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Overview 
 

The research field of this dissertation are noninvasive, electroencephalography (EEG)-
based, Brain-Computer Interfaces (BCIs), and their use for both neurorehabilitation 
and control purposes. 
 
Brain-Computer Interfaces are systems enabling a straightforward communication 
between the brain and the outside, by recording the neural activity and directly 
translating it into control signals for various types of devices (e.g. a robotic arm, a 
machine, or a computer). Given their independence from the natural neuromuscular 
pathways, BCIs have long been envisioned as tools to restore communication and 
control in patients with severe motor impairments. In addition, BCIs have recently 
emerged in the context of neurorehabilitation, where they are employed to objectify 
the desired modulations of the neural features, to guide the practice and boost 
rehabilitation. 
 
This dissertation includes several research activities from the two above-mentioned 
contexts. Each study builds up on the advancements of previous research and 
introduces a further step, either by investigating new configurations of the available 
technology (chapter 2), introducing some novel design elements (chapter 3), 
contributing into the practical implementation of new approaches (chapter 4), or 
improving the efficiency of available algorithms (chapter 5). 
 
The work is organized into five chapters. Chapter 1 serves as introduction to the field 
of EEG-based BCIs and their use for neurorehabilitation and control purposes. After 
introducing the general concept of BCI, the chapter briefly reviews the possible 
invasive and noninvasive recording techniques, then focuses on the EEG, its rhythms, 
and challenges (e.g. the sensitivity to artifacts), and finally introduces the four classes 
of EEG signals viable for BCI control. In the last two sections of the chapter, the 
concepts of BCIs for neurorehabilitation and control are introduced, linking to chapter 
2 in the first case, and presenting the line of arguments of chapter 3, chapter 4 and 
chapter 5 in the second case. In the last four chapters of the thesis, the core of the 
research activity is described. The content of chapter 2, chapter 3 and chapter 5 is 
based on published scientific papers, so the original article structure was kept, and the 
same organization was given to chapter 4. This way, each chapter is also self-
contained, and can be read independently from the others. 
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In chapter 2, a novel combination of two neurorehabilitation tools is investigated, 
namely i) BCI-guided motor imagery training and ii) transcranial direct current 
stimulation (tDCS). As tDCS can modulate event-related desynchronization (ERD), i.e. 
the neural signature of motor imagery detected by the BCI, a combination of the 
techniques has been recently suggested. One limitation of the approach is that the area 
targeted for stimulation is the same from which the BCI signal is acquired. As tDCS may 
induce artifacts in the proximal EEG electrodes, stimulation is usually given before BCI 
training, although the practice is not optimal due to the quickly vanishing effects of 
tDCS over time. In order to promote the practicality of the combination, the aim of our 
study was testing whether contralateral tDCS could have interhemispheric effects on 
the spectral power of the unstimulated hemisphere, possibly mediated by 
transcallosal connections, and whether such effects could be used to enhance ERD. The 
study involved the recording of twenty healthy volunteers, and the influence of tDCS 
over spectral power and ERD was assessed. 
 
Chapter 3 and chapter 4 are ideally in prosecution, and in line with the progressive 
effort to make BCI control more natural and intuitive. 
 
The work in chapter 3 describes a BCI control system based on the modulation of 
sensorimotor rhythms (SMR) by means of different motor imaginations. The work lies 
in the category of co-adaptive BCIs, aiming at the improvement of user training 
through short calibration and adaptivity of the system. The work in chapter 3 
integrates the already explored concepts of co-adaptive BCIs, introducing some novel 
elements to improve the flexibility and tailoring of the design. 
 
The activity in chapter 4 was carried out during an internship at the Institute of Neural 
Engineering, Graz University of Technology, Austria. The chapter lies in the context of 
the development of a new control framework for noninvasive BCIs, to allow for 
intuitive and natural control of a neuroprosthesis. The idea is to decode the 
trajectories of real or imagined movements from the EEG, and use these as input for 
the prosthetic device. Feasibility of EEG decoding had been shown in previous studies 
although, so far, it had only been performed offline. In chapter 4, a system enabling 
for the first time online control of a robotic arm by means of continuously EEG-
decoded movements is presented. The chapter details the methods used for the 
purpose, and discusses the results from ten healthy participants, in reference to the 
findings of previous offline studies. 
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Chapter 5 closes the thesis with a case-of-study of a four-class BCI based on SSVEP. 
The chapter presents two simple but effective ways to improve SSVEP recognition 
based on Canonical Correlation Analysis (CCA). The two variations could significantly 
improve classification accuracy with no or minimal impact on computational load, and 
no required additional user training. When used in combination, they led to accuracy 
increments of 7-8% on average and 25-30% peak. The possible reasons underlying 
these increments are also discussed in the chapter. 
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Chapter 1. Brain-Computer Interfaces for 
neurorehabilitation and control 
 

 

 

 

 

 

 

 

 

 

In this chapter, I will review some of the basic concepts of EEG-based Brain-Computer 
Interfaces, which I believe may be useful to better understand and frame the work. 
After briefly introducing the definition of Brain-Computer Interfaces, I will review 
some possible invasive and noninvasive neural recording techniques, focus on the 
EEG, with its rhythms and artifacts, and finally introduce the four classes of EEG signals 
viable for BCI control. In the last two sections of the chapter, I will introduce the 
concept of Brain-Computer Interfaces for neurorehabilitation, linking to chapter 2, and 
finally the concept of Brain-Computer Interfaces for control, linking to chapter 3, 
chapter 4 and chapter 5.  

 

1.1 Brain-Computer Interfaces 
According to a very general definition by Johnatan Wolpaw in (Wolpaw and Wolpaw, 
2012), a Brain-Computer Interface is a system able to “measure and convert the 
activity of the central nervous system (CNS) into an artificial output to replace, restore, 
emphasize, substitute or improve the natural CNS outputs, thus changing the 
interaction between the brain and the internal or the external environment”. In other 
words, a BCI is a system able to directly translate the neural activity into commands 
for various types of devices (e.g. a computer, a prosthesis, a machine…), without 
needing the mediation of peripheral nerves and muscles (Wolpaw et al., 2000). 

For their properties, BCIs have long been envisioned as tools to restore 
communication and control in patients with severe neuromuscular disorders or, more 
recently, to foster neurorehabilitation, i.e. to facilitate recovery of neural functions 
(Chaudhary et al., 2016). 
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From a conceptual point of view, a BCI system is composed of three parts (Figure 1.1): 
i) signal acquisition, ii) signal processing, and iii) feedback. 

After being recorded from the user, either invasively or noninvasively, the signal is 
processed to extract the information, and convert it into commands for the device to 
be controlled. The processing step can be further decomposed in three parts: 

i) pre-processing: usually consisting in spatial and temporal filters, this step 
encompasses the operations to enhance the significant components of the signal, 
better the signal-to-noise ratio, or attenuate artifacts 

ii) feature extraction: extraction of a set of meaningful features from the signal to 
be classified, as e.g. the spectral powers in a particular frequency band 

iii) classification: using machine learning techniques, the features are classified 
and translated into control signal for the device 

As a final element, feedback is the tangible consequence of the brain activity (e.g. 
movement/behavior of the neuroprosthesis, of a cursor on the screen, etc), allowing 
the user to learn voluntary modulation of his/her neural activity and gain control over 
the system. 

 
Figure 1.1 Conceptual scheme of a Brain-Computer Interface.  

 

1.2 Neural recording techniques 
One possible classification of the BCI systems may be the based on the underlying 
neural recording technique. Recordings may be either invasive or noninvasive, and 
may either monitor the i) electrophysiological or the ii) hemodynamic activity of the 
brain (Nicolas-Alonso and Gomez-Gil, 2012). 

With the term “electrophysiological activity”, one refers to the exchange of information 
between neurons through electro-chemical transmitters (Baillet et al., 2001). The 
cumulative change in electromagnetic field resulting from the communication 
between neuronal assemblies can be captured through several recording modalities 
(Figure 1.2), like the invasive intracortical recordings and electrocorticography 
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(ECoG), or the noninvasive magnetoencephalography (MEG) and 
electroencephalography (EEG). 

The “hemodynamic signal” is a consequence of the fact active neurons require more 
oxygen from the blood with respect to inactive areas. This results in a local variation 
of the ratio between oxyhemoglobin and deoxyhemoglobin, proportional to the level 
of activity of the region (Laureys et al., 2009). This ratio, and therefore the level of 
activity, is quantifiable by methods like functional magnetic resonance imaging (fMRI) 
and functional near infrared spectroscopy (fNIRS). 

The focus of this thesis are EEG-based Brain-Computer Interfaces. However, as some 
of the other terms will appear in the work, a very brief introduction on each recording 
technique will be given below. 

 

 
Figure 1.2 Overview of the electrophysiological recording techniques from invasive intracortical 
recordings, to ECoG, MEG, and EEG, and qualitative comparison of spatial resolution (figure from (Waldert 
et al., 2009)). 

 

1.2.1 Intracortical recordings 

Intracortical recordings are obtained through invasive implantation of microelectrode 
arrays into the cortex. This permits to capture the spiking activity and local field 
potentials of the neurons close to each electrode tip (Waldert et al., 2009). If applying 
different processing pipelines, three possible signals can be collected, notably: i) 
single-unit activity (SUA), ii) multi-unit activity (MUA), and iii) local field potentials 
(LFP). Intracortical recordings provide the best spatial and temporal resolution and 
are portable systems. However, their invasivity and the possible reaction of the brain 
tissue to the implant (Polikov et al., 2005) limit their use. 

 



16 
 

1.2.2 Electrocorticography (ECoG) 

Slightly less invasive than intracortical recordings, in electrocorticography (ECoG) a 
grid of electrodes is placed on the cortical surface (instead of penetrating the brain). 
The electrode array may be laid inside (subdural) or outside (epidural) the dura mater 
(Nicolas-Alonso and Gomez-Gil, 2012), while the ECoG recordings reflect the overall 
activity of the neuronal population under each electrode. 

Spatial resolution is lower than intracortical recordings, but still high. Due to their 
invasivity and problems in the long-term stability (Hill et al., 2006), ECoG implants are 
not widespread, although they are sometimes used in epileptic patients, temporally 
implanted for the localization of epileptic sources before surgery. 

 

1.2.3 Magnetoencephalography (MEG) and electroencephalography (EEG) 

Similarly to ECoG, but with lower amplitude and spatial resolution, both 
magnetoencephalography (MEG) and electroencephalography (EEG) capture the 
activity of large neuronal populations, although noninvasively from outside the head 
(Waldert et al., 2009). 

While EEG reflects the electrical activity of pyramidal neurons in the cortex (He, 2007) 
(see the next section for more details), MEG reflects the related magnetic fluctuations, 
captured with superconducting sensors (Min et al., 2010). One advantage of measuring 
magnetic fields is that they are less susceptible to distortion when crossing the skull 
and the scalp (Salmelin et al., 1995). Nevertheless, for its need to be carried out in 
magnetically shielded rooms and the immobility of the recording system (until very 
recently, see the first portable system presented in (Boto et al., 2018)), MEG recordings 
so far have been limited to research purposes. 

 

1.2.4 Functional Magnetic Resonance Imaging (fMRI) and functional Near-
Infrared Spectroscopy (fNIRS) 

In contrast to the previous recording techniques, functional magnetic resonance 
(fMRI) and functional near-infrared spectroscopy (fNIRS) provide an indirect measure 
of neural activity based on the blood oxygenation level, exploiting the magnetic (fMRI) 
or optical (fNIRS) properties of the oxygenated and deoxygenated forms of 
hemoglobin (Nicolas-Alonso and Gomez-Gil, 2012). Temporal resolution of both 
techniques is intrinsically limited by the physiological delay of the hemodynamic 
response, having latencies from three to six seconds (Weiskopf et al., 2004). Although 
benefiting of a high spatial resolution (deCharms et al., 2004), fMRI is not suitable for 
practical BCIs applications, due to the bulky and expensive hardware. On the other 
hand, fNIRS is increasingly attracting attention, for its portability and ability to 
complement the electrophysiological information, for example in the hybrid fNIRS-
EEG systems (Hong et al., 2018). 
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1.3 Electroencephalography 
1.3.1 EEG, origin and measurement 

Electroencephalography (EEG) is a noninvasive recording technique, capturing the 
activity of large neuronal populations from an array of electrodes placed the scalp. 

EEG rhythms are largely believed to be representative of the synchronous activity of 
pyramidal neurons in the cortex (Baillet et al., 2001). When communicating between 
each other, neurons behave as current dipoles, being crossed by intracellular currents 
and experiencing a difference in potential at their ends. For their properties of 
synchronous activity, parallel arrangement with respect to each other, and 
perpendicular orientation with respect to the cortex, the electrical fields from the 
pyramidal neurons can be effectively summated, giving birth to a cumulative signal 
which can be measured from outside the scalp (Da Silva, 2009)(Figure 1.3). 

 
Figure 1.3. Pyramidal neurons arrangement and EEG generation according to the dipole model (figure 
from (Strobbe, 2015)) 

 

The EEG signal is obtained as the difference in potential between two electrodes, of 
which at least one is placed on the scalp. The minimal configuration for an EEG 
measurement consists of one active and one reference electrode, together with a third 
electrode serving as ground for the two. Electrodes are placed on the scalp according 
to an international system, defining the locations’ names at the relative distances with 
respect to four anatomical landmarks (namely the nasion, the inion, and the two 
preauricular points) (Klem et al., 1999). The original 10-20 international system (Klem 
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et al., 1999), so called because the electrode locations are placed at the 10% or 20% of 
the distance between the landmarks, originally defined the position and names of 21 
electrode locations (Figure 1.4). Recent extensions to 10-10 and 10-5 can define up to 
300 locations (Nuwer et al., 1998; Oostenveld and Praamstra, 2001). 

 
Figure 1.4. The 10-20 system for EEG recordings. The letters in each location correspond to specific brain 
regions (A for the ear lobes, C for the central, P for the parietal, F for the frontal, Fp for the frontal polar, 
and O the occipital region). 

 

Electrodes are usually made of silver chloride (AgCl) and may be either active or 
passive, depending on the presence or not of preamplification circuits (Teplan, 2002). 
Electrode-scalp contact impedance should be kept between 1 kΩ and 10 kΩ in order to 
record an accurate signal (Usakli, 2010). For this reason, the interposition of 
conductive gel between electrode and skin is usually required. 

 

1.3.2 EEG rhythms 

The EEG spectrum (0.5 to ~100Hz) is commonly divided into six frequency bands, 
related to different biological significance and distribution over the scalp. These bands 
are named delta (δ), theta (θ), mu (μ), alpha (α), beta (β) and gamma (γ). Relevant 
features of each band are briefly given below. 

In the following, the EEG bands will be defined according to their average frequency 
limits. A relative definition of the bands with respect to the Individual Alpha Frequency 
(IAF) is also possible, to account for the inter-subject variability of the alpha peak 
(Klimesch, 1999). 

Delta band (δ):  delta is the EEG frequency range below 4Hz, and it tends to be the 
highest in terms of amplitude. It is normally seen in the posterior areas in babies, while 
the amplitude tends to decrease with the increase of age. In adults, delta rhythms are 
normally seen frontally during slow wave sleep, while an increased activity in the 
awake person may be associated to neurological diseases (Niedermeyer and Silva, 
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2005). Recently, the EEG delta band has also been shown to encode information 
related to the trajectories of voluntary movement (Robinson and Vinod, 2016). 

Theta band (θ): theta is the frequency band between 4Hz and 7Hz, and it is normally 
more enhanced in young children. Theta rhythms may be seen in drowsiness in adults, 
they might arise in meditation (Bazhenov et al., 2002), and may be associated with a 
wide range of cognitive processes, like mental calculation (Fernández et al., 1995), 
maze task demands (Caplan et al., 2001), or conscious awareness (Klimesch et al., 
2001). 

Alpha band (α):  alpha is the frequency range between 8 Hz to 12Hz. It was the first 
rhythmic activity observed in the EEG by its inventor, Dr Hans Berger (Berger, 1929). 
The activity was first observed in (Berger, 1929) in the posterior areas, with closed 
eyes or relaxation, and attenuated when opening the eyes. EEG rhythms in the alpha 
range have historically been considered resting rhythms for the brain (Pfurtscheller et 
al., 1997; Suffczynski et al., 2001) and, more recently, related to active inhibition and 
timing of processes (Klimesch et al., 2007). 

Mu rhytm (μ): the mu rhythm is a characteristic activity in the alpha range, with a 
typical frequency peak in the 9-11Hz band and a topographical distribution over the 
sensorimotor areas. The rhythm characteristically attenuates (desynchronizes) with 
the real or imagined movement of the contralateral arm (Pfurtscheller and Silva, 
1999), as explained in the next sections. 

Beta band (β): beta is the frequency range from 12Hz to about 30Hz. It is usually 
present on both hemispheres and most evident frontally. Beta activity is closely related 
to motor behavior, and generally desynchronized during active movements 
(Pfurtscheller and Silva, 1999), and synchronized after the cessation of the same (“beta 
rebound”). 

Gamma band (γ): gamma rhythms are the ones above 30Hz. They are thought to 
represent binding of different neuronal populations together into a network for the 
purpose of carrying out a certain cognitive or motor function (Niedermeyer and Silva, 
2005; Ursino et al., 2009). Recently, gamma rhythms have also been associated with 
trajectory encoding, although to a lesser extent with respect to the delta band (Korik 
et al., 2014). 

 

1.3.3 EEG artifacts (and how to deal with them) 

As the amplitude of EEG is in the range of 10 to 100 μV, it is very susceptible to noise 
coming from various external and internal factors. In the following, the most common 
artifactual sources will be reviewed. 

Ocular-related artifact: ocular-related artifacts are caused by the difference in 
potential between the cornea and the retina, which is quite large with respect to brain 
potentials. As the eyes move, either voluntarily (e.g. tracking of an object) or 
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involuntarily (e.g. saccadic movements, blinks), they generate a potential (the electro-
oculographic potential, EOG) interfering with several EEG locations, and most 
prominent in the frontopolar and frontal ones. Ocular artifacts affect the same 
frequency bands of eye movements, i.e. the delta (0-4Hz) and theta (4-7Hz) bands. One 
way to deal with these artifacts is by experimental design, i.e. by instructing 
participants to keep their gaze fixed during the recordings. Alternatively, eye artifact 
removal algorithms were developed for the purpose (Kobler et al., 2017), with the goal 
to subtract ocular activity, while minimally removing the underlying brain waves. 

Muscle-related artifacts: muscle-related artifacts are generated by the EMG activity 
and interfere with the highest part of the spectrum (>20Hz). They are particularly 
evident over the temporal locations, due to chewing movements or to even subtle 
activity of the jaw muscles. Several algorithms have been proposed for muscular 
artifact attenuation (Urigüen and Garcia-Zapirain, 2015), most of them based on blind-
source-separation methods (Jung et al., 1998, 2000). 

Heart beat: the electrical field generated by the heart (electrocardiogram, ECG) can 
directly interfere with the EEG recordings. The ECG interference depends on the 
orientation of the equivalent heart dipole, and may affect several electrodes 
simultaneously. As such, re-referencing of the signals to common average reference 
(CAR) or Laplacian derivations can drastically attenuate the ECG artifacts (McFarland 
et al., 1997a). 

Movement artifact: movement-related mechanical artifacts, associated with head 
movements or locomotion, can have amplitudes an order of magnitude larger than the 
underlying brain EEG signals (Gwin et al., 2010). Mechanical pulling of the wires on 
the electrodes, with the consequent temporary change of contact impedance, induces 
the artifacts. Body and head movements may induce slow potential shifts, which might 
be misinterpreted as delta activity (Anderer et al., 1999), or even higher frequency 
artifacts if induced by e.g. locomotion (Gwin et al., 2010). Several removal algorithms 
have been developed for the purpose (Gwin et al., 2010; Kim et al., 2015). 

Power-line artifact: power line interference (50/60Hz) is caused by capacitive 
coupling of the body with the environment, and can be removed by notch filers, 
together with proper grounding and shielding of the recording system. 

 

1.4 EEG signals for BCI control 
This section will describe the four electrophysiological sources typically used in EEG-
based BCIs, namely i) Slow Cortical Potentials, ii) P300, iii) Steady-State Visual Evoked 
Potentials (SSVEPs), iv) voluntary modulation of Sensorimotor Rhythms (SMR). One 
additional approach, which is being arising in recent years, investigates the possibility 
to directly infer movement trajectories from the low frequency components of the EEG, 
to provide a more natural and intuitive way of control (Müller-Putz et al., 2016). In 
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contrast to the first four established control signals, feasibility of the latter approach 
for online control is still object of investigation, being this at the cutting edge of 
noninvasive restorative BCIs. For these reasons, the latter will be introduced only 
later, in section 1.6 of this chapter, and will be the object of the research study 
described in chapter 4. 

 

1.4.1 Slow Cortical Potentials 

Slow Cortical Potentials (SCP) are small, slow shifts in EEG potential lasting from 
~300ms to a few seconds (Birbaumer et al., 2000; Wolpaw et al., 2002). As such, SCPs 
are part of the EEG spectrum <1Hz. Slow cortical potentials are related to changes in 
the level of cortical activity in such a way that negative shifts correspond to an 
increased level of activity, while positive shifts correspond to a decrease (Wolpaw et 
al., 2002). It has been shown that, with training, both healthy and paralyzed patients 
could learn to voluntary control SCPs, making it a viable control signal for the BCI 
(Birbaumer et al., 2000; Wolpaw et al., 2002). 

One of the first BCIs using SCPs is the one from Birbaumer et al., presenting in year 
2000 their “Thought Translation Device” (TTD) (Birbaumer et al., 2000), tested over 
five paralyzed patients. The TTD system was used both for the training of the person 
through operant conditioning and for communication, once classification accuracy 
consistently exceeded 75%. The system recorded the EEG signal from five electrodes 
and was completed by an eye tracker to remove ocular-related artifacts. During the 
first training phase, participants learned to control both positive and negative shifts. 
The feedback was the display of a cursor on the screen, with the additional positive 
reinforcement of a smiling face, as soon as the cursor reached the top/bottom. After 
training, the person could decide whether using positive or negative SCPs, thus 
continuing the training in the “free spelling” phase. In this last phase, each letter was 
selected by halfing the alphabet from time to time, up to the selection of the desired 
character. Of the five patients tested, three reached the spelling stage, one of these after 
three weeks of training and the other two after a few months (Birbaumer et al., 2000). 
With a BCI of this type, a user with accuracies between 65% and 90% could write from 
0.15 to 3 letters per minute (Wolpaw et al., 2002). Writing speed could be possibly 
improved by applying prediction algorithms of the most probable words based on the 
first typed letters (Birbaumer et al., 2000). 

 

1.4.2 P300 evoked potential 

P300 evoked potentials appear as small positive peaks due to infrequent visual, 
somatosensory, or auditory stimuli, whenever they occur, interposed to more frequent 
or routine stimuli (Wolpaw et al., 2002). P300 evoked potentials appear in the area of 
the parietal cortex about 300ms after the “weird” stimulus is presented. To explain 
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how P300 can be used in a BCI, one of the first systems of this type, by Farwell and 
Donchin in 1988, will be used as example (Farwell and Donchin, 1988). 

In the (Farwell and Donchin, 1988) system, a 6x6 matrix of symbols was shown on the 
screen. The symbols could be letters or short commands, like “space” or “backspace” 
(Figure 1.5). The rows and columns of the matrix flashed one at a time every 125ms, 
while the user was asked to carefully count how many times the row or column with 
the desired symbol flashed. As the row/column of interest was an improbable event 
interposed to many more probable, these elicited P300, making it possible to identify 
the desiderd symbol (Farwell and Donchin, 1988; Wolpaw et al., 2002). 

Although BCIs continued to evolve, the basic principle of P300-based systems remains 
the same, and similar to the one in (Farwell and Donchin, 1988). In people with vision 
problems, auditory stimuli have also been attempted (Furdea et al., 2009). One 
advantage of P300-based BCIs is that they do not require user training. The most 
“improbable” is the stimulus, the higher it the amplitude of P300 (Polich et al., 1996) 
however, if the user gets used to the odd stimulus, the amplitude is reduced and BCI 
performance may get worse (Ravden and Polich, 1999). One disadvantage of P300-
based BCIs is the reduced information transfer rate, allowing the selection of only few 
characters per minute (Nicolas-Alonso and Gomez-Gil, 2012). Given indeed the small 
amplitude of the P300 peak, averaging operations over several repetitions are needed. 
Over the years, different strategies have been proposed to improve the accuracy of 
P300-based BCIs, including the use of more complex algorithms for classification of 
the evoked potentials (Rivet et al., 2009). In spite of the reduced information transfer 
rate allowed by P300-based BCIs, the signal has been successfully used in the years e.g. 
for the control of wheelchairs (see an example in (Iturrate et al., 2009)). 

 

 

Figure 1.5. Matrix of symbols used in the (Farwell and Donchin, 1988) study. On the top, the composed 

work “B-R-A-I-N”. 
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1.4.3 Steady-State Visual Evoked Potentials (SSVEPs) 

Visual Evoked Potentials (VEP) are changes in the ongoing EEG activity, reflecting the 
processing of visual information in the brain (Sutter, 1992). As such, they are 
recordable from the parieto-occipital cortex after presentation of a visual stimulus 
(Wang et al., 2008). 

Depending on the frequency of the visual stimuli presentation, we can distinguish 
between transient and steady-state visual evoked potentials. Transient VEPs (tVEPs) 
occur when the frequency of stimulus presentation is lower than 2 Hz, so that there is 
some gap between two consecutive stimulations. If the repetition rate is >6Hz, then 
the evoked potentials will overlap, giving origin to a steady-state visually evoked 
potential (SSVEP)(Lin et al., 2007). Transient VEPs may be evoked with different 
strategies, as long as they provoke changes in the visual field of the user. They may be 
for example i) flash stimuli, if they are emitted e.g. by flashing dots, or even ii) pattern 
stimuli, if they involve sudden appearance/disappearance of a pattern on the 
background, or the inversion of the same pattern (e.g. of a checkerboard) (Odom et al., 
2004). SSVEP responses are induced by the same visual stimuli as tVEPs, but repeated 
over time. 

The appealing feature of SSVEPs is that they present spectral power peaks at the same 
frequency of the visual stimulation and related harmonics (Nicolas-Alonso and Gomez-
Gil, 2012). Consequently, if several flickering objects are simultaneously presented, an 
analysis of the EEG frequency content may permit to conclude which one the user is 
gazing at. Thanks to their high signal-to-noise ratio even without user training, SSVEPs 
are appealing for fast and reliable BCI control (Zhu et al., 2010), and have been 
extensively used e.g. for the selection of buttons/letters on the screen. An example of 
such systems can be found e.g. in (Middendorf et al., 2000). 

Traditionally used methods perform SSVEP recognition based on power spectral 
density analysis (PSDA)(Lin et al., 2007). In PSDA-based approaches, spectral powers 
are estimated from the EEG signal at the target stimulation frequencies and used as a 
feature for classification (Cheng et al., 2002; Müller-Putz et al., 2005; Yijun et al., 2005). 
More recently, an effective and increasingly used approach (Bin et al., 2009; Pan et al., 
2011; Zhang et al., 2012) has become the one based on Canonical Correlation Analysis 
(CCA), as explained in (Lin et al., 2007). 

 

1.4.4 Sensorimotor Rhythms (SMR) 

Sensorimotor rhythms (SMR) are EEG rhythms detectable over the primary motor and 
sensory cortex, covering the mu (8-13Hz) and beta (13-30Hz) bands, and reflecting 
the processing of sensory and motor information. SMR are modulated by motor tasks, 
although their success in the BCI field is probably related to their being modulated also 
by motor imagination (Jeannerod, 1995; McFarland et al., 2000; Pfurtscheller and 
Neuper, 1997; Pfurtscheller et al., 2006), with similar patterns. 
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Modulations of SMR rhythms may result from sensory stimulation, a motor act or its 
imagination, and may be of two types. They may be event-related desynchronization 
(ERD) or event-related synchronization (ERS), either they are related to a decrease 
(ERD) or increase (ERS) in spectral power (Pfurtscheller and Neuper, 2001; 
Pfurtscheller and Silva, 1999). The dynamics of brain oscillations can form even 
complex space-time patterns, so that in a specific location they may simultaneously 
occur e.g. a desynchronization at lower and synchronization at higher frequencies 
(Pfurtscheller and Neuper, 2001). 

It is known that voluntary movement induces the desynchronization of both mu and 
beta rhythms (Pfurtscheller and Neuper, 1997). Desynchronization begins ~2 seconds 
before movement onset, in the hemisphere contralateral to the movement, and 
becomes symmetric with movement execution (Pfurtscheller and Neuper, 1997). As 
motor imagery involves brain regions and functions similar to the ones in movement 
programming and preparation (Jeannerod, 1995; Pfurtscheller and Neuper, 2001), 
contralateral ERD in the mu and beta bands could be observed during motor 
imagination as well (Pfurtscheller and Neuper, 1997). In addition to contralateral ERD, 
ipsilateral ERS in approximately the same frequencies could sometimes accompany 
motor imagination (Guger et al., 2000; Pfurtscheller and Neuper, 1997).  

 

 
Figure 1.6. The ERD/ERS patterns during motor imagination of left and tight hand in the three subjects 
of (Pfurtscheller and Neuper, 2001). 
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One important feature of SMR is their following a somatotopic organization 
(Pfurtscheller and Neuper, 2001), so that the patterns related to one imagination are 
different and distinguishable from the patterns of another one. As an example, Figure 
1.6 shows the three subjects from the study in (Pfurtscheller and Neuper, 2001), 
during the imagination of the movement of their right vs left hand. For each subject, 
the frequency band with greatest differences between the two imaginations is 
highlighted. As previously explained, some subjects (e.g. the first one) may only report 
the contralateral ERD, while other ones (e.g. the second and the third one) may also 
show ERS on the ipsilateral side. When contrasting the two types of imaginations, it 
could be noted that the patterns are clearly distinguishable and, in this case, also 
symmetric. The basic idea of SMR-based BCIs is therefore to use several imaginations, 
inducing different SMR patterns, to be recognized and classified against each other to 
be used as control signal for the BCI (Guger et al., 2000). 

Sensorimotor rhythms have been extensively explored in BCI research. The approach 
was one of the most used in the 1990s and 2000s, when the main research centers in 
the field, like Wadsworth (Wolpaw et al., 2000), Berlin (B. Blankertz et al., 2008), and 
Graz (G. Pfurtscheller et al., 2003), presented their BCI paradigms based on SMR 
modulation. 

One limitation of SMR-based BCIs is that learning a stable, voluntary modulation of 
SMRs may be a non-intuitive and unnatural task, usually requiring from weeks to 
months of user training (Tan and Nijholt, 2010). To tackle this problem, co-adaptive 
BCI frameworks have been first proposed and, more recently, the novel approach of 
movement decoding is being investigated. The two approaches will be the focus of 
chapter 3 and chapter 4 of this thesis, as it will better introduced in the following 
section 1.6. 

Apart from being used as a signal for BCI control, event-related desynchronization of 
sensorimotor rhythms has recently been used in neurorehabilitation, to objectify the 
engagement of the motor network during motor imagery. More details on this topic 
can be found in the next section and are the focus of the chapter 2 presented later in 
the thesis.  

 

1.5. Brain-computer interface for neurorehabilitation 
Besides their employment for restoration of control, a recently emerging use of Brain-
Computer Interfaces is in the area of neurorehabilitation (van Dokkum et al., 2015). 
With the term neurorehabilitation, one refers to the process aiming at the recovery 
from a neurological injury (i.e. stroke), to minimize or compensate the resulting 
functional alterations (Ganguly et al., 2013; Krucoff et al., 2016). In this context, BCIs 
may be used as a tool to objectify the desired patient’s brain modulations, as he 
attempts to perform the desired motor task, or during mental rehearsal of the same 
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(van Dokkum et al., 2015). The goal is the recruitment of the desired brain areas, to 
promote neuroplasticity – i.e. the ability of the nervous system to reorganize its 
structure, function and connections (van Dokkum et al., 2015) – and enhance motor 
recovery. 

In the following lines, I will introduce one of the main target populations of BCI-guided 
neurorehabilitation (i.e. stroke patients), and the two neurorehabilitation tools I 
focused on, i.e. motor imagery training and noninvasive brain stimulation based on 
transcranial direct current stimulation (tDCS). These elements will permit me to 
introduce the research activity later described in chapter 2. The content of chapter 2 
is based on the published work in (Mondini et al., 2018a). 

 

1.5.1 Stroke patients 

Stroke is the main cause of acquired disability in adults (van Dokkum et al., 2015) and 
the second cause of death in the world. The most common disability after stroke is the 
hemiparesis of the upper limb (Ang et al., 2010). More than 80% of the stroke 
survivors experience this condition acutely and sub-acutely, and up to 40% are left 
with chronic diseases (Cramer et al., 1997). 

After stroke onset, three phases can be distinguished: i) a first phase called acute, 
lasting from several hours to days after the lesion, ii) a second called subacute, lasting 
up to 5-6 months after stroke, and a final one called iii) chronic, potentially lasting for 
the rest of the patient’s life (Cramer, 2008; Kiran, 2012). 

After the first hours/days of the acute phase, where inflammation/scarring processes 
occur, neural plasticity in the lesioned area naturally increases, to promote the 
reorganization of the neural connections and, therefore, the re-learning and functional 
recovery (Carmichael, 2003). Neurological recovery after stroke follows a nonlinear 
trend (Kwakkel et al., 2004), where the greatest part of recovery takes place in the first 
three months after stroke (Wade et al., 1983) and, although displaying considerable 
variability (Cramer, 2008), on average up to 6 months. Spontaneous neurological 
recovery can happen in the first months and most likely in the first weeks (Kwakkel et 
al., 2006), while it reaches a plateau in the chronic phase. Although the outcomes may 
be masked by spontaneous recovery (Kwakkel et al., 2006), rehabilitation usually is 
maximally effective in the first months after lesion, thanks to the high level of neural 
plasticity. For these reasons, among the goals of neurorehabilitation, there are the i) 
enhancement of amount and duration of natural plasticity, together with its ii) 
prolongation in the chronic, late phase of the disease (Kleim, 2011). 

 

1.5.2 Upper limb rehabilitation 

According to the systematic review in (Hatem et al., 2016), investigating the efficacy of 
treatments for the motor rehabilitation of the upper limb after stroke, interventions 
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can be divided in: i) main rehabilitation strategies, and ii) adjuvant therapies. While 
physical therapies (like the constraint-induced movement therapy, or muscle 
strengthening) are used as main rehabilitation strategies, the review (Hatem et al., 
2016) illustrates a number of adjuvant therapies which were proved to be effective, 
and may considerably enhance the rehabilitation outcomes. Among these, we find i) 
mental practice in the form of motor imagery and ii) transcranial direct current 
stimulation, whose use is suggested in the treatment of both the subacute and chronic 
phases (Hatem et al., 2016). 

 

1.5.3 Mental practice in the form of motor imagery, and the role of BCIs 

Mental practice in the form of motor imagery (MI) has been recently suggested as a 
valiant add-on tool to boost post-stroke motor rehabilitation (Pichiorri et al., 2015). 
As already introduced in section 1.4.4, MI involves similar brain regions and functions 
with respect to the real movement (Jeannerod, 1995). As such, MI is able to recruit the 
motor system, with the advantage of being independent from the residual level of 
motor control. With MI training, the reiterated engagement of the motor network 
would be able to enhance neuroplasticity, with the final outcome of improving the 
efficacy of rehabilitation (van Dokkum et al., 2015). 

One limitation of MI is its being a purely mental task, which makes it difficult for both 
the therapist and the patient to quantify the performance. In order to provide guidance 
to the MI exercise, the use of brain-computer interfaces (BCI) has been proposed (van 
Dokkum et al., 2015). The randomized control trial (RCT) in (Pichiorri et al., 2015), 
contrasting the conditions of i) MI training alone and ii) BCI-guided MI training, 
indicated significant increases in neurophysiological and functional outcomes when 
the mental practice was guided by a BCI. 

The neural signature of motor imagery is the desynchronization (ERD) of SMR 
rhythms on the hemisphere contralateral to the movement (G. Pfurtscheller et al., 
2000; Guger et al., 2000; Pfurtscheller and Neuper, 1997). BCIs for guiding MI training 
give feedback on the strength of ERD (Pichiorri et al., 2015), e.g. by showing a cursor 
on the screen. 

 

1.5.4 Transcranial direct current stimulation (tDCS) 

Transcranial direct current stimulation (tDCS) is a non-invasive brain-stimulation 
technique, which consists in delivering a low-intensity direct current (usually 1-2mA 
through 35cm2 electrodes), through a pair of electrodes on which one at least one is 
placed on the scalp (Hummel and Cohen, 2006). Depending on the positioning of the 
active and reference electrode, tDCS may be anodal (with the anode as active 
electrode) or cathodal (with the cathode as active electrode). Even though partially 
non-linear effects were found for high simulation intensities and durations 
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(Batsikadze et al., 2013), it is well established that tDCS modulates the excitability of 
the cortex in a polarity-dependent way, with the anodal stimulation increasing and the 
cathodal stimulation decreasing cortical excitability (Nitsche and Paulus, 2000). These 
changes are thought to be due to both modifications in membrane polarization 
(Nitsche and Paulus, 2000) and synaptic mechanisms (Nitsche et al., 2003). By 
increasing the excitability of the cortex, the plasticity is also enhanced (Lüdemann-
Podubecká et al., 2014). 

 

1.5.5 Combining tDCS and BCI-guided MI training 

Several studies proved the possibility to modulate the MI-induced ERDs by means of 
tDCS (Ang et al., 2015; Baxter et al., 2014; Kasashima et al., 2012; Kasashima-Shindo 
et al., 2015; Lapenta et al., 2013; Matsumoto et al., 2010; Roy et al., 2014; Soekadar and 
Birbaumer, 2014; Wei et al., 2013a). Most of them agree that anodal stimulation 
increases the strength of ERDs, while cathodal tDCS decreases it. As such, anodal tDCS 
was proposed as a conditioning tool for BCI-guided MI training, as ERDs may look 
different or weaker in stroke patients, and so more hardly detectable (Ang et al., 2015). 

A limitation of this approach is that the area targeted for stimulation is the same from 
which the ERD is recorded to provide BCI feedback, since tDCS is known to induce 
artifacts on the EEG locations most proximal to the stimulation electrode (Mancini et 
al., 2015; Soekadar and Birbaumer, 2014). This limits the applicability of tDCS during 
recordings, indeed what it is usually performed is a preliminary tDCS followed by, as 
soon as possible, MI training (Kasashima et al., 2012; Kasashima-Shindo et al., 2015; 
Matsumoto et al., 2010; Tohyama et al., 2011; Wei et al., 2013a). However, timing of 
stimulation is important for motor skill learning (Stagg et al., 2011), and tDCS after-
effects are sustained for a limited amount of time (Nitsche and Paulus, 2001). 

With the goals to simplify the application of tDCS to BCI training, by increasing its 
practicality, and to investigate the interhemispheric tDCS effect, we explored in 
chapter 2 the feasibility of a novel approach, applying tDCS to the contralateral 
(instead of the ipsilateral) hemisphere. As this was the first time the envisioned 
protocol was tested, we checked its feasibility on healthy people. 

 

1.6. Brain computer interfaces for control 
In this section, the line of arguments relating the last three chapters of my thesis will 
be introduced. The focus of these chapters are Brain-Computer Interfaces for control 
purposes. While chapter 5 is a separate case-study based on SSVEPs, chapter 3 and 
chapter 4 are ideally in prosecution, and in line with the progressive effort to make 
BCI control more intuitive and natural, first through the implementation of the co-
adaptive approach (chapter 3) and, very recently, envisioning a novel control 
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framework based on movement trajectory decoding (chapter 4) (Müller-Putz et al., 
2016). 

In the following lines, I will briefly introduce the line of arguments relating the works 
in chapter 3 and chapter 4. A brief introduction of the case-of-study in chapter 5 will 
be finally given.  

 

1.6.1 Towards a more intuitive and natural control of noninvasive BCIs 

The classic SMR-based BCI paradigms 

As introduced in section 1.4.4, motor imagery-based BCIs were the most explored in 
1990s and 2000s, indeed all the main research centers in the field, like Wadsworth 
(Wolpaw et al., 2000), Berlin (B. Blankertz et al., 2008), and Graz (G. Pfurtscheller et 
al., 2003), proposed in these years their paradigms based on such approach. The basic 
principle of these systems is that different motor imageries lead to different EEG 
patterns (Pfurtscheller and Neuper, 1997), which can be classified against each other 
and used for communication (Scherer et al., 2004) or control (Pfurtscheller et al., 
2003) purposes.  

The first classical BCI schemes consisted of three separate parts: i) a calibration part 
without feedback, ii) setting up of the classifier, and iii) online operation, with 
feedback. In order to be able to calibrate the system, the users were requested to 
perform the MI task several times without feedback, even for quite long (40-80 trials, 
(Pfurtscheller and Neuper, 2001)). After setting up the classifier, the online operation 
phase could start, and the feedback could be given to the users according to the 
classification of their mental state (G. Pfurtscheller et al., 2003). On one hand, feedback 
is essential to permit the user to see the consequence of his/her SMR modulations, and 
so the learning process to begin. On the other hand, feedback learning induces a 
modification in the user’s behaviour, leading to a change in the EEG patterns (Schlögl 
et al., 2010) and therefore to a decrease of the classifier’s performances, still trained 
on the calibration conditions. To regain accuracy, a novel adaptation of the system 
could be required, but with the effect of changing again the feedback (Schlögl et al., 
2010). The possible difficulties of the interdependency between man and machine 
were discussed and named as “man-machine dilemma” (Pfurtscheller and Neuper, 
2001). To produce learning for the user and improvement of the performances, the BCI 
first schemes could require several iterations of the entire loop. As a result, learning 
voluntary control of SMR rhythms with a satisfactory level of accuracy usually was a 
skilful and non-intuitive task, which could require weeks or even months of user 
training (G. Pfurtscheller et al., 2003; Tan and Nijholt, 2010). 
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The co-adaptive approach 

One first step towards the simplification of BCI control came with the introduction of 
the so-called “co-adaptive” approach (Müller-Putz et al., 2016). Having recognized the 
essential role of feedback in the learning process, one of the goals of the new approach 
was to minimize the calibration time, in order to start giving feedback as soon as 
possible during training (Faller et al., 2012). The goal was pursued by either using pre-
trained classifiers based on a pool of subjects’ data (Vidaurre et al., 2005, 2006, 2007, 
2011a), or priming the subject-specific classifier with a very small amount of data 
(Faller et al., 2012, 2013, 2014; Kobler and Scherer, 2016; Schwarz et al., 2015). A 
second implication of the co-adaptive approach is the necessary adaptation of the 
preprocessing and classifier parameters, both to improve the quality of feedback and 
to handle the EEG non-stationarities, naturally arising from feedback training (Schlögl 
et al., 2010). For their promoting the simultaneous adaptation of the user and the 
machine, this new class of approaches was named “co-adaptive”. 

In contrast to the long training process with classical BCI paradigms, when tested on 
healthy (Faller et al., 2012; Vidaurre et al., 2005, 2006, 2007) or physically impaired 
(Faller et al., 2013, 2014) users, co-adaptive systems showed online accuracies 
increasing in just two-three days of training. Also, the BCI paradigms were more 
engaging, according to the perception of participants (Faller et al., 2012; Müller-Putz 
et al., 2016; Schwarz et al., 2015). 

A co-adaptive BCI is also the subject of chapter 3 of this thesis. The system in this 
chapter is based on common spatial pattern (CSP) (Koles et al., 1990; Wang et al., 
2005), and uses a linear support vector machine (SVM) for classification. Besides 
integrating the previously explored concepts of “short calibration” and “recurrent 
adaptation”, the work suggests some novel points of design which may further 
increase user training. With the goal of addressing the high variability in BCI 
performance and mental strategy, which usually occur across users (Dickhaus et al., 
2009), the work suggests that a tailoring of the BCI implementation and paradigm may 
further promote a better synergy between user and machine, making user training 
even more effective and engaging. Three novel elements of design are introduced in 
the system, their effect is evaluated over 10 healthy participants, and the results are 
finally discussed in view of subsequent BCI designs. The content of chapter 3 is based 
on the published work in (Mondini et al., 2016). 

 

A novel control framework based on trajectory decoding 

As already suggested in (Müller-Putz et al., 2016), although the co-adaptive approach 
could significantly improve user training, SMR-based control was still rather 
unnatural, given the discrepancy between the classified motor imaginations and the 
behaviour of the machine. In order to perceive naturality of control, the BCI behaviour 
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should ideally be as close as possible to the users’ indented movement (Ofner and 
Müller-Putz, 2015). A possible way to achieve this, would be to decode the (real or 
imagined) movement trajectories from the neural recordings, and use these as inputs 
for the neuroprosthesis to be controlled (Ofner and Müller-Putz, 2015). 

Neural tuning to movement direction has first been shown in monkeys through 
invasive intracortical recordings. The studies discovered that several primary motor 
and parietal assemblies would mostly fire in relation to preferred movement 
directions (Caminiti et al., 1990; Georgopoulos et al., 1982; Kalaska et al., 1983). 
Following primate and human studies showed the possibility to invasively extract 
hand trajectories and velocity profiles (Black et al., 2003; Carmena et al., 2003; 
Hochberg et al., 2012; Lebedev et al., 2005; Li et al., 2009; Mulliken et al., 2008) and, in 
some cases, use these as control input for the movement of an end effector (Carmena 
et al., 2003; Hochberg et al., 2012; Lebedev et al., 2005; Mulliken et al., 2008). An effort 
towards decreasing the invasivity of the recordings was made in the first ECoG studies 
in (Pistohl et al., 2008; Schalk et al., 2007), although the possibility to decode from 
outside the scalp has been proved just recently, first in MEG (Bradberry et al., 2009; 
Georgopoulos et al., 2005; Waldert et al., 2008; Yeom et al., 2013) and lately in EEG 
(Bradberry et al., 2010; Kobler et al., 2018; Lv et al., 2010; Ofner and Müller-Putz, 2012; 
Úbeda et al., 2015). How the decoded trajectories might be used as a control signal for 
the BCI in motor impaired users was finally clarified in (Ofner and Müller-Putz, 2015), 
showing that not only performed movements but also imagined ones could be decoded 
from low-frequency EEG. 

When coming to EEG, research agrees that kinematic information is present in the low 
frequency band (<3Hz) (Waldert et al., 2009), and that it can be retrieved by means of 
linear decoders (Robinson and Vinod, 2016). Several studies could decode the hand 
trajectory velocities (Bradberry et al., 2010) and/or positions (Ofner and Müller-Putz, 
2012; Úbeda et al., 2015) from the linearly combined low-pass filtered EEG. While the 
first designs often included center-out tasks, leading to confusion in understanding 
which was the best encoded kinematic variable (e.g. positions or velocities), a recent 
work in (Kobler et al., 2018) finally clarified the spatiotemporal tuning of the EEG to 
each movement parameter. 

Despite the considerable advancements of previous studies in understanding 
kinematic encoding, when coming to noninvasive EEG, movement decoding had only 
been performed offline. Building on the findings of the previous works, chapter 4 
presents the first attempt to go online, by implementing real-time control of an 
assistive robotic arm by means of continuously EEG-decoded two-dimensional 
movements. 

As it is the first time EEG decoding is performed online, chapter 4 details the methods 
used for the purpose, with particular attention to the differences and constraints 
arising when shifting from offline to online decoding, and closing the loop through a 
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robotic arm. The correlations between decoder output and real movement were 
evaluated, and the analysis of the contributing EEG sources was completed. The study 
in chapter 4 was carried out at the Institute of Neural Engineering (Graz Technical 
University, Austria), where I had the opportunity to spend an internship, and in strict 
collaboration with Dipl.-Ing Reinmar Kobler, Ing. Dr. Andreea-Ioana Sburlea, and Prof. 
Dr. Gernot R. Müller-Putz.  

 

1.6.2 Case of study: improving the efficacy of CCA for SSVEP recognition 

As a separate case of study with respect to chapter 3 and chapter 4, but still within 
the context of Brain-Computer Interfaces for control, chapter 5 presents two simple 
but effective ways to significantly improve SSVEP recognition based on Canonical 
Correlation Analysis (CCA). 

CCA is an increasingly used approach in the field of SSVEP recognition. The efficacy of 
the method has been widely proved, so several variations have been proposed (Chen 
et al., 2015; Islam et al., 2016; Nakanishi et al., 2014; Pan et al., 2011; Wang et al., 2014; 
Yuan et al., 2015; Zhang et al., 2011, 2013, 2015, 2014). However, most CCA variations 
tend to complicate the method, either proposing a subject-specific tailoring, which 
requires additional user training, or by increasing computational load, e.g. by 
multiplying the number of steps to assess each SSVEP. However, even taking simple 
procedures and keeping low computational costs may be relevant, especially to favor 
the spread of low-cost and high-portability devices. In the study of chapter 5, we 
propose two simple variations to the classical CCA method, and evaluate their impact 
over ten volunteers in a four-class SSVEP setup. Both variations were able to 
significantly improve the classification accuracy, leading to increments of 7-8% on 
average, and 25-30% peak. The reasons underlying these increments are also 
discussed. Given their modular structure and their no or minimal impact on 
computational load, we suggest the proposed variations may be easily included in 
future CCA designs even different from ours. The content of chapter 5 is based on the 
published work in (Mondini et al., 2018b). 
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Chapter 2. Contralateral tDCS during BCI-

guided motor imagery training  
 

 

 

2.1 Introduction 

Over the years, transcranial direct current stimulation (tDCS) and mental practice in 
the form of motor imagery (MI) have attracted considerable interest with regard to 
neurorehabilitation, for example in stroke patients (Hatem et al., 2016). Both 
techniques can indeed promote neuroplasticity, thus boosting recovery when paired 
with a standard rehabilitation protocol (Hatem et al., 2016). 

tDCS is a noninvasive brain stimulation technique that consists in delivering a 
low-intensity direct current (usually 1-2mA in 35cm2 electrodes) for a limited amount 
of time (10-20 minutes), through a pair of electrodes, of which at least one is placed on 
the scalp (Hummel and Cohen, 2006). It is well established that tDCS induces 
polarity-dependent excitability modulations, with anodal stimulation increasing and 
cathodal stimulation decreasing cortical excitability (Nitsche and Paulus, 2000). The 
modulation of cortical excitability influences neuroplasticity, which can eventually 
enhance motor recovery (Hatem et al., 2016; Lüdemann-Podubecká et al., 2014; 
Schlaug et al., 2008).  

As regards motor imagery (MI), its use in neurorehabilitation was proposed given the 
technique’s ability to recruit approximately the same areas as overt movement, 
regardless of the residual level of motor control (van Dokkum et al., 2015; Hatem et al., 
2016; Pichiorri et al., 2015). The reiterated engagement of the motor system induced 
by MI training is designed to promote the neuroplasticity of the area, thus enhancing 
recovery (van Dokkum et al., 2015; Hatem et al., 2016; Pichiorri et al., 2015). However, 
as motor imagery is a purely mental task, it has recently been shown that a better 
rehabilitation outcome can be achieved when the practice is guided by a dedicated 
Brain-Computer Interface (BCI) (Pichiorri et al., 2015), and a neurofeedback system in 
particular, as this closes the loop by providing appropriate feedback to the user. 

Generally speaking, a BCI is a system that records neural activity and translates it into 
a control signal for a particular device (e.g. robotic arm, machine, computer) (Wolpaw 
et al., 2002). In addition to being used for communication or control purposes 
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(Birbaumer and Cohen, 2007), BCIs have recently emerged in the context of 
neurorehabilitation (Daly and Wolpaw, 2008; van Dokkum et al., 2015; Soekadar et al., 
2015), where they are employed to decode the neurophysiological features associated 
with motor imagery or attempted movements, and give feedback accordingly 
(neurofeedback). At a cortical level, the neural signature of motor imagery is the event-
related desynchronization (ERD) of sensorimotor rhythms (SMR) in the motor area 
contralateral to the movement (Guger et al., 2000; Pfurtscheller and Neuper, 1997). By 
detecting the ERD and providing contingent feedback to the user, the BCI objectifies 
the motor network engagement and encourages the desired modulation of cortical 
rhythms, thus guiding the practice while keeping the user engaged and motivated (van 
Dokkum et al., 2015; Pichiorri et al., 2015). 

Even though tDCS and neurofeedback-guided MI training are usually employed 
independently of each other, a combination of the two has been recently suggested 
(Ang et al., 2015; Kasashima et al., 2012; Kasashima-Shindo et al., 2015; Soekadar et 
al., 2014a; Wei et al., 2013b). The purpose of the combination would be to produce an 
ERD enhancement by means of tDCS, to facilitate BCI control (Ang et al., 2015; 
Kasashima et al., 2012; Kasashima-Shindo et al., 2015; Soekadar et al., 2014a; Wei et 
al., 2013b). 

Several recent studies have shown that tDCS can modulate the motor imagery-induced 
ERD (Ang et al., 2015; Baxter et al., 2016; Kasashima et al., 2012; Kasashima-Shindo et 
al., 2015; Lapenta et al., 2013; Matsumoto et al., 2010; Roy et al., 2014; Soekadar et al., 
2014b; Wei et al., 2013b). Most of them agree that anodal stimulation increases the 
strength of the ERD in the stimulated area (Ang et al., 2015; Kasashima et al., 2012; 
Kasashima-Shindo et al., 2015; Matsumoto et al., 2010; Soekadar et al., 2014b; Wei et 
al., 2013b), while cathodal stimulation decreases it (Matsumoto et al., 2010; Soekadar 
et al., 2014b). It was therefore suggested that anodal tDCS could be used as a 
conditioning tool to enhance neurofeedback-guided MI training (Ang et al., 2015; 
Kasashima et al., 2012; Kasashima-Shindo et al., 2015; Soekadar et al., 2014b; Wei et 
al., 2013b). 

One limitation of the above-described approach is that the target area for stimulation 
is the same from which the ERD should be collected for neurofeedback. However, as 
tDCS may induce artifacts in the EEG locations proximal to the stimulation electrode 
(Mancini et al., 2015; Soekadar et al., 2014a), it is not possible, at least with a 
traditional 2-channel tDCS device, to perform neurofeedback training during 
stimulation, unless the stimulation electrode is placed in a non-optimal site, which 
could decrease the efficacy of tDCS (Soekadar et al., 2014a). The situation is typically 
solved by performing tDCS stimulation first, followed by neurofeedback training 
(Kasashima et al., 2012; Kasashima-Shindo et al., 2015; Matsumoto et al., 2010; 
Tohyama et al., 2011; Wei et al., 2013b). However, provided that the tDCS after-effects 
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are sustained for a limited amount of time (Nitsche and Paulus, 2001), this necessitates 
starting neurofeedback as quickly as possible right after stimulation. Furthermore, it 
has been suggested that the timing of stimulation is important for motor skill learning 
(Stagg et al., 2011). If it were possible to find an experimental setup to facilitate 
EEG-tDCS co-registration, e.g. by placing the stimulation electrode far enough from the 
recording sites, this would simplify the application of tDCS to neurofeedback training 
in both the research and clinical contexts. The configuration would also allow the 
characterization of tDCS effects not only after but also during stimulation, as in 
(Mangia et al., 2014).  

As a first aim, we investigated the feasibility of an approach where tDCS is applied 
during neurofeedback-guided MI training not to the ipsilateral, but to the contralateral 
motor cortex. This would allow simplifying the experimental setup, as the stimulation 
electrode would be placed far from the EEG recording sites. Our idea was to test 
whether it was possible to produce an enhancement of the motor imagery-induced 
ERD on the target motor cortex by exploiting the phenomenon of interhemispheric 
inhibition (Ferbert et al., 1992). We hypothesize that tDCS may influence the ERD on 
the contralateral motor cortex with an opposite sign with respect to the ipsilateral 
modulation, i.e. that cathodal stimulation would bring about facilitation while anodal 
stimulation would produce an inhibition of contralateral ERDs. Since this is the first 
time contralateral tDCS is examined with regard to its rehabilitative potential, we 
applied our protocol to healthy users. 

In addition to testing the feasibility of our approach to enhance neurofeedback-guided 
MI training, we also aimed at clarifying the remote effects of tDCS on contralateral EEG 
rhythms. Indeed, there are only a few studies that marginally address this issue, 
particularly during motor imagery, and their results are not fully consistent or 
comparable given the different experimental setups (Baxter et al., 2016; Lapenta et al., 
2013; Notturno et al., 2014; Roy et al., 2014; Wei et al., 2013b). In Notturno et al. 
(Notturno et al., 2014), where the local and remote effects of tDCS were evaluated 
during a finger tapping task, an increase in bilateral ERD in the alpha band was 
observed after anodal stimulation, while there were no effects caused by cathodal or 
sham (i.e. unreal) stimulation. In Lapenta et al. (Lapenta et al., 2013), an opposing 
effect of tDCS between hemispheres emerged over the ERDs induced by motor 
imagery. Conversely, in Wei et al (Wei et al., 2013b), anodal stimulation of the right 
motor cortex increased the ERD of both left (ipsilateral) and right (contralateral) hand 
motor imagery. Finally, Roy et al. (Roy et al., 2014) and Baxter et al. (Baxter et al., 2016) 
did not find stimulation to have an effect on contralateral ERDs. 

In regard to the first aim of this study, i.e. testing the feasibility of contralateral tDCS 
for neurorehabilitation, we hypothesized a situation of single-hand motor imagery 
training, guided by a dedicated neurofeedback system. The motor imagery task was 
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repeated before, during, and after stimulation, so that the contralateral tDCS effects 
could be characterized over time. In regard to the second, more explorative nature of 
the study, we completed the ERD analysis with a study of EEG spectral power under 
“reference" or “motor imagery” conditions. By providing a complete analysis of both 
ERD and power over time, we believe that this work will contribute to the 
understanding and characterization of the distant tDCS effects on cortical rhythms. 

 

2.2 Methods 
2.2.1 Participants 

Twenty healthy volunteers (aged 21 to 32, median 26, nine males) took part in the 
study. Since both interhemispheric connections and the modulating effects of tDCS are 
influenced by handedness (Bäumer et al., 2007; Kasuga et al., 2015; Vines et al., 2008), 
we only enrolled right-handed volunteers, as assessed by the Edinburgh Handedness 
Inventory (Oldfield, 1971). The study conformed to the Declaration of Helsinki and 
was approved by the Bioethics Committee of the University of Bologna. All participants 
provided written consent to participate in the study. 

 

2.2.2 tDCS stimulation 

We tested both anodal and cathodal stimulations in a sham-controlled design, so each 
volunteer participated in two rounds of experiments, alternatively receiving real or 
sham stimulation. Ten out of twenty subjects received cathodal versus sham 
stimulation, while the other ten underwent anodal versus sham. All participants were 
blinded to their stimulation condition. The two rounds of experiments were separated 
by at least 24 hours, but they were always completed within a week (with a median 
value of the interval of 2 days). On one hand, the minimum interval of 24h provided a 
sufficient wash-out period from the stimulation effects according to literature, as 
physiological after-effects of single-session tDCS with similar or superior stimulation 
intensities and durations were shown to last no longer than 90 (Nitsche and Paulus, 
2001) or 120 minutes (Batsikadze et al., 2013). On the other hand, the choice of 
completing the sessions within a week was intended to have a comparable feedback-
induced learning effect across participants. The order of real and sham stimulations 
was finally randomized and counterbalanced in each group, to compensate for the 
learning effect when averaging across subjects. 

tDCS was delivered by a battery-driven, constant-current stimulator (neuroConn 
GmbH, Ehrenbergstr, Ilmenau, Germany) through a pair of round, water-soaked 
sponge electrodes (16 cm2). We set a current intensity of 0.7mA and a stimulation time 
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of 15 minutes, with 20s ramp up and 25s ramp down in addition. Under the sham 
condition, the current was supplied for only 60s (20s ramp up, 15s of stimulation and 
25s ramp down), just to mimic the physical tingling sensation at the beginning of 
stimulation.  

The selected stimulation parameters are justified in the following lines. We chose a 
stimulation time of 15 minutes to make sure that tDCS effects outlasted the end of 
stimulation for a sufficient time to complete the experiment. Over 11 minutes of 
stimulation duration, the after-effects should indeed remain for approximately 1 hour 
(Nitsche and Paulus, 2000). In regard to stimulation intensity, previous research 
showed that a current of 1 mA in 35cm2 can effectively modulate cortical excitability 
(Nitsche and Paulus, 2000, 2001). Given the smaller area of our electrodes (16cm2) 
and the fact that we were testing an indirect type of stimulation (i.e. contralateral), we 
decided to apply a current leading to a slightly higher current density 
(0.0437mA/cm2), equivalent to 1.5mA in standard 35cm2 electrodes. 

We designed the experiment so that the dominant hemisphere was stimulated, 
therefore we placed the active electrode (the anode in anodal and the cathode in 
cathodal stimulation) over the left motor cortex and the reference over the right 
supraorbital region, as this montage was shown to be optimal for enhancing motor 
cortex excitability (Moliadze et al., 2010; Nitsche and Paulus, 2000). The stimulation 
sites (C3 and Fp2) were determined according to the international 10-20 system, as 
previous studies have confirmed the correspondence between C3, C4 and the primary 
motor cortices (Homan et al., 1987; Okamoto et al., 2004).  

 

2.2.3 EEG recording 

We recorded the EEG signals using a Brainbox EEG-1166 amplifier, with a 128 Hz 
sampling frequency and according to the extended international 10-20 layout 
(Sharbrough et al., 1991). We acquired twelve passive wet electrodes overlying the 
right motor cortex (Fcz, Fc2, Fc4, Fc6, Cz, C2, C4, C6, Cpz, Cp2, Cp4, Cp6), with an 
additional ground electrode in Pz. After being recorded with respect to ground (Pz), 
the electrodes were re-referenced to their common average reference and used for 
both online neurofeedback operation and offline analyses. An outline of the 
experimental setup is shown in Figure 2.1. 
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Figure 2.1. EEG recording sites. Location of the twelve EEG recording sites (right hemisphere), the 
ground electrode (Pz) and the two stimulation electrodes (anodal stimulation in this example). 

 

2.2.4 Experimental paradigm 

During the experiments, participants were seated in a comfortable chair in front of the 
pc screen running the neurofeedback system software. They were asked to keep their 
gaze fixed, their muscles relaxed and their eyes open. 

To evaluate the effects of tDCS on ERD, each participant performed the motor imagery 
task (left hand motor imagery) before, during and after stimulation. All participants 
underwent two days of experiments, to compare real and sham stimulation conditions. 

The execution of the motor imagery task was timed and guided by the neurofeedback 
software, which gave feedback in a cue-paced paradigm (see section 2.2.5 for details). 
The features controlling the feedback were selected for each participant through a 
short calibration phase, which preceded the first experimental day. 

The execution of the neurofeedback software was organized into runs, and the runs 
into trials. The calibration step consisted of four or five runs, depending on the number 
of rejected trials (see sub-section of 2.2.5, “Calibration”), while the experiment 
consisted of fifteen runs of neurofeedback online operation: five runs before, five 
during and five immediately after the tDCS stimulation. The runs were repeated 
precisely every 3 minutes, so that they were always aligned both with the onset/offset 
time of stimulation and across subjects (see Figure 2.2 for an outline of the 
experimental paradigm).   
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Figure 2.2. The experimental paradigm. Outline of the experimental paradigm at different levels of detail. 
In (A) the structure of calibration and feedback trials is recalled, while in (B) and (C) we detail the 
structure of runs and the composition of the experimental days.    
 

2.2.5 The neurofeedback software 

We conducted the experiments using custom neurofeedback software, specifically 
developed for the study. The software, based on LabVIEW (National Instruments) and 
MATLAB (the MathWorks, Inc), was inspired by the system presented in (Morone et 
al., 2015; Pichiorri et al., 2015), given its efficacy in guiding MI training in stroke 
patients (Pichiorri et al., 2015).  

The software displayed visual feedback, encoded in a one-dimensional cursor 
movement, where the speed and direction of the cursor were given proportionally to 
the instantaneous ERD. Subjects were assigned the goal of reaching the top of the 
screen in the shortest possible time (i.e. to produce a strong ERD), or at least to keep 
the cursor on a stable direction towards the top (i.e. to produce a stable 
desynchronization). In order to encourage the spontaneous desynchronization 
pattern of the user, the ERD was computed using the pair of subject-specific locations 
and frequency bands that best showed SMR modulation. The software therefore 
included two modules: one for calibration (without feedback), and one for online 
operation (with feedback). The two modules are detailed in the following subsections. 

Both calibration and neurofeedback were organized into runs, and the runs into trials. 
The calibration and neurofeedback runs consisted of fifteen and ten trials, 
respectively.  
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Each trial began with the word “relax” appearing on the screen. After 2 seconds, the 
word “ready” was displayed, together with a warning tone and the appearance of the 
cursor at the bottom of the screen. Starting from second 3, the subject was asked to 
perform the MI task (left hand grasping) for a fixed time of 4s during system 
calibration (no feedback) and until the cursor reached the top (or with an 8s timeout, 
after which the cursor disappeared, see the sub-section of 2.2.5, “Neurofeedack”) 
during online operation. The trials ended with 5 more seconds of rest (Figure 2.2). 

 

 Calibration 
The features controlling cursor motion, the visual feedback, were selected through a 
short calibration phase. The calibration module included an automated artifact 
rejection algorithm, implemented as in (Faller et al., 2012). The algorithm marked the 
trials as outliers if their 25-40Hz power in the active period (0-7s) was higher than 
three standard deviations from the grand mean of this condition. The algorithm 
iteratively recomputed both the grand mean and the standard deviation after each 
outlier rejection, and stopped when no more trials matched the condition to be 
rejected (Faller et al., 2012). 

After each calibration run, the system displayed the total number of rejected trials, 
therefore it was possible to evaluate if the remaining ones were sufficient for feature 
selection. As soon as fifty clean trials were collected, the software launched an 
executable MATLAB file to perform the offline analysis of the data. The aim of this 
analysis was to find the pair of contiguous channels and frequency bins that showed 
the spontaneous SMR modulation of the user. 

Feature selection was accomplished similarly to (Morone et al., 2015; Pichiorri et al., 
2015). After segmenting the trials into overlapping 1s epochs by shifting a 
1s-Blackman-Harris-window by 0.125s, we computed the power spectrum by means 
of a modified periodogram, and extracted from each epoch the power values in the 
8-30Hz range with 2Hz bins. We considered 8-30Hz to be a reasonable range for SMR 
modulation, and the choice was inspired by the work in (Pichiorri et al., 2015), where 
feedback features covered both the alpha and the beta bands. We labeled as 
“reference” the epochs in the 0-2s trial period and as “MI” the ones in the 3-7s period. 
In order to highlight the most discriminating features of the two conditions, the 
determination coefficient r2 was computed for every channel and frequency bin, as in 
(Cincotti et al., 2008; Morone et al., 2015). We compiled the r2 values both in a channel-
frequency matrix and in topographical scalp maps, which made it possible to visually 
identify the locations and bands with the highest SMR modulation (see Figure 2.3 for 
an example). The candidate locations were investigated further through time-
frequency analyses and ERD time-courses, both averaged across trials. The two 
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locations and frequency bins that best showed the spontaneous ERD were manually 
selected after visualization. We always selected a pair of contiguous electrodes and, if 
different, contiguous frequency bins. The ERDs in the selected channels would be 
linearly combined to form a single control signal. The weights of the linear 
combination were also determined manually during calibration. To guarantee better 
protection against the repositioning of the EEG cap between experimental days, we 
always tried to choose similar or identical weights for the two locations. If the ERD was 
significantly more evident in one of the two selected locations, we imbalanced the 
coefficients up to 0.6 and 0.4 in favor of the channel showing the stronger ERD. The 
electrodes, bands and weights chosen for each participant are reported in Table 2.S1. 

 
Figure 2.3. An example of the selection of subject-specific channels and frequency bands. In (A) and (B), 
an example of the matricial and topographical arrangements of r2 values computed from calibration trials 
is shown. In (C) and (D), the candidate channels (C4 and Cp4) and frequency bands (10-12 Hz and 12-14 
Hz) are investigated further using time-frequency transforms (C)) and ERD time courses (D)). 

 
Neurofeedback (online operation) 

During online operation, participants received visual feedback during motor imagery: 
a cursor appeared on the screen and started moving with speed and direction 
proportional to the ERDs composing the control signal. 

The ERD at a certain frequency was computed as follows: 

𝐸𝑅𝐷(𝑓, 𝑡) =
𝑃(𝑓, 𝑡) − 𝑃𝑟𝑒𝑓(𝑓)

𝑃𝑟𝑒𝑓(𝑓)
 (2.1) 

where P(f,t) is the power in the current time-point and Pref(f) is the average power in 
the reference period (1.5s-interval before the word “ready”). During online operation, 
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the power spectrum was extracted from 0.375s-long time windows every 0.125s, 
through a Yule-Walker autoregressive (AR) algorithm of order p=16. At each 
computation, the ERDs in the selected channels and frequency bins were linearly 
combined to form the control signal, and the cursor position was updated according to 
the module and sign of the composite ERD. Whenever a negative ERD value was 
detected (desynchronization), the cursor moved towards the top, while in the case of 
a positive value (synchronization) the cursor moved downwards. The distance 
spanned by the cursor was proportional to the ERD absolute value, with a gain that 
was trialwise adjusted in order to maintain the challenge for the user.  

There was a target at the top of the screen that turned green if it was hit, together with 
the appearance of the word “good!”. If the hit was achieved in less than 2s, or the 
direction of the cursor was maintained for more than 2s, the word “good!” was 
replaced by “excellent!”, and an additional smiley face appeared (Figure 2.2). If the 
cursor did not reach the top, it simply disappeared after 8s.  

 

2.2.6 Offline analyses 

We performed offline analyses with custom scripts using MATLAB (The MathWorks, 
Inc) and EEGLAB toolbox (Delorme and Makeig, 2004). 

We extracted three outcome measures from each subject and trial: i) the ERD values, 
and the spectral power values in the ii) “reference” or iii) “MI” task condition.  

For all analyses, signals were zero-phase band-pass filtered (using a Butterworth filter 
of order ten) in the 1-40Hz band and re-referenced to their common average reference. 
We visually checked all trials, inspecting both their time course and their spectrum, 
and excluded those containing muscular or movement artifacts from further 
investigations. 

To account for the between-subject variability in the alpha peak, we determined the 
Individual Alpha Frequency (IAF) of each participant (Klimesch, 1999). Similarly to 
(Pichiorri et al., 2015), we consequently defined four IAF-based frequency bands: theta 
(from IAF-6Hz to IAF-2Hz), alpha (IAF-2Hz to IAF+2Hz), and two beta bands, betalow 
(IAF+2Hz to IAF+11Hz) and betahigh (IAF+11Hz to IAF+20Hz). 

We extracted the ERD values for each subject and trial by considering the same 
weights and locations as in the control signal. Power spectral analysis was performed 
as online, i.e. by means of Yule-Walker autoregressive (AR) algorithm of order p=16 
on 0.375s-long time windows every 0.125s. For each time-window, the ERDs in the 
selected channels were evaluated according to Equation 2.1, and then linearly 
combined. The minimum value of the composite signal was considered as the output 
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ERD value for the trial. The ERDs were evaluated in the three frequency bands typical 
for SMR modulation: alpha, betalow and betahigh. 

In regard to power spectral analysis, we extracted from each trial the average values 
of power in the “reference” (0-2s period) or “MI” condition (feedback period of the 
trial). Differently from ERDs, the analysis was accomplished by means of a modified 
periodogram, on overlapping 1s epochs by shifting a 1s-Blackman-Harris-window by 
0.125s. The power was computed for each channel and frequency band (theta, alpha, 
betalow and betahigh). In order to compare the data of all subjects, we performed an 
intra-subject normalization by dividing the power of each band, electrode and trial by 
the median value of the corresponding power in the pre-stimulation trials (i.e. the 
median value of the first 5x10 trials, excluding the artifactual ones). The choice of the 
median instead of the mean was justified by the shape of the power distribution, which 
was found to be non-normal despite the relatively large sample size. 

 

2.2.7 Statistical analyses 

ERD and spectral power 

We preliminarily tested for the normality of both spectral power and ERD 
distributions through a Kolmogorov-Smirnov test (Massey, 1951). Since we did not 
find normal distributions, we transformed all data before performing ANOVA analyses, 
by means of Box-Cox transformations (Box and Cox, 1964). The lambda λ parameter 
of the transformation was estimated separately for the families of ERD and spectral 
power distributions. After transformation, the data were found to be normally 
distributed. 

We performed a multiway ANOVA analysis for both power values and ERDs, taking 
single trials into account. We repeated the analyses separately for the cathodal and the 
anodal group, using the data of all subjects in each group. The multiway ANOVA 
analysis was aimed at investigating the effects of the (between-subject) factors time 
and stimulation. However, to comprehensively describe our data and consider all 
dependencies among samples, we also included the between-subject factors frequency 
band, subject and additionally, in the case of spectral power analysis, the within-
subject factor electrode. The factor time had three levels, depending on the condition 
of trials with respect to stimulation onset: before (runs 1-5, level pre), during (runs 
6-10, level during) or after (runs 11-15, level post) stimulation. The factor stimulation 
had two levels, stim for actual or sham for sham stimulation, depending on which was 
administered. The factor frequency band had three levels in the case of ERD (alpha, 
betalow and betahigh) and four levels in the case of spectral power (theta, alpha, betalow 
and betahigh), depending on the number of bands considered in the analysis. The factor 
subject had ten levels, one for each subject. In the case of spectral power, the factor 
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electrode finally had twelve levels, one for each recorded electrode. The ANOVA 
analysis tested the existence of significant effects given by the included factors and, in 
particular, we were interested in significant effects due to i) time ii) stimulation or iii) 
interactions between time and stimulation. 

When appropriate, we conducted post-hoc analyses with Bonferroni correction 
(Hochberg and Tamhane, 1987). These tests made it possible to compare, for each 
band, the sham and stimulation condition at each time point (pre-stim versus 
pre-sham, during-stim versus during-sham and post-stim versus post-sham). We 
considered a significance level p=0.025 for all analyses (i.e. a significance of p=0.05 
divided by two as the analyses were repeated independently for two groups of 
subjects, the cathodal and the anodal group). 

To allow for a global interpretation of the results on spectral power, we extracted the 
t-values from post-hoc comparisons between sham and real stimulation conditions 
and arranged them in topographical scalp maps. We then marked the electrodes 
corresponding to a p<0.025 with a cross (where the p-values were already Bonferroni-
corrected for multiple comparisons). 

 

 Side-effects questionnaire 

Immediately after the experiments, we administered a side-effects questionnaire to 
each participant to evaluate whether there were differences in their physical 
perception of tDCS. If no differences between real and sham stimulation are found, this 
supports the view that tDCS effects over EEG are not due to the physical sensations 
associated with actual stimulation. The questionnaire asked participants to rate the 
intensity of the physical perceptions of stimulation on a 1-5 discrete scale. More details 
on the questionnaire can be found elsewhere (Mangia et al., 2014). Since the data did 
not fit a normal distribution, we performed each comparison using the Mann-Whitney 
U test. 

 

2.3 Results 

2.3.1 tDCS effect on ERDs 

We found a significant time effect for both the anodal and the cathodal group, with the 
ERDs being stronger over time on average (cathodal group: F=32.99, df=2, p=510-15, 
anodal group: F=9.24, df=2, p=910-5). On the contrary, no main stimulation effects 
were found (cathodal group: F=0.14, df=1, p=0.71, anodal group: F=2.45, df=1, p=0.12), 
although a significant time×stimulation interaction was found for both stimulation 
groups (cathodal group: F=4.84, df=2, p=0.0079, anodal group: F=7.43, df=2, p=610-4). 
For the sake of completeness, we also report the main results for the factors frequency 
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band (cathodal group: F=1665.7, df=2, p<10-15, anodal group: F=745.6, df=2, p<10-15) 
and subject (cathodal group: F=249.6, df=9, p<10-15, anodal group: F=314.5, df=9, 
p<10-15). The results of the (Bonferroni-corrected) post-hoc comparisons between 
sham and real stimulations at the different time points are detailed in the following 
lines and summarized in Figure 2.4. 

 
Figure 2.4. The results on ERDs. The figure shows the mean and confidence intervals (p=0.025, 
Bonferroni-corrected for multiple comparisons) of the ERDs in all the stimulation-band combinations 
where significant effects were found. All time points (before, during and after stimulation) and 
stimulation conditions (real or sham stimulation) are represented. An asterisk (*) marks the statistically 
different distributions (p<0.025, Bonferroni-corrected), according to post-hoc tests. 
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In the cathodal group, the magnitude of ERDs tended to increase over time (Figure 
2.4), under both the real and sham stimulation conditions and in every frequency band 
(alpha, betalow and betahigh). Notably, in the alpha band post-stim, ERDs were 
significantly stronger both with respect to the pre-stim (p=8.910-7) and to the 
during-stim condition (p=0.024). In addition, post-sham ERDs were significantly 
stronger with respect both to pre-sham (p=8.910-5), as well as during-sham with 
respect to pre-sham (p=0.0021). In the betalow band, only the post-stim ERDs were 
significantly stronger than pre-stim ERDs (p=0.0025), while other post-hoc 
comparisons were not statistically significant. In the betahigh band, no significant post-
hoc differences were revealed. 

In the anodal group, the ERDs showed different behavior between the real and sham 
stimulation conditions overall: while they progressively tended to increase their 
magnitude in the sham condition (Figure 2.4), in the real stimulation condition post-
stimulation ERDs were not significantly different from pre-stimulation, in each of the 
tested bands (alpha, betalow and betahigh). Notably in the alpha band, while post-sham 
ERDs were significantly stronger with respect to both pre-sham (p=7.710-5) and 
during-sham (p=0.0173), this behavior was not confirmed in the anodal condition 
(post-stim ERDs statistically identical to pre-stim, p=1). Furthermore, the comparison 
of real and sham stimulations at each time point revealed that post-sham ERDs were 
significantly stronger compared to post-stim ERDs (p=0.0147), while there was no 
difference between pre-sham and pre-stim conditions (p=1). In the betalow band a 
behavior similar to alpha was found (Figure 2.4), although the only significant post-
hoc comparison was between post-stim and post-sham ERDs (p=0.0183). Finally, no 
significant post-hoc differences were found in the betahigh band. 

 

2.3.2 tDCS effect on spectral power 

In regard to spectral power analysis, the detailed results of the ANOVA tests can be 
found in Table 2.S2, while the topographical t-value maps from post-hoc comparisons 
between sham and real stimulations at each time level (pre, during and post-
stimulation), for each group (cathodal or anodal) and condition (reference or motor 
imagery) are reported in Figure 2.5. In regard to beta bands, Figure 2.5 only reports 
the maps relative to betalow, as we found approximately the same behavior for betalow 
and betahigh.  
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Figure 2.5. The results of spectral power analysis. Spectral power analysis in the θ (upper), α (center) 
and βlow (lower) band: topographical representations of the t-values from post-hoc comparisons 
between real and sham stimulation conditions, for each time point (before, during and after stimulation) 
and task condition (reference or motor imagery). A cross marks the electrodes with statistically 
significant (p<0.025, Bonferroni-corrected for multiple comparisons) difference. 
 

Overall, spectral power analysis highlighted that tDCS stimulation mainly affected 
theta and alpha bands, both under rest and motor imagery conditions (Figure 2.5). 

In regard to the theta band, we found a power increase both in the cathodal and in the 
anodal conditions with respect to sham stimulation, so there was no polarity-specific 
effect. However, the power increase was limited to the period concomitant with 
stimulation, while the differences generally vanished in the post-stimulation period 
(Figure 2.5, upper).  
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In regard to the alpha band, the analyses revealed both a polarity-specific and, in the 
anodal group, a task-specific effect. In the cathodal stimulation condition, we found a 
power decrease with respect to sham in the area around C4, during both rest and 
motor imagery. In addition, during stimulation the maps highlighted a circumscribed 
power increase around the central electrodes. In the anodal group, a task-specific 
effect was also revealed. While in the reference condition, during-anodal and even 
more post-anodal power values were not different from sham, in the motor imagery 
condition alpha-power significantly increased with respect to sham. Roughly the same 
behavior appeared in the during condition. 

In regard to beta bands, we found slighter effects overall compared to theta and alpha. 
From a qualitative point of view, the behavior of beta power was approximately the 
same as in alpha, with the only exception being the circumscribed power increase 
occurring in the central electrodes in the cathodal group. 

 

2.3.3 Side-effects questionnaire 

According to the Mann-Whitney U test, we found no differences in the side-effect 
scores between sham and real stimulations. This supports the view that the tDCS 
impact on the EEG rhythm is not just a placebo/somatosensory effect due to the 
physical perception of the stimulation. 

 

2.4 Discussion 

The aim of this study was to test whether contralateral tDCS could have 
interhemispheric effects on the spectral power of the unstimulated hemisphere, and 
whether such effect could be used to enhance ERD magnitudes in the context of a 
neurofeedback-guided motor imagery paradigm for neurorehabilitation. Our initial 
hypothesis was that tDCS could exploit interhemispheric inhibition, i.e. that 
contralateral cathodal stimulation could result in facilitation of ERD on the 
unstimulated hemisphere, while contralateral anodal stimulation could result in 
inhibition. 

As discussed more thoroughly in section 2.4.1, the analysis of ERDs did not confirm 
our hypothesis, at least in the case of cathodal stimulation: our results indeed suggest 
that, while contralateral ERDs are reduced during anodal stimulation, there is no 
symmetric facilitation for cathodal stimulation. 

Even though ERD results suggest that contralateral tDCS is not applicable in the 
context of rehabilitation, spectral power analysis (see section 2.4.2) revealed the 
impact of both stimulation polarities on the cortical rhythms of the unstimulated 
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hemisphere. The discussion on spectral power results complements and completes the 
previous discussion on ERD, suggesting that not only anodal but also cathodal tDCS 
can impact the rhythms of the unstimulated hemisphere, although the effect is not 
task-specific. 

Finally, section 2.4.3 discusses the limitations of the study and the generalizability of 
the findings to a patient population. 

 

2.4.1 tDCS effect on ERDs 

Statistical analyses highlighted significant time effects and time×stimulation 
interactions in both the anodal and cathodal groups, while no significant stimulation 
effects were found. However, when interpreting ERD results, it should be taken into 
consideration that the experiments were performed with feedback, so it is reasonable 
to expect a familiarization effect, both within- and between- sessions. Due to the 
within-session familiarization, an ERD tendency to increase their magnitude over time 
could be expected; the between-session effect, on the other hand, might cause the 
baseline ERD value at the beginning of the second day to be stronger for each subject 
compared to the first, provided that the participant has undergone an entire 
neurofeedback training session. In order to smooth the potential bias between 
baseline ERDs when averaging across subjects, making it possible to highlight the 
effect of stimulation, we designed the experiment so that the order of real and sham 
stimulation was counterbalanced within each group. The absence of main stimulation 
effects is encouraging in this sense, as it means that there was not a significant bias 
between real and sham simulation conditions. Lack of significant differences in every 
post-hoc comparison of baseline ERDs (pre-stim vs pre-sham) is further encouraging, 
and allows us to consider the results of comparisons at other time-levels (during-stim 
vs during-sham and post-stim vs post-sham) more reliable. 

Turning now to the significant time effect found in both stimulation groups, we suggest 
it could be easily ascribable to the within-session familiarization, indeed the minimum 
desynchronization values tended to strengthen over the course of the experiment 
(Figure 2.4). However, the significant time×stimulation interaction reveals the 
possibility of an additional role of stimulation. When observing ERD trends in Figure 
2.4, it can be seen that there is one case where the increasing ERD trend is not followed, 
which is the real stimulation condition in the anodal group, especially in the alpha 
band. The case referred to is indeed the only one where, while post-sham ERDs are 
significantly stronger than pre-sham (so the within-session learning effect is still 
present in the group in the unreal stimulation condition), post-stim ERDs are not 
different from their baseline condition. We interpret the result by hypothesizing that 
anodal stimulation might have reduced contralateral ERD and this compensated for 
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the familiarization effect, which did not manifest itself. The significant difference 
between the post conditions of real and sham stimulations further supports this point 
of view. 

We interpret the results as follows: while in the cathodal group ERD behavior is not 
influenced by stimulation of the homologous contralateral region (indeed both the 
stim and sham ERDs show the same increasing tendency), anodal stimulation inhibits 
the generation of contralateral ERDs, particularly in the alpha band. 

Our results on alpha-ERDs are consistent with the initial hypothesis that modulation 
over the hemisphere contralateral to stimulation has an opposite sign with respect to 
direct stimulation. Indeed, as previous studies have shown that anodal tDCS 
strengthens the motor imagery alpha-ERDs in the stimulated region (Ang et al., 2015; 
Baxter et al., 2016; Kasashima et al., 2012; Kasashima-Shindo et al., 2015; Matsumoto 
et al., 2010; Soekadar et al., 2014b; Wei et al., 2013b), we suggest that the same 
stimulation has an opposing effect when applied over the contralateral side. An 
opposing effect of tDCS on ERD between hemispheres was also found in (Lapenta et 
al., 2013), while our results are in partial disagreement with those found in (Baxter et 
al., 2016; Wei et al., 2013b). However, in both (Baxter et al., 2016; Wei et al., 2013b) 
the feedback was encoded into a left-right cursor movement, controlled by the 
difference in power between electrodes in opposite hemispheres during left versus 
right hand motor imagery, while we gave feedback on ERD in subject-specific 
electrodes and bands and in a single-hand motor imagery design. Furthermore, in 
(Baxter et al., 2016) a different stimulation setup was tested (they used HD-tDCS). 
Overall, although both studies mentioned involve BCI-guided motor imagery with 
feedback, the differences in the experimental paradigms and setups may explain the 
discrepancy in the outcomes.  

We hypothesize that enhanced activation of the left (dominant) motor cortex by means 
of anodal stimulation may have inhibited the right motor cortex, thus reducing the 
generation of ERD. Interhemispheric inhibition between motor cortices is a well-
known effect (Ferbert et al., 1992), thought to be mediated by transcallosal 
connections (Di Lazzaro et al., 1999; Ferbert et al., 1992; Meyer et al., 1995). Several 
studies have shown the possibility of modifying interhemispheric balance through 
noninvasive stimulation (Gilio et al., 2003; Tazoe et al., 2014; Vines et al., 2006, 2008). 
Nevertheless, whether or not tDCS is able to directly influence transcallosal 
connections is still up for debate (Di Lazzaro et al., 2012; Lang et al., 2004; Tazoe et al., 
2014). Although our results seem to support this point of view, it cannot be excluded 
that interhemispheric modulation is mediated by subcortical structures. Indeed, the 
loops involved in the generation of alpha-ERDs are both cortico-cortical and 
thalamo-cortical (Suffczynski et al., 2001) and it has recently been shown that tDCS 
can have effects on subcortical structures too, like the thalamus or the caudate nucleus 
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(Polanía et al., 2012). Given these premises, it cannot be excluded that at least part of 
the long-distance effect between hemispheres is subcortical in nature. Finally, since 
we used a contralateral supraorbital reference, there could be a direct influence of the 
current flow between electrodes, which could marginally affect the ipsilateral circuits 
of the unstimulated hemisphere (Polanía et al., 2012).  

While we found reduced alpha-ERD generation by anodal stimulation, we did not find 
a symmetrical facilitating effect of cathodal stimulation. Our results indeed suggest 
that cathodal stimulation on one hemisphere does not influence the behavior of ERDs 
in the unstimulated one. However, anodal and cathodal stimulations have not always 
been found in the literature to have symmetrical effects (Notturno et al., 2014; Polanía 
et al., 2012). To give an example, Notturno et al. showed that, while anodal stimulation 
increased movement-related alpha-ERDs in the stimulated motor cortex, neither sham 
nor cathodal stimulations had any effect (Notturno et al., 2014). We can comment that 
our results are in line with theirs, although mirrored to the other hemisphere. Overall, 
this asymmetry in the transmission of the tDCS stimulus may be supported by a model 
like the one in Ursino et al. (Ursino et al., 2010). Although not specific for 
interhemispheric communication, the model in (Ursino et al., 2010) supports the 
hypothesis that it is not guaranteed that the transmission of information between two 
cortical areas is symmetrical with respect to the type of input (inhibitory or 
excitatory), due to the non-linear properties of the neuronal cortical circuits. Generally 
speaking, the development of models to interpret the tDCS-induced modulations on 
cortical rhythms and their transmission between functionally related areas, e.g. 
specifically between motor cortices, would be useful to improve our understanding of 
tDCS and to guide its application. For this purpose, a model like the one in Mangia et al 
(Mangia et al., 2017), which already integrates interhemispheric connection between 
motor cortices and simulates the phenomenon of ERD/ERS induced by motor imagery, 
could be a good starting point to capture and interpret the additional role of tDCS. 

To sum up, our results suggest that alpha-ERDs in the target motor cortex can be 
influenced by contralateral tDCS in a polarity-specific manner. In particular, while 
cathodal stimulation does not induce a global effect, anodal stimulation seems to 
reduce contralateral ERD. 

 

2.4.2 tDCS effect on spectral power 

The results discussed in the previous section suggest that contralateral tDCS is not 
applicable in the context of BCI training. However, a second, more general aim of this 
work was to contribute to the understanding of the impact of tDCS on EEG rhythms 
between hemispheres. This section, which discusses the results of power spectral 
analysis, complements and completes the previous discussion on ERDs, by showing 
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that not only anodal but also cathodal stimulation can affect contralateral EEG 
rhythms. 

In line with previous research involving the stimulation of motor-related areas 
(Mancini et al., 2016; Notturno et al., 2014; Pellicciari et al., 2013), we found that tDCS 
mainly influences the power in theta and alpha bands. 

In regard to the theta band, we generally found power increments occurring during 
stimulation, regardless of stimulation type and task condition. However, since the 
effects tended to disappear after stimulation (Figure 2.5) and given the localization 
mainly close to the stimulation sites (C3 and Fp2), we suggest that this is a direct 
current effect. For the same reasons, we suggest that the alpha-power increase occurs 
during cathodal stimulation over central electrodes of the same type. This 
interpretation is in line with previous works (Mancini et al., 2015; Roy et al., 2014; 
Soekadar et al., 2014a) describing the tDCS artifact as a low-frequency power increase 
in the electrodes near the stimulation sites. Notably, the higher frequency component 
of the disturbance may be due to ongoing small voltage shifts of the stimulator to 
maintain a constant current despite the little changes in electrode-skin impedances 
(Roy et al., 2014). 

In regard to more distant electrodes, the alpha-band spectral power analysis 
interestingly revealed both a polarity-specific and, in the anodal group, a task-specific 
effect of stimulation. Overall, we found that cathodal stimulation decreased 
contralateral alpha power, while anodal stimulation tended to increase it. Moreover, 
in the anodal group the power increase only appeared during motor imagery, leaving 
the reference condition unaffected.  

The EEG rhythms in the alpha band have historically been considered resting rhythms 
for the brain (Pfurtscheller et al., 1997; Suffczynski et al., 2001) or, more recently, 
related to active inhibition and timing of processes (Klimesch et al., 2007). In the 
sensorimotor cortex, it has been suggested that the alpha rhythm reflects the cortico-
thalamic idling rhythm, when no somatosensory input is processed and no motor 
output is generated (Pfurtscheller et al., 1997). As the alpha rhythm desynchronizes 
with movement (McFarland et al., 2000), reflecting activation of the area, 
synchronized alpha activity has also been related to active inhibition (for example, in 
situations where a response must be avoided, or non-related task areas have to be 
silenced) (Klimesch et al., 2007). Given these premises, the widespread increase in 
alpha power seen in the post-anodal phase during motor imagery can be interpreted 
as a more inhibited state of the right motor cortex. We further hypothesize that this 
increase only manifests itself when the motor cortex is actively recruited, i.e. only 
during motor imagery, which explains why the “reference” state is unaltered. This 
behavior is in line with the findings of Notturno et al. (Notturno et al., 2014), 
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suggesting that only cathodal stimulation influenced the pre-trial resting condition, 
while it was unaffected by anodal stimulation. 

With respect to ERD analysis, spectral power analysis gives some additional insights 
into the effect of cathodal stimulation also. Indeed, if the ERD outcomes indicate that 
cathodal stimulation does not affect the contralateral side, the latter analysis suggests 
that not only anodal, but also cathodal stimulation has long-distance effects, which is 
in line with previous research (Mancini et al., 2016; Tazoe et al., 2014). Overall, 
cathodal stimulation was linked to a decrease in alpha power in the right hemisphere, 
which may be interpreted as enhanced activation. However, although slighter, we 
found a similar effect in the beta bands. Furthermore, the effects were not task-
dependent in this case, i.e. they were not altered by motor cortex recruitment during 
motor imagery, so the results should be interpreted with caution. 

A final interesting result of spectral power analysis concerns the overall continuity of 
the effects during and after stimulation. If we exclude the spectral power increase 
observed in the theta band and in the central electrodes of the alpha band in the 
cathodal group, which we previously ascribed to a direct current effect, we can indeed 
observe that the activation pattern in the post condition is generally the same as in the 
during condition. This result is in line with the work of Mangia et al. in (Mangia et al., 
2014), indicating that the tDCS-induced alterations begin in the very first minutes of 
stimulation. 

Altogether, spectral power results corroborate the hypothesis that anodal stimulation 
of the left motor cortex increases inhibition of the contralateral one. Indeed, the 
widespread increase in alpha power, reflecting a more inhibited state, only manifests 
itself when the motor cortex is actively recruited during motor imagery. In regard to 
the cathodal group, power data analyses add the information that not only anodal, but 
also cathodal stimulation has a long-distance effect, although it does not appear to 
influence ERD generation. 

 

2.4.3 Limitations of the study and generalizability to a patient population 

One potential limitation of the study design is the presence of feedback, which has 
introduced a familiarization effect whereby the investigated variable, the ERD, was not 
stable over time. Also, the reinforcement of each participant in a slightly different band 
by selection of the subject-specific frequencies with spontaneous SMR modulation 
could have increased the variability of the data. On the other hand, feedback is 
important to keep the participant engaged and motivated, and its absence does not 
guarantee stabilization of ERDs, as boredom and lack of concentration can occur after 
a while and affect performance. In addition, as the particular aim of this study was to 
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test the applicability of the setup with respect to its rehabilitative potential, we 
preferred using the neurofeedback-guided motor imagery training paradigm as a 
starting point, to evaluate the adjunctive role of stimulation. Even though both the 
within- and between-subject learning effects were taken into consideration when 
interpreting and discussing the results, it is possible that a different setup, e.g. with or 
without  different feedback, could have led to slightly different results. 

A final point we would like to discuss is the generalizability of our findings to a patient 
population. In particular, as this was a pilot study on healthy controls, we suggest it is 
not entirely correct to conclude that the same null-effect would appear in a patient 
population. First of all, a possible ceiling effect in SMR control could have manifested 
itself in healthy users. Furthermore, differences in brain physiology, e.g. the 
interhemispheric imbalance after stroke (Lüdemann-Podubecká et al., 2014), or the 
plastic reorganization of the brain, could modify the outcomes when translating to 
patients. For example, interhemispheric imbalance in stroke patients might result in 
contralateral cathodal tDCS having a beneficial effect on ERDs of the unstimulated 
hemisphere, as has been seen in motor recovery (Lüdemann-Podubecká et al., 2014), 
by inducing relief of inhibition exerted by the contralesional side, not evident in 
healthy subjects. Therefore, although our findings would suggest not following the 
contralateral cathodal tDCS approach in the context of neurofeedback-guided motor 
imagery training, it cannot be excluded that a similar experimentation in stroke 
patients might lead to a slightly different outcome.  

 

2.5 Conclusion 

Both spectral power and ERD analyses suggest that anodal tDCS of one motor cortex 
results in inhibition of the contralateral one. Assuming the effect of anodal tDCS to be 
excitatory in the stimulated cortex, this outcome would confirm our initial hypotheses 
that: i) the ERDs on the target motor cortex may be modulated by contralateral anodal 
stimulation and ii) this modulation has an opposite sign with respect to the stimulated 
hemisphere (which is in line with the phenomenon of interhemispheric inhibition). 

Unfortunately, we did not find a symmetrical ERD enhancing effect through 
contralateral cathodal stimulation, which suggests that this setup is not applicable in 
the rehabilitation context (although differences in brain physiology and especially 
interhemispheric imbalance might lead to a non-null effect in the stroke patient 
population). Nevertheless, spectral power results suggest that not only anodal, but 
also cathodal stimulation can induce long-distance effects on the contralateral motor 
cortex. Altogether, our results support some recent findings, as in (Notturno et al., 
2014), indicating the possibility of tDCS modulation being transmitted between 
functionally related cortical areas. We further suggest that the development of models 
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to interpret the tDCS-induced modulations on cortical rhythms would be useful to 
improve understanding of the neuromodulatory effects of the technique and to guide 
its application. 

 

2.6 Supplementary Material 
Table 2.S1. Electrodes, bands and weights used for each subject for the composition of the control 
signal. The table shows the electrodes, bands and weights chosen for each subject after calibration for 
the composition of the control signal. The chosen locations and bands reflect the spontaneous SMR 
modulation of each participant. 

CATHODAL ANODAL 
Subject Bands Electrodes Weights Subject Bands Electrodes Weights 

S1 [8 10]Hz Cp2 0.5 S1 [8 10]Hz Cp2 0.6 
 [8 10]Hz Cp4 0.5  [8 10]Hz Cp4 0.4 

S2 [10 12]Hz C2 0.5 S2 [10 12]Hz Cp4 0.5 
 [10 12]Hz C4 0.5  [12 14]Hz Cp6 0.5 

S3 [12 14]Hz C4 0.5 S3 [10 12]Hz C4 0.5 
 [10 12]Hz Cp4 0.5  [10 12]Hz Cp4 0.5 

S4 [12 14]Hz C4 0.5 S4 [10 12]Hz C4 0.5 
 [12 14]Hz Cp4 0.5  [10 12]Hz Cp4 0.5 

S5 [12 14]Hz Cp4 0.5 S5 [10 12]Hz Cpz 0.4 
 [14 16]Hz Cp6 0.5  [10 12]Hz Cp2 0.6 

S6 [14 16]Hz Fc4 0.5 S6 [14 16]Hz C2 0.6 
 [14 16]Hz Fc6 0.5  [14 16]Hz C4 0.4 

S7 [16 18]Hz Cp2 0.5 S7 [10 12]Hz Cp2 0.4 
 [16 18]Hz Cp4 0.5  [10 12]Hz Cp4 0.6 

S8 [18 20]Hz C4 0.4 S8 [12 14]Hz Cp2 0.4 
 [18 20]Hz Cp4 0.6  [12 14]Hz Cp4 0.6 

S9 [20 22]Hz C4 0.5 S9 [18 20]Hz C2 0.5 
 [20 22]Hz Cp4 0.5  [18 20]Hz C4 0.5 

S10 [22 24]Hz Cpz 0.5 S10 [22 24]Hz C2 0.5 
 [22 24]Hz Cp2 0.5  [22 24]Hz C4 0.5 
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Table 2.S2. Results of ANOVA tests for spectral power analysis. The table shows the complete results 
of the multiway ANOVA tests performed on spectral power in the two groups (cathodal and anodal) and 
conditions (rest or motor imagery). The factors included in the analysis were time, stimulation, frequency 
band, subject (between-subject factors) and electrodes (within-subject factor). 

CATHODAL ANODAL 
condition: “reference” condition: “reference” 

Factor F-value df p-value Factor F-value df p-value 
Time 49.9 2 2.7⸱10-22 Time 8.81 2 1.5⸱10-4 

Stimulation 0.79 1 0.37 Stimulation 27.3 1 1.7⸱10-7 
Frequency 

band 
88.1 3 2.7⸱10-56 Frequency 

band 
3.74 3 0.011 

Subject 117 9 1.3⸱10-109 Subject 22.2 9 1.7⸱10-38 
Electrodes 41.3 11 2.9⸱10-90 Electrodes 9.45 11 2.9⸱10-17 

Time × 
stimulation 

0.34 2 0.72 Time × 
stimulation 

21.7 2 3.7⸱10-10 

condition: “motor imagery” condition: “motor imagery” 
Factor F-value df p-value Factor F-value df p-value 
Time 62.6 2 9.3⸱10-28 Time 26.6 2 1.9⸱10-13 

Stimulation 1.98 1 0.16 Stimulation 90.2 1 1.9⸱10-21 
Frequency 

band 
157 3 2.2⸱10-99 Frequency 

band 
30.2 3 2.0⸱10-19 

Subject 237 9 0 Subject 33.5 9 1.0⸱10-58 
Electrodes 109 11 1.4⸱10-249 Electrodes 64.3 11 4.1⸱10-144 

Time × 
stimulation 

3.52 2 0.029 Time × 
stimulation 

26.5 2 7.2⸱10-14 
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Chapter 3. A co-adaptive BCI based on 

motor imagery 
 

 

 

 

 

 

 

 

3.1 Introduction 

A well-established control strategy for EEG-based BCIs is the one based on motor 
imagery (MI). As the imagination of each movement is associated to specific 
modulations (called event-related desynchronizations or synchronizations, ERD/ERS) 
of the EEG sensorimotor rhythms (SMR), different MIs can generate different EEG 
patterns, which can be classified and used as control inputs for the BCI (B. Blankertz 
et al., 2008; G. Pfurtscheller et al., 2003; Wolpaw et al., 2000). 

One limitation of these systems is that learning stable, voluntary SMR control may be 
a skilful and non-intuitive task, potentially requiring from weeks to months of user 
training (Tan and Nijholt, 2010). To tackle this problem, the first so-called “co-
adaptive” BCIs have been proposed (Schlögl et al., 2010). 

In contrast to classical BCI training, requiring long calibration parts (Pfurtscheller and 
Neuper, 2001), the newly introduced co-adaptive approach focused on giving feedback 
as soon as possible, to make the user aware of its SMR modulations, and ultimately 
boost the training process (Faller et al., 2012). One implication of this approach is the 
necessary adaptation of the system parameters, needed to handle the EEG non-
stationarities, naturally arising from feedback training (Schlögl et al., 2010). 
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Examples of previous co-adaptive BCIs are the ones in (Faller et al., 2012, 2013, 2014; 
Qin et al., 2007; Vidaurre and Blankertz, 2010; Vidaurre et al., 2005, 2006, 2007, 
2011a, 2011b; Xia et al., 2012). In (Faller et al., 2012, 2013, 2014; Vidaurre et al., 2005, 
2006, 2007), adaptive autoregressive (AAR) parameters and logarithmic band power 
features were used in combination with quadratic or linear discriminant analysis (QDA 
and LDA) classifiers. The systems were fully automated, gave feedback from the 
beginning ((Vidaurre et al., 2005, 2006, 2007)) or after a few minutes of calibration 
((Faller et al., 2012, 2013, 2014)) and updated the classifier’s parameters trialwise. 
When tested on healthy (Faller et al., 2012; Vidaurre et al., 2005, 2006, 2007) or 
physically impaired (Faller et al., 2013, 2014) users, the systems showed online 
accuracies increasing in just two-three days. In (Xia et al., 2012) and (Qin et al., 2007), 
common spatial patterns (CSP) and support vector machine (SVM) classifier were 
adopted. In (Vidaurre and Blankertz, 2010; Vidaurre et al., 2011a) more sophisticated 
patterns were proposed, while the work in (Vidaurre et al., 2011b) finally introduced 
unsupervised adaptation. 

While the concepts of “short calibration” and “adaptivity” have already been explored 
in previous studies, two additional and potentially relevant aspects to boost BCI 
training may regard the “flexibility” and “customizability” of design. As BCI 
performance can greatly vary across users (Dickhaus et al., 2009), tailoring of BCI 
implementation and paradigm might promote a better synergy between the user and 
the machine, making BCI training more effective and engaging. 

In this work, we present a two-class MI-based co-adaptive BCI, giving online feedback 
in the form of the movement of a modelled arm. The system is based on common 
spatial pattern (CSP) for feature extraction and support-vector machine (SVM) for 
classification. The novel elements of design regard: i) the imbalance in the training 
conditions, in favour of the one which is the hardest to predict, ii) the presence of 
adaptive thresholds for feedback, and iii) the presence of a flexible training session, 
tailored to the characteristics and ability of the user. We online tested our system with 
10 healthy participants, recorded for six sessions each over the course of three days. 
The effect of the novel design elements is evaluated, and finally discussed in view of 
future BCI designs. 

 

3.2 Methods 

3.2.1 Signal acquisition and preprocessing 

We acquired the EEG signals through a Brainbox EEG-1166 amplifier and 128 Hz 
sample frequency. Eleven passive wet Ag/AgCl electrodes were recorded from 
sensorimotor areas (Figure 3.1), together with a reference electrode on the right ear 
lobe and ground electrode on the forehead.  
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Figure 3.1. The recorded EEG channels. 

 
EEG signals were re-referenced to their common average reference (CAR) (McFarland 
et al., 1997b). In order to keep the eleven brain signals linearly independent, we 
included the right ear potential in the averaging operation. After re-referencing, 
signals were filtered in the 8-30Hz band (Müller-Gerking et al., 1999).  

We used common spatial pattern (CSP) for feature extraction (Koles et al., 1990). As it 
is known, the algorithm finds the matrix W that maps the EEG multi-channel data in a 
space with maximal difference in variance between the 2 classes (Wang et al., 2005). 
Let X be the Nxt matrix of recorded and pre-processed signals (N channels acquired, t 
number of samples), the transformed EEG signals in Z (Nxt) will be obtained as Z=W∙X. 
To compute the W matrix, the CSP method considers the simultaneous diagonalization 
of the averaged normalized covariance matrices of the two classes (right/left hand MI). 
Further details on the CSP algorithm may be found in (Ramoser et al., 2000). 

As suggested in (Müller-Gerking et al., 1999), we composed the feature vector f with 
considering the log-transformed normalized variances of the first and two signals in Z. 
The feature vectors f were later used to train a support vector machine (SVM) classifier 
(Burges, 1998; Cortes and Vapnik, 1995), with a linear kernel and a soft margin equal 
to 1. 

 

3.2.2 The online BCI system: the three modules 
This section will outline the three modules in our system: Training (T), 
Training&Updating (U), and Classification (C). The three modules had different 
functions, and were designed to be assembled together to setup the training session. 
The entire system was developed in LabVIEW. 
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Training (T) 
The goal of the T module was to make a first estimation of the W matrix and the SVM 
parameters, without feedback for the user. 

MI instructions and feedback: when T started, an upward/downward pointing 
arrow appeared on the screen over the modelled arm (Figure 3.2, left). Depending on 
the direction of the arrow (upward or downward), the user is requested to imagine 
the movement of his right or left hand, respectively. No feedback was given to the user. 

Arrow balancing: each T consisted of 14 balanced arrows (7 upwards and 7 
downwards), of 10s each, and with 2.5s of rest. The training process without feedback 
therefore lasted less than 3 minutes. The arrow presentation order was randomized.  

First computation of W and SVM parameters: when the arrow was visible, 2s-long 
EEG signal portions were extracted every 0.5s. This resulted in 17 portions from every 
arrow repetition, for a total of 238 (17 portions × 14 repetitions). The 238 total 
portions were labelled according to the corresponding arrow’s direction and used to 
i) estimate W, ii) extract the feature vector f and iii) train the SVM classifier (Figure 
3.3, a). At the end of T module, the software automatically switched to U. 

 
Figure 3.2. Upward pointing arrow in the T module (left) and in the U module (centre). On the right, a 

target reached in C module is shown. 

 

Training & Updating (U) 

U module was designed to be reiterated several times (U repetition). The main purpose 
of U was to guide user training by providing feedback, while adapting the system’s 
parameters. Both W matrix and the SVM classifier were adapted at the end of each U, 
after making a selection over the recorded signals. This module also introduces the 
concepts of adaptive thresholds and unbalancing in the training conditions.  

MI instructions and feedback: similarly to T, MI instructions were given by 
presenting an upward/downward pointing arrow over the modelled arm, each arrow 
was visible for 10s with 2.5s rest, and 2s-long EEG signal portions were extracted every 
0.5s. Nevertheless, in U module a time-discrete feedback, encoded in a 5° 
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increase/decrease of the model’s shoulder angle, was added according to the 
classifier’s output (Figure 3.2, centre). After filtering each new portion with W, the 
feature vector f was extracted, and the output of the SVM classifier used to give 
feedback to the user.  

Adaptive thresholds: in order to keep challenging the user, we decided to provide 
feedback only if the analysed EEG signal portions were “distant enough” from the 
classifier’s separation hyperplane. Since the user’s ability to produce different MI 
could be imbalanced, we considered 2 independent thresholds for right and left hand 
MI. Both started from 0 and were continuously adapted. Their value was the 60% of 
the average of the right/left hand imagery feature’s distances obtained from the 
beginning of the session. For threshold computation, only the ‘correct’ features (i.e. 
when the classifier’s output agreed with the arrow direction) were taken into account. 
The choice of 60% was based on preliminary experiment, as a trade-off between 
challenging the users and frustrating them.  

Updating and utilization of W and SVM parameters: in each U repetition, the arrow 
was shown in all 10 times, and each time it was visible for 10s. At the end of each U, a 
total of 170 new signal portions (17 signal portions from each arrow x 10 arrow 
repetitions) was therefore available to update W and the classifier. Out of the 170 
portions, we decided to keep in the memory only the ones correctly classified and 
above the threshold. The resulting list was called the “best portions list” (B list). The B 
list was further reduced, by equalizing the number of right hand and left hand features. 
In the balancing operation, the B elements with the shortest distance from the 
hyperplane were removed first. After this operation, a list of best balanced portions 
(BB list) was obtained. 

The BB list was first used to update W (Wnew) by extracting the covariance matrices 
from the BB signals. Specifically, Wnew was computed by averaging the new BB 
covariance matrices together with all the matrices selected from the beginning of the 
session (i.e. those from T module and all those obtained from BB lists in each U 
repetition completed up to that moment). In this way, we aimed to gradually stabilize 
the W matrix, as it resulted from the averaging of an increasing number of covariance 
matrices. 

Once Wnew was computed, the BB list was also used to update the classifier’s training 
set. First of all, the old training set had to be remapped according to Wnew. Once the 
training set had been remapped, the BBs were also transformed with Wnew, and the 
new features used to replace the older ones in the training set. We opted for 
replacement instead of simply adding the new features to the training to avoid an 
increment of computational weight. Once the training set had been updated, the new 
SVM classifier (SVMnew) could be re-trained.  



64 
 

To further clarify the updating procedure, we review here the steps at the end of each 
U repetition, and summarize them in Figure 3.3: 

1. At the end of U, only the B were kept in the memory. The list was further 
reduced balancing the samples of the 2 classes (right hand and left hand 
imagery), thus obtaining the BB list. 

2. New normalized covariance matrices were extracted from the BB signals. For 
each class, the new matrices were averaged along with the previous ones. 
Wnew was therefore computed. 

3. The old classifier’s training set was remapped with Wnew. 

4. New features were extracted from BB according to Wnew. These new features 
were used to replace the older ones in the classifier’s training set. SVMnew 
could be set up. 

5. Repeat U or switch to C module. 

Arrow imbalancing: one last characteristic of U module was the imbalance in the 
presentation of the arrows. In particular, to maximize the probability of updating the 
classifier (given the balancing operation from B to BB) and to customize the user’s 
training with a stronger stimulation of the most critical MI condition, the pointing 
arrow corresponding to the most misclassified task was presented more frequently. 
To clarify, at the end of each U repetition, the number of misclassifications for each 
class was counted, and the ratio between the two was computed. Depending on the 
ratio, the arrow directions in the following U repetition could be imbalanced up to 7:3 
(or 3:7), in favour of the previously most misclassified class. As the user improved 
his/her skills in both MI conditions, the ratio between the arrow directions would tend 
to return to a balanced 5:5. 

Accuracy: at the end of each U repetition, the classification accuracy of the current 
step was evaluated as the ratio between the correctly classified features and the total 
number of processed features. Because of the imbalance in favour of the most 
misclassified class, the obtained classification accuracy obtained was underestimated. 
As soon as the classification accuracies were stable and good enough (see Paragraph 
2.3.2), the system automatically switches to C module. 

 

 

 

 



65 
 

Table 3.1. Overview of the characteristics of the three modules.  

 

Classification (C) 

C module was designed to test the user’s ability to control the movement of the 
modelled arm to reach targets on the screen. In C module the adaptive thresholds, W 
and the SVM classifier were no longer updated. 

MI instructions and feedback: in C module, the MI instruction was no longer given 
by presentation of the pointing arrow, but through the appearance of a ball-shaped 
target (Figure 3.2, right). The user had to reach the target with the arm’s end-point as 
soon as possible, with a timeout of 120s. As for T and U, 2s-long EEG signal portions 
were extracted and classified every 0.5s. Every C repetition consisted of 5 targets 
presented in succession on the screen, with a 5s pause when the target is reached. As 
the user reached the target, a smiling face appeared on the screen (Figure 3.2, right). 
A sad face was shown if the timeout expired. 

Adaptive thresholds: similarly to the U, feedback was given only in case the extracted 
features were above-threshold. Thresholds in C module were no longer updated, using 
the ones computed in the last U repetition. 

Utilisation of W and SVM parameters: W and the SVM classifier were no longer 
updated, using the ones computed in the last U repetition. 

Accuracy: at the end of C, classification accuracy could be estimated as the ratio 
between the correctly classified features and the total number of processed. Since 
participants were asked to reach the target as quickly as possible, the “correct” label 
could be derived from the target’s position. Classification accuracy was computed 
considering i) the targets reached; ii) the first 30s of “timeout” cases. The assumption 

T U C 

▪  one T repetition ▪  several U repetitions ▪  several C repetitions 

▪  MI instruction via arrow 
presentation 

▪  MI instruction via arrow 
presentation 

▪  MI instruction via target 
position 

▪  no feedback ▪  feedback (above-threshold) ▪  feedback (above-threshold) 

 ▪  adaptively updated 
thresholds 

▪   thresholds no longer 
updated  

▪  first estimation of W and SVM 

Classifier 

▪  use of W a SVM and its 
updating 

▪  use of W and SVM 

▪  balanced arrows ▪  imbalanced arrows  

 ▪  accuracy evaluation ▪  accuracy evaluation 
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was made as, after a while, participants tended to give up trying to reach the target and 
simply waited for the timeout, thereby invalidating the deduction of the “correct” label. 

 
Figure 3.3. A conceptual schema describing the evaluation/use of W matrix and SVM classifier in the 
three modules. a) The first set-up of W and SVM, starting from the time-domain EEG signal (X0), in T 
module. b) A diagram describes how W and SVM are updated in U module, starting from the stored signal 
portions, the current BB list and the previous training set. c) The schema shows how the definitive W and 
SVM are used in C module to classify the incoming signals and provide the feedback. 

 
3.2.3 Experimental setup and participants 

The system was online tested on 10 healthy volunteers (seven females), eight of them 
with no previous MI experience. Participants were right-handed (according to 
Edinburgh inventory (Oldfield, 1971)), and aged 26.5 ± 2 years (mean ± standard 
deviation). The experiment conformed the Declaration of Helsinki, and was approved 
by the local bioethics committee. 

During the experiment, the participants sat in front of the PC screen, with their arms 
relaxed and in a comfortable position. To avoid EEG artifacts, the participants were 
asked not to contract facial muscles and to keep their gaze fixed during the trials. The 
system did not include any on-line artifact rejection algorithm. However, to check the 
absence of systematically occurring artifacts, an experienced inspector examined the 
acquired signals after each training session. In case a systematic artifactual activation 
was found, the entire session was excluded from the results. 
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3.2.4 Experimental paradigm (the “flexible” training session) 

Each participant took part in 6 training sessions (2 sessions per day). However, to fully 
customize the training process, we adapted the type and length of each training session 
depending on the participant’s performances. 

First of all, each training session was composed of 1 initial T and a maximum of 16 U 
repetitions. However, if the average classification accuracy in the last 3 repetitions of 
U was below 40%, T module was automatically repeated to reset the system’s 
parameters (and to give the participant an opportunity to try a different imagination 
strategy). After the reset, the participant could complete the remaining repetitions of 
U module.  

On the other hand, if participants proved to be skilled enough, they had the possibility 
to finish the session ahead of time. In particular, as soon as the average classification 
accuracy in the last 6 repetitions of U was above the criterion level of 70%, the 
participant’s performances were considered good and stable enough and the system 
automatically switched to C module. Every time C phase was reached, the participant 
performed 3 repetitions of C and the session ended. Otherwise, the session simply 
concluded after the 16 repetitions of U module.  

To clarify, 3 examples of possible compositions of a session, according to the 
experimental paradigm, are given in Figure 3.4. 

 
Figure 3.4. In this work, each participant took part in a total of 6 sessions (left). The right part of the figure 
shows 3 possible compositions of the session. In the top example, T module is repeated because the average 
accuracy in the previous 3 U repetitions was lower than 40%. At the end of the session, C phase is not even 
reached because the average accuracy in the last 6 repetitions was <70%. The middle example is similar to the 
top one (T module is indeed repeated), but this time C phase is reached at the end of the session. Finally, the 
bottom example shows the case of a shorter session.  

 

3.2.5 System evaluation 
Accuracy 
As emphasized in (Billinger et al., 2013), one consequence of the increasing interest in 
BCI research is the tendency of papers to routinely highlight results and methods that 
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improve accuracy or reduce illiteracy with respect to earlier work. The main limitation 
is that different (and barely comparable) methods of evaluation are often used, the 
procedures are not described in sufficient detail, and the value of chance level (i.e. the 
expected best performance obtainable by chance alone (Billinger et al., 2013)) is not 
reported for comparison. But showing classification results alone is often not enough, 
and even accuracies as high as 90% can be meaningless if classes are imbalanced or 
there are too few trials (Billinger et al., 2013). 

In the present work, we report the average classification accuracy together with its 
chance level p0. Since the arrow presentation was generally imbalanced, p0 was 
evaluated without loss of generality from confusion matrices, as described in (Billinger 
et al., 2013). The significance (α=0.05) of the difference between mean accuracy and 
chance level was evaluated through confidence intervals (Billinger et al., 2013).  

We briefly review here the computation of p0, as in (Billinger et al., 2013). Considering 
the confusion matrices: 

 

  Predicted labels  

  Class1 (right) Class2 (left)  

True labels 

Class1 
(right) 

TP FN TP+FN 

Class2 
(left) 

FP TN FP+TN 

  TP+FP FN+TN 
N 

(TP+FN+FP+TN) 

Figure 3.5. Confusion matrix of the classifier. 

TP is the number of “true positive” classified signal portions, FN the “false negative” 
ones, FP the “false positive”, TN the “true negative”, and N = (TP + FN + FP + TN), the 
total number of classified signal portions of the session. Given the definition of p0 from 
(Billinger et al., 2013) 

𝑝 =  
∑ 𝐶,:𝐶:,

𝑁ଶ
 

(3.1) 

 

p0 is computed as: 

𝑝 =  
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)ଶ
 

(3.2) 



69 
 

As regards the significance of the difference between average accuracy and chance 
level p0 using confidence intervals, we computed the lower bound of the confidence 
interval as in (Billinger et al., 2013): 

𝑝 =  �̂� − 𝑧
ଵି

ఈ
ଶ

ඨ
�̂�(1 − �̂�)

𝑁 + 4
 

(3.3) 

Where 𝑧ଵି
ഀ

మ
 is the 1-α/2 quantile of the standard normal distribution, and 

�̂� =  
(𝑇𝑃 + 𝑇𝑁) + 2

𝑁 + 4
 

(3.4) 

is the adjusted average classification accuracy. If p0>pl, the average classification 
accuracy cannot be considered significantly better than chance (Billinger et al., 2013). 

We believe average accuracy to be a representative estimation of the user’s real ability 
to control the system. However, as some of the previous works (Faller et al., 2012; 
Vidaurre et al., 2005, 2006) extensively reported only peak accuracies, we added this 
information to allow for comparability. Peak accuracy was obtained by computing the 
average classification accuracy of every time-point of the trial and reporting the peak 
value (Faller et al., 2012; Vidaurre et al., 2005, 2006). Finally, to be complete, we also 
report the values of information transfer rate (ITR) (Wolpaw et al., 2002). 

As previously explained, T module could be repeated in a session in case performances 
were too low. The option was introduced to give users the possibility to try different 
strategies and avoid annoying them with discouraging feedback. In case T module was 
repeated, we considered for accuracy evaluation only the repetitions of U following the 
last T. Average accuracy and its chance level are also reported for C, in case it was 
reached. 

As a final note, the reported accuracies reflect the obtained on-line accuracies, without 
rejection of artifactual trials. To be complete, in a posterior analysis an experienced 
inspector visually checked the EEG time-courses to reject artifactual data and re-
compute the accuracies. During this analysis, the inspector was blinded to the contents 
of the trials. Since the average rejection rates were overall reasonably low (8.4 ± 4.5% 
of artifactual trials, mean ± standard deviation) and the re-computed accuracies were 
not significantly different from the ones without artifact rejection, we decided to only 
report the values of real obtained on-line accuracies, without artifact rejection. 

To evaluate the improvements in participants’ performances, we tested the 
significance of the difference both in peak and average accuracy between the first and 
the last session. 
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Time Effect 

The system here described is a cue-paced BCI. However, going in the direction of 
asynchronous BCIs, we think it is important for a system to classify each time-point 
equally well, since the BCI should recognize the mental state whenever it occurs. To 
test this ability of the system, we computed the average accuracy curves of each time-
point of the trial in the last session, as in (Faller et al., 2012). 

 

Efficacy of the adaptive thresholds 

In order to keep challenging the users, encouraging them to produce increasingly 
separable mental states, we opted for giving feedback only in case the produced EEG 
patterns exceeded an adaptive threshold from the decision boundary. 

In order to check the effect of the thresholds, we computed the r2 values (Cincotti et 
al., 2008) for each channel, frequency bin (see the later explaination), participant and 
session, to compare the conditions of: i) correct classification and above threshold, and 
ii) only correct classification, irrespective of the threshold. 

The coefficient of determination r2 is a commonly used (Cincotti et al., 2008; 
McFarland et al., 1997b; Vidaurre et al., 2011a; Wolpaw and McFarland, 2004; Wolpaw 
et al., 2002) index in the BCI context, quantifying how strongly the signals measured 
under two different task conditions differ in relation to the variance. Specifically, r2 

represents the fraction of the total signal variance which can be explained by the task 
condition (Cincotti et al., 2008). In this case, r2 is computed as the square value of the 
correlation coefficient between the spectral powers of the EEG signal in the two MI 
tasks, and a fictitious independent variable which assumes one of two possible 
different values (e.g. “+1” and “-1”) (Cincotti et al., 2008). 

For each participant and session, we extracted the power spectral densities of the 
signal portions using the modified periodogram (Blackman-Harris window). We then 
evaluated all signal powers in the range 8-30Hz, with 2Hz-large frequency bins. The r2 
value was finally determined for each power bin. For each participant and session, we 
therefore obtained an ensemble of r2 values which can be grouped according to three 
factors: 

1.  the factor “threshold”, with the two levels “correctly classified and above 
threshold” and “correctly classified irrespective of threshold” 

2.  the factor “channel”, with eleven levels (the number of acquired channels) 

3.  the factor “frequency”, with eleven levels corresponding to the number of 2Hz-
large frequency bins in the range 8-30Hz 
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We evaluated the effect of the “threshold” by performing statistical analysis of the r2 
values. We specifically compared the conditions of “correctly classified and over 
threshold” and “correctly classified independently from the threshold” signals, by 
using a three-way ANOVA (with factors “threshold”, “channel” and “frequency”) 
together with multiple comparisons (corrected with the Tukey’s Honest Significant 
Difference procedure). Secondarily, we also evaluated the effects of the factors 
“channel” and “frequency”. 

Besides performing statistical comparison, we arranged the r2 values in topographical 
maps of the scalp, for a qualitative check of the most separable channels between MI 
conditions. Some examples of these maps are shown in the results. 

 

3.3 Results 
3.3.1 Accuracy 

The peak accuracies, average accuracies and their chance level are detailed in Table 
3.2 (see the Appendix), and summarized in Figure 3.6. Table 3.S1 in the Supplementary 
Materials additionally reports the detailed compositions of each training session. The 
sixth session of P02 is not reported because of artifacts in the EEG recordings. 

Figure 3.6 shows that seven out of ten participants reached the criterion level of 70% 
not only with peak but also with average accuracy. All participants accessed indeed the 
C phase at least once, and confirming the average accuracy in their last U (Table 3.2). 
Participants P01-P03 also reached peak accuracies over 90% in their last session. On 
the other hand, participants P08-P10 did not reach the criterion level of 70% 
throughout the 6 sessions, although in P08 and P09 the average classification accuracy 
was significantly different from chance most of the time. 

Despite the results of P08-P10, all the participants increased their performances (both 
considering peak and average accuracy) between the first and last sessions, and the 
increase was statistically significant over the whole group (p<0.01).  

 

3.3.2 Time effect 

Figure 3.7 displays the trial average accuracy curves of all participants in their last 
session. The figure shows that the classifier was not optimized for any specific time-
segment, indeed all time-points were generally classified equally well.  
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3.3.3 Efficacy of the adaptive thresholds 

The three-way ANOVA revealed significantly (p<0.01) higher r2 values when 
considering the “correctly classified and above threshold” with respect to the 
generically “correctly classified” signals. In Figure 3.8, several examples of r2 
topographical maps in the two conditions are shown. In Figure 3.8, three participants 
with very different levels of control were picked (P03, P06, P10). 

The three-way ANOVA also revealed significant (p<0.01) effects for the factors 
“frequency” and “channel”. Specifically, the bins 8-10Hz, 10-12Hz and 12-14Hz had 
clearly higher r2 values for the factor “frequency”. 

 
Figure 3.6. This picture shows the trends over the 6 sessions for peak accuracy (red), average accuracy 
(blue) and chance level p0 (black) for each participant. As described in section 3.2.4, all the accuracies 
were computed considering the U repetitions following the last T of the session. Since each average 
accuracy should be compared to the corresponding p0, the blue line of the average and the black line of 
chance level are aligned. A black horizontal dashed lined indicating the criterion level of 70% is also 
added. 
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Figure 3.7. Overview of the trial average accuracy curves for the last session in all participants. Each grey 
line represents the average accuracy curve of a participant, while the black bold line is computed as the 
grand mean of the accuracy curves of all participants 

 

 
Figure 3.8. Three examples of r2 maps in subject-specific frequency bins. We chose to display 3 participants 
who exhibited very different levels of BCI control: P03, P06 and P10. The figure shows how the r2 maps resulting 
from “correctly classified + above threshold” signals (upper part of the figure) for each participant present 
approximately the same shape but higher values than the case of “correctly classified” signals without threshold 
(lower part of the figure). To allow for comparability, the corresponding maps in the upper/lower part of the 
figure share the same colourmap bounds. 
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3.4 Discussion 
3.4.1 Accuracy 

The results showed a significant (p<0.01) increase in performance (both in peak and 
average accuracy) between the first and the last sessions over the whole set of 
participants. Seven out of ten participants reached the criterion level of 70% with both 
peak and average accuracy, and three of them (P01-P03) even obtained >90% peak 
accuracy in their last session. Three out of ten users did not manage to reach the 
criterion level throughout the six sessions. However, this result is in line with the well-
known phenomenon of BCI illiteracy, estimating that BCI control does not work for the 
15% to 30% of the users (Dickhaus et al., 2009). 

Altogether, our results are in line with the ones of other co-adaptive BCIs, like the ones 
in (Faller et al., 2012; Vidaurre et al., 2005, 2006) and (Xia et al., 2012). 

 

3.4.2 Time effect 

The results in Figure 3.7 show the ability of the system to classify the EEG data in each 
time-point equally well and not only in a short and limited time window. The result is 
enhanced by the longer duration of our trial with respect to other studies (Faller et al., 
2012; Vidaurre et al., 2005, 2006, 2007). This property makes the system suitable for 
continuous work as in a real condition of use. 

 

3.4.3 Efficacy of the adaptive thresholds 

The computed r2 values proved to be significantly (p<0.01) higher in the case of 
“correctly classified and above threshold” signals with respect to the simply “correctly 
classified” signals, and the result is enhanced by the fact that the “correctly classified” 
signals include the “correctly classified and above threshold” signals. The outcome 
suggests that the adaptive thresholds were actually useful to give feedback only on the 
most reliable and clear mental states the participant could produce. The feature is 
further independent from the participant’s level of control. The topographical maps in 
Figure 3.8 show indeed how the above-threshold r2 values have similar shape but 
higher values with respect to the other condition, and this holds for all the three 
subjects, despite their very different level of control. 

The beneficial effect of the thresholds is particularly evident in P10 (Figure 3.8). Even 
though this participant could not control the system (Figure 3.6), the adaptive 
thresholds allowed to select the “best” signal portions to give feedback on. The shape 
and frequency bins of the corresponding r2 maps additionally resemble the 
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physiological ERD/ERS MI patterns, although with weaker values than participants 
with higher control level, like P03 and P06 (Figure 3.8). 

 

3.4.4 Possible improvements 

The stability against artifacts is the main limitation of our work, and a point of design 
that should be improved. A online artifact recognition algorithm, like the ones in 
(Faller et al., 2013), (Winkler et al., 2011) and (Nolan et al., 2010)) should be included 
in future designs. The real-time exclusion of artifacts would additionally increase the 
quality of the training set, improving the stability of the W matrix, the system’s 
accuracy to recognize the classes, and therefore the quality of the feedback given to 
the user. 

Another simple improvement that may be attempted regards the type of presented 
feedback. Provided that some EEG non-stationarities come up as reactions to negative 
feedbacks (Jatzev et al., 2008), the inclusion of only positive rewards may improve the 
stability of the system and the performance of the classifier. In addition, the 
presentation of biased feedback should help to better motivate the participants, 
making the training session more engaging and, definitively, more effective (Barbero 
and Grosse-Wentrup, 2010). 

 

3.4.5 Overall comments 

Taking the above results and discussions together, we can say that the presented 
adaptive system yields results in line with previously reported findings (Faller et al., 
2012; Vidaurre et al., 2005, 2006, 2007). However, beyond the proposed adaptive 
strategy, we believe the main novelties in this work regard the way the machine 
interacts with the user during training. 

In regard to the inclusion of adaptive thresholds, statistical results and r2 topographies 
suggest not only that the threshold selected the most discriminable patterns to give 
feedback on, but they also worked well in users with very low BCI control (e.g. 
participant P10, see Figure 3.6 and 3.8), and helped to select patterns with reasonable 
channel/frequency distribution (Figure 3.8). The adaptivity of the thresholds may also 
be considered a beneficial point of design, as it challenges the user, making training 
more engaging. For these reasons, the inclusion of adaptive thresholds is a point that 
we suggest, and that might be included even in systems different from ours. 

One second idea we would suggest in future designs is the unbalancing in the training 
conditions, in favour of the one which is currently the hardest to predict. We believe 
this modification may be beneficial for the training process, irrespectively of the 
underlying adaptive algorithm. On one side, the imbalance is beneficial for the system, 
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as the increased availability of “examples” of the most difficult class increases the 
chance the classifier learns how to recognize it. On the other side, it is beneficial for the 
user, who has more chance to practice his/her strategies and learn how to produce an 
effective modulation of his/her SMR rhythms. 

A final point we would suggest to be included in future designs is the “flexible training 
session”. Especially with novice users, it may indeed happen that participants need 
some trial-and-error before coming up with a good imagination strategy (e.g. tapping 
a finger, playing an instrument, brushing their teeth). In these cases, if the classifier 
keeps performing at chance level for too long, it may be pertinent to discard all the 
acquired data and restart training from the beginning, thereby preventing to 
discourage the user and giving him/her the chance to try a different imagination 
strategy. On the other hand, as users reach a satisfactory level of control, the training 
phase should not be needlessly long to avoid boring them, and the paradigm may 
change to another condition (for example the C module, in this case, or it may be a 
change of environment, like for example entering a different level of a game). Beyond 
the possible details in the design, the concept we would like to suggest is that thinking 
about flexible and customizable designs may be a key aspect to boost user training, 
making it as much tailored as possible to the characteristics of each person. 

 

3.5 Conclusion 

In this study, we presented an automated, co-adaptive BCI system to control the 
behaviour of a 1DOF-modelled arm on a screen using a MI strategy. The system was 
tested online with ten participants, of whom seven reached the criterion level of 70% 
both with peak and average accuracy in just three days. Despite these results, the 
system presents the major limitation of not being completely robust against EEG 
artifacts. In particular, in the considered frequency band (8-30Hz), muscular artifacts 
are the most critical. The inclusion of an artifact recognition algorithm should 
theoretically further improve the system’s stability and the quality of the feedback. 
Another simple improvement to the system could stem from the decision to display 
only correct feedback, to prevent the EEG non-stationarities that come up as reactions 
to frustrating feedback, and to motivate the participants as much as possible. 

The presented system falls within the category of co-adaptive BCIs, which aim at the 
improvement of user training by introducing i) a short calibration phase and ii) 
adaptivity of the system parameters, to deal with the non-stationarities induced by 
feedback training. Besides including these aspects, in this work we suggest three 
ideas/novelties that might be integrated in future designs, namely: i) the introduction 
of adaptive thresholds to give feedback, ii) the presentation of imbalanced training 
conditions, in favour of the most misclassified one, iii) the adaptation of the type and 
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length of the training session, depending on the user behaviour. Altogether, we suggest 
that going in the direction of building a fully flexible and customizable design may be 
a key aspect to boost user training, making it as tailored as possible to the 
characteristics of each person, and thus promoting a better synergy between the user 
and the machine. 

3.6 Appendix 
Table 3.2. Detailed results for each participant and session. The first 2 columns list the name of the 
participant and the number of sessions. The third, fourth and fifth columns show, respectively, the peak 
accuracy (%), average accuracy (%) and chance level (%) obtained considering the U repetitions following 
the last T of each session. The sixth column shows the result of the comparison via confidence intervals 
(α=0.05) between the average accuracy and p0 (Yes= average accuracy significantly different from chance, 
No=otherwise). The seventh column finally refers to the ITR (bits/min) of the corresponding session. In 
case C phase was reached, the last 4 columns show, respectively, the average accuracy (%), the chance 
level p0 (%), the result of comparison between the two (α=0.05), and the ITR (bits/min) considering the 
three repetitions of C. 
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P01 1 67.50 58.89 50.14 Yes 2.76 - - - - 

 2 88.33 80.88 49.34 Yes 35.53 89.10 51.72 Yes 60.37 

 3 93.33 86.57 50.00 Yes 51.70 90.74 61.65 Yes 66.59 

 4 95.00 88.92 50.00 Yes 59.72 84.95 58.91 Yes 46.67 

 5 96.67 87.65 50.08 Yes 55.27 96.53 51.99 Yes 93.91 

 6 95.00 88.82 50.10 Yes 59.37 91.08 49.73 Yes 67.95 

P02 1 64.71 60.83 49.56 Yes 4.09 - - - - 

 2 63.13 57.21 49.95 Yes 1.80 - - - - 

 3 64.00 56.88 49.08 Yes 1.64 - - - - 

 4 73.75 66.62 46.56 Yes 9.75 66.46 57.35 Yes 9.56 

 5 96.67 88.24 49.78 Yes 57.29 92.22 54.78 Yes 72.67 

P03 1 78.13 73.31 49.94 Yes 19.56 83.46 54.71 Yes 42.35 

 2 80.00 71.67 49.53 Yes 16.81 58.78 48.91 Yes 2.68 

 3 70.91 64.49 45.49 Yes 7.38 87.18 58.77 Yes 53.70 

 4 90.00 79.90 49.57 Yes 33.13 81.91 54.70 Yes 38.16 

 5 88.33 84.61 49.98 Yes 45.65 77.09 54.26 Yes 26.83 

 6 93.33 87.45 50.16 Yes 54.61 82.53 51.51 Yes 39.80 
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P04 1 59.23 54.98 49.66 Yes 0.86 - - - - 

 2 86.67 74.12 49.82 Yes 21.0 74.82 54.54 Yes 22.31 

 3 72.22 65.49 48.52 Yes 8.45 60.20 48.75 Yes 3.63 

 4 68.75 62.98 49.66 Yes 5.90 - - - - 

 5 64.38 60.99 47.80 Yes 4.22 - - - - 

 6 71.88 63.46 50.01 Yes 6.35 - - - - 

P05 1 80.63 70.29 50.00 Yes 14.68 68.01 49.83 Yes 11.49 

 2 85.00 74.61 50.04 Yes 21.91 73.34 55.29 Yes 19.62 

 3 70.00 65.49 48.89 Yes 8.45 50.45 45.24 Yes 0.01 

 4 70.63 60.62 49.76 Yes 3.94 - - - - 

 5 79.23 70.41 49.54 Yes 14.85 66.13 48.81 Yes 9.17 

 6 83.33 74.02 50.01 Yes 20.83 74.22 49.05 Yes 21.19 

P06 1 60.00 56.32 49.95 Yes 1.39 - - - - 

 2 66.25 61.21 49.98 Yes 4.39 - - - - 

 3 70.00 65.74 49.66 Yes 8.72 47.09 39.73 Yes 0.29 

 4 85.00 76.76 50.21 Yes 26.15 80.00 51.04 Yes 33.37 

 5 65.63 61.25 50.00 Yes 4.42 - - - - 

 6 65.00 60.62 50.07 Yes 3.94 - - - - 

P07 1 67.50 60.99 50.00 Yes 4.22 - - - - 

 2 61.33 54.75 46.26 Yes 0.78 - - - - 

 3 76.67 66.96 49.16 Yes 10.16 50.94 42.90 Yes 0.03 

 4 81.67 76.57 50.16 Yes 25.75 73.44 51.23 Yes 19.79 

 5 78.57 68.99 49.96 Yes 12.81 58.49 46.54 Yes 2.51 

 6 83.33 76.96 49.95 Yes 26.56 61.15 47.57 Yes 4.34 

P08 1 54.00 47.53 43.53 Yes 0.21 - - - - 

 2 58.00 51.65 49.07 No 0.09 - - - - 

 3 54.29 48.40 45.33 Yes 0.09 - - - - 

 4 68.82 57.37 49.96 Yes 1.89 - - - - 

 5 60.00 55.48 48.23 Yes 1.04 - - - - 

 6 57.50 52.11 49.93 Yes 0.15 - - - - 

P09 1 55.45 46.63 44.30 Yes 0.39 - - - - 

 2 56.88 53.71 49.58 Yes 0.48 - - - - 
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 3 55.88 49.48 49.84 No 0.01 - - - - 

 4 60.62 55.59 49.94 Yes 1.08 - - - - 

 5 67.14 56.72 46.21 Yes 1.57 - - - - 

 6 58.18 49.41 49.66 No 0.01 - - - - 

P10 1 55.00 46.54 48.85 No 0.41 - - - - 

 2 61.00 52.88 49.79 Yes 0.29 - - - - 

 3 53.13 48.46 49.80 No 0.08 - - - - 

 4 55.83 45.93 49.92 No 0.57 - - - - 

 5 47.50 42.87 42.37 No 1.77 - - - - 

 6 55.63 52.32 49.98 Yes 0.19 - - - - 

 

 

 

 

3.7 Supplementary Material 
Table 3.S1. This table shows the detailed sequences of T, U and C for each participant and session. In line 
with the previous results, the sequences of the 6th session of S02 are not shown because of artifacts in the 
EEG. 

Participant  S Sequence 

P01  1  

  2  

  3  

  4  

  5  

  6  

P02  1  

  2  

  3  

  4  

  5  
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P03  1  

  2  

  3  

  4  

  5  

  6  

P04  1  

  2  

  3  

  4  

  5  

  6  

P05  1  

  2  

  3  

  4  

  5  

  6  

P06  1  

  2  

  3  

  4  

  5  

  6  

P07  1  

  2  

  3  

  4  
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  5  

  6  

P08  1  

  2  

  3  

  4  

  5  

  6  

P09  1  

  2  

  3  

  4  

  5  

  6  

P10  1  

  2  

  3  

  4  

  5  

  6  
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Chapter 4. Online decoding of hand 
movement for the natural control of an 
assistive robotic arm 
 

 

 

 

The study described in this chapter has been conducted at the Institute of Neural 
Engineering, Graz University of Technology, Austria, where I had the opportunity 
to spend an internship. The study builds up on the research activities of the lab, and 
was conducted in strict collaboration with Dipl.-Ing. Reinmar Kobler, Ing. Dr. 
Andreea-Ioana Sburlea, and Prof. Dr. Gernot R. Müller-Putz. 

 

 

 

4.1 Introduction 
One of the latest directions of BCI research focuses on the reconstruction of the 
movement from neural recordings, to allow for intuitive and natural control (Müller-
Putz et al., 2016). The ultimate goal is the continuous decoding of real (Ofner and 
Müller-Putz, 2012) or imagined (Ofner and Müller-Putz, 2015) movements, to use 
their neural correlates as input for the prosthetic device. 

Neural tuning to movement direction has first been shown in monkeys (Caminiti et al., 
1990; Georgopoulos et al., 1982; Kalaska et al., 1983). Later, both primate and human 
studies showed the possibility to extract hand trajectories and velocity profiles from 
invasive intracortical (Black et al., 2003; Carmena et al., 2003; Hochberg et al., 2012; 
Lebedev et al., 2005; Li et al., 2009; Mulliken et al., 2008) and ECoG (Pistohl et al., 2008; 
Schalk et al., 2007) recordings. The feasibility of noninvasive neural decoding has been 
proved just recently, first in MEG (Bradberry et al., 2009; Georgopoulos et al., 2005; 
Waldert et al., 2008; Yeom et al., 2013) and lately in EEG (Bradberry et al., 2010; Kobler 
et al., 2018; Lv et al., 2010; Ofner and Müller-Putz, 2012; Úbeda et al., 2015). 

When coming to EEG, research agrees that kinematic information is present in the low 
frequency band (<3Hz) (Waldert et al., 2009) of the EEG recordings, and that it can be 
retrieved through linear decoders (Robinson and Vinod, 2016). Several studies could 
decode positions and velocities from linearly combined low-pass filtered EEG 
(Bradberry et al., 2010; Ofner and Müller-Putz, 2012), while a recent work clarified the 
spatiotemporal tuning of EEG to single movement parameters (Kobler et al., 2018). 
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Building on the findings of the previous works, we took in this study a step further, and 
implemented for the first time real-time control of an assistive robotic arm by means 
of continuously EEG-decoded two-dimensional movements. 

Given the exploratory nature of the study, we recorded healthy participants and asked 
them to perform real hand movements. Starting from a condition where the robot was 
entirely controlled by the participants’ hand movement, we gradually increased the 
proportion of EEG decoding, up to a final condition of 100% EEG-controlled robotic 
arm. Since this is the first time EEG decoding is performed online, the work will detail 
the methods used for the purpose, with particular attention to the differences and 
constraints arising when shifting from offline to online decoding, and closing the loop 
through the control of the robotic arm. Correlations between  the decoder’s output  and 
the real movement were evaluated. Analysis of the EEG sources contributing to 
decoding was completed, for a comparison with previous offline decoding results. 

 

4.2 Methods 
4.2.1 Participants 

Ten healthy participants (aged 26.5 ± 3.8 years, with normal or corrected-to-normal 
vision, 5 females) took part in the study, receiving compensatory payment for their 
participation. The study conformed to the Declaration of Helsinki and was approved 
by the ethics committee of the Medical University of Graz. All participants gave their 
written consent to participate in the study.  

 

4.2.2 Experimental setup 

During the experiment, participants sat in a shielded room, on a comfortable chair, 
approximately 1.5m away from a reclined (~45°) TV screen (Figure 4.1). An assistive 
robotic arm (JACO, Kinova Inc., Canada) overlaid the TV, with its hand closed in a grasp 
and pointing at the TV screen with its fingers.  

Similarly to a recent study (Kobler et al., 2018), a planar board supported the 
participants’ right arm. To reduce friction between the arm and the board, participants 
wore a sleeve and placed their hand on a circular pad. A LeapMotion controller 
(LeapMotion Inc., USA) held ~20cm over the board, continuously recorded the right 
hand’s palm position. After participants found a comfortable resting position, their 
right hand was mapped to the center of a fixation cross, displayed on the TV screen. 

 



85 
 

 
Figure 4.1. Experimental setup. A planar board supported the participants’ right arm. A LeapMotion 
controller (LeapMotion Inc., USA) recorded the right palm movement. Participants’ hand movement was 
1:1 mapped to the movement of a robotic arm (JACO, Kinova Inc., Canada).  64-channel EEG + 6 EOG 
(actiCAP Brain Products GnbH, Germany) were recorded at the same time. A moving trace (the “snake”) 
was displayed on the screen. A dark fabric covered the participants’ right arm, to ensure it was not in their 
field of view. 

 

During the experiment, a moving trace (which we called “snake”) replaced the fixation 
cross (Figure 4.1). Participants had the goal to follow the snake with the  robotic hand 
as closely as possible. The movement of the robot congruently mapped the movement 
of the participants’ hand on the board. As participants slid their palm on the board, the 
robotic hand slid on the reclined screen with movements of the same amplitude (1:1 
scaling). The hand movements were occluded from the participants’ field of view.. 

 

4.2.3 Experimental procedure 

The experiment consisted in thirteen runs, out of which seven were used to calibrate 
the system and six to implement the online decoding. All the runs  lasted ~4 hours in 
total.  

The main experimental task was implemented in the “snakeruns” (Figure 4.2), where 
participants had to track the snake with the robotic hand. Two additional “eyeruns” 
were added to calibration, to record eye artifacts (saccades, blinks) and resting 
activity. 

robotic arm 

snake 

LeapMotion 

EEG 
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During the “eyeruns”, a moving ball appeared on the screen and guided four possible 
conditions: i) rest with eyes open (9 trials), ii) horizontal eye movements (6 trials), iii) 
vertical eye movements (6 trials), and iv) blinks (6 trials). Trials lasted 10s each, with 
2-3s breaks in between. Conditions ii), iii) and iv) were used to fit a subspace 
subtraction eye artifact removal algorithm, as detailed in Kobler et al (Kobler et al., 
2017).  

 

 
Figure 4.2. Experimental paradigm. After five runs (“snakeruns”) of calibration, EEG-decoded trajectories 
were combined with real hand movement, with an increasing proportion of the former towards the end 
of the experiment. Two additional runs (“eyeruns”) recorded eye movements and blinks, for the 
calibration of the eye artifact removal algorithm. 

 

During the “snakerun” trials, a moving trace (the “snake”) appeared on the screen and 
continuously moved for 23s. As the snake appeared, participants gained control over 
the robot, which returned to its resting position at the end of each trial. Timing of the 
trials was self-paced. During breaks, a fixation cross and a cursor appeared instead of 
the snake, showing the relative position of the hand with respect to the participant’s 
resting position (the fixation cross). Whenever participants were ready for e new trial, 
they moved their hand to the resting position, and a new snake appeared. 

As in (Kobler et al., 2018), the snake trajectories were generated offline and were the 
same across participants. Twelve trajectories were sampled from band-pass filtered 
(0.2 to 0.4Hz) pink noise, as described in (Paninski et al., 2004). The set of trajectories 
was extended through rotating (90°, 180° and 270°) and mirroring. This led to a total 
of 96 trajectories, randomly distributed over the trials of the entire experiment. The 
procedure ensured uncorrelated positions and velocities across and within horizontal 
and vertical components (Kobler et al., 2018). 

Over the first five snakeruns, the robot’s behavior completely mapped the real hand 
movement. After setting up the decoder, a fraction of EEG-decoded movement was 
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added to the robot’s control signal. The proportion of EEG control gradually increased 
from 33% in snakeruns 6-7, to 66% in snakeruns 8-9, to 100% in snakeruns 10-11 
(Figure 4.2). Each snakerun was composed of 10 trials, which were aborted and 
replayed in case broad drift artifacts occurred (see the next sections for details).  

 

4.2.4 Data recording and processing 

We recorded and synchronized all data with the lab streaming layer (LSL) protocol 
(https://github.com/sccn/labstreaminglayer). 

EEG was recorded through 64 active electrodes (actiCAP Brain Products GnbH, 
Germany), placed on the scalp according to the 10-10 system (Figure 4.3, left). 
Reference and ground electrodes were placed at the right mastoid and AFz, 
respectively. Six additional active electrodes were positioned at the inferior, superior 
and outer canthi of the eyes to record the EOG (Figure 4.3, right). EEG and EOG signals 
were recorded at 500Hz through BrainAmp amplifiers (BrainAmp, Brain Products 
GmbH, Germany). 

We implemented the eyerun and snakerun paradigms in Matlab (Matlab 2015b, 
Mathworks Inc., USA), using the Psychtoolbox extension (Brainard; Kleiner et al., 2007; 
Pelli). An additional photodiode, capturing a marker on the screen at the beginning of 
each trial, was used for offline synchronization. 

Online processing and synchronization of data was accomplished through custom 
Matlab scripts, with the EEGLAB extension (version 14.1.1) (Delorme and Makeig, 
2004). The processing pipelines are outlined in Figure 4.4. 

 

 
Figure 4.3. EEG and EOG electrode locations in topographical representation (left panel) and after co-
registration with the template head model (right panel). 
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Figure 4.4. Processing pipelines of EEG and LeapMotion data. EEG was filtered in two stages. After the 
first filtering stage (0.18Hz high-pass + anti-aliasing low-pass), EEG was downsampled to 100Hz, bad 
channels were interpolated, eye artifacts attenuated, slow drifts/occasional pops detected, and signal 
were re-referenced to common average reference. After the second filtering stage (1.5Hz low-pass), EEG 
was downsampled to 20Hz, buffered for 300ms and decoded (linear decoding + Kalman filtering). 
Meanwhile, kinematic signal from the LeapMotion was low-pass filtered at 4Hz, delayed (ring-buffer) for 
synchronization with EEG, and downsampled to 20Hz. After synchronization, LeapMotion and EEG-
decoded trajectories were mixed into an unique control signal, transformed to the reclined TV screen and 
fed to the robotic arm. 

 

EEG data processing 

EEG signals were filtered and downsampled in two different stages.  

In the first stage, EEG data were high-pass filtered at 0.18Hz and downsampled to 
100Hz. To avoid aliasing, the filter was composed as a cascade of: i) a first-order IIR 
high-pass filter with 0.18Hz cut-off frequency, ii) a second order Butterworth low-pass 
filter at 25Hz, and iii) two Notch filters at 50Hz and 100Hz.  

Bad channels were manually selected for each subject during calibration, based on the 
presence of evident drift, unlikely behavior of the channel, or suspected contamination 
by movement artifacts (see Table 4.S1, Supplementary Material). The selected 
channels were online corrected during feedback, through real-time interpolation of 
the N = 4 nearest neighboring electrodes. 

After interpolation, saccadic eye movements and blinks were attenuated through a 
subspace subtraction eye artifact removal algorithm (Kobler et al., 2017), fitted to the 
eyeruns data. 

Eye-corrected data were continuously checked for low-frequency artifacts (e.g. 
occasional pops, drifts), through a variance-based online artifact detection algorithm. 
The baseline variance of each channel was estimated from the eye-corrected data of 
the eyeruns. Naming vbase the baseline variance of each channel, during feedback we 



89 
 

computed the instantaneous variance vinst and compared it to a normal distribution 
with μ = 3*vbase and σ = vbase: 

𝑣 =  
𝑣௦௧ − 3 ∗ 𝑣௦

𝑣௦
 

(4.1) 

Artifact probability was estimated as the normal cumulative probability of vnorm 
(Matlab function normcdf). During feedback, artifactual channels were continuously 
interpolated by using their N = 4 most proximal electrodes, with a percentage of 
interpolation proportional to the artifact probability. In case of contamination of the 
interpolating channels, we aborted the trial and replayed it at the end of the run. 

After artifact detection, EEG was re-referenced to common average reference (CAR), 
low-pass filtered at 1.5Hz with a second-order low-pass Butterworth, and 
downsampled to 20Hz. 

EEG was finally buffered for 300ms, for multi-lag decoding of the hand kinematics (see 
the next section for details). 

 

LeapMotion data processing 

LeapMotion palm positions were low-pass filtered at 4Hz through a third order low-
pass Butterworth, to preserve the movement information (~0.2-1Hz band) while 
getting rid of occasional jitters due to temporary loss of tracking.  

In order to align LeapMotion with the EEG-decoded movements, we evaluated the 
duration of each processing pipeline, and delayed the signal acquired with the 
LeapMotion by 165ms by means of a ring-buffer. The computation of delays is depicted 
in Figure 4.5 and detailed in the following lines. 
 
 

Figure 4.5. Evaluation of delays. Latencies of the recording systems were ~60ms (EEG) and ~5-10ms 
(LeapMotion). Processing pipelines lasted ~250ms (EEG) and ~80ms (LeapMotion). Considering a delay 
of ~60-70ms between brain signal and motor output, the resulting delay for synchronization was 165ms.



90 
 

The latencies of the recording systems were ~60ms for the EEG and ~5-10ms for the 
LeapMotion, while the processing pipelines lasted ~250ms and ~80ms, respectively. 
Processing delays were estimated considering the group delay responses of the filters 
and the frequency content of the signals. If considering an additional ~60-70ms delay 
between brain signal and inherent motor output, the resulting delay for 
synchronization was 165ms.  

After synchronization, LeapMotion positions were downsampled to 20Hz, and mixed 
to the EEG. 

 

JACO control 

After alignment, real and EEG-decoded trajectories were mixed to control the JACO 
robotic arm. The proportion of mixing depended on the run, according to the scheme 
already depicted in Figure 4.2. Position coordinates were transformed with a rotation 
matrix to make the robot slid on the tilted plane of the TV screen, while amplitude of 
the movements remained unchanged (1:1 mapping).  

Depending on the kinematic behavior of the subject, the robotic arm introduced a 
delay of 300-400ms between JACO target and actual movement. Altogether, the total 
delay between hand movement and robot reaction was ~550-650ms (250ms + 300-
400ms). 

 

Offline processing 

Data were offline processed following the same pipelines as online (Figure 4.4). At the 
end of calibration, snakerun data were collected, processed and epoched into 23s trials. 
Trials were automatically marked for rejection if the EEG signal of any channel 
exceeded a threshold of +/- 100uV or had an abnormal probability or kurtosis (more 
than 5 standard deviations beyond the mean), applying the criteria twice to detect 
gross outliers in the first iteration and subtle outliers in the second. Marked trials were 
further visually checked to correct/integrate automatic artifact detection. The 
proportion of rejected trials was 10 out of 50 calibration trials on average. LeapMotion 
position data were used to compute velocities and accelerations. This was a necessary 
step for later decoder fitting and setting up of the Kalman filter (see the next section 
for details). We used a Savitzky-Golay filter (order three and eleven taps) to smooth 
and differentiate the hand position signals into velocities and accelerations. The first 
and last second of each trial were finally excluded to eliminate edge artifacts. 

After the experiment, feedback runs were processed in the same way as calibration 
runs. One of the subjects was excluded from the analysis of the feedback runs due to 
technical problems in the recordings. The proportion of rejected trials was 10 out of 
60 feedback trials on average. 
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4.2.5 Decoder fitting and Kalman filter 

Decoder fitting 

Likewise previous decoding studies (Kobler et al., 2018; Ofner and Müller-Putz, 2015), 
we applied partial least squares (PLS) (Wold et al., 2001) to find the linear decoder 
models of movement parameters from the EEG data. PLS is particularly appropriate in 
situations with strongly collinear predictor variables, as in the case of multi-lag low-
frequency EEG. 

Let X be an n x P matrix of predictor variables, with n observations and P predictors, 
like the multi-lag EEG data. Let Y be the n x M matrix of response variables with M 
responses, like the six movement parameters (positions, velocity and accelerations in 
x and y dimensions). 

The predictor variables are modelled as: 

𝑋 =  𝑋௦ ∙ 𝑋
் + 𝐸 

 

(4.2) 

with XS being an n x Ncomp matrix of latent components, XL being the P x Ncomp matrix to 
relate the predictors X to their latent space, and E being an n x P matrix of additive 
independent and identically distributed (iid) noise. 

With PLS regression, the idea is finding the latent components XS maximizing the 
covariance with the dependent variables in Y, given the number of components Ncomp. 
This permits to find the linear relation between the X and Y, while reducing the 
dimension from P to Ncomp. The dependent variables are then modelled as: 

𝑌 =  𝑋௦ ∙ 𝑌
் + 𝐺 

 

(4.3) 

with YL being the M x Ncomp matrix relating Y with the predictor scores XS, and G being 
a matrix of additive iid noise.  

XL and YL were estimated with the SIMPLS algorithm (de Jong, 1993). The estimates 

may also be combined into a P x M weight matrix W, to directly predict the dependent 
variable from the EEG: 

𝑌 =  𝑋 ∙ 𝑊 

 

(4.4) 

In this study, we fitted the decoder to the entire calibration set (Figure 4.2), obtained 
by concatenation of clean trials from snakeruns1-5. Although eye movement artifacts 
were strongly attenuated by the eye correction algorithm (Kobler et al., 2017), pilot 
subjects revealed that subtle residual activity might remain in the very frontal 
locations. 

In order to rule out any residual interference, we removed the five electrodes from the 
Fp and AF row (Figure 4.3), fitting the model to the remaining 59 channels. The dataset 
was extended over the seven considered lags, i.e. lag 0, -50ms. -100ms, -150ms, -
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200ms, -250ms and -300ms, with a result of 59 channels x 7 = 413 highly collinear 
predictor variables. For dimensionality reduction, we adopted Ncomp = 85 components, 
explaining ~99% of X variance.  

Kalman filter 

The Kalman filter (Kalman, 1960) is an optimal estimation algorithm to infer the 
internal state of a system, given a set of indirect noisy measurements and the system’s 
underlying model. 

Kalman filter is composed of two equations. The first, called process equation, 
describes the evolution of the internal state over time. The second, called measurement 
equation, describes the relation between the noisy measures and the state. In its 
discrete-time and linear form, Kalman filter equations can be written as follows: 

൜
𝜃ାଵ = 𝐹𝜃 +  𝑣

      𝑧 = 𝐻𝜃 +  𝑤
               

𝑣 ~ 𝑁(0, 𝑄)
𝑤 ~ 𝑁(0, 𝑅)

 

 
(4.5) 

The first line the process equation, where 𝜃 is the nθ-dimensional state of the system, F 
is the nθ x nθ transition matrix between the present k and next k+1 sample, and 𝑣 is 
additive Gaussian noise with zero-mean and covariance matrix Q, modelling the 
uncertainty over the process equation.  

The second line is the measurement equation, linking the nz-dimensional vector of 
measurements 𝑧 to the nθ-dimensional state 𝜃 through the linear relation described by 
the nz x nθ matrix H, while 𝑤 is additive Gaussian noise with zero-mean and covariance 
matrix R, modelling the measurement and model errors. 

When setting up the Kalman filter, a reasonable estimation of the covariance matrices 
Q and R is needed. The idea of Kalman filtering is to find the optimal combination of 
the noisy state predictions (process equation) and noisy estimations (measurement 
equation), based on the characteristics of the process and measurement noises. The 
goal is achieved by means of an algorithm alternating the two phases of (i) prediction 
of the new state 𝜃ାଵ and its covariance matrix Pk+1, and (ii) correction of the estimate 
with the measurement 𝑧ାଵ, taking into account the system uncertainties (Q and R) 
and structure (F and H) by means of the Kalman gain. 

 
 

(4.6) 
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In our study, the status was the hand kinematics, inferred from the noisy EEG 
measures. We therefore defined the status 𝜃: 

𝜃 =  [𝑝௫ 𝑣௫ 𝑎௫ 𝑝௬ 𝑣௬ 𝑎௬]் 

 

(4.7) 

containing all the kinematic chain from positions to accelerations (model with null 
jerk). 

Let T be the integration step (in our case T = 1/20, from the pipeline in Figure 4.4), the 
F and Q matrices are then: 

𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 𝑇 𝑇ଶ

2ൗ 0 0 0

0 1 𝑇 0 0 0
0 0 1 0 0 0

0 0 0 1 𝑇 𝑇ଶ

2ൗ

0 0 0 0 1 𝑇
0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  

 

(4.8) 

 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑇ହ

20ൗ 𝑇ସ

8ൗ 𝑇ଷ

6ൗ 0 0 0

𝑇ସ

8ൗ 𝑇ଷ

3ൗ 𝑇ଶ

2ൗ 0 0 0

𝑇ଷ

6ൗ 𝑇ଶ

2ൗ 𝑇 0 0 0

0 0 0 𝑇ହ

20ൗ 𝑇ସ

8ൗ 𝑇ଷ

6ൗ

0 0 0 𝑇ସ

8ൗ 𝑇ଷ

3ൗ 𝑇ଶ

2ൗ

0 0 0 𝑇ଷ

6ൗ 𝑇ଶ

2ൗ 𝑇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∙
1

10
∙

𝑣𝑎𝑟(𝑎)

𝑇
 

 

 

 

 

(4.9) 

The F matrix models the integration between 𝜃  variables, while Q describes the 
propagation of the noise on accelerations (the model assumes null jerk) to velocities 
and positions (Bar-Shalom et al., 2002). 

In regard to the measurement equation, the idea was using the EEG measurements to 
estimate the kinematic variables in 𝜃, i.e. using the decoder model. However, in order 
to reduce redundancy and increase speed, we considered as measurement vector 𝑧 the 
Ncomp = 85 latent components XS, instead of the P = 413 variables in X. As a result of 
Equation 4.3, the Kalman filter matrix H was: 

𝐻 = 𝑝𝑖𝑛𝑣(𝑌) 

 
(4.10) 

The covariance matrix of the measurement error R was finally obtained applying its 
definition, evaluated on calibration data: 

𝑅 = [𝑐𝑜𝑣(𝑧 − �̂�)]௧ = [𝑐𝑜𝑣(𝑧 − 𝐻𝜃)]௧ 

 
(4.11) 

with 𝑧 being the latent variables projected from the measured EEG, and �̂� being their 
estimation according to the LeapMotion measures 𝜃 and the Kalman model H. 
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We used Kalman filter for online decoding of the hand kinematics during feedback 
runs, starting each snakerun trial with zero initial conditions in the state and initial 
covariance matrix P = 10-9⸱Q. 

 

4.2.6 Decoding performance and Kalman filter effect 

A commonly used measure of similarity between actual and decoded movements is the 
Pearson’s correlation coefficient, 𝑟 . We evaluated 𝑟  between real trajectories and 
decoder outputs, for each participant, metric (positions, velocities, accelerations), and 
condition (100%, 66%, 33% and 0% proportion of LeapMotion control). We 
considered snakeruns4-5 for the 100%, snakeruns6-7 for the 66%, snakeruns8-9 for the 
33%, and snakeruns10-11 for the 0% LeapMotion condition. Both EEG and LeapMotion 
signals were processed as online, i.e. using causal filters and delaying the LeapMotion 
signal by 165ms (Figure 4.4, Figure 4.5). 

Chance level correlations were evaluated through a shuffling approach. We broke the 
association between the EEG in X and the relative kinematics in Y by randomly 
shuffling Y trials and fitting the decoder. We shuffled the data 100 times, evaluated the 
decoding correlations, and assessed chance level (α=5%) by taking the 95th percentile 
of the distribution. 

To evaluate the effect of Kalman filter, we computed the decoding correlations in two 
cases: (i) using just the decoder (as in Equation 4.4) and (ii) using the decoder and the 
kalman gain. We compared the two methods across subjects for each metric and 
condition, by using Wilcoxon signed-rank tests, and controlled the false discovery rate 
(FDR) at significance level 0.05 by adjusting the p-values (Benjamini and Hochberg, 
1995; Yekutieli and Benjamini, 1999). 

To complete the analysis of the decoder output, we evaluated its amplitude and 
compared it to real movement. We finally explored the dependency across movement 
parameters, by means of cross-correlation curves in the [-1s, 1s] time range. 

 

4.2.7 Pattern source mapping 

We analyzed the decoder activation patterns at cortical level by means of EEG source 
imaging (Michel and Murray, 2012; Michel et al., 2004). 

Activation patterns were computed from the decoder weight matrices according to 
(Haufe et al., 2014): 

𝐴 =   Σ𝑋
 ∙ 𝑊 ∙  Σ𝑌

 −1
 

 

(4.12) 

 Σ
  and Σ

 are the sample covariance matrices evaluated on calibration X and Y data. 
Analytical shrinkage regularization (Bartz and Müller, 2014) was applied to estimate 

 Σ
  and  Σ

 . In order to express the patterns as voltages (Ofner et al., 2017), we scaled 
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them by multiplying with the square root of  Σ
 . The procedure is equivalent to the 

one in (Kobler et al., 2018), but taking into account the dependency between Y 
variables. 

Before projecting the scaled patterns to source space, we further normalized them to 
account for the variability in the EEG baseline magnitude across participants. As the 
scaled patterns reflect the potential on the scalp, we used chance level patterns to 
estimate the subject- and metrics-dependent baseline level of activity. For each 
participant and metric, we took the root mean square (across electrodes and lags) of 
the chance level activation patterns (in channel space). We averaged the values over 
the 100 chance level repetitions, and used the result for normalization. 

The normalized patterns were mapped to source space using the open source software 
Brainstorm (Tadel et al., 2011), version 22-Aug-2018. We created head models co-
registering the ICBM152 boundary element model (BEM)(Fonov et al., 2011) with the 
recorded electrode positions (ELPOS, Zebris Medical Gmbh, Germany) of each subject. 
The BEM template consisted of three layers (cortex, skull, scalp), whose conductivities 
were set to (1, 0.008, 1). Electrode positions were registered to the scalp layer using 
three anatomical landmarks (nasion, left and right preauricular points). As 
participants slightly deviated from the template anatomy, we completed the 
registration by projecting the floating electrodes on the BEM scalp layer. The cortex 
was modelled with 5001 voxels. The forward model, describing the propagation of 
electrical fields from the cortex to the scalp, was computed with OpenMEEG (Gramfort 
et al., 2010; Kybic et al., 2005). We finally used sLORETA (Pascual-Marqui, 2002) to 
evaluate the corresponding inverse model, considering 3 unconstrained source 
components per voxel. The noise covariance matrix of the EEG, necessary for 
sLORETA, was estimated for each subject on the eye-corrected data of the eyeruns, 
applying analytical shrinkage regularization (Bartz and Müller, 2014). As a final step 
we computed, for each voxel, the norm of the three x, y, and z source components. 
 

4.2.8 Source space statistics 

For each movement parameter and time lag, we looked for significant activations in 
source space by computing the paired difference between each decoder pattern and 
the corresponding chance level activity (in source space). Chance level was computed 
by averaging the 100 back-projected normalized chance level patterns. As in (Kobler 
et al., 2018), we evaluated significance at eight region of interests (ROIs) associated 
with movement processing (Figure 4.6), namely the dorsomedial occipital cortex 
(DMOC), the superior parietal lobule (SPL), the primary sensorimotor (SM1) and 
fronto-central areas (FC) of both hemispheres. The activity of each ROI was computed 
by averaging its voxels. Significance was assessed by two-tailed non-parametric 
permutation paired t-tests (Maris and Oostenveld, 2007; Nichols and Holmes, 2001) 
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with 1000 repetitions. False discovery rate (FDR) was controlled by adjusting the p-
values at 0.05 significance level (Yekutieli and Benjamini, 1999). 

 

 
Figure 4.6. Visualization of the regions of interests (ROI)s, covering dorsomedial occipital cortex (DMOC), 
superior parietal lobule (SPL), primary sensorimotor areas (SM1) and fronto-central areas of both 
hemispheres. 

 

4.3 Results 
4.3.1 Decoder correlations 

For each subject, metric, and condition, correlations between decoder output and real 
movement were always above chance level. The result was verified for both linear 
decoding alone and with Kalman. 

In the case of Kalman filtering, the average correlations for the decoded positions were 
(0.47 ± 0.019, 0.32 ± 0.022, 0.28 ± 0.018, 0.26 ± 0.031, mean ± SEM), respectively for 
the conditions of 100%, 66%, 33% and 0% LeapMotion control. The corresponding 
chance level correlations were (0.13 ± 0.0077, 0.12 ± 0.0083, 0.11 ± 0.0035, 0.11 ± 
0.0064). Correlations distributions for each metric and condition are detailed in Table 
4.1, and summarized in Figure 4.7. 
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Table 4.1. Pearson’s correlation coefficients between Kalman-decoded and real trajectories for each 
metric and condition (mean ± SEM), and corresponding chance levels. 

  Metric 

condition output meas. x pos x vel x acc y pos y vel y acc 

100% 
Leap 

r dec + kalm 0,46 ± 
0,03 

0,51 ± 
0,04 

0,42 ± 
0,03 

0,49 ± 
0,02 

0,53 ± 
0,02 

0,43 ±  

0,02 

r chance 0,13 ± 
0,03 

0,14 ± 
0,03 

0,11 ± 
0,02 

0,14 ± 
0,04 

0,16 ± 
0,04 

0,12 ±  

0,03 

66% 
Leap 

r dec + kalm 0,31 ± 
0,03 

0,40 ± 
0,04 

0,32 ± 
0,03 

0,33 ± 
0,03 

0,41 ± 
0,03 

0,32 ±  

0,02 

r chance 0,12 ± 
0,04 

0,14 ± 
0,04 

0,11 ± 
0,04 

0,14 ± 
0,03 

0,15 ± 
0,03 

0,12 ±  

0,03 

33% 
Leap 

r dec + kalm 0,28 ± 
0,03 

0,38 ± 
0,03 

0,30 ± 
0,03 

0,30 ± 
0,03 

0,40 ± 
0,03 

0,30 ±  

0,03 

r chance 0,12 ± 
0,01 

0,13 ± 
0,03 

0,10 ± 
0,03 

0,12 ± 
0,02 

0,14 ± 
0,02 

0,11 ±  

0,03 

0% 

Leap 

r dec + kalm 0,24 ± 
0,05 

0,33 ± 
0,06 

0,27 ± 
0,05 

0,29 ± 
0,04 

0,39 ± 
0,04 

0,30 ±  

0,04 

r chance 0,11 ± 
0,03 

0,14 ± 
0,03 

0,11 ± 
0,03 

0,11 ± 
0,03 

0,13 ± 
0,03 

0,10 ±  

0,04 

 

 

 
Figure 4.7. Box-plot showing the correlation distributions between Kalman-decoded and real 
trajectories, for each metric and condition. 
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4.3.2 Effect of the Kalman filter 

To quantify the Kalman filter effect, we compared the correlations of each subject, 
metric and condition, in the two cases of linear decoder alone or together with Kalman 
filtering. The average increase in correlation with Kalman was 0.065. The increase was 
consistent over metrics and conditions (Table 4.2), and always significant (α = 5%) 
according to our tests (Wilcoxon signed-rank tests + FDR correction).  

 
Table 4.2. Correlations r between real and decoded trajectories (mean ± SEM). The table reports: i) 
correlations of linear decoder alone, ii) correlations of decoder + Kalman, iii) average increase between 
methods and iv) uncorrected p-values from the Wilcoxon signed-rank tests (FDR critical value = 0.0078). 

  Metric 

condition output meas. x pos x vel x acc y pos y vel y acc 

100% 
Leap 

r just dec 0,39 ± 
0,02 

0,42 ± 
0,04 

0,38 ± 
0,03 

0,40 ± 
0,02 

0,44 ± 
0,03 

0,38 ± 

0,02 

r dec + kalm 0,46 ± 
0,03 

0,51 ± 
0,04 

0,42 ± 
0,03 

0,49 ± 
0,02 

0,53 ± 
0,02 

0,43 ± 

0,02 

Δ r kalm-dec 0,070 ± 
0,018 

0,086 ± 
0,015 

0,042 ± 
0,009 

0,089 ± 
0,008 

0,096 ± 
0,008 

0,043 ± 
0,009 

p-value 0,0078 0,0039 0,0078 0,0039 0,0039 0,0039 

66% 
Leap 

r just dec 0,25 ± 
0,03 

0,34 ± 
0,05 

0,28 ± 
0,03 

0,28 ± 
0,03 

0,33 ± 
0,02 

0,29 ± 

0,02 

r dec + kalm 0,31 ± 
0,03 

0,40 ± 
0,04 

0,32 ± 
0,03 

0,33 ± 
0,03 

0,41 ± 
0,03 

0,32 ± 

0,02 

Δ r kalm-dec 0,067 ± 
0,016 

0,063 ± 
0,014 

0,046 ± 
0,010 

0,044 ± 
0,009 

0,080 ± 
0,014 

0,037 ± 
0,008 

p-value 0,0117 0,0039 0,0078 0,0039 0,0039 0,0039 

33% 
Leap 

r just dec 0,20 ± 
0,02 

0,33 ± 
0,04 

0,24 ± 
0,02 

0,25 ± 
0,03 

0,31 ± 
0,03 

0,27 ± 

0,03 

r dec + kalm 0,28 ± 
0,03 

0,38 ± 
0,03 

0,30 ± 
0,03 

0,30 ± 
0,03 

0,40 ± 
0,03 

0,30 ± 

0,03 

Δ r kalm-dec 0,077 ± 
0,019 

0,052 ± 
0,013 

0,054 ± 
0,012 

0,054 ± 
0,015 

0,093 ± 
0,01 

0,034 ± 
0,007 

p-value 0,0117 0,0039 0,0078 0,0117 0,0039 0,0039 

0% 

Leap 

r just dec 0,17 ± 
0,04 

0,26 ± 
0,06 

0,22 ± 
0,04 

0,24 ± 
0,04 

0,28 ± 
0,04 

0,26 ± 

0,03 

r dec + kalm 0,24 ± 
0,05 

0,33 ± 
0,06 

0,27 ± 
0,05 

0,29 ± 
0,04 

0,39 ± 
0,04 

0,30 ±  

0,04 

Δ r kalm-dec 0,070 ± 
0,019 

0,066 ± 
0,014 

0,048 ± 
0,014 

0,051 ± 
0,012 

0,112 ± 
0,012 

0,043 ± 
0,009 

p-value 0,0117 0,0039 0,0078 0,0078 0,0039 0,0039 

 

Besides the average increase in correlation, Kalman filter also had a smoothing effect 
on the decoder output. Figure 4.8 displays an example of the real LeapMotion signal, 
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the linear decoder output, and the Kalman filter output (x and y dimensions). As 
evident from the figure, Kalman filtering removes the higher-frequency ripples from 
the decoded signal,  maintaining it in approximately the same frequency range of the 
movement. 

 

 
Figure 4.8. Example of real and decoded trajectories (participant p02). 

 

 

4.3.3 Amplitude of the decoder output 

To complete the analysis of the decoder output, we compared the amplitude of real 
and decoded movements across conditions. To quantify the movement amplitude, we 
took the difference between the 95th and the 5th  percentiles of the position 
distributions. In Figure 4.9, we show the mean and standard deviations of the real and 
decoded signals’ amplitudes across conditions. As from Figure 4.8, the amplitude of 
the decoded movement is generally smaller (~5-6cm) with respect to the LeapMotion 
signal (~15-20cm). In addition, while the participants’ movement amplitude tended to 
increase over conditions, the amplitude of the decoded signals remained unaffected. 
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Figure 4.9. Trends of real and decoded trajectory amplitudes (cm) over the four conditions (mean and 
standard deviation across subjects). 

 
4.3.4 Source space statistics 

Source analysis revealed significant activations in the dorsomedial occipital (DMOC) 
and superior parietal lobule (SPL) areas for both the decoded velocities and 
accelerations, while no significant activations were found in the fronto-central (FC) 
and sensorimotor (SM) areas. Table 4.3 details the (uncorrected) p-values from the 
permutation tests, for each ROI, metric and time-lag. The results need to be interpreted 
according to the FDR correction critical value, pcrit = 0.007. Figure 4.10 summarizes the 
results of Table 4.3 at lag 0, by showing the magnitude of the normalized and scaled 
decoder activation patterns, averaged over participants. 

 
  ROI 

metric time 
lag 

DMOC-
right 

DMOC-
left 

SPL-
right 

SPL-
left 

FC-
right 

FC- 

left 

SM1-
right 

SM1-
left 

xpos 

-0.30s 0.093 0.098 0.162 0.565 0.496 0.572 0.100 0.272 

-0.25s 0.246 0.130 0.303 0.712 0.344 0.468 0.095 0.257 

-0.20s 0.677 0.203 0.663 0.837 0.214 0.361 0.114 0.209 

-0.15s 0.946 0.310 0.901 0.877 0.159 0.246 0.112 0.194 

-0.10s 0.878 0.449 0.988 0.922 0.149 0.199 0.101 0.177 

-0.05s 0.782 0.613 0.998 0.960 0.191 0.198 0.089 0.210 

0s 0.783 0.725 0.913 0.951 0.361 0.258 0.079 0.236 
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x vel 

-0.30s 0.099 0.554 0.030 0.107 0.100 0.631 0.151 0.554 

-0.25s 0.066 0.341 0.017 0.028 0.046 0.217 0.032 0.997 

-0.20s 0.037 0.204 0.005 0.007 0.038 0.103 0.019 0.631 

-0.15s 0.026 0.144 0.004 0.004 0.032 0.067 0.021 0.373 

-0.10s 0.006 0.099 0.004 0.004 0.028 0.059 0.030 0.203 

-0.05s 0.005 0.050 0.004 0.004 0.025 0.040 0.049 0.117 

0s 0.004 0.023 0.004 0.004 0.012 0.032 0.046 0.054 

x acc 

-0.30s 0.010 0.015 0.009 0.009 0.039 0.095 0.519 0.508 

-0.25s 0.004 0.012 0.004 0.009 0.040 0.104 0.804 0.685 

-0.20s 0.004 0.009 0.004 0.009 0.039 0.172 0.811 0.904 

-0.15s 0.004 0.004 0.004 0.009 0.117 0.294 0.543 0.989 

-0.10s 0.004 0.004 0.004 0.007 0.325 0.438 0.367 0.879 

-0.05s 0.004 0.004 0.004 0.010 0.332 0.541 0.398 0.701 

0s 0.006 0.009 0.004 0.053 0.136 0.376 0.681 0.875 

y pos 

-0.30s 0.6004 0.137 0.565 0.589 0.026 0.098 0.129 0.200 

-0.25s 0.6374 0.142 0.541 0.463 0.052 0.170 0.127 0.187 

-0.20s 0.761 0.182 0.570 0.377 0.136 0.335 0.113 0.258 

-0.15s 0.936 0.256 0.591 0.291 0.259 0.543 0.089 0.356 

-0.10s 0.979 0.313 0.655 0.232 0.391 0.769 0.059 0.512 

-0.05s 0.929 0.374 0.748 0.167 0.557 0.925 0.050 0.628 

0s 0.955 0.405 0.769 0.119 0.691 0.978 0.042 0.717 

y vel 

-0.30s 0.003 0.030 0.015 0.048 0.725 0.898 0.803 0.086 

-0.25s 0.004 0.022 0.010 0.024 0.968 0.974 0.977 0.177 

-0.20s 0.004 0.016 0.005 0.014 0.869 0.883 0.794 0.363 

-0.15s 0.008 0.012 0.005 0.010 0.748 0.813 0.661 0.591 

-0.10s 0.010 0.008 0.005 0.006 0.650 0.704 0.590 0.868 

-0.05s 0.007 0.008 0.002 0.006 0.550 0.577 0.550 0.831 

0s 0.006 0.006 0.002 0.006 0.420 0.473 0.550 0.568 

y acc 

-0.30s 0.054 0.007 0.110 0.002 0.342 0.213 0.820 0.725 

-0.25s 0.034 0.020 0.241 0.007 0.166 0.129 0.711 0.825 

-0.20s 0.011 0.041 0.305 0.012 0.121 0.095 0.733 0.670 

-0.15s 0.002 0.061 0.196 0.026 0.097 0.079 0.997 0.505 

-0.10s 0.016 0.078 0.113 0.057 0.081 0.091 0.696 0.479 

-0.05s 0.045 0.063 0.075 0.088 0.077 0.091 0.502 0.576 

0s 0.086 0.057 0.053 0.054 0.138 0.200 0.639 0.973 

Table 4.3. Uncorrected p-values from the permutation tests, for each ROI, metric and time-lag (FDR 
critical value pcrit = 0.007). The significant activations are highlighted in light blue. 

 

 

 



102 
 

horizontal position (x) vertical position (y)  
front 

 

 

 

 

 

 

R                               L 

top 

 

 

 

 

 

 

L                               R 

back 

 

 

 

 

 

 

L                               R 

front  
 

 

 

 

 

 

R                               L 

top 
 

 

 

 

 

 

L                               R 

back 
 

 

 

 

 

 

L                               R 

 

horizontal velocity (x) vertical velocity (y)  
front 
 

 

 

 

 

 

R                               L 

top 
 

 

 

 

 

 

L                               R 

back 
 

 

 

 

 

 

L                               R 

front 
 

 

 

 

 

 

R                               L 

top 
 

 

 

 

 

 

L                               R 

back 
 

 

 

 

 

 

L                               R 

 

horizontal acceleration (x) vertical acceleration (y)  
front 
 

 

 

 

 

 

R                               L 

top 
 

 

 

 

 

 

L                               R 

back 
 

 

 

 

 

 

L                               R 

front 
 

 

 

 

 

 

R                               L 

top 
 

 

 

 

 

 

L                               R 

back 
 

 

 

 

 

 

L                               R 

 

Figure 4.1. Grand average decoder patterns at lag 0 for the horizontal (left) and vertical (right) 
components, for the positions (upper panels), velocities (middle panels) and acceleration (lower panels). 
The voxel color indicates strength of activity. 

 

 

4.3.5 Cross-correlation curves 

This final section of results investigates the temporal dependency between the 
movement parameters employed to reveal the underlying correlations between 
decoder outputs. Figure 4.11 shows the cross-correlation curves between movement 
parameters  in the [-1 1]s time range for the x and y components (first and second row). 
The dependencies among variables (positions, velocities and accelerations) were very 
similar for the two components (Figure 4.11). Accelerations were anti-correlated with 
respect to the positions (left and right panels), and led the velocities by 0.55s (peak 
cross-correlations velocities-accelerations at -0.55s for both the x for the y 
component), which in turn led the positions by ~0.70s (peak cross-correlations 
velocities-positions at +0.70s for the x, +0.75s for the y component). The peak 
correlations between x and y components were finally always below r = 0.11. 
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Figure 4.11. Cross-correlation curves between movement parameters (x and y component in the first and 
second row, respectively). In each row, cross-correlations are shown with respect to the positions (left 
panels), velocities (middle panels) and accelerations (right panels) of the same component, while the gray 
line displays the maximum correlation with the metrics of the other component. 

 

 

4.4 Discussion 
In this study, we investigated for the first time the feasibility of  controlling an assistive 
robotic arm in real-time by means of continuously EEG-decoded movements. We 
developed the experimental tools and a paradigm for the purpose, using a Kinova JACO 
assistive robotic arm, and building on the results of previous studies. With the idea of 
introducing a smooth transition from the detection based on hand kinematics to the 
one relying on EEG signals, we opted for implementing a shared control framework for 
the control of the robot, progressively increasing the proportion of EEG-decoded 
movement, up to a final condition of 100% EEG-controlled robotic arm. 

 

4.4.1 Decoding performance and Kalman filter effect 

As a first result, the study is a proof-of-concept that continuous EEG decoding is still 
feasible in an online scenario, despite the differences between offline and online signal 
processing, and the additional delays introduced when closing the loop with robotic 
feedback. The correlations between real and EEG-decoded movements were always 
above chance level (Table 4.1), meaning that kinematic information could always be 
retrieved from the processed EEG signal. In the 100% kinematic control condition, the 
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online decoding correlations were also comparable with previous noninvasive offline 
studies, as (Lv et al., 2010; Úbeda et al., 2015). 

One of the design aspects that required more attention when shifting from offline to 
online decoding was the tuning of the EEG filter parameters. Indeed, we made a trade-
off  between the desired characteristics (e.g. precise bandwidth and effective stopband 
attenuation) and the introduced group delay/phase distortion. On one hand, a limited 
group delay was necessary to provide timely and smooth feedback. On the other hand, 
a limited phase distortion was important to avoid an excessive spread of the EEG signal 
over time, keeping altogether the EEG components carrying the same movement 
information. Considering these design constraints, we needed to modify the filter from 
the previous offline study in (Kobler et al., 2018), by relaxing the parameters of both 
the high-pass and the low-pass part of the filter. Regarding the high-pass, we reduced 
the filter order from eight to one, and changed the cut-off frequency from 0.25Hz to 
0.18Hz. For the low-pass, we reduced the filter order from four to two, and increased 
the cut-off frequency from 0.8Hz to 1.5Hz. The overall effect was an increase of the 
filtered bandwidth from 0.25-0.8Hz to 0.18-1.5Hz, together with a drastic decrease of 
stopband attenuation. This resulted in a filtered EEG signal with higher frequency 
components than the real trajectories, which instead had a frequency content 
approximately below 0.8Hz. 

One element of design with a beneficial effect on the decoder output was the 
introduction of Kalman filtering. Besides the significant increase in correlation with 
respect to linear decoding alone (Table 4.2), Kalman filtering had a clear smoothing 
effect (Figure 4.8). This brought the decoded trajectories back to similar frequency 
spectrum as the one of the real movement, despite the higher frequency jitters 
introduced by the blander filtering. The idea of Kalman filtering had already been 
introduced in previous decoding studies, either based on intracortical recordings 
(Black et al., 2003; Li et al., 2009; Mulliken et al., 2008) or on electrocorticography 
(Pistohl et al., 2008). In this work, we proposed a possible application for EEG signal 
decoding. The solution builds up on PLS linear regression models (Kobler et al., 2018; 
Ofner and Müller-Putz, 2015) and features dimensionality reduction, beneficial in the 
cases of highly collinear data, as the multichannel EEG signal over multiple time lags. 
For these properties, the proposed implementation would be suitable also in the cases 
of magnetoencephalographic and electrocortigraphic recordings, although it might be 
easily extendible to every case positions, velocities and accelerations are extracted 
from neural data during movement. 

 

4.4.2 Amplitude of the decoder output 

One aspect of the decoder output not encompassed by the Pearson’s correlation 
coefficient is the amplitude of the decoded signal with respect to the real hand 
trajectories. However, as already observed in the previous study of (Kobler et al., 
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2018), while the direction of the hand movement could be inferred from the EEG, the 
amplitude of the decoder output was generally smaller than the real trajectory. The 
very same effect was present in this study, and can be observed both in the sample 
decoded trajectories of Figure 4.8, and in the amplitude trends of real and decoded 
movements (Figure 4.9). When specifically observing Figure 4.9, we can see that the 
amplitude of the decoded trajectories did not change over conditions, while the 
participants tended to enlarge their movements with increasing proportion of EEG 
control. The effect is probably a form of compensation to the smaller decoded 
trajectories. The enlarging tendency stopped in the final part of the experiment, 
possibly as the behavior did not produce an effect on the decoder amplitude (Figure 
4.9). 

One conclusion that may be drawn from these results is that the amplitude of the 
movement seems not to be well encoded in the EEG signals. This is in agreement with 
the previous EEG study of (Kobler et al., 2018), although in disagreement with the 
intracortical recordings in (Paninski et al., 2004). Specifically in (Paninski et al., 2004), 
a linear speed scaling was found in the activity of velocity-tuned neurons, together 
with a linear distance scaling for position-tuned neurons. Shifting from invasive 
intracortical to noninvasive EEG recordings, it is possible that the scaling information 
is dampened and lost, or that it cannot be effectively retrieved with a PLS linear 
decoding model. If the signal information is affected by noise, it is indeed possible that 
PLS regression limits the amplitude of the decoder output, as a consequence of 
minimizing the errors due to overshooting. One way to overcome this limitation may 
be introducing a subject-specific gain after the decoder, so that the final amplitude is 
in the same range of the hand trajectory.  

 

4.4.3 Source space analysis: tuning of neural activity to the velocities 

When projecting the averaged decoder patterns to source space, we found significant 
activations of the parieto-occipital areas (SPL and DMOC areas of both hemispheres) 
for the velocities and the accelerations over multiple time lags (Table 4.3, Figure 4.10). 
The velocity results are in agreement with the previous offline study of (Kobler et al., 
2018) (Figure 4.10), while the significant acceleration tuning would be a new result 
with respect to literature. Even though previous studies (Carmena et al., 2003) 
highlighted neural tuning to gripping force/muscular activity (EMG), possibly related 
to acceleration, caution should be taken when interpreting these results. The three 
kinematic variables (positions, velocities, accelerations) are indeed correlated in time, 
as inferable when looking at the cross-correlation curves in Figure 4.11. The 
accelerations lead the velocities by 550ms, and the correlation between the variables 
in the -300-0s time-range is still high (Figure 4.11, middle panels). As a further 
indication, the acceleration activation patterns are very similar to the velocity patterns 
at lag 0 (Figure 4.10) and, even more, this could be observed at previous lags (not 
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shown). Additionally, the significantly active ROIs are the same for the two variables 
(Table 4.3), with just slight time shifts. 

From these premises, it is likely that the significant effect observed for the 
accelerations is of the same nature as the velocity effect. The fact that the two variables 
are highly correlated actually hinders the interpretation of their effects. Nevertheless, 
a consistent body of literature indicates neural tuning to the velocities (Bradberry et 
al., 2010; Carmena et al., 2003; Kobler et al., 2018; Mehring et al., 2003; Paninski et al., 
2004; Schalk et al., 2007; Waldert et al., 2009) and, in addition, velocities were the ones 
with overall highest correlations among our six decoded variables (Figure 4.7, Table 
4.1). To sum up, although it cannot be excluded that an effect exists also for the 
accelerations, our results suggest that the velocity is the kinematic variable best 
encoded in the EEG signals, corroborating the previous findings reported in (Kobler et 
al., 2018). 

One difference between our results and (Kobler et al., 2018; Paninski et al., 2004) is 
the timing of the velocity tuning curve, leading the movement by 100-150ms in the 
case of (Kobler et al., 2018; Paninski et al., 2004) and here most prominent at lag 0. 
However, we believe that the different type of processing, from offline to online, could 
explain the difference. Although limited, the phase distortion introduced by the first 
order high-pass filter may have delayed the lowest frequency components more with 
respect to the average group delay of 250ms used for synchronization (Figure 4.5). 
This may have led to a spread of information over time and subsequently to a 
suboptimal alignment, shifting the tuning peak with respect to offline studies. 

 

4.4.4 Activation of the parieto-occipital areas, and efficacy of the eye artifact 
correction algorithm 

One of the questions that may arise when looking at the activation patterns in source 
space is why the significant ROIs span parieto-occipital areas, while significant 
activations are not found in the hand area in the motor cortex. 

On the one hand, previous monkey and human studies showed that not only the motor 
areas but also the parietal cortex participates in voluntary upper-limb movements 
(Bradberry et al., 2010; Carmena et al., 2003; Culham and Valyear, 2006; Filimon et al., 
2007, 2009; Kalaska et al., 1983; Kobler et al., 2018; Lebedev et al., 2005; Mulliken et 
al., 2008). The intracortical recordings of (Kalaska et al., 1983) even found in the 
superior parietal lobule the same directional tuning as in primary motor cortex 
neurons (Georgopoulos et al., 1982). Another aspect that should be considered is that 
we allowed for natural eye movements during tracking. This allows us to classify our 
task as a general visuomotor task, broadly related to the anterior (proprioception) and 
posterior (proprioception + visual processing) areas of the parieto-occipital cortex 
(Filimon et al., 2009). 
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On the other hand, the absence of significant activations in the primary motor areas 
may be explained as follows. In their previous offline study, (Kobler et al., 2018) 
contrasted two conditions of a pursuit-tracking task: i) in the first condition, the 
participant was asked to follow a target on the screen with both its gaze and 
controlling a cursor through the hand, while ii) in the second, tracking was requested 
just with the gaze. When looking at the visuomotor task, significant activations were 
found in the parieto-occipital cortex, although not in the motor areas. However, when 
contrasting the activation patterns of the two conditions, a significant activation in 
SM1 was finally revealed. As already concluded in the previous study (Kobler et al., 
2018), the presence of saccadic eye movements may mask the activation in the motor 
areas, as the combination of proprioception and visual processing is visible more in 
the parieto-occipital areas. Nevertheless, an activation of the motor areas is probably 
present as well, similarly to the results in (Kobler et al., 2018) when contrasting 
between conditions. 

Even though masking the activation of the motor areas, the presence of saccadic 
movements should not be considered as an artifact. The presence of brain activity 
related to visual processing is indeed different from extra-brain sources, like in this 
example the EOG-induced artifacts. The efficacy of the implemented EOG artifact 
removal algorithm (Kobler et al., 2017) is visible in Figure 4.10: if residual EOG activity 
had been present, this would have been visible in the frontal and temporal areas. The 
absence of such activity guarantees the efficient data cleaning operated by the 
algorithm (Kobler et al., 2017), with the additional benefit of permitting our study to 
be carried out in a more ecologically valid setup.  

 

4.4.5 Feedback effect and adaptation 

One final observation that might be driven from our results regards the tendency of 
decoder correlations over time. Even though the hand trajectories could always be 
decoded above chance level (Table 4.1), a general decrease of correlation was 
observed with increasing proportions of EEG control (Figure 4.7). 

The fall may be due to the gradual loss of control perceived by the user, when shifting 
to the brain operation mode. Besides inducing a change in the participant’s mental 
condition, the control strategy of participants may also have changed. To give an 
example, participants might have paid more attention to the proprioception, to the 
robot, or to the snake, with respect to the calibration condition. An analogous effect 
was shown in a previous monkey study (Lebedev et al., 2005), allowing the animals to 
control a robotic end effector through their invasively recorded brain activity. As the 
monkeys started to use their brain activity to control the robot, the activity of neuron 
populations became less representative of the monkey’s hand movement, starting to 
represent more the movement of the actuator (Lebedev et al., 2005). Given the change 
of internal and external conditions when switching from kinematic to brain control, 
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we believe an adaptation of the decoder parameters will be required in future studies, 
taking also into account a possible learning effect when training over multiple days 
(Carmena et al., 2003; Lebedev et al., 2005). 

 

4.5 Limitations 
One of the main limitations of this study is the presence of residual movement artifacts, 
visible to the left side of the brain in the position activation patterns (Figure 4.10). The 
reason why this artifact is visible on the opposite side of the moving arm is explained 
in the following lines. 

After calibration, we always checked the decoder activation patterns (in channel 
space), interpolating the electrodes with suspicious artifactual activity. This is the 
reason why we often interpolated the most external electrodes to the right, posterior 
side (see Table 4.S1, Supplementary Material), assuming that movement artifacts 
would have arisen near the shoulder, on the same side of moving arm. One effect that 
we did not consider was that participants naturally tended to make subtle head 
movements, to adjust their balance as a reaction to the shoulder. These subtle 
adjustments caused very little movement artifacts on both sides. However, as we did 
not systematically interpolate left side electrodes, subtle residual artifacts are present 
on this side, in the position decoder patterns (Figure 4.10). 

One way to overcome this limitation is conducting the next studies with smaller arm 
movements, e.g. by setting 1:2 mapping from the hand to robot movement. 
 

4.6 Conclusion 
In this study, we developed for the first time the experimental tools and a paradigm to 
allow for real-time continuous control of a robotic arm by means on noninvasively 
EEG-decoded movements. The work detailed the methods used for this purpose, 
depicted some differences and constraints arising when shifting from offline to online 
decoding, and highlighted some points of design that have been beneficial for the 
setup, like the eye artifact removal algorithm and the Kalman filter. 

The study corroborates previous findings of offline decoding studies, despite the 
differences introduced by online signal processing and the additional delays when 
closing the loop with a robotic arm. The kinematics of the hand could be decoded above 
chance level for all the subjects and conditions, proving that EEG decoding is feasible 
in a close-loop, online scenario, even in the case of 100% EEG control. Altogether, the 
study takes a first step in the field of real-time continuous noninvasive EEG decoding 
for robotic control. Future challenges, such as the minimization of the calibration time 
needed for the decoder, or the influence of reinforcement learning on the subjects over 
multiple recordings sessions, can lead to more intuitive control of neuroprosthesis or 
robotic devices.  
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4.7 Supplementary Material 
Table 1.S1 Interpolated channels for each participant, selected by visual inspection of calibration data. 

participant bad channels 

p01 AF7, AF8, FT10, TP9, TP8, TP10, P7, P8, PO9, PO8, PO10, O2 

p02 FT10, T7, T8, TP9, TP7, CP5, TP8, TP10, P8, PO10 

p03 FT10, T8, TP9, TP7, TP10 

p04 AF4, AF8, F8, FT10, C6, T8, TP8, TP10, P8, PO8, PO10 

p05 AF7, FT9, FT10, Cz, TP9, TP10, P7, PO9, PO7, PO10 

p06 FPz, AF3, F8, FT8, TP9, TP8, TP10, PO9 

p07 F8, FT7, FT8, FT10, CP6, TP10 

p08 FT10, TP10, P6, PO7 

p09 FT9, FT7, FT10, T7, C2, TP9, CP6, TP8, TP10, P8, PO8, PO10, O2 

p10 AF4, FT8, FT10, T8, TP10, PO10 
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Chapter 5. Two simple but effective ways to 
improve SSVEP recognition based on 
Canonical Correlation Analysis 
 

 

 

 

5.1 Introduction 
Among the possible control signals suitable for EEG-based BCIs, steady-state visually 
evoked potentials (SSVEPs) are appealing for their high signal-to-noise ratio even 
without user training (Zhu et al., 2010). The consequent possibility to implement 
“plug-and-play” yet fast and highly accurate BCI systems, has been attracting over the 
years increasing attention (Allison et al., 2008; Wang et al., 2006). 

SSVEPs are periodic brain signals elicited over the occipital cortex by visual 
stimulations with frequencies higher than 6Hz (Lin et al., 2007). In case different 
flickering objects (LEDs, symbols, squares) are simultaneously presented, an analysis 
of the SSVEP spectral content permits to reconstruct which stimulus the user is 
focusing on. 

Traditionally used methods perform SSVEP recognition based on power spectral 
density analysis (PSDA) (Lin et al., 2007). In PSDA-based approaches, spectral powers 
are estimated from the EEG signal at the target stimulation frequencies and used as a 
feature for classification (Cheng et al., 2002; Müller-Putz et al., 2005; Yijun et al., 2005). 
However, PSDA-based methods can suffer from noise sensitivity if few channels are 
recorded, besides requiring relatively long signal portions (e.g. > 3s) to estimate the 
spectrum with a sufficient frequency resolution (Zhang et al., 2011, 2013, 2015). A 
promising and increasingly used approach, which has recently been raising the 
interest of research (Bin et al., 2009; Pan et al., 2011; Zhang et al., 2012), is the one 
based on Canonical Correlation Analysis (CCA) (Lin et al., 2007). 

CCA is a multivariate statistical method able to reveal the underlying correlation 
between two sets of data (Hotelling, 1936). In the field of SSVEP recognition, CCA is 
performed several times between the considered EEG segment and a set of sine-cosine 
reference signals modeling the pure SSVEP responses to each stimulation frequency 
(Lin et al., 2007). The frequency response showing highest correlation with the 
analyzed EEG portion is finally recognized as the observed one.  
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The efficacy of the CCA approach has been widely proved by several studies, and its 
superiority to PSDA in terms of speed, accuracy and computational load has been 
shown (Hakvoort et al., 2011; Wei et al., 2011). For this reason, several CCA variations 
have been proposed over the years (Chen et al., 2015; Islam et al., 2016; Nakanishi et 
al., 2014; Pan et al., 2011; Wang et al., 2014; Yuan et al., 2015; Zhang et al., 2011, 2013, 
2015, 2014). Most approaches, as the ones in (Pan et al., 2011; Wang et al., 2014; Zhang 
et al., 2011, 2013, 2015, 2014), concentrated on modifying the reference signals of 
SSVEPs by including subject-specific characteristics taken from the EEG activity of 
each user. The work in (Yuan et al., 2015) tried to enrich the algorithm with 
incorporating inter-subject information extracted from the signals of multiple 
subjects. In (Nakanishi et al., 2014), an effort was made towards compensating the 
natural decrease in signal-to-noise ratio of SSVEPs at higher stimulation frequencies, 
by correcting the gains for classification based on the shape of individual background 
EEG. Finally, in (Chen et al., 2015; Islam et al., 2016), CCA was repeated multiple times 
for each stimulation frequency, each time after passing the signal through a different 
IIR band-pass filter, to combine different aspects of the same EEG response. 

Even though every introduced variation produced a significant increment of 
classification accuracy, all of them tended to increase the complexity of the algorithm, 
either by incorporating information from individual EEG data (as in (Pan et al., 2011; 
Wang et al., 2014; Zhang et al., 2011, 2013, 2015, 2014)), which requires the 
introduction of an additional user training, or by increasing computational load, e.g. in 
(Chen et al., 2015; Islam et al., 2016), where multiple CCAs are performed to assess 
each stimulation frequency. However, we believe that even taking the simple 
procedures and keeping low computational costs may be relevant, especially to favor 
the spread of low-cost and high-portability devices. For these reasons, this works 
presents two simple variations based on the classical CCA method. The variations 
regard: i) the number of correlations considered for classification and ii) the pre-
processing of the signals. Nevertheless, we show that both modifications can 
significantly improve classification accuracy, with still leaving the whole procedure 
training-free end with no (variation i)) or minimal (variation ii)) impact on the number 
of steps required for each SSVEP identification. 

 

5.2 Methods 
5.2.1 The standard CCA method for SSVEP recognition 

Canonical correlation analysis (CCA) is a multivariate statistical method (Hotelling, 
1936) used to reveal the underlying correlation between two sets of data. Given two 
sets of random variables X ∈  ℝூభ௫ and Y ∈  ℝூమ௫, CCA finds the two corresponding 
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sets U=AX ∈  ℝூభ௫ and V=BY ∈  ℝூమ௫ (linear combination of the original ones through 
A ∈  ℝூభ  and B ∈  ℝூమ), called canonical variables, so that the correlation between each 
pair or rows (Ui,Vi) is maximized: 

𝜌 = max
 

𝑐𝑜𝑣(𝑈 , 𝑉)

ඥ𝑣𝑎𝑟(𝑈)𝑣𝑎𝑟(𝑉)
= max

,

𝑐𝑜𝑣(𝐴𝑋 , 𝐵𝑌)

ඥ𝑣𝑎𝑟(𝐴𝑋)𝑣𝑎𝑟(𝐵𝑌)
 (5.1) 

with leaving (Ui,Vj), (Ui,Uj) and (Vi,Vj) uncorrelated if i≠j. Each CCA leads to a number of 
solutions 𝜌 equal to the minimum between the number of rows in A (𝐼ଵ) and B (𝐼ଶ). 
The solutions 𝜌, sorted in descending order, are called canonical correlations and are 
a measure of the similarity between the two sets of original data. 

The use of CCA in the field of SSVEP recognition was first proposed by Lin et al. in (Lin 
et al., 2007). Given K stimulation frequencies to be distinguished, CCA is performed K 
times – one for each stimulation frequency fk - between the multichannel EEG signal in 
X ∈  ℝே௫ (Nch acquired channels, J time samples) and a set of sine-cosine reference 
signals in Yk ∈  ℝଶேೌೝ௫  modeling the pure SSVEP responses. Each set Yk is 
composed as follows: 
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where fk is the stimulation frequency, Fs is the sampling rate and Nharm is the number 
of harmonics included in the analysis. 

Every CCA generates a vector of canonical correlations (𝜌ଵ, 𝜌ଶ, … ,

𝜌(ே ,ଶேೌೝ)), of which only the first and largest one, 𝜌ଵ, is used as a feature for 

classification. The analyzed EEG segment in X is indeed assigned to the stimulation 
frequency leading to the maximum correlation 𝜌ଵ: 

𝑓௧௧ = max
ೖ


ଵ

 (5.3) 

 

5.2.2 Variation 1: number of considered canonical correlations 

Although the efficacy of the CCA method for SSVEP recognition has been widely proved 
(Bin et al., 2009; Zhang et al., 2012), and many variations have been proposed (Chang 
and Park, 2013; Chen et al., 2015; Islam et al., 2016; Nakanishi et al., 2014; Pan et al., 
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2011; Wang et al., 2014; Yuan et al., 2015; Zhang et al., 2011, 2013, 2015, 2014), the 
majority of approaches consider only the first canonical correlation as a feature for 
classification. Nevertheless, as already noted by Lin et al. (Lin et al., 2007), since real 
EEG signals may be contaminated by noise and show phase transitions, the 
information might be spread over more than one correlation coefficient. 

As a first variation of the algorithm, we evaluated the impact of taking more than one 
correlation coefficient as a feature for classification. Since the canonical variables in U 
and V are estimated so that each couple (Ui,Uj) and (Vi,Vj) are uncorrelated for i≠j, and 
the sine-cosine waves in the reference signals Yk are orthogonal between each other, 
the information contained in each set of canonical variables will always be in 
quadrature with respect to the others. For this reason, we propose to combine the Ncorr 
considered correlations with using the Euclidean norm: 

𝑟 = ඩ  𝜌
ଶ

ேೝೝ

ୀଵ

 (5.4) 

The resulting combination 𝑟 would be used as a feature for classification, in place of 
the largest canonical correlation 𝜌ଵ only. The number Ncorr can range from 1 to the 
minimum between Nch and 2Nharm, with Nch number of acquired channels and Nharm 
number of considered harmonics. In this work, we employed Nch=8 EEG channels (see 
section 5.2.4 for details) and Nharm=3 harmonics, so we explored the impact of taking 
all the possible numbers of considered correlations between 1 and 2Nharm. 

 

5.2.3 Variation 2: pre-processing with sinc-windowing 

Another possible variation with respect to literature may consist in adding a pre-
processing step to the EEG segments before performing CCA. If we exclude the works 
in (Chen et al., 2015; Islam et al., 2016), employing IIR filter banks, CCA is indeed 
typically applied without any pre-filtering of the EEG signals. Nevertheless, we believe 
that a narrow-band pre-filtering step around the K employed stimulation frequencies 
and their Nharm harmonics might be useful to increase the signal-to-noise ratio, 
expectantly enhancing classification accuracy. 
As a second variation, we evaluated the influence of such type of pre-filtering with 
using a sinc-windowing implementation. The technique of sinc-windowing consists in 
the convolution of the analyzed signal with an adequately modulated sinc function. As 
it is known, the inverse Fourier transform of an ideal rectangular band-pass filter, 
centered in f0 and with M bandwidth is: 
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where f is the frequency and 𝐹ିଵ is the inverse Fourier transform. Thus, the filtering 
around the fk stimulation frequencies and Nharm harmonics can be accomplished by 
means of a convolution with the following function: 

ℎ(𝑡) = 2𝑀𝑠𝑖𝑛𝑐(𝑀𝑡) ቌ  cos (2𝜋𝑛𝑓𝑡)

ேೌೝ

ୀଵ

 

ୀଵ

ቍ (5.6) 

where M is the bandwidth (in this work, M=1Hz), Nharm is the number of harmonics, 
and fk are the K stimulation frequencies. 

 

Data acquisition 

The EEG was recorded from 8 electrodes (PO7, PO8, PO3, PO4, O1, O2, POz, Oz), 
positioned according to the international 10-20 layout. The signals were acquired with 
a 256Hz sample frequency and a 50Hz notch filter on, by means of Brainbox EEG-1166 
amplifier (Braintronix). 

SSVEP stimulation was provided though four blue LEDs, arranged around a PC 
monitor. Each LED flickered at a different stimulation frequency (f1=8Hz, f2=9Hz, 
f3=10Hz and f4=11Hz). The four stimulation frequencies were selected before the 
beginning of the study and were the same for all subjects. All stimulations were 
provided with a 50 percent duty-cycle. The behavior of the LEDs was controlled by a 
LabVIEW-Arduino interface. 

 

5.2.5 Experimental paradigm 

Ten healthy volunteers (aged 22 to 26, 4 males and 6 females) participated in the 
study. All of them had normal, or corrected to, normal vision. During the experiment, 
the participants sat on a comfortable chair, with their arms relaxed and their head still, 
approximately 60cm distant from the PC monitor. 
The experiment was organized into runs, and the runs into trials. Each participant 
underwent a total of 4 runs, each comprising 16 trials. Each trial consisted in three 
subsequent phases: a 1s preamble, a 12s stimulation, and a 2s break period. During the 
preamble, a yellow square appeared on the screen indicating the target LED, then all 
LEDs started simultaneously flickering during stimulation, and the trial ended with a 
break period where the LEDs shut off and the square disappeared. The order of the 
target LEDs was randomized and counterbalanced in each run, so that each LED was 
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gazed for the same amount of time. To summarize, each experiment included a total of 
4 runs x 16 trials x 12 seconds = 768 seconds of stimulation, i.e. 192 seconds for each 
class. 
 

5.2.6 Performance evaluation 

For each subject, we evaluated the average classification accuracy at the end of each 
run. To highlight the impact of the two proposed variations (composition of the feature 
vector and sinc-windowing), all accuracies were recomputed with using all the 
possible combinations of methods, i.e. a number of considered correlations from one 
to Ncorr=6, with or without sinc-windowing. To evaluate the influence of considering 
different lengths of EEG signal for SSVEP recognition, all accuracies were recomputed 
with considering signal portions ranging from 0.5s to 5s, although the detailed results 
of statistical tests will be reported only in the case of a 1.5s window length. 
 

5.2.7 Statistical analyses 

As first, we compared each accuracy to chance level. The value of chance level was 
obtained by running the simulations as descripted in (Mueller-Putz et al., 2008) in the 
case of a 4-class BCI and taking the upper bound of the confidence interval at α=1% 
significance, as an analytical expression of chance level was not available for the multi-
class case. As concerns statistical comparison between methods, we had to account for 
the fact that multiple data came from the same subject, i.e. the samples could not be 
assumed to be completely independent. For this reason, instead of using paired-
samples t-test to compare each method against the others, we ran all evaluations as 
post-hoc tests of a repeated measures ANOVA. The ANOVA design included both the 
factors “method” (the within-subject factor) and “subject”, thus taking into 
consideration all dependencies among data. Post-hoc tests were carried out with using 
Bonferroni correction. The use of parametric statistical tests was justified by the 
normality of data distributions, as confirmed by the application of a preliminary 
Kolmogorov-Smirnov test. 
 

5.3 Results 
The classification accuracies of each subject, run and method are detailed in Table 5.1 
and summarized in Figure 5.1. The last two rows of Table 5.1 indicate the average and 
peak increment of each method with respect to standard CCA (first column). All the 
obtained accuracies were significantly higher than chance, as the upper bound of the 
confidence interval for chance level (with a significance of α=1%) in this particular 
setup was 30.27%. In Table 5.2, the results of the post-hoc comparisons (Bonferroni 
corrected) between each pair of methods are reported. In Figure 5.2, the accuracy 
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curves of all the considered methods, evaluated with different windows-lengths, are 
shown. 
 
 

 

 

Table 5.1: Detailed accuracies (for each subject and run) for all combinations of methods, with a window 
length of 1.5s. The last rows of the table summarize the average and peak accuracy of each combination, 
together with the average and peak increment with respect to classical CCA. 
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S01 run 1 92.2 96.1 96.1 96.9 96.9 96.9 91.4 93.8 95.3 95.3 96.1 96.1 
 run 2 92.2 93.8 95.3 95.3 95.3 96.1 89.8 93.8 92.2 93.0 93.0 93.0 
 run 3 95.3 96.1 96.1 96.9 96.1 96.1 95.3 97.7 96.1 96.1 96.1 94.5 
 run 4 94.5 96.1 95.3 95.3 95.3 95.3 89.8 94.5 93.0 91.4 92.2 92.2 
S02 run 1 85.2 87.5 90.6 90.6 90.6 90.6 85.2 91.4 90.6 90.6 91.4 91.4 
 run 2 78.9 79.7 79.7 78.9 78.9 78.9 80.5 85.2 87.5 85.2 84.4 84.4 
 run 3 82.8 85.2 85.2 87.5 86.7 86.7 87.5 90.6 92.2 93.0 92.2 92.2 
 run 4 88.3 89.8 89.8 90.6 90.6 90.6 87.5 90.6 88.3 91.4 92.2 93.0 
S03 run 1 80.5 87.5 86.7 88.3 88.3 88.3 80.5 78.1 79.7 78.9 78.9 77.3 
 run 2 78.9 82.0 82.0 82.0 82.0 82.0 80.5 77.3 75.8 75.8 75.0 75.0 
 run 3 74.2 79.7 82.0 82.8 82.8 82.8 71.9 74.2 78.1 78.9 78.9 78.1 
 run 4 82.8 85.9 86.7 87.5 87.5 87.5 83.6 88.3 87.5 85.2 85.2 85.9 
S04 run 1 75. 8 79.7 82.0 82.8 82.0 82.8 85.9 85.9 85.2 85.9 86.7 85.9 
 run 2 64.8 68.8 70.3 70.3 71.9 71.9 79.7 80.5 81.3 82.0 82.8 83.6 
 run 3 69.5 73.4 73.4 72.7 74.2 75.8 78.9 83.6 84.4 86.7 84.4 84.4 
 run 4 68.0 66.4 71.1 70.3 70.3 71.1 83.6 83.6 84.4 85.2 82.8 82.0 
S05 run 1 64.1 68.0 72.7 74.2 74.2 74.2 73.4 79.7 82.0 82.8 84.4 83.6 
 run 2 76.6 78.9 79.7 79.7 79.7 79.7 74.2 81.3 82.8 87.5 86.7 87.5 
 run 3 61.7 66.4 66.4 67.2 68.0 68.0 63.3 66.4 71.9 72.7 75.0 75.8 
 run 4 69.5 75.8 78.1 78.9 78.9 78.9 81.3 77.3 80.5 82.8 82.8 82.0 
S06 run 1 60.9 66.4 66.4 67.2 67.2 68.0 64.1 63.3 64.8 69.5 71.1 72.7 
 run 2 64.1 60.9 61.7 61.7 63.3 63.3 63.3 64.1 70.3 71.1 68.8 68.8 
 run 3 54.7 59.4 60.9 61.7 60.9 60.9 63.3 63.3 63.3 64.1 64.1 64.1 
 run 4 59.4 58.6 61.7 62.5 64.1 65.6 55.5 60.9 64.1 68.0 69.5 71.1 
S07 run 1 52.3 57.8 57.8 57.8 57.0 57.0 51.6 56.3 53.1 54.7 51.6 50.8 
 run 2 39.8 42.2 44.5 44.5 43.00 43.8 45.3 51.6 50.8 54.7 57.0 56.3 
 run 3 38.3 41.4 40.6 40.6 40.6 40.6 40.6 36.7 41.4 42.2 43.0 43.8 
 run 4 43.00 43.8 43.8 45.3 45.3 45.3 48.4 53.9 53.9 57.8 59.4 58.6 
S08 run 1 46.9 50.0 53.1 53.9 53.9 53.9 52.3 57.8 61.7 60.9 61.7 60.2 
 run 2 40.6 44.5 47.7 50.8 51.6 51.6 59.4 64.1 67.2 71.9 68.8 68.8 
 run 3 46.1 49.2 53.9 53.1 53.9 53.9 50.0 55.5 59.4 60.9 63.3 63.3 
 run 4 42.2 43.0 47.7 48.4 48.4 48.4 46.1 53.1 58.6 60.2 57.0 58.6 
S09 run 1 39.1 39.8 42.9 41.4 43.7 43.8 34.4 39.1 39.1 40.6 40.6 39.8 
 run 2 35.9 32.0 34.4 35.9 37.5 37.5 40.6 38.3 35.9 39.1 39.8 39.1 
 run 3 39.1 38.3 38.3 37.5 35.9 35.9 35.9 38.3 36.7 38.3 40.6 39.8 
 run 4 34.4 33.6 34.4 34.4 37.5 36.7 33.6 32.8 36.7 34.4 36.7 37.5 
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S10 run 1 30.5 32.8 34.4 35.2 35.2 35.2 39.1 39.8 39.8 39.1 41.4 41.4 
 run 2 42.2 46.9 47.7 47.7 47.7 47.7 45.3 50.8 48.4 46.9 47.7 48.4 
 run 3 32.0 35.2 35.9 35.9 35.9 35.9 35.9 40.6 41.4 42.2 43.0 43.0 
 run 4 35.9 39.8 43.0 43.8 44.5 44.5 39.9 40.6 43.8 44.5 46.9 46.1 

Average 61.3 63.8 65.3 65.7 65.9 66.1 64.7 67.4 68.5 69.5 69.8 69.8 
Peak 95.3 96.1 96.1 96.9 96.9 96.9 95.3 97.7 96.1 96.1 96.1 96.1 

Average Δ - 2.48 3.92 4.37 4.60 4.76 3.38 6.03 7.14 8.20 8.49 8.4 
Peak Δ - 7.03 8.59 10.2 10.9 10.9 18.8 23.4 26.6 31.3 28.1 28.1 

 

 

 

 

 

 

 
Table 5.2: p-values from the post-hoc comparisons between each pair of methods. The asterisks mark 
statistical significance: p<0.05 (*), p<0.01 (**), p<0.001 (***) 

 CCA (1 corr) CCA (2 corr) CCA (3 corr) CCA (4 corr) CCA (5 corr) CCA (6 corr) 

CCA (1 corr) - 
p<10-5 

*** 
p<10-9 

*** 
p<10-9 

*** 
p<10-10 

*** 
p<10-10 

*** 

CCA (2 corr) - - 
p<10-4 

*** 
p<10-5 

*** 
p<10-5 

*** 
p<10-5 

*** 

CCA (3 corr) - - - 
p=0.32 

 
p=0.13 

 
p=0.017 

* 

CCA (4 corr) - - - - 
p=1 

 
p=0.017 

* 

CCA (5 corr) - - - - - p=0.90 

CCA (6 corr) - - - - - - 

 
CCA (1 corr) 

+ sw 
CCA (2 corr) 

+ sw 
CCA (3 corr) 

+ sw 
CCA (4 corr) 

+ sw 
CCA (5 corr) 

+ sw 
CCA (6 corr) 

+ sw 

CCA (1 corr) 
+ sw 

- 
p<10-3 

*** 
p<10-5 

*** 
p<10-6 

*** 
p<10-6 

*** 
p<10-6 

*** 

CCA (2 corr) 
+ sw 

- - 
p=0.21 

 
p<10-3 

*** 
p<10-3 

*** 
p=0.0022 

** 

CCA (3 corr) 
+ sw 

- - - 
p=0.041 

* 
p=0.053 

 
p=0.19 

 

CCA (4 corr) 
+ sw 

- - - - 
p=1 

 
p=1 

 

CCA (5 corr) 
+ sw 

- - - - - 
p=1 

 

CCA (6 corr) 
+ sw 

- - - - - - 
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 CCA (1 corr) CCA (2 corr) CCA (3 corr) CCA (4 corr) CCA (5 corr) CCA (6 corr) 

CCA (1 corr) 
+ sw 

p=0.0014 
** 

p=1 
 

p=1 
 

p=1 
 

p=1 
 

p=1 
 

CCA (2 corr) 
+ sw 

p<10-8 

*** 
p=0.0015 

** 
p=0.22 

 
p=0.77 

 
p=1 

 
p=1 

 

CCA (3 corr) 
+ sw 

p<10-10 

*** 
p<10-4 

*** 
p=0.0025 

** 
p=0.0082 

** 
p=0.018 

* 
p=0.042 

* 

CCA (4 corr) 
+ sw 

p<10-10 

*** 
p<10-4 

*** 
p<10-4 

*** 
p<10-3 

*** 
p<10-3 

*** 
p<10-3 

*** 

CCA (5 corr) 
+ sw 

p<10-10 

*** 
p<10-6 

*** 
p<10-4 

*** 
p<10-4 

*** 
p<10-3 

*** 
p<10-3 

*** 

CCA (6 corr) 
+ sw 

p<10-10 

*** 
p<10-6 

*** 
p<10-4 

*** 
p<10-4 

*** 
p<10-3 

*** 
p<10-3 

*** 

 

Both the proposed variations were able to significantly improve classification 
accuracy. As regards variation 1, the results in Table 5.1, Table 5.2 and Figure 5.1 
clearly show how the consideration of more than one canonical correlation 
significantly increases classification accuracy, both in the sinc-windowing and no-sinc-
windowing conditions. Nevertheless, while accuracy significantly increases (p<0.001, 
both with or without sinc-windowing) when switching from one to two canonical 
correlations, or from two to three (p<0.001, in the no-sinc-windowing condition), the 
increment generally becomes insignificant when taking four, five or six canonical 
correlations, with respect e.g. to three. As concerns variation 2, i.e. the inclusion of a 
pre-filtering step around the K stimulation frequencies and Nharm harmonics by means 
of sinc-windowing, the results show how this kind of pre-processing always 
outperformed (with statistical significances ranging from p<0.001 to p<0.01) the 
corresponding version without processing. Accordingly, when variation 1 and 
variation 2 were combined, classification accuracy was a fortiori significantly (p<0.01 
or p<0.001) increased with respect to the standard CCA method. To give an example, 
the accuracies obtained with using four canonical correlations and sinc-windowing 
were averagely increased by 8.20% with respect to the standard CCA method, with a 
peak increment of even 31.25% (in S08, run 2). 

When varying the length of the EEG portions used to recognize the SSVEPs, the 
behavior of the proposed variations on classification accuracy tended to be confirmed, 
with the only exception of the 0.5s window length (Figure 5.2). While the 
consideration of more than one canonical correlations always outperformed the use of 
the largest one only, the positive impact of sinc-windowing emerged only for window 
lengths greater than 0.5-1s.  
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Figure 5.1. A box-plot showing the classification accuracy distributions for all the considered 
combinations of methods. The asterisks mark statistical significance - p<0.01 (**), p<0.001 (***) - while 
“n.s” indicates the absence of significance. The horizontal, dashed line marks the upper confidence 
interval for chance level (α=1%). 

 

 
Figure 5.2: Grand average across subjects and runs of the classification accuracies for all the considered 
methods. The black dashed line indicates the upper confidence interval of the chance level (α=1%). Note 
that chance level is slightly different for the different time-windows, as the consideration of a larger time 
window implies a reduction in the number of trials per class. 
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5.4 Discussion 
Our results show how the simple consideration of more than one canonical 
correlations can significantly improve the achievable accuracy without increasing 
computational load. As already suggested by Lin et al. (Lin et al., 2007), since real EEG 
signals are affected by noise and can show phase transitions, the information might be 
spread over more than one correlation coefficient. 

From a theoretical point of view, if the EEG signals were almost unaffected by noise 
and shared the same phase across electrodes, then the consideration of only one 
canonical correlation would be sufficient to capture the majority of information. Being 
indeed the sine-cosine waves in each Yk an orthogonal basis, CCA would be able to find 
that particular linear combination of Yk elements able to explain the behavior of SSVEP 
response, through maximizing the correlation between linear combinations of X (the 
EEG signals) and Yk, without leaving information behind. However, provided that X is 
a multichannel set of data, if we suppose that the SSVEP response might show a 
different phase across electrodes, then at least a second set of canonical variables will 
be needed to explain the data, with the second set (U2,V2) containing a complementary 
information with respect to (U1,V1). If we further suppose that, at the same EEG 
location, the different harmonics of the same SSVEP response might show different 
delays between each other, then at least another set of canonical variables (U3,V3) 
would be needed to capture the information of the SSVEP response not included in the 
first two sets. We suggest that both the above introduced suppositions are likely to be 
true in real EEG signals. Supposing indeed that the SSVEP response is generated in a 
limited area of the occipital cortex, then it will undergo different delays to reach the 
different locations from which the electrodes are acquired, due to a delay in spatial 
transmission. We suggest that the second supposition is also likely to be true in real 
EEG signals. Given indeed the origin of SSVEP in the occipital cortex, the signal has to 
pass multiple tissue layers (fluids, bone, skin) before reaching each EEG location. This 
is likely to produce phase distortion between different frequency components, besides 
the well-known spatial blurring effect. The above described interpretation fits the 
experimental data well, as the accuracy significantly increased when passing from one 
to three canonical correlation. We suggest that the consideration of more than one 
canonical correlation permits to include a more complete information on the 
investigated frequency fk, which finally translates in an increased accuracy, revealed 
in almost every subject and run. From the third set of canonical variables on, the 
amount of information included probably depends on each user’s individual 
characteristics, e,g. the amount of delay across different harmonics and electrodes, as 
well as the magnitude of SSVEP between different harmonics of the same stimulation 
frequency. Given their dependency on each subject’s individual characteristics, from 



122 
 

the fourth canonical correlation on there was not a group effect anymore, and the 
increments in accuracy were not anymore significant.  

Besides suggesting the consideration of more than one canonical correlation, our 
results also highlight the positive impact of including a pre-filtering step before 
performing CCA. The presence of a filtering stage around the K stimulation frequencies 
and related Nharm harmonics may have permitted to enhance the SSVEP response from 
the background EEG, which finally translated in a significantly increased accuracy in 
every considered comparison between corresponding versions of the method, with or 
without pre-filtering. The idea of adding a filtering stage to enhance different SSVEP 
components had been already introduced in the works of Chen et al (Chen et al., 2015) 
and Islam et al (Islam et al., 2016), suggesting the use of IIR filter banks. However, both 
algorithm implementations in (Chen et al., 2015; Islam et al., 2016) proposed to 
perform multiple CCAs, each time after a different pre-filtering of the same EEG 
portion, to assess each single stimulation frequency. Although able to produce a 
significant increase in classification accuracy, this implies a multiplication of the total 
number of steps required in each SSVEP recognition, with a related sensible increment 
of computational load. Besides being a novelty with respect to literature, the 
implementation of the pre-filtering by means of sinc-windowing has the advantage of 
being able to filter multiple frequency components in one single step, by simply 
modulating the composition of the convolved function. This implies that one more 
single step is added to each SSVEP recognition, independently from the number K of 
stimulation frequency or Nharm considered harmonics, thus overall remaining 
computationally light. A potential limitation of the sinc-windowing technique might be 
related to the length of the considered signal portions, due to the Gibbs truncation 
effect (Carslaw, 1930). As indeed shown in Figure 5.2, while for segment lengths longer 
than 1s sinc-windowing increases the achievable accuracy, it turned to have even a 
negative impact when considering a short signal portion, of 0.5s. As a final comment 
on the sinc-windowing technique, it might be noted that its efficacy was generally 
confirmed despite the closeness of the chosen the stimulation frequencies (8, 9 10 and 
11Hz). 

As regards the obtained accuracies in absolute terms, we can comment that our results 
are in line with literature regarding multi-class SSVEP-based BCIs relying on the 
standard CCA technique (Bin et al., 2009; Chen et al., 2015; Dongxue et al., 2015; 
Hakvoort et al., 2011; Lin et al., 2007). Nevertheless, it could be noted that set of 
stimulation frequencies and/or of the duty-cycles (Shyu et al., 2013) of stimulations 
were chosen beforehand and they were same for all subject, therefore a subject-
specific calibration would theoretically produce a further increment of all accuracies. 
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5.5 Conclusion 
In the present work, we performed a 4-class SSVEP recognition based on CCA analysis. 
However, we evaluated the impact of two slight variations with respect to the standard 
algorithm, involving i) the number of considered canonical correlations and ii) the 
inclusion of a narrow-band pre-filtering step around the employed stimulation 
frequencies and related harmonics, by means of sinc-windowing technique. Our 
results indicate that even simple consideration of more than one canonical correlation 
can significantly improve accuracy, without any increment of computational load. 
Notably, there were significant increases in accuracy when switching from one to three 
canonical correlations, while the increments were not significant from the fourth 
canonical correlation on. An additional narrow-band pre-filtering permitted to gain up 
to 7-8% of accuracy on average, with peaks of 25-30%, with respect to classical CCA. 
A further advantage of sinc-windowing implementation is that it permits the 
enhancement of multiple frequency components in one single step, by simply 
modulating the composition of the sinc-function. Given the significant increases in 
accuracy produced by both the proposed variations, either they were used separately 
or - even more - in combination, together with the minimal computational costs, we 
believe they could easily represent valid integrations to be included in future CCA 
designs. 
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General conclusions 
 

 

 

This thesis presented several research activities in the field of EEG-based Brain-
Computer Interfaces for both neurorehabilitation and control purposes.  

 

In chapter 2, we tested whether contralateral tDCS could be used to enhance BCI-
guided MI training, by producing a remote facilitation of ERD through the modification 
of interhemispheric balance. Our initial hypothesis was that tDCS could exploit 
interhemispheric inhibition, i.e. that contralateral cathodal stimulation could result in 
facilitation of ERD on the unstimulated hemisphere, while contralateral anodal 
stimulation could result in inhibition.  

From the analysis of spectral power and ERD, two main findings emerged: i) 
contralateral alpha-ERD was reduced after anodal, but not enhanced after cathodal 
tDCS, ii) both stimulations had remote effects on the EEG rhythms of the contralateral 
hemisphere. The absence of contralateral cathodal ERD enhancement suggests that the 
protocol is not applicable in the context of BCI-guided MI training. Nevertheless, ERD 
results of anodal and spectral power results of both stimulations support the 
hypothesis of an interhemispheric effect, complementing recent findings on the 
distant tDCS effect between functionally related areas. 

 

Chapter 3 presented a co-adaptive BCI system based on motor imagery. The system 
was tested on ten subjects, of whom seven reached the criterion level of 70% accuracy 
in three days. In regard to the accuracies, the results are in line with the ones of other 
co-adaptive studies. However, beyond the proposed adaptive strategy, we believe the 
main novelties in this chapter regard the way the machine interacts with the user 
during training. Some ideas introduced in this work may be included into setups even 
different from ours, like the flexibility in the training paradigm, adapting to the 
performance of the user, or the imbalance in the presentation of conditions in favour 
of the most misclassified one, permitting both the user and the machine to train more 
on the most critical class. Even though this was an early work, and research directions 
in recent years have started shifting towards different frontiers, we believe the 
proposed ideas and elements of design could be useful, in synergy with more 
sophisticated algorithms and adaptive schemes, to the goal of making learning 
voluntary control of SMR more efficient and comfortable for the user. 
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On a more recent research direction there is the activity of chapter 4, carried out 
during my internship at the Institute of Neural Engineering, Graz University of 
Technology, Austria. In this study, we developed for the first time the experimental 
tools and a paradigm to allow for real-time continuous control of a robotic arm by 
means of noninvasively EEG-decoded movements. The main challenges of the project 
arose from the online processing delays, forcing us to relax the constraints over the 
characteristics of the EEG filter. The overall effect was an enlargement of the filtered 
bandwidth, which would have resulted in decoded trajectories with higher frequency 
jitters with respect to the movement. One beneficial element of design in this sense 
was the introduction of the Kalman filter. Besides increasing the correlation of the 
decoder output with the real movement, Kalman filter had indeed a smoothing effect. 
This brought back the decoded trajectories to a similar frequency spectrum as the real 
movement, thus overall increasing the quality of the feedback. Despite the differences 
introduced by online decoding, and the additional delays when closing the loop with a 
robotic arm, the results are consistent with previous findings from offline decoding 
studies, as also confirmed by the analysis of EEG sources. Finally, the movement could 
be decoded from all participants above chance level, even in the case of 100% EEG 
control. Altogether, the study in this chapter takes a first step towards online 
continuous control based on noninvasive movement decoding. Next challenges may 
regard the minimization of the calibration time needed for the decoder, or the 
investigation of reinforcement learning over multiple days. 

 

In chapter 5 of this thesis we finally addressed SSVEP recognition based on the 
Canonical Correlation Analysis (CCA) approach. We proposed two simple 
improvements in i) the pre-processing of the signal and ii) the number of considered 
canonical correlations, which were able to consistently and significantly improve 
classification accuracy with no or minimal impact on computational load. While the 
reasons underlying the beneficial effect of taking more correlations were discussed in 
the chapter, the sinc-windowing approach represents a simple but ecological way to 
enhance all the frequency components of interest for classification, but in just one 
additional processing step. Given their modular structure and their minimal 
computational cost, we believe the proposed variations may easily be included in 
future CCA-based designs, especially in view of low-cost and high-portability devices. 

 

Although drawing a general conclusion is difficult, for the variety of the research 
questions addressed in each chapter, we believe this work has overall managed to 
introduce some novelty to the field, either by proposing new elements, refining the 
methods, or complementing the most recent findings in literature. On a more general 
note, some hints on next steps that might be taken in BCI research, both for 
neurorehabilitation and control, are suggested in the following. 
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In regard to neurorehabilitation, the efficacy of BCIs to trigger neurological recovery 
is being progressively confirmed. A number of recent clinical studies has shown the 
efficacy of BCI training with respect to control groups, not only in terms of neurological 
but also functional recovery. Next steps in this field might be taken towards improving 
the simplicity and reliability of hardware and software, especially in view of home-
based training in the chronic phase, or the customizability of the systems to meet the 
specific needs and objectives of end-users. On a slightly different note, but always 
arising from the topics addressed in this thesis, some hints might be given towards 
improving reliability and usability of tDCS as well. Although there is evidence of the 
efficacy of stimulation to enhance recovery, even in the chronically damaged brain, the 
exact mechanisms underlying neuromodulation are still poorly understood. The 
development and use of computational models, ideally able to span across levels of 
description and ultimately link dose of stimulation to neurophysiology and behavior 
(e.g. from the new branch of research known as “computational neurostimulation”), 
might be useful to further improve the understanding and, therefore, reliability, of this 
second technique. 

Finally, in regard to BCIs for control purposes, next steps might be taken towards 
improving the intuitiveness of control, in order to increase usability of the systems. On 
one side, a better understanding of the factors and mechanisms influencing the 
learning of BCI control might help to design more efficient and optimized paradigms. 
On the other side, the exploratory effort towards novel and more intuitive control 
frameworks, like the recently envisioned continuous decoding of movement intention, 
may provide in the next years the BCI community with new theoretical knowledge and 
technical tools, allowing for the envisioning of new possible solutions. 
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