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Abstract

Constraint programming (CP) is a declarative paradigm that enables us to model a

problem in the form of constraints to be satisfied. It offers powerful constraint solvers

which, by implementing general-purpose search techniques, are fast and robust to

address complex constraint models automatically. Constraint programming has

attracted the attention of people from various domains. By separating the definition

of a problem from its solution, it is more natural for people to implement the program

directly from the problem specification, reducing the cost of development and future

maintenance significantly. Furthermore, CP provides the flexibility of choosing a

suitable solver for a problem of a given nature, which overcomes the limitations of a

unique solver. Thanks to this, CP has allowed many non-domain experts to solve

emerging problems efficiently.

This thesis studies the innovative applications of CP by examining two topics:

constraint modeling for several novel problems, and automatic solver selection.

For the modeling, we explored two case studies, namely the (sub)group activity

optimization problem, and the service function chaining deployment problem that

comes from the Software Defined Network (SDN) domain. Concerning the solver

selection, we improved an algorithm selection technique called “SUNNY”, which

generates a schedule of solvers for a given problem instance. In this work, we

demonstrate with empirical experiments that the procedure we have designed to

configure SUNNY parameters is effective, and it makes SUNNY scalable to an even

broader range of algorithm selection problems not restricted to CP.
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Chapter 1

Introduction

This thesis studies the application of constraint programming (CP) in solving novel

problems and the improvement of solving efficiency with the aid of solver selection.

As mentioned in a Chinese idiom that “Nothing can be accomplished without

norms or standards” (Mencius, 300 BC), it can be noted that humans are surrounded

by constraints, which arise naturally from their endeavors. The constraints, being

a medium of expression for formalizing regularities, limit, oblige, or even prevent

people when they make decisions. Today, with the use of of artificial intelligence (AI),

many problems that involve constraints can be modeled as constraint satisfaction

problems (CSPs). Within this framework, a problem can be represented concisely

by a set of constraints over a set of variables with a finite domain, and a solution

includes values that are assigned to all variables that contemporaneously satisfy all

the constraints.

When applying CP to the CSPs, the principal task of a user is to describe the

elements that combine to form the problem and the properties of a solution that can

be found. The language used for this description typically belongs to the declarative

programming paradigm which differs from the imperative programming mainly in

the fact that the specific instructions which express the control flow needed to

obtain the solution are no longer necessary. Indeed, the user needs only to formulate
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”declaratively” the problem model, while the control flow and the results generation

are taken care of by a black-box engine. For CP, in particular, results are computed by

a constraint solver, which interprets the variables and constraints and automatically

adopts appropriate search strategies that lead to the solution.

Due to the characteristics of the declarative languages, developers who use CP

can focus on building complex relations between problem entities, which allows

them to develop the problem model more naturally than by using the imperative

language paradigm. As a result of the freedom of utilizing an independent CP solver,

users can identify among the state-of-the-art solvers the most appropriate one for

their specific problem. Given these advantages, people have been attracted to CP

from various domains, and they embed CP as a core component in their projects

to solve practical, applicative, and industrial problems. These problems range from

scheduling to packaging problems, from production to design problems, and from

entertainment to financial problems [131].

In the first part of this thesis we present two main contributions for CP applica-

tion. First, we use CP to solve the group activity optimization problem. Specifically,

we generate (sub)group activity schedules by forming groups of users with simi-

lar preferences. At the same time, we ensure group activity synchronization by

considering the time and topological constraints. Afterward, we compare the CP

solution with that of an approximative approach (local search method), and we show

the computation limit of CP for large scale instances and how a heuristic-based

approximative solution can scale better. The second contribution is the application

of CP to the service function chain deployment problem. To be brief, in a typical

software defined network (SDN) scenario, there exist several domains (such as data

centers and Internet service providers) that offer network services at different costs

and under various conditions. A service function chain is a sequence of network

services, possibly across domains, that satisfies the order requested by the user,

meets the conditions of the domain policy, and at the same time, minimizes the

deployment cost. To tackle this problem, we propose a general framework using CP,

showing the feasibility of handling non-trivial service chain problems in real time.
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We compare the search technique of CP with mixed integer linear programming

(MILP), concluding that CP is faster than the MILP technique for this problem,

although MILP is currently the most accredited and renowned method in the SDN

field [108, 58].

The second part of the thesis addresses some efficiency problems in using solvers.

The efficiency of solving problems modeled with CP depends not only on how a

problem is modeled but also on the implementation method of constraint solvers.

Indeed, different kinds of solvers may have their strengths in solving different cat-

egories of problems or even different instance cases. As a result, users are usually

encouraged to compare the available solvers manually to identify the most suitable

for their specific problem. The process of selecting suitable solvers (or algorithms)

can be improved significantly with the help of machine learning. Considering each

solver’s historical performances regarding different types of instances, it is possible to

predict the best solver, or schedule of solvers (each solver being used in an assigned

time slot), to be applied to an unseen instance. The study of algorithm selection

(AS) originated from Rice [123], and recently, it is becoming more attractive with

the release of the AS library ASlib [23]. This library collects AS problems from a

number of domains and aims to understand the scalability and robustness of various

AS approaches. In this thesis, we present several improvements to the SUNNY [10]

AS technique. SUNNY generates a schedule of solvers for solving problem instances

based on the k-NN [3]. Initially, this technique has been studied only within the

CP domain and, in particular, with the MiniZinc challenge dataset [8]. SUNNY

has proven its effectiveness by winning the first-place prize in the open track of

the MiniZinc Challenge (2015-2017). However, it performed poorly with the ASlib

benchmark in the ICON challenge. In this work, we introduce our improvements

to SUNNY with an automatic parameter configuration, with which SUNNY yields

promising results in the second challenge of the ASlib benchmark, which is the OASC

challenge.
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1.1 Thesis outline and contributions

In this section, we provide a brief overview of the content of this thesis. Essentially,

we divide this thesis into two main parts. The first part (Chapters 3 and 4) introduces

two application problems with CP, which are a (sub)group activity optimization

problem and a flexible service function chain deployment problem. The second part

(Chapter 5) describes the improvements to the SUNNY AS technique to solve ASlib

problems.

In more detail, in

Chapter 2 we offer an overview of the CP and portfolio-based algorithm selection

for CP problems.

Chapter 3 we present an application tool for (sub)group activities, describe the

problem model, prove the problem hardness, and implement the solution using

both CP and a local search approach (simulated annealing). Furthermore, we

use empirical experiments to compare the performances of the two techniques.

Chapter 4 we describe the problem of flexible service function chaining (SFC),

which is becoming attractive in the SDN domain [28, 108]. We define a general

model for this problem and solve it by comparing the CP and MILP techniques.

In particular, we show how CP can outperform the conventional MILP approach

for solving SFC problems.

Chapter 5 we introduce the portfolio-based AS technique, SUNNY, which exploits

the synergy of available solvers to improve the efficiency of CP solving. We also

describe and justify the improvements made to SUNNY to make it scalable to

a broader range of AS problems (ASlib).

Chapter 6 contains concluding remarks and the direction of future research.

All of the original contributions in this dissertation have either already been

published or are in preparation for review. In particular, the work presented in

Chapter 3 has been published in [99], while the work in Chapter 4 will appear in
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[98]. Part of the work in Chapter 5 has been published in [4, 5, 97], and a journal

version is in preparation.
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Chapter 2

Background

Intuitively, a constraint can be regarded as the restriction over a space of possibilities,

it is something that restricts, limits or regulates. This notion gives birth to an

important field of Artificial Intelligence: Constraint Programming (CP).

Constraint Programming became attractive not only for its strong theoretical

foundation but also for its potentials to solve hard real-life problems. Its success

comes from the fact that on one hand as declarative presentation it allows to

model a problem in a way easy-to-read and on the other hand it is supported by

general-purpose algorithms which are efficient for wide range of problems.

The literature on Constraint Programming is vast [125, 105, 27, 20, 143, 142, 126],

among them we would mention the Books [125, 105] which provide a complete and

comprehensive presentation of CP. In this chapter we select the most relevant topics

concerning our works, namely, Constraint Satisfaction Problems, Modeling CSP and

theory of solving techniques. Afterwards, we review the applications of CP and

point out its limitations. In the end, we briefly discuss other related techniques:

mathematical programming (well-known in Operations Research) and techniques

that improve the boundary of solving effectiveness such as local search and portfolio-

approaches. First of all let us start with a brief history about CP.
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2.1 Brief History of CP

Constraint Programming (CP) has a long tradition, the initial ideas leading to CP

can be found in the Artificial Intelligence (AI) field dating back to 1960s and 1970s

[20, 142].

For instance, the application for interactive graphics - Sketchpad - was devel-

oped in early 1960s by Ivan Sutherland [136] (who was then awarded the Turing

Prize in 1988). The application allows users to draw and manipulate constrained

geometric figures on computer’s display, at that time, a constraint language for

graphical interaction was introduced. This work has also contributed to the notion

of local propagation and constraint compiling. In the following 20 years, based

on the languages such as Fikes’ REF-ARF [46], Laurière’s Alice [90], Sussman’s

CONSTRAINTS [135] and Borning’s ThingLab [25] the language for Constraint

Programming has slowly taken shape and reflects the common properties of these

languages:

• declarative problem modeling

• propagation of the effects of decision

• efficient search for feasible solution

The milestone towards CP was achieved in the 1980s where Gallaire [53] and

Jaffar & Lassez [81] recognized Logic Programming as a special kind of Constraint

Programming since the basic idea behind Logic Programming (declarative modeling)

is similar to CP. Therefore constraints and logic programming have been naturally

combined and yielded languages such as: Prolog III, CLP(R), and CHIP. However,

this does not implies that constraint programming is restricted to CLP. Constraints

can be integrated via software libraries to typical imperative languages like c++ or

Java as well.

Over a long period and extensive research, CP presents an inner interdisciplinary

nature. It combines and exploit the ideas from a number of different fields including

for example, Artificial Intelligence, Combinatorial Algorithms, Computational Logic,



Chapter 2. Background 9

Discrete Mathematics, Operations Research, Programming Languages and Symbolic

computation etc.

2.2 Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems have been a subject of research in AI for plenty of

years. A Constraint Satisfaction Problem (CSP) is defined as:

• a set of variables X = x1, . . . , xn

• for each variable xi, a finite set Di of possible values (its domains) like integers

or strings.

• a set of constraints restricting the values that the variables can simultaneously

take.

Example 2.1 Let us see how the famous crypto-arithmetic game can be modeled.

Let us consider for instance “F A T H E R + M O T H E R = P A R E N T”

authored by David J. Porter. The game consists of a mathematical equation among

unknown numbers, whose digits are represented by letters. To solve the game we need

to associate to every letter in “father mother parent” a different number from 1 to

10 in a way that the sum of “father” and “mother” is equal to “parent”.

Since we need to find what numbers are associated to every letter we can model

these numbers with variables which domain is the set {0, . . . , 9}. Let be

(F,A, T,H,E,R,M,O, P,N) a set of variables each with domain {0, . . . , 9}.
The set of constraints to consider are:

• (100000 ∗ F + 10000 ∗ A+ 1000 ∗ T + 100 ∗H + 10 ∗ E +R) + (100000 ∗M +

10000 ∗ A + 1000 ∗ T + 100 ∗ H + 10 ∗ E + R) = (100000 ∗ P + 10000 ∗ A +

1000 ∗R + 100 ∗ E + 10 ∗N + T )

• alldifferent(F,A, T,H,E,R,M,O, P,N)

• F 6= 0
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• M 6= 0

• P 6= 0

This problem allows the assignment

(F,A, T,H,E,R,M,O, P,N) = (2, 9, 6, 7, 5, 3, 1, 8, 4, 0) as solution.

A solution to a CSP is a labeling, i.e. an assignment of a value from its domain

to every variable, in such a way that all constraints are satisfied at once. We may

want to find:

• just one solution, with no preference

• all solutions

• an optimal, or at least a good solution, given some objective function defined

in terms of some or all of the variables

Solutions to a CSP can be found by searching (systematically) through the

possible assignments of values to variables. Search methods divide into two broad

classes, those that traverse the space of partial solutions (or partial value assignments),

and those that explore the space of complete value assignments (to all variables)

stochastically.

2.2.1 Constraint Optimization Problem

In many real-life applications we are not just interested in finding “one” solution but

“the” optimal solution, or at least a good one. The quality of the solutions is usually

measured by an application-dependent function called objective function which can

score a solution numerically. In this case, the goal is to find a solution in which

the objective function gets minimized or maximized. These kinds of problems are

referred to as Constraint Optimization Problems (COPs). 1

1Note that sometimes the COP may also refer to Combinatorial Optimization Problem [64].
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In the rest of this thesis, without loss of generality, we will always consider a

COP as a minimization problem. Indeed, it is always possible to switch from a

maximization problem to an equivalent minimization problem by simply negating

the objective function. Formally, a COP can be defined as follows:

Definition 2.1 (COP) A Constraint Optimization Problem (COP) is a quadruple

P := (X,D,C, f) where:

• P ′ := (X,D,C) is a CSP;

• f : D → R is the objective function of P .

The goal is normally to find a solution of P ′ that minimizes f . Indeed, a COP is a

special case of the CSP; a COP can be regarded as a CSP in which f is a constant

over D. By guessing the values of objective function, a CSP can eventually find a

solution in which f is minimized.

2.3 Solving CSP

The searching algorithm designed for CSPs [126] is based on the structure of states

that the values are assigned to each variable, therefore, it is a kind of general-purpose

algorithm rather than problem-specific heuristics. This distinguishes CP from other

popular techniques tailored for specific disciplinary problems.

From the theoretical point of view, solving CSP is trivial using the systematic

exploration of the solution space. Even if systematic search methods without

additional improvements seem straightforward and non-efficient, they still worth

mentioning since they are the foundation of more advanced and efficient algorithms.

The basic constraint satisfaction algorithm that searches the space of complete

labelings, is called generate-and-test. The idea is simple: complete labeling of

variables is generated and, consequently, if this labeling satisfies all the constraints

then the solution is found; otherwise, another labeling is generated. The generate-and-

test algorithm is a weak generic algorithm that is used if everything else failed. Its
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efficiency is poor due to non-informed generator and late discovery of inconsistencies.

Consequently, there are two ways to improve its efficiency:

• the generator of valuations is smart, i.e., it generates valuations in such a way

that the conflict found by the test phase is minimized.

• the generator is merged with the tester, i.e. the validity of the constraint is

tested as soon as its respective variables are instantiated. This method is

used by the backtracking approach. Backtracking [125] is a method of solving

CSP by incrementally extending a partial solution that specifies consistent

values for some of the variables, towards a complete solution, by repeatedly

choosing a value for another variable consistent with the values in the current

partial solution. Clearly, whenever a partial instantiation violates a constraint,

backtracking is able to eliminate a subspace from the Cartesian product of all

variable domains. As a result, backtracking is strictly better than generate-

and-test. However, its running complexity for most nontrivial problems is still

NP-hard.

There are three major drawbacks of the basic backtracking:

1. thrashing, i.e., repeated failures due to having not identified the real reason of

the conflict (e.g., conflict variables).

2. redundant work, i.e., the variable values that cause conflict are not remembered.

3. late detection of the conflict, i.e., the potential conflict is not detected until it

occurs.

Next, we present some of the improvements to backtracking discussed in the

literature.
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2.3.1 Consistency Techniques

One alternative approach for solving CSP is based on removing inconsistent values

from variables’ domains until a solution appears. 2 These methods are called

consistency techniques. There are several consistency techniques [89, 101] but most

of them are not complete, i.e., they can not be used alone to solve a CSP completely.

The names of basic consistency techniques are derived from the graph notions. The

CSP is usually represented as a constraint graph or hyper-graph (sometimes called

constraint network) where nodes correspond to variables and edges / hyper-edges

are labeled by constraints.

The simplest consistency technique is referred to as a node consistency. It

removes values from variable domains that are inconsistent with unary constraints

on respective variables. The most widely used consistency technique is called arc

consistency (AC). This technique removes values from variables domains that are

inconsistent with binary constraints. There exist several arc consistency algorithms

starting from AC-1 based on repeated revisions of arcs till a consistent state is

reached or some domain become empty. The most popular among them are AC-3

and AC-4. AC-3 works with deleting inconsistent values from variable domains while

AC-4 keeps in memory a list that tracks unsupported values. It is claimed that, in

many cases, AC-3 works better than AC-4 in establishing arc consistency [146].

Even more inconsistent values can be removed by path consistency techniques.

Path consistency is a property similar to arc consistency but considers pairs of

variables instead of only one. A pair of variables is path-consistent with a third

variable if each consistent evaluation of the pair can be extended to the other variable

in such a way that all binary constraints are satisfied. There exist several path

consistency algorithms like PC-1 and PC-2 but, compared to algorithms for arc

consistency, they need an extensive representation of constraints that is memory

consuming.

All above-mentioned consistency techniques are covered by a general notion of

2Although consistency techniques are outside the scope of this thesis, we still mention them here

since they are the fundamentals of constraint solvers.
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k-consistency [50] and strong k-consistency. A constraint graph is k-consistent if, for

every system of values for k − 1 variables satisfying all the constraints among these

variables, there exist a value for an arbitrary k-th variable such that the constraints

among all k variables are satisfied. A constraint graph is strongly K-consistent if, it

is j-consistent for all j ≤ k. We have that:

• node consistency is equivalent to strong 1-consistency.

• arc consistency is equivalent to strong 2-consistency.

• path consistency is equivalent to strong 3-consistency.

Algorithms exist for making a constraint graph strongly k-consistent for k > 2, but

in practice, they are rarely used because of efficiency issues.

Although these algorithms remove more inconsistent values than any arc-consis-

tency algorithm they do not eliminate the need for the search in general. Restricted

forms of these algorithms removing a similar amount of inconsistencies with a greater

efficiency have been proposed. For example, directional arc consistency revises each

arc only once, requires less computation than AC-3 and less space than AC-4 but

is still able to achieve full arc consistency in some problems. It is also possible to

weaken the path consistency in a similar way.

2.3.2 Constraint Propagation

Either systematic search or consistency techniques can be used alone to completely

solve the CSP but this is not suggested in practice. A combination of both approaches

is more commonly used. To avoid some problems of backtracking like thrashing or

redundant work, look-back schemes were improved. Backjumping [55] for instance

is a method to avoid thrashing. The control of backjumping is exactly the same as

backtracking except when assignment conflict takes place. Both algorithms pick one

variable at a time and look for a value for this variable making sure that the new

assignment is compatible with values committed so far. However, when backjumping

finds an inconsistency, it analyses the situation in order to identify the source of
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inconsistency. It uses the violated constraints as guidance to find out the conflicting

variable. If all the values in the domain are explored then the backjumping algorithm

backtracks to the most recent conflicting variable. This is the main difference from

the backtracking algorithm that backtracks to the immediate past variable.

Another look-back schema called backchecking [70] avoids redundant work. Back-

checking and its evolution backmarking are useful algorithms for reducing the number

of compatibility checks. For example, if the algorithm finds that some label Y/b is

incompatible with any recent label X/a then it remembers this incompatibility. As

long as X/a is still committed, the Y/b will not be considered again. Backmarking

is an improvement over backchecking since it reduces the number of compatibility

checks by remembering for every label the incompatible recent labels and avoids

repeating compatibility checks which have already been performed.

All look-back schemes share the disadvantage of late detection of the conflict.

Indeed, they solve the inconsistency when it occurs but they do not prevent the

inconsistency to occur. For this reason look-ahead schemes were proposed. For

instance forward checking, the simplest example of look ahead strategy, performs

arc-consistency between pairs of a non-instantiated variable and an instantiated one

removing temporarily the values that the non instantiated variable can not assume.

It maintains the invariance that for every unlabeled variable there exists at least

one value in its domain that is compatible with the values of instantiated/labeled

variables. Even though forward checking does more work than backtracking when

each assignment is added to the current partial solution, it is almost always a better

choice than chronological backtracking.

Further future inconsistencies are removed by the partial look-ahead method.

While forward checking performs only the checks of constraints between the current

variable and the not defined variables, the partial look-ahead extends this consistency

checking even to variables that have not direct connection with labeled variables,

using directional arc consistency. The approach that uses full arc-consistency after

each labeling step is called full look ahead.
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2.3.3 Lazy Clause Generation (LCG)

Lazy clause generation combines the strengths of CP propagation and SAT solving.

The key idea is to mimic the underlying rules of FD propagators by properly

generating corresponding SAT clauses. The clause generation is “lazy” since it is not

performed a priori, but it occurs during the search. This approach enables a strong

nogood learning, able to detect and analyze the conflicts that occur during the search.

Typical advantages of LCG have been discussed on the RCPSP/max problem [128].

Moreover, the lazy clause generation solver Chuffed [57] has dominated the MiniZinc

Challenges 2012–2014, and the Google Or-tools which adopted the LCG has boosts

its performance significantly in the MiniZinc Challenges 2017-2018.

2.4 Applications of CP

With the hope of reducing development time while preserving the efficiency of

procedural language, CP has been found attractive in many application domains,

for instance, CP for DNA structure analysis, time-tabling for hospitals or industry

scheduling. It proved to be well adapted for solving real-life problems because many

application domains evoke constraint descriptions naturally.

The first type of industrial application of CP was perhaps the assignment problems.

A typical example is the stand allocation for airports, where aircraft must be parked

on the available stand during the stay at airport or counter allocation for departure

halls. Another example is berth allocation to ships in the harbor or refinery berth

allocation.

Another typical constraint application area is personnel assignment where work

rules and regulations impose difficult constraints. The important aspect in these

problems is the requirement to balance work among different persons. Systems like

Gymnaste [32] were developed for production of rosters for nurses in hospitals, for

crew assignment to flights or stuff assignment in railways companies.

Successful applications for finite domain constraint are the once that solve schedul-

ing problems, where, again, constraints express naturally the real life limitations.
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Constraint based software is used for well-activity scheduling, forest treatment

scheduling, production scheduling in plastic industry or for planning production

of military and business jets. The usage of constraints in Advanced Planning and

Scheduling systems is increasing due to current trends of on-demand manufacturing.

Another large area of constraint application is network management and configura-

tion. These problems include planning of cabling of the telecommunication networks

in the building or electric power network reconfiguration for maintenance scheduling

without disrupting customer services. Another example is optimal placement of base

stations in wireless indoor telecommunication networks [51]. There are many other

areas that have been tackled using constraints. Recent applications of constraint

programming were used in computer graphics, natural language processing, database

systems, molecular biology, business applications, electrical engineering and transport

problems.

2.4.1 Limitations

Since many problems solved by CP are NP-hard problems, the identification of

restrictions that make the problem tractable is very important for both the theoretical

and the practical points of view. Unfortunately, the efficiency of constraint programs

is still unpredictable and the intuition is usually the most important part of deciding

when and how to use constraints. A common problem for CP users is the stability of

the constraint model. Even small changes in a program or in the data can lead to a

dramatic change in performance. The process of performance debugging for a stable

execution over a variety of input data is currently not well understood.

Another problem is choosing the right constraint satisfaction technique for a

particular problem. Sometimes fast blind search like chronological backtracking is

more efficient than more expensive constraint propagation and vice versa.

A particular problem in many constraint models is the cost optimization. Some-

times, it is very difficult to improve an initial solution, and a small improvement

takes much more time than finding the initial solution.
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Finally constraint programs can add constraints dynamically but they do not

support the on-line constraint solving required for instance in a changing environment.

For instance the possibility of deleting a constraint at runtime has been considered

by some extensions like the ones described in [145] but this kind of operation are yet

too costly to be performed.

2.5 Other techniques to Solve CSP

Although CP is efficient in solving plenty of practical problems, it worth knowing

that there exist similar techniques with longer history, for instance the Linear

Programming from Operations Research (OR). In this section we briefly introduce

OR as well as other methods which are able to enhance CP efficiency: Local Search

and Portfolio Approaches.

2.5.1 Operations Research (Mathematical Programming)

Briefly speaking, Operations Research (OR, a.k.a Operational Research) is the disci-

pline that helps to make better decisions by the application of advanced analytical

methods. The study originated in military efforts during World War I, and sub-

sequently widely applied to civilian purposes in a huge variety of fields including

business, finance, logistics, and society. OR encompasses a wide range of problem-

solving techniques and methods applied in the pursuit of improved decision-making

and efficiency, such as simulation, mathematical optimization, queueing theory and

other stochastic-process models, Markov decision processes, econometric methods,

data envelopment analysis, neural networks, expert systems, decision analysis, and

the analytic hierarchy process. 3 In particular, the COPs are well studied and used

in practice in many areas such as services, logistics, transports, economics, as well

as in other industrial applications. Operations research has proved to be useful for

modeling problems of planning, scheduling, assignment, routing and design. In this

3From http://en.wikipedia.org/wiki/Operations research.
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section an overview of the classical OR optimization approaches and a comparison

between CP and OR techniques are described.

Linear Programming

Linear programming (LP) is a general OR optimization method in which both the

constraints and optimization function are linear. The canonical form of a LP problem

is defined as:

maximize cTx subject to Ax ≤ b, x ≥ 0 (2.1)

where x ∈ Rn is the vector of the variables to be assigned, c ∈ Rn and b ∈ Rm are

vectors of known coefficients (cT is the transpose of c) while A ∈ Rmn is the matrix

of the constraints coefficients. The inequalities Ax ≤ b are constraints that specify a

convex polyhedron (the feasible region) over which the objective function f(x) = cTx

has to be maximized.

Every LP problem (or linear program), referred to as a primal problem, can be

converted into a corresponding dual problem, which provides an upper bound to

the optimal value of the primal problem [26]. Note that the dual of a dual linear

program is the original primal linear program. Given the above definition of primal

problem, the corresponding dual is:

minimize bTy subject to ATy ≥ c, y ≥ 0 (2.2)

The theory of the duality shows some interesting properties (e.g., the duality

theorems) and it is also exploited by the simplex algorithm [112]. This method,

devised by George Dantzig in 1947, makes use of the concept of simplex (i.e., a

polytope of n+ 1 vertices in n dimensions) for solving LP programs. Other effective

techniques for solving LP problems are instead based on interior point methods [119].

According to the variables domain, the LP problem can be specialized in different

problems. For instance, when all of the variables values are required to be integers,

it becomes the Integer Linear Programming (ILP) problem. Comparing to LP, which
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can be solved efficiently in the worst case, ILP problems are NP-hard in many

practical situations; When only some of the variables are required to be integers,

then it becomes a Mixed Integer Programming (MIP) problem. These are also

NP-hard since they are even more general than ILP programs. However, despite the

NP-hardness, some important subclasses of ILP and MIP problems are efficiently

solvable [17, 140]. The algorithms for solving LP problems include for instance the

Simplex algorithm, the cutting-plane method and the column generation [72, 41].

Constraint Programming vs. Mathematical Programming

Constraint Programming and Mathematical Programming are regarded as different

approaches for solving combinatorial problems. Both of these techniques have

strengths as well as weaknesses, for which reason it is not possible to determine

which is the best technique to be adopted in general.

The two approaches come from different nature, and their basic differences are

considered as follows.

• CP models the problem with variables of discrete values (integer or Boolean)

while MP supports both discrete and continuous variables.

• CP natively supports logical constraints as well as a full range of arithmetic

expressions including modulo, integer division, or the element expression which

indexes an array of values by a decision variable. In contrast, MP supports only

linear constraints, linearized logical constraints, or quadratic convex constraints.

• CP models have no limitation on the arithmetic constraints that can be set on

decision variables, while an MP engine is specific to a class of problems whose

solution space satisfies certain mathematical properties.

• CP provides an easy way to deal with inference methods, logic processing,

high-level problem modeling; MP works well with relaxation methods, duality

theory and atomistic problem modeling.
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Table 2.1: Mathematical Programming vs. Constraint Programming

Features Mathematical Program-

ming

Constraint Programming

Domain relaxation YES NO

Optimality proof YES YES

Modeling limitation Restricted to linear and

Quadratic problems

Discrete problems

Optimality proof YES YES

Specialized constraints NO YES

Logical constraints YES YES

Theoretical basis Algebra Graph theory and algo-

rithmic

Model and solver are in-

dependent

YES YES

A compact comparison [74] of the two approaches is described in Tab. 2.1.

In practice, the general advantages of CP consist in being better at sequencing

and scheduling, in the more natural modeling, in the use of global constraints, and

in a natural way to locally control the constraints, however, it is weak in treating

continuous variables as well as over-constrained optimization problems.

An answer to the question “when should we prefer CP than MP and vice versa”

is given by a guideline from Google [75]. They suggest that MP works faster than

CP for problem model with less alternatives, i.e. all the constraints must hold for a

solution to be feasible (e.g. constraints are connected only by the “and” statements);

on the contrary, CP is generally faster at solving the problem model where constraints

require only one property to be satisfied (constraints connected by “or” statements).

Some researchers claim that CP and MP have complementary strengths. And in

order to achieve better performances and solve large combinatorial problems, it has

been natural to try to integrate these two approaches [109]. The emerging research

field of the integration between OR techniques and CP is promising and stimulating.
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Some of the main challenges involves the interaction between the user and the solving

process, the resolution of partially unknown or ill-defined problems, the processing

of large scale over-constrained problems, and the improvement of the CP solving

process, both in the constraints propagation and in the solution search.

2.5.2 Local Search

Due to the large size and the heterogeneous nature of real-world combinatorial

problems, it is sometimes impracticable to use exact approaches. A possible approach

to challenge this is the use of Local Search (LS) methods. LS methods are generally

greedy approaches relying on a simple idea: trying to improve a solution at hand by

moving step to step towards a possibly better solution. When no better solutions can

be found by partial solution modifications, it means that a local optimum was reached.

To avoid getting stuck in a local optimum, several heuristics can be employed. In

the work [47], different hybrid methods are reported which combine the LS and

CP taking the advantage of LS efficiency and the flexibility of CP paradigm. Some

local search methods (e.g., [30, 40, 114]) used CP as a way to efficiently explore

large neighborhoods with side constraints. Others, such as [31], used LS as a way to

improve the exploration of the search tree. In the particular context of the CSPs, a

LS approach iteratively tries to improve an assignment of the variables until all the

constraints are satisfied. The local search is therefore performed in the space D of

the possible assignments, by means of a proper evaluation function for measuring

the quality of the assignments (e.g., in terms of the number of violated constraints).

Two main classes of local search algorithms exist: non-randomized and randomized.

The non-randomized uses the greedy technique, well-known examples are the Hill

Climbing [130], Variable Neighborhood Search [111] and the Tabu Search [59]. Their

drawback concerns the possibility of getting stuck in a sub-optimal state. The

randomized LS aims to overcome this issue, example algorithms in this fashion are

Evolutionary Algorithms [19] and Simulated Annealing [144].
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Figure 2.1: Refined model for the Algorithm Selection Problem.

2.5.3 Portfolio Approaches

Portfolio Approaches are an alternative way to improve solving efficiency by exploiting

the usage of more solvers. It is well recognized in the field of AI that different

algorithms have different performance on different categories of problems (or even

problems belonging to the same category). As pointed out also by the “No Free

Lunch” theorems [147], it is evident that a single algorithm can not be a panacea

for all possible problems. Given a problem x and a collection of different algorithms

A1, A2, ..., Am, the algorithm selection (AS) problem basically consists in selecting

which algorithm Ai performs better on x. This problem was originally introduced by

John R. Rice in 1976 [123]. An overall diagram to represent his model is depicted

in Figure 2.1. Here, given an input problem x, a vector f(x) of features which is

extracted from x, the problem is finding the algorithm(s) from a set of available

ones which are supposed to have good performance on x. The notion of “good

performance” is not self-contained but defined according to suitable metrics to

represent the algorithm performance. Formally, the performance of algorithm A on

x is mapped by a performance function P to a measure space p = P (A, x) ∈ Rn. It

is then a measure |p| ∈ R obtained from P (A, x) to be maximized or minimized.

The Algorithm Portfolio [60] can be regarded as a particular approach to CP
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solving. The boundary between Algorithm Selection and Algorithm Portfolios is not

evident and these two concepts could be considered as synonyms. According to [87],

by definition, algorithm portfolios can be seen as particular instances of the more

general AS framework in which the algorithm selection is performed case-by-case.

Within the context of CP, the algorithm space consists of a portfolio s1, s2, ..., sm of

different CP solvers, we can thus consider a portfolio solver as a particular constraint

solver that exploits the strengths of constituent solvers inside its portfolio. When

dealing with an unseen problem p, the portfolio solver, based on the instance features,

tries to predict which are the best constituent solvers s1, s2, ..., sk (k ≤ m) for solving

p and then apply them to p in a sequential or parallel way.

Coming back to practice, there are several surveys to show the effectiveness of

applying Algorithm Portfolio to CP [6, 14]. In this thesis we will focus on the portfolio-

based Algorithm Selector SUNNY [10] which has been based on k-NN techniques and

proved effective in recent MiniZinc Competitions [14], i.e., the yearly international

competition for CP solvers. SUNNY is a per instance algorithm scheduling strategy

based on k-NN algorithm. Roughly speaking, for each test instance SUNNY selects k

training instances which are similar to the test instance in terms of Euclidean Distance

(on instance features). Based on the selected instances, SUNNY generates a schedule

of solvers that maximize the number of instances solved by the selected solvers. Then,

a time slot proportional to the fraction of solved instances is assigned to each solver.

Finally, the proposed solvers are ordered according to the average solving time on

the selected instances. In 2015, SUNNY was compared with other solver selectors in

the first ICON Challenge on algorithm selection with less satisfactory performance,

in the Chapter 5, we will present the advancements made on SUNNY which finally

achieved promising results in the 2017 OASC Challenge on algorithm selection.
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Chapter 3

CP for (sub)group activity optimization

Humans are social animals and usually organize activities in groups. However, they

are often willing to split temporarily a bigger group into subgroups to enhance their

preferences. In this Chapter we present NightSplitter, an on-line tool that is able

to plan movie and dinner activities for a group of users, possibly splitting them in

subgroups to optimally satisfy their preferences. We first model and prove that this

problem is NP-complete. We then use Constraint Programming (CP) or alternatively

Simulated Annealing (SA) to solve it. Empirical results show the feasibility of the

approach even for big cities where hundreds of users can select among hundreds of

movies and thousand of restaurants.

Structure of this chapter. In Section 3.1 we introduce the problem. In Section

3.2 we describe NightSplitter from the user perspective. In Section 3.3 we first

formalize the problem solved by NightSplitter proving its NP-hardness while in

Section 3.4 we present how CP and SA techniques are used to solve it. Section 3.5

presents the experiment results that validate the use of NightSplitter. Related

work and conclusions are in Section 3.6 and 3.7 respectively.

3.1 Problem Introduction

Nowadays, most of the city activities such as restaurants, cinemas, museums, theaters

have complete and detailed information on web pages and offer a variety of online
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services and options for consulting programs, making reservations, buying tickets,

etc. One of the main problems that the customer has to face in order to take

advantage of this huge offer is to master the information overload which comes with

it. For example, in Paris, our reference town for this work, there are more than

13500 restaurants and around 100 cinemas with 150 movies each night. Hence, the

apparently simple task of organizing a night out with a movie followed by a dinner

can already turn into a serious planning exercise.

When there are several persons involved, e.g., a family or a group of friends,

with different ideas, preferences, and needs, coordinating the activities of the group

becomes significantly more complex.

It is quite natural, in order to satisfy all the preferences of the members of a group,

to take a pragmatic approach and split the group of persons into several sub-groups

performing different activities, in order to enhance the individual satisfactions: some

groups will watch the latest Hollywood blockbusters, while some others will prefer

an Indie movie, provided, of course, this can take place approximately at the same

time, and in the same movie theater, or in movie theaters not too far apart.

And that’s not all: one needs to take into account both time constraints (e.g.,

we need to be home before midnight) and spatial constraints (e.g., we do not have

the car and we do not want to walk for one hour). The planning of a night out can

therefore easily become a daunting task.

Recommender systems and planners provide tools that can help users to manage

these difficulties by filtering information, suggesting solutions, predicting some needs

and planning the activities. However, most of the existing tools focus on a single

user, so they cannot be used when several users interact and participate in a group

activity [22, 43]. Tools considering group experiences exist [16, 24, 106] but they

mainly focus on methods for aggregating preferences for a fixed group of users in

order to optimize (some notions of) group satisfaction.

Only a few research papers [21, 92] consider the problem of sub-group formation

and group splitting, but they do not take into account time and space constraints

or they impose the same subgroups for all the activities, thus forbidding the most
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interesting cases, like a group that splits into subgroups to see different movies, but

then joins at the same restaurant.

In this work we present NightSplitter, an on-line tool that is able to plan movie

and dinner activities for a group of users, possibly splitting them in subgroups to

optimally satisfy their preferences. We first model this problem and prove that it is

NP-complete. We then use Constraint Programming (CP) or alternatively Simulated

Annealing (SA) to solve it. Empirical results, obtained on real data for the city of

Paris, show the feasibility and scalability of the approach even when hundred of

users can select among hundreds of movies and thousand of restaurants.

It is worth noticing that even though, for the sake of clarity and concreteness, in

this work we focus on the above mentioned activities, our approach is completely

general and our tool can be easily adapted to any problem which has the following

features: 1) there is a group of users who have to perform a sequence of n activities;

2) each user can express some preferences on these activities; 3) the group can be

divided in several sub-groups, each one performing a different activity at a given time

frame; 4) temporal and spacial constraints can be added on the different activities;

5) the aim of the tool is to optimize the overall satisfaction of all the users involved

in the activities.

3.2 NightSplitter

NightSplitter, the tool we have developed and that we present in this Section, is a

web application for planning movie and restaurant activities in the city of Paris. It

may be used by a group of users and it can split them in subgroups to optimally satisfy

their preferences. The application uses real data for (currently) 13598 restaurants

and 93 cinemas with 153 movies, which are stored in a database and are constantly

updated by a crawler embedded in the application. Using NightSplitter, an initial

user dubbed group initiator can create a “group event” for a certain date. The group

initiator is able to tune several parameters and constraints such as the number of

possible subgroups, the size of subgroups, the total time window for performing the
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Figure 3.1: NightSplitter Screenshot.

activities, the maximal time one is forced to wait between the activities. The group

initiator can then invite other members to participate to the group by sharing a

reference link. The invited member, by clicking on the link, is included automatically

into the group and will be able to express his/her preferences, possibly inviting other

persons to join the group.

As can be seen from Fig. 3.1 showing a screenshot of NightSplitter, by using

some simple menus each user can express preferences on movies and restaurants in

Paris. Social interaction among group members is possible, since each user can see

the preferences of others and can instantly see the results of updating or modifying

his/her own preferences. The main interface is divided in two parts: a dashboard for

preferences and a digital map for showing the solutions. In the preference dashboard

(right side of Fig. 3.1), users can input their preferred movie and restaurant names

(or alternatively movie and cuisine categories). The introduction of this information

is facilitated by an autocomplete function that suggest possible values. The expressed

preference is represented by a tag with color, where the tag shows the name of the
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preference and the color indicates its scale: deep blue to signal a strong like, light

blue for like, yellow for dislike, red for strong dislike, and gray for neutral. On

the top of the dashboard, there is a summary of the group preferences, where in

each tag, next to the activity name, there is an aggregated score. Each time a user

enters or modifies a preference, the preference dashboard will be updated in real time

and the system will start to compute a new solution. 1 The computation, as later

detailed in Section 3.4, uses either a Constraint Programming or Simulated Annealing

technique. The averages of the individual preferences and the public ratings of the

selected activities are weighted and combined to form a unique evaluation metric

to establish the quality of every solution (cf. Definition 3.6). The 3 solutions with

highest aggregated preference are provided and displayed on-the-fly to the users,

both in textual form and on the digital map. The text informs the user about their

tentative scheduled activities while the map provides a global view of the subgroups

activities with their cinema-restaurant paths. Given the different solution plans,

group members have the option to like or dislike them by clicking “Plan A/B/C” as

shown in the upper part of Fig. 3.1. Based on these votes the group initiator can

finalize the decision and pick up the plan for the entire group.

The online version of NightSplitter is available at [139]. 2

3.3 NightSplit

In this section we formalize the definition of the optimization problem solved by

NightSplitter and dubbed NightSplit. The key elements of NightSplit are the

users and the activities that users can perform. We therefore assume the following

finite disjoint sets: U for users range over by u1, u2, . . . , AM and AR for the movie

and restaurant activities respectively. We will denote with A = AM ∪ AR a generic

activity ranged over by a1, a2, . . . .

1Currently preferences are visible to all the users. However, mechanisms to hide the individual

preferences such as differential privacy [45] are under consideration.
2We are developing the tool for commercial use.
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Activities have properties such as a possible starting time or the location where

they are performed. The planning problem therefore needs to consider two dimensions:

time and space. As far as the time is concerned, for NightSplit we consider only a

fixed time window assuming that we want to plan all the activities within a given

time range. In particular, for simplicity we use a discrete notion of time dividing

the time window in time slots of fixed duration. Similarly, we discretize also the

space by dividing it into a finite number of different locations. The granularity

of the time and the space can be arbitrarily improved by reducing the duration

of the time slot or considering smaller locations. In the following we denote with

TIME = {1, . . . , Tmax} and Loc = {1, . . . , Locmax} the time slots and the locations

where Tmax and Locmax are the number of time slots and the number of locations.

In our examples, we consider 5 min as the time slot unit. We can therefore define

the general properties of an activity as follows.

Definition 3.1 (Activity Proprieties) Given a set of activities A we denote with:

• startTime the total function A → TIME that associates to an activity its

starting time slot (i.e., when the movie starts or when the restaurant opens),

• endTime the total function A → TIME that associates to an activity its

finishing time slot (i.e., when the movie ends or when the restaurant closes),

• duration the total function A → TIME that associates to an activity the

user’s duration in time slots.

• area the total function A → Loc that associates to an activity the location

where it takes place.

• publicRating a complete function A → N that associates to an activity a

possible rating. 3 Ratings are represented with natural numbers: the bigger the

rating, the better the activity is considered.

3Specifically, the rating value of activity ranges from 0 to 5, where 0 means “no rating information

is given”.
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With a slight abuse of notation, given an activity a and a property p we denote with

a.p (rather than with p(a)) the value of the propriety p for activity a.

Example 3.1 A restaurant activity a ∈ Ar might be characterized by a.startTime =

228, meaning that the restaurant opens at 19:00 (assuming a time slot of 5 minutes

228 corresponds to 19), a.endTime = 276, meaning that the restaurant closes at

23:00, a.duration = 18 meaning that the dinner will last 90 minutes, a.area = 5

meaning that the location is identified with id 5, and a.publicRating = 3 meaning

that the public rating is 3. �

As far as preferences are concerned, based on findings such as those reported

in [120], we avoid using a very refined scale and we allow only 5 values: from -2

indicating a strong dislike to a +2 indicating a strong preference, and 0 indicating a

neutral opinion. Formally user preferences are defined as follows.

Definition 3.2 (Activity Preferences) Given a set of users U and a set of ac-

tivities A, an activity preference is a total function pref : U ×A → {−2,−1, 0, 1, 2}.

Since the user has to move between different locations, to properly define a valid

plan we need a metric that evaluates the distance between different activities. We

are only interested in the time to go from one activity to another. Hence, we abstract

from physical details such as GPS coordinates and means of transportation and we

simply consider a distance metric between locations which is given in terms of times

slots (needed to go from one location to the other).

Definition 3.3 (Distance metric) Given a set of locations Loc and a set of time

slots TIME = {1, . . . , Tmax} a distance metric is a total function dist : Loc×Loc→
TIME.

We are now ready to define what is a plan: a simple association of activities to

the users.
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Definition 3.4 (Plan) Let us consider a set of users U , two sets of activities AM
and AR and a set of time slots TIME. A plan is a total function plan : U →
(AM × TIME)× (AR × TIME) that associates to a user a movie and restaurant

activity with their beginning time slots.

Example 3.2 A plan plan(u) = ((a1, 108), (a2, 138)) means that to the user u is

assigned the activity a1 that starts at 9:00 and the activity a2 at 11:30. �

Not all the plans are valid: For instance a plan may schedule two overlapping

activities for a user. For this reason, we introduce the notion of plan validity that

captures the constraints that a feasible plan must possess.

Definition 3.5 (Plan Validity) Given a positive integer maxGroupNum represent-

ing the maximal number of sub-groups allowed, a positive integer

minCardinality representing the minimal size of a group, and a positive integer

maxWait ∈ TIME representing the maximal waiting time between two activities, a

plan plan is said valid iff:

• starting and ending time are satisfied. Formally, for each user u ∈ U , if

plan(u) = ((am, tm), (ar, tr)) then startTime(am) ≤ tm ≤ endTime(am) −
duration(am) and startTime(ar) ≤ tr ≤ endTime(ar)− duration(ar);

• activities do not overlap. Formally, ∀u ∈ U , if plan(u) = ((am, tm), (ar, tr))

then tr ≥ tm + duration(am) + dist(area(am), area(ar));

• activities are not too far apart. Formally, ∀u ∈ U , if plan(u) = ((am, tm), (ar, tr))

then tr ≤ tm + duration(am) + maxWait;

• the number of groups is limited by maxGroupNum. Formally, |{(am, tm) | ∀u ∈
U . plan(u) = ((am, tm), (ar, tr))}| ≤ maxGroupNum and |{(ar, tr) | ∀u ∈
U . plan(u) = ((am, tm), (ar, tr))}| ≤ maxGroupNum ;

• the cardinality of the group is bounded by minCardinality. Formally, for all

activities am ∈ Am, and time slots tm ∈ Time |{u | ∀u ∈ U . plan(u) =

((am, tm), (ar, tr))}| is 0 or greater or equal than minCardinality. Similarly,
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for all activities ar ∈ AR, and time slots tr,∈ Time |{u | ∀u ∈ U . plan(u) =

((am, tm), (ar, tr))| is 0 or greater or equal than minCardinality.

In order to simplify the presentation, given a plan plan(u) = ((a1, t1), (a2, t2)) in the

following we will use plan(u).am for denoting a1, plan(u).ar for a2, plan(u).tm for

t1, and plan(u).tr for t2 (m stands for movie, r for restaurant).

We are now ready to define the NightSplit optimization problem. Intuitively,

the NightSplit goal is to find a valid plan that optimizes the individual activity

preferences and the public activity preferences. Different criteria may be used to

combine these preferences. NightSplit allows a great flexibility combining all these

objectives into one by summing them according to some weights.

Definition 3.6 (NightSplit) Let η be a real number ∈ [0, 1] representing the weight

associated to the individual activity preferences and the public preferences. 4 The

NightSplit problem is to find the valid plan plan∗ that maximizes the following

objective function.

obj(plan) = η · sumact(plan) + (1− η) · sumpub(plan) (3.1)

where sumact and sumpub are the sum of the individual activities preferences and

public preferences as define below:

sumact(plan) =
∑
u∈U

(pref(u, plan(u).am) + pref(u, plan(u).ar)) (3.2)

sumpub(plan) =
∑
u∈U

(plan(u).am.publicRating+ plan(u).ar.publicRating) (3.3)

As can be expected, even tough this formulation is rather simple, NightSplit is

an NP-hard problem.

Theorem 3.1 (NP-hardness) The NightSplit is NP-hard.

4Public preferences are useful to break the ties when users have very general individual preferences

(e.g., I like all the movies)
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Proof: To prove hardness, we reduce the NP-complete problem Perfect Expected

Component Sum (PECS) [21] to the decision version of NightSplit, i.e., the problem

to find whether there exists a valid plan such that the objective function obj is

greater or equal than a given value. 5 An instance of PECS consists of a collection V

of m-dimensional boolean vectors, i.e., V ⊂ {0, 1}m and a number k. The problem is

to determine whether there exists a disjoint partition of V into k subsets V1, . . . , Vk

such that
∑k

i=1 max1≤j≤m(
∑

v̄∈Vi v̄|j|) = |V |.

Given an instance of PECS we map every vector v̄i ∈ V as a user ui having some

preferences over m different movies. The intuition behind the hardness proof is to

exploit the planning of the movie activities to find a solution for PECS. We assume

that there is only one location, that the m movie activities start at the time slot

0 and end at time slot 1 with duration 1. Similarly, we assume that there are m

different restaurant activities that start at time slot 1 and end at time slot 2 with

duration 1. We set maxGroupNum to k, minCardinality to 1, maxWait to 1, and we

assume that the function dist is the constant function 0. In this way all the movie

activities are compatible with the restaurant activities and all the possible plans

that have a maximal number of k groups are valid. We set the preferences of the

movie activities to reflect the values of the vector v̄. Formally, for all 1 ≤ i ≤ |V |
and 1 ≤ j ≤ m we define pref(ui, aj) = v̄|j|. We set to 0 instead the preferences for

all the restaurant. We set the weight of the user preferences η to 1 while we discard

the public preferences with 1− η = 0.

Based on the definition of NightSplit, it is easy to see that
∑k

i=1 max1≤j≤m

(
∑

v̄∈Vi v̄|j|) = |V | iff the obj of the NightSplit problem is equal to |V |. The

partition induced on the users performed by NightSplit corresponds to the partition

of V into the k set of vectors V1, . . . , Vk. �

5The decision version of the problem requires the “greater or equal” operator. Similar to the

theorem presented in [21], our theorem holds because the sum of the preferences is never greater

than V .
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3.3.1 Useful Extensions

While NightSplit is already NP-hard, there are some useful extensions of it that do

not alter its complexity class and its nature. In the following we just comment on

some of them that are considered in the online NightSplitter.

First observe that the notion of a valid plan can be further restricted considering

additional constraints. For example, it may be useful to allow users to indicate that

they are not available before or after a given time. Moreover, the minimal number of

people required to form a group or the number of groups can vary depending on the

activity (e.g., it may be the case that for going to the movie we accept to split the

group in two while to eat in a restaurant we do not allow any split). Other useful

extensions concern the definition of different kinds of user preferences. For instance,

usually users like to hang out in certain locations and they want to minimize the

traveling time between the activities, minimize the waiting time, start the activities

as soon as possible, etc. All these preferences may be considered by adding further

terms to the objective function that we optimize in NightSplit, possibly reducing

its weight by an appropriate parameter. NightSplitter has been designed to be

easily extensible and take into account new sources of user preferences or constraints.

For instance, the preferences over some areas can can be easily defined in the profile

menu of the user and then taken into account when generating the plans.

Finally, we could also relax the limit of two activities, considered in this work, and

we could extend our system to applications where more activities can be performed

in sequence, especially in the tourism industry, following, e.g., [129, 92].

3.4 Solution Approaches

To solve the NightSplit problem we propose two different approaches. The first one

relies on Constraint Programming (CP) and allows us, in principle, to obtain the

optimal solution. The second approach uses Simulated Annealing (SA), a probabilistic

local search procedure which, under certain conditions for its parameters, is known

to find the optimal solution with a probability approaching one. In this section we
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briefly describe the CP and SA approaches, while we defer to Section 3.5 for their

comparison.

3.4.1 NightSplit and Constraint Programming

Constraint Programming (CP) [125, 132] is a widely adopted approach for solving

NP-hard problems. The CP paradigm enables to express complex relations in form

of constraints to be satisfied. In particular a Constraint Satisfaction Problem (CSP)

P = (X ,D, C) consists of a finite set of variables X , each of which associated with

a domain Dx ∈ D of possible values that it could take, and a set of constraints C
that defines all the admissible assignments of values to the variables [101]. Given a

CSP the goal is normally to find a solution, i.e, an assignment to the variables that

satisfies all the constraints of the problem. When an objective function needs to be

minimized or maximized we deal instead with a Constraint Optimization Problems

(COPs), i.e., a generalized CSP where the goal is not only to find a solution but

among all possible solutions the one that maximizes or minimizes the objective

function.

Clearly the NightSplit problem can be seen as a COP. For every user u we have

introduced:

• a variable Mu representing the selection of the movie activity. The domain of

this value is the finite domain of all the possible movie activities;

• a variable Ru representing the selection of the restaurant. The domain of this

value is the finite domain of all the possible restaurant activities;

• two variables Su,1, Su,2 representing the beginning of the activities. The domain

of these variables is the finite set of the possible time slots;

• two variables Gu,1, Gu,2 representing the subgroup to which user u belongs

(for the first and second activity respectively). The domain of these variables

depend on the maximal number of groups allowed for activity.
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With these variables it is possible to state all the constraints as listed in Definition

3.5. For instance, the first constraint bounding the starting time of the activities

might be expressed by stating that movie start[Mu] ≤ Su,1 where movie start is

the array storing the movies starting time. This constraint is simply a disequality

between two expressions: the first retrieves the concrete value from an array while

the second is the variable Su,1. Note that CP solvers can employ efficient techniques

to handle this kind of equalities or disequalities (global constraints). Moreover, for

this particular case, the constraint setting x as the value taken by the y-th value of

the array is known as element constraint [125], which is often supported by constraint

solvers that adopt ad-hoc propagation algorithms to speed up the search of solutions.

To model all the constraints we used MiniZinc [113], which is the de-facto language

to define CSPs and COPs and is supported by a huge variety of constraint solvers.

Since the majority of the solvers does not support real variables, we restrict the use

of the preference weights η to rational numbers only. A complete explanation of the

the MiniZinc model and all the constraints defined is outside the scope of this work.

For more information we invite the reader to consult [80].

The CP model is composed by a set of variables, a set of pseudo-Boolean

constraints and an objective function. The variable assignment that maximizes the

objective function corresponds to the best solution. Let G = g1, g2, ..., gmaxGroupNum be

a set of groups that partitions the users. In our model, we adopt array of variables

that associates a property to each user (properties like, group, activity, travel

distance etc), and we use a set of them for movie activity and a set for restaurant

activity. And we denote with variable name1 and variable name2 respectively. If

not mentioned explicitly, we use variable name to represent both variable name1

and variable name2.

• user group mapu for u ∈ U , user group mapu ∈ G, such variable array maps

each user to a group.

• user act mapu for u ∈ U , user act mapu ∈ Ac, maps each user to an activity

of movie and restaurant.
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• user start time mapu for u ∈ U , user start time mapu ∈ TIME, represents

the schedule activity start time for each user.

• user duration mapu for u ∈ U , user duration mapu ∈ TIME, activity dura-

tion of each user

• user begin mapu for u ∈ U , user begin mapu ∈ TIME, it represents the

official start time of assigned activity for each user.

• user end mapu for u ∈ U , user end mapu ∈ TIME, for each user, it associates

the official end time for the activity user assigned.

• user location mapu for u ∈ U , user location mapu ∈ Loc, stands for user’s

location for activity

• user pub rating mapu for u ∈ U , user pub rating mapu ∈ {0, ..., 5}, the activ-

ity’s public rating which assigned to the user.

• user preference mapu for u ∈ U , user preference mapu ∈ {−2, ..., 2}, indi-

cates each user’s preference for her given activity.

• user distance mapu for u ∈ U , user distance mapu ∈ TIME, reflects each

user’s travel from movie activity to restaurant activity. Not like other variables

which are valid for both 2 activities, this one is unique.

The model’s constraints are listed below:

max
∑
u∈U

ηuser preference mapu

+ (1− η)user pub rating mapu

(3.4)

∀u ∈ U ,{user act mapu,

user begin mapu, user duration mapu,

user end mapu, user location mapu,

user pub rating mapu} ∈ Activities

(3.5)
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∀u ∈ U , {user act mapu,

user preference mapu} ∈ Preferences
(3.6)

∀u ∈ U , {user location map1u,

user location map2u,

user distance mapu} ∈ Locations

(3.7)

∀u ∈ U , user start mapu ≥ user begin mapu

∧user start mapu ≤ user end mapu

− user duration mapu

(3.8)

∀u ∈ U , user start map2u

≥ (user start map1u + user duration map1u

+ user distance mapu) ∧ user start map2u

≤ user start map1u + user duration map1u

+maxWait)

(3.9)

∀g ∈ G|{user group mapu|u ∈ U

∧ g ∈ user group mapu}| > minCardinality
(3.10)

user group mapu1 = g1 (3.11)

user group mapu2 = g1

∨user group mapu2 = g2

(3.12)

Constraint 3.4 is the objective function to optimize which measures the users

satisfaction. Constraints 3.5, 3.6, 3.7 ensure that the variable domains correspond to

the input data. Constraint 3.9 regulates the user’s start time in the schedule, ??

ensures the schedule’s temporal validity. Constraint 3.10 guarantees the number of

users in each subgroup is not less than the minCardinality. 3.11 and 3.12 are used

for symmetry breaking where, they ensure that the first user stays in the first group
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and the second user stay either in the first or the second group. 6 This reduces the

search domain and the resulting solution still belongs to the optimal solutions.

According to our encoding the number of constraint added is linear w.r.t. the

number of users.

Remark 1 Beside CP, we have also tried to encode the NightSplit to exploit

Satisfiability-Modulo-Theories (SMT) solvers. SMT solving extends and improves

upon SAT solving by introducing the possibility of stating constraints in some expres-

sive theories, e.g., arithmetic or bit-vector expressions. While all the constraints of

NightSplit can be encoded in SMT, we were not able to provide an encoding linear

w.r.t. the number of activity locations. Indeed, differently to what happens in CP

where the element constraint can be used [125], in the SMT case the encoding of the

traveling time between two activities requires the introduction of a quadratic number

of constraints w.r.t. the number of locations. Based on our test, since we had more

than 300 locations, the addition of these quadratic number of constraints hindered

the use of SMT solvers. For this reason, in Section 3.5, we will compare only the

performances of the CP and SA approaches.

3.4.2 NightSplit and Simulated Annealing

Simulated Annealing (SA) [1] is a local search technique inspired by the annealing

process in metallurgy. SA has been widely used for approximating the global optimum

of a given function. Given an initial solution, random moves are made to produce

new potential solutions. A new solution that improves the previous one is (usually)

always accepted. Solutions that worsen the current solution are instead accepted

with a probability that, like the temperature in the annealing process, is gradually

decreasing. Accepting worse solutions is a fundamental property because it allows

for a more extensive search for the optimal solution, possibly avoiding getting stuck

in local optima.

6We note that a stronger but more sophisticated constraint for symmetry breaking could be the

value precede chain where all the symmetries in group names would be eliminated.
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Contrary to the CP technique described before, SA can not guarantee that the

final solution obtained is optimal. However, for discrete and large search spaces, SA

scales better and could produce (sub)optimal solution very quickly.

Among all the different implementations of SA available we rely on the re-

implementation in PHP of the python SA module [116]. After some manual tuning,

we have fixed the parameters to control the decreasing of the temperature and

the number of iterations (50000). The temperature exponentially decreases as the

algorithm progresses. As customary, a move causing a decrease in state energy (i.e.,

an improvement of the NightSplit objective function) was always accepted. Moves

instead increasing the state energy (i.e., a worse solution) but within the bounds of

the temperature are also accepted.

The initial solution is obtained by randomly generating the assignments from

users to activities. To obtain instead a valid plan from a current solution we proceed

the move method as follows: (i) we randomly select movie activity assignments or

restaurants activity assignments and modify them; (ii) we randomly select a subset

of users U ; (iii) we assign a new activity a to the selected users in U . This activity

is randomly chosen among all the activities for which the aggregated preference of

the U users is positive. Intuitively, this avoids selecting an activity that no user

in U wants to perform; (iv) if the assigned activity is not compatible with other

existing ones (e.g., if for user u we select a movie activity a that overlaps with his/her

restaurant activity) we delete the old activities; (v) for every user u that has no

activity assigned we look at the activities assigned to other users, check if any of

them is compatible with the updated activity and if so we assign this activity to the

user u assuming that this does not violate the group constraints. To have a unified

picture, the SA pseudo-code has been attached as Appendix A.1.

3.5 Empirical Experiment

In this section we describe the experiments performed in order to validate the

scalability of NightSplitter and we discuss the results.
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We have considered for the experiments real data from the city of Paris: The

movies information - for 93 cinemas and currently 153 different movies (with 1950

projections a day) - is retrieved from Allociné [2, 56], restaurant data - for 13598

restaurants - from TripAdvisor [141]. OpenStreetMap and GoogleMaps were also

used to identified 317 positions of metro stations: for each activity we considered its

nearest metro station as its location. 7

Our Activity data are structured to contain the following three fields:

• Name (of a movie or a restaurant);

• Category (indicates the kind of movie and the type of cuisine);

• Intervals (indicate the time frame in which the activity is available).

Note that if an activity with the same name has two separate intervals (e.g. a

restaurant is open from 11:00 to 15:00 and from 19:00 to 23:00) we consider two

separate activities in our data. This means that there may exists in the data several

activities with the same name.

The data related to the preferences was collected from Movielens [71] and Yelp

[151]. These datasets, originally defined for activities in the U.S., were converted for

Paris activities. This was done by mapping the names of the Paris activities to the

activity existing in the preference dataset while preserving the activity category and

the public rating. After that, we randomly sampled 8,000 users for the restaurant

activity and 5.300 users for the movies activity to use their individual preferences

for the experiments. The statistics related to the activities and preference data are

summarized in Table 3.1 where the last column indicates the average preferences of

the users. Note that if a restaurant was open for two separate intervals (e.g., from

11 to 15 and from 19 to 23) this was captured by considering two separate activities.

Since the goal is to provide a responsive tool, for the experiments we fixed a

timeout of 60 seconds taking the best solution found by the tested approach within

7Alternatively, we can use the actual location and store the effective travel time between any

pair of activities. However, the amount of activities that we considered will generate millions of

records; this exceeds our experiment resources.
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Activity Type Activities Users Avg. pref

Movies 1950 5300 6

Restaurants 17069 8000 2

Table 3.1: Summary Statistics of the Dataset.

this time frame. For each testing scenario we repeated the experiment 30 times.

For every experiment we match the chosen number of user with random user from

the dataset using their preferences. We allow the subgroups to be formed by at

least 2 people, the time slot unit to be 5 minutes assuming that the duration for a

dinner/lunch is 90 minutes. The CP model is encoded in MiniZinc which is then

translated - with different instance data - to independent fzn files. Then each fzn

file is delivered to the CP solver. The SA algorithm is implemented by using PHP5.

The experiments were run on an Ubuntu Intel Core 3.30GHz machine with 8 GB of

RAM.

We compared the performance of three different state-of-the-art CP solvers,

namely Chuffed [34], Or-Tools [62], and HCSP [79], 8 and the SA method described

in the previous section.

We first compare the three different CP solvers for different number of users,

assuming to have only 2 subgroups and not taking into account the public ratings

(i.e., η = 1). Fig. 3.2 shows the average times needed by the solvers to find the

optimal value by varying the number of users, where the filled icons mean that the

solver has proven the optimality of the solution for all the 30 repeated tests. Chuffed

has always computed the optimal solution for values up to 9 users and it is the fastest

among the three solvers. The Or-Tools cannot find the optimal solution within the

timeout for more than 5 users, while the HCSP solver performs slightly better than

8We selected these solvers based on the recent results of the MiniZinc Challenge 2016 [137]. In

particular Or-Tools won a golden medal in the Fixed category and HCSP won a golden medal

in Free and Parallel category. Chuffed was the second best solver of the entire Challenge after

LCG-Glucose-free which is not publicly available. We would remark also that our problem instances

have been submitted to the incoming MiniZinc Challenge 2017 [138].
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Figure 3.2: CP Solvers comparison.

Or-Tools and occasionally it is still capable to prove optimal solution for up to 13

users. Similar results are obtained when increasing the number of subgroups or when

public ratings are taken into account by lowering the value of the η parameter. Since

Chuffed outperforms the other solvers in our application, in the following we show

only the performance of this solver for the comparison with SA approach.

We compare the performance of Chuffed and SA in terms of quality of the solution

for a number of users ranging between 4 and 40, assuming 2 subgroups could be

formed, and the weight associated to the individual preference η to be 1. (i.e., public

rating were not taken into account). In this test we limit the number of subgroups

to 2 since we believe that especially for small groups users would not like to be split

in many subgroups. Fig. 3.3 and 3.4 depicts respectively the average solution score

and the average time needed to find the best solution for the 30 repeated tests (the

green dot in Fig. 3.3 representing the number of tests such that CP proves solution

optimality). The plots show that for a limited number of users SA is competitive

with Chuffed, while for more than 15 users SA is definitely better. The advantage

of the CP solution is that for less than 10 users the solutions are proven optimal

while some SA solutions were suboptimal. From the plot it is however possible to

see that the number of solutions that could be proven optimal in less than 60 second
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Figure 3.3: CP vs SA comparison.

decreases at the increase of the number of users. With more than 20 users no solution

was proven optimal. It is clearly visible that Chuffed is better only for a limited

number of users while the SA is often able to find the best solution within the first

15 seconds.

We then compare the two approaches by varying the number of possible subgroups

from 1 to 8. In Fig. 3.5 we present the plots obtained considering 32, 64, and 128

users. From the plots it can be seen that the CP technique is only suitable with

few users and when no more than 2 subgroups can be formed. When the number

of users increases or more than 2 groups can be formed the solutions provided by

the CP solver within 60 seconds are worse than the ones produced by the SA. In

our biggest scenario, considering 128 users, the SA is the only viable choice because

unfortunately the CP solver is not even able to provide a single solution (hence the

lack of points for Chuffed in Fig. 3.5(c)). We conduct experiments also varying the

weights used to aggregate the individual and public preferences. In these cases there

are no significant changes, except that the final score increases.

Fig. 3.6 shows for instance the performances of Chuffed and SA while varying the

parameter η considering 32 users and 2 subgroups. In particular, Fig. 3.6(a) presents

the average time when the best value is found while Fig. 3.6(b) presents the average
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Figure 3.4: Time to find the best solution.

(a) 32 users (b) 64 users (c) 128 users

Figure 3.5: Comparison of CP and SA varying the number of subgroups.

score found after 60 seconds. As long as the user’s preferences are accounted for (i.e.,

η 6= 0), it is immediately visible that with this amount of users the SA approach is

better than Chuffed since SA is able to find better values in a short amount of time

and Chuffed is not able to prove the optimality of the solutions within 60 seconds.

Summarizing, we may conclude that when considering two subgroups and few

users the CP approach may be useful and even prove the optimality of the solution.

For more subgroups and more users the SA approach is better. For those experiments

where the optimality of the solutions was proven, the SA approach was able to propose

competitive solutions. We conjecture that this holds also for big instances where we

were not being able to prove the optima.
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(a) Time to find the best solution (b) Average score of best solutions

Figure 3.6: Comparison of CP and SA varying η.

3.5.1 NightSplit in MiniZinc Challenge 2017

To explore the existence of better solvers than those we have examined so far, we

submitted five problem instances to MiniZinc Challenge 2017. In this challenge,

there are 23 constraint solvers in total that are implemented by more than 15 teams

worldwide. The submitted instances have fixed parameter values except for the users’

preferences, which are randomly generated (as we did in the conducted experiments),

and the different combinations of the parameters: the number of users and the

number of subgroups. Tab. 3.2 provides a detailed overview of these instances.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Number of users 5 6 12 12 15

Number of subgroups 1 3 1 1 3

Table 3.2: Summary of NightSplit instances in the MiniZinc Challenge 2017.

The overall results of the MiniZinc Challenge have confirmed that, in general

cases, Chuffed is still the best solver among all. However, there are also some

exceptions. In instances whose number of subgroups is bigger than one, the Or-Tools

is a little bit faster, while in those whose number of subgroups is one, the solver

Choco4 sometimes is more competitive than Chuffed. On the whole, in all of the
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instances that are solved within the timeout (20 minutes), the three solvers Chuffed,

Or-Tools, and Choco4 have outperformed all others. For more challenge details, we

refer the interested readers to the Challenge website [39].

3.6 Related work

The literature on recommender or planning systems is very large and we omit all the

references to works which consider the case of a single user only, with the exception

of [129], which uses CSP techniques for building a tourist recommendation and

planning application. Concerning group recommender systems, [24] provide a survey

on several existing approaches while [54] presents a recommender system for tourism

based on the tastes of the users, their demographic classification and the places they

have visited in former trips. More recently, the idea of group splitting has appeared

in some papers. Notably [21] proposes an approach for forming groups of users in

order to maximize satisfaction. The work [92] introduces the problem of group tour

recommendation which includes the problem of forming tour groups whose members

have similar interests. Differently from our case, all the above mentioned papers

consider groups or sub-groups as fixed entities, which once are created cannot be

modified. With our approach, instead, for each activity we have a different group

formation, that is, we can have two users who are in the same group for the first

activity (the movie) and are in different groups for the second one (the dinner).

Moreover, the above papers focus on the theoretical aspects rather than presenting a

tool.

There exist also several works which address the problem of group preference

modeling and the definition of an appropriate notion of “group satisfaction” [106, 85].

In general these are difficult tasks, since it is hard to find a definition which takes

into account all the various aspects involved in the group dynamics.

An interesting approach is presented in [16], where the notion of disagreement

between group members is formally defined and, on its basis, a consensus function is

introduced in order to formally define a satisfactory semantics for group recommen-
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dation. In some cases, users preferences depend on the contextual information in

a dynamic domain, thus making even more difficult to make recommendation for

groups. Recently Context-Aware Recommender Systems [83] have been proposed in

order to address this issue. All the above mentioned approaches to the modeling of

preferences, while interesting and relevant, are somehow orthogonal to the problem

that we are considering in our work. Indeed, we could easily change the preference

model without major changes in our tool.

To conclude we would like to mention also the works conducted in [43, 22, 129]

which present recommendation and planning systems targeting a single user only

but are interesting for us since they consider models of generating itineraries (for

touristic applications) which could be integrated with our tool.

3.7 Summary and future prospectives

We have presented NightSplitter, an on-line tool that is able to plan movie and

dinner activities for a group of users, possibly splitting them in subgroups to optimally

satisfy their preferences. The tool is based on a formal model and two different

technologies - Constraint Programming and Simulate Annealing - which can be easily

adapted to other applications. The tests we have conducted show that our tool can

be effectively used on real data for the city of Paris, with thousands of activities and

hundred of users. The comparison between CP and the simulated annealing approach

show that the latter can scale up to consider larger number of users, making our

approach feasible also for quite different social applications.

We are now extending our work along several directions: First, we are considering

a greater number of different activities and we are adding some more features such

as, e.g., the selection of a preferred limited area for the activities (this is done by

selecting an area on the map). Second, the recommendation semantics adopted in

our model is aggregated preference: we are now exploring different notions of group

recommendation semantics such as least misery, most pleasure, Borda count, etc.

[106]. In particular we would like to see whether the semantics proposed in [21]
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with the related algorithms could improve our approach. Third, we would like to

investigate techniques for group definition using social factors and group dynamics

as those suggested in [85]. Fourth, we would like to explore possible improvements

for the CP approach by using, e.g., linearizion of the constraints, column generation

methods, or the use of pre-solve.



Chapter 4

Flexible Service Function Chaining

Deployment with CP

Network Function Virtualization (NFV) and Software Defined Networking (SDN)

are technologies that recently acquired a great momentum thanks to their promise

of being a flexible and cost-effective solution for replacing hardware-based, vendor-

dependent network middleboxes with software appliances running on general purpose

hardware in the cloud. Delivering end-to-end networking services across multiple

NFV/SDN network domains by implementing the so-called Service Function Chain

(SFC) i.e. the sequence of Virtual Network Functions (VNFs) that will compose the

service, is a challenging task.

In this chapter we address two crucial sub-problems of this task, namely i) the

language to formalize the request of a given SFC to the network and ii) the solution

of the SFC design problem, once the request is received. As for i) in our solution the

request is built upon the intent-based approach, with a syntax that focuses on asking

the user ”what” she needs and not ”how” it should be implemented, in a simple and

high level language. Concerning ii) we define a formal model describing network

architectures and VNF properties that is then used to solve the SFC design problem

by means of Constraint Programming (CP), a programming paradigm which is often

used in Artificial Intelligence applications. We argue that CP can be effectively used

to address this kind of problems because it provides very expressive and flexible

modeling languages which come with powerful solvers, thus providing efficient and
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scalable performance. We substantiate this claim by validating our tool on some

typical and non trivial SFC design problems.

Structure of this chapter. In Section 4.1 we introduce the problem, in Section 4.2

we provide background knowledge and a detailed description of NFV/SDN-based

frameworks, introducing the elements of the problem. In Section 4.3 we set the general

problem framework and present our model to specify user desiderata and domain-

level properties. In Section 4.4 we describe how to translate a given model into a

MiniZinc finite domain specification, reporting in Section 4.5 validation experiments

and performance results. Finally, in Section 4.6 we consider related work, we draw

conclusions, and delineate future work.

4.1 Problem Introduction

Following the recent innovations brought about by Cloud Computing and resource

virtualization, current advances in communication infrastructures show an unprece-

dented central role of software-based solutions [104]. On the one hand, Network

Function Virtualization (NFV) [108] supports the deployment of network functions—

e.g., load balancers, firewalls, intrusion detection devices, and traffic accelerators—as

pieces of software running on off-the-shelf hardware. On the other hand, Software De-

fined Networking (SDN) [73] decouples the software-based control and management

plane from the hardware-based forwarding plane, turning traditional infrastructures

into fully programmable communication platforms. A SDN is hence a network whose

topology can be orchestrated dynamically. By taking advantage of the complemen-

tary features of NFV and SDN it fosters the provision of flexible and cost-effective

network services—from now on, referred simply as services.

As detailed in Section4.2, in an NFV/SDN framework, services are deployed as

Service Function Chains (SFC) [48], i.e., the concatenation of some basic functions,

typically running in some form of virtual environment (virtual machine, container

etc.). These are called Virtual Network Functions in short VNFs. Essentially, an

SFC corresponds to the sequence of VNFs that a traffic flow traverses from its
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source to its destination. In this context, multiple network configurations can coexist

over the same physical infrastructure, bypassing the need for specialized hardware

and physical network reconfigurations. Moreover the software-based SFCs can be

instantiated, controlled, modified, and removed over a small time scale which is

impossible to achieve in traditional networks typically requiring physical or manual

reconfiguration to modify topology and/or forwarding. However, one of the main

problems linked to SFC planning is that it is complex to define and apply SFC

configurations that both respect multiple domain-level properties (QoS, etc.) and

also avoid misbehaviors over contrasting or incompatible service desiderata. This

calls for both suitable, high-level languages to easily describe SFC requests and for

tools to efficiently design SFC—once the request is received—given the available

VNFs and network resources.

Contribution. Answering this call, in this work we propose two contributions. The

first is a model to describe both SFC user requests and the holding domain-level

constraints over a multi-domain network scenario—since the model is intended for

(possibly automated) user interaction (both customers and network administrators)

it is expressed using the familiar JavaScript Object Notation (JSON). The second is

a tool based on Constraint Programming (CP) which solves the SFC design problem.

The tool uses a MiniZinc specification which is a direct translation of the JSON

specification. While there exists another paper [91] using CP techniques for routing

problems, ours is the first proposal of applying CP to the SFC design problem in

its full generality. We argue that CP can be effectively used to address this kind of

problems, as it provides very expressive and flexible modeling languages to harness

the complexity of SFC design. This, together with the outstanding performance

of modern CP solvers, has promising aspects in terms of scalability, opening the

market to operators offering ad-hoc just-in-time SFC configurations to users. To

substantiate our claims we validated our tool by solving some typical and non-trivial

SFC design problems and considering its performance.
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4.2 Application Context: NFV/SDN Networking

NFV/SDN paradigms promise to revolutionize network management through the

concept of network programmability, i.e., the possibility to run network services

in a similar way as running software in a computer. Indeed, traditional network

functions are bound to hardware devices, in which actions like instantiating a new

service or modifying a service instance are rather complex and require specialized

operations. Contrarily, the combination of recent NFV/SDN technologies paves

the way to fully programmable communication networks. The expected benefits of

programmable networks are reduced operation costs, as well as increased flexibility

and responsiveness.

Network Function Virtualization. In NFV network functionalities, currently

mostly implemented by means of dedicated appliances (the so called middleboxes,

like firewalls, NATs, packet inspectors, traffic conditioners, etc.) are turned into

software applications, called Virtual Network Functions (VNFs). These are shipped

inside virtual machines or containers and hosted into cloud computing infrastructures

equipped with off-the-shelf hardware (i.e., not specialized for a specific networking

function) [108]. The basic concept it is briefly sketched in Fig. 4.1.

Software Defined Networking. SDN decouples the network control plane from

the data forwarding plane. The former is placed into a so called SDN controller,

defining all the forwarding logics in a centralized way and injecting them into the

networking devices. The main protocol proposed for SDN is Openflow [107], which

is designed to support the dialog between network controllers and appliances.

The ETSI NFV-MANO Framework. NFV became subject of standardization

by ETSI in the NFV Management and Orchestration (MANO) framework. ETSI

launched the initiative by bringing together seven leading telecom operators in 2012.

Currently over 300 individual companies [76], including many global service providers,

joined the initiative, which is the reference standardization framework in this field.

We provide in Fig. 4.2 a conceptual representation of the approach proposed by

the ETSI NFV-MANO framework—from now on called MANO [77]. In MANO,
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Figure 4.1: General concept of NFV.

VNFs are deployed over a set of cloud data centers that may be either closely or

remotely located, depending on the specific service implementation scenario. The

data centers are managed by a specific cloud infrastructure management system

chosen by the owner/provider, e.g., the renowned OpenStack [36] platform, while

general networking services are managed by SDN controllers. MANO addresses both

cloud and network controllers as Virtualized Infrastructure Managers (VIMs).

The NorthBound Interface. The components in Fig. 4.2 must interact by means

of suitable Application Programming Interfaces (APIs) and, roughly speaking, the

the API offered by a given functional block to the one that is logically above it

(providing increased abstraction) is usually called a NorthBound Interface (NBI)

while the interface with one logically below (closer to the specific implementation) is

usually called a SouthBound Interface (SBI). 1

The Service Function Chain. In this context, a service is a specific combination

of VNFs and communication capabilities that are requested by a user and that

1For completeness, interfaces between functional blocks at the same architectural level are

usually addressed as East/West-bound interfaces.
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Figure 4.2: General concept of MANO.

must be implemented in the available infrastructure. 2 This is the Service Function

Chain (SFC), i.e. the implementation of a composite service as the concatenation

of basic services, typically implemented via VNFs. For instance an SFC could be

the sequence of a NAT and a Firewall at the edge of the provider network, serving a

set of customers. In essence, an SFC is the series of VNFs that a traffic flow must

traverse from its source to its destination. Thanks to the capabilities offered by SDN

and NFV, SFCs can be dynamically controlled and modified over a relatively small

time scale, both increasing the flexibility of service provisioning and reducing the

management burden.

SFC deployment planning. The aspect we focus in this work is SFC deployment

planning, also called Service Function Chaining (SF-Chaining). Within a single

technological and administrative domain, e.g., a single data center, SF-Chaining can

be successfully achieved with the help of the native domain management system, i.e.

the VIM [28]. However, when the SFC spans across multiple network domains, (c.f.,

Fig. 4.3) each owned by a different player and characterized by different technology

stacks, the dimensional and logical complexity of the problem increases. With many

2Here, users may either be customers (residential or business) requiring a specific networking

service or network operators configuring specific services for their customers.
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Figure 4.3: General example of dynamic Service Function Chaining.

domains and many VNFs per domain the space of possible solutions to a specific

SF-Chaining problem becomes very large as formally shown in the following section.

Moreover the specification of the SF-Chaining request in a general way, that can be

mapped over the various domains is also non trivial [124, 117, 133].

MANO provides a general architectural framework for the implementation of

NFV but does not provide implementation details for the various interfaces of logical

levels, that are still matter of study and testing.

Regarding the specification of the SF-Chaining request, solutions have been

recently proposed to implement a vendor-agnostic, and interoperable NBI interface

for the MANO according to the intent-based approach [35]. Very briefly the intent-

based approach goal is to provide a semantic at the interface that allows the user to

focus on what he/she wants to achieve and not on how it will be implemented, thus

hiding all the technology-specific details and making the service request as general

as possible. In this work we extend and better formalize this approach by providing

a general schema for the semantics of the interface that can be easily translated into

technology dependent specifications.
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While the intent-based specification solves the problem of applying a global plan

over multiple domains, it does not answer the problem of engineering the SF-Chaining.

Generally speaking this problem consists of: i) SFC design: addressing the issue

of selecting the set of VNFs to be chained to implement the SFC, with the goal of

optimizing some notion of cost; ii) VNF activation and placement: addressing the

issue of where to execute VNFs when more options are available, for instance with

the goal to maximize performance or distribute the workload.

SF-Chaining is a crucial part of the Resource Allocation problem in an NFV

environment and has been mostly studied by means of Mixed Integer Linear Pro-

gramming [58]. Unfortunately the complexity of the problem makes such solutions

viable just for small networks. Usually heuristics are proposed and tailored to some

specific optimization goal, thus limiting their applicability or generality. The problem

is that, when designing an SFC, beside standard shortest-path problems, one has to

solve additional constraints arising from the specific nature of the service functions

involved. For example, if a Virtual Private Network (VPN) function is present, which

encrypts a message before it leaves the source domain, then a complementary VPN

function should appear before the final destination, to decrypt the message.

In this work we propose an efficient, general and scalable tool, based on Constraint

Programming (CP), for the engineering of SFC plans over multiple domains. We will

show that complex SFC plans can be computed in a small time-frame, turning the

engineering and application of SFC plans from a manual, time-consuming activity to

an automatic and just-in-time task.

4.3 Problem Definition

With reference to what explained above, in this section we set the general problem

framework following the schematic presented in Fig. 4.3. In particular we assume

the following.

• Network architecture. The network is divided into a number of Domains, defined

according to administrative and/or technological boundaries. For the purpose
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of this work a Domain is an infrastructure that is managed homogeneously by

a single actor. The Domain has one or a set of Virtual Infrastructure Managers

that are properly coordinated and thus acts as a single entity. The resources

of the Domain are managed as a whole.

• Inter-Domains interconnection. We assume that the various Domains are

interconnected by Domain border gateways and interconnection links. Domain

interconnections may be at the geographical as well as at the local level, de-

pending on topological and administrative constraints. Domain interconnection

can be related to some form of QoS objective, either cost, latency, bandwidth

availability, etc. depending on the specific scenario.

• Intra-Domains interconnection. The networking among VNFs of the same

domain is not a subject of this work. We assume that, within a domain,

connectivity is granted at a level of Quality of Service sufficient for the purpose.

If the various domains are data centers, their management platforms provision

the resources needed in terms of computation, networking etc.

• VNFs. The Virtual Network Functions are devoted to specific networking tasks.

In this work we assume that one VNF performs just one task, therefore we

will talk of VNF types to specify which tasks are performed. The VNF types

considered in the following are briefly described below.

• VNF location. VNFs are executed in the data centers hosted in the various Do-

mains. In principle the Domains are not homogeneous in terms of connectivity,

computing capabilities and functionalities, therefore a Domain may or may not

be suitable to execute some VNFs. Moreover it may be that a given VNF has

to be executed into a specific domain. Without loss of generality, we restrict

the choice of the location of each VNF in an SFC to three options: the source

Domain, the destination Domain or unspecified; the latter meaning that the

VNF can be located in any available Domain, including source and destination.

The set VNF types is a set of network functions that we consider to be part of
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common networking practice, obviously the work can be extended to include other

types of VNFs.

• Deep Packet Inspector (DPI). Looks into the content of the packets and takes

specific forwarding decisions according to specific predefined patters.

• Network Address Translator (NAT). Translates IP addresses mostly used to

interconnect areas with private IP addressing from the public Internet.

• Traffic Shaper (TS). May enforce specific packet and/or bit rate limitations to

a traffic flow.

• Wide Area Network Accelerator (WANA). Compresses packet content to provide

higher transfer speed.

• Virtual Private Network Endpoint (VPN). Encrypts data flows and authenticate

users over a specific public network section.

Note that gateway VNFs do not appear in the user desiderata, however they are

needed, as discussed before, to provide inter-domain connections. The VNF set that

we will consider to construct a solution will then include also gateways.

4.3.1 Service Function Chain specification

In the remainder, to distinguish between customer and network operator SFC

desiderata, we call the former user requests and the latter domain constraints. In

order to provide a concrete and simple model for specifying SFC user requests,

immediately usable in practice, we rely on the JSON [38] notation, defining the

model using the generic formalism of JSON Schema [52] as follows.

Definition 4.1 (SFC user request) A Service Function Chain user request is any

JSON specification compliant with the JSON Schema below, where we assume that

the cardinalities of vnfList, prox_to_src, and prox_to_dst are equal.
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{
"VNFs":{

"type":"array",

"items":{
"type":"string",

"enum":["DPI","NAT","TS","WANA","VPN"]

}
},
"Mask":{

"type":"array",

"item":{"type":"boolean"}
},
"type":"object",

"properties":{
"src":{"type":"string"},
"dst":{"type":"string"},
"qos":{"type":"string"},
"qos_type":{"type":"string"},
"qos_thr":{"type":"string"},
"qos_value":{"type":"integer"},
"vnfList":{

"$ref":"#/VNFs"},
"dupList":{"$ref":"#/VNFs"

},
"prox_to_src":{

"$ref":"#/Mask"

},
"prox_to_dst":{

"$ref":"#/Mask"

}
}

}

Briefly, the highlighted elements in Definition 4.1 represent:

• src and dst the start and target domain of the service chain;
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• qos the QoS feature to be provided with the service chain;

• qos_type a high-level unique identifier of a QoS metric;

• qos_thr the QoS threshold to be applied to the specified metric;

• qos_value the value assigned to the threshold;

• vnfList is the ordered list of VNFs to be traversed for the requested service.

We enumerate them in type VNFs as strings representing the VNFs we support in

our model (and mentioned at the beginning of Section4.3);

• dupList is the set of VNF types where the traffic needs to be duplicated.

Finally, prox_to_src and prox_to_dst are Masks on the vnfList, i.e., they are arrays

of booleans with the same cardinality of vnfList that indicate if a VNF should be

respectively located in the domain of the src or of the dst.

Example 4.1 To complete Definition 4.1, we report an example of SFC user request.

In the code below, the user requests a chain between domains s and d, indicating a

qos on the speed of the connection, measured in terms of bandwidth with a threshold

of 90% on the throughput of transmitted data. The service request consists of (in this

order): a DPI (whose traffic is duplicated, as per dupList), a VPN in the domain of s

and a complementary VPN function in the domain of d.

{
"src":"s",

"dst":"d",

"qos":"speed",

"qos_type":"bandwidth",

"qos_thr":"throughput",

"qos_value":90,

"vnfList":["DPI","VPN","VPN"],

"dupList":["DPI"],

"prox_to_src":[1,1,0],

"prox_to_dst":[0,0,1]

}
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�

In the next section, we explain how we combine the parameters above are to

define the solution to an SFC planning problem.

4.3.2 SFC design problem

In order to formalize the SFC design problem we represent a network architecture

in abstract terms as a directed graph G(V, L) with a set V of labeled nodes, ranged

over by v1, v2 . . . , which represent the VNFs and a set L = {(u, v)|∀u, v ∈ V ∧u 6= v}
of labeled arcs, ranged over by l1, l2, . . . , which represent links among different VNFs.

The level of a node v denote the type of functionality provided by the specific VNF

v in set T , ranged over by t1, t2, . . . , and we assume that there exists a total function

Type : V → T which, for any VNF v ∈ V , returns its label (i.e., its type). We

distinguish between a VNF and its type because different VNFs, also in the same

domain, can offer the same functionality and have the same type. Nevertheless,

when no ambiguity arises, we will identify a VNF with its type. For example, in

the service chain request provided by the user, the list of VNF which is provided is,

strictly speaking, the list of VNF types which are required (the user is interested in

a functionality, not in the specific component implementing it). Label of arcs denote

costs of the arcs and we indicate by cu,v the cost of an arc (u, v). Paths are defined

as usual. 3

As we have seen in previous section, conceptually VNFs are organized in domains

that is, our graph is divided into several sub-graphs. We represent this structure

by introducing a set D of domains, ranged over by d1, d2, . . ., and assuming that

there exists a total function Domain: V → D which for any VNF v ∈ V provides

its domain Domain(v). We assume that each domain in our network has exactly

one VNF providing the (domain border) gateway functionality. In order to model

the domain interconnection described above we assume that the set of arcs in our

network consists of: i) the arcs connecting the gateway to all the other VNFs in the

3For the notions on graphs not directly defined here please see [37, 42].
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same domain, with cost 0 and ii) the arcs connecting a gateway to all the gateways

VNF appearing in the other domains, with a positive cost. We are now ready to

define the notion of SFCtree. Intuitively this represents the chain of functions which,

in a given network, satisfy the service request expressed by the user. Note that we

consider a tree rather then a simple path because in some cases the chain of functions,

beside a source and a target, include some other terminating nodes which provide

specific functionalities: for example, a DPI VNF has the task of logging messages

and does not participate in message routing. Moreover, nodes (VNFs) in the same

domain are represented as sons of a gateway.

Definition 4.2 (SFCtree) Given a directed graph G(V, L) representing a network

architecture, an SFCtree4 is a rooted tree Tr which is a subgraph of G(V, L) and

such that the leafs of Tr are (labeled by) VNFs types different from gateway, while

the nodes that are not leafs are (labeled by) gateway.

Example 4.2 An example of SFCtree is shown in Fig. 4.4. This SFCtree is used to

satisfy a service chain of two DPI VNFs which connects domain 1 and domain 4. �

As a first approximation, our configuration problem consists in finding an SFCtree

which satisfies the service request specified by the user in terms of intents. There

are however some additional, domain level, constraints on the VNFs to be used in

the SFC which are needed to obtain a correct solution. For example, we may need

to know whether a VNF v needs to be ”mirrored” , meaning that when v appears

in a chain then another, dual, VNF is needed in the same chain (for example an

encryption function needs later a decryption). Also, some quantitative information

are needed at domain level, such as lower and upper bounds on the number of VNFs

of the same type in a given domain. These additional constraints are not expressed

by the intents of the users (who might ignore the detailed domain structure of the

network) but are introduced in a middle layer before formulating the actual service

request. As we have done for SFC user request, we represent these constraints

following the JSON Schema.

4The definition is parametric w.r.t. the given graph, however we do not represent such a

parameter explicitly, to simplify the notation.
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Figure 4.4: SFCtree example.

Definition 4.3 (Domain-constraints) A Domain-constraint is a JSON specifica-

tion compliant with the following JSON Schema

{
"type":"array",

"items":{
"type":"array",

"maxItems":4,

"items":[

{"type":"string","description":"a domain name"},
{"type":"string","enum":["DPI","NAT","TS","WANA","VPN"]},
{"type":"integer","description":"VFN type minimum quantity"},
{"type":"integer","description":"VFN type maximum quantity"}

]

}
}

In the JSON Schema above, we use the "description" attribute to hint the content of

each element. A Domain-constraint then represents a set of tuples (d, t,m, n) where
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d is a domain, t is a VNF type, and m,n are natural numbers, with the meaning that

in the domain d there are at least m and at most n VNFs v ∈ V having the type t.

Example 4.3 To complete Definition 4.3, we report an example of a Domain-

constraint which could be imposed by domain administrators. Here s and d are the

source and destination domains of Example 4.3.1 and we see that the administrator

set to 1 and 2 the minimal a maximal number of WANA functions allowed in s; the

constraint specifies also that a single DPI function is required in s (i.e., minimal and

maximal capacities coincide) and a single VPN (and NAT) is required in the destination

d.

[

["s","WANA",1,2],

["s","VPN",5,10],

["s","DPI",1,1],... ["other_dom",DPI,1,2],

["other_dom","VPN",1,10], ...

["d","VPN",1,1],

["d","NAT",1,1]

]

�

Before defining formally our SFC design problem we now need to define when

an SFCtree—that intuitively represents a solution—satisfies the user request and

the Domain constraints. To this aim, we first provide the following definition.

Definition 4.4 Assume that R is an SFC user request specified as in Definition 4.1

which defines the vnfList = {t1, . . . , tn} and a dupList = {e1, . . . , em}. Then we

define request-tree(R) as the tree T (V, L) where the set of nodes is V = {v1, . . . , vn}
with Type(vi) = ti, ∀i ∈ [1, n] and the set of arcs is L = {(vi, vj)|vi, vj ∈ V ∧ i <
j ∧ Type(vi) /∈ dupList ∧ (@k, i < k < j, vk /∈ dupList)}.

Intuitively, given a user request R, request-tree(R) is the tree that represents

the traversal order of the various VNFs, from the source to the destination domain,

to obtain a solution. We have a tree rather then a sequence of VNFs because we take
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into account also the information provided by dupList which, as mentioned before,

specifies when the traffic needs to be duplicated before entering in a node (VNF).

Example 4.4 Given a user request which specifies vnfList = {a, b, c, d} and

dupList = {b}, with a in the source domain and d in the destination domain,

a request-tree T (V, L) consists of V = {a, b, c, d}, L = {(a, b), (a, c), (c, d)}. �

Next we define the satisfaction of user request and domain constraints. In the

following we use the terminology and notation introduced in Definitions 4.1 and 4.3.

We also assume that the last VNF specified in the user vnfList is present in the

destination domain (if this were not the case we could introduce and additional

Endpoint VNF but we prefer to avoid this in order to simplify the notation).

Definition 4.5 We say that an SFCtree Tr(Vr, Lr) satisfies user request R and

domain constraints C if the following holds, where request-tree(R) = T (V, L) and

dsrc, ddst are the domains values specified in dst and src of request R:

i) the domain of the root of Tr is dsrc and there exists a leaf in Tr whose domain

is ddst.

ii) Vr is the set V with some additional gateway nodes and there exists an injective

mapping m : V → Vr such that, ∀v ∈ V , Type(v) = Type(m(v));

iii) ∀(u, v) ∈ L ∃gu, gv ∈ Vr such that Type(gu) = Type(gv) = gateway∧(gu,m(u)) ∈
Lr ∧ (gv,m(v)) ∈ Lr and there exists a path in Tr between gu and gv containing

only gateway nodes;

iv) for each v ∈ V if prox to src(v) = 1 then Domain(m(v)) = dsrc and if

prox to dst(v) = 1 then Domain(m(v)) = ddst;

v) for each tuple (d, t,m, n) represented by C such that the type t appears (as label

of a node) in T (V, L), m ≤ Num(Tr, d, t) ≤ n holds, where Num(Tr, d, t) = |{v|v ∈
Tr, Type(v) = t and Domain(v) = d}|.
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Note that, as indicated in item iv), we assume that the domain constraints refer

to the VNF specified in the vnfList provided by the user.

We are now ready to state formally our configuration problem.

Definition 4.6 (SFC design problem) Given a graph G(V, L) that represents a

network architecture, an SFC user request R and domain constraints C, the SFC

design problem consists in finding an SFCtree that satisfies the request R and

the constraint C. Such an SFCtree, if it exists, is called an admissible solution.

Furthermore, the optimal SFC design problem consist in finding an admissible

solution G(V ′, L′)which minimize the following cost function:
∑

l∈L′ cl. In this case

the solution found is called optimal SFCtree.

The following result shows that the problem that we are considering here is a

difficult one. The proof can be done by the reduction of the k-minimum spanning

tree problem which is known to be NP-hard [122].

Theorem 4.1 (NP-hardness) The optimal SFC design problem is NP-hard. 5

4.4 SFC modeling with Constraint Programming

In order to solve our SFC design problem we translate it into a MiniZinc [113]

finite domain specification. MiniZinc is a high level, solver independent, constraint

modeling language which is widely used and is supported by large variety of constraint

solvers. We assume some familiarity with MiniZinc and we invite the reader to

consult [113] for further details.

Our translation is a direct encoding of the SFC design problem as defined in

Section 4.3 in MiniZinc constraints. More precisely, we first model in terms of the

MiniZinc language the network architecture and then we translate in MinZinc the

user request and the domain constraints defined in the JSON format. The MiniZinc

specification of the network architecture is a straightforward translation of the graph

5Theorem proof in Appendix A.1.
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described in the previous section and is provided below (comments are indicated by

%).

int: n_nodes; % Number of nodes (VNFs).

int: n_domains; % Number of domains.

int: n_node_links;% Number of arcs (links between nodes).

int: M; % Upper bound for arc costs.

% Array containing cost of arcs between pairs of gateway nodes.

array[1.. n_domains, 1.. n_domains] of 0..M:

domain_link_costs; % Array representing the arcs.

array[1.. n_node_links, 1..2] of 1.. n_nodes:

node_links; % Array describing the properties of the nodes,

% i.e. node id, the type of node, its domain

array[1.. n_nodes, 1..3] of int: nodes;

Upon a user request expressed in the intent format, we use a script to extract

necessary information and by using dupList we parses the vnfList into vnf arcs that

represents the arcs of request-tree and finally we create an instance for MiniZinc.

As for the specification of the SFC request and domain constraints, described

in definitions 4.1 and 4.3 in terms of JSON specifications, we use a script to ex-

tract necessary information and by using dupList we parses the vnfList into the

vnf arcs array below. Analogously we parse the domain constraints to build the

domain constraint array and we obtain the following MiniZinc code:

int: start_domain;

int: target_domain;

int: n_types; % Number of VNF types except Gateway

int: vnflist_size; % The length of vnflist

int: n_dcons; % Number of domain constraint

% The order of VNF in the service request.

array[1.. vnflist_size] of 0.. n_types: vnflist

% arcs of request-tree derived from vnflist

array[1.. vnflist_size -1, 1..2] of 0.. vnflist_size: vnf_arcs;

% VNF service in start domain

array[1.. vnflist_size] of 0..1: proximity_to_source;

% VNF service in target domain

array[1.. vnflist_size] of 0..1: proximity_to_destination;
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% Domain constraints containing: domain id,vnf types, min, max.

array[1.. n_dcons, 1..4] of int: domain_constraints;

To model our problem we then introduce two groups of MiniZinc variables, the first

representing the selection of arcs, links, domains and domain connection, and the

second to ensure that the selected nodes corresponding to the VNFs in vnfList and

their order is feasible.

Next we introduce the constraints which can be classified into three groups: the

first one states the relations between variables (a.k.a channel constraints), the second

guarantees that the variable values meet the request requirements and the last one

ensure the tree properties of the solution. The key variable among all is the variable

link selection, it is possible to build a relation with it to any other variables, e.g.

to specify if a node or domain is selected it is enough to say whenever a link is

selected then the related nodes and their domains are selected. The details of this

formalization can be found in [96].

With these constraints we are able to obtain an admissible SFCtree. The optimal

solution is the obtained by optimizing the sum of domain link costs of among all

possible admissible solutions.

4.5 Empirical Validations

We now describe the validation experiments which we have conducted in order

to compare the performance of different state-of-the-art solvers and to assess the

efficiency and scalability of our approach.

As for the experiment setup, we have generated the dataset representing the

network in a random way. We assume n nodes and m domains with n
m
> 2. We

select m out of the n nodes and consider them as gateway, while for the remaining

nodes we associate randomly to each of them a VNF type from the set of types

assumed in this work (see Section 4.3). Next we defined the arcs according to the

definition in 4.3.2 with costs in the range [1, 100]. Regarding the SFC user request,

we created a dataset of possible requests that may occur in practice, which are
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compliant with the assumptions we made and with the ETSI specifications [78], from

which we randomly choose specific instances. We consider the number of nodes and

the number of domains as features that characterize the specific instance dimension.

For each instance dimension we generate 10 scenarios and for each scenario we

generate 10 requests which will be performed sequentially. We record the response

time, that is the time needed to find optimal solution or to discover that the instance

is unsatisfiable, with a cutoff time as 5 seconds for each run. The experiments were

run on a Debian cluster with machines equipped with Intel Corei5 3.30GHz and 8

GB of RAM.

We first compared the performance of five different state-of-the-art CP solvers,

namely, Or-Tools v6.7 [63], Choco 4.0.4 [121], JaCoP [88] Gecode [127], Chuffed [34]

and two Mixed Integer Programming (MIP) solvers, Gurobi [66] (one of the most

performing MILP solvers [67]) and CBC [49]6 on the optimal SFC design problem.

The solvers were run on scenario with 300 nodes and different number of domains

(from 3 to 30), each request was combined with 2 random domain constraints. In

the graph 4.5 (a) we show the response time with Par2 penalty, where when a run

was not completed at timeout we consider its runtime as two times of the timeout

(10 sec). 7 Under the Par2 metric, it can be seen that Chuffed and Or-Tools were

the most competitive solvers in our case, in particular, Chuffed runs faster with few

number of domains (less than 10) while Or-Tools is more robust addressing instance

with larger number of domains. The part (b) of Fig 4.5 shows the percentage of

runs failed to prove optimality or unsatisfiability within timeout. It can be seen that

Choco and Or-Tools were the most competitive where they solved almost all the

instances with less than 24 domains. Chuffed started to have unsolved instances

when the number of domains goes beyond 9, however, it is still much better that

other solvers where they had failed runs even with 3 domains. It worth noticing that

the MIP solver Gurobi was less competitive than the CP solver in our case, even

6The Or-Tools were downloaded from Google OR official page and other solvers were taken

either from SUNNY-CP [7, 9] or from the MiniZinc distribution v2.17.
7The performance of Gecode and JaCoP were omitted since their performance were much lower

than those of the other solvers.
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(a) Response time with 300 nodes (b) Percentage of Failed Runs

Figure 4.5: Solvers Comparison.

though, the MIP/ILP is the most popular approach for NFV/SDN problems today. 8

In the second set of experiments we considered only the solver Or-Tools and we

considered two groups of tests: (i) fixing a number of nodes we vary the number of

domains from 3 to 30. (ii) fixing a number of domains we vary the number of nodes

from 30 to 800. In this case, the average runtime has excluded failed runs. As one

can see from Fig 4.6, our application find the optimal solution for instances having

more than 300 nodes and 10 domains in less then a second. 9

Moreover, for the part (b) of the figure one sees that time grows almost linearly

at the growth of node numbers. Since in practical applications one has hardly more

than 10 domains and one has hardly a large number of nodes, and also, the links

between domains are much less than our fully connected case, the results confirm

that our system is relevant to address the SFC design problem and can scale up to

consider large networks. It is worth mentioning that, for instance, the International

Telecommunication Union in its Recommendation [115] sets an upper bound to the

time needed to set up of a service at 7.5 seconds, well above the time needed here to

solve the SF-Chaining problem.

8We note that there are several similar problems [33, 44] which are also solved with Gurobi; also

in their cases, the tool’s runtime is considerably high.
9We also measured the runtime when request instance is unsatisfiable, generally, it takes as

much time as computing a satisfiable instance.
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(a) Response time in relation with number of

domains

(b) Response time in relation with number of

nodes

Figure 4.6: System performance varying instance size.

We also conducted other experiments which showed that changing the number

of domain constraints does not affect significantly the response time. For more

experiment details, we refer the interested readers to Appendix A.3.

4.6 Summary

To the best of our knowledge the only other paper applying CP techniques to

programmable communication networks is [91], where the authors consider the

specific problem of optimizing the QoS of routing applications. Here we consider a

completely different problem, namely the definition of expressive and efficient tools to

solve the Service Function Chaining design problem in general. There exists a large

body of literature on the problem of mapping an SFC to the (possibly virtualized)

substrate network, optimizing some notion of QoS. This problem, also called Service

Function Chain Resource Allocation (SFC-RA), has been mainly addressed with

(Mixed) Integer Linear Programming (M)ILP techniques. However, since in its full

generality SFC-RA is an NP-hard problem, many alternative approaches rely on

approximated methods and (meta)-heuristics (cf. [73, 108, 148, 58] for more precise

indications). When compared with other exact methods based on (M)ILP, CP

provides a more flexible and general approach. Since (M)ILP approaches consider a
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specific formulation of the problem—customized for a narrow class of applications

with a specific function to be optimized—and require a large number of decision

variables and (in)equations, it becomes difficult to adapt existing solutions to other

cases. Performance-wise, we cannot directly compare our work to other MILP based

approaches, since the problem we are solving here is more general than the specific

ones treated in the literature. However, our experimental results show that CP

solvers are more efficient than MILP solvers on the problem we consider and support

our claim that the proposed model can scale efficiently.

As future work, we plan to carry out a more in-depth experimental analysis and

evaluation and then to include our tool into a networking tool-chain able to directly

apply synthesized SFC plans on target networks. Also, we intend to further investi-

gate the definition of an high level, more abstract, intent-based language for SFC

specification. Beside allowing to express quickly and intuitively SFC requests, such

an abstract language naturally would allow to use modularization and typing [118]

principles with the following benefits: i) support for the creation of libraries of

standardized SFCs, e.g., configurations that adhere to administrative regulations

which can be directly used with little customization effort; ii) definition of complex

specifications obtained by combining simpler ones; iii) possibility of checking (even

at writing time, as it happens in standard IDEs) if SFC specifications are well-formed

(e.g., if the traffic encrypted by a VPN is decrypted by a complementary function )

and if they follow best practices (e.g., by warning the user that, by using a VPN

function outside the domain of the source, its traffic is exposed to attackers).
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Chapter 5

SUNNY for Algorithm Selection

When applying constraint programming and once a problem model is defined and

fine-tuned, the following step is to find out the most suitable solver that offers

competitive performance. In Chapter 3, we saw that Chuffed is the best choice for

NightSplit, while in Chapter 4, we realized that Or-Tools is better than Chuffed

for SFC design problem. To select the appropriate solver automatically for unseen

instances, one can rely on the technique of algorithm selection (AS).

In this chapter, we draw our attention to an AS technique, SUNNY, which is

among the few selection methods available designed for constraint solver selection.

SUNNY enables us to schedule, from a portfolio of solvers, a subset of solvers to be

run on a given CP problem. This approach was proven to be effective in the MiniZinc

Challenge, the yearly international competition for CP solvers. In 2015, the COSEAL

group released the ASlib benchmarks, enabling the comparison of a wider range of AS

systems for problems coming from disparate fields (e.g., ASP, QBF, and SAT). Based

on ASlib, the 2015 ICON Challenge on Algorithm Selection was held. SUNNY was

adapted to deal with generic AS problems, but unfortunately its performance was

not satisfactory. Afterward, more attention was paid to investigating how SUNNY

could be configured to suit the ASlib scenarios better. In this chapter, we discuss

the advancements we made on SUNNY, which allowed it to obtain promising results

in the Open Algorithm Selection Challenge 2017 and in the scenarios of constraint

programming.
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Structure of this chapter. In Section 5.1 we introduce the problem of algorithm

selection. In Section 5.2 we review the literature on algorithm selection before giving

background information in Section 5.3. In Section 5.4 we introduce the improved

sunny-as2 tool and in Section 5.5 we show the empirical experiments on which

sunny-as2 was validated. We draw some concluding remarks in Section 5.6.

5.1 Introduction to Algorithm Selection

Solving combinatorial problems is hard, and clearly there does not exist a single,

dominant algorithm for each class of problems. A natural way to face the disparate

nature of combinatorial problems is to use a portfolio of different algorithms (or

solvers) to be selected on different problem instances. The task of identifying suitable

algorithm(s) for specific instances of a problem is known as per-instance Algorithm

Selection (AS). By using AS, solvers are able to outperform state-of-the-art solvers

in many fields, such as Propositional Satisfiability (SAT), Constraint Programming

(CP), Answer Set Programming (ASP) and Quantified Boolean Formula (QBF) [11].

In each of these fields, plenty of domain-specific AS strategies have been studied.

However, it is hard to judge which of them is the best strategy in general. To

address this problem the Algorithm Selection library (ASlib) [23] has been proposed.

ASlib consists of scenarios collected from a broad range of domains, aiming to give a

cross-the-board performance comparison of different AS techniques. Based on the

ASlib benchmarks, rigorous validations and AS competitions have been recently held.

In this work, we focus on the SUNNY portfolio approach [9, 10], originally

developed to solve Constraint Satisfaction Problems (CSPs). SUNNY is based on

the k-nearest neighbors algorithm. Given an unseen problem instance P , SUNNY

generates a schedule of solvers as follows. It first extracts its feature vector FP , i.e.,

a collection of numerical attributes characterizing P , and then finds the k training

instances “more similar” to FP according to the Euclidean distance. Furthermore,

SUNNY selects the best solvers for these k instances; a time slot proportional to the

number of solved instances is then assigned to the selected solvers. Finally, these
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solvers are sorted by average solving time which establishes their order of execution

on P . Along with the development of SUNNY, it has been also extended to solve

Constraint Optimization Problems (COPs), and to enable the parallel execution

of its solvers. The resulting portfolio solver, called sunny-cp [10, 9], won the gold

medal in the Open Track of the Minizinc Challenge [134]—the yearly international

competition for CP solvers—in 2015, 2016, and 2017 [14].

In 2015, SUNNY was extended to deal with general AS problems (for which CP

problems are a particular case) [5]. The resulting tool, called sunny-as [15], natively

handles ASlib scenarios and was therefore submitted to the 2015 ICON Challenge

on Algorithm Selection [86] to be compared with other AS systems. Unfortunately,

the outcome was not satisfactory: only a few competitive results were achieved by

sunny-as, that turned out to be particularly weak on SAT scenarios. We therefore

tried to improve SUNNY by following two paths: (i) feature selection, and (ii)

neighborhood size configuration.

Feature selection (FS) is a well-know process consisting in removing redundant

and potentially harmful features from the feature vectors. A good feature selection

can lead to significant performance gains of a prediction system. FS approaches can

be distinguished in two main categories: wrappers and filters [69]. Filter methods

work as a pre-processing step; they select features by using some scoring function

(e.g., statistical tests) independent of the chosen predictor. In contrast, wrapper

methods use the prediction system of interest as a black-box to assess the predictive

power of selected features. As a result, wrapper methods have a higher computational

cost; the features found could be more accurate than those found by filter methods.

In the ICON challenge, a version of sunny-as used a simple filter method based on

information gain that however did not bring significant benefits.

The neighborhood size configuration (shortly, k-configuration) consists in choosing

an optimal value k for the k-nearest neighbors algorithm on which SUNNY relies.

The work in [94] suggests that the performance of SUNNY can be improved by

training and tuning the neighborhood size k on different scenarios.

After performing several studies on different AS scenarios, we developed sunny-as2:
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an extension of sunny-as which combines techniques for the k-configuration, and

the feature selection based on the wrapping methods. In 2017, sunny-as2 was

submitted to the Open Algorithm Selection Challenge (OASC), a revised edition of

the 2015 ICON challenge. Thanks to the new enhancements, sunny-as2 obtained

much better results [93]: it reached the overall third position and, in particular, it

was the approach achieving the best runtime minimization (i.e., the goal for which

SUNNY was originally designed).

In this work, we detail the technical improvements of sunny-as2 and we show their

impact on the benchmark scenarios of the 2017 OASC competition. The technical

improvements include: (i) the design of a surrogate function which makes feasible

the evaluation of wrapper-based feature selection; (ii) the development of a training

approach that orthogonally combines the feature selection and the k-configuration.

We also empirically discovered that, by selecting a small number of representative

instances for training the training speed gets improved without altering too much

the prediction performance.

5.2 Related work

Algorithm Selection (AS) aims at identifying on per-instance basis the relevant

algorithm, or set of algorithms, to run in order to enhance the problem-solving

performance. The study of AS problems has attracted great attention in the SAT

community and portfolio-based solutions won SAT competitions for years. For

instance, SATZilla won the SAT Challenge from 2007 to 2010 and 2012, 3S and

CSHC won gold medals in 2011 and 2013 respectively.

SATzilla [150] relies on runtime prediction models. Its latest version [149] uses

a weighted random forest approach provided with a cost-sensitive loss function for

punishing misclassifications in direct proportion to their performance impact. 3S [82]

conjugates a fixed-time static solver schedule (computed off-line) with the dynamic

selection of one long-running solver. This solver is chosen with a k-NN algorithm

and is eventually executed after the static schedule. CSHC [102] clusters instead
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instances aiming to reduce the error of misclassification. Given a test instance to

solve it will decide to which cluster it belongs and a best performance solver for

that cluster is delegated to solve the test instance. Similarly to 3S, also CSHC has a

static schedule in the pre-solving step.

Besides the comparisons in the SAT and CSP settings [12], some of these ap-

proaches have been abstracted to work on other scenarios. Following the release of

ASlib, for instance, [82] proposed Aspeed as a variant of 3S where the per-instance

long-running solver selection has been replaced by a solver schedule. Consequently,

in [94] Lindauer et al. released ISA which further improved Aspeed by introducing

an optimization objective “timeout-minimal” in their schedule generation.

Apart from sunny-as2, the OASC 2017 challenge [18], included three more

contestants, each of which coming with two submissions. The system AS-ASL [103]

uses a greedy wrapper-based feature selection and their AS selector as evaluator to

filter relevant features for their own system. Then, they train their system differently

in different submission: AS-ASL uses ensemble learning model while AS-RF uses the

random forest. A final schedule is built on the trained model.

Cameron et al. in [29] proposed *ZILLA as an improved version of ZILLA

who won the first place in the 2015 ICON challenge. They added functions such

as solver sub-sampling, presolving, feature group selection and Hyper-parameter

tuning to ZILLA, where ZILLA is built on random forest technique. The winner

of the OASC competition is instead ASAP [61]. The ASAP algorithm selector still

employs Random Forest but they iterate the optimization of the pre-scheduler and

the algorithm selector which yield a more robust and elaborated solution schedule.

One thing in common among these three approaches is that all of them attempt

to solve an unseen problem instance by fixed solver(s) before AS process. The

solver AS-ASL selects a single solver while ASAP and *ZILLA define a static solver

schedule.

Among the approaches that did not participate in the OASC challenge we mention

[110], which considers the AS Problem as a Recommendation Problem by using

the well-known technique of Collaborative Filtering. Its performance is similar to
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the initial version of sunny-as. In [100] an approach is proposed to transform a

text-encoded instance into a 2-D image which will then be processed by a Deep Neural

Network system. Their model enabled the Deep Neural Network to find out (and

also generate) relevant features for Algorithm Selection. Preliminary experiments are

quite encouraging even though this approach still lags behind w.r.t. state-of-the-art

approaches who are using crafted features.

5.3 Preliminaries

In this section we formalize the Algorithm Selection Problem, and we describe the

SUNNY algorithm on which sunny-as and sunny-as2 rely.

5.3.1 Algorithm Selection Problem

We can define an AS scenario as a triplet (I,A,m) where: I is a set of instances,

A is a set (or portfolio) of algorithms (or solvers), and m : I × A → R is a

performance metric. The algorithm selection problem [123] consists in building a

mapping s : I → A such that the overall performance
∑
i∈I

m(i, s(i)) is minimized.

We can see s as an algorithm selector that, for each instance i, aims to predict the

best algorithm A = s(i) for instance i.

Since for many scenarios the performance metric m on I is (partially) known,

we can validate the performance of s by partitioning I into a training set Itr and a

test set Its: the selector s is trained on the instances of Itr, and evaluated on Its by

computing
∑
i∈Its

m(i, s(i)).

Since the problem instances of I are typically hard to solve, often a solving

timeout τ is set, so that m(i, A) ≤ τ for each i ∈ I, A ∈ A. Some evaluation systems

give an additional penalty if m(i, s(i)) = τ ; for example, the Penalized Average
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Runtime (PAR) score with penalty λ > 1 is given by PARλ =
1

|I|
∑
i∈I

m′(i, s(i)) where:

m′(i, A) =

m(i, A) if m(i, A) < τ

λ× τ otherwise.

Typically, per-instance AS frameworks characterize each instance i ∈ I with the

corresponding feature vector F(i) ∈ Rn, and the selection of the best algorithm A for

i is actually performed according to F(i) (i.e., A = s(F(i))). The feature selection

process enables to consider smaller feature vectors F ′(i) ∈ Rm, derived from F(i) by

projecting a number m ≤ n of its features.

Clearly, the AS framework can be arbitrarily extended. For example, we can

generalize s in order to select a schedule of solvers of A, instead of a single solver

s(i) ∈ A. As we shall see, this is the strategy used by SUNNY.

5.3.2 Feature Selection

The process of deriving a smaller feature vector F ′(i) ∈ Rm from a larger one

F(i) ∈ Rn with m ≤ n is known as feature selection (FS). The purpose of such process

is simplifying the prediction model, lowering the training and feature extraction

costs, and hopefully improving the prediction accuracy.

FS techniques [68] consists basically of a combination of two components: a search

technique for finding good subsets of features, and an evaluation function to score

such subsets. Since exploring all the possible subsets of features is computationally

intractable for non-trivial feature spaces, heuristics are employed to guide the search

of the best subsets. Greedy search strategies usually come in two flavors: forward

selection and backward elimination. In forward selection, features are progressively

incorporated into larger and larger subsets. Conversely, in backward elimination

features are progressively removed starting from all the available features. Combina-

tion of these two techniques, genetic algorithms, or local search algorithms such as

simulated annealing are also used.
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FS approaches can be distinguished in mainly two categories: wrappers and filters.

Filter methods select the features on the basis of features’ correlation with statistical

indicators; 1 Regardless of the model of user’s machine learning system, filter methods

are particularly efficient and robust to overfitting. In contrast, wrappers evaluate

subsets of features based on their correlation with the performance of user’s machine

learning system. Wrappers methods can be more accurate than filters, but have two

main disadvantages in consequence: they are more exposed to the overfitting risk,

and they have a much higher computational cost.

In this work we focus on wrapper methods only. We refer the interested readers

to [4] to know more about SUNNY with filter methods.

5.3.3 SUNNY and sunny-as

SUNNY is based on the k-nearest neighbors (k-NN) algorithm and embeds built-in

heuristics for schedule generation. Despite the original version of SUNNY handled

CSPs only, here we describe its generalized version — the one we used to tackle

general ASlib scenarios.

Let us fix the set of instances I = Itr ∪ Its, the set of algorithms A, the

performance metric m, and the runtime timeout τ . Given a test instance x ∈ Itr,
SUNNY produces a sequential schedule σ = [(A1, t1), . . . , (Ah, th)] where algorithm

Ai ∈ A runs for ti seconds on x and
∑h

i=1 ti = τ . Such a schedule is obtained

as follows. First, SUNNY employs k-NN to select from Itr the subset Ik of the k

instances closer to x according to the Euclidean distance computed on the feature

vector F(x). Then, SUNNY uses three heuristics to compute the schedule σ: (i)

Hsel, for selecting the most effective algorithms {A1, . . . , Ah} ⊆ A on the set Ik; (ii)

Hall, for allocating to each Ai ∈ A a certain runtime ti ∈ [0, τ ] for i = 1, . . . , h; (iii)

Hsch, for scheduling the sequential execution of the algorithms according to their

speed in the selected instances Ik.

1The statistical indicators for FS include, for instance, Pearson’s Correlation, Linear Discriminant

Analysis, Chi-Square, etc [69].
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Table 5.1: Runtimes (in seconds). τ means the solver timeout.

x1 x2 x3 x4 x5

A1 τ τ 3 τ 278

A2 τ 593 τ τ τ

A3 τ τ 36 1452 τ

A4 τ τ τ 122 60

The heuristics Hsel, Hall, and Hsch are based on performance metric m, but depend

on the application domain. For CSPs, Hsel selects the smallest set of algorithms

S ⊆ A that solves the most instances in Ik, by using the runtime for breaking ties.

Hall allocates to each Ai ∈ S a time ti proportional to the instances that S can

solve in Ik, by using a special backup solver for covering the instances of Ik that

are not solvable by any solver. Finally, Hsch sorts the solvers by increasing solving

time in Ik. For Constraint Optimization Problems the approach is similar, but

different evaluation metrics are used [13]. For more details about SUNNY we refer

the interested reader to [10, 13], below we show Example 1 illustrating how SUNNY

works on a given CSP.

Example 1 Let x be a CSP, A = {A1, A2, A3, A4} a portfolio, A3 the backup solver,

τ = 1800 seconds the solving timeout, Ik = {x1, ..., x5} the k = 5 neighbours of x, and

the runtimes of solver Ai on problem xj defined as in Table 5.1. In this case, the small-

est set of solvers that solve most instances in N(x, k) are {A1, A2, A3}, {A1, A2, A4},
and {A2, A3, A4}. The heuristic Hsel selects S = {A1, A2, A4} because these solvers

are faster in solving the instances in Ik. Since A1 and A4 solve 2 instances, A2 solves

1 instance and x1 is not solved by any solver, the time window [0, τ ] is partitioned in

2+2+1+1 = 6 slots: 2 assigned to A1 and A4, 1 slot to A2, and 1 to the backup solver

A3. Finally, Hsch sorts the solvers by increasing solving time. The final schedule

produced by SUNNY is therefore σ = [(A4, 600), (A1, 600), (A3, 300), (A2, 300)].

Note that by default SUNNY does not perform any feature selection: it simply

removes all the features that are constant over each F(x), and scales the remaining
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features into the range [−1, 1] (scaling features is important for algorithms based on

k-NN). The default neighborhood size is k =
√
Itr. The backup solver is the solver

A∗ ∈ A minimising the sum
∑
i∈Itr

m(i, A∗).

The sunny-as [5] tool implements the SUNNY algorithm to handle generic AS

scenarios of the ASlib. In the optional pre-processing phase, performed offline,

sunny-as can perform a feature selection based on different filtering methods and

select a pre-solver to be run for a limited amount of time. At runtime, it produces

the schedule of solvers by following the approach explained above.

5.3.4 2017 OASC challenge

In 2017, the COnfiguration and SElection of ALgorithms (COSEAL) group [65]

has organized the Open Algorithm Selection Challenge to compare the different

algorithm selectors available.

The challenge is built upon the Algorithm Selection library (ASlib) [23] that

presents different algorithm selection scenarios. ASlib distinguishes between two

types of scenarios: runtime scenarios and quality scenarios. In runtime scenarios the

goal is to minimize the runtime of selected solver(s) for solving all instances (e.g.,

decision problems). The goal in quality scenarios is instead to find the algorithm

that obtains the highest score according to some metric (e.g., optimization problems).

One of the main difference between the two types of approaches is that runtime

scenarios allow easily the computation of the results of a combination of solvers while

this is not possible for the quality scenarios. Indeed, ASlib does not contain the

partial results of the runs of the algorithms, thus making impossible to reconstruct

ex-post the final result of an interleaved execution of them. For this reason, for

the OASC it was possible to have selector proposing a schedule of solvers only for

runtime scenarios.

The 2017 OASC consists of 11 scenarios: 8 runtime and 3 quality scenarios.

Differently from the previous ICON challenge for Algorithm Selection held in 2015,

the OASC used scenarios from a broader domain which come from the recent

international competitions on CSP, MAXSAT, MIP, QBF, and SAT. In the OASC,
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Scenario Source Algorithms (m) Problems (n) Features (d) Timeout (τ)

Caren CSP-MZN-2016 8 100 95 1200 s

Mira MIP-2016 5 218 143 7200 s

Magnus MAXSAT-PMS-2016 19 601 37 1800 s

Monty MAXSAT-WPMS-2016 18 630 37 1800 s

Quill QBF-2016 24 825 46 1800 s

Bado BNSL-2016 8 1179 86 2880 s

Svea SAT12-ALL 31 1614 115 480 s

Sora SAT03-16 INDU 10 2000 483 5000 s

Table 5.2: OASC Scenarios.

each scenario is evaluated by one pair of training and test set replacing the 10-fold

cross validation of the ICON challenge. The participants had access to performance

and feature data on training instances (2/3 of the total), and only the instance

features for the test instances (1/3 of the total).

In this work, due to the fact that SUNNY produces a schedule of solver not

usable for quality scenarios, we focus only on runtime scenarios. An overview of

them with their number of instances, algorithm, features, and timeouts is available

in Table 5.2.

The OASC results show that sunny-as2 outperformed the other competitors for

the runtime scenarios. For the detailed competition report, we refer the interested

readers to [18, 93].

5.4 sunny-as2

sunny-as2 is the evolution of sunny-as and the solver that attended the 2017 OASC

competition. The most significant innovations of sunny-as2 are the introduction

of wrapper FS methods, and the automatic k-configuration. Based on training

data, sunny-as2 automatically selects the most relevant features and/or the most

performing value of the neighborhood parameter k to be used for online prediction. To

improve configuration accuracy and stability, sunny-as2 relies on cross-validation [84]

for off-line training which splits the training data into mutual exclusive folds, then
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considers each fold in turn as test dataset and the rest as training set to assess the

quality of parameter setting 2.

The importance of feature selection and parameters configuration for SUNNY has

been shown in the empirical experiments conducted in [94, 4]. In particular, [4] shows

the benefits of a proper feature selection, while [94] shows that parameters like the

schedule size |σ| and the neighborhood size k can have a substantial impact on the

performance of SUNNY. In this regard, the authors introduced TSUNNY, a version of

SUNNY that—by allowing the configuration of both |σ| and k parameters—yielded

a remarkable improvements over the original SUNNY.

Before introducing the different execution modalities of sunny-as2, in the fol-

lowing we will first describe the evaluation function that was used to evaluate the

quality of a given parameter setting.

5.4.1 Evaluation function

The Evaluation Function, also known as Induction Function[84], is used to score a

setting and guide the search of better parameter values. To evaluate the quality of

a given set of settings, usually the tool under evaluation can be run on a relevant

benchmark. In our case, however, the execution of SUNNY would have required

too much time due to the way SUNNY selects the solvers to execute. Therefore,

in order to be able to perform a quicker estimation of the quality of the settings,

we have introduced a new simple variant of SUNNY that we called greedy-SUNNY,

assuming that the quality of the parameters of SUNNY is correlated with the quality

of parameters of greedy-SUNNY.

greedy-SUNNY differs from SUNNY in the way the set of solvers to execute is

selected. Given a set I of the instances of the neighborhood, SUNNY computes the

smallest set of solvers in the portfolio that can maximize the resolution of instances

in I. In the worst case this can take an exponential amount of time w.r.t. the

number of solvers. To overcome this limitation, greedy-SUNNY, in a greedy approach,

2Different from sunny-as2, sunny-as had only a limited support for feature selection, and it

only allowed the manual configuration of parameters.
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starting from an empty set of solvers S adds one solver at the time to S by selecting

the solver that is able to solve the largest number of instances in I. The instances

solved by the selected solver are then removed from I and the process repeated until

a given number λ of solvers is added to S or no more instances need to be solved (i.e.,

I = ∅). The value of λ is fixed externally by the user but, based on some empirical

experiments, its default value was set to a small value (e.g. 3) as also suggested by

the offline validations in [94].

With the usage of greedy-SUNNY, given a benchmark of training instances Itr
and testing instances Its it is possible to assign to the SUNNY settings a score

representing its quality. In our case we decided to assign to the set of settings S

the PAR10 score (c.f. Section 5.3) obtained by executing the schedule produced by

greedy-SUNNY on the testing instances Its by using the training instance Itr. Where

cross-validation is applied, the average score was obtained by averaging the score

obtained by considering the different training sets folds.

With a little abuse of notation, in the following, we denote with greedy-SUNNY

both the new evaluation function and the schedule generator on concrete instances.

5.4.2 sunny-as2 and its execution modalities

sunny-as2 provides different execution modalities depending on how the configuration

of its parameters is conducted. The configuration procedure uses the training

instances contained in each scenario. This is done in two phases: data preparation

and parameter configuration.

Data preparation. The training instances are selected and split in 10 folds for

cross validation by performing the following four steps: 1) each training instance is

associated to the solver that solves it in the shortest time; 2) for each solver, the

list of its associated instances is ordered from the hardest to the easiest (in terms

of time needed to solve them); 3) we select one instance at a time from each set

associated to each solver until a global limit on the number of instances is reached;

4) the selected instances are divided into 10 folds for cross validation.
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In the first step, if an instance cannot be solved by any of the available solvers

it will be discarded as commonly done in the AS community. For the fourth step

creating the 10 folds, sunny-as2 offers two choices: stratified split and random split

[84]. The stratified split guarantees that for each label, each fold contains roughly the

same percentage of instances associated with that label. The random split instead

simply partitions the instances randomly into folds.

Parameter configuration. In order to compare different parameter settings

for SUNNY and understand which have more impact on the performance we consider

three modalities for sunny-as2: k-configuration, wrapper-based FS, and an hybrid

system. These are described below.

1. sunny-as2-k. In this case, we use all the instance features and configure only

the neighborhood size value k by considering values in the range [1, n] where n

is an external parameter set by the user (default value 80). The best value of

k is chosen.

2. sunny-as2-f. In this case the neighborhood size k is set in the default way

of SUNNY (square root of total number of instances) but a wrapper-based

feature selection using greedy-SUNNY is used to evaluate the quality of a set

of features. Iteratively, starting from an empty set of features, sunny-as2-f

adds to the set of already selected features the tested feature which better

decreases the PAR10 on the training instances. The iteration stops when the

PAR10 increases or reaches a given limit of iterations.

3. sunny-as2-fk. This is a combination of sunny-as2-f and sunny-as2-k where

both the neighborhood size parameter and the set of selected features are

configured. More precisely, the procedure sunny-as2-f is run with different

values of k in the range [1, n]. The k with the lowest PAR10 is then identified.

The entire procedure is repeated until the addition of a feature with k varying in

[1, n] does not improve the PAR10 score or a given limit of iterations is reached.

The resulting feature set and k value are chosen for the online prediction.
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Before concluding the section, as a summary, the parameters used by sunny-as2 that

have to be decided by the user and are not learnt automatically are the following

ones.

1. split mode: the mode to create folds for validation which includes random

split and stratified split. Default: random.

2. training instances limit: the maximum number of instances used in training.

Default: 1200.

3. feature limit: the limit of features for feature selection, used by sunny-as2-f

and sunny-as2-fk. Default: 5.

4. k range: the range of neighborhood size used by sunny-as2-f and sunny-as2-fk.

Default: [1,30].

5. schedule limit for training (λ): the limit of schedule size for greedy-SUNNY.

Default: 3.

By tuning the values, in particular of the first three parameters, the training time

can be controlled. A larger number of training instances, a bigger set of features,

and a bigger size of the neighborhood increase the running times.

5.5 Empirical Validation

In this section we show the experiments run on the runtime scenarios of OASC

benchmark in order to compare various execution modalities and parameter settings

of sunny-as2. In particular, in the first part, we use sunny-as2-fk as baseline to

understand the effect of the basic internal parameter values. We examine in sequence:

i) the split modes for cross validation, ii) the limit on the numbers of features to

select, iii) the limit on the number of training instances, iv) the schedule limit λ, and

v) the differences between the SUNNY and greedy-SUNNY metrics for training and

prediction. Then we compared the different execution modalities of sunny-as2 as

defined in the previous section (sunny-as2-k, sunny-as2-f, and sunny-as2-fk).
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To evaluate the quality of an AS system, we used the conventional indicator

denoted as closed gap [18]. Assuming that mV BS is the performances (in terms of

PAR10 score) of the Virtual Best Solver (i.e., the oracle solver which always chooses

the best solver for each instance, mbest is the performance of the best solver across

all the test instances, and mc is the performance of the solver under consideration,

the closed gap of the system considered is defined as:

mc −mbest

mV BS −mbest

A good AS system will have a performance mc close to the virtual best solver

mV BS, which leads the closed gap score to be closer to 1. On the contrary, a bad

performance consist in having mc close to the single best solver mbest, thus making

the close gap close to 0 if not even lower.

In the following, the best closed gap scores will be marked with a bold font. The

experiments are conducted on a Linux machines equipped with Intel Corei5 3.30GHz

processors and 8 GB of RAM.

5.5.1 Stratified vs Random Cross Validation

We start by showing the effects of the different cross validation used to train the

data. Table 5.3 compares different cross validation choices for all the 8 scenarios of

the OASC challenge involving runtime minimization.

Caren Magnus Monty Mira Sora Quill Svea Bado Average

random* 0.6649 0.5678 0.9081 -0.4423 0.3163 0.6799 0.6205 0.7891 0.513

random 0.9798 0.5889 0.9721 0.0539 0.2299 0.669 0.6374 0.8078 0.6174

stratified 0.7889 0.5789 0.4149 -0.0053 0.3139 0.7297 0.6211 0.9026 0.5431

Table 5.3: Random split Cross Validation vs. Stratified Cross Validation (bold font

indicates the best score).

For this experiments we set the internal parameters of sunny-as2-fk to the

default ones (c.f. 5.4.2) except the split mode one. The three split modes we

examined are: random*, random and stratified. Both random* and random generate



Chapter 5. SUNNY for Algorithm Selection 95

folds in a random way with the only difference that random eliminates all the

unsolvable training instances while random* preserves the whole instance set. The

stratified mode first eliminates the unsolved instances and then generates folds based

on class label (fastest algorithm).

The result shows that none of the split modes dominates the others for all the

possible scenarios. Overall, after removing the unsolved instances, the random

splitting provides a generally better performance: it achieved an average closed gap

score of 0.6174 against 0.5431 for the stratified split and 0.513 of the random split

without instance elimination.

5.5.2 Number of Training Instances

We studied the impact of the number of training instances on the performances. As

before, we use the default parameter values listed in Sec. 5.4.2, just varying the limit

of training instances.

Scenario #inst 50 100 150 200 300 400 500 600 700 800 900 1000 1100 All

Caren 66 0.7879 0.9798

Mira 145 -0.8715 -1.3671 0.0539

Magnus 400 0.4897 0.5054 0.5087 0.5871 0.5849 0.5889 0.5889

Monty 420 0.6343 0.9091 0.9123 0.4803 0.9141 0.9721 0.9721

Quill 550 0.6773 0.7096 0.7436 0.4287 0.6405 0.9043 0.9031 0.669

Bado 786 0.5798 0.4844 0.7872 0.743 0.8258 0.7468 0.7903 0.7677 0.7485 0.8078

Svea 1076 0.5888 0.5522 0.6109 0.568 0.4963 0.4876 0.5434 0.4968 0.5629 0.6017 0.5688 0.6064 0.6374

Sora 1333 0.2924 0.007 0.0765 0.1871 0.1659 0.2961 0.2104 0.1675 0.2349 0.3832 0.1024 0.3809 0.2233 0.2299

Average 0.3973 0.3476 0.5841 0.5035 0.5827 0.6287 0.6302 0.587 0.6013 0.6321 0.5928 0.6324 0.6165 0.6174

Time (h) 0.6502 1.16 1.9 2.91 5.27 9.17 13.24 18.23 23.38 28.61 34.38 41.45 48.12

Table 5.4: Training results varying number of training instances.

We run sunny-as2-fk with different instance limit from 50 to 1100. The results

are described in Tab. 5.4 where the first column mentions the scenario name, the

second column contains the number of available training instances in each scenario

(after eliminating unsolvable ones), and the last column reports the results calculated

considering all the training instances. All the other columns contain the results

generated considering the fixed number of instances indicated in the first row. The
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second to last row reports the average closed gap score across all scenarios,3 and the

last row provides the aggregated CPU time that the training procedure took.

Based on the average closed gap score, we can see that by lowering the number

of instances the system performance in terms of closed gap score does not alter

significantly. With more than 150 instances, the score oscillates around 0.60. The

peak score 0.6331 is obtained with 400 instances. In this case, the CPU time used

for training is 9.17 hours which is almost 5 times faster than training with the total

instances at our disposal (51.87 hours).

After 400 instances, increasing the number of training instances does not improve

significantly the sunny-as2-fk performance. We conjecture that this is partially due

to the procedure for the selection of instances (cf. data preparation in Section 5.4.2)

that picks the instances after they have been stratified in classes, thus reducing their

skewness. The number of instances is large enough to form an homogeneous set that

reflects the instance class distribution of the entire scenario even after a random or

stratified split.

Table 5.5 shows the neighborhood size value k selected by sunny-as2-fk during

the training by varying the number of training instances. Interestingly enough, we

can see that all the scenarios use a reasonably small value for k and that the larger

value of k is reached with 400 or less training instances. This means that the small

number of good quality instances are enough to maintained the prediction accuracy

for the considered scenarios.

5.5.3 Limit on the Number of Features

Since we know that a small number of features are enough to provide a competitive

performance of an AS system [4, 23], we now try to pinpoint a good value for the

limit on the number of features on which our system should rely.

We first run the experiments with the whole set of training instances as a baseline

and then we reduced the number of training instances in order to understand if there

3In case the scenario has less feature than needed, we considered for computing the average

score the result obtained using all the features as stated in the final column of Table 5.4.
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Scenario 50 100 150 200 300 400 500 600 700 800 900 1000 1100 All

Caren 7 14

Mira 4 4 17

Magnus 8 3 9 9 10 8 8

Monty 3 3 4 4 8 10 10

Quill 17 15 22 29 24 29 28 22

Bado 3 4 4 4 15 17 6 9 14 9

Svea 3 3 3 3 3 3 3 3 7 9 3 7 6

Sora 3 3 3 5 3 7 3 6 9 7 11 15 15 15

Table 5.5: Neighborhood size k by varying number of training instances.

was some pattern between the number of features and the number of the training

instances.

Scenario 1 2 3 4 5 6 7 8 9 10

Caren 0.5869 0.5981 0.9727 0.9798 0.9798 0.9798 0.9798 0.9798 0.9798 0.9798

Magnus 0.3432 0.585 0.589 0.5889

Monty 0.4711 0.764 0.9794 0.9814 0.9721

Mira -0.8743 -0.8622 0.0569 0.0569 0.0539 0.0539 0.0539 0.0539 0.0539 0.0539

Sora 0.2307 0.2657 0.3343 0.3287 0.2299 0.2103 0.2546 0.2754 0.2768 0.2739

Quill 0.4581 0.6358 0.58 0.6397 0.669 0.728 0.7296 0.7078

Svea 0.4132 0.5174 0.5649 0.6377 0.6374 0.6368 0.662 0.6538 0.6377 0.637

Bado 0.6453 0.7617 0.7984 0.8078

Average 0.2843 0.4082 0.6095 0.6276 0.6174 0.6222 0.6311 0.6299 0.6281 0.6277

Table 5.6: Performance change varying feature limit with entire set of training

instances.

With the default parameter values specified in Sec. 5.4.2 except the feature limit,

we run sunny-as2-fk on all the training instances with feature limits from one to

ten and list the results in Table 5.6. The first row shows the different limits set to the

feature cardinality while the last row shows the average closed gap score aggregated

for each scenario. The scenario names are listed in the first column. Note that some

of the values in the columns are left blank to indicate that the feature limit for

that specific scenario has not been reached. This is due to the greedy procedure of
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sunny-as2-f that adds a feature to the set of considered features only if the addition

decrease the PAR10 score.

As expected, for several scenarios, despite the training cost decreases by adding

a new feature, its highest performance was reached with less features. For instance

Sora has a good performance with three selected features and adding a new feature

does not increase the closing gap. This confirms that in some cases setting a small

feature limit could improve the performance.

In general, the results show that the sunny-as2-fk performance improves with

more than three features and the improvement stops when the number of feature is

bigger than eight. The highest score considering the OASC challenge scenarios is

achieved when the limit of features is set to seven.

We then tried to find out if there was a correlation pattern between the limit

on the number of features and the limit on the training instances. As done for the

results shown in Table 5.6, we considered the limit on training features from 50 to

1200 and the feature limit between 4 and 8. We report the average closed gap score

of all the scenarios in each cell of Table 5.7.

As can be seen, when the number of training instances is bigger than 150, the

score obtained with different feature limit does not change significantly. The best

result is obtained considering a limit of 1000 training instances and 7 features (score

0.6401) that is however very close to the score obtained when the instance limit is

set to 400 and the feature limit is set to 4 (average score 0.6398).

Since the difference between these best and second best score is very small but

in terms of training time the the peak performance require more than 4 times the

time taken by the runner up, in the following experiment we decide to adopt 400 for

training instance limit and 4 for feature limit. This decision is done following the

spirit of the previous ICON challenge that limited the training time to only 12 CPU

hours and by the consideration that the training time is one of the obstacles that

hinder the adoption of portfolio based solver in the real world.
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aaaaaa
Feat Inst 50 100 150 200 300 400 500 600 700 800 900 1000 1100 Average

4 0.4333 0.3872 0.5824 0.507 0.5784 0.6398 0.595 0.5923 0.6135 0.6233 0.5896 0.6185 0.6269 0.6276

5 0.3973 0.3476 0.5841 0.5035 0.5827 0.6331 0.6039 0.587 0.6013 0.6321 0.5928 0.6324 0.6165 0.6174

6 0.3785 0.3487 0.5988 0.5022 0.6127 0.6345 0.6029 0.5962 0.6315 0.6356 0.5924 0.6388 0.6238 0.6222

7 0.4467 0.4202 0.6086 0.5452 0.6109 0.6365 0.6221 0.5957 0.6291 0.6245 0.6039 0.6401 0.6364 0.6311

8 0.4467 0.4203 0.6086 0.5461 0.6104 0.637 0.6221 0.593 0.6324 0.6218 0.6011 0.6365 0.624 0.6299

Table 5.7: Average closed gap score: feature limit vs training instances limit.

Scenario, λ size1 size2 size3 size4 size5 size6

Caren 0.9855 0.7907 0.9798 0.9798 0.9798 0.9798

Magnus 0.5041 0.5889 0.5889 0.5889 0.5889 0.5889

Monty 0.9101 0.9814 0.9814 0.9814 0.9814 0.9814

Mira 0.0264 0.0569 0.0569 0.0569 0.0569 0.0569

Sora 0.2765 0.3596 0.3596 0.3596 0.3596 0.3596

Quill 0.6521 0.6122 0.9042 0.6408 0.6408 0.6408

Svea 0.5688 0.4807 0.4807 0.4807 0.4807 0.4807

Bado 0.8111 0.7714 0.7669 0.7717 0.7717 0.7717

All 0.5918 0.5802 0.6398 0.6075 0.6075 0.6075

Table 5.8: Closed gap by varying the schedule size of greedy-SUNNY.

5.5.4 Schedule size λ for greedy-SUNNY

In the training procedure, greedy-SUNNY uses the parameter λ to limit the size of

generated schedule and be faster than the SUNNY approach when computing the

schedule of solvers. We have investigated what is a suitable λ value to use, when

greedy-SUNNY is used for training.

Tab. 5.8 lists the closed gap score of sunny-as2-fk with different λ values. We

set 400 as training instance limit, 4 as feature size limit, k ∈ [1, 30] and we varied

the schedule limit for training λ from one to six. By observing the average results

for each λ value, the global peak performance was reached when λ is set to three.

When λ is less than three, for most scenarios, the results are worse and when λ is

bigger than three the performances are the same if not slightly worse except for one

scenario only. As expected, this means that for the considered scenarios, the three

best performing solvers are often sufficient to solve the most instances. As such, we
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set λ to three as default value for greedy-SUNNY.

5.5.5 greedy-SUNNY vs SUNNY

As previously described, greedy-SUNNY was introduced to speed up the training

process, hoping that there was at least a correlation with its performance and the

original version of SUNNY. Here, we empirically show that greedy-SUNNY can be used

as a substitute for SUNNY for the training without big degradation of performance.

In the following experiments we use the default parameters changing the ap-

proaches used for generating the schedule of solvers in training and in testing using

a time limit of a week. Results are reported in Tab. 5.9, where the column names

denote the pairs of the function used for the training and testing respectively. For

instance, the second column “sunny-gsunny” means that SUNNY has been used for

training, and greedy-SUNNY for testing. Note that for the Svea scenario SUNNY

takes more time than our time cup. This is reported in the table with the “Timeout”

string.

The first thing that we can conclude by looking at the column “gsunny-sunny”

and “gsunny-gsunny” is that when greedy-SUNNY is used for training, using SUNNY

for testing is slightly better than using greedy-SUNNY. The difference is however

very small. We believe that this is due to the fact that for the OASC scenarios

only few solvers are enough to solve the majority of instances in the neighborhood.

The fact that SUNNY considers all the solvers available therefore does not bring a

big advantage. We conjecture that this is a property that good algorithm scenarios

should have, providing to have also a good distance metric to evaluate the similarity

of the different instances. If not, this would mean that the concept of similarity can

not be used to relate the performance of solver over similar instances, thus hinder

the possibility to create good selectors.

Surprisingly, by comparing the column “sunny-sunny” and “gsunny-sunny”, we

find that the results of “gsunny-sunny” are generally higher than “sunny-sunny”

which means that greedy-SUNNY is better for training than SUNNY. This is a counter

intuitive results since we were expecting that SUNNY was better also in training.
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Apparently, the possibility of SUNNY to select more solver than what greedy-SUNNY

has a negative effect of the training. We conjecture that this is probably due to

the fact that greedy-SUNNY prioritizes for the selection the first solver, which is the

most robust one solving more instances in the neighborhood. This may lead to the

learning of more robust parameters later.

sunny - sunny sunny - gsunny gsunny - sunny gsunny - gsunny

Caren 0.9749 0.9717 0.9798 0.9682

Magnus 0.5821 0.5799 0.5889 0.5889

Monty 0.3757 0.3876 0.9814 0.9836

Mira -0.351 -0.3336 0.0569 0.0564

Sora 0.2767 0.316 0.3596 0.3815

Quill 0.6991 0.7086 0.9042 0.8896

Svea Timeout Timeout 0.4807 0.4873

Bado 0.7892 0.768 0.7669 0.7609

All 0.4781 0.407 0.6398 0.6396

Table 5.9: Closed gap for different combinations of SUNNY and greedy-SUNNY for

training and testing.

The performance of greedy-SUNNY is useful due to the fact that SUNNY is

particularly slow to train scenarios with a large number of solvers. This can be

seen in Table 5.10 that describes the hours spent for training using the different

approaches. We run the training experiments with a time limit of a week and for

this reason we omitted the result for the Svea scenario that based on our estimation

would have taken 17000 hours to be completed. The average close gap is computed

considering the available results. It is evident that greedy-SUNNY is quicker than

original SUNNY for any scenarios.

Combining Tab. 5.9 and Tab. 5.10 we conclude that, for training, greedy-SUNNY

works better than SUNNY in terms of both speed and the quality of configured

parameters. For the testing, the two approaches are similar, with a non statistically

significant advantage for SUNNY.
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Caren Magnus Monty Mira Sora Quill Svea Bado Average*

gsunny 0.05 0.28 0.3 0.18 50.98 0.92 16.37 3.16 7.9814

sunny 2.35 1.35 3.93 0.22 65.97 71.18 - 3.91 21.2729

# solvers 20 19 18 5 10 24 31 8

# insts 66 400 420 145 1333 550 1076 786

Table 5.10: Hours spent for training by various evaluation functions.

5.5.6 Comparison of execution modalities

We conclude the experiment section by comparing the different execution modalities of

sunny-as2-f, sunny-as2-k, and sunny-as2-fk with the original version of SUNNY

that did not exploit any parameter configuration.

Caren Magnus Monty Mira Sora Quill Svea Bado All

sunny 0.3942 0.5857 0.3992 -0.8996 0.1674 0.7697 0.4866 0.7687 0.334

sunny-as2-f 0.7919 0.6598 0.3028 -0.4644 0.2076 0.6481 0.5575 0.848 0.4439

sunny-as2-k 0.7788 0.506 0.5548 0.0103 0.1735 0.8508 0.4866 0.848 0.5261

sunny-as2-fk 0.9798 0.5889 0.9814 0.0569 0.3596 0.9042 0.4807 0.7669 0.6398

Table 5.11: Comparisons of sunny-as2 basic modalities.

Based on the previous results, we used greedy-SUNNY for training and SUNNY

for testing, 400 as the instance limit for training, and set all other parameters to

their default values. The results are listed in Tab. 5.11.

sunny-as2-fk yields the best results for 5 scenarios and has the best average

closed gap. The original SUNNY is evidently worse than any other execution modality.

In addition, we also tried greedy-SUNNY for testing. The result’s order does not

change, and similar to Tab. 5.9, greedy-SUNNY is still slightly less competitive than

SUNNY.

We would like to conclude by pointing out that we did plenty of experiments by

enlarging the interval of search for the hyper-parameter k and the limits of training

instances. However, the results show that there was not any significant improvements

on the average closed gap score.
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5.6 Chapter Summary

Algorithm Selection or Portfolio Approach has attracted a lot attention since it is

found to be a powerful method to tackle NP-hard problems. Thanks to the ASlib,

different Algorithm Selection techniques tailored in different domains are able to

be compared fairly. In this work we presented sunny-as2 that, by applying the

wrapper-based feature selection with the configuration of the neighborhood size, was

able to compete in the recent OASC challenge reaching the first position in the

runtime minimization category.

As a future work, we are planning to improve sunny-as2 targeting the solution

quality scenarios of the OASC competition where, due to the fact that using schedulers

of solver is not allowed, sunny-as2 is strongly penalized. Another direction for future

work is the investigation of the problem of overfitting that may happen due to the

usage of the wrapper-based feature selection.
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Chapter 6

Conclusions and future extensions

The user states the problem, the

computer solves it.

Eugene Freuder

Constraint programming (CP) has been designed to help people express their

needs better by isolating the solution procedure from the problem model. With this

in mind, we have investigated the application of CP.

The study in this dissertation is split into two parts. In the first part, we applied

CP to two specific problems: NightSplit for group activity optimization (Chapter

3) and the SFC design problem for network service function chain (Chapter 4). We

formalized these problems and showed their complexity. Then, we compared different

approaches to address them, highlighting the advantages and limitations of CP. In

the second part, we discussed an AS technique called SUNNY. We described the

advancements of SUNNY, which led it to become an award winner in the 2017 OASC

challenge.

The original contributions of this dissertation are as follows.

• We proposed a model called NightSplitter for the (sub)group activity opti-

mization.
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• We implemented the solution for NightSplit using CP and an approximative

approach (simulated annealing), as well as investigating the scalability issue of

CP.

• We developed a web application for NightSplit to conduct practical studies.

• We proposed a framework and a formalization of the SFC design problem.

• We demonstrated that the CP solving technique is more efficient than that of

MILP for the SFC design problem.

• We generalized SUNNY, a constraint solver selection technique, for general AS

study using the ASlib benchmarks.

• We proposed improvements to SUNNY, thanks to which it won a prize in the

Open Algorithm Selection Challenge.

It is worth mentioning that we have followed up on the NightSplit project. By

conducting a number of market surveys and interviews with users and business

experts, we have found that it is not easy to market the system to the public. Some

users are extremely dynamic: they may change their schedules in different situations,

and they are against a fixed schedule generated by a computer. There are also users

who want to interact with the system in a more flexible way. Gathering friends’

preferences and adjusting the system parameters is too complicated for them. They

would prefer the system to have voice commands, like Siri or Google Assistant, so that

they can reduce the time needed to learn about the tool and feel comfortable feeding

their preferences and constraints into the system directly. Indeed, the feedback

collected reflects some challenging questions regarding constraint programming, such

as how to design a model with a higher degree of flexibility and how to use as little

parameters as possible to lower the burden of user input. We suppose that these

problems could be addressed partially with the help of a machine learning system

that can observe the users’ habits and identify the necessary parameter values needed

by the CP system, such as the activity area, the group size, and the activity time

window.
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Comparatively, a constraint system for industrial problems (like the SFC design

problem) seems to be less difficult for users to understand. The system users are

familiar with the routines that they need to follow; they have a clear idea of what

they should feed into the system and what they can expect to receive. The users

mostly care about the quality of the solution and the response time of the system.

Regarding the performance of the two problems, NightSplit and the SFC design

problem, we have witnessed that state-of-the-art constraint solvers indeed have

different strengths when tackling problems in different categories. Chuffed is currently

the fastest solver available for NightSplit, while or-tools is faster than Chuffed for

the SFC design problem. These results could be useful in introducing new benchmark

scenarios for ASlib. Furthermore, we would like to understand SUNNY’s performance

using our own case studies.

An interesting direction of SUNNY is to explore its cross-domain applications.

The work [110] has successfully moved the collaborative filtering technique from the

recommender system domain to the AS problem. Likewise, we can also do it for

SUNNY, and we will understand its impact on more prediction and recommendation

problems.

In recent years, numerous successes have been seen in AI in different domains.

Although CP is one of the fields within AI that has a long history, a large number

of AI enthusiasts, who are skilled in imperative languages and machine learning,

are still unfamiliar with CP. The application of CP still has strong potential for

many challenging problems that involve constraints. We believe that this dissertation

will be useful for people who want to explore the strength of CP for solving their

problems, improve the solving efficiency of CP with AS, and appreciate the versatility

and effectiveness of CP.
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Appendix A

Appendix

A.1 Approximation algorithm for NightSplit

The approximation approach of NightSplit relies on simulated annealing (SA). The

pseudo-code 1 shows how SA has been applied to optimize an activity schedule. And
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the pseudo-code 2 explains how a schedule is modified at each step of SA.

Algorithm 1: Simulated Annealing

1 Function SA(steps):

2 Initialize an activity schedule to be optimized;

3 Initialize temperature T ;

4 Initialize counter step← 0;

5 while step < steps do

6 T ← Tmax× exp(Tfactor ∗ step
steps

);

7 schedule′ ← move();

8 if score(schedule’) > score(schedule) then

9 schedule← schedule′;

10 else

11 schedule← schedule′ with probability

p(T, score(schedule′), score(schedule));

12 end

13 step← step+ 1;

14 end

15 return schedule

In the SA implementation, Tmax and Tfactor are internal parameters which

regulate the rate of change of the temperature; the probability function p() provides
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lower chance with the increase of the temperature T .

Algorithm 2: Move method of SA

1 Function move():
Data: Activities,Users,Preferences,schedule

2 Initialize improvement indicator gain← 0;

3 Initialize activity ← [];

4 Initialize users← [];

5 while gain ≤ 0 do

6 Randomly select an actvity ∈ Activities;

7 Randomly select a subset of users ∈ Users;

8 gain← Preferences(users, activity);

9 end

10 schedule←AssignActivityToUser(users, activity, schedule);

11 schedule←EliminateOldIncompatibleActivities(users, activity, schedule);

12 for u ∈ users ∧ schedule(u) = ø do

13 activity ← schedule(u′) where u′ ∈ users \ u ∧ activity is compatible

for u;

14 schedule←AssignActivityToUser(u, activity, schedule);

15 end

16 return schedule

The move function is used to generate a neighborhood solution based on a given

one. In its content, the function eliminateOldIncompatibleActivities has been used to

eliminate old activities that violate any of the three constraints: group size, number

of groups and activity time. For more technical details, e.g., SA support functions

and data structures, we refer the interested readers to [95].

A.2 Hardness of SFC design problem

Theorem A.1 (NP-hardness) The optimal SFC design problem is NP-hard.
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Proof:

To prove hardness, we reduce the NP-complete problem k-MST [122] to the deci-

sion version of SFC design problem, i.e., finding whether there exists an admissible

SFCtree G(V ′, L′) in which the cost function
∑

l∈L′ cl is less than or equal to a given

value.

An instance of the decision version of k-MST consists of a weighted graph G(V, L),

a number k and a number h. The problem is determining whether there exists a

subgraph G∗(V ∗, L∗) ⊆ G, such that |V ∗| = k and
∑

l∈L∗ cl ≤ h. Given an instance

of k-MST, nodes of V are mapped to the gateway VNFs of the SFC problem, with

each gateway representing the presence of a unique domain. Furthermore, arcs of

L are mapped to links that connect each pair of domain gateways. 1 Two more

domains are introduced as source and target domains and one gateway is in each

of them which links to all other gateways with 0 cost. One DPI VNF is created in

each domain except for the source and target domains, and each DPI has a link to

its own domain gateway. The user request is then introduced, in which the source

and target domains are specified, prox to src and prox to dst are all set to 0 and

the requested vnflist contains k DPI. It is assumed that the domain constraints are

empty. The problem is finding an admissible SFCtree in which the total cost is less

than or equal to h.

As each domain (except the source and target domains) has exactly one DPI, to

satisfy the constraint of vnflist which demands k DPI, the k domain gateways with

the total link cost ≤ h should be identified. It can be seen that if the instance of

k-MST has a solution, the SFC design problem instance must have a solution; it is

sufficient to link the source and target domain gateways to any nodes that belong to

the solution of the k-MST instance. Conversely, given a solution to the SFC design

problem, it is enough to extract both the selected gateways between the source and

target domains and the gateway links in order to build a solution for the k-MST

instance.

1For pairs of gateways where there is not a corresponding link in L, a link with highest cost is

introduced.
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�

A.3 Extended experiments for SFC design problem

The solvers comparison with different number of nodes (Fig. A.1) gives similar results

as the experiment with different number of domains (Fig. 4.5): The solver Or-Tools

is faster and more stable than other constraint solvers.

(a) Response time with 10 domains (b) Percentage of Failed Runs

Figure A.1: Solvers Comparison varying number of nodes.

Fig. A.2 shows that increasing the number of domain constraints does not increase

the runtime of Or-Tools and Chuffed. However, more domain constraints lead to have

higher probability that no satisfiable solution exists; in consequence, the number of

failed runs grows, and the runtime of solvers decreases slightly (Or-Tools is more

sensible).

To complete the results described in Fig. 4.6, the Fig. A.3 shows the percentage of

failed runs; as expected, the number of domains is the key parameter that influences

solving efficiency.
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(a) Response time (b) Percentage of Failed Runs

Figure A.2: Solvers performance with 150 nodes and 15 domains varying the

number of domain constraints.

(a) Percentage of failed runs varying the num-

ber of domains.

(b) Percentage of failed runs varying the num-

ber of nodes.

Figure A.3: Solvers performance with 150 nodes and 15 domains varying the

number of domain constraints.
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[44] Sevil Dräxler, Holger Karl, and Zoltán Adám Mann. Joint optimization of

scaling and placement of virtual network services. In Proceedings of the 17th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

pages 365–370. IEEE Press, 2017.

https://www.openstack.org/
https://www.openstack.org/
https://www.minizinc.org/challenge2017/results2017.html
https://www.minizinc.org/challenge2017/results2017.html


120 References

[45] Cynthia Dwork. Differential privacy: A survey of results. In TAMC, volume

4978 of LNCS, pages 1–19. Springer, 2008.

[46] Richard E Fikes. REF-ARF: A system for solving problems stated as procedures.

Artificial Intelligence, 1(1-2):27–120, 1970.

[47] Filippo Focacci, François Laburthe, and Andrea Lodi. Local search and con-

straint programming. In Handbook of metaheuristics, pages 369–403. Springer,

2003.

[48] Internet Engineering Task Force. Service function chaining (SFC) architecture,

2015. https://tools.ietf.org/html/rfc7665.

[49] COIN-OR Foundation. Coin OR, 2016. Available at https://www.coin-or.

org.

[50] Eugene C. Freuder. Synthesizing constraint expressions. Commun. ACM,

21(11):958–966, 1978.
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