Continual Learning with Deep Architectures

Lomonaco, Vincenzo (2019) Continual Learning with Deep Architectures, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Computer science and engineering, 31 Ciclo. DOI 10.6092/unibo/amsdottorato/9073.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (14MB)

Abstract

Humans have the extraordinary ability to learn continually from experience. Not only we can apply previously learned knowledge and skills to new situations, we can also use these as the foundation for later learning. One of the grand goals of Artificial Intelligence (AI) is building an artificial “continual learning” agent that constructs a sophisticated understanding of the world from its own experience through the autonomous incremental development of ever more complex knowledge and skills. However, despite early speculations and few pioneering works, very little research and effort has been devoted to address this vision. Current AI systems greatly suffer from the exposure to new data or environments which even slightly differ from the ones for which they have been trained for. Moreover, the learning process is usually constrained on fixed datasets within narrow and isolated tasks which may hardly lead to the emergence of more complex and autonomous intelligent behaviors. In essence, continual learning and adaptation capabilities, while more than often thought as fundamental pillars of every intelligent agent, have been mostly left out of the main AI research focus. In this dissertation, we study the application of these ideas in light of the more recent advances in machine learning research and in the context of deep architectures for AI. We propose a comprehensive and unifying framework for continual learning, new metrics, benchmarks and algorithms, as well as providing substantial experimental evaluations in different supervised, unsupervised and reinforcement learning tasks.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Lomonaco, Vincenzo
Supervisore
Dottorato di ricerca
Ciclo
31
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Continual Learning, Lifelong Learning, Deep Learning, Computer Vision
URN:NBN
DOI
10.6092/unibo/amsdottorato/9073
Data di discussione
3 Aprile 2019
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^