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Abstract

Alzheimer’s disease (AD) is characterized by the presence of two specific structures in
brain of patients: senile plaques (SP) and neurofibrillary tangles (NTFs). Oligomers of
beta amyloid protein are the main component of SP, while NFTs are constituted by
oligomers of aberrantly phosphorylated tau protein. The aim of this thesis is to present
two studies concerning the process of diffusion and agglomeration of tau protein first
into fibrils and eventually up to neurofibrillary tangles. The aforesaid researches share
the use of Smoluchowski-type equations (including diffusion and monomers produc-
tion) on a finite weighted graph, which is conceived as a theoretical approximation of
the human brain, where each vertex represents a cerebral area of interest, while the
connections between them are described by the edges.
In the first chapter, we present a model for the aggregation and diffusion of hyperphos-
phorylated tau based on a finite dimensional Smoluchowski-type system on a finite
graph, aimed at reproducing tau patterns in human brain obtained through suitable
in vivo measurements. In such model, clusters whose length exceeds an a priori
established critical threshold are defined to be tangles. Statistical analysis is performed,
comparing the model-predicted tau concentrations (in monomeric, oligomeric form and
in tangles) with cortical atrophy data and empirical tau measurements in AD patients
provided by in vivo neuroimaging.
The second research considers the process of aggregation in tangles of hyperphosphory-
lated tau protein as a result of a coagulation process of this protein. The formation
of neurofibrillary tangles is mathematically characterized in terms of a sol-gel phase
transition for a polymerization problem, modelled by means of infinite dimensional
Smoluchowski-type system on a finite graph. From a biological point of view, the
process of formation of gel is a suitable tool for the description of the process of
formation of neurofibrillary tangles, since it allows one to formulate conjectures and to
provide insights on the nature of this phenomenon in AD scenario. This could open
new interesting perspectives concerning the role of NTFs in neurodegenerative disorders.
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Introduction

Alzheimer’s Disease (AD) is the most common form of dementia. As of 2015, it was
estimated to affect 29,8 million of people over 65 years of age worldwide [25]. Its
main symptoms include memory loss, language and disorientation problems, psychi-
atric or behavioral disturbances and serious difficulties to carry on daily living activities.

AD was described for the first time in 1907 by Alois Alzheimer, a German psychia-
trist and neuropathologist, who reported the results of the autopsy of a 55-year-old
woman who died after a progressive behavioral and cognitive disorder. Upon post-
mortem inspection, the patient’s brain showed the presence of two distinct anatomi-
cal findings: neurofibrillary tangles (NFTs), that Alzheimer correctly surmised that
originated from abnormal intracellular aggregates, and neuritic plaques, which were
described as "minute miliary foci which are caused by the deposition of a special
substance in the cortex" [3].
This "special substance" was eventually isolated in 1984 [43] and identified as the beta
amyloid peptide (Aβ), while tangles were later shown to be composed of hyperphos-
phorylated 1 forms of tau protein.

The actual causes of Alzheimer’s disease and its mechanisms of progression remain
largely unknown to this day and are the subject of active scientific research. In par-
ticular, both findings reported by Alzheimer, the presence of beta amyloid plaques
and that of neurofibrillary tangles have been investigated as key factors of the corre-
sponding neurodegenerative process. It remains unclear, however, whether they are
active agents of disease propagation or just the signature of ordinary waste clearance in
homeostatic brain tissue. For instance, it has been suggested that a significant role in
neurodegeneration is played by beta amyloid (the so-called amyloid cascade hypothesis,
see [48], [94], [28]).

1The hyperphosphorylation is a biochemical process in which a molecule acquires phosphoryl
groups in multiples sites up to saturation.
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Beta amyloid is a 40-42 aminoacid peptide normally produced by neurons. In fact,
beta amyloid monomers result from the sequential cleavage of the amyloid precursor
protein (APP), a large trans-membrane protein involved in various signal transduction
pathways. The physiological role of Aβ is linked to the modulation of synaptic activity,
but it is still controversial [85]. By unknown reasons, some neurons start to present
an imbalance between production and clearance of β-amyloid during aging. In fact,
the presence of amyloid generates an inflammatory response in which the main role is
played by the microglial cells, that act as a clean-up crew in charge of clearing amyloid
deposits [77].
However, in pathological conditions like AD, microglia seem not to perform their
functions properly. Thus, the protein starts accumulating in the cerebral tissue and to
coagulate, first in longer polymers and then in the form of insoluble fibrils [48]. The
latter aggregate outside neurons in spherical deposits known as senile plaques [77].
It is important to underline, however, that amyloid plaques are commonly present in
the brains of cognitively intact elderly people [96], so that their role in Alzheimer’s
disease is not well understood as yet.

Actually, there is increasing evidence that soluble Aβ oligomers, and particularly
the oligomeric isoforms 2 Aβ40, Aβ42, are highly toxic for cerebral tissues and can be
considered a significant effector of neuronal death and eventually of dementia [114],
[112]. In fact, soluble oligomers correlate much better with the presence and degree of
cognitive deficits than plaques [21]. This evidence, coupled with the fact that large
plaques present much less Aβ surface area to neuronal membranes compared with a
multitude of small oligomers that can diffuse into synaptic clefts, hints at that such
soluble assembly forms are better candidates for inducing neuronal and/or synaptic
dysfunction than plaques [112].
However, large plaques of fibrillar Aβ in AD brains typically show surrounding dys-
trophic neurites, indicating that insoluble aggregates might also contribute to neuronal
injury. The problem is that large, insoluble protein aggregates are likely to be intimately
surrounded by a number of smaller, more diffusible, assemblies (for example, monomers
or oligomers) [96]. Thus, it becomes difficult to establish if the large aggregates are
directly inducing local neuronal injury and dysfunction.

2An isoform is a member of a family of highly similar proteins that have a similar but not identical
aminoacid sequence.
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Another major role in neurodegenerative diseases (including Alzheimer’s) is played
by tau protein, which is found within the neurons in homeostatic conditions, where
it is instrumental in the assembly of tubulin into microtubules and the subsequent
stabilization of their structure . Interestingly, the role of tau protein in AD caught on
in the scientific community later with respect to the beta-amyloid [102]. It is currently
assumed that, in pathological conditions, tau protein undergoes hyperphosphorylation,
loses its stabilizing function, and eventually aggregates into neurofibrillary tangles
(NFTs) [71], [6].Importantly, a significant link between tau protein and Aβ has been
unveiled, as the latter is able to enhance the phosphorylation of monomeric τ , possibly
through the action of enzyme GSK3 (see [6], [7], [8]). More precisely, there is evidence
that an excess of activity of enzyme GSK3 accounts for tau hyperphosphorylation
and increase β-amyloid production [54]. Further information about biological facts
concerning tau protein will be provided in Chapter 1 and 2 of the thesis.

As a matter of fact, neurodegeneration is a complex process in which several
molecules are involved and often interact with Aβ or tau protein in ways that are
only partially understood. A particular exampIe of such interaction concerns the
modification of protein topology. In general, proteins function properly when their
constituent aminoacids are correctly folded. However, proteins may undergo changes in
their structure, when protein folding takes place in abnormal ways (misfolding). This
process is often associated with the change of a physiological function to a pathological
one. In particular, such molecules may become toxic and start aggregating in longer
clusters. In addition, they interact with native 3 proteins, to catalyze their transition
into a toxic state. The newly formed toxic proteins can repeat this cycle to initiate a
self-sustaining loop [5].
For instance, PrP is a chromosomally-encoded protein that can exist in multiple iso-
forms. The most common are the normal PrPC and the pathologic PrP Sc. Differences
among isoforms concern protein structure which, in case of the PrP Sc, is related
to toxic effects. Indeed, PrP Sc is linked with a variety of diseases like the bovine
spongiform encephalopathy etc., and shows the so-called prion property that consists
in spreading the disease-associated form by inducing other protein of the same type to
adopt a similar geometrical conformation [103].
Recent findings suggest that there may be a relationship between Alzheimer’s disease
and PrPC protein [60], [13]. More precisely, the latter has been reported to mediate
the neurotoxic effect of Aβ oligomers. In fact, PrPC exhibits high capacity to bind

3The form in which a protein folds naturally is said native state
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to Aβ and modulate the inhibitory effect of Aβ oligomers on the synaptic plasticity
with consequent impairment of memory and cognitive functions [75]. In addition, the
binding of soluble amyloid to PrPC can activate several biochemical processes that
result in the promotion of tau phosphorylation, underlining the prion connection that
links together the two hallmark pathological events in AD [73].

Interestingly, there is evidence that also aggregated Aβ or tau possesses prion-like
activity [102].

Possible mechanisms underlying the assembly of tau and β-amyloid in oligomers
and the subsequent spreading of the pathological isoform alike to misfolded PrP, have
been proposed to follow the above described scheme [60]. In fact, it seems that the
acquisition by the Aβ of a particular, non-homeostatic structure during the process of
folding, is responsible of aggregation in clusters and toxicity [95]. On the other hand, as
regards tau protein, hyperphosphorylation is the triggering event of a series of processes,
including changes in the structure of the molecule, that lead tau to become pathological
and to polymerize [6], [102]. Further details about misfolding and aggregation of tau
protein will be provided in Chapter 1.

Another protein involved in neurodegeneration is Apolipoprotein E (ApoE). Its
physiological function is related to the transport of cerebral cholesterol and it is present
in brain tissue in different isoforms. The most common are: e2, e3 and e4; among these,
ApoE e4 represents the main genetic risk factor for AD, while ApoE e2 is associated
with the lower risk [68]. This can be due to structural differences among isoforms,
that are responsible of the reduction of stability of e4 (compared to other isoforms)
and increase its ability to interact with lipid and cell membrane. Studies suggest that
Apolipoprotein E is involved in the clearance of beta amyloid [68], [69]. In fact, it seems
that ApoE-containing lipoprotein particles may sequester Aβ and modulate the cellular
uptake of an ApoE-Aβ complex or, alternatively ApoE may modulate Aβ removal
from the brain to the systemic circulation by transport across the blood-brain-barrier
[69]. Experimental evidence hints at that ApoE e4 is less efficient in clearing amyloid
compared to other isoforms [117].

In addition, it seems that the amount of cholesterol in the neuronal membrane is
linked to the production of the toxic isoform Aβ42 [122]. High quantities of cholesterol
are associated with an increase of enzymatic activity that gives rise to Aβ42. ApoE
e4 seems to be less efficient to clear excess of cholesterol compared with other ApoE
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isoforms [22] and therefore that molecule might be responsible of a rise in the pro-
duction of harmful Aβ42 in neurons. On the other hand, it has been observed that
the level of ApoE in brain increases following neuronal injuries [68]. Hence, it has
been hypothesized that ApoE can contribute to neurological healing by redistributing
lipids and cholesterols for membrane repair and synaptic plasticity. Furthermore, in
vivo and in vitro studies reveal that ApoE e3 augments synaptic plasticity and exerts
neurorepair effects more efficiently than ApoE e4 [4]. Finally, there is evidence that
ApoE e4 molecule may interact with tau protein and contribute to tau phosphorylation
[33].
From a macroscopic point of view, the result of the above-mentioned pathological
processes is cerebral atrophy, i.e. a loss of neurons and synapsis in the cerebral cortex
and in some subcortical regions with the consequent reduction of the volume and loss
of function of the affected areas.

We next discuss briefly on the approach followed in this memoir. In recent years
there has been a considerable interest in the mathematical modeling of biomedical
problems such as tumor growth ( [110], [19] [100],[62]) and cardiovascular diseases ([67],
[66], [108], [107] etc). However, comparatively less effort has been devoted to modelling
neurodegenerative diseases as AD (see for instance [27], [109], [20]). In fact, when
dealing with medical disorders as Alzheimer´s disease, one has to face what represents
a central problem in mathematical modelling in biomedicine. Specifically, one has to
decide what is the purpose of the model to be eventually produced, and what is the
role of experimental data in the modelling process. We will shortly elaborate on these
issues in the sequel.
Concerning data, these could be retrieved from in vitro experiments or in vivo mea-
surements, or can be extracted from the biomedical literature available. Data from
in vitro experiments are comparatively easier to obtain although they frequently are
not representative of the complex environments of proteins in living tissues. On the
other hand, realistic and accurate measurement in vivo are difficult to obtain due
to ethical, medical and technological reasons. It is precisely for these reasons that in
silico experiments, that is the formulation, analysis and simulation of carefully chosen
mathematical models, are important. Such models can be used to test preliminary new
theories, quickly discerning the most relevant hypotheses or rejecting those less likely to
lead to new insights. Therefore, the mere reproduction of already known facts, which is
certainly a preliminary quality control test for any biomedical model, is just a starting
point and not the main goal to be pursued. What we retain important indeed is that
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modeling could suggest new insights on the dynamics of the biological process consid-
ered that are not easily arrived at by other means. Furthermore, models should have a
predictive value, including the possibility of designing experiments that could prove (or
disprove) the validity of the hypotheses made, as well as that of the conclusions obtained.

We next discuss on the models presented in this thesis. At the mathematical
level, we will deal with processes involving mass transfer and aggregation taking place
in undirected graphs. Specifically, we shall be concerned with polymerization pro-
cesses represented by Smoluchowski–type equations ( [118],[119],[80]) coupled with
polymer transport along the edges of given graphs. The use of graphs as underlying
space structures represents a substantial change with respect to classical results in
polymerization theory as those recalled before, as well as with recent models related
to Alzheimer’s diseases like [1], [10], [36], [37]. In particular, in these latter works,
Smoluchowski’s equations with diffusion defined in the usual continuous setting were
considered to describe the process of agglomeration and diffusion of beta amyloid in AD.

The aim of this thesis is to present and analyze two models concerning disease-
associated processes involving tau protein based on Smoluchowski-type equations on
a finite graph. More precisely, the focus is on the transport and coagulation of hy-
perphosphorylated tau protein in human brain, first into fibrils and eventually up to
neurofibrillary tangles which, according the current biomedical literature, are relevant
steps in the onset and progression of the AD (although there is still no general agree-
ment on whether their role is detrimental or beneficial for brain cells; see, for instance,
[76]).
In the first model, the formation of tangles is postulated to occur when clusters ’length
exceeds an a priori established critical threshold, while in the second model the same
phenomenon is associated with the onset of a gel state in a phase transition. In both
situations, the finite graph is conceived as a theoretical approximation of the human
brain, where each vertex represents a cerebral area of interest and the connections
between them are provided by the edges.

The contents of this thesis can be summarized as follows.

In Chapter one, we present a model for the aggregation and transport of hyperphos-
phorylated tau protein based on a finite dimensional Smoluchowski-type system on
finite weighted graph. The aim here consists in reproducing tau patterns in diseased
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brain obtained through suitable in vivo measurements.

To this purpose, we follow [91], where a cerebral network is empirically built through
a medical and computational study. To that end, functionally homogeneous brain
regions and suitable measurements of the connectivity between them were extracted
from a dataset of healthy subjects’ MRI. However, differently from [91] in which the
focus is on studying the progression in the brain of a generic so-called disease factor,
our work is concerned with the role of phosphorylated tau oligomers in the development
of AD.
In order to test whether the proposed model is able to predict the spatiotemporal
evolution of tau oligomeric species and tangles, we postulate that the regions and
the connections of the empirical network under consideration correspond respectively
to the vertices and the edges of the graph in which the equations for diffusion and
agglomeration of tau protein are considered. In this way, the model-predicted tau
concentrations (in monomeric, oligomeric form and in tangles) in each vertex of the
network can be compared with empirical data on the cerebral region associated with
that vertex and consisting in tau measurements in AD patients provided by in vivo
neuroimaging and in cortical atrophy data. The latter come from the public Alzheimer’s
Disease Neuroimaging Initiative (ADNI), while tau patterns’ imaging data emerge
from a study at Yonsei University, South Korea (see [37]).

Statistical analysis is performed between the two pairs of data samples (model-
predicted tau against empirical tau and model-predicted tau against cortical atrophy
data). On the grounds of such study, we are able to propose that our model for
hyperphosphorylated tau protein is able to replicate tau patterns measured in AD
brains during the course of the disease.

These results come from a collaboration with professor Ashish Raj of University
of California at San Francisco and a group of Korean researchers: Hanna Cho, Jae
Yong Choi, Young Hoon Ryu, Chul Hyoung Lyoo, and are currently being prepared
for publication.

In chapter two, the beta amyloid hypothesis in the formation of neurofibrillary
tangles ( NFTs) is discussed in a particular setting. Specifically, we assume that
beta amyloid acts a source of aggregation of tau monomers, which in turn coagulate
according to specific rates characteristic of classical polymerization problems. The
overall process is described in terms of infinite dimensional Smoluchowski-type systems
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(including mass transfer and monomers production) on a finite weighted graph. This
kind of systems (without monomers injection) have been introduced in the field of
Chemical Engineering with the classic work [99] and their mathematical properties
have been actively studied in recent years; see, for instance, [86] and [80]. In the latter
work, the problem of characterization of sol-gel phase transition in a open bounded
subset of the euclidean space RN is considered. In this thesis, instead, the spatial
domain of our model is a finite graph, that is considered a suitable approximation of
the human brain.

The main contribution of this study consists in the proof, under suitable choices of
coagulation coefficients, of the occurrence of a sol-gel phase transition in finite time that
is associated with a loss of regularity of the solution. We further suggest that this tran-
sition can be understood as the onset of NFTs. The way in which this phase transition
is identified can be succinctly summarized as follows. We first show that, for sufficiently
small times, the polymerization process occurs in a smooth way, characterized by the
existence of classical solutions and the steady increase in total mass of tau polymers,
the latter resulting from the beta amyloid source term. However, after some time has
elapsed, a sharp decrease in the total mass is detected, and upper and lower bounds for
the time at which this occurs ( the so-called gelation time) are provided. Finally, we
prove the blow up in finite time of the second moment of the solution of our system, a
standard test in detecting the onset of gels in polymerization problems. From a biolog-
ical point of view, we deem the onset of a gel to be a suitable tool for the description
of the formation of neurofibrillary tangles. We retain that this approach could open
new interesting perspectives concerning the role of NTFs in neurodegenerative disorders.

We conclude this work with an Appendix, where we provide an overview of about
graph Laplacian and its main property, focusing on the known results that we use in
the proofs of this thesis.



Chapter 1

A combined model for the
aggregation and diffusion of τ
protein in Alzheimer’s Disease

In this chapter we present a mathematical model for the aggregation and transport of
tau-protein in Alzheimer’s disease. The model is object of the paper A combined model
for aggregation and network diffusion in Alzheimer’s disease recapitulates regional
human tau-PET patterns, whose authors are Ashish Raj, Department of Radiology
and Biomedical Imaging, University of California at San Francisco, Veronica Tora
University of Bologna, Hanna Cho, Department of Neurology, Gangnam Severance
Hospital, Yonsei University College of Medicine, Jae Yong Choi, Department of Nuclear
Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Young
Hoon Ryu, Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei
University College of Medicine, Chul Hyoung Lyoo, Department of Neurology, Gangnam
Severance Hospital, Yonsei University College of Medicine, Bruno Franchi University
of Bologna.
In that work we investigate the process of aggregation of tau protein in human brain,
that takes place at microscopic level, as it occurs inside the neuron, and subsequent
spreading of aggregated tau from one cerebral region to another. The latter is a
macroscopic process, as it regards the entire brain network.
Thus, we unify the macroscopic and microscopic scale in a single model capable of
predicting the spatio-temporal evolution of tau oligomers and tangles in human brain
affected by AD, due to the fact that it is comparable with τ patterns in diseased brain
and MRI-derived atrophy, obtained from in vivo human neuroimaging data. That work
will give further support to the central role of τ protein in AD and can be used to
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understand the etiology and the mechanism of progression of neurodegeneration.
The contribution of the authors can be summarized as follows:
Raj, Franchi and Tora conceived the study, developed the model and wrote the paper;
Raj implemented the model, validated on human imaging data, generated results,
performed statistical analysis; Cho, Choi, Ryu, Lyoo performed human imaging,
study enrollment, consenting, image processing, quality checks, helped improve the
manuscript.

1.1 Biological setting and related litterature

Alzheimer’s disease (AD) is characterized by widespread and progressive deposition
of amyloid beta protein in cortical plaques and of protein tau in tangles [11, 104].
Several alterations of such proteins from their native form and their aggregation (first
in soluble oligomers, then in insoluble fibrils) have been proposed as prime initiator
and cause of several neurodegenerative conditions [12].
Studies assert that the process of plaques formation starts with increased concentrations
of Aβ that gradually lead to oligomerization and ultimately to creation of amyloid
deposits [113], [48]. Modifications in structure of Aβ, rather than its sequence of
aminoacids, play the principal role in Aβ-induced toxicity [16].
According to a general setting, the typical driving force in protein aggregation is be-
lieved to be destabilization of the native protein to yield a population of partially folded
intermediates with increased aggregation propensity [42]. One of the first biophysical
models of this process was the “heteromer” model of Pruisiner and colleagues [89],
followed by nucleated polymerization (NPM)[81].
Protein structural change is typically described as “monomer activation” [83]. Subse-
quent fibrillation follows a nucleation-elongation process [94, 42].
Such model for protein aggregation has been proposed for several diseases involving pro-
tein misfolding, included, for istance, the β-amyloid in AD [94]. Two phases have been
identified in protein aggregation: a lag (nucleation) phase followed by an elongation
phase. In the initial lag-phase misfolded monomers start to form small olygomers when
a critical concentration is exceeded within the local environment to provide an ordered
nucleus to catalyze the further growth of the polymers by providing a template for
fibril growth during the more rapid elongation phase. Once the nucleus has developed,
it provides a seed for the growth of larger, fibrillar aggregates which in turn associate
into mature fibril-like structures [94, 42].
Studies in cells culture and on transgenic AD mice support the view that amyloid
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aggeregation and deposition take place according to the above described seeding process
similar to molecular templating of prion proteins [64].
The protein aggregation literature is extensive. As regards the Aβ protein, numerous
recent reviews describe our current understanding of amyloid fibril structure [94, 28],
mechanism of toxicity [113, 28] and the aggregation process [115]. An excellent overview
of historical contributions to kinetic and thermodynamic descriptions of protein ag-
gregation are given by Morris et al [83], and several current mathematical models of
protein aggregation were reviewed in [42]. Although mathematical models of protein
aggregation have been explored in related prion disease [94, 83], they have hitherto
been scarce in Alzheimers’s and dementia - but see [84, 1, 42, 10, 36, 37] and a thor-
ough review [14]. Since aggregation models involve detailed reaction kinetics, their
parameters are typically learned from in vitro aggregation experiments.
Recent researches suggest that processes of misfolding with subsequent prion-like
spreading of the pathological alterations and aggregation affect also τ -protein [60].
The latter is abundant in neurons of the central nervous system and less common
elsewhere. Its physiological function is related to the regulation of the stability of
the axonal microtubules by promoting the assembly of tubulin. Studies reveal that
monomeric tau protein is a soluble natively unfolded protein with low capacity to form
filaments in vitro [102]. However, in disease conditions, the microtubule-associated tau
protein undergoes a series of alterations including hyperphosphorylation and structural
modifications; thus, its capacity to perform its stabilizing function is prejudiced and
the misfolded protein starts diffusing through the neuronal pathways and to coagulate,
first in longer polymers and then in the form of insoluble fibrils into so-called neurofib-
rillary tangles. Neurofibrillary τ tangles appear first in locus coeruleus, then entorhinal
cortex, then spreads into hippocampus, amygdala, temporal lobe, basal forebrain and
association areas, in that order [11]. A wealth of evidence suggests that metastable,
soluble oligomers formed early in the aggregation process and small fibril fragments are
the predominant toxic species. Further details on the process of tau phosphorylation
and tangles’ formation will be provided in Chapter 3.
However, at the current state of research, the cause-effect mechanisms by which various
oligomeric τ species are produced, aggregate and disseminate, and how they cause
neurodegeneration and symptomatology, are not completely known. Many important
questions in AD research remain unresolved: how does protein aggregation and subse-
quent spread lead to stereotyped progression in the AD brain? Why do misfolded τ

oligomers selectively target certain specific structures? Can mathematically precise
models that describe these processes recapitulate in vivo measurements in human
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brains? Despite advent of biophysical models of protein aggregation, it remains un-
known whether they are capable of recapitulating human disease in vivo. Most previous
aggregation models were restricted to local processes, without accounting for spatial or
network spread. Some early work was done to incorporate classical spatial diffusion in
prion aggregation models [87], in truncated Smoluchowski equations [10] and in NPM
model [82]. The latter in particular also explored a kind of network spread, but relied
on “toy” connectomes and did not compare model outputs to real in vivo data [82]. A
network model loosely based on protein aggregation as a process of epidemic spread
was proposed and validated on amyloid PET data of AD patients [59].

1.2 Introducing a novel joint Aggregation-Network-
Diffusion model

In this chapter we develop and empirically validate the mathematical machinery capable
of encapsulating the entire gamut of neurodegenerative etiology and progression, using
bottom-up biophysical modeling. We propose a parsimonious model of all three
processes: τ monomer production; subsequent aggregation into oligomers and then into
tangles; and the spatiotemporal progression of misfolded τ as it ramifies into neural
circuits. We hypothesize that this model, which we call Aggregation-Network-Diffusion
(AND) model, can explain many experimental findings in AD. The model incorporates
the following key elements, based on experimental evidence:

• Initial production of misfolded monomeric τ occurs at a specific site in the
medial temporal cortex, especially the entorhinal cortex, based on histopathology
findings from Braak [11].

• Monomeric τ progressively aggregates into dimers, oligomers, and finally into
immobile fibrils, giving neurofibrillary tangles. Each oligomeric species has a
different propensity to aggregate and to spread.

• Subsequent spread of above protein species is modeled by a (potentially direc-
tional) transmission process whereby anatomic connections govern the rate at
which two distant but connected brain regions might transfer pathologic entities.
The pathological underpinnings of networked spread are given by “prion-like”
trans-neuronal transmission, whereby proteins misfold, trigger misfolding of ad-
jacent same-species proteins, and thereupon cascade along neuronal pathways
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[17, 38, 56, 65]. Trans-neuronal transmission implies spread along axonal pro-
jections rather than spatially. Hence networked spread is a natural model, as
substantiated by neuroimaging [88, 91, 92, 125, 59].

Using these facts we formulate the AND model that is capable of predicting the
spatiotemporal evolution of AD-associated τ in human brains, separately resolving
the progression of all oligomeric species as they aggregate, spread and deposit in
brain regions. Following the model studied in [1], [10], [36], [37], we describe the
aggregation of τ polymers by means of Smoluchowski equation [98], a system of infinite
discrete differential equations (without diffusion) for the study of rapid coagulation
of aerosols. Smoluchowski’s theory was previously extended to cover polymerization,
aggregation of colloidal particles, formation of stars and planets as well as biological
populations and behavior of fuel mixtures in engines. Smoluchowski equation was
successfully applied to the agglomeration of Aβ amyloid first in [84] and then in [1].
We combine Smoluchowski aggregation theory, applied here to τ oligomers, with a
mathematical model of their trans-neuronal spread. For the latter purpose, we ex-
tend the previous Network-Diffusion model [91, 92], which was shown to recapitulate
the classic spatial patterns of AD-related atrophy. This model approximates the
trans-neuronal transmission of misfolded proteins as simple diffusive spread along
axonal projections. Hence, the proposed AND model combines these elements into a
complete model of τ progression in AD, starting from a healthy brain with no pathology.

We hypothesize that this model will recapitulate not only the spatiotemporal evolu-
tion of τ , but also predict the time course of the evolution of various oligomeric species.
We implement the AND model on brain “connectomes” or connectivity networks ob-
tained from healthy subjects’ diffusion-weighted MRI, and validate it against empirical
data from AD patients’ regional atrophy and tau-PET scans. We evaluate several
formulations of how the kinetics of protein aggregation and network diffusion varies
according to oligomer size, and show that for each formulation, there exist parameter
ranges within which the AND model recapitulate empirical spatio-temporal patterns
of AD.

To our knowledge, this is the first report of an empirically-validated complete
biophysical model of both protein aggregation and trans-neuronal spread in Alzheimer’s
disease. Such mathematical models can serve as critical test-beds for assessing etiologic
and mechanistic hypotheses of neurodegeneration, and can be tested directly on in
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vivo neuroimaging data. Clinically, this approach might serve as a computational
biomarkers of τ progression in patients.

1.3 Description of the model

In this work, we combine network diffusion and Smoluchowski aggregation theory
into a complete model of AD-associated and progression, starting from a completely
healthy brain with no pathology to begin with. We propose to model jointly the
network-wide ramification of τ , whose production and network dissemination are two
separate processes. Since we are interested in expanding the aggregation processes to
include graph-based diffusion, we will replace the spatial diffusion term in the eq. (1.9)
in Appendix 1.8.1 with a graph diffusion process. We denote by τm(xi, t), the molar
concentration of soluble τ polymers of length m at i-th vertex xi (i.e at the i-th grey
matter structure) at time t, with 1 ≤ m < M and i = 1, . . . , h. The concentration
of clusters of oligomers of length ≥ M (fibrils) is denoted by τM(xi, t) and may be
thought as tangles, clinically observable throughT807-PET [120] or AV1451-PET [49]
or MRI-derived regional atrophy [111, 116]. We will also cap the infinite series (1.11)
in Appendix 1.8.1 to a realistic scenario whereby once aggregates reach a certain size
they become tangles and exit reaction kinetics. Finally, we will lump nearby aggregate
sizes into a smaller number of “bins” in order to reduce the equations to a manageable
number. These choices are described in detail in the next section.

The proposed model has the following components:

(a) Initial intra-cellular phosphorylation of τ produce monomeric misfolded τ , mislocat-
ing from its native axonal compartment to pathologic somatodendritic intra-cellular
compartment. In this paper the sites of monomeric τ production are predetermined,
based on extensive bench studies, to be located at the entorhinal cortex.

(b) Misfolded τ monomers undergo in situ agglomeration into small oligomers and
progressively into tangles, which are assumed to be immobile and non-participants
in the ongoing aggregation processes.

(c) These production and aggregation processes are followed by Network-wide trans-
mission of the misfolded oligomeric τ proteins as they ramify through the neural
pathways via trans-neuronal transmission [17, 38, 56, 65]. The spread process is
modeled here via the Network Diffusion Model [91, 92]. Diffusivity of each oligomer
species is allowed to be different, controlled by the diffusivity constants dm for the
m-th oligomer.
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Fist of all, following the approach proposed in [91], we represent the human brain by
means of a finite weighted graph G = {V,E}, in which the vertices xi ∈ V = {x1, .., xh}
represent the i-th cortical or subcortical gray matter structure, while the edges ei,j ∈ E

represent the connections by white-matter fiber pathways between the i-th structure
and the j-th structure. Coherently, we introduce a family of coefficients wi,j > 0 that
measure “how much" the i-th structure and the j-th structure are connected. The
coefficients wi,j are said the "connectivity weights" of the graph G. In this way we
build a “brain network” in which the vertices xi comes from the parcellation of brain
MRI and the connectivities wi,j are measured by fiber tractography (see section 1.4.1).
On this graph we define the so called graph Laplacian ∆G denoted as the positive
standard weighted Laplacian associated with the graph G, whose formal definition is
given in section 3.2.2 of Appendix 1.
In addiction, an introduction to the Laplace operator on graphs, as well as its main
properties can be found in Appendix 1.

Let us see, now, how the components (a) – (c) reflect in our mathematical model.

(a-b) We denote by τm(·, t) : V → [0,∞) the molar concentration of misfolded τ -
oligomers of length m = 1, . . . ,M − 1 at the time t ≥ 0. In addition, τM(·, t) :
V → [0,∞) will design the concentration of τ -tangles.

The production of monomeric misfolded τ will be represented by the source term
fτ , with

fτ (·, t) : V → [0,∞)

for t ≥ 0, where fτ (xj, ·) is a continuous function for all j = 1, . . . , h. In this
study we chose the production term to be a Gamma-shaped function fτ (·, t) =

t
σf

exp
(
− t

σf

)
, and chose σf = 15 to approximate a 15-year monomer production

process - an arbitrary but realistic choice based on the expected time course of
AD progression.

(c) Diffusion and agglomeration of oligomers through neural pathways is described
by a Smoluchowski system with diffusion in G. For the sake of universality and
parsimony, we assume that throughout the brain the protein species aggregate
and ramify along neural pathways in the same way and at the same rate. However,
it is well known that rates of trans-membrane diffusion, axonal transport and
aggregation are all dependent on protein species and oligomer length. Hence we
impose a simple scaling behavior on these processes such that the aggregation
is controlled by the joint aggregation constants amj for oligomers of size m and
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j aggregating to form a oligomer of size m + j. Here, we use two plausible
expressions for amj: (1) based on thermodynamic arguments,

amj =
σ2

agg

mj

and (2) based on empirical in vitro fitting data on amyloids, a Gamma-shaped
expression [42]

amj = mj

σ2
agg

exp
(

− mj

σ2
agg

)
,

where the σagg is a positive constant that controls the scale of the Gamma
function for aggregation. Assumption (c) above (tangles are non-participants
in the ongoing aggregation processes) reads as am,M = 0 ∀m. Based on similar
arguments, we define a scaling behavior of the diffusivity rates as:

dm = 1/m and dm = m

σdiff

exp
(

− m

σdiff

)
.

where σdiff is a scale parameter. Since by assumption (c), tangles are assumed
to be immobile, hence the diffusivity rate of τM should vanish; here, instead of
imposing a hard constraint, we rely on the above Gamma functions to ensure
that at large m the diffusivity rate decays to close to zero.

We can now write extensively the system satisfied by τ = (τ1, . . . , τM).
The evolution of the concentration of τ is described by Smoluchowski equations on

G.
If t ≥ 0 and xi ∈ V , i = 1, . . . , h, then the equation for monomers is

∂τ1(xi, t)
∂t

= −d1∆Gτ1(xi, t) − c1τ1(xi, t)
M∑

j=1
a1,jτj, (xi, t) + c2fτ (xi, t), (1.1)

where ∆G denotes the positive weighted Laplacian associated with the graph G, d1 is
the diffusivity constant for m = 1, and c1, c2 are two positive constants that control
the relative rates at which network diffusion is related to aggregation and monomer
production, respectively.
The equation for polymers is

∂τm(xi, t)
∂t

= −dm∆Gτm(xi, t)+c1

1
2

m−1∑
j=1

aj,m−jτj(xi, t)τm−j(xi, t) − τm(xi, t)
M∑

j=1
am,jτj(xi, t)


(1.2)
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for 1 ≤ m < M and xi ∈ V , i = 1, . . . , h.
Finally, the evolution of tangles is described by the equation

∂τM(xi, t)
∂t

= c1

2
∑

j+k≥M ;k, j<M

aj,kτj(xi, t)τk(xi, t). (1.3)

where xi ∈ V , i = 1, . . . , h.
Equations (1.1), (1.2), (1.3) must be associated with initial data at t = t0. We assume
that τm(xi, t0) = τ0,m(xi) for 1 ≤ m ≤ M and xi ∈ V , i = 1, . . . , h.
A brief review on Smoluchowski aggregation theory can be found in section 1.8.1.
The actual numbers of oligomer length of τ are under study and a range of plausible
values have been proposed, typically 20 to 40. It is not necessary for the purpose of
understanding the aggregation and diffusion dynamics to consider such a large number
of oligomer length. Hence for the sake of computational load and interpretability, here
we have lumped oligomers into only 5 bins, such that m can take the following values:
1 (monomer), 2, 3, 4, and 5 (tangle). Each of these values should be considered a
lumped average of several adjacent lengths, such that, for example, m = 4 can be
considered to be an average of oligomers of length 30 to 40.

1.4 Methods

1.4.1 Extracting anatomic connectivity graph

Connectomes were extracted from a dataset of healthy subjects’ structural MRI (T1)
and diffusion-righted MRI (dMRI) scans acquired under a previous study at our
institution. This connectome cohort consisted of 69 subjects. The diffusion weighted
MRI (dMRI) data were processed with a custom pre-processing connectomics pipeline
following [72, 92]. This study design, where the connectivity graph is extracted from
healthy rather than AD subjects, allows us to test the proposed graph-based model
in a manner that is not affected by impaired anatomic connectivity frequently seen
in AD patients. This processing pipeline is well established in our laboratory. In
short, T1 images were normalized into MNI space and segmented using the Freesurfer
software tool [34] using their unified coregistration and segmentation scheme. Using
the Desikan-Killarney atlas with 86 hand-labeled parcellated regions [23], the subject-
specific T1 images, after coregistration and segmentation, were parcellated into 86
regional volumes corresponding to 68 cortical and 18 subcortical structures covering
the entire cerebral gray matter.
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The dMRI data was processed using spherical deconvolution to yield orientation
distribution functions in each voxel. The resulting output was fed into a probabilistic
fiber tracking algorithm, to produce fiber tracts in terms of streamlines. Details of the
connectome data acquisition and processing pipeline can be found in [72]. Each voxel
at each region’s gray-white interface was seeded with 100 streamlines and the resulting
tracts were traced probabilistically. A streamline count was kept for every pair of brain
regions. The number of streamlines found to go from region i to region j and vice versa,
were averaged and this value was recorded as the connectivity wi,j between the two
regions. The full connectivity matrix was then formed as per W = {wi,j}. Connectivity
matrices from individual healthy subjects were found to be largely similar, and a mean
over all subjects was taken in order to obtain a canonical healthy connectivity matrix
W , which was used in all subsequent analysis.

1.4.2 AD subject scans

Imaging data used in this study was obtained from two sources: the public Alzheimer’s
Disease Neuroimaging Initiative (ADNI); and a previously published study at Yonsei
University, South Korea, whose details are contained elsewhere [49]. In brief: 128
consecutive patients (53 patients with probable AD dementia, 52 patients with amnestic
mild cognitive impairment, aMCI; and 23 patients with nonamnestic MCI, naMCI)
were prospectively recruited after clinical diagnosis at the Memory Disorder Clinic of
Gangnam Severance Hospital. Sixty-seven age-matched cognitively normal volunteers
were included as healthy controls (HCs). All participants underwent 2 PET scans
(18F-florbetaben for Aβ and 18F-AV1451 for τ pathology), high resolution T1-weighted
brain MRI, and neuropsychological tests. This study was approved by the institutional
review board of the Gangnam Severance Hospital, and written informed consent was
obtained from all participants. All PET images were acquired using a Biograph mCT
PET/computed tomography (CT) scanner (Siemens Medical Solutions, Malvern, PA).
Subjects were intravenously injected with 281.2MBq of AV1451 for tau PET and
297.9MBq of florbetaben for amyloid PET. Prior to the PET scans, a head holder was
applied to minimize head motion and brain CT images were acquired for attenuation
correction. At 80 minutes after the injection of AV1451 and at 90 minutes after the
injection of florbetaben, PET images were acquired for 20 minutes. After correcting
for attenuation, scatter, and decay, PET images were finally reconstructed with the
ordered subsets expectation maximization algorithm in a 256 × 256 × 223 matrix with
1.59 × 1.59 × 1 mm voxel size. Axial T1-weighted brain magnetic resonance (MR)
images were obtained with 3D spoiled gradient recalled sequences: repetition time
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8.28 ms, echo time 1.6 to 11.0 ms, flip angle 20, matrix size 512 × 512, voxel size
0.43 × 0.43 × 1 mm in a 3T MR scanner (Discovery MR750; GE Medical Systems,
Milwaukee, WI).

ADNI is a public-private private, large multisite longitudinal study with the goal of
tracking Alzheimer’s disease biomarkers and accelerate prevention and treatment of the
disease. The ADNI data used here consisted of early and late MCI (EMCI and LMCI,
resp.) and AD groups, and included all ADNI 2 and ADNI GO subjects from early
2011 to mid–2015. Demographics and imaging details are contained in our previous
publication [105]. MRI-derived group atrophy patterns were obtained for each of the
EMCI,LMCI,AD groups in the ADNI study. After Freesurfer processing and quality
checks, a total of 117 AD subjects, 156 LMCI and 148 EMCI subjects were available
for this study.

1.4.3 Regional volumes and PET tracer uptake

Individual AD and MCI subjects’ T1-MRI scans were processed using the Freesurfer
tool to obtain the 86-region gray matter parcellation described above. From each
parcellated region, regional volume (number of voxels) and thickness (number of
vertices) was recorded. Subjects’ AV1451-PET data, an empirical measurement of
regional τ , were processed in the same way, as follows. PET images were resampled
to uniform voxel resolution, normalized to the same common space as the Desikan
atlas, and the latter’s regional parcellations applied to the former. For each region,
the average of voxel-wise PET uptake was recorded. Regional PET uptake values
were divided by cerebellar PET uptake value in order to normalize each subject’s PET
uptake.

1.4.4 Description of the statistical analysis and model valida-
tion on empirical neuroimaging data

We applied the AND model on the 86 × 86 connectivity matrix described above. The
starting pattern of tau was set to zero everywhere except a single “seed” region. AND
model was numerically solved using MATLAB’s ode45 solver, which implements a
numerical integration technique using Euler iterations of order (4,5). The time increment
was set at 0.01. The simulation data were compared against empirical imaging-derived
regional data (Korea cohort for tau-PET and ADNI cohort for atrophy), each of
size 86x1. The metric of validation was the Pearson’s correlation statistic R and its
associated p-value. We note that, for rigorous definitions about the statistical methods
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used in that work, we address to section 1.8.2.
The AND model would be considered validated if, for some combination of model
parameters, it is strongly correlated with regional pattern of group atrophy and/or tau
uptake, at significance of p < 0.05. Since the current thrust is on model development,
minute or rigorous parameter fitting was not attempted. Instead, we selected model
parameters by a simple grid search technique, and evaluated the AND model at all
model time values, recording only the best Pearson’s R over model time. Our goal was
to show that there exists a reasonable range of parameter choices and other model
choices that results in strong match to empirical data. For instance, we evaluated
several formulations of how the kinetics of protein aggregation and network diffusion
varies according to oligomer size, i.e. dm and am,j defined above, giving 4 possible
models. We ran model simulations across these various aspects and over a large range
of model parameters. Without further detailed reaction kinetic data these formulations
must be considered as heuristic choices at this stage.

1.5 Results

1.5.1 Mathematical proofs

The proposed aggregation-network diffusion (AND) model combines previously available
but disparate ideas. Therefore, in light of its novelty, first we prove various results
involving the AND theory, consisting in the fact that the proposed model has various
desirable properties like existence and uniqueness of solutions, and boundedness of
their values.

We notice that the system for τ = (τ1, . . . , τM) is nothing but a system of MN

ODEs for the MN unknown functions τm(xi, ·), i = 1, . . . , N , m = 1, . . . ,M .
Classical Peano-Picard-Lindelöf theorem (see [50], Chapter 2) guarantees the ex-

istence of a maximal solution in [tmin, tmax] for the system (1.1)–(1.3) with Cauchy
data at t = t0. The following lemma states that, if the components of the solutions are
strictly positive at t = t0, then they remain strictly positive as long as they exist.

Lemma 1.5.1. If τm(xi, t0) > 0 and fτ (xi, t) > 0 for all xi ∈ V and for 1 ≤ m ≤ M ,
the maximal solution of the system (1.1), (1.2), (1.3) is positive on all the interval of
existence, i.e. τm(xi, t) > 0 for tmin < t < tmax for all xi ∈ V and for 1 ≤ m ≤ M .

Proof. Suppose by contradiction the statement fails to hold, and set

t∗ = sup{t ∈ (t0, tmax), τ1(xj, t) > 0 ∀ xj ∈ V } < tmax.
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We claim that there exists a vertex x̄j such that τ1(x̄jt
∗) = 0. In fact, if τ1(xj, t

∗) > 0
for all xj ∈ V , we would have τ1(xj, t) > 0 for all xj ∈ V and for t∗ < t < t∗ + δ (since
the number of vertices is finite). This contradicts the definition of t∗. Moreover, if
τ1(xj, t

∗) < 0 for all xj, for the same reason we would have τ1(xj, t) < 0 for all xj and
for t∗ − δ < t < t∗, yielding again a contradiction.

Let us show now that ∂τ1
∂t

(x̄j, t
∗) ≤ 0. Arguing again by contradiction, suppose

∂τ1
∂t

(x̄j, t
∗) > 0. Since τ1(x̄j, t

∗) = 0 we would have τ1(x̄j, t) < 0 for t∗ − δ < t < t∗,
contradicting once more the definition of t∗. Thus, if we write the equation (1.1) at
t = t∗ and xj = x̄j, we have:

0 ≥ ∂τ1

∂t
(x̄j, t

∗) = −d1∆Gτ1(x̄j, t
∗) + fτ (x̄j, t

∗).

Therefore:
−d1∆Gτ1(x̄j, t

∗) ≤ −fτ (x̄j, t
∗),

and, keeping in mind that as fτ (xj, t) > 0 for all xj ∈ V and t > 0, we have eventually
that

− ∆Gτ1(x̄j, t
∗) < 0 (1.4)

On the other hand, as τ1(x̄j, t
∗) = 0, we have

−∆Gτ1(x̄j, t
∗) =

∑
xi∼x̄j

(τ1(xi, t
∗) − τ1(x̄j, t

∗))wij =
∑

xi∼x̄j

wijτ1(xi, t
∗),

so that ∑
xi∼x̄j

wijτ1(t∗, xi) < 0 (1.5)

This means that there exists a vertex x̄i ∈ V , x̄i ∼ x̄j such that τ1(x̄i, t
∗) < 0 and

consequently τ1(x̄i, t) < 0 for t∗ − δ < t < t∗, This contradicts the fact that τ1(xi, t) > 0
for all xi ∈ V and for t < t∗. This proves that τ1(xj, t) > 0 for all xj ∈ V and for
tmin < t < tmax. We prove now by induction that τm(xj, t) > 0 when 1 ≤ m ≤ M . We
have already proved that the assertion is true for m = 1. Let now 1 < m ≤ M be fixed,
and assume τm−1(t, xj) > 0 for all xj ∈ V and for tmin < t < tmax. We want to show
that the same assertion holds for τm(·, t). To this end, assume by contradiction there
exists a vertex xi ∈ V and a time t < tmax such that τm(xi, t) ≤ 0. As above, we can
put

t∗ = sup{t ∈ (t0, tmax), τm(xj, t) > 0 ∀ xj ∈ V } < tmax.
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Again as above, it must exist a vertex x̄j such that τm(x̄j, t
∗) = 0 and ∂τm

∂t
(x̄j, t

∗) ≤ 0.
Writing equation (1.2) at t = t∗, xj = x̄j, we have

0 ≥ ∂τm

∂t
(x̄j, t

∗) =

dm

∑
xi∼x̄j

(τm(xi, t
∗)−τm(x̄j, t

∗))wij−τm(x̄j, t
∗)

M∑
j=1

a1,jτj(x̄j, t
∗)+1

2

m−1∑
j=1

aj,m−jτj(x̄j, t
∗)τm−j(x̄j, t

∗)

and hence

−dm

∑
xi∼x̄j

τm(xi, t
∗)wij ≥ 1

2

m−1∑
j=1

aj,m−jτj(x̄j, t
∗)τm−j(x̄j, t

∗) > 0

where in the last inequality we use the inductive hypothesis; therefore:

∑
xi∼x̄j

τm(xi, t
∗)wij < 0

As above, this means that there exists a vertex x̄i ∈ V such that τm(x̄i, t
∗) < 0 and

consequently τm(x̄i, t) < 0 for t∗ − δ < t < t∗, contradicting the definition of t∗. The
case m = M can be handled in the same way, using equation (1.3).

Theorem 1.5.2. Suppose τm(xj, t0) > 0 and fτ (xj, t) > 0 for all xj ∈ V , t ≥ 0, and
for 1 ≤ m ≤ M . Let

τ = τ(x, t) : V × (tmin, tmax) −→ RNM

be the maximal solution of the Cauchy problem (1.1), (1.2), (1.3). Then tmax = +∞
and tmin = −∞.

Proof. Let us prove that tmax = +∞. By a classical result (see, e.g., [50], Corollary
3.1), if, by contradiction, tmax < +∞, then we would have limt→tmax |τ(·, t)| = +∞.
Thus, to prove the assertion we have but to show that, if tmax < +∞, then τ(·, t) is
bounded when t belongs to a left neighborhood of tmax.

By Lemma 1.5.1, for all xk ∈ V we have:

∂τ1

∂t
(xk, t) = −d1∆Gτ1(xk, t) − τ1(xk, t)

M∑
j=1

a1,jτj(xk, t) + fτ (xk, t)

< −d1∆Gτ1(xk, t) + fτ (xk, t).
(1.6)
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Again by Lemma 1.5.1 we can multiply (1.6) by τ1(xk, t). Summing up over all xk ∈ V

we get

∑
xk∈V

τ1(xk, t)
∂τ1

∂t
(xk, t) <

∑
xk∈V

τ1(xk, t)(−d1∆Gτ1(xk, t) + fτ (xk, t)).

Therefore

1
2
∂|τ1(·, t)|2

∂t
< −d1

∑
xi∼xk

(τ1(xk, t) − τ1(xi, t))2wik +
∑

xk∈V

τ1(xk, t)fτ (xk, t)

≤
∑

xk∈V

τ1(xk, t)fτ (xk, t) ≤ 1
2 |τ1(·, t)|2 + 1

2 |fτ (·)|2,

and, eventually

|τ1(·, t)|2 ≤ |τ1(·, t0)|2 +
∫ t

t0
|fτ (·, s)|2 ds+

∫ t

t0
|τ1(·, s)|2 ds

for t0 < t < tmax. By Gronwall inequality (see e.g. [50], Theorem 1.1) it follows
eventually that

|τ1(·, t)|2 ≤
(
|τ1(·, t0, )|2 + (tmax − t0) max

t0≤s≤tmax
|fτ (·, s)|2

)(
1 +

∫ t

t0
exp(s− t0) ds

)
. (1.7)

This proves that τ1(t, ·) is bounded in [t0, tmax).
We want to prove now that for 1 ≤ m ≤ M there exists Cm such that

|τm(·, t)| ≤ Cm for t0 < t < tmax . (1.8)

If m = 1 assertion (1.8) has been just proved. Take 1 < m < M and suppose (1.8)
holds for m− 1. If xk ∈ V is fixed, by Lemma 1.5.1, we have

∂τm

∂t
(xk, t) ≤ −dm∆Gτm(xk, t) + 1

2

m−1∑
j=1

aj,m−jτj(xk, t)τm−j(xk, t).

Again by Lemma 1.5.1 we can multiply the previous inequality by τm(xk, t). Summing
up over all xk ∈ V , by the inductive hypothesis we get

1
2
∂|τm(·, t)|2

∂t
≤ 1

2 |τm(·, t)|
m−1∑
j=1

aj,m−jCjCm−j ≤ 1
4 |τm(·, t)|2 + C
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and (1.8) follows as in the case m = 1. The case m = M can be handled in the same
way. This achieves the proof of the theorem.

Theorem 1.5.3. Suppose τm(t0, xj) ≥ 0 and fτ (xj, t) ≥ 0 for all xj ∈ V , t ≥ 0, and
for 1 ≤ m ≤ M . Then our Cauchy problem for (1.1), (1.2), (1.3) admits a solution

τ = τ(x, t) : V × R −→ RNM

such that τm(xk, t) ≥ 0 for all t ∈ R, xk ∈ V and 1 ≤ m ≤ M .

Proof. If η > 0, consider the Cauchy problem (1.1), (1.2), (1.3) where fτ (xk, t) is
replaced by fτ,t(xk) + η and τ1(xk, t0) by τ1(xk, t0) + η for all xk ∈ V . By Theorem
1.5.2 and Lemma 1.5.1, this approximate problem admits a positive solution defined
for all times t. Then we can conclude letting η → 0 by the continuous dependence of
the solutions of a Cauchy problem on the data (see e.g. [50], Theorem 3.2).

1.5.2 Model validation results

In this section, we compare the tau patterns achieved by numerical simulations against
empirical imaging-derived regional data (Korea cohort for tau-PET and ADNI cohort
for atrophy).
In that validation results, our primary validation metric - a similarity measure between
model and empirical data - is the Pearson’s correlation R-statistic, unless otherwise
stated.

Figure 1.1 show the temporal evolution of τ oligomers over time, totaled over
the entire brain, for oligomers of length m = 1, 2, 3, 4, 5. Please note that M = 5 is
considered “tangle” and does not further interact with any other oligomeric species.
Recall also that only m = 1 (monomer) are assumed to be produced at local sites, here,
the entorhinal cortex. The left panel of the figure shows the evolution of τm,m = 1 . . . 5
oligomers over model time. Although the model time was hand-tweaked in order to
correspond roughly to the 10-15 year time span of typical AD cases, its units should be
considered arbitrary in absence of a calibration strategy that can in the future convert
it to the unit of years. As expected, the monomer levels are the first to rise (blue
curve), followed by oligomers of length m = 2, 3, 4. Each monomeric and oligomeric
species exhibits a distinct plateau effect, and eventually begins to decline. The decline
is due to two factors. First, the monomer production itself declines as given by the
Gamma-shaped production function fτ (t), which accounts for the fact that eventually
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misfolding is limited by the availability of intact protein in tissue and the loss of
neurons, both of which serve to limit the available pool of cleavable protein. Second,
as oligomers aggregate via Smoluchowski processes, larger oligomers form progressively.
Eventually, tangles form at m = 5, which takes active oligomers out of circulation.
This is why the tangle species shows a monotonic increase (green curve), without
undergoing reduction at any stage. These aspects closely track the empirical data
currently available on CSF-derived total τ [106, 61, 24].

In the middle panel, we show the similarity measure computed between the regional
distribution of each oligomer and the empirical regional τ pattern obtained from the
Korea study. As described in Methods section, the similarity score is the Pearson
correlation between the model vector at model time t and the (static) empirical AV1451-
PET uptake vector. In this manner, the similarity score is independent of the overall
scale of both the model and the empirical uptake value. Each curve represents a single
oligomer in the AND model, and shows a peak in similarity at an intermediate time
between t = 0 and t = tmax = 10. The temporal sequencing of peak similarity strongly
follows the sequence of oligomer length, such that monomer (m = 1) is the first to peak,
followed by m = 2, 3, 4, 5, in order. The tangle curve (green) has a distinct shape in
comparison to the oligomer curves, confirming that the behavior of the end product of
Smoluchowski aggregation should have different dynamics than intermediate oligomers.
The empirical group used here is the aMCI group in the Korea study, chosen because
it has the best match with the model (see next figure). Clinically, there are reasons
to believe that this stage, immediately before full-blown AD, should be a suitable
empirical group for τ pathology comparisons; see below. In the right panel, similarity
curves are shown for the comparison of the model against regional atrophy of the
ADNI cohort, this time on the LMCI group. Curves for AD groups in both studies
give similar results and are not shown. The above figure corresponds to the default
choice in the Smoluchowski model based on empirical in vitro fitting data on amyloids,
where a Gamma-shaped expression [42] amj = mj

σ2
agg

exp
(

− mj
σ2

agg

)
was used to model the

behavior of the aggregation rate constants for various oligomer lengths. We also tested
the behavior of the thermodynamically-inspired choice amj = σagg

mj
, shown in Figure 1.2.

Interestingly, AND dynamics did not change appreciably, although further exhaustive
exploration of different formulations was not attempted. We also implemented two
different formulations for diffusivity rate constants: dm = m

σdiff
exp

(
− m

σdiff

)
(above

Figure 1.1) and dm = σdiff/m (Figure 1.3). In the latter case, AND model evolution of
different oligomers was seen to be somewhat different, but the overall correspondence
with empirical data was quite comparable in all three cases.
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tau

Figure 1.1 Left: Temporal evolution of τ oligomers over time, totaled over the entire
brain, for oligomers of length m = 1, 2, 3, 4, 5. As designed, monomers are the first to
rise from zero, slowly giving way to higher oligomers. Tangles (m = 5 here) are the last
to develop, and last to reach steady state or fall back. The temporal sequencing of peak
deposition clearly and strongly follows the sequence of oligomer length: m = 1, 2, 3, 45.
Middle: Similarity index (Pearson’s R) of the AND model against Korea study’s
empirical aMCI τ distribution, over model time t. Right: Similarity index of the AND
model against ANDI study’s empirical LMCI atrophy distribution, over model time t.

Figure 1.4 shows “glass brain” rendering of the evolution of the regional distribu-
tion of the theoretic AND-predicted τ oligomers over time. For the purpose of this
illustration, the last oligomeric species (assumed to be tangles, m = 5) is shown, since
AV1451 binds mainly to the tangles rather than to soluble oligomers. Each brain region
is represented by a sphere placed at the region’s centroid.

For comparison empirical τ distribution from AV1451-PET scans in the Korea
study are shown in the middle column. A similar comparison between the spatio-
temporal evolution of τ predicted by the model and empirical regional atrophy data
from the ADNI study is given in the right column. Note that regional atrophy is being
used here as a close surrogate of τ deposition, since there is mounting evidence from
neuroimaging and mouse model studies that the two are strongly associated [111, 116].
Sphere color is by lobe: blue = frontal, purple = parietal, red = occipital, green =
temporal, black = sub-cortical, cyan = cingulate. The sphere diameter is proportional
to effect size: model value or empirical (PET binding SUVR or MRI-derived atrophy
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Figure 1.2 Temporal evolution of τ oligomers over time for a different definition of
aggregation rates: amj = σagg

mj
. The temporal evolution and sequencing of peak times

are similar to the earlier case.

t-statistic). The key observation from this figure is that the AND model successfully
recapitulates the spatiotemporal time course of τ progression at all stages of the
disease, whereby: starting in the entorhinal cortex, we see increasing amounts of
theoretical pathology in adjoining temporal cortices, followed by subcortical pathology,
in particular hippocampus and amygdala. Thus, initial monomers generated in the
entorhinal cortex undergo the process of aggregation and subsequently their networked
spread causes deposits to occur in temporal, parietal and posterior cortices. The
temporal behavior predicted by the model is roughly in agreement with the ordered
stages of AD progression (naMCI/EMCI to aMCI/LMCI to AD). Visually, the AND
model gives strikingly similar regional patterns against both empirical τ as well as
atrophy data.

Similarity scores between model and empirical distributions are shown as a function
of model time t. Similarity curves in the top row show that the model increasingly fits
empirical regional patterns as network diffusion proceeds, with the best fits achieved
for the stages preceding full-blown dementia (aMCI in the Korea cohort and LMCI in
the ADNI cohort). AD patients also show high model fits, but the naMCI and EMCI
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Figure 1.3 Temporal evolution of τ oligomers over time for a different definition of
diffusivity rates: dm = σdiff/m. The temporal evolution and sequencing of peak times
are somewhat different from the earlier case, suggesting that the exact nature of how
diffusivity scales with oligomer length might be an important mediator of large-scale
behavior of AND dynamics.

cohorts show poor fits, consistent with the fact that the latter are either very early in
the disease process or are on track for non-amnestic dementia. That aMCI and LMCI
data are fit better than AD suggests that the AND model is capturing phases where
active pathology transmission is ongoing; many recent authors have suggested that by
the time of onset of full AD, pathology might have reached a plateau, with further
changes relating only to cell loss and functional deficits [61]. At the peak of the R-t
curves, all fits are significant at p = 0.05. At late time points the similarity curves
reaches a plateau even though the tangle pathology keeps rising, since the similarity
measure here is Pearson correlation, which is insensitive to overall scale.

In section SI-1 we explore whether parameter choices strongly affect the match
between the AND model and empirical data, selecting 3 key parameters from the model
- σagg, σdiff , c1 - for detailed exploration and keeping the rest fixed. Figure S1 shows
that model performance is quite insensitive to a wide range of model parameters, yet
some parameters are better than others. This indicates that AND is an identifiable
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Figure 1.4 Glass brain rendering of theoretical AND-predicted regional τ distribution
(left column) and its comparison with empirical τ measured from regional AV1451-PET
scans of patients (middle column) and regional atrophy obtained from a different cohort
of patients in the ADNI study (right column). Sphere color is by lobe: blue = frontal,
purple = parietal, red = occipital, green = temporal, black = sub-cortical, cyan =
cingulate. Similarity scores (Pearson’s R) between the model and empirical data are
shown as a function of model time t in the top row (green = naMCI and EMCI; red
= aMCI and LMCI; blue = AD). At late time points the similarity curves reaches a
plateau even though the tangle pathology keeps rising.

model. We repeated this analysis for 4 combinations of model choices noted earlier,
arising from the two definitions of aggregation constants amj and diffusivity rates
dm. All choices are capable of yielding similar performance at some parameter value.
Current in vivo data only measure tangle loads, hence further detailed experimental
data on reaction kinetics and the ability to observe all oligomeric concentrations will
be needed to thoroughly evaluate these model choices.

Although the above results relied on the well established seeding of entorhinal cortex,
it possibly a different seeding location might be closer to empirical data. Although
we did not explore this issue exhaustively, in Supplementary section 1.7.2 we show a
results from an alternative seeding scheme: seeding the AND model at the putamen,
which, as part of the striatum, is not in fact considered a plausible site of pathology
initiation in AD. Instead the putamen is a common location of frontotemporal and
other dementias. As expected, putamen-seeding was found not to be a good model of
τ patterns in mature AD subjects (R = 0.16 with putamen seeding, versus R = 0.40
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for EC-seeding), (Figure S2). This provides a null reference for the above results, and
suggests that the AND model seeded at EC is not only sensitive but may also be
specific to AD. But putamen seeding was somewhat better for early MCI and mixed
etiology groups, where many subjects might have a different, frontal or striatal etiologic
origin.

1.6 Discussion

1.6.1 Summary of key results

We propose a parsimonious mathematical model of the three pathological processes
involved in the progression of τ proteins throughout the Alzheimer brain: monomer
production; aggregation into oligomers and then into tangles; and the spatiotemporal
progression of misfolded τ as it ramifies into neural circuits along white matter pro-
jections. Initial production of misfolded monomeric τ is assumed to occur specifically
at the entorhinal cortex, based on histopathological Braak staging. The pathological
underpinnings of protein aggregation and networked spread are given by mounting
evidence for “prion-like” trans-neuronal transmission, whereby proteins misfold, trigger
misfolding of adjacent same-species proteins, and thereupon cascade along neuronal
pathways [17, 38, 56, 65]. Trans-neuronal transmission implies spread along axonal
projections rather than spatially. Bidirectional transmissions are assumed through
projection fibers, under a previously established Network-Diffusion process whereby
anatomic connections govern the rate at which two distant but connected brain regions
can transfer pathologic τ . This combined model, which we call Aggregation-Network-
Diffusion (AND), exhibits all hallmarks of tau progression seen in human patients can
explain many experimental findings in AD. The model is specifically effective when
seeded at the entorhinal cortex, since another AND model seeded at the putamen
failed to recapitulate mature Alzheimer-related τ patterning. The presented AND
model unifies structural biochemical processes at the microscopic scales with local and
long range trans-neuronal transmission processes at the macroscopic scales in a single,
quantitatively testable model. To our knowledge, this is the first theoretical model
of protein aggregation and transmission to be developed or tested on a macroscopic,
whole brain scale.
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1.6.2 Applications and implications

The presented AND model unifies structural biochemical processes at the microscopic
scales with local and long range trans-neuronal transmission processes at the macro-
scopic scales in a single, quantitative and testable model. Therefore this approach
can serve as an effective bridge between theoretical studies, bench science and human
imaging studies. Several hitherto inaccessible possibilities emerge.

First, current models of protein aggregation involve kinetic and aggregation pa-
rameters that must be estimated from detailed in vitro experimental data on reaction
kinetics. Unfortunately, kinetics in solution or suspension do not frequently capture
the complex environments and the pathological milieu of proteins in tissue in vivo.
This makes it very difficult if not impossible to realistically assess model parameters.
Our AND model, by allowing fitting to in vivo data, can provide a new opportunity
to obtain parameter fits to real in vivo human and animal brain data. In particular,
there are several transgenic mouse studies from which highly detailed data on reaction
and aggregation times can be deduced. When combined with detailed mesoscopic
connectivity data in mice, the application of the AND model becomes possible on
mouse tau studies. Second and related, the AND model can open up the possibility of
testing competing models of protein aggregation in terms of their ability to reproduce
not only in situ kinetics of oligomerization, but also the brain-wide ramification via
trans-neuronal transmission. Although the present work considered Smoluchowski
aggregation theory, several alternative models have been proposed, including the classic
nucleation models. As noted above, testing these models on in vitro reaction kinetic
data frequently suffers from lack of a neuropathological milieu. The proposed AND
model can fill this gap. Third, the AND model provides a realistic avenue for un-
derstanding the pathophysiological progression of degenerative pathologies in a wide
array of degenerative diseases, including Alzheimer’s, Parkinson’s, ALS, frontotemporal
dementia, etc. This is because almost all these diseases involve one or more of a small
number of misfolded protein species. Although in human cases we do not have access
to various oligomeric species, we frequently are able to measure plaques and tangles.
Thus, a model like ours, that is able to provide a mathematical link between monomeric
and oligomeric species to measurable plaques and tangles, can be important addition
to the burgeoning field of neurodegeneration.
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1.6.3 Assumptions, limitations and future work

Several issues and applications require further investigation. The presented model
incorporates the Smoluchowski aggregation theory, but in practice other models of
protein misfolding and aggregation are also plausible. Although extensive experimental
data are available on the basis of which the suitability of various aggregation models
has previously been assessed [42], these data typically come from in vitro reactions
and it is unclear whether the same conclusions can be reached using in vivo data.
Hence the question of which is the best aggregation model remains open, and can
only be addressed by extensive validation on human neuroimaging or animal model
histopathology data - part of our future planned work. Our use of MRI-derived atrophy
as a surrogate for underlying τ distribution is well borne out by the fact that ante-
mortem MRI-derived atrophy correlates strongly with post-mortem histopathologic τ
[111, 116]. Therefore we reported not only AV1451-PET data but also MRI-derived
regional atrophy as a close surrogate for τ deposition. In this study, we used DTI-
derived human connectomes, which by design cannot infer directionality of connections.
In reality, protein transmission is likely to be a directional process, whether anterograde
or retrograde. The incorporation of directionality of transmission can be trivially
achieved by a simple modification of the presented approach.

Another important limiting assumption is that τ misfolding is generated only in
the entorhinal cortex. Although the role of EC as the most likely seed region is based
on pathological studies by Braak and others, and is widely accepted, this assumption
precludes systematic exploration of hypotheses regarding why certain areas serve as
seeds in the first place. We report in SI-2 the predictions obtained from seeding the
putamen - a region not involved in Alzheimer-type pathology but a common location
of frontotemporal and other dementias. In future work we will explore mathematical
models that make no assumptions about seed regions. Our previous work [91] suggests
that perhaps network eigenmodes can predispose certain regions to early accumulation
of monomeric seeds. Finally, an important area yet to be addressed is, in diseases
involving more than one protein species (e.g. Aβ and τ in Alzheimer’s disease), how
do they interact. Future studies can extend the proposed AND model to multiple
proteins, and allow interaction terms between them.
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1.7 Appendix A: Additional Experiments

1.7.1 Effect of AND model parameters and choice of diffusiv-
ity / aggregation rate relationships

Here we explore whether parameter choices strongly affect the match between the
AND model and empirical data, an important issue due to the presence of several a
priori unknown parameters. These results are contained in Figure S1. We selected
3 key parameters from the model - σagg, σdiff , c1 - and kept the network spread rate
βτ , c2 and the monomer generation function fτ fixed. Recall that theses relationships
are governed by the scale parameters σagg and σdiff , and for convenience we impose
σagg = σdiff in order to reduce the parameter set by one. For each set of parameter
choices, we computed the Pearson’s R (our preferred similarity metric) between the
AND model and group τ -PET pattern from the Korean amnestic MCI cohort, chosen
for its relevance to the proposed model. R was calculated at all model times t, and the
maximum over t was retained as the model evidence, as has been previously described.
Our goal was to assess how strongly model performance depends on parameter choice,
and to help select an optimal parameter set. As shown in Figure S1, performance is
quite insensitive to a wide range of model parameters, except for the outer limits. We
think this might be due to two reasons: a) Pearson’s R is insensitive to scale and shift
changes, and b) almost all model parameters are some sort of time constant, hence by
maximizing over all model times, many choices of these parameters will yield similar
performance. We repeated this analysis for all 4 combinations of model choices, arising
from the two definitions of aggregation constants amj and diffusivity rates dm, defined
in Methods section.

1.7.2 AND Model with different seeding location than En-
torhinal cortex

Here we demonstrate that the AND model does not give better results when seeding it
at a location different from entorhinal cortex. When we seed the putamen, which is
not known as an early site of AD-related τ , we get very different spatial patterning of
tau evolution, primarily in the frontal, striatal and orbitofrontal regions – see Figure
S1. The model fits poorly to empirical AD and aMCI Korea tau data, as well as to
the ADNI atrophy data, both visually and using the quantitative similarity measure
(Pearson’s R). Interestingly, putamen seeding matches the Korea tau data of the naMCI
cohort, who are MCI subjects who do not display classic AD-like cognitive deficits. This
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Figure S1: Optimization of AND model parameters. We selected 3 key parameters from
the model - σagg = σdiff = σm, c1 = α - which are specific to the aggregation model,
and kept other model parameters fixed. For each parameter choice, we computed the
Pearson’s R between AND model and group τ -PET pattern from the Korean amnestic
MCI cohort, at all model times t, and the maximum over t was retained. We repeated
this analysis for 4 combinations of model choices, arising from the two definitions
of aggregation constants amj and diffusivity rates dm. A: amj = σ2

agg

mj
, dm = 1/m

B: amj = mj
σ2

agg
exp

(
− mj

σ2
agg

)
, dm = 1/m C: amj = σ2

agg

mj
, dm = m
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.
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points to an important aspect of early MCI cohorts, in that they exhibit substantial
inter-subject heterogeneity, which is actually higher when looking at their likely seed
regions, as demonstrated in the publication [105]. Although putamen seeding gives a
good match for tau in early disease, it fails at al stages when predicting atrophy in
the ADNI cohorts. This might be due to the fact that atrophy is downstream of tau,
hence the etiologic heterogeneity evident in the above tau fit is not apparent in the
atrophy fit.

Figure S2: Glass brain rendering of theoretical AND-predicted regional τ distribution
seeded at the putamen (left column) and its comparison with empirical τ measured from
regional AV1451-PET scans of patients (middle column) and regional atrophy obtained
from a different cohort of patients in the ADNI study (right column). Similarity scores
(Pearson’s R) between the model and empirical data are shown as a function of model
time t in the top row (green = naMCI and EMCI; red = aMCI and LMCI; blue =
AD). The AND model seeded at the putamen is not a good model of τ patterns in the
AD, LMCI or aMCI groups, but gives a surprising correlation with the (non-amnestic)
MCI group.
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1.8 Appendix B: Notation and Theory

1.8.1 Smoluchowski aggregation theory

Following the the model studied in [1, 10, 36, 37], we describe the aggregation of
the τ -polymers by means of Smoluchowski equation, following previous treatment in
[84, 1] for Aβ. Originally, in [98] Smoluchowski introduced a system of infinite discrete
differential equations (without diffusion) for the study of rapid coagulation of aerosols.
Smoluchowski’s theory was successively extended to cover different physical situations.
In fact, this type of equations, describing the evolving densities of diffusing particles
that are prone to coagulate in pairs, models various physical phenomena, such as, e.g.
polymerization, aggregation of colloidal particles, formation of stars and planets as
well as biological populations, behavior of fuel mixtures in engines. We refer to [26]
for a exhaustive historical account. As far as we know, Smoluchowski equation first
appears in the description of the agglomeration of Aβ amyloid in [84] and then in [1].

For k ∈ N, let Pk denote a polymer of length k, that is a set of k identical particles
(monomers) that is clustered but free to move collectively in a given medium. In
previous usage in [1], [10], [36], Pk is a Aβ-polymer of length k; here we will reformulate
this for τ . In the course of time polymers diffuse and, if they approach each other
sufficiently close, with some probability they merge into a single polymer whose size
equals the sum of the sizes of the two colliding polymers. By convention, we admit
only binary reactions. This phenomenon is called coalescence and we write formally

Pk + Pj −→ Pk+j,

for the coalescence of a polymer of size k with a polymer of size j. For sake of simplicity,
polymer diffusion is assumed to result only from Brownian movement or diffusion
(thermal coagulation). Under these assumptions, the discrete diffusive coagulation of
a polymer um(x, t) ≥ 0 of size m ∈ N is given under suitable initial and boundary
conditions by

∂um

∂t
(x, t) − dm △xum(x, t) = Qm(u) in [0, T ] × Ω, (1.9)

where the second term represents spatial diffusion, and the third term represents the
net gain/loss of polymer due to aggregation Qm(u) = Qg,m(u) −Ql,m(u), m ≥ 1, with
the gain (Qg,m) and loss (Ql,m) terms given by
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Qg,m = 1
2

m−1∑
j=1

am−j,j um−j uj (1.10)

Ql,m = um

∞∑
j=1

am,j uj. (1.11)

where u = (um)m≥1. The coagulation rates am,j are non negative constants such that
am,j = aj,m and dm denotes the diffusion coefficient of an m-cluster, dm > 0 ∀m ≥ 1.
The kinetic coefficient am,j represents reaction in which an (m+ j)-cluster is formed
from an m-cluster and a j-cluster. The term Qg,m, given by (1.10), describes the
creation of polymers of size m by coagulation of polymers of size j and m − j. The
term Ql,m, given by (1.11), corresponds to the depletion of polymers of size m after
coalescence with other polymers. Since the size of clusters is not limited a priori, Eq.
(1.9) describes a non-linear evolution equation of infinite dimension.

1.8.2 Statistical methods

In statistical analysis, it is frequently of interest to establish if there is a relationship
between two variables, i.e. to see if they are correlated.
When a variable increases, according to what happens to the other variable we can
speak of:

• positive correlation, if the other variable show a tendency to increase

• negative correlation, if the other variable show a tendency to decrease

• no correlation, if the other variable does not tend to either increase or decrease .

Correlation coefficients are introduced to measure how strong a relationship between
two variables is. Statisticians are often interested in finding linear relationship between
variables.
The Pearson’s correlation coefficient is a statistical measure of the strength of a linear
relationship between two variables.
In statistics, a population is a set of similar items or events which is of interest for an
experiment.

Definition 1.1. The Pearson’s population correlation coefficient ρX,Y between two
random variables X, Y with expected values µX , µY and standard deviations σX , σY

is given by:
ρX,Y = cov(X, Y )

σXσY

= E[(X − µX)(Y − µY )]
σXσY

(1.12)
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We observe that the Pearson’s coefficient is defined if both standard deviations are
non zero. If we consider a sample, that is a set of data selected or collected from a
statistical population the Pearson’s coefficient can be defined as follows:

Definition 1.2. Let xi and yi, for i = 1, . . . , n, denote respectively the series of n
measurements of X and Y . Then, the Pearson’s correlation coefficient for a sample is
defined as:

R =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(1.13)

where n is the sample size, x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi(sample mean).

We note that the above formula can be obtained from equation(1.12) by substituting
expressions of the covariance and standard deviations for a sample.
In the statistical analysis presented in that work (see section 1.4.4), we use Pearson’s
correlation coefficient, as given by (1.13), as similarity measure between model and
empirical data.
By Cauchy-Schwarz inequality we have that |R| ≤ 1 and, for istance −1 ≤ R ≤ 1.
Positive values of the Pearson’s correlation coefficient denote positive linear correlation,
while negative values denote negative linear correlation. A value of 0 expresses the
absence of correlation. The closer the value of R is to 1, more confident we are of
a positive linear correlation. Analogously, the closer the value of R is to −1, more
confident we are of a negative linear correlation.
Remark 1. The existence of strong correlation does not imply necessarily a causal link
between variables.

Let X a sample space and P = {Pθ : θ ∈ Θ} a family of probability distributions
on X. Points in X are the mathematical representations of possible observations, the
family {Pθ} represents the possible descriptions of the variability in the observational
situation being considered; it is supposed that one member of this family is the true
description, though which one is unknown.
We define hypothesis P̄ a subset of P, i.e. P̄ = {Pθ : θ ∈ Θ̄, Θ̄ ⊂ Θ}.
In other words, a hypothesis is a statement that implies that the true probability
distribution describing the variability in an observational situation belongs to a proper
subset of the family of possible probability distributions.
Remark 2. Alternatively, we can say that a hypothesis implies that the true parameter
θ belongs to a proper subset of the parameter space Θ. Moreover, sometimes it can be
convenient to identify the hypothesis with the subset, to talk about the hypothesis Θ̄,
where Θ̄ ⊂ Θ.
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According to classical theory (whose key ideas were provided by Neyman and
Pearson in the period 1928-1933), in a hypothesis-testing problem, two hypothesis are
involved: the hypothesis of primary interest and the complementary hypothesis. The
first of these is called null-hypothesis H0 := {Pθ : θ ∈ Θ0,Θ0 ⊂ Θ}, while the second
one is said alternative hypothesis H1 := {Pθ : θ ∈ Θ1,Θ1 = Θ \ Θ0}.

Let T be a random variable, said statistic test, defined on the sample space X.
Suppose to observe T (x) = tobs. Then

p = sup
P ∈H0

P (T (x) ≥ tobs)

is said the observed level of significance or p-value.
In order to decide if, based upon the sample, there is any or no evidence to suggest

that linear correlation is present in the population, we perform a significance test.
More precisely, we test the null hyphotesis H0, that there is no linear correlation in the
population, i.e. the true correlation coefficient ρ is equal to zero, based on the value of
the sample correlation coefficient R, against the alternative hyphotesis H1 that there
is linear correlation, i.e. ρ ̸= 0. If the p-value achieved by the significance test is such
that p > 0.05, the empirical evidence is not sufficiently in disagreement with the null
hypotesis that, for istance, can not be refused. On the other hand, if p ≤ 0.05, the
empirical evidence is strongly in disagreement with the null hyphosesis H0, that has to
be refused and we have strong confirmation to believe that the alternative hyphotesis
H1 is true.





Chapter 2

A polymerization model for the
formation of NFTs in Alzheimer’s
Disease

In this chapter we present a polymerization model for the process of transport and
aggregation of hyperphosphorylated tau protein first into fibrils and eventually up
to neurofibrillary tangles. Our purpose is to investigate the formation of tangles in
neurodegenerative processes by mathematically characterizing them in terms of a
sol-gel phase transition.

2.1 Biological setting. Phosphorylation of tau pro-
tein and the formation of neurofibrillary tan-
gles

Tau is a highly soluble microtubule-associated protein (MAP). In humans, it is usually
found in neurons of the central nervous system and less common elsewhere. It is
largely accepted [102], [96], [70] that its physiological function consists in facilitating
the tubulin assembly and in stabilizing the axonal microtubules, although some recent
studies seem to go towards the opposite direction, as they suggest that the actual
function of tau might consist in preventing microtubules from being stabilized to keep
them in constant motion [90].
In physiological conditions, and possibly to modulate its binding to microtubules or
to the membrane, tau protein undergoes phosphorylation, i.e. a process, catalyzed
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by enzymes said kinases, consisting in the acquisition of a phosphoryl group from a
surrounding molecule. The phenomenon is higher in fetal neurons and decreases with
age during development. However, it is widely believed that in pathological conditions
(including Alzheimer’s disease) a huge increment in tau phosphorylation takes place
[102], [79]. More precisely, under homeostatic conditions a kinase is able to modify
only a specific site of tau molecule and this site is different from one tau isoform to
another; conversely, in diseased state a single tau isoform can be phosphorylated at an
increased number of sites of the protein up to saturation [6]. Hypophosphorylated tau
protein exhibits high affinity in binding to microtubules, while in hyperphosphorylated
tau this capacity is reduced in significant way [63], [102], [76]. The enzyme GSK3
seems to play an important role in regulating tau phosphorylation [6], [7], [8].

The β-amyloid peptide (Aβ) is also involved in enhancing the phosphorylation of
tau, particularly in its oligomeric form [102], [2]. The way in which this process takes
place is not completely understood. It seems, however, that over activity of enzyme
GSK3 not only accounts for tau hyperphosphorylation but also increases β-amyloid
production [54]. On the other hand, it has been reported that beta-amyloid competes
with insulin for binding to the insulin receptor [121]; this process contributes to GSK3
activation [57], [55] and subsequent promotion of tau phosphorylation [2]. Interestingly,
these considerations could also explain the occurrence of impaired glucose metabolism
as a characteristic event in the pathology of AD [121].
Several proteins called phosphatases can reverse the phosphorylation of tau. In particu-
lar, PP2A has been shown to dephosphorylate hyperphosphorylated tau [45]. However,
in pathological conditions, changes of the biochemical environment lead PP2A not to
function properly. Besides, the inhibition of phosphatase function is further increased
by structural alterations of tau protein associated with hyperphosphorylation itself
[6], [102]. An exhaustive description about the nature of the biochemical pathways
involved in the process of tau hyperphosphorylation, is contained in [6].

Once a tau molecule is hyperphosphorylated, it detaches from the microtubules
and self-aggregates [71]. It is largely accepted that the action of GSK3 on tau protein
facilitates its assembly into polymers [7], [8], [6]. In addition, tau oligomers may act
as templates for the misfolding of native tau, seeding the propagation of the modified
species of the protein [41]. The spreading of non-homeostatic tau aggregates takes
place first intracellularly and later extracellularly and intercellularly [39],[18]. Indeed,
misfolded tau oligomers form primarily inside the neuron, where they can induce
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changes to native tau molecules [102]. Subsequently, oligomers can be transported
through cytoplasmic flow to the nerve terminals and may be released to neighboring
neurons, where they trigger a similar process [15]. Furthermore, such aggregates can
embed themselves into the cell membrane with consequent alteration of its permeability
that leads to the release of the aforesaid oligomers to the extracellular space, where
they can reach the surrounding neurons, thereby propagating this process to unaffected
regions [15], [17].
There is experimental evidence about the fact that oligomers of hyperphosphorylated
tau (and also of beta amyloid) have a key role in mental deficits associated with AD
[28], [47], [96] . Indeed, they are known to be damaging for neurons, as they inhibit
microtubules assembly [58], promote synaptic dysfunction [47], interfere with normal
activities of the cell and are responsible of memory impairment [74].
From the biological point of view, "tau pathologies" begin in specific brain regions (i.e.
entorhinal cortex) but ultimately involve much larger areas (i.e. hippocampus), a fact
that has been related with an intercellular transfer of non-homeostatic tau species
through the neural pathways from one cerebral area to another [18, 17, 38, 56, 65].
Once oligomers are formed, they eventually can continue to aggregate in paired helical
filaments (PHF), giving rise to neurofibrillary tangles (NTFs). Studies in which an
antibody that does not react with PHF ’s tau is used to recognize specific compounds
on tau protein, support the idea that tau phosphorylation occurs before its assembly
[52]. Tangles are mainly intraneuronal structures; however, tau aggregates ( including
tangles) may be released to the extracellular space as a consequence of neuronal death
[44].

As of today, the role of tau tangles in neurodegeneration is not completely clear. A
common view is that such formations are harmful for brain’s health and are considered
a key factor in the destruction of neurons. In addition, the number and the localization
of NFTs have been correlated with the severity of dementia [29], although they have
been also found in brains of healthy people. Several studies reveal that tau in form
of paired helical filaments compromises microtubules stability and their capacity to
function properly and disrupts intracellular structures that are essential for normal
metabolism and living functions of the cell [53], [71].
However, the correlation between NFTs presence and the incidence of the disease does
not necessarily correspond to a cause-effect relationship [76]. For instance, there is
evidence that neurons bearing NFTs may survive for decades [32] and that neuronal
loss exceeds, by large, the amount of tau tangles detected [30], suggesting that the
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latter may occur many years before neuronal death. In addition, the destruction of
affected brain’s areas does not seem strictly correlated with tangles’ formation. Actu-
ally, it has been proposed that the role of neurofibrillary tangles is to protect cellular
components from the attack by reactive oxygen species (ROS)[97]. Therefore, the
process of aggregation of tau protein in tangles could be seen as a part of a multifaceted
immune response of the brain against pathogen agents.A complete description about
how this compensatory response might take place can be found in [76].
On the other hand, recent studies concerning mouse models suggest that the hyper-
phosphorylation of tau occurs in order to protect neurons from toxicity and damage
caused by beta-amyloid oligomers. Further details can be found in [31].
In the light of these considerations, we cannot firmly ascertain if NFTs are a patho-
logic process that should be interrupted or a reaction of the organism facing disease’s
aggression. The mathematical model that we will present in the next section, aims at
describing the formation of NFTs resulting from two mechanisms: tau polymerization
and an external source of beta amyloid oligomers. We hope that this model may
eventually shed light into the actual impact of NFTs on AD progression.

2.2 Description of the model

In this section, we will present a mathematical model for the formation of neurofibrillary
tangles in human brain, that accounts for initial local accumulation of non-homeostatic
tau protein followed by coagulation and intercellular spreading of pathologically modi-
fied tau clusters. We assume that beta amyloid acts as source of aggregation of tau
monomers [102], [2], which in turn coagulate according to specific rates characteristic
of classical polymerization problems, and that the transfer of assembled tau forms
from one cerebral area to another occurs through the neural pathways between them
by interneuronal transmission [17, 38, 56, 65, 18, 15]. In agreement with the approach
proposed in chapter one, we represent the human brain by means of a finite weighted
undirected graph G = {V,E}, where V = {x1, .., xh} is the set of the vertices and
E = {(xi, xj) : xi ∼ xj} is the set of the edges. We thus consider a functional
approximation of the brain as consisting of i (1 ≤ i ≤ h) anatomical structures located
at the graph vertices and we describe the connections by white-matter fiber pathways
between the i-th and the j-th region by the edge (xi, xj) ∈ E, i, j = 1, . . . , h. In
second place, we introduce a family of coefficients wi,j ≥ 0 that express the strength
of connection between the i-th and the j-th structure. The coefficients wi,j are said
the" connectivity weights" of the graph G and represent the weight function associated
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with the graph.
In our model, we consider aggregation of pathologically modified tau monomers and
subsequent coagulation in longer polymers in each brain structure and transport of
toxic tau clusters along the connections from one structure to another. In addition,
we do not distinguish between intra-neuronal and extra-neuronal space. Indeed, in
our brain network single vertices denote large aggregates of neurons; in fact, our level
of approximation is not as fine as to allow us to see the borders from one neuron to
other and the distinction between neuronal processes from extra-neuronal ones is not
relevant at the scale of our model.
We next describe the evolution of concentration of phosphorylated τ -polymers in human
brain by means of a Smoluchowski-type system(including mass transfer, which will be
denoted as diffusion in the sequel, and monomers production) defined on a finite graph
G = {V,E}. More precisely, we consider the following system of reaction-diffusion
equations:

∂u1

∂t
= −d1∆Gu1 − u1

∞∑
j=1

a1,juj + f(x) (2.1)

∂ui

∂t
= −di∆Gui + 1

2

i−1∑
j=1

aj,i−jujui−j − ui

∞∑
j=1

am,juj (2.2)

to be satisfied when x ∈ V and t > 0.
In system (2.1)-(2.2), the variable ui represents the concentration of i-clusters, i.e.
aggregates made of i identical monomers; ∆G denotes the positive standard weighted
Laplacian associated with the graph G (as defined in section 3.2.2 of Appendix 1); the
coefficients ai,j are the coagulation rates and the source term f = f(x) is a positive
function on the vertices of the graph. Finally, the non negative constants di, i ∈ N are
usually termed as the diffusion coefficients of the i-th cluster.
Equations (2.1) and (2.2) are completed with initial values:

ui(x, 0) = Ui(x) i ∈ N (2.3)

where x ∈ V .
Written on the xm vertex of G, equations (2.1), (2.2) become:

∂u1(xm, t)
∂t

= −d1∆Gu1(xm, t) − u1(xm, t)
∞∑

j=1
a1,juj(xm, t) + f(xm) (2.4)
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∂ui(xm, t)
∂t

= −di∆Gui(xm, t)+
1
2

i−1∑
j=1

aj,i−juj(xm, t)ui−j(xm, t)−ui(xm, t)
∞∑

j=1
am,juj(xm, t) .

(2.5)
with initial values:

ui(xm, 0) = Ui(xm) . (2.6)

It is worth observing that the coagulation rates ai,j measure how polymers of length i

are prone to aggregate with polymers of length j to create polymers of length i+ j. In
fact, we suppose that the aggregation process follows the law of mass action according
to which the rate of a chemical reaction is directly proportional to the product of the
concentrations of the reactants. Hence, the coagulation of i clusters with j clusters to
give rise to clusters of length i+j is described through terms of the form ai,juiuj , where
ai,j are corresponding reaction rates. These coefficients are assumed to be nonnegative
constants such that ai,j = aj,i for all i, j ∈ N. In this view, the i-th equation in (2.1)
and (2.2) describes the rate of change of concentration of i-clusters due to coagulation
of polymers of length less than i to form i-clusters and due to coagulation of i-clusters
with other clusters (of possible length from one to infinity) to form larger aggregates.
Unlike the model discussed in Chapter one, equations (2.1), (2.2) describe a problem
in which the possible size of polymers is not limited a priori; thus an infinite number
of variables (and equations) is introduced.
In the light of the biological setting described above, the function ui(xm, t) represents
the concentration of hyper-phosphorylated τ clusters of length i ∈ N at the m-th vertex
of the graph, that is the m-th cerebral structure identified by that vertex. Instead,
the source term f(xm), m = 1, . . . , h represents the induction of phosphorylated tau
protein by beta-amyloid clusters. For simplicity, the action of beta amyloid on tau
phosphorylation is assumed to be constant in time at each vertex of the network.
At this point, we introduce some notation. We call sol the set of reacting i-clusters,
i ∈ N:

{ui(xm, ·)}i∈N, m=1,...,h ,

while the total mass concentration of sol at a vertex xm ∈ V , m = 1, . . . , h, is defined
as:

M1(xm, t) =
∞∑

i=1
iui(xm, t) for t > 0 . (2.7)
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The total mass concentration of sol at any vertex xm, m = 1, . . . , h is assumed to be
finite at time t = 0 that is:

M1(xm, 0) =
∞∑

i=1
iUi(xm) < ∞ . (2.8)

The total mass concentration over the entire set of vertices is given by:

M1(t) =
∑

xm∈V

∞∑
i=1

iui(xm, t) for t > 0 . (2.9)

and
M1(0) =

∑
xm∈V

∞∑
i=1

iUi(xm) (2.10)

Analogously, we can define the second moment of the solution at a vertex xm ∈ V ,
m = 1, . . . , h, as:

M2(xm, t) =
∞∑

i=1
i2ui(xm, t) for t ≥ 0 . (2.11)

while over the entire set of vertices the corresponding quantity takes the form:

M2(t) =
∑

xm∈V

∞∑
i=1

i2ui(xm, t) for t ≥ 0 . (2.12)

If there are not sinks or sources in the system, we could expect that the total mass of
clusters remains constant in time. This property is known as total mass conservation.
However, it is not obvious that such property should hold true for any time. In fact,
when the rate of production of large clusters is fast enough, a part of the total mass
of the system is quickly transferred to larger aggregates, eventually giving rise to a
hypercluster, said gel, which is made of an infinite number of monomers and removes
polymers fractions from the medium, not to allow them to return to the sol fraction.
The effect produced by the breakdown in a finite time of mass conservation is referred
to in physics literature as sol-gel phase transition or gelation and the time at which
this occurs is known as the gelation time [99],[78].
The occurrence of gelation for systems related to (2.1)-(2.3) depends on the assumptions
made on coagulation coefficients. In the diffusionless case di = 0 the total mass
conservation is known to hold if

0 ≤ ai,j ≤ A(i+ j) for some A > 0 and for i, j ≥ 1 . (2.13)
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(see [9]). A similar result also holds when diffusion is included, under some additional
hypotheses on diffusion coefficients [118]. Classical theory of polymerization [99]
provides a description of the interaction between two polymers under the assumption
that polymer molecules do not form loops and in each monomer there are exactly σ
functional groups ( i.e. σ active spots for chemical bunding). The form of coagulation
coefficients corresponds to the product of the number of free active spots in two
interacting polymers; so that the coefficients are given by:

ai,j = ((σ − 2)i+ 2)((σ − 2)j + 2) for some σ ∈ N . (2.14)

A way of taking this fact into account consists in setting:

ai,j ∼ iαjα for i, j ≥ 1 for some α : 0 < α ≤ 1 .

Since i 1
2 j

1
2 ≤ 1

2(i + j), for any i, j ≥ 1, one can guess that the case α = 1
2 in the

above expression should be a borderline one with respect to (2.13). In fact, when
di = 0 for all i ∈ N, it has been proven in [35] that for 1

2 < α ≤ 1, there exist global
solutions that do not preserve the total mass in time. According to this perspective,
sol-gel phase transition is expected to occur when 1

2 < α ≤ 1.
Bearing in mind (2.14) and our previous remarks, we shall be mainly concerned here
with the case α = 1, i.e.:

ai,j = ij for i, j ∈ N . (2.15)

We finally recall an important result concerning the standard graph Laplacian described
in Appendix 1 that we will repeatedly use in this chapter: if u = u(x) is a real-valued
function on V = {x1, .., xh}, then

∑
xi∈V

∆Gu(xi) = 0 (2.16)

2.3 Main results

In this section, we will discuss the main results of this chapter,namely:

1. The existence of solutions for system (2.1), (2.2), (2.3). More precisely, we prove
the existence of a global weak solution and a local in time classical solution.

2. The onset of a sol gel transition for sufficiently large times.
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2.3.1 Existence of generalized solutions

Following [119], we can introduce the definition of a weak solution to (2.1),(2.2), (2.3).
In the sequel, we shall write ui(x, t) = (ui(x1, t), . . . , ui(xh, t)) for any i ∈ N.

Definition 2.1. A weak solution to (2.1)-(2.3) on [0, T∗), T∗ ∈ (0,+∞], is a mapping
u = (ui(x, t))i≥1 such that for any T ∈ (0, T∗), ∑∞

i=1 iui ∈ L∞((0, T ) × V ) and for each
i ≥ 1, for each xm ∈ V there holds:

• ui(xm, ·) ∈ C([0, T ],R) and ui(xm, ·) ≥ 0, ∀t ∈ [0, T ]

• ∑∞
j=1 ai,jui(xm, ·)uj(xm, ·) ∈ L1((0, T ))

• ui satisfies for each t ∈ [0, T ]

ui(t) = exp(−tdi∆G)Ui +
∫ t

0
exp((s− t)di∆G)(1

2

i−1∑
j=1

ai−j,jui−j(s)uj(s)

− ui(s)
∞∑

j=1
ai,juj(s) + f(x))ds .

(2.17)

We will focus now on the meaning of some terms in equation 2.17. Let {φj}h
j=1

be an orthonormal basis of eigenfunctions of the graph laplacian ∆G with eigenvalues
λ1, . . . , λh (see Appendix 1). Then for each i ≥ 1:

exp(−tdi∆G)Ui =
h∑

j=1
exp(−tdiλj)⟨φj, Ui⟩φj,

where Ui = [Ui(x1, 0), . . . , Ui(xh, 0)] is the vector of the initial data and for each i ≥ 1

⟨φj, Ui⟩ =
h∑

m=1
φj(xm)Ui(xm, 0) for j = 1, . . . , h .

In addition, for each xm ∈ V and for each i ≥ 1 we define:

Fi(xm, s) = (1
2

i−1∑
j=1

ai−j,jui−j(xm, s)uj(xm, s) − ui(xm, s)
∞∑

j=1
ai,juj(xm, s) + f(xm)) .

For simplicity, we set for each i ≥ 1 Fi(s) = (Fi(x1, s), . . . , Fi(xh, s)); then

exp(sdi∆G)Fi(s) =
h∑

j=1
⟨φj, Fi(s)⟩ exp(sdiλj)φj,
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where for each i ≥ 1

⟨φj(·), Fi(·, s)⟩ =
h∑

m=1
φj(xm)Fi(xm, s) for j = 1, . . . , h .

Definition 2.2. A classical solution to (2.1)-(2.3) on [0, T∗), T∗ ∈ (0,+∞], is a mapping
u = (ui(x, t))i≥1 such that for any T ∈ (0, T∗)

• ui(xm, t) ∈ C1([0, T ],R) ∀xm ∈ V , ∀i ≥ 1;

• ∑∞
j=1 ai,juj(xm, ·) converges uniformly in [0, T ], ∀xm ∈ V , ∀i ≥ 1.

and that satisfies (2.1)-(2.3) for each t ∈ [0, T ].

Remark 3. It easy to see that a classical solution is a weak solution.
Following [118], solutions of the infinite system are constructed by approximating

the full system (2.1), (2.2) by the following systems (SN) of 2N equations defined for
any integer N ≥ 1 as follows:

∂uN
1

∂t
= −d1∆Gu

N
1 − uN

1

N∑
j=1

a1,ju
N
j + f(x) (2.18)

∂uN
i

∂t
= −di∆Gu

N
i + 1

2

i−1∑
j=1

aj,i−ju
N
j u

N
i−j − uN

i

N∑
j=1

ai,ju
N
j for i = 2, . . . N , (2.19)

and
∂uN

i

∂t
= −di∆Gu

N
i + 1

2

N∑
j=i−N

aj,i−ju
N
j u

N
i−j (2.20)

for N + 1 ≤ i ≤ 2N . The functions uN
i are subject to initial conditions as in (2.3).

This system corrisponds to the first 2N equations of the system (2.1), (2.2) where
aij = 0 for i > N or j > N .
We recall that a solution of (SN) is a function

uN = uN(x, t) : V × R+ −→ R2Nh .

We shall also write

uN(t) := uN(·, t) =
(
uN

1 (·, t), . . . , uN
2N(·, t)

)
,

whereas, for x = (x1, . . . , xh) ∈ G,

uN
i (x, t) :=

(
uN

i (x1, t), . . . , uN
i (xh, t)

)
for i = 1, . . . , 2N .
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Existence of solution of the finite dimesional problem has been discussed in chapter
one and is guaranteed in some interval [0, tmax] by classical Peano-Picard-Lindelöf
Theorem. In addition, suitable estimates of the norm ∥ui(·, t)N∥2 for i = 1, . . . , 2N ,
where ∥uN

i (·, t)∥2 =
(∑

xm∈V u
N
i (xm, t)

) 1
2 allow us to extend the solution of problem

(SN) to [0,+∞) (see theorem 1.5.2).
Definition 2.1 of weak solution is motivated by the fact that not much information is
avaible about the regularity of the terms ui

∑∞
j=1 ai,juj when i ≥ 1. Thus, we can not

take advantage of classical regularity results for ordinary differential equations and
conclude that each equation in (2.1),(2.2) holds in classical sense.
To proceed further we take up an argument introduced in [86]. Namely, on multiplying
the i-th equation in (SN) by an arbitrary real number gi and then adding up all the
equations, we obtain the following useful identity written on the vertex xm of G:

2N∑
i=1
gi
∂uN

i (xm, t)
∂t

+
2N∑
i=1

gidi∆Gu
N
i (xm, t)

= 1
2

N∑
i=1

N∑
j=1

(gi+j − gi − gj)aiju
N
i (xm, t)uN

j (xm, t) + g1f(xm)
(2.21)

If we choose gi = i for i = 1, . . . , 2N , we have:

2N∑
i=1

i
∂uN

i (xm, t)
∂t

+
2N∑
i=1

idi∆Gu
N
1 (xm, t) = f(xm)

Summing up over all xm ∈ V and integrating between 0 and t, by (2.16) we see that:

∑
xm∈V

2N∑
i=1

iuN
i (xm, t) =

∑
xm∈V )

2N∑
i=1

iUi(xm) + t
∑

xm∈V

f(xm)

≤ M1(0) + ∥f(·)∥∞ht

(2.22)

where h is the number of vertices of the graph G.
We will prove the existence of a positive global weak solution in the sense precised

by Definition 2.1 for a wider range of coagulation coefficients. Specifically, we prove
the existence of that solution for (2.1)-(2.3) under the assumption on cofficients

lim
j→∞

ai,j

j
= 0 for i ∈ N (2.23)

or
Aij ≤ aij ≤ Āij for A, Ā > 0 for any i, j ≥ 1 . (2.24)
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We first prove the existence of a non negative local in time weak solution and then we
extend it to [0,∞). Thus, we are able to prove the following results:

Theorem 2.3.1. Suppose (2.23) holds and let T > 0 be an arbitrary time. Then there
exists a non negative weak solution {ui}∞

i=1 of (2.1), (2.2),(2.3) defined on V × [0, T ],
such that:

M1(t) ≤ M1(0) + ∥f(·)∥∞hT for t ∈ [0, T ]. (2.25)

where h is the number of verteces of G.

Before indroducing the proof of Theorem 2.3.1, we will state a preliminary Lemma.

Lemma 2.3.2. Solutions of (SN) are classical and global in time. For any 0 ≤ t < T

the following estimates hold:

∥uN
1 (·, t)∥∞ ≤ ∥uN

1 (·, t)∥2 ≤ K1 :=
((

∥uN
1 (·, 0)∥2

2 + T∥f(·)∥2
2

)
exp{T}

) 1
2 (2.26)

∥uN
i (·, t)∥∞ ≤ ∥uN

i (·, t)∥2 ≤ Ki :=
(∥uN

i (·, 0)∥2 + T

2 (
i−1∑
j=1

aj,i−jKjKi−j)2 exp{T2 }

 1
2

(2.27)
for 1 < i ≤ N , and

∥uN
i (·, t)∥∞ ≤ ∥uN

i (·, t)∥2 ≤ Ki :=
(∥uN

i (·, 0)∥2 + T

2 (
N∑

j=i−N

aj,i−jKjKi−j)2 exp{T2 }

 1
2

(2.28)
for N + 1 ≤ i ≤ 2N .

Proof. The proof is analogous to Theorem 1.5.2 in Chapter 1.

Remark 4. If ai,j = o(j), for j → ∞, for each i ≥ 1, it follows that for each i there
exists a constant c̄i such that

ai,j ≤ c̄ij

for j ≥ 1. For xm ∈ V let {uN
j (xm, t)}2N

j=1 be the solution restricted to [0, T ] of the
approximating system (SN) (2.18)-(2.20) Hence, by (2.22), for t ≤ T it holds:

N∑
j=1

aiju
N
j (xm, t) ≤

∑
xm∈V

2N∑
j=1

ai,ju
N
j (xm, t) ≤ c̄i

∑
xm∈V

2N∑
j=1

juN
j (xm, t)

≤ c̄i(
∑

xm∈V

M1(xm, 0) + ∥f(·)∥∞hT ) (2.29)
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Proof of Theorem 2.3.1. The proof will be made of several steps.
Step 1: Let denote the reaction terms in the ith equation of (SN) by

FN
i = fN

i − uN
i g

N
i

where f
N
i = 1

2
∑i−1

j=1 aj,i−ju
N
j u

N
i−j

gN
i = ∑N

j=1 aiju
N
j if i ≤ N

(2.30)

and f
N
i = 1

2
∑N

j=i−N aj,i−ju
N
j u

N
i−j

gN
i = 0 if N < i ≤ 2N .

(2.31)

Let consider for each 1 ≤ i, the sequence of functions {uN
i (xm, t)}∞

N=i in C([0, T ]).
By (2.26) and (2.27), uN

i (xm, t) ≤ Ki for each xm ∈ V and 0 ≤ t ≤ T , with Ki that
does not depend on N . Thus, for each i ≤ N , {uN

i (xm, t)}∞
N=i is a equi bounded

sequence of functions in C([0, T ]). In addition, we can show that for any i ∈ N, for any
xm ∈ V {uN

i (xm, t)}∞
N=i is equi-Lipschitz that implies equicontinous. For each N ≥ 1,

by(2.29) , the first equation of the N -th system gives that for any t ∈ [0, T ],

|∂u
N
1

∂t
(xm, t)| ≤ |d1

∑
xj∼xm

(uN
1 (xj, t) − uN

1 (xm, t))wm,j| + |uN
1 (xm, t)||

N∑
j=1

a1,ju
N
j (xm, t)| + ∥f(·)∥∞

≤ d1|
∑

xj∼xm

uN
1 (xj, t)wm,j| + d1|deg(xm)u1(xm, t)| + |uN

1 (xm, t)||
N∑

j=1
a1,ju

N
j (xm, t)| + ∥f(·)∥∞

≤ d1
∑

xj∼xm

∥uN
1 (·, t)∥∞wm,j + d1deg(xm)∥uN

1 (·, t)∥∞ + |uN
1 (xm, t)||

N∑
j=1

a1,ju
N
j (xm, t)| + ∥f(·)∥∞

≤ 2d1deg(xm)∥uN
1 (·, t)∥∞ + ∥uN

1 (·, t)∥∞c̄1(M1(0) + ∥f(·)∥∞hT ) + ∥f(·)∥∞ .

(2.32)

where deg(xm) = ∑
xj∼xm

wm,j is the degree of the vertex xm. As (2.32) holds for all
xm ∈ V , it follows that for t ∈ [0, T ]:

∥∂u
N
1

∂t
(·, t)∥∞ ≤D1∥uN

1 (·, t)∥∞ + ∥f(·)∥∞

≤ D1

∫ t

0
∥∂u

N
1

∂t
(·, t)∥∞ +D1∥uN

1 (·, 0)∥∞ + ∥f(·)∥∞

(2.33)

where
D1 = 2d1 max

xm∈V
{deg(xm)} + c̄1(M1(0)∥f(·)∥∞hT ) + ∥f(·)∥∞
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. Thus, by Gronwall’s inequality we obtain that :

∥∂u
N
1

∂t
(·, t)∥∞ ≤

(
D1∥uN

1 (·, 0)∥∞ + ∥f(·)∥∞
)

exp{D1t} for any t ∈ [0, T ] . (2.34)

We prove now that for every i ∈ N and for every N ≥ i

∥∂u
N
i

∂t
∥L∞(V ×[0,T ]) ≤ Ci . (2.35)

The proof will be carried out by induction on i. Indeed, the assertion is true for i = 1,
since (2.34) holds.
Suppose the assertion (2.35) holds for i− 1. Then, for any t ∈ [0, T ]:

|∂u
N
i

∂t
(xm, t)| ≤ 2dideg(xm)∥uN

i (·, t)∥∞ + ∥uN
i (·, t)∥∞c̄i(M1(0) + ∥f(·)∥∞hT )

+ 1
2

i−1∑
j=1

aj,i−j∥uN
j (·, t)∥∞∥uN

i−j(·, t)∥∞

≤ Di∥uN
i (·, t)∥∞

+ 1
2

i−1∑
j=1

aj,i−j(∥uN
j (·, t) − uN

j (·, 0)∥∞ + ∥uN
j (·, 0)∥∞)(∥uN

i−j(·, t) − uN
i−j(·, 0)∥∞ + ∥uN

i−j(·, 0)∥∞)

≤ Di∥uN
i (·, t)∥∞

+ 1
2

i−1∑
j=1

aj,i−j

(∫ t

0
∥
∂uN

j

∂t
(·, t)∥∞ + ∥uN

j (·, 0)∥∞

)(∫ t

0
∥
∂uN

i−j

∂t
(·, t)∥∞ + ∥uN

i−j(·, 0)∥∞

)

≤ Di

∫ t

0
∥∂u

N
i

∂t
(·, t)∥∞ +Di∥uN

i (·, 0)∥∞ + 1
2

i−1∑
j=1

aj,i−j

(
CjT + ∥uN

j (·, 0)∥∞
) (

Ci−jT + ∥uN
i−j(·, 0)∥∞

)
(2.36)

where
Di = 2di max

xm∈V
{deg(xm)} + c̄i(M1(0) + ∥f(·)∥∞hT ).

As (2.32) holds for all xm ∈ V , using Gronwall’s inequality we obtain that :

∥∂u
N
i

∂t
(·, t)∥∞ ≤

Di∥Ui(·)∥∞ + 1
2

i−1∑
j=1

aj,i−j (CjT + ∥Uj(·)∥∞) (Ci−jT + ∥Ui−j(·)∥∞)
 exp{Dit} .

(2.37)
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for any t ∈ [0, T ].
Thus, the Ci’s in (2.35) are given recursively by:

C1 = (D1∥U1(·)∥∞ + ∥f(·)∥∞) exp{D1T}

and

Ci =
Di∥Ui(·)∥∞ + 1

2

i−1∑
j=1

aj,i−j (CjT + ∥Uj(·)∥∞) (Ci−jT + ∥Ui−j(·)∥∞)
 exp{DiT} for i ≥ 2 .

In particular, Ci is indipendent of N for i = 1, 2, . . . .
For any i ∈ N, {uN

i (xm, ·), N ≥ i} is equicontinuous in [0, T ] for m = 1, · · · , h. Thus,
by Ascoli-Arzelà theorem, for any i ∈ N there exists a subsequence uN i

ℓ
i (xm, ·) that

converges uniformly in [0, T ] to ui(xm, ·) for m = 1, · · · , h. Without loss of generality,
we may assume (N2

ℓ )ℓ∈N is a subsequence of (N1
ℓ )ℓ∈N, (N3

ℓ )ℓ∈N is a subsequence of
(N2

ℓ )ℓ∈N and so on. The construction can be summarised as follows: there exists a
sequence of sequences (uN i

ℓ
i )ℓ∈N, i = 1, 2, . . . such that

• u
N i

ℓ
i → ui as ℓ → ∞;

• (N i+1
ℓ )ℓ is a subsequence of (N i

ℓ)ℓ and N i
ℓ ≥ i.

Notice that N i+1
ℓ ≥ N i

ℓ . Indeed, by definition, N i+1
ℓ = N i

kℓ
. Since (N i

ℓ)ℓ is increasing
and kℓ > ℓ, the assertion follows. For sake of simplicity, set now Mℓ := N ℓ

ℓ . We
have Mℓ+1 = N ℓ+1

ℓ+1 > N ℓ+1
ℓ ≥ N ℓ

ℓ . Hence, (uMℓ
i )ℓ∈N is a subsequence of (uN i

ℓ
i )ℓ∈N for

i = 1, 2, . . . and
uMℓ

i (xm, t) → ui(xm, t) (2.38)

uniformly ∀i = 1, 2, . . . . In addition, ui(xm, t) ∈ C([0, T ]), for all i ≥ 1 and for all
xm ∈ V . By the fact that uMℓ

i (xm, t) ≥ 0, for all ℓ ∈ N, for any i ≥ 1, for any xm ∈ V ,
for any t ∈ [0, T ], it follows ui(xm, t) ≥ 0 for any i ≥ 1, for any xm ∈ V , for any
t ∈ [0, T ].
Finally, ∥ui∥V ×[0,T ] ≤ Ki for any i ≥ 1, where Ki are given by 2.26 and 2.27.
Consider now the sequence {Mℓ}∞

ℓ=1 and for each fixed {Mℓ}, let {uMℓ
j }2Mℓ

j=1 be the
solution restricted to the interval [0, T ] of the approximating system (SMℓ) (2.18)-
(2.20). If P ∈ N, set SP (t) = ∑P

j=1 juj(xm, t). For 1 ≤ P < 2Mℓ and for each t ∈ [0, T ]
we have:

P∑
j=1

juMℓ
j (xm, t) ≤

2Mℓ∑
j=1

juMℓ
j (xm, t) ≤ M1(0) + ∥f(·)∥∞hT



56 A polymerization model for the formation of NFTs in Alzheimer’s Disease

where in the last inequality we use (2.22). Passing to the limit for ℓ → ∞, by (2.38),
we obtain for each t ∈ [0, T ]

P∑
j=1

juj(xm, t) = lim
l→∞

P∑
j=1

juMℓ
j (xm, t) ≤ lim sup

l→∞

2Mℓ∑
j=1

juMℓ
j (xm, t) ≤ M1(0) + ∥f(·)∥∞hT .

(2.39)
Hence, for each t ∈ [0, T ] the partial sums SP (t) are equibounded from above. Since∑∞

j=1 juj(xm, t) is a series with non negative terms, then it converges in [0, T ] and from
(2.39), it holds that for each t ∈ [0, T ]:

∞∑
j=1

juj(xm, t) = lim
P →∞

P∑
j=1

juj(xm, t) ≤ M1(0) + ∥f(·)∥∞hT . (2.40)

In addition, if P ∈ N, set S ′
P (t) = ∑

xm∈V

∑P
j=1 juj(xm, t) and proceding as above by

(2.22), (2.38) we have that: for each t ∈ [0, T ]

∑
xm∈V

P∑
j=1

juj(xm, t) = lim
l→∞

∑
xm∈V

P∑
j=1

juMℓ
j (xm, t)

≤ lim sup
l→∞

∑
xm∈V

2Mℓ∑
j=1

juMℓ
j (xm, t) ≤ M1(0) + ∥f(·)∥∞hT .

(2.41)

Passing to the limit for P → ∞, inequality (2.25) follows.
Step 2:
In the previous step we proved the existence of a mapping u = (ui(x, t))i≥1, ob-
tained as limit of solutions of the approximating sistem (2.18)-(2.20), where ui(x, t) =
(ui(x1, t), . . . , ui(xh, t) and such that for each xm ∈ V ui(xm, ·) ∈ C([0, T ]) and
ui(xm, ·) ≥ 0, ∀t ∈ [0, T ].We will prove firstly that the functions ui satisfy for each
t ∈ [0, T ] equation (2.17) for i = 1, 2 . . . .
We observe that for fixed ℓ and i < Mℓ the function uMℓ

i is the solution given by the
Duhamel formula:

uMℓ
i (t) = exp−tdi∆G Ui +

∫ t

0
exp(s−t)di∆G(fMℓ

i (s) − uMℓ
i (s)gMℓ

i (s) + f(x))ds (2.42)

with t ≤ T .
In order to pass to the limit in (2.42) we show preliminarly that for each i and for each
xm ∈ V ∫ T

0
|gMℓ

i (xm, s) −
∞∑

j=1
ai,juj(xm, s)|ds → 0 for ℓ → ∞ ; (2.43)
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in other words that:

∫ T

0
|

Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|ds → 0 for ℓ → ∞ ; (2.44)

and
∫ T

0
|12

i−1∑
j=1

aj,i−j(uMℓ
j (xm, s)uMℓ

i−j(xm, s) − uj(xm, s)ui−j(xm, s))|ds → 0 for ℓ → ∞ .

(2.45)
First, we notice that (2.45) follows from (2.38) by dominated convergence theorem,
since uMℓ

j (xm, s)uMℓ
i−j(xm, s) ≤ KjKi−j, for 0 ≤ s ≤ T .

In order to show (2.44), we observe that by (2.22) for each fixed ℓ and for s ≤ T we
have:

2Mℓ∑
j=1

juMℓ
j (xm, s) ≤

∑
xm∈V

2Mℓ∑
j=1

juMℓ
j (xm, s) ≤ M1(0) + ∥f(·)∥∞hT .

In addition, if λ ≤ ℓ, for 1 ≤ Mλ < Mℓ

Mℓ∑
j=Mλ

ai,ju
Mℓ
j (xm, s) ≤ sup

j>Mλ

aij

j

Mℓ∑
j=Mλ

juMℓ
j (xm, s)

≤ sup
j>Mλ

aij

j

2Mℓ∑
j=1

juMℓ
j (xm, s)

≤ sup
j>Mλ

aij

j
(M1(0) + ∥f(·)∥∞hT ) (2.46)

and consequently,

∫ T

0

Mℓ∑
j=Mλ

ai,ju
Mℓ
j (xm, s)ds ≤ sup

j>Mλ

aij

j
(M1(0) + ∥f(·)∥∞hT )T . (2.47)

By (2.23) for fixed i and arbitrary ϵ there exists an ℓ0 such that for any ℓ > ℓ0,

∫ T

0

Mℓ∑
j=Mℓ0

ai,ju
Mℓ
j (xm, s)ds ≤ sup

j>Mℓ0

aij

j
(M1(0) + ∥f(·)∥∞hT )T <

ϵ

3 . (2.48)

Hence, we can write:

|
Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)| =
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|
Mℓ0 −1∑

j=1
ai,ju

Mℓ
j (xm, s) +

Mℓ∑
j=Mℓ0

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|

≤
Mℓ0 −1∑

j=1
ai,j|uMℓ

j (xm, s) − uj(xm, s)| + |
Mℓ∑

j=Mℓ0

ai,ju
Mℓ
j (xm, s)| + |

∞∑
j=Mℓ0

ai,juj(xm, s)| .

(2.49)
Thus, we want to prove now that there exists an ℓ̄ ≥ ℓ0 such that for any ℓ > ℓ̄:

∫ T

0

Mℓ0 −1∑
j=1

ai,j|uMℓ
j (xm, s)−uj(xm, s)|+ |

Mℓ∑
j=Mℓ0

ai,ju
Mℓ
j (xm, s)|+ |

∞∑
j=Mℓ0

ai,juj(xm, s)| < ϵ .

(2.50)
By (2.38), there exists an ℓ1 ≥ ℓ0 such that for any ℓ > ℓ1

∫ T

0

Mℓ0 −1∑
j=1

ai,j|uMℓ
j (xm, s) − uj(xm, s)|ds <

ϵ

3 . (2.51)

Hence, keeping into account (2.48), it remains to be proven that

∫ T

0

∞∑
j=Mℓ0

ai,juj(xm, s)ds <
ϵ

3 . (2.52)

We observe preliminary that ∑∞
j=1 ai,juj(xm, s) converges for all s ∈ [0, T ]. In fact, by

hypothesis, for each i ≥ 1, there exists a constant c̄i such that

ai,j ≤ c̄ij

for each s ∈ [0, T ], so that

∞∑
j=1

ai,juj(xm, s) ≤ c̄i

∞∑
j=1

juj(xm, s) < ∞. (2.53)

We prove now (2.52).
For P ′ ∈ N, such that Mℓ0 ≤ P

′
< 2Mℓ, for each fixed i and for each s ∈ [0, T ] we

have:

P
′∑

j=Mℓ0

ai,ju
Mℓ
j (xm, s) ≤

2Mℓ∑
j=Mℓ0

ai,ju
Mℓ
j (xm, s) ≤ sup

j>Mℓ0

aij

j
(M1(0) + ∥f(·)∥∞hT )
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where in the last inequality we use (2.46).
Thus, integrating in time and passing to the limit for ℓ → ∞, by (2.38), we obtain :

∫ T

0

P
′∑

j=Mℓ0

ai,juj(xm, s)ds = lim
ℓ→∞

∫ T

0

P
′∑

j=Mℓ0

ai,ju
Mℓ
j (xm, s)ds

≤ lim sup
ℓ→∞

∫ T

0

2Mℓ∑
j=Mℓ0

ai,ju
Mℓ
j (xm, s)ds

≤ sup
j>Mℓ0

aij

j
(M1(0) + ∥f(·)∥∞hT )T .

(2.54)

Finally, by monotone convergence theorem, (2.54), (2.48), there holds:

∫ T

0

∞∑
j=Mℓ0

ai,juj(xm, s) = lim
P ′ →∞

∫ T

0

P
′∑

j=Mℓ0

ai,juj(xm, s) ≤ sup
j>Mℓ0

aij

j
(M1(0)+∥f(·)∥∞hT )T <

ϵ

3 .

(2.55)
Putting togheter (2.55),(2.51), (2.48) it follows that for ℓ > ℓ1 ≥ ℓ0

∫ T

0
|

Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|ds < ϵ . (2.56)

We will show, now, that for each i and for each xm ∈ V

∫ T

0
|uMℓ

i (xm, s)
Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) − ui(xm, s)

∞∑
j=1

ai,juj(xm, s)ds| → 0 for ℓ → ∞ .

Using the fact that the series ∑∞
j=1 ai,juj(xm, s) converges in [0, T ], it holds:

∫ T

0
|uMℓ

i (xm, s)
Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) − uMℓ

i (xm, s)
∞∑

j=1
ai,juj(xm, s)

+ uMℓ
i (xm, s)

∞∑
j=1

ai,juj(xm, s) − ui(xm, s)
∞∑

j=1
ai,juj(xm, s)|ds

≤
∫ T

0
uMℓ

i (xm, s)|
Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|ds

+
∫ T

0
|uMℓ

i (xm, s) − ui(xm, s)|
∞∑

j=1
ai,juj(xm, s)ds
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≤ Ki

∫ T

0
|

Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|ds

+
∫ T

0
|uMℓ

i (xm, s) − ui(xm, s)|
∞∑

j=1
ai,juj(xm, s)ds

where in the last inequality we use Lemma 2.3.2.
Letting ℓ → ∞ the first term of the last inequality goes to zero by (2.56).
It remains to show that

∫ T

0
|uMℓ

i (xm, s) − ui(xm, s)|
∞∑

j=1
ai,juj(xm, s)ds → 0 for ℓ → ∞ . (2.57)

We observe prelimirary that by (2.53), (2.40)

∫ T

0

∞∑
j=1

ai,juj(xm, s)ds ≤
∫ T

0
c̄i

∞∑
j=1

juj(xm, s)ds ≤ c̄i(M1(0) + ∥f(·)∥∞hT )T .

Thus, ∑∞
j=1 ai,juj(xm, s) ∈ L1[0, T ] and

|uMℓ
i (xm, s) − ui(xm, s)|

∞∑
j=1

ai,juj(xm, s) ≤ 2Ki

∞∑
j=1

ai,juj(xm, s)

by Lemma 2.3.2. Hence, (2.57) follows from (2.38) by dominated convergence theorem.

Let ϕMℓ
i (s) = fMℓ

i (s) − uMℓ
i (s)gMℓ

i (s) + f(x) for each i = 1, 2, . . . ; previously, we
have shown that

ϕMℓ
i → ϕi for ℓ → ∞

in L1(0, T ), where

ϕi(s) = fi(s) − ui(s)gi(s) + f(x) = 1
2

i−1∑
j=1

aj,i−jujui−j − ui

∞∑
j=1

aijuj + f(x) .

Therefore, it remains to show that

exp(sdi∆G)ϕMℓ
i → exp(sdi∆G)ϕi for ℓ → ∞

in L1(0, T ), i.e. that the operator A := exp(sdi∆G) : L1(0, T ) → L1(0, T ) is continuous.
Hence, we have to prove that A is limited, i.e. there exists a real number C ≥ 0 such
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that
| exp(sdi∆G)ϕ̄|L1(0,T ) ≤ C|ϕ̄|L1(0,T ) (2.58)

for every ϕ̄ ∈ L1(0, T ).
Let {φj}h

j=1 be an orthonormal basis of eigenfunctions of ∆G. If s ∈ [0, T ], we can
write

ϕ̄(s) =
h∑

j=1
⟨ϕ̄(s), φj⟩φj,

and
|ϕ̄(s)|2 =

h∑
j=1

⟨ϕ̄(s), φj⟩2.

Since
exp(sdi∆G)ϕ̄(s) =

h∑
j=1

⟨ϕ̄(s), φj⟩ exp(sdiλj)φj,

then
| exp(sdi∆G)ϕ̄(s)|2 =

h∑
j=1

⟨ϕ̄(s), φj⟩2 exp(2sdiλj) ≤ C|ϕ̄(s)|2 .

where C = maxj=1,...,h exp{2Tdiλj}.
Integrating between 0 and t, (2.58) follows.
Step 3: We observe that the term ∑∞

j=1 ai,jui(xm, ·)uj(xm, ·) ∈ L1(0, T ), for each
xm ∈ V . In fact, for each ℓ ≥ 1 by (2.29) and by Lemma 2.3.2 we have that:

∫ T

0
uMℓ

i

Mℓ∑
j=1

ai,ju
Mℓ
j (xm, t) ≤

∫ T

0
Kic̄i(M1(0) + ∥f(·)∥∞hT ) < ∞ .

Hence, we have that {uMℓ
i

∑Mℓ
j=1 ai,ju

Mℓ
j (xm, t)}ℓ∈N is a sequence of functions in L1(0, T ).

In addition, it holds that:

∫ T

0
|uMℓ

i (xm, s)
Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) − ui(xm, s)

∞∑
j=1

ai,juj(xm, s)|ds → 0 for ℓ → ∞ ;

(2.59)
thus, ∑∞

j=1 ai,jui(xm, ·)uj(xm, ·) ∈ L1(0, T ), due to the fact that L1(0, T ) is a Banach
space.
Finally, the term ∑∞

i=1 iui ∈ L∞((0, T )×V ), as by (2.40), we have that for each xm ∈ V

and for each t ∈ [0, T ]

∞∑
j=1

juj(xm, t) ≤ M1(0) + ∥f(·)∥∞hT .
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hence:
sup

(xm,t)∈V ×(0,T )

∞∑
i=1

iui(xm, t) < ∞ .

We have shown that (ui(x, t))i∈N is a weak solution of (2.1)-(2.3) in sense of Definition
2.1.

The solutions obtained in the previous result are then shown to hold true for
arbitrarly large times. More precisely:

Theorem 2.3.3. Under the hypothesis of the Theorem 2.3.1, there exists a non negative
weak solution {ui}∞

i=1 of (2.1), (2.2),(2.3) defined on V × [0,∞)

Proof. We can construct a solution of (2.1), (2.2),(2.3) defined on V × [0,∞) in the
following way. Let {Tn}∞

n=1 be any increasing sequence of positive numbers such that
Tn → ∞, as n → ∞. Using the result of Theorem 2.3.1, there exists a sequence
{M1

ℓ }∞
l=1 such that for each i = 1, 2, . . . a solution u1

i (xm, t) to (2.4), (2.5),(2.6) on
the interval [0, T1] is defined as the limit of {uM1

ℓ
i (xm, t)|[0,T1]}∞

l=1. Let {M2
ℓk

}∞
k=1 be a

subsequence of {M1
ℓ }∞

l=1 such that {u
M2

ℓk
i (xm, t)|[0,T2]}∞

k=1 tends to a solution u2
i (xm, t)

defined on [0, T2]. By the uniqueness of the solution of the finite dimensional Cauchy
problem,

u
M2

ℓk
i (xm, t) ≡ u

M1
ℓk

i (xm, t) on [0, T1],

so that u1
i and u2

i coincide on [0, T1]. To avoid cumbersome notations, we denote
{M2

ℓk
}∞

k=1 by {M2
ℓ }∞

ℓ=1.
Arguing in an iterative way we define a sequence {Mn

ℓ }∞
l=1 for any n > 1. Notice

that (Mn+1
ℓ )ℓ is a subsequence of (Mn

ℓ )ℓ and Mn+1
ℓ ≥ Mn

ℓ . Indeed, by definition,
Mn+1

ℓ = Mn
kℓ

. Since (Mn
l )l is increasing and kℓ > ℓ, the assertion follows. We

consider now Zℓ := M ℓ
ℓ . We have Zℓ+1 = M ℓ+1

ℓ+1 > M ℓ+1
ℓ ≥ M ℓ

ℓ . Hence, the solu-
tion ui(xm, t) of (2.4), (2.5),(2.6) on [0,∞) is obtained upon passing to the limit in
{uMℓ

ℓ
i (xm, t)}∞

ℓ=1 where {M ℓ
ℓ }∞

ℓ=1 is diagonal subsequence. For each i = 1, 2, . . . , the
vector (ui(x1, t), ui(x2, t), . . . , ui(xh, t)) thus provides a solution of (2.1), (2.2),(2.3)
defined on V × [0,∞).

We also have:

Theorem 2.3.4. Under the assumption (2.24) there exists a non negative weak solution
{ui}∞

i=1 of (2.1), (2.2),(2.3) defined on V × [0,∞) that satisfies (2.25).

We postpone the proof of Theorem 2.3.4 to Appendix C at the end of the chapter.
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2.3.2 Existence of classical solutions and phase transitions

As we observed in the introduction of this chapter, in the absence of monomer injection,
it is natural to expect that the total mass in (2.9) should remain constant in time.
Indeed, this has been proved for systems related to (2.1), (2.2),(2.3) defined in open
subsets of the euclidean space RN when coagulation coefficients ai,j are constant [119]
or sublinear, that is :

0 ≤ ai,j ≤ A(i+ j) for some A > 0 and for i, j ≥ 1 ,

(see [118]).
Moreover, for choices of coagulation coefficients like (2.24) and under the additional
hypothesis (H1) it has been proved in [118], that mass conservation holds only until
some finite time.
In addition, when ai,j

∼= ij it is well known that a sol-gel phase transition occurs
at some finite t = tg. Indeed, the total mass is preserved only until time tg and it
decreases in time for t > tg (see [80]). The mechanism leading to the formation of the
gel is triggered by a high rate of production of large clusters involving a transfer of
a portion of the total mass of system to larger and larger aggregates. Summarizing,
according to classical theory of gelation, in absence of monomers injection a sol-gel
phase transition can be considered as associated with the breakdown in finite time of
mass conservation and has the following features:

• the total mass decreases for t > tg, where tg is the gelation time

• moreover, the second moment of the solution blows up at finite time t = tg .

In the case we are dealing with, we expect that the total mass will increase in time due
to the presence of source term f(x). More precisely, we expect to have the following
relation :

M1(t) = M1(0) + t
∑

xm∈V

f(xm) for t > 0 . (2.60)

We then say that a sol-gel transition for our system (2.1)-(2.3) occurs if equation
(2.60) fails to hold in a finite time. In Theorem 2.3.5 below, we show that, under the
choice of coefficients (2.24) and the assumption that diffusion coefficients are basically
independent on i, equation (2.60) is true until a finite time t∗. In addition, if the initial
mass is sufficiently large, we will show that we can find a time t∗ and a time T such
that the total mass decreases under its initial value in the interval [t∗, T ] that is:

M1(t) < M1(0) for t∗ ≤ t ≤ T .
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This is the content of Theorem 2.3.8. Hence, t∗ represents an upper bound for the
gelation time tg.
We next proceed to state in detail the result just sketched. To begin with, we have:

Theorem 2.3.5. Suppose that:

• there exists an integer n and d > 0 such that di = d for i ≥ n

• ai,j ≤ Āij for i, j ≥ 1, Ā > 0

• ∥∑∞
i=1 i

2Ui(·)∥∞ ≤ const.

Then, the weak solution {ui}∞
i=1 of (2.1),(2.2), (2.3) achieved in Theorem 2.3.4 satisfies:

M1(t) = M1(0) + t
∑

xm∈V

f(xm) for all t ∈ [0, t∗) (2.61)

where

t∗ =
arctan((

√
ĀM2(0)√∑

xm∈V
f(xm)

)−1)
√
Ā
∑

xm∈V f(xm)
, (2.62)

with M2(0) = ∑
xm∈V

∑∞
i=1 i

2Ui(xm).

We next derive a result concerning the existence of local (in time) classical solutions.
More precisely, there holds:

Theorem 2.3.6. Suppose that:

• there exists an integer n and d > 0 such that di = d for i ≥ n

• ai,j = ij for i, j ≥ 1,

• ∥∑∞
i=1 i

2Ui(·)∥∞ ≤ const.

then, the weak solution {ui}∞
i=1 of (2.1),(2.2), (2.3) obtained in Theorem 2.3.4 is a

classical solution of (2.1)-(2.3) for any 0 ≤ t < t∗, where t∗ is given by

t∗ =
arctan(( M2(0)√∑

xm∈V
f(xm)

)−1)
√∑

xm∈V f(xm)
. (2.63)
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Proof of theorem 2.3.5. Let {uN
i }2N

i=1 be the solution of the approximating system (SN )
definited by (2.18), (2.19), (2.20). We now argue as in Lemma 2.3 of [118]. On setting
in (2.21) gi = i2 for i = 1, · · · , 2N we obtain:

2N∑
i=1

i2
∂uN

i (xm, t)
∂t

+
2N∑
i=1

i2di∆Gu
N
1 (xm, t) =

∑
k≤i,j≤N

ijaiju
N
i (xm, t)uN

j (xm, t) + f(xm) .

(2.64)
Summing up over all xm ∈ V , it follows by (2.16):

∑
xm∈V

2N∑
i=1

i2
∂uN

i (xm, t)
∂t

≤ Ā
∑

xm∈V

(
2N∑
i=1

i2uN
i (xm, t))2 +

∑
xm∈V

f(xm)

≤ Ā

 ∑
xm∈V

2N∑
i=1

i2uN
i (xm, t)

2

+
∑

xm∈V

f(xm)
(2.65)

and

∂

∂t

 ∑
xm∈V

2N∑
i=1

i2uN
i (xm, t)

 ≤ Ā

 ∑
xm∈V

2N∑
i=1

i2uN
i (xm, t)

2

+
∑

xm∈V

f(xm) . (2.66)

Setting ρN(t) = ∑
xm∈V

∑2N
i=1 i

2uN
i (xm, t), (2.66) becomes:

∂ρN

∂t
≤ Ā(ρN)2 +

∑
xm∈V

f(xm) (2.67)

Let z : [0, t∗) → R be the maximal solution of the o.d.e.

∂z

∂t
= Āz2 +

∑
xm∈V

f(xm) (2.68)

with initial data z(0) = ∑
xm∈V

∑∞
i=1 i

2Ui(xm) ≡ M2(0). As ρN(0) ≤ z(0), we have
that ρN(t) ≤ z(t) in [0, t∗). We observe that z(0) is finite by hypothesis. In fact,∑

xm∈V

∑∞
i=1 i

2Ui(xm) ≤ h∥∑∞
i=1 i

2Ui(·)∥∞ < ∞.
We now introduce the following change of variables:

√
Ā√∑

xm∈V f(xm)
z = v

√
Ā√∑

xm∈V f(xm)
z′ = v′ .

(2.69)
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Hence (2.68) becomes:
v′√

Ā
∑

xm∈V f(xm)(v2 + 1)
= 1

which upon integration gives:

1√
Ā
∑

xm∈V f(xm)

∫ v(t)

v(0)

dv

(v2 + 1) = t .

Thus,

v(t) = tan
√Ā ∑

xm∈V

f(xm)t+ arctan(v(0))


and

z(t) =

√∑
xm∈V f(xm)

√
Ā

tan
√Ā ∑

xm∈V

f(xm)t+ arctan(
√
Ā√∑

xm∈V f(xm)
M2(0))

 .

(2.70)
Hence, for t < t∗, ∑

xm∈V

2N∑
i=1

i2uN
i (xm, t) ≤ z(t) . (2.71)

We observe that:

tan
√Ā ∑

xm∈V

f(xm)t+ arctan(
√
Ā√∑

xm∈V f(xm)
M2(0))

 < ∞

if and only if

√
Ā
∑

xm∈V

f(xm)t+ arctan(
√
Ā√∑

xm∈V f(xm)
M2(0)) < π

2 ,

from which it follows that:

tan
√Ā ∑

xm∈V

f(xm)t+ arctan(
√
Ā√∑

xm∈V f(xm)
M2(0))

 < ∞

if and only if

t <

arctan((
√

Ā√∑
xm∈V

f(xm)
M2(0))−1)

√
Ā
∑

xm∈V f(xm)
.
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Hence,

t∗ =
arctan((

√
ĀM2(0)√∑

xm∈V
f(xm)

)−1)
√
Ā
∑

xm∈V f(xm)
. (2.72)

For each t̄ < t∗ it holds:

2N∑
i=1

i2uN
i (xm, t) ≤

∑
xm∈V

2N∑
i=1

i2uN
i (xm, t) ≤ C(t̄) for (xm, t) ∈ V × [0, t̄]

where

C(t̄) = sup
t∈[0,t̄]

{

√∑
xm∈V f(xm)

√
Ā

tan
√Ā ∑

xm∈V

f(xm)t+ arctan(
√
Ā√∑

xm∈V f(xm)
M2(0))

} ;

(2.73)
thus, it follows that :

sup
t∈[0,t̄]

∥
2N∑
i=1

i2uN
i (·, t)∥∞ ≤ C(t̄) for all t̄ ∈ [0, t∗) .

Let {Mℓ}∞
ℓ=1 be the sequence introduced in the proof of Theorem 2.3.1. For each fixed

Mℓ, let {uMℓ
i }2Mℓ

i=1 be the solution of the approximating system (SMℓ) definited by (2.18),
(2.19), (2.20). Hence, for each t̄ < t∗:

2Mℓ∑
i=k

iuMℓ
i (xm, t) ≤

∑2Mℓ
i=k i

2uMℓ
i (xm, t)
k

≤
supt∈[0,t̄] ∥∑2Mℓ

i=1 i
2uMℓ

i (·, t)∥∞

k

≤ C(t̄)
k

for (xm, t) ∈ V × [0, t̄].
(2.74)

In particular, for any ϵ > 0, for any t ∈ [0, t̄], t̄ < t∗, there exists a large enough k, such
that

2Mℓ∑
i=k

iuMℓ
i (xm, t) ≤ C(t̄)

k
< ϵ . (2.75)

As proved in Theorem 2.3.1, for any xm ∈ V , the series ∑∞
j=1 juj(xm, t) converges for

any t ∈ [0, t̄]. Hence, for any ϵ > 0, for any t ∈ [0, t̄], t̄ < t∗ there exists k̄ϵ,t such that
∀k ≥ k̄

|
∞∑

j=1
juj(xm, t) −

k∑
j=1

juj(xm, t)| = |
∞∑

j=k+1
juj(xm, t)| < ϵ . (2.76)
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Hence, setting k0 = max{k, k̄+1} by (2.38), we have that for xm ∈ V , for each t ∈ [0, t̄],
t̄ < t∗ and for any ϵ > 0, there exists ℓϵ > k0 such that ∀ℓ > ℓϵ:

|
∞∑

i=1
iui(xm, t) −

2Mℓ∑
i=1

iuMℓ
i (xm, t)|

≤
k0−1∑
i=1

|ui(xm, t) − uMℓ
i (xm, t)| + |

∞∑
i=k0

iui(xm, t)| + |
2Mℓ∑
i=k0

iuMℓ
i (xm, t)| < ϵ .

(2.77)

In order to show (2.61), we observe that by (2.22) it follows for any t ∈ [0, t̄], t̄ < t∗ :

∑
xm∈V

2Mℓ∑
i=1

iuN
i (xm, t) =

∑
xm∈V

2Mℓ∑
i=1

iUi(xm) + t
∑

xm∈V

f(xm) (2.78)

and, as the number of the vertex of the graph V is finite, by (2.77), we obtain that for
any t ∈ [0, t̄], t̄ < t∗ :

∑
xm∈V

∞∑
i=1

iui(xm, t) =
∑

xm∈V

lim
ℓ→∞

2Mℓ∑
i=1

iuMℓ
i (xm, t) =

∑
xm∈V

lim
ℓ→∞

2Mℓ∑
i=1

iUi(xm) + t
∑

xm∈V

f(xm)

=
∑

xm∈V

∞∑
i=1

iUi(xm) + t
∑

xm∈V

f(xm) = M1(0) + t
∑

xm∈V

f(xm) .

(2.79)

Proof of theorem 2.3.6. Theorem 2.3.4 and theorem 2.3.5 holds under the more restric-
tive hyphothesis on coagulation coefficients ai,j = ij for i, j ≥ 1.
Hence, if we set Ā = 1, from above theorem we obtain that:

sup
t∈[0,t̄]

∥
2N∑
i=1

i2uN
i (·, t)∥∞ ≤ C(t̄) for all t̄ ∈ [0, t∗) .

where C(t̄) is like in (2.73) and

t∗ =
arctan(( M2(0)√∑

xm∈V
f(xm)

)−1)
√∑

xm∈V f(xm)
.



2.3 Main results 69

In addition, (2.74), (2.77)and (2.79) holds.
Putting toghether (2.74) and (2.77) we have that for any k ≥ 1, for any t ∈ [0, t̄]:

∞∑
i=k

iui(xm, t) = lim
ℓ→∞

2Mℓ∑
i=k

iuMℓ
i (xm, t) ≤ C(t̄)

k
; (2.80)

thus:
sup

t∈[0,t̄]
|

∞∑
i=k

iui(xm, t)| ≤ C(t̄)
k

(2.81)

In particular, for any ϵ > 0 there exists k∗ ∈ N large enough such that:

sup
t∈[0,t̄]

|
∞∑

i=k∗
iui(xm, t)| ≤ C(t̄)

k∗ < ϵ . (2.82)

Therefore, for any ϵ > 0, there exists k∗ such that ∀k ≥ k∗

|
∞∑

j=1
juj(xm, t) −

k∑
j=1

juj(xm, t)| = |
∞∑

j=k+1
juj(xm, t)|

≤ sup
t∈[0,t̄]

|
∞∑

i=k∗
iui(xm, t)| ≤ C(t̄)

k∗ < ϵ ∀t ∈ [0, t̄] .
(2.83)

Hence, the series ∑∞
j=1 juj(xm, t) converges uniformly in [0, t̄], ∀t̄ < t∗.

In addition, the functions juj(xm, t) ∈ C[0, t̄] for all j ∈ N; hence the sum S(t) =∑∞
j=1 juj(xm, t) is continuous in [0, t̄], ∀t̄ < t∗.

As the coagulation coefficients are of the form ai,j = ij, for i, j ≥ 1, we have that
for any fixed i ≥ 1 the terms ui(xm, t)

∑∞
j=1 ai,juj(xm, t) = ui(xm, t)i

∑∞
j=1 juj(xm, t) in

equation (2.17) are continuous in [0, t̄], ∀t̄ < t∗.
Therefore, the global weak solution (ui(x, t))i≥1 of (2.1),(2.2),(2.3) achieved in Theorem
2.3.4 is a classical solution (in sense of definition 2.2) of (2.1)-(2.3) for any t < t∗,
where t∗ is given by (2.63).

We next show:

Lemma 2.3.7. Suppose (2.24) holds and

0 <
∑

xm∈V

M1(xm, 0) < +∞ .

Set χ = 4|V |
A
∑

xm∈V
M1(xm,0) , where |V | is the number of vertices of G. Then, if T > 2χ

there exists 0 ≤ δ = δ(T ) ≤ χ such that the weak solution of (2.1), (2.2), (2.3) obtained
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in Theorem 2.3.4 satisfies

∑
xm∈V

M1(xm, t) ≤
∑

xm∈V

M1(xm, 0)
(

χ

χ+ t− δ
+ T

∑
xm∈V f(xm)∑

xm∈V M1(xm, 0)

) 1
2

for t ∈ [0, T ] .

(2.84)

Lemma 2.3.7 is instrumental in deriving our main result on the existence of a phase
transition for the problem under consideration.

Theorem 2.3.8. As in previous Lemma 2.3.7, suppose (2.24) holds and set χ =
4|V |

A
∑

xm∈V
M1(xm,0) . If

 |V |
A

∑
xm∈V

f(xm)
 1

2

<
∑

xm∈V

M1(xm, 0) < ∞ , (2.85)

there exists 0 ≤ δ ≤ χ so that (2.84) becomes

∑
xm∈V

M1(xm, t) ≤
∑

xm∈V

M1(xm, 0)
(

χ

χ+ t− δ
+ 1

2

) 1
2

for t ∈ [0,
∑

xm∈V M1(xm, 0)
2∑xm∈V f(xm) ] .

(2.86)
In addition, there exists t∗ ∈ (χ, 2χ] such that

∑
xm∈V

M1(xm, t) <
∑

xm∈V

M1(xm, 0) for t∗ ≤ t ≤
∑

xm∈V M1(xm, 0)
2∑xm∈V f(xm) . (2.87)

Hence, the solution exhibits a sol-gel transition at a time tg ≤ t∗.

Proof of Lemma 2.3.7. For each fixed T > 0, let {uN
i }2N

i=1 be the solution of the
approximating system (SN). Then, we consider equation (2.21) in which we take
gi = i

1
2 , for i = 1, .., N and gi = 0 for i > N .

Using the following inequality

i
1
2 + j

1
2 − (i+ j) 1

2 ≥ 1
2(min{i, j}) 1

2 ,

integrating in time and summing up over all xm ∈ V we have:

∫ t

s

∑
xm∈V

N∑
i=1

i
1
2
∂uN

i (xm, τ)
∂τ

dτ +
∫ t

s

∑
xm∈V

d1∆Gu
N
1 (xm, τ)dτ ≤

∫ t

s

∑
xm∈V

−1
4

N∑
i=1

N∑
j=1

(min{i, j}) 1
2aiju

N
i (xm, τ)uN

j (xm, τ)dτ + (t− s)
∑

xm∈V

f(xm)
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where 0 ≤ s < t . Hence:

∑
xm∈V

N∑
i=1

i
1
2uN

i (xm, t) −
∑

xm∈V

N∑
i=1

i
1
2uN

i (xm, s) + d1

∫ t

s

∑
xm∈V

∆Gu
N
1 (xm, τ) ≤

∫ t

s

∑
xm∈V

−1
4

N∑
i=1

N∑
j=1

(min{i, j}) 1
2aiju

N
i (xm, τ)uN

j (xm, τ)dτ + (t− s)
∑

xm∈V

f(xm) .

Using (2.16) and (2.24) we get:

∫ t

s

∑
xm∈V

A

4

N∑
i=1

N∑
j=1

(min{i, j}) 1
2 ijuN

i (xm, τ)uN
j (xm, τ)dτ ≤

∑
xm∈V

N∑
i=1

i
1
2uN

i (xm, s) + (t− s)
∑

xm∈V

f(xm) (2.88)

Therefore, for any k such that 1 < k < N it follows:

k
1
2

∫ t

s

∑
xm∈V

N∑
i=k

N∑
j=k

ijuN
i (xm, τ)uN

j (xm, τ)dτ ≤ 4
A

∑
xm∈V

N∑
i=1

i
1
2uN

i (xm, s)+
4
A

(t−s)
∑

xm∈V

f(xm) .

(2.89)
If we consider the functions h = h(x) : V −→ Rh such that h(xm) = 1 ∀xm ∈ V and
g = g(·, t) = (∑N

i=1 iu
N
i (x1, t), . . . ,

∑N
i=1 iu

N
i (xh, t)) By the Cauchy Schwarz inequality

we get:  ∑
xm∈V

h(xm)
N∑

i=1
iuN

i (xm, t)
2

≤ |g(·, t)|2 · |h(·)|2 =

∑
xm∈V

(
N∑

i=1
iuN

i (xm, t))2 ∑
xm∈V

1 =
∑

xm∈V

(
N∑

i=1
iuN

i (xm, t)
)2

|V |

where |V | is the number of vertex of the graph G. Setting k = 1 in (2.89) we have:

1
|V |

∫ t

s

 ∑
xm∈V

N∑
i=1

iuN
i (xm, τ)dx

2

dτ ≤
∫ t

s

∑
xm∈V

(
N∑

i=1
iuN

i (xm, τ)
)2

dτ ≤

4
A

∑
xm∈V

N∑
i=1

iuN
i (xm, s)dx+ 4

A
(t− s)

∑
xm∈V

f(xm) ≤

4
A

∑
xm∈V

N∑
i=1

iuN
i (xm, s)dx+ 4

A
T
∑

xm∈V

f(xm)
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with T > (t− s). Setting

EN(s) =
∑

xm∈V

N∑
i=1

iuN
i (xm, s)

and χ = 4|V |
AE(0) , where E(0) = ∑

xm∈V M1(xm, 0) = ∑
xm∈V

∑∞
i=1 iUi(xm) we have:

∫ t

s
E2

N(τ)dτ ≤ χE(0)EN(s) + χE(0)T
∑

xm∈V

f(xm)

and letting t → T , it follows:
∫ T

s
E2

N(τ)dτ ≤ χE(0)EN(s) + χE(0)T
∑

xm∈V

f(xm) . (2.90)

Setting U(s) =
∫ T

s E2
N(τ)dτ and c = χE(0), we have U ′(s) = −E2

N(s) and EN(s) =
(−U ′(s)) 1

2 . It follows that

U(s) ≤ c(−U ′(s)) 1
2 + cT

∑
xm∈V

f(xm) . (2.91)

Let V (s) = U(s) − cT
∑

xm∈V f(xm), then V ′(s) = U ′(s). We have that V (s) is
decreasing, due to the fact that U(s) is decreasing. Hence, V (s) ≤ V (0), for all
0 < s ≤ T . Consider the case V (0) > 0. This implies that V (s) > 0 in a maximal
interval [0, b]. If b ∈ [T,+∞], we restrict to [0, T ].
Going back to equation (2.91), we have that:

V (s) ≤ c(−V ′(s)) 1
2 (2.92)

and
V (s)2 ≤ c2(−V ′(s)) (2.93)

Integrating between 0 and z such that 0 < z ≤ T we have:

z

c2 ≤
∫ V (z)

V (0)

−V ′(τ1)
V 2(τ1)

dτ1 . (2.94)

Hence:
z

c2 ≤
[

1
V (τ1)

]V (z)

V (0)
(2.95)
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and
z

c2 + 1
V (0) ≤ 1

V (z) . (2.96)

By (2.91), we have that V (0) ≤ cEN(0) ≤ cE(0). Thus, by (2.96), we have:

1
V (z) ≥ z

c2 + 1
V (0) ≥ z

c2 + 1
cE(0) = E(0)z + c

c2E(0)

and
V (z) ≤ c2E(0)

E(0)z + c
. (2.97)

If V (z) > 0 in a maximal interval [0, b], b < T , it follows that V (z) ≤ 0 for b < z ≤ T

and (2.97) is still true, due to the fact the right-hand of the inequality is positive for
all z ≥ 0. If V (0) ≤ 0, V (z) ≤ 0 for all 0 ≤ z ≤ T , due to the fact that the function V
is decreasing. Thus, also in this case (2.97) holds for all 0 ≤ z ≤ T . In other terms, we
have that for any 0 ≤ z ≤ T :

∫ T

z
E2(τ1)dτ1 − cT

∑
xm∈V

f(xm) ≤ c2E(0)
E(0)z + c

. (2.98)

By the mean value theorem, for τ ∈ [z, z + λ]:

E2
N(τ)λ =

∫ z+λ

z
E2

N(τ1)dτ1 ≤
∫ T

z
E2

N(τ1)dτ1

≤ χ2E(0)2

χ+ z
+ χE(0)T

∑
xm∈V

f(xm) .
(2.99)

The first inequality in requires that z + λ ≤ T . We restrict to 0 ≤ z < T
2 . If

χ <
T

2 (2.100)

we have that z + χ < T and we can set λ = χ.
Inequalities (2.100) implies that T > 2χ = 8 |V |

AE(0) and this choice is always possible, as
it depends by fixed constants and T is an arbitrary large fixed finited time.
Hence, (2.99) becomes :

E2
N(τ) = 1

χ

∫ z+χ

z
E2

N(τ1)dτ1 ≤ 1
χ

∫ T

z
E2

N(τ1)dτ1

≤ χE(0)2

χ+ z
+ E(0)T

∑
xm∈V

f(xm)
(2.101)
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for τ ∈ [z, z + χ] .
As τ = z + δ, for a 0 < δ ≤ χ, we have that:

E2
N(τ) ≤ E(0)2

(
χ

χ+ (τ − δ) + T
∑

xm∈V f(xm)
E(0)

)
.

It follows that for 0 < τ ≤ T , for 0 < δ ≤ χ, δ < τ :

EN(τ) ≤ E(0)
(

χ

χ+ (τ − δ) + T
∑

xm∈V f(xm)
E(0)

) 1
2

(2.102)

Let {Mℓ}∞
ℓ=1 be the sequence introduced in the proof of Theorem 2.3.1. For each fixed

Mℓ, let {uMℓ
i }2Mℓ

i=1 be the solution of the approximating system (SMℓ) definited by (2.18),
(2.19), (2.20). For each Mℓ, for 0 < τ ≤ T it holds:

EMℓ
(τ) ≤ E(0)

(
χ

χ+ (τ − δ) + T
∑

xm∈V f(xm)
E(0)

) 1
2

(2.103)

where EMℓ
(τ) = ∑

xm∈V

∑Mℓ
i=1 iu

Mℓ
i (xm, τ), χ = 4|V |

A
∑

xm∈V

∑∞
i=1 iUi(xm) , 0 < δ < χ, δ < τ .

In addition, let P ∈ N. For 1 ≤ P < Mℓ and for each τ ∈ [0, T ] we have:

∑
xm∈V

P∑
i=1

iuMℓ
i (xm, τ) ≤

∑
xm∈V

Mℓ∑
i=1

iuMℓ
i (xm, τ)

and by (2.38) for each τ ∈ [0, T ] it holds:

∑
xm∈V

P∑
i=1

iui(xm, τ) = lim
ℓ→∞

∑
xm∈V

P∑
i=1

iuMℓ
i (xm, τ) ≤ lim sup

Mℓ→∞

∑
xm∈V

Mℓ∑
i=1

iuMℓ
i (xm, τ) .

Passing to the limit for P → ∞ we get that for each τ ∈ [0, T ]:

∑
xm∈V

∞∑
i=1

iui(xm, τ) = lim
P →∞

∑
xm∈V

P∑
i=1

iui(xm, τ) ≤ lim sup
Mℓ→∞

∑
xm∈V

Mℓ∑
i=1

iuMℓ
i (xm, τ) .

Therefore, passing to the limit for ℓ → ∞ in (2.103) we get for 0 < τ ≤ T :

∑
xm∈V

M1(xm, τ) ≤
∑

xm∈V

M1(xm, 0)
(

χ

χ+ (τ − δ) + T
∑

xm∈V f(xm)∑
xm∈V M1(xm, 0)

) 1
2

(2.104)

where 0 < δ < χ, δ < τ , T > 2χ.



2.3 Main results 75

Proof of Theorem 2.3.8. In the previous lemma we have shown that for 0 < τ ≤ T :

∑
xm∈V

M1(xm, τ) ≤
∑

xm∈V

M1(xm, 0)
(

χ

χ+ (τ − δ) + T
∑

xm∈V f(xm)∑
xm∈V M1(xm, 0)

) 1
2

(2.105)

where 0 < δ < χ, δ < τ , T > 2χ. In order to simplify the notation we set E(0) =∑
xm∈V M1(xm, 0). Consider now the case when the quantity within braces in the right

of (2.105) is less than one. This happens when:

E(0)χ+ T
∑

xm∈V

f(xm)χ+ T
∑

xm∈V

f(xm)(τ − δ) < E(0)χ+ E(0)(τ − δ)

that implies for E(0) − T
∑

xm∈V f(xm) > 0, (i.e. for T < E(0)∑
xm∈V

f(xm) :

T
∑

xm∈V f(xm)χ
E(0) − T

∑
xm∈V f(xm) < (τ − δ) . (2.106)

We note that if E(0) − T
∑

xm∈V f(xm) < 0, the time (τ − δ) is negative and this is
impossible because by construction 0 < z = τ − δ (see Lemma 2.3.7).
Moreover, by construction we must have:

T
∑

xm∈V f(xm)χ
E(0) − T

∑
xm∈V f(xm) + δ < τ ≤ T . (2.107)

Hence, we should verify that:

T
∑

xm∈V f(xm)χ
E(0) − T

∑
xm∈V f(xm) + δ < T (2.108)

where 0 < δ < χ that is equal to verify that:

T
∑

xm∈V f(xm)χ
E(0) − T

∑
xm∈V f(xm) + χ < T . (2.109)

It follows that:
χE(0)

E(0) − T
∑

xm∈V f(xm) − T < 0

that implies:
χE(0) − TE(0) + T 2∑

xm∈V f(xm)
E(0) − T

∑
xm∈V f(xm) < 0 .
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Assuming that E(0) − T
∑

xm∈V f(xm) > 0, the inequality above holds for

T ∈ (
E(0) −

√
E(0)2 − 16

A
|V |∑xm∈V f(xm)

2∑xm∈V f(xm) ,
E(0) +

√
E(0)2 − 16

A
|V |∑xm∈V f(xm)

2∑xm∈V f(xm) ) ,

where

E(0) > 4
√√√√ 1
A

|V |
∑

xm∈V

f(xm) . (2.110)

If we choose T as the midpoint of the above interval, we have T = E(0)
2
∑

xm∈V
f(xm) .

We verify that χ < T
2 , that achieve E(0) > 4

√
1
A

|V |∑xm∈V f(xm), as in in (2.110).
Hence, (2.105) becomes:

∑
xm∈V

M1(xm, τ) ≤
∑

xm∈V

M1(xm, 0)
(

χ

χ+ τ − δ
+ 1

2

) 1
2

. (2.111)

Setting t∗ = T
∑

xm∈V
f(xm)χ

E(0)−T
∑

xm∈V
f(xm) + δ, where 0 < δ ≤ χ, our choice of T implies that

χ < t∗ ≤ 2χ.

If M2(0) = ∑
xm∈V

∑∞
i=1 i

2Ui(xm), we want to compare now

t∗ =
arctan

 √
ĀM2(0)√∑

xm∈V
f(xm)

−1
√

Ā
∑

xm∈V
f(xm)

, with t∗ ∈ (χ, 2χ].

We will show that t∗ < χ. We recall that χ = 4 |V |
AM1(0) whereM1(0) = ∑

xm∈V

∑∞
i=1 iUi(xm).

We claim that:

arctan(

√∑
xm∈V f(xm)

√
ĀM2(0)

) < 4
√
Ā
∑

xm∈V

f(xm) |V |
AM1(0)

To this end, we observe that:√∑
xm∈V f(xm)

√
ĀM2(0)

< 4
√
Ā
∑

xm∈V

f(xm) |V |
AM1(0) .

This follows from:
AM1(0)
4ĀM2(0)

< |V |

due to the fact that M1(0) ≤ M2(0) and A ≤ Ā implies AM1(0) ≤ ĀM1(0) ≤ ĀM2(0),
so that the left-hand side of the inequality is less that one and the number of the nodes
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of the graph is a positive integer. Hence,

arctan(

√∑
xm∈V f(xm)

√
ĀM2(0)

) < arctan(4
√
Ā
∑

xm∈V

f(xm) |V |
AM1(0))

and

arctan

√∑

xm∈V f(xm)
√
ĀM2(0)

− 4
√
Ā
∑

xm∈V

f(xm) |V |
AM1(0)

< arctan
4
√
Ā
∑

xm∈V

f(xm) |V |
AM1(0)

− 4
√
Ā
∑

xm∈V

f(xm) |V |
AM1(0) < 0

(2.112)

In the following theorem we will prove the blow up of the second moment of the
solution of system (2.1)-(2.3) in a finite time.

Theorem 2.3.9. Let

M2(t) =
∑

xm∈V

∞∑
i=1

i2ui(xm, t) for t ≥ 0 .

be the second moment of the solution of (2.1)-(2.3) obtained in Theorem (2.3.4).
Suppose that M2(0) < ∞ and (2.15) is satisfied. Then M2(t) blows up at a finite time
tg such that

tg ≤ t̂ =

√√√√ h∑
xm∈V f(xm) arctan


√
h
∑

xm∈V f(xm)
M2(0)

 .

In addition, t̂ > t∗, where t∗ is given by (2.63).

Proof. We argue as in [101] and we introduce a new function:

g(xm, z, t) =
∞∑

j=1
exp{−jz}uj(xm, t) for xm ∈ V, z > 0 , t > 0 . (2.113)
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Multiplying the j− th equation of (2.1), (2.2) by the positive function exp{−jz}, z > 0
and summing up over all the equations we get:

∂g(xm, z, t)
∂t

=f(xm) exp{−z} + (∂g(xm, z, t)
∂z

)
 ∞∑

j=1
juj(xm, t)


+ 1

2(∂g(xm, z, t)
∂z

)2 −
∞∑

j=1
dj∆Guj(xm, t) exp{−jz} .

(2.114)

Deriving (2.114) two times in z and calculating in z = 0 we get that

∂

∂t

 ∞∑
j=1

j2uj(xm, t)
 = f(xm) + (

∞∑
j=1

j2uj(xm, t))2 −
∞∑

j=1
j2dj∆Guj(xm, t) (2.115)

Summing up over all xm ∈ V , we get by (2.16) that

∂

∂t

 ∑
xm∈V

∞∑
j=1

j2uj(xm, t)
 =

∑
xm∈V

f(xm) +
∑

xm∈V

(
∞∑

j=1
j2uj(xm, t))2 . (2.116)

Writing (2.116) in term of the second moment of the solution at a vertex of the graph ,
it follows that:

∂

∂t

 ∑
xm∈V

M2(xm, t)
 =

∑
xm∈V

f(xm) +
∑

xm∈V

M2(xm, t)2

≥ 1
h

(
∑

xm∈V

M2(xm, t))2 +
∑

xm∈V

f(xm)
(2.117)

by Cauchy-Schwarz inequality. In fact, we have:

∑
xm∈V

ymM2(xm, t) ≤ (
∑

xm∈V

(M2(xm, t))2) 1
2 (
∑

xm∈V

y2
m) 1

2

where h = |V | and ym a positive function on V ; setting ym = 1, m = 1, . . . , h we get:

∑
xm∈V

M2(xm, t)2 ≥ 1
h

(
∑

xm∈V

M2(xm, t))2

Hence, from (2.117) it holds:

∂

∂t
M2(t) ≥ 1

h
M2(t)2 +

∑
xm∈V

f(xm) (2.118)
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Let ω : [0, t̂) → R be the maximal solution of the o.d.e.

∂ω

∂t
= ω2

h
+

∑
xm∈V

f(xm)

with initial data ω(0) = ∑
xm∈V

∑∞
j=1 j

2Uj(xm) ≡ M2(0). Then, M2(t) ≥ ω(t) in [0, t̂),
where

ω(t) =
√
h
∑

xm∈V

f(xm) tan
√∑xm∈V f(xm)

h
t+ arctan( M2(0)√

h
∑

xm∈V f(xm)
)
 .

At t̂ =
√

h∑
xm∈V

f(xm) arctan
√h

∑
xm∈V

f(xm)

M2(0)

, the function ω blows up. Hence, tg ≤ t̂.

Let us show that t∗ < t̂, that is:

arctan((

√∑
xm∈V

f(xm)

M2(0) )√∑
xm∈V f(xm)

<

√√√√ h∑
xm∈V f(xm) arctan


√
h
∑

xm∈V f(xm)
M2(0)

 .

We have that: √∑
xm∈V f(xm)
M2(0) <

√
h
∑

xm∈V f(xm)
M2(0)

by the fact 1 <
√
h, as the number of nodes of the graph is a positive integer and the

graph has at least two node. Thus this implies:

arctan((

√∑
xm∈V

f(xm)

M2(0) )√∑
xm∈V f(xm)

<

√
1∑

xm∈V f(xm) arctan

√
h
∑

xm∈V f(xm)
M2(0)


<

√√√√ h∑
xm∈V f(xm) arctan


√
h
∑

xm∈V f(xm)
M2(0)

 .

(2.119)

2.4 Discussion

In this work, we make use of Smoluchowski’s theory to address a number of issues
motivated by the study of neurodegenerative diseases. Originally, Smoluchowski’s
equations were introduced to study the coagulation of colloids [98] and were then used



80 A polymerization model for the formation of NFTs in Alzheimer’s Disease

to deal with different physical problems in polymer science [99], [51], aerosol formation
[123] and stars and planets formation [40] among others. To our knowledge, models
similar to (2.1),(2.2), (2.3), defined in subsets of Rn, have been only recently used in
[84] and then in [1],[36], [37] for the description of the neuro-biological problem of
aggregation of beta amyloid in AD brain. As far as we know, the representation of
the process of polymerization of abnormally phosphorylated tau protein by means of
Smoluchowski equation on finite weighted graph has been first introduced in this thesis.

In this chapter, we have dealt with conditions that assure the occurrence of a sol-gel
phase transition for the coagulation-diffusion model (2.1)-(2.3). This kind of problems
arises typically in chemical engineering where the onset of a gel in a reactor in which
oligomers of different sizes are polymerizing is a common (and often unwanted) feature
in technical processes. In this work, we study such problems in a different context,
consisting in the formation of neurofibrillary tangles in AD.
More precisely, we have shown that under the choice of coagulation coefficients (2.15)
the solution of system (2.1)-(2.3) exhibits a sol gel phase transition at a finite time tg
s. t. t∗ < tg < t∗, where t∗ and t∗ are given in Theorem 2.3.6 ,2.3.8. Interestingly, such
transition is associated with a loss of regularity of the solution.

We next discuss on the implications of our result. The part of the total mass of the
system that seems to be lost after the time tg is associated with the formation of a gel,
which has the property of removing polymers from the medium and does not allow
them to return to the sol fraction. Thus, clusters of hyperphosphorylated tau protein
do not contribute to the mass in (2.61) for times t ≥ tg, by analogy with classical
gelation process, as these are expected to be transferred to larger and larger aggregates
giving rise to the NFTs, whose mass would coincide with that lost, on the whole, by
the system. The association between the onset of the gel and the formation of tangles
allow us to advance the conjecture that clusters of hyperphosphorylated tau protein
aggregate in NFTs in order to subtract highly toxic oligomers from damaging neurons.
In that case, their role may be beneficial for brain cells. This view is supported by
several studies (see for instance [15], [76]) according to which tangles need not be
harmful for neurons, as they have been found also in healthy-aged brains, and may
represent an immune response against oxidative stress and against the damage caused
by oligomers, which are deemed to be the primary noxious tau species [15]. Such
proposal needs, however, of additional evidence to be either proved or disproved. In
the light of these considerations the estimate t∗ < tg < t∗ for the gelation time can be
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interpreted as an estimate for the time of onset of NFTs. Thus, our conjectures would
imply that smaller tg is, i.e. the sooner tangles form, the more efficiently neurons can
be preserved from injury due to disease agents.

At the mathematical level, there remain several open problems related to our model.
An interesting question consists in establishing in which brain regions (represented
as vertices in our graph) the formation of NTFs occurs and which mass of tangles
is produced in each region. Indeed, our result of the occurrence of a sol gel phase
transition, mathematically expressed by a loss of total mass of tau aggregates, does not
allow to describe these aspects, since the total mass is a global property of the system.
Thus, in order to investigate the aforesaid issues, it would be probably necessary to add
a further equation to system (2.1)-(2.3), which describes the mass density produced,
in time and space, in consequence of the formation of neurofibrillary tangles.
Furthermore, in Theorem 2.3.8, we have considered the weak solution of (2.1)-(2.3)
obtained in Theorem (2.3.4) in the interval [0,

∑
xm∈V

M1(xm,0)
2
∑

xm∈V
f(xm) ], and we proved the

occurence of a sol-gel phase transition at t∗ ≤ tg <

∑
xm∈V

M1(xm,0)
2
∑

xm∈V
f(xm) . However, we have

seen in Theorem (2.3.4) that such solution of (2.1)-(2.3) exists globally in time. Thus,
other sol-gel transitions may possibly take place at t′

g >

∑
xm∈V

M1(xm,0)
2
∑

xm∈V
f(xm) . In future work,

we intend to investigate the question of the occurrence of several sol-gel transitions
in the solution of (2.1)-(2.3) jointly with the problem of the evolution of the disease
as a result of tau agglomeration. Indeed, from a biological point of view, it would be
interesting if such transitions could be regarded as a kind of beneficial immune response
mounted up by brain’s cells against the cerebral damage inflicted by AD. However, in
order to analyze this issue, a further study is required in which the model discussed
here shoud be perhaps coupled to another model specifically designed to describe the
progression of the disease in connection with the formation of tau aggregates.
Tangles are measurable in human brain. If such formations would be beneficial for
neurons the optimal situation would be to have a higher number of tangles in a suitable
time scale, in order to sequester a higher quantity of neurodegenerative agents. It
would be very interesting to find a link between the degree of the vertex and the
blowing-up time of the second moment of the solution in that vertex. More precisely,
it would be relevant to ascertain if the rate of connection of the nodes of the network
has any influence in how quickly the sol-gel phase transition takes place.In future
work, we will investigate such issues, which could open new perspectives in the field of
neurodegenerative studies.
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2.5 Appendix C. The proof of Theorem 2.3.4

Proof of Theorem 2.3.4. The proof follows repeating the arguments yielding Theorem
1. We only have to show that for each i ≥ 1 and for each xm ∈ V )

∫ T

0
|

Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|ds → 0 for ℓ → ∞ . (2.120)

We observe preliminary that by (2.24), we have that for each fixed i ≥ 1, for each
xm ∈ V and for each s ∈ [0, T ]

∞∑
j=1

ai,juj(xm, s) ≤ Āi
∞∑

j=1
juj(xm, s) < ∞ .

Thus, ∑∞
j=1 ai,juj(xm, s) converges for any s ∈ [0, T ] and for any xm ∈ V .

We will provide, now, some estimates that will allow us to prove (2.120).
To this aim, denote by {Mℓ}∞

ℓ=1 the sequence introduced in the proof of previous
theorem.
We approximate the full system (2.1), (2.2), by a system (SMℓ) of 2Mℓ equations
definited as in (2.18), (2.19), (2.20).
We set gj = j

1
2 in (2.21) for j = 1, ..,Mℓ, gj = 0 for Mℓ + 1 ≤ j ≤ 2Mℓ.

Using the following inequality

i
1
2 + j

1
2 − (i+ j) 1

2 ≥ 1
2(min{i, j}) 1

2 ,

integrating in time and summing up over all xm ∈ V we have for t ≤ T :

∫ t

0

∑
xm∈V

Mℓ∑
j=1

j
1
2
∂uMℓ

j (xm, s)
∂s

ds+
∫ t

0

∑
xm∈V

Mℓ∑
j=1

j
1
2dj∆Gu

Mℓ
j (xm, s)ds

≤
∫ t

0

∑
xm∈V

−1
4

Mℓ∑
i=1

Mℓ∑
j=1

(min{i, j}) 1
2aiju

Mℓ
i (xm, s)uMℓ

j (xm, s)ds+ t
∑

xm∈V

f(xm)
(2.121)

Hence:

∑
xm∈V

Mℓ∑
j=1

j
1
2uMℓ

j (xm, t) −
∑

xm∈V

Mℓ∑
j=1

j
1
2uMℓ

j (xm, 0) +
∫ t

0

Mℓ∑
j=1

∑
xm∈V

j
1
2 ∆Gu

Mℓ
j (xm, s)ds

≤
∫ t

0

∑
xm∈V

−1
4

Mℓ∑
i=1

Mℓ∑
j=1

(min{i, j}) 1
2aiju

Mℓ
i (xm, s)uMℓ

j (xm, s)ds+ ∥f(·)∥∞hT .

(2.122)
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Using (2.16) and (2.24) we have:

∫ t

0

∑
xm∈V

A

4

Mℓ∑
i=1

Mℓ∑
j=1

(min{i, j}) 1
2 ijuMℓ

i (xm, s)uMℓ
j (xm, s)ds

≤
∑

xm∈V

Mℓ∑
j=1

j
1
2Uj(xm) + ∥f(·)∥∞hT .

(2.123)

Letting t → T , we have that for any k such that 1 < k < Mℓ:

k
1
2

∫ T

0

∑
xm∈V

(
Mℓ∑
j=k

juMℓ
j (xm, s))2ds = k

1
2

∫ T

0

∑
xm∈V

Mℓ∑
i=k

Mℓ∑
j=k

ijuMℓ
i (xm, s)uMℓ

j (xm, s)ds

≤
∫ T

0

∑
xm∈V

Mℓ∑
i=k

Mℓ∑
j=k

(min{i, j}) 1
2 ijuMℓ

i (xm, s)uMℓ
j (xm, s)ds

≤
∫ T

0

∑
xm∈V

Mℓ∑
i=1

Mℓ∑
j=1

(min{i, j}) 1
2 ijuMℓ

i (xm, s)uMℓ
j (xm, s)ds

≤ 4
A

(
∑

xm∈V

Mℓ∑
j=1

j
1
2Uj(xm) + Th∥f(·)∥∞)

≤ 4
A

(
∑

xm∈V

∞∑
j=1

j
1
2Uj(xm) + Th∥f(·)∥∞) .

(2.124)

It follows that for any fixed i ≥ 1:

∫ T

0
(

Mℓ∑
j=k

ai,ju
Mℓ
j (xm, s))2ds

≤ Ā2i2
∫ T

0
(

Mℓ∑
j=k

juMℓ
j (xm, s))2ds

≤ Ā2i2
∫ T

0

∑
xm∈V

(
Mℓ∑
j=k

juMℓ
j (xm, s))2ds

≤ 4Ā2i2

Ak
1
2

(
∑

xm∈V

∞∑
j=1

j
1
2Uj(xm) + Th∥f(·)∥∞)

(2.125)
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and by Hölder inequality it holds:

∫ T

0

Mℓ∑
j=k

ai,ju
Mℓ
j (xm, s))ds

≤ (
∫ T

0
(

Mℓ∑
j=k

ai,ju
Mℓ
j (xm, s))2ds) 1

2T
1
2

≤ 2Āi
A

1
2k

1
4
(M 1

2
(0) + Th∥f(·)∥∞) 1

2T
1
2 .

(2.126)

We will estimate now the term:
∫ T

0

∞∑
j=k

ai,juj(xm, s)ds for any fixed k ∈ N .

We proceed like in Theorem 2.3.1.
For any P

′ ∈ N and for any k ∈ N such that k ≤ P
′
< Mℓ, for each fixed i and for

each s ∈ [0, T ] we have:

P
′∑

j=k

ai,ju
Mℓ
j (xm, s) ≤

Mℓ∑
j=k

ai,ju
Mℓ
j (xm, s) .

Thus, integrating in time and passing to the limit for ℓ → ∞, by (2.38) and (2.126),
we obtain :

∫ T

0

P
′∑

j=k

ai,juj(xm, s)ds = lim
ℓ→∞

∫ T

0

P
′∑

j=k

ai,ju
Mℓ
j (xm, s)ds

≤ lim sup
ℓ→∞

∫ T

0

Mℓ∑
j=k

ai,ju
Mℓ
j (xm, s)ds

≤ 2Āi
A

1
2k

1
4
(M 1

2
(0) + Th∥f(·)∥∞) 1

2T
1
2 .

(2.127)

Finally, by monotone convergence theorem and (2.127), there holds:

∫ T

0

∞∑
j=k

ai,juj(xm, s) = lim
P

′ →∞

∫ T

0

P
′∑

j=k

ai,juj(xm, s) ≤ 2Āi
A

1
2k

1
4
(M 1

2
(0) + Th∥f(·)∥∞) 1

2T
1
2 .

(2.128)
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By (2.38), (2.128), (2.126), we have that for any given ϵ > 0 there exists k large enough
such that:

∫ T

0
|

Mℓ∑
j=1

ai,ju
Mℓ
j (xm, s) −

∞∑
j=1

ai,juj(xm, s)|ds

≤
∫ T

0

k−1∑
j=1

ai,j|uMℓ
j (xm, s) − uj(xm, s)|ds+

∫ T

0
|

Mℓ∑
j=k

ai,ju
Mℓ
j (xm, s)|ds+

∫ T

0

∞∑
j=k

ai,juj(xm, s)ds

< ϵ .

Proceeding like in Theorem 2.3.3 we can build a solution (ui(x1, t), . . . , ui(xh, t)), for
each i ∈ N, of (2.1)-(2.3) defined on V × [0,∞).





Chapter 3

Appendix 1: The Laplace operator
for graphs

In this chapter, we will provide an overview about graph theory and graph Laplacian,
focusing on the known results that we use in the proofs of that thesis. We refer to the
works [46], [93], [124].

3.1 Graphs

A graph G is a representation of a set of objects where some pairs of objects are
connected by links. More precisely, it is a couple (V,E), where V = {x1, · · ·xh}
denotes the set of the vertices, that is an arbitrary set whose elements are called
vertices, and E is the set of the edges, that is, E consists of some couples (xi, xj), where
xi, xj ∈ V .
A graph (V,E) is said finite if the number of element of V is finite. In our discussion
the graph is assumed to be finite. In fact, many of the well-known results fail to hold
in the infinite case.
A basic relation in graph theory is the following:

Definition 3.1. If (xi, xj) ∈ E, xi, xj are said adjacent vertices of G. In symbols:
xi ∼ xj.

For each vertex xi, define its degree

deg(xi) = #{xj ∈ V : xi ∼ xj} ,
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that is deg(xi) is the number of the neighbors of xi. If deg(xi) = 0, xi is said isolated
vertex. A graph that has at least one edge is said non trivial.
If the edge (xi, xj) is identical to the edge (xj, xi), the graph is said undirected. This
means that the edges have no orientation and E can be seen as the set of the unordered
pairs (xi, xj) such that xi ∼ xj. Moreover, in this case the adjacency is a symmetric
binary relation.
If the edges have orientation, that is the edges (xi, xj) are thought as ordered pairs,
the graph is said directed and the simmetry of the adiacency relation fails to hold. An
edge that connects to the vertex at both ends is said loop. Two or more edges that
join the same two vertices are said multiple edges. An undirected graph without loops
or multiple edges is said simple. In what follows, we will deal with simple graphs.

Definition 3.2. We say that (V ′
, E

′) is a subgraph of G if V ′ ⊂ V and E
′ ⊂ E. A

subgraph is said maximal if for any of its vertices the all edges that connect to it belong
to the subgraph.

The are several graph classes. Some examples can be the following:

• A k regular graph. Each vertex has the same degree, i.e. deg(xi) = k ∀xi ∈ V .

• A complete graph Kh. The set of the vertices is V = {1, . . . , h}, and the edges
are defined as follows: i ∼ j for any two distinct i, j ∈ V .

• A complete bipartite graph Kn,h. The set of the vertices is
V = {1, . . . , n, n + 1, . . . , n + h} and the edges are defined as follows: i ∼ j if
either i < n and j ≥ n or i ≥ n and j < n. This means that the set of vertices is
split into two groups: V1 = {1, . . . , n} and V2 = {n+ 1, . . . , h}; the vertices are
connected if and only if they belong to different groups.

3.1.1 Product of Graphs

Let (V1, E1) and (V2, E2) be two graphs. Their Cartesian product is given by:

(V,E) = (V1, E1)�(V2, E2)

where V = V1 × V2 is the set of pairs (x, y) such that x ∈ V1 and y ∈ V2. The set E of
the edges is defined by:

(x, y) ∼ (x′, y) if x′ ∼ x and (x, y) ∼ (x, y′) if y′ ∼ y .

We have |V | = (|V1|)(|V2|) and deg(x, y) = deg(x) + deg(y) for all x ∈ V1 and y ∈ V2.
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3.1.2 Graph Distance

Before introducing a notion of distance on simple graphs we will give some preliminary
definitions:

Definition 3.3. A path is a finite sequence {xi}n
i=0 of vertices on a graph such that

xi ∼ xi+1 for all i = 0, 1, . . . , n− 1 . The length of the path is given by the number n
of edges in the path.

Definition 3.4. A graph (V,E) is said connected if for any pair of vertices x, y ∈ V

there is a path connecting them. This means that there exists a path {xi}n
i=0 whose

endpoints are x0 = x and xn = y.

Let (V,E) be a connected graph then we can define the graph distance in the
following way:

Definition 3.5. The graph distance d(x, y) between any pairs of vertices x, y ∈ V

such that x ̸= y is defined as the minimal length of a path that connect x and y. If
x = y, then d(x, y) = 0.

Remark 5. The graph is assumed to be connected in order to assure that d(x, y) < ∞
for any two points. In fact, if there is not any path joining x and y, d(x, y) = ∞.

Lemma 3.1.1. Let (V,E) a connected graph, then the graph distance is a metric.

Proof. From the definition, it follows immediately that d(x, y) ≥ 0 for all x, y ∈ V and
d(x, y) = 0 if and only if x = y.
The simmetry, that is d(x, y) = d(y, x) for any pair x, y ∈ V , follows from the definition
of undirected graph.
It needs to be demonstrated that for all x, y, z ∈ V , d(x, y) ≤ d(x, z) + d(z, y)(triangle
inequality).
Starting with a path that connects x and z of length d(x, z) and adding a path from
z to y of length d(z, y), we obtain a path from x to y of length d(x, z) + d(z, y). But
this path can not be shorter than the distance d(x, y), because by definition d(x, y) is
the length of the shortest path joining x and y. Hence, we must have

d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ V .

It follows that for any connected graph, (V, d) is a metric space.
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3.1.3 Weighted graphs

Weighted graphs are important class of graph, in which all information about the set
of the edges is expressed by a non negative function associeted with the graph. More
precisely, we can state the following definition:

Definition 3.6. A weighted graph ((V,E), w) is a graph with a weight function:

w : V × V −→ R

such that:
w(xi, xj) = w(xj, xi)

and
w(xi, xj) ≥ 0 ∀i, j = 1, .., h .

Moreover:
w(xi, xj) > 0 if and only if xi ∼ xj .

Unweighted graphs are a particular case of weighted graphs in which all the weights
are 0 or 1. More precisely, w(xi, xj) = 1 if xi ∼ xj and w(xi, xj) = 0 otherwise.
For each vertex xi ∈ V , we can define its weight as:

w(xi) =
∑

xj∈V : xj∼xi

w(xi, xj) . (3.1)

In litterature, (3.1) also represents the degree of the vertex xi (deg(xi)) for a weighted
graph.

3.2 Laplace Operator on graphs

3.2.1 The standard Laplacian matrix for simple unweighted
graphs

The graph Laplacian is a discrete operator that can be defined in several ways.
Let V = {x1, . . . , xh} and G = (V,E) be a finite simple unweighted graph with |V | = h.
The standard Laplacian matrix ∆Gh×h (whose rows and columns are indexed by the
vertices of the graph) is given by:

∆G = T − A (3.2)
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where T is the degree matrix, that is an h× h diagonal matrix defined as follows:

T := ti,j =

deg(xi) if i = j

0 otherwise
(3.3)

and

A := ai,j =

1 if xi and xj are adjacent
0 otherwise

(3.4)

is an h× h matrix, said the adjacency matrix of the graph. Hence, the elements of ∆G

are given by:

∆G := ∆Gi,j =


deg(xi) if i = j

−1 if xi and xj are adjacent
0 otherwise

(3.5)

Let f be a function from V into R. We can think of f as a vector where the i-th
coordinate corresponds to the value of f(xi):

f ≡


f(x1)

...
f(xh)

 .

We can add functions of the vertices and scale as expected:

(f + g)(xi) := f(xi) + g(xi) for all xi ∈ V

(cf)(xi) := c(f(xi)) for all xi ∈ V .

This gives us linearity of the functions. Hence, the functions from V into R form a
vector space that we call F(V ) and (that acts like)is isomorphic to Rh. In fact, we have
that dim F(V ) = |V | = h.
In order to show this statement we observe that each element f of F(V ) is usually
written in the following form f = ∑h

i=1 fiv
i, where fi = f(xi) for each i = 1, . . . , h. If

we think vi as the function from V into R such that

vi(xj) :=

1 if i = j

0 otherwise
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then (v1, ..., vh) is a basis for F(V ) and the sum above expresses an element f in term of
the basis elements. Given two functions f, g : V → R, we can define the inner product
⟨f, g⟩ = ∑

xi∈V f(xi)g(xi) that can be seen like the standard inner product in Rh.
The Laplacian can be regarded like a linear operator ∆G = F(V ) → F(V ). For each
function f ∈ F(V ), we have that:

∆Gf(xi) =
∑

xj∼xi

(f(xi) − f(xj)) . (3.6)

We observe that the Laplacian in the Euclidean space Rh is a differential operator,
while the Laplace operator on graphs is represented by a matrix. Hence, it is not
immediate to see the connection between the continous and the discrete case. However,
there is a deep link between the graph Laplacian and the Laplace operator on functions
in R2 that we try to explain in what follows. We recall that the Laplace operator on
functions in R2 is given by:

∆f = ∂2f

∂x2 + ∂2f

∂y2 .

Using the approximation of the second derivative:

∂2f

∂x2 (x, y) ≈ f(x+ h, y) − 2f(x, y) + f(x− h, y)
h2

∂2f

∂y2 (x, y) ≈ f(x, y + h) − 2f(x, y) + f(x, y − h)
h2 ;

we obtain:

∆f ≈ 4
h2

(
f(x+ h, y) + f(x− h, y) + f(x, y − h) + f(x, y + h)

4 − f(x, y)
)
.

We restrict f to the grid hZ2 and we define the edges in hZ2 as in the product graph
that is:

(x, y) ∼ (x′, y′) if x′ = x+ h or x′ = x− h and y = y′

or
(x, y) ∼ (x′, y′) if y′ = y + h or y′ = y − h and x = x′ .

Hence, the discrete Laplace operator on hZ2 is given by:

∆f ≈ 4
h2

1
4

∑
(x′,y′)∼(x,y)

f(x′, y′) − f(x, y)
 .
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If the pair (x, y) is thought as the i-th vertex of the graph, the pairs (x′, y′) are thought
as the vertices adjacent to the i-th vertex and h = 1, the expression above is equivalent
to the negative graph laplacian.

3.2.2 The standard Laplacian matrix for weighted graphs

The Laplacian of a weighted graph (V,E), with |V | = h, is defined to be the following
h× h matrix:

∆G := δGi,j =


∑

xj∼xi
w(xi, xj) if i = j

−w(xi, xj) if xi and xj are adjacent
0 otherwise

(3.7)

In particular, for a function f : V → R we have:

∆f(xi) =
∑

xj :xj∼xi

(f(xi) − f(xj))w(xi, xj) for each i = 1, . . . , h

We observe that definition (3.7) holds also for unweighted graph. In fact, (3.5) is a
particular case of (3.7), in which the weights are in the set {0, 1} . More precisely,
w(xi, xj) = 1 if xi ∼ xj and w(xi, xj) = 0 otherwise.

3.2.3 Discrete Operators on graphs

A significant way to denote the Laplacian of a function f in a euclidean space is:

∆f = ∇ · ∇f

where ∇· is the divergence operator. A similar definition holds in the case of graph
Laplacian that it is what we want to derive in this section. We will consider the general
case of a weighted graph (V,E), but obviously it can be extended to unweighted graphs,
as the latter are weighted graph in which all weights belong to the set {0, 1}.
Now, we will introduce some preliminar definitions.
Let e1, . . . , e|E| be the edges of the graph and let g be a function from E into R. We
can think of g as a vector where the k-th coordinate corresponds to the value of g(ek) :

g ≡


g(e1)

...
g(e|E|)

 .
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We can add functions of the vertices and scale as expected:

(g + ϕ)(ek) := g(ek) + h(ek) for all ek ∈ E

(cg)(ek) := c(g(ek)) for all ek ∈ E .

This gives us linearity of the functions. Hence, the functions from E into R form a
vector space that we call F(E). Given two functions g, ϕ ∈ F(E) we can consider the
inner product

⟨g, ϕ⟩ =
∑

ek∈E

g(ek)ϕ(ek)

that can be seen like the standart inner product in R|E|. In what follows we will change
notation and we denote the k-th edge by its endpoints [xi, xj]. Consider f ∈ F(V ),
where F(V ) is the vector space of all functions from V to R.

Definition 3.7. The graph difference operator ∇ : F(V ) → F(E) is defined by:

(∇f)[xi, xj] =
√
w(xi, xj)(f(xj) − f(xi)) for all [xi, xj] ∈ E . (3.8)

Definition 3.8. The graph divergence is an operator div : F(E) → F(V ) that satisfies:

∑
[xi,xj ]∈E

(∇f)[xi, xj]ψ[xi, xj] =
∑

xi∈V (G)
f(xi)(−(div ψ))(xi) (3.9)

for all f ∈ F(V ), ψ ∈ F(E) .

In other words −div is defined to be the adjoint of the graph difference operator.
Equation (3.9) can be thought as the discrete analogue of the Stokes theorem.

Proposition 3.2.1. The graph divergence can be computed as:

(div ψ)(xi) =
∑

xj∼xi

√
w(xi, xj)(ψ[xi, xj] − ψ[xj, xi]) . (3.10)
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Proof. By (3.8), we have that:

∑
[xi,xj ]∈E

(∇f)[xi, xj]ψ[xi, xj] =
∑

[xi,xj ]∈E

√
w(xi, xj)(f(xj) − f(xi))ψ[xi, xj]

=
∑

[xi,xj ]∈E

√
w(xi, xj)f(xj)ψ[xi, xj] −

∑
[xi,xj ]∈E

√
w(xi, xj)f(xi)ψ[xi, xj]

=
∑

xi∈V

∑
xj∼xi

√
w(xi, xj)f(xi)ψ[xj, xi] −

∑
xi∈V

∑
xj∼xi

√
w(xi, xj)f(xi)ψ[xi, xj]

=
∑

xi∈V

f(xi)
 ∑

xj∼xi

√
w(xi, xj)(ψ[xj, xi] − ψ[xi, xj])


=
∑

xi∈V

f(xi)(−(div ψ))(xi)

where in last equality we use (3.9). Hence,

− (div ψ)(xi) =
∑

xj∼xi

√
w(xi, xj)(ψ[xj, xi] − ψ[xi, xj]) , (3.11)

from which (3.10) follows.

Hence, we can state the following definition:

Definition 3.9. The graph Laplacian is an operator ∆G : F(V ) → F(V ) defined by:

∆Gf := −1
2div(∇f) (3.12)

In fact, by (3.11), we have that:

∆Gf(xi) = 1
2
∑

xj∼xi

√
w(xi, xj)(∇f [xj, xi] − ∇f [xi, xj])

= 1
2
∑

xj∼xi

√
w(xi, xj)(2

√
w(xi, xj)f(xi) − 2

√
w(xi, xj)f(xj)

=
∑

xj∼xi

w(xi, xj)(f(xi) − f(xj)) .

(3.13)

The following result holds:

Lemma 3.2.2. For each function f ∈ F(V ) , we have that

∑
xi∈V

∆Gf(xi) = 0 (3.14)
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Proof. By using (3.11), (3.12) we have:

∑
xi∈V

∆Gf(xi) =
∑

xi∈V

∑
xj∼xi

w(xi, xj)(f(xi) − f(xj)) = −1
2
∑

xi∈V

(div(∇f))(xi) =

1
2
∑

xi∈V

∑
xj∼xi

√
w(xi, xj)(∇f [xj, xi] − ∇f [xi, xj])

= 1
2

∑
[xi,xj ]∈E

√
w(xi, xj)(∇f [xj, xi] − ∇f [xi, xj]) . (3.15)

As the graph is undirected we have that the pairs [xi, xj] and [xj, xi] are edges of G.
Hence, equation (3.15) is sum of terms:

√
w(xi, xj)(∇f(xj, xi) − ∇f(xi, xj)) +

√
w(xj, xi)(∇f(xi, xj) − ∇f(xj, xi))

and as w is symmetric the sum is null.

In other word, the previous result affirms that each function in F(E) has null
divergence over the entire set of vertices.
Other general definitions of graph Laplacian have been proposed in litterature that we
will present in the next section and for which lemma 3.2.2 does not hold or holds in
some cases.
We will conclude this section stating one of the main tools when working with the
Laplace Operator.
Let ∇xi,xj

f = f(xj) − f(xi) = (∇f)[xi,xj ]√
w(xi,xj)

, the following result holds:

Theorem 3.2.3. Let (V,E) be a finite weighted graph without isolated points, let Ω be
a non-empty finite subset of V . Then, for any two functions f, g ∈ F it holds:

∑
xi∈Ω

−∆Gf(xi)g(xi) = −1
2

∑
xi,xj∈Ω

(∇xi,xj
f)(∇xi,xj

g)w(xi, xj)

+
∑

xi∈Ω,xj∈Ωc

(∇xi,xj
f)g(xi)w(xi, xj) .

(3.16)

Remark 6. When Ω = V , equation (3.16) becomes:

∑
xi∈V

−∆Gf(xi)g(xi) = −1
2

∑
xi,xj∈V

(∇xi,xj
f)(∇xi,xj

g)w(xi, xj) . (3.17)
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Proof. We have:
∑

xi∈Ω
−∆Gf(xi)g(xi) =

∑
xi∈Ω

∑
xj∼xi

w(xi, xj)(f(xj) − f(xi))g(xi)

=
∑

xi∈Ω

∑
xj∼xi

w(xi, xj)(∇xi,xj
f)g(xi)

=
∑

xi∈Ω

∑
xj∈V

w(xi, xj)(∇xi,xj
f)g(xi)

=
∑

xi∈Ω

∑
xj∈Ω

w(xi, xj)(∇xi,xj
f)g(xi) +

∑
xi∈Ω

∑
xj∈Ωc

w(xi, xj)(∇xi,xj
f)g(xi)

=
∑

xj∈Ω

∑
xi∈Ω

w(xi, xj)(∇xj ,xi
f)g(xj) +

∑
xi∈Ω

∑
xj∈Ωc

w(xi, xj)(∇xi,xj
f)g(xi) .

(3.18)

where in the third equality we use fact that if the vertex xj is not adjacent to the
vertex xi, the weight w(xi, xj) = 0 and in the first sum of the last equality we switch
notation of the variables xi and xj and use the fact that w(xi, xj) = w(xj, xi) . Adding
together the last two lines and dividing by 2, we obtain:
∑

xi∈Ω
− ∆Gf(xi)g(xi)

= 1
2

∑
xi,xj∈Ω

w(xi, xj)(∇xi,xj
f)(g(xi) − g(xj)) +

∑
xi∈Ω,xj∈Ωc

w(xi, xj)(∇xi,xj
f)g(xi)

= −1
2

∑
xi,xj∈Ω

w(xi, xj)(∇xi,xj
f)(∇xi,xj

g) +
∑

xi∈Ω,xj∈Ωc

w(xi, xj)(∇xi,xj
f)g(xi)

(3.19)

that is what we want to prove.

We observe that (3.16) is the discrete analogous to the Green formula for the
Laplace operator in R2: if Ω is a bounded domain in R2 with smooth boundary then,
for all smooth enough functions f, g on Ω̄

∫
Ω
(∆f)gdx = −

∫
Ω

∇f · ∇gdx+
∫

∂Ω

∂f

∂ν
gdℓ

where ν is the unit normal vector field on ∂Ω and ℓ is the length element on ∂Ω.
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3.3 Eigenvalue of the Laplace operator on graphs

As was already mentioned, the Laplace operator ∆G is a linear operator in a h-
dimensional vector space, where h = |h|. We will focus now on the spectral proprieties
of this operator.
We recall that, given a linear operator A in a vector space V, a vector v ∈ V\{0} is
called eigenvector of A if Av = λv, for some scalar λ; the latter is said eigenvalue of A.
The set of all (complex) eigenvalues of A is said the spectrum of A.
In the case when the underlying vector space is the space F(V ) of functions on the
graphs, the eigenvectors are also referred to as eigenfunctions. Consider in the vector
space F(V ), the inner product:

⟨f, g⟩ =
∑

xi∈V

f(xi)g(xi) for any two fuctions f, g ∈ V .

Hence, F(V ) is an inner product space and the graph Laplacian is symmetric with
respect to this inner product. More precisely, we can state the following result:

Lemma 3.3.1. The operator ∆G is symmetric with respect to the inner product ∑xi∈V ,
that is:

⟨∆Gf, g⟩ = ⟨f,∆Gg⟩

for all f, g ∈ F(V ).

Proof. By discrete Green formula (3.17), we have that:

⟨∆Gf, g⟩ =
∑

xi∈V

∆Gf(xi)g(xi) =
∑

xi∼xj

(f(xj) − f(xi))(g(xj) − g(xi))w(xi, xj) , (3.20)

and the last expression is symmetric in f and g; thus, it is equal to ⟨f,∆Gg⟩.

As ∆G is symmetric, its eigenvalues are real. In particular, the eigenvalues can be
enumerated in increasing order λ1 ≤ λ2 ≤ · · · ≤ λh, where dim F(V ) = |V | = h and
each eigenvalue is counted with multiplicity.
We can use the variational charatherization of the eigenvalues in terms of the Rayleigh
quotient of ∆G:

R(f) = ⟨∆Gf, f⟩
⟨f, f⟩

(3.21)

for an arbitrary function f ∈ F(V ). The following identities holds for all k = 1, . . . , h:

λk = R(fk) = inf
f⊥f1,f2,...,fk−1

R(f) = sup
f⊥fh,fh−1,...,fk+1

R(f) .
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In particular:
λ1 = inf

f ̸=0
R(f) and λh = sup

f ̸=0
R(f) .

By Green formula (3.17), the Rayleigh quotient of ∆G is:

R(f) = ⟨∆Gf, f⟩
⟨f, f⟩

=
∑

xi∼xj
(f(xj) − f(xi))2w(xi, xj)∑

xi∈V f(xi)2 . (3.22)

We can state now the following result:

Theorem 3.3.2. Let G = (V,E) a finite, connected, weighted graph with |V | > 1, then
zero is a simple eigenvalue of ∆G.

Proof. Let 1 denote the function which value is 1 on each vertex, thus, ∆G1 = 0.
Hence, the constant function is an eigenfunction with eigenvalue zero. Assuming now
that f ̸= 0 is an eigenfunction of the eigenvalue zero, we will prove that f ≡ const,
which will imply that 0 is a simple eigenvalue. If ∆Gf = 0, by (3.17) it follows that:

⟨∆Gf, f⟩
⟨f, f⟩

=
∑

xi∼xj
(f(xj) − f(xi))2w(xi, xj)

⟨f, f⟩
= 0 .

Hence, ∑xi∼xj
(f(xj) − f(xi))2w(xi, xj) = 0. In particular, f(xi) = f(xj), for any two

vertices xi,xj such that xi ∼ xj. Since the graph is connected, we have that for any
pair of vertices x, y ∈ V there exists a path {xk}m

k=1 such that

x = x1 ∼ x2 ∼ · · · ∼ xm = y .

Hence, f(x1) = f(x2) = · · · = f(xm) and f(x) = f(y). This is true for all pairs
x, y ∈ V , we obtain f ≡ const.

Hence, we can enumerate the eigenvalues of ∆G in increasing order as follows:

0 = λ0 < λ1 ≤ · · · ≤ λh−1 .

We note that the first eigenvalue is called λ0 rather than λ1. We observe that the
eigenvalues of ∆G are all positive (with a zero smallest eigenvalue); for this reason ∆G,
as defined in (3.7), is said the positive graph laplacian.
In addiction, theorem 3.3.2 allows us to investigate the solvability of the problem:
find u ∈ F(V ) such that

∆Gu = f (3.23)
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for any f ∈ F(V ). We multiply both sides of the equality by a function g ∈ F(V ) such
that g(xi) = 1 for all xi ∈ V and we sum up over all xi ∈ V . Therefore, by Green
formula (3.17) we have that ∑

xi∈V

(∆u)(xi) = 0 ;

this implies, as necessary condition of solvability

∑
xi∈V

f(xi) = 0 .

Assuming that, we will show that the equation 3.23 has a solution. In fact, the above
condition of solvability means that f ⊥ 1, that is f is orthogonal to a function g ∈ F(V )
such that g(xi) = 1 for all xi ∈ V . This tell us in which subspace of F(V ) we have to
find a solution of (3.23).
Consider the subspace F0(V ) of F(V ) of all functions orthogonal to 1. Since 1 is the
eigenfunction with eigenvalue λ0 = 0, the spectrum of ∆G in F0(V ) is λ1, . . . , λh−1. As
all λj > 0, for j = 1, . . . , h − 1, we see that ∆G is invertible in F0(V ). This means
that equation ∆Gu = f has for each f ∈ F0(V ) a unique solution u ∈ F0(V ), such that
u = (∆G)−1f .

3.4 The normalized Laplacian matrix for graphs

Starting from the standard Laplacian matrix for graphs, we can define the symmetric
normalized Laplacian matrix and the random walk normalized Laplacian matrix for
graphs. This two definitions are motivated by the fact that both highlights spectral
proprieties of the graph in significant way and, in addiction, the latter is deeply
connected with Markov chains.
Let (V,G) be a finite, simple weighted graph with |V | = h and let T be the degree
matrix (we recall that it is the diagonal matrix with the (i, i)-th entry having the value
deg(xi)), the symmetric normalized Laplacian matrix for a weighted graph is defined
to be:

L = T
−1
2 ∆GT

−1
2
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where ∆G is the standard Laplacian matrix for weighted graphs (3.7). Therefore L is
the following h× h matrix:

Li,j =


1 if i = j and deg(xi) ̸= 0

−w(xi,xj)√
deg(xi)deg(xj)

if xi and xj are adjacent

0 otherwise

(3.24)

Obviously, the case of unweighted graphs follows by setting w(xi, xj) = 1 if xi ∼ xj

and w(xi, xj) = 0 if xi is not adjacent to the vertex xj.
For any function f ∈ F(V ), we have that:

Lf(xi) = f(xi) −
∑

xj∼xi

f(xj)
w(xi, xj)√

deg(xi)deg(xj)
(3.25)

For any two functions f, g ∈ F(V ) we can consider the inner product ⟨f, g⟩ =∑
xi
f(xi)g(xi), with respect to L is symmetric.

The Rayleigh quotient of L is:

R(f) =
∑

xi∼xj
(f(xj) − f(xi))2w(xi, xj)∑

xi∈V f(xi)2deg(xi)
. (3.26)

The random walk normalized Laplacian matrix is defined to be :

L = T−1∆G

Hence, L is the following h× h matrix:

Li,j =


1 if i = j and w(xi) ̸= 0
−w(xi,xj)

w(xi) if xi and xj are adjacent
0 otherwise

(3.27)

where w(xi) = ∑
xj∈V :xj∼xi

w(xi, xj) is a function defined on the set of vertices V and
represents the weight of the vertex xi. We observe that we refer to w(xi) also as the
degree of the vertex xi (deg(xi)), i = 1, . . . , h.
Moreover, w(xi) gives rise to a measure of subsets: for any subset A ⊂ V define its
measure as w(A) = ∑

xi∈A w(xi).
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For any function f ∈ F(V ), we have that:

Lf(xi) = 1
w(xi)

∑
xj∈V

(f(xi) − f(xj))w(xi, xj) . (3.28)

We can consider in F(V ) the following inner product:

⟨f, g⟩ =
∑
xi

f(xi)g(xi)w(xi) for any two functions f, g ∈ F(V ) .

that can be seen like as integration of f, g against measure w on V . The operator
L is symmetric with respect to this inner product and a discrete analogous of Green
formula holds: for any two functions f, g ∈ F it holds:

∑
xi∈Ω

−Lf(xi)g(xi)w(xi) = −1
2

∑
xi,xj∈Ω

(∇xi,xj
f)(∇xi,xj

g)w(xi, xj)

+
∑

xi∈Ω,xj∈Ωc

(∇xi,xj
f)g(xi)w(xi, xj) .

(3.29)

The Rayleigh quotient of L is:

R(f) = ⟨Lf, f⟩
⟨f, f⟩

=
∑

xi∼xj
(f(xj) − f(xi))2w(xi, xj)∑

xi∈V f(xi)2 w(xi) . (3.30)

As holds for the operator ∆G, also L and L have a zero simple eigenvalue and the
eigenvalues λ1, . . . , λh−1 are all positive.
The propriety that each function f ∈ F(V ) has null graph Laplacian over the entire set
of vertices, as expressed in Lemma 3.2.2, does not hold for the symmetric normalized
graph Laplacian and holds for the random walk normalized graph Laplacian only in
the case w(xi) = 1 for each xi ∈ V .
The symmetric normalized graph Laplacian L and the random walk graph Laplacian L
have the propriety that its eigenvalues are contained in [0, 2], as shown in Theorem
below. The statement and the proof are provided for the operator L, but are analogous
for the operator L. This propriety does not hold for ∆G.

Theorem 3.4.1. Let G = (V,E) be a finite, connected, weighted graph with |V | > 1,
then all the eigenvalues of L are contained in [0, 2].
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Proof. Let λ be an eigenvalue of L with an eigenfunction f . By the fact that Lf = λf

and the discrete Green formula (3.29), we have:

λ
∑

xi∈V

f(xi)2w(xi) =
∑

xi∈V

Lf(xi)f(xi)w(xi) =
∑

xi∼xj

(f(xj) − f(xi))2w(xi, xj) (3.31)

From (3.31), it follows that λ ≥ 0. Using the fact that (f(xj) − f(xi))2 ≤ 2(f(xj)2 +
f(xi)2), we get:

λ
∑

xi∈V

f(xi)2w(xi) =
∑

xi∼xj

(f(xj) − f(xi))2w(xi, xj)

= 1
2

∑
xi,xj∈V :xi∼xj

(f(xj) − f(xi))2w(xi, xj)

≤
∑

xi,xj∈V :xi∼xj

(f(xj)2 + f(xi)2)w(xi, xj)

=
∑

xi,xj∈V

f(xj)2w(xi, xj) +
∑

xi,xj∈V

f(xi)2w(xi, xj)

=
∑

xj∈V

f(xj)2w(xj) +
∑

xi∈V

f(xi)2w(xi)

= 2
∑

xi∈V

f(xi)2w(xi) .

(3.32)

Hence, it follows that λ ≤ 2.

We will conclude this chapter achieving few notions on the relation between the
graph Laplacian and Markov chains.
Let V be a finite set. A Markov Kernel on V is a non negative function P on V × V

with the property that

∑
y∈V

P (x, y) = 1 for all x ∈ V . (3.33)

Any Markov kernel gives rise to a Markov chain {Xn}∞
n=1 that is a random walk on V .

It is determined by a family {Px}x∈V of probability measures on the set of all paths
starting from x (that is X0 = x), that satisfies the following property: for all positive
integers n and for all x, x1, . . . , xn ∈ V

Px(X1 = x1, X2 = x2, · · · , Xn = xn) = P (x, x1)P (x1, x2) . . . P (xn−1, xn) .
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A weighted graph ((V,E), w) with a weight function:

w : V × V −→ R

induces a natural Markov kernel

P (xi, xj) = wi,j

w(xi)
.

Since w(xi) = ∑
xj∈V :xj∼xi

w(xi, xj), we see that ∑xj
P (xi, xj) = 1, so that P (xi, xj) is

a Markov Kernel.
Thus, in terms of the Markov kernel we have that

Lf(xi) =
∑
xj

P (xi, xj)f(xj) − f(xi) . (3.34)

Defining the Markov operator P on F(V ) by

Pf(xi) =
∑
xj

P (xi, xj)f(xj) (3.35)

we see that the random walk normalized Laplacian operator L and the Markov operator
P are related by a simple identity L = P − Id, where Id is the identity operator on
F(V ).
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