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Abstract 

To unveil the biological complexity at the basis of the genotype-phenotype relation it is 

fundamental to integrate knowledge, that is to integrate the different omics describing the 

levels of biological complexity: genomics, proteomics, transcriptomics, metabolomics, 

interactomics. The annotation process is time consuming because the various information on 

genes and proteins are collected in different databases of annotation, and we still need a 

unified framework collecting all the different levels of knowledge. 

The situation gets more complicated when we move the focus to diseases and phenotypes. 

The identification of molecular mechanisms behind different phenotypes offers a way to 

understand the processes that lead to disease insurgence and progression. In the context of 

precision medicine, the challenge is to ascribe the ensemble of phenotypes to a small number 

of possibly altered biological functions. Another issue in computational biology is the 

prediction of specific phenotypic effect of gene and protein variants, to test the performance of 

computational methods towards experiment in vivo and in vitro.  

The main aim of this thesis is to study the relations among genes, variations, diseases and 

phenotypes with the approaches of computational biology, integrating information from 

different resources to make a step forward in the direction of unveiling the biological 

complexity. After a general introduction (chapter 1), we present the webservers eDGAR 

(chapters 2, 3) and PhenPath (chapter 4), collecting and analysing the gene-disease 

associations and the phenotypes-biological processes associations, respectively. 

We then assessed whether disease-related variations induce perturbations of the protein 

stability. To this aim, we developed a new predictor called INPS-3D (chapter 5). We test our 

predictors participating in international experiments (chapters 6, 7, 8) on specific study cases. 

Thanks to the expertise acquired in the field, we also collaborate with the Sant’Orsola Genetic 

Medical Unit of the Department of Medicine and Surgery of the University of Bologna, building 

a series of model of protein structure of myosin 1F and its variants related to the thyroid 

cancer (chapter 9). 

Concluding (chapters 10, 11), we tried to depict the biological complexity merging a large-

scale approach with the analysis of specific study cases, providing webservers, tools and 

computation methods to help researchers in directing further experiments.  
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1 Introduction 

1.1 Unravelling the Biological Complexity 

The advent of Next Generation Sequencing (NGS) technologies and the possibility to generate 

genetic, transcriptomic, epigenetic data and other genome-wide data for a relatively small cost 

opened numerous opportunities for translation into the clinic (Casey G et al, 2013). How could 

we transfer the knowledge derived from NGS studies to have a real impact on the clinical 

management of diseases? How to handle the massive amount of data? 

Data annotation and data integration are part of the answer to this biological problem. 

It is clear that to unveil the biological complexity at the basis of the genotype-phenotype 

relation it is fundamental to integrate knowledge, which is to integrate the different omics 

describing the levels of biological complexity: genomics, proteomics, transcriptomics, 

metabolomics, interactomics. This integration of features increases our understanding of the 

molecular mechanisms leading from a genetic variation to a specific phenotype. The study of 

the general genotype-phenotype relation is at the basis of the comprehension of the variant-

disease relation, that is a research area involving a series of bioinformatics approaches that 

may be defined as ‘translational bioinformatics’. Nowadays, we are far from having a complete 

understanding of the intricate network of the molecular processes involved in disorders, and 

we are still searching for cures for most complex diseases (Kann MG, 2009).   

As data on gene-disease relations accumulate, it emerges that an increasing number of 

diseases are associated with several genes. Such multigenic diseases are defined as 

heterogeneous or polygenic diseases, on the basis of their association to independent or 

concomitant alterations in sequence and/or in expression of sets of genes, respectively 

(McClellan J and King MC, 2010).  A crucial goal in the direction of precision medicine is to 

understand the molecular mechanisms that connect the different genes associated to the same 

disease. This aspect is very complicated, because the information on genes is stored in 

different databases of annotation, and it is difficult to collect all the different levels of 

knowledge in a unifying framework. 

The situation gets more complicated when we move the focus from diseases to phenotypes. In 

fact, many diseases are associated to symptom complexes and co-occurrence of different 

phenotypes whose diversity complicates the understanding of the underlying molecular 

mechanisms (Fisch GS, 2017). The identification of molecular mechanisms behind different 

phenotypes offers a way to understand the processes that lead to disease insurgence and 
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progression. In the context of personalized medicine, the challenge is to ascribe the ensemble 

of phenotypes to a small number of possibly altered biological functions. 

It is clear the need of comprehensive resources to help researchers in directing future efforts, 

collecting and merging the annotation features from many different source databases, as well 

as providing clues on possible genes and biological pathways related to diseases and/or 

phenotypes to be investigated. 

 

This thesis aims to make a step forward in the direction of unveiling the biological complexity 

of the genotype-phenotype relation.  In order to do so, we decided to analyse the genotype-

phenotype relations with two different approaches: 

i) Large scale studies: to develop methods that integrate knowledge, to study the 

emerging features of the gene-diseases associations and of the phenotype-

molecular pathways associations, to provide databases and tools for the 

researchers’ community. 

ii) Specific study cases: to investigate real applications of the general models 

developed in the large-scale studies, to test the current computational resources 

comparing them with experimentally validated data, to collaborate with clinicians 

in developing new strategies in the direction of precision medicine. 

 

1.2 Resources for gene and protein annotation 

There are many databases collecting genes and their associated features that can be used for 

gene annotation. Annotating a gene or a protein means to endow it with specific biological 

features (e.g. molecular functions, biological processes and pathways, protein 3D structure, 

disease associations). 

Routinely, the databases used for the annotation process may be specific for a particular type 

of features (e.g. the protein products, the protein variants, the disease associations) or they 

may regard a subset of specific genes (e.g. organism specific databases).  

Among the great number of available resources, we selected a set of annotation databases to 

retrieve information about genes and proteins. Selection considered different criteria, such as 

the amount of entries described, the level of data curation by experts, the frequency of 

updating and releasing, the usage of international standards to report the data. In the 

following paragraphs it is reported a brief list of the main resources for data annotation used 

in this thesis project as well as in the associated papers.  
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1.2.1 UniProt 

The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence 

and annotation data (The UniProt Consortium, 2017). In particular in this thesis we refer to 

the UniProt Knowledgebase (UniProtKB), that is composed of two databases: SwissProt 

(release of August 2018, accessed September 12, 2018), containing 558,125 protein 

sequences, that is reviewed and manually curated with information extracted from literature 

and curator-evaluated computational analysis, and TrEMBL, that contains 124,797,108 

protein sequences automatically annotated. 

Another useful resource provided by the UniProt Consortium is Humsavar, a collection of all 

the missense variants annotated in human SwissProt entries, actually containing 78,049 single 

amino acid variants (release of August 2018, accessed September 12, 2018). Humsavar 

classifies its variants in disease variants, polymorphisms and unclassified variants, on the 

basis of the curated information retrieved by experts working on SwissProt. The current 

release account for 30,251 disease related variants and 39,963 polymorphisms. 

  

1.2.2 OMIM 

The Online Mendelian Inheritance in Man (OMIM) (Amberger JS et al, 2015) is a 

comprehensive, authoritative compendium of human genes and genetic phenotypes that is 

freely available and updated daily. OMIM contains information on Mendelian disorders over 

15,000 genes, collecting genotype-phenotype relations.  Presently (accessed October 8, 2018) 

it contains information on 6,259 diseases with known molecular basis, associated with 3,961 

genes. The OMIM classification for Mendelian diseases has become a standard in the 

international community as long as the MIM-numbers (a six-digit code univocally associated 

to a disease) have been widely used by researchers to identify human disorders.  

 

1.2.3 ClinVar 

ClinVar is a database of human variations and their relations with diseases (Landrum MJ et al, 

2016). ClinVar maps the variants to reference sequences according to the HGVS standard, and 

it reports for each variant the patient samples, the clinical significance and other supporting 

data. The level of confidence in the accuracy of variation calls and assertions of clinical 

significance depends in large part on the supporting evidence, so this information is very 

important. A review status is assigned to each assertion, to support communication about its 

trustworthiness. Presently (accessed October 22, 2018), ClinVar contains data on 458,485 
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variations with interpretation, among them only 10,529 variations are curated by experts. 

ClinVar variations span across many genes, for a total of 30,219 genes; among them, only 

6,035 protein coding genes are associated with specific variants not overlapping more genes. 

 

1.2.4 DisGeNET 

The DisGeNET database collects human gene-disease associations from different resources, 

merging various curated databases and text-mining derived associations including Mendelian, 

complex and environmental diseases. The crucial operation of integration is performed via 

gene and disease vocabulary mapping (Pin ero J et al, 2017).  

The information in DisGeNET can be accessed via multiple access points, including many 

different user interfaces that are increasing the usage and the spread of this resource. 

The current version of DisGeNET (v5.0) contains 561,119 gene-disease associations, between 

17,074 genes and 20,370 disorders and traits, and 135,588 variant-disease associations, 

between 83,002 single nucleotide polymorphisms and 9,169 diseases. 

 

1.2.5 HPO 

The Human Phenotype Ontology (HPO) (Ko hler S et al, 2017) provides a standardized 

vocabulary of phenotypic abnormalities encountered in human disease.  

The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse 

groups such as international rare disease organizations, registries, clinical labs, biomedical 

resources, and clinical software tools and will thereby contribute toward nascent efforts at 

global data exchange for identifying disease aetiologies (Ko hler S et al, 2017). 

HPO currently contains over 13,000 terms and over 156,000 annotations to hereditary 

diseases (accessed October 10, 2018). The terms are arranged in a directed acyclic graph and 

they are connected by is-a (subclass-of) edges, such that a term represents a more specific or 

limited instance of its parent term(s). Phenotypic abnormality is the main subontology of HPO 

and it contains descriptions of clinical districts and their phenotypes. Additional 

subontologies are provided to describe inheritance patterns, onset/clinical course and 

modifiers of abnormalities. 

 

1.2.6 Gene Ontology 

The Gene Ontology (GO; Gene Ontology Consortium, 2017) is a vocabulary of functional terms 

that is composed of three main categories: i) Cellular Component (CC), ii) Molecular Function 

(MF), iii) Biological Process (BP). Cellular component terms describe the different cellular 
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localizations, such as organelles, membranes, other anatomical structures (e.g. cytoplasm) or 

specific gene product complexes (e.g. ribosome). Molecular function terms describe activities 

that occur at the molecular level (e.g. enzymatic reactions). Biological process terms describe 

biological events (e.g. negative regulation of apoptotic process) that results from the 

concerted organization of many molecules with various molecular functions.  The last version 

of the GO resource (Amigo 1.8, Carbon S et al, 2009) annotates more than 90% of human 

genes with 45,043 biological functions (29,691 GO:BP, 11,150 GO:MF and 4,202 GO:CC, 

accessed October 26, 2018 ).  

 

1.2.7 KEGG 

KEGG (Kyoto Encyclopedia of Genes and Genomes, Kanehisa M et al, 2017) is a database for 

the systematic analysis of gene functions. The database is composed of 15 main manually 

curated databases which are categorized into systems, genomic, chemical and health 

information. It is one of the most spread databases used in functional annotation of genes, 

proteins and small molecules. In particular, KEGG PATHWAY collects manually drawn pathway 

maps connecting with links the genes/proteins and associating them, resulting in higher level 

of biological complexity. Pathway maps represent the dual aspect of the metabolism: the 

genomic network, connecting the genome-encoded enzymes catalysing biochemical reactions, 

and the chemical network, composed by the compounds that are transformed by means of 

these enzymes (Kanehisa M, 2013). To increase the organization of information stored in 

KEGG, they developed KEGG BRITE that provides a functional hierarchy of the KEGG objects.  

The last release of KEGG (Release 88.1, accessed October 26, 2018) annotates a total of 7,469 

human genes in 330 pathways (considering only the lowest level of the hierarchy).  

 

1.2.8 Reactome 

Reactome (Fabregat A et al, 2018) is a manually curated database of pathways and processes. 

Starting from the physical interactions occurring in cells, Reactome describes the chemical 

reactions in the framework of biological pathways, providing information about proteins and 

small molecules and their related pathways. Different connected reactions are grouped into 

pathways, and then pathways are structured in a hierarchy of biological events. Reactome 

maps describe canonical biochemical pathways and cellular processes, as well as the 

molecular pathways involved in diseases. A unique characteristic of Reactome is that it divides 

genes in specific “modules” that are part of more general biochemical pathways. The last 
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version of Reactome (v.66, accessed October 26, 2018) annotates a total of 10,870 genes in 

2,244 pathways describing 12,047 reactions. 

 

1.2.9 Protein Data Bank 

The Protein Data Bank (PDB, Berman HM et al, 2002) is an open access experimental data 

archive, providing access to 3D structure data for large biological molecules (proteins, DNA, 

and RNA). Knowing the 3D structure of a biological macromolecule is essential for 

understanding its function and consequently its role in human health and diseases. The 

current version of PDB (accessed October 9, 2018) contains 144,871 biological 

macromolecular structures. Homo sapiens is one of the most represented organisms with 

more than 41,427 related entries. 

 

1.2.10 NET-GE 

NET-GE is a method for network-based gene enrichment analysis (Di Lena P et al, 2015; Bovo 

S et al, 2016).  NET-GE relies on the STRING Human Interactome (release 10, Szklarczyk D et 

al, 2015) and the annotation derives from the Gene Ontology resource (The Gene Ontology 

Consortium, 2017), KEGG (Kanehisa M et al, 2017)  and Reactome (Fabregat A et al, 2018) 

databases. 

Starting from data stored in STRING interactome (Szklarczyk D et al, 2015), NET-GE first 

performs a module building procedure, aimed at extracting connected and compact subgraphs 

of the STRING interactome (Figure 1).  

 

The resulting modules are then used to address the problem of functional association. 

Over-representation analysis is performed by mapping the input gene set of genes or proteins 

on each module, determining through a Fisher’s exact test whether there are significant 

overlaps among the input set and the modules. NET-GE implements both a standard and a 

network-based gene enrichment procedure. Entering with a set, each gene/protein is mapped 

into the modules of a selected annotation database. Over-representation is tested through the 

Fisher's exact test. However, while the standard gene enrichment includes only annotations of 

the seed nodes, the network-based one includes, for each module, the seeds and their 

connecting nodes. Multiple testing correction is then applied by using either the Bonferroni or 

the Benjamini-Hochberg (FDR) procedure (Noble WS, 2009). 
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Figure 1. Modules extraction procedure in NET-GE. 1. All the proteins of the network 

sharing a specific annotation term are collected into a seed set. 2. Each seed set is expanded 

into a function-specific module by computing the shortest paths among each pair of seed 

nodes. 3. Nodes connecting the seed set are collected and ranked by using graph theoretic and 

information theoretic measures. 4. Each module is minimized by filtering out the less 

informative connecting nodes while preserving the shortest paths (adapted from Di Lena P et 

al, 2015). 

 

1.3 Workflow 

The main aim of this thesis is to study the relations among genes, variations, diseases and 

phenotypes with the typical approaches of computational biology, integrating information 

from different resources and merging the various levels determining biological complexity. In 

details, starting from public databases available online, we analysed the gene-disease 

associations characterizing human genes, describing the molecular functions, the involved 

biological processes, the transcription regulation, the protein products and their interactions. 

We implemented a database of Disease-Gene Associations with annotated Relationships 

among genes (eDGAR, Babbi G et al, 2017, chapter 2) collecting data on 2,672 diseases 

associated with 3,658 genes, for a total of 5,729 gene-disease associations. Every gene in 

eDGAR is well annotated with features derived from different ontologies. Moreover, eDGAR 

reports the interactions of the protein product of each gene in stable complexes, as well as the 
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known protein-protein interactions. We also report the data derived from NET-GE (see 

paragraph 1.2.10) to endow the group of genes associated to the same disease with new 

features, and to identify the biological processes that are specific of each disorder. 

We then used the collected information in eDGAR to study the principal characteristic of the 

diseases associated to more than one gene (612 polygenic and heterogeneous diseases over 

the 2,672 of eDGAR). We found out that 96% of these diseases are associated to at least one 

couple of genes sharing the same function; 14% have at least a couple of associated genes that 

belong to the same macromolecular complex; 56% of the proteins associated to polygenic or 

heterogeneous diseases are in direct interaction. Moreover, in the 44% of the diseases, there 

are at least two genes co-regulated by the same transcription factor. These results have been 

published in the scientific journal BMC Genomics in 2017 (Babbi G et al, 2017, chapter 2). 

Thanks to a collaboration with the IMIM group at the PRBB centre in Barcelona, and in 

particular with the group of Prof. Laura I Furlong (Universitat Pompeu Fabra), we integrate 

our expertise with the one of the curators of DisGeNET (Pin ero J et al, 2017), a database of 

gene-disease associations (see paragraph 1.2.4). We prepared the new version of eDGAR, 

eDGAR+, that includes an updated data-set of gene-disease associations (12,560 associations, 

connecting 5,574 diseases to 6,580 genes) and new features of gene annotation, regarding the 

tissue of expression and the variants known in the literature (chapter 3).  

Furthermore, to enlarge the analysis of gene-disease associations, we analysed the 

associations among phenotypes and diseases, connecting 7,137 phenotypes to 4,292 diseases 

and 3,446 genes. Starting from these studies, we built a new platform called PhenPath (Babbi 

G et al, submitted in 2018, chapter 4). We used the NET-GE algorithm to functional enrich the 

genes associated with 7,137 phenotypes, annotating they biological processes and pathways. 

Currently, results of this analysis are under review at the journal BMC Genomics.  

Beside the study of gene-disease and gene-phenotype associations with a large-scale 

approach, we also analysed in deep the relations among genetic mutations, protein variants 

and their associations to diseases and phenotypes. In particular, we built INPS-3D, a tool for 

the prediction of the effect of protein variants on the protein stability (ΔΔG), based on the 3D-

structure of proteins (Martelli PL et al, 2016, chapter 5). Using this powerful predictor, we 

participated into two editions of the Critical Assessment of Genome Interpretation (CAGI), an 

international experiment with the aim of testing computational methods for the predictions of 

phenotypic effects of genetic mutations or protein variants. In particular, using INPS-3D and 

other strategies, we competed in 16 challenges in the last three years: 6 challenges in the 

CAGI4 edition (2015-2016) and 10 challenges in the CAGI5 edition (2017-2018). We obtained 
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good results in many challenges presenting our work to an international audience of experts 

in the field, and we also collaborated in 2 publications in the CAGI4 special issue (Daneshjou R 

et al, 2017, chapter 7; Xu Q et al, 2017, chapter 8). We are actually collaborating in 3 more 

publications for the CAGI5 special issue. To better describe the huge work conceiving CAGI 

challenges and to show the various approaches that we proposed in these years, we collected 

the data of 5 different challenges predicted with INPS-3D (chapter 6). The various protocols 

used for the predictions of the phenotypic effects associated the computational approach 

(predictors data) with the study of the literature and the structural biology knowledge derived 

from the protein experimental structure, when available.  

Thanks to the expertise acquired in the field, we also collaborated with the Sant’Orsola 

Genetic Medical Unit of the Department of Medicine and Surgery of the University of Bologna, 

building a series of models of protein structures of myosin 1F and of its variants related to the 

thyroid cancer (Familial Non-Medullary Thyroid Carcinoma, FNMTC) (Diquigiovanni C et al, 

2018, chapter 9). 

 

1.4 ELIXIR 

In the bioinformatics era, it is fundamental to integrate data and to share resources. To 

collaborate with other organizations around the world, it is important to create communities 

of researches that are interested in the same field. In this direction, enlarging the network of 

collaborations is fundamental, and being part of the ELIXIR community is important especially 

for what regards resources integration and interoperability. 

ELIXIR is an intergovernmental organization that brings together life science resources from 

across Europe. These resources include databases, software tools, training materials, cloud 

storage and supercomputers. The goal of ELIXIR is to coordinate these resources, making 

easier for scientists to find and share data, exchange expertise, and agree on best practices.  

The Bologna Biocomputing Group is part of the ELIXIR community and we collaborate in the 

improvement of the quality and adoption of Bioschemas, a set of semantic annotations for 

tools, data and samples developed by the ELIXIR Interoperability platform.  

Tools should be easily accessible by other automated services. This could be done via well-

defined Application Program Interfaces (APIs): as an example, eDGAR (Babbi G et al, 2017, 

chapter 2), a database of disease-gene associations, implements RD-Connect API used by the 

Rare Disease community.  
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2 eDGAR 

2.1 Contribution to the state of the art 

Here we present eDGAR, a database of gene-disease associations, with a specific focus on the 

annotations of intergenic relations in heterogeneous and polygenic diseases. We merge, 

without redundancy, data from OMIM (Amberger JS et al, 2015), ClinVar (Landrum MJ et al, 

2016), and Humsavar (The UniProt Consortium, 2017).   

With the advent of Next Generation Sequencing techniques, lists of genes involved in several 

diseases have been determined. Although many collections of gene-disease associations 

already exist (e.g. OMIM, ClinVar, Humsavar, MalaCards (Rappaport N et al, 2017) and 

DisGeNET (Pin ero J et al, 2017)), the need of a resource for the deep investigation on the 

features shared among genes/proteins co-involved in the same disease is still unfilled. Indeed, 

the analysis of their relations can help targeting the important biological processes and 

pathways implicated in the disease and can therefore narrow the search of other possibly 

involved genes. At present, a database collecting data only on digenic diseases (related to 

concomitant defects in pairs of genes) is available (DIDA, Gazzo AM et al, 2016) and reports 

the relations between pairs of genes involved in 54 diseases. 

For each gene in eDGAR, the database reports many features like the cytogenetic location, 

links to the Ensembl (Zerbino DR et al, 2018), SwissProt (The UniProt Consortium, 2017), PDB 

entries (Berman HM et al, 2002), Gene Ontology (GO, Gene Ontology Consortium, 2017) 

annotations and links to the KEGG (Kanehisa M et al, 2017) and REACTOME pathways 

(Fabregat A et al, 2018), when available.  

For sets of genes involved in the same disease, the database collects from publicly available 

databases different types of features: physical interactions, co-occurrence in protein 

complexes, regulatory interactions, shared functions and pathways, functional terms 

significantly enriched with NET-GE (Di Lena P et al, 2015; Bovo S et al, 2016) in the set when 

possible and the co-localization in neighbouring cytogenetic loci. Information is organized in a 

relational database and an interface allows customized data search and retrieval.  

eDGAR offers a new resource to analyse disease-gene associations, especially in multigenic 

diseases where genes can share physical interactions and/or co-occurrence in the same func-

tional processes. 

 

2.2 General information on the paper 

The presented paper can be found in the following publication: 
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Abstract

Background: Genetic investigations, boosted by modern sequencing techniques, allow dissecting the genetic
component of different phenotypic traits. These efforts result in the compilation of lists of genes related to diseases
and show that an increasing number of diseases is associated with multiple genes. Investigating functional relations
among genes associated with the same disease contributes to highlighting molecular mechanisms of the
pathogenesis.

Results: We present eDGAR, a database collecting and organizing the data on gene/disease associations as derived
from OMIM, Humsavar and ClinVar. For each disease-associated gene, eDGAR collects information on its annotation.
Specifically, for lists of genes, eDGAR provides information on: i) interactions retrieved from PDB, BIOGRID and
STRING; ii) co-occurrence in stable and functional structural complexes; iii) shared Gene Ontology annotations; iv)
shared KEGG and REACTOME pathways; v) enriched functional annotations computed with NET-GE; vi) regulatory
interactions derived from TRRUST; vii) localization on chromosomes and/or co-localisation in neighboring loci. The
present release of eDGAR includes 2672 diseases, related to 3658 different genes, for a total number of 5729
gene-disease associations. 71% of the genes are linked to 621 multigenic diseases and eDGAR highlights their
common GO terms, KEGG/REACTOME pathways, physical and regulatory interactions. eDGAR includes a network
based enrichment method for detecting statistically significant functional terms associated to groups of genes.

Conclusions: eDGAR offers a resource to analyze disease-gene associations. In multigenic diseases genes can share
physical interactions and/or co-occurrence in the same functional processes. eDGAR is freely available at: edgar.
biocomp.unibo.it

Keywords: Gene/disease relationship, Protein-protein interaction, Protein functional annotation, Functional enrichment

Background
The advent of fast and relatively costless techniques for
genome screening boosts the research of genetic deter-
minants of human phenotypes, with a specific focus on
diseases [1]. By this, lists of genes involved in several
diseases/phenotypes are available. One of the most
comprehensive database of curated associations between
human Mendelian disorders and genes is OMIM [2],
collecting 4510 phenotypes with known molecular basis

(release of May 2016). Updated resources of associations
between variations and diseases are stored in the NCBI-
curated ClinVar [3], the UniProt curated Humsavar list
[4], and the commercial version of HGMD [5]. Integra-
tive datasets, such as DisGeNet [6] and MalaCards [7]
collect lists of gene-disease associations from different
sources. MalaCards includes text mining of the
scientific literature, gene annotations in terms of shared
GO terms and associated pathways. DisGeNet integrates
data of disease-associated genes and their variants.
Furthermore, a database collecting data on digenic dis-
eases (related to concomitant defects in pairs of genes)
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is available (DIDA, [8]) and reports the relationships
between pairs of genes involved in 44 diseases.
As data accumulate, it emerges that an increasing

number of diseases is associated with several genes.
Independent or concomitant alterations in sequence or
in expression of sets of genes are associated with the
insurgence of genetically heterogeneous and polygenic
diseases, respectively [9, 10]. The scenario is even more
complicated when different environmental and life-style
related factors have strong influence on the insurgence
and severity of the pathology [11]. The complex nature of
the association between genes and diseases is one of the
major challenges of Precision Medicine programs [12].
Dissecting the molecular mechanisms at the basis of the

association between genotype and phenotype requires a
deep investigation of the features shared among genes (or
proteins) co-involved in the same disease. Indeed, by
analyzing molecular features and functional interactions,
important biological processes and pathways implicated in
the disease can emerge and other genes possibly involved
in interaction networks can be discovered [13, 14].
This work describes eDGAR, a database of gene-disease

associations, supplemented with the annotations of inter-
genic relationships in heterogeneous and polygenic dis-
eases. We merged, without redundancy, data from OMIM
[2], ClinVar [3], and Humsavar [4]. Disease nomenclature
derives from OMIM. OMIM phenotype entries are classi-
fied according to the OMIM Phenotypic Series, which
cluster different entries related to identical or highly simi-
lar diseases associated with different genes. As compared
to the above mentioned databases, our focus is on specific
structural and functional annotations of the genes. For
each gene, the database reports the cytogenetic location,
links to the Ensembl [15], SwissProt [4] and PDB entries
[16], Gene Ontology (GO) [17] annotations and to the
KEGG and REACTOME pathways, when available. For
sets of genes involved in the same disease, the database
collects from publicly available databases different types of
relationships: physical interactions, co-occurrence in pro-
tein complexes, regulatory interactions, shared functions
and pathways, and co-localization in neighboring cytogen-
etic loci. A network - based approach (NET-GE [18, 19])
provides statistical enrichment to functional terms.
Information is organized in a relational database and an
interface allows customized data search and retrieval.
The database is freely available at edgar.biocomp.unibo.it.

Construction and content
Data sources of associations between genes and diseases
In order to collect a comprehensive resource of associa-
tions among genes and diseases we integrated data from
OMIM (May 2016 release) [2], ClinVar (May 2016 re-
lease) [3] and Humsavar (June 2016 release) [4]. The pri-
mary accessions for genes are HGNC codes [20], while

OMIM identifiers are adopted to identify phenotypes.
2839 OMIM phenotype codes corresponding to identical
or similar diseases, characterized by genetic heterogen-
eity, have been clustered into 357 phenotypic series, as
defined by OMIM. Synonymic or alternative gene names
were reduced to the HGNC gene primary codes, as
reported in HGNC (June 2016 release).
On the overall, 5337, 4358 and 3365 gene-disease

associations were collected from OMIM, ClinVar and
Humsavar, respectively, by retaining only associations
with unambiguous identification codes for both genes
and diseases. After removing redundancy, the final data-
set contains 5729 gene-disease associations, involving
3658 genes associated with 2672 diseases. These 2672
disease IDs correspond to 2315 OMIM IDs for pheno-
types and 357 phenotypic series, or to 5154 when the
357 phenotypic series are brought back in 2839 OMIM
IDs for phenotypes.

Gene annotation
All genes have been associated with the corresponding
Ensembl codes (June 2016 version) [15] with BioMart
[21]. Cytogenetic locations on the GrCh38 version of the
human genome were therefrom derived. Out of 3658, 30
genes encode for microRNAs and tRNAs. For the 3628
protein coding genes, links to the SwissProt and PDB
databases were also retrieved: all genes are linked to at
least one SwissProt entry (for a total of 3718 entries)
and 1682 genes are linked to at least one PDB entry (for
a total of 14,578 PDB entries).
Functional annotation based on Gene Ontology (GO)

terms was retrieved from GOOSE, the Online SQL En-
vironment for GO terms implemented in the AmiGO2
portal [22]. All three GO sub-ontologies (Molecular
Function: MF; Biological Process: BP; Cellular Compo-
nent: CC) were considered. Given a GO term, the ances-
tor terms in the directed acyclic graph of GO (version
2.4) were retrieved by considering the relations “is a
subtype of” and “part of”. The information content (IC)
was computed for each GO term, adopting standard
methods [23], with the following equation:

IC ¼ −log2
NGO

Nroot

� �
ð1Þ

where NGO is the number of human genes endowed with
the particular GO term and Nroot is the number of
human genes annotated with all the terms of the consid-
ered subontology, as derived from GOOSE [22]. IC
lower limit is zero; high IC values indicate that a small
number of genes is annotated with a particular GO term
in the human genome and therefore the annotation is
highly informative.

The Author(s) BMC Genomics 2017, 18(Suppl 5):554 Page 26 of 64

http://edgar.biocomp.unibo.it


Associations with KEGG (version 77.0) [24] and
REACTOME (version 53) [25] pathways were extracted
from SwissProt.

Relationships among genes involved in the same disease
eDGAR integrates several information in order to
annotate the possible relationships among protein coding
genes related to the same polygenic or heterogeneous
disease. The following features are considered:

� Protein-protein interactions, as derived from the
multimeric structures deposited at the PDB (February
2016 release) [16], from STRING (version 10.0) [26]
and from the experimental data available in BIOGRID
(version 3.4) [27]. From the human STRING network,
we retained only high confidence links (score ≥ 0.7)
with annotated “action”. Physical and genetic
interactions of BIOGRID are reported separately. For
all the considered human interactomes, eDGAR
reports both direct and indirect interactions involving
one intermediate gene. In addition, we supplemented
data on interactions with selected annotations from
manually curated features from SwissProt, including
links to the PDB and the literature.

� Interactions in stable and functional complexes
reported in the following resources: CORUM, listing
2837 mammalian complexes involving 3198 protein
chains (16% of the human protein-coding genes) [28],
the soluble complex census, listing 622 complexes
involving 3006 protein chains [29]. This last resource
is referred in the following as CENSUS.

� Functional GO terms and KEGG/REACTOME
pathways shared by at least two genes.

� Functional GO terms and KEGG/REACTOME
pathways retrieved with NET-GE [18, 19], a network
based tool that performs the statistically-validated
enrichment analysis of sets of human genes by exploit-
ing the human STRING interactome; a significance of
5% was considered when retrieving statistically
enriched terms on the basis of the Bonferroni-
corrected p-values computed with NET-GE;

� Regulatory interactions derived fromTRRUST [30], a
curated database of interactions among 748 human
transcription factors (TF) and 1975 non-TF targets.
Given a set of genes associated with the same disease,
eDGAR reports the presence of TF/target pairs and of
groups of genes co-regulated by the same TF (belong-
ing or not to the set);

� Co-localization in neighboring loci on the same
chromosome: we highlighted genes located in the
same cytogenetic band or in the tandem repeat
regions listed in the DGD database [31]. DGD
collects 945 groups consisting of 3543 genes in

humans, likely deriving from duplications of
ancestor genes.

Database structure and visualization
The database is implemented with PostgreSQL [32], an
open source relational database system. Data stored in
the database are retrieved using custom Python
programs, while the output of the analysis is visualized
in HTML pages using modern technologies like
JavaScript. In particular, networks are encoded in JSON
format and visualized using the JavaScript library D3.js
[33]. We adopted a well known plug-in for jQuery called
DataTables [34] for table visualizations, allowing the user
to sort tables by columns and text-search inside each table.

Results and discussion
Statistics of the database content
The present release of eDGAR collects 5729 associations
between 2672 diseases and 3658 different genes. Figure 1a
plots the distribution of the number of genes associated
with the same disease, which ranges from one (in 2051
monogenic diseases) to 69 (in the case of the “Retinitis
pigmentosa” phenotypic series, OMIM: PS268000). The
621 diseases associated with multiple genes comprise both
heterogeneous and polygenic diseases. On the overall, they
account for 3678 associations with 2600 genes, 2576 of
which code for proteins.
The database also shows a high level of pleiotropy (asso-

ciation of a single gene to several diseases) as shown in
Fig. 1b. The most pleiotropic gene is FGFR3 that codes for
the fibroblast growth factor receptor 3 and is associated
with 16 different diseases.

Statistics of gene annotation
Table 1 lists major annotations of the 3658 genes related
to diseases. All but 30 genes are coding for proteins re-
ported in SwissProt; for 46.4% of them, structural infor-
mation is available in PDB. Membrane proteins,
transcription factors and enzymes account for 52%, 7%
and 31%, respectively. Almost all the protein-coding genes
are functionally annotated: the fraction of genes endowed
with GO terms ranges from 94.2% to 98.6%, depending on
the sub-ontology (Molecular Function (MF), Biological
Process (BP) and Cellular Component (CC)). A smaller
percentage of genes are associated with KEGG and
REACTOME pathways (56.7% and 62.8%, respectively).
When considering human interactomes, 91.3% and

9.7% of the genes are present in BIOGRID with physical
and genetic interactions, respectively; for 82.5% of the
genes, STRING reports high confidence interactions
(score ≥ 0.7). Some 20% of the genes encode for protein
chains involved in functional complexes, as described in
the CORUM and CENSUS collections. TRRUST lists
some 1036 genes as part of the human regulatory
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network, of which 253 code for TFs and 783 are non-TF
targets.
The level of annotation of the 2576 protein coding

genes involved in heterogeneous or polygenic diseases is
similar to that of all the genes collected in eDGAR.

Relations among genes associated with the same disease
eDGAR lists the relations among different genes associ-
ated with the same multigenic disease (statistics is in
Table 2). 21.9% of diseases involve at least one pair of
genes located in the same cytogenetic band and in 8.2%
of the cases, genes are tandem repeats originated by
duplications. These genes are likely to undergo the same
regulation mechanisms and to be coexpressed [33].
Many diseases involve at least one pair of genes

directly linked in interactomes: 40.3% and 46.9%, consid-
ering BIOGRID or STRING networks, respectively. The
rates increase to 66.1% and 65.4% when considering also
indirect interactions involving one intermediate gene not
associated with the disease. 6.3% of diseases involve pairs
of genes in a Transcription Factor (TF)/target relation-
ship and 44% involve genes co-regulated by the same TF
(considering also TFs not directly associated with the
disease). The large majority of diseases (from 94.4% to
97.3%, depending on the sub-ontology) is associated with

at least one pair of genes sharing GO terms. More than
90% of all the possible pairs of genes involved in the
same disease have common BP and CC terms; the per-
centage is somehow smaller (76%) for MF sub-ontology.
The total number of GO annotations shared by pairs of
genes for BP, MF and CC is 72,787 (unique terms: 4582),
13,113 (unique terms: 915) and 16,298 (unique terms:
656), respectively. Overall, these data confirm the notion
that genes associated with the same disease share some
level of functional similarity, a view previously suggested
for a small number of multigenic diseases [14]. However,
being GO terms organized in a directed acyclic graph
for each root, the information conveyed by the shared
annotations can be very different, going from very
general to very specific terms. The information content
(IC, see Eq. 1) is routinely associated with GO terms in
order to evaluate their specificity with respect of the
available annotation of all human genes. The IC values
of our dataset range from 0 (corresponding to the root
GO term) to 10 (corresponding to the most specific
terms). The average IC values for MF, BP and CC shared
terms are 5.8 ± 1.7, 5.9 ± 1.7, and 5.8 ± 1.9, respectively.
For each disease, the specificity of the annotation is eval-
uated by extracting the best IC values among the GO
terms shared by pairs of co-associated genes (Fig. 2a).

Fig. 1 Distribution of gene-disease associations. The Y-axis scale is logarithmic. a Number (#) of genes associated with diseases. 2672 diseases are
distributed with respect to the number of associated genes. 2051 diseases are monogenic; 621 diseases are associated with multiple genes (from
2 to 69). b Number (#) of diseases associated to genes. 3658 genes are distributed with respect to the number of associated diseases. 2544 genes
are associated with a single disease; 1114 genes are associated with multiple diseases (from 2 to 16)
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Table 2 Features shared by genes involved in the same heterogeneous or polygenic diseases

# diseases # pairwise relations # protein coding genes

Total number 621 25,100 2576

With pairs of genes:

In same cytogenetic band 136 (21.9%) 326 (1.3%) 335 (13.0%)

In tandem repeat 51 (8.2%) 58 (0.2%) 92 (3.6%)

In TF/target pairs 39 (6.3%) 81 (0.3%) 94 (3.6%)

Co-regulated by the same TF (not involved in the disease) 273 (44.0%) 2308 (9.2%) 626 (24.3%)

Sharing MF GO 586 (94.4%) 19,075 (76.0%) 2369 (92.0%)

Sharing BP GO 597 (96.1%) 22,948 (91.4%) 2502 (97.1%)

Sharing CC GO 604 (97.3%) 23,645 (94.2%) 2519 (97.8%)

Sharing KEGG pathway 349 (56.2%) 3129 (12.5%) 1074 (41.7%)

Sharing REACTOME pathway 474 (76.3%) 9806 (39.1%) 1554 (60.3%)

Interacting in PDB 96 (15.5%) 207 (0.8%) 199 (7.7%)

In the same CORUM complex 86 (13.8%) 469 (1.9%) 225 (8.7%)

In the same CENSUS complex 45 (7.2%) 166 (0.7%) 119 (4.6%)

Directly linked in STRING 291 (46.9%) 1535 (6.1%) 932 (36.2%)

Indirectly linked in STRING 115 (18.5%) 4355 (17.4%) 1346 (52.3%)

Directly linked in BIOGRID (physical interaction) 250 (40.3%) 944 (3.8%) 799 (31.0%)

Indirectly linked in BIOGRID (physical interaction) 160 (25.8%) 5228 (20.8%) 1607 (62.4%)

Directly linked in BIOGRID (genetic interaction) 9 (1.4%) 13 (0.1%) 19 (0.7%)

Indirectly linked in BIOGRID (genetic interaction) 25 (4.0%) 45 (0.2%) 62 (2.4%)

Table 1 Gene annotation in eDGAR

All diseases Diseases associated with multiple genes

# genesa # associated diseasesb # genesa # associated diseasesb

Total number 3658 2672 2600 621

Protein coding genes 3628 (100%) 2655 (100%) 2576 (100%) 619 (100%)

with PDB entry 1682 (46.4%) 1625 (61.2%) 1176 (45.7%) 512 (82.7%)

Membrane proteins 1891 (52.1%) 1644 (61.9%) 1364 (53.0%) 517 (83.5%)

Enzymes (with E.C number) 1112 (30.7%) 1045 (39.4%) 688 (26.7%) 363 (58.6%)

Reported in TRRUST (as TF) 253 (7.0%) 358 (13.5%) 179 (6.9%) 157 (25.4%)

Reported in TRRUST (as target) 783 (21.6%) 969 (36.5%) 570 (22.1%) 405 (65.4%)

Annotated with GO MF 3419 (94.2%) 2575 (97.0%) 2419 (93.9%) 617 (99.7%)

Annotated with GO BP 3538 (97.5%) 2619 (98.6%) 2514 (97.6%) 618 (99.8%)

Annotated with GO CC 3576 (98.6%) 2644 (99.6%) 2533 (98.3%) 618 (99.8%)

Associated with KEGG pathways 2057 (56.7%) 1868 (70.4%) 1430 (55.5%) 549 (88.7%)

Associated with REACTOME 2278 (62.8%) 2007 (75.6%) 1595 (61.9%) 563 (91.0%)

With physical BIOGRID interactions 3307 (91.3%) 2502 (94.2%) 2346 (91.2%) 609 (98.4%)

With genetic BIOGRID interactions 351 (9.7%) 472 (17.8%) 259 (10.1%) 247 (39.9%)

With STRING interactions 2992 (82.5%) 2341 (88.2%) 2146 (83.3%) 609 (98.4%)

Part of CORUM complexes 714 (19.7%) 706 (26.6%) 558 (21.7%) 340 (54.9%)

Part of CENSUS complexes 696 (19.2%) 689 (26.0%) 501 (19.4%) 296 (47.8%)

In tandem repeats 381 (10.5%) 448 (16.9%) 280 (10.9%) 234 (37.8%)
aPercentages are computed with respect to the number of protein coding genes
bPercentages are computed with respect to the number of diseases associated with protein coding genes
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For all the sub-ontologies, the best IC values are very
spread, and it is evident that on average the most spe-
cific terms (highest IC values) belong to the BP sub-
ontology: genes pairs sharing BP, MF and CC terms with
IC ≥ 5 are present in 72%, 49% and 46% of the diseases,
respectively (see Fig. 2a). When a different distribution
based on a median is adopted, the pattern is very similar
(Additional file 1: Fig. S1A). Genes involved in the same
disease share also KEGG and REACTOME pathways
(56.2% and 76.3%, respectively (Table 2)).

NET-GE enrichment
In order to better highlight functions shared by groups
of genes associated with the same disease, we adopt
NET-GE [18, 19], our recently developed network based
tool for functional enrichment. For each functional sets
of GO terms and/or KEGG or REACTOME pathways,
NET-GE builds a network containing all the human
genes annotated with the terms (seeds) and including all
the connecting genes (the reference human interactome
is derived from STRING). Input genes are mapped into
the pre-computed NET-GE networks and enrichment
analysis is performed. Outputs are Bonferroni-corrected

p-values, measuring the overrepresentation of each term
in the input set. Due to its network-based nature, NET-
GE can enrich terms not present in the list of annota-
tions of the input set. Table 3 lists the results of NET-
GE on the groups of genes associated with the same dis-
ease, considering a 5% significance. For the majority of
diseases, NET-GE enriches GO terms of the three sub-
ontologies and pathways of KEGG and REACTOME. BP
is the sub-ontology type most frequently enriched. The
total number of GO annotations enriched for heteroge-
neous and polygenic diseases is 17,029, 4851 and 3910
(Table 3, rightmost column), with average IC values
6.1 ± 1.8, 7.1 ± 2, and 6.4 ± 2 for BP, MF and CC

Fig. 2 Distribution of best IC values of GO terms for genes involved in multigenic diseases. a GO terms shared by genes; b GO terms after
enrichment with NET-GE. For each multigenic disease, IC values of gene-associated GO terms (of the three different roots) are evaluated (Eq. 1). In
the figure, the highest IC for each disease is shown. The frequency is computed with respect to the total number of multigenic diseases (621).
When IC = 0, genes associated with multigenic disease do not share or enrich GO terms (panel a and b respectively)

Table 3 NET-GE functional enrichment of groups of genes
involved in the same disease

# diseases # annotations

KEGG pathways 412 (66.3%) 2753

REACTOME pathways 488 (78.6%) 4130

GO MF terms 530 (85.3%) 4851

GO BP terms 551 (88.7%) 17,029

GO CC terms 477 (76.8%) 3910
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respectively (Fig. 2b, reporting the distribution of the
best IC values among the terms enriched for each dis-
ease; for a different distribution based on IC median
values, see Additional file 1: Figure S1B).

The user interface
eDGAR is publicly available as a web server at edgar.-
biocomp.unibo.it with browsing and search options.
Browsing is performed with the “Main Table” page
that contains all the collected associations between
genes and diseases, along with the indication of
source databases.
The Search engine allows to access the database with

different identifiers: HGNC symbols and Ensembl identi-
fiers for genes, UniProt accession for proteins, OMIM
identifiers or disease names for phenotypes and pheno-
typic series. The user may also search with a set of genes
and retrieve shared annotation features.
Two types of pages can be visualized: i) gene specific

pages, reporting the associations to diseases and the
available gene annotations; ii) disease specific pages,
reporting the associations with genes and, in case of het-
erogeneous and polygenic diseases, the list of relation-
ships linking the different genes, organized into different
tables. Interactions from STRING, PDB, BIOGRID,
CORUM, CENSUS can also be visualized by means of
graphs, reporting direct and indirect interactions. The
graphs show the gene associated with the disease as blue
nodes and other genes in interactions as pale blue
nodes; the direct interactions are visualized as green
edges and the indirect interactions as thin black edges
(see Fig. 3). Clicking on a node, the user is redirected
to the correspondent gene page.

A case study: Hypoparathyroidism
Hypoparathyroidism (OMIM 146200) is an endocrine
deficiency disease characterized by low serum calcium
levels, elevated serum phosphorus levels and absent or
low levels of parathyroid hormone (PTH) in blood [35].
The metabolism of the patient may be altered: the
vitamin D supply is inadequate and the magnesium
metabolism is irregular. In some clinical panel, hypocal-
cemia can lead to dramatic effects such as tetany,
seizures, altered mental status, refractory congestive
heart failure, or stridor.
In eDGAR the familial isolated hypoparathyroidism

(OMIM 146200) is associated with three different genes:
GCM2 and PTH (both reported in OMIM, ClinVar and
Humsavar) and CASR (reported only in ClinVar). CASR
is an extracellular calcium-sensing receptor whose activ-
ity is mediated by G-proteins, PTH is the parathyroid
hormone, whose function is to increase calcium level
both by promoting the solution of bone salts and by
preventing their renal excretion, and GCM2 (Glial cell

missing homolog 2) is a probable transcriptional
regulator, considering the SwissProt annotation. The
“Transcription Factor (TF) annotation from TRRUST”
table in eDGAR reports that GMC2 is a TF that regu-
lates the expression of both PTH and CASR. Moreover,
when considering “Interactions from STRING” table,
PTH and CASR are in direct interaction, labelled as
“binding” and “expression”. The shared BP GO terms
with the highest IC values are “response to vitamin
D” and “response to fibroblast growth factor”, both
involving CASR and PTH. The response to vitamin
D, whose metabolism is often altered in hypoparathyr-
oidism, and a strict interplay between fibroblast
growth factors and parathyroid hormone have been
previously reported [36–38]. PTH and CASR are also
involved in the same REACTOME pathways related
to GPCR ligand binding and signaling. No shared
KEGG term is found.
NET-GE enrichment for BP for the three genes

include new terms endowed with high IC values, like
“regulation of amino acid transport”, “negative regulation
of muscle contraction”. Some of these new annotations
are related to the severe symptoms of hypothyroidisms,
namely tetany and seizure. NET-GE allows retrieving
enriched KEGG pathways, such as “Circadian entrainment
(hsa04713)”, “Inflammatory mediator regulation of TRP
channels (hsa04750)”, “Gap junction (hsa04540)” and
“Insulin secretion (hsa04911)”. None of the three
genes is directly involved in the four pathways; PTH
and CASR are part of the networks defined by NET-
GE exploiting the STRING network. Interestingly,
these new annotations highlight previously reported
impairments of both circadian rhythms impairment
and insulin secretion associated with hypoparathyroid-
ism [39, 40].
Figure 3 reports a summary of the information pro-

vided by eDGAR for hypothyroidism (OMIM 146200),
showing how it allows to collect the different types of
relations among the involved genes in a unique page
integrating data from many resources.

Conclusions
eDGAR is a resource for the study of the associations
between genes and diseases. It collects 2672 diseases,
associated with 3658 different genes, for a total num-
ber of 5729 gene-disease associations. The novelty of
eDGAR is the integration of different sources of gene
annotation and in particular, for the 621 heteroge-
neous/polygenic diseases, eDGAR offers the possibility
of analyzing functional and structural relations among
co-involved genes. We provide direct interactions
between pairs of genes (reported in STRING or BIO-
GRID) for 291 diseases and indirect interactions for
some other 250 diseases. For 273 diseases, at least
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one pair of genes is under regulatory interaction of
the same TF, while 39 disease are associated with
genes being a TF/target couple. For 612 diseases, at
least one pair of genes share GO terms and/or

KEGG/REACTOME pathways. In particular, genes in-
volved in the same disease most frequently share
terms of the BP sub-ontology. This is confirmed also
when analyzing the statistically significant functional

Fig. 3 eDGAR page for hypoparathyroidism (OMIM 146200). In the figure, each gene is highlighted with a different color; the Transcription Factor
annotation and the known interactions are reported, together with the simple graph describing them. A summary of the KEGG pathways
enriched with NET-GE and the shared GO terms for BP is also provided
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terms enriched with NET-GE for 606 diseases. The
relations among genes involved in the same disease
are often complex and different pairs of genes are
linked in different ways. eDGAR is a resource for
better tackling the complexity of gene interactions at
the basis of multigenic diseases. The database will be
updated following the major releases of the different
underlying data resources at least once a year.

Additional file

Additional file 1: Figure S1. Distribution of median IC values of GO
terms for genes involved in multigenic diseases. A: GO terms shared by
genes; B: GO terms enriched with NET-GE. For each multigenic disease,
IC value of gene-associated GO terms (of the three different roots) are
evaluated (Eq. 1). In the figure the median IC for each disease is shown.
The frequency is computed with respect to the total number of
multigenic diseases (621). When IC = 0, genes associated with multigenic
disease do not share or enrich GO terms (panel A and B respectively).
(PNG 393 kb)
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3 eDGAR+ 

3.1 Introduction 

The annotation procedure is fundamental, especially for genes and proteins related to 

diseases that may share feature of interest to direct the research and find new clues for 

therapies. To overcome the problem of retrieving the comprehensive annotation for genes 

associated with diseases we provided eDGAR (Babbi G et al, 2017), an online resource of gene-

disease associations with a specific focus of the annotated relations among genes involved in 

the same disease. We derived the data from different online resources (OMIM (Amberger JS et 

al, 2015), ClinVar (Landrum MJ et al, 2016), and Humsavar (The UniProt Consortium, 2017)), 

collecting 5,729 associations for 2,672 diseases and 3,658 genes.  

We built a pipeline for the annotation of genes retrieving information form many ontologies 

and databases (see chapter 2). 

We are now preparing the new version of eDGAR, eDGAR+, besides an updated version of the 

data on annotated gene-disease associations, it contains new source of information, including 

a subset of 8,811 curated gene-disease associations from DisGeNET. 

DisGeNET (Pin ero J et al, 2017) is one of the largest collections of gene-disease association 

studies. The current version of DisGeNET (v5.0) contains 561,119 gene-disease associations, 

between 17,074 genes and 20,370 diseases, disorders, traits, and clinical or abnormal human 

phenotypes, and including also a collection of 135,588 variant-disease associations, between 

83,002 SNPs and 9,169 diseases and phenotypes. 

 

Moreover, we include in eDGAR+ the information on variants on genes and proteins, with a 

specific interest on the variants related to diseases. Among the various resources of features 

for the annotation, we include Human Protein Atlas (HPA, Uhle n M et al, 2015), describing the 

tissue of expression of genes and proteins. 

We believe that eDGAR+ is one of the most comprehensive resources for retrieving the 

annotation of genes and proteins related to diseases insurgence, helping researchers in 

directing their analysis highlighting the features shared by variants, genes and proteins 

associated with the same malady. 

 

3.2 Methods 

3.2.1 Data collection 

The updating of eDGAR+ is currently running; we provide here some preliminary statistics. We 
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collect the data from 4 different resources: UniProt, ClinVar, OMIM and DisGeNET (Table 1). To 

standardize data we map every gene to the current version of the HGNC identifiers, controlled 

with the HGNC multi-symbol checker (Yates B et al, 2017). We also consider the mapping to 

the relative Ensembl identifiers (Zerbino DR et al, 2018) and the associated proteins on 

UniProt-SwissProt Accession numbers in order to help the user in recovering the information 

of interest with an accessibility that consider different international standards.  

 Table 1: Statistics on the resources of gene-disease associations. 

 

Finally, considering unique gene-disease associations removing redundancy among the 

databases, we obtain 12,560 associations among 6,580 genes and 5,574 diseases (Table 2). 

Table 2: Comparison among eDGAR and eDGAR+ data on gene-disease associations. 

 

3.2.2 Annotation procedure 

The annotation procedure is central in the eDGAR+ approach to the problem of gene-disease 

associations.  

Each gene page in eDGAR+ contains first the extended gene name and a Gene-disease 

associations table stating the associations with diseases. If the gene is protein coding and 

annotated with a 3D-structure in PDB, we report a Structural analysis of the PDB with the best 

resolution, highlighting variants and region of interest of the protein.  

We then report the Annotation of the gene collecting the features retrieved with a pipeline 

Database Associations Genes Diseases 

UniProt 5,673 3,804 4,938 

ClinVar 7,630 4,434 5,018 

OMIM 6,145 4,228 5,408 

DisGeNET 8,811 4,909 4,253 

TOTAL 12,560 6,580 5,574 

Entries type eDGAR # entries eDGAR+ # en-

tries 

% increment 

Gene-disease associations 5,729 12,560 +119% 

Genes 3,658   6,580 +80% 

Diseases 2,672   5,574 +109% 
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comprising many resources and we provide the different features in separated tables In 

particular, in the new version eDGAR+, we include tables about variants (dbSNP identifiers 

(Sherry ST et al, 2001) annotated with the relative amino acid change and the disease 

association) and expression in normal tissues – HPA (highlighting the tissue of expression, the 

cell type and the level of expression) 

We provide also disease pages, presenting first the disease name and OMIM identifier, then 

Gene-disease associations table stating the associations with genes and variants. Finally, for the 

diseases related at least to two genes, we analyse the Relations among genes. 

We use NET-GE (Di Lena P et al, 2015 and Bovo S et al, 2016) a tool for standard and network 

gene enrichment, for retrieving new annotations for the set of genes associated to each 

disease, analysing the significantly enriched terms for each gene set considering Gene 

Ontology, KEGG and REACTOME. 

All these features are reported in tables and networks, with the aim of building unified 

frameworks collecting the current knowledge on genes associated to the same disease. 

 

3.2.3 Variant standardization 

Variants in protein coding regions can be defined with specific and unique identifiers (e.g. 

dbSNP identifiers, Sherry ST et al, 2001), or as the amino acidic change on a specific protein 

sequence, or only as a mutation in a specific position of the genomes. When we retrieve 

variants from different resources, they may be defined using different approach: to compare 

them and to create a coherent database it is important to standardize variant definition. 

Dealing with variant standardization is a problematic issue: relating the genetic variations to 

the protein variant in its different isoforms is quite complicated on a large-scale 

computational approach, especially when we are interested in the keeping correct disease 

associations. We derive gene variations and protein variants from three different resources: 

DisGeNET (81,561 variants), UniProt (77,917 variants) and Intact (Ochard S et al, 2013; 

11,694 variants). 

The annotation of variants with international standards and identifiers is still an issue: among 

the three different resources, DisGeNET has dbSNP identifiers associated with 82% of the 

variants, being the highly standardized resources among those examined. UniProt collected 

dbSNP identifiers for the 74% of the variants; Intact generally does not provide dbSNP for 

variants. To compare and select the variants for eDGAR+ it is necessary to homogenize these 

data. To homogenize our data, first we have to answer to the question: what identify 

univocally a variant? In eDGAR, a variant is a combination of a variation on a gene identified 
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by a dbSNP identifier and the relative amino-acidic substitution. 

We then map all the variants with the tool for variant annotation provided by Ensembl 

(Zerbino DR et al, 2018). Finally, we obtain 107,226 variants in 12,541 genes. Over the 

107,226 variants, 61,885 are associated with 4,217 diseases, for a total for 73,882 variant-

disease associations over 3,309 genes. 

 

3.3 Results 

3.3.1 Diseases and genes annotation 

The current version of eDGAR+ contains 12,560 gene-disease associations, involving 6,580 

genes, increasing the number of genes associated with disease of 80% respect to the previous 

version. 

We report in Table 3 the general statistics for gene annotation, comparing the precedent 

version of eDGAR with eDGAR+. 

For each category of features, the total number of annotated genes is increased, while the 

percentage of annotated genes over the total genes in the webserver remains similar in the 

two versions of eDGAR. The percentage of annotated genes depends also on the updating of 

the relative annotation primary sources. We are currently revising our annotation pipeline 

with the most updated version of the annotation database to increase the number of 

annotated genes. We are also considering other primary resources for annotation to enlarge 

the number of annotated genes thanks to the advantage of retrieving the annotation from 

many different sources. 

 

3.3.2 Data visualization 

eDGAR+ has improved data visualization, regarding protein structures and networks of shared 

features. In each gene page, if the gene codes for a protein with known protein structure, the 

protein structure is shown with all the variants highlighted. Moreover, for each heterogeneous 

or polygenic disease, we are building networks summing up all the features shared by the 

associated genes. Each network shows a different feature, like co-expression in the same 

tissue, expression regulation by shared TFs to protein-protein interactions and co-occurrence 

in protein complexes. The possibility of analysing many layers of information in a glance just 

looking at different networks lets the user grasp the relations among genes associated to the 

same disease in term of physical interactions, biological pathways, transcription regulation 

etc. 
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The new release has a new fancy user-friendly style, collecting information along the web-

pages in a well-organized way. 

 

Entry type Genes  

in eDGAR 

Genes 

 in eDGAR+ 

Total number of genes with SwissProt 3,628  

(100.0%) 

6,085  

(100.0%) 

with PDB 1,682  

(46.4%) 

2,693  

(44.3%) 

being in a tandem repeat 381 

(10.5%) 

702  

(11.7%) 

being TF 253  

(7.0%) 

397  

(6.5%) 

being regulated by TF 942  

(26.0%) 

1,288  

(21.2%) 

being regulated by TF - not TF 783  

(21.6%) 

1,048  

(17.3%) 

with GO BP  3,538  

(97.5%) 

5,797  

(95.6%) 

with GO MF 3,419  

(94.2%) 

5,778  

(95.3%) 

with GO CC 3,576  

(98.6%) 

5,915  

(97.6%) 

with KEGG 2,057  

(56.7%) 

3,014  

(49.5%) 

with REACTOME 2,278  

(62.8%) 

3,897  

(64.0%) 

with CORUM 714  

(19.7%) 

812  

(13.3%) 

with CENSUS 696  

(19.2%) 

504  

(8.3%) 

with BIOGRID physical 3,307  

(91.3%) 

5,488  

(90.2%) 

with BIOGRID genetic 351  

(9.7%) 

593  

(9.7%) 

with STRING 2,746  

(75.7%) 

5,210  

(85.6%) 

in membrane 2,059  

(56.8%) 

2,940 

(48.3%) 

Table 3: A comparison of the level of gene annotation in eDGAR and in eDGAR+.  
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3.4 Conclusions 

eDGAR+ is the new version of the webserver DGAR, collecting new data from different 

primary resources, new features and sources of gene annotation. It will be soon available 

online with an improved web interface and a scientific paper describing the new version is 

under preparation. 

Users and researchers in the field may take advantages of the networks of the shared features 

of genes related to the same disease to direct their experiments, analysing new clues on 

possible related pathways and significant interactions among gens associated to diseases. 
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4 PhenPath 

4.1 Contribution to the state of the art 

The co-occurrence of different phenotypes complicates the understanding of the underlying 

molecular mechanisms leading to disease insurgence. We propose a resource for the 

identification of molecular mechanisms underpinning different phenotypes, to ascribe the 

ensemble of phenotypes to a small number of possibly altered biological functions.   

Here we present PhenPath, a webserver of disease-phenotype relations with information at 

the molecular level, comprising a tool able to retrieve diseases, genes and functional 

annotations associated to a given set of phenotypes.  

We propose our resource for directing scientific efforts, speeding up the diagnosis and 

retrieving new possible association among biological processes and diseases. We believe that 

biotechnologists, physicians and medical researchers may find in PhenPath a useful resource 

of information, especially when studying complex and rare diseases. 

 

4.2 General information on the paper 

The presented paper is now under review in the Journal BMC Genomics. 

Authors: Giulia Babbi, Pier L. Martelli and Rita Casadio 

Title: PhenPath: a tool for characterizing biological functions underlying different phenotypes 

Journal: BMC Genomics 

Submission year: 2018 

Impact Factor: 3.73 

Quartile and subject: 1st quartile in Biotechnology and Applied Microbiology 
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Abstract 

Background. Many diseases are associated with complex patterns of symptoms and phenotypic 

manifestations. Parsimonious explanations aim at reconciling the multiplicity of phenotypic traits with the 

perturbation of one or few biological functions. For this, it is necessary to characterize human phenotypes at 

the molecular and functional levels, by exploiting gene annotations and known relations among genes, 

diseases and phenotypes. This characterization makes it possible to implement tools for retrieving functions 

shared among phenotypes, co-occurring in the same patient and facilitating the formulation of hypotheses 

about the molecular causes of the disease. 

 Results. We introduce PhenPath, a new resource consisting of two parts: PhenPathDB and PhenPathTOOL.  

The former is a database collecting the human genes associated with the phenotypes described in Human 

Phenotype Ontology (HPO) and OMIM Clinical Synopses. Phenotypes are then associated with biological 

functions and pathways by means of NET-GE, a network-based method for functional enrichment of sets of 

genes. The present version considers only phenotypes related to diseases. PhenPathDB collects information 

for 18 OMIM Clinical synopses and 7,137 HPO phenotypes, related to 4,292 diseases and 3,446 genes. 

Enrichment of Gene Ontology annotations endows some 87.7%, 86.9% and 73.6% of HPO phenotypes with 

Biological Process, Molecular Function and Cellular Component terms, respectively. Furthermore, 58.8% and 

77.8% of HPO phenotypes are also enriched for KEGG and Reactome pathways, respectively. Based on 

PhenPathDB, PhenPathTOOL analyses user-defined sets of phenotypes retrieving diseases, genes and 

functional terms which they share. This information can provide clues for interpreting the co-occurrence of 

phenotypes in a patient. 

Conclusions. The resource allows finding molecular features useful to investigate diseases characterized by 

multiple phenotypes, and by this, it can help researchers and physicians in identifying molecular mechanisms 

and biological functions underlying the concomitant manifestation of phenotypes. The resource is freely 

available at http://edgar.biocomp.unibo.it/phenpath/. 

 

Keywords 

Phenotype, diseases, molecular pathway, biological process, enrichment 
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1 Background  

Co-occurrence of different phenotypes often associated with symptom complexes hampers the understanding 

of the molecular mechanisms which characterize diseases and their insurgence [1]. Furthermore, the analysis 

of epidemiological data reveals that different phenotypes associated with specific diseases frequently co-occur 

in the same individuals during their lifespan [2,3]. In both situations, highlighting functional molecular 

mechanisms underlying disease insurgence and progression offers a way to understand possible associations 

between phenotypes and diseases. In the context of personalized medicine, this approach can be in principle 

adopted to analyze phenotypes that are peculiar of every single patient. The challenge is to reconcile the 

ensemble of phenotypes with a small number of possibly altered biological functions. Along this line, Brodie et 

al. (2014), [4], reported a large-scale analysis of Genome Wide Studies (GWAS) results demonstrating that 

phenotypes can be significantly associated to specific pathways, where SNPs cluster, depending on the 

specific disease.  

Several resources are presently available to exploit data for associating phenotypes to diseases. The Pheno-

type-Genotype Integrator (PheGenI) [5], merges data from genome-wide association study (GWAS) stored at 

the National Human Genome Research Institute (NHGRI, http://www.genome.gov) with several databases 

housed at the National Center for Biotechnology Information (NCBI), including Gene, dbGaP, OMIM, eQTL 

and dbSNP (https://www.ncbi.nlm.nih.gov/gap/phegeni). This phenotype-oriented resource aims at facilitating 

prioritization of variants, from GWAS studies, for generation of biological hypotheses and it is quite useful for a 

search based on chromosomal location, gene, SNP, or phenotype. Search results include annotated tables of 

SNPs, genes and association results, a dynamic genomic sequence viewer, and gene expression data.  

For the molecular diagnosis of rare genetic diseases, the recently developed Phenopolis ([6], 

https://phenopolis.org/about) is an open platform for harmonization and analysis of sequencing and phenotype 

data. The platform offers per phenotype, a prioritized list of genes, based on known association and gene en-

richment analysis. 

Other resources provide associations between diseases and phenotypes, including the Human Phenotype 

Ontology (HPO) [7] and the OMIM Clinical synopses [8]. Exploiting these associations, methods have been 

developed to cluster different diseases through shared phenotypes. In particular, the Phenotypic Disease 

Network [9] focuses on phenotypic links among co-occurring diseases to address the comorbidity problem. 
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The Phenomizer tool [10], provided by the Human Phenotype Ontology consortium, analyzes lists of 

phenotypes/symptoms with the aim of assisting the clinical workflow and providing diagnoses.  

While many resources focus on the relationship among phenotypes, diseases and genes, little is known about 

the relevance of molecular functions and functional processes underlying the occurrence of phenotypes.  

The goal of our research is to supplement disease-phenotype associations with information at the molecular 

level. To this aim, here we describe a resource (PhenPath) able to retrieve diseases, genes and functional 

annotations associated with a given set of phenotypes.  

Our resource builds on supplementing known disease-phenotype links with the molecular information on the 

association between genes and diseases. This last knowledge is stored in different databases, including 

Humsavar [11], ClinVar [12] and OMIM [8], previously integrated by DisGeNet [13] and by eDGAR [14], which 

exploits also functional annotations. 

Phenotype-disease and disease-gene relationships can be represented with a graph and, after collapsing the 

disease layer, direct associations between genes and phenotypes emerge. Furthermore, efficient enrichment 

procedures help in associating groups of genes to specific biological processes and/or metabolic pathways, 

endowing the group with statistically validated functional annotations. Among other procedures, our NET-GE 

[15] exploits proximity relationships among genes as derived from gene-gene interaction networks [16], and 

here it is adopted to functionally annotate phenotype-related genes. Considering the relationship among 

diseases, genes and functions, and the association among diseases and phenotypes, PhenPath allows the 

association of phenotypes to biological processes and pathways, reconciling their manifestation with 

molecular events. 

 

2 Results 

We implemented a new resource, PhenPath, to help researchers and physicians in studying complex 

diseases, characterized by one or multiple phenotypes.  

PhenPath consists of two parts: a database collecting relationships among genes, diseases, phenotypes and 

biological functions (PhenPathDB), and a tool allowing to retrieve genes, diseases and biological functions 

shared by a group of phenotypes, provided by the user (PhenPathTOOL). 
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2.1 PhenPathDB 

PhenPathDB is generated considering the three main steps described in the following: i) a phenotype-disease 

association procedure; ii) a disease-gene association procedure; and iii) a phenotype functional annotation 

derived by collapsing the gene layer, after an enrichment procedure of the functional annotation of the 

different disease-associated genes. Functional annotations consider Gene Ontology [17] terms of the three 

main roots (Molecular Function, Biological Process and Cellular Component), KEGG [18] and Reactome [19] 

pathways. 

 

2.1.1 Phenotype-disease association 

PhenPathDB builds upon the known associations among phenotypes, diseases and genes. PhenPathDB 

includes information about the following phenotypic terms (Table 1): i) 18 phenotypic general categories from 

the OMIM Clinical Synopsis [8], which classifies 4,165 OMIM diseases, grouped according to the affected 

human body districts; ii) 7,173 phenotypic terms from HPO [7], annotating 4,292 OMIM diseases (59% of the 

12,111 phenotypic terms of HPO, which are disease-associated). HPO Ontology includes five main sub-

ontologies (Phenotypic Abnormalities, Clinical Modifier, Clinical Course, Mode of Inheritance, and Frequency). 

Specific terms, called leaf terms, are 3,837 and they annotate at the deepest level 4,023 diseases. The most 

populated sub-ontology is Phenotypic Abnormalities, which includes 78% of the HPO disease-related 

phenotypes with 24 main categorizations referring to body districts and physiological functions. They expand 

into 5,661 terms associated with 4,273 diseases, of which 3,802 are leaf terms annotating 3,721 diseases 

(Table 1). 
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Table 1. Phenotypic terms included in PhenPathDB 

Ontology Phenotypic 

terms (#) 

Diseases associated 

to Phenotypic terms 

(#) 

Phenotypic 

leaf terms (#) 

Diseases associated 

to Phenotypic leaf 

terms (#) 

OMIM Clinical Synopsis * 18 4,165 - - 

HPO 7,173 4,292 3,837 4,023 

HPO sub-ontology 

Phenotypic Abnormalities § 

5,661 4,273 3,802 3,721 

 *  OMIM Clinical Synopsis is not organized in a graph, and as a consequence, it does not contain distinction 

among root, intermediate and leaf terms. § HPO Phenotypic Abnormalities are the subset of HPO, organized 

according to body districts and physiological functions into 24 different main terms. 

 

Most of the OMIM diseases are associated with more than one HPO leaf term (Figure 1). Only 15% of the 

diseases are associated with one phenotype, and about half of the diseases are associated with 5 or more 

phenotypes. The extreme case is the Rubinstein-Taybi syndrome that is annotated with 48 HPO leaf terms. 

 

Figure 1: OMIM diseases as a function of associated HPO phenotypes. Data include 3,837 HPO 

phenotypes (leaves of the HPO ontology) associated with 4,023 OMIM diseases (Table 1, second row). Only 

623 diseases (15%) are associated with a single phenotype, while about half of the diseases (47%) are 

associated with 5 or more phenotypes. Rubinstein-Taybi syndrome has the maximum number of associated 

HPO phenotypes (48, considering only leaves of the HPO graph). 
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2.1.2 Disease-gene association 

Each phenotype-disease link described in 2.1.1 is supplemented with a set of genes, by exploiting the gene-

disease relationships reported in eDGAR [15]. Figures 2 and 3 show the number of diseases (blue bars) and 

genes (red bars) associated to the 18 terms of the OMIM Clinical Synopsis and to the 24 main categories of 

the HPO Phenotypic Abnormalities sub-ontology, respectively. With eDGAR, Phenotypic OMIM Clinical 

Synopsis terms and HPO terms are associated with 3,230 and 3,446 genes, respectively. 

 

 

Figure 2: Number of diseases and genes associated with OMIM Clinical Synopsis terms. Blue bars 

(diseases); red bars (genes). 
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Figure 3: Number of diseases and genes associated with the 24 main categories of HPO Phenotypic 

Abnormalities sub-ontology. The 24 roots refer to anatomic districts and physiological functions. Blue bars 

(diseases); red bars (genes). 

 

2.1.3 Functional annotation of phenotypes 

According to our procedure, any phenotype links one or more disease/s, which are associated with specific 

genes. Any set of genes can be functionally characterized by adopting an enrichment procedure. Here, we 

adopt NET-GE, a tool for the functional enrichment analysis of genes (two or more) [15]. NET-GE considers 

the relationships among annotated genes as described in the STRING interactome, from which it derives a 

function-specific gene module to be used as a basis for the overrepresentation analysis. This procedure takes 

into consideration Gene Ontology terms, KEGG and Reactome pathways. 

Following enrichment, most phenotypes included in Table 1, are annotated with Gene Ontology (GO) terms, 

as shown in Table 2. In particular, 87.7% and 86,9% of HPO terms are enriched with GO terms of Biological 

Process (BP) and Molecular Function (MF), respectively.  
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Table 2: Functional annotation of HPO terms.  

Statistics refer to 7,137 HPO terms comprised in PhenPath and associated with 4,292 diseases and 3,446 

genes. Terms included in PhenPath comprise 59% of the 12,111 terms listed in HPO. BP: Biological Process; 

MF: Molecular Function; CC: Cellular Component. #: number of. 

 

2.2 PhenPathDB interface 

PhenPathDB organizes associations among phenotypes, diseases, genes and functional annotations in two 

major entering tables: OMIM Clinical Synopsis and HPO Phenotypic Abnormality 

(http://edgar.biocomp.unibo.it/phenpath/). Each Table contains links to our results grouped into: 

i) general analysis, which for each phenotypes, lists diseases, associated genes and the functional 

characterization derived from the enrichment procedure; 

 ii) intersection analysis, which allows to derive features shared between two phenotypes, highlighting the 

common diseases, genes and functional annotations. 

More specifically, general analysis reports diseases and genes associated with the phenotype, the annotation 

obtained with NET-GE, along with the Bonferroni-corrected p-value of the enrichment procedure, and the 

Information Content (IC) evaluating the specificity of the term (see Methods section for further details). The 

page lists also the genes accounting for the enrichment of each functional term and the associated diseases 

and describing the association of specific functional terms with the phenotype under consideration. Diseases 

and genes are linked to the corresponding OMIM and Human Gene Nomenclature Committee (HGNC) [20] 

entries  

The intersection analysis is based on the pre-computed shared features of pairs of phenotypes out of the 

same ontology (18 categories of OMIM Clinical Synopsis or 24 main categories of HPO Phenotypic 

FUNCTIONAL ANNOTATION Phenotypes (#) HPO terms (%) Non redundant functional terms (#) 

with GO BP 6256 87.7% 6838 GO BP 

with GO MF 6202 86.9% 2211 GO MF 

with GO CC 5254 73.6% 946 GO CC 

with KEGG 4198 58.8% 326 KEGG 

with REACTOME 5550 77.8% 1369 REACTOME 



Babbi G et al, submitted to BMC Genomics in 2018 

10 

 

Abnormalities sub-ontology). Furthermore, shared GO terms, KEGG and Reactome pathways, enriched for 

both groups of associated genes, are listed. For each functional term, the IC value is reported as well as the 

Bonferroni-corrected p-values of the two enrichment procedures. The phenotype page provides also the list of 

genes associated with a particular functional term.  

It is possible to access the database either by browsing the PhenPathDB page or by searching for specific 

phenotypes in the Search page. For HPO, the 24 main categories of the Phenotypic Abnormalities are present 

in the browsing page, and all terms can be retrieved with a search. 

2.3 PhenPathTOOL 

PhenPathTOOL is a web application that, given a set of phenotypes, retrieves the shared diseases, genes 

and functional terms. PhenPathTOOL is user-friendly, accepting as input HPO IDs as well as names of 

phenotypes. The intersection is computed in real-time. PhenPathTOOL allows investigating the relationship 

among groups of phenotypes at different levels. Firstly, it retrieves whether there is an intersection among the 

lists of diseases associated with the input phenotypes. In this way, it highlights when the phenotype co-

occurrence is already known and points towards specific diseases. Occasionally, when input phenotypes do 

not share common diseases, PhenPathTOOL can retrieve shared genes, possibly related to their concomitant 

manifestation. Furthermore, even when phenotypes do not share genes, they may share the enriched 

biological functions (GO terms, KEGG and Reactome pathways), accounting for a common mechanism. The 

interface reports in different tables the lists of shared GO terms, KEGG and REACTOME pathways, obtained 

as described above. Each table lists the IC of the term, as well as the Bonferroni-corrected p-value for each 

association (see Methods for further details). 

 

3 Discussion  

3.1 Study case: Tourette syndrome 

The first example describes the use of PhenPathTOOL for retrieving a characterized disease starting from a 

list of phenotypes and the possibility to enrich the annotation of involved biological functions. Tourette 

syndrome is a neurobehavioral disorder that causes motor and vocal tics associated with behavioral 

abnormalities, like attention-deficit–hyperactivity disorder and obsessive-compulsive disorder [21]. Possible 
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symptoms include involuntary or semi-voluntary movements or sounds, repetitive movements, blinking, nose 

twitching, throat clearing to echolalia or coprolalia.  

We searched with PhenPathTOOL the typical phenotypic traits of the Tourette syndrome, using a plain list of 

phenotype names (“motor tic, vocal tic, behavioral, attention, hyperactivity, obsessive-compulsive, involuntary 

movements, involuntary sounds, repetitive movements, blink, nose twitch, throat clear, echolalia, coprolalia”). 

The interface presents a selectable list of HPO terms whose names contain the input terms (Figure 4). 

 

Figure 4: Selection of phenotypes in PhenPathTOOL. After searching with a list of different names, the 

web interface shows all the names that do not correspond to any HPO identifier and then a table with all the 

HPO terms matching the input. The user may then select the most appropriate phenotypes to be analyzed. 

 

In this particular study case, we selected, among the proposed HPO terms, the 6 that better describe the 

phenotypes of Tourette syndrome to perform further analyses: “attention deficit hyperactivity disorder 
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(HP:0007018), behavioral abnormality (HP:0000708), echolalia (HP:0010529), involuntary movements 

(HP:00043059), motor tics (HP:0100034), obsessive-compulsive behavior (HP:0000722)”. 

PhenPathTOOL returns the diseases and genes shared among the phenotypes, as long as the shared 

enriched pathways (GO terms, KEGG and REACTOME, Figure 5). 

 

Figure 5: PhenPathTOOL results. The figure shows the webpage of PhenPathTOOL after the analysis of 6 

different HPO phenotypes. First, a list of the shared diseases and genes is reported. Then, a general table 

collects data on diseases and genes associated with each phenotype, allowing direct intersection. The last 

section reports the links to the analysis of GO terms, KEGG and Reactome pathways. 
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PhenPathTOOL correctly recognizes that the concomitance of phenotypes points to the Tourette syndrome, 

and to two genes (SLITRK1, HDC) that are associated with the disease [21]. Interestingly enough, only the 

intersection of functional terms shared by different phenotypes is able to retrieve relevant common shared 

annotations. 30 terms are shared by at least 4 phenotypes. Among them, besides the general annotations like 

“behavior”, “cognition” or “learning or memory”, there are interesting clues on more specific pathways such as 

“catecholamine metabolic process”. Interestingly, symptomatic therapies for the Tourette syndrome involve the 

control of neurotransmission from dopamine and adrenaline, which are members of the catecholamine family 

[22]. Although the pathogenesis of the disorder remains obscure, the catecholamine metabolic process 

pathway has already been studied in relation to the Tourette syndrome [23]. 

 

3.2 Study case: Obesity, Diabetes and Ovarian Cyst 

Here PhenPathTOOL compares three phenotypes that, although not being related to a common disease, are 

often co-occurring: obesity, diabetes and ovarian cysts. Epidemiological studies report that women affected by 

polycystic ovarian syndrome, for which ovarian cysts is the main phenotypes, are often showing also obesity 

and diabetes phenotypes [24]. In particular, increasing evidence point to an increase of type 2 diabetes in 

women affected by polycystic ovarian syndrome [25]. 

We analyzed with PhenPathTOOLS the three co-occurring phenotypes: Obesity (HP:0001513), Diabetes 

Mellitus type II (HP:0005978) and Ovarian Cyst (HP:0000138). Routinely, the three terms refer to specific 

diseases: however, in HPO they indicate phenotypes associated to different disorders. 

As expected, no disease is common to all the input phenotypes. Diabetes and obesity share 3 diseases: 

Prader-Willi Syndrome, Morbid obesity and spermatogenic failure, and Microcephalic osteodysplastic 

primordial dwarfism, type II. No disease links ovarian cysts to either obesity or diabetes. 

The analysis at the gene level retrieves only one gene shared among the three phenotypes: PPARG, the 

Peroxisome proliferator-activated receptor gamma, a nuclear receptor involved in lipid uptake and 

adipogenesis. More genes are shared between pairs of phenotypes: NPP1, AKT2 between diabetes and 

obesity, HNF1A, INSR and PPP1R3A between ovarian cysts and diabetes, and PTEN between ovarian cysts 

and obesity. 
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A better characterization of the common ground of the three phenotypes comes from the analysis of shared 

functional annotations. 7 GO terms for molecular function are shared, being hormone receptor binding 

(GO:0051427) the most specific one (IC=6.84). Moreover, 58 GO terms for biological process are shared, 16 

of which with IC values greater than 5. These include generation of precursor metabolites and energy 

(GO:0006091), energy derivation by oxidation of organic compounds (GO:0015980), cellular response to 

peptide hormone stimulus (GO:0071375), developmental process involved in reproduction (GO:0003006), 

response to peptide hormone (GO:0043434), cellular response to hormone stimulus (GO:0032870), response 

to hormone (GO:0009725), response to insulin (GO:0032868), regulation of growth (GO:0040008). Each term 

is associated with the three phenotypes by means of many genes, including PPARG. On the overall, the 

annotation points towards phenomena associated with the response to hormones, in particular insulin. 

Specifically, the response to insulin is associated with each phenotype with a corrected p-value of 1E-9, 0.04 

and 0.005, respectively for Diabetes, Obesity and Ovarian Cyst.  

The novelty with PhenPathTOOL is that the co-occurrence of the three phenotypes is ascribed to defects of 

the response to insulin. Interestingly, recent literature confirms that insulin resistance is a common 

background for both obesity and diabetes mellitus type 2 [26] and that insulin is a key factor also in the uptake 

of glucose by ovarian tissues during the menstrual cycle of some rodent, primate and ruminant species [27]. In 

particular, the link between metabolic disorders and cystic ovarian disease has been studied in animal models 

[28], specifically for the insulin resistance as a pathogenic factor. Our analysis is also supported by the finding 

that the activity of PPARG, the only gene shared among the three phenotypes under investigation, is sufficient 

for whole-body insulin sensitization [29]. 

 

3.3 Study case: Rett syndrome 

PhenPathTOOL can be adopted to endow a disease (described with a set of phenotypes) with novel links to 

genes and functional terms, retrieved by intersecting the sets of genes and functional terms associated with 

the single phenotypes in PhenPathDB. As a study case, we here apply PhenPathTOOL to the detection of new 

associations between genes and Rett syndrome (RTT). RTT is a neurodevelopmental disorder corresponding 

to two OMIM entries (#312750 and #613454) linked to genes MECP2 (encoding methyl CpG binding protein 

2) and FOXG1 (encoding the forkhead box protein G1), respectively [30,31]. RTT primarily affects females and 

it is characterized by loss of language and communication skills, microcephaly, learning impairment, 
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coordination, and other brain functions. Affected girls may lose the use of their hands and begin making 

repeated hand-wringing, washing, or clapping motions. Atypical forms of RTT, not reported in OMIM, have 

been described in patients not carrying mutations on FOXG1 nor MECP2 and manifesting additional 

phenotypes such as breathing abnormalities, spitting or drooling, unusual eye movements, cold hands and 

feet, irritability, sleep disturbances, seizures and scoliosis [32, https://ghr.nlm.nih.gov/condition/rett-syndrome]. 

Recently, literature reported new genes associated with RTT, including cyclin-dependent kinase-like 5 

(CDKL5), myocyte-specific enhancer factor 2C (MEF2C), and transcription factor 4 (TCF4) [33-35]. These 

associations are not yet reported in major databases and, consequently, they are not included in PhenPathDB. 

We tested the ability of PhenPathTOOL to recover these associations starting from the phenotype description. 

We entered 9 HPO terms, characterizing the classical and atypical RTT, namely breathing dysregulation 

(HP:0005957), abnormality of coordination (HP:0011443), drooling (HP:0002307), irritability (HP:0000737), 

severe expressive language delay (HP:0006863), specific learning disability (HP:0001328), microcephaly 

(HP:0000252), scoliosis (HP:0002650), and sleep disturbance (HP:0002360).  

As a first step, PhenPathTOOL intersects the gene sets associated with the phenotypes. Although no gene is 

common to the nine phenotypes, 5 genes (MECP2, CDKL5, UBE3A, SLC2A1, SLC16A2) are shared by 5 

phenotypes. MECP2 and CDKL5 have been previously reported [32, 35]. Interestingly, our analysis highlights 

the association with CDKL5, which is not present in PhenPathDB. 

PhentPathTOOL then retrieves the intersection of GO terms, KEGG and Reactome pathways enriched for the 

different phenotypes. Focusing on GO BP, 440 terms are shared among two or more phenotypes. In particular, 

when restricting to terms with medium/high specificity (IC > 4.5), 12 enriched terms are common to 5 or more 

phenotypes. Among them, the seven terms listed in Table 4 describe biological processes that involve the two 

genes known to be related with RTT (MECP2 and FOXG1), as well as TCF4, that has been only recently 

associated with RTT (Table 3).  

These findings illustrate the efficacy of PhenPathTOOL in linking a set of phenotypes to genes and functional 

annotations, which can be adopted for planning further experimental analysis.  
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Table 3: A selection of GO BP terms shared by the phenotypes in input after enrichment procedure.  

GO BP term IC 

value 

# of associated 

phenotypes 

Associated phenotypes Related 

genes 

associated 

with RTT 

cellular component 

morphogenesis 

5.4 6 microcephaly, sleep disturbance, scoliosis, 

breathing dysregulation, abnormality of 

coordination, specific learning disability 

TCF4 

Behavior 5.23 6 microcephaly, specific learning disability, 

sleep disturbance, scoliosis, 

abnormality of coordination, drooling 

MECP2 

cell projection 

organization  

4.95 6 microcephaly, specific learning disability, 

scoliosis, breathing dysregulation, 

abnormality of coordination, sleep 

disturbance 

MECP2 

neurological system 

process 

4.65 6 microcephaly, specific learning disability, 

scoliosis, abnormality of coordination, sleep 

disturbance, drooling  

FOXG1, 

MECP2 

system development 4.75 5 microcephaly, sleep disturbance, scoliosis, 

abnormality of coordination, severe 

expressive language delay  

TCF4, 

FOXG1, 

MECP2 

anatomical structure 

formation involved in 

morphogenesis 

4.69 5 microcephaly, specific learning disability, 

scoliosis, breathing dysregulation, 

abnormality of coordination 

TCF4, 

FOXG1 

single-organism 

behavior 

5.67 5 microcephaly, sleep disturbance, 

scoliosis, abnormality of coordination, 

drooling 

TCF4, 

MECP2 

The table reports some of the most interesting biological processes associated with the phenotypes given as 

input to PhenPathTOOL. For each term, the IC value is shown with the specific phenotype associations. No-

ticeably, TCF4 has been only recently associated with RTT [35]. 

 

3.4 Study case: Associating genes to uncharacterized diseases 

We propose PhenPath as a resource for formulating hypotheses on the molecular mechanisms underlying the 

manifestation of concomitant phenotypes, in particular in case of non-well characterized diseases. Here we 

estimate the performance of PhenPathTOOL in retrieving relevant associations between groups of co-

occurring phenotypes and possible causative genes, collecting from Orphanet [36] a blind set consisting of 87 

diseases, not included in OMIM nor, consequently, used to build PhenPathDB. Orphanet associate these 

diseases with both HPO phenotypic terms and sets of possibly causative genes (see Methods section 5.3 for 

further details on the dataset).  

We evaluate the efficiency of PhenPathTOOL in retrieving genes starting from the phenotypic characterization 
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of diseases. For each disease in the blind set, we entered in PhenPathTOOL the Orphanet-associated HPO 

terms and we retrieved the corresponding lists of shared genes. We then compared the genes retrieved with 

PhenPathTOOL with the genes proposed by Orphanet 

For 61 diseases out of 87 (70%), PhenPathTOOL retrieves at least one of the genes associated by Orphanet. 

Overall, out of the 100 genes associated by Orphanet, 58 are recovered with PhenPathTOOL (58%). In 

particular for 2 diseases, “Pituitary stalk interruption syndrome “and “Hypothyroidism due to deficient 

transcription factors involved in pituitary development or function “, PhenPath retrieves 5 out of 7 and 5 out 5 

Orphanet-associated genes, respectively. 

A summary of all the results obtained for the external dataset is provided as supplementary material ( 

https://drive.google.com/file/d/1PkH48TMpxA33RxXRYNGj6RQnD4qtdEI2/ ). 

 

4 Conclusions 

PhenPath offers a new approach for investigating the molecular mechanisms leading to the correlated 

manifestation of different phenotypes. PhenPath may be used to explore the possible connections among 

different phenotypes co-occurring in a patient, offering new clues on the biological mechanisms that may 

explain its clinical conditions.  

Four case studies show the potential use of PhenPath for retrieving diseases starting from a set of 

phenotypes, if existing, and/or for better characterize the functions and pathways possibly involved in the 

manifestation of different symptoms. We propose our resource for directing scientific efforts, helping the 

diagnosis and retrieving new possible associations among biological processes and diseases. We believe that 

biotechnologists, physicians and medical researchers may find PhenPath a useful resource of information, 

especially when studying complex and rare diseases.  

 

5 Methods 

5.1 Associations among phenotypes, diseases and genes 

PhenPathDB stands on the merging of disease-phenotype and disease-gene relationships. In PhenPath, a 

phenotype is defined as an actual physical characteristic, and we follow the phenotype characterization 

https://drive.google.com/file/d/1PkH48TMpxA33RxXRYNGj6RQnD4qtdEI2/
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provided by HPO and OMIM Clinical Synopsis. We define a disease as a medical condition associated with 

specific phenotypes, and we classify diseases according to OMIM identifiers. 

In detail, two lists of phenotype terms have been considered: the OMIM Clinical Synopsis (March 2017 

release) and the HPO Phenotypic Abnormalities categories (May 2017 release). OMIM Clinical Synopsys 

groups OMIM diseases within 22 phenotypic categories, 18 referring to systems of the human body (e.g.: 

respiratory system, musculature, etc.) and 4 referring to further level of characterization (inheritance, 

laboratory abnormalities, molecular basis, and miscellaneous). In PhenPath, we retained the former and 

discharged the latter, ending up with the phenotypic characterization for 3,230 diseases.  

The HPO consists of 12,111 different phenotypes organized into a direct acyclic graph (DAG) including 3,837 

leaf phenotypes. A leaf in a graph is a node without sub-nodes (children), and by consequence, a leaf 

phenotypic term provides the most detailed level of annotation. When a phenotype is associated with a 

disease by HPO, the annotation is extended to all the parent phenotypes in the HPO DAG. On the overall, 

4,292 OMIM diseases are associated with 7,137 HPO phenotypes, which represent the 59% of all the HPO 

phenotypes. In particular, 4,023 diseases are associated with 3,837 leaf phenotypes. Of particular interest are 

the phenotypes originating from 24 main categories, referring to human body districts and physiological 

functions (musculature, respiratory system, head or neck, genitourinary system, cardiovascular system, 

immune system, nervous system, voice, blood and blood-forming tissues, metabolism/homeostasis, breast, 

growth, constitutional symptoms, digestive system, neoplasm, thoracic cavity, prenatal development or birth, 

eye, ear, skeletal system, limbs, connective tissue, endocrine system, integument). These categories are 

grouped into the Phenotypic Abnormalities sub-ontology. It comprises 5661 phenotypes, among which 3802 

are leaves. 

Gene-disease associations are extracted from our curated database, eDGAR [15] (August 2017 release), 

which collects information from OMIM, Humsavar and ClinVar.  

 

5.2 Enrichment analysis 

For each group of genes associated to the same phenotype, the functional characterization is performed with 

NET-GE [16], an algorithm for standard and network-based gene enrichment analysis that includes the 

annotations derived from GO, KEGG and Reactome pathways. Briefly, it relies on the STRING Human 

Interactome [17], to build function-specific modules of interacting genes, starting from genes/proteins 
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annotated with a given term. Then, given a list of genes/proteins, the over-represented modules are retrieved 

and scored with a p-value computed with an exact Fisher test and corrected with the Bonferroni procedure. A 

significance threshold of 0.05 has been considered. 

The Information Content (IC) is computed for each GO term, KEGG and REACTOME pathways, adopting the 

following equation: 

            (
     

     
)        (1) 

where Nterm is the number of human genes endowed with the particular GO, KEGG or REACTOME term and 

Nroot is the number of human genes annotated in the ontology. IC lower limit is zero; high IC values indicate 

that a small number of genes are annotated with a particular term in the human genome and therefore the 

annotation is highly informative. 

For every phenotype in PhenPath, we perform the enrichment procedure via NETGE algorithm and we report 

the results in the PhenPathDB webpages. Using PhenPathTOOL, the users may compare different 

phenotypes retrieving the enriched biological pathways shared over the phenotypes in input. For each term 

describing a pathway, we report the Pvalue of the significant associations to every phenotype in input.  

 

5.3 Blind dataset for the performance evaluation 

 
For the evaluation of the performance of PhenPathTOOL we collected a dataset of phenotype-disease-gene 

associations from Orphanet, a resource for rare diseases with high-quality information [36]. In Orphanet (re-

lease Dec 2018), 3765 diseases are associated both with HPO phenotype terms and genes. We filtered out all 

diseases mapped to OMIM and therefore used for the implementation of PhenPathDB, retaining 550 Orphanet 

diseases. We then collected diseases associated with 2 or more HPO phenotypes, ending up with 87 diseas-

es, which form a blind set for testing PhenPathTOOL. For each disease, we entered in PhenPathTOOL the 

associated HPO phenotypic terms and we retrieved the list of genes they. We compare these proposed genes 

with the genes reported by Orphanet for the disease. The evaluation dataset is provided as supplementary 

material (https://drive.google.com/file/d/1PkH48TMpxA33RxXRYNGj6RQnD4qtdEI2/ ) 

 

 

 

https://drive.google.com/file/d/1PkH48TMpxA33RxXRYNGj6RQnD4qtdEI2/
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5 INPS-3D 

5.1 Contribution to the state of the art 

We describe INPS-3D, a predictor based on protein structure for computing the effect of single 

residue variations on protein stability (ΔΔG), scoring at the state-of-the-art.  

Change of protein stability upon variation appears to assume a particular relevance in 

annotating whether a single residue substitution can or cannot be associated to a given 

disease. Thermodynamic properties of human proteins and of their disease related variants 

are still lacking. In the present work, we take advantage of the available three-dimensional 

structure of human proteins for predicting the role of disease related variations on the 

perturbation of protein stability. 

We then filter 368 OMIM disease related proteins known with atomic resolution with 4,717 

disease related single residue variations and 685 polymorphisms without clinical 

consequence.  Our analysis indicates that OMIM disease related variations in proteins promote 

a much larger effect on protein stability than polymorphisms non-associated to diseases. 

Disease related variations with a slight effect on protein stability frequently occur at the 

protein accessible surface suggesting that they are located in protein-protein interactions 

patches in putative human biological functional networks. The hypothesis is corroborated by 

proving that proteins with many disease related variations that slightly perturb protein 

stability are on average more connected in the human physical interactome (IntAct, Ochard S 

et al, 2013) than proteins with variations predicted larger effect on protein stability. 
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Abstract

Background: Modern genomic techniques allow to associate several Mendelian human diseases to single residue
variations in different proteins. Molecular mechanisms explaining the relationship among genotype and phenotype are still
under debate. Change of protein stability upon variation appears to assume a particular relevance in annotating whether a
single residue substitution can or cannot be associated to a given disease. Thermodynamic properties of human proteins
and of their disease related variants are lacking. In the present work, we take advantage of the available three dimensional
structure of human proteins for predicting the role of disease related variations on the perturbation of protein stability.

Results: We develop INPS3D, a new predictor based on protein structure for computing the effect of single residue
variations on protein stability (ΔΔG), scoring at the state-of-the-art (Pearson’s correlation value of the regression is equal
to 0.72 with mean standard error of 1.15 kcal/mol on a blind test set comprising 351 variations in 60 proteins). We then
filter 368 OMIM disease related proteins known with atomic resolution (where the three dimensional structure covers
at least 70 % of the sequence) with 4717 disease related single residue variations and 685 polymorphisms without
clinical consequence. We find that the effect on protein stability of disease related variations is larger than the effect of
polymorphisms: in particular, by setting to |1 kcal/mol| the threshold between perturbing and not perturbing variations of
the protein stability, about 44 % of disease related variations and 20 % of polymorphisms are predicted with |ΔΔG| >
1 kcal/mol, respectively. A consistent fraction of OMIM disease related variations is however predicted to promote
|ΔΔG|≤ 1 kcal/mol and we focus here on detecting features that can be associated to the thermodynamic property of
the protein variant. Our analysis reveals that some 47 % of disease related variations promoting |ΔΔG|≤ 1 are located in
solvent exposed sites of the protein structure. We also find that the increase of the fraction of variations that in proteins
are predicted with |ΔΔG|≤ 1 kcal/mol, partially relates with the increasing number of the protein interacting partners,
corroborating the notion that disease related, non-perturbing variations are likely to impair protein-protein interaction
(70 % of the disease causing variations, with high accessible surface are indeed predicted in interacting sites). The set of
OMIM surface accessible variations with |ΔΔG|≤ 1 kcal/mol and located in interaction sites are 23 % of the total in 161
proteins. Among these, 43 proteins with some 327 disease causing variations are involved in signalling, structural
biological processes, development and differentiation.
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(Continued from previous page)

Conclusions: We compute the effect of disease causing variations on protein stability with INPS3D, a new state-of-the-art
tool for predicting the change in ΔΔG value associated to single residue substitution in protein structures. The analysis
indicates that OMIM disease related variations in proteins promote a much larger effect on protein stability than
polymorphisms non-associated to diseases. Disease related variations with a slight effect on protein stability (|ΔΔG| < 1
kcal/mol) frequently occur at the protein accessible surface suggesting that they are located in protein-protein
interactions patches in putative human biological functional networks. The hypothesis is corroborated by proving that
proteins with many disease related variations that slightly perturb protein stability are on average more connected in the
human physical interactome (IntAct) than proteins with variations predicted with |ΔΔG| > 1 kcal/mol.

Keywords: Protein stability, Disease related-variations, Residue solvent accessibility, Interactomics networks

Background
One of the key goals in the postgenomic era is the eluci-
dation of the mechanisms at the basis of the relationship
between genotype and phenotype. In particular, under-
standing how human genetic variations are associated to
diseases is still an open problem and its solution is a
crucial issue for exploiting the possibilities offered by the
modern sequencing techniques in the framework of
precision medicine [1, 2].
The role of missense mutations inducing single residue

variations (SRVs) in proteins has been widely investigated:
several databases collect data about the relationship be-
tween SRVs and diseases [3] and several predictive tools
have been implemented in order to exploit the available
knowledge to predict whether new variants are related to
diseases ([4–6]; and others listed in [7]) or are affecting
protein function [8].
Biophysical studies allowed to measure the thermo-

dynamic effect that protein variations induce on protein
stability [9]. However the number of human proteins
whose folding thermodynamics is known in the native
and mutated form is still limited due to the time con-
suming and costly procedure at the basis of experi-
mental investigations. To fill the gap, predictive tools
have been trained on the available thermodynamic
data to compute the free energy change value upon
variation ([10–13], and others listed in [14]). Recently,
we introduced INPS [15], a sequence based predictor
that well compares with tools taking as input protein
structure. When dealing with disease related varia-
tions in human protein variants, very little is known
about their thermodynamics and it is unclear in an-
notation processes whether a variation perturbing the
protein stability is or not disease related. Extensive
comparative analyses of the two classes of datasets
(phenotypically vs thermodynamically characterized
variations) prove that, on average, variation types
most involved in disease are also associated to a large
effect on protein stability [16–18]. However, the
strength of this association, although recently im-
proved (compare results in [16] with [19]), is not

sufficient to consider protein destabilization as the
only mechanistic cause explaining the insurgence of
diseases. Indeed many variations with |ΔΔG| ≤ 1 kcal/
mol are disease-related [12, 13, 15, 16, 19]. In this
paper, as a follow up to the problem, we specifically
deal with OMIM disease related protein variants
whose native structure is known and predict the ex-
tent of perturbation that the variation may cause on
the native protein stability. To this aim, we develop
INPS3D, a new tool for computationally estimating
the effect of single residue variations on protein sta-
bility based on information extracted from protein
three dimensional structure, and compare its perform-
ance to state-of-the-art predictors on the blind test
set of the OMIM related proteins endowed with well
resolved structures. By this, we identify a subset of
disease-related variations with |ΔΔG| ≤ 1 kcal/mol and
prove that these variations often occurs in sites exposed
on the protein accessible surface, with a likelihood to
be in interaction sites. Integrating these results with hu-
man physical interactomic data, we find that on aver-
age, proteins endowed with many interaction partners
have disease related variations that are solvent exposed
and are characterized by low free energy change values.
Our results support the hypothesis that, besides protein
stability perturbation, impairment of protein-protein
interaction can be also a major mechanism explaining
the relation between variations and diseases.

Methods
Data set
We downloaded from the Humsavar dataset (release
2015_10 of 14 Oct 2015) a collection of 27,185 varia-
tions related to 3082 OMIM diseases, on 2367 different
human proteins and retained only proteins endowed
with a PDB structure (3D) covering at least 70 % of the
protein sequence. The PDBSWS resource [20] (August
2015 update) was adopted to map the UniProt sequences
onto the PDB structures. We ended up with a dataset of
4717 variations related to 484 OMIM diseases on 368 pro-
teins endowed with PDB structures with resolution lower
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than 3.0 Å (OMIM set). On the same proteins, we also
collected 685 polymorphism lacking evidence of associ-
ation to disease (POLY set).
To train/test (by adopting a cross validation proced-

ure) the predictors, we used S2648, a dataset that was
originally derived from the ProTherm database [9] and
corrected by the authors of the PoPMuSiC algorithm
[11]. It comprises 2648 variations out of 132 different
proteins endowed with a 3D structure. We also evalu-
ated the predictor performances on a blind test of 351
variations in 60 proteins, and on 42 variations of the P53
protein not included in the training set and previously
described in [12].

INPS3D: a structure based method for the prediction of
free energy changes upon protein variations
Here we introduce INPS3D that exploits both sequence
and structural information to predict the protein sta-
bility changes upon single point mutation. INPS3D
takes advantage of the recently released INPS [15]
that, starting only from protein sequence, performs
similarly to the state-of the-art methods based on
protein structure. INPS3D is based on nine input fea-
tures based on protein sequence and structure. The
features extracted from protein sequence are, [15]: 1)
substitution score derived from the Blosum62 matrix;
2-3) Kyte-Doolittle hydrophobicity scores of native
and mutated residues; 4) mutability index of the na-
tive residue; 5-6) molecular weights of native and mu-
tated residues; 7) the difference in the alignment
score between the native and mutated sequences and
an HMM encoding evolutionary information of the
target sequence. Two additional real-valued features
derived from the protein structures are: 8) the solvent
accessibility of the mutated residue, 9) the energy
difference between native and mutated proteins. The
solvent accessibility is computed with the DSSP
method [21] and normalized as previously described
[22]. The energy difference is evaluated by using the
residue-based contact potential described in [23]. We
consider that two residues are in contact if the min-
imal distance between all the atoms (not including
hydrogen atoms) of two residues is ≤ 5 Å. We used

the coordinates of the native protein to compute the
contact energy and the energy difference as:

X

r

P r;wð Þ−P r;mð Þ ð1Þ

where P is the contact potential, w is the wild-type
residue, m is the mutated residue, and the r-index
runs over the list of w-neighbouring residues. We
tested several other potentials, but the performances
were similar or lower than those here reported.
INPS3D is based on a Support Vector Regression
model (SVR) trained on the same dataset adopted for
INPS (see data set section). The adopted conventions
on the sign are such as when predicting the ΔΔG as-
sociated to a variation, positive values refer to the
protein stabilization and negative values to protein
destabilization.

Analysis of protein surfaces
The solvent accessible surface area of residues in wild-
type proteins has been evaluated with the DSSP program
[21]. In order to obtain the Relative Solvent Accessibility
(RSA), solvent accessibility areas were normalized to the
residue-specific maximum solvent accessible area, as
previously reported [22]. Residues with RSA ≥ 0.2 are
classified as accessible, residues with RSA < 0.2 are clas-
sified as buried. RSA has been measured on both the
protein isolated chain and the protein complex, as
downloaded from the repository of “biological assem-
blies” of the Protein Data Base [http://www.rcsb.org/
pdb/download/download.do#Structures]. To define the
interaction interface of the complex, we collected the set
of residues that are solvent accessible in the isolated
chain and are buried in the complex.

Interactomics analysis
Interacting partners of each protein were retrieved from
the IntAct database [24] as downloaded from the IntAct
FTP site as to November 2015. The search in the IntAct
file was performed using the UniProtKB code and exclud-
ing the negative interaction data. The statistical analysis
was performed considering only the proteins present in
the dataset, at least in one entry.

Table 1 Performance of INPS3D and other state-of-the-art predictors

Method Cross-validation (2648 variations
on 132 proteins)

Blind test set (351 variations
on 60 proteins)

Blind test set (42 variations
on P53 protein)

INPSb 0.53/1.29a 0.68/1.26a 0.71/1.49a

INPS3D 0.58/1.20a 0.72/1.15a 0.76/1.35a

MAESTROc 0.63/1.17a 0.71/1.16a 0.44/1.71a,e

mCSMd 0.51/1.26a 0.67/1.19a 0.68/1.40a

aPearson’s correlation coefficient/standard error (kcal/mol)
Data are from b[15]; c[13]; d[12], ethis work, respectively
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Results and discussion
INPS3D at work
INPS3D is a new tool for predicting the change of
protein folding free energy induced by single residue
variations. The performance of the structure based
predictor along with that of the sequence based one [15]
are shown in Table 1. We report statistical scores
obtained benchmarking the predictors with a more strin-
gent per-protein cross-validation procedure [15] on the
S2648 set previously described [11], and on a blind test
set including some 351 variations in 60 proteins, and a
P53 data set (both not included in the training set).
Results, reported in Table 1, indicate that INPS3D out-
performs INPS, exploiting structure based features not
present in the INPS input encoding. INPS3D well compares
with the performances obtained with structure-based state-
of-the-art methods, mCSM [12], and MAESTRO, recently
made available as web server [13].

Predicting the effect of disease related, single residue
variations on the stability of OMIM linked proteins
We applied INPS (sequence based), INPS3D (structure
based) and MAESTRO (structure based) to the OMIM
variation set for estimating the change in protein folding
free energy induced by the disease-related variations. For
sake of comparison we also ran the tools on the POLY
set, containing variations not related to diseases, on the
same OMIM proteins. We used polymorphisms from
the very same proteins that have also variations related
to diseases, in order to constrain the ΔG value of the
folded form and avoid possible biases due to the inclu-
sion of other proteins. The results (Fig. 1) confirm that
disease related variations tend to produce a larger effect
on protein stability than polymorphisms, which, on the
other hand, appear to promote free energy perturbations
mostly distributed within +/-1 kcal/mol. The result is

confirmed by all the predictors. INPS3D predicts that
80 % of polymorphisms and 56 % of disease causing var-
iations promote a |ΔΔG| ≤ 1 kcal/mol with respect to
the corresponding native protein.
The results are similar with INPS; with Maestro, the

fraction of disease-related variations predicted with low
|ΔΔG| values increases to 74 % of the total. Our results,
obtained with three independent predictors, corroborate
the notion that protein stability perturbation (as detected
from the predicted |ΔΔG| > 1 kcal/mol) is associated to
disease-related variations. However, at least half of the
OMIM set is predicted to promote only a slight change in
protein stability (within a range of about 1 kcal/mol in ab-
solute value). The observation poses the question as to
whether the thermodynamic property of the protein vari-
ant (albeit predicted) can be linked to some structural/
functional feature of the variation, specifically when it is
disease causing. Many investigations addressed the issue
of which structural features could be associated to disease
related variations ([25–29] and references therein). Con-
clusions are that genetic variations can have dramatic ef-
fects on protein stability, hydrogen bonding networks,
conformational dynamics, protein activity and protein
interaction networks, particularly at the level of functional
assemblies [28]. More recently the correlation between
the probability of perturbing the protein stability and that
of being disease causing was improved [19] with respect
to previous data [16]. However, here our analysis ad-
dresses the issue from a different perspective: considering
that we have predictors of protein stability, the problem is
to which extent they label the overall protein in/stability
in relation to the corresponding disease related mutation.
We find that a high fraction of the protein variants
carrying disease-related mutations are predicted with a
low |ΔΔG| value, rather independently of the method
(compare the INPS3D to MAESTRO results).
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Fig. 1 Distribution of the absolute value of the ΔΔG predicted with INPS3D, MAESTRO and INPS. The set includes 4717 disease related variations
and 687 polymorphisms in 368 OMIM proteins
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Protein |ΔΔG| values and structural/functional properties
of the variations
In the following we will consider how some structural
properties can be clustered considering perturbing and
non- perturbing predicted |ΔΔG| values. The analysis
focuses on the Relative Surface Accessibility (RSA), on
the propensity of the variation to be or not in an inter-
action patch, and finally on the relation of the protein
variant to be in physical interaction with other proteins,
considering ΔΔG values predicted with INPS3D.
We analyse the distribution of the relative solvent

accessibility (RSA) of the disease related mutations as
a function of the free energy change predicted for the
corresponding protein variant. Boxplots in Fig. 2 show
that the median and the upper quartile values of RSA
are higher in the intervals with ΔΔG values close to
zero. This indicates that disease related variations
with low ΔΔG values have a more spread out distri-
bution of RSA, and then a larger probability to be
solvent accessible.

In Fig. 3, the distribution of the fraction of solvent ac-
cessible variations is plotted as a function of the |ΔΔG|
values for disease related and polymorphic protein
variants. Low |ΔΔG| values are apparently common both
to disease causing and polymorphic variations, when
they are located in accessible protein sites.
A detailed grouping of the different behaviour of the

structural properties of the OMIM related variations is
shown in Tables 2 and 3, as a function of the thermo-
dynamic property of the protein variant. Here we focus
also on the difference among monomers and assemblies
(as documented in the Protein Data Bank, http://
www.rcsb.org/pdb/download/download.do#Structures),
in order to highlight the role of protein-protein in-
teractions, when present, in the biological functional
unit. As an additional feature, we also included the
likelihood of each variations to be or not in an inter-
action patch (computed with our PRED-PPI, [30]). It
appears that disease related mutations in proteins
variants with low |ΔΔG| values, when solvent

Fig. 2 Relative Solvent Accessibility of the variations as a function of ΔΔG predicted for the variants of the OMIM set. The box-plot reports the
median and the lower and upper quartiles of the distribution of relative solvent accessibility for each interval of ΔΔG

Fig. 3 Frequency of the solvent accessible variations as a function of ΔΔG predicted for the protein variants of the OMIM set
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exposed (RSA ≥ 0.20), have also a tendency to be in
interaction sites. The property is shared, as expected,
with variations that highly perturb protein stability
and with polymorphic ones. The low accessibility, in
all cases, well agrees with a propensity of being in
interaction sites ranging from 0 to 5 %. The value
can be considered indicative of the possible range of
the false positive rate of the predictor, trained and
tested on accessible interaction sites and for which
the OMIM set of disease related and polymorphic
variations is a blind test set.
Distinguishing functional monomeric from multimeric

biological assemblies highlights the relevance of the varia-
tions when they are located at the interface of protein
complexes [28]. In Table 3, the same grouping of Table 2
is therefore shown for proteins with a biologically func-
tional assembly, as documented in the PDB. Here, it
appears that only a small fractions of the total number of
disease related mutations in the set occurs at the mono-
mer interface (compare Monomer and Complex at RSA ≥
0.20) and concomitantly also the number of interaction
sites predicted on the complex interface is very low.
From the data reported in Tables 2 and 3, it can be

computed that about 70 % of the disease causing

variations with high accessible surface in monomers are
predicted to be part of an interaction patch. The result
is particularly significant considering that the fraction of
all accessible residues predicted in interaction patches
on the same 368 proteins is 55 %.
Summing up, we show that disease related variations

in proteins can promote a low |ΔΔG| value, particularly
when they are located in accessible sites that are also
interacting sites.
As a follow up, one may consider to which extent pro-

tein variants with disease-related mutations located in
solvent exposed sites and slightly perturbing the stability,
are or not involved in interaction networks of physical
interaction, as available in IntAct [24]. We collected
from IntAct the number of interacting partners for each
protein and analysed it as a function of the fraction of
solvent accessible, non-perturbing variations (Fig. 4).
The upper quartile and the mean values of the number
of interacting partners per protein increase as the
fraction of disease related variations predicted as non-
perturbing increases. When all the solvent exposed
disease related mutations (RSA ≥ 20 %) per protein are
related to the number of the corresponding protein
interacting partners (Fig. 5), the trend is different from
that observed in Fig. 4. This observation highlights the
role of predicted ΔΔG values for determining the rela-
tion among protein variants with disease-related muta-
tions located in solvent exposed sites and slightly
perturbing the stability, and the number of interacting
partners in a protein-protein interaction network.
The proteins endowed with a large amount of non-

perturbing and solvent exposed disease related variations
seem to play a central role in the human protein-protein
interaction network. Likely, a variation on the protein
surface can affect the interaction affinity, affecting im-
portant biological pathways and leading to an altered
phenotype, as recently described [31]. Out of the 43

Table 2 Relation between thermodynamic properties and
structural properties in proteins with biologically functional
monomeric assembly

Disease-related variant RSA≥ 0.20 RSA < 0.20

|ΔΔG| ≤ 1 562 (23.4 %)a398 756 (31.4 %)a39

|ΔΔG| > 1 176 (7.3 %)a120 907 (37.8 %)a36

Polymorphic variant

|ΔΔG| ≤ 1 194 (59.0 %)a110 72 (21.9 %)a3

|ΔΔG| > 1 22 (6.7 %)a10 41 (12.5 %)a0
aNumber of residue predicted to be part of a protein-protein interaction patch
(for details on the prediction method, see [30]). Predicted set: 2401 disease
related variations and 329 polymorphic variations in 177 proteins

Table 3 Relation between thermodynamic properties and structural properties in proteins with biologically functional multimeric
assembly

Disease-related variations RSA≥ 0.20 RSA < 0.20

|ΔΔG| ≤ 1 660 (28.5 %) Monomera465 650 (28.0 %) Monomera24

550 (25.0 %) Complexa421 760 (31.5 %) Complexa68

|ΔΔG| > 1 213 (9.2 %) Monomera152 793 (34.2 %) Monomera24

196 (8.5 %) Complexa140 810 (35.0 %) Complexa36

Polymorphic variations

|ΔΔG| ≤ 1 198 (55.6 %) Monomera131 84 (23.6 %) Monomera5

186 (52.2 %) Complexa119 96 (27.0 %) Complexa17

|ΔΔG| > 1 29 (8.1 %) Monomera21 45 (12.6 %) Monomera9

29 (8.1 %) Complexa21 45 (12.6 %) Complexa9
aNumber of residue predicted to be part of a protein-protein interaction patch. 2316 disease related variations and 356 polymorphic variations in 191 proteins.
Predictions of INPS-3D and PRED-PPI are independent of the assembly state. RSA values were independently estimated on the monomeric and the
complex structures
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proteins for which at least 50 % of disease related varia-
tions are solvent exposed and predicted with |ΔΔG| ≤ 1,
42 % are involved in differentiation and development
processes (including insulin, calmodulin, noggin,
angiogenin), 40 % are involved in signalling processes
(including the GTPases KRAS, HRAS and NRAS, the
serine/threonine kinases PIK3CA and CHEK2), 23 %
are structural and adhesion proteins (e.g., actins
ACTA1, ACTG2, tubulin TUBA1A and integrin β2).

Conclusions
We address the problem of the perturbations of the pro-
tein stability by disease causing variations on a set of

OMIM related proteins whose native structure is well
solved. To this aim we implemented INPS3D, a tool for
computationally estimating the change in ΔΔG value as-
sociated to single residue variations, taking as input pro-
tein structure. Our strategy is to adopt a predictor that
scores at the state-of-the-art and we compare its per-
formance to other state-of-the-art predictors. INPS3D
exploits information extracted from protein structures
and outperforms the recently released INPS, based only
on sequence information. Moreover INPS3D outper-
forms state-of-the-art structure-based methods that per-
form similarly to INPS and well compares with
MAESTRO, which recently became available as a web

Fig. 4 Relation between the per-protein fraction of non-perturbing, solvent accessible variations and the corresponding number of the wild-type
partners of interactions in the human interactome. The box-plot reports the median and the lower and upper quartiles of the number of interac-
tions present in IntAct as a function of the fraction of solvent accessible, non-perturbing variations. The dashed blue line connects the average
values. Non perturbing variations are those predicted to promote a |ΔΔG| ≤ 1 kcal/mol with INPS3D and found in protein sites that are solvent
accessible. Data refers to 170 proteins with 4037 variations of our data set. Proteins with less than 5 disease-related variations or without interactomic
data reported in IntAct are excluded

Fig. 5 Relation between the per-protein fraction of solvent accessible variations and the corresponding number of the wild-type partners of
interactions in the human interactome. The box-plot reports the median and the lower and upper quartiles of the number of interactions present
in IntAct as a function of the fraction of solvent accessible variations. The dashed blue line connects the average values. Data refers to 170
proteins with 4037 variations of our data set. Proteins with less than 5 disease-related variations or without interactomic data reported in IntAct
are excluded
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server [13]. Both predictors agree up to 90 % even in re-
gions of |ΔΔG| values that can be considered below the
error limit of the predictors. We found that OMIM
disease-related variations in proteins generally promote
a much larger effect on protein stability than polymor-
phisms non-associated to diseases on the same proteins,
confirming that stability perturbation plays a crucial role
in impairing protein function (recently confirmed also in
[31]). Nevertheless, a significant fraction of disease re-
lated variations is predicted to have a small perturbation
effect on protein stability: about 50 % of variations pro-
mote a |ΔΔG| <1 kcal/mol. The structural analysis of
the corresponding proteins reveals that disease-related
variations with a slight effect on protein stability often
occur on the protein surface suggesting that they can
affect the interaction of the proteins within biological
functional networks. The analysis of protein-protein
interaction networks corroborates the hypothesis that
proteins with many non-perturbing disease-related varia-
tions are more connected in the human physical interac-
tome (IntAct) than proteins with variations predicted
with |ΔΔG| > 1 kcal/mol. The results are however indi-
cative. The error associated to the computed |ΔΔG|
value by our predictors (Table 1) is competing with the
range of small changes in protein stability and this could
increase the number of variations actually destabilising
protein stability. It should also be mentioned that for
each protein other features that are not exploited in this
analysis (e.g., solubility, post-translational modifications,
subcellular location, level of expression, etc.) may be
considered when labelling a variations as disease
causing.
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6 Solving CAGI challenges with INPS-3D 

6.1 Introduction 

The Critical Assessment of Genome Interpretation (CAGI, \ˈkā-jē\, 

https://www.genomeinterpretation.org/) is an international experiment with the goal of 

evaluating computational methods for determining the phenotypic impacts of genomic 

variants.  In particular, the aim of the experiment is to evaluate the capability of state-of-the-

art methods to make useful predictions of molecular, cellular, or organismal phenotypes from 

genomic data. Evaluating the state-of-the-art methods helps in standardizing the predictions 

by suggesting appropriate assessment methods and defining what is required for an accurate 

prediction, and also to define bottlenecks in genome interpretation that may suggest 

opportunities for further researches. The internationality of the challenge is an important 

feature that helps in engaging researchers from around the world, connecting diverse 

research areas whose expertise is essential to develop and improve methods for genome 

interpretation and also to highlight and spread innovations. 

Usually, a CAGI experiment is conducted over a period of one or two years, that starts with the 

identification/development of suitable challenges (release of unpublished data and 

formulation of related questions) followed by a period during which participants are invited 

to analyse data and submit predictions. Each CAGI edition is structured in many different 

experiments (challenges), having a similar workflow that we can generalize as follows: data 

providers plan and complete some real experiment to evaluate the phenotypic effect of some 

variants of interest; participants (competitors) are provided with genetic variants for which 

they compute predictions of the resulting phenotypes, without knowing the results of the real 

experiment; after the closure of challenges, independent assessors evaluate predictions 

against the results of real experimental or clinical data made by the data providers. CAGI 

experiments end with a conference to discuss the outcomes. Finally, participants (data 

providers, predictors and assessors) are encouraged to publish their finding. Since 2010, five 

CAGI experiments have been conducted to date. Last year, a special issue of Human Mutation 

has bene completely dedicated to the CAGI experiments (see Hoskins RA et al., 2017) and new 

scientific papers dedicated to CAGI 5 edition are now under writing process. 

CAGI challenges investigate a wide range of relations among genetic variants and phenotypes: 

i) challenges on the effect of single-base variants on RNA expression levels and protein 

activity, ii) challenges on the interpretation of exome and genome sequencing data for 

assigning complex traits phenotypes or clinical panels, iii) challenges regarding the ability to 
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predict the effect of mutations in cancer driver genes on cell growth, iv) challenges in which 

participants were asked to identify causative variants for rare diseases in a given gene panel. 

In the last two CAGI editions we participated into 16 different challenges, here we show the 

results of 5 challenges in which we use INPS and INPS-3D as principal predictor, introducing 

the methods proposed in facing these challenges and comparing the results considering the 

diverse datasets. 

 

6.2 Material and Methods  

6.2.1 INPS and INPS-3D 

A typical challenge in CAGI experiment consists in determining the stability of a protein 

variant compared to the stability of the wild type protein. This difference is called ΔΔG value 

and it corresponds to the difference in unfolding free energy between the variant and wild-

type proteins for each variant. To predict the ΔΔG we based our approaches on two main 

types of analysis:  the prediction of stability changes in mutated proteins using INPS (Fariselli 

P et al, 2015), its variant INPS-3D (Savojardo C et al, 2016) and, when possible, the structural 

analysis of the protein variations using 3D models of protein structure. 

INPS (Impact of Non-synonymous mutations on Protein Stability) is a predictor for the impact 

of non-synonymous Single Nucleotide Polymorphisms (nsSNPs) on protein stability. INPS is 

based on a Support Vector Regression (SVR) approach, trained on seven features extracted 

from the protein primary sequence, including: BLOSUM substitution score, hydrophobicity 

(wild type and variants), Dayhoff mutability index of wild type, molecular weights of wild type 

and variant and evolutionary information derived from multiple sequence alignments. 

INPS-3D (Impact of Non-synonymous mutations on Protein Stability - 3D) is a method for 

predicting the impact of non-synonymous Single Nucleotide Polymorphisms (nsSNPs) on 

protein stability, starting from 3D structure (see chapter 5). 

 

6.2.2 The challenges 

We used the predictions of INPS and INPS-3D in 5 different CAGI challenges (called by the 

CAGI commission NAGLU, NPM-ALK, FRATAXIN, CALM, TPMT-PTEN). Among these 

challenges, only in the FRATAXIN experiment the actual goal was to predict exactly the ΔΔG 

comparing it to the ΔΔG experimentally measured. In fact, in the other challenges we used 

INPS and INPS-3D predictions also to estimate other protein characteristic that are partially 

related to protein stability: i) protein relative abundance in the cell (as a measure of protein 



69 

 

stability (TPMT-PTEN challenge) ii) protein variants activity as a ratio over the activity of the 

wild type (NAGLU challenge) iii) protein variant activity as a result of a competitive growth 

assay (CALM1 and NPM-ALK challenges). 

Predicting the impact of a non-synonymous variant on protein functionality is a very complex 

task, first of all because the definition of the “functionality” of a protein is complex.  Though 

proteins have a vast range of structures and functions, most proteins share a key 

requirement: they must be stable enough to perform their role in the cell. Mutations that 

interfere with thermodynamic stability or folding often cause accelerated turnover and 

lowered steady-state abundance in cells. Consequently, stability-related reduced protein 

abundance is a major cause of loss-of-function in monogenic disease (Yue P et al, 2005).   

 

6.3 RESULTS 

6.3.1 FRATAXIN 

Frataxin is a highly conserved protein found in prokaryotes and eukaryotes that is required 

for efficient regulation of cellular iron homeostasis. Reduced expression of frataxin is the 

cause of Friedreich's Ataxia (FRDA), a lethal neurodegenerative disease. 8 single amino acids 

variants of frataxin have been associated to FRDA (Corey DR, 2016). On the other side, the 

role of frataxin in cancer is still ambiguous: studies have shown that frataxin protects tumour 

cells against oxidative stress and apoptosis, but also acts as a tumour suppressor. (Schulz TJ et 

al, 2006; Guccini I et al, 2011) 

The 8 single amino acid variants included in the Frataxin challenge were selected from the 

COSMIC (Catalog of Somatic Mutations in Cancer) database. These are somatic variants 

associated with neoplastic diseases and/or detected in cancer tissues. For each variant, 

participants were asked to predict the ΔΔG value, which is the difference in unfolding free 

energy between the mutant and wild-type proteins, in kcal/mol.  

 

For this challenge, we used as protein 3D structure the PDB (Berman HM et al, 2002) entry 

1EKG, chain A. 

First we aligned the protein sequence against Uniref90 (The UniProt Consortium, 2017) to 

obtain a Multiple sequence alignment (MSA). We made the predictions using INPS-3D, and we 

assigned to each prediction value a standard deviation of 0.5 to highlight that we trust our 

predictor. 



70 

 

After the release of experimental values of ΔΔG for each of the 8 variants, we compute some 

statistics to assess our methods. We obtain a Pearson correlation of 0.71 and a Spearman of 

0.62, which are enough good to still trust our approach.  

 

6.3.2 TPMT and PTEN 

Thiopurine S-methyl transferase (TPMT) is a single domain enzyme involved in the 

metabolism of thiopurine drugs (Coelho T et al, 2016). Its product is the 6-mercaptopurine, 

which inhibits de novo purine synthesis leading to cell death. 6-mercaptopurine has been 

used as a chemotherapeutic agent for Acute-Lymphoblastic Leukemia (ALL) for decades and 

azathioprine which is converted to 6-mercaptopurine is used to treat autoimmune diseases 

and to prevent organ rejection after transplant. Overdose with thiopurines leads to treatment 

interruptions that cause poorer health outcomes and in some cases a life-threatening 

myelosuppression and hepatotoxicity (Relling MV et al, 2006). 

PTEN (Phosphatase and TEnsin Homolog) dephosphorylates phosphatidylinositol (3,4,5)-

triphosphate (PIP3), an important secondary messenger molecule promoting cell growth and 

survival through signalling cascades including those controlled by AKT and mTOR (Song MS et 

al, 2012). Its important regulatory roles in pro-oncogenic processes results in high rates of 

PTEN missense mutation in diverse cancers including glioma, endometrial cancer, and 

melanoma. Germline variation in PTEN results in a collection of developmental abnormalities 

grouped as PTEN Hamartoma Tumor Syndromes (PHTS) (Eng C, 2003), and is also associated 

with autism (Butler MG et al, 2005). 

 

For this challenge the data provider is the Fowler laboratory (Fowler DM, Fields S, 2014), that 

decided to measure the stability of the variant protein as the abundance of the fusion protein 

and thus the EGFP level of the cell, a protein property that has the advantages of being both 

informative of variant effect and generalizable to many proteins. To do so, a library of 

thousands of PTEN and TPMT mutations was assessed to measure the stability of the variant 

protein using a multiplexed variant stability profiling (VSP) assay, which detects the presence 

of EGFP fused to the mutated PTEN and TPMT protein respectively.  

The dataset is composed by 3,736 PTEN and 2,924 TPMT missense/stop-gain variants. 

So practically, the aim of the challenge is to predict the effect of each variant on TPMT and 

PTEN on protein stability via prediction of the abundances of the fusion protein.  

We used protein sequences derived from UniProtKB (P51580 for TPMT and P60484 for 

PTEN) and the protein structure from PDB 2BZG, chain A (TPMT) and 1D5R, chain A (PTEN). 
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Our approach differs for missense and stop-gain variants: for missense variants we use the 

prediction of  INPS-3D if variant in 3D structure and of INPS for the remaining variants; for 

stop-gain variants we predict the stability as the ratio of the variant length over the WT 

length. 

For the calibration procedure of the final scores, we used 11 known protein variants of TPMT 

reported in a functional characterization study (Salavaggione OE et al, 2005) and 27 PTEN 

variants collected from UniProt and from a functional characterization study (Lee JO et al, 

1999). INPS and INPS-3D outcomes on these variants are used to fit a linear model for each 

protein to remap raw stability change predictions onto the requested range (1=wild type, 

0=totally destabilizing, >1 stabilizing).  

After the releasing of the experimental results, we assess our prediction computing the 

Pearson correlation coefficient. Considering TPMT, the Pearson coefficient is 0.40; for the 

PTEN dataset is 0.51, while considering the two protein dataset together we obtain a Pearson 

coefficient of 0.44. If we consider only the missense variant, the Pearson coefficient over the 

two datasets increases to 0.46.  

One of the major limits of this challenge is that we used a predictor of ΔΔG to score the 

abundance of protein variants, but stability and abundance are two different concepts. In fact, 

many other mechanisms have an effect on protein abundances. 

 

6.3.3 NAGLU 

NAGLU is a lysosomal glycohydrolyase that hydrolyzes N-acetyl D-glucosamine from the non-

reducing end of heparan sulfate (HS). In humans, deficiency of NAGLU may lead to a rare 

disorder called Mucopolysaccharidosis IIIB or Sanfilippo B disease (O'Brien JS, 1972; von 

Figura K, Kresse H, 1972; Valstar MJ et al, 2008) an autosomal recessive disorder affecting 

lysosomal storage. Specifically, lysosomal HS accumulation causes a neurodegenerative 

disease whose clinical presentation is associated with many symptoms: from intellectual 

disability to dementia, including behavioural disturbances. The clinical panel is very negative, 

because NAGLU deficiency may also lead to death in the second or third decade.  

 

BioMarin Pharmaceutical functionally assessed the enzymatic activity of each of the 165 novel 

missense mutations in the ExAC dataset.  
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The challenge consists in predicting the ratio of the activity of the mutated protein over the 

wild type enzyme; the prediction is a numeric value ranging from 0 (no activity) to 1 (wild-

type level of activity) or greater than 1 if the predicted activity is greater than wild-type 

activity (e.g. 0.5 means 50% of wild-type and 1.5 means 150% of wild-type activity). The 

predictions are assessed against the numeric values actually measured for each mutation in 

the enzyme assay. 

Recently the structure of NAGLU became available (Ficko-Blean E et al, 2008) with a good 

resolution of 2.9 Å. 

Our approach consists in predicting the protein stability with INPS-3D  and then calibrate 

these predictions using a dataset of 308 NAGLU variants derived from UniProt, ClinVar 

(Landrum MJ et al, 2016), HGMD (Stenson PD  et al, 2012) and dbSNP (Sherry ST et al, 2001), 

in which 87 protein variants over 308 are already associated with the Sanfilippo B disease. 

We used the distribution of their scores computed with INPS-3D to define the threshold that 

discriminates functional protein variants from not stable and not functional protein variants. 

We also consider an expert-based structural analysis taking into consideration the relative 

solvent accessibility area of each mutated residue and the proximity towards important 

residues of the active site that are known to impact the protein function 

We assess our method towards experimental results: we obtained a low Pearson correlation 

coefficient (0.24) and a good Spearman coefficient (0.65). 

 

6.3.4 CALM1 

Calmodulin is a calcium-sensing protein encoded by the human genes Calmodulin1 (CALM1), 

Calmodulin2 (CALM2), and Calmodulin3 (CALM3), each encoding exactly the same calmodulin 

protein sequence. Calmodulin is involved in many different cellular processes, and is 

especially important for neuron and muscle cell function. Calmodulin has high clinical 

relevance, as variants of the protein are causally associated with two cardiac arrhythmias: 

catecholaminergic ventricular tachycardia (Nyegaard M et al, 2012) and long QT syndrome 

(Crotti L et al, 2013). 

A team in Fritz Roth’s Lab at the Donnelly Centre (U. Toronto) and Lunenfeld Tanenbaum 

Research Institute (Sinai Health Systems), has assessed a large library of calmodulin variants 

using a high-throughput yeast complementation assay. This assay reveals the overall impact 

of each variant on the ability of the protein to function in the cell. The functionality of the 

protein variant is measured with a complementation assay based on ability of calmodulin 

variants to rescue a yeast strain carrying a temperature-sensitive allele of the yeast 
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calmodulin orthologue CMD1 (Sun S et al, 2016). In fact, CMD1 is an essential gene, and at the 

restrictive temperature, CMD1 temperature-sensitive mutants do not grow. 

The yeast-based functional assays were established and validated in a previous study (Sun S 

et al, 2016), and they were also validated for the ability to separate pathogenic from non-

pathogenic variants (Weile J et al. 2017). The functionality is quantified as a “fitness score, 

that is a log ratio scaled such that 1 represents full function and 0 represents complete loss of 

function.  

The final provided dataset contains 1,813 variants of human Calmodulin.  

The challenge consists in predicting the fitness score (0 complete loss of function, 1 wild-

type). We use the protein structure 1CLL, chain A, stored in PDB. 

We considered stabilizing ΔΔG (ΔΔG>0) as negative predictions of the fitness scores, and we 

changed their sign, taking the opposites (ΔΔG value v transformed as -|v|). We directly 

normalized the predictions in the range 0-1, as requested by the challenge, where 0 means no 

growth at the restrictive temperature and 1 a wildtype-like growth fitness.  

After the releasing of the experimental data, we compute some statistics to assess our method. 

The Pearson correlation coefficient result to be very low (0.17). 

The main critical issues were: i) the experiment has been performed in yeast system, not 

using human cells; ii) the experimental scores are not a direct measure of a percentage of wild 

type activity, but the results of a competitive growth assay. We tried to score the result of a 

competitive growth assay using a predictor of protein stability, and in this specific case the 

outcome suggests that the approach should be revise because our predictions are not so 

generalizable. 

 

6.3.5 NPM- ALK 

NPM-ALK is a fusion gene originally described in positive anaplastic large cell lymphoma 

(ALCL). In this tumour, the presence of an NPM oligomerization domain promotes ligand-

independent NPM-ALK dimerization, leading to ligand-independent activation of ALK, 

resulting in constitutive kinase activity, self-phosphorylation and continuous signalling. 

Although the physiological function and regulation of full-length kinase ALK remains poorly 

characterized, aberrant expression of constitutively activated NPM-ALK has been clearly 

established as the leading cause of ALK-positive ALCL.  

However, recent studies suggest that inhibitor efficacy may be hampered by several 

resistance mechanisms including point mutations in ALK (Lovisa F et al, 2015; Lu L et al, 

2009). In this context, the inhibition of the molecular chaperone Hsp90 represents an 
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alternative approach to overcoming resistance to kinase inhibitors, since NPM-ALK, like many 

other kinases, is strictly dependent on molecular chaperones for its maturation and activity 

(Bonvini P et al, 2002). Conformational stability of ALK is known to be maintained by Hsp90, 

but the principles of this interaction, the specific domains or motifs recognized, and the 

impact of mutations on chaperone activity remain obscure. 

 

The Bonvini laboratory has examined the kinase activity and Hsp90 binding affinity of a series 

of NPM-ALK constructs harbouring single amino acid mutations, multiple amino acid 

mutations, or deletions in the ALK catalytic domain to define the manner by which nascent 

NPM-ALK kinase is recognized by Hsp90, and how Hsp90 helps to facilitate NPM-ALK folding, 

activity, and/or stability. Structural motifs and specific residues in or immediately adjacent to 

the NPM-ALK catalytic domain were analysed (Bonvini P et al, 2004; Tartari CJ et al, 2008) to 

identify the determinants of Hsp90 interaction based on the tendency of NPM-ALK to fold.  

Participants were asked to submit predictions of both the kinase activity and the Hsp90 

binding affinity of each mutant protein relative to the reference.  

Our approach starts with the structural analysis of the protein, taking into consideration the 

relative solvent accessibility area of each variation and the lateral side chain distance to the 

ATP-binding site of the domain. Also the proximity towards important motifs, like the well-

known Y-x-x-x-Y-Y motif called A-loop, was taken into account to define the impact of each 

variation on protein function and its influence in the affinity to Hsp90. We use the use the ΔΔG 

values as predicted by INPS-3D to determine the effect of mutations of the different amino 

acids. For multiple mutations, we consider the mutation with the more severe effect. 

Finally, the confidence of each prediction was determined considering the information about 

specific protein variations described in literature, when available.  

Thanks to this approach that is highly manually curated and very protein specific, we 

obtained a Pearson Coefficient of 0.85 in the task of determining the protein activity. 

The prediction of the binding affinity towards Hsp90 on the contrary performs badly, and we 

may speculate that we lack the structural analysis of the interface between the NPM 

oligomerization domain/s and the ALK catalytic domain/s as well as the oligomerization 

surface of the NPM-ALK fusion protein.  

 

6.4 Conclusion 

The interest in the genotype-phenotype relation is increasing, in particular for the possibility 

of predicting with a computational approach the results of in vitro experiment. Testing and 
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scoring the available predictors with specific datasets and results of experiments is important 

for understanding the state of the art, to define our confidence in computational methods and 

to highlights bottlenecks and issues that need further studies.  

Using the predictions of INPS and INPS-3D in different challenges, we confirm that the tools 

perform well when used specifically for the task for which they have been trained (the 

prediction of protein stability). When we try to correlate protein stability to protein 

abundance or protein activity, the performance is not so good, but we can improve our 

computational approach when we perform a structural analysis of the protein. If the 

computational approach is enriched which protein structure analysis and manual curation, 

including the available knowledge find in literature, the performance may get better also 

when we use protein stability to predict protein activity (e.g. NPM-ALK challenge if compared 

with the results of CALM1 challenge). In conclusions, we are in the right direction to fill the 

gap between computational predictions and in vitro experiment when we train predictors for 

very specific task and we use them for the same kind of experiments (e.g. protein stability 

experiment and ΔΔG predictor like INPS-3D). To enlarge the analysis to related experiments, 

we need to include manual curation and protein structural analysis.  
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7 Predicting phenotypes from exomes 

7.1 Contribution to the state of the art 

We present the assessment of three different challenges of the Critical Assessment Genome 

Interpretation 4 edition (CAGI4, see paragraph 6.1) involving exome-sequencing data: Crohn’s 

disease, bipolar disorder, and warfarin dosing. We discuss the range of techniques used for 

phenotype prediction as well as the methods used for assessing predictive models. 

Additionally, we outline some of the difficulties associated with prediction evaluation: the 

lessons learned from the exome challenges can be applied to both research and clinical efforts 

to improve phenotype prediction from genotype. This is a step forward in the direction of 

precision medicine, aiming to predict a patient’s disease risk and best therapeutic options by 

using that individual’s genetic sequencing data.  
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For theCAGISpecial Issue

Abstract
Precision medicine aims to predict a patient’s disease risk and best therapeutic options by using

that individual’s genetic sequencing data. The Critical Assessment of Genome Interpretation

(CAGI) is a community experiment consisting of genotype–phenotype prediction challenges; par-

ticipants build models, undergo assessment, and share key findings. For CAGI 4, three challenges

involved using exome-sequencing data: Crohn’s disease, bipolar disorder, and warfarin dosing.

Previous CAGI challenges included prior versions of the Crohn’s disease challenge. Here, we dis-

cuss the rangeof techniquesused for phenotypeprediction aswell as themethodsused for assess-

ing predictivemodels. Additionally, we outline someof the difficulties associatedwithmaking pre-

dictions and evaluating them. The lessons learned from the exome challenges can be applied to

both research and clinical efforts to improve phenotype prediction from genotype. In addition,

these challenges serve as a vehicle for sharing clinical and research exome data in a secure man-

ner with scientists who have a broad range of expertise, contributing to a collaborative effort to

advance our understanding of genotype–phenotype relationships.

K EYWORDS

bipolar disorder, Crohn’s disease, exomes, machine learning, phenotype prediction, warfarin

1 INTRODUCTION

Precision medicine aims to use a patient’s genomic and clinical data to

make predictions aboutmedically relevant phenotypes such as disease

risk or drug efficacy (Ashley, 2015; Ashley et al., 2010).

The Critical Assessment of Genome Interpretation (CAGI) is a com-

munity experiment, which aims to advance methods for phenotype

prediction from genotypes through a series of “challenges” with real

data (CAGI, 2011). Exome-sequencing data, which captures exons and

nearby flanking regulatory regions, is already being used clinically

to solve medical mysteries with well-defined symptoms (Brown &

Meloche, 2016). However, in order to advance precisionmedicine, clin-

icians and scientists will need to be able to make inferences about dis-

ease risk or drug efficacy from genetic data. Interpretation of genetic

data is one of the major difficulties in the implementation of preci-

sion medicine (Fernald, Capriotti, Daneshjou, Karczewski, & Altman,

2011).

CAGI is an example of the Common Task Framework, a phrase

coined by Mark Liberman to describe the approach of using shared

training and testing datasets and evaluation metrics to advance

machine learning (Committee on Applied and Theoretical Statistics;

Board on Mathematical Sciences and Their Applications; Division on

Engineering and Physical Sciences; National Academies of Sciences,

Engineering, and Medicine, & Schwalbe, 2016; Donoho, 2015). The

Common Task Framework has been called the “secret sauce” behind

the recent successes inmachine learning (Donoho, 2015). Startingwith

common task challenges in the 1980s for machine translation, this

approach has led to significant gains in speech recognition and dia-

log systems, protein structure prediction, biomedical natural language

processing, autonomous vehicles, and collaborative filtering for con-

sumer preferences (Bell & Koren, 2007; Morgan et al., 2008; Moult,

Fidelis, Kryshtafovych, Schwede, & Tramontano, 2014; Thrun et al.,

2006; Walker et al., 2001). Through this same approach, CAGI aims to

push forward the field of precisionmedicine.

At CAGI 4 held in 2016, three challenges involved making predic-

tions using exome sequencedata: aCrohn’s disease challenge, a bipolar

disorder challenge, and a warfarin dosing challenge. These challenges

represent the spectrum of phenotypes seen in clinical practice. Bipolar

disorder and Crohn’s disease are discrete phenotypes, with the former

being a clinical diagnosis (basedonmeeting clinical criteria) and the lat-

ter a pathological diagnosis (based on biopsies). Therapeutic warfarin

dose, on the other hand, is a continuous phenotype.

TheCrohn’s disease challengehasbeenapart of previousCAGI iter-

ations, whereas the bipolar disorder and warfarin dosing challenges

debuted during CAGI 4. We will describe the nature of each challenge

in greater detail. The number of groups participating in each challenge

can be found in Table 1.
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TABLE 1 The number of predictors and predictions for each CAGI
challenge

Challenge Number of predictors
Number of
predictions

Crohn’s disease
exomes challenge

CAGI 2 – 10 groups CAGI 2 – 33
predictions

CAGI 3 – 14 groups CAGI 3 – 58 (+3 late)
predictions

CAGI 4 – 14 groups CAGI 4 – 46
predictions

Bipolar exomes
challenge

CAGI 4 – 9 groups CAGI 4 – 29
predictions

Warfarin exomes
challenge

CAGI 4 – 3 groups CAGI 4– 9 predictions

1.1 Crohn’s disease challenge

Crohn’s disease is a chronic inflammatory bowel disease marked by

transmural inflammation of the gastrointestinal tract that can occur

anywhere from the mouth to the rectum (Cho, 2008). Symptoms

include pain and debilitating diarrhea, which can lead to malnutri-

tion (Cho, 2008). Monozygotic twin studies have shown a concor-

dance of 40%–50%, and genome-wide association studies have iden-

tified genetic risk loci (Cho, 2008; Halfvarson, Bodin, Tysk, Lindberg,

& Jarnerot, 2003). Age of onset is typically between 20 and 40 years

old, but early age of onset, such as in early childhood, is associatedwith

more severe disease features (Uhlig et al., 2014).

The2011 (CAGI 2) dataset has 56 exomes (42 cases, 14 controls), all

ofGermanancestry (Ellinghauset al., 2013). The2013 (CAGI3) dataset

has 66 exomes (51 cases, 15 controls). Though these sampleswere also

of German ancestry, cases were selected from pedigrees of German

families with multiple occurrences of Crohn’s disease. As such, some

of these cases were related. For the most part, the samples sequenced

as controls were unrelated healthy individuals; the exceptions to this

were the unaffected parents of three cases and the unaffected twin

of one case. The most recent challenge, CAGI 4 in 2016, was to iden-

tify cases from controls in 111 unrelated German ancestry exomes (64

cases, 47 controls). For CAGI 4, submitting groups were allowed to

use the data from the Crohn’s disease CAGI challenges of 2011 and

2013. In all iterations of the challenge, groups were asked to report

a probability of Crohn’s disease (between 0 and 1) for each individual

and a standard deviation representing their confidence in that predic-

tion. For the most recent Crohn’s disease evaluation, teams were also

asked to predictwhether age of onsetwas greater or less than10 years

of age; an age cutoff selected by CAGI based on the literature (Uhlig

et al., 2014). Additional details of the challenges can be found in Supp.

Exhibit 1.

1.2 Bipolar disorder challenge

Bipolar disorder is a mood disorder marked by elevated mood (mania

or hypomania) and depressed mood that disrupts an individual’s abil-

ity to function (Craddock & Sklar, 2013). In the general population,

the lifetime risk of bipolar disorder is 0.5%–1% (Craddock & Jones,

1999). However, bipolar disorder has a high component of heritabil-

ity, with studies demonstrating a 40%–70% monozygotic twin con-

cordance (Craddock & Jones, 1999). In this CAGI 4 challenge, 1,000

exomes of unrelated bipolar disorder cases and age/ancestry-matched

controls of Northern European ancestry were provided. Five-hundred

exomes were used as the training set and 500 exomes were used for

the prediction set (Monson et al., 2017). Groups were asked to report

a probability of bipolar disorder (between 0 and 1) for each individ-

ual and a standard deviation representing their confidence in that pre-

diction. Additional information on the challenge can be found in Supp.

Exhibit 2.

1.3 Warfarin dosing challenge

Warfarin is an anticoagulant with over 30 million prescriptions writ-

ten in 2011 (IMS Institute of Healthcare Informatics, 2012). Warfarin

remains a clinical stapledespite the introductionof novel oral anticoag-

ulants because of multiple factors—warfarin’s lower cost, longer half-

life, and clinical indications for which novel oral anticoagulants have

not yet been approved (Bauer, 2011). However, warfarin is responsible

for one-third of hospitalizations due to adverse drug events because

of its narrow therapeutic index and high interindividual dose variabil-

ity (Budnitz, Lovegrove, Shehab, & Richards, 2011). Both clinical and

genetic factors affect the therapeutic dose of warfarin (Klein et al.,

2009). For this challenge, participants were provided with exomes

of African Americans on tail ends of the warfarin dose distribution

(≤35 mg or ≥49 mg) (Daneshjou et al., 2014). Clinical covariates were

provided for all exomes. The training set consisted of 50 exomes, and

participants submitted dose predictions with standard deviations on

53 test set exomes. Additional details of the challenge can be found in

Supp. Exhibit 3.

2 METHODS

2.1 Data distribution

Data were distributed to the participants who consented to the CAGI

data use agreement. Data providers worked with their home institu-

tion to ensure adherence with local privacy regulations and predicting

groups agreed not to share the anonymized data. Data were provided

as described above, with genetic variant data shared in the VCF file

format.

2.2 Predicting phenotypes

Participants required to return a simple text file with appropriate pre-

dicted values (such as disease status and confidence in prediction) for

each sample. They were also provided with a validation script to check

their output formatting. Participants were asked to submit a methods

description for each submission. The prediction results from selected

groups that submitted predictions andmethods descriptionswere pre-

sented at the CAGI meeting. Additionally, the ground truth data and

scoring scripts used to perform the evaluation were shared with par-

ticipants.
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2.3 Data quality

For the Crohn’s disease and bipolar disorder exome challenges, biases

in the data were assessed using principal component analysis and clus-

tering after pruning for linkage disequilibriumusing plink (Purcell et al.,

2007).

For thewarfarin challenge, datahadpreviously undergoneQCusing

ancestry informative markers to confirm self-reported ancestry and

identity by state (IBS) analysis in order to ensure that sampleswere not

related, as previously described (Daneshjou et al., 2014).

2.4 Assessing discrete phenotypes (Crohn’s disease

and bipolar disorder)

A simple accuracy of prediction per sample score, such as derivable

from setting a threshold for prediction (such as 0.5), although tanta-

lizing in its simplicity neither supports the goals of CAGI nor is it repre-

sentative of a likely clinically relevant scenario for prediction. Because

the genetic datasets from CAGI are drawn from case-control studies,

as well as pedigree studies in families with a strong burden of disease,

it does not represent a random sampling of the population. Requiring a

fixed threshold for evaluation and reporting a basic accuracy score of

prediction in such a dataset would obscure interpretation. Also, using

this as a figure of merit for ranking encourages participants to opti-

mize their system predictions for the anticipated case/control distri-

bution instead of focusing on features that selectively prioritize and

rank disease likelihood in the absence of that calibration. The use of

receiver operator characteristics (ROC) curves for genomic test eval-

uation has been previously investigated by Wray, Yang, Goddard, and

Visscher (2010).

The ROC offers many advantages for evaluating a test, and is often

used to characterize clinical tests. The shape of a ROC curve can help

differentiate between highly sensitive tests, which could rule in a pos-

sible diagnosis, and highly specific tests that could rule out a diagnosis.

The prediction of Crohn’s disease status from sequencing data might

beused in either of those situations depending on clinical presentation,

risk factors, or stage of patient evaluation. Additionally, ROC curves

allow easy selection of a classification threshold (based on select-

ing a position on the curve). Based on the selected threshold, a pos-

itive or negative likelihood ratio can be derived and applied in stan-

dard evidence-based techniques of patient diagnosis, which rely on a

Bayesian framework that takes into account the pretest probabilities

and the characteristics of a given test depending on the threshold cho-

sen for prediction (Fagan, 1975).

We evaluated the robustness of the prediction accuracywhenmak-

ing predictions on different subsamples of exomes and assessed the

confidence intervals reported by the participants.

To capture confidence intervals on the predictions, multiple

samples with replacement were drawn. Each prediction was then

modified by adding a random amount drawn from a normal distribu-

tion with a mean of zero and a standard deviation equivalent to the

standard deviation reported for the original prediction. If no confi-

dence interval was reported for the original prediction, the standard

deviation was taken to be zero. If a prediction for a particular exome

was missing, the prediction score for that sample was set to the mean

reported prediction value in that submission. In order to compare sub-

missions by a single figure of merit, the average area under the ROC

curves from the bootstrap sampling was used, accompanied by the

bootstrapped confidence interval around that area under the curve,

to estimate the robustness of differences between prediction perfor-

mances. The evaluation scripts were provided to all participants.

A cross-validated logistic regression-based metaclassifier using

lasso regularizationwas also trained on the submissions as features for

CAGI 4 Crohn’s disease and CAGI 4 bipolar disorder. This step allowed

us to assesswhether combining the features selected across the differ-

ent groups would improve prediction over a single method. If a meta-

classifier could perform better than any single method, then a combi-

nation of methodsmight lead tomeaningfully better performance.

2.5 Assessing continuous phenotypes (therapeutic

warfarin dose)

For the warfarin exomes challenge, several metrics of assessment

were used. Each participant provided a predicted therapeutic dose of

warfarin for each individual as well as a standard deviation for that

prediction.

To look at the amount of variation in dose explained by the pre-

dicted doses, we used linear regression with the linear model function

(lm) in the R statistical package (v 2.15.3). We evaluated each method

using the R2 and the sum of squared errors. Additionally, we compared

each prediction against one of the best performingwarfarin-predictive

algorithms, the International Warfarin Pharmacogenetic Consortium

(IWPC) algorithm (Klein et al., 2009).

To assess, on average, how many participant-provided standard

deviations the predicted dose was from the actual dose, we used a

mean of the absolute value of the z score for each prediction, as seen in

Equation (1). Here, dose_actual is the known therapeutic dose of war-

farin for each individual i, whereas dose_predicted is the therapeutic

dose predicted by that group for that individual. SD_predicted is the

standard deviation for each individual’s predicted dose, as provided by

the participant’s predictionmethod. The number of individuals is n.

∑n
i=1

||||
dose_actuali − dose_predictedi

SD_predictedi

||||
n

(1)

To assess the range of the each prediction’s standard deviation com-

pared with the predicted dose, we calculated the mean of the coeffi-

cient of variation, which was the mean of the standard deviation for

each prediction divided by the predicted dose, as seen in Equation (2).

∑n
i=1

SD_predictedi
dose_predictedi

n
(2)

We also evaluated the mean absolute value of the z score multi-

plied by the mean coefficient of variation for each method. This value

allowed us to assess the mean z scores with a penalization for mean

z scores whose values were closer to 0 because of larger standard

deviations.
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F IGURE 1 Clustering of patients from the CAGI 2 Crohn’s disease challenge. The black and gray bars at the bottom represent the controls; the
red represents the cases. Many of the controls cluster together, likely due to batch effects. For instance, the controls represented in black were
sequenced separately from the gray controls and the cases

We calculated rho andP values using the spearman rank correlation

between (1) each group’s predictedwarfarin doses and the actual ther-

apeutic doses across individuals and (2) each group’s predicted war-

farin doses and the IWPC-predicted doses across individuals. These

calculations were made with the spearmanr command from the stat

package in scipy (python v 2.7.5).

3 RESULTS

With each year, CAGI has expanded the number of challenges and par-

ticipants. Table 1 displays the number of participants and predictions

for each CAGI challenge.

3.1 Crohn’s disease exomes challenge (CAGI 2–4)

For the 2011 Crohn’s disease (CAGI 2) challenge, during the assess-

ment phase, a substantial batch effect was discovered in the data as

a side effect of sample preparation and sequencing (Fig. 1). Overall,

the control samples that clustered separately due to this batch effect

had fewer variants reported that did not match the reference genome.

The participants were not aware of this batch effect; their methods

were not designed to exploit it. However, this raises the possibility

that techniques that used a very large list of genes were more likely

to correctly identify case samples as coming from individuals with

Crohn’s disease. Indeed, many different methods did better than

random based on AUC, with a maximum AUC of 0.94, and in general

approaches that favored a large list of potentially Crohn’s disease-

related genes and gave more weight to rarer variants did the best. A

full description of all methods used by the participants can be found in

Supp. Exhibit 1:CAGI 2. Supp. File 1 shows comparative results of the

CAGI 2 Crohn’s disease challenge predictive methods. It is certainly

biologically plausible that increased burden of variation in a large

number of Crohn’s disease-related genes leads to increased likelihood

of disease; however, it is also possible that there was systematic over-

reporting of variation as a batch effect. Therefore, it was important to

re-evaluate withmore data.

In the 2013 CAGI 3, a much greater effort was made to carefully

collect and prepare samples in a completely consistent way. In this

instance, case samples were collected from German families with a

particularly high burden of Crohn’s disease (two ormore affected fam-

ily members), including a pair of twins discordant for the disease, and

another pair of twins concordant with the disease. Additional healthy

controls were drawn from the unaffected German general popula-

tion. During the 2013 CAGI 3, there was once again a substantial dif-

ference in clustering between cases and controls, but in this dataset

there was substantially more homogeneity in the cases. Individuals

from different case families clustered much more closely with each

other than with unrelated controls (Fig. 2). This prompted two possi-

ble hypotheses. The first is that theremight be a hidden founder effect,

and these families with a high burden of disease may all actually be

closely related. The second is that reduced heterogeneity and perhaps
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F IGURE 2 Clustering of samples for CAGI 3 Crohn’s disease challenge. Black represents controls, whereas red represents cases. This dataset
included healthy family members of cases as well as random controls. Samples with a “ped” designation in the sample name came from a pedigree;
samples that share the same “ped” number came from the same pedigree

increased ancestor consanguinity may contribute to increased risk of

Crohn’s disease in these families with a high burden. Either one alone

or amixture of both possibilities is biologically plausible. In this instan-

tiation of CAGI, groups that simply did some version of partitioning the

test datasets based on hierarchical clustering did quite well, and the

top performing methods had an AUC of 0.87. Once again, all of these

methods were implemented without awareness of the bias in the data.

A full description of all methods used by the participants can be found

in Supp. Exhibit 1:CAGI 3. Supp. File 2 shows comparative results of the

CAGI 3 Crohn’s disease challenge.

In CAGI 4, 111 exomes were derived from a mix of 64 Crohn’s

disease patients, with a skew toward early onset of disease, and 47

healthy controls, all taken from individuals of German descent. With

this data, the simple separation of cases and controls based on genetic

variants was not present (Fig. 3), suggesting the problems with batch

effects and sampling bias were no longer present; the only noticeable

structure indicated the possibility of a few related samples, as seen

in the PCA and IBD plots shown in Supp. Figures S1 and S2. Corre-

spondingly, the peak performance dropped from previous CAGI iter-

ations down to an AUC of 0.72. However, given the elimination of

biases in the data, this incarnation of the Crohn’s disease challenge is

likely the best reflection of how the prediction methods perform. A

metaclassifier created by the assessment team using all submitted

methods for this challenge, as shown in Supp. Figure S3, had an AUC

of 0.78, a small improvement over the top method. The distribution

of AUCs across methods is shown in Figure 4. A full description of all

methods used by the participants can be found in Supp. Exhibit 1:CAGI

4. Supp. File 3 shows comparative results of theCAGI4Crohn’s disease

challenge.

The top approach in CAGI 4 used a compiled list of genes and

genomic regions associated with Crohn’s disease from prior studies,

used imputation to evaluate risk contribution from known regions

associated with Crohn’s disease but not covered by exome sequenc-

ing, and used the Welcome Trust Case Control Consortium (WTCCC)

Crohn’s disease genotyping array data to train a disease classifier to

score relative risk for each sample.

Across participants, numerousmethodswere used for selecting the

covariates, highlighting the many different approaches to building a

Crohn’s disease classifier. Similar to the top approach, many groups

used variants previously found to be associated in genome-wide asso-

ciation studies; the NHGRI catalog was a popular choice to iden-

tify these associated variants (Welter et al., 2014). Other approaches

relied on gene lists of associated and “predicted”Crohn’s disease genes

to select variants of interest. To create the “predicted” list of Crohn’s

disease genes, groups used a variety of methods. Examples include

using (1) existing tools such as Phenolyzer, which associates disease

terms with genes based on prior research, expands the gene list by

using gene–gene relationships, and then creates a ranked list of can-

didate genes; (2) creating gene lists based on GO pathways enriched

with Crohn’s disease-associated variants; and (3) using natural lan-

guage processing to identify genes of interest from PubMed abstracts

(Ashburner et al., 2000; Yang, Robinson, & Wang, 2015). From a gene

level, different groups would then devise different strategies to select

variants of interest. For some approaches, population level frequency



1188 DANESHJOU ET AL.

F IGURE 3 Clustering of samples for CAGI 4 Crohn’s disease challenge. Black represents controls, and red represents cases

datawas used to help distinguish variantsmore likely to be pathogenic.

Other methods relied on pathogenicity prediction tools such as SNAP,

PON-P2, SNPs&GO, and Variant Effect Predictor to inform variant

selection andweighting (Bromberg & Rost, 2007; Calabrese, Capriotti,

Fariselli, Martelli, & Casadio, 2009;McLaren et al., 2010; Niroula, Uro-

lagin, & Vihinen, 2015).

A range ofmachine learning approacheswere used to actually build

the classifiers: naïveBayes, logistic regression, neural nets, and random

forests. Additionally, some groups improved on prior iterations by cre-

atingmetaclassifiers based on combinations of prior methods.

3.2 Bipolar disorder exomes challenge (CAGI 4)

As noted, a substantial difference between the Crohn’s disease phe-

notypic prediction challenge and the bipolar disorder challenge was

that a substantial amount of training data was provided for the bipolar

disorder challenge, with 500 of the 1,000 exomes randomly selected

and provided as training data for the challenge. These samples were

unrelated, and analysis steps assessing the relationships between sam-

ples can be found in Supp. Figs. S4–S6. The top performing group

had a method with an AUC of 0.64. The distribution of AUCs across

methods is shown in Figure 5. Althoughmany groups used approaches

similar to those used for the Crohn’s disease challenge, the top per-

forming group (which did not apply this method to Crohn’s disease

data) treated the genotype data as linear features and trained a neu-

ral network with three hidden layers, with the middle layers look-

ing at local features in the linear space of the ordered SNPs of the

F IGURE 4 CAGI 4 Crohn’s disease challenge distribution of AUCs
across all methods

VCF file, tuning for performance using cross-validation on the test

data. Importantly, this approach used essentially no prior knowledge of

genetics or the results of prior studies on disease–gene relationships.

Supp. File 4 shows comparative results of the CAGI 4 bipolar disor-

der challenge. Overall descriptions of predictionmethods are available

under Supp. Exhibit 2: CAGI 4. A metaclassifier created by the assess-

ment team using all submitted methods for this challenge, as shown in
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F IGURE 5 CAGI 4 bipolar disorder challenge distribution of AUCs
across all methods

Supp. Figure S7, had an AUC of 0.64, which was not notably different

from the topmethod.

3.3 Warfarin exomes challenge (CAGI 4)

With the warfarin exomes challenge, similar to the Crohn’s disease

challenge, many groups utilized a priori data to create a list of covari-

ates to use for their models. This included known pharmacokinetic and

pharmacodynamic warfarin genes, genes mentioned in the literature,

and also using tools to find functional neighbors of the known gene set.

One prediction method (Group 50, Prediction 1) was ahead of the

others when looking acrossmultiple performancemetrics described in

the methods section—R2, mean absolute value of z score, and mean

absolute value of z score multiplied by the coefficient of variation

(Fig. 6A–D; Supp. Table S1). The R2 of the top prediction method was

0.25, compared with 0.35 for the IWPC prediction method, one of the

best performing published predictive algorithms. A visualization of the

predictions compared with the actual dose can be seen in Supp. Fig-

ures S8 and S9. Details of all methods can be found in Supp. Exhibit

3:CAGI 4.

The methods submitted for this challenge had several similar fea-

tures. Every method submitted took advantage of the fact that the

range of the actual doses were published in the paper from which the

data came. Thus, thesemethods either fit rankings to the dose range or

set predicted doses above or below the known range to the lower or

upper limits. Additionally, most methods used prior information from

the literature to help set the initial clinical and genetic covariates to

consider in their models.

4 DISCUSSION

The CAGI exomes challenges revealed lessons specific to each partic-

ular challenge as well as generalizable principles for future genotype–

phenotype prediction challenges.

4.1 Crohn’s disease

Overall, there were substantial challenges with bias and population

stratification in the datasets that made the evaluation and comparison

of techniques for identifying Crohn’s disease status from exome data

difficult. In the latest crop of prediction systems, it may be that tech-

niques such as using imputation to infer variants in regions not cov-

eredby the exome sequencing andusing large externalmicroarray SNP

chip datasets for classifier trainingwere key factors in superior perfor-

mance. The top AUC varied across the three evaluations, demonstrat-

ing the substantial differences in the data sets. Groups who created

metaclassifiers based on combining previous methods from previous

CAGI challenges demonstrated the value of applying theCommonTask

Framework to genetic problems—through iteratively improving their

methods based on prior learning. Importantly, across the three CAGI

evaluations, the average system performance performed better than

random, including in the most recent, CAGI 4, implying that there is

some level of useful information in predicting the likelihood of Crohn’s

disease from exome data in the population, something previously not

demonstrated.

4.2 Bipolar disorder

Surprisingly, the group that created the best performing prediction in

the bipolar disorder challenge acknowledged having little background

in biomedicine or genetics. This group approached the problem as

purely a data classification challenge. On the one hand, this may be

hailed as another example of the unreasonable effectiveness of data

and the success of machine learning over human expertise; the quota-

tion “Every time I fire a linguist, the performance of our speech recog-

nition system goes up,” has been attributed to Fred Jelinek in the

1980s, and something similar may be afoot in genomics, promising an

exciting future as datasets expand and machine learning techniques

improve. However, one of themajor challenges is that prediction accu-

racywith case-control datadoesnot really reflectmost applicationswe

can envision for a phenotypic prediction system. Moreover, while not

detected by any of our quality control methods, it is still possible that

the top performing method picked up on hidden population stratifica-

tion/biases in the data. Although we were unable to find evidence of

this, a sophisticated machine learning system may be identifying fea-

tures that partition the cases and controls but that are not related to

biological drivers of disease risk. Unfortunately, the tools to dissect the

deep neural net architecture in the context of genomic features are

currently too primitive to help us deepen our biological understanding

using these results. There has been recent work into advanced tech-

niques to understand the decisions made by previous black box sys-

tems in areas like image processing and natural language processing;

however, similar tools for understanding genomic prediction systems

are less developed (Ribeiro, Singh, & Guestrin, 2016)).

4.3 Warfarin

Predictingwarfarin doseusing clinical information andgenetics is a dif-

ficult problem; one of the best performing algorithms (IWPC) has anR2

of 0.35 on this data set. Existing algorithms have poorer performance
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on diverse populations since most algorithms are trained on European

descent populations (Daneshjou et al., 2014; Klein et al., 2009). For this

challenge, the winningmethod had an R2 of 0.25.

The warfarin exomes challenge had several limitations. The sam-

ple size was limited, with only 50 samples for training and 53 for test-

ing. Data were generated at a time when exome sequencing was more

expensive; falling costs may allow an expansion of available exome

data. Additionally, all groups used the known dose range of the cohort

when assigning their predicted doses. Because of the use of this known

range, some of thesemethods may be tailored particularly to this chal-

lenge and not be generalizable to the wider population.

4.4 Overall lessons fromCAGI exomes challenges

An advantage of the common task structure is the ability to iterate

quickly and learn from the setbacks of the groups analyzing the data.

The exomes challenges allowed us to glean several important lessons

that will inform future iterations of CAGI.

The importance of population stratification, batch effects, and hid-

den biases became evident early on with the CAGI 2 Crohn’s dis-

ease challenge (Fig. 1). In that particular instance, either popula-

tion stratification or batch effects created a discernable difference

between cases and controls that was unlikely related to actual dis-

ease status. Based on that finding in CAGI 2, every subsequent

CAGI challenge included a preanalysis of the whole-exome data try-

ing to identify whether there were samples that clustered together

inappropriately based on case-control status. Population stratification

has long been an issue in genetic studies. Themost obvious issue arises

when cases and controls come from distinctly different ancestral pop-

ulations, such as comparing Northern European cases against Chinese

controls. However, less obvious stratification can also be an issue, such

asdifferences in admixture/population substructureor cryptic related-

ness (Price, Zaitlen, Reich, & Patterson, 2010). Batch effects can occur

at many different steps in the pipeline, for example, if samples from

the cases and controls have differences in sample preparation, DNA

quality, sequencing coverage, or genotype calling. Any of the above can

result in prediction methods that perform well due to systemic biases

between cases and controls rather than true features that define case-

control status.

How these challenge datasets emulate the real world was another

important consideration andwas a topic of discussion among theCAGI

4 community.

A majority of the challenges used samples of Northern European

ancestry, only the warfarin dose prediction challenge used samples

of African American ancestry. In order for the methods to be gen-

eralizable to real-world populations, representation of human diver-

sity is necessary, particularly since disease risk and pharmacogenetic

variants can be population-specific (Rosenberg et al., 2010). More-

over, the CAGI exome datasets all came from research studies, which

are often designed to maximize the possibility of picking up a signifi-

cant signal. One way to achieve this is through selecting for extreme

phenotypes—a strategy employed by both the Crohn’s disease exome

F IGURE 6 A: R2 between predicted doses and actual doses for each group’s predictionmethod aswell as the IWPCalgorithm.B: Sumof squared
errors for each group’s prediction method and the IWPC algorithm.C: Mean z scores calculated from each group’s predicted doses with predicted
standard deviations and actual doses. D: Mean coefficient of variation (CV) and mean CV multiplied by mean z score for each group’s prediction
method
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dataset (which selected a subset of cases who had early-onset Crohn’s

disease) and the warfarin prediction exome dataset (selected from

individuals requiring “low” and “high” doses to achieve the therapeutic

effect) (Manolio et al., 2009). However, while this strategy works well

for increasing signal strength in research, using such data for building a

classifier may lead to a biased predictor that has difficulty differentiat-

ing between the more subtle variations seen in the real world. Having

larger datasets and using data generated for clinical usemay help rem-

edy some of these issues in the future.

Finally, one of the most promising lessons from CAGI was on the

effectivenessof data.Asmentionedbefore, for complex tasks, the com-

mon task framework has provided a way to havemany people work on

a problem and iterate quickly. After each challenge ended, the evalua-

tion scripts and the challenge answerswere shared so that participants

could analyze when their predictionmethods succeeded or failed. This

process allowed groups to have information for future improvement.

Additionally, large datasets, even if imperfect, have also been shown

to be a critical part of developing algorithms to tackle a complicated

task (Pereira, Norvig, & Halevy, 2009). Critical to accumulating large

enough datasets is data sharing, and the open data movement aims

to encourage increased biomedical data sharing (McNutt, 2016). How-

ever, one of the difficulties with genetic data that includes protected

health information is sharing data in a secure manner. CAGI, which

includes data encryption and verifies the groups participating, can pro-

vide a platform to facilitate sharing such data. As a result of the data

accumulated thus far, CAGI has demonstrated how data can, in cer-

tain cases, surmount prior biological knowledge. For CAGI 4, the bipo-

lar disease challenge was the best example; individuals with no biolog-

ical background, but a strong background in data science, had the best

performance. In particular, this should inspire a more multidisciplinary

approach to genotype–phenotype prediction and a greater effort to

engage those whose backgrounds are more data driven rather than

biologically driven.

Overall, the CAGI exomes challenges provided an opportunity

to begin building the classifiers required to implement precision

medicine. While there is still a long road ahead for genotype–

phenotype prediction, the accumulation of larger datasets and the par-

ticipation of more groups with every subsequent CAGI holds promise

for continued improvement.
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8 Prediction of allosteric effect in liver pyruvate kinase 

8.1 Contribution to the state of the art 

Here we present the results of the computational prediction of the allosteric effect of liver 

pyruvate kinase variants, presented by four different groups at the Critical Assessment 

Genome Interpretation 4 edition (CAGI4, see paragraph 6.1). Features used for predictions 

ranged from evolutionary constraints, mutant site locations relative to active and effector 

binding sites, and computational docking outputs. Despite the range of expertise and 

strategies used by predictors, the best predictions were marginally greater than random for 

modified allostery resulting from mutations. In contrast, several groups successfully predicted 

which mutations 

severely reduced enzymatic activity. Nonetheless, poor predictions of allostery highlights a 

specialized need for new computational tools and utilization of benchmarks that focus on 

allosteric regulation. 
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Abstract
The Critical Assessment of Genome Interpretation (CAGI) is a global community experiment to

objectively assess computational methods for predicting phenotypic impacts of genomic varia-

tion. One of the 2015–2016 competitions focused on predicting the influence ofmutations on the

allosteric regulation of human liver pyruvate kinase.More than 30 different researchers accessed

the challenge data. However, only four groups accepted the challenge. Features used for pre-

dictions ranged from evolutionary constraints, mutant site locations relative to active and effec-

tor binding sites, and computational docking outputs. Despite the range of expertise and strate-

gies used by predictors, the best predictions were marginally greater than random for modified

allostery resulting frommutations. In contrast, several groups successfully predictedwhichmuta-

tions severely reduced enzymatic activity. Nonetheless, poor predictions of allostery stands in

stark contrast to the impression left by more than 700 PubMed entries identified using the iden-

tifiers “computational + allosteric.” This contrast highlights a specialized need for new computa-

tional tools and utilization of benchmarks that focus on allosteric regulation.

K EYWORDS

allosteric effect, CAGI experiment, liver pyruvate kinase, missensemutation

1 INTRODUCTION

Blind challenge experiments, such as CASP (Moult et al., 2016) and

CAPRI (Lensink et al., 2017), have provided independent assessment

of computational prediction methods in structural biology. They have

spurred the development of new methods and the integration of

multiple methods in prediction pipelines. The Critical Assessment of

Genome Interpretation (CAGI) experiment seeks to achieve the same

goals by providing prediction challenges in a number of different areas.

In this report, we describe a challenge involving the effect of muta-

tions on the allosteric coupling of effectors and substrate binding to

human liver pyruvate kinase (L-PYK). The focus of this competitionwas

to predict the influence of mutations on the allosteric regulation of L-

PYK by a negative regulator, alanine, and a positive effector, fructose-

1,6-bisphosphate (Fru-1,6-BP). Numerous methods for predicting the

effect of mutations on allosteric effector binding have been published

in recent years (Collier &Ortiz, 2013; Feher et al., 2014).

The definition of allostery applicable to studies of L-PYK is the

affinity of the enzyme for its substrate, phosphoenolpyruvate (PEP),

in the absence versus presence of an allosteric effector, recognizing

that the effector binds to a site distinct from the active site (Carlson &

Fenton, 2016; Fenton, 2008, 2012; Fenton&Alontaga, 2009; Fenton&

HumanMutation. 2017;38:1123–1131. c© 2017Wiley Periodicals, Inc. 1123wileyonlinelibrary.com/journal/humu
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F IGURE 1 Reaction scheme for an allosteric energy cycle in which
an enzyme (E) can bind one substrate (A) andone allosteric effector (X).
Kia is the equilibrium dissociation constant of the substrate binding to
the enzyme in the absence of effector. Kia/x is the equilibrium dissoci-
ation constant of the substrate binding to the enzyme in the presence
of saturating concentrations of effector. Kix is the equilibrium dissoci-
ation constant of the effector when substrate is absent, whereas Kix/a

is the equilibrium dissociation constant of effector in the presence of
saturating concentrations of substrate

Hutchinson, 2009; Fenton et al., 2010; Ishwar et al., 2015). This def-

inition describes allostery by four enzyme forms that constitute the

corners of a thermodynamic energy cycle (Fig. 1), and it provides a

mechanism to quantify allosteric function in the form of the allosteric

coupling constant (Qax) (Fenton, 2012; Reinhart, 1983, 1988, 2004;

Weber, 1972):

Qax =
Kia
Kia∕x

=
Kix
Kix∕a

Kia and Kia/x are equilibrium dissociation constants for binding the

substrate (A) in the absence or presence, respectively, of an allosteric

effector, X, as defined in Figure 1. Qax = 1 indicates that the system

is not allosteric. When Qax >1, there is positive allosteric coupling

between the binding of X to a protein and the binding of A to the same

protein at distinct sites. WhenQax <1, there is a negative or inhibitory

coupling between the X and A sites.

The predictors were provided two sets of mutations for predictions

of enzyme activity and allosteric effects in L-PYK.Qax was determined

for each active mutant protein by determining PEP affinity (via titra-

tions of activity over a concentration range of PEP) over a concentra-

tion range of effector. Experiment 1 consisted of 113mutations at nine

sites in or near to the binding of the negative allosteric regulator, ala-

nine. Participantswere asked to provide a probability that eachmutant

enzyme was active (i.e., not the level of activity) and the value of Qax

for alanine for each mutant. Experiment 2 consisted of mutations to

alanine at 430 sites throughout the protein. Participants were then

asked to predict the enzyme activity and Qax values for the effectors

alanine and Fru-1,6-BP. Since alanine is a negative regulator, all values

of Qax-Ala are between 0 and 1, whereas the value of Qax for Fru-1,6-

BP is unbounded. Predictors were provided with the maximum value

(Qax-Fru-1,6-BP = 320) found in the alanine-scanning experiment.

2 METHODS AND MATERIALS

2.1 Experimental data generation

Wild-type andmutant human L-PYKwere expressed in the E. coli FF50

strain, which lacks endogenous pyk genes, and partially purified using

ammonium sulfate fractionation followed by dialysis, as previously

described (Fenton & Alontaga, 2009; Ishwar et al., 2015). L-PYK cat-

alyzes the following reaction:

Phosphoenolpyruvate+ADP → Pyruvate+ATP

Activity measurements were performed at 30°C using a lactate

dehydrogenase assay to detect the production of pyruvate by L-PYK.

Lactate dehydrogenase catalyzes the following reversible reaction:

Pyruvate +NADH ⇌ NAD∗ + Lactate

As the L-PYK reaction proceeds, producing pyruvate, the concen-

tration of NADH decreases, which can be detected by monitoring

absorbance at 340 nm (A340). Reaction conditions contained 50 mM

HEPES or bicine, 10mMMgCl2, 2mM (K)ADP, 0.1mMEDTA, 0.18mM

NADH, and 19.6 U/ml lactate dehydrogenase. PEP and effector con-

centrationswere varied. The rate of the decrease in A340 due toNADH

utilization was recorded at each concentration of PEP and these initial

velocity rates as a function of PEP concentrationwere used to evaluate

the apparent affinity for PEP (Kapp-PEP) at any one effector concentra-

tion. Kix and Qax for each mutant and the wild type were obtained by

fitting the observed Kapp-PEP to the equation:

Kapp−PEP = Ka

(
Kix +

[
X
]

Kix + Qax

[
X
])

where Ka = Kapp-PEP when the concentration of effector [X]= 0.

The dataset represents two experiments, which are characteriza-

tions of mutant human L-PYK proteins expressed in E. coli, named

experiment 1 and experiment 2. Experiment 1 consisted of site-

directed mutations at residue positions with a side chain contacting

with alanine or very near the bound alanine. A total of 113 substitu-

tions were introduced at nine different sites, of which 23 mutant pro-

teinswere completely inactive (nomeasurable enzymeactivity).Qax-Ala

was determined for the90mutant proteinswith activity. In experiment

2, 430 residues weremutated into alanine across the entire protein, of

which 44 did not have detectable enzyme activity. Allosteric coupling

Qax for inhibition by alanine and activation by Fru-1,6-BP were sepa-

rately determined.

2.2 Performance assessment of L-PYK enzyme

activity

From the binary experimental enzyme activity data (1 = positive =
active; 0 = negative = inactive), we calculated the number of true

positives (TPs), false positives (FPs), true negatives (TNs), and false

negatives (FNs) for all participating groups in experiment 1 and

experiment 2. From these, we calculated the true-positive rate (TPR),
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TABLE 1 Groups participating in L-PYK enzyme activity and allostery prediction challenges

Group number Affiliation Authors

53 Department of Human andMolecular Genetics, Baylor College ofMedicine,
Houston, TX

Panagiotis Katsonis, Olivier Lichtarge

54 Department of Computer Science, University College London, Gower
Street, LondonWC1E 6BT, United Kingdom

David Jones

55 Biocomputing Group, CIG/Interdepartmental Center «Luigi Galvani» for
Integrated Studies of Bioinformatics, Biophysics and Biocomplexity,
University of Bologna, Bologna, Italy

Samuele Bovo, Giulia Babbi, Pier Luigi
Martelli, Rita Casadio

56 Department of Chemistry, Seoul National University, Gwanak-ro,
Gwanak-gu, Seoul 08826, Republic of Korea

Gyu Rie Lee, Chaok Seok

true-negative rate (TNR), positive predictive value (PPV), and negative

predictive value (NPV):

TPR = TP
TP+FN

TNR = TN
TN+FP

PPV = TP
TP+FP

NPV = TN
TN+FN

We also calculated four measures that assess overall accuracy:

total accuracy (ACC), balanced accuracy (BACC), Matthews correla-

tion coefficient (MCC) (Matthews, 1975), and F1 score. F1 score is the

harmonic mean of precision (PPV) and sensitivity (TPR).

ACC = TP+TN
TP+TN+FP+FN

BACC= 1
2
(TPR+TNR)

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

F1 = 2
TPR × PPV
TPR + PPV

Since some predictors provided real values (between 0 and 1),

thesewere converted into binary predictions as described below in the

Results section.

2.3 Evaluation of predictions ofQax-Ala and

Qax-Fru-1,6-BP

Spearman’s rho (𝜌), or Spearman’s rank correlation coefficient, mea-

sures themonotonic correlation between prediction and experimental

data. 𝜌 = 1 means the predictions and experimental data points have

identical rankings. For data set (pi, ei), prediction data points are con-

verted into ranks Rpi, and experimental data points are converted into

ranks Rei. Then, 𝜌 is calculated from the formula:

𝜌 = cov (Rp,Re)
𝜎Rp𝜎Re

, −1 ≤ 𝜌 ≤ 1

Kendall’s tau (𝜏), or Kendall rank correlation coefficient, like Spear-

man’s rho, measures the rank correlation between two variables. For

data set (p, e), any pair of (pi, ei) and (pj, ej), where i ≠ j, are said to be

concordant if both pi > pj and ei > ej, or if both pi < pj and ei < ej. They

are discordant, if both pi > pj and ei < ej, or if pi < pj and ei > ej. If pi
= pj or ei = ej, the pair is neither concordant nor discordant. We use C

for the set of concordant pairs, andD for the set of discordant pairs. 𝜏 is

definedas thedifferencebetween thenumber of concordant pairs (|C|)

and thenumber of discordant pairs (|D|), dividedby the total number of

pair combinations (n × (n−1) / 2). The formula is given as following:

𝜏 = |C| − |D|
n (n − 1)∕2

All statistical calculations and kernel density estimates of the data

were performed in R (R Core Team, 2015).

F IGURE 2 Structure of human pyruvate kinase, as well as the bind-
ing sites of inhibitor alanine and activator fructose-1,6-bisphosphate.
A: A modeled structure of L-PYK tetramer with substrates PEP and
ADP, allosteric inhibitor alanine, and allosteric activator. PEP, ADP, ala-
nine (labeled ALA), and fructose-1,6-bisphosphate (labeled FBP) are
shown in spheres, colored in magenta, pink, orange, and red, respec-
tively. The structure was assembled by superposing monomers from
several structures of homologues of L-PYK with PEP, ADP, and alanine
bound onto a tetrameric structure of human L-PYK with fructose-1,6-
bisphosphate bound (PDB: 4IP7). B: The allosteric binding site of ala-
nine. Alanine is shown in sticks and colored in orange. Residues that
weremutated in experiment 1 are shown in sticks, and colored in pink.
C: The binding site of fructose-1,6-bisphosphate (FBP). FBP is shown in
sticks and colored in red. Interacting residues are shown in sticks and
colored in blue
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3 RESULTS

In this assessment, four groups (53, 54, 55, and 56; Table 1) submitted

a total of five prediction sets, ofwhich twowere fromgroup56, labeled

56_1 and 56_2. The methods utilized by each group are provided in

the Supp. Materials as are the instructions and information provided

to predictors at the time of the experiment.

Human L-PYK is a tetrameric enzyme with distinct binding sites

for its reactants, pyruvate, and ADP, and its allosteric effectors, ala-

nine, and Fru-1,6-BP. The structure of the tetramer is shown in

Figure 2A, where molecules at the three sites are represented

as spheres in each monomer. This composite structure was cre-

ated by superposing monomers from structures containing ala-

nine (PDB: 2G50, a structure of rabbit L-PYK) (Williams et al.,

2006), PEP (PDB: 4HYV, Trypanosoma brucei pyruvate kinase) (Zhong

et al., 2013), and ADP (PDB: 3GR4, human pyruvate kinase M2)

(Hong et al., unpublished, DOI: 10.2210/pdb3gr4/pdb) onto each

member of the tetrameric biological assembly of human L-PYK

(PDB: 4IP7) (Holyoak et al., 2013). Experiment 1 consisted of

113 mutations spread across nine amino acid positions in or near

the alanine-binding site (Fig. 2B): Arg55, Ser56, Asn82, Arg118,

His476, Val481, Pro483, and Phe514. Experiment 2 consisted of

alanine-scanning mutations across the entire protein, except wild-

type positions that are Gly or Ala. The Fru-1,6-BP site is shown in

Figure 2C.

3.2 Prediction of L-PYK enzyme activity

The first challenge was to provide a probability that each enzyme

was active. This was a binary outcome, not the level of activity. Even

weakly active enzymes were considered active in the experiment. In

both experiments, somemutants had no detectable activity, and these

were labeled 0; the rest were labeled 1. The active mutants included

some enzymes with very low but detectable activity. In experiment 1,

79.6% of mutants were active and 20.4% were inactive. In experiment

2, 88.8% of the mutants were active and 10.2% were inactive. Two of

the groups (53 and 54) submitted real values between 0 and 1, instead

of binary indicators. For these groups, we labeled all predictions with

values ≥0.5 as active and the rest as inactive. Figure 3 shows the den-

sity functions of predicted enzyme activities. For experiment 1, two

groups (55 and 56_2) predicted all mutants to be active (a value of 1)

(Fig. 3, top row). This is not unreasonable since all of the mutations

were in or near the alanine effector-binding site, which is distant from

the active site.

Table 2 provides an assessment of the predictions of enzyme activ-

ity for each group for both experiments. We also included values

obtained from the PolyPhen-2 server, which is commonly used to pre-

dict phenotypes of missense mutations (Adzhubei et al., 2010). Group

56 achieved the highest ACC in both experiments (ACC of 0.867 for

group 56_1 in experiment 1; ACC of 0.894 for group 56_2 in experi-

ment 2). Since the goal was to predict whether enzymes were active or

inactive, rather than the level of activity, this is a successful result. In

the case of experiment 1, predicting all mutants as active would result

in an accuracy of 0.796, whereas in experiment 2, a value of 0.888

would be obtained. At least for experiment 1, group 56 achieved bet-

ter predictions than the simple prediction that all mutants were active.

Inmost binaryphenotypeprediction assessments (Wei&Dunbrack,

2013), it is important to balance the success of positive predictions

and/or experimental outcomes with negative predictions and/or

experimental outcomes. One such measure is the BACC, which is the

average of the rate of correctly predicting the experimentally active

mutants (TPR) and the rate of correctly predicting the experimentally

inactive mutants (TNR). For experiment 1, only groups 53 and 56_1

achieved BACC values above 0.5, with BACC = 0.768 and 0.755,

respectively. A BACC of 0.50 is trivial to achieve, since if one predicts

all of the phenotypes in one class, the BACC is automatically 0.50 (e.g.,

groups 55 and 56_2 for experiment 1). Groups 53 and 56_1 achieved

their results in contrasting manners: group 53 has low TPR and high

TNR, and group 56_1 has high TPR and low TNR. For experiment 2,

which contained mutations across the entire protein and is therefore

a more real-world prediction task, only group 53 has TPR and TNR >

0.5, resulting in a BACC of 0.745.

Similarly, theMCC and F1 values also balance positive and negative

predictions and experimental values but in different ways than BACC

(seeMaterials andMethods). F1, in particular, only includes positive pre-

dictions and experimental phenotypes and omits negative predictions

and phenotypes. Since both data sets consisted of majority of active

enzymes (80% and 88% for experiments 1 and 2, respectively), groups

that predicted a larger fraction of the enzymes to be active did better

in F1 (groups 55, 56_1, and 56_2) than the other groups. Group 54 pre-

dicted amajority of themutants to be inactive in both experiments and

thus achievedmuch lower values for F1 than the other groups.

We compared the results of CAGI groups with that of PolyPhen-2,

a server that is commonly used to predict the phenotypes of missense

mutations in proteins. PolyPhen-2, like other servers, predicts pheno-

types to be deleterious or neutral, or “damaging” versus “benign.” This

is not necessarily directly associatedwith enzymeactivity, since a dele-

terious mutation might affect protein expression or the ability to reg-

ulate the protein by allosteric mechanisms. Also, the inactive enzymes

were only those with no activity, and not those with significant reduc-

tion in activity. In experiment 1, PolyPhen-2 predicted most mutants

to be inactive, probably because the alanine-binding site is very highly

conserved in L-PYK enzymes in order to retain the negative effector

capability of alanine. This resulted in a BACC of 0.539. In experiment

2, mutations were spread across the protein and PolyPhen-2 does bet-

ter, with a BACC of 0.674. Nevertheless, group 53 was able to achieve

better results on all four measures of overall success in experiment 2.

As mentioned above, groups 53 and 54 provide real values (not

binary values) for the enzyme activity. We speculated that a cutoff

of 0.5 might not be ideal to turn their real values into binary pre-

dictions. We calculated BACC as function of the cutoff and found

that for group 53, a value of 0.5 was still the best for both experi-

ments. But for group 54, values of 0.3 for experiment 1 and 0.35 for

experiment 2 provide better results. The values of BACC are 0.724

and 0.696, respectively, which are much better than the 0.5 cutoff

(0.534 and 0.627, respectively). But this is only possible with refer-

ence to the experimental data, which would not be available in real-

world situations. Since the density for predictions for group 54 were

https://DOI:10.2210/pdb3gr4/pdb
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F IGURE 3 Kernel density estimates of five sets of predicted L-PYK enzyme activities

TABLE 2 Binary prediction results of L-PYK enzyme activity

Experiment 1 Experiment 2

Method Group 53 Group 54 Group 55 Group 56_1 Group 56_2 PPH2 Group 53 Group 54 Group 55 Group 56_1 Group 56_2 PPH2

TPR 0.622 0.156 1 0.944 1 0.122 0.626 0.322 0.838 0.898 0.976 0.392

TNR 0.913 0.913 0 0.565 0 0.957 0.864 0.932 0.205 0.318 0.182 0.953

PPV 0.966 0.875 0.796 0.895 0.796 0.917 0.976 0.976 0.901 0.920 0.912 0.987

NPV 0.382 0.216 0 0.722 0 0.218 0.210 0.137 0.127 0.264 0.471 0.150

ACC 0.681 0.310 0.796 0.867 0.796 0.292 0.650 0.385 0.772 0.838 0.894 0.449

BACC 0.768 0.534 0.5 0.755 0.5 0.539 0.745 0.627 0.521 0.608 0.579 0.673

MCC 0.431 0.079 0 0.561 0 0.103 0.301 0.169 0.034 0.199 0.246 0.218

F1 0.757 0.264 0.887 0.919 0.887 0.217 0.762 0.484 0.868 0.907 0.943 0.562

Notes:
The highest score in each row for the four global measures is in bold and underlined.
0, inactive; 1, active.
TPR, true-positive rate; FPR, false-positive rate; TNR, true-negative rate; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy;
BACC, balanced accuracy;MCC,Matthews correlation coefficient; F1, F1 score.

unimodal (Fig. 3), it was not possible to define a cutoff based on amini-

mum of density between a low-activity and a high-activity mode in the

data.

3.3 Prediction of allosteric inhibition of alanine

(Qax-Ala)

The second challenge was to estimate the inhibitory allosteric effect

of binding alanine, Qax-Ala on binding of the substrate PEP. The den-

sity estimates of experimental Qax-Ala values of two experiments are

shown in Figure 4. The wild-type enzyme had a Qax-Ala value of ∼0.08
inbothexperiments. In experiment1, 23outof90mutantsdidnothave

measurable allosteric coupling, shown in a peak atQax = 1 (Fig. 4, left).

One possiblity is that alanine continues to bind to these mutant pro-

teins, but that binding does not alter PEP affinity. In other cases, the

Qax = 1 outcome is likely because the mutation eliminated binding of

Ala to L-PYK altogether (at least to themaximum concentration tested

in the experiments). In experiment 2, after excluding 37 mutants for

which the allosteric coupling effect could not be measured, the Qax-Ala

values of 325 (83%)mutantswere between 0 and 0.2, relatively similar

to the wild-type enzyme.

A comparison by scatter plot of the experimental and the predicted

Qax-Ala values is shown in Figure 5. Group 55 provided only binary

prediction for Qax-Ala. Group 56_1 and 56_2 provided identical values

for both experiments. The scatter plots do not showany obvious corre-

lations between the predicted and experimentalQax-Ala.
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F IGURE 4 Kernel density estimates of experimentalQax-Ala values of experiments 1 and 2

F IGURE 5 Scatter plot of the experimentalQax-Ala versus the predictedQax-Ala values

F IGURE 6 Correlations represented by Spearman’s 𝜌 andKendall’s 𝜏 between the predicted and experimentalQax-Ala values of two experiments
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F IGURE 7 Kernel density estimate of experimental Qax-Fru-1,6-BP

from experiment 2

Wecalculated Spearman’s 𝜌 andKendall’s 𝜏 coefficients as nonpara-

metric tests of the correlation of the predictionswith the experiments,

since the data and predicted values are not unimodal or normally dis-

tributed. Only group 55 in experiment 1 achieves a favorable corre-

lation, with 𝜌 = 0.351 and 𝜏 = 0.299 with P values of 0.002 for both

(Fig. 6). All of the other P values are in the range of 0.17–0.88, which

implies there is no correlation between the predicted and experimen-

tal Qax-Ala values. If we treat the experimental Qax-Ala values as binary

for experiment 1 (Fig. 4, left), we can calculate binary assessment

measures such as TPR, TNR, and so on. We did this for group 55,

which provided binary prediction values (0.1 and 1.0) with the follow-

ing results (where positive indicatesQax-Ala = 1): TPR= 17/23= 0.739;

TNR = 39/55 = 0.709; BACC = 0.724. This is better than random and

explains the positive correlation coefficients.

The results for experiment 2 are negatively correlated for three of

the groups, and only very weak positive correlations were achieved by

groups 54 and 55 (Fig. 6, right). The P values are in the range of 0.38–

0.88.

3.4 Prediction of allosteric activation of Fru-1,6-BP

(Qax-Fru-1,6-BP)

Participants were asked to predict the allosteric effect of Fru-1,6-BP

binding to L-PYK for the mutants created in experiment 2 and were

told that the maximum value in the experiments was 320. The wild-

type protein has a Qax-Fru-1,6-BP value of 14.2. The density estimate of

experimental Qax-Fru-1,6-BP values is shown in Figure 7, showing that

the vast majority of mutants had values between 0 and 60. The scatter

plots of the predicted Qax-Fru-1,6-BP versus experimental Qax-Fru-1,6-BP

show that groups 53 and 54 provided real values over the full range of

the experimental values and group 55 provided discrete values (1, 50,

250, and 320), whereas group 56 provided an approximate wild-type

value of 15.3 for most of the mutants and other values for 18 mutants

in the range from 1 to 28.3 (Fig. 8).

We calculated Spearman’s 𝜌 and Kendall’s 𝜏 to evaluate the cor-

relations between predicted and experimental Qax-Fru-1,6-BP values

(Fig. 9). Only group 55 has positive correlations, both very marginal

(both 𝜌 and 𝜏 ∼ 0.05, with P value of 0.2). All others have negative

correlations, especially for group 53 and 54. The P values of group 53

are 7.5E-05 for 𝜌 and 8.98E-05 for 𝜏 , and the P values of group 54 are

0.0003 for both 𝜌 and 𝜏 .

4 DISCUSSION

We may summarize the results of the CAGI experiment on L-PYK as

follows. Groups 53 and 56 had good predictions of the L-PYK enzyme

activity in experiments 1 and 2 as measured by BACC (group 53) and

ACC (group 56). In these cases, the results were better than that

achieved by PolyPhen-2. Group 54 had good predictions only if we set

a new cutoff for binary enzyme activity from their real-valued results

in both experiments 1 and 2.

For the prediction of allosteric effects of alanine and fructose,

groups 55 and 53 had positive correlations for the Qax-Ala challenge in

experiment 1, but only group 55 had a statistically significant positive

correlation. No group had statistically significant, positive correlations

for their predictions ofQax-Ala orQax-Fru-1,6-BP in experiment 2.

At the conclusionof this experiment,weare left to contemplatewhy

the overall success of predicting allosteric effects was underwhelming.

This consideration is particularly valuable given the indications of suc-

cess of computational approaches reported in the literature. As noted,

the only statistically significant result for predicting allosteric datawas

for group55on theQax-Ala challenge in experiment 1. This group used a

very simplemodel that considered the distance eachwild-type residue

was from bound Ala (as modeled from the structure of human pyru-

vate kinase M2) and the severity of the mutation from wild type (as

determined by scores from a substitution matrix). It is likely that they

correctly predicted many of the mutations that abrogated Ala bind-

ing altogether (Qax-Ala = 1), rather than quantitatively predicting the

effect of themutations on the diverse values ofQax-Ala of the remaining

mutations (Qax-Ala < 1). It is not likely that their distance-basedmethod

would extend readily to the general problem of predicting allosteric

effects, especially for residues not in or near the binding site. The

results for experiment 2, where mutations were made throughout the

protein, confirm this.

It is also clear from the experiment that methods that predomi-

nantly used evolutionary considerations (groups 53 and 54) were not

able to predict the effects ofmutation on allosteric behavior. Group 53

used the evolutionary action of each mutation, a number that can be

calculated from phylogenetic sequence analysis (Katsonis & Lichtarge,

2014). Group 54 used covariation of amino acids in pairs of positions

within a multiple sequence alignment of homologues of L-PYK (Jones

et al., 2015).

Group 56 calculated the binding affinity of each effector to each

mutant with docking calculations (Shin et al., 2013), and made the

assumption that Qax was directly proportional to these values. In fact,

Qax =Kix/Kix/a where Kix is the equilibrium dissociation constant of the

effectorXandKix/a is theequilibriumdissociation constant of theeffec-

tor X when the substrate A is bound. The approximation is not unrea-

sonable given the experimental data from experiment 2: the Pearson

and Kendall correlation coefficients between the experimental values

of Qax and Kix for alanine are 0.73 and 0.59, respectively, and for Fru-

1,6-BP they are 0.80 and 0.64, respectively (all P values< 1.0× 10−15).
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F IGURE 8 Scatter plot of the predicted versus experimentalQax-Fru-1,6-BP values from experiment 2

F IGURE 9 Correlations representedbySpearman’s 𝜌 andKendall’s 𝜏
between the predicted and experimentalQax-Fru-1,6-BP values in exper-
iment 2

Group 56 only performed docking calculations to mutations in the

binding sites of alanine and Fru-1,6-BP, and submitted values for all

other positions of 1.0 for Qax-Ala (no inhibition of PEP-binding by Ala)

and15.3 forQax-Fru-1,6-BP (the experimental value). This resulted in only

eight mutations with Qax-Ala not equal to 1.0, only five of which had

experimental values available. If we restrict the calculation of correla-

tion coefficients to these five values, the P values for the Spearman and

Kendall correlation coefficients are greater than 0.8, and the values of

rho and tau are 0.1 and 0, respectively. ForQax-Fru-1,6-BP, group 56 pro-

duced values for 17mutations adjacent to the Fru-1,6-BP site, only 11

ofwhichhadenoughenzymeactivity tomeasureQax-Fru-1,6-BP. The cor-

relation coefficients withQax-Fru-1,6-BP were both∼0.2 with P values of
∼0.5.Unless docking calculations are able todiscern changes inbinding
affinity of the effector (in the presence or absence of the substrate) for

sites far from their binding sites, it is not possible todeterminewhether

such calculations provide valuable information on allosteric behavior.

It is clear from the quality of predictions in this study that addi-

tional approaches are needed. Many of the methods reported in the

literature involve molecular dynamics simulations that are very com-

putationally intensive (Blacklock & Verkhivker, 2014; Hertig et al.,

2016; Weinkam et al., 2012). Several simulations of other forms of

pyruvate kinase (Naithani et al., 2015) and mutants thereof have been

performed (Kalaiarasan et al., 2015). However, whether such methods

could be used in a predictive fashion has yet to be determined. The cur-

rent data set could be used to benchmark such methods, if a sufficient

number of mutants can be simulated.

Allosteric regulation is sometimes presented as a Rube Goldberg-

type mechanism initiated by the effector associating with the

enzyme/protein (binding causes change A; change A causes change B;

change B causes change C, etc.). However, the definition for allostery

based on an energy cycle (Fig. 1) implies that allostery is an equi-

librium mechanism (Carlson & Fenton, 2016). As such, the allosteric

mechanism would be a comparison of changes in the fully equilibrated

enzyme forms represented inFigure1andnot aRubeGoldbergmecha-

nism that would be associatedwith a kinetics mechanism. Calculations

of this sort remain a challenge for computational approaches to pre-

dicting the effects of mutations on allosteric regulation.
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Here we present a study that identifies for the first time a role for myosin 1F (MYO1F) in 

Familial Non-Medullary Thyroid Cancer (FNMTC).  Whole exome sequencing analysis in the 

family affected by FNMTC with oncolytic feature reveals a novel heterozygous mutation 

(c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F. We experimentally observed an 

altered mitochondrial network in cell model expressing the mutant MYO1F p.Gly134Ser 

protein, leading to increased mitochondrial mass and a significant increase in both 

intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-

type (wt). These phenotypic effects conferred a significant advantage in colony formation, 

invasion and anchorage-independent growth. These results were corroborated by in vivo 

studies in zebrafish. Thanks to an additional screening of 192 FNMTC families we identify 

another variant in MYO1F exon 7, which leads to exon skipping, and we computationally build 

the model of the protein variant and predict the alteration of the ATP-binding domain in 

MYO1F. 
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Mutant MYO1F alters the mitochondrial network and induces
tumor proliferation in thyroid cancer

Chiara Diquigiovanni1, Christian Bergamini2, Cecilia Evangelisti3, Federica Isidori1, Andrea Vettori4, Natascia Tiso4,

Francesco Argenton4, Anna Costanzini1,2, Luisa Iommarini2, Hima Anbunathan5, Uberto Pagotto1, Andrea Repaci6,

Giulia Babbi2, Rita Casadio2, Giorgio Lenaz3, Kerry J. Rhoden1, Anna Maria Porcelli2, Romana Fato2, Anne Bowcock5,

Marco Seri1, Giovanni Romeo1 and Elena Bonora 1
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Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer

(FNMTC) accounts for 5–7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic

features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous

mutation (c.400G>A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell

model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with

increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, com-

pared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advan-

tage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in

zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole

vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in

exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the

first time a role for MYO1F in NMTC.

Introduction

Familial aggregation is a significant risk factor for the devel-
opment of thyroid cancer derived from follicular epithelial
cells (non-medullary thyroid carcinoma, NMTC). When the
primary cancer site is considered, the thyroid gland shows
the highest estimate of familial relative risk among all organs
(5- to 10-fold compared to 1.8 and 2.7 for breast and colon
cancer, respectively).1 Familial NMTC (FNMTC) accounts
for 5–7% of all NMTC and may occur as a part of familial
cancer syndromes (familial adenomatous polyposis, Gardner’s

syndrome, Cowden’s disease, Carney’s complex type 1, Wern-
er’s syndrome and papillary renal neoplasia) or as a primary
feature (familial NMTC) (for a review see Ref. 2,3). FNMTC
has become a well-recognized, unique clinical entity.
Although still debated, there are some epidemiologic and
clinical kindred studies that have shown an association
between FNMTC and more aggressive behavior than sporadic
cases, with higher rates of multicentric tumors, lymph node
metastasis and extrathyroidal invasion, a younger age of
onset and shorter disease-free survival.2–4 A search for
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susceptibility genes, undertaken using linkage-based app-
roaches, led to the identification of several predisposing loci:
MNG1 (14q32), TCO (19p13.2), fPTC/PRN (1q21), NMTC1
(2q21), FTEN (8p23.1-p22) and the telomere–telomerase
complex.2,3 Mutations were identified at the 14q31 locus in the
DICER1 gene, which encodes for an enzyme required for
miRNA maturation.5 Recent data have also shown that dysregu-
lation of miRNA expression is a hallmark of thyroid cancer6

and an altered splicing regulation has been reported in FNMTC
patients carrying a germline mutation in the SRRM2 gene,
encoding a splicing machinery subunit.7 Additional studies have
identified predisposing risk-variants in non-coding genes,
including miRNAs8 and a long non-coding gene PTCSC2.9

Mutations in genes encoding regulators of the RAS pathway
such as RASAL110 and SRGAP111 were also identified in
FNMTC cases. Taken together, these data indicate that the
genetic predisposition to FNMTC is characterized by a high
degree of heterogeneity, hampering the identification of the
underlying mutations in the corresponding pedigrees.

We previously mapped a predisposing locus for FNMTC
on chromosome 19p13.2 in a multigenerational family with
multiple individuals affected by thyroid carcinoma with
oncocytic features (oxyphilia; TCO), with autosomal domi-
nant inheritance.12 In our study, we report whole exome
sequencing (WES) data and functional studies providing evi-
dence that mutant MYO1F, mapping to the TCO locus on
chromosome 19p13.2, lead to NMTC.

Materials and Methods

The study was approved by the committee for protection of
persons in biomedical research of Lyon (CCPRB A-96.18)
and by the IARC Ethical Review Board (Project 95–050,
amendment 01–013). Informed consents were obtained by
clinicians, in each collaborating center.

Subjects

The TCO family has been previously reported12 and the
main clinical characteristics are reported in the Supporting
Information. Papillary thyroid carcinomas (PTCs) were diag-
nosed in individuals II-5, III-3 and III-7 at the ages of 41, 27
and 11 years, respectively. In total, 192 FNMTC patients
included in the mutation screening came from the families
collected between 1996 and 2012 through the International
Consortium for the Genetics of Non-Medullary Thyroid

Carcinoma; 149 female patients and 43 males were included
(age of onset: 11–84 years, mean age5 42 years), thyroid
cancer diagnosis is reported in Supporting Information Table
S1.

WES analysis

WES was performed on three individuals from the TCO fam-
ily, two affected by thyroid carcinoma with oncocytic features
(individuals II-3; III-7, Fig. 1a) and one affected by adenoma
(II-4), according to the pipeline reported in the Supporting
Information. Variants were confirmed by polymerase chain
reaction (PCR) and direct sequencing.

Cell lines

The FRTL-5 cell line is a stable thyroid cell line derived from
normal thyroid glands from 5 to 6-week-old Fisher rats.13 All
cells were cultured in 6H5 medium consisting of Coon’s
modified Ham’s F12 medium (Sigma-Aldrich, St. Louis, MO)
supplemented with 5% newborn calf serum (NCS) (Sigma-
Aldrich), 1 lg/ml insulin, 10 nM hydrocortisone, 5 lg/ml
apo-transferrin, 10 ng/ml gly-his-lys, 10 ng/ml somatostatin,
1 mU/ml TSH (Sigma-Aldrich, St. Louis, MO) and penicillin/
streptomycin (EuroClone, Milan, Italy). Cells were propa-
gated in a fully humidified atmosphere of 5% CO2 at 378C.

COS7 cells derived from monkey kidney tissue were grown
in Dulbecco’s modified Eagle’s medium, 10% fetal bovine serum,
2 mM L-glutamine, 100 U/ ml penicillin and 100 lg/ml strepto-
mycin, in a humidified incubator at 378C with 5% CO2.

pCMV6-MYO1F p.Gly134Ser plasmid generation via site-

directed mutagenesis

The construct pCMV6 encoding wild-type (wt) MYO1F

(RC207069) was purchased from OriGene OriGene Technol-
ogies, Rockville, MD) in frame with the tag (polypeptide
chain containing the aminoacid sequence Asp-Tyr-Lys-Asp-
Asp-Asp-Asp-Lys, or DYKDDDDK (DDK) and containing
neomycin resistance (G418) for stable selection. The muta-
tion c.400G>A was inserted using the Q5 Site-direct Muta-
genesis kit, according to the manufacturer’s instruction (New
England Biolabs, Ipswich, MA) using the oligonucleotides for-
ward 50-AGGTGTCTGGCGGAAGCGAGAAGGTCCAG-30 and
reverse 50-TGGAGATGTAGCCCATGATTATTTGGCT-30.
The site-directed mutagenesis was verified by plasmid direct
sequencing.

What’s new?

Evidence suggests that familial non-medullary thyroid carcinoma (FNMTC) is highly heterogeneous, complicating the identifica-

tion of underlying mutations in family pedigrees. Here, investigation of chromosome 19p13.2, which contains a known thyroid

cancer-predisposing locus, led to the identification of a novel mutation in the gene MYO1F. Relative to wild-type controls, thy-

roid cell models carrying mutant MYO1F exhibited a significant increase in colony formation and greater potential for invasion

and anchorage-independent growth. Mutated cells further showed an altered mitochondrial phenotype, similar to the one

observed in human thyroid tumors. The findings suggest that MYO1F has a role in thyroid cancer predisposition.
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Figure 1. Study of MYO1F p.Gly134Ser variant. (a) Pedigree of the TCO family: electropherograms of the sequences of available family mem-

bers, showing the co-segregation of the change (in red) with the oncocytic carcinoma (black)/adenoma (grey) phenotype. (b–h) Functional

analysis of the MYO1F p.Gly134Ser variant. All experiments were repeated at least three times. Scale bars indicate standard error, stars

indicate p<0.05. (b) Western blot analysis showing the recombinant MYO1F protein in stably expressing FRTL-5 cells, using a specific anti-

DDK antibody. Cell stably transfected with the empty vector are indicated as pCMV6-empty. Cells stably expressing the wt protein are indi-

cated as pCMV6-MYOF wt, cells stably expressing the mutant protein are indicated as pCMV6-MYOF G134S. (c) SRB assay showed a signifi-

cant increase in cell growth and proliferation for the pCMV6-MYOF G134S cells. (d) Plate colony formation potential using SRB assay

showing an increased number of colonies formed by FRTL-5 expressing the mutant MYO1F protein, compared to cells expressing either the

empty vector or the wt protein. (e) Growth in soft agar: FRTL-5 cells expressing the MYO1F mutant protein p.Gly134Ser significantly gener-

ated more colonies, compared to the empty and the cells expressing the wt protein. (f) Wound healing assay: FRTL-5 cells expressing the

MYO1F mutant protein p.Gly134Ser filled the gap significantly faster compare to the other two cell lines. (g, h) Western blotting analysis of

ERK1/2 phosphorylation in the three cell lines and densitometric quantification. [Color figure can be viewed at wileyonlinelibrary.com]
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Generation of FRTL-5-stably transfected cell lines

A 7.5-lg of pCMV6 empty, pCMV6-MYO1F-wt and
pCMV6-MYO1F-G134S plasmids were transfected using lipo-
somes according to the manufacturer’s instructions (Lipofect-
amine 2000, ThermoFisher Scientific, Grand Island, NY).
Forty eight hours after transfection, selection was obtained by
supplementing complete medium with 500 lg/ml G418
(ThermoFisher Scientific) for 2 weeks. Isolated clones were
grown with 200 lg/ml G418.

Western blot

A detailed protocol is reported in the Supporting Informa-
tion, including the list of primary antibodies used.

Sulforhodamine B (SRB) assay to investigate cell

proliferation and plate colony formation

For cell growth and proliferation assays, 2.5 3 105 cells were
seeded in duplicate and incubated 96 hours at 378C. For plate
colony formation, 2.5 3 104 cells were seeded in duplicate
and incubated for 20 days at 378C. Cells were washed in
phosphate-buffered saline (PBS) and fixed with cold tri-
chloroacetic acid (TCA) 50% at 48C for 1 hr, then TCA was
eliminated and cells were dried at room temperature for 16
hrs. Cells were stained with SRB 0.4% in 1% acetic acid for
30 min, washed with 1% acetic acid for four times. For the
proliferation assay, cells were solubilized in TrisHCl 10 mM
pH 10.5, mixing for 10 min on a rotatory plate. Absorbance
was read at k5 564 nm using a Beckman Coulter DU-530
spectrophotometer. For plate colony assay, cells were photo-
graphed with ChemiDoc XRS1 (Biorad). Area and number
of colonies were quantified with the ImageJ software
(National Institute of Health, Bethesda, MD) discarding colo-
nies <1 pixel.

Soft agar colony assay

Stable cell lines were seeded in triplicate in a 0.48% top agar in
growth medium over a layer of 0.8% agar in a six-well plate at
a density of 1 3 105 cells/ml. Plates were incubated at 378C
and 5% CO2 for 12 days, monitoring for colony formation.
Medium was replaced every 5 days. After 12 days, colonies were
photographed and analyzed with ImageJ software.

Wound healing assay

Stable cell lines were plated onto six-well plates and allowed to
form a confluent monolayer. The cell monolayer was then
scratched in a straight line to make a “scratch wound” with a
10-ll tip and the cell debris was removed by washing the cells
with PBS. 5H5 (6H5 medium without Thyroid-Stimulating Hor-
mone (TSH)) medium supplemented with 10% NCS and 200
lg/ml of neomycin was added with or without 1 mM N-acetyl-
L-cysteine (NAC), and images of the closure of the scratch were
captured at 0 and 7 days. Images were analyzed with the
TScratch software.14

Iodide transport

Iodide uptake by FRTL-5 cells was measured by live cell
imaging with the fluorescent halide biosensor yellow fluores-
cent protein (YFP)-H148Q/I15L, as described previously.15,16

Mitochondrial morphology and mass assessment via live

cell imaging

Mitochondrial morphology was assessed by live imaging with
or without 1 mM NAC, using a Nikon Eclipse 80 microscope
(Nikon, Tokio, Japan) according to Ref. 17. Circularity meas-
urements were collected using ImageJ standard tools.

Mitochondrial mass measurements

In 96-well culture plates, 1 3 104 FRTL-5-stable cell lines
were seeded in quadruplicates. The next day, cells were
loaded with 50 nM MitoTracker Green (MTG) for 30 min at
378C in complete medium. After washing twice with
medium, MTG fluorescence was recorded in a plate reader
(EnSpire, PerkinElmer). MTG fluorescence values were
expressed as relative fluorescence unit (RFU)/viable cells. Cell
viability was assessed with a resazurin-based method.

Mitochondrial potential measurement via JC-1

The fluorescent probe JC-1 (5, 50,6, 60-tetrachloro-1, 10, 3, 30-
tetraethylbenzimidazol carbocyanine iodide) was used to
measure the mitochondrial membrane potential (D/), as
described in the Supporting Information.

Cellular respiration

Oxygen consumption in intact cells. Approximately 1.5 3 106

FRL5-stable cell lines were harvested at 70–80% confluence,
washed in PBS, resuspended in complete medium and assayed
for oxygen consumption at 308C using a thermostatically con-
trolled oxygraph chamber (Instech Mod. 203, Plymouth Meet-
ing, PA). Basal respiration was measured in their respective
media and compared with the one obtained after injection of
oligomycin (1 lM) and Carbonyl cyanide-p-trifluoromethoxy-
phenylhydrazone (FCCP) (1–6 lM). Antimycin A (5 mM) was
added at the end of experiments to completely block the mito-
chondrial respiration. Data were normalized to protein content
determined by the Lowry method.

ATP/ADP synthesis ratio determination. Nucleotides were
extracted and detected using a Kinetex C18 column (250 3

4.6 mm, 100 Å, 5 lm; Phenomenex, CA), with a two pump
Agilent 1100 series system. Absorbance (260 nm) was moni-
tored with a photodiode array detector (Agilent 1100 series
system). Nucleotide peaks were identified by comparison and
coelution with standards and quantification by peak area
measurement compared with standard curves.18

ROS quantification

Intracellular ROS. FRTL-5-stable cell lines were seeded at
5 3 104 cells per well and incubated 16 hrs. Cells were
treated with 10 mM 2’,7’-dichlorodihydrofluorescein diacetate
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(DCFDA) dissolved in medium for 1 hr. Then, cells were
washed twice with PBS and incubated for 12 hrs in complete
medium. Finally, cells were washed with PBS and the fluores-
cence emission from each well was measured
(kexc5 485 nm; kem5 535 nm) with a multi-plate reader
(Enspire, Perkin Elmer). Data are reported as the mean6 SD
of at least three independent experiments.

Extracellular ROS. FRTL-5-stable cell lines were seeded at
5 3 104 cells per well and incubated 16 hrs. Cells were
treated with 10 mM Amplex red (N-acetyl-3,7-dihydroxyphe-
noxazine), 0.025 U/ml horseradish peroxidase dissolved in
complete medium for 16 hrs. The medium was collected and
measured (kexc 530, kem 590) with a multiplate reader (Ens-
pire, Perkin Elmer). Data were normalized for cell number
using resazuring assay. Data are reported as the mean6 SD
of at least three independent experiments.

In vivo study of mutant MYO1F

Zebrafish embryos and adults were maintained and mated
according to standard procedures. Mutant and wt capped
MYO1F mRNAs were synthesized with the SP6 mMESSAGE
mMACHINE kit (Ambion, ThermoFisher Scientific) using as
template the PCS21MYO1F-G134S and PCS21MYO1F-wt
plasmids, respectively. wt zebrafish embryos were injected at
one-cell stage with 150 pg of MYO1F-wt or MYO1F-G134S
mRNA and then fixed at 48 hrs post fertilizations (hpf). To
determine the cell proliferation patterns, a whole-mount
immunostaining with the anti-phospho-Histone H3 (pH3)
antibody (Millipore, Darmstadt, Germany) was performed.
We counted the mitotic cells along the trunk of each fish
(from the yolk extension to the tip of the tail) and calculated
the average number of pH3-positive cells per embryo to com-
pare the difference among groups. Statistical analysis was
performed using Student’s unpaired t test. Differences were
considered significant for p< 0.05.

MYO1F mutation screening in FNMTC pedigrees

PCR primers for human MYO1F (NM_012335) were designed
with Primer3 v4.0 (http://primer3.ut.ee) and are available on
request. Genomic DNA extracted from peripheral blood was
amplified according to standard PCR conditions, and PCR
products were analyzed by direct sequencing, as reported in the
Supporting Information.

P1 pAltermax MYO1F exon 7-minigene generation

PCR of MYO1F genomic region encompassing exons 7 and
8 was performed using primer forward 50 GGGGAATT-
CAGAAGGGAAGAGAGGCAAGG-30, inserting an EcoRI

restriction site, and primer reverse 50-CCCTCTAGAAAC-
TCAGGAGGGTTTCTGGG-30, inserting an XbaI restriction
site from a heterozygous carrier. We generated the mini-
gene reporter as described previously.19 The PCR products
were cloned into the digested P1 pAltermax and plasmids
sequenced to identify the plasmids with the wt or the

variant alleles. The splicing alteration analysis was per-
formed as reported in Ref. 19 and in Supporting
Information.

Structural modeling

Modeling of the protein structure was performed adopting a
building obtained by comparison procedures based on MOD-
ELLER (https://salilab.org/modeller/). The template was
MYO1C_HUMAN (PDB code: 4BYF_A), and the final struc-
tural superimposition indicated a 45% sequence identity
among the computed and experimental structures. Given the
coverage of the template to the target, modeling was possible
in the protein region spanning amino acids 16–714. From
structural superimposition, it was also possible to locate the
ATP-binding domain.

Statistical analysis

Statistical analyses were performed using the one-way analy-
sis of variance (ANOVA) with Tukey’s multiple comparison
test. All tests were completed using Prism (GraphPad, San
Diego, CA). A p< 0.05 was considered statistically significant.
All experiments were carried out at least in triplicates.

Results

Identification of a novel missense mutation in MYO1F

conferring tumor-like properties to thyroid cells

WES was performed in three members of the original TCO
family where the linkage locus was identified12 (II-3, II-4 and
III-7; Fig. 1a), in two individuals affected by thyroid carci-
noma and one affected by thyroid adenoma, all with onco-
cytic features. All variants were queried with ANNOVAR
and filtered based on Single Nucleotide Polymorphisms Data-
base (dbSNP) database annotation. Potentially deleterious
mutations were selected according to their functional class,
and prioritization was given to those lying in the chr19p13.2
linkage region and present in all three cases. A unique novel
heterozygous variant in the linkage interval shared by all
three individuals fulfilled the criteria for pathogenicity: the
mutation c.400G>A in MYO1F cDNA (NM_012335), lead-
ing to a missense p.Gly134Ser substitution, predicted to be
damaging by PolyPhen-2 and Provean (Supporting Informa-
tion Table S2), not present in the NHLBI Exome Sequencing
Project (ESP), in the Exome Aggregation (ExAc) and
Genome Aggregation (gnomAD) databases and absent from
1000 in-house control chromosomes. The variant co-
segregated with the carcinoma/adenoma phenotype in the
family and appeared to be a likely candidate for the NMTC
gene residing at 19p13.2 (Fig. 1a). MYO1F consists of 28
exons encoding a 1098-amino-acid protein of the class of
unconventional myosins.20 The p.Gly134Ser amino acid
change resides in a very well conserved position in the ATP-
binding domain of the protein. Since thyroid tumor tissue
from patients was not available for additional studies, we
generated cell models stably expressing the wt or mutant
MYO1F (mut) after transfection with the corresponding
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episomal plasmids, and a control cell line stably expressing
the corresponding empty vector, pCMV6, via G418 selection.
We used highly differentiated and functional FRTL-5 rat thy-
roid cell line13 to reveal the effects of the MYO1F variant.
The p.Gly134Ser mutation was inserted by site-directed
mutagenesis in the construct encoding wt MYO1F in frame
with the DDK tag. Western blotting with anti-DDK antibody
in stably transfected cells showed that both wt and mut pro-
teins were expressed in similar amounts (Fig. 1b). Stable cell
lines expressing either the wt or the mut MYO1F protein
were tested for their proliferative and tumorigenic potential
in comparison with cells transfected with the empty vector.
A significant increase in the proliferation was observed in
mut cells, compared to cells expressing either the empty vec-
tor or the wt recombinant protein (one-way ANOVA with
Tukey’s multiple comparisons test p5 0.0044; pCMV6 empty
vs. pCMV6-MYO1F G134S, p5 0.0092; pCMV6-MYO1F WT
vs. pCMV6-MYO1F G134S p5 0.0072; pCMV6 empty vs.
pCMV6-MYO1F WT p5 0.9853, Fig. 1c). A significant
increase in the number of colonies in anchorage-dependent
and independent growth was also observed in mut cells, com-
pared to cells expressing either the empty vector or the wt
recombinant protein (one-way ANOVA p< 0.0001, Fig. 1d).
Anchorage-independent growth was monitored as colony for-
mation in soft agar. Mutant MYO1F-expressing cells showed
a significant increase in colony formation in soft agar, com-
pared to cells stably transfected with the wt protein or the
empty vector (ordinary one-way ANOVA p5 0.0005; Fig. 1d,
lower panel).

The wound-healing assay, showed that mutant cells had a
significantly greater invasive potential after 7 days in culture,
compared to cells stably transfected with the empty vector or
the wt protein, as quantified with TScratch software14

(ordinary one-way ANOVA p5 0.0024; Fig. 1e). The wound
healing assay was performed in a medium lacking TSH. Since
proliferation of thyroid cells is totally TSH-dependent, we
could discriminate between proliferation and invasiveness.
Therefore, our data do indeed indicate that the mutant cells
have a greater invasive potential.

To relate the observed changes in growth to the activation
of specific cellular pathways, we investigated different kinases
with key roles in cell proliferation and migration, including
Akt and ERK1/2. We found a specific increase in the phos-
phorylation of ERK1/2 kinases in cells expressing the mutant
protein, in particular for the p42 isoforms (Figs. 1f and 1g;
p5 0.0042, empty vs. pCMV6 MYO1F G134S). Taken
together, these findings support a role for the MYO1F muta-
tion in the modulation of tumorigenic potential in vitro (i.e.,
in the modulation of proliferation and invasivity).

Mutant MYO1F p.Gly134Ser stimulates proliferation in

zebrafish embryos

To analyze the pro-proliferative function of MYO1F in vivo,
we evaluated the effects of the human p.Gly134Ser MYO1F
protein in zebrafish (Danio rerio) embryos. The zebrafish
genome encodes a single myo1f orthologue (GenBank ref seq.
NM_001256671.2; NP_001243600.1), with 85% similarity and
76% identity at amino acidic level to human MYO1F. Nota-
bly, the position corresponding to human Glycine 134 is con-
served in the zebrafish Myo1f protein, indicating a putative
functional role of this aminoacidic residue (Supporting Infor-
mation Fig. S1).

To test whether the mutant MYO1F variant can induce cell
proliferation in vivo, one-cell stage embryos were injected with
either wt or p.Gly134Ser MYO1F mutated mRNA. At 48 hpf,
the injected embryos were fixed and stained with antibodies

Figure 2. Proliferation analysis in zebrafish overexpressing either wt or mutant MYO1F p.Gly134Ser: (a,b) Immunostaining of phospho-

histone H3 (pH3) performed in 48 hpf zebrafish larvae. An increase in cell proliferation can be observed in embryos injected with mutant

MYO1F mRNA compared with embryos injected with the wt transcript of MYO1F. (c) Quantification of pH3-positive cells in injected embryos

(48 hpf) was performed with manual counting of mitotic cells (blue nuclei) along the left side of the embryonic trunk, between the yolk

extension and the tip of the tail. For each group, 22 embryos were analyzed (MYO1F_MUT: 25.4562.584; MYO1F_WT: 8.72761.445).

***, p<0.001, Student’s unpaired t test. [Color figure can be viewed at wileyonlinelibrary.com]
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against phospho-histone H3 (pH3), a widely used marker to
reveal cell mitosis in zebrafish.21–23 Embryos injected with the
mutant mRNA showed a significant increase in the number of
pH3-positive cells, compared to their siblings injected with the
MYO1F wt allele (Figs. 2a and 2b). In particular, we observed
an increased number of mitotic cells, especially in the caudal
region (p< 0.0001, Fig. 2c) indicating that, when ubiquitously
expressed, the MYO1F mutant protein can induce proliferation
also in zebrafish embryos.

Iodide influx is not altered by the mutation MYO1F

p.Gly134Ser

FRTL-5 cells are highly differentiated thyroid cells and a suitable
model to measure iodide transport in vitro. We measured iodide
uptake by live cell imaging after transient transfection with a
vector encoding YFP-H148Q/I152L, a modified YFP whose
fluorescence is quenched by I– in a concentration-dependent
manner.15,16 We did not detect any differences in I– uptake
between the different cell lines (one-way ANOVA p5 0.4816;
Supporting Information Figs. S2a and S2b).

Mutation MYO1F p.Gly134Ser alters the mitochondrial

network

Since the oncocytic phenotype is characterized by mitochondrial
hyperplasia in the tumors of affected individuals of the TCO
family,12 we analyzed the mitochondrial network of stably trans-
fected FRTL-5 cells by live-cell microscopy using the Mito-
Tracker Green probe. Mitochondria in the mutant cell lines
appeared more fragmented compared to mitochondria in wt
and empty cell lines (Fig. 3a), as shown by the significant
increase in circularity value of mutant cells mitochondria when
compared to wt and empty cell mitochondria (Fig. 3b).

The total mitochondrial mass was significantly greater in
mutant cell lines, as determined by MitoTracker fluorescence
quantification, normalized for cell viability using a resazurin-
based assay (ordinary one-way ANOVA p< 0.0001; Fig. 3c).
The increase in mitochondrial mass in the mutant cells was
confirmed via Western blotting for voltage-dependent anion-
selective channel (VDAC) (ordinary one-way ANOVA
p5 0.0136, Fig. 3d).

Since an impaired mitochondrial network may alter mito-
chondrial function, we evaluated the levels of proteins and
their phosphorylated forms (phospho-DRP1), involved in
mitochondrial fission/fusion, that is, DRP1 and MFN1, but
we did not detect any significant difference between the vari-
ous cell lines (Figs. 3e and 3f; Supporting Information Figs.
S3a and S3b, respectively).

We measured the mitochondrial membrane potential and
oxidative phosphorylation (OXPHOS) activity of the different
cell lines. The mitochondrial membrane potential was mea-
sured with the probe JC-1,24,25 and normalized for cell viabil-
ity using a resazurin-based assay. No differences were found
between empty vector-expressing cells, wt and mutant cells
(one-way ANOVA p5 0.0720; Supporting Information Fig.
S3c). The addition of oligomycin A did not alter the

fluorescence ratio of JC-1, indicating that ATP hydrolysis by
ATPase was not involved in maintaining the mitochondrial
potential (Supporting Information Fig. S3c).

We measured the ATP/ADP ratio in the different cell
lines, showing that the cells expressing mutant MYO1F
exhibit a significant lower ratio in comparison to wt cells,
due to the concomitant decrease in ATP and increase in
ADP levels (p5 0.0289, one-way ANOVA, Fig. 3g). However,
there were no differences in respiratory activity between the
different cell lines under basal conditions (one-way ANOVA
p5 0.5014, Supporting Information Fig. S3d) in the ratio of
FCCP/oligomycin-treated cells (one-way ANOVA p5 0.3900;
Supporting Information Fig. S3e. Extracellular lactate mea-
surement also showed no changes between the different cell
lines (ordinary one-way ANOVA p5 0.4069; Supporting
Information Fig. S3f).

ROS are elevated in FRTL-5 cells expressing MYO1F

p.Gly134Ser

Since differentiated thyroid cells produce a great amount of
hydrogen peroxide (H2O2) necessary for thyroid hormone
synthesis,26 we investigated whether reactive oxygen species
(ROS) production in transfected FRTL-5 cell lines was
deranged by the MYO1F mutation.

Intracellular ROS levels, measured with the fluorescent
probe DCF-DA, were significantly increased in the mutant
cells (one-way ANOVA p5 0.0015, Fig. 4a). To understand
whether this phenomenon was due to alterations/decreases of
intracellular ROS detoxifying enzymes, we performed West-
ern blotting analysis of catalase, mitochondrial manganese
superoxide dismutase (SOD2) and peredoxin-3 (Prx3), using
GAPDH as endogenous reference. The steady state levels of
the analyzed proteins were not significantly different between
all cell lines (Fig. 4b; Supporting Information Figs. S4a–S4c;
one-way ANOVA p5 0.1328 for catalase, p5 0.8592 for
SOD2, p5 0.6837 for Prx3).

Interestingly, treatment for 24 hrs with the antioxidant com-
pound NAC partially recovered the defects in the mitochondrial
network in cells expressing mutant MYO1F, confirming the role
of ROS in mitochondrial fragmentation (p< 0.0001; Fig. 4c). In
concordance, we observed a decrease in cell invasion between
the FRTL-5 cell lines treated with NAC, compared to the
untreated ones, as measured by the wound healing assay (Stu-
dent’s t test, untreated vs. treated p5 0.0236 pCMV6 empty,
p5 0.0338 pCMV6-MYO1F wt, p5 0.0488 pCMV6-MYO1F-
G134S; Fig. 4d). This effect was observed in all cell lines, not
only for the mutant MYO1F cells.

To measure extracellular ROS, we used the fluorescent
probe Amplex Red, which is unable to cross the plasma
membrane. We observed a significantly higher amount of
extracellular ROS in mutant cell lines, compared to the
empty vector-transfected cells and the wt ones. Moreover, we
detected, a significant decrease in extracellular ROS in the
cells expressing MYO1F wt, when compared to the empty
vector (one-way ANOVA p5 0.0004; pCMV6-empty vs.
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Figure 3. Mitochondrial defects in FRTL-5- MYO1F p.Gly134Ser cells. (a) Representative fluorescence images of pCMV6-empty, pCMV6-MYOF

wt, and pCMV6-MYOF G134S stained with Mitotracker Green to evaluate mitochondrial network. The cells expressing the mutant protein

show more circular (b) and more abundant (c) mitochondria and more fragmented mitochondrial network in comparison with wt and cells

bearing empty vector. MitoTracker signal quantification was normalized on viable cell number assessed by resazurin-based assay. (d) Rep-

resentative image of Western blotting analysis for VDAC in pCMV6-empty, pCMV6-MYOF wt, and pCMV6-MYOF G134S cells and relative

quantification, compared to reference protein (vinculin). Scale bars indicate standard errors. Stars indicate significant p values. (e–f) Repre-

sentative images of Western blotting analysis for DRP1-phospho-DRP1 (e) and MFN1 (f) in pCMV6-empty, pCMV6-MYOF wt, and pCMV6-

MYOF G134S cells. (g) ATP/ADP ratio in cellular extracts from pCMV6-empty, pCMV6-MYOF wt, and pCMV6-MYOF G134S cells, showing a

decreased ATP/ADP ratio in the mutant FTRL5 cells. Scale bars indicate standard errors. Stars indicate significant p values. [Color figure can

be viewed at wileyonlinelibrary.com]
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Figure 4. ROS production. (a) Intracellular ROS production measured by DCFDA fluorescent probe. Data show a significant ROS production

increase in the FRTL-5 cells expressing MYO1F p.Gly134Ser in comparison to wt and cells bearing the empty pCMV6 vector. Data are expressed

as arbitrary fluorescence units6SD, normalized on viable cell number. (b) Representative Western blot analysis showing the expression of

detoxifying enzymes (catalase, SOD2, and Prx3) in the three cell lines. GAPDH was used as endogenous loading control. (c) Representative

fluorescence images of pCMV6-empty, pCMV6-MYOF wt, and pCMV6-MYOF G134-S cells stained for 24 hrs with 1 mM N-acetyl-L-cysteine (NAC)

or vehicle. Live cells were stained with 40 nM Mitotracker Green to evaluate mitochondrial network. Circularity value analysis was performed

using ImageJ software standard tool. Data indicate a significant recovery for the NAC-treated mutant cells versus the untreated mutant ones.

(d) Wound healing assay in presence of NAC and relative quantification, showing a significant decrease in invasive potential in the cell lines.

(e) Extracellular ROS production measured by Amplex red fluorescent probe. Data show that FRTL-5 cells expressing MYO1F p.Gly134Ser pre-

sented the highest levels of extracellular ROS, whereas the cells expressing the wt protein presented a reduced amount of extracellular ROS.

Data are expressed as arbitrary fluorescence units6SD normalized on viable cell number. Cell viability was assessed by resazurin-based

method. (f) Representative image of Western blotting analysis for NOX1 in pCMV6-empty, pCMV6-MYOF wt, and pCMV6-MYOF G134S cells.

[Color figure can be viewed at wileyonlinelibrary.com]
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pCMV6-MYO1F wt p< 0.05; pCMV6-MYO1F wt vs.
pCMV6-MYO1F G134S p< 0.001; Fig. 4e). We evaluated
NOX1 protein levels, but we did not detect any significant
variation between the different cell lines (Fig. 4f; Supporting
Information Fig. S4d; one-way ANOVA p5 0.5900).

Mutation screening of human MYO1F in FNMTC patients

To identify additional patients carrying predisposing germline
mutations in MYO1F, we performed a mutation screening via

Sanger sequencing of genomic DNA from peripheral blood of
192 independent FNMTC cases. These patients represented a
heterogeneous group of cases affected by PTC/FTC, and the
presence of oncocytic features was not always investigated.
These data were available only for a small subgroup of patients
(Supporting Information Table S1). We identified several rare/
novel coding variants in MYO1F (Table 1), including a rare
silent change in exon 7, present in both the affected individuals
of the corresponding family, from whom DNA was available
(Supporting Information Fig. S5a). This change potentially
removed an exonic sequence enhancer (ESE) in exon 7, as pre-
dicted by the ESE Finder v3.0 program (Supporting Information
Fig. S5b). The change, corresponding to the genomic coordi-
nates chr19:g.8616995C>T (rs184748543), was present with a
minor allele frequency (MAF) of 0.003168 in the general popu-
lation and a MAF of 0.004224 in individuals of European
ancestry-only (gnomAD; Table 1). The variant frequency was
not significantly different between the NMTC cases and general
population controls; moreover, one individual in the gnomAD
database was homozygous for the variant allele, suggesting that
it might have no severe functional consequences.

Nevertheless, to study whether it could hamper the inclusion
of exon 7 in the final MYO1F transcript, since no fresh RNA was
available from the affected patients carrying the rs184748543 vari-
ant allele, we generated a minigene plasmid carrying either the wt
or mutant sequence, and transfected simian COS7 cells to study
transcription (Figs. 5a and 5b). RT-PCR with minigene-specific
synthetic primers and direct sequencing revealed that the wt exon
was correctly spliced, whereas the mutant transcript lacked exon
7 (Fig. 5c). This altered transcript is predicted to produce a
shorter MYO1F protein, with an in-frame deletion of 43 amino

acids (G169-Q212) in the motor domain of MYO1F, that may
alter the structure of the ATP-binding domain in the molecular
motor of MYO1F (residues 110–117 and 162–166; Fig. 5d).

Discussion

The etiology of differentiated thyroid cancer is still poorly
understood, but this type of cancer is influenced by both
genetic and environmental factors. Large genome-wide case–
control association studies have identified genetic variants
conferring NMTC susceptibility in the general popula-
tion.27–29 A number of common single nucleotide polymor-
phisms (SNPs) have been reported to be associated with
NMTC risk, but few studies have been conducted in high-
risk NMTC families to examine the transmission of the risk
allele to the affected members.30

In our study, we report the identification of MYO1F as
the gene mutated at the TCO locus. We provide functional
evidence that the MYO1F p.Gly134Ser mutation leads to an
increased oncogenic potential in vitro, in terms of cell growth
and invasion. FRTL-5 cells, a cell model resembling a functional
thyrocyte,13 stably transfected with the plasmid encoding mutant
MYO1F p.Gly134Ser showed increased proliferation, generated
significantly more colonies in soft agar and showed a signifi-
cantly greater invasive potential compared to cells stably trans-
fected with the empty vector or with wt MYO1F.

These in vitro data were supported by in vivo findings in
zebrafish, showing that the mutant MYO1F p.Gly134Ser,
when overexpressed, can induce proliferation in whole verte-
brate embryos, supporting the idea that the novel missense
change identified in exon 5 of MYO1F is the causative muta-
tion at the TCO locus.

The TCO locus in the original pedigree was associated
with an oncocytic phenotype, that is, enriched in mitochon-
dria.12 Previous work by our group uncovered a tight correla-
tion between the co-occurrence of mitochondrial DNA
(mtDNA) alterations in oncocytic thyroid cancer, and a
marked dysfunction of OXPHOS complexes, in particular
complex I.31–33 Since thyroid follicular cells generate H2O2 by
membrane-bound dual oxidases for the synthesis of thyroid
hormones, these cells are at increased risk of oxidative stress

Table 1. Rare coding variants identified in MYO1F-targeted mutation screening

Chr19 genomic position (hg19)
Amino acid change
(NP_036467)

MAF in famNMTC
(N5192)

MAF in gnomAD
(European only)

g.8616995 C>T rs184748543 p.Lys1861 0.0026 0.004224

g.8615552C>T rs201962739 p.Pro266 0.0026 0.001478

g.8615513C>G p.Gly3682 0.0026 0

g.8610599G>T p.Ile430 0.0026 0

g.8587411C>T rs201982814 p.Val1024Met3 0.0026 0.00074554

1SNV not changing the corresponding amino acid, but with an altered ESE profile compared to wt cDNA, and removing SR-binding domains. The
SNV co-segregated with the NMTC phenotype in the available members of the corresponding family.
2SNV not segregating with the NMTC phenotype in the corresponding families.
3Missense variant predicted to be “benign” (PolyPhen-2) and “tolerated” (SIFT).
4One homozygous individual present in European population.
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Figure 5. MYO1F rs184748543. (a) Map of the minigene plasmid, showing the genomic insert of the wt and mutant alleles (red arrows).

(Blue arrows5position of the primers used for the specific RT-PCR). (b) RT-PCR of COS7-transfected with the MYO1F allele-specific mini-

genes. Upper panel: predicted final transcripts generated by the correct splicing of mini-gene-specific exons (blue) and MYO1F-specific

exons (grey). Lower panel: 2% agarose gel image (left) of the RT-PCR products, showing the different sizes of the transcripts and corre-

sponding electropherograms (right): the wt MYO1F allele promoted the inclusion of the exon 7 in the final transcript, whereas the mutant

allele induced an exon skipping in the final transcript, as predicted by the removal of the ESE in the exon 7. (d) Structure prediction of the

MYO1F molecular motor region, with the ATP-binding region highlighted in green. Pink indicates the residues corresponding to exon 7 and

red is the ion of magnesium. [Color figure can be viewed at wileyonlinelibrary.com]
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and ROS-mediated DNA damage. Indeed, an imbalance
between pro- and anti-oxidative factors has been suggested as
an important mechanism in thyroid tumorigenesis.34,35 Oxi-
dative stress generated by mitochondrial dysfunction can also
promote migration and stimulate MAPK-mediated cell death.
We therefore sought to evaluate: (i) the functionality of the
mitochondrial respiratory chain as a whole; (ii) the response
to oxidative stress of FRTL-5 cells stably expressing the wt or
mutant recombinant MYO1F protein, compared to cells
expressing the empty-vector. We found that the mitochon-
drial membrane potential and OXPHOS activities were simi-
lar in all cell lines, suggesting that mitochondria were still
functional. However, analysis of the mitochondrial network
by live-cell visualization revealed that in the mutant cell lines,
mitochondria appeared as separated rod-shaped organelles.

The mitochondrial features of mutant MYO1F cells were
therefore reminiscent of the oncocytic features described pre-
viously in the tumor tissues of the patients carrying the
p.Gly134Ser change.12

In our experimental setting, we found that cells with the
MYO1F p.Gly134Ser mutation, in addition to having an
altered mitochondrial network and an increased mitochon-
drial mass, produced significantly more intracellular and
extracellular ROS.

It has been reported that the establishment and mainte-
nance of a transformed state is related to the presence of
extracellular ROS, in particular, superoxide anion generated
by a specific membrane-associated NADPH-oxidase, NOX1.35

In fact, oncogenic activation of proliferative/mitogenic path-
ways has been associated with increased ROS production due
to activation of the membrane-bound NADPH oxidases.36

We did not detect differences among NOX1 protein levels,
but this finding did not exclude an increased activation of
this enzyme in the cells carrying the mutant MYO1F protein.
Extensive analysis of tumor cell lines derived from different
tissues, including thyroid carcinomas, has shown that they
were all characterized by extracellular ROS generation, not
found in cells derived from normal tissues.34 This is paral-
leled by our findings, since extracellular ROS production was
increased only in FRTL-5 cells expressing the mutant
MYO1F p.Gly134Ser protein, suggesting that the mutation is
sufficient to generate a transformed phenotype.

Interestingly, when the cells with the MYO1F p.Gly134Ser
mutation were treated with an antioxidant (NAC), we
observed a partial but significant rescue of the mitochondrial
fragmentation, confirming the role of ROS in this phenome-
non.37 In agreement with this result, treatment with NAC also
decreased the invasiveness of all cell lines including mutant
MYO1F cells, as indicated by the wound-healing assay. These
pilot data on phenotype rescue suggest that the treatment with
antioxidants may be effective for this type of tumors.

Since the “mitochondria-rich” phenotype may be under-
reported by histologic analysis,32 we screened additional
FNMTC patients to identify other MYO1F germline variants
that could predispose to thyroid tumor development.

However, the available samples represented a heterogeneous
group of familial cases affected by NMTC, and the high
genetic heterogeneity of thyroid cancer might have hampered
the discovery of a number of additional predisposing variants
in MYO1F. We identified a rare variant in two affected sibs
in exon 7, which promoted the skipping of the exon from
mature mRNA in vitro. No data regarding the presence of an
oncocytic phenotype were available for the two affected sibs.
In addition, the unavailability of fresh RNA from tissues of
these patients prevented us from confirming that this exon
skipping event actually occurs in vivo. Moreover, the allele
frequency of the exon 7 variant allele in our FNMTC cases
was not significantly different from the one present in the
control individuals in public databases; therefore, its contri-
bution to NMTC predisposition remains elusive. Our results
regarding MYO1F mutation screening in FNMTC cases stress
once again the high genetic heterogeneity underlying familial
thyroid cancer. Nevertheless, our study shows that a defective
MYO1F protein promotes the development of an oncocytic
phenotype, that is, mitochondrial proliferation, indicating
that this cellular characteristic can develop not only from
mitochondrial DNA defects31–33 but also from nuclear defects
in specific genes, that is, MYO1F. Mitochondrial dysfunction
and stress has been widely related to cancer, in particular, in
thyroid cancer predisposition.31,32 More broadly, an altered
mitochondrial function is a hallmark of many cancers,
although the nature of functional modification depends on
the type of cancer.33

It is interesting to note that F-actin is one of the few known
interactors of MYO1F20 and has been recently implicated in
mitochondrial fission control.38 Blockade of F-actin polymeriza-
tion/depolymerization altered the mitochondrial network.38 Sim-
ilarly to what has been observed in other autosomal dominant
disorders due to mutations in myosin genes, such as MYH9,39,40

we can hypothesize that the modified conformation of MYO1F
may block actin filament recycling; therefore, concurrently alter-
ing the mitochondrial network organization.

Recent data have shown the contribution of mitochondrial
dynamics toward tumor initiation and progression, although
the exact mechanism is not known. Excessive fission and
reduced fusion is a feature of many tumors.41–43 For example,
in human pancreatic cancer, expression of oncogenic Ras/
activation of MAPK pathway induces ERK2-mediated Drp1
phosphorylation leading to increased mitochondrial fragmen-
tation and the inhibition of this phosphorylation in xeno-
grafts is sufficient to block tumor growth.44 Interestingly,
recent data indicated that ERK2 also phosphorylated MFN1
to control mitochondrial morphology and apoptosis.45 We
did not find difference in Drp1 levels and phosphorylation in
our cell models, and it will be of interest to evaluate also this
pathway in the framework of the observed altered mitochon-
drial network present in the mutant MYO1F cells.

It is becoming increasingly clear that mitochondrial fission
and fusion play a critical role in quality control and mito-
chondrial damage/repair in cancer. Therefore, our data
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showing a fragmented mitochondrial network due to MYO1F
p.Gly134Ser mutation highlight a potential novel pathway
that may be deranged in thyroid cancer, that is, an altered
myosin/F-actin regulated interaction.20

To date, no other mutations have been reported in myosin-
encoding genes in thyroid cancer; however, it is interesting that
MYH9, a non-muscle myosin involved in sensorineural deafness
and thrombocytopenia,39,40 has recently been found to regulate
the ncRNA genes PTCSC2 and FOXE1 at the 9q22 thyroid can-
cer susceptibility locus.46 In the TCGA database, somatic muta-
tions in MYO1F are reported in 352 cases from various cancer
types (Supporting Information Fig. S6a). The mutation identi-
fied at the TCO locus in MYO1F was not reported. In the COS-
MIC database several mutations are present in MYO1F in
different types of cancer (Supporting Information Fig. S6b),
but only a somatic variant is reported in thyroid carcinoma
(COSM4132813). However, MYO1F overexpression was re-
ported in 24 of 513 (4.68%) cases (Supporting Information
Fig. S6c). These and our data suggest that MYO1F dysregulation
may predispose to cancer in a subgroup of cases. Indeed, the
oncocytic phenotype, observed in the family with the MYO1F
p.Gly134Ser mutation, represents a specific, although rare, group
of thyroid neoplasms, in which MYO1F mutation screening

may be more relevant than in other FNMTC cases. The identifi-
cation of the molecular cause(s) of specific thyroid cancer sub-
types will help tailor patients’ treatment for a more personalized
therapy.

URL

Catalogue of Somatic Mutations in Cancer (COSMIC): http://
cancer.sanger.ac.uk/ ESEfinder 3.0: rulai.cshl.edu/tools/ESE/ Exome
Aggregation database (ExAc): http://http://exac.broadinstitu-
te.org/Genome Aggregation database (gnomAD): http://gno-
mad.broadinstitute.org/ MODELLER: https://salilab.org/modeller/
PolyPhen-2: genetics.bwh.harvard.edu/pph2 PROVEAN (includ-
ing SIFT): provean.jcvi.org/ Primer 3: primer3.ut.ee The Cancer
Genome Atlas (TCGA): https://tcga-data.nci.nih.gov/
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10 Discussion 

The goal of this thesis is to make a step forward in the direction of unveiling the biological 

complexity of the genotype-phenotype relation. We believe that studying the molecular 

mechanisms and the biological functions at the basis of phenotypes manifestation and disease 

insurgence is useful to understand the processes characterising the phenotypes/diseases and 

to retrieve new possible related genes and variants to be tested in further researches. To 

analyse the shared features of phenotype and disease related genes is fundamental to 

integrate knowledge that means to integrate the various omics collecting different level of 

annotation. 

Our approach focused on this problem via large-scale studies whose significance was proved 

with specific study cases. In order to do so, we built resources like eDGAR (Babbi G et al, 2017; 

chapter 2) with the aim of merging features describing gene-disease associations. The idea 

beyond eDGAR is that curating and collecting the information on gene-disease associations is 

crucial to help researchers and physicians studying complex diseases. These concepts are at 

the basis of many other integrative datasets, such as DisGeNet (Pin ero J et al, 2017) and 

MalaCards (Rappaport N et al, 2017) that collect lists of gene-disease associations from 

different sources. MalaCards includes text mining of the scientific literature, gene annotations 

in terms of shared GO terms and associated pathways, while DisGeNet integrates data of 

disease-associated genes and their variants. Although these resources are already endowed 

with much information, we strongly believed that eDGAR may contribute in the field thanks to 

the huge variety of resources used for gene annotation, including information on regulatory 

interactions, co-localization in neighbouring loci, protein-protein interactions and co-

occurrence in protein complexes. This variety of resources allows a deep investigation of the 

features shared among genes (or proteins) co-involved in the same disease, letting emerge 

biological processes and pathways implicated in the disease. In eDGAR dataset, 621 diseases 

are associated with multiple genes (23% of the dataset). Investigating the features of 

polygenic diseases is crucial to better understand the nature of these maladies; in fact, 

studying the shared features (e.g.: biological pathways, molecular functions, stable 

interactions in complexes) we may find important processes characterizing the disease 

insurgence. Our results confirmed this hypothesis: we were able to endow the greatest 

majority of the polygenic diseases in the dataset with functional relations. For example, 

considering Gene Ontology (Gene Ontology Consortium, 2017) terms for biological process, 

almost all the polygenic diseases have at least a pair of genes in the same biological pathway, 

while considering other resources like REACTOME (Fabregat A et al, 2018) and KEGG 
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(Kanehisa M et al, 2017) this percentage remains in any case above the 50% (chapter 2). 

Being part of the same biological pathways could be index of protein-protein interactions. We 

confirmed this idea analysing protein-protein interactions in stable complexes, physical 

interactions and indirect interactions through a intermediator. Our results showed that 14% 

of the protein in polygenic diseases are part of the same protein complex, and the percentage 

increases (40-45%) considering less stable interactions derived from STRING (Szklarczyk D et 

al, 2015) and in BIOGRID (Chatr-Aryamontri A et al, 2015). Considering indirect protein-

protein interactions, we retrieved 25% more of polygenic diseases having related proteins in 

interactions. 

Therefore, diseases related to multiple genes shared biological processes and moreover they 

are characterized by protein-protein interactions of the protein products of the associated 

genes. We studied these protein-protein interactions having in mind the concepts that 

proteins in the same complex or in interaction should be co-expressed. Accordingly, we 

decided to analyse the regulations of the genes in polygenic maladies, taking into 

consideration transcription factors not directly linked to the disease that regulate the 

expression of genes associated to the same malady. Consequently, we analyse this property 

and we found out that half of the diseases of the dataset (44%) are associated with at least a 

couple of co-regulated genes.  Concluding, we want to reinforce the notion that genes 

associated to the same disease shared functional features and thus it is important to compare 

the annotation of the genes related to a malady to discover new possible biological pathways, 

protein complexes or transcription factors that may be analysed in further research to 

understand the molecular mechanisms at the basis of disease insurgence and progression. 

The novelty of eDGAR is that it allows a comprehensive analysis of the shared features of 

genes related to the same disease, and we believe that this resource may give a contribute in 

the direction of precision medicine to understand the molecular mechanisms that connect the 

different genes associated to the same disease.  

eDGAR has already been successfully used as a resource to retrieve well annotated genes 

associated with amyotrophic lateral sclerosis, with the aim of studying the expression of these 

genes in relation with developmental neurogenesis pathways (Swindell WR et al, 2018).  

 

In the same perspective of eDGAR, we built PhenPath (Babbi et al, under revision; chapter 4) 

to study specifically the biological processes underneath the appearance of several 

phenotypes.  Many other resources for studying the molecular mechanisms leading to 

different phenotypes have been recently developed, like Phenopolis (Pontikos N et al, 2017), 
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an open platform for harmonization and analysis of sequencing and phenotype data, offering a 

prioritized list of genes per phenotype, based on known association and gene enrichment 

analysis. 

Other resources provide associations between diseases and phenotypes, including the Human 

Phenotype Ontology (HPO; Ko hler S et al, 2017) and the OMIM Clinical synopses (Amberger JS 

et al, 2015). In particular, the Phenomizer tool (Ko hler S et al, 2009), provided by the Human 

Phenotype Ontology consortium, analyses lists of phenotypes/symptoms with the aim of 

assisting the clinical workflow and suggesting diagnoses.  

While many resources focus on the relationship among phenotypes, diseases and genes, little 

is known about the relevance of molecular functions and functional processes underlying the 

co-occurrence of phenotypes. Our hypothesis is that phenotypes co-occurrence may derive 

from an alteration of a limited number of biological processes underneath the phenotypes in 

exam, and thus retrieving the shared biological pathways and functions is very useful to study 

the phenotypes insurgence, especially when the number of genes associated to phenotypes is 

restricted. Accordingly with this idea, in PhenPath we focused on supplement gene-disease-

phenotype associations with functional annotations associated with a given set of phenotypes. 

PhenPath offers a new approach for investigating the molecular mechanisms leading to the 

correlated manifestation of different phenotypes. PhenPath may be used to explore the 

possible connections among different phenotypes co-occurring in a patient, offering new clues 

on the biological mechanisms that may explain its clinical conditions. 

Although the paper describing PhenPath is still under revision, we already have proofed the 

efficacy of this resource with study cases. In particular when we analysed Rett syndrome 

associated phenotypes with PhenPathTOOL, via comparison of the biological pathways shared 

by the phenotypes in input, we recovered genes that have been only recently associated with 

Rett syndrome and not previously reported in the gene-disease datasets used to build 

PhenPath. These findings illustrate the efficacy of PhenPathTOOL in linking a set of 

phenotypes to genes and functional annotations, retrieving new genes involved the disease 

insurgence to be studied in further experiments. 

 

Beside the study of gene-disease and gene-phenotype associations with a large-scale 

approach, we also analysed in deep the relations among genetic mutations, protein variants 

and their associations to diseases and phenotypes. In particular, with INPS-3D (Martelli PL et 

al, 2016, chapter 5), we participated into two editions of the Critical Assessment of Genome 

Interpretation (CAGI), an international experiment with the aim of testing computational 
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methods for the predictions of phenotypic effects of genetic mutations or protein variants.  

Over the 16 challenges in which we competed in the last three years, we obtained good results 

presenting our work to an international audience of experts in the field, and we also 

collaborate in 2 publications in the CAGI4 special issue (Daneshjou R et al, 2017, chapter 7; Xu 

Q et al, 2017, chapter 8). Other 3 publications have already been submitted to the Human 

Mutation CAGI5 special issue. We recently compared our results in CAGI5 edition with the 

ones of other predictors summarizing the lessons learnt in a paper under review (Savojardo et 

al, 2019, Human Mutation, submitted).  

Here, we highlight the evaluation of the performance of our INPS-3D predictor, which has been 

used to generate predictions submitted to CAGI5 for the challenge of Frataxin and TPMT-

PTEN. In particular for Frataxin challenge, evaluation was carried out using the same 

procedure applied during the official assessment of the challenge (performed by Emidio 

Capriotti, University of Bologna, Italy). According to the official CAGI5 assessment, INPS-3D is 

among the top-performing methods participating to this challenge.  

We can say that the good performance achieved by INPS-3D in this experiment reflects the fact 

that the challenge required to predict the ΔΔG value upon variation, which is exactly the same 

experimental evidence used to train our predictor.  

In the TPMT-PTEN challenge our approaches show performances differentiated between the 

two proteins, with correlations that are lower for TPTM and higher for PTEN. This behaviour 

is in line to what observed for all participants to the challenge, as pointed-out during the 

official assessment (performed by Yana Bromberg, Rutgers University, NJ, USA). Overall, our 

submissions are in the top 50% among challenge participants as highlighted in the 

assessment. 

Comparing results of Frataxin and TPMT-PTEN challenges, it is worth noting that, using 

essentially the same prediction approach, we achieved very different levels of performance. It 

is clear that, as soon as the prediction task deviates from the original scope of the predictor, 

performances progressively decrease.  

 

Thanks to the expertise acquired in the field, we also collaborate with the Sant’Orsola Genetic 

Medical Unit of the Department of Medicine and Surgery of the University of Bologna, building 

a series of models of protein structure of myosin 1F and its variants related to the thyroid 

cancer (Familial Non-Medullary Thyroid Carcinoma, FNMTC) (Diquigiovanni C et al, 2018, 

chapter 9). Here we want to highlight that our approach merged basic and applied research, 
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keeping focused on real problems like the annotation of specific protein variants in relation 

with disease, with direct application in medicine. 
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11 Conclusions 

The annotation of genes, proteins and their variants is still an issue in computational biology. 

In a large-scale perspective, a great effort is continuously made by the scientific community 

with the aim of creating resources for the annotation, maintaining and updating current 

databases and curating the stored information. The problem of standardization of the 

nomenclature that we use to define genes as well as proteins and variants and their features is 

not solved; we need to map our data to many different classifications to be user friendly, 

waiting for a definitive homogenization of international standards.  In this direction, enlarging 

the network of collaborations is fundamental, and being part of the ELIXIR community (see 

paragraph 1.4) is important especially for what regards resources integration and 

interoperability. 

In this thesis, we proposed webservers and tools available online to help researchers in 

directing their experiment and speed up the annotation procedures. With eDGAR (Babbi G et 

al, 2017) and its new version eDGAR+ we provide a database of very well annotated gene-

disease associations, with the possibility of comparing and analysing in deep the relations 

among genes associated with the same disease. To understand the biological process that 

leads to the appearance of different phenotypes, we provide PhenPath (Babbi G et al, 

submitted in 2018), comprising a database of precomputed analysis and a tool for the online 

comparison of set of phenotypes, retrieving shared genes, diseases and shared molecular 

mechanisms.  

We proposed a great variety of approaches for the prediction of the phenotypic effects of 

genetic variants, participating in two editions of the CAGI experiment. We test our predictors 

(e.g. INPS-3D, Savojardo et al, 2016) and compared our outcomes with the one obtained by 

other researchers in the field. We report some of the best results to describe the most effective 

methods and we already published two scientific papers on the Special Issue of CAGI 4 edition 

on Human Mutations (Hoskins RA et al, 2017) and other papers are now under writing process.  

Thanks to the expertise acquired in defining the phenotypic effect of variants, we collaborate 

directly with the Sant’Orsola Genetic Medical Unit to compute protein models of myosin 1F 

variants related to Thyroid Cancer, helping in directing their research with our computational 

approach. 

In conclusions, we tried to depict the biological complexity merging a large-scale approach 

with the analysis of specific study cases. Although we are still far being able to predict the 

whole phenotypic appearance and disease state of a human being based only on the genetic 

information, we are now able to predict some simple phenotypic effects of gene variants and 
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to relate gene-disease associations understanding the molecular mechanisms shared by genes 

involved in the same disease. With the study cases, we demonstrate that our computational 

methods have great results in predicting the outcome of simple experiments. Altogether, these 

findings help researchers and scientist in directing further efforts and in planning their 

experiments, and we believe that building networks of web servers, predictors and tools is a 

fundamental step for understanding the biological complexity.  
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