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Abstract 

A large portion of eukaryotic genome is transcribed into RNAs that apparently have not a 

coding potential. The major part of these noncoding RNAs includes transcripts with size 

greater than 200 nucleotides, formally known as long noncoding RNAs (lncRNAs). In recent 

years, the number of publications dealing with this interesting class has steadfastly grown. 

In fact, they are emerging as key players in a wide range of cellular processes, including 

epigenetic modification, chromatin modulation, transcription, splicing and translation. 

LncRNAs have cell type or tissue specific expression and, in contrast to other types of RNAs, 

they can localize both in the cytoplasm and nucleus, or, more rarely, in other subcellular 

compartments, which has recently increased the interest in conducting experiments, building 

databases and making available localization data for subsequent studies. Furthermore, 

lncRNAs generally lack primary sequence conservation, can be spliced, polyadenylated or 

not or even polymorphic, and possess the ability to adopt a secondary or tertiary structure 

that may influence the biological function. Moreover, research over recent decades has 

shown that RNA–protein interactions form a highly complex network involving numerous 

RNAs and proteins, and high throughput experiments to identify RNA-protein interactions 

are beginning to provide a large amount of valuable information. 

The basic idea of this work is to reconstruct an heterogeneous network depicting lncRNA-

protein interactions that would summarize what is currently known, allow the prediction of 

lacking features and thus give a complete mechanistic understanding of the functions of 

lncRNAs by the network topological analysis. 

Unfortunately, this approach raised problems related to different aspects. Firstly, even if 

recent studies show that a growing number of lncRNAs play critical roles in complex cellular 

processes and that they are implicated in a wide range of human diseases, the fraction of 

annotated lncRNAs is still small. 

Secondly, as of today, most databases are highly inhomogeneous in terms of the type of the 

provided information, and analytical and experimental approaches to investigate them have 

been hampered by the lack of comprehensive annotation. 

Thirdly, the standard bioinformatics solution to fill the gaps due to lacking information is 

based on machine learning techniques that usually lead to myriad problems related to the 
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preprocessing of data and the input dataset format, both aspects that oftentimes are 

conducted by trial and error. 

Finally, a challenging problem that arises in this domain is the data visualization. A common 

strategy used to overcome the problem is constructing interaction networks, whose analytical 

but also visual inspection can offer important biological insights, however one primary 

drawback with this approach is to develop an efficient and scalable algorithm to produce 

easily interpretable layouts for sparse graphs when the number of nodes is very large. 

The thesis deals with a multidisciplinary approach to unravel the complexity of lncRNAs 

regulatory networks and investigate their functions. The objective is to demonstrate the 

feasibility of using machine learning techniques as well as network analysis to find hidden 

patterns in the data and to predict new features. 
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1. Introduction 

Noncoding RNAs, once thought as a part of transcriptional noise, are now emerging as 

central players controlling several cellular mechanisms. The noncoding RNAs have been 

classified based on their sequence length into small noncoding RNAs (<200 nucleotides) 

and long noncoding RNAs (>200 nucleotides). The latter represents the largest class of the 

mammalian transcriptome and this thesis considers it as the main subject of its study. 

According to the last version of NONCODE V5.0, there are about 172,216 distinct ncRNA 

transcripts in Human [1][2]⁠⁠ and more than 500,000 including 17 species. Depending on their 

position and direction of transcription with respect to protein coding genes, lncRNAs may 

be classified as stand-alone or intergenic (distinct transcription units located in sequence 

space that don’t overlap to protein coding genes), antisense (transcribed from the antisense 

DNA strand of annotated transcription units), long intronic (encoded within the introns of 

annotated genes), processed pseudogenes (replica of genes that have lost their coding 

capacity due to mutations, but that can still be transcribed), and promoter/enhancer 

associated transcripts (transcribed in correspondence to these DNA units and generally 

associated to their functions). They may regulate genes in close proximity (in cis) or at a 

distance (in trans) from their transcription site. The majority of lncRNAs have not been 

functionally characterized, but those for which information is available, are reported to play 

important and varied roles in cellular processes (e.g. maintaining homeostasis, regulating 

cell growth and differentiation, apoptosis, imprinting, promoting pluripotency and 

controlling gene expression), suggesting the hypothesis that they represent an important 

layer of regulators inside the cell. Broadly speaking, the biological functions of lncRNAs 

include translation of genetic information, cellular signal transduction and transcriptional 

regulation. 

The association of RNAs with other nucleic acids (DNA and RNA) and with proteins is of 

paramount importance for understanding cell growth, development and differentiation, 

evolution and disease[3]⁠. In particular, it has been shown that RNA and proteins interactions 

are involved in many cellular processes and can imply either transient or stable nucleoprotein 

complexes encompassing specific and non-specific interactions. Not surprisingly, a vast 

number of works have provided deep insights into the functional implication of RNA-

binding complexes features in terms of sequences and structures. In addition, the mechanism 

of action may be diverse. lncRNAs may bring a group of proteins into spatial proximity 
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acting as scaffolds, or may recruit a protein or a complex to DNA acting as guides, or bind 

and titrate away a protein target without exerting any additional functions and acting as 

competitors, or finally acting as enhancers involved in chromosomal looping [4]⁠. Moreover, 

genomic and transcriptomic studies of the primary sequence conservation of protein-coding 

and non-coding loci revealed that the human genome is highly diverse, particularly for its 

non-coding fraction. It is reported that only 2.2% of its DNA sequence is subjected to 

conservation constraints [3] and non-coding genes are the least conserved [2]⁠. However, 

although the body of non-coding genes tends not to be conserved, there are other criteria to 

look at in order to extract useful information. Remarkably, different studies have 

demonstrated the existence of short peaks of conserved sequences in specific portions of a 

gene, such as the 5’ ends [4]⁠. In addition, lncRNAs may or not be 3’polyadenylated or, to 

add complexity, they may present both forms, like NEAT1 or MALAT1, as polymorphic 

transcripts. Furthermore, the cellular localization of a lncRNA is informative regarding its 

function. For example, nuclear lncRNAs could plausibly have functions in histone 

modification or direct transcriptional regulation, while cytoplasmic lncRNAs were found 

linked to mono or polyribosomal complexes, even though this association is not clear. Some 

studies suggest a role in translation, while other in lncRNAs decay. In any case, the 

possibility that lncRNAs contain a short open reading frame that is translated should also be 

considered [4]. Hence, there is a clear need to understand how these molecules and the 

interactions in which they are involved determine the function of this complex machinery, 

and a major challenge of contemporary biology is to embark on an integrated theoretical and 

experimental program to map out, understand and model in quantifiable terms the 

topological and dynamical properties of this enormous class of transcripts. 

Databases as RAIN [5], lncRNAdb [6]⁠, RNAlocate [7], LNCipedia [8]⁠, NONCODE [2], 

RNAcentral [9]⁠, Ensembl [10]⁠ provide a huge number of data about the biological roles and 

characteristics of single lncRNAs. On the other hand, RAIN [5] and NPInter [11]⁠ are the 

only databases which provide ncRNA-RNA and ncRNA-proteins and protein-protein 

interactions. These ncRNA-protein associations have been established from curated 

examples, experimental data, interaction predictions and automatic literature mining. The 

key problem is to develop a systematic approach to data analysis in order to understand the 

single interactions as well as how the sum of these interactions can affect or guide the cell’s 

behavior. One approach to solve this problem involves the use of system biology that aims 

at understanding biological molecules not only as individual entities but as interacting 
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systems. In particular, taking advantage of rules provided by the field of graph theory, it is 

possible to build and analyze graphs depicting interaction networks. The key idea is to 

represent different entities as nodes and link them by edges that convey information about 

the nodes interactions. Depending on the nature of the underlying edge information, different 

types of analyses can be performed. Moreover, the interactions can be undirected, in which 

the relationship is a simple connection without an implied given flow (e.g. protein-protein 

interaction networks or miRNA-lncRNA interaction network) or directed, in which a clear 

flow is implied (e.g. metabolic or cell signaling networks). However, there is a further 

problem with the available information, due to the fact that the databases usually use 

different identifiers and this leads to the well-known problem in looking for homogeneous 

features. For these reasons, it would be valuable to develop prediction methods based on an 

unambiguous and ubiquitous characteristic (e.g. the primary sequence) that can be used to 

identify potential partners in the absence of experimental features, which might be 

informative but not always, or even rarely available for all the considered molecules. These 

methods can then be used for modeling regulatory networks. The standard solution to the 

problem is based on machine learning techniques, which are algorithms able to learn patterns 

from provided examples without being specifically programmed. The typical pipeline 

includes: 

1. Data preparation 

2. Data representation 

3. Prediction model 

4. Downstream analysis 

In general, the aim is to build a model that can be used to make predictions based on the 

available evidence, in the presence of uncertainty. Specifically, the learning algorithms 

identify patterns in the data, learning from the observations. When exposed to more 

observations, the machine improves the model, and in turn improves its predictive 

performance. 

Machine learning algorithms typically require a numerical representation of data points to 

make them suitable for processing and statistical analysis. This numerical representation is 

usually in the form of a vector containing multiple elements describing each object, named 

the feature vector. A consequence is that for data that are not numerical in nature, such as a 

biological sequence, finding a suitable way to represent it is mandatory and often not trivial. 
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Remarkably, the feature vectors construction strictly depends on the choice of the prediction 

model. In fact, methods based on classical machine learning algorithms such as Support 

Vector Machine (SVM) or Random Forest (RF) require fixed-length feature vectors, 

independently on the data point size. This means that two biological sequences of markedly 

different length must be nevertheless encoded by vectors of the same size. More recently, 

deep learning approaches and above all text processing are changing the way to view and 

describe biological sequences. In particular, word embedding techniques based on deep 

learning have been proposed as a more advanced approach to process textual information. 

The key idea is to give the learning algorithm a text with associated labels and create a model. 

Once the model is obtained, it is possible to take new bits of text and include them into the 

model, finally obtaining as output the predicted classification for that text. Such methods 

were developed, and find their natural application, for the analysis of human languages. 

However, biological sequences are obviously not a real text, but if one can find a method to 

depict them as words and sentences, the concept is actually very simple: to learn everything 

we can learn by machine learning algorithms and look for rules along the sequences. 

Furthermore, one can go beyond the primary sequence and include in the model additional 

features that could improve its accuracy. For example, while earlier approaches for the 

rationalization of protein-RNA interaction determinants were focused on the use of sequence 

information only, recent studies [12–14] suggested that the RNA secondary structure and the 

secondary structure elements size have a role in the interaction process. In fact, it seems that 

elements with different length or sizes can have different functional roles. As a consequence, 

including secondary structure elements in the training features could result in the 

improvement of the model. 

Although this research area is rapidly expanding, there are some difficulties to overcome. 

Among them the representation of biomolecules and the difficulty in establishing an 

interacting and non-interacting dataset (since negative examples are often required for the 

model training), and it is also unclear whether the available experimental data are sufficient 

for successfully training classifiers. 

To illuminate this uncharted area, our aim is to provide a generic strategy that includes 

breaking the sequence into individual units (words), treat them as a text and use machine 

learning techniques to predict missing information, in order to build a network to visualize 

and analyze biologically meaningful lncRNAs interactions. With this in mind, this chapter 

outlines the different available strategies to investigate the lncRNAs interactome, subcellular 
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localization and secondary structure, which are all key features of the learning strategy that 

we developed. The aim of Chapter 1 is also to give an overview about the origin of our data. 

We will show methods for comprehensive experimental identification of lncRNA-protein 

interactions, lncRNA subcellular localization and lncRNA secondary structure. In Chapter 

2, we will focus on in silico analysis dealing with the questions that characterize the 

computational process: how convert a biological entity into a suitable input for computer 

algorithms, which model should be used and finally which information is more informative 

and how to visualize it. The results are presented and discussed in the Results and Discussion 

(Chapter 3). Chapter 4 focuses on conclusions and future perspectives while Chapter 5 

outlines the material and methods employed in this study. 

This section will focus on the lncRNAs investigation tools as described in Figure 1, which 

represents a rational classification of the available analysis approaches. 

 

 

Figure 1: overview of different tools for lncRNA investigation 
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1.1. Investigating the lncRNA interactome 

Research over recent decades has shown that RNA–protein interactions form a highly 

complex network involving numerous lncRNAs. Specific short sequences in the RNA 

sequence or larger secondary or tertiary structures are involved in these interactions. 

Moreover, lncRNAs length, subcellular localizations, genomic localization and expression 

level may be play a key role to the functional role of lncRNAs [15]. 

A key point is that lncRNAs is a very heterogeneous class. Many lncRNAs are reported to 

interact with one specific protein, other with multiple regulatory complexes simultaneously. 

Some lncRNAs possess regulatory functions, while others are merely by-products of 

transcription. The length spans from 200 bp to 2,2 kbp for HOTAIR to several kbp for 

Kcnq1ot, a 91 kbp long noncoding RNA that maps to the protein coding Kcnq1 gene in 

antisense orientation [16]. 

For such long lncRNAs, by binding multiple effector partners at the same time by means of 

different domains, they would explicate the role of scaffolds and facilitate the interaction of 

their partners. Moreover, they can also act as inhibitors, for example by binding to specific 

transcription factors acting as decoys and preventing their association with DNA. 

In addition, lncRNAs would direct the localization of ribonucleoprotein complexes to 

specific targets acting as guides. Some of them regulate the expression of genes in cis (on 

neighboring genes), remaining linked to their transcription sites and interacting with 

proteins, others can change the gene expression in trans (on distantly located genes). They 

also can bind to enhancers and help them in their activity (e.g. by promoting the formation 

of chromatin loops) 

Finally, they show cell type specific expression, and the transcription of individual lncRNAs 

can occur at very specific times and places; hence, it has been suggested that they can serve 

as signals to integrate developmental cues, interpret cellular context, or respond to diverse 

stimuli. 

All these features are required to be taken into account in order to better understand the 

lncRNAs interactome. In this area, given the complexity of the interactions and the large 

number of lncRNAs that a genome can express, in silico methods can be of primary 

importance for the characterization of lncRNAs. 
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The depiction of the central regulative role of RNA in general has been facilitated by 

technological advances, and different methods were developed in the past decades to 

uncover the interaction between proteins and RNAs (e.g. RIP, CLIP or its variants). The 

conventional methods were recently coupled with high throughput experiments to identify 

more systematically RNA-protein interactions, providing a large amount of valuable 

information about the complexity of the RNA-protein interaction networks, in turn requiring 

reliable computational methods for analyzing and organizing them. 

The methods to uncover proteins and RNAs interactions can be classified in RNA-focused 

and protein-focused. The goal of RNA-focused approaches is the identification of all 

proteins bound to an RNA of interest. On the contrary, in protein-focused methods the goal 

is to identify RNAs bound by a protein of interest [17]. In general, the RNA-focused 

approach aim is often related to the identification of lncRNA-chromatin interactions (e.g. 

ChIRP or CHART) as well as to lncRNA-RNA interactions (RAP and CLASH), while the 

protein focused goal is to determine lncRNA bound to a protein of interest. 

In the next subsections we will briefly describe the main methods for the detection of the 

lncRNAs interactome giving a quick account on the RNA-focused methods that are not part 

of the data employed in this thesis, and giving more attention to the protein-focused methods 

that were chosen as starting point for our work.  

1.1.1. RNA-focused methods 

While the protein-focused methods use an antibody to capture a protein of interest and 

sequencing the associated RNA, these methods purify an RNA of interest and identify the 

associated protein complexes. 

The RNA focused methods can be divided in in vivo and in vitro. In in vivo methods, cross-

linking between proteins and RNA is induced by UV or formaldehyde, allowing the 

stabilization of physiological interactions by covalent bonds. Then, cells are lysed, the RNA 

of interest is captured and bound proteins are detected. 

The in vitro approaches are based on the immobilization of a synthetic RNA bait on a support 

dipped by a cell lysate or by a protein library to capture and identify proteins. The main 

difference between in vivo and in vitro methods is that the in vivo approaches preserve the 

context of true RNA-protein interactions but understandably, they are more technically 

challenging, especially if the target RNA is of low abundance in the cell [18]. After washing 
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and elution, proteins showing affinity towards the immobilized RNAs can be isolated and 

identified by mass spectrometry (MS). 

MS2 trapping 

One general approach to capture RNA is to exploit the naturally occurring interactions 

between RNA and protein - such as the bacteriophage MS2 viral coat protein, which binds 

tightly to an RNA stem-loop structure. This strategy employs a MS2 bacteriophage coat 

protein to specifically select a stem-loop structure of viral origin inserted at the 3’ end of the 

lncRNA of interest. lncRNAs containing that hairpin bind to the coat protein, which in turn 

is covalently bound to a solid support. Bound RNA-protein complexes can then be washed, 

eluted and identified by MS. 

SILAC 

Stable isotope labelling with amino acids in cell culture (SILAC) is a simple approach for 

the in vivo incorporation of a detectable label into proteins. SILAC labels cellular proteomes 

through normal metabolic processes, incorporating non-radioactive, stable isotope-

containing amino acids in newly synthesized proteins. Natural amino acids are replaced by 

SILAC amino acids. The former are lighter than the latter. Hence, when two cell populations 

(one labelled, the other not labelled) are mixed, their proteins remain distinguishable by MS 

because of the molecular weight difference.  

The MS can be quantitative or non-quantitative. In the quantitative methods, the protein 

abundances are determined from the relative MS signal intensities obtained comparing the 

same proteins in the sample and in the control (e.g. applying SILAC and measuring the mass 

to charge ratio of ions to identify and quantify molecules). In the non-quantitative methods, 

purified proteins from the RNA sample of interest and a control are separated by gel 

electrophoresis and stained for total protein. Protein bands that are present only in the sample 

of interest but not the control are extracted and the proteins identified by MS. Alternatively, 

the total proteome can be analyzed by MS to detect all proteins purified in a sample [18].  
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1.1.2. RNA interaction with chromatin and RNA 

ChIRP-RAP-CHART 

In the Chromatin Isolation by RNA Purification (ChIRP) technique, macromolecular 

interactions are cross-linked with formaldehyde, nuclei isolated, lysed and sonicated. The 

fragments then passed through beads coated with streptavidin and bound by biotinylated 

DNA oligonucleotides antisense to a target RNA, so that the RNA is specifically recognized 

and hybridized. After washing and purification, the genomic regions bound to the target RNA 

can be identified by high-throughput DNA sequencing. Proteins associated with the target 

RNA can be analyzed by mass spectrometry or immunoblotting. The RNA Antisense 

Purification (RAP) and Capture Hybridization Analysis of RNA Targets (CHART) methods 

are similar to ChIRP, differing mostly in the design strategy of the antisense oligonucleotides 

and in the cross-linking protocols. While these methods are offering important evidence for 

the involvement of lncRNAs in gene expression regulation and chromatin remodeling, it 

should be noted that they cannot prove direct lncRNA–protein binding. 

CLASH 

The first high-throughput method using proximity ligation, termed cross-linking, ligation, 

and sequencing of hybrids (CLASH) [19], was developed to study in vivo RNA duplexes 

recognized by a specific RNA-binding protein (RBP). CLASH uses a modified version of 

the CLIP protocol, described in more detail later. Like CLIP, CLASH uses UV-C irradiation 

to cross-link RBPs to the bound RNAs, followed by immunopurification of the RBP–RNA 

complex. These RNA fragments are then identified using high-throughput DNA sequencing. 

In CLASH, there is an additional proximity ligation step that is designed to ligate together 

the two arms of the isolated RNA duplexes. 

1.1.3. Protein-focused methods 

As we did for the RNA-focused methods, we can broadly divide the protein-focused methods 

in two categories: in vivo and in vitro methods. In vivo methods (e.g. RIP-Chip, RIP-seq and 

the various CLIP strategies), are based on covalent bonds induced by UV between RNA 

nucleotides and proximal RBP amino acids at the binding sites. Protein and RNA complexes 

are then isolated by immunoprecipitation using an antibody specific for an RBP. In the in 

vitro approaches (SELEX, RNAcompete and RBNS), protein baits are immobilized to a 
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support and exposed to RNAs. After cycles of selections and amplifications, RNA is isolated 

and sequenced [20]. 

1.1.3.1. In vivo protein-focused 

RIP 

Rna Immunoprecipitation (RIP) is a protein immunoprecipitation in which the RBP of 

interest is immunoprecipitated together with its associated RNAs for identification of the 

bound transcripts; then, the detection of these bound transcripts is performed by microarrays 

(RIP-Chip) [21] or sequencing (RIP-seq) [22] 

CLIP strategies 

CLIP are a class of methods to identify RNA-Protein interaction by cross-linking cells using 

254 nm ultraviolet radiation to covalently cross-link in vivo RNA-protein complexes. After 

cross-linking, the complex is immunoprecipitated, subjected to RNase treatment, followed 

by proteinase K digestion, 5’adaptor ligation and purification. The purified RNA fragments 

are adapter-ligated, amplified by PCR and sequenced. HITS-CLIP, individual-nucleotide 

resolution (iCLIP), photoactivable ribonucleoside-enhanced cross-linking and 

immunoprecipitation (PAR-CLIP) are variants of this general protocol, in combination with 

high-throughput techniques for detection. iCLIP provides information of the cross-link sites 

at nucleotide resolution. The proteinase K treatment digests the covalently bound proteins, 

leaving only the cross-linked amino acids. Then, unlike CLIP, RNAs undergo directly to 

reverse transcription without being subjected to 5’RNA adaptor ligation. 

During the reverse transcription, amino acids bound to RNAs can cause the reverse 

transcriptase to detach, truncating prematurely the cDNAs at the cross-linking nucleotide. 

On the other hand, the unbound RNAs are converted into full-length cDNAs. Amplifying 

and comparing the two types of cDNAs, the protein binding sites are detected at single 

nucleotide resolution. 

The PAR-CLIP method utilizes photoreactive ribonucleoside analogues, such as 4-

thiouridine (4-SU) and 6thioguanosine (6-SG), which in turn allow the use of UV light of 

365 nm in order to improve cross-linking efficiency. In addition, in response to cross-linking, 

specific sequence transitions like T to C in 4SU and G to A in 6SG are induced during the 

reverse transcription, which can be used to identify the precise position of cross-linking and 

to better discriminate between cross-linked RNAs and abundant cellular RNAs [20]. 
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Recently, Enhanced CLIP (eCLIP) has caught the attention of the research community as a 

means of achieving better specificity and positional resolution. As in CLIP, eCLIP is based 

on the covalent link induced by UV irradiation, RNA fragmentation, immunoprecipitation 

of a targeted protein along with cross-linked RNA, and conversion of that RNA into double-

stranded DNA high-throughput sequencing libraries through adapter ligation and reverse 

transcription. The two protocols are different in the addition of adapters: in iCLIP is a one-

time step, while in eCLIP an indexed 3’ adapter is ligated to the cross-linked RNA fragment 

while on the immunoprecipitation beads, and a 3’ RNA adapter is ligated after reverse 

transcription  [23]. It has been shown that this technique: 

• Maintains the single-nucleotide resolution identification of RBP binding sites from 

previous methods 

• Dramatically decreases the required amplification and greatly enhances the rate of 

success at generating libraries with high usable read percentages 

• Allows the binding site identification with decreased sample requirements and high 

reproducibility for individual studies 

To summarize, RIP, RIP-Chip and RIP-Seq allow the identification of bound transcripts, but 

do not provide direct information about the localization of the binding site, while CLIP 

strategies identify the binding sites with high (often single-nucleotide) resolution. 

1.1.3.2. In vitro protein-focused  

SELEX 

The SELEX (Systematic Evolution of Ligands by EXponential enrichment) technology 

relies on the ability to separate RNAs having high affinity for a purified protein from a library 

of RNAs with random or semi-random sequence. SELEX experiments are performed over 

several cycles with each round resulting in increased enrichment of RNAs capable of binding 

to the protein. After PCR amplification, they are cloned and sequenced by the Sanger 

method. There are many variations of SELEX strategies, such as HT-SELEX [24], SEQRS 

[25] and RAPID-SELEX [26], but all are based on the ability to separate bound RNA from 

unbound RNA with the aim to identify a larger number of bound RNAs reducing the number 

of rounds. 
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RNAcompete and RNA Bind-n-Seq 

RNAcompete involve the generation of an RNA pool comprising different short (seven or 

eight nucleotides long) RNA sequences and structures; a single pulldown of the RNAs bound 

to a tagged RBP of interest; and finally microarray and computational interrogation of the 

relative enrichment of each RNA in the bound fraction relative to the starting pool [27]. 

A variant is RNA Bind-n-Seq (RBNS) [28], in which RNAs from a random library are 

incubated at different concentrations with the purified RBP of interest. The RNA is then 

reverse-transcribed and deep-sequenced. These methods not only allow for the identification 

of the bound RNAs, but can also be used to estimate binding affinity.     

1.2. Investigating lncRNAs localization 

Many fundamental characteristics of lncRNAs, such as absolute abundance and subcellular 

localization, remain unclear. In fact, lncRNAs can accumulate to specific nuclear bodies or 

they can be exported to the cytoplasm to exert their functions. In the cytoplasm they can act 

by sequestering a protein or interfering with protein post-translational modifications [3]. 

lncRNAs can be exclusively cytosolic (e.g. DANCR and OIP5-AS1), nuclear (e.g. NEAT1) 

or have a dual localization (HOTAIR) [29]. A small number of lncRNAs have also be 

detected in other subcellular compartments. 

Furthermore, the nucleus is highly organized and compartmentalized containing several 

different nuclear bodies such as the nucleoli, nuclear speckles and nuclear associated 

paraspeckles. All of them are characterized by the presence of specific lncRNAs and proteins 

and, of note, they lack a well-defined membrane separating them form their surroundings. 

Nevertheless, they are structurally distinct. In order to maintain the genetic material within 

a very small nuclear volume, the genomic DNA is highly packaged but maintaining the 

plasticity needed for efficient readout, processing and transfer of genetic information.  

In general, the subcellular localization and the cellular distribution, in combination with the 

detection of the interaction partners and the expression levels can shed light on the lncRNAs 

functions. For example, lncRNAs associated with specific sub-nuclear domains and that co-

localize with specific proteins like NEAT1, localized in paraspeckles together with 

paraspeckle proteins, are likely to have a structural role [30] as well as chromatin associated 

lncRNAs are more likely to have a regulatory role. For this reason, there is the necessity to 

analyze data coming from several experimental methodologies to unravel the potentially 
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regulatory functions of lncRNAs. Hereinafter we will describe the most important 

approaches currently used. 

FISH   

Fluorescence in situ hybridization FISH (or single molecule counting FISH) and qRTPCR 

or a combination of them are probably the gold standards for the detection of RNA in single 

cells. In particular, these methods were successfully used to define the subcellular 

localization of some well-known and functionally characterized lncRNA such as NEAT1, 

NEAT2, MALAT1 [31] and XIST [32], all localized in the nucleus. 

The idea of FISH is that nucleic acids with complementary sequences tend to form a double 

helix. It can be DNA:DNA, RNA:RNA or RNA:DNA. It is a methodology that utilizes 

fluorescent nucleic acid probes that are complementary to target RNA sequences within the 

cell. After the probes hybridization to their targets, it is possible to detect them via 

fluorescence microscopy. It can in principle yield absolute counts of molecules at subcellular 

resolution. Another technique is the reverse transcription (RT) followed by conventional or 

quantitative (q) polymerase chain reaction (qPCR). The main steps are RNA isolation, 

reverse transcription to convert RNA template into complementary (cDNA), followed by a 

PCR amplification and quantification. In traditional RT-PCR the presence of the product is 

checked at the end of the reaction, while in RT-qPCR the amplification is tested at the end 

of every cycle. Often the FISH and RT-qPCR are combined in order to overcome each the 

limitations one of the other. In fact, RNA-FISH provides specific information about RNA 

localization within a cell population or a tissue, and RT-qPCR complements those results by 

giving an absolute measurements of transcript numbers [33]. 

FISSEQ 

In 2015 Lee et co-workers introduced fluorescent in situ sequencing, FISSEQ [34], even 

though at present only few datasets are available, including several hundreds of lncRNAs. 

FISSEQ converts endogenous RNA molecules into short cDNA fragments in situ using 

random hexamer‐primed reverse transcription (RT). The cDNA fragments are circularized 

and amplified using rolling circle amplification (RCA) in situ, followed by in situ next‐

generation sequencing (NGS) reactions. In the end, FISSEQ generates 3D images containing 

NGS reads at each pixel for data analysis [35]. 

The RNALocate database [7] collected results obtained with all these methods, while 

lncATLAS [36] focused on subcellular RNA sequencing (subcRNAseq), described below. 
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RNA-seq and SubRNAseq 

RNA sequencing (RNA-seq) is quantitative technique in which the transcripts are first 

converted into a pool of cDNAs, which will constitute the sequencing library, by RNA 

fragmentation, adapter ligation, cDNA synthesis, size selection and limited cycles of 

amplification. In the case of lncRNAs that are generally expressed at low abundance, RNA 

can be fractioned from different cellular compartments prior to sequencing to increase the 

relative abundance of unique transcripts. [37]. High‐throughput sequencing of the 

subcellular RNAs can then be used to reveal the identity, abundance, and subcellular 

distribution of transcripts. Subcellular RNA sequencing (SubRNAseq) yields high-

throughput and quantitative data, although the absolute counts of RNA molecules per cell 

are lost. 

1.3. Investigating lncRNAs secondary structure 

Several recent discoveries have underlined that RNA structure and function are closely 

related [38]. The RNA structure is characterized by several modules originating by the 

interactions among base pairs that can be distant in the linear sequence but proximal when 

the polynucleotide chain folds upon itself. 

Two or more consecutive base pairs forms a stem, which is an intra-molecule double strand. 

Unpaired nucleotides within a stem form an internal loop. A single-nucleotide asymmetric 

internal loop is a bulge. An external loop of unpaired bases at the end of stems is an hairpin 

loop. A junction, or cruciform, is a motif that connects three or more stems. Pseudoknots are 

intertwined motifs that form when at least two stems are connect by a shared single strand 

or loop. Hence, RNA secondary structure is complex but can be rationalized in terms of basic 

modules (or motifs) combined in complex ways. In our work we take into account only 

simple modules such as internal loop, hairpins, stems and bulges but we strongly consider 

the size of each motif, that may be a marker of the link between biomolecules (Figure 2). 



15 

 

 

 

However, RNA secondary structure is a complex problem, both experimentally as well as in 

terms of in silico prediction. One primary problem associated to the lncRNAs is that they 

are often large and highly dynamic in living cells, thus their structures are very challenging 

to solve. The most conventional methods to study RNA tertiary and secondary structure are 

crystallography, nuclear magnetic resonance (NMR) and cryo-electron microscopy (cryo-

EM). Then protocols with in vitro and high-throughput applicability have been designed. In 

2010, Underwood et al [39] proposed the fragmentation sequencing (Frag-Seq), an 

enzymatic method based on the cleavage of single stranded RNA by the nuclease P1, 

followed by an high-throughput sequencing⁠. The demonstration of the power of 

transcriptome-wide analysis of RNA structure was the development of Parallel Analysis of 

RNA Structure (PARS). PARS uses both single (nuclease S1) and double-stranded (nuclease 

V1) nucleases to digest motifs in RNA and to generate a structure score (the preference of 

each nucleotide in a specific RNA to be single- or double-stranded). Another in vitro 

 

Figure 2: RNA secondary structure motifs. (A) Internal loop, stem, hairpin loop ; (B) bulges; ( C) 

example of complex motif. [Figure obtained with forna] 
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technique is Selective 2’-Hydroxil Acetylation by Primer Extension (SHAPE) [40]. In 

SHAPE the key idea is that the 2’-hydroxyl group nucleophilicity is different between 

unpaired and base-paired or otherwise constrained nucleotides, in particular single-stranded 

or flexible RNA regions exhibit higher reactivity than RNA nucleotides engaged in base 

pairing or other interactions. Therefore, it is possible using hydroxyl-selective electrophiles 

such as NMIA that, reacting preferentially with the 2’-hydroxyl group in flexible 

nucleotides, form a stable 2’-O-ester adduct. NMIA are then inactivated via hydrolysis 

leaving an unreactive product. By this workflow, SHAPE gives an indication of local 

nucleotide flexibility.  

In vitro experiments, necessary when using nucleases that cannot enter the cell, require RNA 

purification that must be later renatured to achieve a stable conformation, which might be 

different from the biologically relevant that the RNA had in vivo. Moreover, RNA structure 

in vivo is likely to be more complex, and probably influenced by the binding of small 

molecules, and interactions with numerous RNA-binding proteins within the cell. 

For this reason, in recent years, in vivo approaches have been developed. The strategies to 

study the structure in vivo can be classified in two groups: 

1. based on chemicals characterized by different reactivity for single-stranded or 

double-stranded nucleotides. (DMS-Seq and icSHAPE). In these methods, small size 

chemicals react and covalently modify solvent accessible nucleotides. 

2. based on ligation to directly identify the two strands of RNA duplexes. This can be 

done by a chemical cross-linking as in SPLASH and PARIS or by UV-cross linking 

such as in CLASH and hiCLIP protocols. 

DMS-Seq 

Dimethyl sulfate (DMS), introduced for RNA structure mapping in 1980, is one of the oldest 

chemical reagents used to probe RNA structure. It is base-specific and can alkylate the 

Watson-Crick face of adenosine and cytosine, as well as the N7 position of guanosine when 

not base-paired. DMS-Seq combines DMS methylation with NGS. 

icSHAPE 

The SHAPE technique, previously described, was successfully applied to living cells with 

the choice of 2-methylnicotinic acid imidazolide (NAI) and 2-methyl-3-furoic acid 

imidazolide (FAI) as reagents [10]. Transforming NAI into NAI-N3 by the addiction of an 
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azide to the nicotinic acid ring at position 2, is at the basis of another technique named 

icSHAPE, in which flexible RNA is acetylated with the SHAPE reagent NAI-N3 and 

followed by experimental and computational steps. Hence, like DMS, icSHAPE, is a 

chemical approach that can measure RNA flexibility in cells. 

SPLASH – PARIS – LIGR-Seq 

To study all RNA duplexes in the cell, methods based on cross-linking the two arms of RNA 

duplexes using a psoralen derivative were developed. The most commonly used chemical to 

determine the base pairing relationships is psoralen, a photo-cross-linker that reversibly 

reacts with staggered pyrimidines on opposite strands. The psoralen-cross-linking-based 

methods include sequencing of psoralen-cross-linked, ligated, and selected hybrids 

(SPLASH) [17], psoralen analysis of RNA interactions and structures (PARIS) [41], and 

ligation of interacting RNA followed by high-throughput sequencing (LIGR-seq). PARIS 

combines four critical techniques, psoralen cross-linking, 2D gel purification, proximity 

ligation, and high-throughput sequencing 

Despite the innovations in this area, the structural domains that drives the interactions with 

the other biomolecules are not still well known and difficult to define. In addition, all 

methods are expensive in terms of cost and manual labor, hence the importance of 

developing tools that can predict the secondary structure from an RNA sequence. 

Furthermore, since the secondary structure has a role in the functionality and it is also 

determined by the primary sequence, it is theoretically possible to establish a direct link 

between the primary sequence and function, once the secondary structure with its elements 

has been accurately determined. In our case, the inspiration comes from the Natural 

Language Processing and the basic idea that the secondary structure from RNA sequences 

can be represented as a string, and thus can be considered a text. 

In this context, several computational frameworks are emerging that demonstrate the 

potential of the application of automated speech recognition to biomolecules [42].  As 

described in Material and Methods (Chapter 4), we chose RNAfold to obtain the secondary 

structure. We then applied the BEAR encoding to describe the secondary structure as a string 

of characters, while also keeping an informative description, and add a further step in order 

to reduce the complexity by using the more compact quickBEAR alphabet. The last two 

steps allowed us to have an optimal input for a text processing approach and a reasonable 

number of characters combination that lead in turn to a faster algorithm. The aim is to extract 
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and infer specific features once given two datasets (e.g. positive vs negatives) differing by 

some biological characteristic. The obtained models can then be used for predicting the class 

to which a new RNA, not included in the initial dataset, belongs to, and to understand the 

features leading to the dataset discrimination. 
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2. Current bioinformatic approaches in studying 

lncRNAs 

2.1. Introduction 

In silico methods can be of primary importance for the characterization of lncRNAs and to 

overcome the standard drawbacks such as the low abundance of data, the cost of labor and 

the time of experiments that typically characterize them. 

They often start from experimental data collected in databases. Since each database usually 

focuses on one single aspect of the biological problem (i.e. localization, tissue expression or 

interactions), one strategy is to collect all available data and combine them in order to 

elucidate lncRNAs functionality. For example, an idea is to add the expression values, 

subcellular localizations and secondary structures to the interactions map and use them to 

create an integrated network to give an overall view, as schematically represented in Figure 

3. 

 

Figure 3: Flowchart of the analysis pipeline 
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The main problems to face in any pipeline are the input format, the choice of prediction tool 

and finally the output visualization. This chapter outlines the more widely used approaches 

in these research areas. 

Representation of biomolecules as strings 

The protein or RNA primary structure is the sequence of amino acids or nucleotides, 

respectively, while the secondary structure describes the intra-molecular hydrogen bonds 

patterns, and finally the tertiary structure represents how these molecules are folded in a 3D 

space. The description of these biological molecules as strings of characters is facilitated by 

the facts that they are linear (i.e. there are no ramifications) and have a clear polarity (from 

the N-terminal to the C-terminal end for proteins, or from the 5’ to the 3’ end for nucleic 

acids). The primary sequence is generally based on a 4-letter RNA alphabet (or sometimes a 

5-symbol alphabet that includes the unknown nucleotide X [39]⁠ ) or a 20-aminoacid protein 

alphabet. More specifically for protein sequences, Suresh et al. [43]⁠ introduced a simplified 

7 symbol alphabet, whereby the 20 amino acids were clustered into 7 groups based on their 

dipole moments and side chain volume: {A,G,V}, {I,L,F,P}, {Y,M,T,S}, {H,N,Q,W}, 

{R,K}, {D,E} and {C}. The idea behind grouping of characters comes from the need to 

maintain a low dimensional space when describing the primary sequence with the purpose 

of training a model able to generalize sequence characteristics allowing the usage of the 

trained model for the inference of labels (e.g. describing some functional feature) associated 

to biomolecules. This alphabet reduction is crucial in building the prediction model in a 

reasonable time and in facilitating the identification of patterns, since amino acids in the 

same group share physical and chemical characteristics. Each sequence is then split in small 

portions named k-grams where k is an optimized size, and ideally it represents the fragments 

(k-mers) that have the most influence on the prediction. The best value of k is not known a 

priori, and depends on various parameters such as the employed model or the target partner, 

and each time the optimal value needs to be investigated. Importantly, it has a relevant impact 

on the running time. For instance, considering 3-mer strings under a 20-symbol alphabet 

implies exploring 203 possible different combinations. 

Grouping nucleotides to reduce the alphabet size does not come as naturally, and in principle 

would have less impact, since the alphabet is already small. Yet, it might be crucial for the 

description of the secondary structure.  The secondary structure of an RNA is the pattern of 

hydrogen bonding between bases along the polynucleotide chain and depicts the tendency 

of some nucleotides in the single strand to pair and form complicated structures, from here 
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on named Secondary Structure Elements (SSE). Some methods has been developed to 

predict an RNA secondary structure given its sequence, among them RNAfold from Vienna 

package [44]⁠ or RNAstructure [45]⁠, which are based on thermodynamic models, predicting 

the lowest free energy secondary structure as well as, for some algorithms, a number of 

suboptimal structures. RNAshapes [46]⁠ in contrast is based on the abstract shapes approach. 

To represent in a compact way the RNA secondary structure, the standard notation is the so-

called dot-bracket, in which unpaired nucleotides are depicted as dots, and paired 

nucleotides as round brackets. Each nucleotide pair involved in a bond is depicted as an open 

and a close bracket. Under some assumptions (e.g. ignoring the possibility of pseudo-knot 

formation), a string of dots and brackets describes unambiguously a distinct secondary 

structure, and each open bracket can be associated unambiguously to only one close bracket, 

thus identifying bonding partners. This simple representation, while commonly used by most 

secondary structure prediction algorithms, lacks information on the structural context; for 

example, a dot might represent an unpaired nucleotide in an hairpin loop, a bulge, or a 

nucleotide in an internal loop, and it is not possible to discriminate among these different 

structural contexts directly without post-processing the dot-bracket string. 

As a consequence, a potentially more useful approach would be depicting the secondary 

structure always as a string, but composed by characters belonging to more complex 

alphabets, taking into account not only the base-pairing status of each nucleotide but also 

some more complex structural features. 

Recently, Adjeroh et al. [47] presented a Protein-RNA interaction method in which the RNA 

secondary structure is described as a string-sequence of basic SSEs. They identified three 

length categories for each element and reported their distribution, suggesting that these can 

be discriminative parameters for the interactions and functional roles of an RNA. 

Heller and coworkers converted the dot-bracket output of RNAshapes [46] by the forgi 

python package [48] and applied this representation to predict an interaction. The string 

encodes the structural context of each nucleotide in the input sequence with a symbol related 

to exterior loop, internal loop, stem, hairpin and multi-loop. In this context, Mattei et al.[49] 

introduced an 85-characters based alphabet named BEAR alphabet (for more details see the 

Materials and Methods Chapter). It was successfully applied to the Rfam database [50] to 

compare RNA structures, classify RNAs into families and to discover recurrent structural 

motifs from a set of unaligned RNAs.  
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The same principles can be also useful for the description of protein secondary structures. 

For example, Adjaroh et al. [47] used the Ramachandran code, and more frequently the 

protein secondary structure is depicted in function of short structural fragments called 

protein blocks that seem to provide a more accurate representation than classical three state 

protein secondary structure (helix, sheet, loop). 

Once a biomolecule is described in a formal way, taking into account its primary and/or 

secondary structure with different and appropriate encodings, it becomes easier to apply 

machine learning to tackle biological problems. These problems must be generally converted 

in a form of classification (i.e. inferring to which of two or more distinct classes a molecule 

is more likely to belong to) or regression (extrapolating or interpolating the value of a 

function given a molecule representation). Again, how a biomolecule is represented is crucial 

for the performance of the task, in terms of accuracy of prediction and execution times. 

Describing a biomolecule in a simple but at the same time informative way should therefore 

lead to models that are more effective. Moreover, the features describing the biomolecule 

should also be easily available, in order to broaden the applicability spectrum. For example, 

features derived from the tertiary structure might be very informative, but the tertiary 

structure is not known, or could be difficult to infer, for most proteins and even more for 

RNAs. Therefore, a classification or regression model based on tertiary structure features 

could be accurate but it can be applied only in a limited number of cases. Taking everything 

into account, informative string representations of primary and secondary structures for 

proteins and RNAs are particularly attractive, since they maintain the intrinsic simplicity of 

a string, but they can also include detailed information and have a broad application 

spectrum.  

 

2.2. Machine learning approaches 

There are several ways to apply machine learning to molecules described as strings, most of 

them based on counting the absolute or relative frequencies of individual characters or of k-

mers (substrings of consecutive characters of length k). In September 2018, Calabrese et al. 

[51] developed SEEKR, an algorithm based on k-mers suited to detect similarities between 

evolutionarily related lncRNAs. Next, they carried on a network-based approach, 

demonstrating the possibility to cluster lncRNAs into communities of related k-mer profiles. 

Finally, they examined the lncRNA subcellular localization and protein associations, in order 
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to investigate whether k-mer content correlates with these features. They concluded that k-

mer content provides information about the subcellular localization of an lncRNA, and for 

some proteins (e.g. HNRNPC, KHDRBS1, QKI) motif density plays a dominant role in 

determining RNA binding in vivo.  

One relatively unexplored way, especially for RNAs, is to consider a molecule as a text. In 

general terms, the goal of viewing a sequence as text is to identify words (i.e. recurrent 

substrings of the molecules having a meaning), how words are organized into sentences (i.e. 

sets of words organized into higher-order patterns), and possibly other features such as 

syntax, punctuation, and so on. There are currently a number of machine learning methods 

developed for text processing, but their extension to biological cases is still at the beginning, 

thus requiring novel approaches. For example, what is a word in an RNA or protein sequence, 

and what is a sentence, are not trivial to rationalize, and the issue becomes even more 

daunting when the secondary structure is taken into account. Below, we briefly describe the 

currently employed ways to face these problems. 

The general machine learning task is to learn a target function (f) that best maps input 

variables (X) to an output variable (Y): Y = f(X). 

Features can be of different sorts. They might be continuous (e.g. real or integer-valued such 

as occurrences of short pieces of a sequence) or categorical (e.g. GO terms, RNA category, 

localization). A problem with modeling text is that techniques like machine learning 

algorithms prefer well-defined fixed-length inputs. Machine learning algorithms cannot 

work with raw text directly; In particular, if the input is a textual data (e.g. a sequence 

encoded as a text), the text must be at some point converted into numbers, more specifically 

vectors of numbers, each unit of the vector having a specific meaning. 

There are many different ways to overcome these problems and feed a text representation to 

a machine learning system. The most important are listed below: 

• bag of word representation, in which the occurrence of each word is used as a 

feature. It is intuitive and simple but the word order information is discarded, hence 

the name “bag”, and since the set of potential features is made from all the words 

that appear at least one time, the dimension of the problem is high. The input of a 

Bag of word model takes into account only whether known words occur in the 

document, not where within the document. 
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• Phrase-based representation, in which a feature is generated from contiguous 

words. The main advantage is that phrases are more informative than single words 

since there is the additional contribution of the context in which a word is found. 

• Ngram-based representation, in which each feature represents a fixed length 

sequence of size n of contiguous typographic symbols. This is applicable to any 

sequence and it is the only strategy currently applied to biomolecules. It implicitly 

takes into account semantic or grammatical information but it adds noise, it implies 

the choice of n that it is not intuitive and when n grows the dimensionality becomes 

quickly very high. For example, considering an RNA described by a 4 letter based 

alphabet, a 5-mer needs a bit vector of dimension 45=1024. 

Given the representation for the sequences and secondary structure for biomolecules and 

after encoding them as feature vectors, it is possible to choose the appropriate prediction 

models. 

One of the first methods for predicting non coding RNA complexes using machine learning 

was reported in 2011 by Pancaldi and Bähler [52]⁠. They trained RF and SVM classifiers 

using more than 100 features such as GO terms, chromosomal position, physical properties 

and protein localization⁠. Thereafter, catRAPID [53]⁠ was developed by exploiting the 

physiochemical properties, hydrogen bonding and van der Waals properties as well as the 

secondary structure. Next, Lu et al. [54] proposed lncPro based on three types of classical 

protein secondary structures, hydrogen-bond and van der Waals propensities as well as six 

types of RNA secondary structures. 

Muppirala et al. [55] proposed their string-based method RPISeq based on RF and SVM 

classifiers, while RPI-Pred used only SVM but differs from the previous for the introduction 

of the 3D protein structure and RNA features⁠.      

The methods above require many data that are not always available and, additionally, they 

have the main drawback that a specific step is required in order to obtain a fixed-length input. 

As said before, the most popular approach to address this problem is to divide the string in 

smaller portions named k-mers, another is to reduce the space by Fourier series 

transformation (as implemented in catRAPID and lncPRO). 

To date, deep learning approaches are becoming very popular in the bioinformatics area. 

They usually need a huge training dataset to perform correctly and the core of the structure 

is a neural network. Examples are DeepBind [56], which was⁠ applied to determine sequence 
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specificities of DNA and RNA binding proteins, and IPMiner [57], which used a quite 

complex structure based on a stacked autoencoder and a subsequent step in which the 

extracted features are fed into random forest models. 

So far, SVM and RF are the most used models. Importantly, the latter allows the analysis of 

the features most frequently used by the classifier to predict the outputs (i.e. RPISeq), which 

might allow a deeper understanding of the patterns detected by the algorithm, and their 

translation into biological knowledge 

However, one of the most attractive research area is Natural Language Processing (NLP), 

which is an approach used to analyze human languages. It considers the hierarchical 

structure of the language: several words make a sentence and a sentence transmits a meaning. 

In general, it is based on: 

• Tokenization: the process of demarcating sections of a string of input characters 

• Syntactic analysis: with the aim to analyze a string of symbols conforming to the 

rules of a formal grammar 

• Semantic analysis: the formal analysis of meanings 

The current challenge is to describe a biological sequence as a sentence and map it to a 

vector. So far, the basic philosophy is to apply a variable-length k-mer sliding window along 

the sequence. We tried to exploit different methods, some including only a depiction of the 

RNA primary sequence as well as others based only on their secondary structure. Finally, we 

came up with a novel approach that combines both levels, that proved to be more effective 

and that is described in detail in the Materials and Methods Chapter. 

 

2.3. Data visualization 

Another important feature that our approaches can provide is that they facilitate the 

modeling, building and also description of complex relationships among biological 

molecules, and within the biomolecules themselves. The inherent variability of biological 

data, data inaccuracy and noise, the overload of information and the need to study the 

dynamics and network topology over time, are well-known problems in system biology. One 

way to overcome these problems is the graph theory. A graph, also called network, is a 

mathematical representation composed by a set of vertices (V), called nodes, which are 
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connected by links called edges (E). Formally, the graph is defined as G = (V,E). The exact 

meaning of the nodes and edges in a graph depends on the specific application and, 

depending on the application, the edges sometimes have weights, which indicate the strength 

(or some other attribute) of each connection between the nodes. Moreover, a graph can be 

undirected or directed. Undirected graphs have edges that do not have a direction and the 

edges indicate a two-way relationship. On the contrary, directed graphs have edges with 

direction and the edges indicate a one-way relationship. Mathematically, they are defined as 

an ordered triple G = (V, E, f), where f is a function that maps each element in E to an ordered 

pair of vertices in V. Directed graphs are mostly suitable for the representation of schemas 

describing biological pathways or procedures which show the sequential interaction of 

elements at one or multiple time points and the flow of information throughout the network. 

Within the fields of biology, protein-protein interaction (PPI) networks, biochemical 

networks, transcriptional regulation networks, signal transduction or metabolic networks are 

the highlighted network categories in systems biology, often sharing characteristics and 

properties. The topology of the network often reveals information about its biological 

significance. In fact, networks follow patterns and rules that allow scientists to go through a 

deeper investigation towards knowledge extraction. Following the same reasoning, it is also 

possible to model and describe single biological sequences as networks, considering motifs 

as vertices linked by weighted edges, whereas the weight is a specific attribute. The 

objective, in this case, could be the detection of the most frequent motifs within a specific 

dataset (e.g. lncRNAs in nucleus or cytoplasm). 

Many of the available approaches are limited to the analysis of features in a single 

homogeneous network, considering entities of the same type or domain (e.g., a protein-

protein interaction network or a gene network). However  a number of works [1] have shown 

that it is possible to combine different types of interactions and data (e.g. protein-protein 

interactions, lncRNAs expression similarity, lncRNAs-protein interactions) in order to 

reveal hidden properties and features and hence investigate their functionality. Yet, it is 

always needed to calculate a relatedness score for each lncRNA-protein pair in the 

heterogeneous network. A whole range of different approaches to this problem is available. 

The most commonly used approaches are guilt-by-association (GBA), the Katz method [58]⁠, 

Combining dATa Across species using Positive-Unlabeled Learning Techniques 

(CATAPULT) [58]⁠, Random Walk with Restart (RWR), and LncRNA-protein Interaction 

prediction based on Heterogeneous Network model (LPIHN) [59] and HeteSim [60]. The 
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KATZ measure is a weighted sum of the number of paths in the network that measures the 

similarity of two nodes. CATAPULT is a supervised machine learning method that uses a 

biased support vector machine where the features are derived from walks in a heterogeneous 

gene-trait network. RWR is a method for prioritization of candidate genes by use of a global 

network distance measure, random walk analysis, for the definition of similarities in protein-

protein interaction networks and it add weight to the assumption that phenotypically similar 

diseases are associated with disturbances of subnetworks within the larger protein 

interactome that extend beyond the disease proteins themselves. LPIHN is a network-based 

method that implements a random walk on a heterogeneous network. PRince [61]  is a global 

method based on formulating constraints on the prioritization function that relate to its 

smoothness over the network and usage of prior information. HeteSim is a path-based 

measure in which the key idea is that similar objects are more likely to be related to some 

other objects. 

As aforementioned, the graph theory was used also to represent RNA secondary structures 

[13].Waterman pioneered the graphical representation of RNA in 1978 with the aim of 

analyzing the secondary structure of tRNAs. Specifically, he depicted the RNA secondary 

structure as a planar graph and analyzed base pairing in an adjacency matrix. In 1980, 

Nussinov [62] also developed an ordered label-free representation to compare secondary 

structures of RNA. In 1990, Shapiro [63] used a tree representation of RNA secondary 

structure to measure secondary structural similarities. He developed an algorithm for 

analyzing multiple RNA secondary structures by multiple string alignment. In particular, he 

defined the tree edit distance between two tree secondary structures to quantify the minimum 

cost (insertion, deletion, and replacement of nodes) along an edit path for converting one 

tree into another. This measure is implemented in the RNAdistance program of the Vienna 

RNA package, widely used to compare two RNA structures. Morosetti [64] further studied 

similarities in tree graph representations by using topology connectivity indices known as 

the Randíc index. 

In 2003, Schlick and coworkers developed dual graphical representations of RNA secondary 

motifs in addition to tree graphs in a framework coined RAG (RNA-As-Graphs). In this 

representation a node is a double-stranded helical stem with more than one base pair; an edge 

represents a single strand that occurs in segments connecting secondary structural elements 

such as bulges, loops, and junctions [65]. 
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Thus, the meaning of the nodes or edges used in a network representation depends on the 

type of data used to build the network and it is important to emphasize that directed or 

undirected edges can also have a quantitative value associated with them that can convey 

how reliable the interaction is or how closely related two RNAs are in terms of sequence 

similarity or the distance of two motifs along the sequence. The data sources can be manual 

curation of scientific literature, high-throughput dataset or computational predictions that 

use experimental evidence as their basis and aim to predict unexplored relationships between 

biological molecules. 
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3. Materials and Methods 

3.1. Introduction 

The motivation of this project comes from the fact that despite the growing number of 

databases, little basic knowledge exists about the normal lncRNAs. 

In fact, lncRNAs can interact with DNA, proteins or other RNAs, have tissue-specific peaks 

in expression, have a variable subcellular localization [20] and it is widely accepted that its 

functionality is intimately linked to the formation of specific secondary and tertiary 

elements. 

Then, we wondered whether, starting from curated databases, it could be possible to infer 

the lncRNAs functionality. 

To address the problem we referred to the following sources: 

• NPinter v3.0: It includes interactions between noncoding RNAs and proteins, other 

RNAs and DNAs, all experimentally verified. The interactions are both physical 

interactions retrieved from publicly available high-throughput experiment results, 

and manually collected from publications, and subsequently curated by an annotation 

process against known databases including NONCODE, miRBase and UniProt. [11] 

• RNA–protein Association and Interaction Networks (RAIN) v1.0: RAIN is a 

resource of ncRNA-RNA and ncRNA-Protein interactions that integrates 

heterogeneous evidence from experiments, predictions, text mining and expert 

curation [5]. 

• Genotype Tissue Expression (GTEx):  The GTEx data resource consists of whole-

genome sequence and RNA sequences and expression estimates from different 

tissues retrieved from adult donors. [https://gtexportal.org/home/] 

• RNALocate: It documents subcellular localization in 65 organisms (including Homo 

sapiens, Mus musculus and Saccharomyces cerevisiae) for 9 RNA categories. Each 

subcellular localization entry available on the web page contains detailed information 

on RNA symbol (i.e. the official name of the RNA), RNA category, aliases, organism, 

sequence, homology, subcellular localization, tissue, validation method, PubMed ID, 

detailed description and network [7]. 
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• lncATLAS: lncRNA localization in human cells based on RNA-sequencing data sets 

(subcRNAseq), produced by the ENCODE Consortium. Each entry contains a 

relative concentration index (RCI), calculated for cytoplasm and nucleus (CN-RCI), 

defined as the log-ratio, between the two compartments, of the concentration of a 

given RNA molecule per unit mass of RNA [36] 

• lncSLdb: lncSLdb collects subcellular information for lncRNAs extracted from 

literature mining. It stores data from 8 species (Human, Mouse, Bombyx mori, 

Cryptococcus, Microtus transcapicus, Rat, Bee and Fruit fly) 

• LOCATE: It houses data describing the membrane organization and subcellular 

localization of proteins from the FANTOM3 Isoform Protein Sequence set. 

Membrane organization is predicted by the high-throughput, computational pipeline 

MemO. The subcellular locations of selected proteins from this set were determined 

by a high-throughput, immunofluorescence-based assay and by manually reviewing 

over 1700 peer-reviewed publications [http://locate.imb.uq.edu.au/] 

A network approach was applied to have a complete view of the relationships between the 

biomolecules. The aim is to get a significant and reliable dataset. 

Furthermore, it was also of interest to add predicted subcellular lncRNAs localizations, 

where not available. We investigated whether this aspect could be partly explained by the 

presence of short motifs in the primary sequence and by a contribution of the secondary 

structure elements. We therefore developed a new approach to predict the subcellular 

localization. 

Hence, this chapter is divided in three main parts: the first part explains the data sources, the 

second is focused on the network analysis and the third part describes our approach to 

investigate biomolecules at the sequences level. 

A network approach was applied to find the signatures that characterized the clusters. First, 

we reproduced the interaction network by selecting the genes and proteins present in the 

RAIN database. In order to obtain a highly curated list of proteins involved in pathways that 

are markers of a specific function and not of a casual and aspecific interaction, we looked at 

the reported molecular function and filtered out all the terms related to splicing and 

transcriptional level. 

http://locate.imb.uq.edu.au/
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The gene expression dataset was retrieved by the table browser of UCSC Human Genome 

Browser [https://genome.ucsc.edu/cgi-bin/hgTables] by selecting: 

• Genome: Human 

• Assembly: Dec2013 GrCh38 

• Group: Expression 

• Track: GTEs Genes 

The dataset included the classes in Figure 4 

 

Figure 4: classes included in our analysis about expression 

 

3.2. Dataset of Protein-RNA interactions 

The interaction data were retrieved from the download page of the RAIN database 

[https://rth.dk/resources/rain/download.html]. We considered selected experiments and text 

mining files. The former collects experimentally supported microRNA-target, ncRNA-

protein and ncRNA-ncRNA interactions, the latter includes microRNA-target, ncRNA-

protein and ncRNA-ncRNA co-occurrences from text mining (updated weekly). 

The file has the following format: 

Organism ID1 ID2 Directed Evidence Score Source URL Comment 

https://genome.ucsc.edu/cgi-bin/hgTables
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The organisms are indicated by their NCBI Taxonomy identifier (e.g. Homo sapiens has id 

9606, Mus musculus 10090), while proteins identifiers are equivalent with those in STRING 

v10 [66]. MiRNAs aliases are equivalent to those in miRBase v20 [29] and aliases of other 

ncRNAs categories come from Ensembl Biomart v78, thus as ENSEMBL identifiers or, 

alternatively, the official name is taken as the RAIN identifier. 

We retrieved the protein and RNA sequences from ENSEMBL 

[http://www.ensembl.org/info/data/ftp/index.html/] from the following files: 

• Homo_sapiens.GRCh38.pep.all.fa, Mus_musculus.GRCm38.pep.all.fa 

• Mus_musculus.GRCm38.ncrna.fa, Homo_sapiens.GRCh38.ncrna.fa. 

For the evaluation of our method, we collected two kind of datasets: a randomly generated 

dataset and a biological dataset derived from multiple experiments collected in RAIN 

database. For both datasets the RNA secondary structure was predicted by RNAfold. The 

dot-bracket output was converted into a string of structural context symbols using 

new_BEARencoder.jar. We used a sliding window to tokenize the sequences and get the 

words. Since the sequences are of different lengths, we roll the shorter sequence on the 

longer and alternate the words so created. 

3.3. LncRNAs subcellular localization Dataset 

We collected data from RNALocate and lncATLAS databases, merging information 

provided as described hereinafter. 

RNALocate 

RNALocate provides a file with more than 37,700 entries including 42 RNA subcellular 

localization, 9 RNA categories (csRNA, lncRNA, mRNA, miRNA, piRNA, snRNA, rRNA, 

snoRNA and tRNA) and 65 species. The RNA subcellular localization information is 

manually obtained from articles published and available in the PubMed database before May 

2016. 

The list of subcellular localizations names was in accordance to the Gene Ontology (GO) 

Cellular Component (CC) domain. 

RNA identifiers were chosen as follows: 
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• miRbase ids for microRNAs 

• NCBI gene and ENSEMBL gene ids for lncRNAs 

• NCBI gene and ENSEMBL gene ids for transfer RNAs and snRNAs 

 

Filtering by species (Homo Sapiens and Mus musculus) and RNA type (lncRNA), we 

collected the data, organized as described in Table 1 

Table 1: Subcellular localization data for each database  

 

 

Then we labeled the lncRNAs as “nuclear” if they belong to the nucleus, “extra nuclear” in 

the other cases. We obtained three distinct cases: 

1. lncRNA in only one tissue 

1.1 same localization 

2. lncRNA in multiple tissues 

2.1 same localization in all tissues 

2.2 different localization 

In case 1.1 and 2.1 we do not have ambiguities, in the other cases (2.2) we applied a text 

mining score based on the counts of the number of articles that reported the same 

localization. We filtered out those lncRNAs for which it was not possible to define a certain 

localization. We could not apply the same procedure to lncAtlas because of missing 

information about PMIDs. 

lncATLAS 

The lncATLAS database collected SubcRNASeq produced by the ENCODE Consortium. 

RNA-Seq were obtained for a total of 15 cell lines originated from adult and embryological 

organ sites, including both transformed and normal cells. For each cell, cytoplasmic and 

nuclear data are available and only for K562 cells subnuclear and subcytoplasmic data are 

Database Cyto Nucleus Cyto/Nucleus tot

lncATLAS 419 875 0 1294

RNALocate 1041 667 288 1996

lncSLdb 423 599 728 1750

tot 1883 2141 1016
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provided. The localization is defined in terms of the relative concentration of an RNA 

molecule in the cytoplasm compared to the nucleus, named CN-RCI, where RCI is the log2 

transformed ratio of FPKM (fragments per kilobase per million) mapped in two samples, for 

instance cytoplasm and nucleus. A total of 24,538 genes are included, 17,770 mRNA and 

6,768 lncRNAs in at least one cell type, 31 detected in all samples. Among them 150 genes 

are also present in RNAlocate. lncRNAs of interest are identified by gene names or 

GENECODE gene identifiers. 

Then we labeled the lncRNAs as “nuclear” in case of CN-RCI>0 and “extra-nuclear” 

whether CN-RCI<0. 

lncSLdb 

The lncSLdb stores FISH, RNA-FISH and RNA-Seq experiments. While lncATLAS and 

RNALocate focus on the lncRNAs genes, this source focuses on individual transcripts. The 

current release [http://bioinformatics.xidian.edu.cn/lncSLdb/download.jsp] contains more 

than 11,000 entries for 9 species as described in Table 2 

Table 2: entries for each species in lncSLdb 

 

The database reports 3 main subcellular locations (Cytoplasm, Nucleus and 

Nucleus/Cytoplasm), plus some lncRNAs are indicated as accumulated in ribosomes or in 

chromosomes. Finally, RNAs are identified by their ENSEMBL ID. 

3.4. Biomolecules representation 

3.4.1. RNA representation 

An RNA molecule is a long strand of nucleotide bases. Each nucleotide base can be one of 

four types (Adenine, Guanine, Cytosine or Uracil), and these are denoted by the letters A, G 

Species Entries 

Human 12210 

Mouse 2677 

Fruitfly 80 

Bee 2 

Bombyx mori 1 

Cryptococcus 1 

Transcapiscus 1 

Rat 1 
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C and U. Intra-molecular hydrogen bonds can form between A and U or G and C, and these 

pairings are generally what is being referred to when a “base pair” is mentioned. The dot-

bracket notation is a commonly used method of simply representing the structure of an RNA 

molecule through open and close brackets, as well as full stops. It is composed by a three-

character alphabets that code for an unpaired base ‘.’, an open base pair (BP) ‘(’ and a closed 

BP ‘)’. However, this simple representation stores no direct information about the structural 

context of the nucleotide, which must be extracted by means of ad hoc post-processing 

procedures and it is not suitable for machine learning algorithms. 

3.4.1.1. BEAR and qBEAR Alphabet 

The BEAR is a secondary structure alphabet consisting of 85 characters in which different 

sets of characters are associated with the different RNA basic structures (loop, internal loop, 

stem and bulge). Since it contains many non-alphanumeric characters, a grouped alphabet, 

named quick BEAR (qBEAR) is also used. For each RNA molecule, the sequence is given, 

followed by the structure, expressed in bracket notation, BEAR and qBEAR alphabet. The 

correspondence between the two alphabets is described in Table 3. 

Table 3 Bear-qBear conversion  

 

The main advantage of the BEAR alphabet is that it unambiguously associates to each 

nucleotide in an RNA sequence its secondary structure. Differently from the dot-bracket 

notation, the BEAR encoding allows to easily discern from the unpaired nucleotides 

Bear notation qBear notation 

abcde Z – short stem 

fghi A - medium stem 

= Q – long stem 

jklmnopqr X – short loop 

stuvwxyz S – medium loop 

^ W – long loop 

!”#$%23456 C – short internal loop 

&’()7890 D – medium internal loop 

+> E – long internal loop 

[] B - bulge loop 

{} G - bulge branch 

: T - branch 

ABCDE V – short stem branch 

FGHI F – medium stem branch 

J R – long stem branch 

KLMNYZ~? N – short internal loop branch 

OPQRS_/ \ H – medium internal loop branch 

TUWYZ@ Y – long internal loop branch 
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belonging to a loop and a bulge, for example. The length of the sequence is preserved and it 

makes directly available the length of the SSEs. 

In order to obtain the secondary structure description for each RNA we applied the following 

steps: 

 

 

 

The input is a file in FASTA format, in which 

• The line containing the name and/or the description of the sequence starts with a ">" 

• The words following the ">" are interpreted as the RNA id 

• The second line reports the RNA nucleotide sequence 

Then we folded all sequences by RNAfold, included in the Vienna Package. Once obtained 

the dot-bracket notation, we used the encoder java package BearEncoder.new.jar 

[http://beam.uniroma2.it/tools/BearEncoder.new.jar] to convert the dot-bracket secondary 

structure, output of RNAfold, into the BEAR encoding. 

The output of BearEncoder is a FastB file with primary sequences, dot-brackets and BEAR-

encoded structures. A python script then converts the sequences from BEAR to qBEAR 

notation. The output is a tab separated file with primary sequence, dot-brackets, BEAR and 

qBEAR encoded structure. This file is then used as the input to machine learning models. 

To tokenize each RNA, we then applied 2 different procedures, here named kmers-procedure 

and text-procedure. 

In the kmers-procedure we computed k-mer frequencies, with k ranging from 1 to 7, while 

in the text-procedure we designed a different method in order to include the motif length and 

its context in our prediction. 
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The basic idea is to convert the RNA sequence into a text, formed by words. With this aim 

in mind we used several strategies (see Figure 5Figure 5): 

1.ps and 2.ps depict the sliding window (sw-n) approach. It allows exploring punctual 

changes along the sequences but creates a huge number of words 

2.ss and 3.ss describe two approaches that involve the RNA secondary structure 

encoded as qBEAR alphabet. The 2.ss approach, here named splitbychar, tokenizes 

the sequence by a single character (e.g. T). The 3.ss method splitbypattern  tokenizes 

the primary sequences using as spacer the secondary structure element (the pattern 

may be the secondary structure encoded to qBEAR notation as showed, as well as 

the secondary structure encoded to BEAR notation). 

 

Figure 5: Z is a stem element, B is a 5 nt bulge loop, T is a 5 nt branch, X is a 2 nt length short 

loop. 

We did several tests using all the possible combinations, before choosing the splitbypattern 

strategy (see Appendix A). 
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3.5. Machine learning models . 

3.5.1. Kmers model 

We tested a number of popular learning models: 

• Random Forest (RF) 

• Decision Tree Classifier (DCT) 

• K-Neighbors Classifier (KNN) 

• Extra Trees Classifier (ExtraTC) 

• Ada Boost Classifier (ABoostTC) 

• Gradient Boosting Classifier (GBoostC) 

Then, each model was optimized running a custom script. The script could be run in three 

modes: 

• The optimization mode: finds the best parameters for each model 

• The training mode: It trains the models one established the best parameters 

• The Voting model: It combines all models 

Table 4 shows the training parameters. In case of KNN we used n_neighbours = 2 while in 

case of ABoostTC we set also a learning rate 0.1 and as algorithm option “SAMME”. 

Table 4 k-mer best parameters 

 N Estimators Max features Min samples split bootstrap Max depth criterion 

RF 500 None 3 -. None entropy 

DCT - - - -. None entropy 

EXTRATC 500 sqrt 2 True None - 

ABoostTC 500 - - - - - 

GBoostC 500 - - - - - 
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3.6. Text model 

As mentioned, training a model means taking a labelled training example and adjust the 

parameters slightly in order to predict the training sample label more accurately. How good 

a prediction model does, in terms of being able to predict the expected outcome, is measured 

by a loss function. 

FastText has three loss functions: 

1. The negative sample functions (ns) 

2. The softmax function (softmax) 

3. hierarchical softmax (hs) 

We chose the hierarchical classifier because it reduces the complexity of the model training 

and testing from linear to logarithmic with respect to the number of classes. In the 

hierarchical classifier, the different categories or labels are organized in a binary tree. Each 

leaf node represents a label and every node in the binary tree is representative of a 

probability. Since each word has a unique path from the root down its corresponding leaf, 

the probability of picking the word wi is equivalent to the probability of taking this path from 

the root down through the tree branches. The advantage is that, instead of computing the 

probability for each possible label, only the probability of each node on the path to the correct 

label is computed. Following this idea, the probabilities of each node are the parameters 

being optimized. The Huffman algorithm is used to build the tree. Every word is depicted as 

a code. The basic principle is that short words have long codes and long words are 

represented by short codes. After building the model, new bits of text can be included in the 

model. The algorithm calculates the probability for every single label and the output is the 

label associated to the highest probability. 

We optimized the algorithm parameters with a Python script. All values are listed in Table 5. 
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Table 5: FastText model parameters 

 

A learning rate equal to 0 means that the model doesn’t change at all and thus does not learn 

anything. 

Among the most important parameters of the model there is its dimension, i.e. the size range 

of the vectors. The larger they are, the more information they can capture, but the training is 

slower. Moreover, it drastically affects the size of the output, that is the dimension word 

vector x words of vocabulary. 

fastText is an algorithm that can examine the context and also learn vectors for subparts of 

words, which is particularly interesting for building vectors for unknown words. The higher 

the learning rate is, the faster the model converges to a solution but at the risk of overfitting 

to the dataset. 

The output is the probability 

𝑃(𝐿|𝐻𝑠) =
𝑒ℎ∗𝑉𝐿

∑𝑒ℎ∗𝑣𝑘
 

Whereas, 

parameter meaning FastText Short form value 

epoch Number of times each 

example is seen 

epoch 700 

learning rate How much the model changes 

after processing each 

example 

lr 0.7 

dimension Size of the vectors dim 70 

subwords subwords  contained in a 

word 

minn 3 

maxn 6 

N grams Concatenation of n 

consecutive tokens 

wordNgrams 4 

loss  function tells how good our current 

classifier is 

loss hs 
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• VL is the classifier label 

• Hs is the feature sequence defined as  𝐻𝑠 = ∑𝑋𝑤 

Besides text classification, fastText can also be used to learn vector representations of words. 

In fact it is possible to print word vector representations. In the output txt file, each line 

contains one word represented as a vector in n dimensional space, whereas n is given by the 

dim parameter (see Table 5). The words in the file are sorted by decreasing frequency (i.e. 

the first n lines are the most frequent words). The size is equal to the dimension word vector 

x words of vocabulary. Indeed, fastText word vectors are built from vectors of substrings of 

characters contained in it. This allows building vectors even for words that did not appear in 

the original data by the sum of known substrings. 

 

3.7. Technical Requirements 

All analyses in this study were performed by using Python (version 2.7.12), R (version 3.5.0) 

and the FastText library plus scripts developed ad-hoc and the ViennaRNA Package [44]. 

3.7.1. R Packages 

We used Hmisc [67] to calculate correlation matrices, DataExplorer [68] for some data 

wrangling and plotting, Networkx, threejs and htmlwidget for network analysis and 

visualization.GO.db [69], org.Hs.eg.db [70], biomaRt [71] were used to annotate lncRNAs. 

3.7.2. Python packages 

We used pandas toolkit [72] to handle data and scikit-learn package version 0.20 [73] to train 

the machine learning models 

3.7.3. FastText 

FastText is an open source tool for text classification. It is usually applied to canonical texts 

(i.e. in human languages). After having transformed them into continuous vectors, it can be 

used for any language-related task, and as such it is dedicated to representing and classifying 

text in a scalable environment. It has been designed to work on a variety of languages, 

including English, German, Spanish, French, and Czech, but so far never applied to 

biological alphabets. The library is written in C++ but also has interfaces for other languages 

like Python [74] as well as Node.js. FastText combines the natural language processing and 
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machine learning, representing sentences with bag of words and bag of n-grams, as well as 

using sub-word information, and sharing information across classes through a hidden 

representation. 

 

3.7.4. Performance evaluation 

 

Prediction performance was evaluated by several commonly used metrics, like Precision and 

Recall: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ; 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

where TP is the number of true positives, FP is the number of false positives, TN is the 

number of true negatives, and FN is the number of false negatives. The Precision is the 

percent of the correctly predicted labels. The denominator is the total predicted positives and 

thus it reports how many of the predicted positives are actual positives. In fact, the recall 

(also known as sensitivity) is the percent of labels that is actually recalled over the total 

labels that actually existed and thus is the percent of labels successfully predicted. In 

addition, the confusion matrix (i.e. a 2 x 2 matrix reporting TP, FP, TN, and FN) was printed 

at each step. It provides an indication of the errors made. We also computed the sensitivity 

versus 1-specificity, which has a better statistical foundation than the other performance 

measures and that can be used to compute the Receiver Operating Characteristic (ROC) 

curve. Hence, we finally reported the AUC (Area Under the Curve). AUC values range from 

0 to 1: the AUC equal to 1 stands for a perfect classifier instead AUC=0.5 stands for a random 

classifier.  
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4. Results 

Summary 

In silico inference can be suitable to reach the aim of understanding the functional roles of 

non-coding RNAs, overcoming the typical experimental drawbacks intrinsic to lncRNAs 

studies, for which data are less abundant and technically challenging. On the other hand, 

there are other inherent difficulties in bioinformatics procedures. Usually starting from 

experimental data, in silico methods collect information from public databases that do not 

give the same type of information, and the investigation processes are typically hampered 

by the lack of comprehensive annotations. In this context, it may be essential a technique 

able to homogenize the IDs, based on the same and reliable categories, and finally that 

predicts the missing information. Briefly, our pipeline involves the collection of data 

depicting interactions and subcellular localizations, primary sequences and secondary 

structures from several databases, and the creation of a unified resource avoiding duplicates 

and with a precise nomenclature. In particular, our goal is to include and integrate the 

following features: 

• lncRNAs and proteins expression profiles similarity 

• lncRNAs secondary structures 

• lncRNAs sucellular localization 

• well-known protein-lncRNAs interactions 

• well-known protein-protein interactions 

We aimed at reconstructing an heterogeneous network with known lncRNAs-protein 

interactions. The network is heterogeneous because the nodes are different types of 

molecules. Then, we superimposed the expression correlation network between mRNAs and 

lncRNAs in which the nodes are proteins and lncRNAs, and the edges are weighted by the 

expression profiles Spearman correlation value (previously calculated between all possible 

couples mRNAs-lncRNAs and filtered above a certain threshold, as described in Materials 

and Methods). In addition, we implemented a machine learning method to infer lncRNA 

subcellular localization, and another to infer novel protein-lncRNA interactions. We 

hypothesized that the most central protein nodes in the network should play a central role in 

combination with the lncRNAs partners. 
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We started from the gathering and organization of protein-lncRNA interactions from the 

major specialized databases, in order to assess whether the available data are sufficient to 

reconstruct an interaction network representative of the processes involving these kind of 

binding, which could allow the analysis of the network topology and features, and the 

identification of regulatory modules. We assessed that the available data, mostly extracted 

from CLIP experiments, are remarkably unbalanced, describing interactions for a limited 

number of different proteins, and also difficult to interpret and validate, since the reliability 

of the provided information is not always clear, and since this information is oftentimes 

inhomogeneous in terms of annotations and identifiers. Hence, we felt that, in order to assess 

how much a given interaction is likely to be true, and to extend the network with unreported 

but likely novel interactions, we could use machine learning procedures to filter and infer 

interactions. This idea raised challenging issues, related on how to represent properly 

lncRNAs, taking into account their primary and secondary structures, in ways that preserve 

the available information, but sufficiently simple and systematic that would allow these 

representations to be fed into a learning algorithm. We explored text-processing methods, 

which were employed in the recent past for protein description, but not yet extensively for 

RNAs. We employed a novel way for RNA secondary structure encoding, and for describing 

a RNA molecule and its structure as a text composed by words. As a test case, we tackled 

the lncRNA sub-cellular localization, which is important for understanding their biological 

functions and that can be used as a filter for assess protein-lncRNA interactions. Finally, we 

applied the same procedures for the inference of protein-lncRNA interactions. In conclusion, 

the methods described here are simple and accurate enough to warrant their general 

applicability, to any kind of learning problems related to RNAs. 

 

4.1. The protein-lncRNA interaction network 

Network biology allows the representation of biological entities not only as individual 

components but as an interacting system. Remarkably, the different type of analysis depend 

on the nature of the information enclosed in the edges (the links between nodes). We started 

to visualize the interactions retrieved from RAIN database [5] filtered by species and 

categories, as described in the Materials and Methods chapter. RAIN contains interactions 

between non-coding RNAs and proteins, and also between RNAs. Interactions are extracted 

from curated examples, experimental data (mostly CLIP), predictions (for interactions 

between microRNAs and proteins or non-coding RNAs) and automatic literature mining. To 
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each interaction, a confidence score is assigned. RAIN includes curated knowledge that 

comprises well-established interactions from the scientific literature or listed in expert-

curated databases. Interactions are collected for nine classes of ncRNAs; experimental 

interactions are retrieved from miRTarbase [75], NPInter [11], StarBase [76], while predicted 

interactions are retrieved running miRanda [77], PITA [78], TargetScan [79], miRDB [80] 

and StarMirDB [81]. The experimental data encompass CLIP, CLASH and CRAC methods 

(see the Introduction Chapter, paragraph 1.1 for more details). Following the authors 

guidelines we selected interactions with a confidence score>0.15.  

The number of interactions for the four species considered in RAIN is reported in Table 6: 

 

Table 6: number of miRNA–mRNA, ncRNA–protein and ncRNA–ncRNA interactions per 

organism in RAIN 

 
 

Using the confidence score as filter, we have in total 22,326 protein-miRNAs interactions 

and 486,683 protein-lncRNAs interactions. Despite the apparent large number of 

interactions, these can be mapped to a relatively small number of different proteins, 18,605 

in total. From these data, we built an undirected graph in which the nodes are the proteins 

and the lncRNAs and the edges the physical interactions. In this case, the link between nodes 

only tell us that A (Protein) binds B (lncRNA). The first drawback in this kind of network is 

that one protein can interact with many lncRNAs (the opposite, i.e. one lncRNA that interacts 

with more than one protein, occurs less frequently), leading to a confused view characterized 

by large hubs. In addition, within the hubs it was difficult to detect false positives basing 

only on a single feature. In fact, in the resulting network, the distribution of the degree of the 

protein nodes (i.e. the number of connections it has to other nodes) shows a remarkable 

imbalance, with a limited number of proteins responsible for the majority of the interactions 

(Figure 6).   

Species TAX ID Score<0.15 Score>0.15 

Saccharomyces cerevisiae 4932 99 717 

Homo sapiens 9606 661612 190737 

Mus musculus 10090 302915 77455 

Rattus norvegicus 10116 69742 20393 
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As a result, the network do not show significant hubs or other topological features usually 

associated to biological networks (Figure 7). 

 

 

Then, we decided to add qualitative and quantitative values in order to increase the reliability 

of the collected interactions, preferring a systematic approach. As a way to better 

Figure 6: Degree distribution 

Figure 7: random graph Protein-lncRNAs 
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characterize the network and, possibly, to filter unreliable edges, we included and integrated 

two additional descriptors, namely: i) sub-cellular localization; ii) expression profiles. The 

rationale is that interacting partners must be, at least transitorily, in the same compartment, 

therefore edges between nodes that do not satisfy this criterion could in principle be 

discarded. Second, as often occurs for interacting proteins, the expression of a non-coding 

RNA and its protein partner could be coordinated, and the expression level profiles could be 

a possible marker for the interactions prediction. 

We looked for the protein subcellular localization in QuickGO by R Bioconductor package 

and we used the RNALocate and lncSLdb databases for RNA subcellular localization. 

Finally, we merged all the data. At the end of the analysis, we have complete subcellular 

localization annotation for 3,996 protein-RNA interactions (Table 7). 

 

Table 7: number of entries annotated as cytoplasmic,nuclear or with both localization.  

Protein 

localization 

lncRNAs localization 

   

cytoplasm nucleus nucleus/cytoplasm 

cytoplasm 584 637 18 

nucleus 988 1284 48 

 

The expression values were retrieved by the UCSC portal (See Materials and Methods for 

more details). In total, the file included expression levels for 52,896 genes that we filtered 

by the following categories: 

• protein coding 

• transcribed unprocessed pseudogene 

• lincRNA 

• antisense 

• miRNA 

• sense intronic 

• transcribed processes pseudogene 

• sense overlapping 

• 3’overlapping ncRNA 
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Considering only these classes, we retrieved expression profiles for 32,182 genes, classified 

as described in Figure 8. 

 

We referred to the transcription of protein coding genes as proxy for protein expression. 

In order to choose the correct correlation analysis, we run a Shapiro Test to test the normality 

of our distributions. The null-hypothesis of this test is that the population is normally 

distributed. According to the p-value of the distributions, we rejected the null hypothesis 

(see Figure 9)  

Figure 8: categories after filtering  
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This means that the widely used Pearson correlation is not suitable, and we decided to 

calculate the Spearman correlation for each mRNA-ncRNA pairs. Figure 10 shows the 

Spearman correlation expression density plot for each gene class. 

Figure 9: pvalue distribution, Shapiro Test 
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We superimposed the expression values over our interaction datasets and collected 761 

entries. Among them 262 has a correlation greater than 0.4, and 23 less than -0.4, 476 

interacting pairs have correlation values between -0.4 and 0.4 (Figure 11) 

Figure 10: Expression values density plot for each category 
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These results suggest that expression profile correlation between genes for interacting 

proteins and ncRNAs, while being high in a relatively large number of cases, cannot be easily 

adopted for filtering and/or predicting interactions.  

Next, we superimposed expression levels and known subcellular localization (Figure 12). 

For only 145 interactions we have complete information about expression and localization. 

Among them 75 biomolecules are colocalized and positively correlated (Spearman 

correlation>0.4), while 5 are colocalized and their expression negatively correlated. 

Figure 11: Expression profile Spearman correlation density 

plot 
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Hence, in slightly more than half cases the interacting partners are known to have the same 

subcellular localization. This can be due to the fact that localization data is quite rare and 

incomplete, especially for RNAs. Therefore, even if this criterion could be useful in principle 

for filtering the network (a network visualization with all features included is shown in 

Figure 13), data are not sufficient for doing so in a systematic way. As shown in the next 

paragraph, we then tried to infer the subcellular localization for lncRNA using learning 

methods. Subcellular localization inference for proteins was successfully attempted in the 

past, but working with RNAs raises additional challenges that we had to overcome. 

Figure 12: CC : both in cytoplasm, CN-NC: do not colocalize, 

C-N/C: cytoplasm-Nucleus/Cytoplasm, N-N/C: Nucleus-

Nucleus/Cytoplasm, NN:both in nucleus 
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4.2. Prediction of lncRNAs subcellular localization 

The key idea of this section is that the lncRNAs function is intimately related to their location 

in the cell, and that their location in the cell depends from some signals in their sequences 

and/or structures. Moreover, since there is the evidence that lncRNAs bind to several 

molecules at each level, and since the binding process requires the presence of the partners 

in the same cell compartment as well as a certain expression level, investigating the 

relationship between location, expression and interaction can be of primary importance for 

the characterization of this category of RNAs. Simply put, the rationale is that the interaction 

between two biomolecules is more likely if the interaction partners are located in the same 

environment. Since the interaction between molecules is a complex problem involving 

multiple causes and effects and possibly related to the primary sequences and secondary 

structures, we decided to develop a sequence-structure based method. 

For this task, we trained learning models to predict lncRNA subcellular localization using 

for training, testing and validation of the models all data retrieved from the databases 

lncATLAS, RNALocate and lncSLdb. These datasets include a total of 1883 cytoplasmic 

lncRNAs, 2141 nuclear lncRNAs and 1016 that are found in both locations (as described in 

Table 8 and Figure 14). 

Figure 13: protein RNA interaction as graph in which big nodes are the proteins and small nodes 

lncRNAs, the dark cyan highlight the cytoplasmic localization, the salmon color is for nuclear 

localization. White for double localization. On the right a detailed view in which it is shown as 

elected node in cyan with the ID that appears interactively. 
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Table 8 : Number of entries for each database  

 

 

 

In the first part of our work we focused on lncATLAS and RNALocate databases, since the  

lncSLdb has been published very recently (September, 2018), and we became aware of its 

availability only while writing this thesis. When building the dataset, we faced a first issue, 

because lncRNA genes are often alternatively spliced, so one might wonder whether all 

splicing variants encoded by a gene have the same subcellular localization. Current databases 

report the localization data at gene level, and not for individual transcripts. When the 

expression levels for individual splicing isoforms were available, we kept only the most 

expressed transcript, otherwise we kept all transcripts, since a gene may encode for many 

isoform with many different subcellular localization types. 

The resulting expression level distribution is a bimodal distribution (Figure 15). Then, we 

filtered out the transcript with length>10,000 for a few main reasons: First, we saw that the 

most of our entries has a length<5000 nt but at the same time we lost a lot of molecules that 

in turn could affect our training; second, we wanted to speed up the folding process that is 

the slowest step in all pipeline; third, since we used RNAfold [44], we had to face with a 

limit in length.  

Database Cyto Nucleus Cyto/Nucleus tot

lncATLAS 419 875 0 1294

RNALocate 1041 667 288 1996

lncSLdb 423 599 728 1750

tot 1883 2141 1016

Figure 14: Representation of input dataset. We first considered only lncATLAS and RNALocate 

databases 
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In order to avoid confusing data, we decided to consider only nuclear and cytoplasmic 

transcripts, not considering the ones found in double locations and the few that localize in 

other cellular compartments. 

Once the dataset was created, the following and crucial step is to encode each molecule, in 

a way that must be informative and suitable for the learning algorithms. As stated before, we 

wanted to explore text encoding strategies, but with the additional challenge of including 

also secondary structure information. To employ text-processing strategies, each molecule 

must be tokenized, i.e. divided into words. This issue is not trivial for RNA molecules. The 

primary sequence can be easily divided into sub-sequences of fixed length k, using a sliding 

window that generates overlapping k-mers. For secondary structures, how to do this is not 

obvious. The usual way to represent secondary structures is by the dot-bracket notation, 

described in the Introduction section, which employs a too limited alphabet (only three 

characters) that would generate non-informative k-mers. We then converted each RNA 

secondary structure into the BEAR notation, which assigns to each nucleotide a different 

symbol, based on the type and size of the secondary structure element it belongs to. The full 

BEAR alphabet is composed by a large number of characters, therefore, when dividing a 

BEAR string into short k-mers there is the risk that very similar structures would be 

represented by completely different sets of characters, impairing the learning. We used 

instead a reduced version of the BEAR encoding, dubbed qBEAR (quick BEAR), that should 

alleviate this potential issue. Therefore, each ncRNA in the dataset was folded using 

Figure 15: on the left: transcript length box plot. On the right: Unimodal distribution 

before filtering by expression level. We kept only the most expressed transcript obtaining 

a bimodal distribution 
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RNAfold, then encoded with the qBEAR notation, then tokenized using a sliding window 

(from bi- to epta-mers) and labeled with its subcellular localization (two classes: nuclear and 

cytoplasmic), and finally we trained a number of popular models, as described in the 

Materials and Methods section. For each model, we applied a ten-fold cross validation and 

evaluated the model by the AUC (Area Under the Curve) score. The results are listed in 

Table 9. 

 

Table 9 performance for proposed methods using the k-mer procedure with k=2,3,4,5,6,7 

 

 

The AUC remains somewhat similar for the different values of k, but there is a general 

improvement as k increases, leading to the highest accuracy when using eptamer tokens, 

with the only exception of the AdaBoost classifier. The most accurate models, Random 

Forest (RF) and Extra Tree classifier (EXTRA), both lead to an AUC of 0.77 and are both 

based on ensembles of decision trees.  

The tokenization strategy employed in this first experiment is therefore effective, but a 

possible limit is that each token is treated independently of its context, i.e. which other tokens 

could be recurrently associated with its own. When considering a biomolecule as a text, the 

tokenization produces a set of words, but words in a text are combined into sentences, 

following specific syntax rules, and the commonly employed learning models are not able 

to capture this aspect. Moreover, most models are black boxes, which means that it is not 

easy, and often impossible, to extract from a model what the model has learned. In our case, 

Learning models kmers AUC values 

2 3 4 5 6 7 

KNN 0.6 0.61 0.62 0.61 0.63 0.61 

DTC 0.54 0.54 0.52 0.58 0.57 0.61 

RF 0.67 0.67 0.68 0.69 0.69 0.77 

EXTRATC 0.67 0.68 0.69 0.7 0.69 0.77 

ABoosTC 0.57 0.58 0.56 0.56 0.57 0.57 

GBoosTC 0.61 0.61 0.61 0.61 0.62 0.71 
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from the trained models is not trivial to understand which could be the signals the dictate the 

localization of a RNA. Additionally, another limiting issue shared by all these models is that 

they required as input a set of fixed-length vectors. This means that, regardless of the length 

of the RNA molecule, the same number of features must represent each one of them, while 

the tokenization procedure will obviously produce a different number of tokens for each 

molecule. The common solution is to represent each data point with a vector reporting all 

possible tokens that can be generated for the chosen value of k and for the four nucleotides. 

For example, is k is 2, each vector will be composed by units corresponding to all possible 

dinucleotides (e.g. AA, AC, AG, AU, CA, CC, CG, CU and so on), and the vector units will 

be set to the absolute or relative frequency of that token in the RNA molecule. This strategy 

has been proven to be effective, but is less suitable when the considered molecules have a 

large range of sizes. A small RNA will be encoded by a vector in which a possibly large 

number of units will have to be set to a value of 0, and these sparse vectors might hinder the 

training and, as a result, the model accuracy. Finally, the token size k must be chosen at the 

beginning and it is fixed for all molecules and for the whole molecule length, raising two 

other potential issues: i) it is not possible to know beforehand which is the optimal k value, 

and one must proceed with trial and error; ii) it is possible that different parts of an RNA 

molecule are better described with different token sizes, therefore being limited to a fixed k 

might prevent a good RNA representation. 

We then tested a different Text model, implemented in the fastText software, that is able to 

capture relations among words. FastText was employed on the same data used for the 

previous tests, by building the input dataset as described in Material and Methods chapter, 

splitting in training, test and validation datasets (proportion 60% of the data, 20% and 20%, 

respectively). The algorithm provides several potential advantages: the context of each token 

is taken into account, and each data point (i.e. each RNA molecule) is effectively treated as 

a text composed by words organized into sentences; ii) there is no requirement of having 

fixed-length vectors to describe each molecule; iii) there is no requirement of having each 

token of the same size; iv) the most relevant words and sentences, those that have a major 

weight in the training phase, could be retrieved and used to rationalize what the algorithm 

has learned. Since we were not limited anymore to fixed length tokens and token vectors, 

we devised novel ways to tokenize each RNA molecule. The most effective consists in the 

tokenization of the RNA primary sequence based on the succession of its secondary structure 

elements. In practice, after the RNA was folded and its structure converted into the qBEAR 
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notation, we indexed and split the primary sequence each time there is a change of character 

in the qBEAR string, corresponding to a change of structural element. Using this strategy, 

we obtained the AUC of 0.80, better than all the other training models (Figure 16). 

Finally, we retrieved data from lncSLdb and we asked whether was possible to predict a 

Nucleus/cytoplasm label. Thus, we applied the same procedure as before splitting the dataset 

in training set, test set and validation and with the same parameters we trained a multiclass 

model.  

In this case the performance is lower and the AUC is about 0.70 (Figure 17) 

Figure 16: AUC Curve: label -1 for cytoplasmic transcripts, label 1 for  nuclear 

transcripts, better than those obtained with any other learning model 
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4.3. Prediction of protein - RNA interactions 

The success of the learning models for the inference of subcellular localization encouraged 

us to tackle the more complex problem of the protein-RNA interaction inference. Multiple 

issues must be solved in order to obtain an effective learning and good inference accuracy. 

The first issue is related to the input dataset construction. In a two-labels classification, each 

data point is assigned one of two possible labels, and the algorithm learns to discriminate 

between the two. In this case, one class is represented by interacting protein-lncRNA pairs 

extracted from the currently available databases (such as RAIN), but it is not trivial to define 

the other label and to collect examples belonging to this second class. If one class is 

represented by interacting pairs, it is natural to take as the other class a set of non-interacting 

pairs. Yet, it is not possible to extract such a negative dataset from existing databases, since 

only interactions are experimentally detectable. The adopted strategy was to shuffle the 

protein-lncRNA pairs in the RAIN database. By randomly pairing proteins and RNAs, one 

can generate a set of pairs that were never experimentally identified as interaction partners. 

We cannot be sure that a randomly generated pair is truly a negative, meaning that the 

randomly paired protein and RNA might be interacting partners that were not yet detected 

in any experiment. Still, the presence of such false negatives in the negative dataset could 

only impair the training, not favour it, therefore the resulting inference accuracy can be 

Figure 17: multiclass model. Label 1 for nuclear 

transcripts, label -1 for cytoplasmic transcripts and 

2 for transcripts annotated with double localization 

(Nucleus/Cytoplasm) 
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considered at worst an underestimation of the one that could have been obtained having a 

perfect negative set.  

Another problem is that each data point is now composed by two molecules of radically 

different nature, a protein and an RNA, both that must be encoded properly into a unique 

feature vector. 

For both datasets (interacting pairs and negative controls), RNA secondary structure was 

predicted by RNAfold, the dot-bracket output was converted into the qBEAR string of 

structural context symbols.  

We again retrieved protein-lncRNAs interaction from RAIN database (see Materials and 

Methods). In total, we collected 12,104 entries (6,052 for the positive and 6,052 for the 

negative dataset). As before, we filtered out transcripts with a length higher than 10,000 nt. 

We then applied a sliding window to both molecules to generate k-mers, testing values of k 

from 2 to 8, and considering the protein primary sequence and the lncRNAs secondary 

structure described in qBEAR alphabet. Result are shown in Table 10, from which it can be 

observed that AUC reaches a plateau for k>3. This prediction accuracy, while high, is inferior 

to that of other methods for protein-lncRNA interaction prediction, but these methods often 

rely on many sources of additional information, while our method employs only sequence 

and secondary structure. 

 

Table 10: FastText models and AUC 

Sliding window length AUC 

2 0.63 

3 0.73 

4 0.77 

5 0.77 

6 0.78 

7 0.78 

8 0.78 
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We compared these results with those that can be obtained using different training 

models, encoding the input data using again a sliding window approach, but limited to di- 

and tri-mer combinations; we stopped to 3mer because of the computational cost. 

The results of the prediction accuracy, in terms of AUC, for these models are listed in Table 

11: 

Table 11: comparison of predictive score of 6 models using 2 and 3 mer approach 

 

 

In this case, also EXTRATC and Random Forest models give good results, however the 

drawbacks in using a k-mer approach is that the number of variables depends on the 

combinations of characters. In our case, considering the qBEAR and the protein alphabets 

means that our dataset has 12,016 rows and 8485 columns. This causes a very heavy 

computational cost and a high intensity of training (1 day). With the FastText model and a 

window size of 6 bases we obtained an AUC of 0.78 (Figure 18). The time of training is 

considerably lower (40 min). We increased the size of sliding window, however after six 

bases the results do not change.  

Learning models

2 3

KNN 0.7 0.5

DTC 0.53 0.55

RF 0.75 0.78

EXTRATC 0.72 0.8

ABoosTC 0.53 0.85

GBoosTC 0.63 0.7

kmers AUC

Figure 18: ROC Curve window slide of length 6 
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5. Conclusion and perspectives 

The aim of the work was to build a heterogeneous network in order to investigate the 

complex class of lncRNAs. The association with proteins are of paramount importance to 

understand development and differentiation. Despite of the research effort, difficulties 

associated with the experimental determination of protein-RNA complexity and with the 

non-homogenous information, led to an urgent need for tools to visualize and highlight the 

main features between groups of interacting molecules. We started from a general view of 

protein-ncRNAs interaction and by a systematic approach we improved the network view 

by adding useful features expression values and subcellular localization. In particular, we 

decided to use a multidisciplinary approach based on the combination of network analysis, 

machine learning and Natural Language Approach treating the biological sequences as 

strings of characters.  

In summary, 

• we suggested a new way to depict the biological molecules, overcoming the 

drawback of the varying length that particularly affects the lncRNA class. 

• we demonstrated the advantage in using the BEAR and qBEAR alphabet to encode 

the secondary structure. In particular qBEAR is simpler, shorter and easily 

understandable, hence suitable for a clear visualization. 

Different tools are designed to accurately distinguish interactive and not interactive 

biomolecules, as well as bound from unbound sites, but a tool for lncRNA subcellular 

localization inference is lacking. We proposed a subcellular localization predictor that is 

considerably fast (20 minutes for training), easy to use, and can be applied to every set of 

RNA sequences. The method was trained on subcellular localization data from RNALocate, 

lncATLAS and lncSLdb, as well applied on protein-RNA interactions (from the RAIN 

database). 

In order to train the model, a dot and bracket structure is needed. The output was then 

translated in qBEAR alphabet by a python script.  

In this step, the slowest part is the secondary structure prediction. Hence, it could be useful 

to try other methods in order to obtain accurate structure for the input RNA sequences, as 

well as to use high-throughput base-pairing depiction data from techniques such as PARS or 

SHAPE.  
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Furthermore, the method defines a combined sequence/structure procedure that in turn 

allows to tackle biological problems where both are relevant. After training, the results can 

be visualized as an intuitive graph (examples are showed in Figure 21 and Figure 22) and 

the most frequent words mapped into original dataset to be analysed in a further way (e.g. 

looking for the position in the sequence, or search differences in frequency between the 

negative and positive dataframe). 

This study can be in principle be applied to every set of RNA sequences without limit in 

length. As future perspectives, the method will be used to build a more complex lncRNA-

protein network that also include our localization and interaction predictions. It may be also 

applied to CLIP datasets to discover binding sites. In addition, there are several advantages 

in using an alphabet to encode the secondary structure. The most evident is in analysing and 

interpreting the results, since the fastText model is not a black box like many other training 

models. For example, it is easy to map the most frequent words (see Appendix B for a list of 

such words) to a sequence to study their position as well retrieve information about the 

context, once a strategy that gives a reliable score is found. Words with a positive and 

negative impact are provided by the software (Figure 19 and Figure 20), and could be in 

principle associated, individually or as groups forming sentences, to localization or 

interaction signals within the sequence. 

 

 

 

Figure 19: elements with a positive score 
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We also started to design an approach to compare different classes of lncRNAs (e.g. miRNA 

and lncRNAs) in order to find similarities in sequences. Again, in this context it may be 

useful a network visualization of significant words along the RNA sequence. These 

approaches can be used for pairwise comparisons, to highlight shared words and their 

location between two RNAs (Figure 19) or to globally compare large sets of molecules and 

their relationships (Figure 20). For what concerns the availability all procedure may be 

implementable as a docker hub and scripts in a GitHub page 

 

  

Figure 20 : elements with a negative score 
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Figure 21: Example of two sequences, betweenness value is highlighted  
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Figure 22: short-lncRNAs similarity 
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Appendix A 

Table 12 Results for the proposed fastext model on RNALocate dataset 

 

Table 13 Results for the proposed fastext model on lncATLAS 

 

 

 

 

RNALocate dataset 
 

   

 Primary sequences Bear encoded structure qBear encoded structure 

Slw2 0.78 0.68 0.63 

Slw3 0.79 0.70 0.63 

Slw4 0.80 0.74 0.66 

splitbydifferentchar  0.77 0.78 

splitbyonecharacter  0.70 0.72 

splitbypattern  0.79 0.80 

 

lncATLAS dataset 
 

   

 Primary sequences Bear encoded structure qBear encoded structure 

Slw2 0.56 0.5 0.6 

Slw3 0.53 0.5 0.5 

Slw4 0.57 0.5 0.5 

splitbydifferentchar  0.6 0.6 

splitbyonecharacter  0.5 0.5 

splibypattern  0.6 0.73 
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Appendix B 

Table 14: most frequent words in localization prediction 

 

 

 

 

 

  

N word N2 word3 N4 word5 N6 word7

1 C 25 CCU 50 GGU 75 AAAA

2 U 26 GGA 51 UGU 76 UCCU

3 G 27 GCU 52 CAA 77 GCUG

4 GC 28 UCU 53 CAU 78 GGCC

5 CA 29 UCC 54 GUC 79 CCUG

6 AA 30 CUC 55 AAG 80 CAGG

7 CC 31 AGA 56 ACU 81 UAC

8 GA 32 UGG 57 GAC 82 GCAG

9 CU 33 GAG 58 ACC 83 GGGC

10 GG 34 CCC 59 AAU 84 GCCU

11 AG 35 GCA 60 AGU 85 CUCC

12 UC 36 UCA 61 GUU 86 CCAG

13 UG 37 AGG 62 AUU 87 UUCU

14 UU 38 ACA 63 AAC 88 CCCA

15 AC 39 GAA 64 UUG 89 GCCC

16 GU 40 GGG 65 AUG 90 GGCU

17 AU 41 UGC 66 AUA 91 GAGG

18 UA 42 AGC 67 AUC 92 GGGA

19 GCC 43 CG 68 GAU 93 CUGG

20 GGC 44 CUU 69 UAA 94 UGGG

21 CAG 45 UUU 70 UUA 95 GAAA

22 AAA 46 GUG 71 GGAG 96 UCUG

23 CCA 47 CAC 72 CUA 97 CUGC

24 CUG 48 UUC 73 UAU 98 CAGA

25 CCU 49 UGA 74 GUA



75 

 

Table 15 : most 50 positive words in protein-RNA prediction. Upper case for lncRNA secondary 

structure, qBEAR alphabet lower case for protein sequence 

 

 

 

 

N word N2 word3

1 eeeeeeee 26 ZZZZZDDD

2 ssssssss 27 VNNVVVVN

3 AAAAAAAT 28 XXXZZZBZ

4 XXXXXXXZ 29 BZZZZZCC

5 ZZZDDDDD 30 ZZZZZZZT

6 ZZZZCCZZ 31 XAAAAAAT

7 VVVTTTTT 32 CCZZZCCC

8 ZTFFFFFF 33 VVZZZZZX

9 VVVNNNVV 34 ZZZTFFFF

10 XZZZZZZZ 35 AAAAATVV

11 FFFGVVVG 36 AAATZZZZ

12 rsrsrsrs 37 VFFFFFFF

13 VVVVFFFF 38 ZCCZZZXX

14 NNNNVVVV 39 RRRRRGRR

15 ZXXXXXXX 40 BZZZZAAA

16 NVVVVNNV 41 FFGVVVGV

17 NNVVVVNN 42 FFGFFFFF

18 ZZCCZZZZ 43 ZCCCZZZZ

19 AAAAACCC 44 BAAAAAAA

20 CCCZZZCC 45 TTTTTTAA

21 FGVVVGVV 46 FFNNNNVV

22 ZZTFFFFF 47 ZZZZBZZB

23 VVVVVAAA 48 ZTTFFFFF

24 pppppppp 49 RGRRRRRR

25 VVVVNNNV


