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ABSTRACT 

Ageing is usually combined with a decline of physical and cognitive capacity, which implies a 

significant economic cost in terms of health care and social assistance. Early detection of people at 

risk of developing age-related Physical Capability (PC) decline is crucial for primary prevention. 

Instrumenting Physical Performance (PP) tests and continuous monitoring of daily Physical Activity 

(PA) by means of wearable inertial sensors allow the extraction of many objective measures, which 

could help in detecting the age-related physical decline. However, little use is made in everyday 

clinical practice, because of the lack of standardization, redundancy of information and the need for 

normative data. A Factor Analysis approach allows to identify a smaller number of empirically 

defined and statistically independent factors representing distinct domains. This technique can be 

used to obtain a model of the older adults’ PC and provide a uniform and standard clinical 

interpretation of those measures.  

The main goal of this thesis was the design of a general model for providing an objective and 

comprehensive functional assessment tool, being able to also explore the relationships among 

instrumented scores, clinical scores and specific impairments and diseases. More than 500 

community-dwelling adults participating in three different EU studies (PreventIT [1], InCHIANTI 

[2] and PRE.C.I.S.A [3]) underwent a battery of PP tests, wearing an inertial sensor at L5. The battery 

included the assessment of postural sway in Quiet Standing (QS), walking, Chair Stand test (CST) 

and Timed Up and Go test (TUG) and the collection of a set of health-related measures. Age and 

gender relationships have been investigated. Exploratory Factor Analysis (EFA) was used to define 

a conceptual model based on the set of sensor-based measures extracted. One-week continuous 

monitoring of daily PA activity has also been recorded from a subset of 171 participants of the 

InCHIANTI Study. PA measures included the percentage of sedentary, active, and walking time, the 

duration and intensity (METs) of the activities, as well as the gait and turning characteristics. The 

outcomes of both the sensor-based assessments of PP and daily PA were consistent with the 

conventional clinical outcomes.  Instrumented functional testing showed the potential to i) advance 

the quality of current mobility assessments; ii) enhance our understanding of an individual’s true PC; 

and iii) disclose subtle changes in PC that would otherwise remain undetected.  

In conclusion, the development and implementation of an easy to use, objective and comprehensive 

tool for the assessment of the individuals’ PC has demonstrated to be feasible. This tool enriches the 

conventional clinical outcomes, allowing to objectively measure several mobility skills that would 

otherwise remain undetected and foster the achievement of the early detection of the age-related 

functional decline, facilitating the design of interventions and rehabilitation strategies. 
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“Lack of activity destroys the good condition of every human being, while movement and 

methodical physical exercise save it and preserve it” - Plátōn (428 – 348 B.C.) 
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1. INTRODUCTION 

1.1. PHYSICAL CAPABILITY AS A MEASURE OF HEALTHY AGEING AND WELLBEING 

1.1.1. HEALTHY AGEING 

The number of older people is constantly increasing worldwide. In the European Union, 19% of the 

whole population was aged over 65 in 2017 and this percentage will increase to 29.1% by the year 

2080 [4]. This will lead to the transition towards a much older population structure, which will affect 

the social and health care systems of every country. Significant challenges must be faced to meet the 

rising needs of an ageing population. Ageing is usually combined with a decline of physical and 

cognitive capacity, which implies a significant economic cost in terms of health care and social 

assistance. A public-health response to the ageing phenomenon should act to reduce the losses 

associated with older age and reinforce recovery, adaptation and psychosocial growth [5]. For these 

reasons, it is of the utmost importance to foster an active and healthy ageing and monitor effectively 

the population’s health status. In accordance with a recent resolution of the World Health 

Organization and on the evidence of the world report on ageing and health, a comprehensive global 

strategy and action plan on ageing and health has been developed [6]. 

1.1.2. PHYSICAL ACTIVITY AND PHYSICAL CAPABILITY 

Since healthy ageing and wellbeing are becoming the main goals of modern societies, the focus of 

researches on ageing has moved to the design of intervention strategies, aiming to reduce the risk of 

developing age-related disability and disease [7]. One of the most important approaches to delay the 

morbidity associated with ageing is to increase Physical Activity (PA) among older people. To raise 

awareness of relationships between PA and health in older adults, better methods are needed to 

facilitate monitoring in clinics, at home or in a community setting [8]. A high number of biomarkers 

of healthy ageing have been suggested in the literature [9,10]. The most widely recognized by the 

scientific community is Physical Capability (PC) [11]. By definition, PC includes muscle strength 

and physical performance against the ability to perform daily physical tasks, for instance: maintain 

balance, rising from a chair or walking, which involve physiological functions of several body 

systems [12]. The subdomains engaged in performing the activities of daily living include balance, 

locomotion and strength and are strongly associated with quality of life, disability [13,14] and may 

be predictive for subsequent health outcomes and mortality in community-dwelling populations 

[10,15,16].  
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1.1.3. CONVENTIONAL SELF- AND OBJECTIVE ASSESSMENT OF PHYSICAL CAPABILITY  

PC is conventionally assessed by questionnaires and clinical rating scales based on self-reports, which 

assess functional limitations or ability to perform activities of daily living (ADL). These tools aim to 

measure latent variables and this implies that they are subjective, may have poor reliability, validity 

and responsiveness and they may suffer from ceiling and floor effect [17,18]. To overcome the above 

limitations and improve validity and reproducibility, objective and standardized tests of PC, also 

called Physical Performance tests (PP), were introduced. PP tests require good balance and strength, 

and they need the good function of the musculoskeletal, cardiovascular, respiratory, and nervous 

systems. Poor PP, like poor capacity to maintain the static balance with different feet position and 

eyes open/closed, slow walking speed, or poor abilities to stand from a chair and sit back down again 

a set number of times, may predict subsequent health outcomes in community-dwelling populations 

[15]. It is also associated with greater risk of subsequent disability in terms of restrictions in activities 

of daily living [19]. During the clinical assessment of PC, a set of different PP tests are often 

administered together, such as the Short Physical Performance Battery (SPPB) which includes 

measures of balance, gait and chair rise and foresees the computation of a total performance score. 

This score has been demonstrated to predict mortality and institutionalization across a broad spectrum 

of functional status [20,21]. PP tests are also able to accurately capture the change of PC with ageing, 

reflecting the loss of functioning of the body systems engaged. Recently, Ferrucci et al. showed the 

shape of the decline of walking speed and other measures of lower extremity performance over time. 

They also showed that early decline in mobility is detectable and may guide strategies for prevention 

targeted to individuals and populations [22].  

1.1.4. SENSOR-BASED MEASURES OF PHYSICAL CAPABILITY  

Many tools have been developed to objectively measure physical capability and obtain more detailed 

information in addition to the simple total time to perform the test. These techniques include 

photogrammetry, kinematic and kinetic analyses, video motion-capture, electromyography, force 

plate analysis. These tools employ sophisticated biomechanical methods and produce highly accurate 

functional parameters for clinical research, however, they are costly, cumbersome, time-consuming, 

and they require access to specialized equipment and a dedicated laboratory set-up. Furthermore, in-

lab measurements of movements may not accurately reflect subjects’ functional capability in the daily 

living environment.  This has given rise to the development of wearable sensors, which are small and 

light, non-invasive and less expensive than the lab-based instruments. They allow to objectively 

monitor human movements, not only in clinics but also in the free-living home environment. Inertial 
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Measurement Units (IMUs) contain accelerometers and gyroscopes and have become accessible 

regarding measurement accuracy, size, cost and energy consumption [23]. IMUs have proven to be a 

reliable method to monitor a range of different movements, like gait [24], postural sway [25], 

turnings, and Sit-to-Stand/Stand-to-Sit transitions [26,27]. They allow to extract a high number of 

task-specific measures, like the complexity of the motor control (19); step length, walking speed, 

cadence [28,29], coordination index [30], gait regularity, symmetry [31] and smoothness [32]; 

turnings and Sit-to-Stand/Stand-to-Sit range and smoothness [33,34]. It has been proven that these 

measures are associated with similar effect sizes to age-related changes in physical performance in 

middle-aged to older adults [35]. Furthermore, it has been shown that balance and gait represent 

independent control systems for mobility and not all balance and gait measures deteriorate the same 

way with age [36]. Inertial sensors have also shown to be appropriate in monitoring daily physical 

activity (PA) levels. In a recent study, an inertial sensors-based PA classification system developed 

with older adults as the target population has been presented and validated [37]. Thanks to the 

diffusion of integrated inertial sensors into objects of daily living like smartphones and smartwatches, 

continuous activity monitoring will also likely goes beyond clinical outcome assessment to support 

remote health [38]. 

1.2. RESEARCH PROJECT AND AIMS  

Early detection of people at risk of developing age-related PC decline is crucial for primary 

prevention. Objective measures of PC can provide a better understanding of the functional decline 

process with age and hence may become a useful tool for designing preventive and intervention 

strategies. However, little use is made of these measures as yet in everyday clinical practice. This is 

probably due to the lack of standardization and the need for normative data and longitudinal data. 

Furthermore, larger and high-quality trials are needed for validating the sensor-based approach. A 

high number of sensor-based measures can be derived from the PP tests, which bring redundant 

information (high covariance among measures) and sometimes their unclear clinical meaning makes 

the interpretation of the results difficult. It would be advisable to create consensus in the clinical and 

research community on a minimum, recommended set of PP tests from which extract the sensor-

based measures, to standardise these outcome tools, popularise their valuable use and increase 

comparability between studies [38]. Hence, there is need to reduce the dimension of the set of the 

sensor-based measures computed, without compromising selectivity. One suggested approach is to 

group measures into latent factors, using an Exploratory Factor Analysis (EFA) approach. EFA is a 

multivariate statistical method widely used in the social, health, biological, and, sometimes, physical 

sciences to describe variability among correlated variables. It enables to identify a smaller number of 



4 
 

empirically defined and statistically independent factors representing distinct domains. EFA is based 

on the common factor model, which assumes that each observed variable is influenced by underlying 

common factors and unique factors. Unique factors are related to measurement error and variation in 

the data. Variables that are highly correlated are likely to be influenced by the same factor, while 

those that are relatively uncorrelated are likely influenced by different factors [39]. The respective 

factor loading represents the strength of this relationship, which can be used to mapping the factors 

into domains with a clear conceptual meaning. The conceptual interpretation of the discovered latent 

factors could provide a simplified framework to the starting dataset. The so defined latent factors and 

their clinical interpretation constitute the conceptual model and may be used to transform datasets 

containing high number of correlated sensor-based measures into health-related relevant domains. 

Such an approach has been widely adopted to characterize gait of both community-dwelling older 

adults and people at risk of falling, and affected by Dementia and Parkinson’s Disease [40–46]. These 

studies developed and validated a conceptual gait model from a set of instrumented temporal gait 

parameters extracted from a computerized walkway with embedded pressure sensors (GaitRite™). 

However, these conceptual gait models make use of only temporal parameters and the omission of 

measures like step/stride regularity, jerk and RMS acceleration might lead to a loss of useful 

information. Indeed, as an example, a recent study showed that not all information about impaired 

PD gait can be captured through measuring spatiotemporal information [47]. Furthermore, these 

additional measures showed to be related to different heath conditions during dynamic and static 

balance assessment [48,49]. Such an approach can be used to obtain a model of the older adults’ PC 

and provide a uniform and standard clinical interpretation, which could contribute to facilitate the 

adoption of the sensor-based assessment in everyday clinical practice. 

The main goal of this thesis is the design of a general model for providing an objective and 

comprehensive functional assessment tool, being able to also explore the relationships among 

instrumented scores, clinical scores and specific impairments and diseases.  

The research project has been carried out in close collaboration with medical doctors, 

physiotherapists, and patients to obtain an assessment tool usable in the everyday clinical practice, 

which meets the needs and expectations of clinicians and patients. The objectives of the research 

project were:  

O1. Definition of a standardised functional assessment protocol, based on wearable inertial 

sensors, to be used for both healthy and pathological subjects; to properly validate existing 

and novel algorithms and methods for signal processing and feature extraction in both healthy 
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and pathological people; and to define normative values taking into account the effect of age, 

gender, weight, and height. 

O2. Reduction of the redundancy of information derived from the large number of features 

extracted for the raw signals by means of the exploratory factor analysis; to provide a uniform 

clinical interpretation of single and aggregated features/factors; to verify the association of 

single and aggregated features/factors with well-established clinical assessment tools for 

investigating physiological and pathological conditions.  

O3. Computation of summary scores from the proposed methods and models, in order to obtain a 

model for objective physical capability assessment of both healthy and pathological people. 

1.3. THESIS OUTLINE 

This thesis is structured into six additional chapters. Figure 1.1 summarises the research approach. 

 

Figure 1.1 Flowchart of the research approach 
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 Chapter 2 compares standard clinical with instrumented measures of physical performance 

in their ability to distinguish between different levels of functional status in a very healthy 

cohort of young older adults. It shows that both clinical and instrumented measures, recorded 

through a smartphone, can discriminate early functional decline in healthy adults aged 61–70 

years, supporting the assumption that an early intervention strategy based on the instrumented 

measures of physical performance is feasible (O1).  

 Chapter 3 firstly, investigates the agreement between standard clinical and sensor-based 

measures of time. Secondly, describes the influence of age and gender on a set of instrumented 

PP measures in a large cohort of healthy community dwelling adults. Finally, it describes an 

EFA approach to find latent structure of the TUG test, suggesting that the instrumented 

measures of physical performance are a feasible tool for assessing the functional decline in 

the general population (O1). 

 Chapter 4 describes the development process for designing a sensor-based model for PC 

assessment using an EFA approach. A battery of PP tests was instrumented and a set of sensor-

based measures were extracted. The aims of this chapter were i) reduce the redundancy of 

information derived from the large number of features extracted for the raw signals; ii) provide 

a uniform clinical interpretation of the new latent variables (domains); iv) verify the 

association of these new variables with well-established clinical assessment tools for 

investigating physiological and pathological conditions (O2). In this chapter, the different 

stages of the conceptual mode development and validation are described. 

 Chapter 5 shows the application of the model to a different cohort of older adults, which also 

included people with neurological conditions, such as Parkinson’s disease and Stroke. It 

shows also how the model could be adopted in clinical practice (O2 and O3). 

 Chapter 6 describes how the individuals’ usual performance can be objectively measured 

through daily PA monitoring. The association between mean and extreme values of PA and 

gait characteristics derived from daily living activities and well-established clinical tools were 

also explored for quantifying motor and cognitive impairments in a cohort of community-

dwelling older adults (O3). 

 Chapter 7 discusses the main results and the limitations of the thesis. It also highlights the 

extension of the work that can be the object of future research. 
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2. COMPARISON OF STANDARD CLINICAL AND INSTRUMENTED 

MEASURES OF PHYSICAL PERFORMANCE IN DISCRIMINATING 

FUNCTIONAL STATUS OF HIGH FUNCTIONING PEOPLE AGED 61-70 

YEARS OLD 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: CONI ALICE, ET AL. "COMPARISON OF STANDARD CLINICAL AND INSTRUMENTED 

PHYSICAL PERFORMANCE TESTS IN DISCRIMINATING FUNCTIONAL STATUS OF HIGH-FUNCTIONING PEOPLE AGED 61–70 YEARS OLD." 

SENSORS 19.3 (2019): 449 [50].  

 

2.1. INTRODUCTION  

As discussed before, age-related functional and cognitive decline have negative consequences for 

quality of life. Early identification of people at risk of functional decline is essential for targeting 

preventive and/or protective interventions. Questionnaires as the Late-Life Function and Disability 

Instrument (LLFDI) [51] have shown to be useful in assessing one’s ability to carry out activities of 

daily living. Physical performance is one domain of physical function and it could be objectively 

measured with sensor-based PP test. Although the standard clinical outcomes of these PP tests are 

commonly used to assess older people or patient populations, their potential ability to detect slight 

changes in functional status for an early detection of functional decline is not clear. To investigate 

the potential of inertial sensors in assessing functional status in young older adults (aged 60–70 years), 

data from the baseline of the H2020 PreventIT project [52] were analysed. PreventIT [1] is a three-

armed feasibility randomised trial including a total of 189 participants, with two behaviour change 

exercise programmes and a control group. The goal of the PreventIT project is the reduction of the 

overall risk of functional decline and to empower people to improve their quality of life adopting a 

healthy and active lifestyle to reduce pressure on caregivers and the health care system. This project 

targets mobility decline in particular, as it is related to falls, frailty, depression, inactivity and 

cognitive impairment, and is important for independence in daily life and quality of life.  

The aim of this study was to assess whether standard clinical and instrumented measures of PP can 

distinguish between older adults with a High and Very High Functional Status, stratified by the 

LLFDI [53]. 

2.2. METHODS 

2.2.1. POPULATION 

The PreventIT study is a multi-centre trial with three centres in Trondheim (Norway), Amsterdam 

(The Netherlands), and Stuttgart (Germany). People were invited by a random draw from local 

registries. Participants were included if they were i) aged between 61-70 years, ii) retired for more 

than six months, iii) home-dwelling, iv) able to read newspaper or text on smartphone, v) able to walk 

500 m without walking aids, vi) without cognitive impairments (Montreal Cognitive Assessment, 



8 
 

MoCA>24 points [54]), and vii) they were excluded if they participated in exercise classes more than 

once a week or did sport for more than 150 minutes per week.  

2.2.2. DEMOGRAPHIC MEASURES 

During the assessment, participants filled questionnaires about: age, gender, Body Mass Index (BMI), 

Physical Activity (PA), hand grip strength (HAND), and cognitive status (Montreal Cognitive 

Assessment, MoCA).  

2.2.3. OUTCOME 

The function component of the Late Life Function and Disability Instrument (LLFDI) was used to 

measure the functional status of participants. The LLFDI indeed assesses function and disability, 

assessing the poor ability to perform specific physical tasks encountered in daily routines. The 

function component evaluates self-reported difficulty to perform 32 activities in daily living 

consisting of three dimensions: upper extremity, basic lower extremity and advanced lower extremity. 

Questions are phrased, “How much difficulty do you have doing a particular activity without the help 

of someone else and without the use of assistive devices?”  with a rating scale from 5 to 1 (the higher 

the scoring category, the less difficulty the person has in doing activities). The overall function raw 

score is obtained adding the scores of all the 32 items [55]. As no validated cut-off has been described 

in literature to distinguish between people with different levels of functional status, we dichotomized 

the scaled scores (ranged 0 to 100) of the function domain of the LLFDI based on the median value 

to classify the people in our cohort as high (HFS) and very high (VHFS) functional status. 

2.2.4. STANDARD CLINICAL PHYSICAL PERFORMANCE TESTS 

Participants performed two physical performance tests under two instruction sets given by the 

assessor: the 30-sec Chair Stands Test (30CST) and the Timed Up and Go test (TUG) Test. During 

the 30CST, participants started seated and, on the command “go”, they stood up and sat down for 30 

seconds as quickly as they could, and the number of repetitions was recorded. During the TUG, 

participants started seated on a chair, on the command “go”, they rose from the chair, walked three 

meters ahead at a comfortable and safe pace, made a 180° turn, walked back to the chair and sat down 

again. The total number of repetitions performed during the 30CST and the stopwatch-based total 

time needed to perform the TUG test were recorded by assessors according to the standard clinical 

protocol.  

2.2.5. INSTRUMENTED PHYSICAL PERFORMANCE TESTS 

Participants wore a smartphone at the lower back, attached with an elastic belt, while they performed 

the 30CST and TUG tests. The smartphone-based system used to instrument these two PP tests was 
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developed within the FARSEEING project [56]. A custom Android application [27] running on 

smartphones (Galaxy SII or Galaxy SIII, Samsung) was used for recording the following tri-axial 

inertial signals: Antero-Posterior (AP), Medio-Lateral (ML) and Vertical (V). These signals were 

then processed using MATLAB [57] to extract a set of instrumented measures [58].  

Signals recorded during the 30CST were segmented into two sub-phases: Sit-to-Stand and Stand-to-

Sit transitions. The AP acceleration signal and the angular velocity about the ML axis were used to 

identify postural transitions [33]. Twenty-one instrumented measures were extracted from the 30CST 

test [33,49,59], including durations, measures of movements’ intensity (e.g. Root Mean Square, 

RMS) and smoothness (e.g. Normalized Jerk Score, NJS [m]) in AP, ML and V direction. The 

measures were computed for each Stand-to-Sit/Sit-to-Stand transition and then averaged over the Sit-

to-Stand/Stand-to-Sit sub-phases (see Table A.3).  

The TUG consists of four sub-phases: Sit-to-Walk, Walk, 180Turn, Turn-to-Sit. The AP acceleration 

and the angular velocity on the ML axis were used to identify postural transitions and the walking 

phase, and the angular velocity around the V axis was used to identify turns [33]. Walking measures 

were derived from the AP, ML and V signals, excluding postural transitions and the turning phase, 

and concatenating the two episodes of straight walk [60]. Twenty eight measures were extracted from 

the TUG test [28,31,33,49,59,61,62] including durations, intensity and smoothness of each sub-phase, 

as well as the mean and maximum angular velocity during the turns and the number of steps 

performed while walking and turning (see Table A.4). 

 

2.3. STATISTICAL ANALYSIS 

Statistical analyses were performed in R for Windows version 3.4.3 [63]. 

Four logistic regression models were fitted and the Areas Under the ROC Curve were compared to 

assess the performances of 30CST and TUG standard clinical and instrumented outcome measures in 

distinguishing between HFS and VHFS. 

For each test, firstly a univariable logistic regression with the standard clinical measure as input 

(number of repetitions for 30CST, total time in s for TUG) was fitted. Secondly, a multivariable 

logistic regression with the instrumented measures was fitted. Then, for each test, the discriminative 

ability of the resulting models was assessed by comparing the Area Under the Receiver Operating 

Curve (AUC). We used the DeLong test to assess differences between AUC of the different models 

[64]. Lastly, a bootstrapping method with backward step-down variable deletion (R function 

‘validate’, package ‘rms’) was applied to internally validate each model and assess the impact of 

outliers. The instrumented measures were pre-processed with the same procedure for both 30CST 
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and TUG. The NJS for all the sub-phases in AP, ML and V direction, which are not normally 

distributed, were log-transformed and all the instrumented measures were normalized to compare 

measures by z-scores (using the R function “scale”). The linearity of each instrumented measure was 

assessed by fitting a restricted cubic spline function (using the R function “rcs” with three knots at 

0.1, 0.5, 0.9 quantiles) in the logistic regression model. Usually, in order to avoid overfitting, the 

assessment of multicollinearity is recommended before fitting the multivariable logistic regression 

on the dataset. Furthermore, the validity of the multivariable logistic regression model becomes 

problematic when the ratio of the numbers of subjects per variable inserted in the model is lesser than 

10 [65]. We addressed these issues by following the next steps. Firstly, the multicollinearity between 

instrumented measures was assessed, using the R function “imcdiag”. To detect and deal with 

multicollinearity i) the Variance Inflation Factor (VIF) was computed on the entire dataset; ii) the 

instrumented measure with highest VIF was selected and removed from the dataset; iii) the VIF was 

computed on the new subset of measures. The procedure was repeated until no collinearity was found 

(i.e. all the elements in the VIF vector were below 10). Starting from the obtained subset of 

instrumented measure, we selected those measures that better discriminate between participants with 

HFS and VHFS (p-value ≤ 0.15) fitting one univariable logistic regression for each instrumented 

measure.  

The resulting subset of sensor-based measure was entered into a stepwise backward multivariable 

logistic regression. The instrumented measures with p-value ≤ 0.05 were selected to fit the final 

model.  

At last, a sensitivity analysis was conducted for both the 30CST and TUG tests in order to compare 

the discriminative ability in distinguishing between HFS and VHFS of the following three models: i) 

standard clinical model, obtained from the standard clinical measure (30CST number of repetitions 

or TUG duration); ii) instrumented model, obtained from the selected subset of instrumented 

measures; and iii) combined model, obtained by including the instrumented 30CST number of 

repetitions or TUG duration in the instrumented model. The multicollinearity between all the 

instrumented measures included in the combined model was beforehand assessed. 

2.4. RESULTS 

Among the participant recruited, 160 (mean age 66.3 ± 2.4 years, 87 females) strong (HAND 

33.41±11.19 kg), whit a moderate level of declared physical activity (90% declared a PA level ≥ 3) 

performed the two instrumented PP tests (see Table 2.1). The population was divided into two groups: 

HFS (range [44.33 71.33]) and VHFS (range [72 100]), based on the median value of the LLFDI 
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score. The between-group demographics reported in Table 2.1 shows that the VHFS group was 

significantly stronger (HAND) and faster during the PP tests with respect to the HFS group. 

  

Table 2.1 Description of the PreventIT population 

 Total population 

N = 160 

HFS 

N = 78 

VHFS 

N = 82 

Gender, Female 87 (54.38%) 52 (66.67%) 35 (42.68%) 

Age, years 66.29 (2.40) 66.13 (2.44) 66.45 (2.37) 

Height, cm 170.94 (9.35) 169.32 (9.86) 172.49 (8.63) 

Weight, kg 79.49 (15.61) 79.97 (16.35) 79.04 (14.95) 

Handgrip strength*, kg 34.41 (11.19) 31.06 (10.75) 37.61 (10.71) 

Gait speed*, m/s 2.05 (0.46) 1.82 (0.41) 2.27 (0.40) 

30CST*, number of repetitions 13.41 (3.29) 12.36 (3.13) 14.40 (3.14) 

TUG duration*, s 8.70 (1.60) 9.25 (1.85) 8.17 (1.10) 

PA >=3 144 (90%) 71 (91.03%) 73 (89.02%) 

Falls, number >=2 23 (14.38%) 15 (19.23%) 8 (9.76%) 

MoCA, points 27.08 (1.85) 27.06 (1.89) 27.09 (1.83) 

Medications, number >=4 44 (27.50%) 29 (37.18%) 15 (18.29%) 

LLFDI, points, median [range] 72.31 [44.33 100] 65.57 [44.33 71.33] 79.35 [72.31 100] 

Values are presented as mean ± SD or number (%) unless otherwise indicated.  

ACRONYMS: 30CST: 30-sec Chair Stand test; HFS: High Functional Status; LLFDI: Late-Life Function and Disability 

Instrument; MoCA: Montreal Cognitive Assessment; PA: declared physical activity level; TUG: Timed Up and Go test; 

VHFS: Very High Functional Status. *HFS and VHFS significantly different (p-value<0.01) 

Twenty-one and twenty-nine instrumented measures were computed from the 30CST (Table A.3) and 

TUG (Table A.4) respectively. To avoid multicollinearity, 6 and 4 instrumented measures were 

excluded from the original dataset of the 30CST and TUG respectively (Tables 2.2 and 2.3).  
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Table 2.2 Collinearity analysis of the 30CST instrumented measures 

 
First step Last step 

 
VIF detection VIF detection 

Mean Sit-to-Stand RMS A AP 5.79 0 3.30 0 

Mean Sit-to-Stand RMS A ML 6.01 0 2.91 0 

Mean Sit-to-Stand RMS A V 4.68 0 2.45 0 

Mean Sit-to-Stand NJS A AP 20.26 1 6.06 0 

Mean Sit-to-Stand NJS A ML 18.54 1 - - 

Mean Sit-to-Stand NJS A V 17.02 1 - - 

Mean Sit-to-Stand RMS G AP 3.28 0 2.85 0 

Mean Sit-to-Stand RMS G ML 4.27 0 3.88 0 

Mean Stand-to-Sit RMS A AP 7.51 0 2.78 0 

Mean Stand-to-Sit RMS A ML 7.31 0 3.16 0 

Mean Stand-to-Sit RMS A V 4.14 0 2.09 0 

Mean Stand-to-Sit NJS A AP 29.03 1 2.44 0 

Mean Stand-to-Sit NJS A ML 27.97 1 - - 

Mean Stand-to-Sit NJS A V 19.68 1 - - 

Mean Stand-to-Sit RMS G AP 4.38 0 3.73 0 

Mean Stand-to-Sit RMS G ML 5.34 0 3.86 0 

Mean Duration Sit-to-Stand 11.18 1 4.84 0 

SD Duration Sit-to-Stand 5.70 0 5.27 0 

Mean Duration Stand-to-Sit 17.27 1 - - 

SD Duration Stand-to-Sit 4.26 0 3.77 0 

Instrumented number of repetitions 24.75 1 - - 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; G=Gyroscope; ML: Medio-Lateral; RMS: Root Mean Square; SD: 

Standard Deviation; NJS: Normalized Jerk Score; V: Vertical; VIF: Variance Inflation Factor 
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Table 2.3 Collinearity analysis of the TUG instrumented measures 

 
First step Last step 

 
VIF detection VIF detection 

Sit-to-Walk Duration 11.44 1 6.20 0 

180Turn Duration 12.11 1 6.90 0 

Turn-to-Sit Turning Duration 9.43 0 9.35 0 

Turn-to-Sit Duration 37.85 1 9.36 0 

Walk Duration 79.06 1 7.67 0 

Sit-to-Walk RMS A AP 2.91 0 2.90 0 

Sit-to-Walk RMS A ML 2.91 0 2.83 0 

Sit-to-Walk RMS A V 18.24 1 2.31 0 

Sit-to-Walk NJS A AP 10.17 1 9.97 0 

Sit-to-Walk NJS A ML 8.11 0 8.02 0 

Sit-to-Walk NJS A V 7.58 0 6.75 0 

Turn-to-Sit RMS A AP 2.77 0 2.36 0 

Turn-to-Sit RMS A ML 4.54 0 2.98 0 

Turn-to-Sit RMS A V 24.83 1 - - 

Turn-to-Sit NJS A AP 10.57 1 9.08 0 

Turn-to-Sit NJS A ML 12.85 1 - - 

Turn-to-Sit NJS A V 8.31 0 6.43 0 

180Turn Mean Velocity 8.65 0 8.23 0 

Turn-to-Sit Turning Mean Velocity 9.82 0 9.70 0 

180Turn Maximum Velocity 3.74 0 3.41 0 

Turn-to-Sit Turning Maximum Velocity 6.01 0 5.97 0 

180Turn NJS G V 3.58 0 3.39 0 

Turn-to-Sit Turning NJS G V 4.39 0 4.34 0 

Walk RMS A AP 3.66 0 3.11 0 

Walk RMS A ML 2.71 0 2.52 0 

Walk RMS A V 18.69 1 - - 

180Turn Number of Steps 2.46 0 2.41 0 

Walk Number of Steps 6.88 0 6.43 0 

Instrumented TUG total duration 132.41 1 - - 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; G=Gyroscope; ML: Medio-Lateral; NJS: Normalized Jerk Score; RMS: 

Root Mean Square; SD: Standard Deviation; V: Vertical; VIF: Variance Inflation Factor 
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Discriminative ability of each instrumented measure, expressed as odds ratio (OR) determined by 

univariate logistic regression, is reported in Tables 2.4 and 2.5. Three and two instrumented measures 

were selected by the univariable analyses (p-value ≤ 0.15) for the 30CST and TUG respectively. 

Discriminative ability of the subset of variables, expressed as odds ratio (OR) determined by stepwise 

backward multivariate logistic regression, is reported in Tables 2.4 and 2.5. Three instrumented 

measures for the 30CST (“mean Stand-to-Sit G RMS ML”, “mean Duration Sit-to-Stand” and “SD 

Duration Sit-to-Stand”) and two for the TUG (“Walk duration”, “Last turn maximum velocity”) 

showed a significant discriminative ability (p-value ≤ 0.05).  

Table 2.4 Univariable and multivariable analysis of the 30CST instrumented measures 

 
Univariable logistic regression 

Stepwise backward multivariable logistic 

regression 

 
OR 95% CI p-value OR 95% CI p-value 

Mean Sit-to-Stand RMS A AP 1.04 [0.76-1.41] 0.820    

Mean Sit-to-Stand RMS A ML 1.22 [0.89-1.68] 0.224    

Mean Sit-to-Stand RMS A V 1.12 [0.82-1.53] 0.473    

Mean Sit-to-Stand NJS A AP1 0.80 [0.58-1.09] 0.157    

Mean Sit-to-Stand RMS G AP 1.01 [0.74-1.38] 0.928    

Mean Sit-to-Stand RMS G ML 1.14 [0.83-1.56] 0.413    

Mean Stand-to-Sit RMS A AP 1.03 [0.76-1.40] 0.852    

Mean Stand-to-Sit RMS A ML 1.14 [0.83-1.56] 0.415    

Mean Stand-to-Sit RMS A V 1.12 [0.82-1.53] 0.487    

Mean Stand-to-Sit NJS A AP1 0.67 [0.49-0.94] 0.019    

Mean Stand-to-Sit RMS G AP 0.90 [0.66-1.23] 0.503    

Mean Stand-to-Sit RMS G ML 0.78 [0.57-1.08] 0.131 0.71 [0.49 0.98] 0.045 

Mean Duration Sit-to-Stand 0.59 [0.41-0.84] 0.004 0.69 [0.48 0.98] 0.041 

SD Duration Sit-to-Stand 0.65 [0.47-0.92] 0.014 0.62 [0.41 0.89] 0.014 

SD Duration Stand-to-Sit 0.82 [0.60-1.13] 0.226    

Bolded p-values indicate statistically significant univariable and multivariable discriminative ability (≤ 0.15 and ≤ 0.05 

respectively). 

ACRONYMS: A: accelerometer; AP: Antero-Posterior; G: gyroscope; NJS: Normalized Jerk Score; ML: Medio-Lateral; RMS: 

Root Mean Square; SD: Standard Deviation; V: Vertical. 1log transformed feature 
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Table 2.5 Univariable and multivariable analysis of the TUG instrumented measures 

 Univariable 
Stepwise backward multivariable 

logistic regression 

 OR 95% CI p-value OR 95% CI p-value 

Sit-to-Walk Duration 0.96 [0.70-1.31] 0.786    

180Turn Duration 0.80 [0.58-1.11] 0.185    

Turn-to-Sit Turning Duration 0.62 [0.44-0.88] 0.008    

Turn-to-Sit Duration 0.70 [0.50-0.97] 0.032    

Walk Duration 0.54 [0.36-0.79] 0.002 0.59 [0.38-0.86] 0.010 

Sit-to-Walk RMS A AP 1.20 [0.87-1.65] 0.258    

Sit-to-Walk RMS A ML 1.04 [0.76-1.43] 0.787    

Sit-to-Walk RMS A V 1.89 [0.69-5.18] 0.213    

Sit-to-Walk NJS A AP1 1.18 [0.86-1.63] 0.303    

Sit-to-Walk NJS A ML1 1.16 [0.84-1.60] 0.364    

Sit-to-Walk NJS A V1 1.28 [0.90-1.82] 0.173    

Turn-to-Sit RMS A AP 0.96 [0.71-1.31] 0.805    

Turn-to-Sit RMS A ML 1.25 [0.91-1.72] 0.164    

Turn-to-Sit NJS A AP1 0.94 [0.69-1.28] 0.703    

Turn-to-Sit NJS A V1 0.82 [0.60-1.13] 0.223    

180Turn Mean Velocity 1.18 [0.86-1.62] 0.301    

Turn-to-Sit Turning Mean Velocity 1.60 [1.14-2.25] 0.007    

180Turn Maximum Velocity 1.38 [1.00-1.91] 0.051    

Turn-to-Sit Turning Maximum Velocity 1.66 [1.17-2.35] 0.004 1.50 [1.05-2.18] 0.031 

180Turn NJS G V1 0.87 [0.63-1.19] 0.386    

Turn-to-Sit Turning NJS G V1 0.76 [0.55-1.06] 0.104    

Walk RMS A AP 1.35 [0.95-1.92] 0.098    

Walk RMS A ML 1.26 [0.92-1.74] 0.155    

180Turn Number of Steps 0.95 [0.70-1.31] 0.764    

Walk Number of Steps 0.58 [0.40-0.85] 0.005    

Bolded p-values indicate statistically significant univariable and multivariable discriminative ability (≤ 0.15 and ≤ 0.05 

respectively). 

ACRONYMS: A: accelerometer; AP: Antero-Posterior; G: gyroscope; ML: Medio-Lateral; NJS: Normalized Angular Jerk Score; 

RMS: Root mean square; V: Vertical; 1log transformed feature. 

The internal validation of each of the models was assessed by applying a bootstrapping method with 

backward step-down variable deletion (Table 2.6). The original AUC and optimism-corrected AUCs 

were in the same range (with differences less than 0.04), indicating confirmation of the internal 

validity of the models. 

Table 2.6 Bootstrapping validation of the 30CST and TUG models 

 30CST TUG 

 AUC original AUC corrected AUC original AUC corrected 

Standard clinical 0.682 0.684 0.684 0.685 

Instrumented 0.680 0.654 0.650 0.627 

Combined 0.661 0.630 0.684 0.670 
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Discriminative ability of the six fitted models is presented in Figure 2.1. Standard clinical, 

instrumented and combined models of the 30CST showed moderate discriminative ability with an 

AUC of 0.68 (95%CI 0.60-0.76) and 0.69 (95%CI 0.61-0.77) respectively, p-values 0.97 (standard 

clinical-instrumented), 0.74 (instrumented-combined), 0.48(standard clinical-combined). The 

discriminative ability of standard clinical, instrumented and combined models of the TUG was 

similar: AUC of 0.68 (95%CI 0.60-0.77), 0.65 (95%CI 0.56-0.73) and 0.69 (95%CI 0.60-0.77) 

respectively, p-values 0.26 (standard clinical-instrumented), 0.94 (instrumented-combined), 0.12 

(standard clinical-combined).  

 

Figure 2.1 Sensitivity analysis: discriminative ability (AUC and DeLong test) of standard clinical, instrumented and combined 

models of the 30CST and TUG test [50] 

 

Table 2.7 Sensitivity analysis 

  AUC 95% CI p-Value of the DeLong test  

30CST 

Standard clinical 0.68 [0.60–0.76] Standard clinical—Instrumented  0.97 

Instrumented 0.68  [0.60–0.76] Instrumented—Combined  0.74 

Combined 0.69 [0.61–0.77] Standard clinical—Combined  0.48 

TUG 

Standard clinical 0.68  [0.60–0.77] Standard clinical—Instrumented  0.26 

Instrumented 0.65 [0.56–0.73] Instrumented—Combined  0.94 

Combined  0.69 [0.60–0.77] Standard clinical—Combined  0.12 

 

2.5. DISCUSSION 

This study aimed to compare the discriminative ability of standard clinical with instrumented 

measures of physical performance in distinguishing between High and Very High Functional Status 

(HFS, VHFS) in a relatively fit and healthy population of community-dwelling adults aged 61-70 

years. The 30CST number of repetitions and TUG duration (the standard clinical as well as the 
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instrumented) showed moderate discriminative ability. These two types of measurement showed 

similar performances in the univariable logistic regressions, suggesting that the prediction of minor 

functional status differences is possible in our fit and healthy population either by the standard clinical 

protocol or the instrumented measures. Instrumented physical performance tests allow us to collect a 

number of additional measures beyond the total 30CST repetition or TUG duration. These measures 

could have the potential to add more detailed information about the participants’ functional status.  

Three of the 30CST instrumented measures were entered as input to fit the final model “mean 

Duration Sit-to-Stand”, “SD Duration Sit-to-Stand” and “mean Stand-to-Sit G RMS ML”. The 

30CST, by definition, is a measure of lower limbs strength and endurance. The time needed to stand 

up from a sitting position represents the dynamic balance and the lower limbs strength. It is an index 

of the power generated from muscles to stand up against gravity. The shorter the duration, the higher 

the strength. The standard deviation (SD) of the duration is a measure of variability, therefore higher 

the SD, the higher is the difference between the duration of this task among the repetitions. Indeed, 

high SD of the standing duration could be related to fatigue and weakness. The Stand-to-Sit G RMS 

in ML direction is a measure of the intensity of the forward trunk rotation while sitting. The sitting 

phase requires dynamic balance and lower limbs strength to control the lowering of the body to the 

seated position. A more intense trunk rotation during the Stand-to-Sit phase could be related to less 

muscle strength, as demonstrated in a recent study for the Sit-to-Stand phase [66]. 

The final model of the TUG included two instrumented measures: “Walk duration” and “Last turn 

maximum velocity”. The duration of the straight walk is a predictor of health status in old age [22]. 

Indeed, gait speed is traditionally used as a predictor for clinical outcomes, e.g. an older adult with 

gait speed lower than 1 m/s was considered at risk of falling. The turn before sitting involves 

cognition, motor planning and visual capacities in preparation for sitting. Difficulty turning is 

associated with mild cognitive impairment in old age [67]. The De-Long test (Table 2.7) was not 

significant, suggesting that these two types of measurement have a similar discriminative ability. Yet, 

in contrast to the conventional clinical measures, with the instrumented measures it is possible to 

objectively measure the participants’ capacities while performing specific tasks, like walking, turning 

or sitting. Furthermore, the discriminative ability increased, albeit not significantly, when the 

conventional clinical and instrumented measures have been combined. 

The first limitation of this study is the homogeneous population, characterized by a very skewed 

distribution of the LLFDI scores, which may have led to a decrease in the discriminative ability. The 

second limitation was the lack of literature for validated cut-off for discriminating between different 

LLFDI levels. A valid cut-off score can be helpful to identify people at risk of developing functional 

decline. This aspect might be the subject of future studies. Lastly, the ratio between the sample size 
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and the number of instrumented measures required the performance of a feature selection, before 

fitting the stepwise backward logistic regression and this might have led to a loss of information.  

Despite these limitations, instrumented 30CST and TUG measures proofed to be comparable to the 

standard clinical measures, with moderate discriminative ability, in detecting slight differences of 

LLFDI even in this homogeneous population. In summary, high power of the lower limbs muscle, 

low duration and variability of the Sit-to-Stand transition, high gait speed and good ability in 

performing the turn before sitting, have shown a moderate ability in discriminating between HFS and 

VHFS. It is reasonable to assume that the detection of differences in the functional status would also 

be possible in less fit and homogeneous population of older adults. However, procedures for the 

reduction of the high number and redundancy of instrumented measures and the influence of age, 

gender and biometric measures on the instrumented measures need to be investigated. 

2.6. CONCLUSIONS 

In a relatively fit and healthy population of adults aged 61-70 years, standard clinical and 

instrumented measures distinguish between HFS and VHFS, with moderate discriminative ability. 

This result supports the hypothesis that an early identification of risk of the age-related functional 

decline can be achieved. This corroborates the assumption that an early intervention strategy based 

on the instrumented measures of physical performance is feasible.  

 

  



19 
 

3. THE INCHIANTI-FARSEEING PROJECT 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: CONI ALICE, ET AL. "INFLUENCE OF AGE AND GENDER ON SENSOR-BASED FUNCTIONAL 

MEASURES: A FACTOR ANALYSIS APPROACH" [68].  

3.1. INTRODUCTION 

The decline of gait stability and postural control with age is probably due to the age-related loss of 

function of the musculoskeletal, cardiovascular, respiratory, and nervous systems and the reduction 

in the ability to detect and process proprioceptive and sensorial information. To understand these 

mechanisms, the InCHIANTI study (Invecchiare nel Chianti, ageing in the Chianti area), a 

longitudinal study of the factors contributing to the decline of mobility in late life, was designed by 

the Laboratory of Clinical Epidemiology of the Italian National Research Council on Aging, (INRCA, 

Florence, Italy) in a partnership with the local administrators and the primary care physicians of Greve 

in Chianti and Bagno a Ripoli, two small towns in the countryside of the Tuscany area where Chianti 

wine is produced. The data collection started in September 1998 and was completed in March 2000. 

The main goals of this study were: i) understand the risk factors influencing the loss of walking 

ability; ii) identify physiologic subsystems critical for walking; and iii) identify measures that 

clinicians can use to understand the causes of walking difficulties in older adults. The study protocol, 

selection of participants and information collected are presented elsewhere [69]. 

As previously described, standard clinical outcomes of the PP tests (i.e. 7MW, CST and TUG total 

duration) recorded with stopwatches (SW) are extensively used as a screening tool in older age. 

Sensor-based measures computed from the PP tests might be sensitive markers of age-related changes 

in PC providing possible insights into underlying determinants [22,35]. In a sensor-based assessment, 

it is possible to provide automatic algorithms for an objective and comprehensive picture of the 

person’s PC which goes well beyond a simple temporal measure obtained with a stopwatch. Indeed, 

with the instrumented version of the PP tests it is possible to automatically extract the standard clinical 

outcome and other additional more detailed information. To deeper investigate these aspects, the PP 

tests were instrumented by means of a smartphone (SP) starting from the 4th wave of the InCHIANTI 

study (Follow up 4, 2013-2015). 

In Chapter 2 it was shown that in a relatively fit and healthy population of adults aged 61-70 years, 

standard clinical and sensor-based measures of PP are useful for an early identification of risk of age-

related functional decline.  A recent work showed that sensor-based measures of balance and gait are 

affected by age in a healthy community-dwelling cohort [36]. Thus, further investigation of the 

influence of age, gender and biometric measures on these measures is needed. In this section of the 

thesis, the agreement between standard clinical and sensor-based measures of time was firstly 
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investigated, then the functional decline associated with ageing and gender-related differences were 

explored in a large group of community-dwelling persons.  

3.2. METHODS 

The assessment provides for the collection of i) several health-related measures used to assess the 

participants’ functional profile, inertial signals collected from ii) a battery of PP tests and iii) long-

term PA monitoring at home. Sensor-based PP tests included the assessment of postural sway in Quiet 

Standing (QS), the 7-meter Walk test (7MW), the 5-times Repeated Chair Stand test (CST), and the 

Timed Up and Go test (TUG). Methods used for task segmentation and task-specific measures 

computation are based on state-of-the-art methods to characterize postural sway [25,70], walking 

[28,31], postural transitions [33,49,59] and turnings [61,62]. The time taken to complete the 7MW, 

CST and TUG tests was also recorded with a stopwatch following the standard clinical protocol. The 

daily PA was also recorded through a custom Android application designed to provide measures 

representative of the participants’ motor profile. PA measures included the percentage of sedentary, 

active, and walking time, the duration and intensity (METs) of the activities, as well as the gait and 

turning characteristics. The algorithms used for the signal processing and instrumented measures 

computation are part of the system developed within the FARSEEING project [71]. 

3.2.1. POPULATION  

Four hundred community-dwelling participants (213 females), aged (71.95 ±15.86, range 35-100 

years old) were recruited from the fourth wave of the InCHIANTI cohort study (Figure 3.1). 

Participants performed the battery of PP tests wearing a smartphone (SP) on the lower back (L5) by 

means of an elastic case waist belt. 

 

Figure 3.1 Distribution of the participants assessed in the 4th wave of the InCHIANTI cohort study. 
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3.2.2. HEALTH-RELATED MEASURES   

The health-related measures collected during the assessment included the Mini-Mental State 

Examination (MMSE, measure of the participant’s cognitive status, range from 0 to 30), Instrumental 

Activities of Daily Living [72] (IADL, i.e. the number of instrumental activities in which the person 

requires help, e.g. preparing meals, performing housework, getting to places outside of walking 

distance, managing medications, etc., range from 0 to 8), Center for Epidemiologic Studies 

Depression Scale [73] (CES-D, a questionnaire used to assess depressive symptoms range from 0 to 

60), Physical Activity [74] (PA, declared level of physical activity assessed through a questionnaire, 

range from 1 to 7), the number of falls in the last year declared during the assessment (FALLN), 

Hand-Grip strength test [75] (HAND, kg stronger hand), the lower extremity muscle power measured 

using the Nottingham leg extensor Power Rig [76] (PWR, watt), the Trail Making Test A [77] 

(TMTA, a neuropsychological test that assesses various cognitive abilities, including visual-

conceptual, visuospatial, and visual-motor tracking, seconds) and the Short Physical Performance 

Battery, a measure of mobility function [13] (SPPB, range from 0 to 12 ).  

3.2.3. PHYSICAL PERFORMANCE TESTS 

QS: participants stand for 30 seconds with their arms at their side, feet hip-width apart, wearing shoes, 

with their eyes closed [21]. The assessors evaluate the participants’ ability to perform the test; the 

standard clinical outcome is dichotomous (i.e. able/not able). 

7MW: participants walk 7 meters at a comfortable and safe pace. The start and stop locations are 

marked on the floor [69]. The standard clinical outcome of this test is the total time recorded with a 

stopwatch. Older persons with gait speed, calculated as 7meters divided for the total duration of the 

test, slower than 1 m/s are usually considered at high risk of adverse health outcomes [78].  

CST: participants start seated on a chair with arms folded across the chest and with their back against 

the chair’s backrest. On the command “go”, they stand up and sit down 5 times as quickly as they can 

[79]. The conventional outcome is the total time taken to perform the test, recorded with a stopwatch. 

TUG: participants start seated on a chair with their back against the chair’s backrest. On the command 

“go”, they rise from the chair, walk 3 meters ahead at a comfortable and safe pace, turn around a 

coloured cone on the floor, walk back to the chair and sit down again [80]. The conventional outcome 

is the total duration of the tests, recorded with a stopwatch. Older adults who took 13.5 seconds or 

longer to perform the TUG are classified with high risk for falls [81].  
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3.2.4. STATISTICAL ANALYSIS 

Bland-Altman plots were used to investigate the agreement between standard clinical and sensor-

based measures of time. Polynomial curve fitting was used to investigate the influence of age on the 

sensor-based measures computed from the battery of PP tests. t-Test was performed to investigate 

gender-related differences. All the analyses were performed using MATLAB [57]. 

3.3. RESULTS 

3.3.1. SENSOR-BASED PHYSICAL PERFORMANCE MEASURES 

QS: in total, 23 sensor-based measures were extracted from i) the acceleration in ML and AP 

directions, including measures in the time and frequency domains, and ii) the estimated displacement 

of the body centre of mass (13), computed in the time domain to quantify the amount and direction 

of sway (Table A.1). 

7MW: in total, 19 sensor-based measures were extracted from the acceleration in ML, AP and V 

direction to describe temporal gait parameters and measures of smoothness, regularity, and 

coordination (15,18) (Table A.2).  

CST: this test was segmented into Sit-to-Stand and Stand-to-Sit transitions [26]. The AP acceleration 

and the angular velocity about the ML axis are used to identify postural transitions [33]. Overall, 31 

task-specific sensor-based measures are extracted from acceleration and angular velocity in AP, ML 

and V direction to quantify mean values and standard deviations across repetitions of relevant 

parameters of the two sub-phases (Table A.3). 

TUG: this test consists of four sub-phases: Sit-to-Walk, Walk, 180Turn, Turn-to-Sit. Overall, 38 task-

specific sensor-based measures are extracted, including measures of gait, turning and postural 

transitions (Table A.4). 

3.3.2. ANALYSIS OF AGREEMENT 

The Bland-Altman plots (Figure 3.2) compare the SP to the SW in timing the 7MW, CST and TUG 

tests. The red lines represent the mean value of the differences between measures (SP vs. SW) and 

the blue lines represent the limits of agreement between the two measures. Limits of agreement 

between the SP- and SW-based durations of 7MW, CST and TUG were [-0.46 3.08] s and [-0.13 

5.09] s and [-0.68 3.04] s, respectively. 
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3.3.3. INFLUENCE OF AGE AND GENDER ON SENSOR-BASED PHYSICAL PERFORMANCE 

MEASURES 

Figures 3.3, 3.4, 3.5 and 3.6 show the trend with age of a representative subset of the sensor-based 

measures computed from the QS, 7MW, CST and TUG tests respectively. Black lines represent the 

general population, pink and blue lines represent females and males respectively. Eight age groups 

(ranging from 35 to 100 years) are reported in the x-axis. For each age group, the filled circles 

represent the median value and the dotted lines represent the 10th and 90th percentile. The green dots 

represent significant gender differences (p-value<0.05). 

Figure 3.2 Bland-Altman plots comparing the difference between the sensor-based measures and the stopwatch 

measures for the total duration (seconds) of the 7-meter Walk test (a), 5-times Repeated Chair Stand test (b) and Timed 

Up and Go test (c). The red lines represent the mean value of the differences between measures (sensor-based vs. 

stopwatch) and the blue lines represent the limits of agreement (±1.96 standard deviations). 
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Figure 3.3 Trend with age of the sensor-based measures computed from the QS test 
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Figure 3.4 Trend with age of the sensor-based measures computed from the 7MW test 
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Figure 3.5 Trend with age of the sensor-based measures computed from the CST test 



27 
 

  

Figure 3.6 Trend with age of the sensor-based measures computed from the TUG test 
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3.4. DISCUSSION 

3.4.1. ANALYSIS OF AGREEMENT  

The Bland-Altman plots reported in Figure 3.2, show the analysis of agreement between standard 

clinical (i.e. SW-based) and SP-based 7MW, CST and TUG tests. The SP-based overestimated the 

duration of the tests determined by the SW during 7MW, CST and TUG. The visual inspection of 

signals recorded by means of SPs suggested that the values out of the limits of agreement were due 

to human errors. The positive bias between SPs and SW could be due to the accuracy of the operators 

to press the start and stop button at the beginning and the end of the participants’ movement. The 

algorithm running on the SPs are more accurate than SW in the detection of the beginning and end of 

the movements and hence in timing the test. In conclusion, SPs agreed sufficiently with SW in timing 

the 7MW, CST and TUG tests. 

3.4.2. INFLUENCE OF AGE AND GENDER ON SENSOR-BASED PHYSICAL PERFORMANCE 

MEASURES 

Among all the possible features that can be extracted from a wearable inertial sensor, features that 

have been already clinically investigated in the literature, and that showed their reliability and 

validity, were computed from the instrumented PP tests. Figure 3.3.a shows the trend with age of the 

sensor-based features computed from the QS test. The trend appears flat until 75 years, then the 

abilities to maintain the static balance clearly worsen. In general, there is no significant gender 

difference in younger age. The differences became more pronounced when the performances start to 

decrease, in accordance to the findings of Riva et al., which showed a significant difference between 

women and men in the older subjects (75–84 years), as a consequence of less effective proprioceptive 

control [82].  

Figure 3.3.b shows the trend with age of the sensor-based features computed from the 7MW test. 

Total duration, Cadence and coordination (Phase Coordination Index, PCI) showed a decline after 

plateau. The linear decline starts above 75 years; women tend to have a lower speed and it might be 

due to the lower mean height. Cadence (number of steps per minute) increases on equal distance 

walked meaning that steps are shorter, and the higher PCI indicates a more asymmetric walk. RMS 

in AP, ML and V directions showed a linear deterioration with age. These results are consistent with 

the results reported in two recent studies, demonstrating the decline of walking speed and other gait 

measures during time [22,36]. 
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Figure 3.3.c shows the trend with age of the sensor-based features computed from the CST test. The 

total time required to perform the test can be considered as an index of lower limbs strength, high 

values are associated with loss of functional capacity and muscle strength. Women tend to have lower 

Range and RMS values (particularly above 75), but there are no substantial gender-related differences 

in the total duration of the test. Range and RMS in V direction are associated with the muscular 

strength of the lower limbs. Hence, women tend to have lower values with respect to men. Low values 

of these parameters could be associated with frailty, sarcopenia, and pathological conditions. 

Compensatory strategies may help women to overcome the poorer lower limbs muscle strength and 

complete the test with a similar time with respect to men. 

Figure 3.3.d shows the trend with age of the sensor-based features computed from the TUG test. The 

TUG total duration is widely clinically used to assess the older adults’ health status. As we expected, 

measures of time (Total/sub-phases durations) worsen with age, indicating the progressive loss of 

functional capacities. As in the CST test, the RMS in V direction of the Sit-to-Walk decrease with 

age. The intensity of the movements while standing can be related to the muscle strength needed to 

lift up the body weight, and to the motor planning for the gait initiation. Figure 3.3 also shows the 

increased difficulties of turns (increased duration and NJS). The increased difficulties in performing 

this complex task may reflect the reduced physical and cognitive function.  

3.5. CONCLUSIONS 

The agreement between standard clinical and sensor-based measures of time was firstly investigated. 

SPs agreed sufficiently with SW in timing the 7MW, CST and TUG tests, suggesting that sensor-

based measures can provide a better understanding of the functional decline process with age and 

hence becoming a useful tool for designing intervention strategies. Thus, SPs can substitute the SW 

in timing the tests, giving the possibility to compute a high number of reliable measures from the 

inertial signals in addition to this conventional outcome. However, the added value of the additional 

information obtained from wearable sensors needs further investigations. 

Many sensor-based measures extracted from the four PP tests exhibited a significant association with 

age. As expected, speed/time related features clearly worsen with aging, but many other sensor-based 

measures showed a significant decrease: postural control and stability, coordination of walking, 

cadence, weight shift ability, worsen with ageing as well as features which can be related to the 

muscle weakness and dynamic balance.  

This preliminary study provides evidence that a sensor-based assessment can be a feasible and 

effective tool for assessing the functional decline in the general population. Standardization is 

important in order to remove, as far as possible, the effect of confounders. These results highlight the 
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importance of considering the influence of age, gender and other variables, like body composition 

(weight and height) in studies that make use of sensor-based PP measures. 

3.6. THE INSTRUMENTED TIMED UP AND GO TEST: AN EXPLORATORY FACTOR ANALYSIS 

APPROACH 

  

3.6.1. BACKGROUND AND AIM 

From a motor point of view, after the age of 50, approximately 1–2% of muscle mass is lost per year. 

The loss in body mass density, which is related to muscle weakness, is greater in women compared 

to men aged 60 years and older [83]. Ageing implies not only a loss in musculoskeletal functioning 

but also a decline in vision, reaction time, peripheral and vestibular sensations: all of which can reduce 

upper body stability [84]. Among the PP tests, the Timed Up and Go (TUG) is one of the most widely 

used, since it allows to assess balance, locomotion, and the ability to turn in the elderly. Instrumenting 

the TUG with inertial sensors enables the computation of several task-specific measures, which may 

enrich the conventional clinical outcome. The purpose of this study was to investigate the functional 

decline associated with ageing by means of a factor analysis, in order to classify domains of an 

instrumented TUG in a group of community-dwelling elderly people. Gender-related differences 

were also investigated. 

3.6.2. METHODS 

3.6.2.1. POPULATION 

A subsample of the InCHIANTI cohort study, 239 community-dwelling elderly persons (128 females, 

80.85 ± 6.67 years old, range 65-93), was assessed. Participants performed a TUG test instrumented 

by means of a waist-worn smartphone. 

3.6.2.2. INSTRUMENTED TUG  

The Android smartphone application used for managing the embedded inertial sensors (tri-axial 

accelerometer and gyroscope) is an outcome of the FARSEEING project [71]. Samsung Galaxy SII 

and SIII were used as sensing units. Signal processing and features extraction algorithms were 

implemented in MATLAB [57]. The TUG was segmented into four sub-phases: Sit-to-Walk, Walk, 

180Turn, and Turn-to-Sit and the sensor-based features were computed for each sub-phase as already 

described in section 3.3.1.  
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3.6.2.3. STATISTICAL ANALYSIS 

A second order polynomial curve fitting with respect to age was applied to the extracted features. 

Subjects with one or more features outside the 99.9% confidence interval were excluded from the 

analysis in order to remove outliers due to performance errors and/or physical impairments. 

Factor analysis was performed using R for Windows, version 3.4.3 [63] in order to reduce the large 

number of variables in the dataset and for underlining the structure in the relationships between 

features. Varimax rotation was used to derive orthogonal factor scores. Sensor-based measures with 

factor loading higher than 0.5 were considered relevant. The number of factors to retain was selected 

using the scree plot. Pearson’s Correlation analysis was used for investigating the association between 

latent factors and age. The sample was divided into six age groups spanning 5 years (from [65-69] to 

[90-95]). A univariate Generalized Linear Model (GLM) was used to test the effects of the age group 

and the gender. SPSS [85] was used for GLM with age groups as fixed effects and gender as a 

covariate. 

3.6.3. RESULTS 

The final sample included 214 elderly persons (115 females, 80.77 ± 6.75 years old, range 65-93) 

since 25 outliers were identified. Characteristics of the age groups are reported in Table 3.1. 

Factor Analysis grouped 35 out of 38 features (Table 3.1) into six factors, accounting for 70% of the 

total variance. Taking into account the features in each group the factors were labelled as follows 

(Table 3.1): “Global Fitness”, “Turning Ability”, “Smoothness of the Sit-to-Walk”, “AP Dynamics 

of the trunk during postural transitions”, “ML Weight Shift during postural transitions”, “Smoothness 

of the Turn-to-Sit”. Correlation with age, multiple comparisons among age groups, and GLM results 

are reported in Table 3.1. Significant correlations were found between age and “Global Fitness”, 

“Turning Ability”, and “AP Dynamics of the trunk during postural transitions” (Figure 3.8).  
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A) Predicted values for the factor 1 labelled as “Global 

Fitness”. 

 

 

 

 

 

 

 

 

 

 

B) Predicted values for the factor 2 labelled as “Turning 

Ability”. 

 

 

 

 

 

 

 

 

 

 

C) Predicted values for the factor 4 labelled as “Antero-

Posterior Trunk Dynamics during Postural Transitions”.  

 

 

 

  

Figure 3.7 Dots represent the predicted values of the factors. Thick line represents the second order polynomial curve fitting of the 

factor with age. Boxplots show the distribution of the values in the six age groups defined in Table 3.1 [68] 
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Table 3.1 Factor analysis of the instrumented TUG features and statistical analysis 

 Total Duration 

TtS Duration 
Gait Duration 

Range V Acc. StW 

Peak velocity 
180T 

Peak Velocity TtS 

N. of Steps 
Range AP Acc 

Gait 

Range ML Acc 
Gait 

Range V Acc Gait 

RMS AP Acc Gait 
RMS ML Acc Gait 

RMS V Acc Gait 

Duration 180T 

Duration TtS 
Mean Velocity 

180T 

Mean Velocity TtS 
NJS 180T 

NJS TtS 

N. of Steps 180T 

StW Duration 

NJS AP Acc StW 
NJS ML Acc StW 

NJS V Acc StW 

Range AP Acc StW 

RMS AP Acc StW 
Range AP Acc TtS 

RMS AP Acc TtS 

Range ML Acc 

StW 
RMS ML Acc StW 

Range ML Acc 

TtS 
RMS ML Acc TtS 

NJS AP Acc 

TtS 
NJS ML Acc 

TtS 

NJS V Acc TtS 

Factors Global Fitness Turning Ability 
Sit-to-Walk 

Smoothness 

AP Trunk 

Dynamics during 

Postural 

Transitions 

ML Weight 

Shift during 

Postural 

Transitions 

Turn-to-Sit  

Smoothness 

Explained Variance 21% 16% 9% 9% 8% 8% 

Cumulative Variance 21% 37% 46% 55% 63% 71% 

GENERALISED LINEAR MODELS AND CORRELATION ANALYSIS (p value) 

Age Group * Gender 0.522 0.002 0.541 0.410 0.337 0.376 

Age Group 0.870 0.003 0.752 0.493 0.440 0.402 

Gender 0.007 0.494 0.351 0.307 0.618 0.003 

Correlation with Age <0.001 <0.001 0.107 0.011 0.490 0.589 

MULTIPLE COMPARISONS BETWEEN AGE GROUPS (p value) 

Age Group 

1 

[65-69] 

N = 23 

15 F. 

Vs AG 2 0.059 0.504 0.487 0.660 0.988 0.772 

Vs AG 3 0.002 0.251 0.420 0.405 0.636 0.657 

Vs AG 4 <0.001 0.152 0.932 0.088 0.636 0.997 

Vs AG 5 <0.001 <0.001 0.226 0.083 0.586 0.993 

Vs AG 6 <0.001 <0.001 0.210 0.007 0.994 0.957 

Age Group 

2 

[70-74] 

N = 16 

10 F. 

Vs AG 1 0.059 0.504 0.487 0.660 0.988 0.772 

Vs AG 3 0.311 0.088 0.964 0.746 0.655 0.488 

Vs AG 4 0.007 0.041 0.361 0.340 0.668 0.729 

Vs AG 5 <0.001 <0.001 0.063 0.299 0.641 0.748 

Vs AG 6 <0.001 <0.001 0.073 0.036 0.995 0.831 

Age Group 

3 

[75-79] 

N = 22 

14 F. 

Vs AG 1 0.002 0.251 0.420 0.405 0.636 0.657 

Vs AG 2 0.311 0.088 0.964 0.746 0.655 0.488 

Vs AG 4 0.088 0.977 0.271 0.524 0.897 0.573 

Vs AG 5 0.001 0.026 0.033 0.453 0.276 0.599 

Vs AG 6 <0.001 0.005 0.050 0.053 0.667 0.652 

Age Group 

4 

[80-84] 

N = 90 

43 F. 

Vs AG 1 <0.001 0.152 0.932 0.088 0.636 0.997 

Vs AG 2 0.007 0.041 0.361 0.340 0.668 0.729 

Vs AG 3 0.088 0.977 0.271 0.524 0.897 0.573 

Vs AG 5 0.017 0.001 0.104 0.815 0.159 0.994 

Vs AG 6 <0.001 0.001 0.154 0.074 0.684 0.951 

Age Group 

5 

[85-90] 

N = 47 

27 F. 

Vs AG 1 <0.001 <0.001 0.226 0.083 0.586 0.993 

Vs AG 2 <0.001 <0.001 0.063 0.299 0.641 0.748 

Vs AG 3 0.001 0.026 0.033 0.453 0.276 0.599 

Vs AG 4 0.017 0.001 0.104 0.815 0.159 0.994 

Vs AG 6 0.019 0.219 0.711 0.122 0.645 0.958 

Age Group 

6 

[90-95] 

N = 16 

6 F. 

Vs AG 1 <0.001 <0.001 0.210 0.007 0.994 0.957 

Vs AG 2 <0.001 <0.001 0.073 0.036 0.995 0.831 

Vs AG 3 <0.001 0.005 0.050 0.053 0.667 0.652 

Vs AG 4 <0.001 0.001 0.154 0.074 0.684 0.951 

Vs AG 5 0.019 0.219 0.711 0.122 0.645 0.958 

ACRONYMS: M : Medio-Lateral; AP: Antero-Posterior; V: Vertical; Vs AG: Versus Age Group; StW: Sit-to-Walk; TtS: Turn-to-Sit; 180T: 

180Turn; RMS: Root Mean Square; Acc: Acceleration; N.: Number; F.: females; NJS: Normalised Jerk Score  
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3.6.4. DISCUSSION 

We aimed to investigate if an EFA of the instrumented TUG test is a suitable tool for the detection of 

the age-related functional decline. Gender-related differences were also investigated. A significant 

number of features can be derived from the instrumented TUG. EFA grouped these features based on 

the shared information. The so obtained independent factors were then interpreted and labelled based 

on their clinical meaning. The influence of age and gender on the factors are reported in Table 3.1 

and shown in Figure 3.4. As expected, the “Global Fitness” decreases with age. Although the effect 

of the age group is not significant, there is a significant correlation with age. It is clear, looking at the 

multiple comparisons, that the decrease of the “Global Fitness” is significant between subsequent age 

groups. The effect of gender is also significant, meaning that the decline is different between women 

and men. The total duration of the TUG, the standard clinical outcome of the test, is included in the 

“Global Fitness” factor, which is coherent with the usual interpretation of this variable. The “Turning 

Ability” also declines with ageing mainly above 80 years old (Figure 3.4) as also confirmed by the 

multiple comparisons. The ability to turn is essential for daily living activities, since almost every 

task performed during the day requires some amount of turning. The trend of this factor confirms 

how its contribution significantly influences the functional decline. The significant interaction 

between gender and age group suggests that the decline of the “Turning Ability” is different between 

women and men. The “AP Trunk Dynamics during Postural Transitions” is significantly correlated 

with age (Figure 3.4) meaning that the AP trunk dynamics decreases with ageing with a relatively 

slow trend and no gender differences. The “Turn-to-Sit Smoothness” is significantly different 

between males and females with a generally higher smoothness in women with respect to men. The 

final two factors, the “Sit-to-Walk Smoothness” and the “ML Weight Shift during Postural 

Transitions” show neither age nor gender-related differences and could be interesting candidates for 

identifying frailty, motor impairment, and associations with the fall risk [86].  

3.6.5. CONCLUSIONS 

A TUG test, instrumented by means of a consumer electronic device like a smartphone, proves to be 

a suitable testing solution for quantitative movement analysis. A significant number of features can 

be derived from the signals of the embedded inertial sensors and those features can be grouped in 

factors with a clear clinical value allowing to investigate several mobility skills at once, well beyond 

the total duration, which is the only outcome of the clinical TUG. Statistical analysis provides 

evidence that a sensor-based assessment is a feasible and effective tool for assessing the functional 

decline in the general population. The reduction of the dimension of the dataset of sensor-measures 

extracted, without the loss of useful information can be achieved by means of Factor Analysis. The 
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factors obtained might allow us to investigate several mobility skills, well beyond the standard clinical 

outcome of the test.  The effect of body composition, cognition and polypharmacy on the sensor-

based measures computed from the PP tests should also be investigated.   
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4. A SENSOR-BASED CONCEPTUAL MODEL FOR PHYSICAL CAPABILITY 

ASSESSMENT 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: 

CONI ALICE, ET AL. "FACTOR ANALYSIS MODEL OF THE INSTRUMENTED TIMED UP AND GO TEST FOR PHYSICAL CAPABILITY ASSESSMENT" 

[87]  

 CONI ALICE, ET AL. "A SENSOR-BASED CONCEPTUAL MODEL FOR PHYSICAL CAPABILITY ASSESSMENT" [SUBMITTED TO SENSORS] 

 

As previously described, EFA allows to discover the latent structure of the starting dataset, computing 

a few new variables called factors. It was previously shown how it could be applied to the 

instrumented TUG. The underlined latent factors showed to be indicative of several mobility skills 

and to have the potential to describe the age-related functional decline. The same principle can be 

applied to the entire battery of sensor-based PP tests to obtain a general model for the objective PC 

assessment of older adults.  

4.1. DEVELOPMENT OF THE CONCEPTUAL MODEL 

4.1.1. POPULATION AND METHODS 

A subsample of the InCHIANTI cohort study [2] was assessed within the framework of the EU 

FARSEEING project [71]. Participants were subjected to a battery of four PP tests performed in a 

fixed order, including the QS, 7MW, CST and TUG (see section 3.2.3 for more detailed description). 

The health status of the older adults was assessed by a number of health-related measures, including 

MMSE, IADL, CES-D, PA, FALLN, HAND, PWR, TMTA, and SPPB. See section 3.2.2 for more 

detailed information.  

Robust linear regression was used to identify outliers and adjust for the effects of age, gender, height, 

weight, and cognitive status (indexed by the MMSE). An older adult was considered outlier if at least 

one of his/her sensor-based measure had a null weight in the robust linear regression model 

(MATLAB function “robustfit”)  [88]. One EFA was then performed on the residuals of each set of 

sensor-based measures to reduce the dimension of the dataset and to uncover the underlying 

relationships between sensor-based measures. Since the EFA is based on the assumption of normally 

distributed data, the jerk scores were log transformed and all the sensor-based measures were 

standardized to zero mean and unit variance before EFA. Varimax rotation was used to derive 

orthogonal factor scores. Sensor-based measures with factor loading greater than 0.5 as the absolute 

value were considered relevant. For each EFA, a scree plot (Parallel analysis) was used to determine 

the minimum number of factors to retain. We verified that each resulting factor structure explained 

at least 70% of the total variance [89]. Since the factor model was obtained excluding the outliers, 

their factor scores were lately predicted. Hence, all the participants were included in the subsequent 

statistical analysis. Each factor was interpreted using a priori knowledge on the sensor-based 
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measures that contribute to it and then mapped into a specific conceptual domain. Spearman’s 

correlation analysis was used to investigate both the association between domains in the conceptual 

model and the associations between each domain and the residuals of the health-related measures. 

Signal processing and statistical analyses were performed using MATLAB [57]. Exploratory Factor 

Analysis was performed using R for Windows, version 3.4.3 [63]. Figure 4.1 shows the flowchart of 

the conceptual model development process. 

 

Figure 4.1 Flowchart of the conceptual model development process; N is the number of sensor-based measures and factors or 

domains of each instrumented test. 
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4.2. INFLUENCE OF AGE, GENDER, BODY COMPOSITION AND COGNITION: RESULTS 

Two hundred and seventy-three community-dwelling older adults (148 females, 80.8 ± 6.5 years old, 

range 65-98) performed the PP test in a fixed order, while wearing a smartphone at the lower back. 

Not all the participants were able to complete the whole battery of tests: Table 4.1 reports the 

demographic and functional profiles of each subgroup undertaking the four functional tests.  

Table 4.1 Demographic and functional profiles of the groups who underwent the four test 

 POPULATIO

N 

Mean (SD) 

QS 

Mean (SD) 

7mW 

Mean (SD) 

CST 

Mean (SD) 

TUG 

Mean (SD) 

Age (years) 80.8 (6.5) 80.8 (6.5) 80.4 (6.5) 79.9 (6.4) 80.6 (6.4) 

Weight (kg) 69.1 (13.3) 69.1 (13.2) 69.0 (13.4) 70.5 (12.9) 69.2 (13.4) 

Height (cm) 159.1 (9.5) 159.1 (9.5) 159.4 (9.5) 159.9 (9.3) 159.1 (9.6) 

IADL 1 (1.81) 1.00 (1.82) 0.81 (1.61) 0.70 (1.51) 0.88 (1.68) 

MMSE 26.46 (3.11) 26.46 (3.13) 26.77 (2.77) 27.00 (2.48) 26.53 (3.07) 

CES-D 13.96 (8.15) 14.00 (8.15) 13.39 (7.79) 13.42 (8.26) 13.61 (7.82) 

PA 3.01 (1.02) 3.01 (1.02) 3.07 (1.01) 3.21 (1.04) 3.03 (1.01) 

FALLN 0.58 (2.13) 0.59 (2.14) 0.53 (2.17) 0.38 (1.80) 0.56 (2.14) 

SPPB 8.81 (2.94) 8.82 (2.95) 9.09 (2.66) 9.61 (2.12) 8.96 (2.74) 

HAND (kg) 26.97 (9.09) 26.99 (9.10) 27.31 (9.15) 28.14 (9.08) 27.07 (9.03) 

PWR (W) 87.24 (53.68) 87.10 (53.65) 89.47 (54.14) 92.92 (51.55) 88.00 (53.64) 

TMTA 84.51 (56.51) 84.44 (56.72) 79.67 (49.96) 76.57 (49.81) 82.61 (54.42) 

Sample size Tot 

(Females) 

273 (148F) 271 (147F) 249 (129F) 202 (99F) 264 (142F) 

ACRONYMS: SD: standard deviation; F: females; QS: Quiet Standing; 7mW: 7meters Walking test; CST: Repeated 

Chair Standing test; TUG: Timed Up and Go test; ADL: Activities of Daily Living; IADL: Instrumental Activities of 

Daily Living; MMSE: Mini-Mental State Examination; CES-D: Epidemiologic Studies Depression Scale; FEAR: 

Survey of Activities and Fear of Falling in the Elderly; PA: Physical Activity; FALLN: declared number of falls; SPPB: 

Short Physical Performance Battery; HG. Hand-Grip strength test; PR. Power Rig; TMTA: Trail Making Test A 

 

The results of the EFA performed on each PP test of the battery are shown in Table 4.2. Each factor 

was labelled and mapped into a specific domain based on the sensor-based measures that contribute 

to it.  
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Table 4.2 Sensor-based measures contributing to each factor of the first version of the conceptual model, for each instrumented test 
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Original Features 

 

Quiet Standing 7-Meters Walk Repeated Chair Standing Timed Up and Go 

Q
S

1
 

RMS A ML 

Range A ML 

SP ML DISPL 

SA DISPL 

EA DISPL 

MV ML DISPL 7
M

W
1

 
Total duration 

Cadence 

RMS A AP 

RMS A V 

Range A AP 

Range A ML 

Range A V 

C
S

T
1

 

Sts A Range V 

Sts A RMS V 

Sts G Range ML 

Sts G RMS ML 

stS A Range V 

stS A RMS V 

stS G Range ML 

stS G RMS ML 

T
U

G
1

 

180T Duration 

TtS Duration 

MV 180T 

MV TtS 

Peak Angular Velocity 180T 

Peak Angular Velocity TtS 

NJS 180T 

NJS TtS 

Number of Steps 180T 

Q
S

2
 

RMS A AP 

Range A AP 

SP AP DISPL 

SP Planar DISPL 

MV AP DISPL 

7
M

W
2

 

Step Reg AP 

Step Reg V 

Stride Reg AP 

Stride Reg ML 

Stride Reg V 

C
S

T
2

 

stS JS AP 

stS JS ML 

stS JS V 

Total Duration 

Duration stS 

SD Duration stS 

T
U

G
2

 

Range Walk A AP 

Range Walk A ML 

Range Walk A V 

RMS Walk A AP 

RMS Walk A ML 

RMS Walk A V 

Q
S

3
 

F50 AP 

F95 AP 

CF AP 

NJS AP 

7
M

W
3

 NJS AP 

NJS V 

NJS ML C
S

T
3

 stS A Range AP 

stS A Range ML 

stS A RMS AP 

stS A RMS ML 

T
U

G
3

 StW Duration 

JS AP StW 

JS ML StW 

JS V StW 

Q
S

4
 

F50 ML 

F95 ML 

CF ML 

NJS ML 

7
M

W
4

 Step Reg ML 

RMS A ML 

C
S

T
4

 Sts JS AP 

Sts JS ML 

Sts JS V 

Duration Sts 
T

U
G

4
 TtS Duration 

JS AP TtS 

JS ML TtS 

JS V TtS 

Q
S

5
 

FD AP 

SE ML 

7
M

W
5

 SD Cadence 

PCI 

C
S

T
5

 Sts A Range ML 

Sts A RMS ML 

Sts G Range AP 

Sts G RMS AP 

T
U

G
5

 Range A ML StW 

RMS A ML StW 

RMS A ML TtS 

N
I 

FD ML 

SE AP  

 

C
S

T

6
 

Sts A Range AP 

Sts A RMS AP 

T
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G
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Range A AP StW 

RMS A AP StW 

Range A AP TtS 
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stS G RMS AP 

SD Duration Sts T
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Range A V TtS 

RMS A V TtS 
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U
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Total Duration 

Walk Duration 

Number of Steps 

 

 

 

 

 

 

N
I 

Range A V StW 

RMS A V StW 

Range A ML TtS 

180T Duration 

ACRONYMS: 180T: 180Turn; A: Accelerometer; AP: Antero-Posterior; CF: Centroidal Frequency; DISPL: displacement; EA: 

Ellipse Area;   FD: Frequency Dispersion;  F50: median frequency, F95: frequency bandwidth; G: Gyroscope;  JS: Jerk Score;  JS: 

Time-Normalized Jerk Score; M: Mean; ML: Medio-Lateral;  MV: Mean Velocity; NI: Not Included in the model; NJS: 

Normalized Jerk Score;  PCI: Phase Coordination Index; Reg: Regularity; RMS: Root Mean Square;  SA: Sway Area; SD: 

Standard Deviation; SE: Spectral Entropy; SP: Sway Path; StW: Sit to Walk; Sts: Sit to Stand; stS: Stand to Sit TtS: Turn to Sit; V: 

Vertical 
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4.2.1. QS FACTOR MODEL 

Twenty-four outliers were identified by the robust linear regression. The factor analysis grouped 21 

out of 23 sensor-based measures into 5 factors, accounting for 78% of the total variance (see Table 

4.3). The resulting independent domains were labelled as: “Effectiveness of the balance control”, 

“Dynamics of the postural sway in AP direction”, “Reactivity and smoothness of the AP balance 

control”, “Reactivity and smoothness of the ML balance control”, and “Complexity of the balance 

control”.  

Table 4.3 Factor loadings of the first version of the QS conceptual model 

Domain Effectiveness of 

the balance control 

Dynamics of the 

postural sway in 

AP direction 

Reactivity and 

smoothness of the 

AP balance control 

Reactivity and 

smoothness of the 

ML balance control 

Complexity of the 

balance control 

Factor QS1 QS2 QS3 QS4 QS5 

RMS A ML 0.74 0.19 -0.05 -0.37 0.15 

Range A ML 0.79 0.18 0.01 -0.27 0.05 

SP ML DISPL 0.93 0.21 0.08 -0.16 -0.23 

SA DISPL 0.72 0.48 -0.14 -0.16 0.24 

EA DISPL 0.60 0.43 -0.22 -0.26 0.39 

MV ML DISPL 0.92 0.19 0.05 -0.13 -0.24 

RMS A AP 0.32 0.59 -0.40 -0.12 0.41 

Range A AP 0.29 0.70 -0.28 -0.12 0.33 

SP AP DISPL 0.20 0.96 0.00 -0.03 -0.18 

SP Planar DISPL 0.42 0.88 0.02 -0.05 -0.21 

MV AP DISPL 0.16 0.93 -0.03 -0.03 -0.23 

F50 AP -0.04 0.09 0.76 0.12 -0.38 

F95 AP -0.03 -0.14 0.91 0.18 0.12 

CF AP -0.05 -0.06 0.98 0.14 -0.04 

NJS AP 0.09 -0.14 0.83 0.13 0.32 

F50 ML -0.17 -0.07 0.17 0.80 -0.20 

F95 ML -0.24 -0.07 0.12 0.88 0.14 

CF ML -0.22 -0.07 0.16 0.96 0.00 

NJS ML -0.26 -0.04 0.14 0.84 0.24 

FD AP 0.01 -0.27 0.28 0.07 0.51 

SE ML -0.15 0.06 -0.06 0.16 0.51 

FD ML -0.02 0.00 -0.19 -0.20 0.45 

SE AP 0.12 -0.14 0.22 0.08 0.49 

CV % 19 37 53 69 78 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CF: Centroidal Frequency; CV: Cumulative Variance; DISPL: 

displacement; EA: Ellipse Area;  FD: Frequency Dispersion;  F50: median frequency, F95: frequency bandwidth; G: Gyroscope;  JS: 

Jerk Score;  JS: Time-Normalized Jerk Score; M: Mean; ML: Medio-Lateral;  MV: Mean Velocity; NJS: Normalized Jerk Score;  

RMS: Root Mean Square;  SA: Sway Area; SD: Standard Deviation; SE: Spectral Entropy; SP: Sway Path; V: Vertical 
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4.2.2. 7MW FACTOR MODEL 

Eleven outliers were identified by the robust linear regression. The factor analysis grouped all 19 

sensor-based measures into 5 factors, accounting for 74% of the total variance (see Table 4.4). The 

resulting independent domains were labelled as: “Global performance”, “Gait regularity”, “Gait 

smoothness”, “ML weight shift control”, and “Gait variability”. 

Table 4.4 Factor loadings of the first version of the 7mWT conceptual model 

Domain Global performance Gait regularity Gait smoothness 
ML weight shift 

control 
Gait variability 

Factor 7MW1 7MW2 7MW3 7MW4 7MW5 

Total duration -0.64 -0.48 0.10 0.01 0.13 

Cadence -0.72 -0.21 0.65 -0.03 0.00 

RMS A AP 0.88 0.21 0.27 0.10 -0.14 

RMS A V 0.83 0.26 -0.01 0.07 -0.12 

Range A AP 0.88 0.01 0.20 0.04 -0.11 

Range A ML 0.60 -0.30 0.14 0.59 0.00 

Range A V 0.81 -0.02 0.01 0.07 -0.04 

Step Reg AP 0.13 0.69 0.20 0.01 -0.24 

Step Reg V 0.20 0.74 -0.07 -0.16 -0.17 

Stride Reg AP -0.01 0.83 0.10 0.09 -0.21 

Stride Reg ML -0.03 0.61 -0.09 0.41 -0.01 

Stride Reg V 0.19 0.85 -0.09 -0.08 -0.12 

NJS AP 0.35 0.19 0.79 0.02 -0.12 

NJS V 0.02 -0.03 0.69 -0.01 0.06 

NJS ML 0.05 -0.07 0.55 0.57 0.04 

Step Reg ML -0.07 0.39 -0.08 0.52 -0.02 

RMS A ML 0.60 -0.11 0.02 0.79 0.00 

SD Cadence -0.23 -0.36 0.09 -0.03 0.90 

PCI -0.09 -0.22 -0.05 0.03 0.85 

CV % 25 45 56 65 74 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance, G: Gyroscope; JS: Jerk Score; JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral; NJS: Normalized Jerk Score; PCI: Phase Coordination Index; Reg: Regularity; 

RMS: Root Mean Square; SD: Standard Deviation; V: Vertical 

 

4.2.3. CST FACTOR MODEL 

Twenty-six outliers were identified by the robust linear regression. The factor analysis grouped 28 

out of 31 sensor-based measures into 6 factors, accounting for 77% of the total variance (see Table 

4.5). The resulting independent domains were labelled as: “Range of motion”, “Stand-to-Sit 

Impairment”, “Effectiveness of the motor control during Stand-to-Sit”, “Sit-to-Stand Impairment”, 

“Lateral weight shift control during Sit-to-Stand”, and “Sit-to-Stand forward bending”.  
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Table 4.5 Factor loadings of the CST conceptual model 

Domains 
Range of 

motion 

Stand to Sit 

Impairment 

Effectiveness of 

the motor 

control Stand 

To Sit 

Sit to Stand 

Impairment 

lateral weight 

shift control Sit 

To Stand 

Sit to Stand 

forward 

bending 

Factors CST1 CST2 CST3 CST4 CST5 CST6 

Sts A Range V 0.85 0.17 0.08 0.29 0.20 -0.06 

Sts A RMS V 0.84 0.14 0.01 0.28 0.20 -0.15 

Sts G Range ML 0.86 0.09 0.03 -0.08 0.20 0.23 

Sts G RMS ML 0.91 0.04 0.01 -0.16 0.16 0.08 

stS A Range V 0.74 0.09 0.35 0.11 0.02 0.12 

stS A RMS V 0.84 0.16 0.15 0.18 0.06 -0.09 

stS G Range ML 0.70 -0.14 0.35 -0.03 -0.01 0.21 

stS G RMS ML 0.84 -0.19 0.22 -0.15 0.04 0.08 

stS JS AP 0.15 0.83 -0.02 0.18 0.00 -0.08 

stS JS ML 0.09 0.93 0.05 0.20 0.01 -0.16 

stS JS V 0.27 0.89 -0.10 0.17 -0.05 -0.11 

Total Duration 0.06 0.78 -0.22 0.46 -0.04 -0.24 

Duration stS 0.03 0.88 -0.28 0.28 -0.07 -0.17 

SD Duration stS -0.16 0.65 -0.02 -0.11 -0.04 0.00 

stS A Range AP 0.20 -0.31 0.53 -0.08 0.10 0.31 

stS A Range ML 0.07 0.00 0.94 0.06 0.15 0.13 

stS A RMS AP 0.26 -0.42 0.51 -0.12 0.07 0.37 

stS A RMS ML 0.06 -0.10 0.89 -0.02 0.32 0.02 

Sts JS AP 0.16 0.34 -0.06 0.83 0.14 0.17 

Sts JS ML 0.10 0.36 0.02 0.78 0.37 -0.25 

Sts JS V 0.40 0.40 -0.06 0.76 0.09 -0.20 

Duration Sts 0.10 0.52 -0.11 0.73 -0.02 -0.34 

Sts A Range ML 0.07 -0.01 0.29 0.06 0.88 0.15 

Sts A RMS ML 0.00 -0.05 0.30 0.00 0.88 0.05 

Sts G Range AP 0.30 0.00 0.11 0.09 0.70 0.11 

Sts G RMS AP 0.20 -0.06 0.16 0.05 0.68 0.12 

Sts A Range AP 0.07 -0.24 0.16 -0.13 0.22 0.90 

Sts A RMS AP 0.16 -0.27 0.17 -0.16 0.21 0.81 

stS G Range AP 0.27 0.00 0.48 0.01 0.16 0.02 

stS G RMS AP 0.17 -0.10 0.48 -0.05 0.25 0.01 

SD Duration Sts -0.26 -0.11 0.08 0.49 -0.12 -0.07 

CV % 20 38 49 60 70 77 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; JS: Jerk Score; JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral; NJS: Normalized Jerk Score;  RMS: Root Mean Square;  SD: Standard 

Deviation; Sts: Sit to Stand; stS: Stand to Sit; V: Vertical 

 

4.2.4. TUG FACTOR MODEL  

Twenty-one outliers were identified by the robust linear regression. The factor analysis grouped 34 

out of 38 sensor-based measures into 8 factors, accounting for 72% of the total variance (see Table 

4.6). The resulting independent domains were labelled as: “Turning Impairment”, “Walking 

Intensity”, “Sit-to-Walk Smoothness”, “Turn-to-Sit Smoothness”, “ML weight transfer ability”, “AP 

weight transfer Impairment”, “Weight lift difficulties”, and “Shakiness”.  
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Table 4.6 Factor loadings of the first version of the TUG conceptual model 

 
Turning 

Impairment 

Walking 

Intensity 

Sit to walk 

Smoothness 

Turn to sit 

Smoothness 

ML 

weight 

transfer 

ability 

AP 

weight 

transfer 

Impair

ment 

Weight lift 

difficulties 
Feebleness 

 TUG1 TUG2 TUG3 TUG4 TUG5 TUG6 TUG7 TUG8 

180T Duration 0.89 -0.22 0.00 0.04 -0.06 -0.05 0.01 0.13 

TtS Duration 0.63 -0.18 0.08 0.05 0.00 -0.03 -0.01 0.24 

MV 180T -0.81 0.38 -0.09 -0.10 -0.04 0.01 0.07 -0.14 

MV TtS -0.63 0.34 -0.07 -0.10 -0.06 0.01 0.09 -0.13 

Peak Angular Velocity 180T -0.58 0.47 -0.04 -0.06 0.02 0.04 0.08 -0.17 

Peak Angular Velocity TtS -0.59 0.35 -0.10 -0.11 -0.04 0.03 0.15 -0.16 

NJS 180T 0.91 0.07 -0.01 0.08 0.01 -0.04 0.01 -0.05 

NJS TtS 0.60 0.04 -0.01 0.08 0.07 -0.03 0.04 0.04 

Number of Steps 180T 0.78 -0.08 -0.11 -0.05 -0.07 -0.12 0.06 -0.07 

Range Walk A AP -0.17 0.64 -0.08 0.03 0.16 0.00 0.04 -0.13 

Range Walk A ML -0.06 0.76 0.00 0.00 0.07 0.01 0.09 -0.01 

Range Walk A V -0.21 0.83 -0.04 -0.04 0.00 0.12 0.04 -0.11 

RMS Walk A AP -0.28 0.67 -0.03 0.02 0.21 -0.02 0.07 -0.30 

RMS Walk A ML -0.07 0.82 0.00 0.00 0.06 0.03 0.12 -0.07 

RMS Walk A V -0.29 0.79 -0.08 -0.07 -0.01 0.04 0.05 -0.28 

StW Duration 0.12 -0.16 0.87 0.01 -0.11 0.11 -0.02 0.21 

JS AP StW -0.02 -0.04 0.92 -0.02 -0.01 0.33 0.00 0.01 

JS ML StW 0.05 0.00 0.89 0.01 0.36 0.04 -0.03 -0.01 

JS V StW -0.02 -0.01 0.94 -0.03 0.03 0.11 0.05 -0.04 

TtS Duration 0.38 -0.29 0.04 0.51 0.01 0.00 -0.23 0.38 

JS AP TtS 0.08 -0.01 -0.03 0.98 0.07 0.06 -0.01 0.02 

JS ML TtS 0.14 -0.04 0.02 0.89 0.16 0.04 -0.03 0.04 

JS V TtS 0.07 -0.01 -0.06 0.92 0.10 0.08 0.22 0.01 

Range A ML StW -0.01 0.12 0.11 0.05 0.96 -0.01 -0.01 -0.05 

RMS A ML StW 0.04 0.02 0.02 0.08 0.93 -0.04 -0.04 0.02 

RMS A ML TtS 0.18 0.02 0.08 0.06 0.55 -0.10 0.28 0.03 

Range A AP StW -0.14 0.00 0.27 -0.05 0.07 0.91 0.03 -0.03 

RMS A AP StW -0.12 -0.05 0.20 0.00 -0.04 0.93 0.04 -0.03 

Range A AP TtS -0.01 0.21 0.05 0.34 -0.07 0.50 0.30 0.00 

Range A V TtS -0.06 0.15 -0.03 0.15 0.14 0.13 0.91 -0.04 

RMS A V TtS -0.08 0.13 0.00 -0.11 0.16 0.18 0.86 0.03 

Total Duration 0.46 -0.41 0.18 0.17 -0.06 0.03 -0.05 0.74 

Walk Duration 0.57 -0.37 0.04 0.02 -0.08 -0.01 0.06 0.67 

Number of Steps 0.08 -0.28 0.03 0.02 0.01 -0.05 0.01 0.70 

Range A V StW -0.26 0.29 0.13 -0.03 0.32 0.04 0.09 -0.16 

RMS A V StW -0.25 0.18 -0.15 0.09 0.42 0.11 0.08 -0.03 

Range A ML TtS 0.12 0.10 0.06 0.19 0.45 -0.01 0.37 -0.02 

180T Duration 0.01 0.19 0.05 0.24 -0.07 0.49 0.32 0.02 

CV% 16 28 38 46 54 60 66 72 

ACRONYMS: 180T: 180 Turn; A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; JS: Jerk Score;  JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral;  NJS: Normalized Jerk Score;  RMS: Root Mean Square;  SD: Standard Deviation; StW: Sit 

to Walk; TtS: Turn to Sit; V: Vertical 
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4.2.5. CORRELATION ANALYSIS 

The correlations between the domains of the conceptual model and the residuals of the health-related 

measures are reported in Table 4.7. The correlations between the domains of the conceptual model 

are reported in Table 4.8. The correlations between health-related measures are reported in Table 4.9. 

The main result is that higher-functioning (SPPB and TMTA) older adults who were more active 

(PA) and stronger (HG, PWR) performed better on the battery of PP tests. 

  

Table 4.7 Correlation analysis between domains of the conceptual model and residuals of the health-related measures 
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Ineffectiveness of the Balance Control QS1 .18 .09 -.02 .20 -.25 -.11 .00 .14 .09 .19 

Dynamics of the Postural Sway in AP 

Direction 

QS2 .05 .04 .02 .09 -.09 .03 .02 .10 .03 .03 

Reactivity and Smoothness of the AP 

Balance Control 

QS3 -.07 -.08 .02 -.01 .06 -.01 .00 .13 .01 .01 

Reactivity and Smoothness of the ML 

Balance Control 

QS4 .03 -.06 -.12 -.02 -.07 -.03 -.01 .02 .02 .04 

Complexity of the Balance Control QS5 .01 -.07 .12 .16 .02 .04 -.04 -.08 .01 .01 

Global Performance 7MW1 -.28 -.09 .31 -.05 .53 .17 .27 -.21 -.79 -.62 

Gait Regularity 7MW2 -.15 -.12 .29 -.13 .29 .17 .13 -.06 -.45 -.36 

Gait Smoothness 7MW3 .03 .04 .01 .13 -.11 .04 .08 .06 .09 .12 

ML Weight Shift Control 7MW4 .14 -.05 .00 .04 -.08 -.17 .04 .04 .03 .04 

Gait Variability 7MW5 -.07 .04 -.13 .15 -.13 -.12 -.12 -.03 .04 .10 

Range of motion CST1 -.05 .00 .00 -.04 -.05 .03 .00 .06 -.12 -.13 

Stand to Sit Impairment CST2 .20 .00 -.10 .01 -.38 -.11 -.20 .11 .28 .35 

Effectiveness of the Motor Control Stand to 

Sit 

CST3 .11 -.01 -.17 .04 .03 .12 .14 .13 .06 -.01 

Sit to Stand Impairment CST4 .12 .04 -.09 .05 -.38 -.12 -.06 .14 .28 .29 

Lateral Weight Shift Control Sit to Stand CST5 -.01 -.15 .05 .01 .06 .16 .19 .07 -.07 -.12 

Sit to Stand Forward Bending CST6 .00 -.11 .15 -.09 .28 .21 .20 .07 -.24 -.28 

Turning Impairment TUG1 .18 .08 -.13 .08 -.41 -.14 -.15 .15 .45 .57 

Walking Intensity TUG2 .03 -.06 .18 -.01 .19 .08 .13 -.06 -.24 -.34 

Sit to Walk Smoothness TUG3 .09 .00 -.03 -.02 -.06 -.02 -.07 .05 .07 .10 

Turn to Sit Smoothness TUG4 .08 .02 -.05 .09 -.16 -.03 -.09 -.01 .09 .14 

ML Weight Transfer Ability TUG5 .04 -.07 .01 .01 -.02 -.09 .00 .00 -.05 -.07 

AP Weight Transfer Impairment TUG6 .06 .02 -.06 .03 -.19 -.12 -.14 .14 .06 .14 

Weight Lift Difficulties TUG7 -.02 .15 .12 .02 -.06 -.01 .00 -.02 .01 -.05 

Feebleness TUG8 .29 .09 -.18 .18 -.50 -.18 -.18 .10 .58 .68 

Correlation coefficients with a p-value < .05 are bolded 

ACRONYMS: ADL: Activities of Daily Living; AP: Anteroposterior; CESD: Epidemiologic Studies Depression Scale; FALLN: declared number 

of falls; FEAR: Survey of Activities and Fear of Falling in the Elderly; HAND. Hand-Grip strength test; IADL: Instrumental Activities of Daily 

Living; ML: Medio-Lateral; MMSE: Mini-Mental State Examination; PA: Physical Activity; PR. Power Rig; SPPB: Short Physical Performance 

Battery; TMTA: Trail Making Test A; V: Vertical. 
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Table 4.8 Correlation Analysis between domains of the first version of the conceptual model 
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QS1  .40 .07 .29 .46 -.06 -.08 .11 .17 .08 .07 .11 .09 .22 .12 -.10 .17 .02 -.01 .10 .12 .12 .04 .11 
QS2 .00  .02 .12 .49 -.07 -.09 .09 .13 .03 .01 .04 .07 .20 .03 -.08 .16 .02 .03 -.12 -.05 .02 .03 .01 

QS3 .24 .73  .05 -.02 .00 .19 .00 .00 -.04 .09 -.09 .02 .00 .00 .04 -.01 -.08 -.02 .03 -.03 .07 .03 -.09 

QS4 .00 .04 .43  .06 -.06 -.02 -.01 -.08 .03 .01 -.01 .10 -.12 .01 .02 .03 .02 .06 .01 .00 .00 -.11 .05 

QS5 .00 .00 .69 .33  -.10 .00 .17 .10 .04 .03 .14 .08 .13 -.02 .02 -.01 -.02 -.01 -.02 -.01 -.02 .13 .02 

7MW1 .32 .30 .96 .36 .13  .02 -.03 .12 .00 .18 -.25 .05 -.22 .09 .19 -.32 .49 -.07 -.07 .13 .02 .06 -.39 

7MW2 .22 .18 .00 .71 .99 .73  -.05 -.08 -.06 .09 -.13 -.13 -.02 -.13 .10 -.31 -.16 -.02 -.09 -.04 -.06 -.02 -.40 

7MW3 .09 .14 .94 .84 .01 .63 .43  .04 .17 .13 -.01 .13 .15 .20 -.09 .07 .08 .07 .09 -.02 .03 .06 .17 

7MW4 .01 .04 .99 .20 .12 .06 .18 .55  .00 .08 .09 -.02 .07 .05 .13 .06 .37 .06 .05 .13 .05 .06 .13 

7MW5 .22 .63 .49 .65 .57 1.0 .34 .01 1.0  -.14 .07 .08 .07 -.07 -.24 .22 -.02 -.01 -.09 .01 -.04 .07 .14 

CST1 .35 .87 .19 .84 .69 .01 .19 .07 .26 .05  -.09 .08 .05 .03 .01 -.20 .08 .02 .00 .06 .46 .26 -.13 

CST2 .14 .58 .21 .89 .05 .00 .06 .92 .21 .32 .22  .01 -.10 .08 .07 .19 -.13 .00 .08 .10 .11 -.07 .35 

CST3 .23 .33 .82 .16 .23 .49 .07 .06 .79 .25 .24 .88  .01 .19 -.03 .04 .13 .02 .04 .09 -.01 .17 .02 

CST4 .00 .00 .97 .09 .07 .00 .81 .03 .36 .34 .48 .14 .86  -.05 -.06 .14 -.16 .11 .11 -.03 .17 -.02 .15 

CST5 .09 .64 1.0 .87 .76 .22 .06 .01 .50 .30 .63 .25 .01 .45  .05 -.08 .26 .04 -.02 .12 .11 -.02 .08 
CST6 .15 .27 .57 .77 .73 .01 .18 .20 .06 .00 .86 .31 .69 .39 .45  -.25 .29 .02 .01 .12 -.15 -.02 -.08 

TUG1 .01 .01 .83 .63 .86 .00 .00 .30 .37 .00 .01 .01 .62 .06 .29 .00  .07 -.06 .03 .02 .12 -.06 .43 

TUG2 .72 .71 .21 .81 .81 .00 .01 .19 .00 .76 .27 .06 .06 .02 .00 .00 .25  .00 .02 .06 .01 .00 .13 

TUG3 .87 .63 .75 .31 .93 .26 .80 .25 .39 .93 .77 .99 .81 .11 .58 .78 .36 .98  -.01 -.10 -.21 .05 .02 

TUG4 .11 .06 .60 .88 .72 .27 .18 .16 .41 .18 .95 .26 .60 .13 .74 .84 .64 .74 .82  .00 .00 .01 .10 

TUG5 .06 .47 .66 .95 .83 .04 .58 .71 .04 .87 .44 .15 .20 .63 .10 .08 .75 .30 .12 .99  .10 -.03 .00 
TUG6 .05 .74 .23 .94 .69 .78 .34 .67 .46 .50 .00 .13 .83 .01 .12 .03 .04 .82 .00 .95 .10  -.09 .08 

TUG7 .53 .58 .64 .07 .04 .34 .74 .34 .38 .25 .00 .36 .02 .74 .82 .75 .35 .95 .40 .90 .59 .14  -.02 

TUG8 .08 .82 .15 .39 .72 .00 .00 .01 .04 .03 .07 .00 .83 .03 .25 .28 .00 .03 .72 .10 1.0 .22 .76  

p-values are reported under the main diagonal and correlation coefficients are reported above the main diagonal. Correlation coefficients with a p-value < .05 are 

bolded 

ACRONYMS: AP: Anteroposterior; ML: Medio-Lateral; V: Vertical 
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 Table 4.9 Correlation analysis between residuals of the health-related measures 
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ADL  0.30 0.05 0.20 -0.15 0.24 -0.09 -0.08 0.15 0.04 -0.27 0.14 0.14 

IADL 0.00  0.04 0.16 -0.31 0.08 -0.16 -0.10 0.22 0.03 -0.47 0.35 0.33 

CES-D 0.40 0.51  0.10 -0.13 0.26 -0.11 -0.14 0.15 0.14 -0.10 0.13 0.09 

FEAR 0.00 0.00 0.08  -0.23 0.18 -0.03 -0.08 0.12 0.03 -0.22 0.22 0.23 

PA 0.01 0.00 0.02 0.00  -0.08 0.21 0.16 -0.10 0.01 0.36 -0.35 -0.27 

FALLN 0.00 0.15 0.00 0.00 0.15  -0.16 -0.07 0.09 0.10 -0.26 0.21 0.20 

HG 0.11 0.01 0.07 0.60 0.00 0.01  0.33 -0.14 0.03 0.33 -0.27 -0.26 

PR 0.20 0.09 0.02 0.19 0.01 0.28 0.00  -0.06 0.06 0.35 -0.34 -0.36 

TMTA 0.01 0.00 0.01 0.04 0.10 0.12 0.02 0.33  0.62 -0.18 0.26 0.17 

TMTB 0.63 0.74 0.07 0.65 0.86 0.19 0.68 0.41 0.00  0.01 0.07 0.07 

SPPB 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.90  -0.66 -0.74 

7MW tot 

duration   

0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00  0.77 

TUG tot 

duration   

0.02 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.01 0.38 0.00 0.00  

p-values are reported under the main diagonal and correlation coefficients are reported above the main 

diagonal. Correlation coefficients with p-value < .05 are bolded 

ACRONYMS: ADL: Activities of Daily Living; IADL: Instrumental Activities of Daily Living; MMSE: Mini-

Mental State Examination; CESD: Epidemiologic Studies Depression Scale; FEAR: Survey of Activities and 

Fear of Falling in the elderly; PA: Physical Activity; FALLN: declared number of falls; HAND: Hand-Grip 

Strength Test; PWR: Power Rig; TMTA: Trail Making Test A, SPPB: Short Physical Performance Battery 

 

4.3. DISCUSSION 

The aim of this work was to define a sensor-based conceptual model for the assessment of the older 

adults’ physical capabilities. The EFA allowed reducing the dimension of each set of sensor-based 

measures computed from each PP test of the battery. One aspect to consider when performing EFA 

is the dimensionality of the starting dataset. It is common practice to have at least 5*N observations 

(i.e. participants), where N is the total number of measured variables (i.e. sensor-based measures). 

Our starting dataset includes 111 measures and this means that we needed more than 500 participants 

to perform one EFA after merging all the sensor-based measures. For this reason, one EFA for each 

PP test was performed. Since Varimax rotation was applied, the EFA model makes the assumption 

that the factors are independent. Hence, the factor scores of each functional test are expected to be 

uncorrelated. However, some correlations were observed between factors of the same functional test 

(see Table 4.7) because outliers were included in the factor analyses in this work. The correlation 
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analysis between domains and health-related measures was computed on the residuals obtained after 

removing the effect of age, gender, height, weight and MMSE from the health-related measures. 

Table 4.7 shows that we found several significant correlations between domains and conventional 

health-related measures. At the same time, small correlation coefficients (between ±0.1 and ±0.5) 

suggest that domains of the conceptual model and health-related measures carry partly related, but 

different, information and this leads us to hypothesize that the conceptual model enriches the outcome 

of conventional clinical tools for the evaluation of the physical capability. 

In general, measures of strength (HAND and PWR) were related to domains that reflect the ability to 

walk, stand/sit from a chair and turn, but were not related to the postural sway. The standard clinical 

outcome, like the 7MW and TUG total duration or the SPPB score, were associated with the older 

adults’ physical function and ability to execute the battery of PP tests.  

Four of the domains were not correlated with any health-related measures (Table 4.7): the “Dynamics 

of the postural sway in AP direction” of the QS factor model, the “Range of motion” of the CST 

factor model, the “Sit to walk smoothness”, and the “ML weight transfer impairment” of the TUG 

factor model. This could be due either to non-linear associations between domains and measures or 

to their association with other health-related measures that were not included in this study. For 

example, it has been proposed that  “ML weight transfer impairment” may be associated with the risk 

of falling [90,91]. A more detailed description of these results is reported below. 

4.3.1. CONVENTIONAL OUTCOME 

As previously described, the 7MW and TUG total durations serve as the conventional clinical 

outcome measures of an older adult’s PC. As expected, Table 4.8 shows that these two measures of 

time were significantly related to those domains that consist of measures of intensity (Range and 

RMS), velocity and duration of the movements (“Global performance”, 7MW1, “Gait regularity”, 

7MW2, “Stand-to-Sit impairment”, CST2, “Sit-to-Stand impairment”, CST4 and “Sit-to-Stand 

forward bending”, CST6, “Turning impairment”, TUG1, “Walking intensity”, TUG2 and 

“Shakiness”, TUG8). Furthermore, only the total TUG duration was related to those domains related 

to transfer and turning ability, which requires good cognitive capacities to plan and coordinate 

postural transitions before sitting or walking, and good balance and coordination (“Ineffectiveness of 

the balance control”, QS1, “Turn-to-Sit smoothness”, TUG4, and “AP weight transfer impairment”, 

TUG6). Indeed, Table 4.7 shows that these domains are related to each other and, in particular, the 

control of the static balance (“Ineffectiveness of the balance control”, QS1) is significantly related to 

the impairment to transfer the body weight and turn (“ML weight shift control”, 7MW4, “Sit-to-Stand 

impairment”, CST4, “Turning impairment”, TUG1, “AP weight transfer impairment”, TUG6). On 

the other hand, no correlations between the conventional outcomes and measures related to the 
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dynamic postural control (“ML weight shift control”, 7MW4 ,“Range of motion”, CST1, 

“Effectiveness of the motor control during the Stand-to-Sit”, CST3, “Lateral weight shift control 

during the Sit-to-Stand”, CST5, “Weight lift impairment”, TUG7), static postural control (almost all 

the factors of the QS factor model), smooth walking (“Gait smoothness”, 7MW3 and “Sit-to-Walk 

smoothness”, TUG3) and “Gait variability”, 7MW5 were found. These results confirm that the 

stopwatch-based total time to complete the PP tests, is a good indicator of the older adults’ health 

status since it is related to the older adults’ impairments, but it does not give information on which 

physical domain is impaired (i.e. balance, strength or coordination).  

4.3.2. IADL 

Older adults who had a higher number of instrumental activities in which they required help (IADL), 

were also less confident, strong and fit (“Ineffectiveness of the balance control”, QS1, “Global 

Performance”, 7MW1, “Gait regularity”, 7MW2, “Shakiness”, TUG8), they showed higher 

impairments to lift the body weight (“ML weight shift control” (7MW4), “Stand to Sit Impairment” 

(CST2)) and turn (“Turning Impairment” (TUG1)). In addition, Table 4.7 confirms that these domains 

are indicative of the older adults’ inabilities. Indeed, the higher the walking, turning and sitting ability 

(“Gait regularity” (7MW2), “Stand to Sit Impairment” (CST2), “Walking intensity” (TUG2), 

“Turning Impairment” (TUG1)), the lesser the “Shakiness” (TUG8) and the higher the “Global 

Performance” (7MW1). 

4.3.3. CES-D 

Table 4.8 shows that older adults who reported depressive symptoms (CES-D, cut-off: 16) had more 

difficulties during postural transitions (“Lateral weight shift control Sit to Stand” (CST5) and “Weight 

lift difficulties” (TUG7)). Table 4.7 shows that these two domains are not significantly correlated, 

thus, their contribution in lifting the body weight is independent. Postural transitions are commonly 

used as an index of the lower limbs muscle power. Older adults with depressive symptoms appear to 

be less confident and to have less dynamic postural control, which is reflected in a higher V 

acceleration while sitting and lower ML shift while standing. This result is in agreement with the 

study by Penninx et al. [90] in which depressive symptoms go together with developing a sedentary 

lifestyle and are associated with physical frailty. 

4.3.4. PA 

Table 4.8 shows that the older adults’ declared physical activity (PA) was significantly related to 

domains that consist of measures of fitness, like intensity (range and RMS), duration, coordination, 

regularity and postural control (“Reactivity and smoothness of the ML balance control” (QS4), 
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“Complexity of the balance control” (QS5), “Global Performance” (7MW1), “Gait Regularity” 

(7MW2), “Gait Variability” (7MW5), “Effectiveness of the motor control Stand to Sit” (CST3), “Sit 

to Stand forward bending” (CST6), “Turning Impairment” (TUG1), “Walking Intensity” (TUG2) and 

“Shakiness” (TUG8)). Furthermore, most of these domains are also significantly related to the total 

7MW and TUG durations (7MW1, 7MW2, CST6, TUG1, TUG2 and TUG8). These results confirm 

that measures including stopwatch timing, number of steps, gait regularity and coordination, and 

postural control, which are commonly used to assess older adults’ PC, are also strongly related to 

their declared level of PA.  

4.3.5. FALLN 

The number of falls experienced during the 12 months preceding the assessment (FALLN), resulted 

related to poor performances during postural sway and locomotion (“Ineffective of the balance 

control” (QS1), “Complexity of the balance control” (QS5), “Gait regularity” (7MW2), “Gait 

smoothness” (7MW3), “Gait variability” (7MW5), “Shakiness” (TUG8). No association between 

FALLN and measures of strength and ability to transfer and turning (all the CST domains and 

domains related to postural transitions and turns of the TUG) where found. These results suggest that 

fell more who had a poorer static balance control and a more impaired locomotion.  As shown in 

Table 4.7, the higher the “Shakiness” (TUG8), the poorer the walking ability (“Gait regularity” 

(7MW2), “Gait smoothness” (7MW3), “Gait variability” (7MW5). Furthermore, older adults with 

high “Gait smoothness” (7MW3) had also high “Complexity of the balance control” (QS5), high 

“Gait regularity” (7MW2) is related to high “Reactivity and smoothness of the AP balance control” 

(QS3), high “Ineffectiveness of the balance control” (QS1) and “Dynamics of the postural sway in 

AP direction” (QS2) are related to high “ML weight shift control” (7MW4) meaning that a good static 

postural control and walking ability participate together to the reduction of the falls number.  

4.3.6. HAND 

Older adults with more upper limbs strength (Hand-Grip strength test, HAND) showed better PC 

(“Global performance” (7MW1), “Gait regularity” (7MW2), “ML weight shift control” (7MW4), 

“Lateral weight shift control Sit-to-Stand” (CST5), “Sit-to-Stand forward bending” (CST6), “Turning 

Impairment” (TUG1) and “Shakiness” (TUG8)). Since the QS test aims to assess the abilities to 

maintain the static balance and it is not a direct indicator of the muscle strength, as expected, no 

associations between HAND and domains of the QS model were found. However, as reported in 

Table 4.7, some of the domains found significantly related to the and grip strength were also related 

to domains of the QS model (7MW2, 7MW4, TUG1), indicating that there is a secondary effect of 

the muscle strength in the ability to maintain the static balance. These results are consistent with the 
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findings of a previous study that highlights the association between grip-strength and future outcome 

in ageing adults [92]. 

4.3.7. PWR 

Older adults with high PWR score had high muscle strength in the lower limbs. Table 4.8 shows that 

higher PWR score was related to better performance during gait, postural transitions and turns 

(“Global performance” (7MW1), “Stand-to-Sit impairment” (CST2), “Effectiveness of the motor 

control during the Stand-to-Sit” (CST3), “Lateral weight shift control Sit-to-Stand” (CST5), “Sit-to-

Stand forward bending” (CST6), “Turning impairment” (TUG1), “Walking intensity” (TUG2), “AP 

weight transfer impairment” (TUG6), “Shakiness” (TUG8)), suggesting that the movements of the 

older adults with higher muscle power were more intense and faster, meaning that they were more fit 

and confident. As in the previous case, no direct association between measures of strength and QS 

domains were found. 

4.3.8. TMTA 

The Trail Making Test part A (TMTA) assesses psychomotor speed. The TMTA duration was related 

to domains that consist of sensor-based measures related to the older adults’ cognitive capacities and 

motor control, like postural sway, locomotion and turns (“Ineffectiveness of the balance control”, 

QS1, “Reactivity and smoothness of the AP balance control”, QS3, “Global performance”, 7MW1, 

“Turning impairment”, TUG1, “AP weight transfer impairment”, TUG6). The TMTA duration was 

not significantly associated with domains of the CST model, which are more indicative of strength, 

than cognition. These results are coherent with the literature: performance on the TMT is a strong, 

independent predictor of mobility impairment, accelerated decline in lower extremity function, and 

mortality in older community-living adults [77]. Attention and executive function are related to the 

cognitive control of gait, posture, and balance [93,94]. 

4.3.9. SPPB 

The Short Physical Performance Battery (SPPB) score is a summary score which measures the older 

adults’ PC. The higher the SPPB score, the better the adults’ performance in walking, CST and TUG 

test. Almost all the domains in the conceptual model are related to this score (“Ineffectiveness of the 

balance control”, QS1, “Global performance”, 7MW1, “Gait regularity”, 7MW2, “Gait variability”, 

7MW5, “Stand-to-Sit impairment”, CST2, “Sit-to-Stand impairment”, CST4, “Sit-to-Stand forward 

bending”, CST6, “Turning impairment”, TUG1, “Walking intensity”, TUG2, “Turn-to-Sit 

smoothness”, TUG4, “AP weight transfer impairment”, TUG6, “Shakiness”, TUG8). The domains 

related to the SPPB score are also related to the 7MW and TUG stopwatch duration. We can conclude 
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that SPPB is a good indicator of the older adults’ health status, but since it is a summary score, it is 

not possible to know whether the impairments affect only balance, strength, coordination or a 

combination of these physical domains. 

In conclusion, EFA allowed reducing the number of sensor-based measures and find domains with 

clear functional meaning. Correlation analysis suggested that domains underlying instrumented 

functional tests could provide quantitative information about several mobility skills, enriching the 

conventional clinical outcomes. Many significant associations between the domains of the conceptual 

model and the overall performance (measured by the total 7MW and TUG time) were found. These 

measures of time could influence the sensor-based measures, affecting the results. To overcome this 

limitation, the effect of the overall performance was removed from the sensor-based measures, in 

addition to the other confounders. Robust linear regression was hence used to remove the effects of 

age, gender, height, weight, cognitive status (indexed by the MMSE) and overall physical 

performance on PC. For each PP test, the total duration was used as a measure of overall performance 

(e.g. the residuals of the sensor-based TUG measures were computed removing the effect of age, 

gender, height, weight, MMSE and total TUG duration). Since the outcome of the QS test is 

dichotomous (i.e. the participant was able/not able to perform the test), we could not remove the 

overall performance from the sensor-based measures computed from this test. The subsequent 

statistical analyses were already described in section 4.1. 

4.4. INFLUENCE OF THE OVERALL PERFORMANCE: RESULTS 

4.4.1. QS FACTOR MODEL 

Since it is not possible to remove the overall performance of this test from the QS sensor-based 

measures, the QS factor model is the same as the model presented in section 4.2.1. 
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4.4.2. 7MW FACTOR MODEL 

Eight outliers were identified by the robust linear regression. The factor analysis grouped all 18 

sensor-based measures into 5 factors, accounting for 70% of total variance (see Table 4.10). The 

resulting independent domains were labelled as: “Global performance”, “Gait regularity”, “Gait 

smoothness”, “ML weight shift control”, and “Gait variability”. 

Table 4.10 Factor loadings of the second version of the 7mWT conceptual model 

 Global performance Gait regularity Gait smoothness 
ML weight shift 

control 
Gait variability 

 7MW1 7MW2 7MW3 7MW4 7MW5 

Range A AP 0.85 -0.14 0.19 0.10 -0.05 

RMS A AP 0.85 0.06 0.35 0.16 -0.10 

RMS A V 0.78 0.12 -0.08 0.08 -0.05 

Range A V 0.71 -0.18 -0.08 0.12 0.05 

Stride Reg V 0.01 0.79 -0.06 -0.27 -0.06 

Stride Reg AP -0.10 0.77 0.18 -0.04 -0.23 

Stride Reg ML -0.01 0.71 -0.11 0.27 0.00 

Step Reg V -0.01 0.62 -0.01 -0.31 -0.15 

Step Reg AP -0.07 0.54 0.34 -0.05 -0.27 

Step Reg ML -0.05 0.52 -0.11 0.41 -0.01 

NJS AP 0.28 0.06 0.89 0.07 -0.10 

Cadence -0.49 -0.04 0.77 -0.01 -0.07 

NJS V 0.13 0.00 0.57 0.00 0.07 

RMS A ML 0.51 -0.04 -0.06 0.85 0.04 

NJS ML 0.00 -0.02 0.53 0.63 0.03 

Range A ML 0.50 -0.28 0.06 0.69 0.03 

SD Cadence -0.09 -0.24 0.05 0.02 0.96 

PCI -0.02 -0.14 -0.06 0.04 0.85 

CV % 19 35 48 60 70 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance, G: Gyroscope; JS: Jerk Score; JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral; NJS: Normalized Jerk Score; PCI: Phase Coordination Index; Reg: Regularity; 

RMS: Root Mean Square;  SD: Standard Deviation; V: Vertical 
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4.4.3. CST FACTOR MODEL 

Thirty-three outliers were identified by the robust linear regression. The factor analysis grouped 26 

out of 30 sensor-based measures into 6 factors, accounting for 70% of total variance (see Table 4.11). 

The resulting independent domains were labelled as: “Range of motion”, “Lateral weight shift 

control”, “Stand-to-Sit impairment”, “Stand-to-Sit forward bending”, “Sit-to-Stand impairment”, and 

“Sit-to-Stand forward bending”.  

Table 4.11 Factor loadings of the second version of the CST conceptual model 

 Range of motion 
Lateral Weight 

Shift Control 
Stand-to-Sit 

impairment 
Stand-to-Sit 

Forward Bending 
Sit-to-Stand 

impairment 
Sit-to-Stand 

forward bending 

       

 CST1 CST2 CST3 CST4 CST5 CST6 

Sts G RMS ML 0.89 0.13 0.12 0.03 -0.03 0.10 

Sts A Range V 0.88 0.24 -0.05 0.07 0.19 0.03 

Sts A RMS V 0.88 0.23 -0.10 -0.01 0.21 -0.05 

stS A RMS V 0.87 0.13 -0.04 0.13 0.10 -0.03 

stS G RMS ML 0.85 0.05 -0.01 0.19 0.01 0.02 

Sts G Range ML 0.82 0.16 0.13 0.06 0.00 0.27 

stS A Range V 0.74 0.09 0.07 0.38 0.07 0.10 

stS G Range ML 0.67 0.03 0.01 0.41 0.07 0.15 

Sts A RMS ML -0.02 0.91 -0.01 0.08 0.05 0.10 

Sts A Range ML 0.05 0.91 0.05 0.11 0.13 0.19 

Sts G Range AP 0.30 0.68 0.02 -0.02 0.11 0.17 

Sts G RMS AP 0.21 0.67 0.01 -0.03 0.08 0.16 

stS A RMS ML 0.12 0.57 0.03 0.35 0.02 -0.05 

stS JS V 0.34 -0.02 0.83 0.14 -0.06 0.03 

stS JS ML 0.05 0.20 0.74 0.08 -0.05 -0.04 

stS JS AP 0.07 0.06 0.73 0.53 0.01 -0.01 

Duration stS -0.11 -0.15 0.68 -0.25 -0.24 0.12 

SD Duration stS -0.21 -0.01 0.55 0.01 -0.20 0.03 

stS A Range AP 0.21 0.16 0.10 0.90 0.10 0.14 

stS A RMS AP 0.35 0.13 -0.02 0.82 0.01 0.26 

Sts JS V 0.54 0.17 -0.16 0.05 0.74 -0.06 

Sts JS AP 0.14 0.14 -0.06 0.07 0.79 0.42 

Sts JS ML 0.08 0.59 -0.18 0.06 0.69 -0.12 

Duration Sts 0.10 0.05 -0.37 0.03 0.72 -0.31 

Sts A Range AP 0.08 0.17 0.09 0.12 0.02 0.92 

Sts A RMS AP 0.19 0.15 0.00 0.12 -0.09 0.88 

stS A Range ML 0.13 0.38 0.10 0.48 0.10 0.04 

stS G Range AP 0.26 0.29 0.07 0.28 0.00 -0.06 

SD Duration Sts -0.17 -0.11 -0.26 0.27 0.31 -0.07 

stS G RMS AP 0.16 0.38 0.04 0.24 -0.02 -0.08 

CV % 22 35 45 54 63 70 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; JS: Jerk Score; JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral;  NJS: Normalized Jerk Score;  RMS: Root Mean Square;  SD: Standard 

Deviation; Sts: Sit to Stand; stS: Stand to Sit; V: Vertical 
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4.4.4. TUG FACTOR MODEL  

Fifty outliers were identified by the robust linear regression. The factor analysis grouped 30 out of 37 

sensor-based measures into 8 factors, accounting for 68% of the total variance (see Table 4.12). The 

resulting independent domains were labelled as: “Walking intensity”, “Sit-to-Walk smoothness”, 

“Turn-to-Sit smoothness”, “180 Turn impairment”, “Turn-to-Sit ability”, “ML weight transfer 

ability”, “AP weight transfer ability”, and “Weight lift difficulties”.  
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Table 4.12 actor loadings of the second version of the TUG conceptual model 

 

Walki

ng 

Intensi

ty 

Sit-to-

Walk 

Smoothnes

s 

Turn-to-Sit 

Smoothnes

s 

180Turn 

impairment 
Turn-to-Sit 

ability 

ML weight 

transfer 

ability 

AP weight 

transfer 

ability 

Weight lift 

difficulties 

 TUG1 TUG2 TUG3 TUG4 TUG5 TUG6 TUG7 TUG8 

Range Walk A V 0.83 -0.01 0.00 -0.03 0.04 0.00 0.12 0.02 

RMS Walk A V 0.83 -0.03 -0.02 0.02 0.12 -0.03 0.05 0.01 

RMS Walk A ML 0.78 0.02 0.03 0.08 0.05 0.06 0.02 0.11 

Range Walk A ML 0.70 0.02 0.01 0.04 -0.03 0.06 -0.01 0.09 

RMS Walk A AP 0.68 0.04 0.09 -0.06 0.03 0.21 -0.03 0.05 

Range Walk A AP 0.62 -0.05 0.06 -0.09 -0.08 0.15 -0.02 0.05 

Peak Angular Velocity 180T 0.50 0.01 -0.05 -0.27 0.33 0.01 0.06 0.07 

JS V StW 0.03 0.93 -0.05 -0.06 -0.04 0.05 0.10 0.04 

JS AP StW 0.02 0.91 -0.05 -0.10 -0.02 -0.01 0.34 0.01 

StW Duration -0.07 0.89 -0.05 -0.10 -0.03 -0.10 0.11 0.01 

JS ML StW 0.04 0.88 -0.02 -0.01 -0.02 0.37 0.03 -0.02 

JS AP TtS 0.03 -0.03 0.98 -0.01 0.02 0.07 0.06 0.04 

JS V TtS 0.05 -0.07 0.90 0.02 0.06 0.11 0.08 0.24 

JS ML TtS 0.02 0.01 0.89 -0.03 -0.09 0.16 0.04 0.02 

TtS Duration 0.00 -0.10 0.56 0.00 -0.24 0.08 -0.04 -0.26 

NJS 180T 0.13 -0.02 0.10 0.87 -0.24 0.01 -0.03 -0.02 

MV 180T 0.39 -0.07 -0.10 -0.62 0.42 -0.09 0.00 0.07 

180T Duration -0.05 -0.09 -0.03 0.86 -0.21 -0.04 -0.05 -0.01 

Number of Steps 180T -0.02 -0.13 -0.08 0.76 -0.14 -0.05 -0.11 0.03 

MV TtS 0.23 -0.03 -0.07 -0.13 0.93 -0.07 0.01 0.03 

TtS Duration 0.06 0.04 -0.03 0.19 -0.68 0.04 -0.05 0.01 

Peak Angular Velocity TtS 0.26 -0.05 -0.08 -0.14 0.80 -0.05 0.03 0.11 

NJS TtS 0.20 -0.03 0.05 0.25 -0.67 0.07 -0.04 0.08 

Range A ML StW 0.10 0.11 0.06 0.04 -0.01 0.98 -0.02 0.00 

RMS A ML StW 0.01 0.01 0.08 0.01 -0.06 0.92 -0.07 0.01 

RMS A ML TtS 0.01 0.09 0.05 0.03 -0.16 0.55 -0.11 0.32 

Range A AP StW 0.01 0.25 -0.05 -0.11 0.04 0.07 0.93 0.01 

RMS A AP StW -0.04 0.19 0.00 -0.12 -0.01 -0.05 0.93 0.06 

Range A V TtS 0.18 -0.03 0.11 0.01 0.07 0.15 0.14 0.87 

RMS A V TtS 0.12 0.00 -0.14 -0.02 0.03 0.16 0.16 0.89 

Range A AP TtS 0.17 0.08 0.35 0.03 0.10 -0.06 0.49 0.33 

Range A ML TtS 0.10 0.06 0.19 0.02 -0.16 0.43 -0.02 0.40 

RMS A AP TtS 0.15 0.08 0.24 0.04 0.08 -0.06 0.48 0.34 

Walk Duration -0.10 -0.27 -0.31 0.48 0.04 -0.06 -0.07 0.24 

Number of Steps 0.06 -0.18 -0.18 -0.28 0.21 0.08 -0.14 0.10 

RMS A V StW 0.14 -0.15 0.13 -0.14 0.03 0.42 0.11 0.07 

Range A V StW 0.26 0.14 0.03 -0.07 0.01 0.36 0.04 0.04 

CV% 11 21 30 38 47 55 61 68 

ACRONYMS: 180T: 180 Turn; A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; JS: Jerk Score;  

JS: Time-Normalized Jerk Score; M: Mean; ML: Medio-Lateral;  NJS: Normalized Jerk Score;  RMS: Root Mean Square;  SD: 

Standard Deviation; StW: Sit to Walk; TtS: Turn to Sit; V: Vertical 
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4.4.5. CORRELATION ANALYSIS 

Pearson’s correlation analysis between domains and between domains and health-related measures 

are reported in Tables 4.13 and 4.14 respectively. Spearman correlation analysis between health-

related measures is reported in Table 4.15. 

Table 4.13 Correlation analysis between domains of the second version of the conceptual model and health-related measures 
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Ineffectiveness of the Balance Control QS1 .15 .08 -.02 .20 -.07 -.01 .10 -.15 .01 .09 

Dynamics of the Postural Sway in AP Direction QS2 .04 .00 .01 .09 .01 .01 .04 -.05 -.02 .00 

Reactivity and Smoothness of the AP Balance Control QS3 -.01 -.07 .01 -.01 -.02 .02 .16 .05 .01 .00 

Reactivity and Smoothness of the ML Balance Control QS4 .04 -.04 -.11 -.02 -.03 -.03 .04 -.06 .04 .05 

Complexity of the Balance Control QS5 .04 -.08 .08 .16 .02 -.06 -.06 .02 .00 .01 

Global Performance 7MW1 -.02 -.12 .12 .04 .09 .12 -.11 .20 -.37 -.26 

Gait Regularity 7MW2 .01 -.13 .12 -.02 .02 .04 -.01 .00 -.09 -.04 

Gait Smoothness 7MW3 .00 .05 .04 .10 .07 .02 .08 -.02 .01 .00 

ML Weight Shift Control 7MW4 .09 -.01 .03 .04 -.10 .05 .02 -.01 -.05 -.04 

Gait Variability 7MW5 -.13 .02 -.04 .12 -.04 -.06 .00 -.01 -.02 .00 

Range of motion CST1 -.04 -.01 -.01 -.07 .06 .02 .00 .01 -.13 -.14 

Lateral Weight Shift Control  CST2 .00 -.12 -.03 .04 .03 .07 .06 -.03 .01 -.04 

Stand-to-Sit impairment CST3 .01 .00 .00 .01 .03 -.01 .04 -.01 .02 .03 

Stand-to-Sit Forward Bending CST4 .07 .07 -.08 .13 -.03 .03 .08 .01 .08 .01 

Sit-to-Stand impairment CST5 -.02 .05 .00 .01 .00 .02 .10 -.13 .10 .10 

Sit-to-Stand forward bending CST6 .02 -.15 .11 -.07 .07 .09 .03 .17 -.16 -.19 

Walking Intensity TUG1 .02 -.06 .14 -.05 .09 .11 -.05 .19 -.26 -.34 

Sit-to-Walk Smoothness TUG2 .01 .00 .01 -.04 .01 -.02 .01 -.01 .01 .02 

Turn-to-Sit Smoothness TUG3 .03 -.01 -.03 .06 -.01 -.02 .00 -.10 .02 .07 

180Turn impairment TUG4 -.02 .03 .07 -.02 .01 .09 .05 .01 -.01 .01 

Turn-to-Sit ability TUG5 .00 -.11 -.03 .10 .03 .04 -.09 .09 -.08 -.16 

ML weight transfer ability TUG6 .10 -.04 .01 .02 -.07 .00 .04 -.03 .00 -.03 

AP weight transfer ability TUG7 .06 .04 -.04 .00 -.06 -.06 .05 -.15 -.01 .06 

Weight lift difficulties TUG8 .02 .15 .04 .04 -.06 -.09 .00 -.08 .04 -.01 

Correlation coefficients with a p-value < .05 are bolded 

ACRONYMS: AP: Anteroposterior; CESD: Epidemiologic Studies Depression Scale; FALLN: declared number of falls; HAND. Hand-Grip strength 

test; IADL: Instrumental Activities of Daily Living; ML: Medio-Lateral; MMSE: Mini-Mental State Examination; PA: Physical Activity; PR. Power 

Rig; SPPB: Short Physical Performance Battery; TMTA: Trail Making Test A. 
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Table 4.14 Correlation Analysis between domains of the second version of the conceptual model 
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QS1   .00 .24 .00 .00 .82 .93 .34 .01 .21 .64 .02 .07 .00 .37 .63 .52 .53 .00 .87 .77 .51 .45 .00 

QS2 .40   .73 .04 .00 .34 .43 .40 .03 .58 .90 .33 .19 .03 .10 .50 .04 .22 .03 .57 .07 .48 .50 .11 

QS3 .07 .02   .43 .69 .19 .08 .65 .89 .67 .18 .90 .80 .40 .57 .66 .71 .92 .17 .40 .44 .27 .54 .13 

QS4 .29 .12 .05   .33 .58 .78 .97 .18 .70 .68 .61 .66 .36 .11 .83 .51 .70 .07 .89 .52 .62 .74 .02 

QS5 .46 .49 -.02 .06   .51 .32 .05 .20 .59 .83 .66 .38 .05 .93 .25 .83 .84 .13 .78 .68 .91 .92 .13 

7MW1 -.01 -.05 -.10 -.04 -.06   .86 .81 .04 .06 .05 .58 .67 .29 .16 .41 .95 .88 .11 .45 .98 .37 .57 .92 

7MW2 -.03 -.07 .13 .00 .04 -.28   .81 .59 .54 .70 .02 .76 .24 .70 .55 .44 .77 .28 .92 .79 .89 .59 .71 
7MW3 .10 .09 .02 -.02 .16 .05 .01   .61 .00 .03 .01 .18 .27 .32 .89 .56 .66 .33 .98 .85 .86 .93 .36 

7MW4 .16 .13 .01 -.08 .09 .13 -.11 .04   .82 .33 .31 .20 .47 .37 .06 .81 .64 .28 .55 .89 .46 .92 .51 

7MW5 .08 .03 -.05 .03 .04 .16 .06 .14 -.02   .06 .92 .95 .42 .33 .00 .58 .03 .30 .11 .00 .04 .52 .06 
CST1 .06 .01 .10 .02 .02 .14 .04 .14 .09 -.15   .17 .82 .83 .84 .66 .91 .50 .90 .01 .55 .10 .05 .60 

CST2 -.08 -.10 -.05 .05 .01 -.12 -.14 -.07 .08 .00 -.13   .13 .09 .01 .04 .34 .54 .14 .02 .42 .00 .25 .24 

CST3 .12 .09 .01 .09 .11 .06 -.13 .14 -.02 .10 .09 .15   .01 .30 .79 .00 .35 .00 .59 .06 .60 .85 .01 

CST4 .14 .15 .03 -.10 .06 -.16 .00 .14 .05 .03 .05 -.51 .08   .98 .64 .06 .24 .00 .00 .41 .43 .06 .00 

CST5 .15 .05 -.01 .01 .00 .09 -.14 .20 .05 -.06 .03 .10 .19 -.06   .16 .16 .40 .97 .60 .44 .67 .62 .31 
CST6 -.07 -.06 .03 .01 .05 .11 .04 -.07 .15 -.23 .02 .24 -.05 .00 .05   .03 .16 .84 .14 .05 .70 .26 .52 

TUG1 -.04 .13 -.02 .04 -.01 .00 .05 -.04 -.02 .04 -.01 -.07 -.20 .13 .10 -.16   .10 .71 .07 .08 .29 .09 .23 

TUG2 .04 .08 -.01 .02 -.01 -.01 -.02 -.03 .03 -.14 -.05 .04 -.07 .08 .06 .10 -.10   .00 .00 .00 .00 .00 .00 

TUG3 .26 .13 -.09 .11 .09 -.10 -.07 .06 .07 -.07 .01 .10 -.24 .25 .00 .01 -.02 .19   .02 .00 .01 .01 .00 

TUG4 .01 .04 -.05 -.01 .02 .05 -.01 .00 .04 -.10 .18 .17 -.04 .32 -.04 .11 -.11 .93 .15   .00 .00 .00 .00 

TUG5 .02 .11 .05 .04 -.03 .00 .02 .01 .01 .28 -.04 -.06 .13 -.06 .06 -.14 .11 -.55 -.19 -.54   .00 .00 .00 

TUG6 -.04 .04 -.07 -.03 -.01 .06 -.01 .01 .05 .13 -.12 .36 -.04 -.06 -.03 .03 .07 -.65 -.16 -.65 .40   .00 .00 

TUG7 -.05 -.04 .04 .02 -.01 .04 .03 -.01 .01 .04 .14 -.08 -.01 -.13 -.04 .08 .11 -.89 -.15 -.94 .51 .63   .00 

TUG8 .25 .10 -.09 .14 .10 .01 -.02 -.06 .04 -.12 -.04 .08 -.19 .24 -.07 .05 -.08 .40 .78 .38 -.29 -.31 -.36   

p-values are reported above the main diagonal and correlation coefficients are reported under the main diagonal. Correlation coefficients with a p-value < .05 are 

bolded 

ACRONYMS: : AP: Anteroposterior; ML: Medio-Laterall 
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Table 4.15 Correlation analysis between health-related measures 
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IADL  .00 .00 .00 .00 .00 .00 .00 .00 .00 

CES-D .32  .00 .00 .00 .00 .00 .00 .00 .00 

PA -.73 -.36  .00 .00 .00 .00 .00 .00 .00 

FALLN .14 .26 -.14  .00 .00 .00 .00 .00 .00 

HG -.51 -.47 .55 -.26  .00 .00 .00 .00 .00 

PR -.45 -.40 .45 -.18 .76  .00 .00 .00 .00 

TMTA .51 .37 -.36 .21 -.40 -.38  .00 .00 .00 

SPPB -.68 -.36 .65 -.34 .61 .58 -.50  .00 .00 

7MW tot duration   .52 .28 -.48 .25 -.49 -.53 .48 -.81  .00 

TUG tot duration   .57 .34 -.57 .25 -.54 -.59 .56 -.79 .85  

p-values are reported above the main diagonal and correlation coefficients are reported under the main diagonal. Correlation coefficients with a p-

value < .05 are shaded and bolded 

ACRONYMS: IADL: Instrumental Activities of Daily Living; MMSE: Mini-Mental State Examination; CESD: Epidemiologic Studies Depression 

Scale; PA: Physical Activity; FALLN: declared number of falls; Battery; HAND: Hand-Grip strength test; PWR: Power Rig; TMTA: Trail Making 

Test A, SPPB: Short Physical Performance 

 

4.5. DISCUSSION 

One EFA was performed on the residuals of the 7MW, CST and TUG tests obtained after removing 

the effect of age, gender, height, weight, MMSE and total duration of each test. Slight differences 

were found between the conceptual models obtained both removing or not the effect of overall 

performance. In general, the order of the domains changed and some domains were split or mixed. 

For example, in the CST model the domain “Sit-to-stand impairment” was the fourth domain in the 

conceptual model developed without adjusting for the overall performance and the fifth domain in 

the latest version of the conceptual model. The name of the domain labelled as “Effectiveness of the 

motor control during Stand-to-Sit” (CST3), was changed in “Stand-to-Sit forward bending” because 

only the AP range and RMS contributed to it in the latest version of the model. The domain labelled 

“Turning impairment” (TUG1) was split into two domains “180 Turn impairment” (TUG4) and 

“Turn-to-Sit ability” (TUG5) after adjusting for the overall performance. As described in Chapter 2, 

the total duration of the PP test is strongly correlated with most of all the other sensor-based measures. 

Since sensor-based measures in the EFA are grouped based on the correlation among them, we 

expected some differences in the first and second version of the conceptual model after removing the 

overall performance. However, we have not found big differences between the two versions and this 

confirms the validity of the conceptual model. Correlation analyses showed fewer significant 

correlations between domains and health-related measures. One aspect to consider is that in the latest 
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version of the conceptual model the effect of confounders was not removed from the health-related 

measures. Some associations remained significant in the two versions of the conceptual model, as the 

correlations between conventional measures of performance (SPPB score, total 7MW and TUG 

stopwatch-based time) and the “Global performance” (7MW1), “Sit-to-Stand forward bending” 

(CST6) and “Walking intensity” (TUG1). These findings confirm the coherence of the conceptual 

model. More detailed description of the results follows. 

4.5.1. CONVENTIONAL OUTCOME 

Compared to the first version of the conceptual model, the domains related to the older adults’ fitness 

and ability to walk (“Global performance”, 7MW1, “Sit-to-Stand forward bending”, CST6, “Walking 

intensity”, TUG1) were still significantly associated with both the stopwatch-based total 7MW and 

TUG durations. The total TUG duration was also associated with domains that require good cognitive 

capacities along with lower limbs muscle strength (“Range of motion”, CST1 and “Turn-to-Sit 

ability”, TUG5). 

4.5.2. IADL 

The number of instrumental activities in which the older adults required help (IADL) was 

significantly associated with the “Ineffectiveness of the balance control” (QS1) and the “Gait 

variability” (7MW5). 

4.5.3. CES-D 

Participants with depressive symptoms (CES-D score > 16) showed lower “Gait regularity” (7MW2), 

lower “Sit-to-Stand forward bending” (CST6) and higher “Weight lift impairments” (TUG8). These 

results confirm the findings of the first version of the model, in which older adults with higher CES-

D score appeared to be less confident and strong.  

4.5.4. PA 

Compared to the first version of the conceptual model, only the “Gait regularity” (7MW2) and the 

“Walking intensity” (TUG1) were significantly associated with the declared PA. This result suggests 

that after deducting age, gender, body composition, cognition and overall performance, the 

locomotion is the only physical domain related to the daily living physical activity. 

4.5.5. FALLN 

The reported number of falls in the year preceding the assessment was related to the “Ineffectiveness 

of the balance control” (QS1) and to the “Complexity of the balance control” (QS5). This result 

confirms that a poor postural sway control is related to a higher fall risk.   
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4.5.6. HAND AND PWR 

No associations between measures of strength (HAND and PWR) and domains of the conceptual 

model were found. Then, the high number of associations found significant in the first version of the 

model was probably due to the overall performance. 

4.5.7. TMTA 

The TMTA is a measure of time, after removing the effect of the overall performance from the 

sensor-based measures only the association with the “Reactivity and smoothness of the balance 

control” (QS3) was significant.  

4.5.8. SPPB 

Despite the deduction of the overall performance, a number of domains were significantly related to 

the SPPB score. In particular, those domains, also related to the 7MW and TUG duration, that involve 

strength, balance and locomotion (“Ineffectiveness of the balance control”, QS1, “Global 

performance”, 7MW1, “Sit-to-Stand forward bending”, CST6, “Walking intensity”, TUG1, “AP 

weight transfer ability”, TUG7). 

In conclusion, these results confirmed the validity and the coherence of the domains constituting the 

conceptual model. However, the residuals computed by the robust linear regression analysis, use to 

obtain factor scores, are unitless and difficult to interpret. This increased the complexity of the model, 

making difficult its understanding and use. Sometimes it was not easy to understand if a higher score 

corresponded to a better or worse functioning. Furthermore, it was not clear whether, the residuals 

obtained after removing the effect of age, gender, height, weight, MMSE and overall performance 

brought useful information or only noise. All these considerations led to the development of the third 

version of the conceptual model, which was developed starting from the sensor-based measures 

instead of the residuals. First, one EFA was hence performed on each set of sensor-based measures 

from each PP test. Second, the coherence between the various domains that make up the model has 

been examined both adjusting and not adjusting for age, gender, height, weight, MMSE and Number 

of Medications (NM). Then, the concurrent validity between the domains of the model and a set of 

health-related measures was investigated. Finally, we show how the model could be used to illustrate 

relevant case studies. 
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4.6. REFINEMENT OF THE CONCEPTUAL MODEL: FINAL VERSION 

4.6.1. POPULATION AND METHODS 

The subsample of the InCHIANTI cohort study (ClinicalTrials.gov NCT01331512) [2] included  304 

community-dwelling older adults (163 females, 80.9 ± 6.4 years old, range 65-98) assessed within 

the framework of the EU FARSEEING project [71]. Ethical approval was obtained by the Local 

Ethical Committee (approval number: 584/2012). 

Not all the participants were able to complete the whole battery of tests: Table 4.16 reports the 

demographic and functional profiles of each subgroup undertaking the tests.  

 

Table 4.16 Demographic and functional profiles of each subgroup undertaking the four functional tests 

 
Total 

Population 
QS 7MW CST TUG 

Sample size 304 204 210 173 204 

Gender (females) 163 (54%) 97 (48%) 95 (47%) 80 (46%) 97 (48%) 

Age, years 80.90 (6.37) 79.46 (6.43) 79.39 (6.44) 79.35 (6.25) 79.47 (6.44) 

Weight, kg 69.60 (13.30) 70.52 (13.13) 70.35 (13.18) 70.90 (13) 70.54 (13.21) 

Height, cm 159.72 (9.53) 160.51 (9.21) 160.50 (9.20) 160.79 (8.88) 160.53 (9.21) 

MMSE, (range 0-30) 27.25 (1.77) 27.41 (1.76) 27.41 (1.77) 27.53 (1.72) 27.40 (1.75) 

Medications >=4 169 (56%) 98 (48%) 95 (47%) 83 (48%) 97 (48%) 

IADL >= 1, (range 0-8) 114 (38%) 49 (24%) 47 (23%) 39 (23%) 47 (23%) 

FALL >=2 16 (5%) 5 (2%) 5 (2%) 3 (2%) 11 (5%) 

FALL history >=2 19 (6%) 11 (5%) 10 (5%) 7 (4%) 5 (2%) 

CES-D >= 16, (range 0-60) 106 (35%) 58 (28%) 57 (28%) 49 (28%) 57 (28%) 

PA, categories, (range 1-7) 2.91 (1.01) 3.16 (0.98) 3.15 (0.99) 3.24 (1.01) 3.15 (0.98) 

SPPB, (range 0-12) 8.72 (3.18) 9.80 (1.98) 9.82 (1.98) 9.92 (1.87) 9.79 (1.99) 

HAND, kg 26.98 (9.26) 28.85 (8.98) 28.81 (9.00) 29.09 (8.97) 28.78 (8.96) 

PWR, watt 88.69 (51.28) 94.71 (51.28) 95.21 (51.62) 94.96 (48.54) 94.87 (51.54) 

TMTA, s 78.37 (43.94) 70.51 (36.50) 70.69 (36.59) 69.48 (35.19) 70.47 (36.37) 

Gait speed, m/s 1.11 (0.26) 1.15 (0.25) 1.15 (0.25) 1.15 (0.24) 1.14 (0.25) 

Values are presented as mean ± sd or number (%), unless otherwise indicated. 

Acronyms: MMSE: mini-mental state examination; IADL: instrumental activities of daily living; FALL: 

prospective falls; FALL history: the number of falls in the last year declared during the assessment; CES-D: center 

for epidemiologic studies depression scale; PA: physical activity; SPPB: short physical performance battery; 

HAND: the hand-grip strength test; PWR: lower extremity muscle power; TMTA: trail making test A 

 

Gait speed, obtained from the distance covered (7 meters) and the total time taken to complete the 

test [m/s], Number of Medication (NM) and prospective falls (FALL) were assessed in addition to 

the health-related measures collected and already described in section 3.1.2. Linear regression 

analysis was used to investigate the association between domains in the conceptual model and the 

associations between each domain and the health-related measures. First, the linear regression was 

computed without adjusting for any covariate and then adjusting for age, gender, height, weight, 
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MMSE and NM. All statistical analyses were performed using R for Windows, version 3.4.3 [63].  

Figure 4.2 shows the flowchart of the conceptual model development process. 

4.6.2. RESULTS 

Sensor-based measures contributing to each factor obtained from the exploratory factor analysis 

performed on each test of the battery and corresponding domains are shown in Table 4.17.   

Figure 4.2 flowchart of the third version of the conceptual model development process 
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Table 4.17 Sensor-based measures contributing to each factor of the third version of the conceptual model, for each instrumented test 

Domains Original Features Domains 
Original 

Features 
Domains Original Features Domains Original Features 

Quiet Standing 7-Meters Walk Repeated Chair Standing Timed Up and Go 

Postural 

instability 

(QS1)  

Range A ML 

Walking 

impairment 

(7MW1) 

Range A V 

Dynamic postural 

impairment (CST1) 

Sts G RMS ML 

Shakiness 

(TUG1)  

RMS Walk A ML 

RMS A ML RMS A V Sts G Range ML RMS Walk A V 

SA DISPL Range A AP stS A RMS V Range Walk A V 

SP ML DISPL RMS A AP stS G RMS ML Range Walk A ML 

MV ML DISPL Range A ML Sts A Range V Range Walk A AP 

EA DISPL RMS A ML Sts A RMS V Range A ML TtS 

SP Planar DISPL Cadence stS A Range V Peak Angular Velocity 180T 

Range A AP Total duration stS G Range ML Peak Angular Velocity TtS 

RMS A AP     RMS Walk A AP 

      MV TtS 

AP postural 

reaction time 

and jerkiness 

(QS2) 

CF AP 

Gait 

irregularity 

(7MW2)  

Stride Reg V 

Sit-to-Stand 

jerkiness (CST2) 

  

Sts JS V 

  

Turning 

impairment 

(TUG2)  

NJS 180T 

F95 AP Stride Reg AP Sts JS AP 180T Duration 

NJS AP Step Reg V Sts JS ML Number of Steps 180T 

F50 AP Step Reg AP Duration Sts NJS TtS 

  Stride Reg ML SD Duration Sts MV 180T 

    Total Duration TtS turning duration 

ML postural 

reaction time 

and jerkiness 

(QS3) 

CF ML 

Gait jerkiness 

(7MW3) 

NJS V 

ML dynamic 

postural Instability 

(CST3) 

Sts A RMS ML 

Turn-to-Sit 

jerkiness 

(TUG3)  

JS AP TtS 

JS ML TtS 

F95 ML NJS AP Sts A Range ML 

NJS ML   Sts G RMS AP JS V TtS 

F50 ML   stS A RMS ML TtS Duration 

    Sts G Range AP   

    stS A Range ML   

AP postural 

control 

impairment 

(QS4) 

MV AP DISPL 

ML Gait 

instability 

(7MW4) 

NJS ML 

Stand-to-Sit 

jerkiness 

(CST4) 

stS JS AP 

Sit-to-Walk 

jerkiness 

(TUG4)  

JS V StW 

SP AP DISPL Step Reg ML stS JS ML JS AP StW 

    stS JS V JS ML StW 

    Duration stS StW Duration 

    SD Duration stS   

NI 

SE ML 
Gait 

variability 

(7MW5)  

PCI 
AP Stand-to-Sit 

weakness 

(CST5) 

stS A Range AP AP postural 

transitions 

weakness  

(TUG5)  

RMS A AP StW 

SE AP SD Cadence stS A RMS AP Range A AP StW 

FD ML     RMS A AP TtS 

FD AP     Range A AP TtS 

        

AP Sit-to-Stand 

weakness 

(CST6) 

Sts A Range AP  Walking 

impairment 

(TUG6) 

Walk Duration 

Sts A RMS AP Number of Steps 

  Total Duration 

        

NI 

stS G Range AP  ML Sit-to-

Walk 

weakness 

(TUG7) 

Range A ML StW 

        stS G RMS AP RMS A ML StW 

            V Turn-to-

Sit weakness 

(TUG8) 

RMS A V TtS 

            Range A V TtS 

            

NI 

RMS A ML TtS 

        
    RMS A V StW 

    Range A V StW 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CF: Centroidal Frequency; DISPL: displacement; EA: Ellipse Area;   FD: Frequency 

Dispersion;  F50: median frequency, F95: frequency bandwidth; G: Gyroscope;  JS: Jerk Score;  JS: Time-Normalized Jerk Score; M: Mean; ML: 

Medio-Lateral;  MV: Mean Velocity; NI: Not Included in the model; NJS: Normalized Jerk Score;  PCI: Phase Coordination Index; Reg: Regularity; 

RMS: Root Mean Square;  SA: Sway Area; SD: Standard Deviation; SE: Spectral Entropy; SP: Sway Path; Sts: Sit to Stand; stS: Stand to Sit; V: 

Vertical 
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4.6.2.1. QS FACTOR MODEL 

The factor analysis grouped 19 out of 23 sensor-based measures into 4 factors, accounting for 70% 

of total variance (see Table 4.18). The resulting independent domains were labelled as: “Postural 

impairment”, “AP postural reaction time and jerkiness”, “ML postural reaction time and jerkiness”, 

“AP postural control impairment”.  

Table 4.18 Factor loadings of the third version of the QS conceptual model 

Domain Postural Instability 
AP Postural Reaction 

Time and Jerkiness 

ML Postural Reaction 

Time and Jerkiness 

AP Postural Control 

Impairment 

Factor QS1 QS2 QS3 QS4 

Range A ML 0.95 -0.11 -0.15 0.07 

RMS A ML 0.93 -0.01 -0.25 0.02 

SA DISPL 0.93 0.01 -0.07 0.13 

SP ML DISPL 0.87 -0.14 -0.10 0.18 

MV ML DISPL 0.80 -0.12 -0.11 0.20 

EA DISPL 0.77 0.06 -0.12 -0.03 

SP Planar DISPL 0.76 -0.06 -0.08 0.63 

Range A AP 0.71 0.19 -0.11 0.43 

RMS A AP 0.68 0.29 -0.14 0.30 

CF AP -0.13 -0.98 0.11 0.00 

F95 AP -0.10 -0.92 0.14 -0.07 

NJS AP 0.12 -0.79 0.11 -0.13 

F50 AP -0.13 -0.77 0.10 0.17 

CF ML -0.20 -0.20 0.96 -0.02 

F95 ML -0.26 -0.15 0.87 -0.05 

NJS ML -0.05 -0.17 0.85 -0.11 

F50 ML -0.09 -0.21 0.79 -0.01 

MV AP DISPL 0.53 -0.01 -0.10 0.80 

SP AP DISPL 0.63 0.00 -0.08 0.77 

SE ML -0.17 0.03 0.23 -0.04 

SE AP 0.12 -0.31 0.09 -0.07 

FD ML -0.07 0.18 -0.16 -0.11 

FD AP 0.02 -0.28 0.03 -0.30 

CV % 31 46 61 70 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CF: Centroidal Frequency; CV: Cumulative Variance;  EA: Ellipse Area; 

F50: Median Frequency; F95: Frequency below 95% of total signal power; FD: Frequency Dispersion; G: Gyroscope; JS: Jerk 

Score; JS: Time-Normalized Jerk Score; M: Mean; ML: Medio-Lateral; MV: Mean Velocity; NJS: Normalized Jerk Score; RMS: 

Root Mean Square; SA: Sway Area; SD: Standard Deviation; SE: Spectral Entropy; SP: Sway Path; V: Vertical. 
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4.6.2.2. 7MW FACTOR MODEL 

The factor analysis grouped all 19 sensor-based measures into 5 factors, accounting for 77% of total 

variance (see Table 4.19). The resulting independent domains were labelled as: “Walking 

impairment”, “Gait irregularity”, “Gait jerkiness”, “ML Gait instability”, “Gait variability”. 

Table 4.19 Factor loadings of the third version of the 7mWT conceptual model 

Domains 
Walking 

Impairment 
Gait Irregularity Gait Jerkiness ML Gait Instability Gait Variability 

Factors 7MW1 7MW2 7MW3 7MW4 7MW5 

Range A V -0.92 -0.03 -0.12 0.04 -0.05 

RMS A V -0.91 -0.28 -0.11 0.05 -0.11 

Range A AP -0.88 -0.05 -0.16 0.11 -0.10 

RMS A AP -0.87 -0.18 -0.12 0.18 -0.14 

Range A ML -0.74 0.23 -0.11 0.52 -0.01 

RMS A ML -0.73 0.07 0.04 0.68 -0.01 

Cadence 0.71 0.25 -0.65 0.01 0.05 

Total duration 0.66 0.39 0.02 0.01 0.24 

Stride Reg V -0.16 -0.84 -0.01 -0.12 -0.16 

Stride Reg AP 0.09 -0.82 -0.01 0.13 -0.17 

Step Reg V -0.28 -0.74 0.00 -0.15 -0.22 

Step Reg AP -0.15 -0.66 -0.06 0.07 -0.22 

Stride Reg ML -0.03 -0.63 0.18 0.45 0.01 

NJS V -0.13 0.05 -0.83 -0.01 0.15 

NJS AP -0.40 -0.18 -0.66 0.08 -0.12 

NJS ML -0.18 0.06 -0.39 0.67 -0.01 

Step Reg ML -0.07 -0.39 0.20 0.56 0.00 

PCI 0.12 0.27 -0.01 0.00 0.89 

SD Cadence 0.23 0.39 -0.12 -0.02 0.84 

CV % 30 48 58 68 77 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance. G: Gyroscope; JS: Jerk Score; JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral; NJS: Normalized Jerk Score; PCI: Phase Coordination Index; Reg: 

Regularity; RMS: Root Mean Square; SD: Standard Deviation; V: Vertical. 

 

4.6.2.3. CST FACTOR MODEL 

The factor analysis grouped 29 out of 31 instrumented measures into 6 factors, accounting for 80% 

of total variance (see Table 4.20). The resulting independent domains were labelled as: “Dynamic 

postural impairment”, “Sit-to-Stand jerkiness”, “ML dynamic postural instability”, “Stand-to-Sit 

jerkiness”, “AP Stand-to-Sit weakness”, “AP Sit-to-Stand weakness”. 
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Table 4.20 Factor loadings of the third version of the CST conceptual model 

Domains 

Dynamic 

Postural 

Impairment 

Sit-to-Stand 

Jerkiness 

ML Dynamic 

Postural 

Instability 

Stand-to-Sit 

Jerkiness 

AP Stand-to-Sit 

Weakness 

AP Sit-to-Stand 

Weakness 

Factors CST1 CST2 CST3 CST4 CST5 CST6 

Sts G RMS ML -0.90 -0.01 -0.12 -0.14 0.00 -0.06 

Sts G Range ML -0.85 0.03 -0.16 -0.05 -0.03 -0.29 

stS A RMS V -0.84 0.12 -0.20 0.26 -0.10 0.10 

stS G RMS ML -0.83 -0.20 -0.14 -0.15 -0.25 -0.04 

Sts A Range V -0.83 0.13 -0.21 0.39 0.00 0.07 

Sts A RMS V -0.81 0.13 -0.18 0.39 0.09 0.15 

stS A Range V -0.70 0.09 -0.23 0.11 -0.40 -0.09 

stS G Range ML -0.66 -0.13 -0.17 -0.09 -0.45 -0.15 

Sts JS V -0.21 0.91 0.08 0.21 0.12 0.08 

Sts JS AP -0.05 0.91 0.07 0.24 -0.10 0.13 

Sts JS ML -0.05 0.90 -0.03 0.21 0.15 0.13 

Duration Sts 0.03 0.85 0.18 0.29 0.33 0.15 

SD Duration Sts 0.15 0.72 0.02 -0.11 0.03 -0.08 

Total Duration -0.04 0.71 0.17 0.53 0.28 0.24 

Sts A RMS ML -0.06 0.02 -0.94 -0.05 -0.13 -0.16 

Sts A Range ML -0.12 0.01 -0.92 0.01 -0.13 -0.25 

Sts G RMS AP -0.26 -0.09 -0.65 -0.01 -0.05 -0.10 

stS A RMS ML -0.13 -0.14 -0.64 -0.11 -0.40 -0.05 

Sts G Range AP -0.39 -0.09 -0.64 0.08 -0.04 -0.11 

stS A Range ML -0.12 -0.06 -0.51 -0.08 -0.50 -0.11 

stS JS AP -0.16 0.23 0.04 0.91 0.10 -0.12 

stS JS ML -0.11 0.29 -0.23 0.86 0.12 0.22 

stS JS V -0.35 0.30 0.06 0.84 0.14 0.17 

Duration stS -0.10 0.40 0.16 0.78 0.20 0.34 

SD Duration stS 0.21 -0.08 0.15 0.60 -0.13 0.09 

stS A Range AP -0.14 -0.16 -0.29 -0.07 -0.86 -0.19 

stS A RMS AP -0.21 -0.30 -0.30 -0.14 -0.76 -0.28 

Sts A Range AP -0.08 -0.22 -0.30 -0.24 -0.23 -0.84 

Sts A RMS AP -0.14 -0.22 -0.32 -0.28 -0.22 -0.79 

stS G Range AP -0.32 -0.06 -0.40 -0.06 -0.34 0.07 

stS G RMS AP -0.22 -0.13 -0.45 -0.11 -0.32 0.11 

CV % 19 35 50 64 73 80 

ACRONYMS: A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; JS: Jerk Score; JS: Time-

Normalized Jerk Score; M: Mean; ML: Medio-Lateral; NJS: Normalized Jerk Score; RMS: Root Mean Square; SD: Standard 

Deviation; Sts: Sit to Stand; stS: Stand to Sit; V: Vertical. 

 

4.6.2.4. TUG FACTOR MODEL  

The factor analysis grouped 35 out of 38 instrumented measures into 8 factors, accounting for the 

77% of the total variance (see Table 4.21). The resulting independent domains were labelled as 

“Shakiness”, “Turning impairment”, “Turn-to-Sit jerkiness”, “Sit-to-Walk jerkiness”, “AP postural 

transitions weakness”, “Walking impairment”, “ML Sit-to-Walk weakness”, “V Turn-to-Sit 

weakness”.  
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Table 4.21 Factor loadings of the third version of the TUG conceptual model 

Domain 
Walking 

impairment 

Turning 

impairment 

Turn-to-Sit 

Jerkiness 

Sit-to-Walk 

Jerkiness 

AP postural 

transitions 

weakness 

Shakiness 
ML Sit-to-Walk 

weakness 

V Turn-to-Sit 

weakness 

Factor TUG1 TUG2 TUG3 TUG4 TUG5 TUG6 TUG7 TUG8 

RMS Walk A ML -0.81 -0.10 -0.06 0.01 0.02 -0.05 -0.21 -0.14 

RMS Walk A V -0.77 -0.24 -0.17 -0.17 -0.01 -0.29 -0.09 -0.11 

Range Walk A V -0.73 -0.20 -0.16 -0.16 -0.07 -0.18 -0.08 -0.13 

Range Walk A ML -0.73 -0.09 -0.04 -0.02 0.01 -0.07 -0.19 -0.16 

Range Walk A AP -0.71 -0.25 -0.09 -0.11 -0.08 -0.10 -0.06 -0.05 

Range A ML TtS -0.62 -0.02 -0.06 -0.11 -0.05 -0.18 -0.10 -0.34 

Peak Angular Velocity 180T -0.66 -0.52 -0.20 -0.14 -0.06 -0.17 -0.03 0.06 

Peak Angular Velocity TtS -0.56 -0.48 -0.39 -0.19 0.00 -0.10 -0.03 0.00 

RMS Walk A AP -0.58 -0.26 -0.22 -0.02 -0.20 -0.15 -0.04 -0.04 

MV TtS -0.56 -0.53 -0.40 -0.13 0.02 -0.07 -0.05 0.07 

NJS 180T 0.12 0.87 0.26 0.11 -0.03 0.03 0.01 -0.01 

180T Duration 0.27 0.83 0.28 0.15 -0.03 0.28 0.02 0.18 

Number of Steps 180T 0.19 0.79 0.19 0.12 0.02 0.10 0.03 0.13 

NJS TtS 0.17 0.61 0.37 -0.02 -0.02 -0.01 -0.02 -0.18 

MV 180T -0.57 -0.66 -0.26 -0.18 0.00 -0.17 -0.02 0.04 

TtS turning duration 0.37 0.58 0.38 0.06 0.00 0.21 0.00 0.00 

JS AP TtS 0.18 0.34 0.87 0.09 -0.13 0.13 0.04 0.02 

JS ML TtS 0.18 0.39 0.84 0.08 -0.06 0.11 0.02 0.03 

JS V TtS 0.18 0.39 0.84 0.11 -0.13 0.13 -0.02 -0.08 

TtS Duration 0.27 0.37 0.78 0.16 -0.02 0.28 0.06 0.24 

JS V StW 0.07 0.06 0.05 0.94 -0.09 -0.01 -0.08 -0.01 

JS AP StW 0.11 0.11 0.09 0.94 -0.22 0.06 0.02 0.03 

JS ML StW 0.08 0.11 0.09 0.90 -0.02 0.07 -0.30 -0.06 

StW Duration 0.20 0.19 0.15 0.90 0.04 0.21 0.14 0.02 

RMS A AP StW 0.06 -0.01 0.06 0.03 -0.91 0.02 0.03 -0.02 

Range A AP StW -0.08 0.02 -0.04 0.17 -0.91 -0.08 -0.04 0.05 

RMS A AP TtS -0.05 0.00 0.08 0.08 -0.61 -0.02 0.03 -0.31 

Range A AP TtS -0.18 0.10 0.26 0.03 -0.56 0.03 -0.03 -0.31 

Walk Duration 0.42 0.23 0.21 0.14 0.03 0.83 0.07 0.08 

Number of Steps 0.42 0.13 0.20 0.11 0.09 0.79 0.04 0.06 

Total Duration 0.39 0.41 0.40 0.28 0.01 0.63 0.08 0.15 

Range A ML StW -0.31 -0.04 -0.02 0.20 0.04 -0.10 -0.87 -0.10 

RMS A ML StW -0.23 0.03 -0.02 0.02 -0.05 0.00 -0.79 -0.08 

RMS A V TtS -0.39 -0.08 -0.18 0.01 -0.40 -0.10 -0.11 -0.60 

Range A V TtS -0.37 0.01 0.06 0.07 -0.28 -0.05 -0.11 -0.59 

RMS A ML TtS -0.46 -0.07 -0.26 -0.08 -0.15 -0.12 -0.15 -0.37 

RMS A V StW -0.35 -0.29 -0.03 -0.15 -0.38 -0.15 -0.30 0.05 

Range A V StW -0.46 -0.25 -0.08 0.08 -0.11 -0.27 -0.26 0.07 

CV% 18 32 43 54 62 68 73 77 

ACRONYMS: 180T: 180 Turn; A: Accelerometer; AP: Antero-Posterior; CV: Cumulative Variance; G: Gyroscope; JS: Jerk Score;  JS: Time-Normalized Jerk Score; M: 

Mean; ML: Medio-Lateral;  NJS: Normalized Jerk Score;  RMS: Root Mean Square;  SD: Standard Deviation; StW: Sit to Walk; TtS: Turn to Sit; V: Vertical 
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4.6.2.5. LINEAR REGRESSION ANALYSIS 

The results of the linear regression analysis between the domains of the conceptual model are reported 

in Table 4.22. The linear regression analysis between the domains of the conceptual model and the 

health-related measures provided results reported in Table 4.23. Beta coefficients with a p-value ≤ 

0.05 are shaded and bolded. The results of the linear regression analysis between health-related 

measures are reported in Table 4.24. 

  



69 
 

Table 4.22 Linear regression analysis between domains 
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QS1  .00 -.01 .02 .16 .12 -.11 .13 .10 -.03 .26 -.10 .38 -.21 .17 .09 .16 .18 .16 -.06 .03 -.08 -.05 

QS2 .00  .00 .00 -.03 .11 .04 .05 -.03 .08 .08 .06 .02 -.03 .06 -.02 .04 -.08 .08 .14 .10 -.05 -.06 

QS3 -.01 .00  .00 .06 .03 -.00 -.12 .02 .02 -.02 -.06 -.12 -.04 .01 .05 .01 -.05 .06 -.06 .03 -.03 .16 

QS4 .02 .00 .00  .15 .12 -.01 .03 -.01 -.06 .07 .00 .30 .02 .15 .04 .27 .13 .15 -.05 -.10 -.08 .08 

7MW1 .17 -.03 .06 .16  .02 -.02 -.03 .00 .15 .28 .17 .32 .15 .32 .62 .25 .16 .13 .08 .27 .06 .07 

7MW2 .13 .12 .04 .14 .02  -.02 .03 .05 -.02 .25 -.18 .17 -.14 .14 .04 .20 .21 .18 -.07 .24 -.09 -.07 

7MW3 -.12 .04 -.00 -.01 -.02 -.02  -.02 .01 .05 -.11 .30 -.11 .08 .17 .12 -.16 -.09 -.01 .16 .05 -.05 .16 

7MW4 .14 .05 -.13 .03 -.03 .03 -.02  .00 -.10 .05 -.02 .11 -.03 -.12 -.32 .05 .07 .11 .05 .19 -.15 -.07 

7MW5 .11 -.03 .02 -.02 .00 .04 .01 -.01  .13 .15 -.02 .08 .00 .18 .11 .23 .10 -.02 .02 .10 -.10 -.11 

CST1 -.02 .09 .02 -.05 .13 -.02 .05 -.11 .12  .00 .01 -.01 .01 .00 .15 .05 .10 .01 .54 -.04 -.07 .11 

CST2 .21 .09 -.02 .05 .23 .20 -.11 .05 .14 .00  .00 .01 .01 .00 .17 .21 .27 .01 -.14 .08 .00 -.14 

CST3 -.08 .06 -.06 .00 .14 -.15 .30 -.02 -.02 .01 .00  .00 .02 .02 .25 -.04 -.03 -.02 .06 .01 .23 -.02 

CST4 .30 .02 -.12 .24 .27 .14 -.11 .12 .07 -.01 .01 .00  .01 .01 .19 .13 .21 .23 -.24 -.03 -.02 -.03 

CST5 -.17 -.03 -.04 .01 .13 -.12 .09 -.03 .00 .01 .01 .02 .01  .01 .22 .00 -.02 -.15 -.07 -.03 .09 .13 

CST6 .14 .07 .01 .12 .27 .12 .17 -.12 .17 .00 .00 .02 .01 .01  .36 .10 -.07 .09 -.04 .14 .09 -.01 

TUG1 .10 -.02 .05 .04 .66 .04 .13 -.34 .11 .17 .21 .29 .23 .25 .41  .03 .00 .01 .01 .03 .03 .01 

TUG2 .17 .04 .01 .29 .25 .19 -.16 .05 .22 .08 .30 -.05 .18 .00 .14 .02  .02 .00 .00 .00 -.01 .01 

TUG3 .19 -.08 -.06 .13 .16 .20 -.09 .07 .09 .12 .32 -.04 .24 -.03 -.08 .00 .02  .00 -.01 .00 .00 .01 

TUG4 .16 .08 .06 .16 .13 .17 -.01 .10 -.01 .02 .01 -.02 .24 -.15 .09 .01 .00 .00  -.01 .00 -.01 .00 

TUG5 -.07 .15 -.06 -.05 .09 -.07 .17 .05 .02 .58 -.16 .06 -.26 -.07 -.05 .01 .00 -.01 -.01  .00 -.01 .02 

TUG6 .03 .10 .04 -.10 .27 .22 .05 .19 .10 -.08 .16 .01 -.05 -.06 .26 .03 .00 .00 .00 .00  -.01 .01 

TUG7 -.09 -.06 -.04 -.09 .07 -.09 -.06 -.16 -.10 -.07 .00 .23 -.02 .08 .09 .03 -.01 .00 -.01 -.01 -.01  .02 

TUG8 -.06 -.06 .18 .10 .09 -.07 .18 -.08 -.12 .17 -.22 -.03 -.05 .19 -.01 .01 .01 .02 .00 .02 .01 .02  

Results adjusted for Age, Gender, Height, Weight, MMSE and NM 

QS1  .04 -.01 -.04 .05 .05 -.07 .17 .06 -.02 .16 -.11 .27 -.24 .16 -.01 .08 .10 .14 -.03 .03 -.07 -.01 

QS2 .04  .00 .00 .01 .15 -.00 .04 -.01 .09 .10 .04 .03 -.02 .07 .01 .07 -.04 .08 .14 .09 -.07 -.07 

QS3 -.01 .00  -.01 .05 .04 .01 -.08 .01 .02 -.01 -.05 -.12 -.05 .00 .03 .02 -.05 .06 -.05 .05 -.04 .15 

QS4 -.04 .01 -.01  .05 .05 -.03 .04 -.06 -.02 .02 -.10 .13 .00 .04 -.07 .18 .06 .13 .00 -.14 -.07 .14 

7MW

1 
.06 .01 .07 .06 

 
-.09 -.12 .05 -.07 .24 .26 .06 .21 .13 .17 .47 .19 .09 .11 .17 .24 .09 .21 

7MW

2 
.06 .18 .05 .06 -.08 

 
.05 .01 -.01 .00 .18 -.16 .05 -.15 .15 -.01 .08 .11 .16 -.02 .28 -.05 -.02 

7MW

3 
-.10 -.00 .01 -.04 -.13 .06 

 
-.09 .10 .05 .05 .26 -.16 .07 -.08 .07 -.09 .02 -.05 .09 -.14 -.10 .11 

7MW

4 
.19 .05 -.10 .04 .04 .01 -.07 

 
.04 -.08 .10 .00 .11 .00 -.08 -.23 .05 .10 .13 .04 .20 -.13 -.10 

7MW

5 
.06 -.01 .01 -.06 -.05 -.01 .08 .04 

 
.14 .08 .02 .01 .01 .21 .06 .16 .03 -.03 .05 .13 -.08 -.07 

CST1 -.02 .10 .02 -.02 .16 .00 .03 -.08 .14  -.01 .03 .08 .01 -.01 .14 .05 .13 .03 .50 -.04 -.07 .11 

CST2 .13 .13 -.01 .01 .18 .16 .04 .11 .08 -.01  .04 -.06 .01 .02 .12 .11 .18 -.02 -.12 .14 .04 -.07 

CST3 -.09 .06 -.06 -.08 .04 -.14 .19 .00 .02 .03 .04  -.06 -.01 -.12 .16 -.04 .01 -.03 .09 -.05 .22 -.02 

CST4 .25 .05 -.16 .12 .16 .05 -.14 .13 .01 .10 -.08 -.07  .00 -.08 .12 .04 .13 .23 -.15 -.03 .03 .03 

CST5 -.18 -.03 -.05 .00 .08 -.12 .05 .00 .01 .01 .01 -.01 .00  -.04 .16 .00 -.01 -.16 -.08 -.04 .07 .13 

CST6 .14 .10 .00 .04 .13 .14 -.06 -.09 .24 -.02 .02 -.13 -.08 -.05  .18 .11 -.05 .10 -.09 .10 .10 -.03 

TUG1 -.02 .01 .05 -.10 .54 -.01 .08 -.31 .08 .23 .20 .25 .16 .26 .25  -.11 -.09 -.06 .05 -.10 .01 .13 

TUG2 .09 .09 .02 .22 .17 .08 -.08 .05 .18 .08 .17 -.06 .05 .00 .15 -.09  -.17 -.05 .07 .02 .06 .14 

TUG3 -.11 .05 .06 -.07 -.07 -.11 -.02 -.09 -.03 -.16 -.22 -.01 -.13 .02 .05 .07 .15  .03 -.06 -.04 -.05 -.11 

TUG4 .13 .08 .06 .12 .08 .14 -.03 .11 -.03 .03 -.02 -.03 .18 -.16 .08 -.04 -.04 -.03  .00 -.01 .01 .01 

TUG5 -.03 .17 -.06 .00 .14 -.02 .07 .04 .05 .58 -.14 .10 -.14 -.09 -.08 .04 .07 .06 .00  -.05 .01 -.04 

TUG6 .03 .10 .05 -.14 .18 .25 -.11 .19 .13 -.09 .26 -.09 -.04 -.09 .16 -.07 .02 .04 -.02 -.05  -.01 -.01 

TUG7 -.07 -.08 -.05 -.07 .07 -.05 -.08 -.12 -.08 -.07 .04 .21 .03 .07 .08 .01 .05 .05 .01 .01 -.01  .01 

TUG8 -.01 -.09 .19 .16 .18 -.02 .09 -.11 -.08 .18 -.11 -.03 .04 .22 -.04 .11 .13 .12 .02 -.05 -.01 .02  

Only  coefficients with a p-value < 0.05 are bolded 
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Table 4.23 Linear regression analysis between domains and health-related measures 

 
IADL 

FALL 

history 
CES-D PA SPPB HAND PWR TMTA Gait speed 

QS1 0.091 0.069 0.054 -0.088 -0.721 -0.966 -4.337 8.835 -0.059 

QS2 0.009 0.002 -0.109 0.004 0.127 -0.035 1.732 4.713 -0.006 

QS3 0.034 -0.027 -0.031 -0.095 -0.134 -0.402 -1.994 1.431 -0.010 

QS4 0.033 -0.005 0.058 -0.097 -0.577 -1.373 -7.576 9.340 -0.039 

7MW1 -0.133 -0.004 -0.127 0.377 1.317 3.038 19.142 -14.173 0.206 

7MW2 -0.086 -0.050 -0.103 0.283 0.730 0.754 7.039 -8.028 0.092 

7MW3 0.023 -0.070 0.076 -0.175 -0.071 -3.851 -16.295 -0.270 -0.011 

7MW4 0.005 0.018 -0.037 0.095 -0.037 -0.508 4.473 -1.953 0.021 

7MW5 0.010 0.079 0.009 -0.100 -0.495 -0.391 -3.496 3.815 -0.054 

CST1 -0.042 -0.016 0.027 -0.024 0.056 0.334 2.786 1.448 0.038 

CST2 0.074 0.020 0.055 -0.097 -0.914 0.080 -4.985 6.339 -0.088 

CST3 -0.021 0.031 -0.107 0.108 0.232 2.518 12.943 1.101 0.025 

CST4 0.063 0.015 0.046 -0.140 -0.922 -1.550 -4.761 10.736 -0.070 

CST5 0.001 0.028 -0.012 0.003 0.290 1.036 9.480 1.641 0.016 

CST6 -0.051 -0.042 -0.198 0.312 0.728 3.859 22.155 -4.530 0.094 

TUG1 -0.077 -0.022 -0.115 0.413 1.010 2.966 19.887 -8.665 0.150 

TUG2 0.067 0.033 0.051 -0.122 -0.775 0.038 -2.290 13.299 -0.087 

TUG3 0.079 0.006 -0.009 0.019 -0.783 0.326 -2.399 5.047 -0.066 

TUG4 0.050 -0.020 0.045 -0.077 -0.475 -0.686 -2.797 6.498 -0.044 

TUG5 0.017 0.023 0.024 -0.054 -0.326 0.410 2.990 2.906 0.019 

TUG6 0.087 0.065 0.081 -0.222 -0.926 -2.722 -14.765 4.801 -0.108 

TUG7 0.018 0.008 -0.077 -0.101 -0.002 0.641 0.076 1.785 0.007 

TUG8 0.023 0.039 0.082 -0.008 -0.173 0.551 0.897 -2.547 -0.005 

Results adjusted for Age, Gender, Height, Weight, MMSE and NM 

QS1 0.058 0.056 0.022 -0.005 -0.430 -0.764 -0.855 3.654 -0.024 

QS2 -0.003 -0.009 -0.117 0.019 0.221 -0.232 2.298 2.615 0.006 

QS3 0.038 -0.023 -0.047 -0.087 -0.121 -0.213 -0.065 0.893 -0.013 

QS4 -0.004 -0.014 0.009 0.017 -0.205 -0.452 -2.679 4.533 -0.003 

7MW1 -0.058 0.027 -0.016 0.157 0.836 0.636 6.004 -6.110 0.161 

7MW2 -0.064 -0.036 -0.103 0.263 0.484 1.142 7.652 -2.755 0.071 

7MW3 -0.004 -0.084 -0.011 -0.046 0.107 -0.407 -3.497 -0.892 0.023 

7MW4 0.025 0.013 -0.005 0.045 -0.180 -1.121 -0.908 0.645 0.006 

7MW5 -0.010 0.078 0.006 -0.082 -0.349 -0.673 -3.001 0.017 -0.039 

CST1 -0.038 -0.015 0.017 0.010 0.140 0.196 0.991 2.428 0.040 

CST2 0.052 0.017 0.071 -0.106 -0.818 -0.801 -6.630 1.341 -0.072 

CST3 0.002 0.018 -0.049 -0.043 0.017 0.774 5.934 2.237 -0.003 

CST4 0.035 0.017 -0.022 0.026 -0.625 -0.890 0.845 5.898 -0.037 

CST5 0.013 0.028 0.021 -0.054 0.210 0.301 5.255 3.084 0.002 

CST6 0.000 -0.053 -0.108 0.115 0.460 0.737 6.317 1.596 0.047 

TUG1 0.022 -0.009 0.011 0.219 0.469 0.112 4.209 1.185 0.089 

TUG2 0.021 0.021 0.053 -0.072 -0.444 -0.434 -2.966 7.162 -0.056 

TUG3 0.054 -0.014 -0.007 0.057 -0.568 -0.589 -4.784 -0.731 -0.043 

TUG4 0.033 -0.024 0.023 -0.032 -0.321 -0.206 0.013 3.916 -0.028 

TUG5 0.026 0.020 0.015 -0.025 -0.191 -0.367 0.123 2.965 0.025 

TUG6 0.059 0.066 0.024 -0.116 -0.788 -0.729 -6.500 3.237 -0.082 

TUG7 0.009 0.001 -0.065 -0.126 0.037 0.262 -1.518 -0.354 0.012 

TUG8 -0.004 0.032 0.088 0.036 0.064 0.071 -0.357 -6.164 0.022 

Only  coefficients with a p-value < 0.05 are bolded 
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Table 4.24 Linear regression analysis between health-related measures 

 

IADL FALL history CES-D PA SPPB HAND PWR TMTA Gait speed 

IADL  -0.038 0.714 -0.295 -0.902 -1.900 -11.782 11.805 -0.104 

FALL history -0.014  0.432 -0.050 -0.217 -0.618 -2.363 0.222 -0.022 

CES-D 0.016 0.024  -0.035 -0.049 -0.421 -2.091 1.004 -0.009 

PA -0.377 -0.167 -2.039  0.955 3.654 19.125 -9.962 0.126 

SPPB -0.256 -0.160 -0.638 0.212  1.736 10.669 -7.883 0.091 

HAND -0.029 -0.024 -0.295 0.043 0.093  3.764 -1.311 0.012 

PWR -0.006 -0.003 -0.046 0.007 0.018 0.118  -0.187 0.002 

TMTA 0.010 0.000 0.039 -0.006 -0.023 -0.072 -0.328  -0.003 

Gait speed -2.013 -1.083 -7.897 1.905 6.198 15.703 98.927 -76.769  

Results adjusted for Age, Gender, Height, Weight, MMSE and NM 

IADL 1 -0.212 -0.313 -0.133 -0.462 0.056 -1.681 2.992 -0.039 

FALL history -0.064 1 0.269 -0.027 -0.170 -0.149 0.115 -1.307 -0.010 

CES-D -0.006 0.017 1 -0.010 0.002 -0.044 -0.321 0.323 -0.003 

PA -0.177 -0.121 -0.668 1 0.421 0.398 3.257 -0.577 0.061 

SPPB -0.165 -0.202 0.043 0.113 1 0.768 6.378 -2.539 0.070 

HAND 0.002 -0.018 -0.085 0.011 0.080 1 2.059 -0.815 0.007 

PWR -0.001 0.000 -0.012 0.002 0.013 0.039 1 0.050 0.001 

TMTA 0.003 -0.004 0.017 0.000 -0.007 -0.022 0.072 1 -0.001 

Gait speed -1.049 -0.904 -3.734 1.222 5.199 5.239 52.521 -35.582 1 

 coefficients with a p-value < .05 are bolded 

ACRONYMS: CES-D: Center for Epidemiologic Studies Depression Scale; FALL history: declared number of falls; HAND. Hand-Grip strength test; IADL: 
Instrumental Activities of Daily Living; MMSE: Mini-Mental State Examination; NM: Number of Medications; PA: Physical Activity; PWR. lower extremity muscle 

power; SPPB: Short Physical Performance Battery; TMTA: Trail Making Test A 
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4.6.3. DISCUSSION 

As we discussed in the previous sections, working with residuals of the linear regression analysis 

increases the complexity of the conceptual model and the difficulties in understanding the meaning 

of the domains that make up the model. In the third version of the conceptual model, one EFA was 

conducted on each set of PP sensor-based measures without removing the effect of confounders and 

under the assumption that the factors are independent. As expected, no association between the factor 

scores of each functional test was found (see Table 4.23). The linear regression analysis was then 

computed to examine the association between domains and between domains and health-related 

measures, either adjusting or not adjusting for age, gender, body composition (height and weight), 

cognition (MMSE) and the number of medications. The overall performance was not added as 

covariate in the linear regression analysis because i) this cannot be applied to the QS test since the 

test duration is fixed and the clinical outcome is limited to “is able/not able to perform the test”; ii) 

instrumenting the PP tests with wearable inertial sensors allow to assess specific sub-components of 

PP tests and the test duration is part of the model, since it is possible to compute it from the inertial 

signals; iii) one of our aims was to explain how the specific domains contributed to the overall 

performance (PP tests duration).  

Table 4.24 shows that we found several significant associations between domains and conventional 

health-related measures. Some of these were not explained by the covariates, confirming the 

functional meaning of the domains. 

Overall, higher-functioning (both physical, SPPB, and cognitive, TMTA) older adults who were more 

active (PA) and stronger (HAND, PWR) performed better on the instrumented functional tests. The 

“Walking impairment” (7MW1) and “Gait irregularity” (7MW2) domains obtained from the 7-meter 

Walk test were significantly associated with measures of leg muscle power, usual gait speed, and 

overall lower extremity function. Many of the domains were significantly associated with the SPPB, 

which includes tests of balance, gait speed, and chair stands. Furthermore, gait speed serves as the 

conventional clinical outcome measure of an older adult’s PC assessment. The associations between 

gait speed and domains of the 7MW and CST were significant both in the unadjusted and adjusted 

model. Conversely, the association between this measure and the capacities to maintain the static 

balance were explained by the covariates.  

After adjusting for the covariates, two domains were not associated with any health-related measures 

(see Table 4.24): the “ML postural reaction time and jerkiness” of the QS factor model (QS3), and 

the “Gait jerkiness” of the 7MW factor model (7MW3). This could be due either to non-linear 

associations between domains and measures or to their association with other health-related measures 

that were not included in this study. For example, it has been proposed that the capacities in ML 
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direction may be associated with the risk of falling [95] which may not be adequately described by 

the history of falls. 

4.6.3.1. CONVENTIONAL OUTCOME 

Gait speed served as a conventional clinical outcome measure of older adults’ PC. The association 

between this measure and the capacities to maintain the static balance were explained by age, gender, 

height, weight, MMSE and NM. This result suggests that after deduction the covariates, the QS test 

does not give information related to locomotion and dynamic balance. The associations between gait 

speed and domains of 7MW, CST and TUG (“Walking impairment”, 7MW1, “Gait irregularity”, 

7MW2, “Gait variability”, 7MW5, “Dynamic postural impairment”, CST1, “Sit-to-Stand jerkiness”, 

CST2, “Stand-to-Sit jerkiness”, CST4, “AP Sit-to-Stand weakness”, CST6,  “Shakiness”, TUG1, 

“Turning impairment”, TUG2, “Turn-to-Sit jerkiness”, TUG3, “Sit-to-Walk jerkiness”, TUG4,  

“Walking impairment”, TUG6) were not explained by the covariates, meaning that these domains of 

the conceptual model bring information about the older adults’ ability to walk, turn and perform 

postural transitions. This is in agreement with other studies in which gait speed was shown to be a 

good health indicator for older adults [96].   

4.6.3.2. IADL 

The associations that were still significant after adjusting for the covariates showed that older adults 

who had a higher number of IADL were also less active and fit, and they had more difficulties while 

walking (PA, SPPB, gait speed, “Walking Impairment”,7MW1, “Gait irregularity”, 7MW2, and 

“Walking impairment”, TUG6). 

4.6.3.3. FALL-HISTORY 

The associations between the number of falls experienced during the last 12 months (FALL-history) 

and SPPB, “Gait irregularity” (7MW2), “Sit-to-Stand jerkiness” (CST2) and “Walking impairment” 

(TUG6) were not explained by the covariates. This implies that older adults who experienced a higher 

number of falls in the previous year, were less smooth while standing from a chair. Gait speed was 

not related to the history of falls, but older adults who fell more showed a more impaired and irregular 

gait. These results are in agreement with a recent study, in which the relationships between the history 

of falling and gait, single leg stance and CST was investigated [97].  

4.6.3.4. CES-D 

CES-D is a screening test for assessing depressive disorder. After adjusting for the covariates, older 

adults who reported depressive symptoms were less reactive and smooth during the QS test (“AP 

postural reaction time and jerkiness”, QS2), they showed lower limbs weakness (“AP Sit-to-Stand 



74 
 

weakness”, CST6, and “V Turn-to-Sit weakness”, TUG8) and their locomotion was less regular 

(“Gait Irregularity”, 7MW2). These results are in agreement with the study by Penninx et al. [90] in 

which depressive symptoms were predictive of the decline in physical performance. 

4.6.3.5. PA 

After adjusting for the covariates, older adults who were less active, showed a higher number of 

IADL, they were less fit (SPPB), and less strong and with a more impaired gait (gait speed, “Walking 

impairment”, 7MW1, “Gait irregularity”, 7MW2), “Shakiness”, TUG1, and “ML Sit-to-Walk 

weakness”, TUG7).  

4.6.3.6. SPPB 

The associations between the Short Physical Performance Battery (SPPB) score and the CES-D, 

TMTA, “AP Postural Control Impairment” (QS4) and “AP Stand-to-Sit Weakness” (CST5) were 

explained by the covariates. The SPPB score is a measure of the older adults’ functional capacity and 

includes tests of balance, gait speed, and repeated chair stands. The higher the SPPB score, the better 

the adults’ performances. As we expected, older adults with high SPPB score, showed less IADL, 

less number of falls in the previous 12 months (FALL-History), they were more active (PA) and more 

strong (HG and PR). Furthermore, they had less “Postural control impairment” (QS1), they showed 

better walking ability (gait speed, “Walking impairment”, 7MW1, “Gait irregularity”, 7MW2, “Gait 

variability”, 7MW5, “Walking impairment”, TUG6) and better capacities to perform postural 

transitions and turns (“Sit-to-Stand jerkiness”, CST2, “Stand-to-Sit jerkiness”, CST4, “AP Sit-to-

Stand weakness”, CST6, “Shakiness”, TUG1, “Turning impairment”, TUG2, “Turn-to-Sit jerkiness”, 

TUG3, “Sit-to-Walk jerkiness”, TUG4). 

4.6.3.7. HAND 

The association between Hand-Grip strength test (HAND) and IADL, CES-D, PA, TMTA, “AP 

Postural Instability” (QS4) and some domains of the 7MW (“Walking Impairment”, 7MW1, “Gait 

Jerkiness”, 7MW3) and CST (“ML Dynamic Postural Instability”, CST3, “Stand-to-Sit Jerkiness”, 

CST4, “AP Sit-to-Stand Weakness”, CST6) factor models were explained by the covariates. The 

performances in performing the CST test reflect the strength of the lower limbs. Surprisingly, after 

adjusting for the covariates, no significant associations between upper limbs strength (HAND) and 

CST factor model were found. However, older adults with higher HAND were more fit (SPPB) and 

showed stronger lower limbs (PWR), they showed better abilities while performing the QS (“Postural 

instability”, QS1), 7MW (gait speed, “Gait irregularity”, 7MW2, and “ML gait instability”, 7MW4) 
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and TUG (“Shakiness”, TUG). These results are consistent with the findings of a previous study that 

highlights the association between grip-strength and future outcome in ageing adults [92].  

4.6.3.8. PWR 

After adjusting for the covariates, only the SPPB score, the HAND and the gait speed were 

significantly associated with the lower limbs strength (PWR). No significant associations between 

PWR and domains of the QS factor model were found, confirming the results of the two previous 

versions of the conceptual model. In our findings, the association between strength (both HAND and 

PWR) and the ability to maintain the static balance (“AP postural control impairment”, QS4) was 

explained by the covariates. Older adults who had higher lower limbs strength, were also more able 

during the locomotion (gait speed, “Walking impairment”, 7MW1, “Gait irregularity”, 7MW2, 

“Shakiness”, TUG6) and, as expected, performed better during the CST test (“Sit-to-Stand jerkiness”, 

CST2, “ML dynamic postural instability”, CST3, “AP Stand-to-Sit weakness”, CST5, “AP Sit-to-

Stand weakness”, CST6).  

4.6.3.9. TMTA 

The Trail Making Test part A (TMTA) assesses psychomotor speed. Attention and executive function 

are related to the cognitive control of gait, posture, and balance (6,7). Performance on the TMTA is 

a strong, independent predictor of mobility impairment, accelerated decline in lower extremity 

function, and mortality in older community-living adults (8). After adjusting for the covariates, it was 

significantly related to those domains that require good cognition, motor-control and motor-planning 

(“AP postural control impairment”, QS4, gait speed, “Walking impairment”, 7MW1, “Stand-to-Sit 

jerkiness”, CST4, “Turning impairment”, TUG2 and “Turn-to-Sit weakness”, TUG8). 

In conclusion, these results suggest that the sensor-based model is coherent with the conventional 

clinical measures of PC. The coherence and concurrent validity analyses confirmed that inertial 

sensors embedded in smartphones can detect and assess the status of different functional domains, 

adding useful information to the conventional clinical assessment. In the next section, a graphical 

representation of the conceptual model and a possible scenario in which a clinician could benefit from 

the additional information provided by the sensor-based conceptual model are presented. 
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4.6.3.10. CASE STUDIES 

Figure 4.4 shows three radar plots, for three different case studies. Favourable values of the scores, 

represented below the 75th percentile, reflected good performances in the domain. 

 

Figure 4.3 Radar plots of three case studies. The black lines represent the median, 25th and 75th percentile of the older adults’ factor 

scores. The dark grey area represents extreme values (very high values above the 75th percentile and very low values under the 25th 

percentile). Favourable values of the scores, below the 75th percentile, reflected good performances in the domains. 

 

Case 1: based on the clinical assessment, the subject (male, 69 years old) was not at risk of a fall, but 

2 prospective falls occurred. As you can see in Figure 3, he showed high instability in ML direction 

during the QS, 7MW and postural transitions (“ML postural reaction time and jerkiness”, QS3, “ML 

gait instability”, 7MW4, and “ML dynamic postural instability”, CST3) were above the 75th 

percentile), poor walking abilities (“Gait Irregularity”, 7MW2, “Gait jerkiness”, 7MW3), and high 

“AP postural transitions weakness” (TUG5). This may corroborate the idea that the ML stability is 

crucial to prevent falls in community-dwelling older adults [98–100].  
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Case 2: the older adult (female, 81 years old) had all the health-related measures within their reference 

values, but she had poor strength (low HAND and PWR). Her weakness is reflected in poor ability 

to maintain the static balance (“ML postural reaction time and jerkiness”, QS3, and “AP postural 

control impairment”, QS4), to perform postural transitions and walk (“Dynamic postural 

impairment”, CST1, “AP Stand-to-Sit weakness”, CST5, “Sit-to-Walk jerkiness”, TUG4 and 

“Walking impairment”, TUG6), confirming the findings reported elsewhere [101]. 

Case 3: the older adult (male, 86 years old) had all the health-related measures within their reference 

values, except for the gait speed, which was below 1 m/s. This cut-off point has been related to the 

risk of adverse health outcomes and disabilities [78,102]. Indeed, the Radar Plots show that his 

capacities to maintain static balance are not compromised, but he had difficulties while walking 

(“Walking impairment”, 7MW1, “ML gait instability”, 7MW4, “Gait variability”, 7MW5 and 

“Walking impairment”, TUG6) and while performing postural transitions (“Dynamic postural 

impairment”, CST1, “Stand-to-Sit jerkiness”, CST4, “Shakiness”, TUG1, “AP postural transitions 

weakness”, TUG5).  

4.7. CONCLUSIONS 

A battery of functional tests, instrumented by means of a smartphone, could be used for outlining a 

sensor-based conceptual model suitable for the assessment of older adults’ PC. EFA allowed us to 

reduce the number of sensor-based measures computed from the PP tests and find domains with clear 

functional meaning. Regression analysis suggests that such domains confirm and expand information 

obtained with clinical testing and provide quantitative information about several mobility skills that 

are usually not captured by conventional outcomes. Instrumented functional testing hence has the 

potential to i) advance the quality of current mobility assessments; ii) enhances our understanding of 

an individual’s true PC; and iii) disclose subtle changes in PC that would otherwise remain 

undetected. Increasing our understanding and the sensitivity of mobility assessment is of the utmost 

importance since it may enable earlier detection of functional decline and identify therapeutic targets 

for rehabilitation. Further work is needed to evaluate whether this more detailed information adds to 

our ability to predict adverse outcomes, over and above clinical testing like gait and SPPB. 
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5. THE PRE.C.I.S.A STUDY: APPLICATION OF THE SENSOR-BASED 

CONCEPTUAL MODEL 

5.1. OUTLINE OF THE STUDY AND DESCRIPTION OF THE POPULATION 

The PRE.C.I.S.A Study (PREvenzione Cadute per un Invecchiamento Sano e Attivo, preventing falls 

and promoting active and healthy ageing [3]) is a randomised controlled trial which involved the units 

of Rehabilitation Medicine, Geriatric and Neurologic in Modena and Reggio Emilia AUO, two health 

authorities of Emilia-Romagna (Italy). One million people aged 65 years and older are living in 

Emilia-Romagna. Of these, one out of three is a risk of falling. The fall risk increases in people aged 

80 years and older and it is even higher when the older adult is affected by neurological diseases like 

stroke or Parkinson’s disease. When a fall occurs, the consequences could be severe and sometimes 

lead to hospitalisation and loss of independence. The aim of this randomized controlled trial was the 

evaluation of a multiple, personalised, treatment based on a multidisciplinary assessment for the 

prevention of falls and the promotion of an active and healthy lifestyle in community-dwelling older 

adults. For the first time, it was also possible to expand the intervention to older adults with 

neurological diseases like stroke or Parkinson’s disease. The aim of this study was to evaluate whether 

the conceptual model developed on a healthy population of community-dwelling older adults (section 

4.3) can be applied on a population of people at risk of falling to obtain information about their 

physical functional status. Three relevant case studies have been illustrated. 

5.2. METHODS 

Sixty-five participants (75.8 ±5.9 years old, range [65-89] years, 26 females) including 13 people 

affected by neurological diseases (7 Parkinson’s and 16 Stroke) underwent a battery of PP tests 

wearing an inertial sensor at the lower back. A set of health-related measures, including TUG total 

time, gait speed, the number of falls in the previous year (FALLN pre-randomization), were collected 

during the assessment. Participants received phone calls during the following 12 months to collect 

the number of falls occurred (FALLN post-randomization). The sensor-based PP tests included the 

TUG, 5-times CST (5CST) and 10-meters Walking Test (10MWT). The algorithms used for the 

signal analysis and measures computation are part of the system developed within the FARSEEING 

project [71] and are more detailed described in section 3.3.2. Data collected during the study were 

used to validate the sensor-based conceptual model presented in section 4.3. The conceptual model 

was applied to the set of sensor-based measures to compute the participants’ scores for each domain 

of the conceptual model. 
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Table 5.1 Description of the PRE.C.I.S.A. population 

 Total population Parkinson Stroke 65+ 

N 65 7 12 46 

Age, years 75.8 ± 5.8 76.6 ± 5.5 76.7 ± 6.8 75.4 ± 5.6 

Gender, Females 40 (61.5 %) 2 (28.6 %) 6 (50 %) 32 (69.6 %) 

FALLN pre-randomization, ≥2 33 (50.8 %) 5 (71.4%) 5 (41.6 %) 23 (50 %) 

FALLN post-randomization, ≥2 14 (21.5 %) 5 (71.4 %) 2 (16.6 %) 7 (15.2 %) 

TUG, s 14.7 ± 6.3 13.9 ± 3.9 18.6 ± 8 13.7 ± 5.8 

Gait speed, m/s 0.98 ± 0.3 0.95 ± 0.2 0.77 ± 0.3 1.03 ± 0.3 

Values are presented as mean ± SD or number (%) unless otherwise indicated. 

 

5.3. RESULTS 

Based on the TUG total time, participants were, in average, all at risk of falling (cut-off 13.5s [103]); 

more than 50% of participants fell two or more time in the past year, and the 21.5% fell two or more 

time in the following year. In total, 88 sensor-based measures were computed from the 10MW, CST 

and TUG tests (19, 31 and 38 for the 10MW, CST and TUG tests, respectively). In order to externally 

validate the conceptual model described in section 4.3, the scores related to each domain of each 

participant were computed applying the factor model on each set of sensor-based measures. Figure 

5.1 shows the graphic representation of the results. The vertices represent the domains of the 

conceptual model. The black lines represent the median, 25th and 75th percentile of the InCHIANTI 

population, took as a reference. The coloured lines represent the scores’ mean value of the 

participants, grouped into three categories: Parkinson (pink), Stroke (green) and 65+ (blue). External 

dark green area indicates the extreme values of the scores, which reflect the poor functional ability in 

the domains. The participants who were grouped in the 65+ category, were scored similarly with 

respect to the reference population (InCHIANTI). Indeed, the blue line is near the region of normality 

(median values of the reference population). Conversely, Parkinson and Stroke showed high Gait 

variability and turning and postural transitions impairment, indicating a lower physical function and 

consequently a higher risk of falling.  
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Figure 5.1 Graphical representation of the scores of the PRE.C.I.S.A study participants. The black lines represent the median, 25th 

and 75th percentile of the InCHIANTI population, used as a reference. The coloured lines represent the scores of the three groups of 

the PRE.C.I.S.A. study (Parkinson, Stroke and 65+). The dark grey area represents extreme values (very high values above the 75th 

percentile and very low values under the 25th percentile). Favourable values of the scores, below the 75th percentile, reflected good 

performances in the domains. 

5.4. DISCUSSION 

In section 4.3 A sensor-based conceptual model was developed instrumenting a battery of PP tests by 

means of inertial sensors. The model was demonstrated to be suitable for the assessment of older 

adults’ PC. The domains of the conceptual model provide additional quantitative information about 

several mobility skills that are traditionally not observed using the conventional total duration of the 

PP tests. To evaluate whether the detailed, objective information gained from the conceptual model 

can be useful in assessing the individuals’ mobility skills, we applied the conceptual model to a 

population of older adults at risk of falling. The PRE.C.I.S.A population include also people with 

neurological diseases, like Stroke and Parkinson’s disease, giving the possibility to assess the abilities 

of the conceptual model to explore the relationships with specific impairments and diseases. 

Participants underwent a battery of PP tests wearing one inertial sensor at L5. A number of sensor-

based measures were computed from the signals recorded by the inertial sensors and the scores of 

each participant were computed applying the factor model on each set of sensor-based measures. 
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Figure 5.1 shows that the performances of people in the 65+ category (blue line) were similar to the 

reference population. Conversely, people with Parkinson’s disease showed a higher “Gait 

variability”, “ML postural instability” and jerkiness during sitting and standing transitions. However, 

people with Stroke showed high “Gait variability” and jerkiness during sitting, turning and walking 

impairments, which might be related to the risk of falling [42,95,104].  

5.4.1. CASE STUDIES 

 

Figure 5.2 shows three case studies. The black lines represent the median, 25th and 75th percentile of the InCHIANTI population, 

used as a reference. The coloured lines represent the scores of the three groups of PRE.C.I.S.A. study (Parkinson, Stroke and 65+). 

The dark grey area represents extreme values (very high values above the 75th percentile and very low values under the 25th 

percentile). Favourable values of the scores, below the 75th percentile, reflected good performances in the domains. 

Case 1: female, 79 years old. Based on the total TUG duration she was at risk of falling (cut-off 13.5 

s [103]) but she did not experience any falls in the previous year. During the assessment, she showed 

a gait speed faster than 1 m/s and the radar plots confirmed that her gait was not impaired (low 

“Walking Impairment” of the TUG model and all the domains of the Gait inside of the region of 

normality). As we can see in Figure 5.2, the high duration of the TUG was probably a consequence 

of her impairments during the postural transitions that reflect a low muscle strength (high “Shakiness” 

of the TUG model).  
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Case 2: female, 69 years old, affected by Parkinson’s disease. She reported 3 falls in the previous 

year and 5 falls in the following year. Both the gait speed and the TUG duration were under the cut-

off. In Figure 5.2, we can see that she showed an impaired gait and a high instability in the ML 

direction that might be related to the fall risk [98–100]. 

Case 3: male, 81 years old, affected by Stroke. He reported 3 falls in the previous year, 6 falls in the 

following year and he was slow in completing the TUG test. As we can see in Figure 5.2, he shows 

high impairments while performing postural transitions and turns. Despite the gait speed was under 

the limits of normality, he showed also high values of the Gait variability, which has been related to 

the fall risk [42]. 

5.5. CONCLUSIONS 

In conclusion, the conceptual model developed on a healthy population of community-dwelling older 

adults (section 4.3) can be applied on a population of people at risk of falling to obtain more detailed 

quantitative information about different functional domains. The domains of the conceptual model 

confirm and expand information obtained by conventional clinical testing (Figure 5.1). The three 

relevant case studies (Figure 5.2) confirmed the conceptual model could help clinicians in assessing 

individuals’ PC and prescribing rehabilitation programs. Domains of the conceptual model allowed 

to explore the relationships with specific neurological conditions, like Stroke and Parkinson’s disease, 

increasing our knowledge of the older adult’s functional status. 
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6. SENSOR-BASED PA MEASURES FOR THE ASSESSMENT OF USUAL 

PERFORMANCE 

SOME CONTENTS OF THIS CHAPTER ARE TAKEN FROM: CONI ALICE, ET AL. "ASSOCIATION BETWEEN SMARTPHONE-BASED ACTIVITY 

MONITORING AND TRADITIONAL CLINICAL ASSESSMENT TOOLS IN COMMUNITY-DWELLING OLDER PEOPLE. " [105].  

 

6.1. BACKGROUND AND AIM  

One characteristic of the PP tests is that individuals’ performances are assessed in a standard and 

supervised environment, in which people are asked to show their best capacities (e.g. “Please, do this 

as fast as you can”), which reflect what people can do and might differ from their usual performance. 

A recent study showed that laboratory gait measurements do relate to the daily-life walking, but are 

more indicative of an individual’s best performance [106]. Furthermore, in another study, the 

associations between objective PP and PA measures in older adults were investigated and the results 

showed that PP and PA represent associated but also separate domains of the mobility domain of 

physical function [107]. The objective assessment of daily PA can be useful for independent living 

of older adults, although there is still need for consolidation on the use of wearables [108]. The use 

of inertial sensors to continuously monitor the activities of daily living, such as walking and turning, 

is beneficial with respect to the questionnaires. Continuous monitoring allows obtaining information 

about the quality, frequency and variability of these daily activities. In a recent study, the relationships 

between natural turns and fall history/risk in community-dwelling older adults were assessed using 

the signals recorded by SP to measure a broad angular range of turns for about one week. In this 

study, the authors demonstrated that characterizing natural turning during daily activities via 

continuous monitoring methods has great potential and may enable early detection of increased fall 

risk [104]. Other studies recorded the daily-life walking of older people using inertial sensors, and 

their findings confirmed that daily-life walking can be used to improve the assessment of fall risk in 

older people [109,110]. Previous studies used the mean or median of gait characteristics under the 

hypothesis that this would be the most representative estimate of a person’s capacity [111]. However, 

extreme values of gait characteristics may better reflect the capacity of adapting the gait pattern to 

the variety of daily life conditions. Situations where people show “high gait quality” might be 

informative about the best possible performance they can achieve, which may be closely related to 

their performance in a laboratory setting [112]. SPs were used in the framework of the FARSEEING-

InCHIANTI study to gain information on activities of daily living, like gait and turnings and define 

objective physical activity profiles [2]. 

The first aim of this study was to investigate the association between mean and extreme values of PA 

and gait characteristics derived from daily living activities and well-established clinical tools for 
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quantifying motor and cognitive impairments in a cohort of community-dwelling older adults. 

Secondly, datasets of mean or extreme values have been used as an input for a factor analysis in order 

to define conceptual models of daily living activities. 

6.2. METHODS 

6.2.1. POPULATION 

One hundred seventy-one older adults (79.72± 6.55 years old. 87 females) wore a SP at home for at 

least 5 days (up to 9). Several measures representative of the participants’ health status were collected 

during the assessment, including MMSE, IADL, CES-D, PA, HAND, TMTA, PWR, and SPPB. The 

SPs were equipped with a custom Android application designed for long-term monitoring of PA [71]. 

Ethical approval was obtained by the Local Ethical Committee (approval number: 584/2012).  

6.2.2. INSTRUMENTED MEASURES 

The signals recorded by the 3D accelerometer and gyroscope embedded in the SPs were analysed to 

compute the sensor-based PA measures, including the percentage of sedentary, active, and walking 

time, the duration and intensity (METs) of the activities, as well as the gait and turning characteristics. 

Mean or extreme (5th or 95th percentile) values of each variable were computed in order to define 

two sets of features: the first set represents the mean performance and the second set represents the 

best performance observed among the daily activities. 

6.2.3. STATISTICAL ANALYSIS 

Robust linear regression was performed to remove the effect of age, gender, height, weight, and 

MMSE. Spearman’s correlation analysis was used to investigate the association between the sensor-

based measures of PA and the health-related measures. 

Factor analysis was performed to extract the underlying structure of PA and gait features. Outliers 

were identified by the linear robust regression analysis and excluded from the factor analysis. The 

scores obtained from the fitted model were computed for all participants. Statistical analysis were 

performed using R for Windows, version 3.4.3 [63]. 

6.3. RESULTS 

Fifteen measures were obtained from the SP-based activity monitoring dataset for both mean and 

extreme values. Table 6.1 reports the associations between the mean and extreme measures values 

and health-related measures.  
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Table 6.1 Spearman’s correlation coefficient between features and health-related variables 

Health-related measures IADL CES-D PA FALLN HG PR TMTA SPPB 

PHYSICAL ACTIVITY VARIABLES 

Sedentary time %   -0.23     -0.18 

Active time %  -0.16 0.29   0.19  0.26 

Walking time %   0.32     0.21 

Total N.  Steps         

MEAN VALUES OF THE FEATURES 

Step Duration         

SD Step Duration         

C.V. Step Duration         

Coordination Index         

Mean Turning Duration     -0.19 -0.18 0.21 -0.38 

METs   0.33   0.23  0.32 

Cadence     -0.17    

AP Harmonic Ratio         0.17 

ML Harmonic Ratio          

V Harmonic Ratio      0.18   0.17 

AP Step Regularity      0.18    

V Step Regularity     0.20  -0.16 0.20 

Mean Turning Velocity   0.20  0.16  -0.20 0.44 

Peak Turning Velocity   0.27    -0.17 0.41 

Jerkiness of the Tuning Velocity     0.17 -0.17    

EXTREME VALUES OF THE FEATURES 

Step Duration (5)        -0.19 

SD Step Duration (5)         

C.V. Step Duration (5)         

Coordination Index (5)         

Mean Turning Duration (5)         

METs (95)   0.32   0.26  0.31 

Cadence (95)         

Harmonic Ratio AP (95)        0.25 

Harmonic Ratio ML (95) -0.15        

Harmonic Ratio V (95) -0.18    0.25   0.27 

Step Regularity AP (95)     0.17   0.16 

Step Regularity V (95) -0.21    0.28 0.21 -0.18 0.37 

Mean Turning Velocity (95)   0.26  0.18 0.18 -0.22 0.49 

Peak Turning Velocity (95)   0.30  0.16 0.20 -0.18 0.46 

Jerkiness of the Tuning Velocity (5)       0.21 -0.20 

ACRONYMS: ML = Medio-Lateral; AP = Antero-Posterior; V = Vertical; E.V = Proportion of Explained Variance; SD= Standard 

Deviation; CV = Coefficient of Variation; METs = Metabolic Equivalents. 

 

Only significant correlations (p<0.05) are displayed. As expected, the information derived from 

activity monitoring is related to the participants’ health status. Subjects who were less sedentary had 

better IADL, CES-D, PA and SPPB scores. Also, turning abilities (duration of turning and mean and 

peak turning velocities) and gait regularity (Harmonic Ratios and Step Regularities) measures were 

associated with measures of fitness (HG, PR and SPPB) and cognitive capacities (TMTA). Tables 

6.2 and 6.3 report the factor loadings and explained variance for mean and extreme values.  

  



86 
 

Table 6.2 Loadings of the Factor Analysis of the mean values dataset 

FACTOR LOADINGS FOR THE MEAN VALUES 

features E.V. 

Gait 

Variability 

and Regularity 

Activity Level 
Turning 

Ability 
Cadence Coordination 

SD step duration  -0.80     

CV step duration  -0.68     

Coordination Index   0.86     

AP Harmonic Ratio 0.24  0.51     

ML Harmonic Ratio   0.89     

V Harmonic Ratio   0.68     

AP step regularity   0.86     

V step regularity  -0.80     

Sedentary time %   -0.78    

Active time % 0.18   0.97    

Walking time %    0.88    

Mean sedentary time   -0.81    

Mean turning duration    -0.66   

Mean turning velocity 0.14    0.92   

Peak turning velocity     0.90   

Cadence 0.07    0.83  

Coordination Index 0.07       0.76   

ACRONYMS: E.V = Explained Variance; ML = Medio-Lateral; AP = Antero-Posterior; V = Vertical; E.V = Proportion of 

Explained Variance; SD = Standard Deviation; CV = Coefficient of Variation; METs = Metabolic Equivalents. 

 

Table 6.3 Loadings of the Factor Analysis of the extreme values dataset 

FACTOR LOADINGS FOR THE EXTREME VALUES 

features E.V. 
Activity 

Level 

Turning 

Ability 

Gait 

Regularity 
Gait Variability Agility Cadence 

Sedentary time %  -0.79      

Active time % 0.14 0.97      

Walking time %  0.94      

METs (95)   0.60     

Mean turning velocity 

(95) 0.13 
 0.81     

Peak turning velocity (95)   0.89     

AP Harmonic Ratio (95)    0.84    

V Harmonic Ratio (95) 0.13   0.57    

AP step regularity (95)    0.73    

V step regularity (95)    0.63    

SD step duration (5) 0.12    0.90   

CV step duration (5)     0.84   

Step duration (5) 0.07     -0.53  

Coordination Index (5)      0.63  

Cadence (95) 0.05      0.80 

ACRONYMS: E.V = Explained Variance; ML = Medio-Lateral; AP = Antero-Posterior; V = Vertical; E.V = Proportion of 

Explained Variance; SD= Standard Deviation; CV = Coefficient of Variation; METs = Metabolic Equivalents. 
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From the mean values dataset were obtained five factors, explaining 70% of the Total Variance 

(E.V.). The factors were labelled as “Gait variability and regularity” (24% E.V.), “Activity level” 

(18% E.V). “Turning ability” (14% E.V.), “Gait cadence” (7% E.V.), and “Gait coordination” (7% 

E.V.). Six factors were obtained from the extreme values dataset, explaining 64% of the Total 

Variance. The factors were labelled as “Activity level” (14% E.V.), “Turning ability” (13% E.V.), 

“Gait regularity” (13% E.V.), “Gait variability” (12% E.V.), “Agility” (7% E.V.), and “Gait cadence” 

(5% E.V.). 

6.4. DISCUSSION 

We aimed to investigate the association between well-established clinical measures of motor and 

cognitive capacities and mean and extreme values of measures derived from daily living activities in 

a cohort of community-dwelling older adults. The datasets of mean or extreme values have been also 

used as an input for an exploratory factor analysis to discover the structure of monitored ADL. The 

measures associated with the activity level were related to the self-reported PA, suggesting that 

participants accurately perceived and reported their personal level of activity. Older adults who were 

less sedentary during activity monitoring performed better the activities of daily living (IADL) and 

were less prone to depression (CES-D). They also had higher lower limbs strength (PWR) and scored 

higher in the functional assessment (SPPB). These findings agree with the results reported elsewhere 

[113–117] in which was shown that daily physical activity is associated with incident mobility 

disability, premature death, depression and quality of life. Mean and extreme values of METs were 

positively related to PA, PWR and SPPB, meaning that the energy consumption is higher in adults 

who are more fit. Indeed, it was proven that older adults tend to slow down to minimize the increase 

of energy expenditure caused by the age-related inefficiencies [118]. The features associated with 

turning ability were related to activity level, fitness and psychomotor speed. As already described in 

literature, natural turning during daily activity is related to mobility disability that may enable early 

detection of increased fall risk [104].  In our study, both the mean and extreme values of mean and 

peak turn velocity were positively associated with the self-reported PA, the SPPB, and negatively 

associated with TMTA. Extreme values of mean and peak velocity were also positively associated 

with PWR. Mean values of turning duration were negatively associated with measures of fitness 

(PWR, HAND and SPPB) and positively associated with psychomotor speed (TMTA). The 

association of turning ability with TMTA may reflect the motor planning component that is also 

associated with this motor task. The extreme values of turn duration were not associated with fitness 

level or cognition, suggesting that best turning performance seems to be a function of context rather 

than fitness level. Mean values of the turning velocity jerkiness were negatively associated with the 

hand-grip strength (HAND) and with information about falls (number of falls, FALLN). The extreme 
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values of this feature are negatively associated with functional status (SPPB) and positively associated 

with TMTA. It was shown elsewhere that sedentariness influence negatively the cognitive function 

[119,120]. In our study, older adults who were more fit had fewer difficulties in turning, both for 

planning and execution of this task. Mean values of the cadence feature were negatively associated 

with the hand-grip strength (HAND). The features associated with gait regularity were related to 

strength, functional status, and disability. Both the mean and extreme values of the harmonic ratio 

and step regularity were positively associated with hand-grip strength (HAND) and functional status 

(SPPB). Extremes values of the harmonic ratio and step regularity were also negatively associated 

with disability (IADL). Subjects with high gait regularity seem to be stronger and healthier. Mean 

and extremes values of the features associated with gait variability and agility (coordination and step 

duration) were not related to any of the clinical variables. Only extreme values of the step duration 

were negatively associated with the functional status (SPPB). This could be due to the high number 

of confounders that can affect variability values as environmental factors (e.g. how large is the home 

environment) and dual tasking (e.g. walking while talking). Activity level, turning ability, and 

cadence serve as factors in both conceptual models. The remaining factors that differ between the two 

models relate to gait characteristics. In the factor analysis based on mean values, features relating to 

gait variability and regularity are grouped together in one factor and gait coordination is identified as 

an independent factor. In the factor analysis based on extreme values, gait variability, gait regularity, 

and agility (coordination plus speed) are identified as three independent factors. In the model based 

on extreme values, the gait regularity factor groups together the features associated with disability, 

strength, and the functional level. Agility is also associated with the functional level. On the contrary, 

in the model based on the mean values, gait characteristics are fused together into one factor and are 

not associated with any of the clinical variables. This finding suggests that distinguishing between 

gait variability and regularity could be important, especially when assessing features that likely 

represent extreme values (i.e. in a supervised clinical setting). In the factor analysis based on the mean 

values, the coordination factor is composed of the coordination index feature. In the model based on 

extreme values coordination index and step duration are grouped together. This represents the 

association between high speed (low step duration) and coordination for high performance. In 

conclusion, these findings suggest that the accuracy of adaptive walking (which involves gait 

regularity and variability) is better in physically active, higher functioning older adults, as also shown 

in previous studies [121–123]. 
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6.5. CONCLUSIONS 

In conclusion, outcomes of the SP-based activity monitoring are consistent with the clinical 

assessment, suggesting that SP-based technology has great potential in the clinical realm. SPs may 

effectively enable the ecological, quantitative behavioural analysis of community-dwelling older 

adults. As predicted, extreme values of the physical activity features seem to be more indicative of 

functional status and are more closely related with motor performance assessed in a supervised 

clinical setting.  
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7. FINAL REMARKS AND FUTURE DIRECTIONS 

The central aim of this thesis was the design of a general model for providing an objective and 

comprehensive functional assessment tool, being able to also explore the relationships among 

instrumented scores, clinical scores and specific impairments and diseases.  

First, the discriminative ability of standard clinical and instrumented measures of PP in distinguishing 

between different levels of functional status (as measured with Late-Life Function and Disability 

Instrument, LLFDI [55]) was evaluated in a very healthy and fit group of adults living in the 

community. The first limitation of this study was the homogeneous population, characterized by a 

very skewed distribution of the LLFDI scores. The second limitation was that the ratio between the 

sample size and the number of instrumented measures required the performance of a feature selection 

and this might have led to a loss of information. Lastly, there was a lack in the literature for validated 

cut-off for discriminating between different LLFDI levels. Despite these limitations, instrumented 

30CST and TUG measures proofed to be comparable to the standard clinical measures, with moderate 

discriminative ability, in detecting slight differences of LLFDI even in this homogeneous, healthy 

and fit population. Further investigations are needed to define validated cut-off scores to distinguish 

between different levels of LLFDI and therefore confirm the hypothesis that slight differences in 

functional status can be detected, also in an older cohort of community dwellers. Second, age and 

gender effect on a set of sensor-based measures were investigated in a large group of community-

dwelling adults. The findings showed that many sensor-based PP measures exhibited a significant 

association with age. As expected, speed/time related features clearly worsen with aging, but also 

features computed from the locomotion, static and dynamic balance control, as well as features which 

can be related to the global fitness of the persons. Third, an EFA was performed on a set of sensor-

based measures extracted from the instrumented TUG test in a group of community-dwelling elderly 

people. The aim was to classify domains of an instrumented TUG and investigate the functional 

decline with age of these domains. Gender-related differences were also investigated. This study 

showed that the sensor-based TUG measures were grouped in domains with clear clinical meaning. 

Statistical analysis provided evidence about the feasibility of a sensor-based assessment in assessing 

the functional decline in the general population. TUG domains computed by the EFA allowed to 

objectively measure several mobility skills well beyond the conventional clinical outcome (total TUG 

duration). Starting from these results, the EFA was applied on a battery of PP tests, to define a 

conceptual model, supporting the design of a sensor-based tool for assessing older adults’ PC. The 

conceptual model development process included three stages. In the first stage, EFA was performed 

on the residuals obtained from a robust linear regression analysis, to remove the effect of age, gender, 

body composition (height and weight) and cognition (MMSE) from the sensor-based PP measures. 
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In the second stage, the overall physical performance was removed from the sensor-based PP 

measures along with age, gender, body composition and cognition, before performing the EFA. At 

this stage, the scores used to evaluate the individuals’ PC were obtained performing the EFA on the 

residuals, which made the model complex and difficult to understand and use. In the last stage of the 

conceptual model development process, EFA was performed on the sensor-based measures, and not 

on the residuals. This version of the conceptual model resulted in domains with a clear clinical 

meaning and coherent with the conventional clinical assessment of older adults’ PC. Regression 

analysis suggested that such domains expand information obtained with clinical testing and provide 

quantitative information about several mobility skills that are usually not captured by conventional 

outcomes. Fifth, the conceptual model was applied on the sensor-based measures extracted from a 

population of older people at risk of falling, to obtain information about their physical functional 

status. Three relevant case studies have also been illustrated. The information gained from the 

conceptual model were coherent with the conventional assessment of PC and allowed to obtain 

detailed, quantitative, information about individuals’ physical impairments. The limit of the EFA is 

that it is exploratory, meaning that it does not require a priori hypotheses and knowledge about the 

exact nature of the underlying structure. Further work is needed to test and confirm the hypothesized 

structure of the conceptual model. Furthermore, it would be valuable also to understand the causal 

relationships between domains and between domains and clinical outcomes to increase our 

knowledge and understanding of the factors that influence the individuals’ PC. In addition, the 

domains of the conceptual model allowed to explore the relationships with specific neurological 

conditions, like Stroke and Parkinson’s disease, however, further work is needed to evaluate whether 

this more detailed information adds to our ability to predict adverse outcomes, over and above clinical 

testing like gait and SPPB. A follow-up could be of interest to evaluate the performance of the 

proposed model in discriminating robust and pre-frail people compared to clinical assessment. The 

application of the model in different populations demonstrates its validity and clinical significance. 

Unfortunately, the three cohorts presented in this thesis have different outcome measures and it was 

possible to deeply investigate only the participants' physical function. A more specific and detailed 

cognitive assessment of the population would have been useful to better describe the potential of the 

model to detect also cognitive decline. We also provide interesting/representative use cases to show 

how such a model would be used in practice. The so defined conceptual model could be of value for 

clinicians in assessing individuals’ PC and identify therapeutic targets for rehabilitation. The domains 

of the conceptual model have shown a clear clinical meaning and cold contribute to facilitate the 

adoption of the sensor-based assessment in everyday clinical practice; a significant step forward in 

the direction of an evidence based medicine. 
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At last, the individuals’ usual performance, was objectively measured through daily PA monitoring. 

The association between mean and extreme values of PA and gait characteristics derived from daily 

living activities and well-established clinical tools were explored for quantifying motor and cognitive 

impairments in a cohort of community-dwelling older adults. The datasets of mean and extreme 

values have also been used as an input for an EFA to define conceptual models of daily living 

activities. As expected, extreme values of the PA features seem to be more indicative of functional 

status and are more closely related with motor performance assessed in a supervised clinical setting.  

Outcomes of both the sensor-based PP assessment and continuous PA monitoring are consistent with 

the conventional clinical assessment, suggesting that inertial sensing technology has great potential 

in the clinical realm, for the evaluation of individuals’ PC. Inertial sensors are becoming widely 

deployed into objects of daily living like smartphones and stopwatches. Further work is needed to 

investigate whether the information collected from the PC’s sensor-based measures could be 

integrated to go beyond the clinical outcome assessment, to support remote health and to empower 

people to self-manage their own health and function by adopting a healthy and active lifestyle. 

In conclusion, the development and implementation of an easy to use, objective and comprehensive 

tool for the assessment of the individuals’ PC has demonstrated to be feasible. This tool enriches the 

conventional clinical outcomes, allowing to objectively measure several mobility skills that would 

otherwise remain undetected. The sensor-based assessment tool could foster the achievement of the 

early detection of the age-related functional decline, facilitating the design of interventions and 

rehabilitation strategies. 
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8. APPENDIX A: SENSOR-BASED MEASURES COMPUTED FROM THE 

INSTRUMENTED PHYSICAL PERFORMANCE TESTS 

Table 8.1 Sensor-based features extracted from the QS test 
Feature Sensor Description 

CF  

AP ML 

[124,125]  

Accelerometer 

Centroidal frequency; frequency at which spectral mass is concentrated. Spectral moments are needed for the 

estimate:  

𝜇0 = ∑ 𝑃𝑆𝐷𝑖 = 𝑇𝑃;  

𝑁

𝑖=1

𝜇2 = ∑  𝑓𝑖
2 𝑃𝑆𝐷𝑖;   

𝑁

𝑖=1

𝐶𝐹 = √
𝜇2

𝜇0
 

Where PSD is the Power Spectral Density of the signal, f is the frequency vector, and N is the total number of 

points of the PSD. Frequencies below 0.15Hz are usually ignored.    

EA DISPL 

[124,125]  

Accelerometer, 

Displacement 

The 95% confidence Ellipse Area is the area of the confidence ellipse enclosing 95% of the points on the sway 

trajectory. The accelerometer-based postural parameter can be defined by analogy with the parameter based on 
the displacement. 

 

F50%  

AP ML  
[124,125] 

Accelerometer 

Median frequency; frequency below which 50% of total signal power (TP) is present. Starting from the Power 

Spectral Density (PSD) of the signal: 

𝑔𝑛 = ∑ 𝑃𝑆𝐷𝑖  ;  𝐹50% = 𝑓𝑛  , min𝑛: 𝑔𝑛  ≥ 50%𝑇𝑃 

𝑛

𝑖=1

 

Where the second formula means that F50% is the frequency, f, corresponding to the nth index which is the 

smallest index such that g(n) is ≥ 50% of the total power. The total power is equal to g(N) where N is the total 

number of points of the PSD. Frequencies below 0.15Hz are usually ignored. 

F95% 

AP ML  
[124,125]  

Accelerometer 

Frequency below which 95% of total signal power (TP) is present. Starting from the Power Spectral Density 
(PSD) of the signal:  

𝑔𝑛 = ∑ 𝑃𝑆𝐷𝑖 ;  𝐹95% = 𝑓𝑛 , min𝑛: 𝑔𝑛  ≥ 95%𝑇𝑃 

𝑛

𝑖=1

 

Where the second formula mean that F95% is the frequency, f, corresponding to the nth index which is the 

smallest index such that g(n) is ≥ 95% of the total power. The total power is equal to g(N) where N is the total 
number of points of the PSD. Frequencies below 0.15Hz are usually ignored. 

FD  

AP ML 

[124,125] 

Accelerometer 

Frequency dispersion; unitless measure of the variability of the power spectral density frequency content (zero 
for pure sinusoid; increases with spectral bandwidth to one). Spectral moments are needed for the estimate:   

𝜇0 = ∑ 𝑃𝑆𝐷𝑖 = 𝑇𝑃;  𝑁
𝑖=1 𝜇1 = ∑ 𝑓𝑖  𝑃𝑆𝐷𝑖  ;   𝜇2 = ∑ 𝑓𝑖

2 𝑃𝑆𝐷𝑖;  𝐹𝐷 = √
1−𝜇1

2

𝜇0𝜇2
  𝑁

𝑖=1  𝑁
𝑖=1  

Where PSD is the Power Spectral Density of the signal, f is the frequency vector, and N is the total number of 
points of the PSD. Frequencies below 0.15Hz are usually ignored.   

MV  

DISPL 

AP ML  

[124,125] 

Accelerometer, 

Displacement 

Mean Velocity of the postural sway computed as the median of the absolute value of the time series obtained 
integrating the acceleration: 

𝑀𝑉 = 𝑚𝑒𝑑𝑖𝑎𝑛 (∫ 𝑎(𝑡)𝑑𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

)  

Where a is the acceleration component m/s2, Tend/Tstart are the end and the beginning of the observation time 

respectively. 

An alternative definition can be based upon the Sway Path (SP) of the displacement: 

𝑀𝑉 = (
𝑆𝑃

𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡
) 

NJS  

AP ML  [49,126] 
Accelerometer 

Normalized Jerk Score of the acceleration: 
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𝑁𝐽𝑆 = √
𝑇5

2𝑆𝑃2 ∫ (𝑎)̇ 2𝑑𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 

where T is the duration (Tend-Tstart) of the considered component, a is the acceleration measured in m/s2, and SP 
is the Sway Path 

Range  

AP ML  
Accelerometer Range of the signal 

RMS  

AP ML  
Accelerometer 

Root Mean Square (RMS) of the signal, s (it is a measure of dispersion):                             

𝑅𝑀𝑆 = √
1

𝑁
∑(𝑠𝑖  − 𝑚)2

𝑁

𝑖=1

 

where N is the total number of points of the signal s, and m is the mean value 𝑚𝑒𝑎𝑛(𝑠) 

SA 

DISPL [124,125] 
Displacement 

Sway Area (SA) estimated as the sum of the triangles formed by two consecutive points on the sway trajectory 
on the horizontal plane (sAP and sML) and the mean point (mAP and mML) on the plane:   

𝑆𝐴 =
1

2
∑ |(𝑠𝐴𝑃,𝑖+1  − 𝑚𝐴𝑃)(𝑠𝑀𝐿,𝑖 − 𝑚𝑀𝐿) − (𝑠𝐴𝑃,𝑖 − 𝑚𝐴𝑃)(𝑠𝑀𝐿,𝑖+1 − 𝑚𝑀𝐿)|𝑁−1

𝑖=1  

Where s is a generic signal, sAP and sML are the two sway components on the horizontal plane. N is the total 

number of points of the signal time series.  

The accelerometer-based postural parameter can be defined by analogy with the parameter based on the 

displacement. 

SE 

AP ML  
[124,125] 

Accelerometer Spectral Entropy Power spectrum entropy of acceleration (unitless). 

SP  

AP ML  

DISPL   

SP Planar  

DISPL [124,125] 

Accelerometer, 

Displacement 

Sway Path, the total length of the sway trajectory, computed as the sum of the distances between consecutive 

points in the time series. When considering a single direction of the sway:  

𝑃 = ∑(𝑠𝑖+1 − 𝑠𝑖)

𝑁−1

𝑖=1

 

When considering the sway path on the horizontal plane: 

𝑆𝑃 =
1

2
∑(𝑠𝐴𝑃,𝑖+1 − 𝑠𝐴𝑃,𝑖)

2
+ (𝑠𝑀𝐿,𝑖+1 − 𝑠𝑀𝐿,𝑖)

2
𝑁−1

𝑖=1

 

Where s is a generic signal, sAP and sML are the two sway components on the horizontal plane. N is the total 
number of points of the signal time series.  

The accelerometer-based postural parameter can be defined by analogy with the parameter based on the 

displacement 

ACRONYMS: AP: Antero-Posterior; CF: Centroidal Frequency; EA: Ellipse Area; F50%: Median Frequency; F95%: Frequency below 95% of total signal power; FD: 

Frequency Dispersion; ML: Medio-Lateral; MV: Mean Velocity; NJS: Normalized Jerk Score; RMS: Root Mean Square; SA: Sway Area; SE: Spectral Entropy; SP: Sway 

Path; V: Vertical 
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Table 8.2 Sensor-based features extracted from the 7MW test 

Feature Sensor Description 

Duration 

[s] 

Accelerometer/ 

Gyroscope 
Total duration of the test 

Cadence 
[steps/min] 

Accelerometer Cadence in the phase of the gait 

SD Cadence Accelerometer Standard deviation of the Cadence 

NJS [49,126] 

AP ML V 

[m] 

Accelerometer 
The Normalized Jerk Score during gait is computed for each step (i.e., between two consecutive heel strikes), 
then normalized to the step duration, and then averaged across all steps 

PCI [30,49] 

[-] 
Accelerometer 

Phase Coordination Index (PCI). PCI measures gait coordination (i.e., the accuracy and consistency of the 

phase generation). 

𝑃𝐶𝐼 = 𝑃ℎ𝑎𝑠𝑒𝐶𝑉 + 100 ∙

1
𝑁

∑ |𝜑𝑖 − 180°|𝑁
𝑖=1

180°
 

where PhaseCV is the Coefficient of Variation of the Phase. 

φi is the ith phase, which measures the step time with respect to the stride time assigning 360° to each stride 

(gait cycle):  

𝜑𝑖 = 360°
ℎ𝑠𝑆,𝑖 −  ℎ𝑠𝐿,𝑖

ℎ𝑠𝐿,𝑖+1 − ℎ𝑠𝐿,𝑖
 

where hsL(i) and hsS(i) denote the time of the ith heel strike of the legs with the long and short step times, 

respectively. 

Range  

 AP ML V  

[m/s2] 

Accelerometer Range of the signal  

RMS  

AP ML V  

[m/s2] 

Accelerometer 

Root Mean Square (RMS) of the signal, s (it is a measure of dispersion):                             

𝑅𝑀𝑆 = √
1

𝑁
∑(𝑠𝑖  − 𝑚)2

𝑁

𝑖=1

 

where N is the total number of points of the signal s, and m is the mean value 𝑚𝑒𝑎𝑛(𝑠) 

Reg [31]  

AP ML V [31] 

[-] 

Accelerometer 

Step and Stride regularity measured by means of the unbiased estimate of the autocorrelation function of the 

signal s:    

𝐴𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 =
1

𝑁 − |𝑛|
∑ 𝑠𝑖𝑠𝑖+𝑛

𝑁−|𝑛|

𝑖=1

 

Where N is the total number of points of the signal and n is the phase shift in number of samples. 

First dominant period (Ad1) of the autocorrelation coefficient is an expression of the step regularity. 

Second dominant period (Ad2) of the autocorrelation coefficient is an expression of the stride regularity 

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; NJS: Normalized Jerk Score; PCI: Phase Coordination Index; Reg: Regularity; RMS: Root Mean Square; SD: 

Standard Deviation; V: Vertical 
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Table 8.3 Sensor-based features extracted from the CST test 

Feature Sensor Task Description 

Repetitions 

[s] 

Accelerometer/ 

Gyroscope 
Total Total number of repetitions. 

SD Duration 
Accelerometer/ 

Gyroscope  

Sit-to-Stand, Stand-
to-Sit 

 

Standard deviation of the duration of each subtask of the test. 

Duration 

[s] 

 

Accelerometer/ 

Gyroscope  

Total, Sit-to-Stand, 
Stand-to-Sit 

 

Duration of each subtask of the test. 

NJS 

AP ML V 

[m] 

Accelerometer 

 

Sit-to-Stand, Stand-
to-Sit 

 

Normalized Jerk Score of the acceleration (it is related with the smoothness 
of the movement): 

𝑁𝐽𝑆 = √
𝑇5

2
∫ (𝑎

.
)2𝑑𝑡

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 

where T is the duration (Tend-Tstart) of the considered sub-task and a is the 

acceleration measured in m/s2. 

Range 

AP ML V 

[m/s2], 

[°/s] 

 

Accelerometer, 

Gyroscope 

 

Sit-to-Stand, Stand-
to-Sit 

 

Range of the signal, during the considered sub-task of the test 

RMS 

AP, ML, V 

[m/s2], 

[°/s] 

 

Accelerometer, 

Gyroscope 

 

Sit-to-Stand, Stand-
to-Sit 

 

Root Mean Square (RMS) of the signal, s, during the considered sub-task of 

the test (it is a measure of dispersion):                             

𝑅𝑀𝑆 = √
1

𝑁
∑(𝑠𝑖  − 𝑚)2

𝑁

𝑖=1

 

where N is the total number of points of the signal s, and m is the mean value 

𝑚𝑒𝑎𝑛(𝑠) 

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; NJS: Normalized Jerk Score; RMS: Root Mean Square; SD: Standard Deviation; V: Vertical 
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Table 8.4 Sensor-based features extracted from the TUG test 

Feature Sensor Sub-Phases Description 

Duration [s] 
Accelerometer/ 

Gyroscope 

Total, Sit-to-Walk, 

Walk, 180Turn, Turn-

to-Sit  

Total duration and duration of each sub-phase of the TUG 

Number of Steps 
Accelerometer/ 

Gyroscope 
180Turn, Walk Number of steps during each sub-phase of the TUG 

RMS 

AP, ML, V [m/s2] 
Accelerometer 

Sit-to-Walk, 

Walk, 

Turn-to-Sit 

Root Mean Square of the signal, s, during the considered sub-

phase (hence a measure of dispersion): 

𝑅𝑀𝑆 = √
1

𝑁
∑(𝑠𝑖 − 𝑚

𝑁

𝑖=1

)2 

where N is the total number of points of the signal s, and m is the 

mean value: 𝑚𝑒𝑎𝑛(𝑠) 

NJS 

AP, ML, V [m] 
Accelerometer 

Sit-to-Walk,  

Turn-to-Sit 

Time-Normalized Jerk Score of the acceleration: 𝑁𝐽𝑆 =

√
𝑇5

2
∫ (𝑎

.
)2𝑑𝑡

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡
 

where T is the duration of the (Tend-Tstart) of the considered 

sub-phase and a is the acceleration measured in m/s2. 

NJS 

V [-] 
Gyroscope 

180Turn,  

Turn-to-Sit Turning 

Normalized angular Jerk Score: 

𝑁𝐽𝑆 = √
𝑇5

2𝑇𝐴2 ∫ (𝜔
..

)2𝑑𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡
;           

where T is the turn duration (Tend-Tstart) of the considered 

component, ɷ is the angular velocity °/s, and TA is the Turning 

Angle in °. 

𝑇𝐴 = ∫ 𝜔𝑑𝑡
𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 

Mean Velocity [°/s] Gyroscope 
180Turn, 

Turn-to-Sit Turning 

Mean Velocity, as the mean value of the angular velocity along 

the vertical axis during the turn: 

𝑀𝑒𝑎𝑛 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
1

𝑁𝐸−𝑁𝑆
∑ 𝜔(𝑖)𝑁𝐸

𝑖=𝑁𝑆  

Where 𝜔 is the angular velocity in °/s; NE and NS are the index 

of the end and the index of the beginning of the turn, respectively. 

Maximum Velocity [°/s] Gyroscope 
180Turn,  

Turn-to-Sit Turning 

Maximum Velocity as the maximum value of the angular 

velocity along the vertical axis during the turn: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = max (𝜔)𝑁𝑆
𝑁𝐸 

Where 𝜔 is the angular velocity in °/s; NE and NS are the index 

of the end and the index of the beginning of the turn, respectively. 

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; V: Vertical 
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