force the raw data to never leave the device.

• Robotics: the robotics community has always been intrigued by endowing embodied ma-

chines with lifelong and open-ended learning of new skills and new knowledge and many

are the scenarios which would highly benefit by recent CL advances. Robotics applica-

tions in unconstrained environments, indeed, have always posed questions out of reach for

previous machine learning techniques often dealing with unpredictable situations. Classic

continual learning setting include room navigation, e.g., using a HERO-2000 mobile robot

with a radar sensor [Thrun, 1996] to perform several room mapping and navigation tasks.

Action models in Explanation-Based Neural Network (EBNN) learning explain (in terms

of previous experiences) and analyze observations to transfer task-independent (naviga-

tion) knowledge via predicting collisions and the prediction certainty. In the most recent

literature, estimation and tracking in [Wong, 2016], odometry estimation, mask or pixel-

wise segmentation in [Pinto and Gupta, 2016] have been also tacked, especially through

self-supervision. However, most of these works were not conceived within the motivating

principles of CL. RL Intelligent Adaptive Curiosity (RL-IAC) constitutes one of the few

examples of the direct application of CL in a robotics setting for visual saliency learning

Craye et al. [2018]. However, the proposed algorithm does not employ deep architectures.

• Internet-Of-Things and Edge Computing: embedded devices with highly constrained

hardware resources and operating off-line (due to privacy or operational reasons) may

highly benefit the introduction of more efficient learning algorithm operating on real-time

data and without the need of storing them. The domestic robot example introduced in

the previous section, already gave some pragmatic motivations of the need of continual

learning in this area. However, many are the vertical applications we could mention, like

transportation-mode detection [Carpineti et al., 2018] and activity recognition [Ravi et al.,

2005] on smart-phone devices using strong (and highly private) sensor signals.

• Machine Learning Production Systems: machine learning production systems are

becoming more and more common in every organization. Being able to fast train and de-

ploy new prediction models over time becomes essential to provide up-to-date and always

improving services. Tensorflow Extended [Baylor et al., 2017] constitutes an example of

such systems supporting the Google machine learning infrastructure. Recommendation
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and anomaly prediction systems are just two examples of application which are currently

benefiting from a sophisticated prediction models management system. Continual Learn-

ing, in this scenario, may substantially reduce the computational burden incurred by such

systems in re-training models from scratch every time (and possibly for every user) at

a massive scale with a direct impact on resources occupation, energy consumption and

ultimately financial resources.



2

A Comprehensive Framework for

Continual Learning

“Without the Lifelong Learning capability, AI systems will probably never be truly intel-

ligent: learning machine or agent to continually learn and accumulate knowledge, and

to become more and more knowledgeable and better and better at learning.”

– Bing Liu, 2014

In this chapter, we will try to define continual learning a little more formally in a comprehensive

framework and with additional constraints and desiderata which will lay the formal foundations

for the original proposals of the following chapters. Let us start with a simple question: what

is continual learning? Drawing inspiration from the famous definition of Machine Learning by

Michalski et al. [2013], we could try to summarize continual learning, operatively, in a single

sentence as in the following definition.

Definition 1. Continual Learning. A computer program is said to learn continually from experi-

ence if, given a sequence of ephemeral partial experience Ei, a target function h∗ and performance

measure P , its performance in approximating h∗ as measured by P improves with the number of

processed partial experience Ei.

The focus is on the ephemeral nature of the data, which cannot be processed multiple times

and the basic notion that, taken in isolation, they constitute only a partial amount of the

information needed to approximate the target function h∗, the objective of the learning process.

These natural but key constraints, as we have argued in the previous chapter, leads to profound

theoretical and practical implications worth considering in the development of truly intelligent

artificial systems.

24
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2.1 Formal Definition

Early theoretical attempts to formalize the continual learning paradigm can be found in Ring

[2005]. More general framework proposals include [Pentina and Lampert, 2015]. As in [Pentina

and Lampert, 2015], we assume CL is tackling a PAC learnable problem in the approximation of

a target hypothesis h∗ but learning from a sequence of non i.i.d. training batches. Our framework

could also be seen as a generalization of the setting proposed in [Lopez-paz and Ranzato, 2017],

where a “task supervised signal” t is provided along with each training example.

In both settings, if we were capable to observe all data streamed throughout a lifetime, the dis-

tribution we would like to model would be just one and we could consider all the example being

drawn from it. However, the actual reality of CL settings is that the total amount of training

examples are never observed at once, but can be rather seen as drawn from a sequence of distri-

butions Di. In this section we expand and refine previous CL frameworks improving flexibility

and generalization but also trying to not end up with a too abstract setting. Morever, we make

sure to accommodate previously proposed algorithms and more recent ones with a number of

constraints and relative relaxations and desiderata.

Definition 2. Continual Learning Algorithm. Given X and Y as input and output random

variable respectively, let us consider D a potentially infinite sequence of unknown distributions

D = {D1, . . . , Dn} over X×Y , we encounter over time (hence with n ∈ [2, . . . ,∞[). A continual

learning algorithm ACL is an algorithm with the following signature:

∀Di ∈ D, ACLi : < hi−1, Bi,Mi−1, ti >→< hi,Mi > (2.1)

Where:

• Mi is an external memory where we can store previous training examples or partial com-

putation not directly related to the parametrization of the model.

• ti is a task label, void if not provided. It can be used to disentangle tasks and specialize

the hypothesis parameters, as it is done in [Lopez-paz and Ranzato, 2017].

• Bi is the training batch of examples. For simplicity, these examples can be assumed to be

drawn i.i.d. from Di [Lopez-paz and Ranzato, 2017; Pentina and Lampert, 2013] but it is

not necessary. Indeed, this framework setting allows to accommodate continual learning

approaches where examples can also be assumed to be drawn non i.i.d. from each Di over

X×Y , as in [Gepperth and Hammer, 2016; Hayes et al., 2018b]. Each Di can be considered

as a stationary distribution.

• Each Bi is composed of a number of examples eij with j ∈ [1, . . . , |Bi|]. Each example

eij =< xij , f
i
j >, where f i is the feedback signal and can used to infer the optimal hypothesis

h∗(x, t) (i.e., exact label yij in supervised learning or any real tensor from which we can

estimate h∗(x, t), such as a reward rij).
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2.2 Task Notion

Definition 3. Task. A task T is defined by a unique task label t̂ and its target function g∗
t̂
(x) ≡

h∗(x, t = t̂), the objective of its learning.

Please note that if t is not given as input to the CL algorithm ACL, hence being all ti = ∅, it is

like having a single incremental task T where g∗t ≡ h∗ (see Section 2.4).

Disentangling the notion of task from training batch is important in CL since data are not

available all at once, but may be as well related to the same learning objective g∗t as defined

by the external supervised signal t. Hence, in our definition, even if Di represents a different

distribution from Dj for i 6= j, this does not necessary define a different task.

Removing the bijective correspondence between distributions and tasks it is important and con-

venient in many applications for improving the autonomy of the learning system with a more

abstract (and potentially more natural) task supervised signal. For instance, in the robotic

application ball-in-cup1, tasks are defined by different lengths of the rope to which the ball is

attached (defining different data distributions) [Stulp et al., 2014]. However, if we do not plan

to specify to the robot the length of the rope every time (through different t labels) we may as

well regard it as the single task of solving the ball-in-cup problem.

Another example is the rotation MNIST benchmark [Lopez-paz and Ranzato, 2017] often used

for assessing CL strategies as we will see in Chapter 4: in this case the objective is to classify the

10 MNIST digits learning over a sequence of distributions determined by a fixed degree rotation

of each image in the dataset. This can be seen as learning over a sequence of different tasks as

well as the single task of classifying the 10 digits with a reasonable amount of invariance and

generalization capabilities.

It really depends on the availability of the task supervised signal during training and inference.

The t signal is particularly useful for correlating very different distributions (related to the same

task) and, on the contrary, disentangle similar distributions related to different tasks for which a

specialization rather than generalization of behaviors may be important for performance gaining.

2.3 Constraints, Relaxations and Desiderata

Having formalized a general notation for a continual learning algorithm, let us define some

informative constraints that can characterize this paradigm more precisely.

Constraint 1. External Memory. For every step in time, the number of training examples con-

tained into the external memory is substantially lower than the total number of previously en-

countered training examples: ∀i ∈ [1, ..., n], |Mi| �
∣∣∣∣i−1⋃
i=1

Bi

∣∣∣∣
In fact, if we could fit all previous examples in M, it would not be an interesting CL setting.

Having defined an upper bound with respect to the number of examples being storable in the

1In this task the robot must make the ball go inside a cup without touching it, by holding the cup attached
through a rope to it.
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external memory M , we propose to constrain also the hypothesis h memory size as well as the

number of operation for scalability.

Constraint 2. Memory and Computation. Memory and computation for each iteration step i

are bounded. Given two functions ops() and mem() computing the number of operations and

memory occupation required by ACLi , it should exist two reasonably small values max ops and

max mem, such that, for each i, ops(ACLi ) < max ops and mem(hi−1,Mi−1) < max mem.

max ops and max mem are the max throughput, in number of operations, and the max memory

capacity of the system running ACLi . Having a memory and computational bound for each

iteration i is an important constraint for a continual learning algorithm. The reason is that the

number of training sets Bi can be potentially unlimited and computation and memory should

not be proportional to the number of the hypothesis hi updates over time. However, in this case,

we do not put a rigid upper bound a priori but just consider that an apper bound should exist

and should be considering, especially with n→∞.

Given the difficult setting and the additional constraints imposed by continual learning with

respect to the classic “static” learning setting, many researchers in the recent literature have

proposed new CL strategies in slightly relaxed but still reasonable settings:

Relaxation 1. Memory relaxation. Removes the fixed memory bound over mem(hi−1,Mi−1).

Relaxation 2. Computation relaxation. Removes the fixed computational bound over ops(ACLi ).

In both cases we assume that for practical applications, a finite (and reasonable) number of tasks

n are encountered, hence, for many settings with a generous memory and computational bound,

many continual learning strategies that grows somehow proportional to the number of batches

Bi in term of complexity and memory usage may still be a viable option, especially if they can

guarantee better performance. On the other hand, having defined a formal framework with two

important constraints we can also point out a number of possible desiderata.

Constraint 3. Storage-Free Continual Learning. Avoids the use of the external memory M .

Constraint 4. Online Continual Learning. Limits the size of a training batch so that |Bi| = 1.

Being able to learn without storing any example from the past is one on the holy grail of continual

learning. In our biological counterparts, namely the brain, there are many evidence supporting

this argument, while the idea of storing high-dimensional perceptual data appear impractical

given the incredible amount of information flowing into our brain every day from our multi-

modal senses. Being able to process data online as well, is an important desideratum especially

for reducing adaptation time and operational memory usage.

2.4 Scenarios

Depending on the task-awareness or task-agnosticism of the problem to learn, now we can define,

on a more abstract level and based on the specific t signal availability, three different and common

scenarios for CL based on the proposed framework:
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• Multi-Task (MT): ∀i, j ∈ [1, .., n] : ti 6= tj .

• Single-Incremental-Task (SIT): t1 = t2 = · · · = tn.

• Multi-Incremental-Task (MIT): ∃ i, j, k : ti = tj and tj 6= tk.

In the following sections we discuss each scenario more in detail.

2.4.1 Multi-Task

The Multi-Task (MT) scenario constitutes a typical setting for recent literature in CL where it is

assumed to encounter a number of subsequent tasks over time, each corresponding to a different

training batch with very different data distributions [Parisi et al., 2018a]. While this setting is

useful for assessing continual learning strategy, it may revel itself less appropriate for modeling

real-word problems where we can encounter many different batches of data over time, related to

the same task or encounter the same task many times over our lifetime.

2.4.2 Single-Incremental-Task

The Single-Incremental-Task (SIT) is a very general scenario where we don’t have a different task

supervised signal for every training batch. It can be considered as solving a single task, which

is incremental in nature or just to be in a “task agnostic” setting where data can be treated to

similar or very different data distributions over time. However, it may be useful, also in this

case, to detect and recognize very different data distributions to specialize the behavior of the

agent even without the external supervised notion of task.

2.4.3 Multiple-Incremental-Task

The Multiple-Incremental-Task (MIT) scenario constitutes the more realistic scenario in which

we consider natural to be able to exploit some supervision (like parents teaching in humans) or

feedbacks about the tasks we are tackling over time. This allows the agent to learn task-related

specialized behaviors as well the autonomous development of its generalization capabilities.

Table 2.1: Examples of the t signal for the three different scenarios: Multi-Task (MT), Single-
Incremental-Task (SIT) and Multiple-Incremental-Task (MIT). Notice that a MIT setting
requires breaking the constraint definition of SIT but also breaking the constraint definition of
MT, i.e., not all the tasks are considered having the same id and not all the task are considered
distinct.

Task/Session Task ID
CL setting MT SIT MIT

t1 1 0 0
t2 2 0 1
t3 3 0 0
. . . . . . . . . . . .
tn n 0 0
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2.4.4 Update Content Types

Orthogonal to the type of task supervised signal we could exploit, it is worth considering three

different Update Content Type (UCT ) which may greatly impact on the complexity of the con-

tinual learning scenario. They refer to the possible kind of data contained in each training batch

Bi:

• New Instances (NI): in this case the content of the batch is characterized by new

instances (i.e. examples) of the same classes encountered in the previous batches.

• New Classes (NC): the content of each batch Bi is characterize by the presence of

examples belonging to always different classes never encountered before in previous batches

B1, . . . , Bi−1.

• New Instances and Classes (NIC): this update content type constitutes the the most

realistic setting where new examples of previous encountered classes but also new classes

are encountered over time.

For regression, the same organization can be maintained considering each class as a different

regressor.
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Continual Learning Strategies

“The transfer of knowledge within the lifetime of an individual has been found to be one

of the dominating factors of natural learning and intelligence. If computers ever are to

exhibit rapid learning capabilities similar to that of humans, they will most likely have

to follow the same principles.”

– Sebastian Thrun, 1996

The sudden interest in CL and its applications, especially in the context of deep architectures,

has recently led to significant progress and original research directions, yet leaving the research

community without a common terminology and clear objectives. Here we propose, in line with

Kemker et al. [2018] and Zenke et al. [2017], a three-way fuzzy categorization of the most common

CL strategies:

• Architectural strategies: specific architectures, layers, activation functions, and/or

weight-freezing strategies are used to mitigate forgetting. Includes dual-memories-models

attempting to imitate hippocampus-cortex duality.

• Regularization strategies: the loss function is extended with loss terms promoting

selective consolidation of the weights which are important to retain past memories. Include

basic regularization techniques such as weight sparsification, dropout, early stopping.

• Rehearsal strategies: past information is periodically replayed to the model to strengthen

connections for memories it has already learned. A simple approach is storing part of the

previous training data and interleaving them with new patterns for future training. A more

challenging approach is pseudo-rehearsal with generative models.

In the Venn diagram of Figure 3.1, we show a non-comprehensive set of the most popular CL

strategies. While each category is being populated with an increasing number of novel strategies,

there is a large room for yet-to-be-explored techniques especially at the intersection of the three

categories.

30
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Figure 3.1: Venn diagram of some of the most popular CL strategies: CWR [Lomonaco and
Maltoni, 2017], PNN [Rusu et al., 2016b], EWC [Kirkpatrick et al., 2017], SI [Zenke et al.,
2017], LWF [Li and Hoiem, 2016], ICARL [Rebuffi et al., 2017], GEM [Lopez-paz and Ranzato,
2017], FN [Kemker and Kanan, 2018], GDM [Parisi et al., 2018b], EXSTREAM [Hayes et al.,
2018a] and AR1, hereby proposed. Better viewed in color.

Progressive Neural Networks (PNN) [Rusu et al., 2016b] is one of the first architectural strategy

proposed and is based on a clever combination of parameter freezing and network expansion.

While PNN was shown to be effective on short series of simple tasks, the number of the model

parameters keeps increasing at least linearly with the number of tasks, making it difficult to use

for long sequences. The proposed CopyWeights with Re-init (CWR) and its evolution CWR+,

constitute a simpler and lighter counterpart to PNN (at the cost of a lower flexibility), with a

fixed number of shared parameters and already proven to be useful on longer sequences of tasks.

Learning Without Forgetting (LWF) [Li and Hoiem, 2016] is a regularization strategy attempt-

ing to preserve the model accuracy on old tasks by imposing output stability through knowl-

edge distillation [Hinton et al., 2015]. Other well-known regularization strategies are Elastic

Weights Consolidation (EWC) and Synaptic Intelligence (SI), both articulated around a weighted

quadratic regularization loss which penalizes moving weights which are important for old tasks.

In the Rehearsal category, Gradient Episodic Memory (GEM) [Lopez-paz and Ranzato, 2017] is

an interesting approach using a fixed memory to store a subset of old patterns: it is aimed not

only at controlling forgetting but also at improving accuracy on previous tasks while learning

the subsequent ones (a phenomenon known as “positive backward transfer” see Chapter 4.3.1).

Incremental Classifier and Representation Learning (ICARL) [Rebuffi et al., 2017] includes an

external fixed memory to store a subset of old task data based on an elaborated sample selection

procedure, but also employs a distillation step which makes it overlapping with the regulariza-

tion category. A recent study on memory efficient implementation of pure rehearsal strategies is

provided in [Hayes et al., 2018a] where a new partitioning-based method for stream clustering
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named EXSTREAM is shown to be very competitive with a Full Rehearsal approach (storing

all the past data) and with other memory management techniques.

Very recently, a growing number of techniques have been proposed on CL based on both variations

of the previously introduced strategies or completely novel approaches with different degrees

of success (see [Parisi et al., 2018a] for a review). In particular, FearNet (FN) [Kemker and

Kanan, 2018] and Growing Dual-Memory (GDM) [Parisi et al., 2018b] are interesting approaches

leveraging ideas from architectural and (pseudo) rehearsal categories: a double-memory system

is exploited to learn new concepts in a short-term memory and progressively consolidate them

in a long-term one.

In the following section we will better detail some of the most representative strategies for each

group and at their intersection. Then the four newly proposed strategy will be detailed in depth.

3.1 Baseline Strategies

Before moving to more elaborated continual learning strategies, let us consider two basic ap-

proaches: Naive and Cuumulative, we will later use as standard baselines during the experimental

evaluation counducted in Chapter 5.

3.1.1 Naive

The Naive strategy simply finetunes the model across the training batches without any specific

mechanism to control forgetting, except early stopping and other basic regularization techniques

like L1, L2 and Dropout [Goodfellow et al., 2013], which have been already found to avoid

overfitting and improve generalization. The Naive approach has been shown to be particularly

prone to catastrophic forgetting if the data distribution faced by the model are substantially

different among each other. Nevertheless, in more specific settings where data distributions are

often and implicitly refreshed through time, it may prove to be a reasonable strategy, being

withing the constraints and desiderata detailed in Chapter 2.

3.1.2 Cumulative

The Cumulative strategy, also called Full Rehearsal [Hayes et al., 2018a], limits catastrophic

forgetting by mixing all older examples with the new examples to be learned. When a new

batch of data becomes available, there are two viable options: i) Finetuning hi−1 with all the

cumulated patterns or ii) start from scratch (i.e. from random weights initialization). While the

former is generally faster if examples in different batches share very similar features, the second

has more guarantees to reach the best global performances. In the evaluation chapter we will

refer to the cumulative strategy employing the second option with the idea of using it as a sort

of “upper bound” in terms of accuracy performance for the other CL strategies.
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The cumulative learning strategy is indeed very similar to the classical multi-task training setting

[Caruana, 1997], which is known to yield even better performance than learning every single

task in isolation. That said, it cannot really considered a formal “upper bound” for the accuracy

metric since, depending on the specificity of the scenario, other CL strategies may prevail. For

example, a scenario which constitute a natural “curriculum” [Bengio et al., 2009] for improving

the performance of the model over time or in which more recent data are generally more relevant

than the past one.

Moreover, it cannot be properly be considered as a continual learning strategy since it violates

the constraint 1, which impose to not store all the examples in the external memory M .

3.2 Rehearsal Strategies

Rehearsal strategies are based on the idea of rehearsing past knowledge with a replay mechanism.

Most of these strategies employ a fixed-sized external memory in which to store representative

examples to reuse in conjunction with the new coming data in order to improve generalization

without forgetting. More recent proposals employ generative models to generate these examples

on-the-fly.

3.2.1 Exemplar Stream (ExStream)

Exemplar Stream (ExStream) was firstly introduced by [Hayes et al., 2018a] as a partitioning-

based method for stream clustering and the efficient management of the external fixed-size mem-

ory for rehearsal. In addition to storing clusters, indeed, ExStream also stores counts that tally

the total number of points in each cluster. Once a class-specific buffer is full and a new example

(xt , yt) streams in, the two closest clusters in the buffer for class yt are found using the Euclidean

distance metric and merged together using:

wi ←
ci · wi + cj · wj

ci + cj
(3.1)

where wi and wj are the two closest clusters and ci and cj are their associated counts. Subse-

quently, the counter at ci is updated as the sum of the counts at locations i and j and the new

point is inserted into the buffer at location j. That is, ci ← ci + cj and wj ← xt with cj = 1.

ExStream can be also considered as an effective rehearsal strategies per-se, which, depending

on the external memory size and the task at hand, can be considered competitive with the

Cumulative approach [Hayes et al., 2018a].

3.3 Architectural Strategies

Architectural Strategies are based on the central idea of modifying the model architecture and

parameters value in order to preserve old information and make space to the incoming one.



Chapter 4. CL Strategies 34

Modifying connections, activation functions, freezing parameters to mitigate forgetting are very

common possibilities. This group also includes dual-memories-models attempting to imitate the

hippocampus-cortex duality.

3.3.1 Progressive Neural Networks (PNNs)

Progressive Neural Networks (PNNs) were originally proposed by Rusu et al. [2016b] for explicitly

tackling catastrophic forgetting and are one of the best examples of the architectural category.

The idea is to keep a pool of pre-trained models (or “columns”) as knowledge base, and use

lateral connections between them for fast adaptation to the new batch/task. It was originally

proposed to tackle reinforcement learning in multi-task settings but the model architecture is

general enough to be adapted also to other scenarios. For each new task encountered a new

neural network (or a new column) is created, and its lateral connections with all previous ones

are learned. The mathematical formulation is presented below. Notation is here maintained to

follow the one proposed in the original paper.

In PNNs, each batch/task Bn is associated with a neural network, which is assumed to have

L layers with hidden activations h
(n)
i for the units at layer i ≤ L. The set of parameters in

the neural network for Bn is denoted by Θ(n). When a new batch Bn+1 arrives, the parameters

Θ(1),Θ(2), . . . ,Θ(n) are frozen while each layer h
(N+1)
i , in the network related to task BN+1, takes

inputs from (i−1)th layers of all the networks related to the previously encounterd batches, i.e.,

hN+1
i = max

(
0,W

(N+1)
i · h(N+1)

i−1 +
∑

n<N+1

U
(n:N+1)
i · h(n)i−1

)
(3.2)

where WN+1
i denotes the weights matrix of layer i in neural network N + 1. The lateral connec-

tions are learned via U
(n:N+1)
i to indicate how strong the (i− 1)th layer from task n influences

the ith layer from task N + 1. h0 is the network input.

Unlike pre-training and fine-tuning, progressive neural networks is agnostic with respect to the

type of batches/tasks encountered, which makes it more practical for real-world applications.

The lateral connections can be learned for related, orthogonal, or even adversarial tasks. Non-

linear lateral connections are learned through a single hidden perceptron layer, which reduces

the number of parameters from the lateral connections to the same order as |Θ(1)|. However,

this flexibility and the very nteresting “zero-forgetting” property, progressive neural networks

come at a price: the total number of parameters tends to explode with an increasing number of

batches/tasks, since it needs to learn a new neural network for every new batch and its lateral

connections with all the existing ones. Rusu et al. [2016b] suggested pruning [Hassibi and Stork,

1993] or online compression [Rusu et al., 2016a] as potential solutions. More details can be found

in the original paper [Rusu et al., 2016b].
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Figure 3.2: Depiction of a three column progressive network. The first two columns on
the left (dashed arrows) were trained on task 1 and 2 respectively. The grey box labelled
a represent the adapter layers (more details cab be found in [Rusu et al., 2016a]). A third
column is added for the final task having access to all previously learned features.

3.4 Regularization Strategies

Regularization strategies are based on the central idea of regularizing the learning process on

the new data for preserving past learned knowledge and skills. This is generally accomplished

with an additional regularization loss for preserving the state of the weights that are important

for the previously encountered data distributions.

3.4.1 Learning without Forgetting (LWF)

Learning Without Forgetting (LWF ) [Li and Hoiem, 2016] is a regularization approach which

tries to control forgetting by imposing output (i.e. prediction) stability via distillation. It has

been originally conceived for a Multi-Task (MT) setting but it can be also easily adapted to

other scenario.

Let us consider an output level with s classes (i.e. s neurons) and assume that some classes were

already learned in previous batches. The current batch Bi includes ni examples drawn from si

(still unseen) classes, then LWF:

• At the beginning of batch Bi, before the training start, computes the prediction of the

network for each new pattern in Bi. To this purpose it performs a forward pass and stores

the s-dimensional network prediction ŷlwf for each of the examples in Bi.

• Starts training the network with Stochastic Gradient Descent (SGD) by using a two com-

ponent loss:

(1− λ) · Lcross(ŷ, t = ŷ1h) + λ · Lkdl(ŷ, t = ŷlwf ) (3.3)

where:

– ŷ are the network predictions (evolving while the model is trained).
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– The first part is the usual cross-entropy loss whose target vectors t take the form of

one-hot vectors ŷ1h corresponding to the true pattern labels. This component adjusts

the model weights to learn the new classes in Bi.

– The second part is a Knowledge Distillation Loss [Hinton et al., 2015] which tries to

keep the network predictions close to ŷlwf (here used as soft target vectors). This

component tries to preserve (for the old classes which are not in the current batch)

a stable response. The second term can be replaced with one term for each old

task/batch; the two formulations are equivalent but the compact form here proposed

is simpler to deal with in practice.

– The parameter λ ∈ [0, 1] defines the relative weights of the two loss components, thus

controlling the trade-off between stability and plasticity.

In the MT scenario, Lcross is computed only for the ni new classes in Bi, while Lkdl is computed

for all the (
∑
j<i nj) classes previously learned. In SIT there is no such distinction and both the

loss components are computed for all the s classes encountered so far. When moving to a SIT

setting we need to:

• replace Lkdl with Lcross in the second terms. LWF authors argued in Li and Hoiem

[2016] that the Knowledge Distillation Loss can be replaced with Cross-Entropy with no

significant accuracy change. In our initial experiments we obtained similar results, so for

simplicity we adopted cross-entropy.

L1 = (1− λ) · Lcross(ŷ, t = ŷ1h) + λ · Lcross(ĥ, t = ŷlwf ) (3.4)

• fuse the two loss components into a single loss with a weighted soft target vector:

L2 = Lcross(ŷ, t = (1− λ) · ŷ1h + λ · ŷlwf ) (3.5)

It can be simply proved that L1 and L2 are equivalent and lead to the same gradient flow.

In fact, for cross-entropy the gradient of the loss function with respect to the logit layer o

(i.e., the layer before softmax) is ∂Lcross/∂o = (ŷ − t) and therefore:

∂L1

∂o
= (1− λ) · (ŷ − ŷ1h) + λ · (ŷ − ŷlwf ) =

(ŷ − ŷ1h) + λ · (ŷ1h − ŷlwf ) =

ŷ − ((1− λ) · ŷ1h + λ · ŷlwf ) =
∂L2

∂o
. (3.6)

Using a single value of λ across the sequential training batches can be suboptimal, since the

importance of the past should increase with the number of classes learned. A reasonable solution

is increasing λ according to the proportion of the number of examples in the current batch w.r.t.

the number of examples encountered so far. A batch specific value λi can be obtained as:

λi =

0, i = 1

map(1− ni∑
j≤i nj

), i > 1
(3.7)
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where map is a linear mapping function that can shift and stretch/compress its input. For

example, considering the number of classes in the CORe50 benchmark detailed in Section 5.1.4

(i.e. 10 in the first batch and 5 in the successive batches) and assuming that map is the identity

function, we obtain: λ1 = 0, λ2 = 2
3 , λ1 = 3

4 , . . . , λ9 = 9
10 .

Another important facet is the learning strength to adopt in the initial batch B1 and successive

batches Bi. It is worth noting that in LWF (as for EWC and SI) training on incremental

batches Bi, i > 1 should not be forced to convergence. In fact, as the regularization part of the

loss becomes dominant the training accuracy tend to decrease and trying to leverage it with

aggressive learning rates and high number of epochs can lead to divergence. In our experiments

(detailed in Chapter 5), we trained the model on each batch for a fixed small number of epochs

without forcing convergence. Using a simple early stopping criteria is crucial for continual

learning because of efficiency and lack of realistic validation sets.

Summarizing, LWF implementation with weighted soft target vectors is very simple and, for

each batch Bi, i > 1, its overhead consists of:

• computation: one extra forward pass for each of the ni pattern.

• storage: temporary storing (for the batch lifespan) the ŷlwf predictions, consisting of ni · s
values.

3.4.2 Elastic Weights Consolidation (EWC)

Elastic Weights Consolidation (EWC ) [Kirkpatrick et al., 2017] is a regularization approach

which tries to control forgetting by selectively constraining (i.e., freezing to some extent) the

model weights which are important for the previous tasks.

Intuitively, once a model has been trained on a task, thus reaching a minimum in the loss

surface, the sensitivity of the model w.r.t. each of its weight θk can be estimated by looking

at the curvature of the loss surface along the direction determined by θk changes. In fact, high

curvature means that a slight θk change results in a sharp increase of the loss. The diagonal

of the Fisher information matrix F , which can be computed from first-order derivatives alone,

is equivalent to the second derivative (i.e. curvature) of the loss near a minimum. Therefore,

the kth diagonal element in F (hereafter denoted as Fk) denotes the importance of weight θk.

Important weights must be moved as little as possible when the model is fine-tuned on new tasks.

In a two tasks scenario this can be achieved by adding a regularization term to the loss function

when training on the second task:

L = Lcross(ŷ, t = ŷ1h) +
λ

2
·
∑
k

Fk(θk − θ∗k)2 (3.8)

where:

• θ∗k are the optimal weight values resulting from the first task.

• λ is the regularization strength.
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Let us now consider a sequence of tasks or batches Bi. After training the model on batch Bi we

need to compute the Fisher information matrix F i and store the set of optimal weights Θi. Fi

and Θi will be then used to regularize the training on Bi+1. Each diagonal element F ik can be

computed as the variance of ∂Lcross(ŷ, t)/∂θk over the ni patterns of Bi.

Two different EWC implementations can be setup in practice:

1. A distinct regulation term is added to the loss function for each old task. This require

maintaining a Fisher matrix F i and a set of optimal weights Θi for each of the previous

task/batch;

2. A single Fisher matrix F is initialized to 0 and consolidated at the end of a batch Bi by

(element wise) summing the Fisher information: F = F + F i. A single set of optimal

weights Θ is also maintained by using the most recent ones (Θ = Θi) since Θi already

incorporates constraints from all previous batches (refer to the discussion in [Huszár, 2018;

Kirkpatrick et al., 2018]).

Option 1 can be advantageous to precisely control EWC training dynamic in the MT scenario

with few tasks, but is not practical (because of storage and computation issues) in SIT scenario

with several batches. It is worth noting that in option 2. the Fk values can only increase as new

batches are processed, potentially leading to divergence for large λ. To better understand this

issue, let us consider how the regularization term is dealt with by gradient descent: this is quite

similar to L2 regularization and can be implemented as a special weight decay where weights θk

are not decayed toward 0, but toward θ∗k. The weight update determined by the loss function

(eq. 3.8) is:

θ′k = θk − η ·
∂Lcross(ŷ, t)

∂θk
− η · Fk(θk − θ∗k) (3.9)

where η is the learning rate. In the above equation if, for some k, the product η ·λ ·Fk is greater

than 1, the weight correction toward θ∗k is excessive and we overshoot the desired value. Tuning

λ according to the maximum theoretical value of Fk is problematic because: i) we do not know

such value; ii) using a too high value might lead to unsatisfactory performance since does not

allow to constrain the weights associated to mid-range Fk enough. We empirically found that a

feasible solution is normalizing F after each batch Bi as:

F = F + F i

F̂ = clip(
F

i
,maxF ) (3.10)

where clip set to the constant maxF the matrix values exceeding maxF . Note that F/i replaces

the Fisher matrix sum with an average, and this could be counterintuitive. Let us suppose that

weight θ5 is very important for batch B1 and this is reflected by an high value of F 1
5 , then if θ5

is not important for B2 as well (i.e., F 2
5 is small) computing the average 1/2 · (F 1

5 + F 2
5 ) pulls

down the combined importance. However, this can be compensated by a proper selection of a

maxF in order to saturate F̂ values even for those weights which are important for a single task.

Given maxF and η we can easily determine the maximum value for λ as 1/(η ·maxF ).
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An example is shown in Figure 3.3, where the distribution of Fisher information values is reported

after B1, B2 and B3. In the first row F values denotes a long tail on the right. In the second

row, Fk values are averaged and clipped to 0.001 thus allowing to work with higher λ and better

control forgetting.

Figure 3.3: CaffeNet trained by EWC on CORe50 SIT (details on the experiments can be
found in Section 5.1.4). The first row shows F values distribution denoting a long tail on the
right: considering the logarithmic scale the number of weights associated to high F values
taking high values is quite limited. The second row shows the normalized matrix F̂ obtained
with averaging F values and max clipping to 0.001. Saturation to 0.001 is well evident, but
after B3 the fraction of saturated weights is small (about 1/1000).

Summarizing, EWC implementation is moderately simple and, for each batch Bi, its overhead

consists of:

• computation of Fisher information F i, requiring one forward and one backward propagation

for each of the ni patterns.

• storage of F and Θ, totaling 2·m values, where m is the number of model weights (including

biases).

3.4.3 Synaptic Intelligence (SI)

Synaptic Intelligence (SI ) was introduced in [Zenke et al., 2017] as a variant of EWC. The

authors argued that computation of Fisher information is expensive for continual learning and

proposed to calculate weight importance on-line during SGD.

The loss change given by a single weight update step during SGD is given by:

∆Lk = ∆θk ·
∂L

∂θk
(3.11)

where ∆θk = θ′k − θk is the weight update amount and ∂L/∂θk the gradient. The total loss

change associated to a single parameter θk can be obtained as running sum
∑

∆Lk over the

weight trajectory (i.e., the sequence of weight update steps during the training on a batch). The

weight importance (here denoted as Fk to keep notation uniform with previous section) is then
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computed as:

Fk =

∑
∆Lk

T 2
k + ξ

(3.12)

where Tk is the total movement of weight θk during the training on a batch (i.e., the difference

between its final and the initial value) and ξ is a small constant to avoid division by 0 (see [Zenke

et al., 2017] for more details). Note that the whole data needed to calculate Fk is available during

SGD and no extra computation is needed.

In the SIT scenario we empirically found that an effective normalization after each batch Bi is:

F = F + wi · F i

F̂ = clip(F,maxF ) (3.13)

where F is set to 0 before first batch and then consolidated as a weighted sum with batch specific

weights wi. Actually in our experiments, as reported in Section 4.4, we used a small value w1

for the first batch and a constant higher value for all successive batches: w2 = w3 = · · · = w9.

Considering CORe50 experiments, since in the first batch we tune a model from ImageNet weight

initialization, the trajectories that most of the weights have to cover to adapt to CORe50 are

longer than for successive batches whose tuning is intra dataset. This is not the case for EWC,

because EWC looks at the loss surface at convergence, independently of the length of weight

trajectories.

Given F̂ values, SI regularization can be implemented as EWC. The magnitude of F̂ values

can also be made comparable to EWC by proper setting of wi, so maxF and λ can take the

similar values. Figure 3.4 compares the distributions of F̂k values between EWC and SI: at first

glance the distributions appear to be similar; of course more precise correlation studies could be

performed, but this is out of the scope of this work.

Figure 3.4: CaffeNet trained on CORe50, SIT setting (more details on the experiments can
be found in Section 5.1.4). The first row shows F̂ values distribution obtained by SI on batches
B1, B2 and B3. F̂ values distribution from EWC is reported in the second row for comparison.
The shape of the distribution is quite similar, even if in this experiments, the number of SI
saturated values is about 10 times lower.

Summarizing, SI implementation is quite simple and, for each batch Bi, its overhead consists of:

• computation of weight importance F i, based on information already available during SGD.
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• storage of F and Θ, totaling 2 ·m values, where m is the number of model weights.

3.5 Hybrid Strategies

In the previous paragraph we have presented some of the most representative strategies for

each of the three central approaches for learning continually. However, it is worth pointing out

that, most of the times, this is just an ideal separation between strategies. This is why a fuzzy

categorization is more appropriate and many strategies may fall in the Hybrid section, in the

middle of two or even three approaches. In the following section, we present one of the most

representative methods at the intersection of two categories of algorithmic strategies for CL.

3.5.1 Incremental Classifier and Representation Learning (ICARL)

Rebuffi et al. [2017] proposed a new model for class-incremental learning. Class-incremental

learning (i.e. SIT with NC as updated content type in our terminology) requires the classification

system to incrementally learn and classify new classes that it has never seen before. It assumes

that examples of different classes can occur at different times, with which the system should

maintain a satisfactory classification performance on each observed class. Rebuffi et al. [2017]

also emphasized that computational resources should be bounded or slowly increased as more

and more classed are encountered over time.

To meet these criteria, a new model called Incremental Classifier and Representation Learning

(ICARL) was designed to simultaneously learn classifiers and feature representations in the class-

incremental setting. Intuitively, ICARL maintains a set of exemplar patterns for each observed

class aiming to carry the most representative information of the class and rehearse the model via

distillation. The classification of a new example is performed by nearest-mean-of-exemplars, i.e.

by choosing the class with the nearest average of prototypes in the embedded. When a new class

shows up, ICARL creates an exemplar set for this new class while trimming the exemplar sets

of the existing/previous classes, hence maintaining the external memory size within a specified

threshold.

More formally, at any time, ICARL learns a stream of classes in the class-incremental learning

setting with their training example sets, Xs, Xs+1, . . . , Xt , where Xy is a set of examples of

class y. y can either be an observed/past class or a new class. To avoid memory overflow,

ICARL holds a fixed number (K) of exemplars in total. With C classes, the exemplar sets are

represented by P = {P1; . . . , PC} where each class’s exemplar set Pi maintains K/C exemplars.

In [Rebuffi et al., 2017], both original examples and exemplars are images, but the proposed

method is general enough for non-image datasets. A more in depth analysis and evaluation of

this strategy can be found in the original paper.
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3.6 Proposed Strategies

Most of the aforementioned strategies were designed and have been shown working with different

degree of success in the MT scenario. In recent literature very little attention has been devoted

to the SIT scenario we regard as essential for many real-world application and, arguably, more

difficult. In this section, we will propose four different strategies for tackling this complex scenario

especially with NI, NC and NIC update content types. All these strategies have been designed

with a lower computational overhead (independent by the number of batches encountered) and

to tackle or even exploit the non i.i.d. nature of high-dimensional steaming data we naturally

encounter over time.

3.6.1 Semi-Supervised Tuning (SST)

Semi-Supervised Tuning (SST) is very light and simple continual learning strategy specifically

designed to work with a temporal coherent stream of data, reducing the amount of supervision

needed to learn continually from it. Semi-supervised learning [Chapelle et al., 2006; Zhu, 2006])

exploits both labeled and unlabeled data to build robust models. In particular, in self-training

[Rosenberg et al., 2007], a classifier is first trained with a small amount of labeled data and then

used to classify the unlabeled data. Typically the most confident unlabeled points, together with

their predicted labels, are added to the training set. The classifier is re-trained and the procedure

repeated. Our approach can be framed in the semi-supervised learning family since we use

labeled data for initial training and unlabeled data (form the same classes) for subsequent tuning.

However, our approach is continual and the labeled/unlabeled data are used at different stages

to mimic human learning. Therefore, particular care must be taken to control the catastrophic

forgetting.

In specific application domains semi-supervised learning approaches have been proposed to self-

update initial models (or templates): see for example [Rattani et al., 2009] for biometric recogni-

tion and [Matthews et al., 2004] for tracking. Several researchers pointed out, that although the

use of unlabeled data can substantially increase the system accuracy and robustness, the risk of

drifts is always present. For example, in the context of face recognition, Marcialis et al. [2008]

reported that even with operations of update procedures at high confidence, the introduction

of impostors cannot be avoided. Analogously to many domain specific solutions our approach

is continual and can exploit classification confidence. Temporal coherence has already been ex-

ploited for face recognition from video [Franco et al., 2010], but the proposed update solution is

domain specific and not easily generalizable as the one here introduced.

The most related research to this strategy are the works by Mobahi et al. [2009] and Weston

et al. [2012] where temporal coherence has been embedded in the semi-supervised training of

deep architectures. However, in those works unlabeled data are used together with labeled one

to regularize the supervised training while, in Semi-Supervised Tuning, we first train a system

with labeled data and later we tune it with unlabeled data. The biological plausibility of the

continual learning approach here proposed is discussed in [Li and DiCarlo, 2008] whose authors

introduce the term UTL (Unsupervised Temporal slowness Learning) to describe the hypothesis
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under which invariance is learned from temporal contiguity of object features during natural

visual experience without external supervision.

Let Sw be a temporally coherent sequence of video frames v(t), t = 1 . . . len(Sw) taken from the

same object (of class w): while the total object variation (in term of pose, lighting, distortion,

etc.) in the whole sequence can be very high, only a limited amount of variation is expected to

characterize pairs of successive frames v(t) and v(t−1), t = 2 . . . len(Sw). Let N be a classifier

able to map an input pattern v(t) (i.e., a single video frame) into an output vector N(v(t))

denoting the posterior class probabilities P (w|v(t)), w = 1 . . . nw. While in this work N will be

instantiated with a deep architecture trained with gradient descent, in general N can be any

trainable classifier returning class probabilities and whose optimization procedure minimize a

cost (or loss) including the desired output d(v(t)) for the input v(t). If the squared error is

taken as loss function, for each pattern v(t) (of class w) the optimization procedure attempts to

minimize:

1

2

∥∥∥N(v(t))− d(v(t))
∥∥∥2 (3.14)

Assuming that N has already been trained (with supervision) by using a first batch of data, each

subsequence training can be considered as a tuning (i.e., learning continually). Given a sequence

Sw, we define four ways to instantiate the desired vector d(v(t)) during the system tuning:

• Supervised Tuning (SupT ): this is the classical supervised approach where the desired

output vector has the ∆ form (all terms are zero except that corresponding to the pattern

class w)

d(v(t)) = ∆w = [0, . . . , 1, . . . , 0]
w

(3.15)

• Supervised Tuning with Regularization (SupTR):

d(v(t)) = λ ·∆w + (1− λ) ·N(v(t−1)) (3.16)

where λ ∈ [0, 1] controls the influence of the temporal coherence regularizing term. This is

close to the approach proposed by Mobahi et al. [2009], but we embed the regularizing term

into the desired output and then perform a single optimization step, while Mobahi et al.

[2009] make disjoint optimization steps.

• Semi-Supervised Tuning - Basic (SST-B):

d(v(t)) = N(v(t−1)) (3.17)

This simply takes as desired output at time t the output vector at time t−1. The class label

w is not used, but since we assume that the input pattern belongs to one of the know-classes,

the update is semi-supervised.
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• Semi-Supervised Tuning - Advanced (SST-A):

f(v(t)) =


N(v(t−1)) t = 2

f(v(t−1)) +N(v(t−1))

2
t > 2

(3.18)

d(v(t)) =

N(f (t)) if max
i
fi(v

(t)) > sc

N(v(t)) otherwise
(3.19)

At each step, we fuse the posterior probabilities N(vt−1) with the posterior probabilities

f(v(t−1)) accumulated before; this is a sort of sum rule fusion where the weight of far (in

time) patterns progressively vanishes. Then, if at least one of the fused class posteriors

(in f(v(t))) is higher than a given threshold sc, denoting high self-confidence, the desired

output is set to f(v(t)) to enforce temporal coherence. Otherwise (high uncertainty cases)

no semi-supervised update have to be done, and formally, this can be achieved by passing

back N(v(t)) to equation (3.14). Here too, the class label w is not used.

With a minimal computational overhead, as we will see through the empirical evaluation con-

ducted in Chapter 5, SST is able to increase the global performances of the model, over time,

and without exploiting additional supervised signals, but just exposed to a temporal coherent

video frames of the same objects encountered before (NI update content type).

3.6.2 Copy-weights with Re-init (CWR)

Copy-weights with Re-init (CWR) is a simple yet effective architectural techniques for continually

learning from sequential batches. While it can work both for NC (new classes) and NIC (new

instances and classes) update content type, here we focus on NC under SIT scenario.

Referring to Figure 4.1 (bottom) the most obvious approach to implement a strategy working in

SIT seems to be:

1. Freeze shared weights Θ̄ after the first batch.

2. For each batch Bi, extend the output layers with new neurons/weights for the new classes,

randomly initialize the new weights but retain the optimal values for the old class weights.

The old weights could then be frozen (denoted as FW) or continued to be tuned (denoted

as CW).

Implementing step 2 as above proved to be suboptimal with respect to CWR approach (see

experiments in Section 5.1.4 for a comparison) where old class weights are re-initialized at each

batch.

To learn class-specific weights without interference among batches, CWR maintains two sets of

weights for the output classification layer: cw are the consolidated weights used for inference and

tw the temporary weights used for training: cw are initialized to 0 before the first batch, while
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Algorithm 1 CWR

1: cw = 0
2: init Θ̄ random or from a pre-trained model (e.g. ImageNet)
3: for each training batch Bi:
4: expand output layer with si neurons for the new classes in
5: random re-init tw (for all neurons in the output layer)
6: Train the model with SGD on the si classes of Bi:
7: if Bi = B1 learn both Θ̄ and tw
8: else learn tw while keeping Θ̄ fixed
9: for each class j among the si classes in Bi:

10: cw[j] = wi · tw[j]
11: Test the model by using Θ̄ and cw

tw are randomly re-initialized (e.g., Gaussian initialization with std = 0.01, mean = 0) before

each training batch. At the end of each batch training, the weights in tw corresponding to the

classes in the current batch are scaled and copied in cw: this is trivial in NC case because of

the class segregation in different batches but is possible also for more complex cases (see Section

5.1.4). To avoid forgetting in the lower levels, after the first batch B1, all the lower level weights

Θ̄ are frozen. Weight scaling (with batch specific weights wi) is necessary in case of unbalanced

batches with respect to the number of classes or number of example per class.

More formally, let cw[j] and tw[j] be the subset1 of weights related to class j, then CWR learning

sequence can be implemented as described in Algorithm 1.

Finally, CWR implementation is very simple and, the extra computation is negligible and for

each batch Bi, its overhead consists of:

• storage of temporary weights tw, totaling s · pn values, where s is the class number and pn

the number of penultimate layer neurons.

3.6.3 Copy-weights with Re-init Plus (CWR+)

Here we propose two simple modifications of CWR: the resulting approach is denoted as CWR+.

The first modification, mean-shift is an automatic compensation of batch weights wi. In fact,

tuning such parameters is annoying and a wrong parametrization can lead the model to under-

perform. We empirically found that, if the weights tw learnt during batch Bi, are normalized

by subtracting their global average, then rescaling by wi is no longer necessary (i.e., all wi = 1).

Other reasonable forms or normalization, such as setting standard deviation to 1, led to worse

results in our experiments.

The second modification, denoted as zero init, consists in setting initial weights tw to 0 instead

of typical Gaussian or Xavier random initialization. It is well known that neural network weights

cannot be initialized to 0, because this would cause intermediate neuron activations to be 0, thus

nullifying back-propagation effects. While this is certainly true for intermediate level weights, it

is not the case for the output level (see Appendix D.7 for a simple derivation). Actually, what

1the number of weights in each subset typically corresponds to the number of neurons in the penultimate layer.
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is important here is not using the value 0, but the same value for all the weights: 0 is used for

simplicity.

Even if this could appear a minor detail, we discovered that it has a significant impact on the

training dynamic and the forgetting. If output level weights are initialized with Gaussian or

Xavier random initialization they typically take small values around zero, but even with small

values in the first training iterations the softmax normalization could produce strong predictions

for wrong classes. This would trigger unnecessary errors back-propagation changing weights

more than necessary. While this initial adjustment is uninfluential for normal batch training

we empirically found that is detrimental for continual learning and that even a simple approach

such as Naive can greatly benefit from zero init.

In Algorithm 2 we report the pseudocode for CWR+: the modifications w.r.t. CWR are high-

lighted in bold.

Algorithm 2 CWR+

1: cw = 0
2: init Θ̄ random or from a pre-trained model (e.g. trained on ImageNet)
3: for each training batch Bi:
4: expand output layer with si neurons for the new classes in Bi
5: tw = 0 (for all neurons in the output layer)
6: Train the model with SGD on the si classes of Bi:
7: if Bi = B1 learn both Θ̄ and tw
8: else learn tw while keeping Θ̄ fixed
9: for each class j among the si classes in Bi:

10: cw[j] = tw[j]− avg(tw)
11: Test the model by using Θ̄ and cw

CWR+ overhead is basically the same of CWR since taking the average of is computationally

negligible w.r.t. the SGD complexity.

3.6.4 Architect and Regularize (AR1)

A drawback of CWR and CWR+ is that weights Θ̄ are tuned during the first batch and then

frozen. Architect and Regularize (AR1), is the combination of an architectural and regularization

approach. In particular, we extend CWR+ by allowing Θ̄ to be tuned across batches subject to

a regularization constraint (as per LWF, ECW or SI). We did several combination experiments

on CORe50 to select a regularization approach; each approach required a new hyperparameter

tuning w.r.t. the case when it was used in isolation. At the end, our choice for AR1 was in favor

of SI because of the following reasons:

• LWF performs nicely in isolation, but, as we will see in our experiments, it does not bring

relevant contributions to CWR+. We guess that being the LWF regularization driven by

an output stability criterion, most of the regularization effects go to the output level that

CWR+ manages apart.
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• Both EWC and SI provide positive contributions to CWR+ and their difference is minor.

While SI can be sometime unstable when operating in isolation we found it much more

stable and easy to tune when combined with CWR+.

• SI overhead is small, since the computation of trajectories can be easily implemented from

data already computed by SGD.

In Algorithm 3 we report the pseudocode for AR1.

Algorithm 3 AR1

1: cw = 0
2: init Θ̄ random or from a pre-trained model (e.g. trained on ImageNet)
3: Θ = 0 (Θ are the optimal shared weights resulting from the last training, see Section 3.4.3)
4: F̂ = 0 (F̂ is the weight importance matrix, see Section 3.4.3).
5: for each training batch Bi:
6: expand output layer with si neurons for the new classes in Bi
7: tw = 0 (for all neurons in the output layer)
8: Train the model with SGD on the si classes of Bi by simultaneously:
9: learn tw with no regularization

10: learn Θ̄ subject to SI regularization according to F̂ and Θ
11: for each class j among the si classes in Bi:
12: cw[j] = tw[j]− avg(tw)
13: Θ = Θ̄
14: Update F̂ according to trajectories computed on Bi (see eq. 3.12 and 3.13)
15: Test the model by using θ̄ and cw

AR1 overhead is the sum of CWR+ and SI overhead:

• storage:

– Temporary weights tw, totaling s · pn values, where s is the class number and pn the

number of penultimate layer neurons.

– F and Θ, totaling 2 · (m− s · pn), where m is the total number of model weights.

• computation:

– Weights importance F̂ , based on information already available during SGD.

– Learning sw subject to SI regularization can be easily implemented as weight decay

(see eq. 3.9) and is computationally light.

Considering the low computational overhead and the fact that typically SGD is typically early

stopped after 2 epochs, AR1 is suitable for online implementations.
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Continual Learning Benchmarks

and Protocols

“Without the capability of retaining and accumulating knowledge learned in the past,

making inferences about it, and using the knowledge to help future learning and problem

solving, achieving artificial general intelligence (AGI) is unlikely.”

– Zhiyuan Chen and Bing Liu, Lifelong Machine Learning, 2018

In this chapter we will look at the most common datasets and benchmarks available for assessing

continual learning strategies and propose a number of original ones. We also summarize the

common evaluation protocols and metrics currently adopted in CL research as well as proposing

a rich set of novel metrics we regard as extremely important for the future of this line of research.

Finally, we well discuss a number of practices which may be useful for a deeper understanding

of the learning dynamics of a prediction model trained over time.

4.1 Benchmarks

Benchmarking CL strategies today is still highly non-standard and, even if we focus on supervised

classification (e.g. leaving reinforcement learning out), researches often reports their results on

different datasets by following different training and evaluation protocols. In Table 4.1, the most

commonly used benchmarks for continual learning are reported.

The Permuted MNIST is one of the first benchmarks used for continual learning [Goodfellow

et al., 2013; Srivastava et al., 2013]. Every batch/task is based on a different permutation of the

pixels of each image. Despite its simplicity, the benchmark constitute an optimal choice for fast

prototyping new algorithms in reasonable time and it is particularly appealing for generating

an unlimited number of tasks of equilibrated complexity. The Rotated MNIST [Lopez-paz and

Ranzato, 2017] follows the same line of reasoning, however, for this case the transformation

operated is a rotation of each image instead of a random permutation of its pixels. Another

48
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variation of the classic MNIST dataset is the MNIST Split benchmark [Zenke et al., 2017]. In

this case a MT-NC scenario is addressed splitting the original dataset in 5 different batches with

two digits each. Zenke et al. [2017], in the same paper introduced the CIFAR-10/100 Split.

In this case, the two CIFAR datasets are sequentialized giving birth to a 6 batches continual

learning scenario of an increased complexity w.r.t. the MNIST -based benchmarks. Rebuffi et al.

[2017] were the first to address problems of even greater complexity introducing the benchmarks

iCIFAR-100 and ILSVRC2012 Split with 10 different batches each containing 10 and 100 classes

respectively. Finally, the Atari games suit [Kirkpatrick et al., 2017], remains one of the few

benchmark used in deep reinforcement learning.

Table 4.1: Categorizations of CL experiments from the recent literature. Most of the bench-
marks are based on reshaped versions of well-known vision datasets such as MNIST, CIFAR-10,
CIFAR-100, ILSVR2012, CUB-200 and the Atari Games suit for reinforcement learning.

Dataset #Batches UCT

Permuted MNIST [Kirkpatrick et al., 2017] 10 NI
Rotated MNIST [Lopez-paz and Ranzato, 2017] 20 NI
MNIST Split [Zenke et al., 2017] 5 NC
CIFAR-10/100 Split [Zenke et al., 2017] 6 NC
iCIFAR-100 [Rebuffi et al., 2017] 10 NC
ILSVRC2012 Split [Rebuffi et al., 2017] 10 NC
Atari Games [Kirkpatrick et al., 2017] 25 NI

As, already mentioned in Chapter 1, nowadays, much of the CL studies consider a multi-task

scenario, where the same model is required to learn incrementally a number of isolated tasks

without forgetting how to solve the previous ones. The aforementioned MINIST Split [Zenke

et al., 2017] is composed of 5 isolated tasks, where each of them consists in learning two classes

(i.e. two digits). There is no class overlapping among different tasks, and accuracy is computed

separately for each task. Such a model cannot be used to classify an unknown digit among the

10 classes, unless an oracle is available at inference time to associate the unknown pattern to

the right sub-classification problem in order to setup the last classification layer(s) accordingly

(hence providing the t signal). In other words, these experiments are well suited for studying

the feasibility of training a single model on a sequence of disjoint tasks without forgetting how

to solve the previous ones, but are not appropriate for addressing tasks which are incremental

in their nature.

A still largely unexplored scenario, denoted in the previous chapter as Single-Incremental-Task

(SIT), is addressed in [Rebuffi et al., 2017]. This particular setting assessed in the paper, referred

as class-incremental, considers a single task which is incremental in nature and where we still

add new classes sequentially but the classification problem is unique and, when using the model

or computing the accuracy, we need to distinguish among all the classes encountered so far.

This is quite common in natural learning, for example in object recognition, as a child learns

to recognize new objects, they need to be discriminated w.r.t. the whole set of already known

objects (i.e., visual recognition tasks are rarely isolated in nature).

Usually, SIT scenario is more difficult than MT one: in fact, i) we still have to deal with

catastrophic forgetting; ii) we need to learn to discriminate classes that typically we never see
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together (e.g. in the same batch), except when a memory buffer is used to store/replay a fraction

of past data.

Figure 4.1 graphically highlights the difference between common implementation for addressing

an MT and SIT scenario. While for MT the output neurons can be grouped into separate

classification layers (one for each task), SIT uses a single output layer including the neurons of

all the classes encountered so far. In the MT training phase, the output layer of the batch can

be trained apart while sharing the rest of the model weights (denoted as Θ̄ in the figure). This

is not the case in SIT where weights learned for the old classes could be exploited when learning

the current batch classes. In the MT evaluation phase, assuming to know the task membership

of each test sample, each task can be assessed separately with the corresponding classification

layer. Instead, in the SIT scenario, the evaluation is performed agnostically with respect to the

membership of a sample to a specific incremental batch (i.e. not exploiting the t label) and the

final probabilities are computed through a unique softmax layer; this requires to compare objects

that were never seen together during training and can have a strong impact on final accuracy.

Some researchers, in the continual learning context, use the term “head” to denote the output

classification layer: using this terminology, the MT scenario can be implemented with multiple

disjoint heads, while SIT is characterized by a single expanding head.

Figure 4.1: Key architectural differences between MT and SIT scenarios: a disjoint output
layer (also denoted as “head”) is used in MT for each independent task, while a single (dy-
namically expanded) output layer is used in SIT to include all the classes encountered so far.
Better viewed in color.

Figure 4.2 provides an example that quantifies how much more complex SIT is than MIT on the

CIFAR-10/100 Split. For direct comparison with Zenke et al. [2017] here we report the accuracy

only at the end of training (i.e., after the 6th batch). It is evident that SIT represents a much

more difficult challenge for state-of-the-art CL strategies. Looking at the average accuracy we

can notice a gap between MT and SIT of more than 30% regardless the CL technique. Actually,
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the unbalanced nature of the CIFAR-10/100 Split benchmark (50% of all the train and test set

examples belong to the first batch) makes SIT strategies quite harder to parametrize. However,

as argued by other researches [Kemker and Kanan, 2018; Kemker et al., 2018], most of the

existing CL approaches perform well on MT (with a moderate number of tasks) but fail on

complex SIT scenario with several (limited-size) batches. The MIT scenario, as a combination

of the two, constitutes still a largely unexplored setting.

Figure 4.2: Accuracy results in the MT and SIT scenarios for 5 common CL strategies
(NAIVE, EWC, LWF, SI, CWR) after the last training batch. Analogously to [Zenke et al.,
2017], this experiment was performed on the first 6 tasks of CIFAR-10/100 split. For both MT
and SIT we report the accuracies on the classes of each batch (1, 2, . . . , 6) and their average
(Avg). CWR is specifically designed for SIT and was not tested under MT. Better viewed in
color.

In Table 4.2 we compare existing datasets/benchmarks which, in our opinion, may be also

very useful for the development and assessment on novel continual learning algorithms in more

realistic settings. Indeed, all these datasets consist of temporal coherent sequences of data (or

static frames from which sequences can be easily generated). In principle, datasets without this

feature may be used for continual learning as well (splitting them in several batches). However,

we think that temporally coherent sequences allow a larger number of real-world applications

to be addressed (e.g., robotic vision scenario), since this additional (but natural) structure in

data may be exploited from other unsupervised learning techniques [Li and DiCarlo, 2008]. This

would also reduce the gap between continual and sequence learning, that, we believe, have a

natural interplay worth considering in the near future.

YouTube-8M [Abu-El-Haija et al., 2016] provides a huge number of videos acquired in difficult

natural settings. However, the classes are quite heterogeneous and acquisition conditions are

completely uncontrolled in terms of object distance, pose, lighting, occlusions, etc. In other

words, we believe it is too challenging for current continual learning approaches (still in their

infancy).

In the first group of datasets in Table 4.2 (NORB, COIL-100, iLAB20M, Washington RGB-

D, BigBIRD, ALOI ), objects are positioned on turntables and acquisition is systematically

controlled in term of pose/lighting. Neither complex backgrounds nor occlusions are present

in these datasets. Exploration sequences can be generated for the other datasets in this group as
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Table 4.2: Comparison of datasets (with temporal coherent sessions) for continual learning.
Temporal coherence, often not considered in current continual learning research, constitute
a natural property often encountered in real-world settings when learning continually from a
stream of data.

Dataset Cat. Obj. Sess. Frames
per sess.

Format Acquisition
setting

Outdoor
sessions

NORB
[LeCun et al., 2004] 5 25 20 20 grayscale turntable no
COIL-100
[Nene et al., 1996] - 100 20 54 RGB turntable no
iLab-20M
[Borji et al., 2016] 15 704 - - RGB turntable no
RGB-D
[Schwarz et al., 2015] 51 300 - - RGB-D turntable no
BigBIRD
[Singh et al., 2014] - 100 - - RGB-D turntable no
ALOI
[Geusebroek et al., 2005] - 1000 - - RGB turntable no
BigBrother
[Franco et al., 2009] - 7 54 ∼20 RGB wall cam. no
iCubWorld28
[Pasquale et al., 2015b] 7 28 4 ∼150 RGB hand hold no
iCubWorld-Transf
[Pasquale et al., 2016] 15 150 6 ∼150 RGB hand hold no

well by randomly walking through adjacent static frames in the multivariate parameter space;

however, the obtained sequences would remain quite unnatural.

The BigBrother dataset [Franco et al., 2009] has been created starting from 2 DVDs made

commercially available at the end of the 2006 edition of the “Big Brother” reality show produced

for the Italian TV and documenting the 99 days of permanence of 20 participants in a closed

environment. It consists of 23,842 70×70 gray-scale images of faces belonging to 19 subjects

(one participant was immediately eliminated at the beginning of the reality show). In addition

to the typical training and test sets, an additional large set of images (called “updating set”) is

provided for incremental learning/tuning purposes. Details about the composition of each set

can be found in [Franco et al., 2009], together with the number of days the person lived in the

house. However, some subjects lived in the house for a short period and too few images are thus

available for an in-depth evaluation. For this reason, a subset of the whole database, referred

to as SetB , has been defined by the authors of [Franco et al., 2009]. It includes the images of

the 7 subjects who lived in the house for a longer period (such number of users seems realistic

for a home environment application). In Chapter 5, we will compare some continual learning

strategies on the SetB of the Big-Brother dataset consisting of a total of 54 incremental batches.

In Fig. 4.3, an example image for each of the different seven subjects of the SetB is shown. It is

worth noting that images have been automatically extracted from the video frames by Viola and

Jones detector [Viola and Jones, 2001] and are often characterized by bad lighting, poor focus,

occlusions, and non-frontal pose.

The iCubWorld datasets [Pasquale et al., 2015b, 2016], instead, have been acquired directly in

a robotic vision context and are the closest ones to CORe50, which will be presented in the
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Figure 4.3: Example images of the seven subjects contained in the SetB of the BigBrother
Dataset.

following section. In fact, objects are hand hold at nearly constant distance from the camera

and are randomly moved.

4.2 Proposed Benchmarks

Table 4.3: Original video benchmarks proposed for continual learning with difficult degree
of complexity.

Dataset Cat. Obj. Sess. Frames
per sess.

Format Acquisition
setting

Outdoor
sessions

Seq-NORB 5 25 20 20 grayscale turntable no
Seq-COIL-100 - 100 20 54 RGB turntable no
Seq-iCubWorld28 7 28 9 ∼60 RGB hand hold no
CORe50 10 50 11 ∼300 RGB-D hand hold yes (3)
VizDoom 3D Maze 2 6 12 unlimited RGB generated no

Given the limited number of benchmarks for continual learning and especially in more realistic

settings were where there is not a clear distinction between continual and sequence learning (i.e.

we have stream of temporal coherent data), we propose five different benchmarks which respond

to this new need with different degrees of complexity, as summarized in Table 4.3.

With respect to the existing datasets, CORe50 consists of a higher number of longer sessions

(including outdoor ones), more complex backgrounds and also provide depth information (that

can be used as extra-feature for classification and/or to simplify object detection). In our opinion,

the most important feature of CORe50, is the presence of 11 distinct acquisition sessions per

object; this allows to define incremental strategies that are long enough to appreciate the learning

trends. While preparing this dissertation we noted that iCubWorld-Transf is being expanded

(see https://robotology.github.io/iCubWorld/ for latest updates), and we think that cross-

evaluating continual learning approaches on both CORe50 and iCubWorld-Transf could be very

interesting.

4.2.1 Seq-NORB

Instead of collecting another dataset we focused on the well know and largely used NORB dataset

[LeCun et al., 2004]. Despite its simplicity, is still one of the best dataset to study invariant

object recognition and well-fit our purposes because it contains 50 objects and 972 variations for

each objects. The 50 objects belong to 5 classes (10 objects per class) and the 972 variations

https://robotology.github.io/iCubWorld/
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are produced by systematically varying the camera elevation (9 steps), the object azimuth with

respect to the camera (18 steps) and the lighting condition (6 steps).

Figure 4.4: One image from each of the 50 objects in NORB dataset. The five rows denotes
the object classes: four-legged animals, human figures, airplanes, trucks, and cars. Objects
belonging to the first five columns of the original benchmark are included in the training set,
while the others in the test set. Objects are untextured and size normalized so that only shape
features can be used for recognition.

Temporally coherent video sequences can be generated from NORB by randomly walking the 3D

(elevations, azimuth, lighting) variation space, where consecutive frames are characterized by a

single step along one dimension. In our generation approach the random walking is controlled

by some parameters like the number of frames, the probability of taking a step along each of the

3 dimensions, the probability of inverting the direction of movement (flip back), etc. Fig. 4.5

(top) shows an example of training sequence. When generating test sequences we must avoid

to include frames already used in the training sequences. In particular, when generating test

sequences (with a given mindist), we ensure that each test frame has a city-block distance of

at least mindist steps (mindist ≥ 1) from any of the training set frames. Fig. 4.5 shows a test

sequence with mindist = 4 (bottom) with respect to the respective training sequence (top).

Figure 4.5: An example of training sequence of 20 frames (above) and a test sequence (below)
with mindist = 4 from the previous training sequence.



Chapter 3. CL Benchmarks and Protocols 55

In the standard NORB benchmark for each of the 5 classes, 5 objects are included in the training

set and 5 objects in the test set. In the proposed benchmark we prefer to focus on pose and

lighting invariance hence our training and test set are not differentiated by the object identity

but by the object pose and lighting (for an amount modulated by mindist). However, for com-

pleteness, in Appendix B.2 we also report results on an equivalent benchmark where the native

object segregation is maintained. In our benchmark we also focus on monocular representation

since the availability of stereo information makes the problem unnecessarily simpler for the task

at hand. The benchmark dataset used in our experimentation consists of:

• 10 training batches Bi. Each Bi is 1,000 frames wide and is composed by 50 temporally

coherent sequences (20 frames wide), each representing one of the 50 objects. B1 is used

for initial training and B2, . . . , B10 for successive incremental tuning. When training the

system on Bi we have no longer access to the previous Bj , j < i. We do not enforce any

mindist among training set sequences, so the same frame can be present in different batches.

• 10 test batches TBi for each mindist = 1, 2, 3 and 4. Test batches are structured as the

train batches, but here mindist is enforced, so each frame included in the test batches has

a distance of at least mindist from the 10×1,000 frames1 of the training batches. Higher

mindist values make the classification problem more difficult, because patterns are less than

similar with respect to the training set ones. The temporal coherent organization of the test

batches allows two type of evaluations to be performed:

– Frame based classification: here temporal organization is not considered and each frame

has to be classified independently of its sequence/positions in the batch. For simplicity,

for each mindist we can treat the batches TBi, i = 1, . . . , 10, as as a single plain test

set of 10×1,000 patterns.

– Sequence based classification: this evaluation (not included in the experiments carried

out in this dissertation) is aimed at classifying sequences and not single frames, so one

can exploit multiple frames per object and their temporal coherence. Of course this is

a simpler classification problem due to the possibility of fusing information. As side

effect the number of pattern to classify reduces to 10,000
20 = 500.

With the purpose of evaluating our approach on a harder problem we can consider another

benchmark (denoted as the “50-class benchmark”) where each object is considered as a separate

class. It is worth noting that this is a quite complex problem due to the sometime small variability

among objects originally belonging to the same class. To setup this benchmark we can still use

the above sequences, with the only caution of ignoring original class labels and taking object

labels as class labels.

Original NORB images are 96×96 pixels. We noted that working on reduced resolution images (up

to 32×32) does not reduce classification accuracy (on the 5-class problem). So in order to speed-

up the experiments we down-sampled the NORB images to 32×32 pixels2 The full training and

test sequences used in this dissertation (provided as sequences of filenames referring to the original

1Actually due to the presence of duplicates in our training random walks, the number of different frames is
8,531 (smaller than 10,000).

2The same down-sampling was done in other works [Le et al., 2010; Saxe et al., 2011; Wagner et al., 2013].
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NORB images) can be downloaded from [https://github.com/vlomonaco/norb-creator]. In

the same repository we make available the tool (and the code) used to generated the sequences.

4.2.2 Seq-COIL100

COIL-100 [Nene et al., 1996] contains a larger number of classes than NORB (100 vs 5), but

the available variations for each class are much more limited (72 images per class in COIL-100

vs 9720 images per class in NORB). The 72 poses of each class are spanned by a single mode

of variation (i.e., camera azimuth) which is uniformly sampled with 5 degree steps. The single

mode of variation and the limited number of poses make the generation of (disjoint) temporally

coherent sequences for continual learning quite critical. However, we tried to setup a test-bed

close to the Seq-NORB one:

• 6 poses per class (one pose every 60◦) are included in the test set; for each test set pose the

two adjacent ones (5◦ before and after) are excluded from the training batches to enforce a

mindist = 2.

• Temporally coherent sequences are obtained for each class by randomly walking the remain-

ing 54 = 726 -12 frames. Training batches Bi (1000 patterns wide) are then generated and

used for initial supervised training (B1) and successive incremental tuning (B2, . . . , B10). It

is worth noting that with respect to the NORB experiments, in this case the forgetting ef-

fect induced by incremental tuning is mitigated by an higher overlapping among the tuning

batches due to the small number of frames.

• Also in this case, the images are sub-sampled (from 128×128) to 32×32 and converted from

RGB to grayscale for reducing the benchmark complexity.

4.2.3 Seq-iCubWorld28

Figure 4.6: Example images of the 28 objects (7 categories) from one of the 4 subsets
constituting icubWorld28.

https://github.com/vlomonaco/norb-creator
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The iCubWorld28 dataset [Pasquale et al., 2015a] consists of 28 distinct domestic objects evenly

organized into 7 categories (see Figure 4.6). Images are 128×128 pixels in RGB format. The

acquisition session of a single object consists in a video recording of about 20 s where the object is

slowly moved/rotated in front of the camera. Each acquisition session results in about 200 train

and 200 test images for each of the 28 objects. Being designed to assess the continual learning

performance of the iCub robot visual recognition subsystem, the same acquisition approach has

been repeated for 4 consecutive days, ending up with four subsets (Day 1, to 4) of around 8 K

images each (39,693 in total). To better assess the capabilities of our continual learning strategies

we split each training set of Day 1, 2 and 3 in three parts of equal size. On the contrary, Day

4 was left unchanged and entirely used as test set (as in [Pasquale et al., 2015a]). In Table 4.4,

we report the full details about the size of the training and test set used for our experiments.

Table 4.4: iCubWorld28 batches size and membership to the original Day.

Partition name Images count Original Day

Batch1 1341 Day1
Batch2 1341 Day1
Batch3 1341 Day1
Batch4 1789 Day2
Batch5 1788 Day2
Batch6 1788 Day2
Batch7 1836 Day3
Batch8 1836 Day3
Batch9 1836 Day3
Test 5550 Day4

4.2.4 CORe50

Figure 4.7: Example images of the 50 objects in CORe50. Each column denotes one of the
10 categories.

CORe50, specifically designed for (C)ontinual (O)bject (Re)cognition, is a collection of 50 do-

mestic objects belonging to 10 categories: plug adapters, mobile phones, scissors, light bulbs,

cans, glasses, balls, markers, cups and remote controls (see Figure 4.7). Classification can be
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performed at object level (50 classes) or at category level (10 classes). The first task (the de-

fault one) is much more challenging because objects of the same category are very difficult to

be distinguished under certain poses. The dataset has been collected in 11 distinct sessions (8

indoor and 3 outdoor) characterized by different backgrounds and lighting. For each session

and for each object, a 15 seconds video (at 20 fps) has been recorded with a Kinect 2.0 sensor

[Steward et al., 2015] delivering 300 RGB-D frames. Objects are hand hold by the operator and

the camera point-of-view is that of the operator eyes. The operator is required to extend his arm

and smoothly move/rotate the object in front of the camera. A subjective point-of-view with

objects at grab-distance is well-suited for a number of robotic applications. The grabbing hand

(left or right) changes throughout the sessions and relevant object occlusions are often produced

by the hand itself.

Row data consists of 1024×575 RGB + 512×424 Depth frames. Depth information can be

mapped to RGB coordinates upon calibration. The acquisition interface identifies a central

region where the object should be kept (see red box in Figure 4.8). This allows to performs a

first (fixed) cropping, thus reducing the frame size to 350×350.

Figure 4.8: Acquisition interface: the red box identifies the central region where the operator
is required to keep the objects while moving and rotating them.

Since our domestic objects (kept at arm distance) typically extend for less than 100×100 pixels,

only a small fraction of the frame contains the object of interest. Therefore, we exploited

temporal information to crop from each 350×350 frame a 128×128 box around the object. To

this purpose we implemented a simple but effective motion-based tracker working only on RGB

data, so that a similar approach could be used even if depth information is not available (see

Figure 4.9 for an example). While in most of the cases the objects are fully contained in the crop

window, sometimes they can extend beyond borders (e.g., this can happen if the object distance

from the camera is reduced too much, or the tracker partially loses the object because of a

too fast movement). No manual correction has been applied, because we believe that tracking

imperfections are unavoidable and should be properly dealt with at later processing stages.

The final dataset consists of 164,866 128×128 RGB-D images: 11 sessions × 50 objects × (∼3003)

3Some sequences are slightly shorter than 300 frames because a few initial frames are necessary to initialize
the automatic motion-based tracker.
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Figure 4.9: Example of 1 second recording (at 20 fps) of object #26 in session #4 (outdoor).
Note the smooth movement, pose change and partial occlusion. The 128×128 frames here
shown have been automatically cropped from 350×350 images based on a fully automated
tracker.

frames per session. Figure 4.9 shows one frame of the same object throughout the eleven sessions.

Three of the eleven sessions (#3, #7 and #10) have been selected for test and the remaining 8

sessions are used for training. We tried to balance as much as possible the difficulty of training

and test sessions with respect to: indoor/outdoor, holding hand (left or right) and complexity

of the background.

Figure 4.10: One frame of the same object (#41) throughout the 11 acquisition sessions.
Note the variability in terms of background, illumination, blurring, occlusion, pose and scale.

The full dataset, along with further information can be downloaded from vlomonaco.github.

io/core50. In the same repository we make available the code for the reproducibility of the

benchmarks described in the following sections.

Static Object Recognition Benchmark While designed for continual learning, CORe50

dataset can still be used as a medium size benchmark for object recognition with a static evalua-

tion protocol. The high object pose variability and complex acquisition setting make the problem

sufficiently hard to solve even when learning is performed on the whole training data.

In Table 4.5, we show the accuracy of two well-known CNN models (CaffeNet and VGG4)

adapted to medium size and trained in three different modalities by using RGB data only (depth

information will be used in future studies):

1. Mid-CNN from scratch: training a model from scratch.

2. Mid-CNN + SVM: using a model pre-trained on ILSVRC-2012 as a fixed feature extractor

in conjunction with a linear SVM classifiers. Features are extracted at pool5 level.

4We refer to the VGG-CNN-M model introduced by Chatfield et al. [2014].

vlomonaco.github.io/core50
vlomonaco.github.io/core50
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3. Mid-CNN + FT: fine-tuning an ILSVRC-2012 pre-trained model on CORe50.

As already shown by many authors, fine-tuning a pre-trained model on the new dataset is often

the most effective strategy, especially if the new dataset is large enough to avoid overfitting, but

not so large to learn representative features from scratch.

Table 4.5: Accuracy of CaffeNet and VGG models (both adapted to size 128×128) on CORe50
for different learning strategies. The test set consists of sessions: #3, #7 and #10; the training
set of the remaining 8 sessions.

Accuracy % Accuracy %
(object level: 50 classes) (category level: 10 classes)

Strategy CaffeNet VGG CaffeNet VGG

Mid-CNN from scratch 37,82% 38,09% 48,93% 53,74%
Mid-CNN + SVM 51,35% 59,03% 61,81% 68,94%
Mid-CNN + FT 65,98% 69,08% 77,76% 80,23%

The term Mid-CNN is here used to highlight that we are not using the original 227×227 CaffeNet

and 224×224 VGG models but their adaption to a mid-size of 128×128 pixels. Many researchers

use available pre-trained CNN models as they are, and simply stretch their images to fit the

model input size, even if the image size is much smaller than the CNN input. Stretching our

input pattern (from 128×128 to 227×227) would require much more computation at inference

time (about four times), so we decided to adapt the pre-trained CNN models to work with

128×128 input images. However, in case of pre-trained models, this step is not neutral and

obvious as one could expect: more details are provided in Appendix C.

Figure 4.11: Mid-VGG classification accuracy (at object level and category level) when
classification confidence over more adjacent frames is fused. On the horizontal axis the number
of frames fused (temporal window). When end-of-sequence reset is not available using long
temporal windows can lead to dangerous drifts (see the orange curve).

To improve classification accuracy, instead of classifying single frames, a set of temporally adja-

cent frames can be fused. To this purpose we implemented a simple sum-rule fusion at confidence

level. The graph in Figure 4.11 shows the result for the Mid-VGG model. For each classification

experiment (object level and category level) we tested two cases: i) we concatenate frames from

all test sequences without considering end-of-sequence events (reset); ii) we assume that a reset

signal is available. In the former, as the window size increases the risk of fusing frames from
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different classes increases as well. In general, fusing 40-50 frames (about 2 seconds of video)

seems to be a good compromise even when sequences cannot be reliably segmented.

4.2.5 3D VizDOOM Maze

Continual Learning in reinforcement learning environments is still in its infancy. Despite the the

obvious interest in applying CL in less supervised setting and the early, promising results in this

context [Kirkpatrick et al., 2017; Ring, 1994], reinforcement learning environments constitute a

more complex setting for easily disentangle the ability to learn continuously from the lack of

supervision.

It is also worth noting that state-of-the-art reinforcement learning algorithms and current hard-

ware computational capabilities does not make prototyping and experimentations easily accom-

plished on complex environment where physical simulation constitute an hard problem per-se.

This is even harder in a continual learning context where an exposition of the same model to a

sequential stream of data is needed (and cannot be parallelized by definition). This is why, re-

cent reinforcement learning algorithms for continual learning have been tested only on arguably

simple benchmarks of low/medium input space dimension and complexity [Caselles-Dupré et al.,

2018; Kaplanis et al., 1987; Kirkpatrick et al., 2017].

Figure 4.12: The 3D maze environment developed with ZDOOM and Slade. On the right an
example image from the point of view of the agent is reported. On the right the plenary view
of the maze structure is shown. White point on the map represent random spawning points
used by the agent during both training and test episodes. Better viewed in colors.

Nevertheless, in parallel, classic reinforcement learning algorithms have started to tackle more

complex problems in 3D environments. VizDOOM [Kempka et al., 2016], followed soon after by

other research platforms like DeepMind Labs [Beattie et al., 2016] and Malmo [Johnson et al.,

2016], allowed researchers to start exploring new, interesting research directions with the aim to

scale reinforcement learning, limiting the apparent enormous amount of trials generally needed.

VizDoom is essentially a reinforcement learning API build around the famous “Doom II: Hell

on Earth” a first-person shooter game originally released for MS-DOS computers in 1994 by id

Software and providing all the necessary utilities to train your RL agent inside it.

VizDOOM is particularly interesting since it has been released open-source by id Software for

non-profit use and later ported by the open-source community also to UNIX systems like Linux
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and Mac OS. Moreover, it was already built on the idea of flexibility and customization allowing

users to create custom levels and otherwise modify the game using WAD files turned out to be

a popular aspect of Doom leading to the first large mod-making community. Slade is the most

common and flexible open-source map editor created for DOOM and it has been extensively used

by the research community to create a number of DOOM environments for many reinforcement

learning tasks of various level of difficulty.

Figure 4.13: The environmental changes for each of scenario (Light, Texture, Object) in the
3D VizDOOM Maze. For all the environments changes are not gradual but happening at three
specific points equidistant in time corresponding to the columns in figure. Better viewed in
colors.

In this dissertation we propose an original 3D VizDOOM environment for continual learning and

an object picking task (see Fig. 4.12). In particular, the task consist of learning how to navigate

in a complex maze and pick “column bricks” while avoiding “flaming lanterns”. However, the

environment in this case is “non-stationary” meaning that is subject to change leading to major

difficulties for standard reinforcement learning algorithms.

For properly assessing novel continual reinforcement learning strategy in 3D complex environ-

ments we split the benchmarks in four different tasks of incremental difficulty with respect to

different environmental changes (see Fig. 4.13):

1. Light: In this environment the light and visibility of the agent is changed.

2. Texture: In this environment walls textures are changed.

3. Object: In this environment the objects to pick or avoid are changed in shape and color.

4. All together: In this environment both light, textures as well as objects are subject to

change.

For all the environments changes are not gradual but happening at three specific points equidis-

tant in time and practically impremented as differen ZDOOM MAPs.
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4.3 Training and Evaluation Protocols

The continual learning training protocol is the straightforward extension of what is normally

done in classic machine learning on fixed training set to a sequence of multiple training batches.

However, in particular cases, shuffling the order of the training batches over multiple runs may

be needed for assessing stability of the proposed algorithms. More complex cross-validation

techniques may be also conceived but are not very common in current CL research.

Defining an optimal testing protocol is a bit more delicate and not obvious. For example,

focusing on a classification problem in the SIT-NC scenario, we could initially considered three

alternatives:

1. Partial Test Set: at each evaluation step (i.e., after each training batch) the test set

includes only patterns of the classes already presented to the network.

2. Full Test Set: the test set is fixed and includes patterns of all the classes. Except for the

last evaluation step, the model is (also) required to classify patterns of never seen classes.

3. Full Test Set with Rejection Option: the test set is fixed and includes patterns of all

classes, however the model has the possibility to reject a pattern if it believes the pattern

does not belong to any of the known classes. Since the training set does not include

“negative” examples we cannot add an extra neuron for the “unknown” class, and the

rejection mechanism has to compare the max class probability with a given threshold.

Option 1. has the drawback that as we increase the number of classes in the test set the

task becomes more complex and it is difficult to appreciate the learning trend and benefits of

subsequent batches. Option 3. is the most realistic one for real applications but evaluation and

comparison of different techniques is more difficult because at each step instead of a single point

we have a ROC curve (accuracy also depends on the threshold). Considering that our aim is

comparative evaluation among continual learning approaches we believe that option 2. is a good

trade-off between simplicity and usefulness for the task. This option also maintains the test

set coherent across all scenarios or update-content-type and can be very useful for accounting

several aspects related to the impact of current learning on future data/tasks.

4.3.1 Metrics

For a deep evaluation, we can assume to have access to a series of test sets TBi over time. The

aim is to assess and disentangle the performance of our hypothesis hi as well as to evaluate if

it is representative of the knowledge that should be learned by the correspondent training batch

Bi.

However, as discussed in [Lopez-paz and Ranzato, 2017], a different granularity of the evaluation

at the task level can as well be achieved by having the same test batch for many Bi. For

simplicity, in the description metrics described below we assume to have access to each TBi, and

define the cumulative training set and cumulative test set respectively as:
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BCi =

i−1⋃
i=1

Bi, TBCi =

i−1⋃
i=1

TBi. (4.1)

One of the first metrics for CL was proposed in [Hayes et al., 2018b] as an overall performance Ω

in a supervised classification setting. It is based on the relative performance of an incrementally

trained algorithm with respect to an offline (which has access to all the data at once) trained

algorithm, which in our notation would be:

Ω =
1

n

n∑
i=1

A(hi, TB
C
i )

A(hCi , TB
C
i )
. (4.2)

Where A is the accuracy measure (taking a model and a test set as input), hi is the hypothesis

trained on the sequence of training batches up to the Bi (our CL strategy) and hCi is the best

hypothesis we can train off-line having access to all the data in BCi at once, and hence, our upper

bound.

Serra et al. [2018] tried to directly model forgetting with the proposed forgetting ratio metric ρ,

defined as:

ρ =
1

n

n∑
i=1

(
A(hi−1, TB

C
i )− b̄i

A(hCi , TB
C
i )− b̄i

− 1

)
(4.3)

Where, b̄ is the vector of test accuracies for each TBi at random initialization.

Always in the same setting, in [Lopez-paz and Ranzato, 2017] other three important metrics

are proposed: Average Accuracy (ACC), Backward Transfer (BWT), Forward Transfer (FWT).

In this case, after the model finishes learning about the training batch Bi, its performance is

evaluated on all (even future) test batches:

A = A(hn, TB
C
n ) (4.4)

BWT =
1

n− 1

n−1∑
i=1

A(hn, TBi)−A(hi, TBi) (4.5)

FWT =
1

n− 1

n∑
i=2

A(hn, TBi)Rn,i − b̄i. (4.6)

The larger these metrics, the better the model. If two models have similar ACC, the most

preferable one is the one with larger BWT and FWT. Note that it is meaningless to discuss

backward transfer for the first batch, or forward transfer for the last batch.

While forgetting and knowledge transfer could be quantified and evaluated in various way, as

argued in [Farquhar and Gal, 2018; Hayes et al., 2018b], these may not suffice for a robust

evaluation of CL strategies. For example, in order to better understand the different properties

of each strategy in different conditions, especially for embedded systems and robotics, it would be

interesting to keep track and unambiguously determine the amount of computation and memory

resources exploited. Stability is another important property that should be evaluated since in
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many robotics tasks and safety-critical conditions, potential abrupt performance drifts would be

a major concern when learning continuously.

The metrics presented above in a supervised classification context can also be generalized with

different performance measure P , instead of A, and used in different setting like reinforcement

and unsupervised learning. For example, in an adversarial and generative CL setting, P could

be a distance based function, such as the Euclidean distance between real and generated images

[Seff et al., 2017].

4.3.2 Proposed metrics

The lack of consensus in evaluating continual learning algorithms and the almost exclusive focus

on forgetting motivate us to propose a more comprehensive set of implementation independent

metrics accounting for several factors we believe have practical implications worth considering

in the deployment of real AI systems that learn continually: accuracy or performance over time,

backward and forward knowledge transfer, memory overhead as well as computational efficiency.

Drawing inspiration from the standard Multi-Attribute Value Theory (MAVT ) [Ishizaka and

Nemery, 2013] we further propose to fuse these metrics into a single score for ranking purposes

and we evaluate our proposal with five continual learning strategies on the iCIFAR-100 continual

learning benchmark.

In order to provide bounds to each metric (originally lying in f : [0,∞[), we map it to a [0, 1]

range (as it is commonly done, e.g., in MAVT and formulate it so that its optimal value is given

by its maximization. This is to preserve interpretability of the proposed aggregating CLscore

metric, and allow to evaluate CL algorithms with respect to multiple criteria, rank them from

best to worst, and accommodate weighting schemes according to constraints and desiderata.

Accuracy (A) Given the train-test accuracy matrix R ∈ Rn×n, which contains in each entry

Ri,j the test classification accuracy of the model on task tj after observing the last sample from

task ti [Lopez-paz and Ranzato, 2017], Accuracy (A) considers the average accuracy for training

set Bi and test set TBj by considering the diagonal elements of R, as well as all elements below

it (see Table 4.7):

ACC =

∑n
i≥j Ri,j
n(n+1)

2

(4.7)

While the ACC criteria was originally defined to asses the performance of the model at the

end of the last task [Lopez-paz and Ranzato, 2017], we believe that an accuracy metric that

takes into account the performance of the model at every timestep i in time better characterizes

the dynamic aspects of CL. The same idea is applied to the modified BWT and FWT metrics

introduced below.
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Backward Transfer (BWT) Backward Transfer measures the influence that learning a task

has on the performance on previous tasks [Lopez-paz and Ranzato, 2017]. The motivation arises

when an agent needs to learn in a multi-task or data stream setting. The lifelong abilities to

both improve and not degrade performance are important and should be evaluated throughout

its lifetime. It is defined as the accuracy computed on TBi right after learning Bi as well as at

the end of the last task on the same test set. (see Table 4.7). Here, as in the accuracy metric,

we expand it to consider the average of the backward transfer after each task :

BWT =

∑N
i=2

∑i−1
j=1(Ri,j −Rj,j)
n(n−1)

2

(4.8)

Because the original meaning of BWT assumed positive values for backward transfer and negative

values to define (catastrophic) forgetting, in order to map BWT to also lie on [0, 1] and give more

importance to two semantically different concepts, BWT is broken into two different clipped

terms: the originally negative (forgetting) BWT (now positive), i.e., Remembering, as REM =

1 − |min(BWT, 0)| and (the originally positive) BWT, i.e., improvement over time Positive

Backward Transfer BWT+ = max(BWT, 0).

Forward Transfer (FWT) It measures the influence that learning a task has on the per-

formance of future tasks [Lopez-paz and Ranzato, 2017]. Following the spirit of the previous

metrics we modify it as the average accuracy for the train-test accuracy entries Ri,j above the

principal diagonal of R, excluding it (see elements accounted in Table 4.7). Forward transfer can

occur when the model is able to perform zero-shot learning. We therefore redefine FWT as:

FWT =

∑n
i<j Ri,j
n(n−1)

2

(4.9)

Model size efficiency (MS) The memory size of model hi quantified in terms of parameters

θ at each task i, Mem(Θi), should not grow too rapidly with respect to the size of the model

that learned the first task, Mem(Θ1). Model size (MS) is thus:

MS = min(1,

∑N
i=1

Mem(θ1)
Mem(θi)

N
) (4.10)

Samples storage size efficiency (SSS) Many CL approaches save training samples as a

replay strategy to not forget. The memory occupation in bits by the samples storage memory

M , Mem(M), should be bounded by the memory occupation of the total number of examples

encountered at the end of the last task, i.e. the cumulative sum of Tri here defined as the lifetime

dataset D (associated to the set of all distributions D). Thus, we define Samples Storage Size

(SSS) efficiency as:

SSS = 1−min(1,

∑N
i=1

Mem(Mi)
Mem(D)

N
) (4.11)
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Computational efficiency (CE) Since the computational efficiency is bounded by the num-

ber of multiplication and addition operations for the training set Tri, we can define the average

CE across tasks as:

CE = min(1,

∑n
i=1

Ops↑↓(Bi)·ε
Ops(Bi)

n
) (4.12)

where Ops(Bi) is the number of (mul-adds) operations needed to learn Bi, and Ops ↑↓(Bi) is

the number of operations required to do one forward and one backward (back-propagation) pass

on Bi. When the value of Ops ↑↓(Bi) is negligible w.r.t. Ops(Bi), a scaling factor associated

to the number of epochs needed to learn Bi, ε larger than a default value of 1, can be used to

make CE more meaningful (i.e. avoiding compression of the values very near to zero). Since we

are essentially moving the lower bound of the computation, which depends on the benchmark

complexity, this adjustment also translates on better interpretability of CE (Fig. 4.14)

In order to assess a CL algorithm ACL, following [Ishizaka and Nemery, 2013], each criterion

ci ∈ C (where ci ∈ [0, 1]) is assigned a weight wi ∈ [0, 1] where
∑C
i wi = 1. Each ci should be

the average of r runs. Therefore, the final CLscore to maximize is computed as:

CLscore =

#C∑
i=1

wici (4.13)

where each criterion ci that needs to be minimized is transformed to ci = 1 − ci to preserve

increasing monotonicity of the metric (for overall maximization of all criteria in C). CLstability
is thus:

CLstability = 1−
#C∑
i=1

wistddev(ci) (4.14)

Figure 4.14: a) Spider chart: CL metrics per strategy (larger area is better). b) Accuracy
per CL strategy computed over the fixed test set.

Experiments and Conclusions We evaluate the CL metrics on Cumulative and Naive as

baseline strategies, EWC, SI, LWF on the iCIFAR-100 benchmark: each task consists of a

training batch of 10 (disjoint) classes at a time.
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Results for each proposed metric are illustrated in Table 4.6 (each criterion ci reports the average

over 3 runs); Fig. 4.14 illustrates the CL metrics variability for each criterion reflecting a desirable

property of CL algorithms, as well as the needs of novel techniques addressing different aspects

than accuracy and forgetting, that can be important depending on the application. For simplicity,

we chose an homogeneous configuration of criteria weights that values each CL metric equally

(i.e., each wi = 1
#C ). However, Table 4.8 shows results on other possible configurations.

While the CLscore is optional to report, the aim of the metrics and results is to stimulate

comprehensive evaluation practices. In future work we plan to refine these metrics and assess

more strategies in more exhaustive evaluation settings.

Table 4.6: CL metrics and CLscore for each CL strategy evaluated (higher is better).

Strategy A REM BWT+ FWT MS SSS CE CLscore CLstability

Naive 0.3825 0.6664 0.0000 0.1000 1.0000 1.0000 0.4492 0.5140 0.9986
Cumul. 0.7225 1.0000 0.0673 0.1000 1.0000 0.5500 0.1496 0.5128 0.9979
EWC 0.5940 0.9821 0.0000 0.1000 0.4000 1.0000 0.3495 0.4894 0.9972
LWF 0.5278 0.9667 0.0000 0.1000 1.0000 1.0000 0.4429 0.5768 0.9986
SI 0.5795 0.9620 0.0000 0.1000 0.4000 1.0000 0.3613 0.4861 0.9970

Table 4.7: Elements in R accounted to compute the Accuracy (white and cyan elements),
BWT (in cyan), and FWT (in light gray) criteria. R∗ = Rii, Tri = training, Tei= test tasks.

R Te1 Te2 Te3
Tr1 R∗ Rij Rij
Tr2 Rij R∗ Rij
Tr3 Rij Rij R∗

Matrix R ∈ Rn×n contains in each entry Ri,j the test classification accuracy of the model on

task j after observing the last sample from task i [Lopez-paz and Ranzato, 2017]. Table 4.7

shows the elements in the accuracy matrix used for each metric for an example matrix of n = 3

tasks. R∗ = Rii coincides with the (normally) optimal accuracy right after using training set Bi

and testing on test set TBi.

Note that in order to compute Accuracy, we do not only consider as [Lopez-paz and Ranzato,

2017] the last row of the accuracy matrix R, but also steps in between each new training set

learned, to acknowledge the degradation and improvement through every time step in time.

In FWT, the subtraction term (vector bi of test accuracies for each task at random initialization)

in the original FWT formula in [Lopez-paz and Ranzato, 2017] was removed in our definition

of FWT in order to guarantee non negative values (i.e. in case of negative FWT) and allow for

potential positive transfer, as they demonstrate it is possible to happen with a shared output

space. The idea is supporting the fact that algorithms can do worse than random accuracy for

some strategies (we refer the reader to [Lopez-paz and Ranzato, 2017] for cases of positive FWT).

The original BWT [Lopez-paz and Ranzato, 2017] would return domains for BWT− ∈ [0, 0.5),

and for BWT+ ∈ [0.5, 1], respectively which, through the clipping, are transformed, as the rest

of criteria in the CL metric, to stay in [0,1].
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Despite the experiments showing the CLscore to be optional and context dependent; the ag-

gregation score is most meaningful when a community agrees on a particular evaluation cri-

teria (similarly to the mAP metric), or in specific settings where the weights for the dif-

ferent criteria are clearly definable. Our experiments use three weight configurations W =

[wA, wMS , wSSS , wCE , wBWT , wRem, wFWT ]. The first one used homogeneous weights (each

wi = 1
#C ) and the second and third use W2 = [0.4, 0.1, 0.1, 0.1, 0.2, 0.05, 0.05] and W3 =

[0.4, 0.05, 0.2, 0.2, 0.05, 0.05, 0.05], as particular examples aiming at reflecting what the recent

CL literature has roughly been valuing the most; however, any configuration could be used.

The CNN model used in this experiment is the same used in [Zenke et al., 2017] and consists

of 4 convolutional + 2 fully connected layers (details available in Appendix A of [Zenke et al.,

2017]). Hyper-parameters are chosen to maximize the accuracy metric A for each strategy.

Spider chart in Fig 4.14 shows all objective criteria, where the larger the area occupied under

the CL algorithm curve, the highest CLscore (more optimal) it is. Fig. 4.15 shows each of

the main CL strategies put in context compared with the considered lower and upper bounds

respectively, i.e., naive, and cumulative strategies. The farther away the evaluated strategy is

from the cumulative (blue) surface, the larger room for improvement for the CL strategy.

Figure 4.15: Spider chart with CL metrics showing CL strategies EWC, LWF and SI with
their respective lower and upper bound (Naive and Cumulative resp.) as reference baselines
(to properly visualize Fig. 4.14). The weight configuration for each criterion used is W1 where
wi = 1

7
for each wi ∈W .

Table 4.8: CLscore and CLstability for all CL strategies according to different weighting
configurations Wi = [wA, wMS , wSSS , wCE , wREM+ , wBWT , wFWT ], where W1 sets wi = 1

7
for

each wi ∈ W . The second setting of a concrete metric weights is W2 = [0.4, 0.05, 0.2, 0.1,
0.15, 0.05, 0.05]. A third arbitrary configuration is W3 = [0.4, 0.05, 0.2, 0.2, 0.05, 0.05, 0.05].

Strategy/CL Metric CLscore CLstability

W1 W2 W3 W1 W2 W3

Naive 0.5140 0.5529 0.5312 0.9986 0.9969 0.9973
Cumulative 0.5128 0.6223 0.5373 0.9979 0.9976 0.9964
EWC 0.4894 0.6449 0.5816 0.9972 0.9976 0.9940
LWF 0.5768 0.6554 0.6030 0.9986 0.9990 0.9972
SI 0.4861 0.6372 0.5772 0.9970 0.9945 0.9927
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4.4 Learning Dynamics Interpretation

Hyper-parameters tuning is not easy for complex deep architectures and is still more complex

for continual learning over sequential batches. Simply looking at the accuracy trend along the

batches is not enough to understand if an approach is properly parametrized. For example, a

poor accuracy can be due to insufficient learning of the new classes or by the forgetting of the

old ones.

Figure 4.16: Sequence of confusion matrices computed after each training batch for the Naive
approach on CaffeNet. On the vertical axis the true class and on the abscissa the predicted
class.

Figure 4.17: Sequence of confusion matrices computed after each training batch (1, . . . , 9)
for the LWF approach and CaffeNet. In the first row the approach is properly parametrized
(variable λ and map function, see Table D.3) and the model is able to continuously learn new
classes without forgetting the old ones. In the second we used the same λi = 0.5 for all the
batches: for B2, . . . , B3 the regularization is appropriate but for successive batches is too light
leading to excessive forgetting. In the third row we used the same λi = 0.8 for all the batches:
for B2, . . . , B6 the regularization is too strong and learning of corresponding classes is poor.

In our experience visualizing the confusion matrices (CM) is very important to understand what

is happening behind the scenes. Looking at the last CM (that is after the last batch) is often not

sufficient and the entire CM sequence must be considered. Figure 4.16 shows the CM sequence

(one after each batch) for the naive approach: forgetting is clearly highlighted by a vertical band

moving from the left to the right to cover the classes of the most recent batch. Figure 4.17 show

three CM sequences for LWF approach on CaffeNet: i) in the first row parametrization is good;

ii) in the second row the model forget to much old classes, regularization should be increases;

iii) in the third row initial regularization is too strong and the model cannot learn classes in

the corresponding batches.

Unfortunately, the trade-off stability/plasticity does not depends only of the regularization

strength (e.g. λi for LWF) because the learning rate and the number of training epochs are

also indirectly related. However, looking at the CM sequence allows to understand what is the
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Figure 4.18: Confusion matrices after computed after B8 and B9 for the EWC approach and
CaffeNet. As discussed in Section 5.1.4 EWC tends to saturate CaffeNet capacity after the
first 5-6 batches. In this specific run the amount of training on the last batch is too high w.r.t.
the residual model capacity and the learning result are poor: the sharp vertical band on the
right is an alarm signal.

direction of change of one or more parameters. It can also happen that the amount of regular-

ization is good for the first batches, but unsatisfactory for the successive ones; the CM sequence

easily reveal this and allow to take countermeasures (e.g. the map function for LWF). Finally,

when a model is strongly regularized its learning capacity tend to saturate (e.g. in EWC there

are no “free” parameters to move in order to learn new classes); this is usually reflected by

anomalies such as sharp vertical bars in correspondence of one or few classes (see Figure 4.18).

Another useful diagnostic technique is visualizing (in the form of a 3D histogram) the average

amount of change of the weights in each layer at the end of each batch. To avoid cancellation due

to different sign, we compute the average of absolute values. Figure 4.19 shows the histograms

for CaffeNet. We can observe that in the naive approach weights (which are not constrained)

are significantly changed throughout all the layers for all batches. On the other hand, in the

regularization approaches, changes tend to progressively reduce batch by batch, and most of the

chances occur in the top layers. While in CWR the Θ̄ freeze is well evident, in AR1 intermediate

layers weights are moved (more than in EWC and SI) without negative impact in term of

forgetting.
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Figure 4.19: Amount of weight changes by layer and training batch in CaffeNet for different
approaches.



5

Experimental Evaluation

“The lifelong learning paradigm [...] is an exciting and promising attempt to confront

the issue of scaling up machine learning algorithms to more complex problems. Given

the need for more accurate learning methods, it is difficult to imagine a future for

machine learning that does not include this paradigm.”

– Tom M. Mitchell, 1995

In this chapter we empirically assess the quality of the proposed strategies in various supervised,

semi-supervised and reinforcement contexts. More specifically we run our evaluation considering

different deep architectures on several continual learning benchmarks: Seq-NORB, Seq-COIL-

100, Seq-iCubWorld28, iCIFAR-100, CORe50 and 3D VizDoom Maze. Comparing our results

with other recently proposed regularization strategies for continual learning ensure the feasibility

of our approaches, which, in same cases, exceed state-of-the-art performance by a good margin. In

this chapter, for simplicity, we will focus only on the Accuracy metric for comparing performance

among methods and the standard Naive and Cumulative baselines.

5.1 Continual Supervised Learning

While continual learning is better suit to work in the unsupervised and reinforcement domains

in terms of practical applications, supervised learning constitute a straightforward starting point

for evaluating CL approaches and help disentangle different complexity dimensions. Computer

Vision, while not the only domain of application of current CL techniques, constitutes the easiest

setting given the recent advances of deep learning in this area. Moreover, it is one of the best

example of high-dimensional space problems which highly benefited from deep learning and hence

where the impact of deep continual learning may be better appreciated.

The experiments reported in this section have been carried out with several deep architectures:

LeNet7 [LeCun et al., 2004], CaffeNet [Jia et al., 2014], VGG-CNN-M [Chatfield et al., 2014],

VGG-Face [Parkhi et al., 2015] and GoogLeNet [Szegedy et al., 2015]. Minor benchmark-specific

73
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modifications that have been eventually carried out for each architecture will be defined within

each specific evaluation section.

We will start our empirical investigation taking a look at more classic way of learning continually

(in the simplest SIT-NI scenario) in order to highlight major limitations and motivate the need

of novel CL approaches. The basic approaches we consider on the BigBrother and iCubWorld28

are the following:

1. Training/tuning an ad hoc CNN architecture suitable for the problem from scratch.

2. Using an already trained CNN as a fixed feature extractor in conjunction with an incre-

mental classifier.

3. Fine-tuning an already trained CNN.

5.1.1 BigBrother

The basic approaches illustrated above are instantiated as follows:

• LeNet7 : consists of the classical “LeNet7” proposed by LeCun et al. [2004]. Its architecture

is based on seven layers (much less than current state-of-the-art CNNs designed for large-

scale datasets). However, it has been successfully applied to many object recognition

datasets (NORB, COIL, CIFAR, etc.) with colorful or gray-scale images of size varying

from 32×32 to 96×96, and is still competitive on low/medium scale problems.

• CaffeNet + SVM : In this strategy we employ a pre-trained CNN provided in the Caffe

library [Jia et al., 2014] “Model Zoo”, BVLC Reference CaffeNet, which is based on the

well-known “AlexNet” architecture proposed in [Krizhevsky et al., 2012] and trained on

ImageNet [Russakovsky et al., 2015]. This model is used off-the-shelf to extract high-level

features from the second-last hidden layer following the strategy proposed in Razavian

et al. [2014]. Then a linear and incremental SVM1 is used (instead of the native softmax

output layer) for the final classification.

• CaffeNet + FT : Even in this case the BVLC Reference CaffeNet is employed. However,

instead of using it as a fixed feature extractor the network is fine-tuned over the training

batches. Even if for fine-tuning it is generally recommended to diversify the learning rate

of the last layer (which is re-initialized to suit the novel number of output neurons) from

the others, we found no significant difference during our exploratory analysis and therefore

we kept the hyper-parametrization as homogeneous as possible.

• VGG-Face + SVM : identical to CaffeNet + SVM with exception of the pre-trained model

used. The VGG-Face is a very deep architecture (16-levels) that has been trained directly

on a very large dataset of faces (2,622 Subjects and 2.6 M images) [Parkhi et al., 2015].

• VGG-Face + FT. identical to CaffeNet + SVM but using the VGG-Face pre-trained model.

1We used incremental SVM from LibLinear implementation [Tsai et al., 2014].



Chapter 8. Experimental Evaluation 75

For all these strategies, we trained the models until full convergence on the first batch of data

and tuned them on the successive incremental batches, trying to balance the trade-off between

accuracy gain and forgetting. This protocol fits the requirements of many real-world applications

where a reasonable initial accuracy is demanded and the first batch is large enough to reach that

accuracy. To control forgetting during the incremental learning phase we relied on early stopping

and for each batch a fixed number of iterations were performed depending on the specific strategy.

For example, for the LeNet7, trained with stochastic gradient descent (SGD), we chose a learning

rate of 0.01, a mini-batch size of 100 and a number of iterations of 50 for all the eight incremental

batches.

For the setB of the BigBrother dataset, in order to make reproducible and comparable results,

we decided to keep fixed (i.e., no shuffling) the order of the 54 updating batches as contained in

the original dataset. In Figure 5.2, accuracy results are reported for each of the 5 aforementioned

strategy instantiations.

Figure 5.1: Accuracy results of different parameterizations for the CaffeNet + FT strategy:
an example of the impact of the learning rate on the BigBrother dataset, in our continual
learning scenario (54 batches). Better viewed in color.

It is worth pointing out that in this case the 54 incremental batches used for updating the model

have a very high variance in terms of number of patterns they contain: in particular, it can

vary from few dozens to many hundreds. This is typical in many real-world systems, where

the hypothesis of collecting uniform and equally sized batches is often unrealistic. Controlling

forgetting is here more complex than for the Seq-iCubWorld28 dataset (see following section).

In fact, in this case, due to the aforementioned high variation in the number of patterns in the

different incremental batches, we found that adapting the learning strength2 to the batch size

can lead to relevant improvements.

In Figure 5.1, an exemplifying parameterization for the CaffeNet + FT strategy is reported

where we compare the learning trend by using i) a low learning rate, ii) a high learning rate,

iii) an adjustable learning rate depending on the size of the batch. Results show that using an

adjustable learning rate leads to better results. Therefore, in the rest of the experiments on the

BigBrother dataset, an adjustable learning rate3 is used.

2In terms of number of iterations and/or learning rate.
3we used a simple thresholding approach where the learning rate was varied among three fixed values, since

in these experiments we did not found any significant difference using a continuous approach.
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Figure 5.2: BigBrother dataset (SetB): accuracy of the different strategies during incremen-
tal training (54 batches). Better viewed in color.

In Figure 5.2 the accuracy on the BigBrother dataset for all the strategies is reported. For this

benchmark we note that:

• LeNet7 model performs slightly better than CaffeNet + SVM or CaffeNet + FT. This is

probably because of the high peculiar features (and invariance) requested for face recog-

nition. Hence, learning the features from scratch for this dataset seems more appropriate

than adapting general features by fine-tuning.

• The previous observation is corroborated by the really good performance of the VGG-Face

+ SVM and VGG-Face + FT strategies. In fact, since VGG-Face features have been

learned in a face recognition task by using a dataset containing millions of faces, they are

pretty effective for a transfer learning in the same domain.

• Since the features are already optimal, VGG-Face + SVM seems to be the best choice both

for the accuracy and the stability. It reaches an accuracy of 96,73% that is 24,1% better

than accuracy reported in [Franco et al., 2010] for the same dataset (in the supervised

learning scenario).

5.1.2 Seq-iCubWorld28

The experiments here reported follows the same protocol used in the previous section with the

idea of understanding and generalizing the main issues related to continual learning over different

application contexts. In this case, we exclude the two strategies with the Face-VGG model since

not inherent to the object recognition domain and we validate the remaining ones on 10 runs

where we randomly shuffle the position of the training batches B2, . . . , B9.

To better understand the efficacy of the Naive continual learning strategy variations and to

quantify the impact of forgetting, we also tested each model on the corresponding cumulative
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Figure 5.3: Average accuracy during incremental training on Seq-IcubWorld28 (9 batches).
The bars indicate the standard deviation of the ten runs performed for each strategy. The
dotted lines denote the cumulative strategies.

strategy. In Figure 5.3, the average accuracy over the ten runs is reported for each strategy. We

note that:

• The CaffeNet + SVM has a quite good recognition rate increment along the 9 batches,

moving from an accuracy of 41,63% to 66,97%. The standard deviation is initially higher

with respect to the other strategies, but it rapidly decreases as new batches of data are

available and the SVM model is updated. Furthermore, the small gap with respect to its

cumulative counterpart proves that a fixed features extractor favors stability and reduces

forgetting.

• The CaffeNet + FT is the most effective strategy in this case. This is probably because the

features originally learned on the ImageNet dataset are very general and the iCubWorld28

dataset can be thought as a specific sub-domain where feature fine-tuning can help pattern

classification. Moreover, even if splitting the dataset in 9 batches makes the task harder, we

managed to achieve an averaged accuracy of 78.40% that outperforms previously proposed

methods on the same datasets [Franco et al., 2010]. Even if in this case the gap with respect

to the cumulative approach is slightly higher, the proper adjustment of early stopping and

learning rate during the incremental phase allows to effectively control forgetting.

• The LeNet7 on this dataset is probably not able to learn (being the number of patterns too

limited) complex invariant features that are necessary to deal with the multi-axes rotations,

partial occlusions and the complex backgrounds which characterize this problem. The gap

with respect to the cumulative approach is here high. This is in line with previous studies

[Goodfellow et al., 2013; Mermillod et al., 2013] showing that smaller models without

pre-training are much more susceptible to forgetting.

5.1.3 iCIFAR100

CIFAR-100 [Krizhevsky, 2009] is a well-known and largely used dataset for small (32×32) natural

image classification. It includes 100 classes containing 600 images each (500 training + 100

test). The default classification benchmark can be translated into a SIT-NC scenario (denoted
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as iCIFAR-100 by Rebuffi et al. [2017]) by splitting the 100 classes in groups. In this section we

consider groups of 10 classes thus obtaining 10 incremental batches.

The CNN model used for this experiment is the same used by Zenke et al. [2017] for experiments

on CIFAR-10/100 Split and whose results have been reported in Figure 4.2 for the MT scenario.

It consist of 4 convolutional + 2 fully connected layers; details are available in Appendix A of

[Zenke et al., 2017]. The model was pre-trained on CIFAR-10 [Krizhevsky, 2009].

Figure 5.4: Accuracy on iCIFAR-100 with 10 batches (10 classes per batch). Results are
averaged on 10 runs: for all the strategies hyperparameters have been tuned on run 1 and
kept fixed in the other runs. The experiment on the right, consistently with CORe50 test
protocol, considers a fixed test set including all the 100 classes, while on the left we include
in the test set only the classes encountered so far (analogously to results reported by Rebuffi
et al. [2017]). Better viewed in color.

Figure 5.4 compares the accuracy of the different approaches on iCIFAR-100. in particular:

• Unlike the Näıve approach, LWF and EWC provide some robustness against forgetting,

even if in this incremental scenario their performance is not satisfactory. SI, when used in

isolation, is quite unstable and performs worse than LWF and EWC.

• The accuracy improvement of CWR+ over CWR is here very small, because the batches

are balanced (so weight normalization is not required) and the CNN initialization for the

last level weights was already very close to 0 (we used the authors’ default setting of a

Gaussian with std = 0.005).

• AR1 consistently outperform all the other approaches.

It is worth noting that both the experiments reported in Figure 5.4 (i.e., fixed and expanding

test set) lead to the same conclusions in terms of relative ranking among approaches, however,
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we believe (as motivated in Chapter 4) that a fixed test set allows to better appreciate the con-

tinual learning trend and its peculiarities (saturation, forgetting, etc.) because the classification

complexity (which is proportional to the number of classes) remains constant across the batches.

For example, in the right graph it can be noted that SI, EWC and LWF learning capacity tend to

saturate after 6-7 batches while CWR, CWR+ and AR1 continue to grow; the same information

is not evident on the lest because of the underlying negative trend due to the increasing problem

complexity.

Finally note that absolute accuracy on iCIFAR-100 cannot be directly compared with [Rebuffi

et al., 2017] because the CNN model used in [Rebuffi et al., 2017] is a ResNet-32, which is much

more accurate than the model here used: on the full training set the model here used achieves

about 51% accuracy while ResNet-32 about 68,1% [Pan, 2018].

5.1.4 CORe50

CORe50 constitutes a major leap in complexity with respect to the commonly adopted bench-

marks for continual learning in a supervised setting. Indeed, 128×128 RGB images with substan-

tial variation in terms of environmental condition, 50 different objects and three settings with

NI, NC and NIC updated content types may pose some difficulties to many current continual

learning algorithms.

In the first set of experiments we reported and which can be considered as basic baselines for the

following set of experiments (Only the Naive, Cumulative and CWR strategies are considered),

we will use the same Mid-CaffeNet and Mid-VGG used for the “static” experiments reported in

Chapter 4 for evaluating the global complexity of the CORe50 benchmark.

For all the continual learning UCT (NI, NC, NIC) we use the same test set composed of sessions

#3, #7 and #10. The remaining 8 sessions are split in batches and provided sequentially during

training. Since the batch order can affect the final result, we compute the average over 10 runs

where the batches are randomly shuffled. Moreover, for each UCT, we provide the accuracy of the

cumulative strategy (i.e., the current batch and the entire previous ones are used for training) as

a target 4. We do not use the term upper bound because in principle a smart sequential training

approach could outperform a baseline cumulative training. In the following sections we report

results only for object level classification task (the most difficult one), since both experiments

lead to the analogous conclusions. Furthermore, in this study the models were trained on RGB

data only (no depth information).

NI: New Instances In this setting the training batches coincides with the 8 sessions available

in the training set. In fact, since each session includes a sequence (about 300 frames) for each

of the 50 objects, training a model on the first session ad tuning it 7 times (on the remaining

7 sessions) is in line with NI scenario: all the classes are known since from the first batch and

successive batches provide new instances of these classes to refine and consolidate knowledge. In

Figure 5.5, we compare the baselines standard Näıve and Cumulative approaches in this setting.

4To reduce computations, the number of runs for the NC and NIC cumulative strategy is reduced to 5 and 3
respectively.
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Figure 5.5: Accuracy results (averaged on 10 runs) for the näıve and cumulative strategies
for Mid-CaffeNet and Mid-VGG. Colored areas represent the standard deviation of each curve.
Tabular data available at http://vlomonaco.github.io/core50.

The accuracy gap between the näıve and the cumulative approach here is quite modest. In fact,

with a careful tuning of the learning rate and number of iterations (early stopping), forgetting

can be tamed in this scenario where the model memory is regularly refreshed with new poses

(scale, view angle, occlusion, lighting, etc.).

NC: New Classes In this setting, for each sequential batch, new objects (i.e. classes) to

recognize are presented. Each batch contains the whole training sequences (8) of a small group

of classes, and therefore no memory refresh is possible across batches. In the first batch we

include 10 classes, while the remaining 8 batches contain 5 classes each. To slightly simplify the

task, in each of the ten runs we randomly chose the classes with a biased policy which privileges

maximal categorical representation (i.e., spreading of objects of the same category in different

batches). A fixed and global test set is used for the evaluation.

Figure 5.6: Mid-Caffe and Mid-VGG accuracy on NC scenario (average over 10 runs).
Cumulative and Näıve approach are full depth models, while CWR lacks fc6 and fc7.
Colored areas represent the standard deviation of each curve. Tabular data available at
http://vlomonaco.github.io/core50.

The naive approach in this scenario is not working at all. Graphs in Figure 5.6 show that the

models completely forget the old tasks while learning the new classes: the initial accuracy drop

http://vlomonaco.github.io/core50
http://vlomonaco.github.io/core50
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is due to the larger size of the first batch w.r.t. the following ones. So we investigated other

approaches and find out one (denoted as CWR: CopyWeights with Re-init) that, in spite of its

simplicity, performs fairly well and can be used as baseline for further studies (see Figure 5.6).

Other simple variations of CWR have been implemented and tested such as: i) FW where cw

is not used and we just freeze in tw the class weights of the already encountered classes; ii)

CW which is the same of CWR but without the re-init step; however as shown in Figure 5.7 the

results obtained are significantly worse than CWR.

Figure 5.7: CWR compared with some variants: FW and CW. Colored areas represent the
standard deviation of each curve.

NIC: New Instances and Classes In the third and last scenario, both new classes and

instances are presented in each training batch. This scenario is the closest to many real-world

applications where an agent continuously learns new objects and refines the knowledge about

previously discovered ones. As for NC scenario the first batch includes 10 classes, and the

subsequent batches 5 classes each. However, only one training sequence per class is here included

in a batch, thus resulting in a double partitioning scheme (i.e., classes and sequences). The total

number of batches is 79. We maximized the categorical representation in the first batch but we

left the composition and order of the 78 subsequent batches completely random. The test set is

the same as in NI and NC scenarios.

CWR approach for this scenario needs to be slightly adjusted. The first time a new class is

encountered its tw weights are copied on cw, while at successive steps cw is updated as a

weighted average. More precisely, for each class i in the current batch:

cw[i] =


tw[i] if updated[i] = 0

cw[i] · udpdates[i] + tw[i]

updates[i] + 1
otherwise

where update[i] is the number of times class i has been encountered so far. Figure 5.8 reports

the accuracy of the näıve, cumulative and CWR approaches. The graph clearly shows that this

scenario is very difficult (CWR accuracy is about half of the Cumulative approach accuracy)

and there is a big room for improvements.
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Figure 5.8: Mid-Caffe and Mid-VGG accuracy on NIC scenario (average over 10 runs).
Colored areas represent the standard deviation of each curve. Tabular data available at http:
//vlomonaco.github.io/core50.

Improving results with CWR+ and AR1 In CWR experiments reported above, in order

to better disentangle class-specific weights we used models without class-shared fully connected

layers (e.g., we removed FC6 and FC7 in CaffeNet). In fact, since Θ̄ weights are frozen after

the first batch, fully connected layer weights tend to specialize on the first batch classes only.

However, since skipping fully connected layers is not mandatory for CWR, in this section to

better compare different approaches we prefer to change the native architectures as little as

possible and keep fully connected layers whether they exist. In particular, we use the following

models:

• CaffeNet and GoogLeNet original models work on input images of size 227×227 and

224×224 respectively. CORe50 images are 128×128 and stretching them to 227×227 or

224×224 is something that should be avoided (would increase storage and amount of com-

putation). On the other hand, as discussed in appendix C, simply reshaping the network

input size leads to a relevant accuracy drop. This is mainly due to the reduced resolution

of feature maps whose size along the hierarchy is about half the original. We noted that

the accuracy can be restored by halving the stride in the first convolutional layer and by

adjusting padding if necessary: unfortunately, this also restore much of the original com-

putational complexity, but i) does not require unnecessary image stretching, ii) allows

to save memory, and iii) reduces CPU→GPU data transfer when loading mini-batches.

• For CaffeNet, the number of neurons in fc6 and fc7 fully connected layers was halved.

This substantially reduce the number of parameters without any relevant accuracy drop.

• GoogLeNet has three output layers. The deepest one is typically used for prediction, while

the two intermediate ones are useful to boost gradient flow during training thank to the

injection of a fresh supervised signals at intermediate depth. While the deepest output

level is proceeded by a global average pooling, each intermediate output layer is preceded

by a fully connected layer; in our experiment where GoogLeNet was always initialized from

ImageNet such fully connected layers did not provide any advantage, hence to simplify the

architecture and reduce the number of parameters we removed them. Finally, note that

http://vlomonaco.github.io/core50
http://vlomonaco.github.io/core50
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when GoogLeNet is used with CWR, CWR+ and AR1 we need to maintain in memory a

copy of the weights of all the three output levels.

Table D.1 in Appendix D.2 lists all the changes between original and modified models. Model

weights (in convolutional layers) have been always initialized from ImageNet pre-training. We

also tried other popular CNN architectures on CORe50, including NiN [Lin et al., 2014] and

ResNet-50 [He et al., 2016]. Table 5.1 compares the accuracy of these models when trained on

the whole training set (i.e., all training batches combined). The gap between GoogLeNet and

ResNet50 is quite small, but the latter is much slower to train, so we decided to use GoogLeNet

as a near state-of-the-art model.

Table 5.1: Model training on CORe50 by using the whole training set (fusion of all training
batches). Models are adapted to work with 128x128 inputs and weights in convolutional layers
are initialized from ImageNet pre-training. Time refers to a single Titan X Pascal GPU and
Caffe framework.

Model (128x128) Test accuracy Mini-batch size # Epochs Time (m)

CaffeNet 74.1% 256 4 7
NiN 82.3% 256 4 14
GoogLeNet 91.3% 64 4 30
ResNet-50 92.9% 12 4 120

CORe50 dataset has been specifically designed as a benchmark for continual learning and object

recognition. Here we consider NC content update type (a.k.a. incremental-class learning) where

the 50 classes are partitioned in 9 batches provided sequentially: B1 includes 10 classes while

B2, . . . , B9 5 classes each. For each class 2400 patterns (300 frames × 9 sessions) are included

in the training batches and 900 pattern (300 frames × 3 sessions) are segregated in the test set.

Here again, the test set is fixed and the accuracy is evaluated after each batch on the whole test

set, including still unseen classes.

LWF, EWC and SI were run with the modifications (variable lambda, normalization, clipping,

etc.) introduced in Chapter 3. In fact, when the approaches were tested in their native form either

we were not able to make them consistently learn across the batches or to contrast forgetting

enough.

Figure 5.9 shows CaffeNet and GoogLeNet accuracy in CORe50, SIT - NC scenario. Accuracy

is the average over 10 runs with different batch ordering. For all the approaches hyperparameter

tuning was performed on run 1, and then hyperparameters were fixed across runs 2, . . . , 10. Table

D.3 in Appendix D.3 shows hyperparameter values for all the methods. In the Appendix D.5,

the standard deviation bars are also reported to show methods stability. From these results we

can observe that:

• The effect of catastrophic forgetting is well evident for the Näıve approach: accuracy start

from 17-20% at the end of B1 (in line with the 20% of classes in B1), but then suddenly

drops to about 9-10% (that is the proportion of classes in each subsequent batch); in other

words, as expected, after each batch, the model tends to completely forget previous classes

while learning the new ones.
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Figure 5.9: The graphs show CaffeNet and GoogLeNet accuracy on CORe50 after each
training batch (average on 10 runs, with different class ordering). Better viewed in color.

• LWF behaves well for CaffeNet and moderately well for GoogLeNet: continuous learning

is evident and accuracy is much better than Naive approach. A few percentage point drop

can be noted in the last batches for GoogLeNet; to avoid this we tried to boost stability

by increasing the lambda value: this yielded to an increasing learning trend across all the

batches but the top accuracy was never higher than 32% (neither in the central batches

nor in the last ones), so we decided to rollback to previous parametrization.

• Both the models are able to learn incrementally with EWC, but while for GoogLeNet

the learning trend is quite good, CaffeNet after a few batches tends to stabilize and the

final accuracy is much lower. Since GoogLeNet is a deeper and more powerful network

we can expect a certain accuracy gap (see the corresponding cumulative approach curves);

however here the gap is much higher than for LWF and in our experiment we noted that

EWC (and SI) tend to suffer more than LWF the presence of fully connected layers such

as FC6 and FC7 layer in CaffeNet5. Fully connected layers are usually close to the final

classification layer, and any change in their weights is likely to have a major impact on

classification. Even if EWC can operate on all layers, precisely constraining the weights of

fully connected layers appears to be challenging due to their high importance for all tasks.

LWF, whose regularization signal “comes from the top”, seems to better deal with fully

connected layers. To further investigate this issue some experiments have been performed

by removing FC6 and FC7 from CaffeNet and, in spite of the shallower and less powerful

network, for EWC we got a few percentage improvements while LWF accuracy slightly

decreased.

5GoogleNet, as many modern network architectures, does not include fully connected layers before the last
classification layer.
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• While CaffeNet accuracy with SI is very close to EWC, GoogLeNet accuracy with SI is

markedly lower than EWC. In general, we noted that SI is less stable than EWC and we

believe that SI weights importance estimation can be sometimes less accurate than the

EWC one because of the following reasons:

– A weight which is not moved by SGD is not considered important for a task by SI,

but this is not always true. Let us assume that Batch B1 trains the model on classes

c1, c2, . . . , c10; the output layer weights which are not connected to the above class

output neurons, are probably left unchanged to their (near 0) initial value; however,

this does not mean that they are not important for B1 because if we raise their values

the classification might dramatically change. More in general, if a weight already

has the right value for a task and is not moved by SGD, concluding that it is not

important for the task can be sometime incorrect.

– A weight could cover a long trajectory and, at the end of the training on a batch,

assume a value similar to the initial one (closed trajectory). Such situation can happen

because the loss surface is highly non convex and gradient descent could increase

a weight while entering a local minimum and successively restoring its value once

escaped.

• CWR and CWR+ accuracy is quite good, always better than LWF, EWC, SI on GoogLeNet,

and better than EWC and SI on CaffeNet. Continuous learning trend is here nearly linear

across batches, with no evident saturation effect. The relevant improvement of CWR+

over CWR is mainly due to zero init.

• AR1 exhibits the best performance. SI regularization is here quite stable and pushes

up CWR+ accuracy. AR1 is also stable w.r.t. parameter tuning: in Table D.3 you can

observe that we used almost the same hyperparameters for CaffeNet and GoogLeNet. For

GoggleNet AR1 reaches a remarkable accuracy of about 70% with very small standard

deviation among runs (see Appendix D.6), and the gap w.r.t. the Cumulative approach is

not large, thus proving that continuous learning (without storing/reusing old patterns) is

feasible in a complex incremental class scenario.

5.1.5 Conclusions

In this chapter, we evaluated different continual learning strategies in a single-incremental-task

and fully supervised scenario. The first set of experiments on BigBrother and iCubWorld in

the simpler NI setting already shown the difficulty encountered by deep architecture trained

continually. In particular we noted that:

• Forgetting can be a very detrimental issue: hence, when possible (i.e., transfer learning

from the same domain), it is preferable to use CNN as a fixed feature extractor to feed

an incremental classifier. In general, this results in better stability and often in improved

efficiency (i.e., tuning all CNN layers can be computationally expensive).
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• If the features are not optimized (transfer learning from a different domain), the tuning of

low level layers may be preferable and the learning strength (i.e., learning rate, number of

iteration, etc.) can be used to tame forgetting.

• Training a CNN from scratch can be advantageous if the problem patterns (and feature

invariances) are highly specific and a sufficient number of samples are available.

Unfortunately, these basic observation do not hold in more complex scenario where an automatic

“knowledge refresh” is not implicitly imposed by the nature of the task (e.g. the NC setting).

This is why, for better performance and general applicability a number of more advanced CL

strategies are needed.

In this section, the CWR, CWR+ and AR1 strategies have been evaluated on the iCIFAR-100

and the CORe50 benchmark in the SIT scenario. Early results on these benchmarks prove that

AR1 allows to train sequentially complex models such as CaffeNet and GoogLeNet by limiting

the detrimental effects of catastrophic forgetting. AR1 accuracy was higher than existing regu-

larization approaches such as LWF, EWC and SI. While we did not explicitly consider rehearsal

techniques in our comparison sessions, from preliminary results AR1 was also competitive with

iCARL on CORe50 [Lomonaco and Maltoni, 2018]. AR1 overhead in terms of storage is very

limited and most of the extra computation is based on information made available by stochastic

gradient descent. We showed that early stopping SGD after very few epochs (e.g., 2) is sufficient

to incrementally learn new data on CORe50. Further ideas could be investigated in the future

to quantify weight importance for old tasks such as exploiting the moving average of squared

gradients already considered by methods like RMSprop [Hinton, 2012] or Adam [Kingma and Ba,

2014] or the Hebbian-like reinforcements between active neurons recently proposed by Aljundi

et al. [2017]. Class-incremental learning (NC update content type) is only one of the cases of

interest in SIT. New instances and classes (NIC) update content type, available under CORe50,

is a more realistic scenario for real applications, and would constitute the main target of our

future research. AR1 extension to unsupervised (or semi-supervised) implementations, such as

those described in Section 3.6.1 and [Parisi et al., 2018b], is another scenario of interest for future

studies. In particular, Parisi et al. [2018b] propose an interesting 2-level self-organizing model

built on the top of a convolutional feature extractor that is capable of exploiting temporal coher-

ence in CORe50 videos and provides good results also with weak supervision. Although much

more validations in complex setting and new better approaches will be necessary, based on these

preliminary results we can optimistically envision a new generation of systems and applications

that once deployed can continue to acquire new skills and knowledge without the need of being

retrained from scratch.

5.2 Continual Reinforcement Learning

One of the greatest barrier for autonomous learning systems is their inability to learn without

explicit supervision. While much of the success of Deep Learning has been due to supervised

training over big and representative labeled datasets, Reinforcement Learning constitute a more
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biologically sound learning paradigm for approximating the supervision from sparse rewards via

trial and errors.

Reinforcement Learning, is actually quite interconnected with the idea of learning continually,

since its interaction with the external world is unfolding through time. Learning instability in

Reinforcement Learning, indeed, is not only due to a weak and approximate supervised signal

but also from the online nature of its learning which is prone to forgetting. The problem has

been tackled implicitly by the reinforcement learning community with memory replay [Mnih

et al., 2013] or multi-agent [Mnih et al., 2016] training procedures which allow the agent to

“remember” past knowledge and skills. However, as we have seen in the previous chapter, the

idea of simply rehearsing past knowledge through and external buffer or multiplying the number

of agent may not be the best scalable solution, especially considering very high-dimensional

problems in ever-changing environments.

Very recently the Proximal Policy Optimization (PPO) [Schulman et al., 2017], which perform

comparably or better than state-of-the-art RL approaches while being much simpler to imple-

ment and tune on many tasks, is another example on how CL techniques may be beneficial for

reinforcement learning. Indeed, it employs a regularization term based on the Fisher information

which may be as well seen as a regularization strategy like EWC.

Nevertheless, very little has been done in the context of pure continual reinforcement learning

settings, with multiple tasks or in complex ever-changing environments with recent deep learning

architectures. [Kirkpatrick et al., 2017] assessed EWC on a sequence of Atari games, and its

latest evolution on simple 3D navigation environment (and only tested for forward transfer)

[Schwarz et al., 2018].

In the following paragraph we will summarize some preliminary results on the VizDOOM Maze,

one of the first end-to-end continual reinforcement learning experiments on complex 3D ever-

changing environments and without exploiting any kind of task supervised signal t.

5.2.1 3D VizDOOM Maze

While the general focus of continual reinforcement learning research has been devoted to Multi-

Task scenarios, as presented in chapter 3, 3D VizDOOM Maze constitutes a step forward the

evaluation of new continual learning strategies that have to deal with unpredictable changes in

the environment within the same task. Since the notion of task may be ambiguous in general,

in the experiments below we refer to a single task following the formal framework presented

in Chapter 2 and meaning that the label t is always the same, hence, not providing additional

information to the model for customizing its behaviors.

Intuitively, we can hence consider the experiments as designed for assessing the performance of

the model in achieving a single task (i.e. object picking/avoiding) in an non-stationary complex

3D environment. It is worth noting that, even the “end-of-task” supervised signal is not provided

to the model, meaning that, the agent is neither made aware explicitly during training that the

environment distribution has changed. We regard at this situation as the most realistic setting

every agent should be able to deal with in real-world conditions.
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In recent literature, this problem has been tackled by using an external unsupervised generative

model in order to detect big changes in input space (hence the environment). In the following

experiments, instead, we propose to detect the environmental changes just by looking at the

ability of the agent to actually perform the task, namely the difference between the expected

reward and the actual reward. This not only signals a possible change in the environment effect-

ing the performance of the agent but also possible changes in the reward function or instability

of the learning process which may be tamed through consolidation (like in PPO). Moreover, we

do not use any task-specific parametrization nor any kind of memory replay.

We use a simple batched A2C with synchronous updates [Wu et al., 2017], but only within the

same MAP (the actual maze with fixed settings), so that when the MAP changes the model

cannot access in any way previous environmental conditions. The architecture of the agent used

for these experiments is a plain 4-layers ConvNet with 3 output neurons (encoding the turn-left,

turn-right and move-forward actions). On each of the considered environmental changes (i.e.

light, texture, object, all) four different general approaches are assessed:

1. Naive: This approach, like the homonymous strategy in the supervised context, consist in

just continuing back-propagation on the changes environment without any variation. This

will be considered as a lower bound for the other strategies.

2. Supervised: The supervised approach, for now on, can be considered as a second baseline

in which the “end-of-task” supervised signal is actually used for memory consolidation

purposes.

3. Static: In this strategy, we consolidate memory at fixed step in time. As we will see in

the experiments results, this may be very difficult to tune and rather inefficient, depending

on the memory consolidation technique used. In fact, when learning from scratch an early

and “blind” consolidation of memory may also hurt performance and actually hamper the

ability of learning in the future.

4. Unsupervised: Recent evidences in behavioural experiments on rats [Clopath, 2012] sug-

gests behavioral correlates of synaptic consolidation especially when the subject is exposed

to novel or strong external stimulus (e.g. a foot shock). Following this inspiration, the

central idea of this strategy is to consolidate memory only when a substantial difference

between the expected reward and the actual one is detected, i.e. when the agent encounter

an unexpected situation. This is practically implemented with the difference between a

long-term and short-term moving average that, when exceeds a particular threshold, trig-

gers the memory consolidation procedure. In Figure 5.10, an example in the light scenario

or the short and long-term moving average (computed over 6 and 50 episodes, respectively)

of the average cumulative reward during training is reported.

For simplicity, in these experiments, for each approach (except Naive) EWC basic implementa-

tion with one Fisher information for each consolidation step is used.

In Table 5.2 the average cumulative reward and the A metric results for the Light scenario and

the 4 different approaches is reported. Performance are evaluated at the end of the training on
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Figure 5.10: Short and long-term moving average (computed over 6 and 50 episodes, re-
spectively) of the average cumulative reward during training in the light scenario. Dotted
lines indicate when the environment is changed. In this example, the difference between the
short-term and long-term moving average exceed 500 when the environment changes.

Table 5.2: Average cumulative reward and A metric result for the Light scenario and the 4
different approaches.

Naive Supervised Static Unsupervised

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 382 -785 -440 527 -712 -198 318 -845 -561 496 -664 -307
M2 -969 677 -528 -188 704 621 -912 776 -5 -311 933 280
M3 -915 1219 978 367 287 821 -683 134 817 -131 498 942
A 228,66 419,66 91,66 404,5

each map Mi on 300 testing episodes, 100 for each different environmental condition Mi, even

the ones not already encountered. The supervised approach of consolidating memory exactly

when the task variation happen obtains the best A score of 419,66. The static approach, with

a consolidation step every 100 training episodes, is not allowing the model to “remember” and

reaching an average cumulative reward A of just 91,66. The unsupervised approach while not

reaching, on average, the same performance as the supervised approach exploiting the “end-of-

task” signal, is less than 15 reward points behind.

Table 5.3: Average cumulative reward and A metric result for the Texture scenario and the
4 different approaches.

Naive Supervised Static Unsupervised

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 829 459 -153 1240 977 69 1007 682 7 1019 767 39
M2 -35 1142 235 136 1337 690 -35 1280 571 466 1195 710
M3 -293 -288 1469 -171 -121 1325 -261 -188 1099 -221 -174 1092
A 470,66 624,33 483,66 562,83

Table 5.3 reports the same evaluation protocol but on the Texture environment. Also in the
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case the ranking among the strategies is the same, even though, it is worth noting that memory

retention seems much easier than in the light scenario. This may be due to the ability of the

model to consider the wall texture as irrelevant to the accomplishment of the task (as we would

expect). However, there are situation in which this is not always true. For example, being able

to recognize dead ends may help the model to avoid them ultimately improving its ability to

collect more objects of interest (hence improving its cumulative reward).

Table 5.4: Average cumulative reward and A metric result for the Object scenario and the 4
different approaches.

Naive Supervised Static Unsupervised

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 754 -1009 -1005 1271 -980 -968 1149 -1031 -1003 1370 -1067 -990
M2 -1032 193 -1013 552 326 -1075 -987 356 -933 615 358 -1023
M3 -975 -230 819 -230 -469 890 -766 -225 821 -105 -511 925
A -78,5 390 58 442

Being able to generalize over time the concept of a “column” or a “lantern” in the Object scenario,

instead, constitute an hard challenge for the agent. The visual features of the objects are the first

elements that can help the agent learn where to go (i.e. right combination of turn left, turn-right

and move forward actions) in order to maximize the cumulative reward. As the features of the

objects of interest are changed the model is suddenly unable to solve the task as also inducible

from the always negative forward transfer on the future environmental variations. In this case,

as shown in Table 5.4, the model has also quite an hard time remembering past environmental

condition, however, the unsupervised approach in this case is even better than the supervised

approach. We argue that this may be related to an increased stability due to additional memory

consolidation steps happening within the same map.

Table 5.5: Average cumulative reward and A metric result for the All scenario and the 4
different approaches.

Naive Supervised Static Unsupervised

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 1066 -998 -1000 1419 -995 -1000 1337 -999 -1000 1601 -997 -1000
M2 -855 295 -998 -253 155 -981 -1010 229 -1005 -452 236 -999
M3 -597 -264 593 -569 -463 682 -334 -218 742 -450 -516 681
A 39,66 161,83 124,33 183,33

The All scenario, as intuitively conceivable, constitutes the hardest challenge for an agent that

learn continually. Table 5.5 summarize the results for the related experiments. Also in this case,

the unsupervised approach perform significantly better than Naive and Static and slightly better

than the Supervised approach.

5.2.2 Conclusions

The preliminary experiments above on four different scenarios in non-stationary environments

show that an unsupervised approach without “end-of-task” signal, external models or task-

specific parametrization is not only possible but may be competitive with respect to a standard
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supervised approach.

However, a difficulty that may arise from such an approach, it that, in case of positive forward

transfer followed by a possible negative backward transfer (i.e. being able to perform well on

the new conditions but then possibly forget how to solve the task in the previous one) memory

consolidation does not take place and the agent actually forget how to solve the task in previous

conditions without noticing it by just looking at its cumulative reward curve. It is worth noting

that this particular forgetting situation is not uncommon also for biological systems: for example,

at the end of a math curriculum we may easily find ourselves to have forgotten even the most

basic notions without ever noticing it.

This problem may be tackled by looking at an additional regularization loss for reconstructing

the input image (or predicting the next one) since changes in the input space are more evident.

In this way, while still using a single model and construct more robust features [Canziani and

Culurciello, 2017; Hermann et al., 2017], we could integrate the benefit of both approaches when

learning continuously.

5.3 Continual Unsupervised Learning

As in reinforcement learning, continual learning may be particularly interesting if used in con-

junction with unsupervised learning. The idea of continually providing feedback to the model

indeed is one of the main obstacle to the use and deployment of AI systems that learn con-

tinuously. A great example of application may be sequence learning problems like time series

forecasting, anomaly detection or recommendation systems.

In the following sections we evaluate the simple SST technique on a object recognition task

when a model is exposed to a continuous, temporal coherent stream of unlabeled data using the

Seq-Norb and Seq-COIL-100 benchmarks. Since this scenario is surely more difficult to achieve

without any supervision of the ones mentioned before, in our experiments we relax the completely

unsupervised assumptions starting from a pre-trained model and expecting to encounter images

belonging to the same classes encountered during this initial training phase, making it essentially

a semi-supervised scenario. A 5-layers Hierarchical Temporal Memory and a standard LeNet7

will be used for the experiments presented in this section.

HTM Hierarchical temporal memory (HTM ) [George and Hawkins, 2009] is a biologically

inspired framework that can be framed into multistage Hubel-Wiesel architectures [Ranzato

et al., 2007], a specific family of deep architectures. A brief overview of HTM is provided in

Appendix A. A more comprehensive introduction can be found in [Maltoni, 2011a] and [Maltoni

and Rehn, 2012].

Analogously to CNN, HTM hierarchical structure is composed of alternating feature extraction

and feature pooling layers. However, in HTM feature pooling is more complex than typical sum

or max pooling used in CNN, and the time is used since the first training steps, when HTM self-

develops its internal memories, to form groups of feature detectors responding to temporally-close
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inputs. This is conceptually similar to the unsupervised feature learning proposed in [Goroshin

et al., 2015; Zou et al., 2011, 2012].

In the classical HTM approach [Maltoni, 2011a] once a network is trained, its structure is frozen,

thus making further training (i.e., continual learning) quite critical. Maltoni and Rehn [2012] in-

troduced a technique (called HSR) for HTM (incremental) supervised training based on gradient

descent error minimization, where error back-propagation is implemented through native HTM

message passing based on belief propagation. In this section HSR will be used for semi-supervised

tuning.

The HTM architecture here adopted includes some modifications with respect to [Maltoni, 2011a;

Maltoni and Rehn, 2012]. We experimentally verified that these modifications yield some ac-

curacy improvements when working with natural images, and, at the same time, reduce the

network complexity. Presenting these architectural changes in detail is not in the scope of this

section, but some hints are given in the following:

• Dilobe ordinal filters: the feature extraction at the first level is not based on a variable

number of self-learned templates as described in Maltoni [2011a], but is carried out with a

bank of 50 dilobe ordinal filters Sun and Tan [2009]. Each filter, of size 8×8, is the sum

of two 2d Gaussians (one positive and one negative) whose center, size and orientation are

randomly generated (see Figure 5.11). Each filter computes a simple intensity relationship

between two adjacent regions (i.e. the two filter lobes) which is quite robust with respect to

light changes, and (in our experience) discriminant enough for low level feature extraction.

Although one could setup an unsupervised approach to learn optimal filters from natural

images, for simplicity in this work we generated them randomly and kept them fixed.

• Partial receptive field. in the classical HTM implementation the receptive field of a node is

the union of the child node receptive fields, and is not possible for a node to focus only on a

specific portion of its receptive field. In general, this does not allows to isolate objects from

the background or to deal with partial occlusions. A simple but effective technique has been

implemented to deal with partial receptive fields.

Figure 5.11: A graphical representation of the 50 “random” dilobe filters at level 1.

The HTM architecture used in our experiments has 5 levels:
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• Input: 1024 nodes (32×32) connected to image pixels.

• Intermediate 1: 169 (13×13 nodes), each node has 8×8 child nodes.

• Intermediate 2: 169 (13×13 nodes), each node has 1 child node.

• Intermediate 3: 9 (3×3 nodes), each node has 5×5 child nodes.

• Output: 1 node with 3×3 child nodes.

Since intermediate level 2 and 3 include both feature extraction and feature pooling, and the

input level in this case is not performing any particular processing, the above 5 levels correspond

to 6 levels in a CNN (accidentally the same of LeNet7). Note that an HTM node is much more

complex than a single artificial neuron in conventional NN, since it was conceived to emulate a

cortical micro-circuit [George and Hawkins, 2009]. HTM accuracy on baseline NORB is reported

as additional material in Appendix B.1.

The CNN architecture used in our experiments is an minor modification of “LeNet7” that was

specifically designed by LeCun et al. [2004] to classify NORB images. This is still one of the

best performing architecture on NORB benchmarks. We empirically proved that working on

32×32 images does not reduce accuracy with respect to the 96×96 original images. So our main

modification concerns the reduced feature map size and filter size to deal with 32×32 monocular

inputs (see Figure 5.12).

Figure 5.12: The CNN used in this work (original LeNet7 adapted to 32×32 inputs). X@Y×Y
stands for X feature maps of size Y×Y; (Z×Z) stands for the filters of size Z×Z.

LeCun et al. [2004] suggested to train the LeNet7 with the squared error loss function, which

naturally fits our semi-supervised tuning formulation. In our experiment on the standard NORB

benchmark we evaluated some modifications to the architecture or the training procedure: i)

Max pooling instead of the original sum pooling; ii) Soft-max + log-likelihood instead of squared

error; iii) Dropout; but none of these changes (nowadays commonly used to train CNN on large

datasets) led to consistently better accuracy, so we came back to the original version. Since we

are not using any output normalization6, the network output vector is not exactly a probability

vector: however looking at the output values we noted that after a few training iterations they

approximate quite well a probability vector: all elements in [0, 1] and summing to 1. To be sure

of the soundness of our CNN implementation and training procedure we tried to reproduce the

results reported in [LeCun et al., 2004] for a LeNet7 trained on the full “normalized-uniform”

dataset of 24300 patterns (4860 for each of the 5 classes). Since results in [LeCun et al., 2004] are

reported only for the binocular case, for this control experiment we also used binocular patterns

6Any attempt to introduce a normalization (e.g. softmax) resulted in some accuracy loss.
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(even if in the format 32×32). After some tuning of the training procedure, we achieved a

classification error of 5.6% which is slightly better than the 6.6% reported in [LeCun et al.,

2004], aligned with 5.6% of Ranzato et al. [2007] and not far from the state-of-the-art 3.9%

reported in [Le et al., 2010]. More details on the CNN accuracy on baseline NORB (including a

comparison with HTM) can be found in Appendix B.1.

5.3.1 Seq-NORB

In this section we evaluate the 4 different variation of the SST continual learning strategy varia-

tions (SupT, SupTR, SST-B, SST-A) introduced in Chapter 3 on the Seq-NORB and Seq-COIL-

100 benchmarks. In all the experiments:

• We used 32×32 monocular patterns (left eye only).

• We report classification accuracy as frame based classification accuracy (the sequence based

classification scenario will be addressed in future studies) as defined in section 4.2.1.

• For semi-supervised learning, each training batch of 1,000 frames is treated as a single frame

flow, without exploiting the regular sequence order and size within the batch to isolate the

50 temporally-coherent sequences. In fact, even if in natural vision abrupt gaze shifts could

be detected to segment sequences, we prefer to avoid simplifying assumptions on this.

• To limit bias induced by the batch order presentation, we averaged experiments over 10

runs and at each run we randomly shuffled the batches Bi, i = 2, . . . , 10 (B1 is always used

for initial supervised training). By measuring the standard deviation across the 10 runs, we

can also study the learning process stability.

• To avoid overfitting we did not performed a fine adjustments of parameters characterizing

the (parametric) update strategies. We set them according to some exploratory tests and

then kept the same values for all the experiments:

– For SupTR, the weight λ of the supervised component is set to 2
3 .

– For SST-A the self-confidence threshold sc is set to 0.65.

When performing continual learning, care must be taken to avoid catastrophic forgetting. In

fact, since patterns belonging to previous batches are no longer available, training the system

with new patterns could lead to forget old ones. Even if in our tuning scenario the new patterns

come from the same objects (pose and lighting variations) and there is some overlapping7 in the

training sequences, catastrophic forgetting is still an issue.

For HTM we experimentally found that a good trade-off between stability and plasticity can be

achieved by running only 4 HSR iterations for each batch of 1,000 patterns, while for CNN we

found that the optimal number of iterations is much higher (about 100 iterations).

7Since we are not enforcing any mindist between training sequences, the random walk can lead to the inclusion
of the same frame in different sequences/batches. In our opinion, this better emulates unsupervised human
experience with objects, where the same object view can be refreshed over time.
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Figure 5.13: HTM accuracy on the test set for mindist = 1 (a) and mindist = 4 (b).
Positions 2, . . . , 10 (x-coordinate) denote the test set accuracy after incremental tuning with
batches Bi, i = 2, . . . , 10. Position 1 exhibits the same accuracy for all the update strategies
because it denotes the accuracy after supervised training on B1. The bars denote 95% mean
confidence intervals (over 10 runs).

Figure 5.13 shows HTM accuracy at the end of pre-training8 on B1 and after each training batch

(points B2, . . . , B10). We note that:

• Supervised tuning SupT works well and each new batch of data contributes to increase the

overall accuracy.

• Regularized supervised tuning SupTR performs slightly better than SupT, and more impor-

tant, makes the learning process more stable; this can be appreciated by the smoother trend

in the graphs and by the average standard deviation over the 10 runs, that (for mindist

= 1) is 0.7% for SupT and 0.4% for SupTR. This is in line with results of [Mobahi et al.,

2009], where a relevant accuracy improvement was reported on COIL-100 when regularizing

the supervised learning with temporal coherence. Here the gap between SupT and SupTR

is smaller than in [Mobahi et al., 2009], probably due to the fact that our tuning batches

are quite small (1,000 patterns) and regularization plays a minor role.

• SST-B and SST-A accuracy is surprisingly good when compared with supervised accuracy,

proving that temporal continuity is a very effective surrogate of supervision for HTM. Ini-

tial trends of SST-B and SST-A are similar, then SST-B tends to stabilize while SST-A

accuracy continues to increase approaching supervised update SupT. The self-confidence

computation that SST-A uses to decide whether updating the gradient or not, seems to be

a valid instrument to skip cases where temporal continuity is not effective (e.g. change of

sequence, very ambiguous patterns, etc.).

Figure 5.14 shows the results of the same experiment performed with the CNN. Here we observe

that:

• Accuracy at the end of initial supervised training (on B1) is similar to HTM.

8No additional data (e.g., jittered patterns) is used for HTM pre-training.



Chapter 8. Experimental Evaluation 96

• SupT and SupTR lead to a remarkable accuracy improvement during incremental tuning

with Bi, i = 2, . . . , 10 even if accuracy is about 2% lower than HTM and for mindist = 4

the learning process appears to be less stable.

• Unexpectedly, the semi-supervised tuning SST-B and SST-A did not work with our CNN

implementation. We tried some modifications (architecture, learning procedure) but with-

out success. The only way we found to increase accuracy in the semi-supervised scenario

is with the variant of SST-A (denoted as SST-A-∆) introduced and discussed in section

5.3.1.2, However, also for SST-A-∆ the accuracy gain is quite limited if compared with

semi-supervised tuning on HTM.

A similar trend can be observed in the experimental results reported as additional materials

(Appendix B.2), where the native object segregation is maintained.

Figure 5.14: CNN accuracy on the test set for mindist = 1 (a) and mindist = 4 (b).

5.3.1.1 Making the problem harder

The good performance of HTM in semi-supervised tuning reported in the previous section could

be attributed to the initial high-chance of self-discovering the pattern class. In fact, if the initial

classification accuracy is high enough, the missing class label can be replaced by a good guess.

To study SST effectiveness for harder problems, where the initial classification accuracy is lower,

we set-up two experiments:

• the former consists in deliberately (and progressively) deteriorating the initial classification

accuracy by providing a certain amount of wrong labels during the supervised training on

B1.

• the latter uses the same training and test batches but turns the problem into a 50-class

classification. As discussed in section 4.2.1, this is much more difficult (expecially for 32×32

patterns) because different NORB objects (e.g. two cars) are visually very difficult to dis-

tinguish at certain angles (even for humans).

Figure 5.15 shows results of these experiments. We note that:
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• As the initial classification accuracy degrades, SST-A accuracy degrades gently and the gap

between initial and final accuracy remains high. Even a limited initial accuracy of about

35% does not prevent SST-A to benefit from semi-supervised tuning.

• Of course here the gap between SST-A and supervised tuning SupT/SupTR (not reported

in the graph) is higher because supervised tuning is able to overcome the introduced initial

degradation since the second batch, always leading to a final accuracy close to Figure 5.13.a.

• The 50-class experiment can be considered an extreme case, because the initial classification

accuracy is about 25% and even supervised tuning approaches (SupT and SupTR) are not

able to increase final performance over 44%. In this scenario SST-B after an initial stability

(batches B2, . . . , B5) starts drifting away (batches B6, . . . , B10). On the contrary, SST-A

denotes a stable (even if limited) accuracy gain, proving to be able to operate also in high

uncertainty conditions.

Figure 5.15: a) HTM + SST-A accuracy on the test set (mindist = 1) for different amounts
of wrong labels provided during initial supervised training on B1. b) HTM accuracy on the
test set (mindist = 1) for different update strategies on the 50-class problem.

5.3.1.2 Control experiments

In this section we introduce further experiments with the aim to better understand the factors

contributing to the success of semi-supervised tuning. In particular we modified SST-A as:

• SST-A-∆:

d(v(t)) =

∆argmax
i

f(v(t)) if max
i
fi(v

(t)) > sc

N(v(t)) otherwise

(5.1)

This is very similar to SST-A, in fact f(v(t)) is computed in the same way by exploiting

temporal coherence, but here when the self-confidence is higher than the threshold, instead

of enforcing the temporal coherent pattern f(v(t)), we pass back the delta distribution

corresponding to the self-guessed class.
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• SST-A-∆-noTC :

d(v(t)) =

∆argmax
i

Ni(v(t)) if max
i
Ni(v

(t)) > sc

N(v(t)) otherwise

(5.2)

Here no temporal coherence is used neither for estimating self-confidence nor for enforc-

ing output continuity. This correspond to the basic self-training approach used in several

applications.

Figure 5.16: a) HTM accuracy (5-class problem, maxdist = 1) on SST-A and its two variants.
b) CNN accuracy (5-class problem, maxdist = 1) on SST-A and its two variants.

Figure 5.16.a compares HTM accuracy on SST-A and the two above variants. The small gap

between SST-A and SST-A-∆ (in favor of SST-A) can be attributed to the regularizing effect

of passing back a temporally coherent output vector instead of a sharp delta vector. A totally

unsatisfactory behavior can be observed for the second variant (SST-A-∆-noTC ) where the

network cannot look back in time but can only exploits the current pattern: the flat accuracy in

the graph testifies that in this case self-training does not allow the HTM to improve. This is a

classical pitfall of basic self-training approaches where the patterns whose label can be correctly

guessed do not bring much value to the improve the current representation while really useful

patterns (in term of diversity) are not added because of the low self-confidence.

Figure 5.16.b shows CNN accuracy for the same experiments. While SST-A-∆-noTC here too

remains ineffective, in this case SST-A-∆ is much better than SST-A, even if far from semi-

supervised accuracy achieved by HTM. But why our CNN implementation does not tolerate a

desired output vector made of (combinations) of past output vectors, and prefer a more radical

delta vector computed by self-estimation of the pattern class? By comparing the output vectors

produced by HTM and CNN when making inference on new patterns, we noted that HTM

posterior probabilities are quite peaked around one class (similarly to delta form) while for CNN

they are more softly spread among different classes. Numerically this can be made explicit by

computing the average entropy over the network outputs of 1,000 previously unseen patterns:

for CNN we measured and entropy of 1.44 bit, while for HTM the entropy is 0.50 bit, which is

much closer to the 0 entropy of delta vector. Therefore, it seems that HTM output vectors are
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already in the right form for the loss function, while CNN output vectors need to be sharpened

to make learning more effective.

5.3.2 Seq-COIL-100

To better generalize the results shown on Seq-NORB we extend the evaluation of SST also on

COIL-100 with the same deep architectures. Figure 5.17 shows HTM and CNN accuracy for

different SST strategies. We observe that:

• The trend for supervised strategies is similar to NORB; both HTM and CNN constantly

improve initial accuracy as new batches are presented, with the CNN slightly overperforming

HTM. For HTM regularization seems not providing any advantage, probably due to the

shorter sequence length (10 frames here instead of 20 frames in NORB) and the presence of

gaps in the sequences (patterns segregated/excluded because of their inclusion in the test

set).

• Here too, semi-supervised strategies performs better for HTM than for CNN. It is worth

noting that in this case the base strategy SST-B outperforms SST-A thus indicating that

the self-confidence threshold sc (kept fixed at 0.65) is probably too conservative for this

dataset.

Figure 5.17: HTM and CNN incremental tuning accuracy on COIL-100.

5.3.3 Conclusions

In this section we studied semi-supervised tuning based on temporal coherence. The proposed

tuning approaches have been evaluated on two deep architectures (HTM and CNN) obtaining

partially discordant results. As to HTM our experiments proved that in some conditions even a

trivial approach enforcing the output slow change (SST-B) can significantly improve classification

accuracy. A slightly more complex approach (SST-A), exploiting temporal coherence twice: i) to

enforce the output slow-change; ii) to compute a self-confidence value to trigger semi-supervised

update, proved to be very effective, sometimes approaching the supervised tuning accuracy.
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Our CNN implementation worked well with supervised tuning strategies, but (unexpectedly)

demonstrated a lower capacity to deal with incremental semi-supervised tuning. Of course the

encountered limitations could be due to the specific CNN architecture and training, and the

outcomes of other recent studies [Goodfellow et al., 2013] can be very useful to check alternative

setups (e.g., better investigating the effect of dropout). We recognize that the empirical evalu-

ations carried out in this study are still limited, and to validate/generalize our semi-supervised

tuning results, we need to test the proposed approaches on other larger datasets, including nat-

ural videos of real objects smoothly moving in front of the camera like the ones contained in

CORe50.

However, based on the results obtained so far a question emerges: what made HTM more effective

than CNN for incremental learning and semi-supervised tuning from temporal coherence? At

this stage we do not have an answer to this question, and we can only formulate some hypotheses,

by pointing out architectural/training differences that could have a direct impact on forgetting

and capability to work with unlabeled data:

• Pre-training: McRae and Hetherington [1993] argued that network pre-training can miti-

gate catastrophic forgetting effects. During initial training HTM self-develop internal mem-

ories from patterns of the domain instead of randomly initializing weighs. This could make

it more stable and resistant to pattern forgetting and lack of labels. Of course CNN can

be pre-trained as well (see [Wagner et al., 2013] or a comparative evaluation of different

pre-training approaches), and this is one of directions we intend to follow in our future

studies.

• Type of parameters tuned: CNN training is mostly directed to feature extraction layers

(i.e. filter parameters), while HTM + HSR main target are parameters of feature pooling

layers. Maltoni and Rehn [2012] argued that the most important contribution of HSR

is tuning the probabilities denoting how much each coincidence (i.e., a feature extractor)

belongs to each group (i.e., a set of feature extractors). Our HTM incremental tuning by

HSR is not altering feature extractors, but attempts to optimally arrange existing feature

extractors in groups to maximize invariance. Referring to the stability-plasticity dilemma we

speculate that keeping feature extractors stable (especially at low levels) promotes stability

while moving pooling parameters is enough to get the required plasticity.

In conclusion, we believe that semi-supervised and unsupervised tuning, still scarcely studied

with deep learning architectures, is a powerful approach to mimic biological learning where

continual learning is a key factor. The lack of supervision, here surrogated by temporal coherence

only, can be complemented by other contextual information coming from different modalities

(Multiview learning), or from different processing paths (e.g., Co-training). Of course when

supervisor signals are available, both supervised and unsupervised learning can be fused into an

hybrid scheme (as here demonstrated for SupTR). Moreover, SST can be used in conjunction

with other continual learning strategies presented in this chapter for explicitly addressing the

issue of forgetting while learning from the new coming data.

The availability of powerful computing platforms makes the development of continual learning

system feasible for a number of practical applications. For example in our non-optimized HTM
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implementation, 4 HSR iterations on 1,000 patterns takes about 35 seconds (On a CPU Xeon

W3550, 4 cores) we are confident that, upon proper optimization, SST can run on-line once a

pre-trained system is switched in working mode.



6

Conclusions and Future

Challenges

“Does anyone ever finish learning to read music? Do we finish learning how to write or

do research? Do we ever learn anything completely? Or do we just keep getting better

than we were before?”

– Mark Ring, 1994

6.1 Discussion and Conclusions

The intent of this dissertation was to provide a number of original contributions to the early

development of continual learning research in the context of deep architectures for AI. The

objective was to propose such contributions within a general approach to continual learning

taking into account several practical factors as well as long-term goals.

The comprehensive framework proposed in Chapter 2, is an important step in this direction. The

framework proposed, while not too abstract, is general enough to consider all the possible contin-

ual learning interpretation proposed so far and avoid possible and misleading misunderstandings

that may arise when different point of view cannot find a more formal common ground. One

of the most important steps in disambiguating state-of-the-art research is the disentanglement

of the notion of task from the training batch. In fact, while not the principal focus of current

continual learning research, many training batches may be related to the same task, or, the

notion of task during training may not be available to the model at all. This is modeled in the

framework with the availability of the t label, making explicit for each experiment or strategy the

use of this additional supervised signal. The definition of this framework has allowed us to define

three different scenarios with an intuitive interpretation: multi-task, single-incremental-task and

multiple-incremental-task based on the nature and availability of the the t label.
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Machine learning research is often driven by a practical results on complex benchmarks acknowl-

edged by the community. However, in continual learning research, and especially considering

deep learning architectures, there were no specific datasets or benchmarks available to assess

new strategies and advance our understanding of the problem. This is why in this dissertation

we proposed several benchmarks based on the re-designed of classic datasets such as Seq-NORB,

Seq-COIL100, and Seq-iCubWord28 but also completely new benchmarks such as CORe50 and

3D-VizDOOM Maze, specifically designed for continual learning research.

Having defined a rich set of benchmarks on which we could start to assess novel continual

learning approaches, we proposed several CL strategies especially targeting Single-Incremental-

Task scenarios, which, especially considering their additional complexity, was not very much

explored until now, designing computationally lighter and memory efficient techniques such as

SST, CWR, CWR+ and AR1.

The evaluation conducted in Chapter 5, have shown that the continual learning strategies pro-

posed may improve AI systems capabilities at many different levels. They may not always make

our prediction models more adaptive and autonomous over time, but also solve many prac-

tical issues related to sustainability in terms of hardware resources with the ultimate goal of

making AI more ubiquitous and scalable. The experimental evaluation carried out in differ-

ent machine learning paradigms like supervised, reinforcement or semi-supervised learning, have

further shown the impact CL may have not only per se, but especially if used in conjunction

with many other techniques developed so far in the context of deep learning. While surely not

completely exhaustive and improvable from many points of view, we think it has the sufficient

expressive power to show how the pursuit of the continual learning paradigm may be beneficial

for general AI research.

6.2 Open Challenges and Future Potential

All the benchmarks, metrics, strategies, experiments and the continual learning framework itself

assume in the dissertation that a number of data batches and/or tasks is available to the model

over time. However, as pointed out in [Chen and Liu, 2018], continual learning seen this way is

just a passive process, i.e., the system has no control over the order in which the learning tasks

are presented, which may be not only unrealistic for some applications but also limiting in terms

of learning speed-up and scalability. Ruvolo and Eaton [2013b] considered ELLA in an active

task selection setting. Assuming that there is a pool of candidate tasks, rather than choosing

a task randomly as in ELLA, [Ruvolo and Eaton, 2013a] chose tasks in a certain order with

the purpose of maximizing future learning performance using as few tasks as possible. However,

very little has been done concerning this problem with state-of-the-art deep learning models.

The problem has practical implications since each learning task may need a significant amount

of time of manual labeling or each learning task may take a long time for the system to run. In

such cases, learning in a task-efficient manner by choosing some tasks in certain order is more

scalable to real-life continual learning problems.
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Another important issue current continual learning techniques are not actually considering, is

the ability to actually forget what is unimportant (i.e. removing biased knowledge for improving

generalization). As brilliantly put by Kirkpatrick et al. [2017] in the development of EWC :

“Cascade models of synaptic plasticity construct dynamical models of synaptic states to under-

stand the trade-off between plasticity and memory retention. Cascade models have important

differences from our approach. In particular, they aim to extend memory lifetimes for systems at

steady state (i.e., the limit of observing an infinite number of stimuli). As such, they allow for

synapses to become more or less plastic and model the process of both retaining and forgetting

memories. In contrast, we tackle the simpler problem of protecting the network from interference

when starting from an empty net- work. In fact in EWC weights can only become more con-

strained (i.e., less plastic) with time and thus we can model only memory retention rather than

forgetting.”

This may be also particularly useful in circumstances where there is a semantic interference,

that is when the target function h∗ changes over time, and the need of forgetting becomes an

imperative.

Learning continually over a long sequence of task is another open problem. Nowadays, state-of-

the-art continual learning techniques are often assessed on a sequence of a dozen of tasks/batches

or less. This does not allow us to infer much on the feasibility of learning continually in real-world

applications often considering hundreds or even an unlimited amount of (often unbalanced) data

batches. Up to date, being able to assess the performances of the AI system after deployment is

also a related and challenging task. In fact, considering that storing data is often a not viable

option, sophisticated techniques for assessing possible drifts in terms of model performance over

past data distributions have not been proposed yet. Given the aforementioned problematics,

“online continual learning”, not very much explored until now, seems to become a distant goal.

Novel local rules for enhancing synaptic plasticity, as early described in [Aljundi et al., 2017], is

another interesting line of research for improving the efficiency of the continual learning process

and loosen the tight dependency from a strongly supervised, end-to-end feedback signal.

Finally, the integration of continual learning with Distributed or Federated Learning is an open

and particularly interesting research direction still to be explored that we regard as extremely

important for the future of this field. Indeed, since the amount of information already processed

and compressed within a prediction model by someone else will be much more likely to encounter

and convenient to learn from than a long stream of raw data, we argue that the continual

distillation and integration of already compressed knowledge will become an important topic for

the future of CL.

Despite the great amount of open problems and relative youth of continual learning research with

deep architectures, we regard the recent developments in this field as another important step

towards the computational neuroscience community and the common objective of uncovering

the computational principles of intelligence.
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6.3 Closing Remarks

While most approaches in the field of artificial intelligence have successfully been demonstrated

to operate in rather vertical and self-contained contexts, their application in more natural, ever-

changing, multi-modal and multi-task settings has been relatively modest.

The goal of continual learning research, from a practical point of view, is to improve current

machine learning methods for efficiently tackling such complex problems. Continual learning

may even impact artificial software systems used today, for example in domains such as computer

vision, robotics and internet-of-things, with applications running on the edge and dealing with

complex non-stationary environments other than subject to substantial hardware limitations or

privacy constraints.

Nevertheless, continual learning is not just a matter of learning efficiency. In the introduction of

this dissertation, we argued that current artificial learning systems show particular weaknesses

in five of the most important characterization of intelligence: adaptation, scalability, autonomy,

common sense and reasoning. The central thesis of this dissertation is that continual learning,

more or less explicitly, may bring us a step closer in overcoming these shortcomings.

The incremental development of cognitive abilities within the lifetime of an individual has been

found to be one of the dominating factors of natural learning and intelligence. If computers ever

are to exhibit rapid learning and adaptation capabilities similar to that of humans, they will

most likely have to follow the same principles.



Appendix A

Hierarchical Temporal Memory

Overview

This Appendix provides a brief overview of the HTM algorithm. A more detailed introduction

to HTMs structure, forward and backward messaging (including equations) is given in Sections

1 and 2 of [Maltoni, 2011b]. HTMs pre-training algorithms are presented in detail in [Maltoni,

2011a] while the HTM Supervised Refinement (HSR) is introduced in [Maltoni and Rehn, 2012].

Structure An HTM has a hierarchical tree structure. The tree is built up by a number of

levels, each composed of one or more nodes. A node in one level is bidirectionally connected

to one or more nodes in the level below and the number of nodes in each level decreases as we

ascend the hierarchy. Conversely, the node receptive fields increase as we move up in the tree

structure. By allowing nodes to have multiple parents we can create networks with overlapping

receptive fields. The lowest level is the input level, and the highest level (with typically only one

node) is the output level. Levels and nodes in between input and output are called intermediate

levels and nodes.

• Input nodes constitute a sort of interface: in fact, they just forward up the signals coming

from the input pattern.

• Every intermediate node includes a set, C, of so-called coincidence-patterns (or just coin-

cidences) and a set, G, of coincidence groups. A coincidence, ci, is a vector representing a

prototypical activation pattern of the node’s children. Coincidence groups are clusters of

coincidences likely to originate from simple variations of the same input pattern. Coinci-

dences belonging to the same group can be spatially dissimilar but likely to be activated

close in time when a pattern smoothly moves through the node’s receptive field (i.e., tem-

poral pooling). The assignment of coincidences to groups within each node is encoded in a

probability matrix PCG, where each element, PCGji = P (cj |gi), represents the probability

of a coincidence cj , given a group gi.
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• The structure of the output node differs from that of the intermediate nodes. In particu-

lar the output node has coincidences but not groups. Instead of memorizing groups and

group likelihoods, it stores a probability matrix PCW , whose elements PCWji = P (cj |wi)
represent the probability of coincidence cj given the class wi.

Inference. HTM inference (feedforward flow) proceeds from input to output level. Each inter-

mediate node: i) computes its coincidence activations by combining the messages coming from its

child-nodes according to the activation patterns encoded by the coincidences themselves; ii) cal-

culates its group activations by mixing coincidence activations through PCG values; finally, iii)

passes up information to parent node(s). The output node computes its coincidence activations

and turn them to class posterior probabilities according to PCW .

Pre-training. HTM pre-training is unsupervised for intermediate levels and partially super-

vised for the output level. Coincidences are learnt by sampling the space of activation patterns

while smoothly moving training patterns across the node(s) receptive fields. Once coincidences

are created they are clustered in groups by maximizing a temporal proximity criterion. The

output node coincidences are learnt in the same (unsupervised) way but coincidence-class rela-

tionships are learnt in a supervised fashion by counting how many times every coincidence is the

most active one (i.e., the winner) in the context of each class.

HTM Supervised Tuning (HSR). The probabilities in PCG’s (remember there is one PCG

matrix for each intermediate node) and PCW are the main elements manipulated by HSR.

Similarly to error backpropagation, HSR incrementally updates parameter values by taking steps

in direction opposite to the gradient of a loss-function. The whole process is implemented in a

simple (and computationally light) way based on native HTM (backward) message passing.
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Further Experiments on NORB

B.1 Baseline Accuracy on NORB

Here we report accuracy of HTM and CNN on the “standard” normalized-uniform NORB bench-

mark [LeCun et al., 2004]. We consider monocular 32×32 patterns and study the classification

accuracy on the full test set of 24,300 patterns, for training sets of increasing size. Results re-

ported below are obtained through a 5-fold cross validation, where for each round, 1/5 of the

test set was taken as validation set to stop the gradient descent at an optimal point and the

remaining 4/5 used to measure accuracy.

HTM training was performed as described in [Maltoni, 2011b]: a subset of the available patterns

is used for pre-training and the rest of the patterns for supervised tuning through HSR. This

allows to better control the network complexity when scaling to large training sets. Since the

HTM pre-training algorithm [Maltoni, 2011b] internally generates a number of jittered versions1

of the input patterns to emulate temporally coherent exploration sequences, for a fair comparison

we exported these patterns and added them to the training set used for CNN training2. The

number of HSR iterations (for optimal convergence on the validation set) is almost always less

than 50. CNN training is performed with mini-batches of 100-200 patterns. The number of error

backpropagation iterations (for optimal convergence on the validation set) is almost always less

than 150 iterations.

Figure B.1 shows the accuracy of HTM and CNN. When the number of training patterns per

class is small (i.e., 20, 50 and 100) HTM accuracy is slightly better than CNN; for larger train-

ing sets the accuracy of the two approaches is very similar. Concerning the training time, a

direct comparison is not possible because of different implementation languages and hardware

platforms. In particular, the CNN Theano implementation run on a GPU Tesla C2075 Fermi,

while the HTM run on a CPU Xeon W3550 - 4 cores. However, to give a coarse indication, both

1Consisting of small translations, rotations and scale changes.
2This is not the case for experiment with temporally coherent sequences (reported in Chapter 5.) because

when input comes from slowly moving patterns HTM does not need to internally generate jittered patterns.
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Training
patterns

Jittered
versions

HTM CNN

20×5 800 64.21% 60.58%
50×5 2,000 73.22% 69.64%
100×5 4,000 78.82% 77.27%
200×5 4,000 81.86% 82.80%
500×5 4,000 84.16% 83.87%

1,000×5 4,000 85.37% 85.47%
2,000×5 4,000 85.83% 86.20%
4,860×5 4,000 86.24% 85.01%

Figure B.1: HTM and CNN accuracy on standard normalized-uniform NORB benchmark.
The labels (number of training patterns per class) in the x-coordinate are equispaced for better
readability.

HTM and CNN training took about 3 hours3 for the largest training set case: 4860×5 + 4000

patterns.

B.2 Continual Learning on Seq-NORB (Native Object Seg-

regation)

The NORB benchmark introduced in Section 4.2.1 focuses on pose and lighting continual learning

and, unlike the original NORB protocol, it does not split the objects in two disjoint groups: for

each class, 5 objects in the training set and 5 objects in the test set.

Figure B.2: HTM and CNN incremental tuning accuracy, when splitting class objects as in
the original NORB protocol (for each class: 5 objects in the training set and 5 in the test
set). No mindist is here necessary between test and training batches because of the object
segregation.

Our choice was aimed at isolating the capability of learning pose and invariance from the ca-

pability of recognizing different objects of the same class (which is critical in NORB because of

the small number of objects per class). However, to further validate the efficacy of the proposed

3 For a single round of cross-validation.
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continual tuning, here we came back to the native object segregation and report results corre-

sponding to Section 5.3.1 results under this scenario. Figure B.2 shows HTM and CNN accuracy

for different tuning strategies. We observe that:

• The trend is very similar to the Section 5.3.1 experiments: even in this case, supervised

strategies work well for both strategies while semi-supervised tuning is effective for HTM

but not for our CNN implementation.

• The accuracy achieved is markedly lower with respect to Section 5.3.1, but is in line with

results reported above if we consider the number of training samples and the forgetting

effect due to continual learning.
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Adapting Pre-trained CNN to

Different Input Size

In the recent years, the pervasiveness of deep neural networks and the complexity of training

such architectures on datasets of remarkable size has led to the proliferation of pre-trained

models which represent a very good starting point for many customized solutions. However, this

approach requires adapting problem-specific data to a fixed size architecture which was designed

and optimized to solve another task. In the context of computer vision and object recognition,

for example, it is very common to stretch images of arbitrary sizes to 227×227 pixels which is

the typical input of well-known CNN models pre-trained on ImageNet: this often leads to highly

distort the original patterns and significantly increases inference time. A more elegant (and

efficient) approach is adapting a pre-trained model to work with input patterns of different size.

This is straightforward for convolution and pooling layers thanks to local (shared) connections,

but is much more problematic for fully connected layers, whose number of weights depends on

the input image size. In this case, two main strategies can be used:

1. Applying fixed size pooling (global or pyramidal) over the last convolution/pooling layer

as proposed in [He et al., 2015; Lin et al., 2014; Ren et al., 2017]. However, finetuning

of upper levels might be necessary if the input scale changes dramatically or the original

model was not designed with a fixed-size pooling layer at all.

2. Reusing the pre-trained network up to the last convolution layer and retraining the fully

connected layers from scratch on the new task and input size. A typical approach is also to

train an external classifier (e.g., SVM) from pooled features just after the last convolutional

layer.

Independently of the network adaption to a different input size, when the problem classes change,

the final softmax layer needs to be replaced and re-trained from scratch.

Since in our experiments we used the classic CaffeNet and VGG models (which have not been

trained in a multi-scale fashion) and we aimed at fast processing, we opted for the second strategy.
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Table C.1: Accuracy differences between reduced size CNNs (Mid) and the corresponding
full-size models on the 50 classes task. All the models have been pre-trained on ILSVRC-2012.
SVM training and CNN fine-tuning were performed on CORe50.

Accuracy (object level: 50 classes)

CNN + SVM (on top of ...) fc6 pool5

1 CaffeNet 63,46% 63,14%
2 Mid-CaffeNet 52,84%
3 VGG 69,03% 70,91%
4 Mid-VGG 59,25%

CNN + Finetuning Accuracy (object level: 50 classes)

5 CaffeNet 75,97%
6 Mid-CaffeNet 65,98%
7 VGG 77,39%
8 Mid-VGG 69,08%

Hence, we reshaped the input volume to 3×128×128, halved1 the number of units in the fully

connected layers fc6 and fc7 (from 4096 to 2048) and re-trained them from scratch. This results

in a relevant speedup at inference time (3.4× for CaffeNet and 4.67× for VGG). The resulting

mid-size models are now suitable to be tuned on CORe50 native 128×128 frames.

Table C.1 summaries our findings. For the full-size models, extracting features from fc6 or pool5

is nearly equivalent in terms of accuracy (compare columns fc6 and pool5 for raw 1 and 3 in

the table). So the lack of a fully pre-trained fc6 in the mid-size models is not critical. However,

in the experiments with SVM (rows 1:4), the mid-size networks loose about 10% accuracy with

respect their original version. A similar gap (just slightly smaller for VGG) can be observed when

the networks are finetuned (rows 5:8). The reason of such accuracy drop is not totally clear to

us. On the one hand, if we consider finetuning experiments (rows 5:8), fc6 and fc7 have been

pre-trained on a higher number of patterns in the full-size networks, and therefore it is reasonable

to expect higher accuracy; on the other hand, if we consider pool5 + SVM experiments, both

the network exploits the same pre-training and stretching our input patterns from 128×128 to

227×227 (in principle) does not add new information.

We did similar experiments on other datasets (e.g., NORB, COIL-100, BigBrother, iCubWorld32)

and obtained close results: it seems that the zoomed image, even if a blurred, allow a more de-

tailed feature extraction to be performed by the network. This can be due to the spatial scale of

the filters learned on ILSVRC-2012 or by a richer hierarchical representation (more neurons and

link between neurons cover the object region). We believe that more investigations are necessary

to fully understand the reasons and to make available pre-trained mid-size networks (for patterns

whose native size is close to 128×128) which are competitive with full-size ones.

1As other authors we noted that such reduction has no significant impact on accuracy.



Appendix D

Single-Incremental-Tasks

Experiments Details

D.1 Implementation Details (Caffe framework)

Since implementing dynamic output layer expansion was tricky in Caffe framework, we ini-

tially implemented the different strategies by using a single maximal head (i.e., including all the

problem classes since from the beginning) instead of an expanding head. In principle, the two

approaches are quite similar, since if a particular batch does not contain patterns of a given

class, no relevant error signals are sent back along the corresponding connections during SGD.

Hoverer, looking at the details of the training process, the two approaches are not exactly the

same.

For example, for CWR+ we verified, with some surprise, that the maximal head simplifying

approach constantly leads to better accuracy (up to 6-7% on CORe50) w.r.t. to the expanding

head approach. We empirically found that the reason is related to the gradient dynamics during

the initial learning iterations: working with a higher number of classes makes initial predictions

smaller (because of softmax normalization) and the gradient correction for the true class stronger;

in a second stage, predictions start to converge and the gradient magnitude is equivalent in the

two approaches. It seems that for SGD learning (with fixed learning rate) boosting the gradient

in the first iterations favors accuracy and reduces forgetting. We checked this by experimentally

verifying that the expanding head approach combined with a variable learning rate performs

similarly to maximal head with fixed learning rate. Therefore, to maximize accuracy and reduce

complexity, CWR and its evolutions (CWR+ and AR1) have been implemented with the maximal

output layer approach. Referring to the pseudocode in Algorithms 1, 2 and 3, it is sufficient to

keep to constant maximum size (e.g., 50 for CORe50) and remove the line “expand output layer

with...”.

For the other approaches we verified that: LWF performs slightly better with expanding head

approach while EWC and SI work better (and are easy to tune) with maximal head. To produce
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the results presented in Section 5.1.4 we used for each strategy the approach that proved to be

the most effective. Strategy specific notes are reported in the following for Caffe implementation.

LWF It is worth noting that in Caffe a cross-entropy loss layer accepting soft target vectors is

not available in the standard layer catalogue and a custom loss layer need to be created.

EWC To implement EWC in Caffe we:

• compute, average and clip F i values in pyCaffe (for maximum flexibility). To calculate

F ik the variance of the gradient should be computed by taking the gradient of each of the

ni patterns in isolation. To speed-up implementation and improve efficiency we computed

the variance at mini-batch level, that is using the average gradients over mini-batches. In

our experiment we did not note any performance drop even when using mini-batches of

256 patterns.

• pass F and Θ∗ to the solver via a further input layer.

• modified SGD solver, by adding a custom regularization that perform EWC regularization

in weight decay style.

SI Starting from EWC implementation, SI can be easily setup in Caffe, in fact the regularization

stage is the same and we only need to compute F i values during SGD. To this purpose, in current

implementation for maximum flexibility, we used pyCaffe.
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D.2 Architectural Changes in the Models Used on CORe50

Table D.1: Summary of changes w.r.t. the original CaffeNet and GoogLeNet models used in
this dissertation.

CaffeNet

Layer Original Modified

data (Input) size: 227× 227 size: 128× 128
conv1 (convolutional) stride: 4 stride: 2
conv2 (convolutional) pad: 2 pad: 1
fc6 (fully connected) neurons: 4096 neurons: 2048
fc7 (fully connected) neurons: 4096 neurons: 2048
fc8 (output) neurons: 1000 (ImageNet classes) neurons: 50 (CORe50 classes)

GoogLeNet

Layer Original Modified

data (Input) size: 224× 224 size: 128× 128
conv1/7x7 s2 (convolutional) stride: 2, pad: 3 stride: 1, pad: 0
loss1/ave pool (pooling) kernel: 5 kernel: 6
loss1/fc (fully connected) neurons: 1024 layer removed
loss1/classifier (output int. 1) neurons: 1000 (ImageNet classes) neurons: 50 (CORe50 classes)
loss2/ave pool (pooling) kernel: 5 kernel: 6
loss2/fc (fully connected) neurons: 1024) layer removed
loss2/classifier (output int. 2) neurons: 1000 (ImageNet classes) neurons: 50 (CORe50 classes)
loss3/classifier (output) neurons: 1000 (ImageNet classes) neurons: 50 (CORe50 classes)

D.3 Hyperparameter Values for CORe50

Table D.3: the hyperparameter values used for CaffeNet and GoogLeNet on CORe50. The
selection was performed on run 1, and hyperparameters were then fixed for runs 2, . . . , 10.

Cumulative

Parameters CaffeNet GoogLeNet

epochs, η (learn. rate) 4, 0.0025 4, 0.0025

Naive

Parameters CaffeNet GoogLeNet

Head (see App. A) Maximal Maximal

B1: epochs, η (learn. rate) 2, 0.0003 4, 0.005

Bi, i > 1: epochs, η (learn. rate) 2, 0.0003 2, 0.0003
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LWF

Parameters CaffeNet GoogLeNet

Head (see App. A) Expanding Expanding

map [0.66...0.9] → [0.45...0.85] [0.66...0.9] → [0.45...0.85]

B1: epochs, η (learn. rate) 2, 0.0003 4, 0.0003

Bi, i > 1: epochs, η (learn. rate) 2, 0.0002 2, 0.0002

EWC

Parameters CaffeNet GoogLeNet

Head (see App. A) Maximal Maximal

maxF 0.001 0.001

λ 5.0e7 3.4e7

B1: epochs, η (learn. rate) 2, 0.001 4, 0.002

Bi, i > 1: epochs, η (learn. rate) 2, 0.000025 2, 0.000035

SI

Parameters CaffeNet GoogLeNet

Head (see App. A) Maximal Maximal

ξ 1e-7 1e-7

w1, wi(i > 1) 0.00001, 0.005 0.00001, 0.005

maxF 0.001 0.001

λ 5.0e7 3.4e7

B1: epochs, η (learn. rate) 2, 0.001 4, 0.002

Bi, i > 1: epochs, η (learn. rate) 2, 0.00002 2, 0.000035

CWR

Parameters CaffeNet GoogLeNet

Head (see App. A) Maximal Maximal

w1, wi(i > 1) 1.25, 1 1, 1

B1: epochs, η (learn. rate) 2, 0.0003 4, 0.0003

Bi, i > 1: epochs, η (learn. rate) 2, 0.0003 2, 0.0003

CWR+

Parameters CaffeNet GoogLeNet

Head (see App. A) Maximal Maximal

B1: epochs, η (learn. rate) 2, 0.0003 4, 0.0003

Bi, i > 1: epochs, η (learn. rate) 2, 0.0003 2, 0.0003
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AR1

Parameters CaffeNet GoogLeNet

Head (see App. A) Maximal Maximal

ξ 1e-7 1e-7

w1, wi(i > 1) 0.0015, 0.0015 0.0015, 0.0015

maxF 0.001 0.001

λ 8.0e5 8.0e5

B1: epochs, η (learn. rate) 2, 0.0003 4, 0.0003

Bi, i > 1: epochs, η (learn. rate) 2, 0.0003 2, 0.0003

D.4 Hyperparameter Values for iCIFAR-100

Table D.4: the hyperparameter values used for CifarNet [Zenke et al., 2017] on iCIFAR-100.
The selection was performed on run 1, and hyperparameters were then fixed for runs 2, . . . , 10.

Cumulative

Parameters CifarNet

epochs, η (learn. rate) 180, 0.005

Naive

Parameters CifarNet

Head (see App. A) Maximal

B1: epochs, η (learn. rate) 60, 0.001

Bi, i > 1: epochs, η (learn. rate) 60, 0.001

LWF

Parameters CifarNet

Head (see App. A) Expanding

map [0.5...0.9] → [0.45...0.85]

B1: epochs, η (learn. rate) 20, 0.001

Bi, i > 1: epochs, η (learn. rate) 20, 0.001

EWC

Parameters CifarNet

Head (see App. A) Maximal

maxF 0.001

λ 8.0e7

B1: epochs, η (learn. rate) 60, 0.001

Bi, i > 1: epochs, η (learn. rate) 25, 0.00002
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SI

Parameters CifarNet

Head (see App. A) Maximal

ξ 1e-7

w1, wi(i > 1) 0.00001, 0.00175

maxF 0.001

λ 6.0e7

B1: epochs, η (learn. rate) 60, 0.0005

Bi, i > 1: epochs, η (learn. rate) 60, 0.00002

CWR

Parameters CifarNet

Head (see App. A) Maximal

w1, wi(i > 1) 1, 1

B1: epochs, η (learn. rate) 60, 0.001

Bi, i > 1: epochs, η (learn. rate) 60, 0.001

CWR+

Parameters CifarNet

Head (see App. A) Maximal

B1: epochs, η (learn. rate) 60, 0.001

Bi, i > 1: epochs, η (learn. rate) 60, 0.001

AR1

Parameters CifarNet

Head (see App. A) Maximal

ξ 1e-7

w1, wi(i > 1) 0.00015, 0.000005

maxF 0.001

λ 4.0e5

B1: epochs, η (learn. rate) 60, 0.001

Bi, i > 1: epochs, η (learn. rate) 60, 0.001
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D.5 Standard Deviation for CORe50

Figure D.1: Accuracy standard deviation visualization for each strategy and the two models
(CaffeNet and GoogLeNet) over 10 distinct runs where the batches order has been randomly
shuffled. Averaged values over the batches are also reported. Better viewed in color.
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D.6 Standard Deviation for iCIFAR-100

Figure D.2: Accuracy standard deviation visualization for each strategy over 10 distinct runs
where the batches order has been randomly shuffled. Averaged values over the batches are
also reported. Better viewed in color.

D.7 On Initializing Output Weight to Zero

It is well known that neural network weights cannot be initialized to 0, because this would cause

intermediate neuron activations to be 0, thus nullifying backpropagation effects. While this is

certainly true for intermediate level weights, it is not the case for the output level.

More formally, let θab be a weight of level l, connecting neuron a at level l− 1 with neuron b at

level l and let netx and outx be the activation of neuron x before and after the application of the

activation function, respectively; then, the gradient descent weight update is proportional to:

∂Lcross(ŷ, t)

∂θab
=
∂Lcross(ŷ, t)

∂netb
· ∂netb
∂θab

=
∂Lcross(ŷ, t)

∂netb
· outa (D.1)

It is well evident that if outa is 0, weight update cannot take place; therefore weights of levels

up to l − 1 cannot be all initialized to 0. For the last level (i.e., l coincides with output level),

in case of softmax activation and cross-entropy loss, eq. D.1 becomes Sadowski [2016]:

∂Lcross(ŷ, t)

∂θab
= (ŷb − tb) · outa = (outa − tb) · outa (D.2)

and initializing θab to 0 does not prevent the weight update to take place.
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