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Abstract

Mathematical modeling of physical phenomena is at the basis of many scientific
field researches. Complex systems show multiscale and multiphysics aspects that
cannot be always taken into account in detail. In the past many numerical codes
have been developed and specialized to solve different aspects of turbulence and,
in general, fluid motion for a very wide range of engineering applications. Nowa-
days, numerical code coupling and computational platforms are gaining a lot of
interest for the simulation of very complex phenomena. This PhD study focuses
on modeling physical systems with coupled simulations, in particular turbulent
heat transfer for liquid metals. This type of fluids, known as low Prandtl num-
ber fluids, requires more sophisticated turbulent heat transfer models since those
used to simulate fluids such as air or water lead to a sensible heat transfer overes-
timation. Seeking an increased numerical stability, a four logarithmic parameter
turbulence model is proposed, starting from a model that has already been vali-
dated with simulations of Lead-Bismuth-Eutectic (LBE) fully developed turbulent
flows. The turbulence model has been implemented in the finite element code FE-
MuS to perform an extensive validation by comparing obtained results with Direct
Numerical Simulations and experimental data. Many simulations are performed,
for fully developed turbulent flows in plane channels, cylindrical pipes and 19 pin
nuclear reactor bundles and for turbulent forced and mixed convection over a back-
ward facing step. When conservation equations of mass, momentum and energy
need be coupled with dynamic two-equation or thermal turbulence four-equation
models the use of numerical coupling becomes important. In order to dispose of
a greater choice of dynamical turbulence models, a computational platform con-
taining OpenFOAM and FEMuS codes has been developed.

1



Abstract

2



Introduction

Mathematical modeling of physical phenomena is at the basis of many scientific
field researches. Complex systems show multi-scale and multi-physics aspects
that cannot be always taken into account in detail. Turbulence is a typical exam-
ple where phenomena at different physical-space scales contribute to determine
the fluid motion. Many numerical codes have been developed and specialized to
solve different aspects of turbulence and fluid motion for a very wide range of en-
gineering applications such as combustion, solid mechanics, turbulent flows, heat
transfer and many others. Numerical code coupling represents a further step for-
ward in modeling and simulations, in order to take into account several aspects
of a physical system. With a relatively small effort, numerical codes can interact,
within the frame of a computational platform, so that mutual influences between
different physical phenomena can be analyzed. The development of huge and
complex numerical codes can then be avoided and attention should be focused on
efficient methods for data transfer and manipulation.

This PhD study focuses on two main objectives: the simulation of turbulent
heat transfer for fluids with a very low Prandtl number value (Pr), and the de-
velopment of a computational platform where turbulence models can be easily
implemented and tested. Liquid metals, with Pr ' 10−2, are becoming more and
more appealing because of their physical properties and are currently considered
as operative fluids in concentrating solar power systems and in IVth generation
fast nuclear reactors. In latter application, the possibility to establish natural con-
vection in the case of missing power supply represents a key feature to obtain an
increased intrinsic safety level. Accurate means are needed to predict heat trans-
fer and fluid flow under these circumstances, in order to properly design these
systems. The turbulent heat transfer models provided by commercial codes are all
based on Reynolds analogy, i.e. a similarity assumption between velocity and tem-
perature fields. Due to the very Pr value, this assumption does not hold for liquid
metals and more complex thermal turbulence model are needed. Many different
models have been developed balancing model accuracy, complexity and numerical
stability but their range of validity is still an open problem. In the present thesis, a
new formulation of an existing four parameter turbulence model is proposed and
implemented in FEMuS code, with the introduction of logarithmic variables, in
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Introduction

order to overcome the stability issues of the original model. The model has been
chosen since reliable results have already been obtained for simulations of Lead-
Bismuth-Eutectic fully developed turbulent flows, with Pr = 0.025. For this
model a more extensive validation is sought, in terms of different Pr values and
of simulated geometries. Since the accuracy of turbulent heat transfer simulations
depends on the choice of both dynamical and thermal turbulence models, a compu-
tational platform containing FEMuS and OpenFOAM codes has been developed.
In this way the more complete set of dynamical turbulence models implemented
in OpenFOAM can be tested in coupled simulations with the thermal turbulence
model implemented in FEMuS.

The thesis is organized as follows. In Chapter 1 the Finite Element Method
is briefly introduced as this is the numerical method used to solve partial differ-
ential equations in FEMuS. This numerical code is developed at Montecuccolino
laboratory and is used for the implementation of the four logarithmic parameter
turbulence model.

The problem of numerical code coupling is addressed in Chapter 2. The outline
of the computational platform is described, with particular attention to SALOME

platform and MED libraries since they are used to handle the data exchange be-
tween different codes. Many routines have been developed in the form of C++
classes and using MED data format, so that they can be generally used since they
are not written for a specific code. They allow to obtain a more complete set of
functions for data manipulation, together with the already existing routines pro-
vided by MED library. Finally the case of natural convection inside a square cavity
is studied with a coupling between FEMuS code and OpenFOAM. Different pro-
cedures for data manipulation are studied.

The developed routines for numerical code coupling have been successfully
used to define a new immersed boundary method that is described in Chapter 3,
proving the great versatility of the computational platform. In the new algorithm
a computational grid is used for the equation solution and another one is used
to model the solid body. A key feature is the capability to deal with both static
and moving arbitrarily shaped objects. Similarly to multi-phase problems, solid
and fluid regions are distinguished using an indicator function field that is ob-
tained as the result of a uniform field projection from the solid body mesh to the
computational grid. A method for solid-fluid interface reconstruction on irregular
bi-dimensional grids is presented and results are reported for a case of fluid flow
around a static object and of impulsively started cylinder in a fluid at rest.

In Chapter 4 the Reynolds Averaged Navier-Stokes system of equations is in-
troduced and the derivation of the four logarithmic parameter turbulence model is
discussed. Reference behaviors for turbulent variables and velocity are introduced,
together with a new law of the wall for temperature field.

Results of fully developed turbulent flows in the geometries of plane channel,
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cylindrical pipe and 19 pin hexagonal nuclear rector bundle are shown in Chapter
5. Whereas possible, a comparison with results from Direct Numerical Simu-
lations is performed. Experimental correlations are used to evaluate heat transfer
performances of the obtained results. Simulated fluids are Lead-Bismuth-Eutectic,
with a Prandtl number equal to 0.025, and liquid sodium, with Pr = 0.01.

Finally, results of turbulent heat transfer over vertical backward facing step are
discussed in Chapter 6. In recent years this problem has been extensively studied
for forced and mixed convection cases, with Pr = 0.0088. This is an interest-
ing problem since a flow recirculation occurs in the region behind the step, for
the forced convection case. On the other hand, for the mixed convection case
the recirculation area is much smaller and the model is tested in the presence of
buoyancy forces. The numerical platform is used to perform coupled simulations
between OpenFOAM and FEMuS, investigating the effect of a different dynami-
cal turbulence model coupled with the thermal turbulence model implemented in
FEMuS.
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Chapter 1

Finite Element Method

The mathematical representation of a physical problem is usually achieved through
the definition of proper equations describing its time-space behavior. Since these
equations contain often differentials operators with linear or non linear depen-
dence between state variables and space-time coordinates analytical solutions can
be obtained only for very limited simplified cases. For the case of incompressible
Newtonian fluid flow and Fourier heat transfer, the equations governing velocity,
pressure and temperature field in steady conditions can be written as

∇ · u = 0 , (1.1)

u ·∇u = −1

ρ
∇p+ ∇ · [ν (∇u + ∇uT

)]
, (1.2)

u ·∇T = ∇ · (α∇T ) . (1.3)

The above set of equations contains the incompressibility constrain (1.1), a trans-
port equation for momentum (1.2) and a transport equation for thermal energy
(1.3), where u, T and p are fluid velocity, temperature and pressure and ρ, ν and
α fluid density, kinematic viscosity and thermal diffusivity, respectively. The sys-
tem is defined over a domain Ω enclosed by a boundary Γ. Numerical methods
have been developed with the intent to provide a way to compute a solution for a
system like (1.1-1.3). The most popular are the Finite Difference Method (FDM),
the Finite Volume Method (FVM) and the Finite Element Method (FEM). All these
methods are built to transform the differential problem into an algebraic one, from
a continuous to a discrete representation of (1.1-1.3). For any numerical approxi-
mation a discrete computational domain Ωh, made of C cells andN nodes is used.
With the FDM method the equations are solved on the N nodes of discretized Ωh

domain and derivatives are approximated by using Taylor series expansions. Both
FVM and FEM methods are based on the solution of equations in its integral form.
In the following a brief introduction on Finite Element Method is given since this
is the numerical method used for the solution of Partial Differential Equations in
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Chapter 1. Finite Element Method

FEMuS. Also this introduction on FEM will allows us to specify technical details
on numerical algorithms when this is required.

1.1 Mathematical formulation

1.1.1 Function spaces
Finite element method is based on the knowledge of functional analysis and func-
tion spaces. Function spaces are spaces where functions are characterized by com-
mon properties. Among all function spaces, vector spaces are of particular interest
for this work. Let us introduce the vector space as: V is a vector space if and only
if for any given f, g ∈ V , the following are verified

f + g ∈ V , (1.4)
αf ∈ V , (1.5)

with α being an arbitrary scalar value. We consider a domain Ω which is a bounded
subset of RN . The space Lp(Ω) of integrable function up to p-th power, over
domain Ω

Lp(Ω) :=

{
f :

∫
Ω

|f(x)|pdx <∞
}
, (1.6)

is a vector space. The space of continuous functions with continuous derivatives
up to k-th order, over domain Ω, is labeled as Ck(Ω). Among this class of space
functions, C0(Ω) and C∞0 (Ω) represent the space of continuous functions and in-
finitely differentiable functions, with vanishing value along boundary Γ. Sobolev
spaces Hk(Ω) are defined as spaces of functions belonging to L2(Ω) and with
derivatives belonging to L2(Ω) up to order k

Hk(Ω) :=
{
f : f ∈ L2(Ω) ∧ f i ∈ L2(Ω) ∀i ∈ [1, ..., k]

}
. (1.7)

Sobolev space H0(Ω) coincides with the space of integrable functions L2(Ω).
Function differentiability is here considered in a weak sense. The first order
derivative of the function f(x) is commonly defined, in a strong sense, as

f ′(x) = lim
|h|→0

f(x + h)− f(x)

|h| . (1.8)

In order to introduce the weak differentiability, we define the set of locally inte-
grable functions L1

loc(Ω) as [1]

L1
loc(Ω) := {f : f ∈ L1(K) ∀ compact K ⊂ interior Ω} . (1.9)
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1.1. Mathematical formulation

For a given function f ∈ L1
loc(Ω) a weak derivative Dwf exists if there exists a

function g ∈ L1
loc(Ω) such that∫

Ω

g(x)ψ(x) dΩ = −
∫

Ω

f(x)ψ′(x) dΩ , ∀ψ(x) ∈ C∞0 (Ω) . (1.10)

If such a g exists then Dwf = g. This definition is satisfied for standard differen-
tiable functions but it opens the possibility to extend the concept of derivative also
for wider class functions.

A norm can be defined for a generic vector space V(Ω) as a functional that
associates a real number to each function f(x) ∈ V(Ω). A norm must satisfy the
following properties

‖f‖ ≥ 0 , ∀ f ∈ V(Ω) and ‖f‖ = 0⇔ f = 0

‖αf‖ = α‖f‖ , ∀ f ∈ V(Ω) and α ∈ R
‖f + g‖ ≤ ‖f‖+ ‖g‖ , ∀ f, g ∈ V(Ω) .

For Ln(Ω) the natural norm can be defined as

‖f(x)‖Ln =

(∫
Ω

f(x)ndΩ

) 1
n

, (1.11)

while for H1(Ω) the natural norm is

‖f(x)‖H1 =

(∫
Ω

(
f(x)2 + f ′(x)2

)
dΩ

) 1
2

, (1.12)

and so on for the other Sobolev spaces. For further clarification the interested
reader can refer to [2]. A vector space endowed with the metric induced by its
norm is called a normed linear space. A complete space V is defined as a metric
space in which every Cauchy sequence {sj} of elements that belong to V con-
verges to an element s ∈ V . A Banach space is a normed linear space (V , ‖ · ‖)
which is complete with respect to the metric induced by its norm. It can be proven
that the Sobolev spaces defined above are all Banach spaces with respect to their
natural norms. A scalar product over a linear vector space V can be defined as a
bi-linear symmetric form that couples two elements a(x), b(x) ∈ V(Ω) with a real
number

〈a(x), b(x)〉 : V(Ω)× V(Ω)→ R (1.13)

9



Chapter 1. Finite Element Method

which satisfies the following properties

〈a(x), a(x)〉 > 0 , ∀ a(x) 6= 0

〈a(x), a(x)〉 = 0 , iff a(x) = 0

〈a(x), b(x)〉 = 〈b(x), a(x)〉 , ∀ a(x), b(x) ∈ V(Ω)

〈αa(x) + b(x), c(x)〉 = α〈a(x), c(x)〉+ 〈b(x), c(x)〉 ,
∀ a(x), b(x), c(x) ∈ V(Ω) and α ∈ R .

Scalar products for Sobolev spaces H0(Ω) and H1(Ω) can be easily defined as

〈f(x), g(x)〉H0 =

∫
Ω

f(x)g(x) dΩ , (1.14)

〈f(x), g(x)〉H1 =

∫
Ω

(f(x)g(x) + f ′(x) g′(x)) dΩ . (1.15)

As a general rule, a norm can be defined from each space specific scalar product,
i.e.

‖f(x)‖V = 〈f(x), f(x)〉
1
2
V . (1.16)

A Hilbert space is finally defined as a function space with a scalar product and
that is a Banach space with respect to the norm induced by its scalar product.
Hilbert spaces H are characterized by some important properties. Since they are
Banach spaces every Cauchy sequence of elements belonging to H converges to
an element ofH. We consider a subset {ei}∞i=1 of functions ei belonging toH. The
subset is called orthonormal if ||eα|| = 1 for all α and eα⊥eβ for any α 6= β. If
{ei}∞i=1 is an orthonormal subset then a general function f ∈ H can be expressed
with a convergent series

f =
∞∑
i=1

〈f, ei〉ei . (1.17)

The subset {ei}∞i=1 represents a basis forH. The above mentioned Sobolev spaces
Hk(Ω) are also Hilbert spaces.

1.1.2 Weak formulation
With the definitions given in the Section 1.1.1 it is possible to examine in which
function spaces the variables contained in the system (1.1-1.3) should belong.
From the incompressibility constrain (1.1) we have u ∈ C1(Ω) but from the mo-
mentum equation (1.2) u ∈ C2(Ω). For pressure and temperature fields we require

10



1.1. Mathematical formulation

p ∈ C1(Ω) and T ∈ C2(Ω). If the physical properties ν and α depend on space co-
ordinates they need to belong to C1(Ω). These requirements are quite strong and
they do not model a great number of real physical problem. Examples that does
not have this solution regularity are many, for example two phase flows with two
immiscible fluids with different viscosity µ, or cases with conjugate heat transfer
where the thermal conductivity α is discontinuous. Similarly to the definition of
differentiability in weak form, the weak formulation of a PDE is introduced to re-
duce function space requirements of the solved fields. The Weak formulation of a
PDE problem is obtained by multiplying the equation with a smooth test function
ϕ and then by integrating the product over the entire domain. We then have∫

Ω

∇ · uψdx = 0 , (1.18)

∫
Ω

u ·∇u ·ϕdx = −
∫

Ω

1

ρ
∇p ·ϕdx+

+

∫
Ω

∇ · [ν (∇u + ∇uT
)]
·ϕdx , (1.19)

∫
Ω

u ·∇Tϕdx =

∫
Ω

∇ · (α∇T )ϕdx . (1.20)

By using the divergence theorem, the diffusive contributions of (1.19) and (1.20)
can be rewritten leading to the following form∫

Ω

∇ · uψdx = 0 , (1.21)∫
Ω

u ·∇u ·ϕdx = −
∫

Ω

1

ρ
∇p ·ϕdx+

∫
Γ

[
ν
(∇u + ∇uT

)
· n̂
]
·ϕds

−
∫

Ω

[
ν
(∇u + ∇uT

)]
: ∇ϕdx , (1.22)∫

Ω

u ·∇Tϕdx =

∫
Γ

α∇T · n̂ϕds−
∫

Ω

α∇T ·∇ϕdx . (1.23)

It is then obtained that u ∈ H1(Ω), T ∈ H1(Ω), ν, α ∈ L2(Ω). Pressure field
should belong to H1(Ω), but if ∇p · ϕ is integrated by parts, then p ∈ L2(Ω).
A function space belonging is determined also for test functions ψ, ϕ and ϕ:
ψ ∈ L2(Ω), ϕ ∈ H1(Ω) and ϕ ∈ H1(Ω). With integrals calculated over domain
boundary Γ it is possible to impose boundary conditions. Boundary conditions are
then classified as natural or essential. In the first case they directly appear within
the equation, as for the case of imposed heat flux of viscous stress with terms∫

Γ

α∇T · n̂ϕds ,
∫

Γ

[
ν
(∇u + ∇uT

)
· n̂
]
·ϕds .

11



Chapter 1. Finite Element Method

The Dirichlet boundary conditions are classified essential since they modify the
test function space in an essential way. A variable value fixed along a boundary
Γd is an essential boundary condition which requires vanishing test function ϕ
on Γd. If a Dirichlet boundary condition is set for temperature field on Γd then
ϕ ∈ H1

Γd
(Ω). Essential boundary conditions therefore lead to a modification of

function space where test functions belong.

1.1.3 The Finite Element
The definition of finite element based on Ciarlet’s book can be expressed in the
following way [3].
Definition Let

i) Ωc ⊆ Rn be a bounded closed set with nonempty interior and piece-wise
smooth boundary (the element domain),

ii) P be a finite-dimensional space of functions on Ωc (the shape functions)
and

iii) S = {S1, S2, ..., Sk} be a basis for P ′ (the set of nodal variables)

then (Ωc, P , S) is called a finite element. The element Ωc upon which basis
functions are defined is labeled as canonical element. Different types of canonical
elements can be defined, depending on the space dimension and on the Ωc shape.
The reference domain element Ωc and the basis functions are defined a priori, in a
sense that are independent from the geometry being studied. When the real domain
Ω is discretized into Ωh and has to be approximated with finite elements, then for
each element Ωh

j of Ωh a transformation of coordinates is performed π : Ωh
j → Ωc.

This procedure allows to define an element where basis functions can be easily
constructed and integrals can be easily calculated with the Gaussian quadrature.
A very popular family of finite elements is the Lagrangian one. Starting from the
mono-dimensional case, the canonical finite element is defined with coordinate
ξ in the interval [−1, 1]. Construction of a piece-wise constant basis function
ϕ0(ξ) is a trivial task as ϕ0(ξ) ∀ξ ∈ [−1, 1]. Basis functions have to be built
with constraints, in particular they need to be linearly independent and the sum
of all the basis functions, on each point of the canonical element, must be equal
to 1. Linear and quadratic basis functions ϕ1(ξ) and ϕ2(ξ) may be constructed as
follows

ϕ1
0(ξ) =

1

2
(1− ξ) , (1.24)

ϕ1
1(ξ) =

1

2
(1 + ξ) , (1.25)

12



1.1. Mathematical formulation

−1 0 1

ξ
−1 0 1

ξ

Figure 1.1: Mono dimensional canonical elements for linear and quadratic ap-
proximation.

−1 0 1

ξ

−1

0

1

η

−1 0 1

ξ

−1

0

1

η

Figure 1.2: Two dimensional canonical elements for linear and quadratic approx-
imation.

and

ϕ2
0(ξ) = −1

2
(1− ξ)ξ , (1.26)

ϕ2
1(ξ) =

1

2
(1 + ξ)ξ , (1.27)

ϕ2
2(ξ) = (1 + ξ)(1− ξ) . (1.28)

For the linear case the nodes of the domain element are N1
0 := (ξ = −1) and

N1
1 := (ξ = 1), while for the quadratic case the additional node N1

2 := (ξ = 0)
is used, as sketched in Fig. 1.1 where linear and quadratic canonical domain
elements, usually referred to EDGE2 and EDGE3, for one-dimensional case are
reported. With superscript 1 we refer to the dimension 1 of the geometry. It can
be easily seen that each basis function ϕoi is equal to one on the node where the
function is defined and zero on remaining nodes of the canonical domain element.
This properties guarantees the linear independence of the basis functions. For each
N1
i node of the canonical domain element, linear and quadratic basis function can

13
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ξ

−1

0

1

η

−1

0

1

ζ

−1

0

1

ξ

−1

0

1

η

−1

0

1

ζ

−1

0

1

Figure 1.3: Three dimensional canonical elements for linear and quadratic approx-
imation.

be calculated as

ϕ1
i (ξ) =

1

2
(ξiξ + 1) , (1.29)

ϕ2
i (ξ) =

(
1− 1

2
|ξi|
)[

(2|ξi| − 1)ξ2 + ξiξ + (1− |ξi|)
]
, (1.30)

where ξi is the coordinate value of the node upon which basis function ϕoi is de-
fined, i.e. ξ0 = −1 for node N1

0 . From these expressions, derivatives with respect
to ξ can be easily computed

dϕ1
i

dξ
=
ξi
2
. (1.31)

d2ϕ1
i

dξ2
= 0 , (1.32)

dϕ2
i

dξ
=

(
1− 1

2
|ξi|
)

[2(2|ξi| − 1)ξ + ξi] , (1.33)

d2ϕ2
i

dξ2
= 2

(
1− 1

2
|ξi|
)

(2|ξi| − 1) , (1.34)

Equations (1.29 – 1.34) are very useful for multi-dimensional canonical ele-
ments. Canonical elements for two and three-dimensional geometries are built
as an extension of mono-dimensional elements EDGE2 and EDGE3 to additional
coordinates η and ζ . Linear and quadratic Lagrangian canonical elements for two-
dimensional cases are made of 4 and 9 nodes respectively and are usually referred
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Figure 1.4: Comparison between linear (on left) and quadratic (on right) basis
functions ϕ1

1(ξ, η) and ϕ2
1(ξ, η) defined on node N2

1 .

to QUAD4 and QUAD9. In the reference system ξ − η the node N2
i (ξ, η) can be

obtained as N2
i (ξ, η) = (N1

k (ξ), N1
l (η)), resulting in

N2
0 := (−1,−1) , N2

1 := (1,−1) , N2
2 := (1, 1) , N2

3 := (−1, 1) , (1.35)

for canonical element QUAD4. Shape node functions for two-dimensional quadratic
elements QUAD9 and for three-dimensional elements HEX8 and HEX27 can be
easily derived, leading to elements represented in Fig. 1.2 and 1.3. Basis func-
tions can be calculated with the following expressions

Nd
i → ϕ1

i (ξ) =
d∏
j=1

1

2
(λiλ+ 1) , (1.36)

Nd
i → ϕ2

i (ξ) =
d∏
j=1

(
1− 1

2
|λi|
)[

(2|λi| − 1)λ2 + λiλ+ (1− |λi|)
]

(1.37)

where ξ is the vector of coordinates with dimension d and λj is the j-th coordinate
of ξ. This compact forms of linear and quadratic basis function, which is valid for
1D, 2D and 3D, can be easily implemented in a numerical code for the calculation
of basis functions and their derivatives with a unique expression. A graphical
comparison of linear and quadratic fields, for two-dimensional case, defined over
nodeN2

1 is given in Fig. 1.4. Therefore a function f = f(x) can be approximated,
on a discrete domain Ωd, as

f(x) =

nd∑
i=1

fiϕ(x) , (1.38)
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Chapter 1. Finite Element Method

where values fi are calculated as

fi = f(xi) ∀ xi ∈ Ωd , (1.39)

and nd is the number of nodes used to discretize the real domain Ω.

1.2 Navier Stokes discretization

The variational formulation of the Navier-Stokes equation can be written as∫
Ω

∇ · uψdx = 0 ∀ψ ∈ L2(Ω) , (1.40)∫
Ω

u ·∇u ·ϕdx =

∫
Ω

1

ρ
p∇ ·ϕdx−

∫
Ω

[
ν
(∇u + ∇uT

)]
: ∇ϕdx

+

∫
Γ

[
ν
(∇u + ∇uT

)
· n̂− 1

ρ
pn̂

]
·ϕds ∀ϕ ∈ H1(Ω) , (1.41)

where the pressure contribution term has been integrated by parts. The discrete
variational formulation of the Navier-Stokes equation is obtained by approximat-
ing the continuous domain Ω with the discretized one Ωh and by introducing finite
dimensional function spaces hL2(Ωh) ⊆ L2(Ω) and hH1(Ωh) ⊆ H1(Ω). In the
discrete space the unknown functions u and p are restricted to a finite set of un-
known values defined on Nh nodes of Ωh. The discrete weak formulation is then
simply obtained as∫

Ωh

∇ · uψdx = 0 ∀ψ ∈h L2(Ωh) , (1.42)∫
Ωh

u ·∇u ·ϕdx =

∫
Ωh

1

ρ
p∇ ·ϕdx−

∫
Ωh

[
ν
(∇u + ∇uT

)]
: ∇ϕdx

+

∫
Γh

[
ν
(∇u + ∇uT

)
· n̂− 1

ρ
pn̂

]
·ϕds ∀ϕ ∈h H1(Ωh) . (1.43)

Since (1.42 – 1.43) are valid for each test function ψ, ϕ belonging to hL2(Ωh)
and hH1(Ωh), a system of N h equations can be written by taking the discrete
variational formulation (1.42 – 1.43) for each test function defined on the discrete
domain. Once that u and p have been written with their finite element representa-
tion

u(x) =

Nh∑
i=1

uiϕi(x) , p(x) =

Nh∑
i=1

piψi(x) , (1.44)
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1.2. Navier Stokes discretization

then the system of equations can be written in matrix from as(
A B
BT C

)(
uh
ph

)
=

(
fu
fp

)
, (1.45)

Where uh and ph are ordered arrays representing the unknown velocity and pres-
sure values, A is a squared matrix whose coefficients Ai,j express a dependence
between velocity component values uh,i and uh,j , B is a matrix that relates ve-
locity to pressure and C is a squared matrix containing non null coefficients only
in the case that Dirichlet boundary conditions are imposed for pressure field. For
the Navier-Stokes equation many boundary conditions can be formulated. The
integral over boundary Γ of equation (1.43) can be written as∫

Γh

[
ν
(∇u + ∇uT

)
· n̂− 1

ρ
pn̂

]
·ϕds =

∫
Γh

[(σ · n̂) ·ϕ] ds =

=

∫
Γh

[(
τ − 1

ρ
Ip

)
· n̂
]
·ϕds , (1.46)

where I is the identity matrix. Some of them are defined below, with n̂ and t̂ being
unit vectors in normal and tangential direction of boundary side Γ

• Fixed velocity: all velocity components are set with Dirichlet boundary con-
dition,

• Pressure inlet/outlet: Dirichlet boundary condition on pressure and u · t̂ = 0

• No stress: (σ · n̂) · n̂ = 0 and (σ · n̂) · t̂ = 0,

• Slip: u · n̂ = 0 and free stress along tangential direction, i.e. (σ · n̂) · t̂ = 0,

• Stress: u·n̂ = 0 and prescribed stress along tangential direction, i.e. (τ · n̂)·
t̂ = λ,

• Outflow: Fixed pressure value and free stress along tangential direction,
(τ · n̂) · t̂ = 0.

Imposition of these boundary conditions can appear as a trivial task when bound-
ary sides are oriented as the reference frame, but can be quite a complex task for
the case of tilted boundaries. Since many boundary conditions set restrictions on
values assumed by certain variables along normal or tangential direction of bound-
ary sides, it is convenient to decompose velocity field u as sum of a normal vector
u⊥ and a parallel vector u‖, calculated as

u⊥ = (u · n̂)n̂ , u‖ = (u · t̂)̂t . (1.47)

In the light of above mentioned effects of Dirichlet boundary conditions on test
function belonging space, for the discretization of Navier-Stokes equation Hilbert
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Chapter 1. Finite Element Method

Figure 1.5: Channel mesh for the benchmark of Navier-Stokes discretization.

spaces H1
Γ⊥

(Ω) and H1
Γ‖

(Ω) are defined as spaces H1(Ω) of vector functions ϕ
whose normal and parallel components to boundary Γ are zero on Γ, so

u · n̂ = 0 on Γ→ ϕ ∈ H1
Γ⊥

(Ω) , (1.48)

u · t̂ = 0 on Γ→ ϕ ∈ H1
Γ‖

(Ω) . (1.49)

From (1.43) one can see that the variational formulation of Navier-Stokes equation
becomes a scalar equation. For a two-dimensional case, it is common to use test
functions ϕ calculated as

ϕ = ϕ

(
1
0

)
, ϕ = ϕ

(
0
1

)
, ϕ ∈ H1(Ω) . (1.50)

Therefore two separate equations for velocity components u and v, u = (u, v),
can be written. On those boundaries where either conditions (1.48) or (1.49) are
set it is convenient to use the following expressions

ϕ = ϕ

(
n1

n2

)
, ϕ = ϕ

(
t1
t2

)
, ϕ ∈ H1(Ω) ,

where n1, n2 and t1, t2 are the components of unit vectors n̂ and t̂ respectively.
In this way a linear combination of equations for u and v is operated, obtaining an
equation for tangential or normal velocity component, depending on the imposed
boundary condition in order to satisfy the requirements on test function space. As
a simple benchmark test it may be considered the case of tilted plane channel.
Starting from an initial velocity profile aligned with channel axis, if the same
boundary conditions are imposed on wall sides then a symmetric solution should
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1.2. Navier Stokes discretization
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Figure 1.6: Velocity field (on left) and pressure field (on right), with respective
node values, for various boundary conditions set on wall and outlet sides. From
top to bottom: CASE A, CASE B and CASE C. Results obtained for Navier-Stokes
discretization using (1.50) on boundaries.
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Figure 1.7: Velocity field (on left) and pressure field (on right), with respective
node values, for various boundary conditions set on wall and outlet sides. From
top to bottom: CASE A, CASE B and CASE C. Results obtained for Navier-Stokes
discretization without using (1.50) on boundaries.
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1.2. Navier Stokes discretization

be achieved. A simple channel geometry consisting of a 2 × 2 QUAD9 elements
is simulated and sketched in Fig. 1.5. Wall, inlet and outlet boundaries is labeled
as Γw, Γi and Γo. For a given boundary Γa with normal and tangent unit vectors n
and t respectively, we introduce the following test function spaces:

H1
Γa,⊥(Ω) ⊂ H1(Ω) : ϕ ∈ H1

Γa,⊥(Ω) iff ϕ ∈ H1(Ω) ∧ϕ · n = 0 , (1.51)

H1
Γa,‖(Ω) ⊂ H1(Ω) : ϕ ∈ H1

Γa,⊥(Ω) iff ϕ ∈ H1(Ω) ∧ϕ · t = 0 . (1.52)

Three different cases are considered:

• CASE A: the simplest one, with no slip boundary condition on wall surfaces
and outflow on outlet section. This combination of b.c. does not set any
particular restriction on test function components along boundary normal
and tangential directions. The function space is then ϕ ∈ H1

Γw
(Ω), i.e.

ϕ = 0 along boundary Γw.

• CASE B: a stress boundary condition is set on wall boundaries and out-
flow on outlet section. Stress boundary condition implies that velocity field,
on Γw, has a zero component along wall normal direction, so that ϕ ∈
H1

Γw,⊥
(Ω).

• CASE C: a stress and pressure outlet boundary conditions are set on wall and
outlet sections respectively. In addition to the restriction set in case CASE B,
a zero tangential component of velocity field is imposed on outlet section,
so ϕ ∈ H1

Γw,⊥,Γo,‖
(Ω).

Results obtained with Navier-Stokes discretization discussed above, for the three
different cases, are reported in Fig. 1.6. In particular, on the left velocity field
with node values are reported on the left of the Figure, while on the right pressure
values together with pressure field are shown. It can be seen that symmetry is
preserved for each case, as expected.

Results for the same cases, obtained without using the test functions defined as
in (1.50) on boundary sides, are reported in Fig. 1.7. It can be seen that for CASE

A symmetry is obtained, as expected since no particular restriction is set on ϕ.
For case CASE B a slight non symmetry in the velocity field modulus is observed,
and it is more marked for CASE C. Boundary conditions described above can be
extended to three-dimensional cases. While for two-dimensional cases tangent
direction is uniquely defined, in three-dimensional cases two families of tangent
directions t̂1 and t̂2 can be defined imposing t̂1 · t̂2 = 0. More elaborate boundary
conditions can then be thought, in particular if t̂1 is taken parallel to mean flow
direction and t̂2 as t̂2 = n̂ × t̂1. In particular stresses τ can be applied on the
direction parallel to mean flow, t̂1, or along tangent direction t̂2. Different cases
of stress are then considered
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Chapter 1. Finite Element Method

Figure 1.8: Tilted cylinder geometry used to test Navier-Stokes discretization.

• (τ · n̂) · t̂1 = λ|u · t̂1| wall stress proportional to velocity component along
mean flow direction. This stress can be applied either to increase or to de-
crease velocity component u · t̂1.

• (τ · n̂) · t̂2 = λ|u · t̂1| stress imposed to accelerate or decelerate velocity
component u · t̂2 along direction t̂1, inducing a rotation in the resulting
velocity field.

The above mentioned boundary conditions are tested in a three-dimensional sim-
ulation of a tilted cylinder, as shown in Fig. 1.8, with a mesh made of 40 HEX27
cells. Two different cases are analyzed where symmetric solutions are expected.
In Fig. 1.9 result are reported for the case of pressure outlet boundary condition,
on outlet section, and decelerating stress (τ · n̂)· t̂1 = λ|u· t̂1| boundary condition
on wall surfaces. For convenience the velocity field is decomposed as sum of u‖
and u⊥, where the first is the velocity field aligned with cylinder axis and the latter
is the velocity field that lays on cylinder cross sections. Being ĉ the unit vector
aligned with cylinder axis, the two velocity fields are obtained as

u‖ = (u · ĉ)ĉ , u⊥ = u− u‖ . (1.53)

On top of Fig. 1.9 velocity field vectors are reported, while on bottom fields
of u‖ and u⊥ are shown with representative numerical node values to see that a
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1.2. Navier Stokes discretization

Figure 1.9: Results for tilted cylinder simulation with induced rotating secondary
flow boundary condition. On top velocity field decomposition into u‖ and u⊥. On
bottom outlet view of u‖ (on left) and u⊥ (on right) values.

symmetric solution has been obtained. Pressure outlet boundary condition require
u⊥ to be zero. On wall surface the stress boundary condition leads to decreasing
u‖ values along the stream-wise direction. For velocity field u⊥, a stress condition
in the form (τ · n̂) · t̂2 = λ|u · t̂2| has been seen. Depending on the sign of λ,
the condition would lead to a decrease or an increase of (u · t̂2)̂t2 velocity field.
For the case of cylinder geometry a null velocity field (u · t̂2)̂t2 is obtained for a
sufficiently high value λ. In particular, if a very high value of lambda is set, then
the stress boundary condition can be used to set a zero value of (u · t̂2)̂t2 in a weak
sense.

Results for the case of stress boundary condition (τ · n̂) · t̂2 = λ|u · t̂1| applied
on wall surface and outflow b.c. on outlet section are shown in Fig. 1.10. For
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Chapter 1. Finite Element Method

Figure 1.10: Results for tilted cylinder simulation with induced rotating sec-
ondary flow boundary condition. On top velocity field decomposition into u‖ and
u⊥. On bottom outlet view of u‖ (on left) and u⊥ (on right) values.

velocity component (u · t̂1)̂t1 a no stress boundary condition has been set on the
wall. On the top of Fig. 1.10 the decomposition of the velocity field as sum of u‖
and u⊥ is represented with vectors for each velocity field. As already mentioned
before, this stress boundary condition induces a rotating velocity field on cylinder
cross section and the magnitude of u⊥ increases along stream-wise direction. As
one can see from the outlet section on the bottom of Fig. 1.10 the u‖ and u⊥
values reported are symmetric.
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Chapter 2

Computational platform

Nowadays the rapid increase of available computational power allows scientists
and engineers to perform numerical simulations of complex systems that can in-
volve many scales and several different physical phenomena. During the years,
many numerical codes have been developed to solve different problems ranging
from physics and mathematics to engineering and biology. In Fig. 2.1 some
open-source codes are reported with relative physical modeling. Among them
OpenFOAM, TrioCFD and Saturne are specialized for fluid dynamic simulations,
with modules for compressible and incompressible Navier-Stokes equations, mul-
tiphase flows and turbulence models [4, 5, 6]. Code-Aster [7] contains thermo-
mechanical solvers to study elasticity problems, fracture propagation, effect of

OpenFOAM

TrioCFDSaturne

Aster

Dragon Donjon

Neutronics

FluiddynamicHeattransfer

MultiphaseMechanics

Combustion

Figure 2.1: Available open source codes with relative implemented physical prob-
lems.
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OpenFOAM

TrioCFDSaturne

Aster

Dragon Donjon

Neutronics

FluiddynamicHeattransfer

MultiphaseMechanics

Combustion

Codecoupling

Figure 2.2: Data exchange diagram of numerical code coupling.

nuclear irradiation and many others. Dragon and Donjon codes are used to solve
neutronic problems [8]. In particular the first code solves the neutron transport
equation on fuel assembly geometries and allows to calculate nuclear properties
such as cross sections. Donjon code is used to solve neutron multi-group diffu-
sion equations on wider geometries. Many codes are available, with overlapping
physical model “areas”, but none of them allows to simulate a highly complex
problem involving structural mechanics, fluid flow, heat transfer and neutron dif-
fusion. Researchers and scientists can follow different approaches to deal with
a highly complex simulation. One main approach is to develop a new numerical
code where all the physical phenomena of interest are modeled. Another possi-
bility is to couple already existing and validated codes. With the first option a
huge amount of time and effort are needed to create such a code while with the
latter it is possible to take advantage of validated codes and expertise developed
in years. From the computational platform point of view, development of numer-
ical codes can be performed where needed, avoiding overlapping areas between
different codes. The data exchange diagram of numerical code coupling is shown
in Fig. 2.2 where the possible interaction among different physical problems is
shown. It is clear that with the coupling modeling approach, efficient methods for
data exchange are needed so that code communication does not act as a bottleneck
and does not reduce simulation performances. The design of a “computational en-
vironment” where complex physical phenomena can be modeled is a major scope
of this PhD work, alongside with turbulence modeling. Within the platform the
numerical codes are added as “modules”, their execution is controlled and the data
exchange is organized. Since the final goal is to simulate turbulent flows of low
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Solver for:
Heat Transfer
Incompressible Navier Stokes
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Adjoint control problems
Fluid Structure Interaction
Multiphase flow

Data Exchange

Figure 2.3: Coupling between FEMuS and OpenFOAM codes.

Pr fluids, a coupling between FEMuS [9] and OpenFOAM [4] codes has been
realized. In this way the thermal turbulence modeling implemented in FEMuS
[10, 11, 12] can be coupled with the wide choice of dynamical turbulence models
implemented in OpenFOAM, as has been considered in Chapter 6. A schematic
representation of the coupling between the two different codes and of the sev-
eral modules implemented in OpenFOAM and FEMuS is given in Fig. 2.3. The
developed computational platform can be found at [13].

In this Chapter the problem of numerical code coupling is addressed in or-
der to realize the computational platform. After a brief introduction on the SA-
LOME platform, the coupling methods used in this thesis are explained, together
with routines that have been developed to facilitate the data exchange between dif-
ferent codes. Particular attention is paid to FEMuS and OpenFOAM codes, since
they have been used to perform the simulations discussed in this thesis. A case
of natural convection in a square cavity is used to test the coupling procedure be-
tween FEMuS and OpenFOAM, providing guidelines that have been used also for
the simulation of turbulent flows over vertical backward facing step, as discussed
in Chapter 6.

2.1 SALOME Platform

Numerical platform SALOME has been developed by Commissariat à l’énergie
atomique (CEA) and Électricité de France (EDF) with the intent to provide an ad-
vanced open-source platform for Computer Aided Engineering (CAE) purposes
[14]. Moreover SALOME platform aims at offering means that can be used as
a standard for numerical code integration and coupling. Among the many mod-
ules integrated within SALOME platform, the most important ones are GEOM,
for the creation of CAD models, MESH, for the realization of computational grids
and PARAVIS, a software for data visualization and post processing. Additional
modules are YACS, for numerical code execution control and data exchange orga-
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Figure 2.4: Layer architecture of MED library. Image taken from http://docs.

salome-platform.org/latest/dev/MEDCoupling/library.html

nization into a workflow, and MED, a very interesting library for data storage and
manipulation that will be described in the following. From this brief description of
SALOME platform it is clear that the platform can be used to deal with each com-
putational simulation step, i.e. geometry and mesh generation, code(s) execution
and solution visualization.

MED module. The MED module is referred to as a standard mean to handle nu-
merical fields and meshes. Three main libraries are provided. The “MED file” is
a C and Fortran API that implements functions for reading and writing fields and
meshes on file. The produced files, with .med extension, are based on HDF format,
which is an efficient format for storing large amount of data. The “MED mem-
ory” is a C++ and python API that allows to store meshes and fields in computer
memory. A numerical field can then be read from file, using MED file library,
and stored in memory by using MED memory library. A huge set of functions
is provided with MED memory library. They are used to access, modify, create
meshes and perform operations on fields. With the MED memory library data
exchange between numerical codes can be performed at memory level, avoiding
read/write operations and data access on hard disk, which would act as a bottle-
neck to simulation performances. Finally the MED CORBA is an application pro-
gramming interface (API) written to facilitate the distributed computation inside
SALOME platform, providing functions for data accessing. MED module is also
present at a Graphical User Interface level and contains a set of functions that al-
lows to perform data manipulation on data stored in med file format. When MED
library is observed with deeper detail, than its layer structure can be sketched, as
in Fig. 2.4. In this Figure each block depends on the block it covers along the
vertical line. Therefore ParaMEDLoader functions depend from the MEDLoader
library that depends from MEDFicher and so on. It is easy to see that the whole li-
brary is written in C++ and depends from its standard library. The most important
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DRIVER

PROBLEM

EQUATIONS
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GRIDS

Figure 2.5: Sketch of code optimal structure for integration in the computational
platform.

modules are MEDLoader, MEDCalc, Remapper, MEDCoupling and InterpKer-
nel. MEDLoader provides functions for input/output of fields and meshes in med
file format. The module is based on Medfichier, the MED file format, that writes
and reads on hfd5 format. MEDCalc module is the GUI mentioned above, while
MEDCoupling contains functions for arithmetic operations and interpolation. In
particular interpolation can be made using InterpKernel functionalities for point
location algorithms and determination of mesh overlapping, i.e. cell intersections.
Remapper class actually performs the field transfer from source to receiver sup-
port.

2.2 Code optimal structure and interfaces
The optimal structure of a numerical code, for its integration on the computational
platform, is here discussed [15, 16]. Five representative classes are introduced to
depict the basic functions needed to implement the code inside the computational
platform and control its execution. These five are labeled as driver, problem, equa-
tions, grids, methods. The code structure is sketched in Fig. 2.5. The structure
follows a top-bottom hierarchical order, with driver class being the top level one.
This class directly communicate with the supervisor, which can be SALOME plat-
form, if YACS module is used to organize the data exchange workflow, or simply
the main function of a C++ program. The problem class is specialized for differ-
ent physics and should contain three basic functions: setType, setMesh and solve.
The first command sets the problem type (Navies-Stokes, energy, etc.), the second
one sets and prepares the mesh that should be available in both MED and code
specific formats for data exchange and, finally, the solve command controls the
solution of the discrete system. The equations class inherits the system particular

29



Chapter 2. Computational platform

Supervisor

Code 1

Balance
EQ. 1D

Momentum,
Energy

Code 2

Balance
EQ. 3D

u, T, K,
Ω, Kθ, Ωθ

get ←
set →

ΩH .∗
ΩH .med

get ←
set →

Ω1D.∗
Ω1D.med

Figure 2.6: Example of workflow between two different codes controlled by a
supervisor.

Figure 2.7: Different cells and nodes numbering between code grid Ω and inter-
face MED duplicate Π.

class which contains the assembly and solver of the generic code. The solution is
here user accessible and a field can be extracted or set by using methods class with
specific functions setField and getField. Finally the grids class is an extension of
the mesh class, contained inside problem, and allows the exchange of data between
different mesh formats, i.e. the code specific one and MED. The representation of
the workflow followed during a coupling operation is reported in Fig. 2.6. Code
2 and Code 1 are communicating in a process where a numerical field is extracted
from Code 2 and given to Code 1. At Supervisor level, through the driver class,
the solution is stored into a MED duplicate of Code 2 mesh, created by grids class,
by getField function of methods class. The numerical field is now available in
computer memory as a MED memory object and, with an inverse process, can be
stored as solution of Code 1 after a proper field manipulation has been done at
Supervisor level. It is then convenient to introduce code interfaces: these objects
mix the functionalities of both grids and methods class. An interface is created
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Parallel
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MED FORMAT

Developed
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Codes to couple

Figure 2.8: Workflow for numerical code coupling between FEMuS and Open-
FOAM and developed utilities.

on a part of the computational grid Ω, that can be either a volume or a boundary
side. A MED grid duplicate Π of the interested mesh part is created together with
maps πi that allow to associate nodes and cells numbering of Ω to nodes and cells
numbering of Π, as described in Fig. 2.7. Through the interface object functions
getField and setField can be called so that a MED field can be obtained or set a
solution after a proper solution reordering with maps πi.

2.3 Developed routines

A closer view to the workflow occurring during code coupling is given in Fig.
2.8. Here Code 1 and Code 2 structures are replaced by FEMuS and OpenFOAM
with relative interface structures. Operations that take place at Supervisor level
are those standing on light blue background and are all defined on MED mem-
ory structures, while code own data format operation area is represented by light
red background. Interfaces are built to work between code own format and MED
data structure. The routines reported in this Figure have been developed during
this PhD study, namely Interface, Parallel Communicator and Data

Manipulator. Class Med file printer has also been developed as a wrap-
per of MED functions for printing meshes and numerical fields on file with .med
extension. From the simplified workflow depicted in Fig. 2.8 the important thing
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Figure 2.9: Example of different meshes that can be used when coupling two
different numerical codes. Colors show domain partitioning for parallel computa-
tion.

to notice is that the coupling procedure is not very intrusive, within the single
code, as the main modification that has to be made is the addition of the interface
class. The advantage of using MED data structure as a standard one is that the
above mentioned developed classes are not tailored for a specific code but can be
generally used where MED library is used. When performing a coupling between
different codes, as a general rule different meshes, i.e. with different space dimen-
sions, domain discretization and partitioning for parallel computation, are used.
An example is given in Fig. 2.9 where two different meshes are reported. By re-
ferring to FEMuS - OpenFOAM coupling described in Fig. 2.8, three-dimensional
mesh on the left of Fig. 2.9 is the one used in OpenFOAM as three-dimensional
computational grids are needed also for two-dimensional simulations, while the
grid on the right is the one used in FEMuS. The different colors show the domain
partitioning used for these two meshes. It is then necessary to provide means for
solution gathering and scattering, but also functions for data manipulation in order
to meet each code numerical scheme requirements. The first task is accomplished
by Parallel Communicator class that makes use of MPI library functions for
gathering and scattering MED fields and meshes on/to selected processors. The
latter task is handled by Data Manipulator. MED library offers several func-
tions for data manipulation and interpolation. In particular interpolation functions
are provided for P0 and P1 fields, i.e. piece-wise and node-wise with linear ap-
proximation, that can be either conservative or non conservative depending on the
expressed field nature, intensive or extensive and with maximum value preserving
or conservative integral value constrain. The offered algorithms can then be used
for P0 ↔ P0, P0 ↔ P1 and P1 ↔ P1. In Data Manipulator class a new
point-wise P2 ↔ P2 interpolation algorithm has been developed, together with
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Figure 2.10: Point-wise P2 ↔ P2 interpolation: target mesh node location on
source grid a) and interpolation, within canonical element, after position recon-
struction b).

a function for Gauss integration of P2 fields and a function for a conservative
transformation of P2 fields into P0 fields. These routines have been developed
since P2 approximation is widely used in FEMuS code and they will be used to
couple FEMuS and OpenFOAM codes, as will be shown in the following. A more
complete set of interpolation functions is then made available. It is remarked that
the developed routines can be generally used in presence of MED library.

2.3.1 Point-wise P2↔ P2 field projection
A projection function is needed when a source field Φs has to be interpolated from
the source mesh Ωs to a target grid Ωt in order to obtain target field Φt. The basic
idea is to calculate each Φt node value using finite element representation of Φs.
The P2P2 projection relies on a search point algorithm, where for each target
mesh node xtj the source mesh element Ωe

s containing xtj is determined, as shown
in Fig. 2.10 a). Then a reconstruction step is needed, in order to locate the xtj node
within Ω̃e

s which is the transformed Ωe
s element into canonical finite element Ωe.

The finite element representation of Φs can be used and interpolation weights can
be calculated. Finally the value of Φt on node xtj can be determined, as shown in
Fig. 2.10 b). Field projection can be expressed in matrix form as

Φt = PΦs , (2.1)

where Φs and Φt are the array containing the values of fields Φs and Φt calculated
on the nodes of Ωs and Ωt, respectively, and the matrix P is the projection oper-
ator. The implementation of the projection algorithm can be divided in two parts:
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the construction of P and the projection of Φs.

Inverse mapping

Let us consider two different discrete computational domains Ωs and Ωt divided
into N e

s and N e
t finite elements, respectively. Let xs and xt be the Ns and Nt

coordinates of the nodes in Ωs and Ωt, respectively. Let us also introduce a space
dependent scalar field

Φ = Φ(x) , (2.2)

where x is the spatial coordinate. A finite approximation of Φ is a vector Φ in
which (2.2) is evaluated over a discrete vector of coordinates. We can now intro-
duce Φs based on the nodes belonging to Ωs as

Φs = Φ(xs) . (2.3)

Now, we can evaluate s in any position through the approximation ss using

Φi(x) =

N es∑
e=1

ne∑
j=1

Φe
s,j(x

s,e
j )ϕej(x) , (2.4)

where xs,ej and ses,j are the values of xs and ss of the node j in the element e,
respectively. ϕej(x) are the approximation functions and ne is the number of nodes
that compose the element e. In our case those functions belong to the Lagrange
family and have different properties that allows them to approximate the solution.
Further information about different interpolating functions can be found in [17,
18]. It is convenient to introduce a local coordinate system in the element e so that
the interpolation functions have always the same expression. We now consider
the transformation π that transforms the local canonical element into the original
element, defined as

π =
ne∑
j=1

xejϕ
e
j(ξ

e
j) , (2.5)

where ξej are the coordinates of the points in the local system of reference. If
an isoparametric element formulation is adopted, then the transformation π is a
quadratic one and curved elements can be considered. If the source mesh Ωs is
made of straight elements, then a subparametric element formulation can be used,
with a linear transformation π [3]. Finally we can now approximate the field Φ(x)
and rewrite (2.4) as{

Φi(x) =
∑N es

e=1

∑ne
j=1 Φe

s,j(x
s,e
j )ϕej(ξ) ,

xs,ej = π(ξej) ,
(2.6)
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Figure 2.11: Reconstruction of node x position inside canonical element Ωe(ξ, η).

or

Φi(x) =

N es∑
e=1

ne∑
j=1

Φe
s,j(x

s,e
j )ϕej(π

−1(xs,ej )) . (2.7)

We can now define a projection operator that project the field Φs from Ωs to Ωt as

Φt = PΦs =

N es∑
e=1

ne∑
j=1

Φe
s,jϕ

e
j(π
−1(xt,ej )) . (2.8)

We remark that the interpolation functions are different from zero only inside the
element that contains the point on which the field is interpolated. The interested
reader can find more details on the interpolation of a computational field in [17,
18]. From equation (2.8) the mapping π is required to be invertible [3, 1].

Construction of operator P

This projection operator is a n×m matrix where n is the number of nodes in the
target mesh while m is the number of nodes of the source one. The i − th row
of P contains the coefficient that interpolates the field from some values of the
source mesh into the i− th node of the target one. In order to build the matrix P
we proceed as follows. For every node of the target mesh Ωt we find the cell (Ω∗s)
in the source mesh domain Ωs containing the selected node. This functionality is
provided by MEDCoupling library, as will be shown in the paragraph regarding
the numerical implementation of the P2P2 algorithm, and is based on intersection
calculation between cells and balls. Coordinates (ξ) of the selected node in the
canonical element transformation of Ω∗s must then be calculated. In some cases the
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calculation of (ξ) can be performed analytically but we use an iterative procedure
that can be generally applied [19]. With the symbol x we refer to the coordinates
of a node of Ωt and with x̃we indicate the coordinates evaluated with the canonical
coordinates ξ, so x̃ = x̃(ξ). A function f that represents the squared distance
between points x and x̃ can be usefully defined. In this way when f(ξe) = 0 then
(ξe) is the set of coordinates that exactly reproduces the node x in the canonical
element, as graphically shown in Fig. 2.11 where δ is the squared root value
of f . The function f is always positive and the tuple ξe represents an absolute
minimum of f , so f(ξe),i = 0 for each i = 1, . . . , nt where nt is the size of ξ
and f(ξe),i indicates the partial derivative of f with respect to the i-th coordinate
of the canonical element. The search of the coordinates ξ is then transformed into
a problem for the minimization of f . If we indicate with x̂i the set of nodes that
defines the element in the donor mesh Ωs containing x then f can be written as

f(ξ) =
d∑
j=1

[
xj −

n∑
i=0

x̂jiϕi(ξ)

]2

, (2.9)

where xj is the coordinate in the j-th direction and ϕi is the interpolating functions
defined on the i-th cell node. In (2.9) d denotes the space dimension and n the
dimension of the node set x̂i. The minimum of the function f is calculated with
a line search strategy where the descent direction is computed with a Newton’s
method. We start from an initial guess point ξ0 and then at the generic iteration k
the new point ξk is calculated as

ξk = ξk−1 + ∆ξ → ξk = ξk−1 − γH−1 ·∇f , (2.10)

where γ is equal to 0.5 and H is the Hessian matrix of f . The expression of the
first and second derivatives of f are respectively

f(ξ),l = −2
d∑
j=1

[(
xj −

n∑
i=1

x̂jiϕi(ξ)

)
n∑
i=1

x̂jiϕi,l(ξ)

]
(2.11)

and

f(ξ),lk = −2
d∑
j=1

[(
xj −

n∑
i=1

x̂jiϕi(ξ)

)
n∑
i=1

x̂jiϕi,lk(ξ)+

−
n∑
i=1

x̂jiϕi,l(ξ)
n∑
i=1

x̂jiϕi,k(ξ)

]
. (2.12)

The algorithm runs till iteration n is reached, namely when f(ξn) is smaller than
a threshold value. When the local coordinate of i-th target mesh node is found the
values of the interpolating functions on that node can be calculated and stored into
P .
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Figure 2.12: Point-wise interpolation example of a quadratic field Φs from a
source grid Ωs to a target Ωt.

Field Projection

Once that operator P has been built the field projection step is performed as
Φt = PΦs. If the projection algorithm is applied to a case where the mesh
changes with time then the operator P must be computed every time the projec-
tion step is performed, otherwise it can be just computed once. An example of
point-wise field interpolation is given in Fig. 2.12 where a source field Φs has
been interpolated from computational grid Ωs to a refined one Ωt. A success-
ful implementation of this projection algorithm has been provided in [20], where
a Fluid Structure Interaction (FSI) problem has been coupled with a Multiphase
problem. A moving mesh algorithm is in fact used for the FSI problem in order
to better represent the solid domain deformation, while a fixed Cartesian grid is
used to compute the advection of the phase field with Volume Of Fluid method
(VOF). The point-wise projection algorithm allows the projection of the velocity
field from the time changing mesh of the FSI problem to the structured Cartesian
grid of the VOF algorithm, for a more accurate prediction of multi-phase advection.
The test application in [20] involved projection over the entire simulated domain
but the algorithm can be used also for boundary field projection, as described in
[21], where a numerical code coupling between multidimensional domains has
been realized with decomposed domain method. In this case communication be-
tween different codes occur only on boundary interfaces. The algorithm has been
developed as a tool able to facilitate numerical code coupling but can be used
also within a code, allowing to change the mesh during the simulation, so that the
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Figure 2.13: Example of Galerkin interpolation of piece-wise into node-wise field
representing wall distance.

simulation can be started on a coarser grid and then continued on a finer one.

2.3.2 Galerkin point-wise projection

The algorithm described in the previous section can be used to project numerical
fields, with both P1 or P2 approximation, between different computational grids.
A different interpolation technique is the Galerkin projection scheme. This partic-
ular method can be retrieved from a reasoning in terms of L2 norm [22]. Again,
a generic field Φs, defined on a source computational domain Ωs with Ns basis
functions ϕs, needs to be interpolated on a target computational grid Ωt that is
made of Nt nodes and basis functions ϕt. Interpolated field Φt can be seen as the
optimal interpolation in the L2 norm, namely

(||Φs − Φt||)2 = min
Φ∈Vt

(||Φs − Φ||L2)2 , (2.13)

where Vt is the set of all possible fields that can be obtained as linear combination
of ϕt, i.e. Vt = span{ϕt}. Minimization of the L2 norm requires that the Nt
derivatives of ||Φs − Φ||L2 with respect to the coefficients of Φ are zero

∫
Ω

∂

∂Φi

(Φs − Φ)2dV = 0 . (2.14)
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Field Φ can be written as linear combination of basis functions ϕt, leading to∫
Ω

∂

∂Φi

(
Φs −

Nt∑
1

Φiϕ
i
t

)2

dV =

=

∫
Ω

2ϕit

(
Φs −

Nt∑
1

Φiϕ
i
t

)
dV = 0 ,

∀i ∈ {1, ...,Nt} , ϕit ∈ L2(Ω) . (2.15)

Equation 2.15 can be rewritten in terms of Φt, obtaining∫
Ω

ϕitΦtdV =

∫
Ω

ϕitΦsdV , ∀i ∈ {1, ...,Nt} , ϕit ∈ L2(Ω) . (2.16)

Equation (2.16) is known as Galerkin projection and is obtained through the min-
imization of the L2 norm of field difference between source Φs and interpolated
Φt fields. Differently from the algorithm previously described, Galerkin projec-
tion requires the solution of a system of equations, the discretized system obtained
from (2.16). The implementation of this interpolation scheme is not a straightfor-
ward task. Equation (2.16) can be rewritten by expanding both Φs and Φt with
relative basis functions ϕs and ϕt

Nt∑
j=1

∫
Ω

ϕitϕ
j
tΦ

j
tdV =

Ns∑
k=1

∫
Ω

ϕitϕ
k
sΦ

k
sdV , (2.17)

so that the final discretized system of equations is expressed as

AttΦt = AtsΦs . (2.18)

Particularly complex to compute is matrix Ats which contains products ϕitϕ
k
s ,

i.e. products between basis functions defined over different computational grids.
Much easier are the cases where computational grids Ωs and Ωt coincide or at
least one of them is a structured grid. In these cases Galerkin scheme can be used
to obtain point-wise fields as a result of piece-wise fields projection. An exam-
ple is given in Fig. 2.13 where a wall distance field, obtained as piece-wise field,
has been projected with (2.16) on the same computational grid. Following this
approach, a norm for H1(Ω) space can be written as

||f(x)||H1,γ =

(∫
Ω

[
(f)2 + γ(f ′)2

]
dx

)1/2

, (2.19)

with γ being a positive constant value. A Galerkin interpolation scheme can be
constructed from the minimization of the square of H1(Ω) norm ||Φs − Φt||H1,γ ,
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i.e.

(||Φs − Φt||)2 = min
Φ∈Vt

(||Φs − Φ||H1,γ)
2 =

= min
Φ∈Vt

∫
Ω

[
(Φs − Φ)2 + γ(∇Φs −∇Φ)2

]
dx (2.20)

In order for Φt to minimize the squared of norm ||Φs−Φt||H1,γ , the derivatives of
equation (2.20) with respect to all Φi

t coefficient must be equal to zero,

∂

∂Φi
t

∫
Ω

[
(Φs − Φ)2 + γ(∇Φs −∇Φ)2

]
dx = 0 ∀i ∈ {1, ...,Nt} , (2.21)

leading to the following system of equations∑
j

∫
Ω

γ∇ϕit ·∇ϕjtΦ
j
tdV +

∑
j

∫
Ω

ϕitϕ
j
tΦ

j
tdV =

=
∑
k

∫
Ω

γ∇ϕit ·∇ϕksΦ
k
sdV +

∑
k

∫
Ω

ϕitϕ
k
sΦ

k
sdV ,

∀i ∈ {1, ...,Nt} , ϕit ∈ H1(Ω) . (2.22)

While Galerkin interpolation (2.16) guarantees a conservation of source field inte-
gral value, the scheme (2.20) balances source field integral value conservation and
differentiation properties through weight coefficient γ, more commonly seen as a
diffusion coefficient in (2.22). For values of weight coefficient γ → 0 interpola-
tion scheme (2.16) is retrieved.

A reasoning in terms of L2 norm can be applied also to point-wise P2P2
interpolation. After recalling the finite element representation of source and target
fields Φs and Φt

Φs(x) :=
Ns∑
i=1

Φs
iϕi(x) , (2.23)

Φt(x) :=
Nt∑
j=1

Φt
jψj(x) , (2.24)

the following expression is obtained if interpolation scheme (2.8) is introduced in
(2.24)

Φt(x) =
Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x) . (2.25)

In the above equation the source mesh element containing j-th target mesh node
has been labeled with apex e. Source mesh element e contains nse nodes upon
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which basis functions ϕek are defined. We consider again the L2 norm of source-
target fields difference

||Φs − Φt||2 =

∫
Ω

( Ns∑
i=1

ϕi(x)Φs
i −

Nt∑
j=1

ψj(x)Φt
j

)2

dV , (2.26)

In order for the L2 norm to be minimum, the Nt derivatives of (2.26) with respect
to coefficients Φt

j must be zero. As target coefficients Φt
j have been expressed

as a linear combination source ones Φs
i , derivatives with respect to Φt

j reduces to
derivatives with respect to Φs

i . L2 norm (2.26) is rewritten as

||Φs − Φt||2 =

∫
Ω

( Ns∑
i=1

ϕi(x)Φs
i −

Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x)

)2

dV , (2.27)

so, for the minimization it is obtained

∂

∂Φs
l

∫
Ω

( Ns∑
i=1

ϕi(x)Φs
i −

Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x)

)2

dV =

=2

∫
Ω

{( Ns∑
i=1

ϕi(x)Φs
i −

Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x)

)
·

[
ϕl(x)− ∂

∂Φs
l

( Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x)

)]}
dV = 0 . (2.28)

The term within squared brackets becomes

ϕl(x)− ∂

∂Φs
l

( Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x)

)
= ϕl(x)−

Nt∑
j=1

ψj(x)ϕer(x) , (2.29)

where in local node numbering, within source mesh element Ωs
e, r-th node is as-

sociated to l-th node in global node numbering. Again (2.31) is simplified as

ϕl(x)−
Nt∑
j=1

ψj(x)ϕer(x) = ϕl(x)

(
1−

Nt∑
j=1

ψj(x)

)
, (2.30)

obtaining at last this final form of (2.28)∫
Ω

{( Ns∑
i=1

ϕi(x)Φs
i −

Nt∑
j=1

ψj(x)

nse∑
k=1

Φs,e
k ϕ

e
k(x)

)
·

ϕi(x)

(
1−

Nt∑
j=1

ψj(x)

)}
dV = 0 ∀i ∈ {1, ...,Ns} . (2.31)
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Minimization of L2 norm is then automatically verified as, from basis function
construction, on each point of the domain the sum

Nt∑
j=1

ψj(x) (2.32)

is equal to 1. Point-wise algorithm described in Section 2.3.1 allows to minimize
the L2 norm of field difference between source and target fields. With Galerkin
projection method a system of equation is solved to compute the set of coefficients
that allows to minimize the L2 norm. The key aspects of the two different methods
are seen below

Galerkin:
∫

Ω

ψit (Φt − Φs)︸ ︷︷ ︸
conservation

dV = 0 , (2.33)

Point-wise:

(
1−

Nt∑
j=1

ψj

)
︸ ︷︷ ︸

basis function contruction

·
∫

Ω

ϕis (Φt − Φs) dV = 0 . (2.34)

As reported above, with Galerkin projection the minimization of L2 norm of field
difference is obtained with a field conservation constraint. The terms within round
brackets in (2.34) has been taken out from the integral as the sum over basis func-
tions ψj is independent from spatial coordinates (x). This highlights the fact that
minimization of L2 norm is achieved as a consequence of basis function construc-
tion, independently form integral value, so field conservation is not guaranteed.
Point-wise algorithm should be used when projection is performed from a coarser
to a finer grid, while Galerkin method is an useful tool for projection in the op-
posite direction. Moreover, point-wise projection P2P2 algorithm can be imple-
mented as a function based on MED data format, while Galerkin method require
an implementation within the code in order to solve the system of equations.

Numerical implementation of P2P2 algorithm

The implemented algorithm can be used for point-wise projection on boundary
surfaces or volume domains, and for 1D, 2D and 3D geometries. In particular
both triangle and rectangle based elements are considered. As mentioned above,
the fundamental steps of the algorithm are

i) Point location

ii) Position reconstruction

iii) Interpolation weights calculation
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SourceMesh . g e t C e l l s C o n t a i n i n g P o i n t s (
NodesCoord ina t e s ,
NumOfNodes ,
To l l ,
P o s C e l l s ,
P o s C e l l s I n d e x

) ;
f o r ( i n t i =0 ; i<NumOfNodes ; i ++){

i n t NumPosCells = P o s C e l l s I n d e x−>g e t I J ( i +1 ,0 ) − P o s C e l l s I n d e x−>g e t I J ( i , 0 ) ;
f o r ( i n t j =0 ; j<NumPosCells ; j ++){

i n t C e l l I d = P o s C e l l s−>g e t I J ( P o s C e l l s I n d e x−>g e t I J ( i , 0 ) + j , 0 ) ;
}

}

Listing 2.1: MEDCoupling function to get list of possible source mesh cells con-
taining target mesh nodes

...

Ci
1

...

Ci
ni

...







...

ni
start

ni
end

...







PosCells PosCellsIndx

i

i+1

ni
end − ni

start

Figure 2.14: Reading ids of possible source mesh cells containing i-th target
mesh node from PosCells and PosCellsIndex arrays of Listings 2.1.

Step i) is performed using MEDCoupling function getCellsContainingPoints as re-
ported in Listings 2.1. SourceMesh is a MED mesh object and the functions takes
as input: NodesCoordinates, an array containing the coordinates of the nodes whose
position is to be searched, NumOfNodes, the total amount of nodes, so that the di-
mension of NodesCoordinates is equal to NumOfNodes multiplied by space dimension,
Toll, a tolerance factor used to determine cell belonging and two arrays, namely
PosCells and PosCellsIndex. The fist array contains all indices of possible source
mesh cells containing the NumOfNodes target mesh nodes. For the general i-th node
the total amount of possible cells is read from PosCellsIndex, in particular by ac-
cessing the values stored at i-th and i + 1-th position, as represented in Fig. 2.14.
The total amount is the calculated as PosCellsIndex[i+1] - PosCellsIndex[i] and the
indices are read from PosCellsIndex[i+1]-th and PosCellsIndex[i]-th positions of ar-
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D a t a M a n i p u l a t o r ∗ I n t e r p o l a t o r = new D a t a M a n i p u l a t o r (
SourceMesh , / / Source mesh i n med f o r m a t
TargetMesh , / / T a r g e t mesh i n med f o r m a t
DomainType / / Flag f o r volume or boundary i n t e r p o l a t i o n
) ;

P . c r e a t e I n t e r f a c e (
I n t e r I d , / / i n t v a l u e f o r i n t e r f a c e i n d e n t i f i c a t i o n
Group / / mesh group upon which i n t e r f a c e i s b u i l t

) ;
MEDCouplingFieldDouble ∗ S o u r c e F i e l d = P . g e t V a l u e s (

I n t e r I d , / /
SystemName , / / name o f e q u a t i o n s y s t e m where s o l u t i o n i s e x t r a c t e d
nComp , / / number o f components t o e x t r a c t
Firs tComp / / f i r s t component t o e x t r a c t

) ;
MEDCouplingFieldDouble ∗ T a r g e t F i e l d = I n t e r p o l a t o r−>I n t e r p o l a t e F i e l d ( S o u r c e F i e l d ) ;

Listing 2.2: Data Manipulator function for P2P2 interpolation

MEDCouplingFieldDouble ∗ T a r g e t F i e l d = I n t e r p o l a t o r−>I n t e r p o l a t e F i e l d (
S o u r c e F i e l d ,
v a l

) ;

Listing 2.3: Data Manipulator function for P2P2 interpolation with default value
for non-overlapped target nodes

ray PosCells. The right cell is found by solving the reverse mapping algorithm
described in Section 2.3.1. A set of coordinates ξ is determined: if the cell is the
right one then ξ coordinates satisfy the constrain of admissible coordinate values
in the canonical element, i.e.

Rectangle based ξi ∈ [−1− δ, 1 + δ] ,∀i = 1, ..., dim , (2.35)
Triangle based ξi ∈ [0, 1 + δ] ,∀i = 1, ..., dim , (2.36)

where δ is a small tolerance factor used in the algorithm. Point reconstruction
step is then used to determine the right source mesh cell containing the target
node and to calculate the coordinates representing the target mesh node in the
canonical element transformation of the source mesh cell. An example of the use
of interpolation function is given in Listings 2.2. When DataManipulator class

MEDCouplingFieldDouble ∗ T a r g e t F i e l d = I n t e r p o l a t o r−>I n t e r p o l a t e F i e l d (
S o u r c e F i e l d ,
T a r g e t F i e l d B

) ;

Listing 2.4: Data Manipulator function for P2P2 interpolation. For non-
overlapped target nodes the values is set from another field.
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D a t a M a n i p u l a t o r I n t e g r a t o r ;
P . c r e a t e I n t e r f a c e (

I n t e r I d , / / i n t v a l u e f o r i n t e r f a c e i n d e n t i f i c a t i o n
Group / / mesh group upon which i n t e r f a c e i s b u i l t

) ;
MEDCouplingFieldDouble ∗ S o u r c e F i e l d = P . g e t V a l u e s (

I n t e r I d , / /
SystemName , / / name o f e q u a t i o n s y s t e m where s o l u t i o n i s e x t r a c t e d
nComp , / / number o f components t o e x t r a c t
Firs tComp / / f i r s t component t o e x t r a c t

) ;
double I n t e g r a l V a l u e = I n t e g r a t o r . I n t e g r a t e ( S o u r c e F i e l d , Method ) ;

Listing 2.5: Data Manipulator function for calculation of solution integrals with
Gauss method

is used to perform P2P2 interpolation then source and target meshes are given
in order to build the projection operator P . Meshes can then be updated if they
change with time with a proper function. The function reported in Listings 2.2 is
used when source and target mesh completely overlap. In the opposite case the
function can be called with additional parameters, namely as defined in Listings
2.3 and 2.4. In the first case a default value val is set on those target mesh nodes
that belong to no source mesh cell. In the latter case, for the same nodes, the
written value is taken from field TargetFieldB that is thus defined on target mesh.

2.3.3 Gauss integration of P2 fields
When a numerical coupling is realized between a multidimensional code and a
system code, then the different dimensions of the equations is a problem to be
solved, since the system code is based on a single coordinate along the axial posi-
tion of the system. With defective coupling technique, source terms are calculated
from multidimensional code solution to be used within system code equations in
order to improve the code results [15, 16, 21, 23]. Source terms are usually cal-
culated from mean integral values of the multidimensional code solution. When
the solution is extracted in MED data format through a proper interface then the
integral value can be easily calculated by following the operations described in
the brief example reported in Listings 2.5. With the Method flag different types
of integrals can be computed: integral value, mean integral value, L2 norm, bulk
value (if an additional field containing velocity field is given in input) but also the
volume of the geometry defined by the grid of SourceField.

2.3.4 Generation of P0 fields
This routine has been developed to obtain piece-wise fields from point-wise fields.
In Listings 2.6 an example is shown for the function usage, i.e. GetCellField from
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D a t a M a n i p u l a t o r I n t e g r a t o r ;
P . c r e a t e I n t e r f a c e (

I n t e r I d , / / i n t v a l u e f o r i n t e r f a c e i n d e n t i f i c a t i o n
Group / / mesh group upon which i n t e r f a c e i s b u i l t

) ;
MEDCouplingFieldDouble ∗ S o u r c e F i e l d = P . g e t V a l u e s (

I n t e r I d , / /
SystemName , / / name o f e q u a t i o n s y s t e m where s o l u t i o n i s e x t r a c t e d
nComp , / / number o f components t o e x t r a c t
Firs tComp / / f i r s t component t o e x t r a c t

) ;
MEDCouplingFieldDouble ∗ P 0 F i e l d = I n t e g r a t o r . G e t C e l l F i e l d ( S o u r c e F i e l d ) ;

Listing 2.6: Data Manipulator function for generating P0 fields from point-wise
fields.

a) b)

Figure 2.15: Generation of piece-wise field a) starting from a node-wise source
field b).

class Data Manipulator. A field Φ̃ is obtained starting from a source one Φ. The un-
derlying mesh of the two fields is the same. For each cell Ωj of the computational
grid the piece-wise value Φ̃j is calculated as mean integral value of Φ, so

Φ̃j =
1∫

Ωj
dx

∫
Ωj

Φdx . (2.37)

A graphical example of the obtained field is shown in Fig. 2.15. The routine can
be used when coupling a finite element code with a finite volume code.

2.4 Natural convection in a squared cavity
In the present section the natural convection in a squared cavity is studied by
means of a numerical code coupling between Finite Element (FEM) code FEMuS
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T=ThT=Tc

∇T · n̂ = 0

∇T · n̂ = 0

g

x∗

y∗

Figure 2.16: Sketch of the simulated domain for the natural convection case in
squared cavity.

and Finite Volume (FVM) code OpenFOAM. Since the simulated case is a simple
and well studied case [24, 25], it allows to better understand how to realize the
code coupling between FEMuS and OpenFOAM, in particular in terms of data
manipulation. As will be later discussed, many strategies can be used to convert
a quadratic node-wise solution from FEMuS grid to OpenFOAM one and vice-
versa. Attention is paid to grid resolutions and to the effects of the coupling pro-
cedures on final solutions. For the natural convection case the coupling between
the two codes is realized on the whole simulated domain. Laminar Navier Stokes
system of equation is considered, with Boussinesq approximation for the buoyant
term, namely

∇ · u = 0 , (2.38)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇P+

+ ∇ · [µ (∇u + ∇uT
)]

+ ρgβ(T̃ − Tref )︸ ︷︷ ︸
coupling term

, (2.39)

ρCp

(
∂T

∂t
+ u ·∇T

)
= k∇2T . (2.40)

The system of equations (2.38–2.40) is solved with both FEMuS and OpenFOAM
codes. As reported in (2.39), the temperature field used to calculate the buoyancy
force acts as coupling term between the two different codes. Three different cases
are considered, namely
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Grid resolution 20× 20 40× 40 80× 80

Color line

Table 2.1: Grid resolutions and relative line colors for natural convection results.

a) Uncoupled case

b) FEMuS temperature field in OpenFOAM buoyancy force term

c) OpenFOAM temperature field in FEMuS buoyancy force term

The simulated domain is sketched in Fig. 2.16. On wall surface located on the
right a uniform temperature value Th is set, while on left wall surface a temperature
value Tc is imposed, with Tc < Th. The remaining walls are considered adiabatic
and no-slip boundary condition is applied on each side. Temperature difference
is set in order to obtain a value of Rayleigh number Ra = 1 × 105, with Ra =
gβL3(Th − Tc)/(να) and β being the thermal expansion coefficient, L the length
of the square side, g the modulus of gravity vector ν and α kinematic viscosity and
thermal diffusivity. Space coordinates x and y are made non-dimensional using
side length L, x∗ = x/L and y∗ = y/L, x∗, y∗ ∈ [0, 1] with x∗ = 0 being the
position of the hotter wall. Velocity values are made non-dimensional using L and
α, so u∗ = uL/α, v∗ = vL/α, while for temperature non-dimensional field T+ is
calculated as T+ = (T − Tc)/(Th − Tc). Reference results are taken from [24].
Attention is focused on velocity picks of vertical velocity component v∗ along
plane at y∗ = 0.5.

2.4.1 Numerical procedure
The coupling procedure used for this study case has been previously described.
We recall that OpenFOAM requires three-dimensional meshes even for simulat-
ing two dimensional problems. In order to deal with field interpolation and ma-
nipulation an additional mesh is considered, i.e. a two-dimensional mesh with
same discretization three-dimensional OpenFOAM one along x − y plane. This
additional mesh is not required if the coupling is performed for simulating three-
dimensional problems. Mesh generation for both OpenFOAM and FEMuS codes
can be handled with SALOME platform: in the first case the generated mesh is ex-
ported only in .med format while in the latter it is exported in .unv and .med data
format. MED meshes are used to create coupling interfaces, while .unv mesh is
converted into OpenFOAM mesh format after execution of command
ideasUnvToFoam <mesh.unv>
Several meshes are considered, as summarized in Table 2.1, where grid resolutions
and relative line colors, for the solutions that will be shown, are reported.
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v∗max on A - B

Grid size FEMuS OpenFOAM
20 × 20 73.51 67.99
40 × 40 73.48 73.93
80 × 80 73.48 73.98

160 ×160 - 73.81

Table 2.2: Maximum values of non-dimensional velocity v∗, along plane y∗ =
0.5, for the uncoupled case.
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Figure 2.17: Uncoupled case: non-dimensional temperature T+ and velocity v+

profiles taken on plane y∗ = 0.5. Solid lines are for OpenFOAM solutions while
dashed ones are for FEMuS solutions. Dots represent reference values from [24].

Coupling case a)

Reference value of maximum non-dimensional velocity component v∗ along y∗

direction, on plane y∗ = 0.5, is v∗ = 70.8 [24]. For the uncoupled case, max-
imum values of v∗, v∗max, are reported in Table 2.2. It can be seen that, with
exception of coarsest grid case, OpenFOAM results predict higher values of v∗max
than FEMuS ones, and with both codes higher values than reference one are ob-
tained. Non-dimensional temperature and velocity values along plane y∗ = 0.5,
from wall position to x∗ = 0.5, are plotted in Fig. 2.17. Different effect of grid
size can be seen from this Figure. Results obtained with FEMuS code with the
coarsest are quite close to those obtained with finest one, as quadratic elements
have been used. For OpenFOAM results the solutions of grid cases 80 × 80 and
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Figure 2.18: Coupling case a): non-dimensional temperature difference between
OpenFOAM and FEMuS solutions with grid 80× 80.

v∗max

Grid size FEMuS OpenFOAM 80× 80
20 × 20 73.51 73,241
40 × 40 73.48 73,189
80 × 80 73.48 73,168

Table 2.3: Maximum values of non-dimensional velocity v∗, along plane y∗ =
0.5, for coupled case b2, OpenFOAM grid 80× 80

160× 160 are very close. Temperature profiles are in good agreement with refer-
ence values, while for velocity a general overestimation is observed in the range
x∈[0.1, 0.3]. What it is interesting to notice is the difference between OpenFOAM
and FEMuS non-dimensional temperatures, for case 80× 80, shown in Fig. 2.18.
OpenFOAM predicts a higher temperature value in the region close to hot wall and
a smaller temperature value in the region close to the cold wall, with respect of FE-
MuS results. This difference in the temperature fields enhances flow circulation in
OpenFOAM results, explaining the higher obtained values of v∗max.

Coupling case b)

Coupling case b is a one way coupling between FEMuS and OpenFOAM, with the
temperature field of the first code being used for the calculation of OpenFOAM
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Figure 2.19: Coupling case b): buoyancy source term Sy obtained for coupling
cases b1), on the left, and b2), on the right.

0 0.2 0.4

0

20

40

60

80

x+

v+

0.05 0.1

70

72

74

x+

v
+

0 0.2 0.4

0

20

40

60

80

x+

v+

71

73

x+

v
+

Figure 2.20: Non-dimensional velocity v+ profiles taken on plane y∗ = 0.5. On
the left OpenFOAM results with grid 40× 40 and coupling procedures b1 (dashed
line) and b2 (dotted line) with FEMuS grid 20 × 20 . On the right results for
OpenFOAM 80 × 80 and coupling procedure b2, with different FEMuS meshes,
following color from Table 2.1. In both plots solid line refers to uncoupled case.

buoyancy force and with no feedback. From the observation of the results ob-
tained for the uncoupled case, it is expected that OpenFOAM velocity field should
have smaller maximum values v∗max along y+ = 0.5 plane. Two different strate-
gies are considered. As already mentioned, FEMuS solution is obtained using
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quadratic finite elements, thus FEMuS grid is generally coarser than OpenFOAM
one. Buoyancy force S can then be calculated on OpenFOAM grid with the fol-
lowing methods for temperature field projection

b1) A piece-wise field of T is generated on FEMuS grid and then interpolated
with MED conservative method on OpenFOAM grid. This interpolation
technique, for P0 fields, is formulated as follows

Φt
j =

ns∑
i=1

ωj,iΦ
s
i . (2.41)

For each target mesh cell the field value is calculated as a weighted sum of
source field values, where interpolation weight ωj,i is the volume fraction of
j-th target mesh cell overlapped by i-th source mesh cell.

b2) Point-wise interpolation of source temperature field from FEMuS grid to
OpenFOAM one, and then calculation of piece-wise temperature field on
OpenFOAM support.

An example of resulting buoyancy force term Sy = S · ĵ is reported in Fig. 2.19,
in particular on the left for method b1) and on the right for method b2), for cou-
pling case with FEMuS grid 20 × 20 and OpenFOAM 40 × 40. With the first
method, temperature field projected on OpenFOAM grid suffers from source grid
resolution as target mesh cells belonging to the same source mesh cell share the
same piece-wise temperature value. In the second case a piece-wise temperature
field with target mesh resolution is obtained. The effect of the two methods on
computed velocity field is displayed on the left of Fig. 2.20. Solid line stands for
OpenFOAM solution of uncoupled case, while dashed line is for coupling method
b1) and dotted line for method b2). On the contrary of what should be expected, a
higher value of v∗max is obtained for coupling method b1), while b2) obtained result
behaves as expected. The obtained values are v∗,b1max = 75.76 and v∗,b2max = 73.24.
On the right of Fig. 2.20 non-dimensional velocity values are reported for Open-
FOAM grid 80× 80 and FEMuS grids 20× 20, 40× 40 and 80× 80. with method
b2. Values of v∗max are reported in Table 2.3. The results are all in agreement with
the expected behavior and slight differences are obtained by increasing FEMuS
grid resolution.

Coupling case c)

Coupling case c operates in the opposite direction than coupling case b. Tempera-
ture field calculated with OpenFOAM is given to FEMuS for the buoyancy force
term calculation. Also in this case two different strategies are considered:
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Figure 2.21: Coupling case c1: non-dimensional temperature T+ and velocity
v+ profiles taken on plane y∗ = 0.5. Solid lines stand for OpenFOAM solutions
with different meshes while dash-dotted lines stand for FEMuS solution with grid
80× 80 and OpenFOAM source term.
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Figure 2.22: Coupling case c2: on the left comparison of v∗ values obtained with
c1 (dash-dotted lines) and c2 (solid lines) methods for FEMuS grid 80 × 80 and
various OpenFOAM meshes. On the right comparison of c2 results for FEMuS
grid 40× 40 (dashed lines) and 80× 80 (dash-dotted lines) and OpenFOAM grids
40× 40 and 80× 80.
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Case c2 Case c1

OpenFOAM Grid size FEMuS 40× 40 FEMuS 80× 80 FEMuS 80× 80
20 × 20 - 1.49058 1.50595
40 × 40 1.48677 1.48677 1.50266
80 × 80 1.48666 1.47338 1.48943

Table 2.4: Maximum values of non-dimensional velocity v∗, along plane y∗ =
0.5, for coupled case b2, OpenFOAM grid 80× 80

c1) Piece-wise temperature field of OpenFOAM solution is projected on FE-
MuS grid by using conservative MED mapping method. The buoyancy force
is then calculated as a piece-wise field.

c2) As for case c1), temperature field on FEMuS grid is obtained through MED
conservative mapping method. A node-wise temperature field is then calcu-
lated with Galerkin interpolation. The overall process is then conservative
as both interpolation techniques are conservative.

From this coupling it is expected to obtain higher values of FEMuS velocity field
along y∗ = 0.5. This behavior is indeed observed, as shown on the right of Fig.
2.21, where results for FEMuS grid 80×80 and OpenFOAM grids 20×20, 40×40
and 80× 80 are reported for coupling case c1. As OpenFOAM grid resolution in-
creases the temperature field becomes more accurate, as seen on the left of Fig.
2.21, and FEMuS velocity field converges towards OpenFOAM solution. A com-
parison between c1 and c2 methods is shown on the left of Fig. 2.22 where non-
dimensional velocity v∗ profiles along y∗ = 0.5 plane are plotted for the case of
FEMuS grid 80× 80 and OpenFOAM grids 20× 20, 40× 40 and 80× 80. In both
cases higher values are obtained with respect to uncoupled case. As OpenFOAM
grid resolution increases the velocity values decrease and for a given OpenFOAM
grid with c2 method slightly smaller velocity values are predicted. Galerkin inter-
polation of OpenFOAM piece-wise temperature field allows to obtain an increased
resolution in the calculation of buoyancy force. On the right of Fig. 2.22 a com-
parison of c2 results is reported, for FEMuS meshes 40 × 40 and 80 × 80 and
OpenFOAM grid resolutions 40 × 40 and 80 × 80. The change of OpenFOAM
mesh resolution does not lead to a sensible change of v∗max values for mesh FE-
MuS mesh grid 40 × 40, while a more sensible difference is found in the range
x∗ ∈ [0.1, 0.3]. For FEMuS grid 80×80 the increase of OpenFOAM mesh resolu-
tion from 40×40 to 80×80 leads to a general decrease of v∗ values, v∗max included.
Finally all the values obtained of v∗max for the coupling case c are reported in Table
2.4.

From the analysis of the obtained results for this simple case study some con-
clusions can be drawn on the optimal use of data manipulation for numerical code
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coupling of codes FEMuS and OpenFOAM. When using quadratic elements, an
OpenFOAM mesh should be used with an additional level of refinement with re-
spect to FEMuS grid, that means four times the number of elements for a two-
dimensional case. When a FEMuS solution is given from FEMuS to OpenFOAM
then it is better to perform a point-wise P2P2 interpolation on OpenFOAM sup-
port and then calculate a piece-wise field with routine presented in Section 2.3.1.
For the data transfer in the opposite direction, the best results have been obtained
by performing first the MED conservative P0P0 interpolation from OpenFOAM
grid to FEMuS one and then a Galerkin interpolation in order to obtain a P2 field
out of the piece-wise one.
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Immersed Boundary method

Over the last decades numerical simulation has become an increasingly widespread
tool to investigate complex engineering applications. Numerous computational
fluid dynamics (CFD) problems involve fluid flow around arbitrarily shaped ob-
jects, that can be either static or move with time. Such systems are characterized
by internal boundaries between fluid and solid regions with dynamically changing
geometry. In this regard, one of the challenges of devising numerical techniques
is to track the moving boundary and simulate its evolving interaction with the
system. Even though considerable efforts have been made, simulating moving
boundaries is still not a trivial problem. Methods for handling such problems can
broadly be classified into Lagrangian, Eulerian and combined formulations ac-
cording to their computational grid representation. Lagrangian methods feature a
moving computational grid that is dynamically adapted to the interface. Boundary
conditions can be applied at the exact location of the interface since its evolu-
tion is explicitly tracked. The major drawback to this approach is the continuous
grid rearrangement over the changing computational domain. Conversely, Eule-
rian methods do not track the interface explicitly but reconstruct it by means of
appropriate field variables. This allows a fixed grid formulation where the inter-
face is not treated as a sharp discontinuity, which implies smearing of boundary
information. In Eulerian methods topological changes are easier to handle since
they do not require mesh rearrangement work and thus they are particularly suited
for free surfaces applications.

Recent years have seen a significant interest in solution algorithms for fluid
flow around objects based on non-conforming grids, namely meshes that are not
configured to conform to the fluid-solid interface. Several numerical models re-
ferred to as immersed boundary methods (IB) have received attention due to their
remarkable advantages in simulating fluid flow around moving objects with com-
plex boundaries. The IB method was originally introduced by Peskin as a mean
to investigate cardiovascular flow patterns [26]. Although originally intended for
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biological fluid dynamics, the IB method has been successfully applied to a wide
range of CFD problems [27, 28, 29]. Such methods share as a common core fea-
ture the ability to simulate the presence of boundaries without fitting the compu-
tational grid to the immersed body. The grid generation process is not altered and
spacial discretization is performed over the whole computational domain, result-
ing in mesh elements being cut by the fluid-solid interface. IB methods constitute
a promising alternative to conventional body-conformal grid approaches. The pro-
cess of generating body-fitted grids requires extensive meshing work that may be-
come prohibitively expensive for complex geometries. In order to handle moving
boundaries problems, the grid needs to be regenerated at each time step, adding
up to the computational costs. By contrast, IB methods allows simplified spa-
tial discretization that results in more uniform computational grids obviating the
need for mesh rearrangement. Because tackling complex moving boundaries is
easier, non-conforming grid approaches experience less deterioration in grid qual-
ity which affects accuracy and convergence properties of the numerical scheme.
Another common point of concern underlying IB methods is the imposition of
boundary conditions on the fluid-solid interface. Conventional body-conformal
meshes allow boundary conditions to be specified directly on the interface grid
points with relative ease. Implementation of boundary condition is not as straight-
forward as in IB methods, which in turn may negatively impact the robustness
and conservation properties of the solution algorithm. IB methods account for the
fluid-solid interface and its effects through several different strategies, which are
extensively reviewed in [30]. The presence of the immersed body is mimicked by
means of additional source terms and modified boundary conditions which may
be imposed both by indirect and direct techniques.

In the present work, a finite element based IB method intended for simula-
tion of fluid flow around moving objects is discussed. Numerical solution of fluid
flow is computed on a fixed grid which spans over the entire domain, including
both fluid and solid regions, whereas moving boundaries are tracked by the mo-
tion of an additional grid defined on the solid body. The solid mesh accounts
for the movement of the object without altering the fixed computational grid and
consequently simplifying the discretization process. Coupling between fixed and
moving mesh is tackled by appropriate projections of fields and boundary con-
ditions. Thus, effects of moving objects on fluid flow may be imposed through
indirect means by introducing an adequate projection algorithm. The proposed
IB method succeeds in decoupling the equations for the fluid domain from those
imposed on the moving solid and consequently no numerical solution is required
for governing equations inside the immersed body.

An approach similar to Volume Of Fluid method for multiphase flows is here
used to distinguish computational regions between fluid and solid domains [31].
A computational grid is used to model the solid body and a unitary field is de-
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fined upon it. An indicator function on the computational grid where equations
are solved is then obtained as a result of node-wise P2P2 interpolation. The re-
sulting function allows to represent the immersed body and its location in the fluid
domain. Differently from the case of multiphase problems, where the indicator
functions is initialized at the beginning of the simulation and then advected ac-
cordingly to solved velocity field, the indicator function is obtained with a projec-
tion operator and needs to be computed once or at every time-step depending on
solid body law of motion. Additionally, a cell-wise volume fraction field is built to
evaluate each cell volume fraction occupied by solid body. Galerkin interpolation
scheme is used to retrieve a point-wise differentiable target field. This information
allows to explicitly track the fluid-solid interface through linear reconstruction in
arbitrarily shaped elements. The proposed method represent an efficient approach
to interface reconstruction since it enables the computation of interface variables
without being prohibitively complex and time consuming. Numerical solution for
fluid flow around a moving object is then accurately computed on the fixed grid.
At each time iteration the solid computational grid position is changed using an ar-
bitrary law, involving a fixed movement or an interaction with fluid through stress
calculation on fluid-solid interface. Consequently indicator function is interpo-
lated and the volume fraction field updated on the target mesh (fluid computational
grid). Numerical solution accuracy strictly relates to the robustness of the projec-
tion algorithm, thus it is worthwhile to investigate the interpolation process. We
assess the performance of the proposed IB approach with two significant test cases
with the intent of validating the numerical scheme.

As briefly described above, the proposed IB method heavily relies on interpo-
lation techniques discussed in Chapter 2. The main advantage of this immersed
boundary approach is that its formulation allows to handle both static and moving
objects, without the need of computing variables such as a signed wall distance be-
tween fluid computational grid nodes and the immersed body surface. This quan-
tity is computed to distinguish computational domain into fluid and solid regions
and its computation can be a cumbersome task is complex shapes are involved [27,
32, 33].

3.1 Numerical Modeling

Let us consider a moving rigid body Ωs(t) completely immersed in a fluid domain
Ωf (t) and separated by a time dependent interface Γf,s(t) = ∂Ωf (t) ∩ ∂Ωs(t), as
sketched in Figure 3.1 a). Any topological changes in the solid region affect in
turn the fluid domain Ωf (t) in such a way that the entire computational domain
Ω = Ωf (t) ∪ Ωs(t) does not vary over time. The governing equations considered
here are the unsteady Navier-Stokes equation for incompressible laminar flows,
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a) b)

Figure 3.1: Sketch representation a) of a computational domain made of a fluid
(Ωf ) and solid (Ωs) sub domains which interact through a fluid-solid interface
(Γf,s) and close-up view b) of computational grid cut by the fluid-solid interface.

namely

∇ · u = 0 , (3.1)
∂u
∂t

+ (u · ∇)u = −1

ρ
∇P + ν(∇2u) + g . (3.2)

where u is the velocity vector, ρ the density, P the pressure, ν the kinematic vis-
cosity and g the gravity acceleration vector.

3.1.1 Immersed boundary formulation
In the present formulation of Immersed Boundary algorithm with Ωs(t) and Ωf (t)
the solid and fluid physical regions are respectively labeled, as sketched in Fig.
3.1 a). The union of these two regions will be denoted as Ω. It is remarked that
Ω is not a function of time and that this region will be used as computational
domain. When dealing with immersed boundary algorithms it is important to
define a method for identifying fluid and solid regions. In literature many methods
are proposed, involving, for example, level set methods based on wall distance
between a mesh node and the fluid-solid interface [27, 28]. In the present work
an indicator function χ(x, t), defined as a multidimensional Heaviside function, is
adopted. The field can be defined as

χ(x, t) =

∫
Ωs(t)

δ(x′ − x) dx′ ∀x ∈ Ω , (3.3)

where δ is the Dirac delta function. The possible values of χ(x, t) over Ω are then

χ(x, t) =

{
1 , ∀x ∈ Ωs(t) .

0 , ∀x ∈ Ωf (t) .
(3.4)
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a) b) c)

Figure 3.2: Example of discretized indicator function of volume fraction α a),
interpolated volume fraction α′ b) and fluid-solid interface reconstruction together
with a mesh representation of solid body c).

Figure 3.3: Close-up view of interface reconstruction on a generic mesh element.

A discretized indicator function χh(x, t) is computed using the projection method
described in Section 2.3.1. In particular a source field ψs is defined on the solid
body mesh, with a uniform value ψs(x) = 1∀x ∈ Ωs. The field χh(x, t) is
then calculated as a projection of ψs over the computational domain, meaning
χh = |P |ψs. Alongside the continuous indicator function χh a cell-wise volume
fraction field α is defined so that, for each computational cell, α indicates the
fraction of volume occupied by the solid body. A continuous field, denoted as α′

is finally introduced and calculated with a Galerkin projection of volume fraction
α, namely∫

Ω

(α′ϕ+ γ∇α′ ·∇ϕ) dΩ =

∫
Ω

αϕdΩ ∀ϕ ∈ H1(Ω) , (3.5)
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Figure 3.4: Interface reconstruction inside a generic shaped quadrangle. Original
element, on the left, and element with reordered nodes, on the right, together with
interface orientation represented, thick line, and unit normal vector n̂.

where γ is an arbitrary diffusion coefficient. Galerkin interpolation scheme (3.5)
is obtained from general equation (2.22): source and target mesh, for this applica-
tion, coincides and source field gradient values are null across each cell as source
field α is a piece-wise field. Field α′ can be used to perform a linear reconstruction
of real solid-fluid interface Γf,s as labeled in Fig. 3.1 a) and b). An example of ob-
tained α and α′ fields, together with a linear interface reconstruction are reported
in Fig. 3.2 a), b) and c), respectively, for a case of circular solid body, whose mesh
is shown together with reconstructed interface.

3.1.2 Interface reconstruction
The reconstructed fluid-solid interface can be used for evaluating quantities of
interest, like the stress exerted from the fluid on solid body surface. A widely used
method for interface calculation is based on level set method where a field ψ(x)
is introduced and defined as the distance between mesh nodes and the immersed
body surface. The field ψ(x) has positive values for mesh nodes belonging to fluid
region while negative values characterize mesh nodes belonging to solid region.
The solid-fluid interface is then defined as Γi = {x ∈ Ω : ψ(x) = 0} [27, 28,
34]. The construction of field ψ can be a cumbersome task for those applications
where ψ can not be defined analytically and where the solid body moves.

The present method involves an interface reconstruction based on volume frac-
tion field [35]. Since the volume fraction field calculation is handled by field
projection routines, the interface reconstruction can be performed for arbitrarily
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Figure 3.5: Interface reconstruction: decomposition of element Ωe into two trian-
gles A1, A2 and trapezoid T using lines parallel to interface.

shaped objects. As presented in Fig. 3.3, a generic mesh cell, labeled as Ωj , hav-
ing a volume fraction value 0 < αj < 1, can be divided into sub-elements Ωl

j and
Ωs
j by means of a straight edge. The interface normal unit vector n̂ is calculated

as the ratio of local α′ field gradient and the gradient modulus. The interface edge
Γslj inclination is computed in accordance to n̂, while its position is determined
from an area conservation equation, namely∫

Ωsj

dΩ = αj

∫
Ωj

dΩ . (3.6)

The algorithm for interface reconstruction has been developed to work with bi-
dimensional grids made of arbitrarily shaped quadrilaterals, so that the fluid-solid
interface can be reconstructed on non-regular meshes. For each intersected cell,
i.e. having a value of α in the range α ∈ [0+ε, 1−ε] with ε being a tolerance factor,
the intersection points between cell edges and linear interface are labeled as I1 and
I2. Once the orientation of interface edge is calculated through the gradient of α′,
each intersected cell can be seen as the union of two triangles and one trapezoid, as
shown in Fig. 3.5. A generic element Ωe, made of 4 nodes P0, P1, P2, P3 ordered
in counter-clockwise direction is considered, as represented on the left of Fig.
3.4. In order to simplify the computation of node I1 and I2 coordinates a new
node numbering is defined, P ∗0 , P

∗
1 , P

∗
2 , P

∗
3 , so that inclination of new diagonal

d0→2 is always higher than that of d1→3, and P ∗0 y coordinate value is smaller
than P ∗2 one. Starting from P ∗0 , node numbering is assigned in counter-clockwise
direction, as represented on the right of Fig. 3.4. In the Figure diagonals d0→2

and d1→3, connecting respectively nodes P ∗0 -P ∗2 and P ∗1 -P ∗3 , are drawn, together
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with a line denoting the orientation of interface to be reconstructed and the unit
normal vector n̂ = −∇α′/|∇α′|. A new reference frame x∗, y∗ is defined as
follows. First the reference frame is built in a way that axes origin coincides with
node P ∗0 , then, depending on the inclination of interface and of diagonals d1→3

and d0→2, the reference frame is rotated so that either node P ∗1 or P ∗3 will lay on
x∗ axis. In particular, by denoting with d0,2, d1,3 and dI the angular coefficient of
diagonals d0→2, d1→3 and of interface, reference frame is rotated so that P ∗1 will
lay on x∗ axis if dI > d0→2 or dI < d1→3, otherwise so that P ∗3 will lay on x∗. This
procedure allows to use the family of lines parallel to the interface to decompose
element Ωe into two triangles and a trapezoid. For the sake of simplicity, a final
node numbering P+

0 , P
+
1 , P

+
2 , P

+
3 is introduced. This numbering is determined so

that P+
0 is the node laying on x∗ axis with minimum value of x∗ coordinate and

then proceeding in counter-clockwise direction, as shown in Fig. 3.5. Additional
nodes P̃ 1 , P̃ 2 are found as

• P̃ 1 intersection of line parallel to interface, drawn from point P+
0 , with seg-

ment P+
3 P+

2 or with line parallel to interface, passing through P+
3 and in-

tersecting with segment P+
0 P+

1

• P̃ 2 intersection of line parallel to interface, drawn from point P+
1 , with seg-

ment P+
3 P+

2 or with line parallel to interface, passing through P+
2 and in-

tersecting with segment P+
0 P+

1

For each of P̃ 1 and P̃ 2 two possible nodes are found, as shown in Fig. 3.5 with
orange and blue colors respectively. The correct nodes are found by applying the
constrain that both P̃ 1 and P̃ 2 must belong to Ωe. Element Ωe has been divided, in
Fig. 3.5, into triangle A1, with area A1, having vertices {P+

0 , P̃ 1 , P+
3 }, trapezoid

T , with area T and vertices {P+
0 , P+

1 , P̃ 2 , P̃ 1}, and triangleA2, with areaA2 and
vertices {P+

1 , P+
2 , P̃ 2}. Triangle and trapezoid areas can be calculated with the

following expression

S =
1

2

∣∣∣∣∣
n∑
i=1

xi(yi+1 − yi−1)

∣∣∣∣∣ , (3.7)

with n being the number of sides, (x, y) the coordinates of the vertices numbered
in clockwise or counter-clockwise direction.

Depending on Ωe α value, reconstructed interface can be placed in one of the
three areas A1, A2 and T . Given Ωe total area A, cell area overlapped by the
solid body is αA. Depending on the sign of x∗ component of unit vector n̂∗,
triangles and trapezoid areas can be ordered in the sequence {Ai, T ,Aj} so that
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Figure 3.6: Interface reconstruction: case of interface points {I1 , I2} lying inside
a triangle.

the following relations hold:

CASE A: if αA ∈ [0,Ai] then {I1 , I2} ∈ Ai
CASE B: if αA ∈ [Ai,Ai + T ] then {I1 , I2} ∈ T
CASE C: if αA ∈ [Ai + T ,A] then {I1 , I2} ∈ Aj

CASE A and CASE C

In the case of {I1 , I2} lying into a triangle, then coordinates of interface nodes
can be calculated as follows. An area Atask is determined as

Atask = αA for CASE A

Atask = (1− α)A for CASE C

represented with green color in Fig. 3.6. Being Atr the area of the triangle, Ai for
CASE A or Aj for CASE B, the following relation valid for similar triangles can be
used

AI1

AB
=

√
Atask
Atr

,
A I2

AC
=

√
Atask
Atr

, (3.8)

to easily compute coordinate values for I1 and I2.
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Figure 3.7: Interface reconstruction: CASE B1 of interface points {I1 , I2} lying
inside the trapezoid, with limiting case of trapezoid being a parallelogram. Task
area shown with green color.

CASE B

For CASE B of interface lying inside the trapezoid two variants are considered.
The angular coefficient of the line passing through vertices P+

2 and P+
3 is labeled

with d2,3. The two cases are differentiated by d2,3 value, namely the limiting case
d2,3 ' 0 (CASE B1), for which the trapezoid is a parallelogram, and the more
general case d2,3 6= 0 (CASE B2). For CASE B1 a task area Atask can be calculated
as

if n̂∗(x) < 0 Atask = αA−Ai ,
if n̂∗(x) > 0 Atask = T +Ai − αA ,

as shown in Fig. 3.7. Being dx the distance between nodes I1 and B, and dy the
height of the parallelogram, then dx · dy = 2Atask, leading to an easy calculation
of I1 and I2 coordinates. For the more general situation of CASE B2, an auxiliary
node is used, Paux, determined as the intersection between axes x∗ and the line
passing through vertices P+

2 and P+
3 . As for precedent cases, it is useful to define

a task area Atask. Following the trapezoid vertices numbering shown in Fig. 3.8,
with A3,0,aux we refer to the area of triangle with vertices T0 , Paux , T3. Task area
Atask, shown in Fig. 3.8 with green color, is calculated as
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Figure 3.8: Interface reconstruction: CASE B2 general situation of interface points
{I1 , I2} lying inside the trapezoid. Task area shown with green color and trape-
zoid vertices are highlighted with orange color and relative numbering.

• if d2,3 > 0

if n̂∗(x) < 0 Atask = A3,0,aux + T +Ai − αA ,
if n̂∗(x) > 0 Atask = A3,0,aux − (Ai − αA) ,

• if d2,3 < 0

if n̂∗(x) < 0 Atask = A3,0,aux − (T +Ai − αA) ,

if n̂∗(x) > 0 Atask = A3,0,aux + (Ai − αA) .

With a more compact expression, the general formula holds

Atask = A3,0,aux+f1

[
1

2
T − f2

(
1

2
T +Ai − αA

)]
, (3.9)

f1 = sign(d2,3) , f2 = sign(n̂∗(x)) . (3.10)

By construction, task area Atask is the area of the triangle with vertices I1, Paux
and I2, with I1 and Paux lying on x∗ axes. The area of the triangle can then be
calculated as

Atask =
1

2

∣∣I2(y) · (Paux(x)− I1(x))
∣∣ . (3.11)
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Interface point I2 is determined as the intersection of the line with angular co-
efficient dI passing through I1 and the one with angular coefficient d2,3 passing
through Paux, so

I2(y∗) = dI(I
2(x∗)− I1(x∗)) = d2,3(I2(x∗)− Paux(x∗)) . (3.12)

It is obtained

I2(x∗) =
d2,3Paux(x

∗)− dII1(x∗)

d2,3 − dI
, (3.13)

I2(y∗) =
dId2,3

d2,3 − dI
(Paux(x

∗)− I1(x∗)) . (3.14)

Writing equation (3.14) into (3.11), x∗ coordinate of interface node I1 can be
finally calculated as

I1(x∗) = Paux(x
∗) + I , h =

∣∣∣∣∣
√

dId2,3

d2,3 − dI
2Atask

∣∣∣∣∣
I ∈ {−h , h} : I ∈ [T0(x∗), T1(x∗)] . (3.15)

Once that I1 and I2 coordinates have been calculated in the local reference frame
x∗ , y∗ an inverse change of coordinates system is applied in order to obtain I1 and
I2 in global reference frame x , y. With the above illustrated algorithm it is possi-
ble to reconstruct fluid-solid interfaces in arbitrarily shaped quadrilaterals, if affine
elements are used, since straight element sides are required. The combination of
non-regular meshes and immersed boundary method allows to solve the system of
equations on a computational grid that fits the physical domain and to model the
presence of obstacles with immersed boundary method. This strategy is similar to
the immersed boundary method based on curvilinear background grids CURVIB,
where governing equations are solved on a background curvilinear boundary-fitted
mesh and moving bodies are modeled with immersed boundary method [29, 36]. It
could be stated that with the proposed method, a solid body fitted grid Π is used, so
the real solid-fluid interface is already known. This is surely true, but its use could
be not very straightforward. The reconstructed interface is sure an approximation
but, as a great advantage, each interface segment lies within a unique interface
cell, so the computation of variables such as drag coefficient can be carried with
sustainable computational effort. When performing integration over real interface
line, using Gauss method, it is not known a priori where each Gauss node belongs
on computational grid Ω, in order to interpolate the desired variables upon it. A
point-locator algorithm should then be used, with a great increase of the compu-
tational cost and without the certainty of an increased accuracy in the computed
values. As an example of interface reconstruction, the case of a more complex
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Figure 3.9: Test geometry for interface reconstruction.

CASE A CASE B CASE C

Figure 3.10: Interface reconstruction. Volume fraction field α, interpolated field
α and reconstructed for three different target mesh grid resolutions.

CASE A CASE B CASE C

Figure 3.11: Interface reconstruction. Interpolated field α for three different
target mesh grid resolutions.

object obtained from the union of 4 circles, represented in Fig. 3.9, is here consid-
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CASE A CASE B CASE C

Figure 3.12: Interface reconstruction. Reconstructed interface compared with
original geometry for three different target mesh grid resolutions.

a) b)

Figure 3.13: Interface reconstruction on a regular grid a) and on non-regular mesh
b). With red color the original solid body, shown above α values of interface cells.

ered. Each circle has a diameter of 0.1m and the target grid is a squared domain
with side L = 0.4m. Three different grid resolutions are considered, i.e. CASE A:
40 × 40, CASE B: 80 × 80 and CASE C: 160 × 160. For the three different cases
it is obtained a resolution, expressed as number of target mesh cells per diameter,
of 10, 20 and 40. The results are shown in Fig. 3.10, Fig. 3.11 and Fig. 3.12, in
particular for volume fraction field α, the interpolated field α′ and finally the re-
constructed interface, compared with the original solid body shape. It can be seen
that even for the coarsest case a good approximation of solid interface is obtained.
As the grid resolution increases a more accurate reconstruction is obtained. It can
be seen that interface near circle intersection points is not captured as for this sim-
ulated case the mesh grids are tangent to circle geometries in those points. An
interface reconstruction of the same solid geometry is performed on a non-regular
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computational grid, as shown in Fig. 3.13 where a comparison on a close up view
of reconstructed interfaces for CASE A is reported between results obtained with
regular and deformed grid. The deformed mesh has been obtained starting from
grid 40× 40. A displacement vector field S has been applied to decrease the total
amount of overlapped area of interface cells, that means

Ao =

∫
Ω̃h
αdΩ , Ω̃h =

{
Ωh
i ⊆ Ωh : αi ∈ [0 + ε, 1− ε]

}
. (3.16)

It can be indeed observed from the values of α shown in Fig. 3.13 that the amount
of overlapped interface cell area Ao is smaller for the case of deformed grid.

The Navier-Stokes system of equations is solved over the entire computational
grid Ω. On mesh nodes that lay within the solid region the velocity field is imposed
with a Dirichlet condition, so that momentum balance equation is not solved on
those nodes. Incompressibility constraint is applied everywhere, with a modifica-
tion for intersected cells expressed as follows. The weak formulation of the solved
system of equation is obtained as∫

Ω

∂u
∂t
·ϕ dΩ +

∫
Ω

(u ·∇)u ·ϕ dΩ =

= −1

ρ

∫
Ω

∇P ·ϕ dΩ−
∫

Ω

ν(∇u + ∇uT ) : ∇ϕdΩ+

+

∫
Γ

[
ν(∇u + ∇uT ) · n

]
·ϕdΩ , ∀ϕ ∈ H1

0 (Ω) (3.17){∫
Ωj

(∇ · u)ψ dΩ = 0 , ∀ψ ∈ L2(Ω) ∀Ωj : αj < α̃∫
Ωj

(λ∇2P −∇ · u) ψ dΩ = 0 , ∀ψ ∈ L2(Ω) ∀Ωj : αj > α̃

(3.18)

ui = ũs ∀xi : χ(xi, t) = 1 , (3.19)

where λ is a constant value and α̃ is a threshold value. In cells where α > α̃
we solve a pressure equation that is similar to the ones used in velocity projection
methods [37]. It will be later shown that this equation allows to obtain a smoother
pressure field. As reported in (3.19), the fluid velocity field in the solid-occupied
computational region is modeled with the solid velocity field. In particular, the
values ũs imposed in (3.19) are obtained by a point-wise projection of the veloc-
ity field us that is defined on the solid body mesh, namely ũs = |P |us. It can
be seen from the solved system of equations, in the present immersed boundary
formulation additional forces for the imposition of boundary conditions along the
solid-fluid interface are not used. The algorithm used for the realization of the
numerical simulation with the present immersed boundary method can be summa-
rized, for a generic n-th time step, as:
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u = 0

outflow

u = 0

inlet
a

bc

Figure 3.14: Sketch of the physical domain.

a [m] b [m] c [m] d [m] L [m]

0.21 0.2 0.2 0.1 2.2

Table 3.1: Geometrical parameters of the simulated domain.

1. Solid position on computational grid: creation of volume fraction α, projec-
tion of solid velocity ũs and indicator function χh

2. Solution of system of equations

3. Calculation of interpolated volume fraction α′

4. Reconstruction of solid-fluid interface Γf,s

5. Stress calculation

6. Update solid position and velocity field

We remark that the present algorithm can be used with arbitrarily moving solid
objects as the indicator function is calculated using a field projection from the
solid body mesh to the computational grid. Moreover, if the solid body position
is fixed in time, in the above described algorithm steps (1), (3), (4) and (6) can be
performed just once.

3.2 Results
In the present section we describe the results obtained for two different test cases,
involving both a fixed and a moving obstacle.

3.2.1 Flow around a cylinder at Re=20
The present test consists of simulating a stationary fluid flow around a fixed cylin-
der. This benchmark case is well studied in [38]. Let U0, d and ν be the mean
inlet velocity, the cylinder diameter and the fluid kinematic viscosity, respectively.
The resulting Reynolds number is Re = U0d/ν = 20. A sketch of the simulated
domain, together with the imposed boundary conditions, is reported in Fig. 3.14,
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REF0 REF1 REF2

d/δx = d/δy 7.2 14.5 29

ε −1.5× 10−5 −6× 10−6 −1.4× 10−6

Table 3.2: Grid resolution and mass loss coefficient for the three different used
computational grids.
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Figure 3.15: Influence of diffusion coefficient λ on pressure field and flow stream-
lines in the near solid region.

while the geometrical parameters are described in Tab. 3.1, where L is the length
of the channel. A parabolic velocity profile is imposed on the inlet section, namely

U(x, y) = 4Umax
(ymax − y)(y − ymin)

(ymax − ymin)2
, (3.20)

where ymax and ymin are the channel maximum and minimum y coordinate val-
ues, and Umax is the maximum velocity value, Umax = 1.5U0. One major concern
when dealing with immersed boundary methods is mass conservation. For the
present case we use three different computational grids with increasing levels of
mesh refinements, in order to demonstrate that the proposed method allows to ob-
tain a good mass conservation. The three different meshes are parameterized as a
function of grid resolution with respect to the obstacle diameter and will be here-
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∆P cd
Case 10−5 10−3 10−1 10−5 10−3 10−1

REF0 0.1072 0.1122 0.0741 5.051 5.185 5.351
REF1 0.1105 0.1116 0.0671 4.897 5.014 5.224
REF2 0.1162 0.1120 0.0532 4.912 5.019 5.060

Reference 0.1175 5.579

Table 3.3: Computed values of pressure difference ∆P between front and rear
side of the cylinder and of drag coefficient cd, together with reference data [38],
ordered for increasing mesh refinements and values of diffusion coefficient λ.

after labeled as REF0, REF1 and REF2, where the number stands for the number
of refinements. The grid resolution for the three different meshes is reported in
Tab. 3.2 as a function of the ratio d/δx, where d is the obstacle diameter and δx is
the mesh size along x direction. In order to evaluate the behavior of the proposed
immersed boundary method regarding mass conservation, we report the values of
mass loss fraction ε defined as (U0 − Um,out)/U0, where Um,out is the mean out-
let velocity. It can be seen from the values reported in Tab. 3.2 that the mean
outlet velocity is slightly higher than the mean inlet velocity value and mass loss
fraction decreases by approximately an order of magnitude using a double mesh
refinement. In the present test we studied the influence of the diffusion coefficient
λ that is used in (3.17) for the pressure equation in the solid-occupied cells. In
Fig. 3.15 we report a set of close-up views of the pressure fields obtained with
the three different mesh refinements and with three different values of λ, namely
10−5, 10−3 and 10−1. We see that pressure spots arise in the vicinity of fluid-solid
interface when using a small value of λ. Although λ value has not a sensible im-
pact on mass conservation (the values of Tab. 3.2 refer to λ = 10−3 but are quite
the same for each of the tested values of λ), we see that λ has a great impact on
fluid behavior in the near solid body region, as can be seen from the flow stream-
lines reported in Fig. 3.15. Finally we compare the obtained results for pressure
difference ∆P between front and rear side of the cylinder and drag coefficient cd
with the reference ones, discussed in [38]. The computed values for all simulated
cases, in terms of computational grid and λ values, are reported in Tab. 3.3 along
with reference values. The drag coefficient is here calculated as

cd =
2Fx
ρdU2

0

→ F =

∫
S

[
µ
(∇u + ∇uT

)
− pI

]
· n̂dS , (3.21)

where n̂ is the normal to the solid-fluid interface, pointing from solid to fluid
region, S is the area of solid-fluid interface and Fx the x component of the stress
F. In the present case the integral is calculated over the reconstructed interface.
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d

a

b
U0

Figure 3.16: Sketch of the simulated domain for the case of flow around an
impulsively started cylinder.
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Figure 3.17: Comparison of drag coefficient evolution, for cases REF0, REF1
and REF2 a), with analytical law (dotted line) [39] and numerical reference values
(dash-dotted line) [40]. The same comparison is shown for case REF2 and two
different values of λ b).

With small values of λ we observe a slight underestimation of pressure difference,
ranging from 1 to 8 %, while with λ = 0.1 we obtain much higher errors (37 to
54 %). If we exclude the case λ = 0.1, the percentage difference between the
computed drag coefficient and the reference one lays in the range 7 to 12 %.

3.2.2 Flow around an impulsively started cylinder

In the present test we simulate the case of a cylinder that is impulsively put in
motion with a constant and uniform velocity U0. For this particular case an ex-
perimental study was performed in [43], as well as numerical simulations with
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Figure 3.18: Equi-vorticity contours for the three simulated cases at three differ-
ent non-dimensional time steps. Vorticity values range from -3 to 3 with a step of
0.4.

vortex method [39, 44, 40] and immersed boundary techniques [41, 42] for vari-
ous Reynolds numbers. A sketch of the simulated domain is reported in Fig. 3.16,
together with parameters a, b and d, denoting the domain width, height and cylin-
der diameter respectively. The computational box is characterized by the values
a = 12d and b = 10d. A no-slip boundary condition is imposed on all boundaries.
The Reynolds number, based on cylinder velocity modulus U0, cylinder diameter
and fluid kinematic viscosity, is equal to 40. At time t = 0 the cylinder is put into
motion with a constant velocity, moving from right to left. The simulated time
interval is t ∈ [0, 3.5t̃], where t̃ is the reference time constant, t̃ = d/U0. Numer-
ical results will be presented as a function of non-dimensional time t∗ = t/t̃, in
order to compare them with literature values [39, 40, 41, 42]. We use two different
computational grids that are characterized by the following mesh sizes δx and δy,
along x and y direction: δx = δy = d/9 for case REF0, δx = δy = d/18 for
case REF1 and δx = δy = d/36 for case REF2. In Fig. 3.17 we report the time
evolution of the drag coefficient cd for the three simulated cases and compare them
with the reference numerical results [40] and with the analytical relation proposed
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a) b)

Figure 3.19: Reference equi-vorticity contours for vorticity values ranging from
-3 to 3 with a step of 0.4. Values at non dimensional times t∗ = 1, 2.5, 3.5 a) and
for non dimensional times t∗ = 0.5, 2.5, 3.5 b). Pictures taken from: a) [41], b)
[42].

in [39], namely

cd =
4
√
π√

t∗ Re
+

π

Re

(
9− 15√

π

)
, (3.22)

which is valid for t∗ < 0.5. As in the previous test, the drag coefficient is computed
using (3.21) on the reconstructed solid-fluid interface. The comparison is made be-
tween results obtained with the three different mesh resolutions and λ = 5 · 10−3

in Fig. 3.17 a) and between values calculated with the finest grid and two different
values of λ, namely λ = 1 · 10−3 and λ = 5 · 10−3. It can be seen that values of cd
are characterized by the presence of oscillations for each simulates case, with some
peculiarities. From Fig. 3.17 a) it is seen that oscillations have higher peaks and
occur with a larger frequence, for case REF0, while for REF2 they have smaller
peaks and higher frequence. These oscillations are caused by the projection of
solid velocity field onto the computational grid, altering the solved velocity field.
As solid body moves, target mesh cells where velocity field is projected change
with time. This fact leads to local lack of incompressibility, so that pressure peaks
arise to restore the condition ∇ · u = 0. Since the computational grid has a ho-
mogeneous discretization, a pressure oscillation is observed every time that the
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Figure 3.20: Time evolution of recirculation length l and comparison with refer-
ence data [43].

solid body changes its position by a quantity equal to grid size δx, i.e. with a
period ∆t∗ = δx/d expressed in non dimensional time. For coarser grids oscilla-
tions occur with higher period but when velocity field is projected on a new cell
a more sensible modification is obtained, causing higher pressure peaks. In Fig.
3.17 b) the comparison of cd time evolution is made between results obtained for
case REF2 and two different values of λ. As expected, drag coefficient oscillations
occur with the same frequency as the computational grid is the same for the two
cases. Oscillation peaks are smaller the case of higher λ value, showing that a
smoother pressure field is obtained. Drag coefficient values are slightly underes-
timated, with respect to the reference values [40], in the interval t∗ ∈ [0, 2], while
for higher values of the non-dimensional time we observe a good agreement. A
comparison between the simulated cases of the obtained vorticity ω values is re-
ported in Fig. 3.18 for three different time steps, namely t∗ = 0.5, t∗ = 1.0,
t∗ = 2.5 and t∗ = 3.5. In particular, non-dimensional vorticity ω∗ contours are
shown in a range ω∗ ∈ [−3, 3] with increments of 0.4, in order to compare them
with the reference results, shown in Fig. 3.19 [41, 42]. Comparing case REF0 and
REF1 we see that grid spacing has a major impact on the evaluation of vorticity in
the fluid area behind the cylinder and also in the estimation of a higher vorticity
region. An increase of mesh resolution from REF1 to REF2 leads to less consid-
erable changes in the predicted values of ω∗. We observe a very good agreement
with the reference profiles even though the maximum mesh resolution used here
is much smaller, namely δx/d = 36 instead of δx/d = 50 and δx/d = 100 [41,
42]. As a final test we study the evolution of the recirculation zone length l. Non-
dimensional values of this variable, l∗ = l/d, are plotted against non-dimensional
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time t∗ in Fig. 3.20 for all the simulated cases and compared with reference val-
ues [43]. The length l∗ is calculated by examining the velocity field U −U0, i.e.
from a reference frame defined on the moving cylinder. For the first part of the
simulated time interval, namely t∗ < 1, we observe a good agreement between
our results and the reference ones. For higher values of non-dimensional time the
results obtained from case REF0 increasingly underestimated ld, while the ones of
case REF1 and REF2 are still close to reference data.

With the results obtained from the two simulated cases some conclusions can
be drawn. The present immersed boundary method is based on numerical fields
projection, so on routines discussed in Chapter 2, proving the great versatility of
the developed computational platform. Two computational grids are used: one for
the solution of Navier-Stokes system of equations and one built on the solid body.
This latter grid is particularly important because solid velocity field and additional
fields are defined over it and then projected onto the first computational grid. Field
projection allows to deal with static and moving objects, but also with arbitrarily
shaped objects. An algorithm for solid-fluid interface reconstruction has been
proposed to recover an approximated linear interface on fluid computational grid.
The algorithm works with arbitrarily shaped quadrilateral affine elements so it
can be used with non-regular grids bi-dimensional grids. Two different tests have
been performed, to evaluate the accuracy of the present method with the cases of
static and moving solid body. Obtained results have shown a good agreement with
reference data [38, 39, 44, 40, 41, 42].

Future developments of the present method will involve an extension to three-
dimensional problems. Interface orientation can be easily calculated, while inter-
face reconstruction is a more difficult task, due to a greater number of possible
intersection types [29]. Moreover the immersed boundary formulation can be ex-
tended to problems involving heat transfer and fluid turbulence. In particular the
use of wall function boundary conditions can be an interesting strategy to deal
with turbulence and immersed boundaries [45]. CFD simulations have been per-
formed for this kind of geometries and mesh generation is not a trivial task [46, 47,
48, 49]. Complex geometries as wire wrapped nuclear reactor bundles can then
be simulated using a mixed approach with body conforming mesh and immersed
boundary method for modeling the wire geometry.
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Chapter 4

Turbulence modeling

With the present PhD study a new logarithmic formulation of a four parameter
turbulence model is proposed with the intent of providing a reliable tool for nu-
merical study of heat transfer in low Prandtl number fluid turbulent flows. In the
present Chapter the derivation of the four transport equations that are used in the
four logarithmic parameter turbulence model is described. After a brief discussion
on turbulent flow problems, the Reynolds Averaged Navier-Stokes system of equa-
tions (RANS) are introduced together with reference solutions that are used in the
modeling process. The transport equations for turbulence representative variables
are obtained from the RANS system and the modeling of eddy kinematic viscosity
νt and turbulent thermal diffusivity αt is explained.

Turbulent behavior of fluid flow is encountered in many everyday life situa-
tions. Since the first observations of Leonardo Da Vinci on fluid flow, with the
drawings shown in Fig. 4.1, fluid turbulent behavior has been studied by scientists
and researchers. For a given domain, with a representative space length l, with
characteristic fluid velocity u and kinematic viscosity ν, the turbulent behavior is
normally observed when the Reynolds number Re = ul/ν has a high value, be-
ing Re > 103 a good hint. Different from the laminar case, turbulent flows are
irregular and chaotic with vortex structures that develop on a wide range of length
scales. Increased diffusivity comes with the chaotic behavior, so friction and heat
exchange are enhanced on solid walls. For Newtonian fluids, with density ρ and
specific heat cp, transient turbulent incompressible flows can be simulated using
the Navier Stokes system of equations, consisting in a mass conservation equation,
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Figure 4.1: Leonardo Da Vinci drawings from observations of water turbulent
behavior.

a momentum balance equation and an energy balance equation as follows

∇ · u = 0 , (4.1)
∂u

∂t
+ (u ·∇)u = −1

ρ
∇ · σ − Fb , (4.2)

∂T

∂t
+ u ·∇T =

1

ρcp
∇ · q , (4.3)

where (4.1) represents the constrain for incompressible flows, (4.2) the momen-
tum balance equation and (4.3) the energy balance equation. The state variables,
describing the fluid in this system of equations, are the velocity vector u, tempera-
ture T , the stress tensor σ and the heat flux q. The buoyancy force Fb is calculated
with Boussinesq assumption as Fb = g(1 − β(T − Tr)), where β is the thermal
expansion coefficient, g the gravity vector and Tr a reference temperature. We set
Tr such that ρr = βTr with ρr the reference density. In order to close the system
of equations, the stress tensor is modeled as

σ = −pI + τ , (4.4)

where p is the pressure field and τ the viscous stress tensor that, for a Newtonian
fluid, is

τ = 2µD− 2

3
µ (∇ · u) I = µ

(∇u + ∇uT
)
− 2

3
µ (∇ · u) I . (4.5)

In case of an incompressible fluid the viscous stress expression reduces to τ =
2µD, where D is called as strain tensor. The heat flux vector q is modeled using
Fourier’s law

q = −λ∇T , (4.6)
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where λ is the fluid thermal conductivity. The system of equations is then trans-
formed into

∇ · u = 0 , (4.7)
∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ∇ · τ − Fb , (4.8)

∂T

∂t
+ u ·∇T = α∇2T . (4.9)

The above system of equations may be used to simulate both laminar and turbulent
flows if a proper grid resolution is adopted. In turbulent flows, eddies develop on
a wide range of characteristic lengths. Larger eddies take place in the bulk flow
region. Their structure is then stretched and distorted and the kinetic energy is
transferred to smaller eddies. This process, called energy cascade, continues until
the kinetic energy is dissipated to thermal energy by action of viscous forces. A
balance equation for the mechanical energy can be written by multiplying (4.8)
with velocity u, obtaining

ρ

2

∂u2

∂t
= −ρ

2
u ·∇u2−∇ ·(pu)+p∇ ·u+∇ ·(τ ·u)−τ : ∇u+Fb ·u . (4.10)

On the right hand side of (4.10), the first is the convective term, the second repre-
sents the pressure work, the third takes into account the conversion of mechanical
energy into internal energy due to expansion/contraction, the fourth and the last
the viscous force and buoyancy force work, respectively. Since the viscous stress
tensor is a symmetric one, the term ε = τ : ∇u can be written as

τ : ∇u =
1

2
τ (∇u + ∇uT ) = µD : D , (4.11)

and it is then always positive. Having a negative sign in (4.10), ε always acts
as a dissipative term which transforms mechanical energy into thermal energy.
This is related to velocity gradients, so it is higher where higher velocity gradients
occur. The size of the smallest eddies can be estimated with the Kolmogorov
characteristic lengths that are determined using fluid kinematic viscosity ν and the
dissipation of kinetic energy ε, as dissipation occurs at the finer scales by action
of viscous forces. Reference scales for velocity, space and time are then obtained
as

uk = (νε)1/4 , lk = (ν3/ε)1/4 , tk = (ν/ε)1/2 . (4.12)

On a bulk scale, the reference velocity and length are labeled as u0 and l0 and are
used to define the Reynolds number Re = u0l0/ν. During the energy process the
kinetic energy is transferred from larger to finer eddies at a constant rate ε, so its

83



Chapter 4. Turbulence modeling

order of magnitude can be estimated using bulk reference scales, ε ' u3
0/l0. The

ratio bulk to Kolmogorov reference scales leads to the following values [50]

u0/uk = (νε)−1/4u0 = (u0l0/ν)1/4 = Re1/4 , (4.13)

l0/lk = (ν3/ε)−1/4l0 = (nu3/u3
0l

3
0)−1/4 = Re3/4 , (4.14)

t0/tk = (ν/ε)−1/2t0 = (u0l0/ν)1/2 = Re1/2 . (4.15)

Turbulent flows can be fully resolved with (4.7-4.9) if the grid resolution is smaller
then Kolmogorov length scale, i.e. with a number of elements that is proportional
to Re9/4 for a three-dimensional simulation. For theses reasons complex systems
require a huge amount of resources when studied with Direct Numerical Simula-
tions (DNS).

Turbulence models have been developed with the aim of overcoming the com-
putational requirements of DNS simulations still retaining the main physical fea-
tures of the flow. Among them, Reynolds Averaged Navier Stokes systems of
equations (RANS) are widely used. They are based on a decomposition of instan-
taneous variables as the sum of a mean and a fluctuating value

a = a+ a′ , (4.16)

where (·) stands for the mean operator and (·)′ for the fluctuation value. The RANS

approach involves time averaging

a(x, t) =
1

∆t

t+∆t∫
t

a(x, t′)dt′ , (4.17)

where the time interval ∆t needs to be sufficiently large to establish an unique
mean value a. It is remarked that the average of an averaged value a is still equal
to a. Having this in mind, from equations (4.16) and (4.17) the following relation
holds

a = a+ a′ = a+ a′ → a′ = 0 , (4.18)

so the mean value of the fluctuating component is always considered to be equal
to zero. Some useful properties on time averaging can be recalled as follows [51]:

• independence from constant multiplication

cφ = cφ

• addition has no effect on averaging

ψ + φ = ψ + φ
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• commutation for differentiation and integration

∂φ

∂x
=
∂φ

∂x
,

∫
φdx =

∫
φdx

The mean value of the product between fluctuations cannot be considered null, so
the mean value of the product between to instantaneous properties a and b is equal
to

ab = (a+ a′)(b+ b′) = ab+ a · b′ + a′ · b+ a′b′ = ab+ a′b′ .

4.1 The Reynolds Averaged Navier Stokes system of
equations

The RANS system of equations is obtained by applying the mean operator to the
system (4.7-4.9). For the continuity equation, incompressibility constrain must be
satisfied by both instantaneous and mean velocity field, leading to

∇ · u = 0

∇ · u = ∇ · u + ∇ · u′ = ∇ · u = 0 . (4.19)

As a consequence, also the fluctuating velocity field u′ is incompressible. The
mean momentum balance equation is

∂u

∂t
+ u ·∇u = −1

ρ
∇p+ ∇ · [ν(∇u + ∇uT )

]
+

−∇ · u′u′ + βg(T − Tr) . (4.20)

Equation (4.20) is very similar to (4.8), with the term ∇ · u′u′ being the only
exception. In particular this term, known as Reynolds stress tensor, represents a
transport of momentum due to fluctuating velocities. In a similar way the mean
energy balance equation is obtained as

∂T

∂t
+ u ·∇T = ∇ · (α∇T )−∇ · u′T ′ . (4.21)

As for the case of mean momentum balance equation, an unknown term is intro-
duced in (4.21) as a consequence of convective term averaging process. This new
term ∇ · u′T ′ is known as turbulent heat flux and represents a transport of energy
that combines fluctuating temperature and velocity fields. The averaging process
gives a new system of equations that can be solved with a smaller amount of com-
putational resources if compared to those required by DNS simulations. On the
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other hand, information on instantaneous fields are lost, as a consequence of the
averaging process, and new unknown terms are introduced in the system (4.19-
4.21), namely the Reynolds stress tensor τ r = −ρu′u′ and the turbulent heat flux
qr = −ρcpu′T ′, which depends on fluctuating velocity and temperature fields.
These terms are important and need to be carefully modeled since it is through
them that the effect of turbulence on the mean flow can be studied. Unknown
components of τ r and qr can be calculated by solving a proper transport equation
for each one of them, that consists in a system of nine additional equations for a
three-dimensional problem. This approach increases the computational cost and
requires an accurate modeling for the unknown term such as the τ r and qr com-
ponents. A widely used closure strategy consists of modeling Reynolds stresses
and turbulent heat flux components with mean velocity and temperature gradient
components and two turbulent diffusion coefficients, the eddy kinematic viscosity
νt and eddy thermal diffusivity αt

τ ri,j = 2νtDi,j , (4.22)

qri = αt∇T · î , (4.23)

where D is the mean strain tensor and î is the i-th unit vector direction. The
new turbulent diffusion coefficients are modeled with the turbulent kinetic energy
k = 0.5 u′iu

′
i and characteristic time scales τlk. In the present work we use a four

logarithmic parameter turbulence model, i.e. a model composed by a system of
four transport equations that are solved to obtain turbulent characteristic quantities
as a function of the turbulent kinetic energy k, its dissipation rate ε, mean squared
temperature fluctuations kθ = 0.5 T ′T ′ and their dissipation rate εθ. Characteristic
time scales for dynamical and thermal turbulence are calculated with these new
variables, leading to the following simplified equations for νt and αt

νt = Cνkτν(k, ε) , αt = Cαkτα(k, ε, kθ, εθ) , (4.24)

where Cν and Cα are model constants and τν and τα are two modeled time scales.
In the following sections the exact transport equations for k, ε, kθ and εθ are de-
rived and discussed. The four logarithmic parameter turbulence model is obtained
and, finally, the models for νt and αt are presented. As it will be shown, the closure
problem cannot be solved with the introduction of k, ε, kθ and εθ exact transport
equations because many unknown terms, i.e. higher order moments, appear in
those equations. It is then necessary to model unknown terms in order to get a
closure of the interested system of equations. For this reason some hypothesis are
introduced [52]:

1. Turbulent diffusion of a variable ϕ is considered proportional to its gradient.

2. Small eddies are isotropic.
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3. All turbulent quantities depend on u′iu′j , u′iT ′, k, ε, kθ, εθ, u, T , p, ν and α.

4. Turbulent scales are function of k, ε and ν, in particular (k, ε) for large
eddies and (ν, ε) for small eddies.

Among the above mentioned hypothesis, 2) implies that off-diagonal components
of Reynolds stresses are zero and that diagonal components are all equal to 2/3k
[53]. A clear explanation of the physical meaning of isotropic turbulence at small
scales can be found in the work of Bradshaw [54].

4.1.1 Law of the wall

x

y

0

�

2�

u

v

Figure 4.2: Sketch of a bi-dimensional channel, with x being the mean flow
direction and δ half channel width along wall normal direction y.

A useful reference solution for the fully developed turbulent channel flow can
be obtained from the non-buoyant version of (4.20). We consider a bi-dimensional
domain Ω, as shown in Fig. 4.2, where x is the main flow direction and δ the half
channel width in y direction. As a consequence of fully developed turbulent flow
hypotheses, velocity gradient components along main flow direction vanish. From
the incompressibility constrain and no-slip boundary conditions on the wall we
obtain

∂v

∂y
= 0 , vw = 0 → v = 0 ∀(x, y) ∈ Ω . (4.25)

Wall shear stress is labeled as τw,

τw = µ
∂u

∂y

∣∣∣∣∣
w

, (4.26)

and the friction velocity uτ is defined as

uτ =

√
τw
ρ
, (4.27)
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where ρ is the fluid density. Friction velocity and fluid kinematic viscosity ν are
used as reference parameters for the calculation of non-dimensional variables

u+ =
u

uτ
y+ =

uτ
ν
y . (4.28)

Friction Reynolds number Reτ = uτδ/ν is finally defined.
The steady equation (4.20) along x and y directions is then written as

∂p

∂x
− ∂

∂y

(
µ
∂u

∂y
− ρu′v′

)
=
∂p

∂x
− ∂τ effxy

∂y
= 0 (4.29)

∂p

∂y
= 0 , (4.30)

where τ eff is the effective stress, i.e. τ eff = τ − ρu′u′. Mean pressure field
is a function of x, while effective stress component τ effxy changes only along y
direction as a consequence of fully developed turbulent flow hypothesis. Equation
(4.29) is then satisfied only if

∂

∂y

(
µ
∂u

∂y
− ρu′v′

)
= C =

∂p

∂x
, (4.31)

where C is a constant value. By integrating (4.31) along y direction, from the wall
up to an arbitrary y′ coordinate, we obtain[

µ
∂u

∂y
− ρu′v′

]y′
0

= y′
∂p

∂x
. (4.32)

At the wall effective stress component τ effxy reduces to wall shear stress value τw
as velocity fluctuations approach the no-slip boundary condition, so

µ
∂u

∂y
− ρu′v′ = τ effxy = τw + y′

∂p

∂x
. (4.33)

Integrating (4.31) from the wall to the channel half-width we obtain

∂p

∂x
= −τw

δ
, (4.34)

as the channel half-width is a symmetry plane both viscous and turbulent stress
components τxy and τRxy are null. By substituting (4.34) inside (4.33) the following
expression for effective stress component τ effxy can be written

τ effxy = τw

(
1− y

δ

)
= µ

∂u

∂y
− ρu′v′ , (4.35)
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Figure 4.3: Non-dimensional velocity u+ profile plotted against logarithmic values
of non dimensional wall distance y+ for a fully developed turbulent flow in a plane
channel with Reτ = 4400.

or, in non-dimensional form, as

∂u+

∂y+
− u′+v′+ = 1− y+

Reτ
. (4.36)

It can be seen that effective stress component τ effxy decreases linearly with wall
distance y from the wall value τw. For small values of the ratio y+/Reτ , τ effxy can
be considered constant and equal to τw, so for higher friction Reynolds number
values τ effxy is approximately constant over a wider range of positions y+. At the
wall, from (4.36) we obtain

∂u+

∂y+
= 1 → u+ = y+ + λ , (4.37)

where λ is a constant value and it is equal to zero from the no slip boundary
condition. In the near wall region, non dimensional velocity u+ increases linearly
with non dimensional wall distance y+. On the other hand, viscous contribution
to effective stress is considered to be negligible in the region far from the wall and
Reynolds stress component τRxy to be constant and equal to wall shear stress value
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τw = u2
τ , so that uτ can be used as a reference velocity value even in the region far

from the wall. Derivative of mean velocity component u along y direction is then
considered

∂u

∂y
=
uτ
κy

, (4.38)

where κ is a constant value. From Boussinesq hypothesis, where

−u′v′ = νt

(
∂u

∂y
+
∂v

∂x

)
, (4.39)

we obtain that eddy kinematic viscosity grows linearly with wall distance

νt = κuτy . (4.40)

From effective stress component equation we obtain

τ eff = ρ (ν + ντ )
∂u

∂y
= κuτy

∂u

∂y
= ρu2

τ , (4.41)

or, in non-dimensional form,

∂u+

∂y+
=

1

κy+
. (4.42)

From integration of (4.42) the well known logarithmic velocity behavior is ob-
tained

u+ =
1

κ
ln(y+) +B . (4.43)

Constants κ, known as Von Karman constant, and B are equal to 0.41 and 5.2
respectively. The flow region can then be divided in two different zones: the first,
closer to the wall, labeled as inner layer, and the second, labeled as outer layer,
located far from the wall. Within the inner layer the linear and logarithmic velocity
profiles can be observed in the range y+ ∈ [0; 5] and y+ ∈ [30; 300] respectively,
as shown in Fig. 4.3, where the non dimensional velocity profile u+ is plotted
against non dimensional wall distance for the case of fully developed turbulent
channel flow at Ret = 4400. The layer y+ ∈ [5; 30] is defined as buffer layer and
it is characterized by a velocity profile bending from linear to logarithmic.

Although the above velocity behavior, known as law of the wall, has been
derived with simplifying assumptions, it has been observed in Direct Numerical
Simulations of turbulent flows and is then used as reference behavior that must be
reproduced by turbulence models.
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Figure 4.4: DNS temperature profiles for fully developed turbulent flows in plane
channel. Molecular Prandtl number Pr = 0.71 a), Pr = 0.025 b) and Pr = 0.01
c). Profiles compared with linear law Pr y+, Kader law and Duponcheel law.
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Figure 4.5: Comparison of DNS results for Pr = 0.025 and Pr = 0.01 with
Duponcheel law and the newly proposed.

Law of the wall for temperature profile

For the case of a constant and uniform heat flux applied on solid boundary, near
wall temperature profile exhibits a linear dependence on wall distance. In partic-
ular, non-dimensional temperature T+ = T/Tτ , where friction temperature Tτ is
defined as q/(uτρcp), is proportional to non-dimensional wall distance y+ through
molecular Prandtl number, i.e. T+ = Pr y+. The existence of a temperature loga-
rithmic behavior, in the region far from the wall, has been questioned in literature
[55]. For a simple flow configuration, as the fully developed turbulent flow in
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plane channel, the logarithmic behavior has been observed from DNS simulation
results. A first logarithmic law has been proposed by Kader [56, 57]

T̃+ =
Prt
κ

ln
(
1 + y+

)
+ β(Pr) , (4.44)

β(Pr) =
(
3.85Pr1/3 − 1.3

)2
+
Prt
κ

ln(Pr) . (4.45)

The relation that includes both linear and logarithmic temperature behaviors con-
tains exponential blending functions

T+ = Pr y+e−G +

[
Prt
κ

ln
(
1 + y+

)
+ β(Pr)

]
e−1/G , (4.46)

G = 0.01(Pr y+)4/(1 + 5Pr3y+) . (4.47)

As can be seen from (4.44), the coefficient β is a function of the molecular Prandtl
number, while for turbulent Prandtl number Prt the suggested value to use is
0.85. The correlation allows to fairly reproduce temperature profiles of fluids with
a molecular Prandtl number close to 1, as represented in Fig. 4.4 a), but fails with
low Pr fluids, Fig. 4.4 b) and c). A different formulation has been proposed by
Duponcheel et al. [58], based on the heat flux conservation hypothesis in the near
wall region. It is then obtained

ρCp (α + ατ )
dT̃

dy
= q → dT̃

dy
=

q

ρCp (α + ατ )
, (4.48)

or, in non-dimensional form,

dT̃+

dy+
=

Pr

1 + ατ/α
. (4.49)

A linear behavior of αt is assumed using molecular kinematic viscosity ν, non-
dimensional wall distance y+ and turbulent Prandtl number Prt = 2.0

αt = ν
κ

Prt
y+ → dT̃

dy+
=

Pr

1 +
κPr

Prt
y+

. (4.50)

The above equation can be integrated over y+

T̃+ =
Prt
κ

ln

(
1 +

κPr

Prt
y+

)
. (4.51)

For low values of y+ equation (4.51) approximates very well the linear behavior,
while for high values of y+ it leads to a logarithmic law. When dealing with low
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Prandtl number fluids, Prt = 2.0 can be a good assumption in the region close to
the wall, while as wall distance increases the turbulent Prandtl number decreases.
As it will be shown in Section 4.3 for the modeling of αt, we assume a constant
turbulent Prandtl number equal to 1.3, for the region far from the wall. We propose
here a new logarithmic law for mean temperature profile, formulated as

T̃+ =
Prt
κ

ln
(
y+
)

+ C , (4.52)

where C is a constant value that is determined through (4.51). New temperature
law (4.52) is intended to be a correction of (4.51) for the region far from the
wall and it is obtained assuming that the viscous contribution to effective heat
flux is negligible. We calculate the non-dimensional coordinate Pr y+ = ỹt for
which the derivatives of (4.51) and (4.52) have the same value. Constant C is then
determined so that the following function

T̃+ =

{
Pr1t
κ

ln
(

1 + κPr
Pr1t

y+
)
, P r1

t = 2.0 ∀Pr y+ < ỹt

Pr2t
κ

ln (y+) + C , Pr2
t = 1.3 ∀Pr y+ > ỹt

(4.53)

is continuous. We obtain

ỹt =
Pr1

tPr
2
t

κ(Pr1
t − Pr2

t )
→ C =

Pr1
t

κ
ln

(
1 +

κPr

2
ỹt
)
−Pr

2
t

κ
ln
(
ỹt
)
, (4.54)

so the value of non dimensional coordinate ỹt is ỹt = 9.6833 and constant C,
for molecular Prandtl numbers Pr = 0.01 and Pr = 0.025 is C0.01 = −16.97,
C0.025 = −14. A comparison of (4.51) and (4.53) with DNS results for Pr = 0.01
and Reτ = 180, 395, 590, Pr = 0.025 and Reτ = 180, 395, 640 is reported in
Fig. 4.5.

4.1.2 Transport equation for turbulent kinetic energy
In this section we derive the exact transport equation for the turbulent kinetic en-
ergy k. We introduce the equation for the evolution of fluctuating velocity field
as this equation will be used as a starting point for obtaining both k and ε trans-
port equations. The Navier Stokes equation for instantaneous velocity field can be
written as follows

∂u

∂t
+
∂u′

∂t
+ [(u + u′) ·∇] (u + u′) =

= −1

ρ
∇p− 1

ρ
∇p′ + ν∇2u + ν∇2u′ − βg(T + T ′ − Tr) , (4.55)
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where all solved variables have been decomposed as the sum of a mean and a
fluctuating value. A transport equation for the fluctuating velocity field can be
obtained by subtracting (4.20) from (4.55)

∂u′

∂t
+ ∇ · uu′ + ∇ · u′u−∇ · u′u′ =

= −1

ρ
∇p′ + ν∇2u′ − βg(T ′) . (4.56)

Equation (4.56) is more conveniently written in scalar form for a generic i-th com-
ponent of u′, obtaining

∂u′i
∂t

+
∂u′iuj
∂xj

+
∂u′jui

∂xj
+
∂u′ju

′
i

∂xj
−
∂u′ju

′
i

∂xj
=

= −1

ρ

∂

∂xi
p′ + ν

∂2u′i
∂x2

j

− βgiT ′ . (4.57)

Starting from (4.57), the exact transport equation for a generic component u′iu′j of
Reynolds stress tensor can be obtained. We refer to Equj as the transport equation
(4.57) written for fluctuating velocity component u′j . Transport equation for u′iu′j is
obtained by multiplying Equj with u′i and Equi with u′j . Finally the mean operator
is applied to the sum of the two equations, namely u′i · Equj + u′j · Equi. The
resulting equation is the following

∂u′iu
′
l

∂t
+ uj

∂u′iu
′
l

∂xj︸ ︷︷ ︸
I

= − ∂

∂xj

[
u′iu
′
lu
′
j +

δij
ρ
u′lp
′ +

δlj
ρ
u′ip
′ − ν ∂u

′
iu
′
l

∂xj

]
︸ ︷︷ ︸

II

− 1

ρ
p′
∂u′l
∂xi

+ p′
∂u′i
∂xl︸ ︷︷ ︸

III

−
[
u′ju

′
l

∂ui
∂xj

+ u′ju
′
i

∂ul
∂xj

]
︸ ︷︷ ︸

IV

− 2ν
∂u′i
∂xj

∂u′i
∂xj︸ ︷︷ ︸

V

−
[
βgiu′jT

′ + βgju′iT
′
]︸ ︷︷ ︸

VI

.

(4.58)

The labeled terms represent I) the convective contribution, II) a diffusion term
that depends on fluctuating pressure and velocity components and V) represents
the molecular diffusion of the Reynolds stresses component. Term III) represents
the interaction of fluctuating pressure with the fluctuating part of the strain ten-
sor. This term is responsible for kinetic energy redistribution among the normal
stresses, in an effort to recover an isotropic condition. The production term for
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Reynolds stresses is represented by contribution IV) where Reynolds stresses in-
teract with the mean velocity gradient components. Term V) is the dissipation
term of the Reynolds stresses and term VI is a source depending on the interaction
between gravity vector and turbulent heat flux components for buoyant flows. The
exact transport equation for turbulent kinetic energy is obtained by setting sub-
script j equal to i in (4.58) and by performing a summation over i index, as, by
definition

k =
1

2

n∑
i

u′iu
′
i .

The resulting equation is

∂k

∂t
+ uj

∂k

∂xj
= − ∂

∂xj

[
1

2
u′iu
′
iu
′
j +

δij
ρ
u′ip
′ − ν ∂k

∂xj

]
+

− u′ju′i
∂ui
∂xj
− ν ∂u

′
i

∂xj

∂u′i
∂xj
− βgju′jT ′ .

(4.59)

As we see, the pressure strain term is not present in k equation as the trace of
fluctuating strain tensor D′ is equal to zero by effect of incompressibility constrain.
The pressure strain term performs then a net redistribution of turbulent kinetic
energy among the normal stresses, without altering the total value. The diffusive
term related to pressure fluctuations is normally negligible and it is not considered
here. The triple moment u′iu′iu′j is modeled using a Simple Gradient Diffusion
Hypothesis (SGDH) [59]

1

2
u′iu
′
iu
′
j = − νt

σk

∂k

∂xj
, (4.60)

where σk is a model constant and νt the eddy kinematic viscosity used to model
the Reynolds stresses with Boussinesq assumption. The production term P k

P k = −u′iu′j
∂ui
∂xj

. (4.61)

is modeled using (4.22), so

P k =

[
νt

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2

3
δijk

]
∂ui
∂xj

. (4.62)

It is easy to see that δi,j∂ui/∂xj is equal to zero for an incompressible flow. We
introduce the anti-symmetric tensor Ω, whose generic component Ωi,j is defined
as

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (4.63)
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and obtain

P k = 2νtDij (Dij + Ωij) . (4.64)

The production term is finally expressed as

P k = 2νtDijSij + 2νtDijΩij = 2νtDijDij . (4.65)

The product DijΩij vanishes as the dyadic product between a symmetric and an
anti-symmetric tensor is equal to zero. The dissipation of turbulent kinetic energy
is labeled with ε and it is not modeled as it is obtained from the solution of a
proper transport equation. The transport equation for turbulent kinetic energy is
then written as

∂k

∂t
+ u ·∇k = ∇ ·

[(
ν +

νt
σk

)
∇k

]
+ P k − ε+ βg · qr . (4.66)

4.1.3 Transport equation for turbulent kinetic energy dissipa-
tion

Turbulent kinetic energy dissipation rate ε transport equation is needed for two
main reasons: ε is an important term inside k equation as it rules the dissipation of
turbulent kinetic energy at fine scales, so the solution of ε equation allows to obtain
more accurate prediction of fluid flow instead of using a modeled ε. Moreover ε is
chosen to model eddy kinematic viscosity by defining a characteristic time scale
τu = k/ε. The exact transport equation for turbulent kinetic energy dissipation ε,
Eqε, is obtained by performing the following operation

Eqε :=
∑
i

∑
k

2ν
∂u′i
∂xk
· Equi . (4.67)

With some subscript manipulation the resulting terms can be grouped to obtain the
following equation

∂ε

∂t
+ uj

∂ε

∂xj
= − 2ν

(
∂u′i
∂xl

∂u′k
∂xl

+
∂u′l
∂xi

∂u′l
∂xk

)
∂ui
∂xk︸ ︷︷ ︸

I

+

− 2νu′k
∂u′i
∂xj

∂2ui
∂xj∂xk︸ ︷︷ ︸

II

− 2ν
∂u′j
∂xk

∂u′i
∂xk

∂u′i
∂xj︸ ︷︷ ︸

III

− 2

(
ν
∂2u′i
∂xj∂xk

)2

︸ ︷︷ ︸
IV

+

+ 2νβgi
∂u′i
∂xk

∂T ′

∂xk︸ ︷︷ ︸
V

− ν
∂u′jε

′

∂xj︸ ︷︷ ︸
VI

− 2ν
∂

∂xi

∂u′i
∂xk

∂p′

∂xk︸ ︷︷ ︸
VII

+ ν
∂2ε

∂x2
j︸ ︷︷ ︸

VIII

.

(4.68)
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Terms I – V represent source contributions to ε transport equation. Under the
assumption of isotropic turbulence, which means that out of diagonal components
of ∇u′ tensor are equal to zero, term I can be written as

2ν

(
∂u′i
∂xl

∂u′k
∂xl

+
∂u′l
∂xi

∂u′l
∂xk

)
∂ui
∂xk

= 2εδik
∂ui
∂xk

. (4.69)

As a result of continuity equation, this contribution is null for incompressible
flows. Term II) is related to mean velocity field second space derivatives. An
estimation of its impact on ε can be performed through an order of magnitude
comparison with terms III) and IV) which both depend on fluctuating velocity
field gradients. Assuming that the reference length for mean flow gradients is l0
and that lk is the one for fluctuating velocity gradients, we obtain

Pε2 = 2νu′k
∂u′i
∂xj

∂2ui
∂xj∂xk

' ν
u0u

2
k

l20lk
(4.70)

Pε3 = 2ν
∂u′j
∂xk

∂u′i
∂xk

∂u′i
∂xj
' ν

u3
k

l3k
(4.71)

Γε = 2

(
ν
∂2u′i
∂xj∂xk

)2

' ν2u
2
k

l4k
= ν

u3
k

l3k

ν

uklk
= ν

u3
k

l3k
, (4.72)

as the Kolmogorov characteristic length based Reynolds number is equal to 1.
From the ratio (4.70)/(4.71) we obtain

Pε2
Pε3

=
u0

uk

(
lk
l0

)2

= Re−5/4 , (4.73)

where the last equality has been obtained using (4.13) and (4.14). Term II) is
then considered negligible as it is Re5/4 times smaller than Pε3. Terms III) and
IV) represent then the source and dissipation contribution to ε transport equation
and are modeled using k equation production and dissipation terms, multiplied by
the inverse of characteristic time scale τu = k/ε. The buoyancy related source
term V) is labeled as Pεb. Diffusive contributions are represented by terms VI) –
VIII), in particular and VI) – VII) are turbulent contributions, related to velocity
and pressure fluctuations, while VIII) is the molecular diffusion of ε. With ε′ we
label the instantaneous dissipation rate of turbulent kinetic energy, i.e. ε = ε′. The
turbulent diffusion terms are modeled using a SGDH, leading to

−ν
(
u′iε
′ + 2

∂u′i
∂xk

∂p′

∂xk

)
=
νt
σε

∂ε

∂xi
(4.74)
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The modeled transport equation for turbulent kinetic energy dissipation rate is then
written as

∂ε

∂t
+ u ·∇ε = ∇ ·

[(
ν +

νt
σε

)
∇ε

]
+
ε

k

(
cε1P

k − cε2ε
)

+ Pε,b , (4.75)

where σε, cε1 and cε2 are model constants that will be defined in following sections.
Once that the expression for τν is provided, the closure of the dynamic RANS

system of equations, for non buoyant flows, is obtained.

4.1.4 Transport equation for mean squared temperature fluc-
tuations

During the years many closure strategies have been developed to model Reynolds
stresses, with an increasing level of complexity. Starting from zero equation mod-
els, like Prandtl mixing length model where an eddy viscosity is introduced and
algebraically defined, n equation models have been developed, where n additional
transport equations are solved. Two equations are introduced in the case of a k
- ε model like the one described above, or six for a three dimensional simulation
with Reynolds Stress Model where a transport equation is solved for each compo-
nent of τ r. Thermal turbulence closure issue is widely addressed with Reynolds
analogy, where a similarity between velocity and temperature field is assumed.
A constant and uniform turbulent Prandtl number Prt ' 0.9 is then introduced
in order to calculate eddy thermal diffusivity αt as αt = νt/Prt. While this ap-
proach allows to obtain accurate predictions of turbulent heat transfer for fluids
with a molecular Prandtl number Pr ' 1, non negligible overestimation of heat
exchange is obtained when simulating low Prandtl number fluids. Transport equa-
tions for mean squared temperature fluctuations kθ and their dissipation rate εθ are
obtained in order to model eddy thermal diffusivity αt as symbolically described
in (4.24), which means by using a time scale τα that depends on both dynamical
and thermal turbulence characteristic time scales.

Similarly to the case of velocity fluctuations, we introduce the balance equa-
tion for instantaneous temperature field, decomposed into its mean and fluctuating
value

∂T

∂t
+
∂T ′

∂t
+uj

∂T

∂xj
+u′j

∂T

∂xj
+uj

∂T ′

∂xj
+u′j

∂T ′

∂xj
= ∇ ·α∇T+∇ ·α∇T ′ . (4.76)

The transport equation for fluctuating temperature field is obtained as subtraction
of (4.21) from (4.76)

∂T ′

∂t
+ u′j

∂T

∂xj
+ uj

∂T ′

∂xj
− u′j

∂T ′

∂xj
= +∇ · α∇T ′ . (4.77)
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In the following we refer to EqT ′ as the transport equation for T ′ (4.77). Exact
transport equation for mean squared temperature fluctuations Eqkθ is obtained as

Eqkθ := 2T ′ · EqT ′ . (4.78)

The resulting equation is

∂kθ
∂t

+ uj
∂kθ
∂xj

= α
∂2kθ
∂x2

j︸ ︷︷ ︸
I

−1

2

∂u′jT
′2

∂xj︸ ︷︷ ︸
II

− u′jT
′ ∂T

∂xj︸ ︷︷ ︸
III

−α∂T
′

∂xj

∂T ′

∂xj︸ ︷︷ ︸
IV

. (4.79)

On the left hand side of (4.79) the time derivative and convective term are shown.
On the right hand side I) represents the molecular diffusion term. Turbulent diffu-
sion contribution II) is modeled using SGDH, leading to the following expression

−1

2
u′jT

′ =
αt
σkθ

∂kθ
∂xj

. (4.80)

Production and dissipation terms III) and IV) will be labeled with P θ = qr ·∇T
and εθ. The final expression of the modeled kθ transport equation is

∂kθ
∂t

+ u ·∇kθ = ∇ ·
[(
α +

αt
σkθ

)
∇kθ

]
+ P θ − εθ . (4.81)

In the present formulation of the four parameter turbulence model, for mean squared
temperature fluctuations dissipation rate εθ a transport equation is derived, as
shown in the following. In literature thermal turbulence models can be found
involving a modeled εθ [60]. The thermal to dynamic characteristic time scale
ratio R is introduced and defined as

R :=
τθ
τu

=
kθ
εθ
· ε
k
. (4.82)

If a value of R is fixed, then εθ is simply calculated with algebraic relation (4.82),
circumventing the problem of modeling a proper transport equation. On the other
hand, the validity of assuming R = Rfixed should be questioned case by case,
depending on the simulated geometry and on fluid properties.

4.1.5 Transport equation for mean squared temperature fluc-
tuations dissipation

The balance equation Eqεθ governing the evolution of mean squared temperature
fluctuations dissipation rate is obtained as

Eqεθ :=
∑
k

2α
∂T ′

∂xk

∂EqT ′

∂xk
. (4.83)
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After some algebraic manipulation the following equation can be written

∂εθ
∂t

+uj
∂εθ
∂xj

= − 2α

(
∂T ′

∂xj

∂uk
∂xj

)
∂T

∂xk︸ ︷︷ ︸
I

− 2α

(
∂T ′

∂xi

∂T ′

∂xk

)
∂ui
∂xk︸ ︷︷ ︸

II

+

− 2αuk
∂T ′

∂xj

∂2T

∂xk∂xj︸ ︷︷ ︸
III

− 2α
∂u′j
∂xk

∂T ′

∂xk

∂T ′

∂xj︸ ︷︷ ︸
IV

− 2

(
α

∂2T ′

∂xk∂xj

)
︸ ︷︷ ︸

V

+

+ α
∂2εθ
∂x2

j︸ ︷︷ ︸
VI

− ∂ε
′
θu
′
k

∂xk︸ ︷︷ ︸
VII

.

(4.84)

Terms I) – IV) represents different production terms for εθ transport equation.
The first, labeled as Pεθ1, is related to interaction with mean temperature gradi-
ent, while term II), labeled as Pεθ2, depend on the interaction of mean velocity
gradient. Term III) is a production term that is normally considered negligible.
Terms IV) and V) represent respectively the main production Pεθ, depending only
on velocity and temperature fluctuations, and dissipation χεθ contributions to εθ
transport equation. The remaining terms are the molecular and turbulent diffusion
contributions. The latter is modeled using SGDH, so

ε′θu
′
k = − αt

σεθ

∂εθ
∂xk

. (4.85)

The modeled transport equation for εθ is then written as

∂εθ
∂t

+ u ·∇εθ = ∇ ·
[(
α +

αt
σεθ

)
∇εθ

]
+ Pεθ1 + Pεθ2 + Pεθ − χεθ . (4.86)

We see that the final form of transport equations (4.66), (4.75), (4.81) and (4.86)
are very similar and can be expressed in a general form as

Ta + Ca −Da − Pa + Sa = 0 , (4.87)

where, for the given variable a, the modeled transport equation consists of a bal-
ance between a temporal-derivative term Ta, a convective term Ca, a diffusion term
Da due to both molecular and turbulent diffusion, a production term Pa and a dis-
sipative term Sa.

As a completion we finally derive the transport equation Eqqi for turbulent
heat flux components u′iT ′. We use both instantaneous velocity and temperature
fluctuations transport equations as follows

Eqqi := T ′Equi + u′iEqT ′ . (4.88)
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After some algebraic manipulation and applying incompressibility constrain, the
final equation can be written as follows [50]

∂u′iT
′

∂t
+
∂uku′iT

′

∂xk
= −

(
u′iu
′
j

∂T

∂xj
+ u′jT

′ ∂ui
∂xj

)
︸ ︷︷ ︸

I

− 1

ρ
T ′
∂p′

∂xi︸ ︷︷ ︸
II

+

−
∂u′ju

′
iT
′

∂xj︸ ︷︷ ︸
III

+ (ν + α)
∂2u′iT

′

∂xj∂xj︸ ︷︷ ︸
IV

− (ν + α)
∂u′i
∂xj

∂T ′

∂xj︸ ︷︷ ︸
V

− giβT ′2︸ ︷︷ ︸
VI

.

(4.89)

On the right hand side of (4.89), term I) is a production term due to interaction of
Reynolds stresses and turbulent heat flux components with mean temperature and
velocity gradients respectively. Term II) is a dissipation term due to an interaction
between temperature fluctuations and fluctuating pressure gradient components
[61]. Turbulent and molecular diffusion contributions are represented by terms III)
and IV) respectively. The dissipation term of turbulent heat flux components εθi is
V), while VI) acts as a source term due to buoyancy. Most commonly (4.89) is used
to derive an algebraic expression for turbulent heat flux components [62, 63, 64]
by neglecting convective and diffusive contributions (both molecular and turbulent
one), term II and also dissipation εθi. The time derivative is approximated as

∂u′iT
′

∂t
' u′iT

′

cθτθ
, (4.90)

so it is assumed that turbulent heat flux components change on a characteristic
thermal time scale cθτθ. The algebraic equation is then written as

u′iT
′ = −cθτθ

(
c1u′iu

′
j

∂T

∂xi
+ c2u′jT

′ ∂ui
∂xj

+ c3βgiT ′2
)
. (4.91)

The characteristic thermal time scale τθ is usually expressed as τθ = Rτu, where
R is thermal to mechanical characteristic time scale ratio and τu is the mechanical
characteristic time scale τu = k/ε.

4.2 Calibration of the turbulence model
In previous section the exact transport equations for the system (k, ε, kθ, εθ) have
been derived starting from the equations for fluctuating velocity and temperature
fields. In order to get a closure of the system, many terms need to be modeled
and boundary conditions must be specified for all solved turbulence variables. It
is indeed very important to accurately reproduce the correct behavior of turbu-
lence variables in the near wall region, where viscous forces are more important
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Chapter 4. Turbulence modeling

and dissipation of turbulent kinetic energy takes place. In the present section ex-
act boundary conditions are provided for all turbulence variables. Moreover all
remaining terms of (4.66), (4.75), (4.81) and (4.86) are modeled.

4.2.1 Near wall behavior of turbulence variables

Exact near wall behavior expressions for turbulence variables can be obtained by
performing Taylor series expansions in near wall region of mean and fluctuating
velocity and temperature. In order to do this we refer to y as the wall distance
From no slip boundary conditions we obtain

u = 0 v = 0 w = 0

u′ = 0 v′ = 0 w′ = 0 ,
(4.92)

while from incompressibility constrain the following equations must be satisfied.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂

∂x
u′ +

∂

∂y
v′ +

∂

∂z
w′ = 0 .

(4.93)

We refer to v and v′ as mean and fluctuating velocity component along wall normal
direction. As no slip boundary condition is valid along each wall position then

∂u

∂x

∣∣∣∣
w

= 0
∂w

∂z

∣∣∣∣
w

= 0 ,

∂u′

∂x

∣∣∣∣
w

= 0
∂w′

∂z

∣∣∣∣
w

= 0 .

(4.94)

From (4.93) and (4.94) we obtain

∂v

∂y

∣∣∣∣
w

= 0
∂v′

∂y

∣∣∣∣
w

= 0 . (4.95)

We recall that the value of a generic variableA(x) can be calculated from a Taylor
series expansion near position x = x̃ as

A(x) = A(x̃) +
∞∑
n=1

1

n!

∂

∂xn

n

A
∣∣∣∣
x̃

(x− x̃)n . (4.96)
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Near wall expansion approximations of mean and fluctuating velocity components
are then the following

u = A1y + A2y
2 + A3y

3 +O(y4) ,

v = B2y
2 +B3y

3 +O(y4) ,

w = C1y + C2y
2 + C3y

3 +O(y4) ,

u′ = a1y + a2y
2 + a3y

3 +O(y4) ,

v′ = b2y
2 + b3y

3 +O(y4) ,

w′ = c1y + c2y
2 + c3y

3 +O(y4) ,

(4.97)

where no slip boundary condition and incompressibility constrain have been taken
into account. Near wall behavior of k and ε is obtained by recalling their consti-
tutive expression, i.e.

k :=
1

2

∑
i

u2
i , ε := ν

∑
i,j

(
∂u′i
∂xj

)2

. (4.98)

Expressions for k and ε are truncated at first term, obtaining

knw =
1

2
(a2

1 + c2
1)y2 , (4.99)

εnw = ν(a2
1 + c2

1) , (4.100)

where the subscript nw stands for near wall behavior. Turbulent kinetic energy has
a null value along the wall and increase along wall normal direction as∝ y2, while
ε reaches a non null value at the wall. It is observed that εnw = 2νknw/y

2 and that
coefficients a1 and c1 are related to velocity fluctuations and cannot be estimated a
priori. As a consequence an exact Dirichlet boundary condition cannot be imposed
on ε and the wall value must be estimated from knw. As it regards temperature
field, similar expressions can be obtained

T = Tw +H1y +H2y
2 +H3y

3 +O(y4) ,

T ′ = T ′w + h1y + h2y
2 + h3y

3 +O(y4) .
(4.101)

In the case of a constant wall temperature boundary condition, namely T = Tw, the
condition must be fulfilled by both instantaneous and mean temperature values, so
that T ′ = 0 along the wall. On the other hand, if a constant heat flux is applied then
temperature fluctuations can either be considered null or not null. The constitutive
expressions for mean squared temperature fluctuations kθ and their dissipation rate
εθ are

kθ :=
1

2
T ′2 , εθ := α

∑
i

(
∂T ′

∂xi

)2

. (4.102)
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The following near wall behavior relations can be obtained

kθ,nw =
1

2
T ′2w +

1

2
(h2

1 + 2T ′wh
2
2)y2 , (4.103)

εθ,nw = α(h2
1 + 2T ′wh

2
2) , (4.104)

where a smooth change of kθ near the wall is assumed, i.e. ∂kθ/∂y = 0 and εθnw
is obtained from steady transport equation for kθ with negligible convective and
production terms, as described in [65]. For thermal turbulence system of equations
we distinguish the following boundary conditions for the case of constant heat
flux:

• Mixed type (MX): zero temperature fluctuations along the heated wall, then

kθ,nw =
1

2
h2

1y
2 , εθ,nw = αh2

1 , (4.105)

As for the dynamical case, kθ increases proportionally to the squared of
wall distance while εθ has a non null value on the heated wall. This value
depend on temperature fluctuations, it cannot be imposed exactly and so it
is iteratively imposed as εθ = 2αkθ/y

2.

• Constant Heat Flux (CHF): temperature fluctuations are not considered null
on the heated wall. Their value cannot be estimated a priori, so the follow-
ing boundary conditions are set

∂kθ
∂y

∣∣∣∣
w

= 0 ,
∂εθ
∂y

∣∣∣∣
w

= 0 . (4.106)

In previous section eddy kinematic viscosity νt and eddy thermal diffusivity αt
were introduced to model Reynolds stresses and turbulent heat flux

−u′iu′j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
, −u′iT ′ = αt

∂T

∂xi
. (4.107)

With he above expressions near wall behavior of νt and αt can be calculated. For
eddy viscosity we obtain

νt = − u′v′

∂u

∂y
+
∂v

∂x

= −a1b2

A1

y3 , (4.108)

so νt grows with the third power of wall distance. For eddy thermal diffusivity

αt = −v
′T ′

∂T

∂y

= −(b2y
2 + b3y

3)(T ′w + h1y)

H1

=

{
∝ y2 CHF

∝ y3 MX
(4.109)
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We see that near wall behavior of eddy thermal diffusivity depends on applied
boundary conditions for the thermal turbulence model. A proper model of these
terms is then required to reproduce the correct behavior of both νt and αt.

Before proceeding with the turbulence model calibration, we introduce the
turbulent Reynolds number Rt = k2/(νε), that is representative of the energy-
containing turbulent eddies and the non-dimensional lengthRd which is calculated
as the ratio between the wall distance δ and the Kolmogorov characteristic length
scale lk = (ν3/ε)1/4 [66]. These quantities will be widely used to model many
transport equation terms. As we have already introduced, characteristic dynamical
and thermal time scales are respectively computed as τu = k/ε and τθ = kθ/εθ.
Model calibration is performed in order to reproduce some limiting behaviors that
can be encountered in special cases.

The four parameter turbulence model is then made of the following system of
equations

∂k

∂t
+ u ·∇k = ∇ ·

[(
ν +

νt
σk

)
∇k

]
+ P k − ε+ βg · qr , (4.110)

∂ε

∂t
+ u ·∇ε = ∇ ·

[(
ν +

νt
σε

)
∇ε

]
+
ε

k

(
cε1P

k − cε2fεε
)

+ Pεb ,

(4.111)
∂kθ
∂t

+ u ·∇kθ = ∇ ·
[(
α +

αt
σkθ

)
∇kθ

]
+ P θ − εθ , (4.112)

∂εθ
∂t

+ u ·∇εθ = ∇ ·
[(
α +

αt
σεθ

)
∇εθ

]
+

+ Pεθ1 + Pεθ2 + Pεθ − χεθ . (4.113)

Reynolds stresses and turbulent heat flux components have been modeled as

−u′iu′j = νtDij +
2

3
δijk , −u′iT ′ = αt

∂T

∂xi
, (4.114)

leading to the following forms of production terms

P k = 2νtDijDij , P θ = αt∇T ·∇T , Pb = βg·qr = −βαtg·∇T . (4.115)

Production and dissipation terms in ε equation have been modeled using P k and
ε itself, i.e. source terms of k equation, multiplied by the inverse of characteristic
time scale τu, two constants cε1 and cε2 and function fε. In a similar fashion Pεb =
Pb/τu. Source terms of kθ transport equation do not require further modeling,
while for εθ equation we follow the approach used in [67]

Pεθ1 + Pεθ2 + Pεθ − χεθ =
cp1
τθ
P θ + cp2

εθ
k
P k − cd1

ε2
θ

kθ
− cd2

εθε

k
. (4.116)
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Mechanical source terms are then introduced, each one multiplied by a model
constant c and function f and by the ratio εθ/k in order to match their physical
dimension with other terms. Source terms of kθ equation are multiplied by the
inverse of characteristic thermal time scale τθ.

From a near wall analysis of (4.111), in steady state condition, the convective
term, the turbulent diffusion and the production terms can be neglected, obtaining
the following equation

ν∇2ε = −cε2fε
ε2

k
. (4.117)

Diffusive term on the left hand side is of order y0, while the dissipation contribu-
tion on the right hand side is of order fεy−2. It is then required fε to be of order
y2. The requirement is fulfilled by using the following expression

fε =
(
1− e−Rd/3.1

)2
(

1− 0.3e−R
2
t /42.25

)
. (4.118)

The value of constant cε2 is inferred by examining (4.110) – (4.111) in the case
of homogeneous turbulence. If x is the main flow direction, the decay law of
homogeneous turbulence is given by k ∝ x−n, where n varies from 1 − 1.25 in
the first period and 2.5 in the final period. The system of equations states

u
dk

dx
= −ε , → ε = u n x−(n+1) , (4.119)

u
dε

dx
= −cε2fε

ε2

k
, (4.120)

leading to

cε2fε =
n+ 1

n
. (4.121)

At first period, n ' 1.1 and fε = 1, so cε2 = 1.91. At final period n = 2.5 and
fε = 0.7 as e−R2

t /42.25 ' 1. Constant cε1 value is obtained by applying (4.110) -
(4.111) in the constant stress layer [68]. In this region velocity profile exhibits a
logarithmic behavior, so that it’s gradient component ∂u/∂y is equal to uτ/(κy),
with uτ friction velocity. Moreover, turbulence production P k is balanced by dis-
sipation ε, so that turbulent kinetic energy has a constant value k = u2

τ/C
1/2
µ .

Convective terms can be neglected and, from (4.111), the following relation is
obtained

cε1 = cε2 −
κ2

σεC
1/2
µ

. (4.122)

Constant σε is assumed σε = σk = 1.4, leading to cε1 = 1.5.
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For the thermal turbulence model no further modeling is required in (4.112),
while for εθ transport equation some constants need to be calibrated. A similar
approach can be used by considering system (4.110) – (4.113) in the condition of
homogeneous decaying turbulence and of constant stress - flux layer [69, 70]. In
the first case the system of equations becomes

u
dk

dx
= −ε , (4.123)

u
dε

dx
= −cε2fε

ε2

k
, (4.124)

u
dkθ
dx

= −εθ , (4.125)

u
dεθ
dx

= −1

2
cd1

ε2
θ

kθ
− cd2

εθε

k
, (4.126)

where the coefficient 1/2 appears in front of thermal dissipation term of εθ as
the original equation in [69] was obtained considering mean squared temperature
fluctuations T ′2 as state variable instead of kθ = 0.5T ′2. In this flow condition
it is observed that thermal to mechanical time scale ratio R has a constant value
R = 0.5 and does not change along flow direction. Equation (4.124) can be
rewritten by setting ε = Rεθk/kθ in the time derivative term. After substitution of
(4.123) and (4.125) the two following equations are obtained

u
dεθ
dx

=
εεθ
k

(1− cε2fε)−
ε2
θ

kθ
, (4.127)

u
dεθ
dx

= −2cd1
ε2
θ

kθ
− cd2

εθε

k
, (4.128)

leading to

cd2 = cε2fε − 1 , cd1 = 2 . (4.129)

We set cd2 = c̃d2fd2, where c̃d2 is a constant and fd2 a function. Equation (4.129)
is also valid for the initial period, so fε = fd2 = 1 and c̃d2 = cε2 − 1 = 0.9. In
the latter case the following assumptions are made: production terms of k and kθ
are balanced by dissipative terms ε and εθ, both mean velocity and temperature
exhibit a logarithmic behavior, namely u = uτ ln(y+)/κ and T = Tτ ln(y+)/κ,
and eddy thermal diffusivity αt is considered proportional to νt through a constant
turbulent Prandtl number Prt. In this region αt � α. From steady version of
(4.113), when the convective term is negligible, we have

∂

∂y

[
αt
σεθ

∂εθ
∂y

]
=
cp1
2

εθ
kθ
P θ + cp2

εθ
k
P k − cd1

2

ε2
θ

kθ
− c̃d2

εεθ
k
. (4.130)
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cε1 cε2 Cµ σk σε σkθ σεθ cd1 cp1 cd2 cp2

1.5 1.9 0.09 1.4 1.4 1.4 1.4 1.1 1.025 1.9 0.9

Table 4.1: Alternative values of the model constants for (4.110) and (4.113).

With the above mentioned assumptions and by expressing kθ as a function of R,
the following relation is obtained

κ2

σεθPrtC
1/2
µ

= c̃d2 − cp2 +
cd1 − cp1

2R
. (4.131)

Coefficient cp1 is taken equal to 1.9 [70], and cp2 = 0.733 is calculated using
(4.131) withR = 0.5, σkθ = σεθ = 1.4 and Prt = 1.5. The above set of coefficient
is obtained by considering reference cases, i.e. decay of homogeneous turbulence
and constant stress-flux region, and some assumptions as logarithmic behavior of
mean temperature profile and proportionality between αt and νt. These assump-
tions can be too strong. Mean temperature field can exhibit a logarithmic behavior,
but differently from the velocity field, where linear and logarithmic behaviors are
encountered in well determined y+ ranges, the non dimensional reference length
is Pr y+ instead of y+. For turbulent flows with a Prandtl number close to 1 tem-
perature and velocity logarithmic behaviors can occur in the same region, but as
Pr decreases the two logarithmic layers occur at different distances from the wall.
Good agreement with reference data has been obtained also with a different set of
constant values, namely the ones reported in Table 4.1 [71, 72, 73].

4.3 Models for eddy kinematic viscosity and eddy
thermal diffusivity

In previous sections we introduced variables k, ε, kθ and εθ as key parameters for
modeling eddy kinematic viscosity and eddy thermal diffusivity. In general νt and
αt are calculated as functions of k and two local characteristic time scales τlu and
τlθ, the first for the dynamical turbulence and the latter for the thermal turbulence,

νt = Cµkτlu , αt = Cθkτlθ . (4.132)

The local characteristic dynamical time scale τlu is modeled as sum of different
contributions [10, 74, 70, 75]

τlu = (f1µA1µ + f2µA2µ) , (4.133)
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Figure 4.6: Representation of local characteristic dynamic time scale τlu for a fully
developed turbulent flow with Reτ = 950. The time scale is plotted against the
non-dimensional wall distance y+ together with the terms f1µA1µ and f2µA2µ used
to model τlu.

where

f1µ = (1− e−Rd/14)2 , (4.134)
A1µ = τu , (4.135)

f2µ = f1µe
−2.5×10−5R2

t , (4.136)

A2µ = τu
5

R
3/4
t

. (4.137)

The term A1µ is the bulk dynamical time scale while A2µ is the correction term
for the near wall behavior. The function f2µ decreases rapidly as the wall distance
increases, so the term f2µA2µ is significant only in the near wall region, as can
be seen in Figure 4.6. In this Figure the time scale τlu and the terms f1µA1µ and
f2µA2µ are reported as functions of the non-dimensional distance from the wall y+

for a test case with Reτ = 950. In the near wall region, y+ < 3, the value of τlu is
almost equal to f2µA2µ while far from the wall, at y+ > 20, the value of the local
dynamical time scale is equal to the bulk term f1µA1µ. With this modeling we can
correctly reproduce the near-wall behavior of the eddy viscosity νt ∝ δ3.

The time scale τlθ is modeled as [10, 74, 70, 11, 12, 75]

τlθ = (f1θB1θ + f2θB2θ) , (4.138)
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Figure 4.7: Representation of the local characteristic time scale τlθ, plotted against
the non-dimensional wall distance y+, together with the various terms used to
model τlθ. The time scale is for the case of fully developed flow with Reτ = 950
in a plane channel.

where

f1θ =
(

1− e
√
PrRd/19

) (
1− eRd/14

)
, (4.139)

B1θ =
τu

Prt,∞
, (4.140)

f2θB2θ = τu

(
f2aθ

2R

Cγ +R
+ f2bθ

√
2R

Pr

1.3√
PrR

3/4
t

)
, (4.141)

with

f2aθ = f1θe
−(Rt/500)2 , (4.142)

f2bθ = f1θe
−(Rt/200)2 . (4.143)

The time scale τlθ is calculated as the sum of two terms: the first, B1θ, is a bulk
term that is a function only of the dynamical time scale τu. This term is the most
important in the region far from the wall. The second term, B2θ, is the sum of
two contributions: a near wall term that is proportional to the time scale τu

√
R =√

τuτθ and a term that is proportional to the mixed time scale τm = τuR/(Cγ+R).
This last time scale is calculated as the harmonic mean between the time scales
τu and τθ. In Figure 4.7 the plot of the local time scale τlθ as a function of the
non-dimensional distance from the wall y+ is given together with the terms used
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to model the timescale itself. With B2θa and B2θb we refer to the following terms

B2θa = τu
2R

Cγ +R
,

B2θb = τu

√
2R

Pr

1.3√
PrR

3/4
t

.

(4.144)

We can see that in the near wall region where y+ < 4 the main contribution to
the local time scale is given by the term B2θb. In the region far from the wall,
y+ > 300, the main term is B1θ while in the intermediate region the time scale
τlθ is influenced by both B1θ and B2θa. With this formulation the model is able to
reproduce the near wall behavior of the eddy thermal diffusivity, which is αt ∝
δ3, when no thermal fluctuations are assumed on the wall surface, and αt ∝ δ2,
when thermal fluctuations are present on the wall surface [70, 74, 10]. After the
introduction of νt and αt, the final form of the RANS system of equations is the
following

∇ · u = 0 , (4.145)
∂u

∂t
+ u ·∇u = −1

ρ
∇P+

+ ∇ · [(ν + νt)
(∇u + ∇uT

)]
+ gβ(T − Tr) , (4.146)

∂T

∂t
+ u ·∇T = ∇ · [(α + αt)∇T ] +

Q

ρCp
. (4.147)

4.4 The four logarithmic parameter turbulence model

In Section 4.1 the exact transport equations for turbulence variables k, ε, kθ and εθ
have been derived and subsequently modeled in Section 4.2. The four parameter
turbulence model has been used in the past providing reliable results for several
flow configurations [10, 11, 12], but its numerical stability, in particular for the
thermal dissipation rate εθ, has been questioned, see [76] and reference therein.
The purpose of this PhD work is to provide a new formulation of the turbulence
model with an increased numerical stability. In the present section the four loga-
rithmic parameter turbulence model is described. First of all, two new turbulence
variables are introduces, ω and ωθ, defined as the turbulent kinetic energy and the
mean squared temperature fluctuations specific dissipation rates. The constitutive
expressions of these two new variable are

ω :=
ε

Cµk
, ωθ :=

εθ
Cµkθ

. (4.148)
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The new turbulence model is obtained in two steps: first the k - ε - kθ - εθ (KE)
system of equations is transformed into a k - ω - kθ - ωθ (KW) turbulence model
and finally into a logarithmic parameter model K - Ω - Kθ - Ωθ (KLW). The dou-
ble transformation is performed in order to obtain an increased numerical stability
of the turbulence model. The KW model has been proposed with the intent of
improving the numerical stability of the KE model by enabling the possibility to
impose exact Dirichlet boundary conditions on ω and ωθ over near-wall regions.
From a combination of k, ε, kθ and εθ near wall behaviors the following expres-
sions are obtained

ωnw =
εnw
Cµknw

= 2
ν

Cµy2
, (4.149)

ωθ,nw =
εθ,nw
Cµkθ,nw

= 2
α

Cµy2
. (4.150)

As can be seen, both ω and ωθ near wall behaviors (in the latter case for the con-
dition of zero temperature fluctuations along the heated wall) do not depend on k
and kθ values. Exact Dirichlet boundary condition can then be imposed on solid
boundaries as the value is exactly calculated using physical (ν and α) and geo-
metrical (y) properties. The constrain of zero fluctuations on the wall, for both
velocity and temperature, leads to infinite values of ω and ωθ. Because of this sin-
gular behavior, the boundary is considered at a distance δ from the wall, in order
to impose exact and non singular Dirichlet boundary conditions. Characteristic
dynamical and thermal time scales τu and τθ become

τu =
k

ε
=

1

Cµω
, τu =

kθ
εθ

=
1

Cµωθ
, (4.151)

so the thermal to dynamical time scale ratio R is simply ω/ωθ. On solid bound-
aries, if temperature fluctuations are zero, R has a finite value equal to molecular
Prandtl number. For simplicity of notation, we now refer to u, T and p as mean
velocity, temperature and pressure, and we label as νieff and αjeff the effective
viscosity and thermal diffusivity for the turbulence variables transport equations,
namely

νieff = ν +
νt
σi
, αjeff = α +

αt
σj
. (4.152)

Transport equation for ω and ωθ are obtained from those of ε and εθ by using the
following rule

∂ε

∂s
=

1

Cµ

(
k
∂ω

∂s
+ ω

∂k

∂s

)
,

∂εθ
∂s

=
1

Cµ

(
kθ
∂ωθ
∂s

+ ωθ
∂kθ
∂s

)
, (4.153)
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where s can either be a space coordinate or time. The k - ω - kθ - ωθ turbulence
model is then made of the following system of equations

∂k

∂t
+ u ·∇k = ∇ · (νkeff∇k

)
+ Pk − Cµ k ω + Pb , (4.154)

∂ω

∂t
+ u ·∇ω = ∇ · (νωeff∇ω

)
+

2

k
νωeff∇k ·∇ω+

+ (cε1 − 1)
ω

k
Pk − Cµ (cε2fε − 1)ω2 + (cb − 1)

ω

k
Pb , (4.155)

∂kθ
∂t

+ u ·∇kθ = ∇ · (αkθeff∇kθ
)

+ Pkθ − Cµ kθ ωθ , (4.156)

∂ωθ
∂t

+ u ·∇ωθ = ∇ · (αωθeff∇ωθ
)

+
2

kθ
αωθeff∇kθ ·∇ωθ+

+ ωθ

[
(cp1 − 1)

kθ
Pkθ +

cp2
k
Pk − (cd1 − 1)Cµωθ − cd2Cµω

]
. (4.157)

As a consequence of the change of state variables, in ω and ωθ transport equa-
tions some additional diffusion terms are introduced, namely the cross diffusion
contributions

2

k
νωeff∇k ·∇ω ,

2

kθ
αωθeff∇kθ ·∇ωθ . (4.158)

Production and dissipation terms of ω and ωθ are obtained as

Pω =
1

kCµ
Pε −

ω

k
Pk , Sω =

1

kCµ
Sε −

ω

k
Sk , (4.159)

Pωθ =
1

kθCµ
Pεθ −

ωθ
kθ
Pkθ , Sωθ =

1

kθCµ
Sεθ −

ωθ
kθ
Skθ . (4.160)

It is important to notice that model constants cε1, cε2fε, cp1, cd1 and cb need to be
greater than one to ensure that the same physical processes that act as production
- dissipation for ε and εθ act in the same way also for ω and ωθ.

Another improvement to this model is the possibility of maintaining the state
variables and the modeled quantities, such as νt and αt, always positive during the
solution process, because negative values do not have physical meaning and lead
to numerical instability. Ilinca et al. proposed the use of logarithmic variables as a
way to naturally avoid this problem [77]. In the paper the authors used the change
of state variables into their natural logarithm as a new method to increase numer-
ical stability of existing turbulence models. As great advantages of this approach
they showed that original variables are always kept positive, logarithmic variables
have smoother profiles and that once the problem is formulated with logarithmic
variables, all turbulence two-equation models can be written as a linear combina-
tion of different turbulence models. The approach of logarithmic variables is used
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Chapter 4. Turbulence modeling

in this thesis to provide an increased numerical stability of the four parameter tur-
bulence model. In particular the transformation of state variables into logarithmic
values is applied to the system (k,ω,kθ,ωθ) in order to take advantage of the ben-
efits of both logarithmic and omega variables, ω and ωθ. The system of equations
can be transformed using the following general rule

I = ln(i) , → ∂I

∂s
=

1

i

∂i

∂s
, (4.161)

the four parameter turbulence model with logarithmic variables (K,Ω,Kθ,Ωθ) is
written as

∂K

∂t
+ u ·∇K = ∇ · [νK

eff∇K
]

+ νK
eff∇K ·∇K+

+
Pk
eK

+ cb
Pb
eK
− Cµ eΩ , (4.162)

∂Ω

∂t
+ u ·∇Ω = ∇ · [νΩ

eff∇Ω
]

+ 2νΩ
eff∇K ·∇Ω+

+ νΩ
eff∇Ω ·∇Ω +

cε1 − 1

eK
Pk+

+
cb − 1

eK
Pb − Cµ (cε2fexp − 1) eΩ , (4.163)

∂Kθ

∂t
+ u ·∇Kθ = ∇ · [αKθ

eff∇Kθ
]

+ αKθ
eff∇Kθ ·∇Kθ+

+
Pθ
eKθ
− Cµ eΩθ , (4.164)

∂Ωθ

∂t
+ u ·∇Ωθ = ∇ ·

[
αΩθ
eff∇Ωθ

]
+ 2αΩθ

eff∇Kθ ·∇Ωθ+

+ αΩθ
eff∇Ωθ ·∇Ωθ +

cp1 − 1

eKθ
Pθ +

cp2
eK
Pk+

− (cd1 − 1)Cµe
Ωθ − cd2Cµe

Ω . (4.165)

Source terms can be written as

PI =
1

eI
Pi , SI =

1

eI
Si (4.166)

In the system (4.162-4.165), the cross diffusion terms

νK
eff∇K ·∇K , νΩ

eff (2∇K + ∇Ω) ·∇Ω

αKθ
eff∇Kθ ·∇Kθ , αΩ

eff (2∇Kθ + ∇Ωθ) ·∇Ωθ .

can be seen as additional convective terms. We introduce the fictitious velocities
uK , uΩ, uKθ, uΩθ and rewrite the cross diffusion terms as

uK ·∇K , uΩ ·∇Ω , uKθ ·∇Kθ , uΩθ ·∇Ωθ .
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Model Wall Model MX CHF

k − ω
∂k

∂y
=

2k

y kθ − ωθ
kθ =

2kθ
y

∂kθ
∂y

= 0

ω =
2ν

Cµy2
ωθ =

2α

Cµy2

∂ωθ
∂y

= 0

K − Ω

∂K

∂y
=

2

y Kθ − Ωθ

∂Kθ
∂y

=
2

y

∂Kθ
∂y

= 0

Ω = ln

(
2ν

Cµy2

)
Ωθ = ln

(
2α

Cµy2

)
∂Ωθ

∂y
= 0

Table 4.2: Boundary conditions on solid walls for both KW and KLW turbulence
models.

Boundary conditions for KLW turbulence model are summarized in Table 4.2.
We again remark that νt values are limited in a natural way with the logarithmic
formulation and the condition νt ≥ 0 is always satisfied. An upper limit is imposed
from a physical realizability condition [78, 79]. The limits are derived as follows.
The strain tensor D, in principal axis coordinates, becomes diagonal and its non
zero components lead to

λ2
1 + λ2

2 + λ2
3 = |D|2 , (4.167)

λ1 + λ2 + λ3 = 0 . (4.168)

For a two-dimensional case λa =
√
|D|2/2, while for a three-dimensional case

λa ≤
√

2|D|2/3. From the model of Reynolds stresses

u′2a = −2νtλa +
2

3
k , (4.169)

so that if λm = max(λa), then the following must hold

2νtλm ≤
2

3
k (4.170)

as normal Reynolds stresses are positive. From an estimation of the maximum
admissible value of λm a local upper limit for νt can be calculated. For three-
dimensional cases it is obtained that λm ≥ |D|/

√
6, leading to the following

upper bound for νt

νt ≤
√

2

3

k

|D| . (4.171)

As turbulent kinetic energy production term is Pk = 2νt|D|2, an upper bound is
also derived for Pk, namely

Pk ≤
√

8

3
k|D| . (4.172)
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For a two-dimensional simulation (4.169) can be re-written as

u′2a = −2νtλa + k , (4.173)

so the limit to be satisfied is 2νtλm ≤ k. The bounds for νt and Pk are easily
obtained as

νt ≤
1√
2

k

|D| , Pk =
√

2k|D| . (4.174)
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Fully developed turbulent flows

In this Chapter the results of fully developed turbulent flows are discussed. Perfor-
mances of KLW and KE models are evaluated and compared by simulating a fully
developed turbulent flow in plane channel geometry. The comparison is provided
to demonstrate the increased numerical stability of the KLW turbulence model.
A more detailed study of the plane channel, cylindrical pipe and hexagonal 19
pin nuclear reactor bundle is then reported. Different values of both Prandtl and
Reynolds numbers are considered, in particular Pr = 0.025, that is representative
of Lead-Bismuth-Eutectic (LBE) and Pr = 0.01, that is representative of liquid
sodium. With these simulations the turbulence model performances can be eval-
uated with simple and well studied cases for which DNS results and experimental
correlation are available. In the first case, a detailed evaluation of the model can be
performed by reproducing the flow features obtained with DNS simulations. In the
latter, the model can be validated on an integral scale, for example by calculating
Nusselt number values for heat transfer evaluation.

For the study of fully developed flows some simplifying assumptions can be
made. If a straight domain is considered and a constant heat flux is applied on
a boundary wall, from the energy balance equation (4.147), it is well known that
the temperature grows linearly along the axial coordinate in absence of volumetric
source term Q. The temperature gradient along this direction can be calculated by
integrating (4.147) on the whole domain, obtaining

dT

dz
=

4qfh
wmidρCpDh

, (5.1)

where z is the axial direction, wmid is the cross section average axial velocity,
Dh is the hydraulic diameter and fh is the ratio between the heated and the wet
cross section perimeter. In this case the temperature field T , solution of (4.147),
is usually transformed into a cross section temperature field T̃ defined as

T (x, y, z) = Tw0 − T̃ (x, y) +
dT

dz
(z − zin) , (5.2)
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where Tw0 is the reference inlet surface temperature. The temperature field T̃ (x, y),
which is the temperature distribution on the transverse section of the domain, does
not change with the axial coordinate. The energy balance equation, rewritten with
the state variable T̃ , becomes

∂T̃

∂t
+ u ·∇T̃ = ∇ ·

[
(α + αt)∇T̃

]
+ u · â 4qfh

wmidρCpDh

, (5.3)

where â is the unit vector in the axial direction. The last term in (5.3) is a source
which depends on the heat flux on the wall and on the fluid velocity and geometry.
This change of variables allows us to impose an periodic boundary conditions also
on the temperature field and [10, 72, 80]. The RANS system of equations is then
modified as

∇ · u = 0 , (5.4)
∂u

∂t
+ u ·∇u = −1

ρ
∇P + Fz+

+ ∇ · [(ν + νt)
(∇u + ∇uT

)]
+ gβ(T − Tr) , (5.5)

∂T̃

∂t
+ u ·∇T̃ = ∇ ·

[
(α + αt)∇T̃

]
+ u · â 4qfh

wmidρCpDh

, (5.6)

where Fz is parallel to mean flow direction and represents the pressure gradient
force that drives the fully developed turbulent flow. The magnitude of Fz can be
set in order to obtain a certain Reτ case. In particular, |Fz| can be computed from
(4.37), for y = δ we obtain

−∂P
∂x

=
τw
δ

=
ρu2

τ

δ
. (5.7)

Friction velocity uτ can be written as a function of friction Reynolds number Reτ
in the following form

−∂P
∂x

=
ρRe2

τν
2

δ3
. (5.8)

Fully turbulent flows in several geometries are considered in this Chapter, namely
plane channel, cylindrical pipe and 19 pin nuclear reactor bundle, in Sections 5.2,
5.3 and 5.4 respectively. Results for both dynamical and thermal fields are shown
and compared with DNS results, whereas available, or with experimental correla-
tions.

All the results reported in the following have been obtained from solution of
the RANS and KLW system of equations using finite element method in FEMuS
code. Time derivatives are discretized using backward Euler method. The al-
gebraic system of equations is solved using the Generalized Minimal Residual
method (GMRES) with Incomplete LU factorization (ILU) preconditioner [81].
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Lx

Ly

Γout

Γin

ΓwΓsym qin

y

x

Figure 5.1: Sketch of the plane channel simulated domain.

Property Symbol
Value

Unit
Pr = 0.01 Pr = 0.025

Viscosity µ 5.433 · 10−4 1.844 · 10−3 Pa s
Density ρ 914.6 10340 Kg/m3

Thermal conductivity λ 74.02 10.77 W/(m K)
Heat specific capacity Cp 1362.3 146 J/(Kg K)

Table 5.1: Physical parameters for fluids with Pr = 0.01 and Pr = 0.025.

Var. Γsym Γin ∪ Γout Γw

u u = 0
∂u

∂y
= 0 u = 0

v
∂v

∂x
= 0

∂v

∂y
= 0

∂v

∂x
= µ

δ

k
∂k

∂x
= 0

∂k

∂y
= 0

∂k

∂x
= 2k

δ

Ω
∂Ω

∂x
= 0

∂Ω

∂y
= 0 Ω = ln

(
2ν
Cµδ2

)
Table 5.2: Boundary conditions imposed for the simulations of fully developed
turbulent flows-dynamical fields in a plane channel.

5.1 Comparison between KLW and KE models

In the present Section results are shown to demonstrate the enhanced numerical
stability of the four logarithmic parameter turbulence model KLW with respect to
original KE formulation. The comparison is made with the KE formulation since
this formulation has been more widely used, so it would be of great interest to
increase the performances of existing model implementations [82, 83, 84, 85]. The
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Figure 5.2: Comparison of R values obtained for k, ε, K and Ω for using same
time discretization step.

fully developed turbulent flow in plane channel, with a friction Reynolds number
Reτ = 2000 and fluid molecular Prandtl number Pr = 0.01 is chosen as a test
case to investigate turbulence model performances. A more detailed study of fully
developed turbulent flows in plane channel geometry is presented in the following
Section. The simulated geometry is sketched in Fig. 5.1 and consists of two plates
located at a distance L = 0.0605 m. The condition of fully developed turbulent
flow is imposed with periodic boundary conditions on the inlet and outlet of the
channel. The physical parameters used to obtain the present results are listed in
Tab. 5.1. Because of the symmetry of the problem only half of the physical domain
is simulated. We indicate with Γin the inlet surface, with Γout the outlet surface,
with Γw the wall surface and with Γsym the surface on the symmetry plane. The
boundary conditions we impose are reported in Table 5.2. Stationary solutions are
obtained with a time marching scheme. Thermal fields, for this case, are passive
scalars, so first the solution for velocity and dynamical turbulence variables is
obtained and then the one for mean temperature and thermal turbulence variables.
To better evaluate the performances of the two models we introduce variablesN1,i

and N2,i calculated as

N1,i := ||Φi − Φi+1||L2 , N2,i := ||Φi − Φsteady||L2 . (5.9)

The value of N1,i represents the L2 norm of the difference between two consec-
utive printed solutions, i and i + 1, while N2,i is the L2 norm of the difference
between the solution at times step i and the final one, labeled as Φsteady. Another
useful parameter to monitor is the sum of weighted residuals R. For a generic
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partial differential equation Eqi written in the form

Eqi : Lu− f = 0 , on Ω , (5.10)

the residual R of approximate solution uh is calculated as

R = Luh − f . (5.11)

The weighted residual is obtained from integration of equation 5.11 over domain
Ω, after it has been multiplied by test function ϕ. For a given domain discretization
Ωh with N nodes, the sum of weighted residualR is calculated as

R =
N∑
i=1

∫
Ω

(Luh − f)ϕidΩ . (5.12)

It is clear that when uh tends to exact solution u, the sum of weighted residuals
becomes zero. Differently from the values of norms N1 and N2, the value of R
contains information on how approximated solution uh is close to exact one u.
The initial conditions for dynamical turbulence variables are provided as uniform
fields over the domain, with equivalent values for k, ε and K, Ω, namely

k = kin , ε = εin , (5.13)

K = ln(kin) , Ω = ln

(
εin
Cµkin

)
. (5.14)

A fine mesh in the near-wall region is used, so that viscous layer can be resolved.
Natural boundary conditions are set for k and K, from near-wall behavior

knw = λδ2 , → ∂k

∂δ
=

2knw
δ

, (5.15)

where δ is the wall distance. Essential boundary conditions are used for ε and Ω.
In particular for ε the following defective scheme is used

εi+1
nw = εinw + γ

(
2ν

δ2
klnw − εinw

)
, (5.16)

in order to avoid huge oscillations in ε values. For Ω the near-wall value is constant
in time since it depends only on kinematic viscosity ν and wall distance δ

Ω = ln

(
2ν

Cµδ2

)
. (5.17)

In Fig. 5.2 obtained values of R, for k, K, ε and Ω are plotted against the num-
ber of iterations N performed. The evolution of R is here shown for the first
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Figure 5.3: Comparison of L2 norms N1 and N2 values obtained with KLW and
KE. Values refer to time evolution of k and ε variables.

performed iterations, in order to make a comparison between the behaviors of
the two turbulence models. The results have been obtained using the same ficti-
tious time discretization step. For the KLW turbulence model it is observed thatR
present some oscillations, at the very first iterations, and then stabilizes, with Ω
variable having a more rapidly decreasing value of R with respect to K. For KE

turbulence model the initial values ofR are smaller than those obtained with KLW

but as soon as ε wall value begins to change R rapidly diverges. A smaller time
step is then required for the solution of KE model, at least for an initial amount of
iterations. Complete time evolution of N1 and N2 norm values is reported in Fig.
5.3. In this Figure norms are calculated on k and ε, so KLW model results have
been transformed back to natural values of k and ε, in order to make a comparison
between norms of the same variables. Time evolution is described as a function
of normalized number of iterations Niter, namely the number of iteration divided
by the number of iterations to final convergence of KLW model. For KLW model
the same time discretization step has been used for the entire simulation. After
an initial solution guess, norms N1 and N2 rapidly decrease with the number of
iterations. A smaller initial time step value is used with KE model. After some
initial iterations, when norms N1 start to monotonically decrease, time step value
can be increased. It can be seen that the solution with KE model required a total
number of iterations approximately 2.5 times bigger than those required for the
solution of KLW model. A comparison of the obtained results is shown on the left
of Fig. 5.4, where non-dimensional value of v+, k+ and ε+ are plotted against
non-dimensional wall distance y+. The models reproduce the same results, as
expected, with only a small difference in the near wall value of ε.
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Figure 5.4: Comparison of results obtained with KE and KLW formulations of
four parameter turbulence model. Plots are taken on channel cross sections and
reported as a function of non dimensional wall distance y+. On the left results
for dynamical turbulence and on the right thermal field results for CHF boundary
condition.

Once that the solution for dynamical variables has been obtained, the compu-
tation of thermal variables is set up. For each field an initial uniform value is set,
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Figure 5.5: Comparison of L2 normN1 andN2 values obtained with KLW and KE

models for simulation of turbulent heat transfer in plane channel, CHF boundary
condition, Reτ = 2000 and Pr = 0.01.
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Figure 5.6: Comparison of R values obtained for kθ, εθ, Kθ and Ωθ for case MX

and solution with same fictitious time step.

with equivalent values for kθ, εθ and Kθ, Ωθ, namely

kθ = kθ,in , εθ = εθ,in , (5.18)

Kθ = ln(kθ,in) , Ωθ = ln

(
εθ,in
Cµkθ,in

)
. (5.19)
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Both CHF and MX boundary conditions for thermal turbulence variables are inves-
tigated. For CHF case the boundary conditions are set for both systems of thermal
turbulence variables (kθ, εθ) and (Kθ,Ωθ) by imposing a zero gradient value in the
direction normal to interested boundary side. Thermal dissipation rate εθ does not
suffer from a dependence on kθ value, and KE and KLW models behave in the same
way, as described in Fig. 5.5. Results of thermal fields are shown on the right of
Fig. 5.4, where non-dimensional values of temperature T+, mean squared temper-
ature fluctuations k+

θ and their dissipation ε+
θ are plotted against non-dimensional

wall distance y+. One can see that the two different model formulations lead to
the same results, as expected. Plots of norms N1 and N2 norms are reported as
a function of variable Niter. For this case Niter, the ratio of number of iterations
versus number of iterations to convergence for CHF case, is in the range of 0 to
1. Values of N1 and N2, for KLW model, have been calculated on (kθ, εθ) val-
ues obtained from (Kθ,Ωθ) in order to compare them with those obtained with KE

model. For this case the same fictitious time step has been used for both turbu-
lence models, leading to an equivalent time evolution of the solutions. A different
behavior is observed with the setting of MX boundary conditions. Simulations are
performed starting from steady solution obtained for CHF case. Natural bound-
ary conditions are still set for kθ and Kθ, since their near-wall gradient component
along wall normal direction can be expressed as a function of wall distance δ. Es-
sential boundary conditions are used for εθ and Ωθ: for the first variable a Dirichlet
boundary condition is set according to

εθ nw =
2α

δ2
kθ , (5.20)

while for the logarithmic omega variable the following value

Ωθ nw = ln

(
2α

Cµδ2

)
(5.21)

is imposed. In order to prevent high oscillating wall values of εθ, Dirichlet bound-
ary condition for εθ is updated with a defective method, i.e. as

εi+1
θ nw = εiθ nw + γ

(
2α

δ2
klθ nw − εiθ nw

)
, (5.22)

where i + 1 is the actual time step, klθ nw is the last updated near-wall value of
kθ and γ is a constant value smaller than one. If γ = 0 then the near-wall value
of εθ is kept equal to the last computed value, i.e. the first imposed value if γ
is not changed during the simulation, otherwise for γ = 1 the new value of εθ
is completely determined on the last updated value of kθ. In Fig. 5.5 the time
evolution of norms N1 and N2 values is reported as a function of Niter variable.
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From the side of KLW model, MX boundary conditions introduce high gradients
of Ωθ field in the near-wall region, requiring a smaller fictitious time step than
the one used for the solution of CHF case. Convergence is then obtained after the
value ofNiter is greater than 1. For the KE model the used time step is equal to one
tenth of that used with KLW, for a matter of stability as with higher dt values the
solution diverges. This behavior can be easily seen from Fig. 5.6, where values
of R have been plotted against Niter values, for solutions of (kθ, εθ) and (Kθ,Ωθ)
using the same value of dt. R value for the system (kθ, εθ) are initially small, as
the starting solution is the steady one of CHF case and εθ wall values are updated
with (5.22). After some iterationsR begins to oscillate until the solution diverges.
For (Kθ,Ωθ) system the correct wall value of Ωθ is imposed at the first iteration,
leading to initially high values ofR. After a few iterations, characterized by some
oscillations, R stabilizes. Again from Fig. 5.5 it is clear that KE model requires a
greater number of iteration to solution convergence.

From this simple test case it has be shown that the double turbulence model
transformation, i.e. from ε variable to ω ones and from “natural” variables to log-
arithmic values, allows to obtain an increased numerical stability. In this light
of view the above mentioned turbulence model transformation can be seen as a
generic mathematical tool that can be applied to existing k-ε turbulence models to
increase their numerical stability. The analysis has been performed by comparing
the performances of KLW an KE models in simulating a steady fully developed
turbulent flow. A major limitation of the KE model is represented by the boundary
condition imposition for ε and εθ variables on wall boundaries. Small time steps
are required to limit ε and εθ oscillations on wall boundaries while Ω and Ωθ are
not affected by this issue. Transient simulations have not been considered since
in this thesis only steady simulations are performed. Anyway, while simulating
transient situations, small time steps are required to reproduce phenomena occur-
ring on small time scales. In this framework the KE model should suffer less of
the boundary condition issue, but the logarithmic formulation is yet expected to
be more stable due to the natural lower limitation of all solved variables. Orig-
inal solved variables are in fact prevented from becoming negative so that lower
threshold values do not need to be set in order to avoid numerical instabilities.

5.2 Plane channel

5.2.1 Dynamic turbulence

The plane channel is one of the simplest types of geometry that can be simulated
and many Direct Numerical Simulations are available for this kind of flow. In
particular for fully developed turbulent flows results of the dynamical turbulence
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k+ ω+ ν+
t

Near wall ∝ y+2 2
Cµy+2 ∝ y+3

Const. stress 1√
Cµ

1

κ
√
Cµy+

κy+

Table 5.3: Reference profiles, as a function of non-dimensional wall distance, for
k+, ω+ and ν+

t in both near-wall and constant stress layer.

for the cases of friction Reynolds number Reτ = uτδ/ν ' 180, 395, 590, 640,
950, 2000 and 4200 are available [86, 87, 88, 89]. The simulation configuration is
the same used for the performance comparison between KLW and KE models and
described in the previous Section. In particular the physical domain is sketched
in Fig. 5.1, while fluid physical properties and boundary conditions are reported
in 5.1 and 5.2 respectively. Six test cases with Reynolds number Re ' 5700 (A),
14000 (B), 24000 (C), 37000 (D), 86000 (E) and 198000 (F) are considered. They
correspond to friction Reynolds numbers Reτ ' 180, 395, 640, 950, 2000 and
4200. All simulations are performed using a spatial discretization of the physical
domain in order to have the first mesh point at y+ < 1.

Profiles of non-dimensional turbulent kinetic energy k+ = eK/u2
τ , specific

dissipation rate ω+ = eΩν/u2
τ and eddy kinematic viscosity ν+

t = νt/ν are shown
in Fig. 5.7 for all the simulated cases. Reference behaviors for each variable are
shown. In particular, these are the ones obtained in Section 4.2 and summarized
in Table 5.3 for both near-wall and constant stress layer.

Quadratic dependence on y+ and uniform value in the constant stress layer
are perfectly reproduced by the solved K fields. Specific dissipation rate ω is
proportional to the inverse of quadratic wall distance, in the near-wall region, and
to the inverse of wall distance in the constant stress layer. The obtained results
are in very good agreement with the reference behaviors. Finally eddy kinematic
viscosity grows with the cubic power of wall distance, in the viscous region, and
then in the logarithmic region. The cubic behavior is fairly reproduced and a
better agreement is obtained with the linear behavior. In Figure 5.8 a comparison
of non-dimensional velocity values is shown between the results obtained with the
KLW turbulence model and those obtained from DNS simulations for the cases of
Reτ = 180, 395, 640, 950, 2000 and 4200. The linear behavior v+ = y+ and the
logarithmic one v+ = 1/0.41 ln(y+)+5 are well reproduced in both cases and the
results are in good agreement with DNS ones for each simulated case.

5.2.2 Thermal turbulence
Direct Numerical Simulations results of fully developed thermal turbulent flow for
a fluid with Pr = 0.025 are available for the cases of friction Reynolds number
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Figure 5.7: From top to bottom: non-dimensional turbulent kinetic energy k+,
specific dissipation rate ω+ and eddy kinematic viscosity ν+

t as a function of non-
dimensional wall distance y+ for all the simulated cases.
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Figure 5.8: Non-dimensional velocity profiles plotted against non dimensional
wall distance y+ and compared with DNS results and characteristic linear and log-
arithmic behaviors.

Reτ = 180, 395, 640, 1020 [86, 90]. For the case of Pr = 0.01, DNS results
are provided for the study of conjugate turbulent heat transfer in plane channel
with Reτ = 180, 395, 590 [87]. Moreover Large Eddy Simulation results at
Reτ = 2000 are described in [58] for both Pr = 0.01 and Pr = 0.025. The
boundary conditions imposed to the solution of the thermal turbulence system of
equations are reported in Tab. 5.4. On wall boundary Γw a uniform heat flux
of 3.6 × 105 W/m2 is applied and both MX and CHF boundary conditions are

129



Chapter 5. Fully developed turbulent flows

Var. Γsym Γin ∪ Γout Γw

T̃
∂T̃

∂x
= 0

∂T̃

∂y
= 0 T̃ = 0

Kθ
∂Kθ
∂x

= 0
∂Kθ
∂y

= 0
∂Kθ
∂x

= 2
δ ,

∂Kθ
∂x

= 0

Ωθ
∂Ωθ

∂x
= 0

∂Ωθ

∂y
= 0 Ωθ = ln

(
2α
Cµδ2

)
,
∂Ωθ

∂x
= 0

Table 5.4: Boundary conditions imposed for the simulations of fully developed
turbulent flows - thermal fields - in plane channel.

k+
θ ω+

θ α+
t

B.c. type MX CHF MX CHF MX CHF

Near wall ∝ y+2 ∝ y+0 2
Cµy+2 ∝ y+0 ∝ y+3 ∝ y+2

Const. stress 1

2Prt
√
Cµ

2

κ
√
Cµy+

Prtκy
+

Table 5.5: Reference profiles, as a function of non-dimensional wall distance, for
k+
θ , ω+

θ and α+
t , in near-wall and constant stress-flux layer, and for both MX and

CHF boundary conditions.

considered for Kθ-Ωθ.
Non-dimensional mean squared temperature fluctuations k+

θ = eKθ/T 2
τ , ther-

mal specific dissipation rate ω+
θ = eΩθν/u2

τ and eddy thermal diffusivity α+
t =

αt/ν are shown in Fig. 5.9 as a function of non-dimensional wall distance y+.
The profiles are obtained from simulations with both MX and CHF boundary con-
ditions applied on the system Kθ-Ωθ. The reference behavior, for near-wall and
constant stress-flux regions, is summarized in Tab. 5.5 and plotted in 5.9. It is
easy to see that for MX boundary conditions, quadratic behavior of kθ is captured
up to y+ ' 2 while, for higher values of y+, kθ grows quickly between linear
and quadratic order. The thermal specific dissipation rate ωθ decreases, as wall
distance increases, proportionally to the inverse of y+2. The cubic growth of eddy
thermal diffusivity is almost well captured up to y+ ' 10. For the case of CHF

boundary conditions, both k+
θ and ω+

θ are characterized by flat profiles in the whole
viscous layer. The quadratic behavior of α+

t is well captured with modeling func-
tions described in Section 4.3. Differently from the dynamic variables examined
in Fig. 5.7 the computation of thermal turbulence variables in the bulk region is
difficult because of the small Prandtl number. In Fig. 5.10 non-dimensional val-
ues of mean temperature T+ = T/Tτ , for cases with Pr = 0.025 and Pr = 0.01,
and non-dimensional velocity are plotted against non-dimensional wall distance.
The friction Reynolds number of the considered cases varies from Reτ = 180 to
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Figure 5.9: From top to bottom: non-dimensional mean squared temperature fluc-
tuations k+

θ , specific dissipation rate ω+
θ and eddy thermal diffusivity α+

t plotted
against non-dimensional wall distance y+. Results for Pr = 0.025 on the left and
Pr = 0.01 on the right.
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Figure 5.10: Plots of non-dimensional temperature values, for Pr = 0.025 and
Pr = 0.01, and non-dimensional velocity profiles against non-dimensional wall
distance. Viscous and logarithmic regions are shown for both temperature and
velocity fields. Red circles show the points where the newly proposed temperature
law (4.53) and Duponcheel’s (4.51) meet.

Reτ = 11600. The comparison is proposed in order to notice the different y+

ranges of T+ and v+ characteristic behaviors. For the velocity field the linear law
is observed in the range y+ ∈ [0, 5] and the logarithmic one starting from y+ ' 30
and up to an y+ value that depends on Reτ . Temperature values obtained with
Pr = 0.025 show a departure from the linear behavior at about y+ = 40. Tem-
perature logarithmic behavior is obtained for cases Reτ = 2000, Reτ = 4200 and
Reτ = 11600 from non-dimensional wall distance y+ = 400. Duponcheel’s law
(4.51) for temperature approximates very well the viscous and buffer layer, while
the newly proposed one (4.53) perfectly overlaps temperature profiles in the log-
arithmic region. From Fig. 5.9 one can see that eddy thermal diffusivity profiles
are approximated quite well by the behavior

α+
t =

κ

2y+
, α+

t =
κ

1.33y+
, (5.23)
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Figure 5.11: Comparison of non-dimensional temperature values, for Pr =
0.025, with DNS and LES results, as a function of non dimensional wall distance
y+ [86, 58].

upon which Duponcheel’s relation and the newly proposed one are based, in the
range y+ ∈ [20, 400] and y+ ∈ [400, 2000].

Source
Case [Reτ ]

180 395 640 950 2000 4200 11600

KLW 5.62 6.77 7.52 8.92 12.72 20.44 43.15
LES [58] 8.36 14.39

CHENG & TAK 5.45 6.46 7.44 8.84 12.05 19.95 44.11

Table 5.6: Comparison of Nusselt number values for the plane channel simula-
tions with LES and reference correlation values.

Results for Pr = 0.025

A comparison with DNS and LES results for non-dimensional temperature profiles,
with Pr = 0.025, is shown in Fig. 5.11. Results for Reτ = 180, 395 and 640 are
from [86], while LES solutions for Reτ = 2000 are from [58]. The results are in
very good agreement with DNS ones, while a sensible difference is observed with
LES results for case Reτ = 2000. These results were obtained in [58] using a
combined LES - DNS approach, i.e., a LES simulation where a subgrid-scale stress
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Figure 5.12: Comparison of non-dimensional root mean squared temperature
fluctuations T ′+rms, plotted against non dimensional wall distance y+, with DNS

values for Pr = 0.025 and cases Reτ = 180, 395 and 640 [86].

model had been used for the solution of the momentum equation while for the
energy equation no subgrid-scale turbulent heat flux model had been used. The
reason behind this approach is that for very low Prandtl number values the small-
est thermal scales are yet much bigger than velocity ones, so that with a particular
fine grid resolution the temperature field can be captured without a subgrid model.
Following the procedure described in [58] the Nusselt number values are here cal-
culated, in order to have a measure of heat transfer performance, and compared
with the correlation of Cheng and Tak [91] that will be better introduced in the
section of thermal results for cylindrical pipe geometry. Nusselt number values
are reported in Tab. 5.6. It can be seen that the values obtained with KLW model
are in good agreement with the correlation of Cheng & Tak on a very wide range
of Peclet values, namely from Pe = 144 for Reτ = 180 to Pe = 15500 for
Reτ = 11600. Results from LES simulations show a bigger discrepancy with ref-
erence correlation, in particular for the case Reτ = 2000. Results obtained with
KLW model can then be considered rightful ones. Non-dimensional root mean
squared temperature fluctuations T ′+rms =

√
2eK

θ/Tτ profiles are plotted in Figure
5.12 against non-dimensional wall distance y+ and compared with DNS relative
values [86]. With MX boundary conditions, temperature fluctuations increase with
wall distance and reach a maximum value that, for high Reτ values, occurs in the
constant stress-flux region, as previously seen in Fig. 5.9. Temperature fluctua-
tions are slightly overestimated, with respect to DNS values, in the region close to
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Figure 5.13: Profiles of non-dimensional wall normal turbulent heat flux compo-
nent u′+T ′+ plotted against non dimensional wall distance y+ and compared with
relative DNS data for cases Reτ = 180, 395 and 640 and Pr = 0.025 [86].

the wall, while a better agreement is obtained as wall distance increases after kθ
peak value the positions. Profiles of non-dimensional turbulent heat flux compo-
nent along wall normal direction

qR+
x = u′+T ′+ = −αt

∂T

∂x
· 1

uτTτ
, (5.24)

are plotted in Fig. 5.13 and compared with corresponding DNS values. An overall
good agreement is obtained, with a slight overestimation of qR+

x peak value for
case Reτ = 180 and a slight underestimation for case Reτ = 640.

Results for Pr = 0.01

A DNS study on conjugate turbulent heat transfer for fluids with Pr = 0.01 has
been discussed in [87] for cases Reτ = 180, 395 and 590. They consider the in-
teraction between a solid, with thermal conductivity λs, and a fluid, with thermal
conductivity λf . Conjugate heat transfer is studied by varying the ratio λf/λs,
with two limiting cases, i.e. λf/λs = 0 and λf/λs → ∞. The first case is repre-
sentative of ideal non fluctuating temperature boundary condition, while the latter
stands for ideal fluctuating temperature boundary condition, i.e. the boundary
conditions that have been labeled here as MX and CHF respectively. The bound-
ary conditions used for the present simulations are reported in Tab. 5.4. Values
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Figure 5.15: Comparison of non-dimensional root mean squared temperature
fluctuations T ′+rms, plotted against non dimensional wall distance y+, with DNS

values for Pr = 0.01 and cases Reτ = 180, 395 and 590 [87].

of non-dimensional temperature T+ are reported in Fig. 5.14 and compared with
DNS values, characteristic linear profile and relation (4.53). For these small values
ofReτ and very low value of molecular Prandtl number, characteristic logarithmic
profile does not develop. For the case of free temperature fluctuations along the
heated wall a slightly smaller mean temperature value is obtained. This behavior
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Figure 5.16: Profiles of non-dimensional wall normal turbulent heat flux compo-
nent u′+T ′+, plotted against non dimensional wall distance y+ and compared with
relative DNS data for cases Reτ = 180, 395 and 590 and Pr = 0.01 [87].

is reproduced by the KLW model but a small underestimation of temperature is
observed with respect of DNS data. Root mean squared temperature fluctuations
are described in Fig. 5.15. For the case of zero temperature fluctuations along
the heated wall a good agreement with DNS data is obtained, with T ′+rms profiles
similar to those obtained for Pr = 0.025. With free temperature fluctuations,
almost flat profiles of T ′+rms develop from wall position up to non-dimensional dis-
tance y+ ' 30. This behavior is captured by the KLW model although temperature
fluctuations are overestimated with respect to DNS data. In particular from DNS

results it appears that the different boundary conditions have not a great impact on
temperature fluctuations values in the bulk region, while sensible higher values are
obtained with KLW model. A re-calibration of Ωθ equation coefficient could lead
to future improvement of the model in predicting free temperature fluctuations. Fi-
nally non-dimensional turbulent heat flux values are plotted in Fig. 5.16. For MX

case a good agreement is obtained, with DNS values, especially for Reτ = 590
case. As a general behavior, higher values of turbulent heat flux are obtained,
leading to higher temperature fluctuations.

5.2.3 Wall function approach
In this section results obtained with wall function approach are presented for case
Reτ = 2000 and Pr = 0.025. Accurate flow prediction requires the use of highly
refined computational grids near wall boundaries, in order to solve the viscous
layer. This requirement can be very demanding even though a RANS simulation

137



Chapter 5. Fully developed turbulent flows
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Figure 5.17: Sketch of computational grid for Low-Re approach, on the left,
and for wall function approach, on the right. Yellow regions stand for non-solved
physical part of the domain.

Variable Boundary condition

u ν∇ut · n̂ = u2
τ

K y+ < 10 : ∇K · n̂ = 2/δ y+ > 10 : ∇K · n̂ = 0

Ω y+ < 5 : Ω = ln(2ν/(Cµδ
2)) y+ > 5 : Ω = ln(uτ/(κ

√
Cµδ))

Table 5.7: Boundary conditions used for the dynamical sets of variable, i.e. u, K

and Ω.

Variable Boundary condition

T T = Tτ2 · ln(1 + κPry+/2)/κ
Kθ y+ < 10 : ∇Kθ · n̂ = 2/δ y+ > 10 : ∇Kθ · n̂ = 0

Ωθ y+ < 5 : Ωθ = ln(2α/(Cµδ
2)) y+ > 5 : Ωθ = ln(uτ/(Rκ

√
Cµδ))

Table 5.8: Boundary conditions used for the thermal sets of variable, i.e. T , Kθ
and Ωθ.

is being performed instead of a LES or DNS one. Wall function approaches have
been developed to soften the level of refinement needed for the computational
grid, providing a strategy for more “economical” computational simulations of
turbulent flows. Many wall function approaches have been developed, based on
the hypothesis that inside the viscous layer and also in the logarithmic one, state
variable behaviors can be predicted using universal laws [51]. In the present for-
mulation wall function approach is used to “cut” part of the physical domain from
the simulated one. In Section 4.4 it has already been introduced the fact that with
the four logarithmic parameter turbulence model boundary conditions are placed
at a distance δ from real wall boundaries because both logarithmic values of k and
ω, but also kθ and ωθ for MX b.c., are not bounded on wall surfaces. Boundary

138



5.2. Plane channel

conditions have then been provided using u, T and K-Ω-Kθ-Ωθ behaviors in the
viscous layer. Different boundary conditions must be used when wall distance
δ is high enough so that the first mesh point lays outside the viscous region, as
sketched in Fig. 5.17. The boundary condition used for the dynamical set of vari-
ables are reported in Tab. 5.7 and are derived from the characteristic behaviors
of u, K and Ω in both viscous and logarithmic regions that have been observed in
Fig. 5.7. More difficult to determine are the boundary conditions for the thermal
system of variables T , Kθ and Ωθ. A Dirichlet boundary condition is imposed for
the temperature field by using (4.53) since this relation well approximates tem-
perature profile over a wide range of y+ values. For Kθ zero gradient along wall
normal direction is imposed while for Ωθ a Dirichlet boundary condition is set
using Ω value and the thermal to dynamical time scale ratio R, with R = 0.5.
The boundary conditions are summarized in Tab. 5.8. A precise estimation of the
friction velocity uτ is important for setting correctly the boundary conditions with
wall function approach. For a given value of wall distance δ, kinematic viscosity
ν and tangential velocity boundary value ub =

∣∣uΓ · t̂
∣∣, friction velocity can be

calculated from linear and characteristic law as follows

uτ lin =

√
ubν

δ
, (5.25)

uτ log =
ub

1

κ
ln

(
uτ logδ

ν

)
+B

. (5.26)

As already mentioned, linear and logarithmic behaviors are observed in region
y+ ∈ [0, 5] and y+ > 40 respectively. If the first mesh point lays in the inter-
mediate region, y+ ∈ [5, 40], then a different relation than (5.25 - 5.26) must be
used. For this reason the Musker law is introduced [92]. A velocity law is derived
starting from a model for νt. Eddy kinematic viscosity is known to grow propor-
tionally to cubic power of y+, in viscous region, and as κy+ in logarithmic region,
while the behavior in the buffer layer is not known. A blending between cubic and
linear laws is then proposed for the numerical evaluation of νt/ν as an harmonic
mean between these two reference behaviors

ν

νt
=

1

Cy+3 +
1

κy+
, (5.27)

where C is a constant value. Equation 5.27 can be written into 4.41, leading to the
following non-dimensional relation

du+

dy+
=

κ+ Cy+2

κ+ Cy+2 + κCy+3 . (5.28)

For the calculation ofC equation (5.28) is integrated with respect to non-dimensional
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Figure 5.18: Modeled eddy viscosity ratio νt/ν with Musker relation (black line)
compared with cubic and linear characteristic behaviors, blue and red lines respec-
tively.
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Figure 5.19: Non-dimensional velocity profile modeled with Musker law for νt
compared with linear and logarithmic behaviors and DNS data for Reτ = 2000
[88].

wall distance y+, requiring that for y+ →∞ the logarithmic behavior is obtained

u+ =
1

κ
ln(y+) +B , κ = 0.41 , B = 5.0 , (5.29)
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Figure 5.20: Calculation of uτ using linear, logarithmic and Musker velocity
laws, red, blue and green lines respectively.

leading to C = 0.001093 [92]. The final form of non-dimensional velocity u+ is
then obtained as

v+ = 5.424 arctan

(
2y+ − 8.15

16.7

)
+ 4.1693 ln

(
y+ + 10.6

)
+

− 0.8686 ln
(
y+2 − 8.15y+ + 86

)
− 3.52 . (5.30)

Modeled eddy kinematic viscosity with (5.27) is plotted in Fig. 5.18, while veloc-
ity profile (5.30) is represented in Fig. 5.19 with characteristic linear and logarith-
mic laws and DNS results for case Reτ = 2000. It can be easily seen that Musker
law allows to accurately model the velocity profile within the buffer layer. In Fig.
5.20 the results for uτ are shown. On y-axis the value of velocity modulus ub on
boundary side is calculated as a function of uτ , ν = 10−7 and δ = 10−4, with the
following expressions

linear ub =
u2
τδ

ν
, (5.31)

Musker ub = uτM(uτ , δ, ν) , (5.32)

logarithmic ub = uτ

(
1

κ
ln
uτδ

ν
+B

)
, (5.33)
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Figure 5.21: Algorithm for calculation of uτ .

whereM(uτ , δ, ν) represents equation (5.30). For a given value of ub, three dif-
ferent values of uτ can be calculated, i.e. (5.25-5.26) and

uτ mus =
ub

M(uτ , δ, ν)
. (5.34)

Numerical evaluation of uτ with (5.26-5.34) is iterative as many nonlinear terms
are present and a direct calculation is not possible. It could be stated that Musker
relation alone could be used to handle uτ calculation, but because of its more
complicate expressions it is used only when really needed. The algorithm used
for uτ is sketched in Fig. 5.21. Friction velocity uτ lin is always solved and it
is used as final uτ value if the y+

lin = δuτ lin/ν < 5, condition represented with
node A in Fig. 5.20. Otherwise, if y+

lin > 5 then uτ log is calculated and used
as final value of uτ only if y+

log = δuτ log/ν > 40, condition represented with
node B in Fig. 5.20. Musker velocity lawM(uτ , δ, ν) is used when y+

lin > 5 and
y+
log < 40. Results obtained with the wall function approach are reported in Fig.

5.22 for v+, k+, ω+, T+, k+
θ and ω+

θ . One can refer to fully developed channel
flow with Reτ = 2000 and Pr = 0.025. Several cases are reported, in terms of
y+ value on the first resolved mesh node, namely y+ = 16.4, 32.3, 64, 124 and
180, and compared with reference solutions previously discussed, with y+ = 0.66.
The pressure gradient is determined from (4.37). If physical half channel width is
labeled as h, then the following expression is obtained

−∂P
∂x

=
ρRe2

τν
2

h2(h− δ) . (5.35)

For the velocity profiles the reference DNS results are reported. It can be seen
that friction velocity is well predicted for each of the simulated cases as veloc-
ity profiles start from reference values. The most problematic case is the one with
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Figure 5.22: Results obtained with wall function approach for plane channel case
Reτ = 2000 and Pr = 0.025. Variable profiles are translated to obtain better
visibility.
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y+ = 16.4 as within the buffer layer k changes greatly from the parabolic behavior
to the slightly decreasing one and ω cannot be predicted yet with its characteristic
behavior of logarithmic region. The boundary condition imposed on ω is slightly
overestimating ω value with respect to the reference case with y+ = 0.66 and k
values are under-predicted. Since y+ value of the first mesh point increases, a
better agreement is obtained between wall function approach and fully resolved
viscous layer. Temperature equation is first considered. In order to solve a simpli-
fied case, temperature field has been transformed into a cross section temperature
field T̃ , hereinafter referred to as T , so that periodic boundary conditions can be
imposed. As a result of the field transformation, a source term Su has been added
to temperature equation, namely

Su = u · â 4qfh
wmidρCpDh

, (5.36)

where wmid is the averaged mean velocity along axial direction. Mean velocity
wmid should be calculated over the entire “physical” domain and not restricted on
the computational domain. Musker velocity profile has been used to model the
velocity field of the non-solved layer, so, once that uτ has been calculated, wmid is
obtained as

wmid =
1

h

ν y+1∫
0

M(y+)dy+ +

h∫
δ

udy

 . (5.37)

It is clear that for more complex geometries this approach is difficult to use. The
results of the temperature field are in good agreement with reference values and the
effect of zero gradient boundary condition can be seen on kθ values. Close to the
boundary kθ reaches an almost flat profile and then recovers its behavior. Values of
ωθ are slightly overestimated over the entire simulated domain. Determination of
ωθ characteristic behavior is sure a key point for the realization of a more accurate
wall function approach. Future studies should be performed in this direction, in
order to provide a turbulence model that can be used over a wide range of flow
configurations.

5.3 Cylindrical pipe

In the present section results obtained with the KLW model for the simulations of
fully developed turbulent flows in a cylindrical pipe are reported. The cylinder
has a diameter D = 0.0605 m and the cylinder axis is located at r = 0, where r
is the radial coordinate, as shown in Fig. 5.23. The problem is axially symmetric
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Figure 5.23: Sketch of the simulated domain for the case of fully developed flow
in cylindrical pipe.

so the mean velocity, the mean temperature and all the turbulence model variables
depend only on the radial coordinate. In the computational domain we identify
with Γsym the symmetry axis, with Γw the wall surface and with Γin and Γout the
inlet and outlet surfaces. Since turbulent thermal field DNS results for low Pr fluids
are not available, results are validated on an integral scale by comparing obtained
values of Nusselt number with reference correlations. Several fully developed
turbulent flow cases have been simulated, in particular with Reτ = 180 (A), 360
(B), 550 (C), 1000 (D), 3580 (E), 5840 (F) and 6860 (G). The corresponding values
of the Reynolds number for these cases are 5760, 12770, 20700, 41000, 165000,
286000 and 341000. For each simulated case both Pr = 0.01 and Pr = 0.025
values are considered. As in the plane channel case, all the simulations for the
cylindrical pipe are performed refining the mesh in the near-wall region in order
to have the first mesh point with y+ < 1. A uniform heat flux is applied on
wall boundary. Imposed boundary conditions for dynamical and thermal fields are
analogous to those used for the plane channel simulations and reported in Tab. 5.2
and Tab. 5.4. For the thermal turbulence variables only MX b.c. have been used.

The Kays correlation has also been considered for modeling the turbulent heat
transfer since it is generally suggested for RANS simulations of liquid metal flows
[58, 93]. This model can be used to compute the eddy thermal diffusivity αt by
means of a turbulent Prandtl number Prt and of eddy viscosity νt. The dynamical
turbulence model of KLW model is used to calculate νt while αt is computed as

αt =
νt
Prt

, P rt = 0.85 +
0.7
νt
ν

(5.38)

where νt/ν is the eddy viscosity ratio and Prt is the turbulent Prandtl number
modeled with Kays correlation. The main advantage of the model is that it does
not require the solution of additional transport equations and that Prt is a function
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of local parameters, instead of being a uniform value as in classical Simple Eddy
Diffusivity model. On the other hand, the major limitation of the model is repre-
sented by the fact that eddy thermal diffusivity αt is still calculated as a function
of only dynamical turbulence variables.

The heat transfer between a wall surface and a fluid flow is usually evaluated
through Nusselt number. This is a non-dimensional parameter that takes into ac-
count the thermal conductivity λ of the fluid, the hydraulic diameter Dh of the
transverse section of the pipe and the convective heat transfer coefficient h. The
Nusselt number is then calculated as

Nu =
hDh

λ
. (5.39)

For the case of a constant heat flux per unit surface q applied on wall surfaces, the
convective heat transfer coefficient can be expressed as

h =
q

Tw − Tb
, (5.40)

where Tw is the wall surface temperature and Tb is a representative temperature of
the fluid. Normally Tb is the bulk temperature of the fluid

Tb =

∫
A
Tu · n̂dA∫
A

u · n̂dA , (5.41)

where n̂ is the unit vector normal to the transverse section A of the pipe. In
literature many correlations based on experimental results of liquid metal flows in
cylindrical geometry for the calculation of the Nusselt number are available. The
general form of these correlations is

Nu = A+ aPen , (5.42)

where Pe is the Peclet number and A, a and n are constant positive numbers. We
report here some of the main correlations for the case of cylindrical pipe heated
with constant heat flux with their range of validity expressed in terms of Reynolds
number value or Peclet value.

Nu = 7.0 + 0.025

(
Pe

Prt

)0.8

104 ≤ Re ≤ 5 · 106 , (5.43)

Nu = 4.82 + 0.0185Pe0.827 104 ≤ Re ≤ 5 · 106 , (5.44)
Nu = 6.3 + 0.0167Pe0.85Pr0.08 104 ≤ Re ≤ 5 · 106 , (5.45)
Nu = 4.5 + 0.014Pe0.8 104 ≤ Re ≤ 5 · 106 , (5.46)
Nu = 3.6 + 0.018Pe0.8 88 ≤ Pe ≤ 4000 . (5.47)
Nu = 4.5 + 0.018Pe0.8 104 < Re < 5 · 106 . (5.48)

146



5.3. Cylindrical pipe

102 103 104

10

20

30

40

50

Lyon

Skupinski

Sleicher

Ibragimov
Kirillov

Stromquist

Pe

N
u

Figure 5.24: Cylindrical pipe heated with constant heat flux. Representation of
the Nusselt number experimental correlations (5.43)–(5.48) as a function of the
Peclet number.

All these correlations (5.43)–(5.48) are plotted in Fig. 5.24. The correlation pro-
posed by Lyon (5.43) is one of the first correlations for liquid metals and uses
the turbulent Prandtl number Prt [94, 95]. In Fig. 5.24 the Lyon’s correlation is
plotted with Prt = 0.9. As we can see the correlation gives values of the Nus-
selt number which are much greater than the ones of the other correlations. The
Skupinski and Sleicher correlations (5.44, 5.45) were obtained using experimental
heat transfer data of NaK [96, 97]. Ibragimov derived (5.46) using experimental
data of LBE heat transfer while (5.47) is based on values of heat transfer obtained
using mercury by Stromquist [98, 99]. Recently Kirillov proposed a new corre-
lation based on a long analysis on existing correlations and experimental data as
(5.48) [100].

As it can be seen from Figure 5.24 there is an overall disagreement between
the different correlations that have been proposed for the Nusselt number. An
explanation for these discrepancies is given in [91]. By a comparison with the
only freely available experimental data present in literature [91, 101] it is shown
that the Kirillov correlation is the one that fits better the experimental points in
the low Peclet region (Pe < 1000), while in the high Peclet region (Pe > 2000)
the Stromquist correlation shows a better agreement with the experimental values.
For this reason the authors in [91] proposed a new correlation based on a fit of
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Figure 5.25: Cylindrical pipe. Nusselt number values for the simulations per-
formed for fluids with Pr = 0.025 and Pr = 0.01 with KLW and Kays model.
The values are compared with the Kirillov correlation and with the Cheng corre-
lation.

these two correlations in the range of their best approximation,

Nu = A+ 0.018Pe0.8 ,

A =


4.5 Pe < 1000 ,

5.4− 9× 10−4Pe 1000 ≤ Pe ≤ 2000 ,

3.6 Pe > 2000 .

(5.49)

This new correlation is equal to the Kirillov one in the low Peclet region and it is
equal to the Stromquist in the high Peclet region, with an extension of its validity
beyond Pe = 4000.

In Figure 5.25 the results obtained with the KLW and with Kays model for
the simulations of fully developed turbulent flows of fluids with Pr = 0.025 and
Pr = 0.01 are compared with the Kirillov correlation and the one reported in
[91]. For a better interpretation of the results the obtained Nusselt number values
are also reported in Table 5.9 along with those of Kirillov and Cheng correlations
and compared for the different cases in terms of Reynolds number. As it can
be seen, for the case of Pr = 0.025 the values of the KLW model are closer to
the Kirillov correlation than to the Cheng correlation as it concerns Pe > 1000,
while the values obtained for Pr = 0.01 are closer to the Cheng correlation. In
general it is observed that the values obtained with the KLW model lay between
the Kirillov and the Cheng correlations, in the high Peclet region, while in the low
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Pr Source Reynolds number

3.4·105 2.85·105 1.65·105 4.1·104 2.1·104 1.27·104 5.76·103

0.025

KLW 29.40 26.16 18.56 9.21 7.53 6.65 5.63
Kays 42.91 38.18 27.01 12.40 9.38 7.94 6.33
Kirillov 29.62 26.30 18.57 9.11 7.16 6.31 5.45
Cheng 28.72 25.40 17.67 9.08 7.16 6.31 5.45

0.01

KLW 15.93 14.40 10.84 6.72 6.05 5.74 5.34
Kays 22.93 20.71 15.44 8.61 7.17 6.50 5.71
Kirillov 16.61 15.00 11.28 6.72 5.78 5.37 4.96
Cheng 15.71 14.10 10.69 6.72 5.78 5.37 4.96

Table 5.9: Nusselt number values obtained with the KLW and Kays model for
Pr = 0.025 and Pr = 0.01 compared with the Kirillov and the Cheng correlation.

Property Symbol Dimension Value

Pitch to diameter ratio χ - 1.4
Rod diameter d [mm] 9.2
Bundle hydraulic diameter dh,bun [mm] 7.7
Sub-channel hydraulic diameter dh,sch [mm] 9.5
Minimum rod to adiabatic wall distance δmin [mm] 1.716
Heated to wet perimeter ratio f - 0.733

Table 5.10: Geometrical parameters of the simulated 19 pin nuclear reactor bun-
dle.

Peclet region they are slightly greater than the Kirillov correlation. As it regards
the results obtained with Kays model, Nu values are generally higher than those
obtained with KLW model and than reference ones, with bigger discrepancies as
Peclet values increase. This fact can be explained by looking at the definition
(5.38): if the eddy viscosity ratio becomes very high, as it happens for high Peclet
numbers, the average turbulent Prandtl number of the channel as computed in
(5.38) approaches 0.85 which is known to be not valid for liquid metal flows.
Given the inability of Kays model to reproduce the integral heat transfer in this
very simple geometry it is not recommended to use this model in the simulation
of liquid metal turbulent flows.

5.4 Nuclear reactor bundle

In the present Section the KLW model is used to study a 19 pin nuclear reactor
bundle whose cross section is sketched in Fig. 5.26 a). Many works involving
numerical simulations of turbulent heat transfer in nuclear reactor bundles can be
found in literature for triangular [11, 80] and square [12, 80] lattices. Hexagonal
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Figure 5.26: Schematic representation of whole bundle cross section a) and sim-
ulated domain, boundary definition and triangular sub-channels b).

Boundary u K & Ω T̃ Kθ & Ωθ

Γw,h no-slip near-wall b uniform heat flux q near-wall b
Γw,ad no-slip near-wall b null gradient null gradient
Γw,simm null gradient null gradient null gradient null gradient

Table 5.11: Boundary conditions imposed on boundaries represented in Fig. 5.26
b).

bundle, in lattices of 19 or more rods, are studied in bare, wire-wrapped and with
spacer grid configurations [102, 103, 104, 47]. Fully developed turbulent flows
occurring in a bare rod lattice configuration are here considered, in order to pro-
vide results in a simplified geometry that can be used as a starting point for future
analysis. The computational domain can then be reduced to a fraction of the whole
geometry by taking advantage of the presence of symmetry planes, as shown in
Fig. 5.26 b), where a sketch of simulated geometry is represented together with
the different types of boundary surfaces, namely symmetry planes, heated walls
and adiabatic wall. Rod lattices are usually classified using the pitch-to-diameter
ratio χ, where pitch p is the distance between two adjacent rods center lines and
diameter d is the rod diameter, as sketched in Fig. 5.26 a). Within the simulated
geometry three different triangular sub-channels can be depicted, as done in Fig.
5.26 where they are labeled as Ωsch,1, Ωsch,2 and Ωsch,3. It is interesting to investi-
gate the influence of adiabatic wall on sub-channel performances in terms of heat
transfer. Numerical values of the bundle geometrical properties are reported in
Table 5.10 and refer to experimental setup studied in [102, 47]. In particular rod
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Figure 5.27: Comparison of computed Nusselt values with experimental cor-
relations of Ushakov and Mikityuk, experimental values from [102] and values
obtained with Kays and Prt = 0.9 models for turbulent Prandtl number.

diameter d is equal to 8.2 mm, with a pitch to diameter ratio χ = 1.4. Adiabatic
wall is located at a distance δm from heated rods, leading to a bundle hydraulic
diameter dh,bun = 7.7 mm, while the triangular sub-channel hydraulic diameter
is dh,sch = 9.52 mm. The ratio of heated to wet perimeter f is equal to 0.733
and it is used to calculate the source term in T̃ temperature equation. The sim-
ulated coolant fluid is Lead Bismuth Eutectic with a molecular Prandtl number
Pr = 0.025.

5.4.1 Results
In order to compare obtained results with literature data, two different Reynolds
numbers are introduced, namely the bulk Reynolds number Reb = ubdh,bunρ/µ,
based on bundle hydraulic diameter, and sub-channel Reynolds number Resch =
ubdh,schρ/µ, based on sub-channel hydraulic diameter. Turbulent heat transfer
occurring inside the bundle geometry is studied from the solution of system of
equations (5.4–5.6). The boundary conditions used for the present simulations
are reported in Table 5.11, where “near-wall b” means that the imposed bound-
ary conditions are in accordance with the near-wall behavior. Differently from
the case of plane channel and cylindrical pipe, a Dirichlet boundary condition
on temperature field T̃ cannot be imposed on heated walls as temperature field
is not uniform. A Neumann boundary condition is then used, by imposing the
heat flux q on heated walls. Resulting temperature field is obtained up to an arbi-
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Figure 5.28: Maximum non-dimensional wall temperature values: thermocou-
ple positions of [102], on the left, and comparison of values from triangular sub-
channels, whole geometry and inverse value of Ushakov and Mikityuk correla-
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Figure 5.29: Triangular sub-channel Ωsch,1 with reference points A, B, C and D,
on the left, and non-dimensional temperature field Ωsch,1 over pathA−B−C−D
for the four simulated cases.

trary constant value. For thermal turbulence variables MX boundary conditions are
imposed. Four different values of bulk Reynolds number are examined, namely
CASE A : Reb = 1.4× 104, CASE B : Reb = 2.2× 104, CASE C : Reb = 3.1× 104

and CASE D : Reb = 5.4×104. In order to compare the results with reference data
we follow the methods used in [102, 47]. Nusselt number is thus calculated using
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sub-channel hydraulic diameter,

Nu =
qdh,sch

λ(〈Tw〉 − Tb)
, (5.50)

where λ is the fluid thermal conductivity and 〈Tw〉 is the bundle mean temperature
over heated walls. Bulk temperature Tb is computed as

Tb =

∫
S Tu · n̂ dS∫
S u · n̂ dS

, (5.51)

where S is the cross-section surface. Nusselt number values are compared with
Ushakov experimental correlation [105], as done in [11]

Nu = 7.55χ− 20χ−13 +
3.67

90χ2
Pe0.56+0.19χ . (5.52)

This correlation is used to predict Nusselt number values in regular rod lattices
with pitch-to-diameter ratio values χ ∈ [1.3, 2.0] and for values of Peclet number
smaller than 4000. Mikityuk correlation [106] is used in [102, 47] to compare
experimentally obtained Nu values. The correlation is formulated as

Nu = 0.047(1− e−3.8(χ−1))(Pe0.77 + 250) , (5.53)

and is valid for Pe in the range [30, 5000] and for a slightly wider range of χ,
namely [1.1, 1.95]. Obtained results are shown in Fig. 5.27, where they are plotted
against Peclet number based on sub-channel Reynolds number. In particular Pe
values are Pe = 372 for CASE A, Pe = 705 for CASE B Pe = 1616 for CASE

C and Pe = 2373 for CASE D. In the Figure, KLW results (with black markers)
are compared with both Mikityuk and Ushakov correlations, experimental values
and others obtained with two different turbulent Prandtl models, i.e. Kays model
and the more common Prt = 0.9 model. Results obtained with KLW model show
a well defined trend being approximately 5% smaller than Ushakov correlation.
Kays results lay in the range of ±10% of Ushakov values, with an under estima-
tion at low Pe values and an over estimation in high Pe region. Following the
trend of obtained results, for higher Pe values Kays results would seem to lay out-
side ±10% range of Ushakov correlation. Turbulent Prandtl number equal to 0.9
clearly leads to a sensible overestimation of heat transfer, with obtained Nusselt
number values much bigger than reference correlation. Experimental values from
[102] predict higher Nu values. As explained by the authors, this could be related
to measuring apparatus, as it was located on spacer grids. Having a solidity value
ε = 0.29, defined as the ratio between grid cross section to bundle cross section,
the presence of spacer grids leads to a sensible fluid acceleration with consequent
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heat exchange enhancement. In [102] it has been seen that Mikityuk correlation
can be used to estimate the maximum wall super-heat, i.e. the maximum value of
non-dimensional temperature Θ,

Θ =
(T − Tb)λ
dh,schq

. (5.54)

In Fig. 5.28 the maximum wall super-heat is analyzed. In particular non-dimensional
temperature Θ values are observed from points representing thermocouple loca-
tions of [102]. The maximum Θ value among these points is compared, with red
dots, with inverse values of both Ushakov and Mikityuk correlations. Moreover
for the triangular sub-channels three different non-dimensional Θ fields are also
considered, namely Θsch,1, Θsch,2 and Θsch,3, calculated using a sub-channel bulk
temperature. In this way the sub-channels are analyzed as standalone channels of
a triangular rod lattice. The influence of adiabatic wall presence can then be stud-
ied. Maximum values of non-dimensional temperature Θsch,i are obtained among
wall temperature values of each sub-channel. In the small Pe values region sub-
channels Ωsch,2 and Ωsch,3 have a similar maximum value of Θsch,1, slightly higher
than reference correlations, while sub-channel Ωsch,1 has a smaller value, denoting
a more homogeneous temperature field for the inner sub-channel. For all inves-
tigated cases maximum values of Θsch,1 are smaller then reference correlations.
As Pe increases the maximum super-heat of sub-channel Ωsch,2 and Ωsch,3 de-
crease, converging to the value of Ωsch,1. It can be concluded that as Pe values
increase the presence of adiabatic wall has a smaller influence on thermal behav-
ior of triangular sub-channels. A similar trend is observed for Θ values computed
on the whole geometry. For CASE A and CASE B obtained values are higher than
reference correlations. These results have been obtained also in [47], with even
higher super-heat values for low Pe, where simulations with code Star-CCM+
have been conducted using Prt = 0.9. For CASE C and CASE D the obtained
super-heat values are below reference correlations and are close to those obtained
for sub-channel Ωsch,1. Experimental values discussed in [102, 47] are well rep-
resented by Mikityuk correlation over the entire range of examined Pe values. In
the present study buoyancy effects are not considered. In the low Pe region it is
possible that they influence heat transfer by enhancing coolant fluid motion in the
region close to heated walls. This would then lead to smaller wall temperature
values and so to smaller super-heat values. A study of Ωsch,1 non-dimensional
temperature Θsch,1 is shown in Fig. 5.29. Four representative points are depicted
on Ωsch,1 domain, A, B, C, D, as represented on the left of Fig. 5.29. Non-
dimensional temperature Θsch,1 along path A–B–C–D are plotted on the right of
Fig. 5.29. Obtained values can be compared with results discussed in [11], where
simulations of triangular rod lattices with χ = 1.2, 1.3 and 1.5 have been per-
formed with a four parameter turbulence model, and in [80], where triangular rod
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Figure 5.30: Non-dimensional temperature field Θ. From left to right simulated
cases A, B, C and D.

lattices with χ = 1.2 and 1.4 have been simulated with several different algebraic
models for turbulent Prandtl number. As Pe increases a flatter temperature profile
develops. From point A, where T value is close to bulk temperature, temperature
increases moving towards the heated rod. A non uniform temperature field is ob-
served along path B–C, with maximum super-heat occurring on point B. From
wall position C towards sub-channel middle point D temperature decreases. Val-
ues of Ωsch,1 along the same path are shown in [80] for case Pe = 1440. Closest
to this Pe value is CASE C having Pe ' 1510. Results are comparable, with
smaller values for the case of KLW results, due also to slightly higher Pe value.
Non-dimensional temperature field Θ is shown in Fig. 5.30 over the whole simu-
lated domain for each simulated case. It can be seen that temperature measuring
positions reported in Fig. 5.28 can be used for a comparison of super-heat values
with literature data for triangular sub-channels but are not representative of bundle
maximum super-heat locations. Maximum temperature values are in fact observed
in the corner region, where cooling fluid velocity values are much smaller. In Fig.
5.31 turbulent Prandtl distribution on the bundle cross section are shown for each
of the simulated cases. One can see that high Prt values are obtained in the region
close to heated walls. Maximum values in those regions are in the range of [2, 3]
and tend to decrease as the Reynolds number increases. It is commonly suggested
to set Prt = 1.5 [80] when using an algebraic model for turbulent Prandtl num-
ber. This assumption can be a good compromise as in the center of bundle cross
section the computed Prt is approximately equal to 1.5, but it would lead to an
under estimation in the near-wall region, predicting thus a higher turbulent heat
exchange.

The present study has provided solutions for a simplified case of turbulent heat
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Figure 5.31: Turbulent Prandtl number distribution on the simulated domain for
increasing Reynolds number values. From left to right CASE A, CASE B, CASE C

and CASE D.

transfer occurring in a 19 pin hexagonal nuclear reactor bundle. As a major sim-
plification fully turbulent flows are considered. The computational domain can
be reduced to a fraction of the whole bundle geometry by taking advantage of
the presence of symmetry planes. The simulated coolant fluid is Lead Bismuth
Eutectic, with a molecular Prandtl number equal to 0.025. Four cases have been
simulated with Peclet number values ranging from 370 to 2370, defined using tri-
angular sub-channel hydraulic diameter. Results have been obtained using two
algebraic turbulent Prandtl number models, namely Prt = 0.9 and Kays correla-
tion, and the four logarithmic parameter KLW. Nusselt number values have been
compared with reference correlations of Ushakov and Mikityuk, used respectively
in [11, 102, 47] to compare results for triangular rod lattices and 19 pin hexag-
onal bundles. Results of KLW model are about 5% smaller then Ushakov corre-
lation, for all simulated values of Pe. Kays correlation results lay in the range
of ±10% of Ushakov correlation values, while model Prt = 0.9 predicts much
higher heat transfer values. Super-heat phenomenon has been investigated with
two approaches. In the first wall temperature values have been observed on some
selected points of the simulated geometry, in particular on those positions where
experimental temperature values have been measured in [102]. Among these val-
ues the maximum temperature has been used to calculate non-dimensional temper-
ature Θw,max and compare it with reference correlations of Ushakov and Mikityuk,
as done in [102]. Experimental temperature values lay close to reference correla-
tion for all investigated Pe numbers. Super-heat values obtained with KLW model
are in good agreement with reference correlation, for high Pe values, while for
Pe < 1000 higher values are obtained. As second approach the three triangular

156



5.4. Nuclear reactor bundle

sub-channels have been studied as standalone channels of a triangular rod lattice,
by computing local non-dimensional temperature field Θsch,i defined with local
bulk temperatures. This procedure allows to evaluate the influence of bundle adi-
abatic wall on heat transfer. As Pe value increases sub-channel super-heat values
converge to values of inner sub-channel, showing a smaller influence of the adia-
batic wall on sub-channel heat transfer. Future studies will consider the presence
of buoyancy forces to see if they are important in the low Pe region. Finally the
turbulent Prandtl number distribution obtained with KLW model has been shown.
The results are everywhere grater than one, with maximum values Prt ' 3 occur-
ring in the near heated wall region. A fixed Prt value equal to 1.5 appears to be a
fair approximation only in the bulk region and for relatively high values of Pe.

A more detailed study of this case can be performed in future, in particular
by considering the wire wrapped configuration or the presence of grid spacers.
For these geometry configurations, the immersed boundary method presented in
Chapter 3 can be a suitable method for modeling the wire geometry or the grid
spacers, in an hybrid approach with a boundary fitted grid. This strategy would let
to create the geometry model in a more simple way and to have a stronger control
of mesh resolution close to wall boundaries.
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Chapter 6

Turbulent heat transfer over vertical
backward facing step

In the last few years, the turbulent flow over a backward facing step, a simple
geometry that can be encountered in many engineering applications, has been ex-
tensively studied also for low Prandtl number fluids, in particular liquid sodium,
in order to investigate the influence of buoyant forces on fluid behavior and heat
exchange [107, 108, 76]. In the following, the flow regime will be defined for
different values of the Richardson number Ri = gβ∆Th/U2

b , where g is the mod-
ulus of gravity acceleration, β the thermal expansion coefficient, ∆T a reference
temperature difference, h the step height and Ub the bulk velocity. WithRi = 0 we
refer to the pure forced convection flow regime. A DNS simulation with Ri = 0, is
provided in [109], for a particular geometry where a constant heat flux is applied
on the whole wall behind the step. For the same simulation case, i.e. geometry

yx

z

~g

E

Lin

Lh

La

h

W

q̇

Figure 6.1: Sketch of backward facing step geometry.
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configuration and Reynolds numberRe, other studies are performed [82, 107, 76].
In [82] a comparison is provided between the results obtained from DNS simula-
tion and from the solution of a Reynolds Averaged Navier Stokes (RANS) system
of equations closed with various turbulence models. The results are obtained only
for Ri = 0 case. It is shown that two equation heat transfer turbulence models,
coupled with non linear expressions for Reynolds stresses, allow to improve the
predictions of heat flux within the re-circulation zone. In [107] a DNS study is
performed for the cases Ri = 0 and Ri = 0.338. In particular, for the mixed
convection case, i.e. Ri = 0.338, a different domain configuration is considered
as an adiabatic section is added behind the heated wall in order to minimize the in-
fluence of the outlet on the flow behavior over the heated wall. In [107] the effect
of buoyancy results in a diminished re-circulation length, with respect to the case
of pure forced convection, and in an increased heat exchange. The same study, in
terms of Reynolds and Richardson numbers, is made in [76], where the turbulent
flow is simulated using a linear k-ε-kθ model with a novel algebraic formulation
of turbulent heat flux, used for the first time for the simulation of a relatively more
complicated case as the backward facing step. A quasi DNS method has been used
to investigate the influence of molecular Prandtl number on forced convection tur-
bulent heat transfer [110]. In particular the considered geometry is the same as
above, while for molecular Prandtl number the values Pr = 0.01, 0.025, 0.1 and
1.0 are considered. It is shown that for large Pr values the position of maximum
heat transfer is located downstream of reattachment point, while for small Pr val-
ues it coincides with bigger vortex reattachment point. Effect of buoyancy aided
flow and adverse buoyancy force are studied in [111], where values of Richardson
number Ri = −0.04, Ri = 0.1 and Ri = 0.2 are taken into account for the sim-
ulation of turbulent LBE flow, i.e. with Pr = 0.025. The work represents a first
attempt to study adverse buoyancy force for low Prandtl number fluid turbulent
mixed convection over a backward facing step. It is observed that as Ri increases
the secondary vortex increases as well, until it leads to a complete detachment of
the bigger vortex from the heated wall. With adverse buoyancy force both skin
friction and Nusselt number over the heated wall decrease, on the contrary of
what happens with Ri > 0. Many of simulations have been performed also for
higher Reynolds number, namely Re = 10000, for forced and mixed convection
cases [112, 108, 83, 84, 113]. In [112, 108, 83] DNS simulations are performed
for various values of the Richardson number, ranging from 0 to 0.4, showing that
re-circulation length decreases and heat transfer increases within the re-circulation
zone asRi increases. These studies provide useful data for the evaluation of turbu-
lence models. In [83] Large Eddy Simulations are performed for higher Reynolds
numbers, namely Reh = 20000 and Reh = 40000. Numerical simulations with
RANS models are reported in [84, 113]. In the first work a comparison is per-
formed between the results obtained using a four parameter turbulence model [10,

160



Lin/h Lh/h La/h Er W/h Reh Method Ri

[109] 2 20 0 1.5 4 4805 DNS 0

[82] 2 20 0 1.5 4 4805 DNS/RANS 0

[107] 2 20 10 1.5 4 4805 DNS 0, 0.338

[76] 2 20 10 1.5 4 4805 RANS 0, 0.338

[110] 2 20 0 1.5 - 4805 DNS 0

[111] 2 20 0 1.5 - 4805 DNS -0.04, 0.1, 0.2

[112] 2 20 10 2 4 10000 DNS 0, 0.12, 0.2

[108] 2 20 10 2 4 10000 DNS 0, 0.12, 0.2, 0.4

[83] 2 20 10 2 1
10000 DNS

0, 0.220000 LES
40000 LES

[84] 4 20 20 2 - 10000 RANS 0, 0.2

[113] 4 20 20 2 - 10000 RANS 0, 0.12, 0.2, 0.4, 1

Table 6.1: Comparison of literature studies on sodium buoyant turbulent flows
on backward facing step, as a function of geometrical parameters and of Reynolds
and Richardson numbers.

11, 12, 47] and a two equation turbulence model [114], for modeling the Reynolds
stresses, and the Kays correlation for modeling the eddy thermal diffusivity [93].
It is shown that similar results are obtained using the two different models, for
that particular Reynolds number case. In the latter work a study on a wider range
of Richardson number values is performed. Here the RANS system of equation
is closed by using a two equation model and the Kays correlation. A comparison
between the previously mentioned literature data is reported in Table 6.1, where
the backward facing step geometry is parameterized by using the step height h
and the length labels for inlet section Lin, heated section Lh, adiabatic section La,
domain width W and downstream channel height E, as sketched in Figure 6.1.
We refer to Er as the expansion ratio, calculated as Er = E/(E − h). Follow-
ing this line of research the present Chapter deals with the simulation of turbulent
liquid sodium flow over a backward facing step by using the four logarithmic pa-
rameter turbulence model. The simulated case is the same studied in [82, 107,
76, 110]. The test case is used to evaluate the accuracy of the KLW model in sim-
ulating turbulent heat transfer in a more complex geometry, where recirculation
occurs, for forced and mixed convection cases. Moreover a coupling with Open-
FOAM is considered in order to use dynamical turbulence models different from
the one of the KLW model. In this way, by using the computational platform, a
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more extensive set of dynamical turbulence models is made available, without the
need of implementing it in FEMuS code. In Section 6.1 results are provided and
discussed for simulations performed with FEMuS code while in Section 6.2 the
coupling between OpenFOAM and FEMuS is discussed. Dynamical turbulence
models that are present in OpenFOAM are tested, for the simulation of the back-
ward facing step problem, and coupled with the two equation thermal turbulence
model derived in Chapter 4. Two different code couplings are realized: for forced
convection case a one way coupling is obtained while for the mixed convection
case a two way coupling is built as dynamical turbulence field are transferred
from OpenFOAM to FEMuS and temperature field is transferred in the opposite
direction for buoyancy force calculation.

6.1 Simulations with FEMuS code

6.1.1 Mathematical model
The liquid sodium turbulent flow over a backward facing step is simulated using
a RANS set of equations. Assumptions of incompressible flow and Oberbeck-
Boussinesq approximation for buoyant flows are considered. The system of equa-
tions consists then of the following

∇ · u = 0 , (6.1)
∂u

∂t
+ (u ·∇)u = −1

ρ
∇P+

+ ∇ · [(ν + νt)
(∇u + ∇uT

)]
− gβ(T − Tin) , (6.2)

∂T

∂t
+ u ·∇T = ∇ · [(α + αt)∇T ] . (6.3)

Eddy kinematic viscosity νt and eddy thermal diffusivity αt are modeled with
the fields obtained from the solution of the four logarithmic parameter turbulence
model

∂K

∂t
+ u ·∇K = ∇ · [νK

eff∇K
]

+ νK
eff∇K ·∇K+

+
Pk
eK

+ cb
Pb
eK
− Cµ eΩ , (6.4)

∂Ω

∂t
+ u ·∇Ω = ∇ · [νΩ

eff∇Ω
]

+ 2νΩ
eff∇K ·∇Ω+

+ νΩ
eff∇Ω ·∇Ω +

cε1 − 1

eK
Pk+

+
cb − 1

eK
Pb − Cµ (cε2fexp − 1) eΩ (6.5)
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∂Kθ

∂t
+ u ·∇Kθ = ∇ · [αKθ

eff∇Kθ
]

+ αKθ
eff∇Kθ ·∇Kθ+

+
Pθ
eKθ
− Cµ eΩθ , (6.6)

∂Ωθ

∂t
+ u ·∇Ωθ = ∇ ·

[
αΩθ
eff∇Ωθ

]
+ 2αΩθ

eff∇Kθ ·∇Ωθ+

+ αΩθ
eff∇Ωθ ·∇Ωθ +

cp1 − 1

eKθ
Pθ +

cp2
eK
Pk+

− (cd1 − 1)Cµe
Ωθ − cd2Cµe

Ω , (6.7)

where νK
eff , νΩ

eff , αKθ
eff and αΩθ

eff are effective viscosity and thermal diffusivity for
the turbulence variables transport equations, namely

νieff = ν +
νt
σi
, αjeff = α +

αt
σj
. (6.8)

For the mixed convection case an additional source term Pb is considered [52]

Pb = −βg · u′T ′ = αtβg ·∇T . (6.9)

Coefficient cb is set equal to 1.44. As can be seen from (6.9), the Pb can assume
both positive and negative values, depending on relative orientation between grav-
ity vector and mean temperature gradient. Turbulence is then enhanced in the
regions where mean temperature gradient is aligned with gravity vector.

Model for νt and αt

Turbulent viscosity is modeled using the two time scale model derived in Chapter
4. For eddy thermal diffusivity three different models of αt are considered. Kays
turbulence model [93] is a simple algebraic model where αt is calculated through
a modeled turbulent Prandtl number Prt

Prt = Prt,k = 0.85 +
0.7

Pr νt
. (6.10)

The pros of this model are that αt is not calculated with a constant and uniform
Prt value, Prt is a function of local quantities, i.e. modeled turbulent viscosity,
and it does not require the solution of transport equations for additional turbulence
variables that are representative of thermal turbulence. Obviously, as cons, there
is the fact that αt is still modeled using only variables representative of dynamical
turbulence. The multiple time scale formulation of αt = Cθkτlθ, presented in
Chapter 4, is here recalled

τlθ = (f1θB1θ + f2θB2θ) , (6.11)
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Lin/h Lh/h La/h Er W/h Reh Method Ri

2 20 0 1.5 0 4805 RANS 0 - 0.338

Table 6.2: Non-dimensional parameters for the classification of the studied cases.

4P M K 4P M C 4P C K 4P C C 2P K

Table 6.3: Simulated cases and relative line formatting for all the plots reported
in the present work.

where

f1θ =
(

1− e
√
PrRd/19

) (
1− eRd/14

)
, (6.12)

B1θ =
τu

Prt,∞
, (6.13)

f2θB2θ = τu

(
f2aθ

2R

Cγ +R
+ f2bθ

√
2R

Pr

1.3√
PrR

3/4
t

)
. (6.14)

Term B1θ is used to model αt in the region far from the wall, where it is assumed
that turbulent transport is governed by velocity fluctuations and not by temperature
ones. With this hypothesis a turbulent Prandtl number can be used and, in partic-
ular, both values Prt = 1.33 and Prt = Prt,k are tested. By using Kays modeled
turbulent Prandtl number it is expected to gain more accuracy with respect to the
case of a constant and uniform value.

6.1.2 Results
In the present work we report the results obtained for the simulation of a vertical
backward facing step case similar to those studied in [109, 82, 107]. The geomet-
rical parameters of the simulated domain are reported in Table 6.2, in accordance
with the classification proposed in the Table 6.1.

The system of equations (6.1-6.7) is discretized in FEMuS using quadratic
Taylor-Hood finite elements and Stream-wise Upwind Petrov Galerkin stabiliza-
tion [115]. Time derivatives are discretized using backward Euler method. The
algebraic system of equations is solved using the Generalized Minimal Residual
method (GMRES) with Incomplete LU factorization (ILU) preconditioner [81].
The basic mesh consists of 31600 cells with 120801 nodes. A general mesh refine-
ment is performed near wall boundaries to obtain a non dimensional wall normal
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Figure 6.2: Velocity streamlines on a close-up view of the simulated domain,
for forced a) and mixed convection b) cases. On the background non-dimensional
mean temperature increment Θ fields are reported.

distance y+ = δuτ/ν smaller than one on the first mesh point near wall bound-
aries, where δ is the wall distance, uτ the friction velocity and ν the fluid kinematic
viscosity.

On the inlet section of the domain we impose a velocity field and the turbulence
variables obtained from the simulation of a fully developed turbulent channel flow
having a friction Reynolds number Reτ ' 300. The obtained mean velocity leads
to a Reynolds number Reh = 4805. For temperature a uniform value equal to
150◦C is set. The same temperature is used as reference value for the evaluation
of the liquid sodium physical properties used in the system (4.1 - 4.165) through
the correlations provided in [116]. We obtain a molecular Prandtl number equal to
Pr = 0.0088.

On wall boundaries we impose no slip boundary condition for the velocity
field, adiabatic boundary condition for the temperature field with the exception of
the wall behind the step where a uniform heat flux q̇ is imposed. For the dynamical
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turbulence variables we use boundary conditions in accordance with their near
wall behavior. Both MX and CHF boundary conditions are tested on heated wall,
for thermal turbulence variables, in order to see their influence on heat transfer,
while on remaining walls only CHF boundary condition is used.

On the outlet section an outflow boundary condition is imposed on the velocity
field, while for all the other variables we set a zero gradient. We study the cases
of pure forced convection, i.e. Ri = 0 by setting β = 0, and the mixed convection
case for Ri = 0.338 in order to compare the results with the ones obtained in [82,
107].

In Table 6.3 we report all the simulated cases and relative line formatting that is
used for all the plots reported in the present work. The cases are labeled in the form
model - bound. cond. - bulk term, where model can be 4P or 2P (K−Ω− Kθ−Ωθ

or K − Ω), bound cond can be either M or C (MX or CHF boundary conditions)
and bulk term is K or C (KAYS model or constant Prt value). For cases 4P M K

and 4P C K the bulk correction term used in αt modeling is calculated using KAYS

correlation.

Qualitative comparison between forced and mixed convection cases

Velocity streamlines on a close-up view of the computational domain, are reported
in Figure 6.2 a) and b) for Ri = 0 and Ri = 0.338, respectively. For the forced
convection case two main vortices arise behind the step: a bigger one, rotating in
clockwise direction, and a smaller one, near the corner between the step wall and
the heated one, rotating in the opposite direction. In the mixed convection case, for
this value of the Richardson number, the buoyancy force enhances the fluid motion
in the region close to the heated wall. The clockwise rotating vortex is greatly
reduced in size and it is completely detached from the heated wall. Buoyancy
forces also enhance heat transfer, as can be seen from the non dimensional mean
temperature increment Θ = (T − Tin)/∆T field shown in Figure 6.2. In the
mixed convection case Θ maximum value is reduced almost by a factor of two in
comparison with Ri = 0 case.

Dynamical fields

In the present Section obtained results for dynamical fields are compared with
relative DNS data. In particular skin friction values along the heated wall and plots
of non dimensional velocity and turbulent kinetic energy on several channel cross
sections are reported.

Skin friction For forced and mixed convection cases the skin friction cf =
2τw/ρU

2
b profile along the heated wall is shown in Figure 6.3 a) and b) and com-

pared with DNS values [107]. As can be seen from the results with Ri = 0,
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Figure 6.3: Skin friction coefficient cf for forced a) and mixed convection b) cases
along the heated wall. The results are compared with DNS data obtained from
[107]. Line formatting in accordance to Tab. 6.3.
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Figure 6.4: Plots of non dimensional velocity component v+ and turbulent ki-
netic energy k+ for forced a) and mixed convection b) cases along channel cross
sections taken on several positions ỹ. The results are compared with DNS data
obtained from [107]. Line formatting in accordance to Tab. 6.3.

the cf profile is subjected to a double change of sign, denoting the presence of
two reattachment points. Their positions, expressed in terms of non-dimensional
stream-wise coordinate ỹ = y/h, are at ỹ1 ' 0.85 and ỹ2 ' 6.32. The DNS data
give these points at ỹ1,DNS ' 1.91 and ỹ2,DNS ' 7.01.
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Figure 6.5: Non-dimensional turbulent kinetic energy field k+, for the forced and
mixed convection cases, together with flow streamlines.

As well known the diffusion model underestimates the sizes of the two vor-
tices, and consequently the reattachment lengths, in comparison to DNS results,
where reattachment points are shifted further downstream along the heated wall.
For the mixed convection case, as reported in Figure 6.3 b), the cf values are al-
ways positive along the heated wall: for this case no reattachment point is found on
the heated wall since the clockwise rotating vortex is completely detached from
the heated wall. Reference results show a cf linear behavior for the range of
stream-wise coordinates ỹ ∈ [6, 20].

Results obtained from the solution of RANS system of equations are slightly
smaller than DNS ones, for all the tested models of αt and boundary conditions
imposed on the Kθ − Ωθ system of equations. These results are characterized
by a linear behavior with two different slopes, for ỹ ∈ [6, 15] and ỹ ∈ [16, 20].
When MX b.c. are used then higher cf values are obtained. The same behavior
is observed when Pr t,KAYS is used as bulk correction term of αt instead of the
standard constant one. For 2P K simulated case cf values are higher than those of
the four parameter turbulence model for ỹ ∈ [2, 7] while for ỹ ∈ [16, 20] cf shows
a smaller linear increase than the one of all the 4P cases. Results obtained in [76]
are closer to DNS ones, with a unique cf linear slope increase along the heated
wall. A similar behavior, with double linear slopes, is obtained in [84], although
for a different case, namely Re = 10000, Ri = 0.2 and Er = 2.
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Figure 6.6: Nusselt number values for forced a) and mixed convection b) cases
along the heated wall. The results are compared with DNS data [107]. Line
formatting in accordance to Tab. 6.3.

Mean velocity and turbulent kinetic energy A more detailed comparison of
the results with reference DNS data is given in Figure 6.4 where non-dimensional
profiles of velocity and turbulent kinetic energy, taken on channel cross section
planes, are reported for several stream-wise coordinate y/h values, for forced and
mixed convection cases, respectively. For case Ri = 0, profiles of v+ = v/Ub
and k+ = k/U2

b are reported, in Figure 6.4, only for one of the simulated cases,
because velocity field and dynamical turbulence quantities do not depend on the
temperature field.

For Ri = 0 the presence of a re-circulation area can be seen from the plot taken
at ỹ = 3, where negative values of v+ are present close to the heated wall. After the
re-circulation region the flow evolves towards a classical turbulent channel flow.
For the mixed convection case, a jet flow develops, in the near heated wall region,
due to the presence of buoyancy forces leading to increasing velocity peak values
along stream-wise direction. The comparison of velocity values with reference
results shows an overall good agreement. The main discrepancies regard wall
shear stress predictions and v+ peak values in the jet flow region, for Ri = 0.338.
In a comparison with reference results, on each channel cross section considered
in Figure 6.4, the position of v+ peak value is well predicted, but the value itself
is slightly smaller than the DNS ones.

The buoyancy forces on fluid turbulence are important as one can be seen in
Figure 6.5, where non-dimensional turbulent kinetic energy k+ fields are reported
for both Ri = 0 and Ri = 0.338. In the forced convection case the highest
values of k+ are found in the re-circulation area, in particular where the clockwise
rotating vortex develops. Further downstream, for ỹ > 6, k+ values decrease
along stream-wise direction. In the mixed convection case a peak of k+ field is
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4P M K 4P M C 4P C K 4P C C 2P K DNS

Forced conv.
Θmax

val 1.484 1.442 1.467 1.439 1.457 1.45
pos 0.26 0.24 0.28 0.22 0.22 1.01

Θmin
val 0.796 0.776 0.790 0.775 0.734 0.79
pos 6.82 6.76 6.82 6.76 6.98 7.32

Mixed conv.
Θmax

val 0.745 0.734 0.718 0.71 0.759 0.70
pos 1.3 1.28 1.32 1.32 1.24 1.31

Θmin
val 0.499 0.495 0.486 0.483 0.501 0.44
pos 4.9 4.86 4.88 4.84 4.94 3.93

Table 6.4: Non-dimensional temperature difference along heated wall for Ri = 0
and Ri = 0.338 cases. Maximum and minimum values, together with relative
position, are compared with DNS data [107].

still found in the re-circulation area. The extent of the high k+ region is sensibly
reduced and its location is shifted closer to the step wall since the re-circulation
area is reduced by the action of the buoyancy force. This can be seen from the fluid
streamlines, in Figure 6.5, where their bending towards the heated wall is more
significant for the Ri = 0.338 case. After the re-circulation area we have low
k+ values since the cold fluid is coming from the inlet section. Buoyancy force
accelerates the fluid towards heated wall, generating higher wall shear stresses
along stream-wise direction, as described from cf profile. This enhances turbulent
kinetic energy production as can be seen from increasing values of k+ for ỹ > 9.
In the forced convection case the values of k+ are slightly larger than the DNS

ones on channel cross sections at ỹ = 3 and ỹ = 6 in the interval x̃ ∈ [−1, 0]. The
four parameter model predicts higher momentum exchange and, consequently, re-
circulation lengths are smaller than reference ones. The agreement between the
results and the DNS reference data improves as the distance from the re-circulation
area increases. A good agreement with DNS results is also obtained for the mixed
convection case. We remark that, in the mixed case, k+ results show qualitative
deviations at large y near the heated wall where DNS data are characterized by a
local peak before going to zero at the wall.

Thermal fields

In this Section obtained results for thermal fields and heat transfer are compared
with relative DNS data. As will be shown in the following, DNS results simulate
the case of free temperature fluctuations along the heated wall. Both cases of free
and zero temperature fluctuations along the heated wall have been considered, in
the present study, to see how the four parameter model can reproduce DNS re-
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Figure 6.7: Plots of non-dimensional mean temperature increment Θ for forced
a) and mixed convection b) cases along channel cross sections taken on several
positions (ỹ). The results are compared with DNS data [107]. Line formatting in
accordance to Tab. 6.3.

sults but also to investigate the influence of different thermal turbulence boundary
conditions on heat transfer and turbulent flow.

Nusselt number Nusselt number profiles along the heated wall, for forced and
mixed convection cases, for different αt models and boundary conditions, are
shown in Figure 6.6 a) and b), respectively. The Nusselt number is computed
as Nu = q̇h/(T −Tin)λ, where λ is the liquid sodium thermal conductivity calcu-
lated for T = 150◦C. As one can see, for Ri = 0, the Nusselt number values are
slightly greater than reference ones in the re-circulation region. For stream-wise
positions ỹ > 9 the values obtained with the four parameter turbulence model are
closer to reference ones. In particular we observe that MX and CHF boundary con-
ditions lead to the same results when a constant is used to model the bulk term in
αt. However when KAYS Pr t is used as bulk term for αt, then some differences are
observed for different MX and CHF boundary conditions. For the 2PK simulated
case, Nu values are slightly overestimated along all the stream-wise positions ỹ.
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Figure 6.8: Non-dimensional components of turbulent heat flux forRi = 0 a) and
Ri = 0.338 b). In particular wall normal component, on the left, and stream-wise
component, on the right. Reference results (dots) from [107]. Line formatting in
accordance to Tab. 6.3.

For the mixed convection case a quite opposite behavior is observed for all
models of αt. In fact the Nu values are slightly smaller than the reference ones.
The general behavior of Nu profile is well captured for all the simulated cases
with four parameter turbulence model. The results obtained with the KAYS model
show a different behavior that can be well defined by dividing the heated wall on
three different intervals. In the first, for ỹ ∈ [0, 8], the Nu values are smaller than
the ones obtained with four parameter turbulence model. In the second interval,
ỹ ∈ [8, 15], the results are crossing the four parameters ones and in the third one,
for ỹ > 15, the Nu values are higher than those of 4P cases. It seems that, on
a domain with a longer heated wall, KAYS results would be even higher than the
DNS ones for ỹ > 20. An over prediction of turbulent heat flux, in the jet flow
region, is therefore obtained with the KAYS model, as one can see from the values
of turbulent heat flux and eddy thermal diffusivity. In the first interval ỹ ∈ [0, 8]
all the models are underestimating the Nusselt number values probably due to an
underestimation of convective heat transfer. Boundary condition CHF leads to a
slight increase of the turbulent heat transfer since Nu values are higher than the
ones obtained with MX boundary conditions.

A better insight for the cases Ri = 0 and Ri = 0.338 is reported in Table 6.4
where maximum and minimum Θ values are shown together with the correspond-
ing DNS values. For the Ri = 0 case, positions and values of Θmax and Θmin along
the heated wall depend clearly on the flow pattern and on the choice of αt model
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Figure 6.9: Non-dimensional components of mean temperature gradient, along
wall normal and stream-wise directions, and non-dimensional eddy thermal diffu-
sivity αt/α profiles on channel cross sections taken at different stream-wise po-
sitions. Dotted lines represent the ratio between KAYS results and MX ones (with
constant αt bulk term). Line formatting in accordance to Tab. 6.3.

and boundary conditions for Kθ − Ωθ variables, as well. The Θ maximum values
are located in the re-circulation area and are close to the DNS value. However
their position is shifted along the upstream direction due to the underestimation of
the smaller eddy reattachment point. Minimum values of Θ are obtained after the
main vortex reattachment point. In particular we see that the position of Θmin is
determined by the choice of αt bulk term: not only the cases 4PMK and 4PCK but
also the cases 4PMC and 4PCC share the same location. The Θmin values depend
on the boundary conditions used for the thermal variables Kθ − Ωθ. Maximum Θ
value, obtained with KAYS model, is in good agreement with the reference one,
but the minimum one is much smaller, as could be expected by the examination
of the Nu profiles of Figure 6.6 a). As already mentioned, for the mixed convec-
tion case, both minimum and maximum Θ values are slightly overestimated, with
respect to reference values. We see that both Θ maximum/minimum values and
their positions depend not only on the turbulence model for αt but also on the kind
of boundary conditions. The best agreement with DNS results is obtained for the
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Figure 6.10: Non-dimensional components of mean temperature gradient, along
wall normal and stream-wise directions, and non dimensional eddy thermal diffu-
sivity αt/α profiles on channel cross sections taken at different stream-wise posi-
tions. Line formatting in accordance to Tab. 6.3.

case 4PCC, in terms of maximum and minimum Θ values.

Mean temperature A detailed comparison of the results with reference DNS

data is given in Figure 6.7 where non-dimensional profiles of temperature change,
taken on channel cross section planes, are reported for various values of stream-
wise coordinate y/h, for forced and mixed convection cases. An overall good
agreement with reference results is obtained for both Ri = 0 and Ri = 0.338
cases. The major discrepancies with DNS values are found on the plots taken
at ỹ = 0 and ỹ = 3, for the forced convection case, where an over and under
prediction of Θ values is respectively obtained. As shown in Figure 6.6, for ỹ <
0.5 where the smaller vortex develops, wall temperature values are very close to
the maximum one while, for DNS results a slight increase of temperature at the wall
is observed. This give an over-prediction of Θ on the plot at ỹ = 0. Downstream
of reattachment point ỹ1, both DNS and RANS wall temperatures decrease from
a maximum value. From Figure 6.6 we see that the slope of the 4P and DNS

Nu profiles is quite the same but since ỹ1 is underestimated the wall temperature
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Figure 6.11: Non-dimensional mean squared temperature fluctuations k+
θ . From

right to left: k+
θ contours for CHF boundary condition, k+

θ contours for MX bound-
ary condition and plots over channel sections (y/h). Reference results (dots) from
[107]. Line formatting in accordance to Tab. 6.3.

Θ obtained from RANS simulation is consequently smaller than DNS one. The
main difference is observed in the values of Θ along the step wall for the mixed
convection case. In particular higher values are obtained in the 2PK simulated
case.

Turbulent heat flux and mean temperature gradient In Figure 6.8 the tur-
bulent heat flux components, along wall normal and stream-wise directions, are
plotted over different channel cross sections and compared with DNS results for
the cases Ri = 0 and Ri = 0.338 [107]. Modeling turbulent heat flux with the dif-
fusive αt coefficient and mean temperature gradient∇T is not able to evaluate the
stream-wise component of turbulent heat flux. The reason of this inconsistency to
reproduce the stream-wise heat flux component is a model limitation. The mean
temperature gradient along the stream-wise direction is small, as it can be seen
from Figure 6.9 and 6.10 and DNS results, while turbulent heat flux components
have about the same order of magnitude [107]. It is clear that a unique scalar
diffusion coefficient is not suitable for predicting both turbulent heat flux compo-
nents and an anisotropic heat flux modeling should be considered in the future.
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θ contours for CHF boundary condition, k+

θ contours for MX bound-
ary condition and plots over channel sections (y/h). Reference results (dots) from
[107]. Line formatting in accordance to Tab. 6.3.

For the forced convection case in Figure 6.9 the values obtained with KAYS model
are higher than those obtained with four parameters turbulence model and this is
due to higher modeled values of αt. The non-dimensional eddy thermal diffusivity
α+
t = αt/α profiles are reported for all the examined channel cross sections.

Mean temperature gradient component∇T+ · n̂ is steeper near heated wall for
the case 2P K. However when the ratio between KAYS and MX values of ∇T+ · n̂
reaches a minimum value close to 0.8 the ratio between KAYS and MX values
of α+

t has a maximum value close to 5, in the region close to heated wall. The
boundary condition choice for Kθ −Ωθ has a negligible influence on the turbulent
heat flux. Smaller values are obtained when KAYS turbulent Prandtl number is
used. With the four parameter turbulence model the estimated position of turbulent
heat flux maximum values is in better agreement with DNS values, while KAYS

model predicts peak values closer to heated wall. For the mixed convection case
a very good agreement is achieved further downstream while some differences
between DNS data and the numerical results are observed on the plot taken at
ỹ = 3.

As already discussed for the Nu profiles along the heated wall, higher t.h.f.
values are obtained with KAYS model for ỹ > 5, leading to higher Nu values
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with respect to those obtained with 4P simulations. We observe that the choice
of boundary conditions between MX and CHF has a great impact on t.h.f. val-
ues and the influence is predominant in the region close to the step, for ỹ < 9.
The major effect of free temperature fluctuations, on the heated wall, is in the
modeled values of eddy thermal diffusivity, as reported in Figure 6.10, where non-
dimensional mean temperature gradient components and α+

t profiles are reported
on several channel cross sections. Obtained results of mean temperature gradient
∇T+ along wall normal direction are very similar for all simulated cases, while
non dimensional eddy thermal diffusivity values are quite different. When using
MX boundary conditions, temperature fluctuations specific dissipation, ωθ, is set
equal to 2α/(Cµδ

2) (δ is the wall distance) while with CHF boundary conditions a
vanishing gradient is imposed along wall normal direction, ∇ωθ · n̂ = 0, obtaining
much smaller values of ωθ. For the turbulent kinetic energy specific dissipation ω
a MX boundary condition is imposed, i.e. ω = 2ν/(Cµδ

2). The influence of the
boundary condition used on Kθ − Ωθ is seen on the distribution of thermal-to-
dynamical time scale ratio R = ω/ωθ that is used for modeling αt.

Mean squared temperature fluctuations Non-dimensional mean squared tem-
perature fluctuations k+

θ = 2eKθ/∆T 2 are examined in Figure 6.11 and Figure 6.12
for forced and mixed convection cases, respectively. As one can see in Figure 6.11,
for the case Ri = 0, a comparison with DNS values is shown on several channel
cross sections along stream-wise position ỹ. Reference results clearly show the
presence of non-vanishing temperature fluctuations along the heated wall. For MX

b.c. temperature fluctuations are underestimated along each channel cross section.
By using CHF b.c. we observe a good agreement with DNS results. As can be
seen from k+

θ contours of Figure 6.11 when the KAYS correlation models the bulk
correction term for αt the temperature fluctuations are smaller than those obtained
with a constant bulk correction term for αt. As shown in Figure 6.11 this behavior
is observed with both MX and CHF boundary conditions.

Mean temperature gradient values calculated with the four parameter turbu-
lence model are quite independent from the choice of αt bulk term and Kθ − Ωθ

boundary conditions. The turbulent diffusivity αt appears to be smaller when
KAYS Pr t values are used instead of a constant one. This fact leads to smaller
values of the production term Pθ and consequently a reduction of kθ. The tem-
perature fluctuations presents a peak in the region close to step corner, where re-
circulation occurs, and growing values along stream-wise direction in the region
close to heated wall.

For the mixed convection case we observe that DNS mean squared temperature
fluctuations do not vanish near the heated wall and decrease along the stream-wise
direction. Results obtained with CHF boundary condition are in good agreement
with the reference ones. As already observed for the forced convection case they
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Figure 6.13: Computational grids used for the simulation of backward facing step
geometry with OpenFOAM.

depends on αt bulk term and decrease along stream-wise direction. Also for Ri =
0.338 case, the mean temperature gradient values are about the same for all chosen
models of αt, as shown in Figure 6.10, while modeled αt values are smaller when
KAYS turbulent Prandtl number is used instead of a constant one. As for the Ri =
0 case, smaller production term Pθ values are obtained and also kθ values. By
examining the kθ contours, reported in Figure 6.12, we see that different boundary
conditions lead to a different behavior of kθ.

For forced convection case, as shown in Figure 6.11, kθ profiles are quite sim-
ilar, for both MX and CHF b.c., with a local peak close to the step corner and
increasing values along stream-wise direction. For the mixed convection case we
see that kθ peak value is reached behind the step, within ỹ ∈ [0, 3] interval, and
that for CHF boundary condition the peak position is shifted close to the heated
wall. Values obtained with MX boundary conditions decrease along stream-wise
direction and further downstream increase when ỹ > 12. With CHF boundary
condition kθ just decreases as ỹ increases.

6.2 Simulations with coupled FEMuS & OpenFOAM
codes

From the results discussed in the previous Section it has been seen that the under
estimation of recirculation region size, for forced convection case, has a sensible
impact on turbulent heat transfer occurring behind the step. Moreover it has been
seen that the thermal turbulence modeling of the KLW model allows to obtain more
accurate results than those obtained with Kays correlation for the eddy thermal dif-
fusivity. A coupling between FEMuS and OpenFOAM codes is then realized, in
particular using OpenFOAM extend Version 3.2. In OpenFOAM several dynami-
cal turbulence model are present, in particular the Launder & Sharma low-Re k-ε
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(LS) [114], the Yakhot et al. Renormalization group k-ε (RNG) [117], the Lam &
Bremhorst low-Re k-ε (LB) [118], the Lien cubic non-linear low-Re k-ε (LC) [119]
and the Reynolds stress model (LRR) by Launder et al. [120]. The models can be
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lations with OpenFOAM turbulence models. Results are compared with DNS data
[107] and values obtained with KLW model.

tested in simulating the turbulent flow over the vertical backward facing step to see
which one allows to improve the flow prediction with respect to the dynamical tur-
bulence model of KLW. The great advantage of using the computational platform
is that the dynamical turbulence models can be used without the need of imple-
menting them in FEMuS code since they are already available in OpenFOAM.
Results of the turbulent heat transfer over the vertical backward facing step can
then be improved by using a dynamical turbulence model from OpenFOAM code
and the thermal turbulence modeling of the FEMuS KLW model.

A first comparison of the results obtained with the above mentioned turbulence
models is made by simulating the forced convection case that has been analyzed
in previous Section. Boundary conditions have been set as follows:

• Inlet: fixed velocity profile and zero gradient for k, ε and Reynolds stresses

• Wall: no slip for velocity field, wall functions for turbulence variables

• Outlet: zero gradient on all solved variables

Two different grids are used, as shown in Fig. 6.13. The coarser one, which
consists of approximately 32000 cells, has been used to compare the different tur-
bulence models, while the finer one, consisting of approximately 130000 cells, has
been used to couple OpenFOAM with FEMuS. Both grids have a fine discretiza-
tion in the near wall region, allowing the resolution of viscous layer.
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Model LC LB RNG LS LRR KLW DNS

y1 0.4 2.32 0.52 1.6 0.55 0.85 1.91
y2 12 6.9 6.61 6.98 4.28 6.32 7.01

Table 6.5: Comparison of reattachment point locations for smaller vortex (y1)
bigger vortex (y2) obtained with OpenFOAM turbulence models, KLW model and
reference DNS values.
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Figure 6.16: Plots of non dimensional velocity component v+ and turbulent ki-
netic energy k+ obtained with OpenFOAM turbulence models along channel cross
sections taken on several positions ỹ. The results are compared with DNS data ob-
tained from [107] and KLW model.

Preliminary evaluation of OpenFOAM dynamical turbulence models

Non dimensional values of turbulent kinetic energy k+ obtained with the differ-
ent models are reported in Fig. 6.14, together with flow streamlines. From this
qualitative comparison it can be seen that LB and LS models provide similar re-
sults. Reynolds stress models predicts a higher momentum exchange, as can be
seen from high values of k+ obtained in the region behind the step. Recirculation
area appears to be much smaller than the one obtained with LB and LS models.
This is probably due also to incorrect use of wall function boundary condition
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for Reynolds stresses as first layer of cells, close to wall boundary, should lay in
y+ ∈ [30, 60] while for the considered case y+ < 1 [121]. Reynolds stresses, in
fact, are not forced to vanish in the near wall region, as they should, and high turbu-
lent kinetic energy values are observed also close to the wall. Smaller values of k+

are obtained with RNG and LC models, with a particular sensible under-prediction
of k+ in the latter case.

Skin friction values obtained with the above mentioned turbulence models are
reported in Fig. 6.15, where they are plotted against non dimensional stream-wise
coordinate y/h along the heated wall. The values are compared with reference
DNS data and with those obtained with the KLW model. It can be seen that very
different values of skin friction coefficient are obtained, with LS and LB model
results being closer to DNS reference values. Reattachment point locations are
reported in Table 6.5. As it can be seen from Fig. 6.14, LC model predicts a much
smaller momentum exchange in the recirculation area that is then much bigger
than the reference one, with bigger vortex reattachment point at about y/h =
12. Renormalization k-ε turbulence model under predicts the size of the smaller
vortex, with y1 = 0.52, and the reattachment point location y2 is closer to DNS

value than that obtained with KLW model. Downstream of y2 location much bigger
values of skin friction coefficients are observed for both RNG and LRR models.
Models LS and LB perform better than the previous ones. Both of them predict the
presence of a third small vortex, in the corner region, with a reattachment point
located at y3 = 0.03 and y3 = 0.16 respectively. The presence of such small
vortex is also observed in [110] with a y3 value equal to 0.06.

As a final comparison between the different models, non dimensional values
of velocity and turbulent kinetic energy are plotted on several channel cross sec-
tions in Fig. 6.16. The results are compared with KLW values and reference DNS

data. Non linear k-ε model LC under-predicts k+ on the whole domain and the re-
sulting velocity field does not reproduce the DNS results. At stream-wise positions
ỹ = 0 and ỹ = 3 RNG model well approximates DNS values of k+, while further
downstream turbulent kinetic energy is over-predicted, leading to an underestima-
tion of recirculation area. This fact can be seen also from the ỹ = 6 plot of non
dimensional velocity, near heated wall, where other turbulence models predict a
small negative velocity value, differently from LRR model. Velocity profiles ob-
tained with RNG model show a behavior similar to those of LRR in the region close
to adiabatic wall although smaller turbulent kinetic energy is predicted. Close to
heated wall the model fairly reproduces DNS values of k+, while an underesti-
mation is obtained moving from k+ peak position towards channel center line.
Turbulence models LS and LB show similar values of k+. Within the recircula-
tion region they both underestimate k+, and a better agreement with DNS data is
obtained at positions ỹ = 12 and 15, close to heated wall. For positions ỹ > 6
obtained values of k+ are similar to those obtained with KLW model, while for non
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FORCED MIXED

UNCOUPLED COUPLED UNCOUPLED COUPLED

Table 6.6: Simulated cases and relative line formatting for the results of the
coupled FEMuS–OpenFOAM case.

dimensional velocity small differences are observed near the adiabatic wall, with
LB values being slightly higher than KLW and LS models.

Turbulence model LB has been chosen to realize the code coupling between
OpenFOAM and FEMuS codes for both forced and mixed convection cases. Be-
cause of the thermal coupling involved in the mixed convection case, forced and
mixed convection simulations require different code coupling strategies. For forced
convection case a one way coupling is realized from OpenFOAM to FEMuS, so
that a steady OpenFOAM solution can be obtained and then the thermal fields can
be solved with FEMuS code. For the mixed convection case a thermal feedback
is given to OpenFOAM, through the buoyancy term with temperature field solved
with FEMuS code. The coupling procedure is realized by following the steps de-
scribed in Chapter 2. For OpenFOAM a finer grid than FEMuS one is used, so that
a similar number of unknowns is solved by both OpenFOAM and FEMuS codes.
FEMuS fields are interpolated on OpenFOAM grid with the P2P2 field interpolator
and then piece-wise fields are computed. Numerical fields from OpenFOAM are
interpolated on FEMuS mesh using MED conservative piece-wise field projector
and then point-wise fields are recovered from the solution of Galerkin projection.
For both forced and mixed convection cases, obtained results are compared with
those obtained from uncoupled KLW model. Line formatting is described in Ta-
ble 6.6. The reported results are only for the case of free temperature fluctuations
along the heated wall.

Dynamical fields

As already mentioned the simulation of forced convection case is performed as
a one way coupling from OpenFOAM to FEMuS. In particular k, ε and νt val-
ues computed in OpenFOAM are used to model eddy thermal diffusivity αt and
source terms for Kθ–Ωθ system of equations. For the mixed convection case, at
each iteration FEMuS solved mean temperature field is used in OpenFOAM, for
the calculation of buoyancy force, and dynamical turbulence fields are sent from
OpenFOAM to FEMuS as for the forced convection case.
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Figure 6.17: Comparison of skin friction values along heated wall obtained from
uncoupled FEMuS and coupled OpenFOAM–FEMuS simulations, for both forced
and mixed convection cases. The results are compared with DNS data [107]. Line
formatting in accordance with Tab. 6.6.

Skin friction Skin friction profiles of both forced and mixed convection cases
are shown in Fig. 6.17. As already seen before, with Lam-Bremhorst turbulence
model the size of recirculation area is better predicted for the forced convection
case, so that an improvement has been obtained from the coupled code solution.
The change of turbulence model, for mixed convection case, has not a well defined
impact on skin friction values. Close to the step, for y/h < 2.5, coupled solution
cf values are smaller than those obtained with KLW model, while higher values
are obtained for y/h > 12.5.

Non dimensional velocity and turbulent kinetic energy In Fig. 6.18 non di-
mensional stream-wise velocity component v+ and turbulent kinetic energy k+

profiles are shown on several channel cross sections. As it regards the velocity
field component, for forced convection case the main difference is observed on
plot taken at y/h = 6, where for coupled solution results negative v+ values are
observed on a wider section than that obtained for KLW case. For the mixed con-
vection case, from coupled simulation results a small under-prediction of v+ peak
value in the region close to heated wall is observed together with higher values
near the adiabatic wall at x/h = 2. For forced convection case, the main differ-
ences in k+ values are observed on plots at stream-wise position y/h = 3 where
Lam-Bremhorst predicted turbulent kinetic energy is sensibly smaller than both
KLW and reference DNS values. After the reattachment point, KLW and coupled
case solutions do not differ very much. For mixed convection case slightly higher
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Figure 6.18: Comparison of non dimensional stream-wise velocity component
v+ and turbulent kinetic energy k+ obtained with OpenFOAM–FEMuS solutions,
for both forced and mixed convection cases. Results are compared with uncoupled
case and reference values [107]. Line formatting in accordance with Tab. 6.6.

values of k+ are observed on each channel cross section. Local k+ peak DNS val-
ues are almost well captured, from coupled simulation, at y/h = 3, 6, 9 and 12,
but higher momentum exchange is predicted in the central channel region.

Thermal fields

Nusselt number The effect of a better recirculation area prediction, for forced
convection case, is noticeable in the profiles of Nusselt number values along the
heated wall, as reported in Fig. 6.19. A great improvement in heat transfer pre-
diction has been obtained in the interval y/h ∈ [0, 7], while further downstream
Nusselt number values obtained with KLW and coupled simulation are identical.
For mixed convection case the Lam-Bremhorst k-ε turbulence model does not lead
to a more accurateNu prediction, along heated wall, as in the range y/h ∈ [0, 1.5]
Nu values are smaller than those obtained with KLW model, that means a higher
discrepancy with DNS values, and on the remaining part of the heated wall they
are comparable to uncoupled case results.
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Figure 6.19: Nusselt number values along heated wall obtained with coupled
OpenFOAM–FEMuS simulations for both forced and mixed convection cases.
Results are compared with uncoupled case and DNS data [107]. Line formatting
in accordance with Tab. 6.6.

Turbulent and advective heat fluxes In Fig. 6.20 non dimensional turbulent
heat flux component along wall normal direction, q+

t,n, and mean advective heat
flux components v+θ and u+θ profiles are shown on several channel cross sec-
tions. Stream-wise component values of turbulent heat flux are not shown since
also for the coupled case they are not captured. As it regards the values of wall
normal component q+

t,n, for Ri = 0 case, with the new model a better estimation is
obtained at stream-wise position y/h = 3. Further downstream coupled and un-
coupled KLW predicted values of turbulent heat flux are almost equivalent, with an
under-prediction with respect to reference values. For mixed convection case q+

t,n

values at y/h = 3 are smaller than KLW ones and for increasing values of down-
stream position y/h less sensible differences are observed. With Lam-Bremhorst
turbulence model a better prediction of advective heat flux component v+θ is ob-
tained at y/h = 3, where the effect of flow recirculation can be seen on the change
of v+θ values. A very good agreement is observed with DNS results, for both
Ri = 0 and Ri = 0.338 cases. The main discrepancy with reference values is
observed, for mixed convection case, in the peak value of v+θ, which is slightly
smaller then the reference one. Another improvement obtained from the coupled
code solution can be seen in wall normal component values of mean advective
heat flux u+θ, in particular at y/h = 3, where KLW model does not predict the
change of sign of wall normal velocity component. As for previously examined
results, coupled code results are about the same of KLW ones, along the remaining
channel cross sections, and for all mixed case results. A general good agreement
with DNS results is observed.
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Figure 6.20: Profiles of non dimensional turbulent heat flux component along
wall normal direction q+

t,n and of mean advective heat fluxes v+θ, u+θ components
on several channel cross sections, obtained with coupled OpenFOAM–FEMuS
simulations. Results are for both forced and mixed convection cases, compared
with uncoupled case and DNS data [107]. Line formatting in accordance with Tab.
6.6.

Mean temperature and temperature fluctuations For non dimensional tem-
perature values the main differences with uncoupled case, forRi = 0, are observed
on profiles taken on channel cross sections at stream-wise locations y/h = 0, 3
and 6, as reported in Fig. 6.21. A better agreement with DNS data is here obtained,
in particular at y/h = 0 and 3, where uncoupled case results respectively overesti-
mated and underestimated reference values as a consequence of incorrect predic-
tion of recirculation area. For mixed convection case sensible differences are not
observed, apart from the plot taken at y/h = 0, where coupled simulation results
predict higher θ values, as expected from smallerNu values observed in Fig. 6.19.
Profiles of non dimensional mean squared temperature fluctuations along several
channel cross sections are plotted on the right of Fig. 6.21 and compared with re-
sults from uncoupled simulation and DNS values. For mixed convection case, re-
sults of coupled simulation predicts higher mean squared temperature fluctuations
on the whole domain. Forced convection case results from coupled simulation
are smaller than respective results from uncoupled simulation. On channel cross
section at y/h = 3 the results obtained with coupled OpenFOAM-FEMuS simula-
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Figure 6.21: Non dimensional temperature and mean squared temperature
fluctuations values, on several channel cross sections, obtained with coupled
OpenFOAM–FEMuS solutions. Results are for both forced and mixed convec-
tion cases, compared with uncoupled case and DNS data [107]. Line formatting in
accordance with Tab. 6.6.

tions better predicts the position of maximum k+
θ value. In Fig. 6.22 a comparison

between k+
θ , from coupled and uncoupled simulations of forced convection case, is

reported together with plots of non dimensional eddy thermal diffusivity on several
channel cross sections. The behavior of shown k+

θ fields is similar: a local peak
of k+

θ values is observed close to the step corner, with a position slightly shifted
downstream for the case of coupled simulation. Higher values of k+

θ then develop
starting from the center of the recirculation region and moving downstream in the
near heated wall region. Within the recirculation region smaller k+

θ values are ob-
tained for the case of coupled simulation, due to smaller values of eddy thermal
diffusivity, so of k+

θ production term, as can be seen from the plots reported on
the right of Fig. 6.22. After the reattachment point the obtained values of α+

t

are almost the same for coupled and uncoupled simulations. Smaller values of
k+
θ are then obtained, on coupled simulation results, as a consequence of smaller

values encountered in the recirculation region and then advected in the near hot
wall region.
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Figure 6.22: Forced convection case: comparison of non dimensional mean
squared temperature fluctuations, for CHF boundary condition, between coupled
and uncoupled simulations , on the left, and of non dimensional eddy thermal
diffusivity, on the right. Line formatting in accordance with Tab. 6.6.

Overall conclusions The simulation of liquid sodium turbulent flow over ver-
tical backward facing step has been performed for both forced and mixed con-
vection cases. This is an interesting case since a very low Prandtl number has
been considered (Pr = 0.0088) but also a more complex geometry, involving
fluid recirculation. Due to the presence of DNS data, an extensive evaluation of
the obtained results has been performed by comparing them with reference ones.
Simulations have been performed using FEMuS code, with the KLW model, and
using a numerical code coupling between FEMuS and OpenFOAM.

From the KLW model performances point of view, for both forced and mixed
flow regimes the average temperature and velocity profiles match the DNS values.
For the forced convection case, the model underestimates the length of the recir-
culation region, with an influence on obtained Nusselt number values along the
heated wall. Nu values show in fact some main discrepancies with DNS data, in
the recirculation region, while downstream of the reattachment point a very good
agreement with reference values is obtained. For the mixed regime the Nusselt
number and skin friction values along the heated wall are both slightly smaller
than the reference ones. As expected, the turbulence model almost captures the
values of wall normal turbulent heat flux component while it fails in reproducing
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the stream-wise component since the used isotropic model, with a unique scalar
diffusion coefficient, is not suitable for predicting both turbulent heat flux com-
ponents. For this very low Pr value, heat transfer is conduction dominated and
almost accurate results can be obtained even if stream-wise turbulent heat flux
component is not captured. An anisotropic model for turbulent heat transfer, ca-
pable of reproducing both wall normal and stream-wise components, should be
used in applications where turbulent heat flux has a greater influence on global
heat transfer.

From the coupled simulations it has been seen that Lam-Bremhorst k-ε model
allows to obtain a better prediction of the flow recirculation occurring behind the
step, for the forced convection case. A better agreement with DNS results is then
obtained for all observed variables in the recirculation region, while downstream
of the reattachment point LB and KLW models results do not show sensible dif-
ferences. In the presence of buoyancy forces, the change of dynamical turbulence
model does not lead to a sensible improvement of obtained results since, for the
investigated Ri = 0.338 value, the recirculation region is greatly reduced in size.
The computational platform has then proven to be a useful tool since better results
have been obtained, for the forced convection case, without the need of imple-
menting the LB model in FEMuS or the Kθ − Ωθ model in OpenFOAM. Once
that the coupling routines have been developed, the approach used to simulate the
backward facing step with OpenFOAM and FEMuS can be used in general.
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Turbulent heat transfer is a very complex phenomenon where phenomena at dif-
ferent physical-space scales contribute to determine the fluid motion and its heat
transport. Thermal turbulence modeling for low Prandtl number fluids is a chal-
lenging task required in engineering applications where liquid metals are used as
operating fluids, e.g. concentrating solar power plants and IVth generation fast
nuclear reactors. Turbulence models provided by commercial codes are not ad-
equate for the simulation of low Prandtl number fluids, and more accurate and
numerically stable models are needed to help the design process of these complex
systems.

This PhD study has been realized following two main objectives: the inves-
tigation of a four parameters turbulence model capabilities and the development
of a computational platform where more accurate simulations of low Pr turbu-
lent flows can be performed. For the first objective, the four parameter turbulence
model has been considered since it has already been validated with simulations of
fully developed turbulent flows in straight geometries, with Pr = 0.025 [10]. A
new formulation of the model, with logarithmic variables, has been proposed in
this thesis and implemented in FEMuS code, with the intent to enhance the nu-
merical stability of the original model. For the latter objective, a computational
platform has been developed using the open-source software SALOME and the
MED library. In particular, SALOME platform is used for geometry and mesh
generation processes. The MED library is used as a standard data format for stor-
ing numerical fields and meshes in computer memory, allowing to perform data
exchange between different codes within computer memory and not with much
slower read/write operations on files. Several routines, based on the MED data
format, have been developed as C++ classes to facilitate numerical code coupling,
i.e. data exchange and manipulation. In particular, the routines have been de-
veloped to perform numerical field interpolation between different meshes and
numerical field integration and can be generally used, alongside the other routines
provided by MED library, since they are not code specific. With the computational
platform, complex systems can be simulated using several codes, depending on
the physical phenomena that need to be taken into account. For the simulation
of low Pr turbulent flows, finite volume OpenFOAM and finite element FEMuS
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codes have been coupled, with the purpose of taking advantage of the wide set
of dynamical turbulence models implemented in OpenFOAM and of the thermal
turbulence model implemented in FEMuS.

Interpolation routines have been successfully used to define a new immersed
boundary method. In this new method an indicator function is used to distinguish
solid and fluid computational regions. Two grids are used, one for solving equa-
tions, and one for modeling the solid body. Indicator function field is obtained as
a result of projection of a uniform field defined on solid body mesh to the compu-
tational grid. The method can then handle moving bodies with arbitrarily shapes.
Two cases of fluid flow around static and moving objects, modeled with immersed
boundary method, have been studied. Obtained results have been compared with
reference data, showing a good agreement.

The case of fully developed turbulent flows in plane channel has been used to
show the increased numerical stability of newly proposed logarithmic model with
respect to original k-ε formulation. For the same geometry, validation against
DNS results has been made for a wide range of Reynolds numbers and for both
Pr = 0.025 and Pr = 0.01.

Fully developed turbulent flows in cylindrical pipes have also been simulated,
over a wide range of Reynolds numbers, for both Pr = 0.025 and Pr = 0.01.
Since DNS results for thermal turbulence fields at this low Prandtl number values
are not available, obtained results have been compared with experimental correla-
tions in the form of Nusselt number values. A very good agreement with reference
Kirillov correlation has been obtained over the entire range of investigated Peclet
values.

A fully developed turbulent flow of Lead-Bismuth-Eutectic has been simulated
in the geometry of 19 pin hexagonal nuclear reactor bundle, using the four param-
eter turbulence model and also with constant turbulent Prandtl number Prt = 0.9
and Kays models. Results of Nusselt number and super-heat values have been
compared with experimental values. Obtained Nusselt number values are close
to Ushakov experimental correlation, in the range ±5%, while Kays results lay
in ±10% and those for Prt = 0.9 are much greater than reference correlation.
A good agreement of super-heat values has been obtained for simulated cases at
higher Peclet number values, while for Pe < 700 obtained results are higher than
experimental ones. This fact could be related to effect of buoyancy forces, which
is more sensible with small velocities and that has not been taken into account in
the present simulations.

Simulations of liquid sodium turbulent flows over a vertical backward facing
step geometry (BFS), with a Pr = 0.0088, have been performed for both forced
and mixed convection cases, since DNS values are available for model validation.
For this test case FEMuS, as standalone code, and coupled FEMuS-OpenFOAM
codes have been used. From results of the uncoupled case one can see that the
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KLW model leads to an underprediction of the recirculation length behind the step,
with consequent slight discrepancies between obtained results and DNS ones in
the recirculation region. Results have been improved with the coupled simula-
tion, where Lam-Bremhorst k − ε dynamical turbulence model, implemented in
OpenFOAM, has been coupled with the thermal turbulence model implemented
in FEMuS. With the coupled simulation a better estimation of the recirculation
area has been observed, improving the accuracy of obtained results with respect to
DNS values. Far from the recirculation region, similar results have been obtained
between coupled and uncoupled simulations, with an overall good agreement with
reference data. In the mixed convection case, due to the presence of buoyancy
forces, the recirculation region is greatly reduced in size and no significant im-
provement has been observed from the coupled simulation. Again the obtained
results are in satisfactory agreement with reference solutions.

With this PhD study the four parameter turbulence model capabilities and lim-
itations have been investigated. For all simulated cases a good agreement with
reference data, i.e. DNS results and experimental correlations, has been obtained.
The isotropic turbulence hypothesis used to model the turbulent heat flux repre-
sents a limitation of the model since a single turbulent diffusion coefficient is not
sufficient to reproduce both wall normal and stream-wise components of turbulent
heat flux, as observed with BFS simulations. An anisotropic model for turbulent
heat flux is planned to be investigated in order to overcome this issue. Thanks to
the increased numerical stability and to the accuracy of the results, the KLW could
be used with an anisotropic formulation of turbulent heat flux. The computational
platform has then proven to be a useful tool since better results have been ob-
tained, for the BFS forced convection case, without the need of implementing the
Lam-Bremhorst k−ε model in FEMuS or the Kθ−Ωθ model in OpenFOAM. The
approach used to simulate this problem with coupled OpenFOAM and FEMuS
codes can be used in general, also by adding additional codes to the platform,
allowing the possibility to simulate very complex systems.
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compared with DNS data obtained from [107]. Line formatting in
accordance to Tab. 6.3. . . . . . . . . . . . . . . . . . . . . . . . 167

6.5 Non-dimensional turbulent kinetic energy field k+, for the forced
and mixed convection cases, together with flow streamlines. . . . 168

6.6 Nusselt number values for forced a) and mixed convection b) cases
along the heated wall. The results are compared with DNS data
[107]. Line formatting in accordance to Tab. 6.3. . . . . . . . . . 169

6.7 Plots of non-dimensional mean temperature increment Θ for forced
a) and mixed convection b) cases along channel cross sections
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[16] D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini, and R. Scardovelli.
“CFD and Neutron codes coupling on a computational platform”. In: Jour-
nal of Physics: Conference Series. Vol. 796. 1. 2017.

[17] O. C. Zienkiewicz, R. L. Taylor, O. C. Zienkiewicz, and R. L. Taylor. The
finite element method. Vol. 3. McGraw-hill London, 1977.

[18] J. N. Reddy. An introduction to the finite element method. Vol. 2. McGraw-
Hill New York, 1993.

[19] G. H. Silva, R. Le Riche, J. Molimard, and A. Vautrin. “Exact and effi-
cient interpolation using finite elements shape functions”. In: European
Journal of Computational Mechanics/Revue Européenne de Mécanique
Numérique 18.3-4 (2009), pp. 307–331.
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[73] R. Da Vià and S. Manservisi. “Numerical simulation of forced and mixed
convection turbulent liquid sodium flow over a backward facing step with
a four parameter turbulence model”. In: Int. J. Heat Mass Tran. Under
Review (2018).

[74] Y. Nagano and M. Shimada. “Development of a two equation heat transfer
model based on direct simulations of turbulent flows with different Prandtl
numbers”. In: Phys. Fluids 8.12 (1996), pp. 3379–3402.

[75] K. Abe, T. Kondoh, and Y. Nagano. “A new turbulence model for pre-
dicting fluid flow and heat transfer in separating and reattaching flows – I.
Flow field calculations”. In: Int. J. Heat Mass Tran. 37.1 (1994), pp. 139–
151.

212



Bibliography

[76] A. De Santis and A. Shams. “Application of an algebraic turbulent heat
flux model to a backward facing step flow at low Prandtl number”. In:
Annals of Nuclear Energy 117 (2018), pp. 32–44.

[77] F. Ilinca, J. Hetu, and D. Pelletier. “A unified finite element algorithm for
two - equation models of turbulence”. In: Comput. Fluids 27.3 (1998),
pp. 291–310.

[78] P. A. Durbin. “On the k-ε stagnation point anomaly”. In: Int J. Heat Fluid
Fl. 17.1 (1996), pp. 89–90.

[79] C. H. Park and S. O. Park. “On the limiters of two-equation turbulence
models”. In: Int. J. Comput. Fluid D. 19.1 (2005), pp. 79–86.

[80] Z. Ge, J. Liu, P. Zhao, X. Nie, and M. Ye. “Investigation on the applica-
bility of turbulent-Prandtl-number models in bare rod bundles for heavy
liquid metals”. In: Nucl. Eng. Des. 314 (2017), pp. 198–206.

[81] Y. Saad and M. Schultz. “GMRES: A Generalized Minimal Residual Al-
gorithm for Solving Nonsymmetric Linear Systems”. In: SIAM Journal on
Scientific and Statistical Computing 7.3 (1986), pp. 856–869.

[82] T. Schumm, M. Niemann, F. Magagnato, L. Marocco, B. Frohnapfel, and
J. Fr. “Numerical prediction of heat transfer in liquid metal applications”.
In: 2000 (2015), pp. 1–12.

[83] W. Jaeger et al. “Thermo-hydraulic flow in a sudden expansion”. In: IOP
Conf. Ser. Mater. Sci. Eng 228.1 (2017).

[84] T. Schumm, B. Frohnapfel, and L. Marocco. “Numerical simulation of the
turbulent convective buoyant flow of sodium over a backward facing step”.
In: J. of Phys.: Conf. Series 745 (2016), p. 032051.

[85] L. Marocco, A. A. di Valmontana, and T. Wetzel. “Numerical investiga-
tion of turbulent aided mixed convection of liquid metal flow through a
concentric annulus”. In: Int. J. Heat Mass Tran. 105 (2017), pp. 479–494.

[86] H. Kawamura, H. Abe, and Y. Matsuo. “DNS of turbulent heat transfer in
channel flow with respect to Reynolds and Prandtl number effects”. In:
Int. J. Heat Fluid Fl. 20.3 (1999), pp. 196–207.

[87] I. Tiselj and L. Cizelj. “DNS of turbulent channel flow with conjugate heat
transfer at Prandtl number 0.01”. In: Nucl. Eng. Des. 253 (2012), pp. 153–
160.
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