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ABSTRACT 

Ageing is usually combined with a decline of physical and cognitive capacity, which implies a 

significant economic cost in terms of health care and social assistance. Early detection of people at 

risk of developing age-related Physical Capability (PC) decline is crucial for primary prevention. 

Instrumenting Physical Performance (PP) tests and continuous monitoring of daily Physical Activity 

(PA) by means of wearable inertial sensors allow the extraction of many objective measures, which 

could help in detecting the age-related physical decline. However, little use is made in everyday 

clinical practice, because of the lack of standardization, redundancy of information and the need for 

normative data. A Factor Analysis approach allows to identify a smaller number of empirically 

defined and statistically independent factors representing distinct domains. This technique can be 

used to obtain a model of the older adultsô PC and provide a uniform and standard clinical 

interpretation of those measures.  

The main goal of this thesis was the design of a general model for providing an objective and 

comprehensive functional assessment tool, being able to also explore the relationships among 

instrumented scores, clinical scores and specific impairments and diseases. More than 500 

community-dwelling adults participating in three different EU studies (PreventIT [1], InCHIANTI 

[2] and PRE.C.I.S.A [3]) underwent a battery of PP tests, wearing an inertial sensor at L5. The battery 

included the assessment of postural sway in Quiet Standing (QS), walking, Chair Stand test (CST) 

and Timed Up and Go test (TUG) and the collection of a set of health-related measures. Age and 

gender relationships have been investigated. Exploratory Factor Analysis (EFA) was used to define 

a conceptual model based on the set of sensor-based measures extracted. One-week continuous 

monitoring of daily PA activity has also been recorded from a subset of 171 participants of the 

InCHIANTI Study. PA measures included the percentage of sedentary, active, and walking time, the 

duration and intensity (METs) of the activities, as well as the gait and turning characteristics. The 

outcomes of both the sensor-based assessments of PP and daily PA were consistent with the 

conventional clinical outcomes.  Instrumented functional testing showed the potential to i) advance 

the quality of current mobility assessments; ii) enhance our understanding of an individualôs true PC; 

and iii) disclose subtle changes in PC that would otherwise remain undetected.  

In conclusion, the development and implementation of an easy to use, objective and comprehensive 

tool for the assessment of the individualsô PC has demonstrated to be feasible. This tool enriches the 

conventional clinical outcomes, allowing to objectively measure several mobility skills that would 

otherwise remain undetected and foster the achievement of the early detection of the age-related 

functional decline, facilitating the design of interventions and rehabilitation strategies. 
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ñLack of activity destroys the good condition of every human being, while movement and 

methodical physical exercise save it and preserve itò - Pl§tǾn (428 ï 348 B.C.) 
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1. INTRODUCTION  

1.1. PHYSICAL CAPABILITY A S A MEASURE OF HEALTHY AGEING AND WELLBEING 

1.1.1. HEALTHY AGEING 

The number of older people is constantly increasing worldwide. In the European Union, 19% of the 

whole population was aged over 65 in 2017 and this percentage will increase to 29.1% by the year 

2080 [4]. This will lead to the transition towards a much older population structure, which will affect 

the social and health care systems of every country. Significant challenges must be faced to meet the 

rising needs of an ageing population. Ageing is usually combined with a decline of physical and 

cognitive capacity, which implies a significant economic cost in terms of health care and social 

assistance. A public-health response to the ageing phenomenon should act to reduce the losses 

associated with older age and reinforce recovery, adaptation and psychosocial growth [5]. For these 

reasons, it is of the utmost importance to foster an active and healthy ageing and monitor effectively 

the populationôs health status. In accordance with a recent resolution of the World Health 

Organization and on the evidence of the world report on ageing and health, a comprehensive global 

strategy and action plan on ageing and health has been developed [6]. 

1.1.2. PHYSICAL ACTIVITY AND PHYSICAL CAPABILITY  

Since healthy ageing and wellbeing are becoming the main goals of modern societies, the focus of 

researches on ageing has moved to the design of intervention strategies, aiming to reduce the risk of 

developing age-related disability and disease [7]. One of the most important approaches to delay the 

morbidity associated with ageing is to increase Physical Activity (PA) among older people. To raise 

awareness of relationships between PA and health in older adults, better methods are needed to 

facilitate monitoring in clinics, at home or in a community setting [8]. A high number of biomarkers 

of healthy ageing have been suggested in the literature [9,10]. The most widely recognized by the 

scientific community is Physical Capability (PC) [11]. By definition, PC includes muscle strength 

and physical performance against the ability to perform daily physical tasks, for instance: maintain 

balance, rising from a chair or walking, which involve physiological functions of several body 

systems [12]. The subdomains engaged in performing the activities of daily living include balance, 

locomotion and strength and are strongly associated with quality of life, disability [13,14] and may 

be predictive for subsequent health outcomes and mortality in community-dwelling populations 

[10,15,16].  
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1.1.3. CONVENTIONAL SELF- AND OBJECTIVE ASSESSMENT OF PHYSICAL CAPABILITY  

PC is conventionally assessed by questionnaires and clinical rating scales based on self-reports, which 

assess functional limitations or ability to perform activities of daily living (ADL). These tools aim to 

measure latent variables and this implies that they are subjective, may have poor reliability, validity 

and responsiveness and they may suffer from ceiling and floor effect [17,18]. To overcome the above 

limitations and improve validity and reproducibility, objective and standardized tests of PC, also 

called Physical Performance tests (PP), were introduced. PP tests require good balance and strength, 

and they need the good function of the musculoskeletal, cardiovascular, respiratory, and nervous 

systems. Poor PP, like poor capacity to maintain the static balance with different feet position and 

eyes open/closed, slow walking speed, or poor abilities to stand from a chair and sit back down again 

a set number of times, may predict subsequent health outcomes in community-dwelling populations 

[15]. It is also associated with greater risk of subsequent disability in terms of restrictions in activities 

of daily living [19]. During the clinical assessment of PC, a set of different PP tests are often 

administered together, such as the Short Physical Performance Battery (SPPB) which includes 

measures of balance, gait and chair rise and foresees the computation of a total performance score. 

This score has been demonstrated to predict mortality and institutionalization across a broad spectrum 

of functional status [20,21]. PP tests are also able to accurately capture the change of PC with ageing, 

reflecting the loss of functioning of the body systems engaged. Recently, Ferrucci et al. showed the 

shape of the decline of walking speed and other measures of lower extremity performance over time. 

They also showed that early decline in mobility is detectable and may guide strategies for prevention 

targeted to individuals and populations [22].  

1.1.4. SENSOR-BASED MEASURES OF PHYSICAL CAPABILITY  

Many tools have been developed to objectively measure physical capability and obtain more detailed 

information in addition to the simple total time to perform the test. These techniques include 

photogrammetry, kinematic and kinetic analyses, video motion-capture, electromyography, force 

plate analysis. These tools employ sophisticated biomechanical methods and produce highly accurate 

functional parameters for clinical research, however, they are costly, cumbersome, time-consuming, 

and they require access to specialized equipment and a dedicated laboratory set-up. Furthermore, in-

lab measurements of movements may not accurately reflect subjectsô functional capability in the daily 

li ving environment.  This has given rise to the development of wearable sensors, which are small and 

light, non-invasive and less expensive than the lab-based instruments. They allow to objectively 

monitor human movements, not only in clinics but also in the free-living home environment. Inertial 
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Measurement Units (IMUs) contain accelerometers and gyroscopes and have become accessible 

regarding measurement accuracy, size, cost and energy consumption [23]. IMUs have proven to be a 

reliable method to monitor a range of different movements, like gait [24], postural sway [25], 

turnings, and Sit-to-Stand/Stand-to-Sit transitions [26,27]. They allow to extract a high number of 

task-specific measures, like the complexity of the motor control (19); step length, walking speed, 

cadence [28,29], coordination index [30], gait regularity, symmetry [31] and smoothness [32]; 

turnings and Sit-to-Stand/Stand-to-Sit range and smoothness [33,34]. It has been proven that these 

measures are associated with similar effect sizes to age-related changes in physical performance in 

middle-aged to older adults [35]. Furthermore, it has been shown that balance and gait represent 

independent control systems for mobility and not all balance and gait measures deteriorate the same 

way with age [36]. Inertial sensors have also shown to be appropriate in monitoring daily physical 

activity (PA) levels. In a recent study, an inertial sensors-based PA classification system developed 

with older adults as the target population has been presented and validated [37]. Thanks to the 

diffusion of integrated inertial sensors into objects of daily living like smartphones and smartwatches, 

continuous activity monitoring will also likely goes beyond clinical outcome assessment to support 

remote health [38]. 

1.2. RESEARCH PROJECT AND AIMS  

Early detection of people at risk of developing age-related PC decline is crucial for primary 

prevention. Objective measures of PC can provide a better understanding of the functional decline 

process with age and hence may become a useful tool for designing preventive and intervention 

strategies. However, little use is made of these measures as yet in everyday clinical practice. This is 

probably due to the lack of standardization and the need for normative data and longitudinal data. 

Furthermore, larger and high-quality trials are needed for validating the sensor-based approach. A 

high number of sensor-based measures can be derived from the PP tests, which bring redundant 

information (high covariance among measures) and sometimes their unclear clinical meaning makes 

the interpretation of the results difficult. It would be advisable to create consensus in the clinical and 

research community on a minimum, recommended set of PP tests from which extract the sensor-

based measures, to standardise these outcome tools, popularise their valuable use and increase 

comparability between studies [38]. Hence, there is need to reduce the dimension of the set of the 

sensor-based measures computed, without compromising selectivity. One suggested approach is to 

group measures into latent factors, using an Exploratory Factor Analysis (EFA) approach. EFA is a 

multivariate statistical method widely used in the social, health, biological, and, sometimes, physical 

sciences to describe variability among correlated variables. It enables to identify a smaller number of 
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empirically defined and statistically independent factors representing distinct domains. EFA is based 

on the common factor model, which assumes that each observed variable is influenced by underlying 

common factors and unique factors. Unique factors are related to measurement error and variation in 

the data. Variables that are highly correlated are likely to be influenced by the same factor, while 

those that are relatively uncorrelated are likely influenced by different factors [39]. The respective 

factor loading represents the strength of this relationship, which can be used to mapping the factors 

into domains with a clear conceptual meaning. The conceptual interpretation of the discovered latent 

factors could provide a simplified framework to the starting dataset. The so defined latent factors and 

their clinical interpretation constitute the conceptual model and may be used to transform datasets 

containing high number of correlated sensor-based measures into health-related relevant domains. 

Such an approach has been widely adopted to characterize gait of both community-dwelling older 

adults and people at risk of falling, and affected by Dementia and Parkinsonôs Disease [40ï46]. These 

studies developed and validated a conceptual gait model from a set of instrumented temporal gait 

parameters extracted from a computerized walkway with embedded pressure sensors (GaitRiteÊ). 

However, these conceptual gait models make use of only temporal parameters and the omission of 

measures like step/stride regularity, jerk and RMS acceleration might lead to a loss of useful 

information. Indeed, as an example, a recent study showed that not all information about impaired 

PD gait can be captured through measuring spatiotemporal information [47]. Furthermore, these 

additional measures showed to be related to different heath conditions during dynamic and static 

balance assessment [48,49]. Such an approach can be used to obtain a model of the older adultsô PC 

and provide a uniform and standard clinical interpretation, which could contribute to facilitate the 

adoption of the sensor-based assessment in everyday clinical practice. 

The main goal of this thesis is the design of a general model for providing an objective and 

comprehensive functional assessment tool, being able to also explore the relationships among 

instrumented scores, clinical scores and specific impairments and diseases.  

The research project has been carried out in close collaboration with medical doctors, 

physiotherapists, and patients to obtain an assessment tool usable in the everyday clinical practice, 

which meets the needs and expectations of clinicians and patients. The objectives of the research 

project were:  

O1. Definition of a standardised functional assessment protocol, based on wearable inertial 

sensors, to be used for both healthy and pathological subjects; to properly validate existing 

and novel algorithms and methods for signal processing and feature extraction in both healthy 
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and pathological people; and to define normative values taking into account the effect of age, 

gender, weight, and height. 

O2. Reduction of the redundancy of information derived from the large number of features 

extracted for the raw signals by means of the exploratory factor analysis; to provide a uniform 

clinical interpretation of single and aggregated features/factors; to verify the association of 

single and aggregated features/factors with well-established clinical assessment tools for 

investigating physiological and pathological conditions.  

O3. Computation of summary scores from the proposed methods and models, in order to obtain a 

model for objective physical capability assessment of both healthy and pathological people. 

1.3. THESIS OUTLINE 

This thesis is structured into six additional chapters. Figure 1.1 summarises the research approach. 

 

Figure 1.1 Flowchart of the research approach 
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¶ Chapter 2 compares standard clinical with instrumented measures of physical performance 

in their ability to distinguish between different levels of functional status in a very healthy 

cohort of young older adults. It shows that both clinical and instrumented measures, recorded 

through a smartphone, can discriminate early functional decline in healthy adults aged 61ï70 

years, supporting the assumption that an early intervention strategy based on the instrumented 

measures of physical performance is feasible (O1).  

¶ Chapter 3 firstly, investigates the agreement between standard clinical and sensor-based 

measures of time. Secondly, describes the influence of age and gender on a set of instrumented 

PP measures in a large cohort of healthy community dwelling adults. Finally, it describes an 

EFA approach to find latent structure of the TUG test, suggesting that the instrumented 

measures of physical performance are a feasible tool for assessing the functional decline in 

the general population (O1). 

¶ Chapter 4 describes the development process for designing a sensor-based model for PC 

assessment using an EFA approach. A battery of PP tests was instrumented and a set of sensor-

based measures were extracted. The aims of this chapter were i) reduce the redundancy of 

information derived from the large number of features extracted for the raw signals; ii) provide 

a uniform clinical interpretation of the new latent variables (domains); iv) verify the 

association of these new variables with well-established clinical assessment tools for 

investigating physiological and pathological conditions (O2). In this chapter, the different 

stages of the conceptual mode development and validation are described. 

¶ Chapter 5 shows the application of the model to a different cohort of older adults, which also 

included people with neurological conditions, such as Parkinsonôs disease and Stroke. It 

shows also how the model could be adopted in clinical practice (O2 and O3). 

¶ Chapter 6 describes how the individualsô usual performance can be objectively measured 

through daily PA monitoring. The association between mean and extreme values of PA and 

gait characteristics derived from daily living activities and well-established clinical tools were 

also explored for quantifying motor and cognitive impairments in a cohort of community-

dwelling older adults (O3). 

¶ Chapter 7 discusses the main results and the limitations of the thesis. It also highlights the 

extension of the work that can be the object of future research. 
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2. COMPARISON OF STANDARD CLINICAL AND INSTR UMENTED 

MEASURES OF PHYSICAL PERFORMANCE IN DISC RIMINATING 

FUNCTIONAL STATUS OF  HIGH FUNCTIONING PE OPLE AGED 61-70 

YEARS OLD 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: CONI ALICE, ET AL. "COMPARISON OF STANDARD CLINICAL AND INSTRUMENTED 

PHYSICAL PERFORMANCE TESTS IN DISCRIMINATING FUNCTIONAL STATUS OF HIGH-FUNCTIONING PEOPLE AGED 61ï70 YEARS OLD." 

SENSORS 19.3 (2019): 449 [50].  

 

2.1. INTRODUCTION  

As discussed before, age-related functional and cognitive decline have negative consequences for 

quality of life. Early identification of people at risk of functional decline is essential for targeting 

preventive and/or protective interventions. Questionnaires as the Late-Life Function and Disability 

Instrument (LLFDI) [51] have shown to be useful in assessing oneôs ability to carry out activities of 

daily living. Physical performance is one domain of physical function and it could be objectively 

measured with sensor-based PP test. Although the standard clinical outcomes of these PP tests are 

commonly used to assess older people or patient populations, their potential ability to detect slight 

changes in functional status for an early detection of functional decline is not clear. To investigate 

the potential of inertial sensors in assessing functional status in young older adults (aged 60ï70 years), 

data from the baseline of the H2020 PreventIT project [52] were analysed. PreventIT [1] is a three-

armed feasibility randomised trial including a total of 189 participants, with two behaviour change 

exercise programmes and a control group. The goal of the PreventIT project is the reduction of the 

overall risk of functional decline and to empower people to improve their quality of life adopting a 

healthy and active lifestyle to reduce pressure on caregivers and the health care system. This project 

targets mobility decline in particular, as it is related to falls, frailty, depression, inactivity and 

cognitive impairment, and is important for independence in daily life and quality of life.  

The aim of this study was to assess whether standard clinical and instrumented measures of PP can 

distinguish between older adults with a High and Very High Functional Status, stratified by the 

LLFDI [53]. 

2.2. METHODS 

2.2.1. POPULATION 

The PreventIT study is a multi-centre trial with three centres in Trondheim (Norway), Amsterdam 

(The Netherlands), and Stuttgart (Germany). People were invited by a random draw from local 

registries. Participants were included if they were i) aged between 61-70 years, ii ) retired for more 

than six months, iii ) home-dwelling, iv) able to read newspaper or text on smartphone, v) able to walk 

500 m without walking aids, vi) without cognitive impairments (Montreal Cognitive Assessment, 
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MoCA>24 points [54]), and vii ) they were excluded if they participated in exercise classes more than 

once a week or did sport for more than 150 minutes per week.  

2.2.2. DEMOGRAPHIC MEASURES 

During the assessment, participants filled questionnaires about: age, gender, Body Mass Index (BMI), 

Physical Activity (PA), hand grip strength (HAND), and cognitive status (Montreal Cognitive 

Assessment, MoCA).  

2.2.3. OUTCOME 

The function component of the Late Life Function and Disability Instrument (LLFDI) was used to 

measure the functional status of participants. The LLFDI indeed assesses function and disability, 

assessing the poor ability to perform specific physical tasks encountered in daily routines. The 

function component evaluates self-reported difficulty to perform 32 activities in daily living 

consisting of three dimensions: upper extremity, basic lower extremity and advanced lower extremity. 

Questions are phrased, ñHow much difficulty do you have doing a particular activity without the help 

of someone else and without the use of assistive devices?ò  with a rating scale from 5 to 1 (the higher 

the scoring category, the less difficulty the person has in doing activities). The overall function raw 

score is obtained adding the scores of all the 32 items [55]. As no validated cut-off has been described 

in literature to distinguish between people with different levels of functional status, we dichotomized 

the scaled scores (ranged 0 to 100) of the function domain of the LLFDI based on the median value 

to classify the people in our cohort as high (HFS) and very high (VHFS) functional status. 

2.2.4. STANDARD CLINICAL PHYSICAL PERFORMANCE TESTS 

Participants performed two physical performance tests under two instruction sets given by the 

assessor: the 30-sec Chair Stands Test (30CST) and the Timed Up and Go test (TUG) Test. During 

the 30CST, participants started seated and, on the command ñgoò, they stood up and sat down for 30 

seconds as quickly as they could, and the number of repetitions was recorded. During the TUG, 

participants started seated on a chair, on the command ñgoò, they rose from the chair, walked three 

meters ahead at a comfortable and safe pace, made a 180° turn, walked back to the chair and sat down 

again. The total number of repetitions performed during the 30CST and the stopwatch-based total 

time needed to perform the TUG test were recorded by assessors according to the standard clinical 

protocol.  

2.2.5. INSTRUMENTED PHYSICAL PERFORMANCE TESTS 

Participants wore a smartphone at the lower back, attached with an elastic belt, while they performed 

the 30CST and TUG tests. The smartphone-based system used to instrument these two PP tests was 
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developed within the FARSEEING project [56]. A custom Android application [27] running on 

smartphones (Galaxy SII or Galaxy SIII, Samsung) was used for recording the following tri-axial 

inertial signals: Antero-Posterior (AP), Medio-Lateral (ML) and Vertical (V). These signals were 

then processed using MATLAB [57] to extract a set of instrumented measures [58].  

Signals recorded during the 30CST were segmented into two sub-phases: Sit-to-Stand and Stand-to-

Sit transitions. The AP acceleration signal and the angular velocity about the ML axis were used to 

identify postural transitions [33]. Twenty-one instrumented measures were extracted from the 30CST 

test [33,49,59], including durations, measures of movementsô intensity (e.g. Root Mean Square, 

RMS) and smoothness (e.g. Normalized Jerk Score, NJS [m]) in AP, ML and V direction. The 

measures were computed for each Stand-to-Sit/Sit-to-Stand transition and then averaged over the Sit-

to-Stand/Stand-to-Sit sub-phases (see Table A.3).  

The TUG consists of four sub-phases: Sit-to-Walk, Walk, 180Turn, Turn-to-Sit. The AP acceleration 

and the angular velocity on the ML axis were used to identify postural transitions and the walking 

phase, and the angular velocity around the V axis was used to identify turns [33]. Walking measures 

were derived from the AP, ML and V signals, excluding postural transitions and the turning phase, 

and concatenating the two episodes of straight walk [60]. Twenty eight measures were extracted from 

the TUG test [28,31,33,49,59,61,62] including durations, intensity and smoothness of each sub-phase, 

as well as the mean and maximum angular velocity during the turns and the number of steps 

performed while walking and turning (see Table A.4). 

 

2.3. STATISTICAL ANALYSIS  

Statistical analyses were performed in R for Windows version 3.4.3 [63]. 

Four logistic regression models were fitted and the Areas Under the ROC Curve were compared to 

assess the performances of 30CST and TUG standard clinical and instrumented outcome measures in 

distinguishing between HFS and VHFS. 

For each test, firstly a univariable logistic regression with the standard clinical measure as input 

(number of repetitions for 30CST, total time in s for TUG) was fitted. Secondly, a multivariable 

logistic regression with the instrumented measures was fitted. Then, for each test, the discriminative 

ability of the resulting models was assessed by comparing the Area Under the Receiver Operating 

Curve (AUC). We used the DeLong test to assess differences between AUC of the different models 

[64]. Lastly, a bootstrapping method with backward step-down variable deletion (R function 

óvalidateô, package órmsô) was applied to internally validate each model and assess the impact of 

outliers. The instrumented measures were pre-processed with the same procedure for both 30CST 
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and TUG. The NJS for all the sub-phases in AP, ML and V direction, which are not normally 

distributed, were log-transformed and all the instrumented measures were normalized to compare 

measures by z-scores (using the R function ñscaleò). The linearity of each instrumented measure was 

assessed by fitting a restricted cubic spline function (using the R function ñrcsò with three knots at 

0.1, 0.5, 0.9 quantiles) in the logistic regression model. Usually, in order to avoid overfitting, the 

assessment of multicollinearity is recommended before fitting the multivariable logistic regression 

on the dataset. Furthermore, the validity of the multivariable logistic regression model becomes 

problematic when the ratio of the numbers of subjects per variable inserted in the model is lesser than 

10 [65]. We addressed these issues by following the next steps. Firstly, the multicollinearity between 

instrumented measures was assessed, using the R function ñimcdiagò. To detect and deal with 

multicollinearity i) the Variance Inflation Factor (VIF) was computed on the entire dataset; ii) the 

instrumented measure with highest VIF was selected and removed from the dataset; iii) the VIF was 

computed on the new subset of measures. The procedure was repeated until no collinearity was found 

(i.e. all the elements in the VIF vector were below 10). Starting from the obtained subset of 

instrumented measure, we selected those measures that better discriminate between participants with 

HFS and VHFS (p-value Ò 0.15) fitting one univariable logistic regression for each instrumented 

measure.  

The resulting subset of sensor-based measure was entered into a stepwise backward multivariable 

logistic regression. The instrumented measures with p-value Ò 0.05 were selected to fit the final 

model.  

At last, a sensitivity analysis was conducted for both the 30CST and TUG tests in order to compare 

the discriminative ability in distinguishing between HFS and VHFS of the following three models: i) 

standard clinical model, obtained from the standard clinical measure (30CST number of repetitions 

or TUG duration); ii) instrumented model, obtained from the selected subset of instrumented 

measures; and iii) combined model, obtained by including the instrumented 30CST number of 

repetitions or TUG duration in the instrumented model. The multicollinearity between all the 

instrumented measures included in the combined model was beforehand assessed. 

2.4. RESULTS 

Among the participant recruited, 160 (mean age 66.3 ± 2.4 years, 87 females) strong (HAND 

33.41Ñ11.19 kg), whit a moderate level of declared physical activity (90% declared a PA level Ó 3) 

performed the two instrumented PP tests (see Table 2.1). The population was divided into two groups: 

HFS (range [44.33 71.33]) and VHFS (range [72 100]), based on the median value of the LLFDI 
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score. The between-group demographics reported in Table 2.1 shows that the VHFS group was 

significantly stronger (HAND) and faster during the PP tests with respect to the HFS group. 

  

Table 2.1 Description of the PreventIT population 

 Total population 

N = 160 

HFS 

N = 78 

VHFS 

N = 82 

Gender, Female 87 (54.38%) 52 (66.67%) 35 (42.68%) 

Age, years 66.29 (2.40) 66.13 (2.44) 66.45 (2.37) 

Height, cm 170.94 (9.35) 169.32 (9.86) 172.49 (8.63) 

Weight, kg 79.49 (15.61) 79.97 (16.35) 79.04 (14.95) 

Handgrip strength* , kg 34.41 (11.19) 31.06 (10.75) 37.61 (10.71) 

Gait speed* , m/s 2.05 (0.46) 1.82 (0.41) 2.27 (0.40) 

30CST*, number of repetitions 13.41 (3.29) 12.36 (3.13) 14.40 (3.14) 

TUG duration * , s 8.70 (1.60) 9.25 (1.85) 8.17 (1.10) 

PA >=3 144 (90%) 71 (91.03%) 73 (89.02%) 

Falls, number >=2 23 (14.38%) 15 (19.23%) 8 (9.76%) 

MoCA, points 27.08 (1.85) 27.06 (1.89) 27.09 (1.83) 

Medications, number >=4 44 (27.50%) 29 (37.18%) 15 (18.29%) 

LLFDI, points, median [range] 72.31 [44.33 100] 65.57 [44.33 71.33] 79.35 [72.31 100] 

Values are presented as mean ± SD or number (%) unless otherwise indicated.  

ACRONYMS: 30CST: 30-sec Chair Stand test; HFS: High Functional Status; LLFDI: Late-Life Function and Disability 

Instrument; MoCA: Montreal Cognitive Assessment; PA: declared physical activity level; TUG: Timed Up and Go test; 

VHFS: Very High Functional Status. *HFS and VHFS significantly different (p-value<0.01) 

Twenty-one and twenty-nine instrumented measures were computed from the 30CST (Table A.3) and 

TUG (Table A.4) respectively. To avoid multicollinearity, 6 and 4 instrumented measures were 

excluded from the original dataset of the 30CST and TUG respectively (Tables 2.2 and 2.3).  
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Table 2.2 Collinearity analysis of the 30CST instrumented measures 

 
First step Last step 

 
VIF  detection VIF  detection 

Mean Sit-to-Stand RMS A AP 5.79 0 3.30 0 

Mean Sit-to-Stand RMS A ML 6.01 0 2.91 0 

Mean Sit-to-Stand RMS A V 4.68 0 2.45 0 

Mean Sit-to-Stand NJS A AP 20.26 1 6.06 0 

Mean Sit-to-Stand NJS A ML 18.54 1 - - 

Mean Sit-to-Stand NJS A V 17.02 1 - - 

Mean Sit-to-Stand RMS G AP 3.28 0 2.85 0 

Mean Sit-to-Stand RMS G ML 4.27 0 3.88 0 

Mean Stand-to-Sit RMS A AP 7.51 0 2.78 0 

Mean Stand-to-Sit RMS A ML 7.31 0 3.16 0 

Mean Stand-to-Sit RMS A V 4.14 0 2.09 0 

Mean Stand-to-Sit NJS A AP 29.03 1 2.44 0 

Mean Stand-to-Sit NJS A ML 27.97 1 - - 

Mean Stand-to-Sit NJS A V 19.68 1 - - 

Mean Stand-to-Sit RMS G AP 4.38 0 3.73 0 

Mean Stand-to-Sit RMS G ML 5.34 0 3.86 0 

Mean Duration Sit-to-Stand 11.18 1 4.84 0 

SD Duration Sit-to-Stand 5.70 0 5.27 0 

Mean Duration Stand-to-Sit 17.27 1 - - 

SD Duration Stand-to-Sit 4.26 0 3.77 0 

Instrumented number of repetitions 24.75 1 - - 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; G=Gyroscope; ML: Medio-Lateral; RMS: Root Mean Square; SD: 

Standard Deviation; NJS: Normalized Jerk Score; V: Vertical; VIF: Variance Inflation Factor 
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Table 2.3 Collinearity analysis of the TUG instrumented measures 

 
First step Last step 

 
VIF  detection VIF  detection 

Sit-to-Walk Duration 11.44 1 6.20 0 

180Turn Duration 12.11 1 6.90 0 

Turn-to-Sit Turning Duration 9.43 0 9.35 0 

Turn-to-Sit Duration 37.85 1 9.36 0 

Walk Duration 79.06 1 7.67 0 

Sit-to-Walk RMS A AP 2.91 0 2.90 0 

Sit-to-Walk RMS A ML 2.91 0 2.83 0 

Sit-to-Walk RMS A V 18.24 1 2.31 0 

Sit-to-Walk NJS A AP 10.17 1 9.97 0 

Sit-to-Walk NJS A ML 8.11 0 8.02 0 

Sit-to-Walk NJS A V 7.58 0 6.75 0 

Turn-to-Sit RMS A AP 2.77 0 2.36 0 

Turn-to-Sit RMS A ML 4.54 0 2.98 0 

Turn-to-Sit RMS A V 24.83 1 - - 

Turn-to-Sit NJS A AP 10.57 1 9.08 0 

Turn-to-Sit NJS A ML 12.85 1 - - 

Turn-to-Sit NJS A V 8.31 0 6.43 0 

180Turn Mean Velocity 8.65 0 8.23 0 

Turn-to-Sit Turning Mean Velocity 9.82 0 9.70 0 

180Turn Maximum Velocity 3.74 0 3.41 0 

Turn-to-Sit Turning Maximum Velocity 6.01 0 5.97 0 

180Turn NJS G V 3.58 0 3.39 0 

Turn-to-Sit Turning NJS G V 4.39 0 4.34 0 

Walk RMS A AP 3.66 0 3.11 0 

Walk RMS A ML 2.71 0 2.52 0 

Walk RMS A V 18.69 1 - - 

180Turn Number of Steps 2.46 0 2.41 0 

Walk Number of Steps 6.88 0 6.43 0 

Instrumented TUG total duration 132.41 1 - - 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; G=Gyroscope; ML: Medio-Lateral; NJS: Normalized Jerk Score; RMS: 

Root Mean Square; SD: Standard Deviation; V: Vertical; VIF: Variance Inflation Factor 
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Discriminative ability of each instrumented measure, expressed as odds ratio (OR) determined by 

univariate logistic regression, is reported in Tables 2.4 and 2.5. Three and two instrumented measures 

were selected by the univariable analyses (p-value Ò 0.15) for the 30CST and TUG respectively. 

Discriminative ability of the subset of variables, expressed as odds ratio (OR) determined by stepwise 

backward multivariate logistic regression, is reported in Tables 2.4 and 2.5. Three instrumented 

measures for the 30CST (ñmean Stand-to-Sit G RMS MLò, ñmean Duration Sit-to-Standò and ñSD 

Duration Sit-to-Standò) and two for the TUG (ñWalk durationò, ñLast turn maximum velocityò) 

showed a significant discriminative ability (p-value Ò 0.05).  

Table 2.4 Univariable and multivariable analysis of the 30CST instrumented measures 

 
Univariable logistic regression 

Stepwise backward multivariable logistic 

regression 

 
OR 95% CI p-value OR 95% CI p-value 

Mean Sit-to-Stand RMS A AP 1.04 [0.76-1.41] 0.820    

Mean Sit-to-Stand RMS A ML 1.22 [0.89-1.68] 0.224    

Mean Sit-to-Stand RMS A V 1.12 [0.82-1.53] 0.473    

Mean Sit-to-Stand NJS A AP1 0.80 [0.58-1.09] 0.157    

Mean Sit-to-Stand RMS G AP 1.01 [0.74-1.38] 0.928    

Mean Sit-to-Stand RMS G ML 1.14 [0.83-1.56] 0.413    

Mean Stand-to-Sit RMS A AP 1.03 [0.76-1.40] 0.852    

Mean Stand-to-Sit RMS A ML 1.14 [0.83-1.56] 0.415    

Mean Stand-to-Sit RMS A V 1.12 [0.82-1.53] 0.487    

Mean Stand-to-Sit NJS A AP1 0.67 [0.49-0.94] 0.019    

Mean Stand-to-Sit RMS G AP 0.90 [0.66-1.23] 0.503    

Mean Stand-to-Sit RMS G ML 0.78 [0.57-1.08] 0.131 0.71 [0.49 0.98] 0.045 

Mean Duration Sit-to-Stand 0.59 [0.41-0.84] 0.004 0.69 [0.48 0.98] 0.041 

SD Duration Sit-to-Stand 0.65 [0.47-0.92] 0.014 0.62 [0.41 0.89] 0.014 

SD Duration Stand-to-Sit 0.82 [0.60-1.13] 0.226    

Bolded p-values indicate statistically significant univariable and multivariable discriminative ability (Ò 0.15 and Ò 0.05 

respectively). 

ACRONYMS: A: accelerometer; AP: Antero-Posterior; G: gyroscope; NJS: Normalized Jerk Score; ML: Medio-Lateral; RMS: 

Root Mean Square; SD: Standard Deviation; V: Vertical. 1log transformed feature 
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Table 2.5 Univariable and multivariable analysis of the TUG instrumented measures 

 Univariable 
Stepwise backward multivariable 

logistic regression 

 OR 95% CI p-value OR 95% CI p-value 

Sit-to-Walk Duration 0.96 [0.70-1.31] 0.786    

180Turn Duration 0.80 [0.58-1.11] 0.185    

Turn-to-Sit Turning Duration 0.62 [0.44-0.88] 0.008    

Turn-to-Sit Duration 0.70 [0.50-0.97] 0.032    

Walk Duration 0.54 [0.36-0.79] 0.002 0.59 [0.38-0.86] 0.010 

Sit-to-Walk RMS A AP 1.20 [0.87-1.65] 0.258    

Sit-to-Walk RMS A ML 1.04 [0.76-1.43] 0.787    

Sit-to-Walk RMS A V 1.89 [0.69-5.18] 0.213    

Sit-to-Walk NJS A AP1 1.18 [0.86-1.63] 0.303    

Sit-to-Walk NJS A ML1 1.16 [0.84-1.60] 0.364    

Sit-to-Walk NJS A V1 1.28 [0.90-1.82] 0.173    

Turn-to-Sit RMS A AP 0.96 [0.71-1.31] 0.805    

Turn-to-Sit RMS A ML 1.25 [0.91-1.72] 0.164    

Turn-to-Sit NJS A AP1 0.94 [0.69-1.28] 0.703    

Turn-to-Sit NJS A V1 0.82 [0.60-1.13] 0.223    

180Turn Mean Velocity 1.18 [0.86-1.62] 0.301    

Turn-to-Sit Turning Mean Velocity 1.60 [1.14-2.25] 0.007    

180Turn Maximum Velocity 1.38 [1.00-1.91] 0.051    

Turn-to-Sit Turning Maximum Velocity 1.66 [1.17-2.35] 0.004 1.50 [1.05-2.18] 0.031 

180Turn NJS G V1 0.87 [0.63-1.19] 0.386    

Turn-to-Sit Turning NJS G V1 0.76 [0.55-1.06] 0.104    

Walk RMS A AP 1.35 [0.95-1.92] 0.098    

Walk RMS A ML 1.26 [0.92-1.74] 0.155    

180Turn Number of Steps 0.95 [0.70-1.31] 0.764    

Walk Number of Steps 0.58 [0.40-0.85] 0.005    

Bolded p-values indicate statistically significant univariable and multivariable discriminative ability (Ò 0.15 and Ò 0.05 

respectively). 

ACRONYMS: A: accelerometer; AP: Antero-Posterior; G: gyroscope; ML: Medio-Lateral; NJS: Normalized Angular Jerk Score; 

RMS: Root mean square; V: Vertical; 1log transformed feature. 

The internal validation of each of the models was assessed by applying a bootstrapping method with 

backward step-down variable deletion (Table 2.6). The original AUC and optimism-corrected AUCs 

were in the same range (with differences less than 0.04), indicating confirmation of the internal 

validity of the models. 

Table 2.6 Bootstrapping validation of the 30CST and TUG models 

 30CST TUG 

 AUC original  AUC corrected AUC original  AUC corrected 

Standard clinical 0.682 0.684 0.684 0.685 

Instrumented 0.680 0.654 0.650 0.627 

Combined 0.661 0.630 0.684 0.670 
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Discriminative ability of the six fitted models is presented in Figure 2.1. Standard clinical, 

instrumented and combined models of the 30CST showed moderate discriminative ability with an 

AUC of 0.68 (95%CI 0.60-0.76) and 0.69 (95%CI 0.61-0.77) respectively, p-values 0.97 (standard 

clinical-instrumented), 0.74 (instrumented-combined), 0.48(standard clinical-combined). The 

discriminative ability of standard clinical, instrumented and combined models of the TUG was 

similar: AUC of 0.68 (95%CI 0.60-0.77), 0.65 (95%CI 0.56-0.73) and 0.69 (95%CI 0.60-0.77) 

respectively, p-values 0.26 (standard clinical-instrumented), 0.94 (instrumented-combined), 0.12 

(standard clinical-combined).  

 

Figure 2.1 Sensitivity analysis: discriminative ability (AUC and DeLong test) of standard clinical, instrumented and combined 

models of the 30CST and TUG test [50] 

 

Table 2.7 Sensitivity analysis 

  AUC 95% CI p-Value of the DeLong test  

30CST 

Standard clinical 0.68 [0.60ï0.76] Standard clinicalðInstrumented  0.97 

Instrumented 0.68  [0.60ï0.76] InstrumentedðCombined  0.74 

Combined 0.69 [0.61ï0.77] Standard clinicalðCombined  0.48 

TUG 

Standard clinical 0.68  [0.60ï0.77] Standard clinicalðInstrumented  0.26 

Instrumented 0.65 [0.56ï0.73] InstrumentedðCombined  0.94 

Combined  0.69 [0.60ï0.77] Standard clinicalðCombined  0.12 

 

2.5. DISCUSSION 

This study aimed to compare the discriminative ability of standard clinical with instrumented 

measures of physical performance in distinguishing between High and Very High Functional Status 

(HFS, VHFS) in a relatively fit and healthy population of community-dwelling adults aged 61-70 

years. The 30CST number of repetitions and TUG duration (the standard clinical as well as the 
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instrumented) showed moderate discriminative ability. These two types of measurement showed 

similar performances in the univariable logistic regressions, suggesting that the prediction of minor 

functional status differences is possible in our fit and healthy population either by the standard clinical 

protocol or the instrumented measures. Instrumented physical performance tests allow us to collect a 

number of additional measures beyond the total 30CST repetition or TUG duration. These measures 

could have the potential to add more detailed information about the participantsô functional status.  

Three of the 30CST instrumented measures were entered as input to fit the final model ñmean 

Duration Sit-to-Standò, ñSD Duration Sit-to-Standò and ñmean Stand-to-Sit G RMS MLò. The 

30CST, by definition, is a measure of lower limbs strength and endurance. The time needed to stand 

up from a sitting position represents the dynamic balance and the lower limbs strength. It is an index 

of the power generated from muscles to stand up against gravity. The shorter the duration, the higher 

the strength. The standard deviation (SD) of the duration is a measure of variability, therefore higher 

the SD, the higher is the difference between the duration of this task among the repetitions. Indeed, 

high SD of the standing duration could be related to fatigue and weakness. The Stand-to-Sit G RMS 

in ML direction is a measure of the intensity of the forward trunk rotation while sitting. The sitting 

phase requires dynamic balance and lower limbs strength to control the lowering of the body to the 

seated position. A more intense trunk rotation during the Stand-to-Sit phase could be related to less 

muscle strength, as demonstrated in a recent study for the Sit-to-Stand phase [66]. 

The final model of the TUG included two instrumented measures: ñWalk durationò and ñLast turn 

maximum velocityò. The duration of the straight walk is a predictor of health status in old age [22]. 

Indeed, gait speed is traditionally used as a predictor for clinical outcomes, e.g. an older adult with 

gait speed lower than 1 m/s was considered at risk of falling. The turn before sitting involves 

cognition, motor planning and visual capacities in preparation for sitting. Difficulty turning is 

associated with mild cognitive impairment in old age [67]. The De-Long test (Table 2.7) was not 

significant, suggesting that these two types of measurement have a similar discriminative ability. Yet, 

in contrast to the conventional clinical measures, with the instrumented measures it is possible to 

objectively measure the participantsô capacities while performing specific tasks, like walking, turning 

or sitting. Furthermore, the discriminative ability increased, albeit not significantly, when the 

conventional clinical and instrumented measures have been combined. 

The first limitation of this study is the homogeneous population, characterized by a very skewed 

distribution of the LLFDI scores, which may have led to a decrease in the discriminative ability. The 

second limitation was the lack of literature for validated cut-off for discriminating between different 

LLFDI levels. A valid cut-off score can be helpful to identify people at risk of developing functional 

decline. This aspect might be the subject of future studies. Lastly, the ratio between the sample size 
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and the number of instrumented measures required the performance of a feature selection, before 

fitting the stepwise backward logistic regression and this might have led to a loss of information.  

Despite these limitations, instrumented 30CST and TUG measures proofed to be comparable to the 

standard clinical measures, with moderate discriminative ability, in detecting slight differences of 

LLFDI even in this homogeneous population. In summary, high power of the lower limbs muscle, 

low duration and variability of the Sit-to-Stand transition, high gait speed and good ability in 

performing the turn before sitting, have shown a moderate ability in discriminating between HFS and 

VHFS. It is reasonable to assume that the detection of differences in the functional status would also 

be possible in less fit and homogeneous population of older adults. However, procedures for the 

reduction of the high number and redundancy of instrumented measures and the influence of age, 

gender and biometric measures on the instrumented measures need to be investigated. 

2.6. CONCLUSIONS 

In a relatively fit and healthy population of adults aged 61-70 years, standard clinical and 

instrumented measures distinguish between HFS and VHFS, with moderate discriminative ability. 

This result supports the hypothesis that an early identification of risk of the age-related functional 

decline can be achieved. This corroborates the assumption that an early intervention strategy based 

on the instrumented measures of physical performance is feasible.  
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3. THE INCHIANTI -FARSEEING PROJECT 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: CONI ALICE, ET AL. "INFLUENCE OF AGE AND GENDER ON SENSOR-BASED FUNCTIONAL 

MEASURES: A FACTOR ANALYSIS APPROACH" [68].  

3.1. INTRODUCTION 

The decline of gait stability and postural control with age is probably due to the age-related loss of 

function of the musculoskeletal, cardiovascular, respiratory, and nervous systems and the reduction 

in the ability to detect and process proprioceptive and sensorial information. To understand these 

mechanisms, the InCHIANTI study (Invecchiare nel Chianti, ageing in the Chianti area), a 

longitudinal study of the factors contributing to the decline of mobility in late life, was designed by 

the Laboratory of Clinical Epidemiology of the Italian National Research Council on Aging, (INRCA, 

Florence, Italy) in a partnership with the local administrators and the primary care physicians of Greve 

in Chianti and Bagno a Ripoli, two small towns in the countryside of the Tuscany area where Chianti 

wine is produced. The data collection started in September 1998 and was completed in March 2000. 

The main goals of this study were: i) understand the risk factors influencing the loss of walking 

ability; ii) identify physiologic subsystems critical for walking; and iii) identify measures that 

clinicians can use to understand the causes of walking difficulties in older adults. The study protocol, 

selection of participants and information collected are presented elsewhere [69]. 

As previously described, standard clinical outcomes of the PP tests (i.e. 7MW, CST and TUG total 

duration) recorded with stopwatches (SW) are extensively used as a screening tool in older age. 

Sensor-based measures computed from the PP tests might be sensitive markers of age-related changes 

in PC providing possible insights into underlying determinants [22,35]. In a sensor-based assessment, 

it is possible to provide automatic algorithms for an objective and comprehensive picture of the 

personôs PC which goes well beyond a simple temporal measure obtained with a stopwatch. Indeed, 

with the instrumented version of the PP tests it is possible to automatically extract the standard clinical 

outcome and other additional more detailed information. To deeper investigate these aspects, the PP 

tests were instrumented by means of a smartphone (SP) starting from the 4th wave of the InCHIANTI 

study (Follow up 4, 2013-2015). 

In Chapter 2 it was shown that in a relatively fit and healthy population of adults aged 61-70 years, 

standard clinical and sensor-based measures of PP are useful for an early identification of risk of age-

related functional decline.  A recent work showed that sensor-based measures of balance and gait are 

affected by age in a healthy community-dwelling cohort [36]. Thus, further investigation of the 

influence of age, gender and biometric measures on these measures is needed. In this section of the 

thesis, the agreement between standard clinical and sensor-based measures of time was firstly 
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investigated, then the functional decline associated with ageing and gender-related differences were 

explored in a large group of community-dwelling persons.  

3.2. METHODS 

The assessment provides for the collection of i) several health-related measures used to assess the 

participantsô functional profile, inertial signals collected from ii) a battery of PP tests and iii) long-

term PA monitoring at home. Sensor-based PP tests included the assessment of postural sway in Quiet 

Standing (QS), the 7-meter Walk test (7MW), the 5-times Repeated Chair Stand test (CST), and the 

Timed Up and Go test (TUG). Methods used for task segmentation and task-specific measures 

computation are based on state-of-the-art methods to characterize postural sway [25,70], walking 

[28,31], postural transitions [33,49,59] and turnings [61,62]. The time taken to complete the 7MW, 

CST and TUG tests was also recorded with a stopwatch following the standard clinical protocol. The 

daily PA was also recorded through a custom Android application designed to provide measures 

representative of the participantsô motor profile. PA measures included the percentage of sedentary, 

active, and walking time, the duration and intensity (METs) of the activities, as well as the gait and 

turning characteristics. The algorithms used for the signal processing and instrumented measures 

computation are part of the system developed within the FARSEEING project [71]. 

3.2.1. POPULATION  

Four hundred community-dwelling participants (213 females), aged (71.95 ±15.86, range 35-100 

years old) were recruited from the fourth wave of the InCHIANTI cohort study (Figure 3.1). 

Participants performed the battery of PP tests wearing a smartphone (SP) on the lower back (L5) by 

means of an elastic case waist belt. 

 

Figure 3.1 Distribution of the participants assessed in the 4th wave of the InCHIANTI cohort study. 
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3.2.2. HEALTH-RELATED MEASURES   

The health-related measures collected during the assessment included the Mini -Mental State 

Examination (MMSE, measure of the participantôs cognitive status, range from 0 to 30), Instrumental 

Activi ties of Daily Living [72] (IADL, i.e. the number of instrumental activities in which the person 

requires help, e.g. preparing meals, performing housework, getting to places outside of walking 

distance, managing medications, etc., range from 0 to 8), Center for Epidemiologic Studies 

Depression Scale [73] (CES-D, a questionnaire used to assess depressive symptoms range from 0 to 

60), Physical Activity [74] (PA, declared level of physical activity assessed through a questionnaire, 

range from 1 to 7), the number of falls in the last year declared during the assessment (FALLN), 

Hand-Grip strength test [75] (HAND, kg stronger hand), the lower extremity muscle power measured 

using the Nottingham leg extensor Power Rig [76] (PWR, watt), the Trail Making Test A [77] 

(TMTA, a neuropsychological test that assesses various cognitive abilities, including visual-

conceptual, visuospatial, and visual-motor tracking, seconds) and the Short Physical Performance 

Battery, a measure of mobility function [13] (SPPB, range from 0 to 12 ).  

3.2.3. PHYSICAL PERFORMANCE TESTS 

QS: participants stand for 30 seconds with their arms at their side, feet hip-width apart, wearing shoes, 

with their eyes closed [21]. The assessors evaluate the participantsô ability to perform the test; the 

standard clinical outcome is dichotomous (i.e. able/not able). 

7MW : participants walk 7 meters at a comfortable and safe pace. The start and stop locations are 

marked on the floor [69]. The standard clinical outcome of this test is the total time recorded with a 

stopwatch. Older persons with gait speed, calculated as 7meters divided for the total duration of the 

test, slower than 1 m/s are usually considered at high risk of adverse health outcomes [78].  

CST: participants start seated on a chair with arms folded across the chest and with their back against 

the chairôs backrest. On the command ñgoò, they stand up and sit down 5 times as quickly as they can 

[79]. The conventional outcome is the total time taken to perform the test, recorded with a stopwatch. 

TUG: participants start seated on a chair with their back against the chairôs backrest. On the command 

ñgoò, they rise from the chair, walk 3 meters ahead at a comfortable and safe pace, turn around a 

coloured cone on the floor, walk back to the chair and sit down again [80]. The conventional outcome 

is the total duration of the tests, recorded with a stopwatch. Older adults who took 13.5 seconds or 

longer to perform the TUG are classified with high risk for falls [81].  
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3.2.4. STATISTICAL ANALYSIS  

Bland-Altman plots were used to investigate the agreement between standard clinical and sensor-

based measures of time. Polynomial curve fitting was used to investigate the influence of age on the 

sensor-based measures computed from the battery of PP tests. t-Test was performed to investigate 

gender-related differences. All the analyses were performed using MATLAB [57]. 

3.3. RESULTS 

3.3.1. SENSOR-BASED PHYSICAL PERFORMANCE MEASURES 

QS: in total, 23 sensor-based measures were extracted from i) the acceleration in ML and AP 

directions, including measures in the time and frequency domains, and ii) the estimated displacement 

of the body centre of mass (13), computed in the time domain to quantify the amount and direction 

of sway (Table A.1). 

7MW : in total, 19 sensor-based measures were extracted from the acceleration in ML, AP and V 

direction to describe temporal gait parameters and measures of smoothness, regularity, and 

coordination (15,18) (Table A.2).  

CST: this test was segmented into Sit-to-Stand and Stand-to-Sit transitions [26]. The AP acceleration 

and the angular velocity about the ML axis are used to identify postural transitions [33]. Overall, 31 

task-specific sensor-based measures are extracted from acceleration and angular velocity in AP, ML 

and V direction to quantify mean values and standard deviations across repetitions of relevant 

parameters of the two sub-phases (Table A.3). 

TUG: this test consists of four sub-phases: Sit-to-Walk, Walk, 180Turn, Turn-to-Sit. Overall, 38 task-

specific sensor-based measures are extracted, including measures of gait, turning and postural 

transitions (Table A.4). 

3.3.2. ANALYSIS OF AGREEMENT 

The Bland-Altman plots (Figure 3.2) compare the SP to the SW in timing the 7MW, CST and TUG 

tests. The red lines represent the mean value of the differences between measures (SP vs. SW) and 

the blue lines represent the limits of agreement between the two measures. Limits of agreement 

between the SP- and SW-based durations of 7MW, CST and TUG were [-0.46 3.08] s and [-0.13 

5.09] s and [-0.68 3.04] s, respectively. 
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3.3.3. INFLUENCE OF AGE AND GENDER ON SENSOR-BASED PHYSICAL PERFORMANCE 

MEASURES 

Figures 3.3, 3.4, 3.5 and 3.6 show the trend with age of a representative subset of the sensor-based 

measures computed from the QS, 7MW, CST and TUG tests respectively. Black lines represent the 

general population, pink and blue lines represent females and males respectively. Eight age groups 

(ranging from 35 to 100 years) are reported in the x-axis. For each age group, the filled circles 

represent the median value and the dotted lines represent the 10th and 90th percentile. The green dots 

represent significant gender differences (p-value<0.05). 

Figure 3.2 Bland-Altman plots comparing the difference between the sensor-based measures and the stopwatch 

measures for the total duration (seconds) of the 7-meter Walk test (a), 5-times Repeated Chair Stand test (b) and Timed 

Up and Go test (c). The red lines represent the mean value of the differences between measures (sensor-based vs. 

stopwatch) and the blue lines represent the limits of agreement (±1.96 standard deviations). 
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Figure 3.3 Trend with age of the sensor-based measures computed from the QS test 
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Figure 3.4 Trend with age of the sensor-based measures computed from the 7MW test 



26 
 

   

Figure 3.5 Trend with age of the sensor-based measures computed from the CST test 



27 
 

  

Figure 3.6 Trend with age of the sensor-based measures computed from the TUG test 
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3.4. DISCUSSION 

3.4.1. ANALYSIS OF AGREEMENT  

The Bland-Altman plots reported in Figure 3.2, show the analysis of agreement between standard 

clinical (i.e. SW-based) and SP-based 7MW, CST and TUG tests. The SP-based overestimated the 

duration of the tests determined by the SW during 7MW, CST and TUG. The visual inspection of 

signals recorded by means of SPs suggested that the values out of the limits of agreement were due 

to human errors. The positive bias between SPs and SW could be due to the accuracy of the operators 

to press the start and stop button at the beginning and the end of the participantsô movement. The 

algorithm running on the SPs are more accurate than SW in the detection of the beginning and end of 

the movements and hence in timing the test. In conclusion, SPs agreed sufficiently with SW in timing 

the 7MW, CST and TUG tests. 

3.4.2. INFLUENCE OF AGE AND GENDER ON SENSOR-BASED PHYSICAL PERFORMANCE 

MEASURES 

Among all the possible features that can be extracted from a wearable inertial sensor, features that 

have been already clinically investigated in the literature, and that showed their reliability and 

validity, were computed from the instrumented PP tests. Figure 3.3.a shows the trend with age of the 

sensor-based features computed from the QS test. The trend appears flat until 75 years, then the 

abilities to maintain the static balance clearly worsen. In general, there is no significant gender 

difference in younger age. The differences became more pronounced when the performances start to 

decrease, in accordance to the findings of Riva et al., which showed a significant difference between 

women and men in the older subjects (75ï84 years), as a consequence of less effective proprioceptive 

control [82].  

Figure 3.3.b shows the trend with age of the sensor-based features computed from the 7MW test. 

Total duration, Cadence and coordination (Phase Coordination Index, PCI) showed a decline after 

plateau. The linear decline starts above 75 years; women tend to have a lower speed and it might be 

due to the lower mean height. Cadence (number of steps per minute) increases on equal distance 

walked meaning that steps are shorter, and the higher PCI indicates a more asymmetric walk. RMS 

in AP, ML and V directions showed a linear deterioration with age. These results are consistent with 

the results reported in two recent studies, demonstrating the decline of walking speed and other gait 

measures during time [22,36]. 
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Figure 3.3.c shows the trend with age of the sensor-based features computed from the CST test. The 

total time required to perform the test can be considered as an index of lower limbs strength, high 

values are associated with loss of functional capacity and muscle strength. Women tend to have lower 

Range and RMS values (particularly above 75), but there are no substantial gender-related differences 

in the total duration of the test. Range and RMS in V direction are associated with the muscular 

strength of the lower limbs. Hence, women tend to have lower values with respect to men. Low values 

of these parameters could be associated with frailty, sarcopenia, and pathological conditions. 

Compensatory strategies may help women to overcome the poorer lower limbs muscle strength and 

complete the test with a similar time with respect to men. 

Figure 3.3.d shows the trend with age of the sensor-based features computed from the TUG test. The 

TUG total duration is widely clinically used to assess the older adultsô health status. As we expected, 

measures of time (Total/sub-phases durations) worsen with age, indicating the progressive loss of 

functional capacities. As in the CST test, the RMS in V direction of the Sit-to-Walk decrease with 

age. The intensity of the movements while standing can be related to the muscle strength needed to 

lift up the body weight, and to the motor planning for the gait initiation. Figure 3.3 also shows the 

increased difficulties of turns (increased duration and NJS). The increased difficulties in performing 

this complex task may reflect the reduced physical and cognitive function.  

3.5. CONCLUSIONS 

The agreement between standard clinical and sensor-based measures of time was firstly investigated. 

SPs agreed sufficiently with SW in timing the 7MW, CST and TUG tests, suggesting that sensor-

based measures can provide a better understanding of the functional decline process with age and 

hence becoming a useful tool for designing intervention strategies. Thus, SPs can substitute the SW 

in timing the tests, giving the possibility to compute a high number of reliable measures from the 

inertial signals in addition to this conventional outcome. However, the added value of the additional 

information obtained from wearable sensors needs further investigations. 

Many sensor-based measures extracted from the four PP tests exhibited a significant association with 

age. As expected, speed/time related features clearly worsen with aging, but many other sensor-based 

measures showed a significant decrease: postural control and stability, coordination of walking, 

cadence, weight shift ability, worsen with ageing as well as features which can be related to the 

muscle weakness and dynamic balance.  

This preliminary study provides evidence that a sensor-based assessment can be a feasible and 

effective tool for assessing the functional decline in the general population. Standardization is 

important in order to remove, as far as possible, the effect of confounders. These results highlight the 
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importance of considering the influence of age, gender and other variables, like body composition 

(weight and height) in studies that make use of sensor-based PP measures. 

3.6. THE INSTRUMENTED TIMED UP AND GO TEST: AN EXPLORATORY FACTOR ANALYSIS 

APPROACH 

  

3.6.1. BACKGROUND AND AIM 

From a motor point of view, after the age of 50, approximately 1ï2% of muscle mass is lost per year. 

The loss in body mass density, which is related to muscle weakness, is greater in women compared 

to men aged 60 years and older [83]. Ageing implies not only a loss in musculoskeletal functioning 

but also a decline in vision, reaction time, peripheral and vestibular sensations: all of which can reduce 

upper body stability [84]. Among the PP tests, the Timed Up and Go (TUG) is one of the most widely 

used, since it allows to assess balance, locomotion, and the ability to turn in the elderly. Instrumenting 

the TUG with inertial sensors enables the computation of several task-specific measures, which may 

enrich the conventional clinical outcome. The purpose of this study was to investigate the functional 

decline associated with ageing by means of a factor analysis, in order to classify domains of an 

instrumented TUG in a group of community-dwelling elderly people. Gender-related differences 

were also investigated. 

3.6.2. METHODS 

3.6.2.1. POPULATION 

A subsample of the InCHIANTI cohort study, 239 community-dwelling elderly persons (128 females, 

80.85 ± 6.67 years old, range 65-93), was assessed. Participants performed a TUG test instrumented 

by means of a waist-worn smartphone. 

3.6.2.2. INSTRUMENTED TUG  

The Android smartphone application used for managing the embedded inertial sensors (tri-axial 

accelerometer and gyroscope) is an outcome of the FARSEEING project [71]. Samsung Galaxy SII 

and SIII were used as sensing units. Signal processing and features extraction algorithms were 

implemented in MATLAB [57]. The TUG was segmented into four sub-phases: Sit-to-Walk, Walk, 

180Turn, and Turn-to-Sit and the sensor-based features were computed for each sub-phase as already 

described in section 3.3.1.  
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3.6.2.3. STATISTICAL ANALYSIS 

A second order polynomial curve fitting with respect to age was applied to the extracted features. 

Subjects with one or more features outside the 99.9% confidence interval were excluded from the 

analysis in order to remove outliers due to performance errors and/or physical impairments. 

Factor analysis was performed using R for Windows, version 3.4.3 [63] in order to reduce the large 

number of variables in the dataset and for underlining the structure in the relationships between 

features. Varimax rotation was used to derive orthogonal factor scores. Sensor-based measures with 

factor loading higher than 0.5 were considered relevant. The number of factors to retain was selected 

using the scree plot. Pearsonôs Correlation analysis was used for investigating the association between 

latent factors and age. The sample was divided into six age groups spanning 5 years (from [65-69] to 

[90-95]). A univariate Generalized Linear Model (GLM) was used to test the effects of the age group 

and the gender. SPSS [85] was used for GLM with age groups as fixed effects and gender as a 

covariate. 

3.6.3. RESULTS 

The final sample included 214 elderly persons (115 females, 80.77 ± 6.75 years old, range 65-93) 

since 25 outliers were identified. Characteristics of the age groups are reported in Table 3.1. 

Factor Analysis grouped 35 out of 38 features (Table 3.1) into six factors, accounting for 70% of the 

total variance. Taking into account the features in each group the factors were labelled as follows 

(Table 3.1): ñGlobal Fitnessò, ñTurning Abilityò, ñSmoothness of the Sit-to-Walkò, ñAP Dynamics 

of the trunk during postural transitionsò, ñML Weight Shift during postural transitionsò, ñSmoothness 

of the Turn-to-Sitò. Correlation with age, multiple comparisons among age groups, and GLM results 

are reported in Table 3.1. Significant correlations were found between age and ñGlobal Fitnessò, 

ñTurning Abilityò, and ñAP Dynamics of the trunk during postural transitionsò (Figure 3.8).  
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A) Predicted values for the factor 1 labelled as ñGlobal 

Fitnessò. 

 

 

 

 

 

 

 

 

 

 

B) Predicted values for the factor 2 labelled as ñTurning 

Abilityò. 

 

 

 

 

 

 

 

 

 

 

C) Predicted values for the factor 4 labelled as ñAntero-

Posterior Trunk Dynamics during Postural Transitionsò.  

 

 

 

  

Figure 3.7 Dots represent the predicted values of the factors. Thick line represents the second order polynomial curve fitting of the 

factor with age. Boxplots show the distribution of the values in the six age groups defined in Table 3.1 [68] 
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Table 3.1 Factor analysis of the instrumented TUG features and statistical analysis 

 Total Duration 

TtS Duration 
Gait Duration 

Range V Acc. StW 

Peak velocity 
180T 

Peak Velocity TtS 

N. of Steps 
Range AP Acc 

Gait 

Range ML Acc 
Gait 

Range V Acc Gait 

RMS AP Acc Gait 
RMS ML Acc Gait 

RMS V Acc Gait 

Duration 180T 

Duration TtS 
Mean Velocity 

180T 

Mean Velocity TtS 
NJS 180T 

NJS TtS 

N. of Steps 180T 

StW Duration 

NJS AP Acc StW 
NJS ML Acc StW 

NJS V Acc StW 

Range AP Acc StW 

RMS AP Acc StW 
Range AP Acc TtS 

RMS AP Acc TtS 

Range ML Acc 

StW 
RMS ML Acc StW 

Range ML Acc 

TtS 
RMS ML Acc TtS 

NJS AP Acc 

TtS 
NJS ML Acc 

TtS 

NJS V Acc TtS 

Factors Global Fitness Turning Ability 
Sit-to-Walk 

Smoothness 

AP Trunk 

Dynamics during 

Postural 

Transitions 

ML Weight 

Shift during 

Postural 

Transitions 

Turn-to-Sit  

Smoothness 

Explained Variance 21% 16% 9% 9% 8% 8% 

Cumulative Variance 21% 37% 46% 55% 63% 71% 

GENERALISED L INEAR M ODELS AND CORRELATION ANALYSIS  (p value) 

Age Group * Gender 0.522 0.002 0.541 0.410 0.337 0.376 

Age Group 0.870 0.003 0.752 0.493 0.440 0.402 

Gender 0.007 0.494 0.351 0.307 0.618 0.003 

Correlation with Age <0.001 <0.001 0.107 0.011 0.490 0.589 

M ULTIPLE COMPARISONS BETWEEN AGE GROUPS (p value) 

Age Group 

1 

[65-69] 

N = 23 

15 F. 

Vs AG 2 0.059 0.504 0.487 0.660 0.988 0.772 

Vs AG 3 0.002 0.251 0.420 0.405 0.636 0.657 

Vs AG 4 <0.001 0.152 0.932 0.088 0.636 0.997 

Vs AG 5 <0.001 <0.001 0.226 0.083 0.586 0.993 

Vs AG 6 <0.001 <0.001 0.210 0.007 0.994 0.957 

Age Group 

2 

[70-74] 

N = 16 

10 F. 

Vs AG 1 0.059 0.504 0.487 0.660 0.988 0.772 

Vs AG 3 0.311 0.088 0.964 0.746 0.655 0.488 

Vs AG 4 0.007 0.041 0.361 0.340 0.668 0.729 

Vs AG 5 <0.001 <0.001 0.063 0.299 0.641 0.748 

Vs AG 6 <0.001 <0.001 0.073 0.036 0.995 0.831 

Age Group 

3 

[75-79] 

N = 22 

14 F. 

Vs AG 1 0.002 0.251 0.420 0.405 0.636 0.657 

Vs AG 2 0.311 0.088 0.964 0.746 0.655 0.488 

Vs AG 4 0.088 0.977 0.271 0.524 0.897 0.573 

Vs AG 5 0.001 0.026 0.033 0.453 0.276 0.599 

Vs AG 6 <0.001 0.005 0.050 0.053 0.667 0.652 

Age Group 

4 

[80-84] 

N = 90 

43 F. 

Vs AG 1 <0.001 0.152 0.932 0.088 0.636 0.997 

Vs AG 2 0.007 0.041 0.361 0.340 0.668 0.729 

Vs AG 3 0.088 0.977 0.271 0.524 0.897 0.573 

Vs AG 5 0.017 0.001 0.104 0.815 0.159 0.994 

Vs AG 6 <0.001 0.001 0.154 0.074 0.684 0.951 

Age Group 

5 

[85-90] 

N = 47 

27 F. 

Vs AG 1 <0.001 <0.001 0.226 0.083 0.586 0.993 

Vs AG 2 <0.001 <0.001 0.063 0.299 0.641 0.748 

Vs AG 3 0.001 0.026 0.033 0.453 0.276 0.599 

Vs AG 4 0.017 0.001 0.104 0.815 0.159 0.994 

Vs AG 6 0.019 0.219 0.711 0.122 0.645 0.958 

Age Group 

6 

[90-95] 

N = 16 

6 F. 

Vs AG 1 <0.001 <0.001 0.210 0.007 0.994 0.957 

Vs AG 2 <0.001 <0.001 0.073 0.036 0.995 0.831 

Vs AG 3 <0.001 0.005 0.050 0.053 0.667 0.652 

Vs AG 4 <0.001 0.001 0.154 0.074 0.684 0.951 

Vs AG 5 0.019 0.219 0.711 0.122 0.645 0.958 

ACRONYMS: M : Medio-Lateral; AP: Antero-Posterior; V: Vertical; Vs AG: Versus Age Group; StW: Sit-to-Walk; TtS: Turn-to-Sit; 180T: 

180Turn; RMS: Root Mean Square; Acc: Acceleration; N.: Number; F.: females; NJS: Normalised Jerk Score  
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3.6.4. DISCUSSION 

We aimed to investigate if an EFA of the instrumented TUG test is a suitable tool for the detection of 

the age-related functional decline. Gender-related differences were also investigated. A significant 

number of features can be derived from the instrumented TUG. EFA grouped these features based on 

the shared information. The so obtained independent factors were then interpreted and labelled based 

on their clinical meaning. The influence of age and gender on the factors are reported in Table 3.1 

and shown in Figure 3.4. As expected, the ñGlobal Fitnessò decreases with age. Although the effect 

of the age group is not significant, there is a significant correlation with age. It is clear, looking at the 

multiple comparisons, that the decrease of the ñGlobal Fitnessò is significant between subsequent age 

groups. The effect of gender is also significant, meaning that the decline is different between women 

and men. The total duration of the TUG, the standard clinical outcome of the test, is included in the 

ñGlobal Fitnessò factor, which is coherent with the usual interpretation of this variable. The ñTurning 

Abilityò also declines with ageing mainly above 80 years old (Figure 3.4) as also confirmed by the 

multiple comparisons. The ability to turn is essential for daily living activities, since almost every 

task performed during the day requires some amount of turning. The trend of this factor confirms 

how its contribution significantly influences the functional decline. The significant interaction 

between gender and age group suggests that the decline of the ñTurning Abilityò is different between 

women and men. The ñAP Trunk Dynamics during Postural Transitionsò is significantly correlated 

with age (Figure 3.4) meaning that the AP trunk dynamics decreases with ageing with a relatively 

slow trend and no gender differences. The ñTurn-to-Sit Smoothnessò is significantly different 

between males and females with a generally higher smoothness in women with respect to men. The 

final two factors, the ñSit-to-Walk Smoothnessò and the ñML Weight Shift during Postural 

Transitionsò show neither age nor gender-related differences and could be interesting candidates for 

identifying frailty, motor impairment, and associations with the fall risk [86].  

3.6.5. CONCLUSIONS 

A TUG test, instrumented by means of a consumer electronic device like a smartphone, proves to be 

a suitable testing solution for quantitative movement analysis. A significant number of features can 

be derived from the signals of the embedded inertial sensors and those features can be grouped in 

factors with a clear clinical value allowing to investigate several mobility skills at once, well beyond 

the total duration, which is the only outcome of the clinical TUG. Statistical analysis provides 

evidence that a sensor-based assessment is a feasible and effective tool for assessing the functional 

decline in the general population. The reduction of the dimension of the dataset of sensor-measures 

extracted, without the loss of useful information can be achieved by means of Factor Analysis. The 
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factors obtained might allow us to investigate several mobility skills, well beyond the standard clinical 

outcome of the test.  The effect of body composition, cognition and polypharmacy on the sensor-

based measures computed from the PP tests should also be investigated.   
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4. A SENSOR-BASED CONCEPTUAL MODEL FOR PHYSICAL CAPABILITY 

ASSESSMENT 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: 

CONI ALICE, ET AL. "FACTOR ANALYSIS MODEL OF THE INSTRUMENTED TIMED UP AND GO TEST FOR PHYSICAL CAPABILITY ASSESSMENT" 

[87]  

 CONI ALICE, ET AL. "A  SENSOR-BASED CONCEPTUAL MODEL FOR PHYSICAL CAPABILITY ASSESSMENT" [SUBMITTED TO SENSORS] 

 

As previously described, EFA allows to discover the latent structure of the starting dataset, computing 

a few new variables called factors. It was previously shown how it could be applied to the 

instrumented TUG. The underlined latent factors showed to be indicative of several mobility skills 

and to have the potential to describe the age-related functional decline. The same principle can be 

applied to the entire battery of sensor-based PP tests to obtain a general model for the objective PC 

assessment of older adults.  

4.1. DEVELOPMENT OF THE CONCEPTUAL MODEL 

4.1.1. POPULATION AND METHODS 

A subsample of the InCHIANTI cohort study [2] was assessed within the framework of the EU 

FARSEEING project [71]. Participants were subjected to a battery of four PP tests performed in a 

fixed order, including the QS, 7MW, CST and TUG (see section 3.2.3 for more detailed description). 

The health status of the older adults was assessed by a number of health-related measures, including 

MMSE, IADL, CES-D, PA, FALLN, HAND, PWR, TMTA, and SPPB. See section 3.2.2 for more 

detailed information.  

Robust linear regression was used to identify outliers and adjust for the effects of age, gender, height, 

weight, and cognitive status (indexed by the MMSE). An older adult was considered outlier if at least 

one of his/her sensor-based measure had a null weight in the robust linear regression model 

(MATLAB  function ñrobustfitò)  [88]. One EFA was then performed on the residuals of each set of 

sensor-based measures to reduce the dimension of the dataset and to uncover the underlying 

relationships between sensor-based measures. Since the EFA is based on the assumption of normally 

distributed data, the jerk scores were log transformed and all the sensor-based measures were 

standardized to zero mean and unit variance before EFA. Varimax rotation was used to derive 

orthogonal factor scores. Sensor-based measures with factor loading greater than 0.5 as the absolute 

value were considered relevant. For each EFA, a scree plot (Parallel analysis) was used to determine 

the minimum number of factors to retain. We verified that each resulting factor structure explained 

at least 70% of the total variance [89]. Since the factor model was obtained excluding the outliers, 

their factor scores were lately predicted. Hence, all the participants were included in the subsequent 

statistical analysis. Each factor was interpreted using a priori knowledge on the sensor-based 
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measures that contribute to it and then mapped into a specific conceptual domain. Spearmanôs 

correlation analysis was used to investigate both the association between domains in the conceptual 

model and the associations between each domain and the residuals of the health-related measures. 

Signal processing and statistical analyses were performed using MATLAB [57]. Exploratory Factor 

Analysis was performed using R for Windows, version 3.4.3 [63]. Figure 4.1 shows the flowchart of 

the conceptual model development process. 

 

Figure 4.1 Flowchart of the conceptual model development process; N is the number of sensor-based measures and factors or 

domains of each instrumented test. 

  

  




























































































































