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Abbreviations 
 

 

CAD: coronary artery disease 

DE: delayed enhancement 

EF: ejection fraction 

EDV: end-diastolic volume 

ESV: end-systolic volume 

FWHM: full width half maximum 

LV: left ventricle 

LGE: late-gadolinium enhancement 

MRI: magnetic resonance imaging 

ROI: region of interest 

SD: standard deviation 

SI: signal intensity 

STRM: signal threshold versus reference mean 
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Abstract 
 

In most western countries cardiovascular diseases are the leading cause of 

death, and for the survivors of ischemic attack an accurate quantification of 

the extent of the damage is required to correctly assess its impact and for 

risk stratification, and to select the best treatment for the patient. Moreover, 

a fast and reliable tool for the assessment of the cardiac function and the 

measurement of clinical indexes is highly desirable. The aim of this thesis 

is to provide computational approaches to better detect and assess the 

presence of myocardial fibrosis in the heart, particularly but not only in the 

left ventricle, by performing a fusion of the information from different 

magnetic resonance imaging sequences. To this aim we also developed and 

provided a semiautomatic tool useful for the fast evaluation and 

quantification of clinical indexes derived from heart chambers volumes.  

The thesis is composed by five chapters. The first chapter introduces the 

most common cardiac diseases such as ischemic cardiomyopathy and 

describes in detail the cellular and structural remodelling phenomena 

stemming from heart failure. The second chapter regards the detection of 

the left ventricle through the development of a semi-automated approach 

for both endocardial and epicardial surfaces, and myocardial mask 

extraction. In the third chapter the workflow for scar assessment is 

presented, in which the previously described approach is used to obtain the 

3D left ventricle patient-specific geometry; a registration algorithm is then 

used to superimpose the fibrosis information derived from the late-
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gadolinium enhancement magnetic resonance imaging to obtain a patient-

specific 3D map of fibrosis extension and location on the left ventricle 

myocardium. The focus of the fourth chapter is on the left atrium, and 

fibrotic tissue detection for gaining insight on atrial fibrillation. Finally, in 

the fifth chapter some conclusive remarks are presented with possible 

future developments of the presented work.  

Overall this PhD project wants to provide tools for studying the effects of 

cardiovascular disease on the heart, through the development of imaging 

computational approaches.  
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Abstract 

 

Il progetto di Dottorato presentato si colloca nell’ambito imaging cardiaco. 

Le malattie cardiovascolari sono la principale causa di morte nella maggior 

parte delle nazioni occidentali. e per i sopravvissuti di attacchi ischemici la 

quantificazione dell’estensione delle lesioni è necessaria per valutare e fare 

una corretta stratificazione dei rischi, per selezionare la terapia migliore per 

il paziente. Inoltre, uno strumento veloce ed affidabile per valutare la 

funzionalità cardiaca è decisamente richiesto. L’obiettivo di questa tesi è 

fornire approcci computazionali per una migliore detezione e valutazione 

della presenza di fibrosi all’interno del cuore, principalmente nel ventricolo 

sinistro, eseguendo una fusione dell’informazione proveniente da diverse 

sequenze di risonanza magnetica.  

La tesi si divide in cinque capitoli. Il primo capitolo introduce le più 

comuni patologie cardiache come la cardiomiopatia ischemica e descrive in 

dettaglio il fenomeno cellulare e strutturale di rimodellamento in seguito ad 

un evento ischemico. Il secondo capitolo riguarda la caratterizzazione del 

ventricolo sinistro attraverso lo sviluppo di un approccio semiautomatico 

per l’estrazione delle superfici di endocardio ed epicardio, il calcolo di 

curve di riempimento e indici clinici. Nel terzo capitolo viene presentato il 

flusso di lavoro ideato e sviluppato per sovrapporre l’informazione sulla 

fibrosi derivante dalle acquisizioni con mezzo di contrasto al gadolinio, sul 

modello 3D del miocardio sinistro precedentemente elaborato. Ciò ha 

consentito di ottenere una mappa tridimensionale paziente-specifica 
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dell’estensione e della localizzazione del tessuto fibrotico sulla parete 

miocardica. Nel quarto capitolo vengono illustrati gli strumenti sviluppati 

per lo studio dell’atrio sinistro e la detezione del tessuto fibrotico in 

soggetti affetti da fibrillazione atriale. Nell’ultimo capitolo si tracciano 

alcune conclusioni finali sul lavoro svolto e sui possibili sviluppi futuri. 

Complessivamente questa tesi vuole proporre strumenti per lo studio e la 

quantificazione degli effetti di malattie cardiovascolari sul funzionamento 

cardiaco, attraverso lo sviluppo di approcci computazionali all’imaging. 
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Chapter 1 

 
 

Introduction  
 
 

1.1 Aetiology and treatment of myocardial infarction 

 

Cardiovascular pathologies are the leading cause of death in most western 

countries [1]. Between them the most common cause for myocardial 

infarction is the coronary artery disease (CAD). This disease describes the 

occurrence and the pathological complication caused by ischemia, 

regarding the coronary circulation, which happens in the network of vessels 

which provides oxygenated blood to the cardiac muscle. The expression is 

used to describe the phenomena regarding reference to the coronary 

circulation, regarding the network of vessels which perfuses the cardiac 

muscle. Ischemia describes the phenomenon in which the blood flow does 

not meet the adequate need of a certain tissue. 

The cellular damage caused by ischemia is greater than simple hypoxia, 

when just the oxygen is missing, because not only the aerobic metabolism 

but also the anaerobic metabolism, and glycolysis is stopped by the lack of 

nutrients. ATP depletion, and build-up of metabolites, leads to the typical 

swelling of damaged cells. When the metabolic substrate is readily 

available after a short time, the ischemic damage is reversible, otherwise it 

is followed by membrane rupture, and cellular death. 
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The main cause of insurgency of ischemic cardiomyopathy is the presence 

of atherosclerotic in the coronary vessels, which amounts to 90% of the 

patients struck by the disease. This disease shows its symptoms after a long 

time, starting with a slow and progressive development from childhood or 

adolescence. 

Atherosclerosis indicates a hardening of the arteries ensuing from a 

thickening and loss of elasticity of the vessel walls. The principal sign of 

atherosclerosis is a pathological condition, characterized by lesion on the 

vessel walls or fibro-lipid plaques. It may compromise both muscular and 

elastic arteries, like the coronaries which are the second most common 

location of insurgence preceded only to abdominal aorta. 

 Main components of the atherosclerotic plaques are: 

 cellular elements: smooth muscle cells, macrophages and 

leucocytes; 

 connective tissue formed by elastic fibres and collagen; 

 lipids deposits. 

Principal risk factors for the onset of atherosclerosis include age, sex, 

genetic predisposition and smoking. The incidence of myocardial infarction 

increases between the 40 and 60 years of age, and men are more likely to 

be struck by the disease till the age of 55. The genetic predisposition is 

related to cardiovascular diseases like hypertension, hypercholesterolemia 

and diabetes. While the low-density lipoproteins (LDL) notable increase 

the risk of formation of plaques, the high-density lipoproteins (HDL) lower 

the risk of plaque formation and CAD insurgence, since HDL can promote 
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the efflux of cholesterol and regress the plaque formation progress. 

Hypertension is the main cause for CAD after the age of 45.  

The hypothesis of response-to-injury considers the atherosclerosis an 

inflammatory response of the vessel walls to endothelial injuries. The 

lesion increases the permeability of the tissue with a build-up of lipids and 

migration of smooth-muscle cells to the intima, cell proliferation and 

synthesis of extra-cellular matrices lead to formation of collagens and 

proteoglycan and an increase in the concentration of lipids.  

The vessel lumen reduction caused by atheroma is a common cause of 

stenosis, but the trigger for the chain of events leading to an ischemic 

attack is the sudden movement or modification of a plaque, which leads to 

the formation of blood clots. Usually slow growth lesions are less 

dangerous as they lead to the genesis of parallel or compensatory 

circulations. 

Common consequences of CAD usually are: 

 acute myocardial infarction; 

 angina pectoris. 

The second one has different forms, and usually is caused by chronic 

atherosclerotic stenosis, where the risk of sudden modification is small. 

Acute myocardial acute infarction, is the most severe consequence of the 

CAD, leading to the loss of the functionality of myocardial tissue and 

death. 

One of the main goals in clinical practice is the ability to assess functional, 

viable but not functional myocardium, and non-vital myocardium.  
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Thrombolytic therapies and revascularization have the main goal to re-

establish perfusion, to regain functionality in dysfunctional but viable 

myocardium. Artificial revascularization is obtained with by-pass and 

stents or through coronary angioplasty when the blood vessel is just 

blocked and not damaged, since it’s less invasive. 

Non-viable, or dead myocardium, subject to acute myocardial infarction, 

suffered some irreversible damage and is undergoing a process of cellular 

death, with the formation of necrotic tissue. This tissue underwent hypo-

perfusion for more than 20-40 minutes and looks like coagulative necrosis, 

with the denaturation of cytosol proteins, cellular swelling but the tissue 

structure is preserved.  

The first region which suffers the consequence of hypo-perfusion is the 

endocardium, since the coronary tree spreads out from the epicardium to 

the inside in the deeper regions. The left ventricle which is the chamber 

with the thickest wall, is the one most commonly affected by the disease. 

The extent of the infarction may affect the muscle in different ways: sub-

endocardial infarction is deep and wide, it may be caused by atherosclerotic 

stenosis with the plaque in place or after a rapid thrombolysis in case of 

rupture. The most frequent form is the transmural infarction, where the 

necrosis affects the whole thickness of the ventricle wall, it’s the 

consequence of ischemia provoked by the movement of an atheroma and 

the formation of thromboses. 

The necrotic tissue undergoes a reparation process and is replaced by 

connective tissue. The outcome is the appearance of fibrosis and scarring, 
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with the loss of the physiological characteristics and functionality of the 

cardiac tissue. 

The cicatrisation process is divided in different steps: 

 re-vascularization; 

 fibroblast proliferation and migration;  

 extracellular matrix deposit; 

 maturation and reorganization of the fibrotic tissue (remodelling). 

The result is the complete replacement of the granulation tissue by scar 

(fibrotic) tissue; the expression chronic myocardial infarction is used to 

discriminate the already fibrotic tissue from the newly infarcted region, 

subject of acute myocardial infarction. 

The ensuing remodelling process leaves structural modifications in the 

muscle, such as thinning of the wall, compensatory hypertrophy and 

dilatation. Of the several complication stemming from the infarction, the 

loss of contractile function is the most significant; loss of contractile 

function is proportional to the affected area, and caused by the greater 

rigidity of the fibrotic tissue compared to the muscle, leading to cardiac 

failure and hypotension. Moreover, fibrotic tissue build-up increases the 

chance of deadly ventricular arrhythmias. 

 

 

1.2 The detection of myocardial scars through MRI 

 

Cardiac magnetic resonance (CMR) is the gold standard for the 

quantification of myocardial infarction using late gadolinium enhancement 
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(LGE) imaging [2]. The high interest stems from the ability to differentiate 

between vital and dead myocardial tissue, localize and quantify the extent 

of scars in the LV wall, evaluate the myocardial function, the 

revascularization and monitor the patient in the post-intervention phase [3]. 

The advantages of using CMR are the high planar resolution, non-

invasiveness, the possibility to obtain 2D or 3D reconstructions without 

constraints on the axis orientations [4].  

To obtain information regarding the perfusion in the myocardial tissue a 

contrast medium, which contains a relaxation agent, in this case gadolinium 

chelates (gadopentate, gadodiamide, and gadotetriole) is injected. The 

relaxation agents work by decreasing both T1 and T2 relaxation times of 

water protons; the clinical doses are calibrated to affect mostly T1 

increasing signal intensity (SI) in T1-weighted imaging. The large 

molecules rapidly diffuse from the intravascular space into the interstitium 

and remain in the extracellular space, provided that the tissue cell 

membranes are still intact. 

The maximum SI is related to the concentration of the contrast agent in the 

examined tissue, and proportional to the coronary blood flow. In the 

myocardial tissue the SI varies accordingly to the local tissue 

characteristics (fibrosis, edema, etc.); however, this relation is non-linear 

and for standardization purposes is usually described as a percentage of the 

maximum detected SI which belongs to the blood pool. 

As shown in figure 1, the first-pass imaging in healthy subjects shows a 

homogenous rapid uptake and release of the contrast agent, with mild 

physiological segmental differences in peak SI. Patients with CAD are 
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characterized by lower regional peaks and slower rate of SI increase in 

regions supplied by stenotic vessels. 

 

 

 

Figure 1. A, Regional myocardial signal intensity in a subject with angiographically 

normal coronary arteries, showing similar rates of upslope and peak SI in all myocardial 

regions. B, Regional myocardial signal intensities in a patient with 90% stenosis of the 

proximal right coronary artery, demonstrating diminished upslope and peak SI in the 

posterior left ventricular (LV) wall compared with the normally perfused anterior and 

lateral walls [4]. 
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After five to twenty minutes from the administration of the contrast, 

delayed enhancement images are acquired, using an optimal TI ranging 

from 140 to 300ms [5] [6], to achieve a magnetization equal to zero in the 

myocardial tissue and a slightly hyperintense blood pool while the infarcted 

regions due to the slower washout dynamic will appear bright, due to the 

rapid TI relaxation. In this case high concentrations of contrast are found in 

areas with irreversible injury, while, in still viable myocardium, the 

gadolinium the microcirculation an albeit slower but still existing 

clearance. This is not true in cases of “no reflow” phenomena where the 

damage or stenosis of the coronary vessels is so severe to prevent the agent 

from reaching the infarcted region, which happens only in acute 

myocardial infarction (Figure 2).  

 

 

 

 

Figure 2. LGE-CMR technique in a longitudinal long axis (a) and short axis (b). a. The 

apex and infero-apical wall show delayed enhancement in about 50% of their thickness 

due to non-transmural myocardial infarction (white arrows). B. Subendocardial infarction 

of the interventricular septum and inferior wall of the left ventricle (white arrows). 
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1.3 Computer assisted scar quantification 

 

Since CMR has become the gold standard for the non-invasive accurate 

study of cardiac function, several approaches methods and strategies have 

been developed to analyse LGE images in order to detect scar and fibrotic 

tissue in the myocardium [7], for the quantification and stratification risk in 

post-ischemic patients [8] [9], such as coronary tree analysis, perfusion 

analysis and scar detection. Focusing on the latter, to assist the detection of 

infarcted modes a variety of computer assisted methods exist [10] [11] 

[12], using automatic thresholding, clustering approaches, Bayesian 

classificatory or support vector machine. All these methods are applied 

after a segmentation of the myocardium boundaries and rely on the 

acquisition of images in short-axis view. The segmentation is required to 

isolate the myocardial region from the blood pool since SI of the blood 

pool is higher than that of viable myocardium [13]. In the absence of 

automated algorithm, this task is performed manually by the cardiologist 

and is a time-consuming and subjective task. 

Once the myocardial boundaries are traced the methods may be classified 

in two categories based on user intervention or the lack of it [14] [15]. 

Generally semi-automatic methods require user interaction during the 

initialization or for the selection of a ROI.  

A common method for detecting infarct in the LV is the fixed-model 

approach, whereby intensities are used for thresholding to a fixed number 
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of standard deviations (SD) from the mean intensity of nulled myocardium 

or blood pool [16] [7]. 

A second common fixed-model approach is the full-width half maximum 

(FWHM) approach, where half of the maximum intensity within a user-

selected hyper-enhanced region is selected as the fixed intensity threshold. 

For the task of obtaining the mean intensity of viable tissue, the user selects 

a ROI of viable myocardial tissue. An example of the results obtained 

applying different approaches in reported in figure 3. 

This analysis in clinical practice is usually performed in a 2D LGE-CMR 

short-axis view. 

 

 

 

Figure 3. LGE analysis of a single short-axis acquisition and scar quantification using 7 

different techniques in hypertrophic cardiomyopathy (top panel) and acute myocardial 

infarction (bottom panel). 
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1.4 Aim of this thesis 

 

The aim of this thesis is the development and implementation of a 

segmentation workflow for the quantification of cardiac function in 3D 

domain, the extraction of significant clinical indexes such as EF, EDV and 

ESV, volume-time curves and myocardial scar burden. For this task the 

following segmentation workflow was developed to addresses these 

specific aims in 3D CMR datasets (Figure 4):  

 identification of the myocardium, including the endocardial 

(interior) and epicardial (exterior) boundaries; 

 registration of the cine CMR images in the LGE reference; 

 automatic delineation and quantification of the scar tissue within 

the detected myocardium.  
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Figure 4 Proposed workflow for scar detection and quantification from cine CMR and 

LGE images. 
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Chapter 2 
 

 

Segmentation of the left ventricle 

chamber  

 
This chapter describes a semi-automated approach for the quantification of 

the left ventricle chamber volumes from cine CMR images. Manual tracing 

of CMR images is the golden standard for the quantification of left 

ventricular function. However manual segmentation of the endocardium 

and epicardium boundaries has proven to be a subjective and time-

consuming task. Automatic approaches are already on-board on MR system 

to support radiologist’s work, but results require heavy manual corrections.  

In this chapter the developed tool is presented, this chapter is based on the 

article “An automated approach for the 3D dynamic segmentation of the 

myocardium from magnetic resonance imaging” by Fabbri C., Kawaji K.,  

Nazir N., Patel A., Mor-Avi V., Corsi C 
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2.1 Introduction 

 

Cardiovascular diseases are the leading cause of mortality in Western 

countries: The Global Burden of Disease estimates that 29.6% of all deaths 

worldwide (15616.1 thousands death) were caused by cardiovascular 

diseases in 2010. Among these stroke and coronary heart disease, in which 

arteries supplying blood to the heart muscle (myocardium) eventually leads 

to a heart attack (or myocardial infarction), is responsible for 12% of all 

deaths.  

One of the most important technological developments of the last several 

decades which significantly contributed to early detection of heart disease 

is the use of noninvasive cardiac imaging, including a growing number of 

imaging modalities capable of depicting different aspects of cardiac 

anatomy and physiology.  

Nowadays, CMR has already been proved to be and accurate tool for the 

quantification of the ventricular chamber volumes and the assessment of 

cardiac diseases. By allowing the acquisition of the cardiac chambers with 

increasingly high in-plane spatial and temporal resolution, it minimizes 

problems such as geometric assumptions, foreshortening. However, it 

suffers of some issues associated with partial volumes, spacing between 

slices and metallic artefacts.  

In clinical practice, all the available commercial tools require user input for 

the selection of anatomical landmarks, initialization or tracing of LV 

boundaries. All these tasks are both quite time-consuming and rely on the 

user experience to include papillary muscles and other structures, with 
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potential effect on the accuracy of calculated cardiac indexes. Therefore, 

the development of automated image analysis techniques that overcome 

these limitations and allow fast and fully automated, accurate quantification 

of these parameters without the need for operator intervention, is highly 

desirable.  

As of today, a variety of methods have been proposed to achieve a full 

segmentation of the ventricular chamber in CMR [17] [18] [19], usually by 

analyzing images slice by slice and frame by frame [20] [21]. Very few 

studies faced the issue of the most basal slice which is entirely included in 

the final surface for volume quantification, potentially resulting in volume 

overestimation.  

To overcome the limitations of two-dimensional segmentation models, we 

designed and implemented a new approach based on a dynamic three-

dimensional level-set formulation for automatic endocardium and 

epicardium surface detection. As a preliminary step, in this study, we 

validated the endocardium segmentation by comparing our estimates of 

end-diastolic, end-systolic volumes and ejection fraction against the ones 

derived by manual tracings of an expert radiologist. 
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2.2 Material and methods 

 

2.2.1 CMR imaging and population 

 

Data from 25 patients (18 males, mean age: 61±12 years) with heart failure, 

which already underwent CMR imaging for the assessment of heart 

function and scar burden were analyzed. Short-axis, 2-chamber, 4-chamber 

and 3-chamber ECG gated sequences were used; the sequences were 

acquired using a Philips 1.5 Tesla scanner. 

The acquired image pixel spacings were ranging from 0.5 to 0.7 mm; 

moreover, for the short-axis sequence, spacing between slices was 10 mm 

and slice thickness was 6 mm. Temporal resolution was 30 frames per 

cardiac cycle. 

Cine CMR data were obtained from the Cardiac Imaging Laboratories at 

the University of Chicago Hospitals, these data were acquired using a 

Philips Scanner running at 1.5 Tesla. Reference measurements were 

obtained by manual tracing performed by an expert, using an in-house 

developed software package. LV trabeculations and papillary muscles were 

included within the left ventricle cavity, according to the American Society 

of Cardiologist guidelines. 
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2.2.2 Image Processing 

 

To constrain the segmentation inside the boundaries of the LV chambers a 

moving mitral valve (MV) plane was generated and the position of the apex 

was specified inside a three-dimensional rendering of 2-Chamber and 4-

Chamber views of the heart.  

To generate the MV plane a set of at least three points was selected in the 

End-Diastole and End-Systole frames, every point in the ED is associated 

with another one in ES and then the position is interpolated during the 

cycle.  

Then for every frame the plane that minimizes the distance between the set 

of points is calculated.  

For the detection of the endocardial boundaries a probabilistic level set was 

applied [22].  

𝐸(𝜙) =  − න log 𝑝ଵ(𝐼) 𝐻(𝜙) 𝑑𝑥 

− ∫ log 𝑝ଶ(𝐼)൫1 − 𝐻(𝜙)൯𝑑𝑥  

− න 𝐿ఙ𝐻(𝜙) + |∇ 𝐻(𝜙)|𝑑𝑥 
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E(𝜙) is an energy function which is minimized during the evolution of the 

level set, H(𝜙) is the Heaviside function and, and p1 and p2 are the pixel 

intensity distributions of object and background.  

The model is initialized on all the planes between the MV plane and the 

apex, using and ellipsoid centered whose main axis is defined by the 

intersection of the 2-Chamber view plane and the 4-Chamber view. The 

differential equation that drives the level-set model considers the different 

resolution in the perpendicular direction (which is the spacing between 

slices) and inside the plane (given by the image pixel spacing). 

 

Figure 5 Three-dimensional rendering of 2-Chamber and 4-Chamber views of the heart 
for the selection of anatomical landmarks 
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Since the probabilistic model output not only detects the desired region of 

the LV but also other neighboring objects of similar intensity (such as the 

right ventricle), a series of morphological operator and connectivity checks 

were applied to the segmentation.  

First every unconnected region was erased, then the center and size of the 

segmented region were calculated in each plane and if the difference 

between following frames was too big the segmentation was adjusted using 

the mask obtained from the previous frame, then a regularization step using 

curvature flow was applied to smooth the resulting boundaries.  

The resulting segmentation is then used to initialize the level-set model in 

the following frame, cutting the time needed to reach the end of the level-

set evolution.  

After the segmentation of the endocardium boundaries is completed, a 

Malladi-Sethian level-set model [6] is applied to detect the epicardium: 

 

0 Ft  

 

where 𝜙 corresponds to the level-set function. 

The force F which drives the evolution of the level-set function was 

defined as:  

 

where the three terms correspond to an expansion/contraction term, a 

curvature term (for regularization) and an advection term respectively. 




 gggF 
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The function g is an edge indicator and its gradient corresponds to a motion 

field that guides the evolution of the level-set towards the boundaries of the 

anatomical structure: 

 

 

The level-set function used as initial condition for the model is obtained by 

reinitializing the previously obtained contours and adding an offset to 

ensure that the solution adheres to the epicardium boundaries.  

Statistical analysis was performed using Excel, Correlation Analysis was 

conducted for the End-Diastolic Volume, End Systolic Volume and the 

Ejection Fraction. 
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2.3  Results 

 

The tool for dynamic volume and mass quantification from was developed 

and implemented in MATLAB and tested on a laptop with an i7-7600M 

Processor with 16 GB of Ram. 

Time required for the segmentation of a full Cine sequence depends on its 

size and on the number of frames acquired. Average time for a data set of 

40 frames, 10 slices and 200 voxel side was about five minutes.  

End-diastolic and end-systolic volumes measured from conventional semi-

automated tracings ranged widely from 78 to 176 ml and from 48 to 124 

ml, respectively, reflecting the inhomogeneity of the study group.  

Two qualitative examples of the results obtained in one patient are reported 

in Fig. 6 and 7. 

 

Figure 6.  Endocardial (red) and epicardial (green) contours detected at ED (left) and ES 

(right) on a slice at the mid level of the left ventricle 
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Figure 7. Three-dimensional rendering of detected endocardial (red) and epicardial 

(surfaces) in the CMR volume 

 

 

In Figure 8 there are the resulting graphs with linear regression and Bland-

Altman analysis between the proposed algorithm and a manually traced 

reference for EDV and ESV.  

Linear regression analysis between the proposed approach and the 

reference volume values resulted in very good correlation coefficients and 

regression slopes near 1.0 for both end-diastolic and end-systolic volumes 

(EDV: r=0.99, y=0.9x+15.3; ESV: r=0.94, y=1.0.x+2.7). LV ejection 

fraction resulted in a correlation coefficient of r=0.91, y=0.85x+0.1). 
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Bland-Altman analysis shows small biases between the computed 

parameters and the reference technique for EDV, ESV and EF (bias: 7.9 

ml; 0.8 ml and 4% respectively). These biases reflected systematic errors of 

6.0%, 1.0% and 10.3% of the corresponding mean values. The 95% limits 

of agreement were relatively narrow (EDV: 9.7 ml, ESV: 8.8 ml, EF: 

10%). 

 

 

 

 

 
Figure 8. Regression analysis (top panels) and Bland-Altman plot (bottom panels) of  

EDV (left) , ESV (middle)  and EF (right). 
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2.4 Discussion and conclusion 

 

The proposed algorithm allows a faster quantification of the LV chamber 

volume throughout the cardiac cycle compared to the time-consuming 

manual measurements limited to end-diastolic and end systolic frames for 

cardiac function evaluation. Importantly the proposed approach makes 

available volume-time curves thus allowing diastolic and systolic function 

in addition to ejection fraction.  

Moreover, the proposed approach provides a solution for partial volume 

error correction, through the definition of a moving MV plane which 

eliminates the need for subjective slice selection and ensuing errors in LV 

volume measurements. 

Validation of the new designed approach against volumes derived from 

manual tracings from expert cardiologist’s shows promising results for 

EDV. ESV quantification showed lower levels of agreement probably 

because of a partial volume effect affecting reference ESV values, in which 

the basal slices are entirely considered. Consequently, also EF suffers from 

the same potential issue.  

In the next chapter, the three-dimensional models will be integrated with 

data from other sequences already available, such as delayed enhancement 

or fast strain encoding ones to allow further analysis of the cardiac   

tissue and overall heart function. 
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Chapter 3 

 

 

Cine-LGE registration and scar 

quantification 

 
This chapter describes the approach used to superimpose the reconstructed LV 

myocardium boundaries in the LGE reference frame, to apply the previously 

described quantification algorithms for the quantification of myocardial scar 

tissue.  

 

 

3.1 Introduction 

 

LGE–CMR is the gold standard for assessment, risk stratification and 

treatment of AMI and CMI patients, through the detection, characterization 

quantification of myocardial scar tissue, which is considered an indicator of 

residual cardiac function. To assist the cardiologist in the post-intervention 

and long-term CAD management [23], an automated approach for 3D 

quantification of the scar tissue extent and its characterization was 
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developed. For this purpose, LGE-MRI data were acquired on the patients 

and the grey intensity levels were superimposed on the reconstructed 3D 

LV model obtained segmenting the cine CMR images finally, different 

methods were used for the fibrosis quantification and compared. 

 

 

3.2 Material and methods 

 

The LGE-CMR data were acquired with the same scanner used for the cine 

CMR acquisitions using 3D MP-inversion recovery with fat saturation. The 

images were acquired 15 min after contrast injection. An example of the 

LGE-CMR image is shown in the Figure 9 (top left). The structural 

example of an acquired LGE-CMR image. remodeling information derived 

from LGE-CMR data was superimposed on the 3D LV model applying a 

multimodality affine registration on the data based on mutual information 

(MI) as a similarity measure.  

3D cine CMR images were registered on the spatial domain of 3D LGE 

images, the estimated affine transformation matrix was then used to 

register the three-dimensional myocardium geometry in the LGE-CMR 

spatial domain [24].  

The SI from the extracted myocardium region obtained by the LGE-CMR 

images was used to obtain information on scar quantification. 
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Figure 9. 2D example of the registration between an LGE image (top left) and the 

corresponding cine CMR image (top right); an automatic crop (bottom left) based on the 

myocardium location is used for the registration of the two volumes the registered images 

are shown in the bottom right panel 

 

The last step of the implemented workflow regards the fibrosis 

quantification. FWHM and n-SD techniques were employed. For each slice 

the scar area was extracted; the volume of the scar in 3D was obtained by 

applying the method of disks.  

Data from 12 patients were analysed, to evaluate the performance of the 

two proposed approaches. 

An expert radiologist manually traced the scar tissue on each slice. To 

evaluate the performance of the two approaches the overlapping between 
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the reference area manually traced and results from the two different 

implemented algorithms were compared using Dice Index. The ratio 

between the extracted scar volumes ( Vscar / Vscar-ref ) . 

 

 

3.3 Statistical analysis and results 

 

For the given results, analysis of the similarity of the measurements of volume 

was done, confronting the ground truth from the reference to the output of the 

different methods. To ensure that noise coming from hyper isolated pixel all 

regions with a surface lower than 5% of the myocardium in each slice were 

excluded. 

The results obtained from 5SD, 6SD and FWHM were comparable, since the 

threshold obtained were similar.  

From the application of the methods, it’s easier to note that when the 

infarcted zone is well enhanced, there is a clear distinction between healthy 

tissue and scar, obtaining higher Dice Coefficient scores as show in the 

figures above. Often, we achieve a better overlapping between the 

reference scar volume and the volumes obtained with higher threshold, (5-6 

SD and FWHM) gradually reaching the reference volume of the scars. 

Higher thresholds lead to higher accuracy and gradually exclude noise, in 

cases where the images are not well enhanced, due to the short time 

between contrast agent injection and acquisition. In this case the resulting 

image intensity is homogeneous and there is no clear distinction between 
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infarcted and healthy tissue. The automated methods using SD fail since 

the detected threshold may be higher than the maximum image intensity. 

Four different examples of the results obtained in four different patients are 

reported in the following figures. 

In the Table 1 and 2 results regarding the Dice coefficients and the volume 

ratio are reported.  

 

 

 

 
Figure 10. Scar detection results in slice #5, pt.27, applying the different approaches, 

(reference GT in red, automated approaches in green); scar volumes obtained applying the 

different approaches are reported on the right panel.  
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Figure 11. Scar detection results in slice #21, pt.27, applying the different approaches, 

(reference GT in red, automated approaches in green); scar volumes obtained applying the 

different approaches are reported on the right panel. 

 

 
Figure 12 Scar detection results in slice #16, pt.57, applying the different approaches, 

(reference GT in red, automated approaches in green); scar volumes obtained applying the 

different approaches are reported on the right panel. 
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Figure 13 Scar detection results in slice #14, pt.89, applying the different approaches, 

(reference GT in red, automated approaches in green); scar volumes obtained applying the 

different approaches are reported on the right panel. 

 

Table 1 Dice coefficients between reference volume and the proposed methods. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

FWHM 0,49 0,53 0,61 0,56 0,54 0,55 0,57 0,56 0,55 0,56 0,56 0,56 

2SD 0,30 0,51 0,39 0,33 0,36 0,41 0,38 0,37 0,37 0,39 0,38 0,37 

3SD 0,38 0,54 0,48 0,43 0,44 0,48 0,46 0,45 0,45 0,46 0,46 0,46 

4SD 0,47 0,57 0,56 0,50 0,51 0,54 0,53 0,52 0,52 0,53 0,53 0,52 

5SD 0,53 0,60 0,63 0,56 0,57 0,59 0,59 0,58 0,58 0,58 0,59 0,58 

6SD 0,57 0,61 0,64 0,53 0,58 0,59 0,59 0,57 0,58 0,58 0,58 0,58 
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Table 2 Volume ratios between the proposed methods and the reference volumes.  

 1 2 3 4 5 6 7 8 9 10 11 12 

FWHM 1,03 1,14 1,54 1,50 1,29 1,32 1,42 1,41 1,35 1,36 1,39 1,38 

2SD 5,02 2,12 3,25 4,53 4,08 3,36 3,64 3,96 3,85 3,67 3,74 3,82 

3SD 3,26 1,89 2,43 2,71 2,71 2,39 2,51 2,59 2,58 2,51 2,53 2,56 

4SD 1,94 1,69 1,91 1,96 1,90 1,84 1,89 1,91 1,89 1,88 1,89 1,89 

5SD 1,33 1,50 1,39 1,48 1,42 1,45 1,43 1,45 1,44 1,44 1,44 1,44 

6SD 1,02 1,32 1,10 1,20 1,14 1,20 1,16 1,18 1,17 1,18 1,17 1,17 

 

 

3.4 Discussion and conclusions 

 

From the analysis and evaluation of the results from automated methods we 

reach some of the conclusion already present in literature. The comparison 

with the gold standard shows that even if there is a good overlap of the 

myocardial mask the limitations posed by a simple thresholding are not 

able to replace manual tracings in order to characterize the scars, but there 

is room of improvement with the development of more complex and new 

methods to analyse the already segmented myocardium. The SD approach 

has reproducibility issues, since the thresholds depends on the selection of 

a small patch of healthy tissue, while FWHM is less affected. 

In conclusion new approaches to exploit and differentiate grey zones from 

infarct core will be needed, in order to characterize viable and non-viable 

myocardium in order to become a real asset in clinical practice.  
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Chapter 4 

 

Left atrium fibrosis quantification 
Projects related to left atrium have also been conducted during my PhD 

activities. 

This chapter describes the techniques and tools developed for an automated 

detection of left atrium (LA) and LA fibrosis from LGE-CMR images. In 

the first paragraph the approach based on a convolutional neural network is 

described for the segmentation of the left atrium. In the second paragraph 

different techniques are applied and compared to assess and quantify the 

extent of fibrotic tissue in the LA. 

 

  

4.1 Left atrial volume quantification  

 

The first part of the chapter is based on the article “A semantic-wise 

convolutional neural network approach for 3-D left atrium segmentation 

from late gadolinium enhanced magnetic resonance imaging” by Davide 

Borra, Alessandro Masci, Lorena Esposito, Alice Andalò, Claudio Fabbri, 

and Cristiana Corsi 
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4.1.1 Introduction 

 

Atrial fibrillation (AF) is the most common arrythmia worldwide. It has 

been estimated that the prevalence of AF in US is about 2.2 million 

including paroxysmal or persistent AF. There are about 160,000 new AF 

cases each year in the US and in the European countries alone. 

Consequences of AF could imply a notable reduction in quality of life, 

poor mental health, disability, dementia and mainly an increment of the 

stroke risk five-fold. Radio frequency ablation (RFA) of the left atrium 

(LA) represents the therapy for AF patients where antiarrhythmic drugs and 

direct current cardio-version show no efficacy. Despite huge improvements 

for targeting and delivery of AF ablation, the long-term durable restoration 

of sinus rhythm is achieved only for a part of AF patients. Indeed, AF-free 

rates after a single ablation vary between 30 and 50% at 5 years follow-up. 

The low success of the current AF treatment could be related to the 

incapability to define a personalized approach for ablation, also including 

atrium specific anatomy and fibrotic tissue location. Late gadolinium 

enhanced magnetic resonance imaging (LGE MRI) is a new emerging non-

invasive imaging acquisition which might be employed for the assessment 

of LA myocardial tissue in patients affected by AF. With this technique, 

healthy and scar tissues are differentiated: scar tissue is visualized as a 

region of enhanced or high signal intensity while healthy tissue is 

characterized by low signal intensity. For this purpose, several clinical 
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studies suggested that the information on LA scar tissue can provide 

relevant information for the assessment of the appropriate strategy in 

catheter ablation; moreover, fibrotic changes in the LA substrate have been 

proposed to explain the persistence and sustainability of AF. Through LGE 

MRI, the detection of the fibrotic tissue to identify native and post-ablation 

atrial scarring is provided and this might imply an improvement of the 

success rate of the RFA. However, in clinical practice the detection of the 

LA anatomy from LGE MRI is a very challenging task, given the 

complexity of the atrial and pulmonary veins (PVs) structures and the 

limited contrast of this imaging acquisition technique. Indeed, the thickness 

of the LA wall is very low. Other potential sources of error are the residual 

motion due to patient breathing, heart rate variability, low signal-to-noise 

ratio, and contrast agent washout during the long acquisition which results 

in a reduction of the image quality. 

Several studies aimed at LA anatomy and fibrotic tissue assessment from 

LGE MRI showed promising results. However, most of them were based 

on manual segmentation of the LA wall and PVs. This implies a time-

consuming subjective task, resulting in a poor reproducibility between 

multicentre studies. Therefore, the availability of a fully automatic 

algorithm for LA chamber segmentation would be very useful to accurately 

reconstruct and visualize the atrial structure for clinical use. To this 

purpose, the use of convolutional neural networks (CNNs) represents a 

suitable approach for the LA+PVs segmentation. Recently, Mortazi et al. 

developed a 2-D convolutional neural network (CNN) approach for the 

LA+PVs segmentation from cine MRI SSFP sequences and CT data 
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(STACOM 2013 Cardiac Segmentation Challenge) and Baumgartner et al. 

proposed a fully automated framework, combining U-Net and batch 

normalization, for the segmentation of the left and right ventricles from 

short-axis cardiac cine MRI data, training the network in 2-D and 3-D. 

The aim of this work was the design and development of an automatic 

image segmentation algorithm of the LA cavity from LGE MRI based on 

the use of CNNs, exploiting a deep learning pipeline based on the 

successful architecture UNet. The network was trained end-to-end from 

scratch using 3-D data available in the training phase of the STACOM 

2018 Atrial Segmentation Challenge 

 

 

4.1.2 Methods 

 

One hundred cardiac LGE MRI data with ground truth labels and 54 LGE 

MRI data without ground truth labels were provided by the organizers of 

the STACOM 2018 Atrial Segmentation Challenge during the training and 

testing phases, respectively. The original resolution of the data is 

0.625×0.625×0.625 mm. To train the model looking at the performance on 

unseen data during the optimization, we manually split the dataset in a 

training (80%) and a validation set (20%). 

Let X(i) be the i-th MRI data and Y(i) its true binary segmentation (0 

background, 1 LA) i ∈ [1, 100]. X(i) and Y(i) have the same size of m × n 

× d, where m and n are 576 or 640 and d is 88. Then, a 3-D crop containing 

LA of m1 × n1 × d1 = 320 × 384 × 88 for each image and mask is 
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extracted, generating X(i)c and Y(i)c (cropped data and masks). The 

assessment of the coordinates of this crop is obtained by applying a rough 

segmentation based on Otsu’s algorithm to each middle axial slice of the 

entire dataset. 

Considering that LGE MRI images are acquired in the axial plane applying 

a standard protocol which always considers the LA chamber in the centre 

of the acquired image and the results of the rough segmentation, LA is 

easily located, and the images are consequently cropped. Once the crop is 

extracted, a subsampling procedure is performed to reduce the 

computational cost. 

according to the available hardware; in this way X(i)sc and Y (i)sc are 

generated (subsampled cropped data and masks). The subsampled region of 

interest size is 144 × 176 × 32 and the network is trained with these 3-D 

data. 

In the following the CNN architecture, regularization techniques and loss 

function optimization are described (Figure 14). 

CNN architecture in order to perform the LA segmentation task, we 

introduced a deep learning approach based on the U-Net architecture. In the 

convolutional layers, kernel size of 3 × 3 × 3, stride size of 1 × 1 × 1 and 

Rectified Linear Units (ReLUs) activation functions in the hidden layers or 

sigmoidal activation function in the output layer are used. In the max 

pooling layers, a pooling size of 2 × 2 × 2 and stride size of 2 × 2 × 2, 

halving the shape of hidden activations, are employed. Lastly, in the 

transposed convolutional layers, kernel size of 2×2×2 and stride size of 

2×2×2. For both convolutional and transposed convolutional layers, 
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padding size is such that the output shape of the layer is the same of the 

input shape. Furthermore, biases and weights are randomly initialized from 

a truncated normal distribution and using the initialization scheme 

proposed by He et al. for ReLUs, respectively. 

Regularization techniques in order to introduce a regularization effect, 

batch normalization and early stopping techniques are employed. The first 

one is an adaptive re-parametrization introduced to reduce the covariance 

shift and it also acts as regularizer. These normalizing layers are included 

after each hidden convolutional layer and immediately before the activation 

function. Lastly, we employed the early stopping technique, that consists in 

returning the model with lowest validation set error during the training and 

stopping the optimization. 

Loss function optimization During the training a Dice coefficient (DC) 

based loss function, named Dice loss, is computed. Let dc be the Dice 

coefficient computed between the true mask and the predicted mask; the 

Dice loss is defined as dl = 1 − dc. In order to solve the optimization 

problem, the Adam adaptive learning rate optimization algorithm [19] is 

used. Exponential decay rates β1 and β2 are 0.9 and 0.999 respectively, 

while the learning rate is 1e-4. Lastly, a max number of epochs of 255 with 

a batch size of 2 is used. 

Once the training is completed, the CNN is fed with an unseen input X (i) 

sc and the model directly produces the 3-D segmentation P(i)sc. During the 

prediction step, at first the model predicts the segmentation P(i)sc of the i-th 

image subsampled crop X(i)sc , then the final 3-D predicted segmentation 

P(i) is obtained by reshaping the subsampled predicted segmentation to the 
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size m1 × n1 × d1 and by padding this intermediate result P(i)c with zeros 

to the i-th input original size m × n × d. Then, a removal procedure based 

on the evaluation of the connected-regions volume is applied, generating 

the final mask P(i)la.  

Since the obtained segmentation P(i) sometimes contains LA spurious 

elements, only the biggest volume associated with the LA is kept. The 

procedure described in this section was applied on the validation and test 

sets. Furthermore, it was also applied on the validation set during the 

optimization process to use the early stopping technique correctly. 
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Figure 14. The proposed CNN architecture 
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4.1.3 Results 

 

For the performance evaluation DC was used. In particular, DC were 

computed, and we obtained DCsc = 0.930±0.026, DC = 0.910±0.029 and 

DCla = 0.911±0.028 (mean value ± standard deviation) on the validation 

set. The spurious regions removal step was necessary for only 3 of 20 

predicted validation masks. Considering the small size of the spurious 

regions and the low number of images post-processed with this procedure, 

after this step the performance did not improve significantly (on average 

from 0.910 to 0.911). Two examples, in Fig 15, of the 3-D validation data 

segmentation obtained with 3-D U-SWCNN, comparing P(i)la (red) and 

Y(i) (blue), are reported. These two examples correspond to the best and 

the worst predictions of the neural network with DC = 0.964 and DC = 

0:850, respectively. Lastly, an example of a 3-D validation data 

segmentation in which the CNN is able to reconstruct all the PVs even if 

some of them are not included in the ground truth is reported. During the 

final testing phase only, the average Dice coefficient was provided by the 

organizers and it was DC = 0:949. 
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Figure 15 Best and worst case of the LA segmentation, in red the proposed CNN, in blue 

the ground truth 
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4.1.4 Conclusions 

 

The proposed method produces a joint segmentation of the LA and PVs in 

AF patients. Despite the high variability of the LA anatomy and the 

subsampling procedure applied, the model provides an accurate mask that 

could be useful for ablation therapy planning. In addition, a mapping of 

grey level intensities of LGE MRI on the 3-D LA anatomy would make 

directly available a 3-D model of fibrotic tissue distribution on LA surface. 

Some ground truth masks included PVs (see Fig. 5). Therefore, the 3-D U-

SWCNN was trained using data in which sometimes PVs are annotated and 

sometimes they are not. This is the reason why the network sometimes can 

recognize them in data in which they were not annotated in the ground 

truth. This leads to an additional source of error in the evaluation metric.  

Future development will include: 

 training the network with 3-D data with a smaller subsampling 

ratio in order to exploit original information, hopefully leading to a 

higher DC and in order to reduce the gap between DC and DCsc  

 introduction of a new loss function 

 separation of the PVs structures from the joint segmentation of 

LA+PVs and evaluation of the Dice coefficient of the LA chamber 

without the PVs. 
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4.2 Fibrotic tissue assessment in left atrium 

 

Atrial fibrillation (AF) is the most common sustained arrhythmia [26] and 

several studies have demonstrated that AF is associated with electrical and 

structural remodelling in the left atrium (LA) which was proven to sustain 

the arrhythmia [27],[28].  

Focusing on structural remodelling, late gadolinium enhanced magnetic 

resonance imaging (LGE-MRI) is a recent technique used for LA fibrosis 

localization and quantification in the LA wall. The DECAAF study [29] 

reported that extent of fibrosis in the LA in AF patients may predict 

recurrences after the ablation procedure. In [30] patients were divided into 

4 categories depending on fibrosis extent: Utah stage 1 or minimal fibrosis 

(<5% enhancement), Utah stage 2 or mild fibrosis (5–20% enhancement), 

Utah stage 3 or moderate fibrosis (20–35% enhancement) and Utah stage 4 

or extensive fibrosis (greater than 35% enhancement). Based on this 

scoring different therapeutic approaches were suggested, including 

pulmonary vein isolation for patients in Utah score 1 and 2, pulmonary 

vein isolation and linear lesions in the LA posterior wall for patients in 

Utah score 3, ablation of the atrio-ventricular node and biventricular pacing 

for patients in Utah score 4. Therefore, the information about the fibrosis 

extent may help the electrophysiologist in patient’s selection for the 

ablation procedure.  

Despite these promising results, assessment of fibrosis from LGE-MRI in 

AF patients has not been adopted in the clinical setting due to scarce result 
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reproducibility [31,32] mainly due to the absence of a standardized image 

processing protocol to quantify fibrosis extent. Therefore, the aim of the 

study was to compare different methods to quantify fibrosis in the LA in 

the 3D domain. 

 

 

4.2.1 Materials and Methods 

 

4.2.1.1 Clinical Data 

LGE-MRI from 60 AF patients acquired at the CARMA Center (University 

of Utah) in which manual tracing of LA wall by expert radiologist was 

available, were analyzed [33]. 

All patients underwent MRI studies on a 1.5-T Avanto clinical scanner 

(Siemens Medical Solutions, Erlangen, Germany) using a TIM phased-

array receiver coil or 32-channel cardiac coil. LGE-MRI was acquired 15 

minutes after the contrast agent injection (dose, 0.1 mmol/kg body weight; 

Multihance, Bracco Diagnostic Inc, Princeton, NJ) using 3-dimensional 

inversion-recovery-prepared, respiration-navigated, ECG gated,  gradient-

echo pulse sequence with fat saturation (voxel size of 1.251.252.5 mm, flip 

angle of 22°, TR/TE=6.1/2.4 ms, IT=230 to 320 ms, parallel imaging with 

GRAPPA technique with 2 and 42 reference lines. Typical scan time for 

the DE-MRI study was 5 to 9 minutes, depending on the subject’s 

respiration and heart rate. 
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4.2.1.2 LGE-MRI Data Processing 

Five different approaches for fibrosis segmentation were applied in this 

study.  

Thresholding techniques included a histogram-based reference, a blood-

pool-based reference and the image intensity ratio technique [32].  All 

these approaches required a reference value Ref obtained from a region of 

interest (ROI): 

 

Th = Ref + N∙SD 

 

where Th is the threshold that separates scar tissue from healthy tissue, SD 

is the standard deviation in the selected ROI, N is the number of SDs. 

In the histogram-based reference approach (H-6SD), normal tissue is 

defined as the mean of the pixel intensities between 2 and 40% of the 

maximum intensity within the atrial wall (M2-40%). The threshold ThH-6SD 

was computed at 6SD (SD2-40%) above the mean of normal tissue: 

 

ThH-6SD=M2-40% + 6SD2-40% 

 

In other approaches, the ROI is located in the blood pool (BP) [34]. In this 

case the threshold was computed using the mean (MBP) and standard 

deviation (SDBP) of the pixel intensities inside the blood pool region: 

 

ThBP=(ILA-MBP)/SDBP 



58 
 
 

 

 

where ILA is the myocardial intensity of the LGE-MRI in the LA wall. 

In the image intensity ratio approach (IIR), the threshold is computed by 

normalizing the myocardial image intensity by the mean blood-pool 

intensity: 

 

ThIIR= ILA/MBP 

 

Two additional techniques were based on the Chan-Vese (CV) and on a 

graph-cut (GC) models. 

The CV approach [35] finds in the image the two regions characterized by 

the maximum difference in grey scale by minimizing the following energy 

function F: 

 

𝐹(𝐶) = න |𝐼(𝑥, 𝑦) − 𝑐ଵ|ଶ𝑑𝑥𝑑𝑦 

௜௡(஼)

+ න |𝐼(𝑥, 𝑦) − 𝑐ଶ|ଶ𝑑𝑥𝑑𝑦 

௢௨௧(஼)

 

 

where I is the image and c are the mean intensities inside and outside the 

evolving curve C.  

In the graph based approach [36] the source and sink nodes were modeled 

as healthy and fibrotic tissue voxels. The energy function to be minimized 

was defined considering a regional term Rx and a boundary term Bx,y 

equally weighted (λ=0.5) where X are the nodes and A the relationships 

between two adjacent voxels: 
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𝐹(𝐿) = 𝜆 ෍ 𝑅௫(𝐿௫) + (1 − 𝜆) ෍ 𝐵௫,௬൫𝐿௫,  𝐿௬൯
(௫,௬)ఢ஺௫ఢ௑

 

 

The LA wall was modeled using two Gaussian functions representing the 

two classes, healthy myocardium (𝜇ଵ, 𝜎ଵ) and fibrotic tissue (𝜇ଶ, 𝜎ଶ). The 

regional term was defined as: 

 

𝑅௫(ℎ𝑒𝑎𝑙𝑡ℎ𝑦) = − ln 𝑃(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝐼௫) = −𝑙𝑛 ቆ
𝜋ଵ𝑁(𝐼௫|𝜇ଵ, 𝜎ଵ)

𝑝(𝐼௫)
ቇ 

 

𝑅௫(𝑓𝑖𝑏𝑟𝑜𝑠𝑖𝑠) = − ln 𝑃(𝑓𝑖𝑏𝑟𝑜𝑠𝑖𝑠|𝐼௫) = −𝑙𝑛 ቆ
𝜋ଶ𝑁(𝐼௫|𝜇ଶ, 𝜎ଶ)

𝑝(𝐼௫)
ቇ 

 

where Ix is the intensity of the voxel x, 𝜋௞ represents the ratio of the two 

classes, 𝜇௞ are the mean and 𝜎௞ the covariance matrix of the two Gaussian 

models; N(∙) describes the probability Gaussian function and p(Ix) is 

 

𝑝(𝐼௫) = ෍ 𝜋௞

ଶ

௞ୀଵ

𝑁(𝐼௫|𝜇௞, 𝜎௞)  

 

The boundary term was defined as: 

 

𝐵௫,௬൫𝐼௫, 𝐼௬൯ =
𝑒ିఉฮூೣିூ೤ฮ

మ

𝑑𝑖𝑠𝑡(𝑥, 𝑦)
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where Ix and Iy are the intensity of the voxel x and of its neighbour y; 𝛽 is a 

penalty term which was set equal to 5 to give more weight to high gradients 

between voxels belonging to different classes; dist(x,y) is the Euclidean 

distance between the two voxels x and y. Minimizing the energy function 

F(L) leads to the partition of the graph in two regions corresponding to 

healthy and fibrotic tissue. 

All LGE-MRI slices were analysed for each patient by considering the LA 

wall manually traced by the expert cardiologist.  

For each patient and for each technique we obtained the 3D model of the 

LA with visual localization of fibrosis. For each technique we quantified 

the percentage of fibrosis with respect to the entire LA wall mass. 

 

4.2.3 Results 

 

A qualitative example of the fibrotic tissue evaluated in the LA wall in one 

LGE-MRI slice applying the different quantification techniques is reported 

in Figure 15. 

An additional example of the LA 3D models obtained in one patient 

applying the five different approaches and the corresponding percentage of 

fibrotic tissue are reported in Figure 16.  

Overall, results showed these five approaches can be divided in two 

groups; the group composed by the H-6SD, CV and GC is characterized by 

similar results (mean coefficient of variation=0.3), while the results 

obtained applying BP and IIR strongly depend on the quality of the 

acquisition (mean coefficient of variation=0. 62).  
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Considering H-6SD technique as the reference approach, BP and IIR 

showed a negative and low correlation; GC and CV showed a positive and 

good correlation (Figure 17). 

An example of Utah stage score obtained in one patient applying the 

different techniques for fibrosis segmentation is shown in Table 3. Utah 

stage classification resulted in a wide disagreement (22/60 patients, 37%) 

among BP and IIR. The two approaches which best matched the Utah  

classification were the CV and GC (49/60  patients, 82%) 

 

Fig. 15: A qualitative example of the fibrotic tissue (green region) evaluated in the LA 
wall (blue region) in one LGE-MRI slice applying the different quantification 
techniques (BP: blood-pool-based reference; IIR: image intensity ratio; CV: Chan-
Vese; GC: graph-cut; H-6SD: histogram-based reference). 

  

Fig. 16: Example of the LA 3D models obtained in one patient applying the five 
different approaches and the corresponding percentage of fibrotic tissue (BP: blood-
pool-based reference; IIR: image intensity ratio; CV: Chan-Vese; GC: graph-cut; H-
6SD: histogram-based reference). 
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Table 3. Percentage of fibrosis obtained applying the five segmentation approaches 
and the derived Utah score and therapeutic indication in Patient #0937.  

 

 

  

Fig. 17: Correlation analysis between % of fibrotic tissue obtained applying the 
different techniques. The H-6-sd was considered the reference technique (BP: blood-
pool-based reference; IIR: image intensity ratio; CV: Chan-Vese; GC: graph-cut; H-
6SD: histogram-based reference; p: correlation coefficient). 
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4.2.4 Discussion and Conclusion 

 

This study confirmed the evaluation of the quantification method appears 

critical and further research is needed to define a satisfactory standard for 

the segmentation of atrial fibrosis.  

BP and IIR use the blood pool region to normalize the intensity values on 

the LA wall; therefore, these techniques strongly depend on image quality. 

The LA cavity signal should be properly suppressed but unfortunately a 

standardized image acquisition protocol is not available. Its availability 

would improve the performance of methods based on blood pool reference 

values. H-6SD, CV and GC showed repeatable results. 

In conclusion the choice of the approach to quantify fibrosis appears 

critical. Further research is needed to define a satisfactory standard in the 

segmentation of atrial fibrosis. In addition, there is a strong need for a 

standardized imaging protocol, especially for methods that exploit 

information from the blood-pool region. 
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Chapter 5 

 

Concluding remarks and  

future developments 
 

In this doctoral thesis, a workflow for the evaluation of cardiac function 

from Cine CMR images, and the detection of myocardial scar was 

presented, to provide a fast tool for the quantification of clinical indexes 

useful in clinical practice. 

In Chapter 2, a segmentation algorythm for the detection of endocardial 

and epicardial boundaries was presented. The implemented approach uses 

two different level sets in a three-dimensional domain, a moving mitral 

valve plane was defined to constraint the evolution of the model in the 

ventricle. It proved to be an effective tool for fast and reliable generation of 

3D geometric models and the evaluation of clinical indexes. 

In Chapter 3, a registration based on MI maximization was employed to 

find the transformation matrix from the Cine CMR reference to the LGE 

and to superimpose the previously extracted myocardium on the DE 

images, in order to avoid the inclusion of the blood pool, and to extract a 

ROI useful for the detection and quantification myocardial scars. 
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In Chapter 4, approaches for the quantification LA volume and the 

extraction of patient specific models are shown, which could prove useful 

for the treatment and gaining insight on AF mechanism are shown. 

The proposed workflow may be modified to be applied on the other heart 

chambers, to asses scars and fibrotic tissue in the whole heart.   
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