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A B S T R A C T

The focus of this dissertation is the design and the implementa-
tion of a computing platform which can accelerate data processing
in the embedded computation domain. We focus on a heterogeneous
computing platform, whose hardware implementation can approach
the power and area efficiency of specialized designs, while remain-
ing flexible across the application domain. In a heterogeneous plat-
form, programmable cores are combined with the application-specific
hardware elements. The programmable cores guarantee flexibility —
that is, the ability to support different applications; the application-
specific hardware elements provide the computational capability and
efficiency needed to meet the requirements of modern applications.

In the embedded systems domain, limited area and energy budgets
are key design constraints which make the design of such platforms
challenging. These limitations call for innovative and effective solu-
tions - since the last few years we have been witnessing a growth in
popularity of multi-core heterogeneous shared memory clusters. An
important advantage that they provide is a flexible communication in-
frastructure leveraging on an efficient shared memory. Using shared
memory it is possible to build different communication topology for
a wide variety of communication patterns. Above all, shared mem-
ory clusters are programmable and are able to meet the fast changing
needs of the applications.

The multi-core architectures require parallel programming, which
is widely-regarded as more challenging than sequential program-
ming. Although shared memory parallel programs may be fairly
easy to write (using OpenMP, for example), they are quite hard to
optimize; providing embedded application developers with optimiz-
ing tools and programming frameworks is a challenge. The hetero-
geneous specialized elements make the problem even more difficult.
Dataflow is a parallel computation model that relies exclusively on
message passing, and that has some advantages over parallel pro-
gramming tools in wide use today: simplicity, graphical represen-
tation, and determinism. Dataflow model is also a good match
to streaming applications, such as audio, video and image process-
ing, which operate on large sequences of data and are character-
ized by abundant parallelism and regular memory access patterns.
Dataflow model of computation has gained acceptance in simulation
and signal-processing communities. This thesis evaluates the appli-
cability of the dataflow model for implementing domain-specific em-
bedded accelerators for streaming applications. In particular, it in-
vestigates 1) how a shared memory cluster platform can support the

xi



Abstract xii

dataflow model of computation in a simple and efficient way; 2) how
sequential reference algorithms can be transformed into a dataflow
implementation; 3) how an efficient dataflow run-time can be imple-
mented; 4) what are performance characteristics of a dataflow imple-
mentation.

This thesis describes StreamDrive, a dynamic dataflow framework
that includes a dataflow cluster architecture template, a dataflow
programming API, and an efficient runtime system for executing
dynamic dataflow applications. Based on StreamDrive architecture
template, a full Computer Vision Engine (CVE) have been imple-
mented, targeting streaming image processing applications including
Convolutional Neural Networks (CNN). It is experimentally demon-
strated that sequential reference algorithms can be systematically
transformed into a dataflow implementation through an incremental
process, called successive refinement transformation. Using state-of-
the-art image processing applications implemented in StreamDrive,
the performance overhead, memory requirements, performance scal-
ing, and tolerance to reduced off-cluster memory bandwidth of the
dynamic dataflow model have been evaluated. It is shown that it is
possible to support efficient dataflow processing on heterogeneous
multi-core shared memory clusters with simple hardware extensions
and a high-performance dynamic dataflow runtime.

Finally, a specialized tightly-coupled convolution hardware block
(HWC) has been developed, optimized to efficiently execute the CNN
convolutional layers. The computation of convolutional layers in neu-
ral networks must be scheduled such that their working set fits with
limited local memory, while the number of data transferred from
the next level in memory hierarchy is minimized. This thesis pro-
poses a new methodology for scheduling the convolutional CNN
layer computations that yields better schedules than previously pub-
lished methods. The algorithm developed while designing the HWC
is significant not only in the context of the CNN processing, but also
in the more general context of scheduling nested loop computations
using application-managed memory buffers.

This thesis is based on work done by the author within the
project conducted by the ST Microelectronics and by the University
of Bologna. It is a summary of the individual research done by the
author while working within the team framework. Therefore, the
author refers to work being done individually as "we" instead of "I"
because without the dedication and contribution of the entire team,
the individual research presented within this thesis would not have
been possible.



My grandfather once told me that there are two
kinds of people, those who do the work and those

who take the credit. He told me to try to be in
the first group; there was less competition there.

— Indira Gandhi

A C K N O W L E D G E M E N T S

This dissertation is a result of an unusual academic path. I have
started my PhD studies in 1996 in the University of Delaware, USA. I
went over and completed the required course-work, passed the PhD
qualifying examination, made my Doctoral proposal in 1999, and ...
have left the school. This decision was motivated by several personal
circumstances and I have not returned to the idea of completing my
PhD degree until 15 years later, in 2015, while working at ST Micro-
electronics in Grenoble. However, many exceptional people that I
have met during that period have greately influenced my following
life and were an inspiration for my decision to give it a second try.
My first thougt goes to them.

First of all I want to express my greatest gratitude to professor
Guang Gao from the University of Delaware to whom I owe my entire
engineering carrier. Dr. Gao has been my advisor for many years, first
during my Master’s thesis work in Montreal, and then in Newark, in
Delaware. Thanks to professor Gao I have discovered the world of
computer science, electrical enginnering, and scientific research. One
thing that encouraged me to work hard is seeing professor Gao’s
dedication to his work and research. It was an honor to be his student
- an honor that I am proudly cherishing through my entire carrier and
life. Most of all, our relationship went far beyond professional. I also
dedicate this dissertation to Prof. Gao’s wife, Peggy, and I wish to
thank Gao family for supporting me and for making their house also
mine during the many years in Montreal and in Newark.

I also wish to thank my good school friends Andres Marquez,
Shadi Abughazaleh, Vasco Jerenic, Jose Nelson Amaral for having
been great friends during all this time. I always remember the good
times we had together. I wish to thank Steve and Lilly Weissinger
for their help and support during my summers at Silicon Graphics,
California, while I was working on my initial research proposal. I
thank those brilliant people whom I met at Silicon Graphics at that
time, John Ruttenberg, Woody Lichtenstein, Suneel Jain, Jim Dehnert,
and others, and who had greately influenced my formation during
my first PhD period.

Going back to school after 15 years, and while keeping a day job, is
not easy. It would never have happened if I had not encounter Prof.

xiii



xiv

Luca Benini, from the University of Bologna, who I sincerelly thank
for having accepted to became my PhD adviser. Luca is one of the
most brilliant people that I have encountered in my carrier and I am
infinitely greatefull to him for his guidance and support.

I am specially greatfull to Philippe Galliard, my manager at ST Mi-
croelectronics, for supporting me in my endeavor. Without Philippe’s
support, this dissertation would not have happened. Many thanks
go to my collegues from Grenoble and Bologna who have helped me
during my work on this dissertation. I thank Mario Toma, Didier
Fuin, Min Xue, Francesco Conti, and others, for many discussions
and ideas that were inspiring for this work.

Finally, I wish to thank Prof. Kevin Martin from the University of
Bretagne Sud and Prof. Andrea Calimera from Politecnico di Torino
for serving as my external reviewers and for critically evaluating my
dissertation. I have specifically appreciated Prof. Martin’s comments
and suggestions that improved the overall presentation of the disser-
tation.

Grenoble, october 2018 Arthur



I N T R O D U C T I O N

Science can amuse and fascinate us all, but it is
engineering that changes the world.

— Isaac Asimov

Application-specific hardware acceleration has surfaced as the pre-
vailing approach across many application domains in embedded sys-
tems because of its performance and energy benefits compared to
general-purpose solutions. Depending on the domain, accelerators
often bring greater than a 10× advantage in performance, or cost,
or power over a general-purpose processor. Accelerators can have
macro architectures that span from fixed-function, special-purpose
chips (early generations of graphics chips were of this variety) to
highly programmable engines tuned to the needs of a particular do-
main.

When hardware accelerators of various forms are designed, there
is always a trade-off between how general versus function-specific
to make the architecture. While fixed-function hardware accelera-
tors are effective, they pose many challenges. As algorithms change
rapidly, hardware must be re-designed and re-verified, which is costly
in terms of development cost and time-to-market. As a corollary,
innovation in algorithms becomes more difficult without access to
flexible hardware. Furthermore, fixed accelerators cannot be shared
across applications, making them more costly in terms of silicon. Fi-
nally, from the academic viewpoint, it is difficult to formalize and ap-
ply improvements from narrowly specialized hardware to the broader
field of computer architecture – limiting the intellectual impact of
such work.

Thus, the flexibility of a programmable accelerator, where modi-
fications and enhancements can be done by software changes rather
then by re-spins of the hardware presents important advantages. Flex-
ible accelerators are applicable across a variety of applications, allow
bug fixes and support new product requirements over the lifetime of
the accelerator without a chip re-spin. Ideally, what is required is
hardware that is capable of executing compute-intensive algorithms
at high performance with much lower power than programmable ar-
chitectures, while remaining broadly applicable and adaptable. This
thesis focuses on development of such programmable accelerator.

xv
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streaming accelerators

Streaming applications represent an important class of high per-
formance computations. Defined by their regular processing of se-
quences of data, streaming applications appear in the context of
audio, video, and image processing, digital signal processing, net-
working, encryption, and other areas. Streaming application prop-
erties lend themselves to very efficient hardware implementations
through exploitation of parallelism. From a more technical perspec-
tive, streaming applications are amenable to an accelerator-based so-
lution, for which a combination of parallelism, pipelining, and regu-
larity of computation are necessary. Accelerators use parallelism to
gain their performance advantage over the general-purpose proces-
sors, while the streaming computation exhibit substantial parallelism
to take advantage of the accelerator. Accelerators benefit from sim-
ple (or none) address generation logic, while typical streaming ap-
plications demonstrate predictable, well-behaved streaming memory
access patterns.

There is strong demand for streaming applications, such as com-
puter vision solutions, for example. The computer vision market
size is estimated to grow to many billions of dollars over the coming
years [1]. Tractica forecasts that global revenue from computer vision
software, hardware, and services will grow from $1.1 billion in 2016

to $26.2 billion by 2025. This prompts new research and commercial
solutions to appear, specifically targeting the mobile sector.

Recently, heterogeneous multi-core platforms have emerged as
the general and structured approach for designing flexible domain-
specific accelerators [2]. To achieve high performance, lower cost,
energy-efficiency, and required flexibility, these platforms combine
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programmable processor cores with a number of application-specific
hardware elements.

The application-specific hardware elements can exploit the par-
allelism available within target applications by executing coarse-
grained functions. For a large set of streaming applications, coarse-
grained processing elements (i.e., processing elements implement-
ing coarse-grained functions) result in the best balance between ef-
ficiency and programmability [3]. A number of architectures also
advocate the approach of coupling the processing cores and spe-
cialized processing elements by sharing a level of memory hierar-
chy [4, 5, 6, 7, 8, 9, 10, 11]. The GreenDroid architecture [12], features
clusters with a single general-purpose core, which is coupled smaller
conservation cores (or c-cores) [11] that communicate with the rest
of the system through a first level coherent cache. Fajardo [8] pro-
posed coupling of programmable processors and application-specific
hardware units via a buffer-integrated-cached substrate. The EXOCHI
architecture [13] features hardware accelerators modeled as coarse-
grain MIMD functional units, collaborating with IA32 CPU cores by
sharing of the same virtual memory space. Cong et al. [14] developed
a heterogeneous multi-core architecture with shared-memory accel-
erators, which communicate by means of shared level two caches,
accessible through NoC nodes. Dehyadegari [7], Conti [6], and Bur-
gio [4] proposed architectures for interfacing RISC32 programmable
cores and application-specific hardware blocks via shared scratchpad
memory.

The work in this dissertation is an evolution of the fabric of tightly-
coupled homogeneous clusters, called Platform 2012 built by the
STMicroelectronics [15]. In the tightly-coupled cluster paradigm,
each cluster is composed by a relatively small number of simple RISC
cores that communicate through a fast low-latency interconnection to
a shared data memory. Multiple clusters can be connected through
a high-bandwidth scalable medium such as a network-on-chip. He-
P2012 [16] extended the P2012 with hardware elements (HWPEs) and
proposed a methodology for the semi-automatic definition and in-
stantiation of shared-memory HWPEs from a C source. This thesis
builds upon this earlier work.

programming streaming accelerators

To take advantage of the potential performance offered by a hetero-
geneous multi-core platform, applications need to manage multiple
programmable cores, application-specific hardware elements, limited
on-chip memory, and explicitly managed memory hierarchy. Among
existing programming models, OpenMP has been particularly appeal-
ing for programming shared memory clusters, mainly for two rea-
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sons: (1) it is based on familiar standard C language, extended with
intuitive pragmas, and (2) a number of OpenMP ports for embedded
systems exist, which provides guidelines and code to get started [5].

In practice, although initial parallelization of the reference code
with OpenMP is simplified, tuning them for performance is hard and
may require considerable development effort. There is a gap between
the application specification in a standard sequential imperative lan-
guage such as C and its parallel implementation that must be ”filled”
by the application developer.

The OpenMP does not provide sufficient abstraction for helping to
achieve the right trade-off between various optimization parameters.
Getting good performance on a multi-core heterogeneous platform
often requires sophisticated code and data structure transformations
to expose the right variety and amount of parallelism. One typically
needs to perform simultaneous optimization of the algorithm, selec-
tion of data structures, task granularity, data-tiling dimensions, data
prefetch distance, and loop unrolling. These parameters are often
not orthogonal to each other: changing one may require changing
another due to limited resources. The performance effect of varying
these parameters is often non-intuitive and requires actual code de-
velopment and execution time measurements to quantify. One more
source of complexity arises from the fact that application-specific
hardware elements often have software-managed memories, which
require additional software complexity for management or tuning for
the higher performance. For example, software-managed Static Ran-
dom Access Memory (SRAM) requires additional work on part of the
developer to manage the SRAM and to remap data structures to the
address space of the local memories. The OpenMP does not provide
a suitable abstraction for these details so as to insulate the developer
from managing their own on-chip memory.

The OpenMP does not match well with streaming applications, and
suffers from the inability to tolerate long memory latencies and waits
due to synchronization events [17]. Memory barriers (such as used
by the OpenMP) are one of the key sources of performance degrada-
tion in communication intensive (e.g. streaming) applications. What
makes optimization even more difficult is that data transfer between
the CPU and the hardware elements is often a major performance
overhead, and so needs to be tuned and optimized. To reduce this
overhead, hardware elements granularity of computation needs to
be of relatively large size, and data sent to the hardware element
in a decoupled, pipelined fashion, without stalling on the return of
the results. Therefore, the application developer must overlap the
computation with data transfer in a pipelined fashion, which often
requires major changes to the program structure surrounding those
components to be offloaded.
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In OpenMP, hardware units are working under the control of the
CPU, which is running the bulk of the application code, offloading
the computations that can be accelerated onto the hardware elements.
The nature of hardware elements as separate architectural entities
working in concert with the general-purpose CPU, makes the appli-
cation development intrinsically more complex. An application de-
veloper must identify the portions of the computation to offload, iso-
late the data structures required by these portions, manage the trans-
fer of these data structures to the hardware element memory (if the
hardware elements have a separate address space from the processing
cores), synchronize between the processing cores and the hardware
elements, transfer the result data back to the main memory, and in-
tegrate the results into the original data structures. These offloading
tasks are in addition to the original development effort required for
parallelizing the application.

The lack of sufficiently high-level abstraction for pipelining, asyn-
chronous task execution, and data communications between tasks,
increases the complexity of parallel programming using the OpenMP.
This is less of a constraint in general-purpose computing. In a typ-
ical embedded application scenario, however, engineering cost can
quickly erode the performance benefit. Finally, practical OpenMP im-
plementation requires sophisticated runtime system support, which
typically implies important space and time overheads. The applica-
bility of the approach is thus often limited to applications exhibit-
ing units of work which are coarse-grained enough to amortize these
overheads. While this is often the case for general-purpose systems
and associated workloads, things are different when considering em-
bedded streaming applications.

dataflow computation model

The dataflow model of computation describes an algorithm as a net-
work of communicating computational kernels, also called actors. Ac-
tors are connected by directed, loss-less, FIFO channels. This makes
the flow of data explicit between actors, which are not permitted to
share data in any other way than by sending each other messages,
called tokens. The use of a dataflow computation model creates sev-
eral opportunities for efficient implementation in embedded context:

1. The dataflow exposes the maximum degree of parallelism in
a program since the data-flow model only enforces true data-
dependencies.

2. The dataflow allows asynchronous data-driven execution of
finer-grained tasks; fine-grain tasks have a greater potential to
efficiently use the underlying hardware [18, 19]. Furthermore,
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finer-grain tasks have smaller memory footprint reducing the
size of required memory.

3. The dataflow can tolerate memory and synchronization laten-
cies efficiently [17].

4. The dataflow does not require power hungry modules like out-
of-order execution (since there are only true data-dependencies)
and can utilize non-coherent memory hierarchies.

5. The dataflow model matches well application-specific stream-
ing hardware elements.

Among numerous dataflow models, the statically decidable mod-
els offer predictability, strong formal properties, and are amenable to
automated optimization techniques. However, for many streaming
applications, it is not possible to represent all of the functionality in
terms of decidable dataflow models. This is due to the increasing lev-
els of application dynamics that must be supported, such as the need
to support multiple standards, variable data rate processing, or com-
plex forms of data dependent application behaviors. On the other
hand, the dynamic dataflow models do not provide compile-time
guarantees such as deadlock-free execution and must be scheduled
dynamically in general, because their expressive power does not al-
low them to be statically analyzed. A run-time system is required to
schedule the execution of actors and to manage their communications.
The important dynamic dataflow model is the Dataflow Process Net-
work (DPN) model in which the token production and consumption
rates of actors can vary in ways that are not entirely predictable at
compile time.

This thesis is addressing the issues related to supporting DPN ex-
ecution in a heterogeneous clustered shared memory platform, such
as mentioned earlier. It also addresses the DPN implementation effi-
ciency issues related to executing streaming applications in resource-
and energy-constraint embedded context. Finally, this thesis ad-
dresses the issue of transforming and optimizing existing sequential
reference applications into the DPN form.

contributions of this thesis

Our ultimate goal is to provide an effective dynamic dataflow
framework and to investigate its applicability in a realistic industrial
environment in the embedded domain. To do it, this thesis elaborates
the dataflow shared memory cluster concept to yield an approach
that combines hardware and software elements into an experimental
dynamic dataflow framework, called StreamDrive. The applicabil-
ity of the dynamic dataflow model of computation to parallelizing
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streaming applications on this platform is then experimentally inves-
tigated. In particular, the thesis addresses the following questions:

1. What architecture support is necessary for efficient execution of
dataflow applications in tightly-coupled clusters with streaming
hardware elements ?

2. How do we transform a sequential reference code into an op-
timized dynamic dataflow implementation and what is the re-
quired effort of doing so ?

3. How can we make an efficient run-time system for executing
dataflow applications on top of a memory limited embedded
platform ?

4. What are the performance characteristics of applications imple-
mented within our dataflow framework?

This work is based on the Platform2012 shared memory cluster [15]
extended with tightly-coupled application-specific streaming hard-
ware elements. Since none of the existing dynamic dataflow im-
plementations (see chapter 2) where readily available on the P2012

shared-memory cluster, the StreamDrive Application Programming
Interface (API) and the runtime environment have been implemented
from scratch. We have estimated that a clean-start implementation
would not take considerably longer time than porting and implement-
ing the missing functionality for an existing implementation. A clean-
start implementation also removes the risks of encountering bugs in
a large and unfamiliar code-base.

To answer the first question, the requirements for dataflow syn-
chronization and communication in a shared memory platform have
been thoroughly analyzed. A lock-free counter based synchroniza-
tion have been proposed by Bhattacharyya et al. in [20] for imple-
menting the dataflow applications in a shared memory multiproces-
sors. The synchronization counters can significantly reduce synchro-
nization overhead in a dataflow execution. However, the implementa-
tion also requires polling of the shared counter locations in order to
detect changes in synchronization counter value. Polling has perfor-
mance penalty and, most importantly, will saturate the shared mem-
ory interconnect in the context of a tightly-coupled cluster. One pos-
sibility would be to use the interrupts for signaling when a counter
value changes, but interrupts incur unacceptably high performance
overhead. StreamDrive addresses the issue by implementing a light-
weight event mechanism. Events signal the change in synchroniza-
tion counter value similar to interrupts, however unlike the inter-
rupts, they do not deviate the execution of the program and do not
need a context-switch. Our processor instruction set architecture is
extended with a few instructions dedicated to generating and han-
dling events. The Direct Memory Access Unit (DMA) is also extended
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with event generation functionality, so that DMA memory transfers
can be handled as usual dataflow actors. In the StreamDrive cluster,
the application-specific hardware elements are connected to cluster
shared memory similar to programmable cores. A special Hardware
Block Bridge (HBB) is inserted between the hardware elements and the
shared memory, which is responsible for synchronizing the hardware
elements execution via synchronization counters and events. Thus,
in StreamDrive architecture all elements are able to send and receive
dataflow synchronization events. In order to efficiently communicate
these events to all actors, a dedicated event network connects all clus-
ter programmable cores, the DMA, and hardware elements inside the
cluster.

In StreamDrive architecture, dataflow actors communicate via the
shared memory. Software implemented actors use a dataflow FIFO
abstraction via the StreamDrive API to send and receive dataflow to-
kens. The API implementation is based on standard load/store ac-
cesses to shared memory. The application-specific hardware elements,
on the other hand, are streaming and cannot generate load/store ad-
dresses to access the shared memory. Instead, these hardware ele-
ments generate streaming requests without address, while the HBB

translates these requests into a sequence of load/store accesses with
addresses. Altogether, the HBB and the synchronization event net-
work enable efficient dataflow execution in a shared memory cluster.

To answer the second question, an observation has been made that
turning the sequential code into a Kahn Process Network (KPN) is
relatively straightforward. Moreover, the transformation can be per-
formed incrementally, one KPN process (actor) at a time, while veri-
fying modified application functionality and properties at each step.
Further, converting the KPN network into a DPN network consists in
dividing continuous KPN processes into a sequence of firings, and in
associating the firing rules to them. This turns out to be relatively
straightforward as well and also can be done incrementally, one pro-
cess and one firing rule at a time. For example, dividing a KPN pro-
cess into firings can be as simple as executing its while loop one iter-
ation per firing. Altogether, transformation of a sequential reference
algorithm into an optimized DPN implementation can proceed as a
structured process consisting in a sequence of well-defined successive
refinement steps. In order to allow such incremental approach, the
StreamDrive scheduler allows simultaneous execution of both, the
KPN processes and the DPN actors, inside the same application. In par-
ticular, this allows only a subset of an application to be transformed
into the DPN form at any given step of the transformation process.
Our successive refinement methodology significantly reduces the ef-
fort required for parallelizing the streaming applications. One addi-
tional benefit of simultaneously supporting the two execution models
is that the software implemented actors and the hardware functions
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can be executed as efficiently as possible. The software actor exe-
cution is most efficient under the DPN scheduler control, while the
hardware implemented functions are best executed as KPN processes
without the scheduler intervention.

To answer the third question, investigation of several implementa-
tion techniques for optimizing dataflow execution under a very lim-
ited shared memory has been conducted. Although zero-copy com-
munication has been implemented earlier via sharing the dataflow
buffers between the producing and the consuming actors of a
dataflow channel [21, 22, 23, 24], this thesis went further by allow-
ing sharing a buffer by multiple actors. This enables much more effi-
cient and less memory hungry implementation of broadcasting data
between several actors, and efficient implementation of data-parallel
actors. Usually, these functionalities are cumbersome and costly in
dataflow implementations.

One particular problem that arises when one intends to support
KPN process execution is the excessive runtime stack size. Because
during the KPN process suspension and resuming, the stack contents
need to be saved along with other current process state, each KPN

process needs to be allocated a dedicated runtime stack in memory.
When multiple KPN processes exist, this uses too much memory. Al-
ternatively, in the DPN implementation actors can share one runtime
stack per processing core, making the memory requirements indepen-
dent of the number of actors in the network. In StreamDrive succes-
sive refinement approach, an actor starts out as a KPN process and
evolves via a sequence of transformations into a DPN actor with fir-
ing rules. The two models seem incompatible and the worst case
implementation requires one runtime stack per actor for supporting
the KPN execution. StreamDrive introduces a novel stack spilling tech-
nique that allows runtime stack sharing during the DPN execution,
while supporting a dedicated stack per KPN process.

Our case-studies are focused on computer-vision applications. To
answer the fourth question, a complete tightly-coupled shared mem-
ory cluster aimed at computer vision applications, the Computer Vi-
sion Engine (CVE), has been implemented. We have then used CVE

to implement several real-world problems, the Oriented FAST and
Rotated Brief (ORB) [25], the Face Detection (FD) [26], and several
Convolutional Neural Networks (CNN). The experiments show that
StreamDrive based implementation achieves high performance, small
memory footprint, scales well from 1 to 16 processing cores, and is
tolerant to the external memory latency.

During this research, one additional topic has also been investi-
gated, not originally addressed by our questions leading to develop-
ment of the application-specific hardware unit, the Hardware Convo-
lution Block (HWC), optimized for neural network convolution pro-
cessing. The main bottleneck for implementing efficient and cost ef-
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fective embedded accelerators for state-of-the-art CNN is the memory
system. The working set of a typical CNN convolution layer does not
fit entirely with limited internal HWC storage, and the CNN compu-
tation volume needs to be tiled into smaller pieces. Different tilings
lead to different computation schedules and memory access patterns
having a dramatic effect on performance, energy and the cost of the
accelerator. Inefficient memory access can potentially void accelerator
advantages.

The problem of CNN computation scheduling and tiling has been
addresses before but the memory usage model was not accurate
for the case of application managed memory buffers, which is
the most common memory architecture template for CNN accelera-
tors [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Existing work on scheduling
CNN computations [37, 38, 39] is based on memory model originally
developed for cache-based memory hierarchies [40]. Previously pub-
lished models essentially search the tiling (or blocking) space of the
CNN convolution loop-nest with the objective to identify the inner-
most loops set such that the working set of these innermost loops
fits the available internal storage while the data transfers between the
internal and external memories are minimized. In case of applica-
tion managed buffers, published models overestimate internal stor-
age requirements of the CNN computation and result in sub-optimal
computation schedules. This thesis proposes a new analytical mem-
ory performance model to evaluate computation schedules in terms
of their required footprint and memory access bandwidth. The pro-
posed analytical model is more accurate than existing models in case
of application managed buffers. This model has been validated by
applying it in the context of our CVE cluster.

The CVE cluster described in this thesis enables more flexibility
in comparison to competing solutions. The common shared mem-
ory enables efficient exchange of data between the HWCs and pro-
grammable cores, achieving high degree of flexibility by computing
non-convolutional functions, such as pooling, normalization, etc., in
software. The CVE can also efficiently support traditional computer
vision algorithms, ORB, HOG, etc. because many image processing
algorithms are essentially based on convolutional operations.

organization of this thesis

first chapter gives background information on the dataflow
model of computation. It describes two dataflow models, the
Kahn Process Networks (KPN) and the Dataflow Process Net-
works (DPN), discusses their implementation issues and goes
over a number of decidable dataflow models derived from the
DPN. The Chapter then reviewes a landscape of state-of-art im-
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plementations focusing on dynamic dataflow models. It shows
that existing implementations failed to fully address three im-
portant issues: (1) efficiently support the dataflow processing
with built-in hardware mechanism while remaining compati-
ble with standard and familiar development tools, (2) deliver
the highly optimized implementation of dataflow applications
on resource-constrained embedded platforms, and (3) propose
a systematic sequential applications transformation flow that
would simplify DPN applications development.

second chapter describes StreamDrive implementation in depth,
focusing on our zero-copy and lock-free communication pro-
tocol, the dataflow shared memory cluster architecture tem-
plate, the StreamDrive API, the successive refinement applica-
tion transformation flow, and the efficient runtime system im-
plementation. StreamDrive extends the standard dataflow com-
munication protocol with the possibility for dataflow actors to
share communication channels in order to reduce the applica-
tion memory footprint and improve performance. StreamDrive
implements hardware built-in support for the dataflow synchro-
nization to the shared memory cluster. This Chapter also de-
scribes a dataflow hardware bridge for connecting streaming
application-specific hardware elements to the shared memory
cluster. Based on these hardware mechanisms and the Stream-
Drive runtime implementation, the Chapter describes a system-
atic incremental successive refinement flow for transforming a
sequential reference algorithm into a highly optimized DPN par-
allel implementation. The future development consists in au-
tomating different steps of this process. Finally, the Second
chapter also describes StreamDrive’s API and several advanced
runtime system implementation techniques required for a small
footprint, low overhead implementation.

third chapter is dedicated to design of an image processing ac-
celerator particularly focusing on Convolutional Neural Net-
works (CNN) acceleration. First, the Chapter reviews existing
CNN hardware accelerators and expalains their inefficiencies. It
then describes the implementation of our Computer Vision En-
gine (CVE). The main element of the CVE is a tightly-coupled
convolution hardware element, the HWC block. The Chapter ex-
plains the design of the HWC based on a novel analytical mem-
ory performance model for evaluating the trade-off between the
internal accelerator buffering capacity versus the off-accelerator
memory bandwidth. This analytical model is tailored for im-
plementations using application-managed buffers rather than
cache based memory hierarchies and is more accurate than pre-
viously published models for such implementations.



Introduction xxvi

forth chapter is dedicated to performance evaluations. Two case
studies are conducted. The first case study visits two traditional
image processing applications, the Oriented FAST and Rotated
BRIEF (ORB), and the Face Detection (FD). Experiments show
that StreamDrive implementation of these applications achieves
high performance even with very limited cluster memory, that
it is scalable with increased number of processing elements, and
that it is stable under varying off-cluster memory access latency.
The second case-study investigates the shared memory band-
width requirements of our HWC block. It compares this band-
width with requirements of a state-of-the-art tightly-coupled
convolution hardware block from [29]. Simulations show that
the HWC achieves several times reduction in shared memory
traffic. Finally, these results are put together by proposing three
CVE configurations, from a low-cost implementation with lower
performance to a high-performance but also higher cost one.

concluding chapter summarizes the most important insights
gained through this thesis work and offers future research di-
rections.



1 DATA F LO W C O M P U TAT I O N
M O D E L R E V I E W

All models are wrong, but some are useful.

— George Box

Unlike general-purpose systems, where the ease of programming
and code portability have priority, in embedded platforms, efficiency
(in terms of latency and throughput) is of primary concern, as well
as power consumption, memory requirements, and code size. As we
have explained in the previous chapter, the tightly-coupled shared
memory clusters with multiple programmable cores and application-
specific hardware units are becoming widely used in modern embed-
ded platforms. Currently, the OpenMP [41] is the most widely used
method for developing applications for this attractive architecture.

OpenMP is based on the fork-join model of parallel execution: an ap-
plication starts with a main thread which forks off a team of threads
when it encounters a parallel region of code. All threads are synchro-
nized at the barrier of the parallel region. OpenMP primarily targeted
the data parallelism that works by processing in parallel independent
data elements of a single computation, and was not specifically de-
signed to support streaming applications. A streaming computation
works by applying different tasks to each element of a data stream
in the program. Although starting with 3.0 version the OpenMP has
been extended with the task construct to manage the execution of a set
of tasks, there are still limitations in this approach: OpenMP fork-join
model is inherently limited for expressing pipelining of tasks; and the
OpenMP barrier based synchronization is inefficient in streaming ap-
plications.

Our goal is to investigate the use of the dataflow model for devel-
oping applications for the tightly-coupled cluster platform. The use
of the dataflow model of computation is motivated by the following
observations:

• The dataflow computation model matches well streaming ap-
plications; it provides a natural and intuitive representation of
streams, therefore having a positive effect on readability, robust-
ness, and programmer productivity.

• The dataflow computation model matches well specialized
streaming hardware elements; they usually communicate with
the system via data queues and synchronize on the availability
of data in the queues.

1
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• The dataflow computation model simplifies parallelization of
sequential reference algorithms; there is no need to think in
parallel, no critical sections, mutexes, race conditions, etc.

• The dataflow communication buffers reduce the negative im-
pact of limited shared memory in two complementary ways: (1)
they naturally hide memory latency; and (2) they favor shared
memory communications, bypassing off-cluster memory.

The advantages of the dataflow model for application developers
are related to the ability of expressing the natural parallelism of an al-
gorithm without complex synchronization mechanisms. This is made
possible by representing the computation as a network of process-
ing blocks that only communicate through communication channels.
This removes the potential concurrency issues that could arise when
the application must explicitly manage the synchronization between
parallel computations [42, 43].

In this chapter, we will review two basic dataflow models, the Kahn
Process Networks (KPN) and the Dataflow Process Networks (DPN), fol-
lowed by a brief overview of a plethora of more restricted dataflow
models derived from these two. We will then discuss the ways in
which these models have been used in the past, specifically in the
embedded context, and explain the associated issues.

1.1 kahn process networks (kpn)

The KPN model of computation [44] was defined by Gilles Kahn
as a network of autonomous, concurrently executing processes that
communicate point-to-point via unbounded FIFO channels. It is a
natural model for describing streaming applications where infinite
streams of data are incrementally transformed by processes executing
in sequence or in parallel. Formally,

Definition 1. A KPN is a directed graph G = (N,C), where:

• N is a set of nodes, representing computational processes. Each
node is connected to nIN input channels and nout output chan-
nels.

• C is a set of unidirectional channels representing infinite data
FIFO buffers. The processes communicate with each other via
these FIFO buffers by sending and receiving data elements,
called tokens. Each FIFO is connected to a source process
(which provides tokens to the FIFO) and a destination process
(which consumes tokens from the FIFO). A FIFO can possess
some initial number of data tokens stored in it at the beginning
of the application.
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(a) A Simple Kahn Process
2

process f (in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(w);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

(b) Kahn Pseudo code

Figure 1.1: A Kahn Process Network Example

Figure 1.1 taken from original Kahn paper [44] shows an example
of a simple KPN process. The process in the Figure 1.1(a) has two
input channels u and v, and one output channel w. The process al-
ternately reads integer values from the two input channels, prints the
value, and writes it to the output channel. Kahn proposed a simple
language for specifying the KPN. The Figure 1.1(b) shows the Kahn
pseudo-code for describing the process. In particular, the process in-
terface includes declaration of the FIFO channels and their data type,
while the process function contains the wait() method returning a
data token from an input channel (blocking on an empty channel),
and the non-blocking send() method for writing a data token to the
output channel.

Each KPN process runs asynchronously and independently of other
processes, and its state is inaccessible to other processes. Communi-
cation between processes is possible only by sending and receiving
data tokens over channels. A process may have multiple input and
output channels, but each channel is connected to exactly two pro-
cesses – the sender on the one end of the channel and the receiver on
the other end. In theory, it is always possible to send a token because
channels have infinite capacities. A process may at any time attempt
to receive a token from any of its input channels, but if the channel is
empty, the process becomes blocked until the token arrives.

The restrictions which KPN places on processes may be summarized
as follows:

• A process may not access the state (code, data, program counter,
etc.) of another process.

• The receive operation always blocks on an empty channel, and
a blocked receive cannot be interrupted.

• A process is not allowed to test for the presence of data tokens
on a channel.

These restrictions have one very important consequence - the KPN

behavior is deterministic: the history of tokens in channels is indepen-
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dent of the order in which processes are executed. In other words,
given the same input, a KPN will produce the same sequence of to-
kens on all channels during every run. This determinism is very
important for the parallel application development. More generally,
the KPN model benefits application development in several ways:

• Sequential coding of individual components. KPN processes are writ-
ten in the usual sequential manner where synchronization is
implicit in communication primitives (data send and receive).
Developers can thus reuse their existing development environ-
ment, tools, and expertise, and need not worry about orchestrat-
ing the concurrent execution.

• Composability. Determinism guarantees that connecting the out-
puts of processes f(x) and g(x) to the inputs of a process h(x,y)
will result in h(f(x),g(x)). Thus, processes can be developed
and tested individually, and later assembled into more complex
programs.

• Transparent parallelization. The actual mechanisms for achieving
parallelization are hidden from developers. Components are
written in a sequential way and can run on multi-core platforms
under a run-time system control.

• Reliable reproduction of program faults. An otherwise notoriously
difficult problem with concurrent systems, is resolved because
the KPN has deterministic behavior.

These benefits make KPN computation model very attractive for its
simplicity and relatively low effort required for developing a KPN

application.

1.2 dataflow process networks (dpn)

The Dataflow Process Networks (DPN) are a special case of KPNs,
where process execution (processes are called actors in DPN), instead
of being continuous, is composed of a sequence of “atomic” fir-
ings [45]. A firing is “atomic” because an actor cannot be interrupted
during a firing. Activation of actor firings is controlled by a set of fir-
ing rules. In each firing, the actor will read a specific number of data
tokens from the input channels, perform computations and write a
specific number of tokens to the outgoing channels. The firing rules
specify the number of tokens that have to be available on the input
ports to fire the actor. An actor can only fire if all the input tokens
are available on the channels.

Definition 2. A DPN is a directed graph G = (N,C), where:
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• N is a set of nodes, called actors, representing computational
processes. Each actor is connected to nIN input channels and
nout output channels. Each actor is a tuple (A, F,R) with:

– A is the actor function.

– F is a set of firing rules. A firing rule is a condition which,
when satisfied, enables the execution (firing) of this actor
function.

– R is a set of rates. A rate is the number of tokens consumed
at an input channel or produced at an output channel cor-
responding to a specific firing rule. Each firing rule has
nin + nout corresponding rates: one for each communica-
tion channel.

• C is a set of channels representing infinite data FIFO buffers.
These FIFOs are the only channels allowed to perform data com-
munications between actors. Each FIFO is connected to a source
actor (which provides tokens to the FIFO) and a destination ac-
tor (which consumes tokens from the FIFO). A FIFO can possess
some initial number of data tokens stored in it at the beginning
of the application.

DPNs are more difficult to develop than KPNs; it involves divid-
ing actors into firings and specifying the firing rules. Practical DPN

implementations can create the artificial deadlock because in practice
the communication buffers are not infinite. The DPN dataflow model
is dynamic and cannot be statically analyzed, i.e. it is impossible
to determine whether the algorithm will deadlock and how much
buffering is necessary for the algorithm to execute without a dead-
lock. The DPN model may also be costly to implement because the
DPN scheduling is dependent on the runtime data of the actors.

Numerous dataflow models placing restrictions on the DPN have
evolved over the past three decades aiming to balance conflicting
concerns of expressiveness, analyzability, and implementability [46].
These models are called static or decidable because they have pre-
dictable behavior making them analyzable and easier to implement
efficiently. The statically analyzable dataflow models can also be
scheduled at compile time. However, they offer a reduced expres-
siveness and lower flexibility for application developers, when com-
pared with Turing-complete DPN model. Below we quickly overview
a few of the most important decidable dataflow models that have
been used in domain-specific embedded computing; for a complete
review of static dataflow models the reader is referred to [47].
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1.2.1 The Synchronous Dataflow (SDF) Model

The most widely used decidable dataflow model is the
Synchronous Dataflow (SDF) model introduced by Lee and Meser-
schmitt [48]. An SDF model imposes restrictions on dataflow actors
firing rules and token rates:

• There is only one firing rule per actor.

• Rates for all channels are fixed and constant for the entire exe-
cution.

A major advantage of SDF is that it is predictable and analyzable at
compile-time. If it exists, a bounded schedule can be found statically.
Such a schedule ensures that each actor is eventually fired (liveness)
and that the dataflow graph returns to its initial state after a certain se-
quence of firings (boundedness of the FIFOs). Such sequence is called
an iteration and can be repeatedly executed. Useful features of SDF

include formal validation of deadlock-free operation and bounded
memory requirements; support for efficient static scheduling; and
memory size optimization [49]. SDFs can be very efficiently imple-
mented and have been widely accepted as computation model in the
domain of digital signal processing. The important drawback of the
model, which prevents its wider use, is its lack of expressive power;
the SDF cannot express dynamic algorithms where the processing con-
ditionally depends on input data or the results of intermediate com-
putations.

Over the years, many extensions to SDF model have been proposed
to extend its expressive power, while maintaining its compile-time
predictability as much as possible.

The Cyclo Static Dataflow (CSDF) model [50] extends SDF actors al-
lowing the number of tokens produced and consumed in each firing
to vary cyclically. This variation is modeled with a state in the ac-
tor, which returns to its initial value after a defined number of firing.
However, the CSDF model only improves SDF compactness. An ap-
plication that can be described in CSDF can also be described in SDF;
generally, the CSDF description requires fewer actors than in SDF. A
transformation has even been proposed in [51] to transform a CSDF

graph into an SDF graph with same properties. All techniques used
to analyze a SDF graph can be applied to CSDF after transformation.
Similarly, the Affine Dataflow (ADF) model [52] is another extension
of SDF model with the same objective: improving model compactness.
While CSDF has an infinite sequence of rates, the ADF replaces the
unique rate of SDF with an initial sequence of firing rates followed
by an infinitely repeated sequence of firing rates. These two con-
catenated sequences are called the ultimately periodic sequence. A
transformation also exists to convert an ADF graph into an equivalent
SDF graph.
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The Heterochronous Dataflow (HDF) model and the Scenario-
Aware Dataflow (SADF) model are limited to a range of applications
that follow a sequence of fairly static scenarios. The idea of the HDF

model [53] is to allow dynamic change in consumption and produc-
tion rates of the actors and represent it via the Finite-State-Machine
(FSM). All FSMs in the HDF can change state only once the dataflow
graph has executed a full iteration. After the iteration is finished the
HDF actors are free to change their state and their token consump-
tion and production rates. For the duration of next iteration the rates
stay unmodified and the HDF executes an SDF schedule. The SADF

model [54] views applications as collections of different SDF graphs.
SADF is able to perform some worst-case and stochastic analyses, and
to provide implementation with limited run-time overhead, while re-
laxing some of the limitations of the SDF.

Buck’s Boolean Dataflow (BDF) model [55] extends the SDF model
with token production/consumption rates that depend on an input
control channel that itself consumes one token per firing. Basically,
the number of tokens consumed or produced by a given data channel
can be controlled by its associated control channel, which can vary the
token rate for the data channel. The fundamental dynamic actors of
the BDF model are the Switch and Select that simply choose one of its
two inputs or outputs according to the control token. Scheduling tech-
niques for BDF graphs attempt to build quasi-static schedules derived
at compile-time that reduces the complexity of run-time scheduling
involved. The Integer Controlled Dataflow (IDF) model [56] used in-
teger control variables instead of boolean values. The BDF and IDF

models has been proven Turing-complete but they imply a very re-
strictive coding style that is not useful for a practical application.

1.2.2 Parameterized Dataflow Models

Parameterized dataflow models are meta-models: they are applied to
any underlying synchronous dataflow model that has a well-defined
notion of dataflow graph iteration. Parameterized models extend
the targeted model semantics by adding dynamically reconfigurable
hierarchical actors and achieve increased expressiveness due to pa-
rameters modifiable at runtime. A reconfiguration occurs when val-
ues are dynamically assigned to the parameters of a reconfigurable
actor, causing changes in the actor computation and in its produc-
tion and consumption token rates. As presented in [57], reconfigu-
rations can only occur at certain points, namely quiescent points, dur-
ing the execution of a graph in order to ensure the runtime integrity
of the application. The Parameterized Synchronous Dataflow (PSDF)
model introduced by Bhattacharya and Bhattacharyya in [58] can
be applied to SDF [58] or to CSDF [59]. The Schedulable Parametric
Dataflow (SPDF) model [60] is designed to avoid some of the PSDF
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model restrictions. The Parameterized and Interfaced Synchronous
Dataflow (PiSDF) model [61] is another extension of the SDF model.
In addition to the SDF semantics, the PiSDF model contains a set of
parameters and parameter dependencies that can be used to change
the production and consumption token rates of actors. The PiSDF im-
proves parameterization compared to PSDF by introducing an explicit
parameter dependency tree and by enhancing graph composition.
This allows to overcome some restrictions on dataflow scheduling
and analysis imposed by the PSDF structure. The Boolean Parametric
Dataflow (BPDF) model [62] combines integer parameters to express
dynamic rates, and boolean parameters to express the activation and
deactivation of communication channels. Application dynamism is
provided by integer parameters which can change at each dataflow
graph iteration and boolean parameters which can change within the
iteration. Parameterized models rely on quasi-static schedules for their
execution where part of the scheduling decisions are defined stati-
cally but also contain parameterized parts that are resolved at run-
time. Nevertheless, in practice parameterized models’ coding style
is quite restrictive, while implementation efficiency was not clearly
demonstrated for modern streaming applications.

1.2.3 Structured Dynamic Dataflow Models

Alternatively, some degree of analyzability and a more efficient
implementation of the dynamic dataflow model can be achieved by
structuring dataflow actor semantics.

Plishker et al. [63] proposed the Enable-Invoke Dataflow (EIDF). In
the EIDF, an actor has a set of valid modes in which it can execute.
The actor specification is divided into separate enable and invoke func-
tions. The enable is designed to be used as a “hook” for the dynamic
scheduler to rapidly query actors at run-time, and check whether or
not they are executable. The invoke function implements actor func-
tionality and can generally change the mode of the actor for the next
invocation. The EIDF subset, the Core Functional Dataflow (CFDF) re-
stricts actor execution to proceed deterministically to a single “next
mode” of execution. The EIDF and CFDF were used for prototyping
and simulation of dataflow applications. Plishker et al. [64] have pre-
sented an analysis method that can exploit the CFDF to improve the
scheduler.

Similarly, Kienhuis and Deprettre proposed the Stream Based Func-
tion (SBF) model for streaming applications [65]. An SBF is composed
of a set of functions, called function repertoire, a transition and se-
lection function, called controller, and a combined function and data
state, called private memory. The controller selects a function from
the function repertoire that is associated with a current function state,
and makes a transition to the next. The SBF model is equivalent to
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a deterministic DPN model but differs from the DPN model in that
the functions themselves check for the availability of data whereas
in the DPN model, data is available when a function is enabled. As
a consequence, an SBF could be closer to a possible hardware imple-
mentation.

The structured dynamic dataflow models focus on defining a spe-
cific execution semantics which enables some degree of compile time
analysis. They do not address the questions of simplifying dynamic
dataflow applications development, and of efficient implementation
in a resource constrained embedded environment.

1.3 landscape of dataflow implementa-
tions

Due to its elegance and simplicity, the dataflow model of compu-
tation has been the subject of many research efforts. Since the early
1970s, a number of computer prototypes have been built and evalu-
ated based on the dataflow model of computation. The representative
dataflow architectures were the Manchester Dataflow machine [66],
the MIT Tagged-token Dataflow architecture [67], the SIGMA-1 [68],
the Monsoon dataflow processor [69], and others. Several dataflow
embedded systems have also been designed such as the Hughes
Dataflow Multiprocessor (HDFM) [70], or the AT&T Enhanced Modu-
lar Signal Processor [71]. These systems implemented elaborate hard-
ware to execute dynamic scheduler and employed expensive commu-
nication networks to route data tokens. These early dataflow comput-
ers have failed to deliver the promised performance mainly due to
following limitations: (1) too fine-grained (instruction level) synchro-
nization, (2) difficulty in exploiting memory hierarchies, and (3) the
inefficient use of the pipeline.

With the proliferation of multiprocessor computing platforms, the
renewed interest has emerged to the dataflow computation model,
particularly in the embedded systems context. Very broadly, the ex-
isting dataflow frameworks fall into 3 categories: (1) domain-specific
platforms with specialized languages and tools; (2) model based
frameworks for hardware/software codesign; and (3) API based
frameworks provided in the form of runtime libraries.

The domain-specific platforms and the model based frameworks
rely on automated analysis and generation tools. However, usually
efficient implementations are only possible for decidable dataflow
models, when the automated analysis is possible. On the other hand,
these frameworks require a complete rewrite of the original refer-
ence application with a new language. Embedded system developers
have been familiar with sequential programming like C for a long
time. In fact, around 85% of embedded system developers still use



1.3 landscape of dataflow implementations 10

C/C++ [72]. Therefore, apart from a very specialized signal process-
ing domain, no new parallel programming models/languages have
been widely adopted in embedded platforms so far.

The API approaches are mostly developed for existing fixed plat-
form architectures, some including specialized application-specific
hardware units. The API based approaches do not require the de-
veloper to heavily modify the original source code. This brings more
efficiency in terms of parallelization effort. These approaches usually
support expressive models of computation, such as KPN or DPN but
have not yet been able to close the gap between specification and im-
plementation so as to achieve the computational performance and the
energy efficiency of handcrafted solutions.

Overall, apart from a few specialized application domains, the
dataflow model has not been widely adopted by industry. There are
three main reasons for this:

• Motivated by necessity to amortize development cost over a
large number of units, and by intensified time-to-market con-
straints, the IC and system companies are pushing toward
platform-based designs, where new applications can be devel-
oped much more efficiently. The existing platforms lack neces-
sary built-in hardware support for efficient dataflow execution.

• The main premise of existing dataflow tools, that a dataflow
application can be specified at a high abstraction level and au-
tomatically transformed into an efficient implementation, has
not been fulfilled. While statically decidable dataflow models
do not allow to represent all of the required functionality for
many streaming applications, improved expressive power of dy-
namic dataflow models results in problems with unbounded
buffers and runtime efficiency. Thus, the main challenge that
dataflow computation model has to face is the demonstration
of efficient implementations that can achieve functionality and
performance constraints imposed by modern applications.

• Dataflow computing is associated with reliance on development
frameworks which are hard or inefficient to use for many practi-
cal applications. Reference implementations are typically devel-
oped by research teams and specified as sequential programs
using imperative programming languages such as C/C++ or
Matlab. Transforming a sequential reference algorithm into a
dataflow representation is a complex, manual, time-consuming
process. In particular, the adoption of the dynamic dataflow
has been hampered by the need to start from scratch with all
(software and hardware) components of computing. A paper
by Denning and Dennis [73] brings forth many of the issues re-
lated to the canonical parallel processing model and dataflow
computing.
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Framework Model Target Programming
RAW Machine SDF Streaming StreamIT

Applications
Imagine Streaming Streaming KernelC+StreamC

Applications
Ptholemy SDF,CSDF,HDF, Simulation Specialized

PSDF,KPN,BDF, and design Language
DPN,SDF

Peace SDF HW/SW Codesign Specialized
Language

DIF BDF,PSDF,EIDF DSP DIF Language
CSDF

TDIF CFDF GPU DIF Language
Daedalus PPN HW/SW Codesign C+coordination
Compsoc SDF,CSDF,KPN HW/SW Codesign C+coordination
Koski KPN HW/SW Codesign UML
PREESM PiSDF TI Keystone C+coordination
Shim Rendez-vous KPN Multi-core C Extension
DOL KPN Embedded C API
RVC SDF,CSDF,DPN Video Coding CAL
OpenDF SDF,CSDF,DPN General CAL

Table 1.1: Selected related work summary

Below, we examine a few selected state-of-the-art dataflow imple-
mentations from three perspectives:

• Expressiveness of the dataflow model versus the implementa-
tion efficiency.

• Ease of parallelizing a sequential C reference implementation
so that the parallel efficiency of the target hardware platform
can be exploited.

• Integration of specialized and application-specific hardware
units with the hardware platform.

Table 1.1 summarizes the dataflow implementations reviewed in this
chapter. In the table, the first column lists the dataflow framework;
the second column in the table contains the dataflow model used
by the framework; the third column specifies the target architecture
platform; and the last column lists the dataflow description language
when possible. Three types of dataflow specification exist: (1) a spe-
cialized language (eg. Ptolemy, StreamIT), (2) a standard language
(C, C++, etc.) extended with a dataflow API, and (3) a combination of
a standard language (C, C++, etc.) for actor description along with a
coordination language for specifying the dataflow network.
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1.3.1 Domain-specific Architectures

The MIT Reconfigurable Architecture Workstation (Raw) [74], and
Stanford Imagine [75] were the two early foundational works in the
area of stream processing. The stream model is derived from the SDF

dataflow model of computation. In addition to SDF expressiveness
problems, non-linear communication patterns are difficult to imple-
ment efficiently with streaming architectures because of linear stream
abstraction. In order to overcome this limitation, the Raw program-
ming language, StreamIt [76], introduced the notion of teleport mes-
sages [77]. Teleport messages allow one actor to sporadically send a
message to another; that is, rather than sending a message on every
firing, only some firings send messages. As another example, Imag-
ine implemented conditional streams, accessed conditionally based on
the condition codes (CC) [78]. Conditional streams enable implemen-
tation in presence of a data-dependent conditions.

More examples of streaming architectures include the Recon-
figurable Streaming Vector Processor (RSVP) [79], which exposes
streams in a core’s ISA to communicate to reconfigurable hardware;
the Triggered instructions [80], featuring some streaming memory ca-
pability to feed its dataflow fabric; or the Stream-Dataflow [81], a
reconfigurable dataflow architecture that uses streams as underlying
communication abstraction.

Several other domain-specific accelerators use the dataflow compu-
tation model, such as Eyeriss [82, 32], a domain-specific accelerator
for convolutional neural networks, or the Kalray MPPA multiproces-
sor platform programmed using the dataflow ΣC language [83] that
implements the CSDF model.

Overall, such domain-specific platforms failed to attract the embed-
ded community because (1) they suffer from reduced expressiveness
and flexibility, and (2) they rely on specialized languages and de-
velopment tools unfamiliar to the vast majority of developers in the
field.

1.3.2 Model Driven Frameworks

The model-driven dataflow frameworks are designed to support
efficient design space exploration - a systematic methodology for se-
lecting an embedded system implementation from a set of alterna-
tives. In these tools, system designers are able to develop complete
functional applications formally specified as a dataflow model and
perform automated performance analysis, simulation, synthesis and
verification of the implementation. Design space exploration is per-
formed by iteratively analyzing and optimizing the application along
with the underlying hardware and software architecture. In embed-
ded domain, particularly popular are decidable dataflow models be-
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cause the reduced runtime overhead and analyzability of compile
time scheduling is considered a big advantage.

The Ptolemy (and its successor Ptolemy II) environment [84, 85, 86]
is developed at the University of California at Berkeley. Ptolemy
is targeted towards hardware/software codesign and in particular
towards the system synthesis and verification. Ptolemy supports
a wide collection of computation models including the majority of
dataflow models. Ptolemy evolved to Ptolemy II, which proposes a
modal approach where finite state machines (FSM) are combined with
a dataflow model in a hierarchical fashion. The modal approach over-
comes certain limitations of decidable dataflow models in expressive
power, while it can be refined to final implementation since both FSM
and decidable dataflow models provide methods of system synthesis.
In Ptolemy, not all models can be used for system implementation. In
particular, synthesis from decidable dataflow models has been exten-
sively researched, while other models serve for simulation purpose
only.

PeaCE (Ptolemy extension as a Codesign Environment) [87] is an
extension to Ptolemy II that provides a hardware software co-design
framework. PeaCE uses extended SDF and finite-state machines to
model data flow and control flow of multimedia applications. The
platform architecture consists of a number of processors and syn-
thesizable IP cores, which are connected through a communication
infrastructure. The two step design space exploration is used: (1) se-
lection of processing elements and mapping of application tasks on
these processing elements, and (2) exploration of the communication
architecture such as bus and memory allocation. However, the frame-
work is still limited in applicability by its SDF semantics.

The Dataflow Interchange Format (DIF) [88], developed at the Uni-
versity of Maryland, is a textual language for specifying dataflow
models for DSP systems. DIF captures essential modeling information
that is required in dataflow based analyses and optimization, such
as algorithms for consistency analysis, scheduling, memory manage-
ment, etc. DIF provides an extensive repository of models, analyses,
and transformations, for a number of dataflow models including dy-
namic models such as BDF, the PSDF, the EIDF, and the CFDF. DIF itself
does not generate implementation of dataflow descriptions but can
be used by different DSP tools. For example, the DIF-to-C tool [89]
allows generation of C code for the target DSP platform from a SDF

dataflow specification. For the final implementation DIF-to-C relies
on C compiler and optimized libraries provided by the DSP proces-
sor vendor. Shen et al. proposed the Targeted Dataflow Interchange
Format (TDIF) [90] extending the DIF with the CFDF software synthesis.
This implementation targeted CUDA code generation for the NVIDIA
GPUs, and has not demonstrated its efficiency in a more constrained
embedded platforms context.
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Nikolov et al. [91, 92] presented Daedalus framework for ar-
chitectural exploration, synthesis, and prototyping multicore plat-
forms. The Daedalus combines KPNgen [93], Seasame [94], and
ESPAM [95, 91] tools. Applications are specified as KPN networks,
which are either derived manually or automatically using the KP-
Ngen. However, automatic generation of KPNgen networks from
application’s sequential C code is only possible if the application is
specified as Static Affine Nested Loop Program (SANLP). A SANLP is a
nested loop program in which loop bounds, conditions and variable
index expressions are affine expressions in the iterators of enclosing
loops and static parameters [93, 96]. Because many applications are
not static, i.e. include nested loops which can contain if-then-else

constructs with no restrictions on the condition, loops with no condi-
tion on the bounds, while statements other than while(1), dynamic
parameters, etc., the KPNgen usability remains limited. For the re-
sulting process networks it is possible to compute static schedule.
The input KPN network is fed to Sesame modeling and simulation
tool [94, 97] to perform architectural design space exploration for
mapping and scheduling the KPN processes. Daedalus uses a het-
erogeneous platform (created from a library of components) where
the processing elements communicate via distributed memories. A
set of KPNs and platform configurations from Seasame is passed to
ESPAM for prototyping on FPGA. ESPAM generates C code for KPN

software processes and synthesizable VHDL for platform hardware
components from RTL component library. As explained later in this
chapter, although it is relatively straightforward to manually derive a
KPN network from a sequential code, KPN execution in software suf-
fers from high performance overhead, making KPN model less suit-
able for the embedded implementation than the DPN model.

The Composable and Predictable Multi-Processor System on Chip
(CompSOC) [98] is another design flow that supports a range of exe-
cution models, including the KPN model. The environment includes a
complete multicore architecture, platform support libraries, libraries
for synchronization and communication, and tools for formal veri-
fication. The main focus of CompSOC is to provide a design flow
that supports simultaneous execution of multiple independent appli-
cations. In CompSOC, each application is given its own reconfig-
urable virtual platform. The CompSOC employs a two-level schedul-
ing along with a resource sharing model in order to eliminate inter-
ference between different applications. At a single application level,
CompSOC relies on SDF3 toolset [99] for mapping and scheduling a
dataflow application on the hardware platform. However, while the
decidable CSDF applications can be automatically mapped, verified,
and executed on the CompSOC platform, mapping and analysis of
KPN applications is not automated. The DPN model is not supported
in CompSOC environment.



1.3 landscape of dataflow implementations 15

Similarly, Koski [100] framework provides environment for model-
ing, automated design-space exploration, synthesis, and FPGA pro-
totyping of selected design. The input specification is given as KPN

modeled in UML. The target architecture consists of synthesizable
communication and processing resources, application software, and
platform-dependent and platform-independent software.

The Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) [101] is a framework used to prototype and generate code
for applications specified in PiSDF dataflow model, and targets hetero-
geneous multi-core embedded platforms. PREESM works with three
inputs: a PiSDF dataflow graph defining the application; a System-
Level Architecture Model (S-LAM) describing the target architecture;
and a scenario including a set of parameters and constraints to link
both of them. S-LAM supports the description of parallel architec-
tures as a set of heterogeneous processing elements transmitting data
through a set of communication nodes and data links. PREESM au-
tomatically schedules, maps and simulates the execution of the appli-
cation and generates a compilable C/C++ code for the target archi-
tecture. PREESM supports and has been used to generate code for
the x86 multiprocessors, the Texas Instruments Keystone DSPs, the
Kalray MPPA many-core, Xilinx Zynq SoC, and the ARM Big.LITTLE
& Multi-core ARM. The runtime responsible for managing runtime
reconfigurations of the PiSDF dataflow graph is called SPIDER (Syn-
chronous Parameterized and Interfaced Dataflow Embedded Runtime) [102].
SPIDER exploits the trade-off between dynamicity and predictability
of the PiSDF model to verify application properties or to perform op-
timization at runtime. As with other parametric dataflow models, in
the PREESM/SPIDER framework the token production and consump-
tion rates cannot change arbitrarily, the existence of a dataflow graph
iteration must be guaranteed. In practice, this leads to a restrictive
coding style which may be difficult to use, while the implementation
efficiency has not yet been clearly demonstrated.

Pursuing compile time analyzability and schedulability, the model
based approaches often resort to dataflow models with restricted ex-
pressiveness and flexibility. Moreover, they rely on unfamiliar lan-
guages and specialized development tools.

1.3.3 C Based Frameworks

An alternative to frameworks based on decidable dataflow mod-
els with limited expressiveness is to integrate dynamic dataflow pro-
gramming structures into familiar languages, using a lightweight API
with an associated runtime environment. Such approach reduces
the software development impact by allowing the tools for creating
and debugging dataflow applications be basically the same as those
for standard software: compilers, assemblers, debuggers, and cross-
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compilers. The vast majority of such APIs implement the KPN model
because of the low effort required to transform a sequential reference
algorithm to the KPN form.

Many such implementations target large computing systems and
rely on off-the-shelf OSes. For example, the QUeing And Runtime for
Kernels (QUARK) [103], TIDeFlow [104], and OpenStream [105], have
been developed in the context of the High-Performance Computing
(HPC) applications. YAPI [106] and Nornir [107] support the KPN ex-
ecution model on workstation computers. XKaapi [108, 109] is a run-
time system for scheduling dataflow programs on multi-processors
and clusters of multi-processors. Work in [110] proposed a design
flow allowing implementation of dataflow applications on a multi-
GPU computer cluster. The Intel Concurrent Collections [111] has
been used for developing applications on large scale heterogeneous
platforms that include general-purpose CPUs, GPUs, custom proces-
sors, and FPGAs. These implementations come with heavy perfor-
mance and memory footprint overheads. This is an acceptable choice
for running applications in big-size computers. In the embedded do-
main we need a lightweight approach: the small memory and the
high performance requirements preclude using the full OS, a kernel-
level scheduler, and dynamic data structures.

The Software/Hardware Integration Medium (SHIM) [112] was initially
developed as a design space exploration dataflow model for specify-
ing, validating, and synthesizing heterogeneous embedded systems.
It has later been turned into a language development effort centered
around scheduling and static analysis for programming shared mem-
ory multiprocessors [113, 114]. Shim relies on restricting the KPN

semantics to help both programming and automated program analy-
sis. SHIM implements a KPN restricted to support synchronous (ren-
dezvous) communication. This choice eases scheduling, and guaran-
tees that KPN programs are always executable in finite space because
synchronous communication does not need buffering. The Tiny-Shim
language is based on C (but is not a C subset) augmented with few
constructs for concurrency, communication, and exceptions. SHIM
imposes many syntactic restrictions on the input language which
makes porting existing reference applications difficult. While it has
been able to devise effective mechanisms for static scheduling and
analysis (e.g., deadlock detection), the implementation relies on costly
standard runtime support such as POSIX Pthreads library.

The Distributed Operation Layer (DOL) [115, 116, 23] is also a de-
sign flow framework based on the KPN model of computation and
targeted at real-time multimedia and signal processing applications.
The DOL design flow follows the Y-chart approach [117] in which
the application specification is platform-independent and needs to
be explicitly mapped on a target architecture. DOL supports the
Cell Broadband Engine [118], the tile-based MpSoC Atmel Diopsis
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940 [119], the MPARM platform [120], and the Intel SCC many-core
architecture [121]. In DOL, KPN processes are described in C/C++
based on a simple API, while the network is described using the XML.
Similar to model based frameworks, an application specified in DOL
cannot be directly executed by simply compiling the provided source
code of KPN processes. A synthesis step is required that generates the
“glue code” implementing the processes and channels, the bootstrap-
ping and the scheduling of the application. Specifically, synthesis is
done first for a standard PC/workstation to support the functional
verification and debugging of the application, and second for the tar-
get platform. DOL is different from other design flow environments
in that it embeds an analytic worst-/best-case performance analysis
method that targets real-time signal processing applications.

Striving to reduce the runtime overhead associated with KPN ex-
ecution, DOL implements the KPN model using cooperative pro-
tothreads [122]. While cooperative scheduling eliminates context-
switching overhead and simplifies the runtime stack handling, the
protothreads impose a number of important language restrictions
leading to additional performance penalty and to additional difficul-
ties parallelizing the sequential reference code.

One example of a dynamic dataflow API is the lightweight dataflow
(LWDF) [123] that implements the CFDF model. The CFDF corresponds
to a deterministic subset of the DPN model with well-structured actor
description that simplifies some implementation issues. Similar to
most dataflow frameworks, the LWDF focuses on analyzability and
compile time techniques rather than on ease and efficiency of the
dataflow applications implementation.

1.3.4 CAL Dataflow Language

An important family of frameworks which exist for dataflow based
programming is based on CAL programming language [124, 125] de-
veloped as part of the Ptolemy project at the University of California
at Berkeley. While previously mentioned dataflow frameworks em-
phasize classes of applications that exhibit sufficiently regular behav-
ior to permit compile-time analysis and scheduling, CAL is designed
to also support the DPN model. In CAL based frameworks, the ac-
tors are described in CAL language with connections of the actors
described in a network description language.

There are two independent implementation frameworks of CAL
language, namely Open RVC-CAL [126], and OpenDF [127]. Both of
them provide a compiler to parse CAL programs to their own Inter-
mediate Representation (IR), and a simulator to simulate the gener-
ated IR.

The Reconfigurable Video Coding (RVC) framework, introduced by
MPEG, is dedicated to the development of video coding tools, and
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uses a subset of the CAL named RVC-CAL. The language is defined
in MPEG-B (ISO/IEC 23001-4 [128]). The RVC framework is sup-
ported by an open-source programming toolset including the Orcc
compiler [129] as well as an integrated development environment.
Currently, Orcc is able to translate a RVC-CAL dataflow program into
C, C++, Java, LLVM, VHDL and XLIM. Only source code is generated,
and programs must be compiled with the usual tools. Using the Orcc
front-end, a few back-ends have been developed. Cal2HDL [130] is
able to generate VHDL implementation from CAL. Cal2C [131] gen-
erates the software implementation including the scheduler, using
the SystemC runtime support. Roquier et al. [132] presented a de-
sign flow for the hardware and software synthesis of heterogeneous
systems allowing to automatically generate hardware and software
components as well as appropriate interfaces, from the RVC-CAL lan-
guage. Several authors used RVC-CAL language as a starting point
for description of SW and HW components in a heterogeneous plat-
form [133, 134, 135, 136].

On top of the OpenDF framework, Ericsson has developed its own
C code generator, D2C, targeting ARM processors as part of the Eu-
ropean project ACTORS. It first translates the CAL intermediate rep-
resentation into a C program, and then compiles the generated code
into an executable. To support multiple cores, each actor instance is
put into one POSIX thread, and scheduling is achieved by the Linux
OS. The reader is referred to [137] for further details.

The Cal2Many compilation framework [138] has been developed
on top of the CAL language for the Epiphany architecture [139]. The
Cal2Many contains two intermediate representations: Actor Machines
(AM) [140, 141] and Action Execution IR (AEIR) [138]. Each actor is
first translated to an AM, which describes how to schedule execution
of CAL actions. To execute AM, its constructs are transformed to the
AEIR and integrated with the application-specific runtime dataflow
scheduler. Finally, Epiphany back-end generates C code using a cus-
tom communications library and generates channels and mapping
of actor instances on processing elements. This approach has been
used to generating efficient software implementations for a few pro-
grams that are characterized by data-dependent behavior [142, 143].
More recently, motivated by the shortcomings of actor machines
when generating highly parallel implementations (such as in hard-
ware), and when composing machines, Janneck proposed Dataflow
Machines [144] as a model for stream programs.

The RVC-CAL framework has also been extensively used for inves-
tigation of efficient implementation techniques for the DPN applica-
tions. For example, the Transport Triggered Architectures (TTA) Orcc
back-end [24] targets implementation of dynamic dataflow programs
on TTA-based multi-core platforms. Leveraging on shared memory
architecture, the TTA code generator builds optimized communica-
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tion and scheduling infrastructure for the DPN applications. Dynamic
dataflow scheduling in the context of multi-core systems has also
been studied by Michalska at al [145, 146].

In practice, several performance issues are associated with CAL
code generation, such as redundant re-evaluation of actor conditions,
large memory footprint required for explicit enumeration of actor
states, etc. However, the main issue with the CAL is that it requires
a complete re-write/re-implementation of the original reference ap-
plication, including the actor functions implementation. This turned
out to have an unacceptably high development cost for the industry.

1.4 summary

In this chapter, we have surveyed several important dataflow mod-
els of computation and their existing implementations.

In the first part of this chapter, we have explained why the dataflow
computation model is well suited in the context of shared memory
clusters with application-specific hardware elements. We have intro-
duced the Kahn Process Networks (KPN) and the Dataflow Process
Networks (DPN), and overviewed a number of decidable dataflow
models derived from the DPN.

In the second part of this chapter, we have examined a number of
selected state-of-the-art dataflow frameworks. They can be broadly
classified into the domain-specific platforms, the model based frame-
works, and the dataflow API based approaches. On the domain-
specific side, streaming platforms have been popular with the multi-
media applications. They turned out to be insufficiently flexible and
required important changes to the familiar development flow to be
widely adopted by embedded industry. The model based frameworks
allow development and synthesis of complete custom specified sys-
tems including hardware and software components. They rely on au-
tomated compile-time analysis and code generation tools which are
only efficient for restricted decidable dataflow models. The disrup-
tive changes in software development flow and being able to only de-
liver efficient implementation for a restricted set of the dataflow mod-
els hinders adoption of the model based approach by the embedded
industry. The API based frameworks extend a standard imperative
language, such as C, with some dataflow constructs, and implement
the runtime libraries for supporting the dataflow execution. The API
approaches focus on the KPN dataflow model because it is straight-
forward to extend existing sequential implementation into a KPN net-
work by inserting a few KPN constructs at appropriate places. The
DPN model, however, is not well supported. Frameworks based on the
CAL programming language stand aside among existing dataflow ap-
proaches. The idea of RVC-CAL is to provide a dataflow reference im-
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plementation instead of a sequential imperative code. CAL approach
gained limited traction - besides MPEG video codec no other RVC-
CAL reference implementation has been provided. Finally, none of
the described frameworks provides dedicated support for integrating
tightly-coupled application-specific hardware blocks and for optimiz-
ing the dataflow execution.

In the next chapter, we present a new dataflow framework, called
StreamDrive that addresses the above issues by (1) extending the
tightly-coupled shared memory cluster platform with hardware sup-
port for dataflow communication and synchronization, (2) imple-
menting efficient runtime dataflow communication and scheduling
leveraging on cluster shared memory, and (3) supporting a successive
refinement application development flow which reduces the effort re-
quired for parallelization of streaming applications.



2
D E S I G N I N G S T R E A M I N G
A C C E L E R ATO R S W I T H
S T R E A M D R I V E

Engineering problems are under-defined, there
are many solutions, good, bad and indifferent.
The art is to arrive at a good solution. This is

a creative activity, involving imagination,
intuition and deliberate choice.

— Ove Arup

StreamDrive is our configurable dynamic dataflow framework
for small-scale clustered shared memory platforms. Its design is
greatly influenced by our requirements: support for dataflow with
application-specific hardware elements, limited available memory,
easy experimentation with implementation techniques, and collection
of run-time statistics. The main components of StreamDrive are (i)
the hardware architecture optimized for supporting dataflow execu-
tion, (ii) the copy-free communication protocol, (iii) the dataflow API,
and (iv) the runtime implementation including dataflow communica-
tion and scheduling. StreamDrive supports a successive refinement
transformation process from a sequential reference algorithm to an
optimized DPN implementation.

In StreamDrive, multiple cores are grouped together as clusters
which share some local resources such as the internal memory, the
DMA engine, etc. The processing cores inside a cluster are light-
weight processors (with limited capabilities in terms of pipeline
stages, cache mechanism, or virtual addressing). Cluster local mem-
ory is multi-bank in order to prevent memory conflicts via the usage
of different banks. Within the cluster, the processing cores commu-
nicate via the shared memory. The memory may range in size from
a few kilobytes up to 512KB and has internal processor pipeline ac-
cess latency. The communication outside the cluster is managed with
help of a DMA engine. Communication and synchronization inside
a cluster is significantly faster than between clusters.

The Hardware Platform

The distinguishing feature of the StreamDrive architecture is inclu-
sion of application-specific hardware blocks connected directly to the
cluster shared memory. These hardware blocks are small and power
efficient, and are essential for achieving the required performance
while keeping the cost and the power consumption low. A tight cou-

21
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pling of hardware blocks within a shared memory cluster has been
studied in [147] outside of the dataflow context.

The application-specific hardware blocks are connected to the
shared memory via a special Hardware Block Bridge (HBB), which
supports the dataflow communication and synchronization protocol.
The StreamDrive DMA engine also implements the dataflow synchro-
nization protocol. In order to ensure low-overhead synchronization,
the processing cores together with the HBB, and the DMA imple-
ment a lightweight synchronization event mechanism. Synchronization
events are communicated via a dedicated event networks inside and
outside the cluster.

The Development Flow

It is relatively easy to transform sequential reference code into a
KPN form without using specialized languages and tools. A KPN pro-
cess can be viewed as a sequential function extended with blocking
send and receive calls, while the KPN scheduler takes care of saving
persistent data across process interruptions and ensures the correct
and fair execution. This makes transforming a sequential reference
code into a KPN straightforward: it often requires minimal modifica-
tions to the sequential code, consisting mostly of inserting send and
receive communication statements at appropriate places. The func-
tions and data structures can be converted to KPN incrementally, one
function at a time, further simplifying the process.

As explained in previous chapter, the KPN execution is inefficient in
a software system. We would like to build a DPN application instead.
However, DPN applications are notoriously difficult to develop. In
DPN, the send and receive calls are non-blocking and the scheduler
does not perform a context switch, thus actors are responsible for
saving any data that persist across firings. The actors also need to
communicate their firing rules to the scheduler at appropriate places.
It is impossible to transform a sequential reference code into a DPN

incrementally, one actor at a time, - all functions and data structures
need to be converted to DPN form with firings for an application to
be executable.

We argue that an evolutionary approach based on two simple ideas
can bring high efficiency in terms of parallelization effort. First, the
flow and tools for creating and debugging DPN applications must
be basically the same as those for standard software: based on fa-
miliar and established imperative programming language, such as C.
Second, given a sequential reference specification of the algorithm,
the application development process should progress toward opti-
mized dataflow implementation through well-defined stages, a pro-
cess called successive refinement. The essential idea of successive re-
finement is to manipulate the algorithm description by introducing
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additional details while both, preserving the original functionality
and meeting the constraints that can be evaluated at each new refine-
ment step. The smaller the steps are, the easier it is to verify that
functionality is preserved and constraints are met. During succes-
sive refinement, it is often convenient to optimize a small part of the
algorithm so that functional verification is facilitated.

The StreamDrive supports such incremental successive refinement
development flow by allowing the KPN processes and the DPN actors
to co-exist within a single dataflow application. During the succesive
refinement, a sequential reference algorithm is first transformed into
a KPN network, then into a DPN network by introducing the firing
rules. The process is performed incrementally, one actor and one
firing rule at a time, while verifying the functional correctness and
implementation constraints at each code modification.

The Implementation

A runtime environment for dataflow applications can usually be
implemented easily because not many services need to be provided.
The applications can also be easily partitioned into actors running
in hardware and actors running in software. This is due to the par-
allel specification of the dataflow application on the one hand, and
due to the simple interaction of processes/actors over FIFO channels
on the other hand. Nevertheless, efficient implementation of dynamic
dataflow models of computation has been an important issue hamper-
ing the practical use of such models. The difficulties in dataflow im-
plementation originate from the necessity to minimize the overhead
for FIFO communication, synchronization, and the runtime schedul-
ing.

The runtime scheduling overhead greatly affects application per-
formance and scalability. Depending on whether the KPN or the DPN

model is used, the runtime scheduler implementation faces different
trade-offs. The main difficulty in implementing low-overhead sched-
uler for the KPN computation model is the necessity to implement the
process context switch. The context-switch is a mechanism that en-
ables time-multiplexing of several KPN processes over one processing
core, and is one of the most performance-critical parts of the sched-
uler. The context switch involves manipulation of low-level processor
state, registers contents, program counter and stack pointer, which
may be costly in terms of overhead. Scheduling a KPN network also
requires that each software KPN process has its own individual run-
time stack. The context switch overhead and the necessity to allocate
an individual stack space to each software KPN process, make soft-
ware implementation of the KPN computation model inherently inef-
ficient. On the other hand, KPN model is a natural fit for streaming
application-specific hardware blocks. Because the hardware blocks
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do not require scheduling or a software runtime stack, the above men-
tioned inefficiency does not apply to them.

The DPN scheduling does not require a context switch and is much
more efficient. For executing DPN applications, a natural approach
is the use of cooperative user-mode scheduling [148]. The scheduler
sequentially tests the firing rules from several actors, and fires an
actor if a firing rule is valid. A DPN execution in a software system is
much more efficient than a KPN execution:

• Knowing beforehand which actors should produce/consume
data and which actors should not produce/consume data, the
blocking reads and writes are avoided.

• Since actors execute atomically, i.e., they cannot be interrupted
in the middle of their execution, there is no need to save state
between two firings of an actor, avoiding the costs of context
switch.

• At each step during an execution of the network, all actors in
the network that have the capability to produce or consume
data can be enabled to perform firings. Such execution does not
require a separate thread for each actor with storage reserved to
hold the actor’s stack. The scheduling of the actors can be done
by one thread that functions like a scheduler and the runtime
stack can be shared by all actors.

However, the DPN mode of execution is less efficient with application-
specific hardware blocks. The DPN execution with firings requires a
runtime scheduler control over when an actor can be executed. Being
controlled by a scheduler is an unnecessary performance overhead
for the hardware blocks.

The StreamDrive runtime scheduler provides execution environ-
ment in which DPN software actors can co-exist with KPN (software
or hardware) processes while the application is executed. Such co-
existence of the two models allows low-overhead scheduling where
the application-specific functions are executed in hardware as KPN

processes without firings, while the software actors follow the DPN

semantics with firings.
Our presentation of the StreamDrive implementation proceeds on

two parallel levels. On the higher level, we describe data structures
and algorithms that we have used in our implementation. On the
lower-level, our descriptions are also meant to expose important im-
plementation details and to be a guide to the StreamDrive implemen-
tation and the source code.
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2.1 streamdrive communication protocol

The core of the StreamDrive framework is its Communication Pro-
tocol specifically designed to support copy-free data communication
and lock-free synchronization.

In StreamDrive, actors 1 are connected to communication channels
via input and output ports. The actors carry the actual computation
while exchanging application-specific units of data, called tokens, over
the communication channels. Tokens are distinguished by their size
and the data type. Tokens are written to and read from the commu-
nication channels in FIFO order. Reading from an input port blocks
the actor until all required tokens are available in the channel, and
writing to an output port blocks the actor until enough empty room
is available in the channel for writing.

In order to gain higher efficiency, StreamDrive relies on a fixed-
buffer implementation, i.e. token sizes and buffer sizes need to be
specified at graph construction time and cannot change during graph
execution. The drawback of this is that deadlocks cannot be resolved
at runtime. However, the experience is that practical applications
exhibit a regular communication behavior that allows software devel-
oper to quantify the capacity of the FIFO buffers such that deadlock
will not occur. Nevertheless, the StreamDrive provides the runtime
timeout service that allows detecting the deadlock condition. Upon
detecting a deadlock, the StreamDrive gives debug information about
the state of the dataflow graph which helps the developer to eliminate
the deadlock.

A standard dataflow FIFO implementation where data must be
copied from a source actor to the communication buffer and then
from the communication buffer to the destination actor, causes a sig-
nificant execution overhead. Instead, the StreamDrive communica-
tion protocol leverages the cluster shared memory and gives actors
direct access to shared communication buffers avoiding memory copy
operations.

The StreamDrive protocol defines four basic communication func-
tions listed in table 2.1.

This is different from the standard dataflow send and receive pro-
tocol. The StreamDrive protocol splits each of the send function and
the receive function into two. This allows copy-free implementa-
tion leveraging on cluster shared memory available in hardware. The
source and the destination actors do not need to make local copies
of the data, like the standard dataflow model, but instead can access
data directly inside the shared communication buffer. Before writing
into an output channel, a source actor must acquire a pointer to an
available empty buffer entry via the RESERVE call. RESERVE is blocking
if no room is available inside the given output buffer. When all data

1 In this thesis, we also use term actor for the KPN processes for the sake of simplicity.
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Function Port Description
RESERVE(p,n) OUT Ensure that at least ‘n’ tokens are free in

output channel associated with port ’p’.
Blocks the actor if not.

PUSH(p,n) OUT Signal that ‘n’ tokens have been written to
output channel associated with port ’p’
Not blocking.

POP(p,n) IN Ensure that at least ‘n’ tokens are ready in
input channel associated with port ’p’.
Blocks the actor if not.

RELEASE(p,n) IN Signal that ‘n’ tokens can be reused from
input channel associated with port ’p’
Not blocking.

Table 2.1: Basic functions of StreamDrive Communication Protocol

have been written to the output token, the source actor signals the
availability of new tokens via the PUSH call. On the destination actor
side, an actor must acquire a pointer to an input token via the POP

call before reading the data. POP is blocking if there is not enough
available tokens in the FIFO. When the destination actor no longer
needs the data, it must signal the source actor that the buffer can be
reused via the RELEASE function.

(a) Two chained actors in a dataflow graph

(b) The two actors pseudo-code

Figure 2.1: The Illustration of StreamDrive Communication Protocol

Figure 2.1 illustrates the StreamDrive communication protocol. The
two actors in a figure are chained as shown in Figure 2.1(a) and per-
form some sort of a image filtering. Each actor has one input and one
output port. The actors process the image line-by-line, therefore the
token type, called line_t in this example, corresponds to one line of
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the filtered image. The SRC actor reads one image line and produces
two lines of the new image on each execution. The DST actor reads
and writes one line of the image on each execution. The two actors
are connected with a channel able to buffer one single token. From
the Figure 2.1(b), the SRC actor first reserves one output token for
writing the line1 data, then it tries to reserve the second token for
writing the line2 data. Since the FIFO between the two actors can
hold only a single token (image line), the SRC actors’ execution is
blocked on the second RESERVE call until the DST actor has RELEASEd
the buffer location. In the Figure 2.1(b), the DST actor’s execution is
blocked on POP until the SRC actor signals the availability of the next
image line via the PUSH call.

The four basic StreamDrive protocol functions implement efficient
lock-free bounded buffer synchronization (BBS) based on shared syn-
chronization counters [20]. In the BBS protocol, a source actor of
a communication channel e increments a write pointer wr(e), and a
destination actor increments a read pointer rd(e). Both pointers are
shared and visible to other actors in the system. On a send, the differ-
ence capacity(e) − (wr(e) − rd(e)) gives the number of free entries
in the output FIFO buffer; on a receive, the difference wr(e) − rd(e)
gives the number of available tokens in the input FIFO buffer. We
have extended the original BBS to support the reserve-push-pop-release
instead of the standard send-receive protocol. In our implementation,
the source actor also increments a private (not visible to other ac-
tors) reserved(e), while the destination actor increments a private
poped(e) counters. Such private counters can be implemented in
shared memory or as internal registers inside the application-specific
hardware elements, for example. Duting the RESERVE, the difference
capacity(e) − (reserved(e) − rd(e)) gives the number of free entries
in the output FIFO buffer; the reserved(e) is incremented. On a
PUSH, the wr(e) counter is incremented. At the destination actor, on
a POP, the difference wr(e) − poped(e) gives the number of available
tokens in the input FIFO buffer; and the poped(e) is incremented. On
a RELEASE, the destination actor increments the rd(e) counter.

Notice that in the new reserve-push-pop-release protocol, reserving a
token by the source actor gives it access to the token location in the
FIFO buffer but does not make it available for the destination actor.
The token only becomes available when pushed. Similarly, poping of
a token by a destination actor is decoupled from when the token can
be reused by the source actor. The token can only be reused after
the destination actor has released it. The decoupling of the acquisition
of a token, on the one hand, and the pushing or releasing it on the
other, allows actors to directly access token locations in shared mem-
ory instead of making local copies of tokens as in classical dataflow
implementations.
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Figure 2.2: The StreamDrive Cluster Block Diagram

2.2 the streamdrive architecture

The StreamDrive architecture evolved from the ST Microelectronics
Platform 2012 project [15]. Figure 2.2 shows the block diagram of the
StreamDrive cluster. StreamDrive is a heterogeneous tightly-coupled
cluster composed of a number of programmable Processing Elements
(PE), application-specific Hardware Processing Elements (HWPE), and
a DMA, all connected together to a shared Tightly-Coupled Data
Memory (TCDM). Using shared memory instead of a cache is a power-
saving feature because caches consume more power than the scratch-
pad memories.

The TCDM contains an application working set used by both, PEs
and HWPEs. In this way, the TCDM storage replaces (fully or partially)
the hardware elements’ dedicated storage, with advantages both in
terms of area (no buffer duplication) and performance (no need to
copy buffers between different memories). The size of the TCDM has
important impact on area-efficiency (GOPS/mm2) of the system: the
larger the TCDM, the lower the area-efficiency. A relatively small TCDM

memory (up to 512KB in current implementation) cannot hold the en-
tire application working set and requires frequent data movement
between the TCDM and the external memory. The DMA is used for
transferring data between the TCDM and external memory. The DMA
also ensures additional function of supporting stream synchroniza-
tion of data transfers.

We use simple RISC in-house processing cores running at relatively
low frequency (typically 500 MHz). Lowering the frequency of pro-
grammable cores improves power-efficiency of the cluster. The cores
are extended with the synchronization events handling extension. The
programmable cores are connected directly to the TCDM memory with
internal pipeline access latency.
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While the application working set is loaded into the TCDM, the ap-
plication instruction code is kept in off-cluster external memory. The
instruction cache sub-system ensures efficient fetching of application
code from external memory to StreamDrive cores. We have chosen
to use instruction cache rather than dedicated program memory for
two reasons: (1) even though instruction cache energy consumption
is somewhat higher, it generally requires smaller size than a program
memory for the same application; (2) instruction cache can gracefully
handle programs exceeding its hardware size. StreamDrive instruc-
tion cache is shared by all processing cores, which significantly re-
duces number of external memory accesses and conflicts on external
memory bus. Because the StreamDrive is used in SoC systems with
potentially high memory latency, we need to carefully dimension the
instruction cache size. In our experience the biggest application is
about 100KB, and a 64KB instruction cache is sufficient to eliminate
virtually all replacement misses.

The application-specific HWPEs are essential for achieving the re-
quired performance while keeping the cost and the power consump-
tion low. In order to even further optimize power-efficiency of the
system, the HWPEs can run each in their own different dedicated clock
domain, thus allowing for the adjustment of their frequency in accor-
dance with application requirements. The connection between the
HWPEs and the shared memory is ensured by the HBB (I/F 0, .. I/F K-
1 in the figure) that serves as a bridge for streaming hardware blocks.
The PEs, the HBB, and the DMA, all support the StreamDrive commu-
nication protocol based on shared memory - this creates a common
infrastructure for the core-to-core, the core-to-hardware-block, or the
hardware-block-to-hardware-block communication.

The StreamDrive cluster also includes a small number of tightly-
coupled peripherals aiming at accelerating the synchronization, event
handling, etc.

The key element of the StreamDrive cluster is its logarithmic inter-
connect [149] that allows multiple concurrent accesses to the multi-
bank TCDM memory. In order to minimize the number of stalls due
to conflicting simultaneous accesses to the same bank, the banking
factor (i.e. the ratio between the number of TCDM memory banks
and the number of access ports), needs to be correctly dimensioned.
Such shared memory organization, although it has a limited scala-
bility, corresponds well to the small-scale cluster architecture that we
target. Our experience, confirmed by other studies on similar architec-
tures [7], shows that this type of interconnect can support up to 32 ac-
cess ports, each with a throughput close to 32-bits/cycle with latency
compatible with the RISC core internal pipeline, under the embedded
IP target frequencies. As a result, the logarithmic interconnect tech-
nology constraints limit the scale of a StreamDrive cluster to around
32 processing elements. When a single StreamDrive cluster cannot
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deliver necessary performance, multiple clusters can be put together,
thus allowing massive upscaling in performance while maintaining
the initial power- and area- efficiency.

Following StreamDrive architecture elements ensure efficient im-
plementation of the dataflow execution model: (1) the Synchroniza-
tion Event Network together with a processing element’s Event Han-
dling Extension (EVTx) ISA extension, (2) the HBB for connecting the
application-specific hardware elements to shared memory, and (3) the
Dataflow-Aware DMA.

2.2.1 The Event Synchronization Network

An essential extension to the processing element’s ISA that ensures
efficient implementation of the dataflow synchronization is the EVTx.
The EVTx is built around the concept of hardware events. An event is
similar to the processor interrupt in that both, the interrupts and the
events, are signals delivered to the processor asynchronously with re-
spect to the normal execution flow. However, there is one important
difference, which makes events much more efficient than interrupts
for implementing multiprocessor synchronization primitives. When
an interrupt occurs, the interrupt handler executes code that is not
part of the normal execution flow. An interrupt is handled by the
processor as soon as it arrives (eventually depending on the interrupt
priority level) - normal execution is then interrupted, which implies a
penalizing context switch while processing the interrupt. On the con-
trary, a hardware event handling may be delayed as long as the nor-
mal execution flow does not request that the event be handled. Thus,
the event handler is a part of normal application execution. Event
handling does not require a context switch and allows extremely ef-
ficient (few processor cycles) implementation of parallel synchroniza-
tion primitives.

In StreamDrive, the hardware events are used to avoid active
polling of shared memory locations while waiting for dataflow to-
kens to become available. It has been noticed previously that polling
for dataflow firing rules may incur significant overhead in terms of
performance and energy consumption [150]. One interesting so-
lution for reducing this overhead has been proposed by Martin et
al. [150]. The authors developed a concept of Notifying Memories,
where special interconnect components can trigger/receive notifica-
tions according to some events. The particular events of interest are
changes in the dataflow communication channels state. In Stream-
Drive, instead of a special interconnect components, it is up to the
PEs, the HWPEs, and the DMA, to generate a hardware event every
time that the dataflow graph state (the number of tokens in commu-
nication channels) changes. The hardware event approach is more
lightweight, more flexible, and more scalable compared to Notifying
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Memories. On the other hand, a PE or a HWPE can enter an energy
saving idle state while waiting for a hardware event. For the event
generation, the PEs use the EVTx, a tiny extension to the processor
instruction set that implements instructions for generating hardware
events and for inquiring event status; the HWPEs rely on the HBB for
generating these events (see the Hardware Block Bridge description
below); the DMA also integrates event generation functionality.

The StreamDrive Event Synchronization Network connects the hard-
ware events from all platform elements. It allows selectively deliver
hardware events from a set of sources to a set of destinations, de-
pending on StreamDrive dataflow graph connections. Functionally,
the Event Network essentially ORs the events from a set of sources
and sends the result to a set of destination elements.

2.2.2 The Hardware Block Bridge

The HBB provides the HWPEs an interface that abstracts the system
memory addresses into a simpler token based representation, which
can then be implemented using the streaming type of communication.
Such token representation may go from very simple, ex. a linear
streaming with standard FIFO read and write operations, to more
complex access patterns, such as a sliding convolution window, etc.
The HBB performs the following tasks:

1. It transforms streaming HWPE read and write requests with-
out the address, into a sequence of naturally aligned LOAD
and STORE requests with full system address to pre-allocated
buffers in shared memory.

2. It pipelines the generated memory LOAD and STORE transac-
tions.

3. It manages the HWPE working set as rotating buffers of tokens
by implementing dataflow synchronization compliant with the
StreamDrive communication protocol.

4. It multiplexes multiple streaming requests from HWPEs into a
limited number of shared memory ports.

5. It ensures the clock domain frequency crossing between the
HWPEs and the StreamDrive cluster.

Among others, the token abstraction allows implementation of a
rotating buffer storage model. This model is very useful in image pro-
cessing. Each HWPE input and output channel has an associated rotat-
ing buffer inside the TCDM memory. For example, a HWPE applying
a filter on an image, could require access to several lines of the input
image at a time as a temporal window. When the entire image does
not fit in the relatively small TCDM memory, the rotating buffer would
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Figure 2.3: The HBB Block Diagram

hold enough image lines for an uninterrupted pipelined operation of
the HWPE algorithm. Every time that the algorithm slides vertically
by one line in the input image, the window is rotated, i.e. the oldest
line(s) are replaced with the not yet seen line(s) of the input image.
The rotating buffer model allows every data to be brought to the
TCDM memory only once. Such rotating buffer storage model is dif-
ferent from a storage model used by standard interfaces, such as the
OpenMP, for example. In a standard interface, the data are expected
to be contiguously stored. Thus, in the above example, all image lines
in a window need to be stored in the TCDM contiguously. The inef-
ficiency of contiguously storing the temporal windows appear when
lines in the overlapped region between consecutive windows need to
be brought to the TCDM once for each window. For example, a 3x3

convolution, operating on a window of 3 lines at a time, would re-
quire every line to be brought in at least 3 times, as it is used in 3

different convolution windows.
Figure 2.3 shows the HBB block diagram.The HBB includes following

components:

• The HBB Registers.

• The HBB Slave Module (SM) which provides the StreamDrive
system with access to the HBB and HWPE registers.

• The HBB Input Module (IM) which provides the read TCDM in-
terface to the HWPEs.

• The HBB Output Module (OM) which provides the write inter-
face to the HWPEs.

• The HBB Event Controller (EC) which sends the in-coming
events to the input and the output modules, and sends the out-
going events when the input or output module(s) generate one.
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Figure 2.4: The HBB Network Interface Example

• The HBB Network Interface (NI) which connects the input and
the output modules to the TCDM interface via a customized
application-specific topology.

The HBB registers accessed via the HBB SM allow configuration of
the HBB and its modules. In particular, the dataflow FIFO buffers need
to be setup, eg. their location in TCDM, token size, FIFO depth, etc.
The HBB registers also allow configuring the synchronization event
generation.

The HBB Input and Output Modules implement the StreamDrive
communication protocol, including the private synchronization coun-
ters. The Input Module transforms the stream of reads emitted from a
HWPE into a sequence of LOADs to TCDM memory. On the TCDM side,
each Input Module contains a small transport FIFO which is used
to handle misaligned LOADs and to pipeline multiple TCDM transac-
tions. The Input Module can also prefetch token data ahead of HWPE

request. The Output Module transforms the stream of writes emit-
ted from a HWPE into a sequence of STOREs to TCDM memory. On
the TCDM side, each Output module contains a small transport FIFO
which is used to handle misaligned STOREs, and to aggregate and
pipeline multiple TCDM transactions. Each Input and Output module
includes a small address generator which is used to compute pointers
into TCDM FIFO buffers with eventual wrap around.

The HBB Network Interface connects the HBB to M logarithmic in-
terconnect ports. The M and the port bit-width are design-time pa-
rameters allowing to customize the TCDM access bandwidth capac-
ity in line with the application requirements. The Network Interface
then combines and redirects requests fromN HWPE Input and Output
Modules into M logarithmic interconnect TCDM access ports.

A further design-time customization is possible via application-
specific network topology: associating the HBB Input and Output
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Modules to the logarithmic interconnect TCDM access ports. For ex-
ample, Figure 2.4 shows a Network Interface with two Input Modules,
IM0 and IM1, and with one Output Module, OM, connected to three
TCDM access ports. The OM module, is connected directly to one of
the TCDM access ports and is the only master on that port. The IM1
module is also connected to a single TCDM access port. However, the
IM1 is sharing this port with the IM0 module. The IM0, in turn, is
connected to two TCDM access ports. This topology may be useful,
for example, if the IM0 requires high bandwidth, while the IM1 has
very low bandwidth requirements.

The HBB is always a slave to the associated HWPE: it provides the
HWPE with the implementation of the four basic StreamDrive com-
munication protocol functions, and two additional READ and WRITE

functions, shown in Table 2.2:

Function Port Description
READ(t,o,n) IN Read ‘n’ bytes from the token ’t’ at offset ’o’.

Associated with an input port. Data is expected to
arrive in packets of the input port width.

WRITE(t,o,n) OUT Write ‘n’ bytes to the token ’t’ at offset ’o’.
Associated with an output port. Data is expected to
be sent in packets of the output port width.

Table 2.2: Additional functions provided by the HBB to HWPEs.

2.2.3 The Dataflow-Aware DMA

In a StreamDrive cluster, data transfers between the off-cluster
memory and the TCDM are handled by a dedicated DMA. In gen-
eral, we want the source and the destination actors of a DMA trans-
fer not to be same. If we restricted these to be the same actor, it
would limit the dynamicity of program execution: the DMA transfer
requests would be executed in some predefined order with respect to
computations using the transferred data. By decoupling data trans-
fer requests from computations, the data transfer requests are only
constraint by the availability of free memory space for a new transfer
to start. The difficulty in using the DMA within such a context is
that it needs to be synchronized with the source and the destination
dataflow actors.

First of all, both actors need to share the knowledge of the par-
ticular DMA transfer request: the source actor in order to launch
the transfer, and the destination actor in order to synchronize on
the transfer completion. Sharing such additional information in a
dataflow environment is cumbersome leading to additional commu-
nication channels and unnecessary performance and memory over-
heads. The StreamDrive communication protocol enables implemen-
tation of the DMA functionality such that no additional information
exchange between actors involved in a DMA transfer is necessary.
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Thus, the source actor of the data launches a DMA transfer via a stan-
dard DMA API with data transferred as a token to a normal output
dataflow channel; this is equivalent to reserving the token. Upon data
transfer completion, the DMA signals that the token is ready; this
is equivalent to pushing the token. The destination actor then finds
the transferred data as a dataflow token from the corresponding in-
put channel; this is equivalent to poping the token. When data is no
longer used by the destination actor, it releases the token so that the
source actor can reuse the FIFO buffer location for a new DMA trans-
fer. No additional synchronization between the two actors about the
DMA transfer is necessary. As a mater of fact, the destination actor
does not even know that the data come from a DMA transfer.

The DMA synchronization mechanism needs to be very efficient
because we want the DMA to be efficient not only with large DMA
transfers (which is usually the case) but also with relatively fine-grain
transfers. Traditionally, the DMA synchronization can be accom-
plished by busy-waiting on a DMA status register, or by the DMA
generating an interrupt on transfer completion. This mechanism
would be too penalizing for the finer-grain data transfers. Instead,
the StreamDrive DMA leverages on the synchronization event mech-
anism described earlier. Thus, the StreamDrive DMA is extended
with following functionality upon a DMA transfer completion:

• The DMA updates the value of associated shared synchroniza-
tion counter.

• The DMA generates associated synchronization event towards
the Event Synchronization Network.

As a result, the StreamDrive DMA API is extended with (1) the ad-
dress of the synchronization counter associated with the given DMA
transfer; (2) the new value for this synchronization counter (the DMA
only performs writing of the new value, not the increment); and (3)
the synchronization event mask associated with this transfer. These
very simple extension to the standard DMA functionality results in
a seamless integration of the DMA with the StreamDrive dataflow
framework.

2.3 the streamdrive api

The StreamDrive API is based on the C programming language and
provides methods for defining the dataflow actors, for constructing
the dataflow graph, and for controlling the runtime scheduler.

The StreamDrive application structure is shown in Figure 2.5. Ar-
rows in the Figure show objects dependencies. For example, the code
in main.c depends on declaration of actors from <actor>.h of all actors.
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Figure 2.5: A StreamDrive Application Organization

The main.c objects depend on StreamDrive graph API, while the <actor

>.h declarations depend on StreamDrive actor API, both declared in
streamdrive.h header file. The StreamDrive API is implemented by the
StreamDrive runtime system, included as a statically linked library,
libstream.a

A StreamDrive application includes (1) a main part, written in C
and defining the main function and any other code required by the
main function, and (2) any number of actors conveniently specified as
one declaration part, the <actor>.h, and one actor definition part, the
<actor>.c. The main part builds, configures, and launches execution of
StreamDrive dataflow graphs, as well as it terminates the processing.
The dataflow graph management functions are defined by Stream-
Drive graph API. The graph API provides methods for creating actors
and their ports, and for connecting actors via communication buffers.
The StreamDrive graph description can be parameterized in number
of actor instances and their connections. The API supports the con-
figuration of dataflow graphs between executions by disabling actors,
actor connections and by changing actor parameters. It is important
to note that the application graph does not need to change depending
on whether actors are implemented as software functions or as hard-
ware blocks. The StreamDrive actor API defines a number of functions
for managing dataflow actors. A single StreamDrive actor may be in-
stantiated multiple times. All actors’ data associated with a particular
actor instantiation are accessible from actors’ code via a special THIS

pointer set by the runtime scheduler.



2.3 the streamdrive api 37

2.3.1 Actor API

A StreamDrive actor needs to define its symbolic name, its data
type and declare its input and output ports. Listing 2.1 shows the
header declarations for the FAST actor from the ORB application [25].

1 typedef struct {

2 ...

3 uint32_t _cFastThreshold;

4 } fast_t;

5 STREAM_DECLARE_ACTOR_TYPE(FAST,fast_t);

6

7 #define FAST_IN_ESIZE (sizeof(Image_t))

8 #define FAST_OUT_ESIZE (sizeof(Keyp_t))

9 #define FAST_PORT_IN 0

10 #define FAST_PORT_OUT 1

11 #define FAST_PORT_COUNT 2

Listing 2.1: The FAST actor header declaration

The STREAM_DECLARE_ACTOR_TYPE macro associates the actors’ symbolic
name with its data type, it translates into: typedef fast_t FAST_actor_t;.
The actor data type is any application specific type. The FAST actor
in the Listing also defines symbolic names for the id numbers for
the two communication ports, one input and one output, and for the
token sizes for these two ports.

Each StreamDrive actor definition requires four basic functions:
CONSTRUCTOR, DESTRUCTOR, INIT, and WORK. The CONSTRUCTOR and the DESTRUCTOR

perform all actions required at actor creation and release time, in par-
ticular the actor ports are created inside the actor constructor func-
tion. These functions are called once at dataflow graph construction
and termination time, respectively. The dataflow graph can be exe-
cuted multiple times: this feature allows reconfiguring the dataflow
actors and their connections for each new execution. The INIT func-
tion configures the actor for a new execution by initializing actor’s
internal state, therefore the INIT is called every time a dataflow graph
is executed. Finally, the WORK function implements the actor functional-
ity. Listing 2.2 shows the definition of the basic functions for the FAST

actor.
Inside the CONSTRUCTOR function any actor specific initiations are per-

formed. It accepts any application-specific arguments that may in-
fluence how the actor is instantiated. In particular, actor ports
need to be instantiated inside the actor CONSTRUCTOR. The macro
STREAM_ACTOR_MAKE_PORT_IN creates an input port "in_p" with id=FAST_PORT_IN

, and with the token size FAST_IN_ESIZE. The port id and the to-
ken size have been defined in the earlier Listing. Similarly, the
STREAM_ACTOR_MAKE_PORT_OUT macro creates an output port "out_p" with a dif-
ferent id and token size. These ports can be addressed from the actors’
INIT, WORK, and DESTRUCTOR functions via a special THIS pointer.
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1 STREAM_CONSTRUCTOR (void * arg) {

2 STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN, "in_p", FAST_IN_ESIZE);

3 STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT, "out_p", FAST_OUT_ESIZE);

4 }

5 STREAM_DESTRUCTOR (void) {

6 STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);

7 STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);

8 }

9 STREAM_INIT(void * arg) {}

10 STREAM_WORK(void) {

11 int16_t fastThreshold = THIS->_cFastThreshold;

12 uint8_t n_levels = cfg->n_levels;

13 Image_t * img_pyramid = cfg->img_pyramid;

14 uint32_t level;

15

16 for (level = 0; level < n_levels; ++level) {

17 int cornerCount;

18 fast9_detect(level, &img_pyramid[level], ..., &cornerCount);

19 }

20 }

Listing 2.2: The FAST actor definition

The INIT function in the Listing is empty because this actor does not
require reconfiguration at execution time. Generally, any application-
specific data can be passed to the INIT function as a void * argument,
which can be used to specify the configuration parameters.

The WORK function implements the actor functionality. It is typically
derived from the original reference sequential algorithm with Stream-
Drive actor API calls inserted at appropriate places in the code. For
example, following functions implement the StreamDrive communi-
cation protocol:

1 STREAM_IN_PORT_POP (PORT_ID, NUM_TOKENS)

2 Implements the StreamDrive communication protocol pop function. Ensures that

3 NUM_TOKENS are available in channel connected to PORT_ID. If blocked then

4 invokes a KPN context switch.

5

6 STREAM_IN_PORT_RELEASE (PORT_ID, NUM_TOKENS)

7 Implements the StreamDrive communication protocol release function. Signals

8 that NUM_TOKENS can be reused in channel connected to PORT_ID.

9

10 STREAM_OUT_PORT_RESERVE (PORT_ID, NUM_TOKENS)

11 Implements the StreamDrive communication protocol reserve function. Ensures

12 that NUM_TOKENS can be written to channel connected to PORT_ID. If blocked

13 then invokes a KPN context switch.

14

15 STREAM_OUT_PORT_PUSH (PORT_ID, NUM_TOKENS)

16 Implements the StreamDrive communication protocol push function. Signals that

17 NUM_TOKENS are ready in channel connected to PORT_ID.

Of particular importance are functions for specifying the dataflow
firing rules:

A firing rule is specified by requiring certain number of free slots
(output ports) or available tokens (input ports) to be available in a
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1 STREAM_PORT_SET_QUOTA (PORT_ID, NUM_TOKENS)

2 Implements the dataflow firing rules. Requires that NUM_TOKENS are available

3 (or can be written) in channel connected to PORT_ID.

4

5 STREAM_YIELD ()

6 Implements dataflow actor end of firing by yielding control to the

7 StreamDrive runtime scheduler. Does not invoke the context-switch.

given communication port before the next firing of the actor can take
place. The firing rules can change for each new actor firing, support-
ing fully dynamic dataflow model. In the absence of firing rules, an
actor behaves as a KPN process, possibly blocking during execution.

The StreamDrive model requires explicit management of the mem-
ory hierarchy, in particular of transferring data between the external
and the local shared memory. Our experience is that streaming appli-
cations have regular memory access patterns and the advantages of
explicit memory hierarchy management outweigh its inconveniences.
The memory transfer management is supported by the StreamDrive
DMA API.

2.3.2 Graph API

The StreamDrive graph API provides functions for instantiating
actors, connecting the actors, enabling and disabling them, launch-
ing dataflow graph execution, etc. The two functions that declare
dataflow actors are:

1 STREAM_DECL_SW_ACTOR (ACTOR, NUM_PORTS, STACK_SZ)

2 Declares a software dataflow actor, ACTOR, and initializes associated actor

3 structure: ports number, required stack size, pointers to this actor’s

4 constructor, destructor, init, and work functions.

5

6 STREAM_DECL_HW_BLOCK (ACTOR, NUM_PORTS)

7 Declares a dataflow actor, ACTOR, implemented as an application-specific

8 hardware element. Initializes associated actor structure: ports number,

9 pointers to this actor’s constructor, destructor, and init functions. The

10 difference with a software actors is that no work function is specified, and

11 no runtime stack needs to be allocated.

The StreamDrive actors must be declared outside of any function -
in the global scope of the C language, for example. Once declared, the
software actors or hardware blocks can be instantiated dynamically
inside the main part of a StreamDrive application. The API function
allowing to instantiate an actor is:

1 STREAM_ACTOR_MAKE (ACTOR, NAME_OR_ID, ARGS)

2 Instantiates a software actor or an application-specific hardware element.

3 Returns a pointer at ACTOR_actor_t of this instance. The pointer points either

4 at the actor instance’s data structure in shared memory, or at HWPE internal

5 registers base. The NAME_OR_ID sets this instance’s name string for a software

6 actor or an integer HWPE id for the hardware blocks. Allocates actor data
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7 structures within StreamDrive runtime scheduler, and a dedicated runtime stack

8 in off-cluster memory if necessary.

The actors need to be connected together to form a dataflow graph.
To connect two StreamDrive actors, the communication channels need
to be built and a binding API function needs to be called. For example,
the binding function below allows connecting an output port of one
actor to the input port of another actor:

1 STREAM_MAKE_BUFFER (SIZE, POOL)

2 Allocates a FIFO buffer of SIZE bytes in memory hierarchy level specified by

3 POOL. POOL can specify the cluster shared memory or the off-cluster memory.

4

5 STREAM_BIND_OUT_TO_IN (SRC, OUT, DST, IN, BUFFER)

6 Connects a port with id=OUT of an instance SRC of an actor to a port with

7 id=IN of an instance DST of an actor. The SRC and the DST are actor instance

8 pointers returned by the STREAM_MAKE_ACTOR macro. The ports are connected via

9 the FIFO channel BUFFER. The token sizes of the two connected ports do not

10 need to be same, but care must be taken that the size of one port token is

11 an integer multiple of the other token.

The dataflow model of computation defines a single source and a
single destination communication FIFO buffers. This is an essential
requirement for ensuring the dataflow execution properties and cor-
rectness. On the other hand, this also creates a significant execution
overhead: when a source actor is connected to multiple destination
actors, a special broadcast actor needs to be inserted between them
in order to copy-forward the data from the source to each destination.
As a result, several copies of the same data must be made and sev-
eral copy operations executed, one for each destination actor. An
important improvement of the StreamDrive framework over previ-
ously existing dataflow frameworks is that it allows different actors
to efficiently share communication FIFO buffers.

Several solutions to broadcast data tokens can be found in the lit-
erature. Fischaber et al. [151] used non-destructive reads, also called
FIFO peeking, as a way to read data tokens without popping them
from FIFOs, hence avoiding the need for broadcast actors. Unfortu-
nately, this technique cannot be applied without considerably modify-
ing the dataflow model. Indeed, the use of FIFO peeking means that
an actor does not have the same behavior for all firings. Otherwise, to-
kens of peeked FIFOs would never be consumed and would accumu-
late indefinitely. Desnos et al. [152] proposed a dataflow buffer merg-
ing technique to solve the broadcast issue for the SDF graphs. In SDF

model, the broadcast buffers can simply be shared by all destination
actors without requiring additional run-time synchronization. With
dynamic dataflow models, special single-writer, multiple-readers FI-
FOs are needed that discard data tokens only when all readers have
consumed them. Mamidala et al. [153] implemented such FIFOs tar-
geting a shared memory architecture. This implementation relies on
existence of atomic (locking) Fetch and Increment primitive, which
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is very expensive in terms of performance cost. This cost is carried
every time that an actor reads data from a broadcast FIFO.

In StreamDrive framework, a special broadcast connection allows
one source actor and multiple destination actors to share a single
FIFO buffer. It implements a lock-free, counter based, lightweight
synchronization between the source and the destination actors of a
broadcast connection. Each broadcast destination actor has a dedicated
release counter – the global release counter is incremented only when all
destination actors have incremented their dedicated release counters.
The global release evaluation is lazy, i.e. it is carried over only when
broadcast source actor is trying to reserve an entry in the FIFO and
that the FIFO seems full. The broadcast connection is specified using
following API functions:

1 STREAM_MAKE_BROADCAST (FANOUT, SIZE, POOL)

2 Returns a handle for a broadcast data structure with FANOUT output connections

3 and with buffer capacity of SIZE bytes allocated in the memory hierarchy level

4 POOL.

5

6 STREAM_BIND_OUT_TO_BROADCAST (SRC, OUT, BCST)

7 Connects a port with id=OUT of an instance SRC of an actor to a broadcast. The

8 SRC is an actor instance pointer returned by the STREAM_MAKE_ACTOR macro. The

9 BCST is a handle returned by the STREAM_MAKE_BROADCAST macro.

10

11 STREAM_BIND_BROADCAST_TO_IN (BCST, DST, IN, IDX)

12 Connects a broadcast to a port with id=IN of an instance DST of an actor. The

13 BCST is a handle returned by the STREAM_MAKE_BROADCAST macro. The DST is an

actor

14 instance pointer returned by the STREAM_MAKE_ACTOR macro. The input port is

15 connected to the IDX output of the broadcast.

The baseline dataflow model does not provide efficient support for
data-parallelism. Typically, some sort of split and join actors need
to be inserted around a data-parallel actor to copy-forward tokens in
a round-robin order to multiple data-parallel actor instances. This
leads to significant overhead: the memory overhead for holding mul-
tiple copies of the same token; the performance overhead for perform-
ing multiple copy operations and for scheduling the split and the join
actors.

In StreamDrive, we avoid having these additional split and join
actors by leveraging on the above broadcast connection and its sym-
metric collect connection. The collect allows multiple source actors
to be connected to a single destination actor and share a communi-
cation buffer. While the usefulness of the broadcast connection has
been acknowledged previously, the collect has been overlooked. Intu-
itively, where with the broadcast one FIFO buffer is implementing mul-
tiple communication channels, with the collect, multiple FIFO buffers
implement a single communication channel. Such collect connection
leads to a reduction in memory footprint and a performance improve-
ment by avoiding to physically copy the collected tokens into a single
common FIFO. In StreamDrive implementation, each collect source
actor has a dedicated push counter – the global push counter is incre-
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mented when all collect actors have incremented their dedicated push
counters. The global push evaluation is lazy, i.e. it is carried over
when the destination actor is trying to pop a token from the FIFO and
that the FIFO seems empty. The collect connection is specified using
following API functions:

1 STREAM_MAKE_COLLECT (FANIN, SIZE, POOL)

2 Returns a handle for a collect data structure with FANIN input connections

3 and with a buffer of SIZE bytes allocated at memory hierarchy level POOL.

4

5 STREAM_BIND_COLLECT_TO_IN (DST, IN, CLCT)

6 Connects a collect to a port with id=IN of an instance DST of an actor. The

7 CLCT is a handle returned by the STREAM_MAKE_COLLECT macro.The DST is an actor

8 instance pointer returned by the STREAM_MAKE_ACTOR macro.

9

10 STREAM_BIND_OUT_TO_COLLECT (SRC, OUT, CLCT, IDX)

11 Connects a port with id=OUT of an instance SRC of an actor to a collect. The

12 SRC is an actor instance pointer returned by the STREAM_MAKE_ACTOR macro.The

13 CLCT is a handle returned by the STREAM_MAKE_COLLECT macro. The output port is

14 connected to the IDX input of the collect.

A data-parallel actor, then, can be constructed by connecting mul-
tiple parallel actor instances via the broadcast connection to source
actors and via the collect connections to destination actors.

It is important to understand that, in order to guarantee that all
tokens are always processed in the FIFO order, the broadcast and col-
lect conceptually “forward” all the same tokens to all involved actors:
each broadcast destination actor “consumes” all tokens in-order, and
each collect source actor “generates” all tokens in-order. These ac-
tors do not need to physically read or write the tokens, they need
only reserve, push, pop, and release them. Such implementation of the
broadcast and collect connections gives a choice for a data-parallel im-
plementation: data-parallel actors may choose to process a sub-part
of every token, or to process a different token each, whichever results
in lower parallelization overhead. There is no run-time overhead as-
sociated with either implementation because each StreamDrive com-
munication protocol function handles multiple tokens.

The StreamDrive also provides the API for configuring a dataflow
graph via enabling actors - it is possible to only enable a subset of all
actors for any particular execution.

1 STREAM_ACTOR_ENABLE (ACTOR, ARGS)

2 Includes the actor ACTOR instance for execution with the dataflow graph.

3 The ACTOR is actor instance pointer returned by the STREAM_MAKE_ACTOR

4 macro. This calls the actor’s INIT function and passes ARGS along to it.

Enabling or disabling actors allows the runtime scheduler to only
deal with a subset of the dataflow graph. Disabling dataflow connec-
tions can be achieved by setting corresponding dataflow firing rules
to 0 and in actor’s code.

Finally, the StreamDrive API includes a few functions to control the
runtime scheduler. For example, actors can be given scheduling pri-
ority or be assigned to a particular processing element. The complete
API is specified in Appendix A.
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2.4 the successive refinement flow

One important objective of the StreamDrive is to support the suc-
cessive refinement transformation of a sequential reference code into
an optimized dataflow form. In order to facilitate such transforma-
tion, the process is divided into a number of conceptually simple
steps, each consecutive step is an incremental improvement over the
previous one:

1. Identification of the dataflow part of the sequential application.

2. Identification of the dataflow actors and building the initial
Kahn Process Network, KPN.

3. Refinement of the initial KPN by reducing actors granularity.

4. Identification and implementation of data parallel actors.

5. Conversion of the KPN into the Dataflow Process Network, DPN,
by introducing the dataflow firing rules.

6. Optimization of the performance vs memory footprint trade-off.

The initial transformation of a sequential reference code into KPN

form is facilitated by the fact that streaming applications are typically
structured into a sequence of processing kernels that roughly corre-
spond to Kahn processes. The biggest effort goes into achieving good
performance vs memory footprint trade-off beyond the initial basic
level. In this respect, the StreamDrive is not different from other par-
allelization approaches - usually a good understanding of the model
is required in order to achieve high performance levels.

Importantly, all transformation steps can be performed incremen-
tally, one actor at a time, allowing at each stage to debug the imple-
mentation and verify that it remains functionally correct with respect
to the initial reference results. In order to gain a more precise idea
of the StreamDrive incremental parallelization flow, we illustrate the
process using a real-life example, the ORB application, mentioned ear-
lier. The ORB algorithm identifies a set of objects inside an image and
matches their descriptors to the descriptors of objects in a trained
database. The objects are identified by detecting keypoints of interest
via the FAST algorithm. The “false” keypoints are then removed via
the nonmax suppression and the remaining keypoints are sorted using
Harris response measure to retain only the “best” keypoints. For these
keypoints, the algorithm computes object orientation, and the BRIEF
descriptor of the object associated with each keypoint. The descriptor
computation requires the Gaussian filtered image. In order to be in-
dependent from the distance-to-object, processing is repeated over a
series of images representing scaled down original image, the pyra-
mid. A detailed description of the algorithm can be found in section
4.1.
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As a preparation step, the ORB application has been transformed
from the floating-point version to the fixed-point suitable for an em-
bedded implementation.

1 static unsigned int n_levels = 8; // RO

2 static size_t n_features = 500;

3 ...

4 int * n_features_per_level; // to be transformed

5 ...

6 main (int argc, char **argv) {

7 char * scene_obj = argv[1];

8 char * scene_db = argv[2];

9 Image_t img;

10 Descr_t descr_db;

11 Match_t match_db;

12 Point_t * keypoints = (Point_t*)malloc(n_levels*sizeof(Point_t));

13 orb_init(&img, scene_obj, &descr_db, scene_db, &match_db);

14 orb_run(&img, keypoints, &descr_db);

15 match (&descr_db, &match_db);

16 ... show results ...

17 orb_deinit(&img, keypoints, &descr_db, &match_db);

18 }

Listing 2.3: Extract from the reference ORB application

2.4.1 Identification of the dataflow graph

Listing 2.3 shows the reference code of the ORB main function. The
ORB main function (line 6 in the listing) receives the names of the im-
age to process and of the objects database as arguments. Inside the
main function, the orb_init loads the input image from a file; loads
the trained objects database initializing the match_db for matching im-
age objects vs the database objects; and initializes some global param-
eters. The orb_run computes the keypoints and the object descriptors.
The match function compares the descr_db vs the match_db classify-
ing the objects found inside the input image. Finally, the orb_deinit

releases resources allocated during the processing.
The very first step for transforming this code is to identify the part

of the code which will become a dataflow graph. We will focus on the
orb_run function, shown in Listing 2.4 where the compute intensive
processing is required. The match function, accounting for about half
of the processing requirements of the application, is another good
candidate but is more communication than compute bound. In our
actual implementation, the orb_run and the match have been imple-
mented as two separate dataflow graphs. In order to simplify the
illustration, we do not include building the scaled image pyramid
(lines 2-3 inside the orb_run function) as part of the graph. Thus,
we assume that the pyramid has been built during a pre-processing
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1 void orb_run (Image_t img, Point_t * keypoints, Descr_t * descriptors) {

2 Image_t * img_pyramid = (Image_t *) malloc(n_levels*sizeof(Image_t));

3 ... compute re-scaled image pyramid from the img ...

4 computeKeyPoints(img_pyramid, keypoints);

5 for (level = 0; level < n_levels; ++level) {

6 Point_t * keyp = &keypoints[level];

7 computeOrientation(level, &img_pyramid[level], keyp);

8 Descr_t * descr = &descriptors[level];

9 Image_t * blur_img = (Image_t *) malloc(sizeof(Image_t));

10 computeGaussianFilter(level, &img_pyramid[level], blur_img, ...);

11 computeDescriptors(level, blur_img, keyp, desc);

12 free (blur_img);

13 }

14 free (img_pyramid);

15 }

Listing 2.4: Extract from the reference ORB application

step and the results have been stored in external memory 2. We di-
vide the ORB application into two parts: (1) the main part which takes
care of the input and output, user interactions, allocating and freeing
resources, etc., and (2) the dataflow part which corresponds to the com-
pute intensive part of the application. This dataflow part is executed
as a dataflow graph under the control of the StreamDrive dataflow
scheduler.

Figure 2.5 shows the transformed orb_run function from the main
part of the application. The ORB computation loop has been replaced
with calls to new Build_Graph, Exec_Graph, and Term_Graph functions for build-
ing, executing and releasing the dataflow graph, respectively. The
Build_Graph takes an application-specific structure as a parameter used
to pass construction time arguments to the graph such as the pointer
at the image pyramid, number of pyramid levels, image dimensions,
etc. A dataflow graph, once built, can be executed multiple times, for
example looping over several input images. In this case, the Exec_Graph

parameter can be used to pass different execution parameters for each
graph execution.

In StreamDrive successive refinement approach, we first build the
initial KPN graph. The initial KPN graph in Listing 2.5 contains a sin-
gle actor, ORB. The STREAM_DECL_SW_ACTOR macro declares a software actor,
with the last parameter specifying how much runtime stack room this
actor needs for execution. The ORB computation code from orb_run has
been simply moved to ORB actor’s WORK function. The ORB actor is in-
stantiated via the STREAM_ACTOR_MAKE macro inside the Build_Graph function.
The Exec_Graph function configures the dataflow graph by enabling its
single actor. It also sets actor’s priority and the timeout for the graph
execution. Setting the timeout launches the deadlock detection mech-
anism, which interrupts the execution in the case the specified time

2 In actual implementation, we have implemented two variants of the ORB: (1) with
a rescaler tightly-coupled HW block and where the pyramid construction is part of
the dataflow graph, and (2) with the pyramid construction as a pre-processing step.
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1 STREAM_DECL_SW_ACTOR(ORB,ORB_ACTOR_PORT_COUNT,2048);

2

3 static ORB_t * orbActor;

4 GlobalParam_t cfg;

5

6 int32_t Build_Graph (GraphBuild_t * arg) {

7 cfg = <initialize from arg>

8 orbActor = STREAM_ACTOR_MAKE(ORB, "orb", NULL);

9 }

10

11 int32_t Exec_Graph (GraphExec_t * arg) {

12 uint32_t timeout = arg->timeout;

13

14 STREAM_ACTOR_ENABLE (orbActor);

15 STREAM_ACTOR_SET_PRIORITY(orbActor, 0);

16

17 STREAM_GRAPH_SET_TIMEOUT (timeout);

18 }

19

20 int32_t Graph_Term () {

21 STREAM_ACTOR_TERM(orbActor);

22 }

23

24 void orb_run (Image_t img, Point_t * keypoints, Descr_t * descriptors) {

25 Image_t * img_pyramid = (Image_t *) malloc(n_levels*sizeof(Image_t));

26 ... compute re-scaled image pyramid from the img ...

27 GraphBuild_t build_parm;

28 GraphExec_t exec_parm;

29 build_parm.img_pyramid = img_pyramid;

30 build_parm.n_levels = n_levels;

31 ...

32 Build_Graph (build_parm);

33 Exec_Graph (exec_parm);

34 Term_Graph ();

35 free (img_pyramid);

36 }

Listing 2.5: The orb_run function modified to execute under the
StreamDrive runtime

has been exceeded. This mechanism dumps the complete information
about the dataflow actors states and allows developers easily identify
actors involved in the deadlock cycle.

The ORB actor declaration and definition are shown in Listings 2.6
and 2.7.

1 typedef struct {

2 int32_t dummy;

3 } orb_t;

4 STREAM_DECLARE_ACTOR_TYPE(ORB,orb_t);

5

6 #define ORB_ACTOR_PORT_COUNT 0

Listing 2.6: The ORB actor definition

At this step, identification of the dataflow part of application, there
is no dataflow graph per se yet. The one actor executes the same
sequential code of the original reference algorithm. The single ORB
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1 STREAM_CONSTRUCTOR (void * arg) {}

2 STREAM_DESTRUCTOR (void) {}

3 STREAM_INIT (void * arg) {}

4 STREAM_WORK () {

5 uint32_t n_levels = cfg->n_levels;

6 Image_t * img_pyramid = cfg->img_pyramid;

7 Point_t * keypoints = cfg->keypoints;

8 Descr_t * descriptors = cfg->descriptors;

9 computeKeyPoints(img_pyramid, keypoints);

10 for (level = 0; level < n_levels; ++level) {

11 Point_t * keyp = &keypoints[level];

12 computeOrientation(level, &img_pyramid[level], keyp);

13 Descr_t * descr = &descriptors[level];

14 Image_t * blur_img = (Image_t *) malloc(sizeof(Image_t));

15 computeGaussianFilter(level, &img_pyramid[level], blur_img, ...);

16 computeDescriptors(level, blur_img, keyp, descr);

17 free (blur_img);

18 }

19 return 0;

20 }

Listing 2.7: The ORB actor definition

actor is defined via two files, the orbActor.h shown in Listing 2.6,
and the orbActor.c, Listing 2.7. The .h file declares actor’s private
data structure and actor ports. This actor has neither input, no out-
put ports. The .c file defines the actor implementation. Notice that
for the initial ORB actor, the CONSTRUCTOR, the DESTRUCTOR, and the INIT func-
tions remain empty, while the work function is a copy-paste of the
code from sequential reference. The only slight change from the ref-
erence code is that arguments, such as pointers to the img_pyramid, to
the keypoints, etc. are read from the global cfg structure. This struc-
ture is setup during the dataflow graph construction from Build_Graph

arguments (line 7 in Listing 2.5).
Notice two important points about our transformed application:

(1) apart from little “syntactic sugar”, the code changes to the initial
sequential version are minimal; (2) the dataflow part already runs
under the control of our StreamDrive scheduler and executed in the
KPN mode (there are no firing rules yet). It is clear that the process
of identification of the main part and the dataflow part of the ap-
plication is application-specific. The global variables that are used
in the dataflow part need to be identified and declared with the cfg

structure.

2.4.2 Building the initial dataflow graph

As next transformation step, the initial dataflow graph is built: we
need to (1) identify sections of code (kernels) which can be trans-
formed into dataflow actors, and (2) introduce the communication
channels connecting the actors. This step is facilitated by the fact
that streaming applications are typically structured into a sequence
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1 Keyp_t * fast9_nonmax (int level, Image_t * img, ..., int * n_corners) {

2 int nCorners;

3 Keyp_t * corners = fast9_detect (img, ..., &nCorners);

4 int * scores = fast9_score (corners, nCorners, ...);

5 Keyp_t * nonmax = nonmax_suppress (corners, scores, nCorners, ..., n_corners);

6 return nonmax;

7 }

8

9 void computeKeyPoints (Image_t * img_pyramid, Point_t * keypoints) {

10 ...

11 for (level = 0; level < n_levels; ++level) {

12 Point_t * keyp = &keypoints[level];

13 int cornerCount;

14 Keyp_t * results = fast9_nonmax(level, &img_pyramid[level], ..., &

cornerCount);

15 keyp->data = (Keyp_t *)malloc(cornerCount * sizeof(Keyp_t));

16 copy (keyp->data, results, cornerCount);

17 computeHarrisResponse(level, img_pyramid[level], keyp, ...);

18 cullKeypoints(level, keyp, n_features_per_level[level], ...);

19 free (results);

20 }

21 }

Listing 2.8: The Compute_Keypoints function from the ORB application

of processing kernels that are a natural choice for dataflow actors. For
example, from the Listing 2.7, the ComputeOrientation, ComputeGaussianFilter

, and ComputeDescriptors seem to be good candidates for dataflow ac-
tors. The ComputeKeyPoints, shown in Listing 2.8 is in turn composed of
suitable computation kernels, the fast9_detect, fast9_score, nonmax_suppress,
ComputeHarrisResponse, and CullKeypoints. These will be our initial choice of
the dataflow actors.

The channel introduction requires identifying, for the input chan-
nels, of the data that are read by this actor but written outside of it,
and for the output channels, the data that are written by the actor and
read elsewhere. This remains a manual task, although tools, such as
Sprint [154] may be considered in future work. Once again, due to
the kernel structure of the streaming applications, the channel intro-
duction turns often to be relatively straightforward. From the ORB

example, the fast9_detect kernel takes one image from the image pyra-
mid in its input channel, and produces the array of cornerCount FAST

keypoints and the fast9_score computes their scores. The nonmax_suppress

takes the keypoints generated by the fast9_detect with scores as in-
put and generates the set of corner keypoints by removing “uninter-
esting” keypoints from the set. The ComputeHarrisResponse reads these
corners and computes the Harris response for each of them, which is
a measure of “relevance” of each keypoint. The ComputeHarrisResponse

output is the set of keypoints with their associated Harris response.
The CullKeypoints performs the sorting of the keypoints with respect to
their Harris response and reduces the keypoint set further by retain-
ing at most the n_features_per_level best keypoints. For these remain-
ing keypoints, the ComputeOrientation computes each keypoint’s orien-
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tation. The ComputeOrientation has two input channels, the keypoints
sorted by the CullKeypoints and the scaled input image from corre-
sponding image pyramid level. The output of the ComputeOrientation

is a set of keypoints with their associated orientation measure. The
ComputeDescriptors takes two input channels as well, the output key-
points from the ComputeOrientation and the Gauss filtered input image.
The ComputeDescriptors output is the final set of keypoints and their de-
scriptors.

1 typedef struct {

2 uint32_t _cFastThreshold;

3 Image_t * _img_p;

4 } fast_t;

5 STREAM_DECLARE_ACTOR_TYPE(FAST,fast_t);

6

7 #define FAST_IN_ESIZE (sizeof(Image_t))

8 #define FAST_OUT_ESIZE (sizeof(Keyp_t))

9 #define FAST_PORT_IN 0

10 #define FAST_PORT_OUT 1

11 #define FAST_PORT_COUNT 2

Listing 2.9: Initial FAST actor definition

1 void fast9_detect (Image_t * img, ..., int * num_corners) {

2 int xsize = img->width;

3 int ysize = img->height;

4 //int rsize=512;

5 Keyp_t * header = (Keyp_t*)STREAM_OUT_RESERVE (FAST_PORT_OUT, 1);

6 *num_corners = 0;

7 //Keyp_t * corners = (Keyp_t*)malloc(sizeof(Keyp_t)*rsize);

8 for (y = edge_threshold; y < ysize - edge_threshold; y++) {

9 for (x = edge_threshold; x < xsize - edge_threshold; x++) {

10 ... compute keypoint or not ...

11 if (corner) {

12 Keyp_t * token = (Keyp_t*)STREAM_OUT_RESERVE (FAST_PORT_OUT, 1);

13 //if (*num_corners == rsize) {

14 // rsize*=2;

15 // corners = (Keyp_t*)realloc(corners, sizeof(Keyp_t)*rsize);

16 //}

17 //corners[*num_corners] = *corner;

18 *token = *corner;

19 *num_corners++;

20 }

21 }

22 }

23 header->... = *num_corners;

24 STREAM_OUT_PUSH(FAST_PORT_OUT, *num_corners+1);

25 return;

26 }

27

28 STREAM_CONSTRUCTOR (void * arg) {

29 STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN, "in_p", FAST_IN_ESIZE);

30 STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT, "out_p", FAST_OUT_ESIZE);

31 }

32 STREAM_DESTRUCTOR (...) {

33 STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);

34 STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);

35 }

36 STREAM_INIT() {}

37 STREAM_WORK() {

38 int16_t fastThreshold = THIS->_cFastThreshold;

39 uint8_t n_levels = cfg->n_levels;

40



2.4 the successive refinement flow 50

41 for (uint32_t level = 0; level < n_levels; ++level) {

42 int cornerCount;

43 THIS->_img_p = (Image_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

44 fast9_detect(level, &img_pyramid[level], ..., &cornerCount);

45 STREAM_IN_RELEASE (FAST_PORT_IN, 1);

46 }

47 }

Listing 2.10: Initial FAST actor definition

In order to introduce new actors, each processing kernel needs to
be wrapped into the StreamDrive syntactic structure similar to the ear-
lier ORB actor. Listings 2.9 and 2.10 show, as example, the FAST actor
corresponding to the fast9_detect kernel. Inside the actor .h file, actor
ports are described (their ids and token sizes). The FAST input tokens
are of type Image_t and output tokens are keypoints of type Keyp_t. In-
side the .c file, the actor constructor and destructor functions create
and destroy, respectively, the actor ports. The change to the origi-
nal fast9_detect function is again minimal and consists in inserting the
StreamDrive communication primitives. Thus, the STREAM_IN_POP and
the STREAM_IN_PRELEASE are called once for each image in the image pyra-
mid. The STREAM_OUT_RESERVE is called for every new keypoint and all
keypoints are pushed to the output channel via the STREAM_OUT_PUSH. In
order to communicate the number of keypoints to the downstream
actor, the FAST reserves one header token at the beginning of the pro-
cessing. When the number of keypoints is known at the end of the
outermost loop, the header is pushed to the output channel together
with the keypoints 3. It is interesting to notice that using the fixed
size dataflow buffers allows us to get rid of costly dynamic memory
allocation, commented lines in the listing.

We build the initial dataflow graph incrementally, adding one ac-
tor at a time, verifying the transformation correctness at each new
actor. The process proceeds in the topological actor order, for exam-
ple starting with first actor, FAST shown above. Until all actors have
been added, the initial ORB actor keeps playing the placeholder role
for the remaining of the graph. At the end of the process, the initial
ORB actor is no longer needed and is removed. Listing 2.11 shows
the initial StreamDrive graph Build_Graph function with eight actors. At
this step we have not addressed the memory size and actor granu-
larity issues, therefore all FIFO buffers have been allocated in large
off-cluster memory using an appropriate POOL level.

1 STREAM_DECL_SW_ACTOR(SRC,SRC_ACTOR_PORT_COUNT,1024);

2 STREAM_DECL_SW_ACTOR(GAUSS,GAUSS_ACTOR_PORT_COUNT,1024);

3 STREAM_DECL_SW_ACTOR(FAST,FAST_ACTOR_PORT_COUNT,1024);

4 STREAM_DECL_SW_ACTOR(NONMAX,NONMAX_ACTOR_PORT_COUNT,1024);

5 STREAM_DECL_SW_ACTOR(HARRIS,HARRIS_ACTOR_PORT_COUNT,1024);

6 STREAM_DECL_SW_ACTOR(CULL,CULL_ACTOR_PORT_COUNT,1024);

7 STREAM_DECL_SW_ACTOR(ANGLE,ANGLE_ACTOR_PORT_COUNT,1024);

8 STREAM_DECL_SW_ACTOR(BRIEF,BRIEF_ACTOR_PORT_COUNT,1024);

9

3 any field of the Keyp_t structure can be used to communicate the number of corners.
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10 static SRC_t * srcActor;

11 static GAUSS_t * gaussActor;

12 static FAST_t * fastActor;

13 static NONMAX_t * nonmaxActor;

14 static HARRIS_t * harrisActor;

15 static CULL_t * cullActor;

16 static ANGLE_t * angleActor;

17 static BRIEF_t * briefActor;

18

19 static stream_bind_t * broadcast;

20 static stream_bind_t * b0;

21 static stream_bind_t * b1;

22 static stream_bind_t * b2;

23 static stream_bind_t * b3;

24 static stream_bind_t * b4;

25 static stream_bind_t * b5;

26

27 GlobalParam_t cfg;

28

29 int32_t Build_Graph (GraphBuild_t * arg) {

30 cfg = <initialize from arg>

31

32 srcActor = STREAM_ACTOR_MAKE(SRC, ‘‘src’’, NULL);

33 gaussActor = STREAM_ACTOR_MAKE(GAUSS, "gauss", NULL);

34 fastActor = STREAM_ACTOR_MAKE(FAST, "fast", NULL);

35 nonmaxActor = STREAM_ACTOR_MAKE(NONMAX, "nonmax", NULL);

36 harrisActor = STREAM_ACTOR_MAKE(HARRIS, "harris", NULL);

37 cullActor = STREAM_ACTOR_MAKE(CULL, "cull", NULL);

38 angleActor = STREAM_ACTOR_MAKE(ANGLE, "angle", NULL);

39 briefActor = STREAM_ACTOR_MAKE(BRIEF, "brief", NULL);

40

41 broadcast = STREAM_MAKE_BROADCAST(4, SRC_OUT_DEPTH*sizeof(Image_t), MEM_EXT);

42 STREAM_BIND_OUT_TO_BROADCAST (srcActor, SRC_PORT_OUT, broadcast);

43 STREAM_BIND_BROADCAST_TO_IN (broadcast, fastActor, FAST_IN_PORT, 0);

44 STREAM_BIND_BROADCAST_TO_IN (broadcast, harrisActor, HARRIS_IN_PORT, 1);

45 STREAM_BIND_BROADCAST_TO_IN (broadcast, angleActor, ANGLE_IN_PORT, 0);

46 STREAM_BIND_BROADCAST_TO_IN (broadcast, gaussActor, GAUSS_IN_PORT, 0);

47

48 b0 = STREAM_MAKE_BUFFER (FAST_OUT_DEPTH*FAST_OUT_ESIZE, MEM_EXT);

49 STREAM_BIND_OUT_TO_IN (fastActor, FAST_PORT_OUT, nonmaxActor, NONMAX_PORT_IN,

b0);

50

51 b1 = STREAM_MAKE_BUFFER (NONMAX_OUT_DEPTH*NONMAX_OUT_ESIZE, MEM_EXT);

52 STREAM_BIND_OUT_TO_IN (nonmaxActor, NONMAX_PORT_OUT, harrisActor,

HARRIS_PORT_IN, b1);

53

54 b2 = STREAM_MAKE_BUFFER (HARRIS_OUT_DEPTH*HARRIS_OUT_ESIZE, MEM_EXT);

55 STREAM_BIND_OUT_TO_IN (harrisActor, HARRIS_PORT_OUT, cullActor, CULL_PORT_IN,

b2);

56

57 b3 = STREAM_MAKE_BUFFER (CULL_OUT_DEPTH*CULL_OUT_ESIZE, MEM_EXT);

58 STREAM_BIND_OUT_TO_IN (cullActor, CULL_PORT_OUT, angleActor, ANGLE_PORT_IN, b3

);

59

60 b4 = STREAM_MAKE_BUFFER (ANGLE_OUT_DEPTH*ANGLE_OUT_ESIZE, MEM_EXT);

61 STREAM_BIND_OUT_TO_IN (angleActor, ANGLE_PORT_OUT, briefActor, BRIEF_PORT_IN,

b4);

62

63 b5 = STREAM_MAKE_BUFFER (GAUSS_OUT_DEPTH*GAUSS_OUT_ESIZE, MEM_EXT);

64 STREAM_BIND_OUT_TO_IN (gaussActor, GAUSS_PORT_OUT, briefActor, BRIEF_PORT_BLUR

, b5);

65 }

Listing 2.11: The Build_Graph function that constructs the initial ORB
graph.
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Figure 2.6 draws the resulting ORB graph graphically. Notice that
input image is read from off-cluster memory via a special SRC ac-
tor and is broadcast to several input ports: the FAST, the GAUSS, the
HARRIS, and ANGLE input ports. This image initiates inside the exter-
nal memory and needs to be copied from this external memory to the
cluster shared memory for processing. The SRC actor uses the Stream-
Drive DMA API to launch requests for transferring input image data
to dataflow buffer connected to the input data channels. The SRC ac-
tor does not have input ports and has one output port which data
from the DMA transfer are sent to. The corresponding FIFO buffer is
shared between several destination actors via StreamDrive broadcast
connection. The BRIEF output port that writes final descriptors out
to memory, does not have a matching port to connect to. Result data
from the BRIEF actor are transferred to the off-cluster memory via
the DMA API calls inside the BRIEF actor: there is no need to add a
special DMA actor for this.

SRC FAST
NON

MAX

HAR

RIS
CULL ANGLE BRIEF

GAUSS

Figure 2.6: Initial ORB dataflow graph: the actors correspond to the orig-
inal kernels; the input image data are read via the DMA by
the SRC actor and are broadcast to the FAST, GAUSS, HARRIS, and
ANGLE actors; the BRIEF writes result descriptors directly to the
external memory.

At the end of this step, the initial dataflow graph is built with sev-
eral dataflow actors identified. Following important points facilitate
this transformation step: (1) the actor granularity of execution of the
original application has been preserved; (2) we have avoided deal-
ing with limited memory constraints by allocating all communication
buffers in sufficiently large external memory; (3) the actor execution
order corresponds to that of the original application because we have
preserved the sequential code granularity and dependencies.

2.4.3 The dataflow graph refinement

The dataflow actor granularity refers to the amount of data that
the actor needs for executing without being blocked, and is directly
related to the size of actor input and output tokens. In previous trans-
formation step, actors keep processing at the original reference algo-
rithm granularity, i.e. the entire input image, full set of keypoint, etc.
These data are to large to fit in cluster shared memory and are allo-
cated externally. The next transformation step, the dataflow graph
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refinement, reduces actor granularity so that dataflow communication
buffers fit with limited cluster TCDM memory.

# Actor Port Initial token size Refined token size
FAST IN One image One image line

OUT All FAST keypoints One keypoint
NONMAX IN All FAST keypoints One keypoint

OUT All nonmax keypoints One keypoint
HARRIS IN All nonmax keypoints One keypoint

REF One image One image line
OUT All nonmax keypoints One keypoint

CULL IN All nonmax keypoints One keypoint
OUT All sorted keypoints One keypoint

ANGLE IN All sorted keypoints One keypoint
REF One image One image patch
OUT All sorted keypoints One keypoint

GAUSS IN One image One image line
OUT One image One image line

BRIEF IN All sorted keypoints One keypoint
BLUR One image One image patch
OUT All descriptors One descriptor

Table 2.3: Granularity of actors in the ORB application.

Table 2.3 shows refined token sizes for the ORB graph actors. Notice
that we have chosen to fetch the ANGLE and the BRIEF image data one
patch at a time: a patch is a small area around each keypoint. Because
patches for different keypoints may overlap, we end up fetching same
image pixels multiple times. However, the alternative of keeping the
keypoints in raster scan order and fetching reference image line by
line led to poorer performance.

Choosing actor granularity represents an important trade-off: finer
granularity reduces the actor memory footprint while increasing the
synchronization overhead 4; coarser granularity suffers little synchro-
nization overhead but may require too much memory. Although
granularity vs. performance is an application-specific trade-off, the
parallelization should preserve application’s natural granularity. In
this context natural means as close to the intrinsic algorithm structure
as possible. In an image processing application, choosing one image
line as a dataflow token is natural because it corresponds to the sec-
ond level in the image processing nested loop: (1) frame, (2) line, (3)
pixel. As an alternative, sets of lines, tiles, or similar, are less natural
in a sense that they are algorithm-specific, require some non-intuitive
changes to the initial application code, and result is often radically
different from the sequential algorithm.

1 typedef struct {

2 uint32_t cFastThreshold;

3 uint8_t * line_p[3];

4 } fast_t;

5 STREAM_DECLARE_ACTOR_TYPE(FAST,fast_t);

6

7 #define FAST_IN_ESIZE (sizeof(Line_t))

4 The synchronization overhead includes actions required to verify the token availabil-
ity, and the associated scheduler actions
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8 #define FAST_OUT_ESIZE (sizeof(Keyp_t))

9 #define FAST_PORT_IN 0

10 #define FAST_PORT_OUT 1

11 #define FAST_PORT_COUNT 2

Listing 2.12: The FAST actor KPN definition.

1 STREAM_CONSTRUCTOR (void * arg) {

2 STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN, "in_p", FAST_IN_ESIZE);

3 STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT, "out_p", FAST_OUT_ESIZE);

4 }

5 STREAM_DESTRUCTOR (...) {

6 STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);

7 STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);

8 }

9 STREAM_INIT(void * arg) {}

10

11 void fast9_detect (int xsize, Line_t *line[3], ..., int * num_corners) {

12 *num_corners = 0;

13 for (x = edge_threshold; x < xsize - edge_threshold; x++) {

14 ... compute keypoint or not ...

15 if (corner) {

16 Keyp_t * token = (Keyp_t*)STREAM_OUT_RESERVE (FAST_PORT_OUT, 1);

17 *token = *corner;

18 *num_corners++;

19 }

20 }

21 return;

22 }

23

24 STREAM_WORK() {

25 int16_t fastThreshold = THIS->_cFastThreshold;

26 uint8_t n_levels = cfg->n_levels;

27

28 Keyp_t * header = (Keyp_t*)STREAM_OUT_RESERVE (FAST_PORT_OUT, 1);

29

30 for (uint32_t level = 0; level < n_levels; ++level) {

31 int xsize = cfg->img_width[level];

32 int ysize = cfg->img_height[level];

33 int cornerCount = 0;

34

35 // Build FAST window

36 for (i = 0; i < 3; i++) {

37 THIS->line_p[i] = (Line_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

38 }

39

40 for (y = edge_threshold; y < ysize - edge_threshold; y++) {

41 int count;

42 fast9_detect (level, THIS->line_p, ..., &count);

43 cornerCount += count;

44 // Rotate FAST window

45 STREAM_IN_RELEASE (FAST_PORT_IN, 1);

46 for (i = 0; i < 2; i++) {

47 THIS->line_p[i] = THIS->line_p[i+1];

48 }

49 THIS->line_p[2] = (Line_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

50 }

51

52 STREAM_IN_RELEASE (FAST_PORT_IN, 2);

53

54 header->... = cornerCount;

55 STREAM_OUT_PUSH(FAST_PORT_OUT, cornerCount+1);

56 }

57 }

Listing 2.13: The FAST actor KPN definition.
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Refining actors’ granularity requires changing its WORK function. List-
ings 2.12 and 2.13 show the FAST actor with refined input granularity:
the input token corresponds to one image line instead of the entire
image. Since the fast9_detect works on three lines at a time, we pass
it a window of three lines, THIS->line_p, which is rotated on every iter-
ation of the WORK function. The STREAM_IN_POP and the STREAM_IN_RELEASE are
applied to one image line instead of one full image.

Once the granularity of the actors has been reduced, the communi-
cation channels can be moved to the cluster shared memory. However,
some channels may need to buffer too many tokens to fit with this
memory. For example, the SRC actor transfers the input image from
the external to cluster memory one line at a time. While the FAST and
the HARRIS actors consume these lines also one at a time, the ANGLE

actor cannot start consuming the input image lines until the entire
image has been seen and processed by the CULL actor. Therefore, the
communication channel needs to buffer the entire image and is, thus,
too big to fit the cluster shared memory. Similarly, the BRIEF actor
can start consuming the blurred image produced by the GAUSS actor
only after the CULL actor has generated the sorted list of interesting
keypoints. In such cases, the communication channel buffer is allo-
cated in the external off-cluster memory. Such excessive buffering
requirements do not result from the actor granularity but from the
necessity to accumulate large number of tokens in a communication
channel before the first token can be consumed. The ANGLE actor, sim-
ply needs re-reading the input image from external memory after the
the CULL actor has finished processing. This is done by the second
SRC actor and a communication FIFO holding input image patches to
feed the ANGLE actor. The situation is more subtle with the BRIEF actor.
The GAUSS actor would write the blurred image to the buffer in off-
cluster memory, while the BLUR DMA actor would read it in patches
when the BRIEF needs it. The GAUSS needs to be able to tell the BLUR

actor when the blurred image has been completely written out to the
external buffer. We acomplish this by using special sync input and
output ports. The sync ports are similar to the normal StreamDrive
ports but do not have any FIFO buffers associated with them (the sync
API is described in Appendix A). The refined ORB dataflow graph is
shown in Figure 2.7.

The refinement transformation step enables parallel execution for
the first time: actors can execute their work-functions in parallel, syn-
chronizing at reserve and at pop points.

2.4.4 Adding application-specific hardware blocks

Before further optimization and introduction of the firing rules, it
is convenient to perform software-hardware partitioning at this point.
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Figure 2.7: Refined ORB dataflow graph: most communication buffers
have been moved to cluster shared memory. The SRC to ANGLE,
and the GAUSS to BRIEF require bufferring capacity that exceeds
the cluster memory, these data need to be stored externally. Two
additional DMA actors, the second SRC and the BLUR, are used
to handle this situation.

For example, Table 2.4 shows the breakdown of ORB kernel’s execu-
tion time from the original application (first image pyramid):

Kernel Execution Time, Mcycles
fast9_detect 3,77

fast9_score 0,39

nonmax_suppress 0,32

ComputeHarrisResponse 0,81

CullKeypoints 0,34

ComputeOrientation 0,55

ComputeGaussFiltering 7,66

ComputeDescriptors 2,09

Total 15,93

Table 2.4: The ORB execution time breakdown.

The Gaussian filtering kernel largely dominates the application ex-
ecution time and, considering that filtering is a quite common func-
tion in image processing, is a good candidate for being implemented
as an application-specific hardware block. Such application-specific
hardware blocks are designed independently from the application
and need to implement a streaming data interface (see Section 2.2
for a description of the hardware block integration within the shared
memory cluster). In Section 3.3, we describe an application-specific
hardware block for performing convolution that we designed using
the high-level synthesis techniques.

Integrating application-specific hardware blocks with a Stream-
Drive application does not require changing the dataflow graph. In-
stead, it is sufficient to instantiate actor as a hardware block instead
of as a software actor. The StreamDrive runtime will transparently
handle the hardware block actor during the execution.

2.4.5 Data Parallelism

The above transformation steps build a dataflow graph by identify-
ing and exposing the functional parallelism, where actors form execu-
tion pipeline over the input stream of data. The functional parallelism
is inherent with the dataflow model of execution and can be exploited
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Figure 2.8: The ORB dataflow graph with data-parallel actors: the FAST,
the ANGLE and the BRIEF actors are replicated 4 times, and the
HARRIS actor is replicated 2 times.

by splitting and merging dataflow actors and by varying actor’s gran-
ularity. Another important type of parallelism is the data parallelism.
In data parallelism, multiple instances of the same actor are simul-
taneously created. The data parallelism leads to efficient execution
when the computations are not data dependent and regular: (1) it is
easy to identify and to expose, (2) it has lower parallelization over-
head compared to the functional parallelism.

In the ORB application, the fast9_detect, the ComputeHarrisResponse, the
ComputeOrientation, and the ComputeDescriptors kernels are regular and are
easy to data parallelize. Parallelizing these kernels into a number
of data-parallel instances has several advantages: (1) it balances the
workloads of graph actors, and (2) it creates more actors for the sched-
uler to choose from. For example, from the Table 2.4, the workload
of the fast9_detect, is few times that of the nonmax_suppress or of the
CullKeypoints kernels, and dividing its workload among several data
parallel instances helps balancing the workload of all these actors.

The StreamDrive broadcast and collect connections help efficiently
support the data parallel actors. The broadcast enables sharing of the
input tokens by the data-parallel actors, while the collect allows shar-
ing the output tokens. Using these connections, it is very easy to build
data-parallel actors. Two data sharing strategies can be considered:

1. The single token data parallel actors work all on the same input
or output token, but each on different part of it, for example a
different part of an image line.

2. The multiple token data parallel actors work each on one of N to-
kens in parallel and synchronize on all N tokens simultaneously.

The data sharing strategies apply to individual input or output
ports, and therefore it is perfectly possible to mix different data paral-
lel strategies within the same actor, at the same time having channels
which do not implement any data parallel sharing.

The Figure 2.8 shows the ORB dataflow graph with data-parallel ac-
tors. The broadcast connections are used to share input tokens of these
actors. The collect connections are mostly optimized away, only the
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HARRIS actor data-parallel instances use the collect connection to share
its output tokens. The FAST actor does not use the collect connection
for its output because the downstream NONMAX actor needs the FAST

keypoints to arrive in the raster scan order of the image. However,
since the number of the keypoints in each image line is not known in
advance, it is impossible for them to share the communication chan-
nel. As a solution, the NONMAX actor has N input ports, one for each
upstream FAST actor, and reads them in a round-robin order ensuring
that the FAST keypoints arrive in the raster scan order of the input im-
age. Similarly, instead of using the collect connection for the output
of the ANGLE actor, and then re-broadcast it to the BRIEF actors, we con-
nect each ANGLE actor directly to the corresponding BRIEF actor, thus
gaining efficiency.

The dataflow graph in Figure 2.8 shows the version with 4 FAST,
4 ANGLE, and 4 BRIEF data-parallel instances, as well as 2 HARRIS in-
stances. Our implementation is parameterized in terms of the number
of actors, their granularities, and the communication buffer sizes: it
can be configured for 1 PE with one instance of each actor up to 8 PEs
with 8 instances of the FAST, ANGLE, and BRIEF actors.

To illustrate modifications made to actors for supporting the data-
parallelism, Listings 2.14 and 2.15 show the data parallel FAST actor.
The new THIS->idx private field corresponds to the index of this data
parallel instance among the N data parallel instances. This index is
initialized via the actor constructor. The FAST actor implements the
multiple token data parallel sharing in its input port. The changes
to the actor’s WORK function are minimal: the actors handle a shared
rotating input window of 3+ (N− 1) lines instead of 3 lines, while
each actor processes only those lines that correspond to this actors’
index. The actor output is not changed since every FAST data parallel
instance handles its own (not shared) output channel. The fast9_detect

function remains unchanged.

1 typedef struct {

2 uint8_t idx;

3 uint32_t cFastThreshold;

4 uint8_t * line_p[6];

5 } fast_t;

6 STREAM_DECLARE_ACTOR_TYPE(FAST,fast_t);

7

8 #define FAST_IN_ESIZE (sizeof(Line_t))

9 #define FAST_OUT_ESIZE (sizeof(Keyp_t))

10 #define FAST_PORT_IN 0

11 #define FAST_PORT_OUT 1

12 #define FAST_PORT_COUNT 2

Listing 2.14: Data-parallel version of the FAST actor.

1 STREAM_CONSTRUCTOR (void *arg) {

2 uint32_t idx = (uint32_t)arg;

3 STREAM_ACTOR_MAKE_PORT_IN(FAST_PORT_IN, "in_p", FAST_IN_ESIZE);

4 STREAM_ACTOR_MAKE_PORT_OUT(FAST_PORT_OUT, "out_p", FAST_OUT_ESIZE);

5 THIS->idx = idx;

6 }
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7 STREAM_DESTRUCTOR (...) {

8 STREAM_ACTOR_TERM_PORT_IN(FAST_PORT_IN);

9 STREAM_ACTOR_TERM_PORT_OUT(FAST_PORT_OUT);

10 }

11 STREAM_INIT(void *arg) {}

12 STREAM_WORK() {

13 int16_t fastThreshold = THIS->_cFastThreshold;

14 uint8_t n_levels = cfg->n_levels;

15

16 for (uint32_t level = 0; level < n_levels; ++level) {

17 int xsize = cfg->img_width[level];

18 int ysize = cfg->img_height[level];

19

20 Keyp_t * header = (Keyp_t*)STREAM_OUT_RESERVE (FAST_PORT_OUT, 1);

21

22 int cornerCount = 0;

23

24 // Build FAST window

25 for (i = 0; i < 4+2; i++) {

26 THIS->line_p[i] = (Line_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

27 }

28

29 for (y = edge_threshold; y < ysize - edge_threshold; y++) {

30 if (y % 4 == THIS->idx) {

31 int count;

32 fast9_detect (level, &THIS->line_p[THIS->idx], ..., &count);

33 cornerCount += count;

34

35 // Rotate FAST window

36 STREAM_IN_RELEASE (FAST_PORT_IN, 4);

37 for (i = 0; i < 2; i++) {

38 THIS->line_p[i] = THIS->line_p[i+1];

39 }

40 for (i = 0; i < 4; i++) {

41 THIS->line_p[i+2] = (Line_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

42 }

43 }

44 }

45

46 STREAM_IN_RELEASE (FAST_PORT_IN, 4+2);

47 header->... = cornerCount;

48 STREAM_OUT_PUSH(FAST_PORT_OUT, cornerCount+1);

49 }

50 }

Listing 2.15: Data-parallel version of the FAST actor.

It is worth noticing that the StreamDrive offers great flexibility in
connecting and synchronizing the data parallel actors. By buffer-
ing the input and output tokens, actors data parallel instances do
not need to start and stop processing simultaneously, thus benefiting
from the efficiency of pipelined execution. Finally, creating a few data
parallel actors, we remain within the scope of a small-scale data par-
allelism (as opposed to the massive data parallelism with hundreds
or thousands of parallel instances) matching well with the scale of the
target architecture cluster.
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2.4.6 Optimizing Scheduling via Firing Rules

Execution of the refined and parallelized dataflow graph can be
optimized by introducing dataflow firing rules.

In KPN execution mode, software actors require the ability to sus-
pend an actor on a blocked pop (or reserve), and to resume its exe-
cution when sufficient tokens (or empty FIFO entries) are available.
Suspending and resuming actors implies costly context-switching. In
the dataflow execution mode the firing rules give preconditions for actor
execution by ensuring that there are enough input tokens (or room in
output FIFOs) for the actor not to be blocked. Thus, dataflow mode
allows the context-switch free, cooperative, scheduling.

In the dataflow mode, actor’s WORK function is subdivided into a se-
quence of firings [45, 155]. During a firing, the actors reserve and pop
tokens similar to the KPN mode, but the firing rules ensure that the ac-
tor is never blocked during the firing. When a firing is completed, ac-
tor returns control to the scheduler without requiring a context switch
via the STREAM_YIELD call. The dataflow actor WORK function is “fired” by
the scheduler until the STREAM_EXIT call signals the scheduler that actor
completed its execution and does not require anymore firings.

Introducing firing rules requires to once more change actor’s WORK

function. Listings 2.16 and 2.17 show the ORB FAST actor converted to
the dataflow mode.

1 typedef struct {

2 uint8_t idx;

3 uint8_t state;

4 uint8_t level;

5 uint32_t cFastThreshold;

6 uint8_t * line_p[6];

7 Keyp_t * header;

8 uint16_t cornerCount;

9 uint16_t y;

10 } fast_t;

11 STREAM_DECLARE_ACTOR_TYPE(FAST,fast_t);

12 // States

13 #define FAST_IDLE 0 // actor initial state

14 #define FAST_LEVEL 1 // one iteration of the outermost loop

15 #define FAST_LEVEL_END 2 // iteration control

16 #define FAST_LINE 3 // one iteration of the second level loop

17 #define FAST_LINE_END 4 // iteration control

18 // Ports

19 #define FAST_IN_ESIZE (sizeof(Line_t))

20 #define FAST_OUT_ESIZE (sizeof(Keyp_t))

21 #define FAST_PORT_IN 0

22 #define FAST_PORT_OUT 1

23 #define FAST_PORT_COUNT 2

Listing 2.16: ORB FAST dataflow actor definition.

1 STREAM_CONSTRUCTOR (void *arg) { ... }

2 STREAM_DESTRUCTOR (...) { ... }

3 STREAM_INIT(void *arg) {

4 SET_PORT_QUOTA (FAST_PORT_IN, 3+(N-1));

5 SET_PORT_QUOTA (FAST_PORT_OUT, MAX_IMAGE_WIDTH/2);

6 THIS->state = FAST_IDLE;
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7 }

8 STREAM_WORK() {

9 int16_t fastThreshold = THIS->_cFastThreshold;

10 uint8_t n_levels = cfg->n_levels;

11 switch (THIS->state) {

12 case FAST_IDLE:

13 THIS->level = 0;

14 SET_PORT_QUOTA (FAST_PORT_IN, 3+(N-1));

15 THIS->state = FAST_LEVEL;

16 // Fallthrough to LEVEL

17 case FAST_LEVEL:

18 THIS->header = (Keyp_t*)STREAM_OUT_RESERVE (FAST_PORT_OUT, 1);

19 for (i = 0; i < 3-1; i++) {

20 THIS->line_p[i] = (uint8_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

21 }

22 THIS->cornerCount = 0;

23 THIS->y = edge_threshold;

24 SET_PORT_QUOTA (FAST_PORT_IN, N+1);

25 THIS->state = FAST_LINE;

26 break;

27 case FAST_LINE:

28 int xsize = cfg->img_width[THIS->level];

29 int ysize = cfg->img_height[THIS->level];

30 int count;

31 fast9_detect (level, &THIS->line_p[THIS->idx], ..., &count);

32 THIS->cornerCount += count;

33 // Rotate FAST window

34 STREAM_IN_RELEASE (FAST_PORT_IN, N+1);

35 for (i = 0; i < 3-1; i++) {

36 THIS->line_p[i] = THIS->line_p[i+1];

37 }

38 for (i = 0; i < N+1; i++) {

39 THIS->line_p[i+2] = (Line_t*)STREAM_IN_POP(FAST_PORT_IN, 1);

40 }

41 THIS->y += N+1;

42 if (THIS->y < ysize) break;

43 // Fallthrough to LINE_END

44 case FAST_LINE_END:

45 STREAM_IN_RELEASE (FAST_PORT_IN, 3+(N-1));

46 THIS->header->... = THIS->cornerCount;

47 STREAM_OUT_PUSH(FAST_PORT_OUT, THIS->cornerCount+1);

48 THIS->level += 1;

49 if (level < n_levels) {

50 SET_PORT_QUOTA (FAST_PORT_IN, 3+(N-1));

51 THIS->state = FAST_LEVEL;

52 break;

53 }

54 // Fallthrough to LEVEL_END

55 case FAST_LEVEL_END:

56 SET_PORT_QUOTA (FAST_PORT_IN, 0);

57 STREAM_EXIT();

58 }

59 STREAM_YIELD();

60 }

Listing 2.17: ORB FAST actor with dataflow firing rules.

The KPN version of the actor from Listings 2.14 and 2.15 consisted
of a loop-nest with the outermost level iterating over the images in
the image pyramid, the second level over the image lines inside each
image, and the innermost level iterating over the image pixels. In
order to transform the KPN code to firings, all loops in the loop-nest
above the granularity level need to be converted to a state machine.
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For our FAST actor, we have chosen the second level loop, iterating
over input image lines as the granularity level. The conversion is
straightforward. The state machine states correspond to the loop-
nest levels of the KPN actor: the FAST_IDLE corresponds to the initial
state, the FAST_LEVEL and FAST_LEVEL_END to the outermost level loop, and
the FAST_LINE and FAST_LINE_END to the second level loop. Before the WORK

function yields the control to the scheduler, a transition to the next
state needs to be specified by setting the private THIS->state variable.
In addition, the firing rules can be given for the next firing via the
STREAM_SET_PORT_QUOTA API function. The STREAM_SET_PORT_QUOTA function takes
two arguments, the input or output port id and the number of tokens
to expect in that port before the firing can take place. The initial state
and the initial firing rules can be specified inside the actors’ STREAM_INIT

function. Notice that by default, unless set by the actor, the firing
rules are not set and the actors’ reserve and pop calls become blocking
similar to the KPN execution mode.

One important point about converting the graph into the dataflow
form is that all variables alive across multiple actor firings need to
be saved by the actor before the end of the firing and restored in the
next firing. For this, such variables need to be added to actors’ private
state, similar to local variables level, header, y, and cornerCount from the
FAST actor example.

2.4.7 Further refinement and optimization

In an embedded system, the cost of the system and the power
consumption are directly related to the system memory size [156],
and therefore reducing application memory footprint is important.
The dataflow program memory footprint depends on the communi-
cation buffers size and is finally related to the actors’ granularity. The
coarser the actor granularity, the bigger is the memory footprint. On
the other hand, when the granularity of a program is very fine, the
overhead of the runtime synchronization and communication has a
negative impact on efficiency. Thus, the optimization objective con-
sists in finding the best trade-off between the communication buffer
sizes and the parallelization overhead.

This step is the most time-consuming of the entire transformation
process since the developer needs to choose from many different pos-
sibilities leading to different trade-off results. For example, we have
noticed that processing the NONMAX, HARRIS, or CULL one keypoint per
firing is inefficient because the amount of work per keypoint is small
relative to the actor invocation overhead. One possibility that we ex-
plored was to combine the three actors together thus creating larger
workload per keypoint. While this works well with smaller number
of processing resources (less than 4 processing elements), when the
number of processing resources increases, the resulting bulky actor
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is difficult to efficiently schedule and balance with other actors. On
the other hand, several keypoints are usually simultaneously avail-
able for processing by the above actors. This allows the above actors
process multiple keypoints (tokens) per firing leading to noticeable
reduction in parallelization overhead. In StreamDrive, increasing the
working set granularity is an optimization task within a well defined
reference frame - number of tokens per actor firing. At the same time,
preserving tokens natural granularity allows optimized application
keep algorithmic description close to the original code.

As a general rule, the optimization process should first search for
the possibility to combine actors together - this has additional ben-
efits of reducing the overall buffer requirements since intermediate
buffers between the combined actors can often be eliminated, and of
reducing the schedulers’ workload since fewer actors are active in the
system. Then, the optimization should work to increase the number
of tokens used in actors firings until an acceptable trade-off between
the performance and the memory footprint is found.

This section’s example illustrates several important points from the
StreamDrive:

• The StreamDrive successive refinement flow facilitates paral-
lelization of sequential applications into the DPN implementa-
tion. For example, the original fast9_detect code incrementally
undergoes relatively simple modifications during the transfor-
mation process: addition of the StreamDrive communication
primitives; using the rotating window of image lines instead of
the full image; etc.

• The StreamDrive does not impose any specific language restric-
tions on reference code in order to be parallelized.

• Unlike standard dataflow implementations, the StreamDrive al-
lows usage of shared global variables. Shared variables are very
efficient way of communicating in a shared memory environ-
ment and it facilitates porting existing sequential reference code.
In our example, the FAST actor relies on global cfg for retrieving
parameters such as image width and height, etc. These param-
eters are also used by other actors and, instead of duplicating
the set of these parameters for each actor, they are implemented
as a shared data structure. The coherent use of the shared data
remains developer’s responsibility.

• The StreamDrive runtime simultaneously supports two execu-
tion modes, the KPN and the DPN execution. This is essential for
enabling our incremental transformation flow.
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Figure 2.9: Transitions between dataflow actor states. A sleeping actor is
unblocked when last KPN blocking condition has been removed
or when all firing rules are satisfied.

2.5 the streamdrive runtime system

The StreamDrive runtime system provides application with a com-
munication layer and the dynamic scheduler. It is implemented as a
user-level library avoiding costly system calls and enabling optimiza-
tion such as inlining function calls, etc.

2.5.1 Actor Management and Scheduling

The actor management and scheduling component (scheduler) or-
chestrates the whole life-cycle of a dataflow execution: the startup
phase, the running phase and the shutdown phase. In the startup
phase, the scheduler invokes the user-supplied dataflow graph con-
struction routine which creates actors and communication channels.
While the dataflow network is running, the scheduler balances the
load by choosing which software actors will be executed, when, and
on which processing element. Software actors can represent DPN ac-
tors with firing rules or KPN processes with blocking conditions. All
DPN firing rules and KPN block and unblock operations are managed
by the scheduler, so it is able to keep track of the ready actors and
shut down the dataflow execution when this number reaches zero.
The scheduler also keeps all information necessary for resolution of
runtime deadlock. In this section, we present the scheduler’s main
control-flow, i.e., startup, shutdown and management of the actor’s
life-cycle.

Figure 2.9 depicts the life-cycle of a StreamDrive actor, both soft-
ware and hardware-implemented. An actor is created in the ready
state where it is eligible to be selected by the scheduler for execution
if it is a software actor, or for starting execution if it is a hardware-
implemented function. Once selected, it enters the run state from
which it can either (1) yield (a DPN actor) or be blocked (KPN actor),
entering the sleep state; or (2) exit and release resources associated
with it. When a KPN actor (process) is blocked, it is not eligible for
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execution until another actor removes the blocking condition (by sup-
plying or consuming the required number of tokens), i.e., an actor
cannot unblock itself. After the blocking condition has been removed,
the software actor enters the ready state and is again eligible for dis-
patch, and the hardware-implemented actor continues its execution.
When a DPN actor yields control to the runtime scheduler, it is not eli-
gible for execution until all associated firing rules have been satisfied.

The StreamDrive scheduler is cooperative, which means that an
actor runs uninterrupted until it yields control to the scheduler, en-
counters a blocking point, or exits. In our implementation, the only
potentially blocking points are currently the reserve and the pop oper-
ations.

StreamDrive scheduler implements a number of runners equal to
the number of programmable PEs. The scheduler also contains static
data shared by all runners, which includes:

• Descriptor tables for all instantiated actors, ports, and channels.

• Synchronization objects for controlling access to critical code
sections.

• Immutable data related to deadlock detection mechanism.

• Complete bookkeeping data.

• Detailed accounting information.

The data private to each runner includes an actor queue, a pointer
to the currently running actor, a pointer at runner’s runtime stack,
and the runner accounting information. The actor queue is organized
as doubly linked lists of actor instances organized by actor priority
levels. The pointer to the currently running actor is needed so that
the scheduler can find the actor context when actor yields, blocks or
resumes the execution.

The scheduler assigns unique integer identifiers to each newly
created actor or communication port, which are created using the
StreamDrive graph construction API described earlier. The identifiers
start at 0 and increase by 1 for each new actor or port. These IDs
are used to map actors and channels to corresponding actor context
descriptor and port descriptor tables. There is one dsched_acd_t per ac-
tor instance in the current dataflow graph. The dsched_acd_t contains
actor’s scheduler related data and the data needed for user-mode
context switch. The port descriptor serves as the interface between the
user-provided actor code and the runtime communication layer.

2.5.2 Control Flow

The StreamDrive application starts with the main routine executed
in one of the PEs (typically the PE0). Among other actions, the main
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Figure 2.10: Runner control flow. When all actors reach the TERMINATED
state, the scheduler exits the loop.

routine invokes the dataflow graph construction and configuration
procedures via the StreamDrive graph API. The runners are created
during the graph construction procedure, one per programmable PE.
Applications may give affinity hints to software actors to tell the
scheduler on which subset of PEs each actor will execute. The affini-
ties are set at graph configuration time as well as actor priorities for
the priority-based scheduler. This dataflow preparation phase as well
as the shutdown phase after the dataflow graph has completed its ex-
ecution, are executed in the starting PE.

The dataflow graph execution is started by a call to the
STREAM_GRAPH_EXEC API method, which needs a dataflow graph to have
been built and configured. This method reads the number of PEs
to use and sets the bootstrap context and the current runtime stack
pointer for each PE. It also sets up necessary bookkeeping, starts the
deadlock detection timer and starts the runner in each active PE. This
code section is protected by a single global mutex, and runners are
waiting on the associated condition variable during this time. At the
end of the setup process, the condition variable is signaled and the
mutex is unlocked.

The scheduler is fully distributed with regard to the PEs - there
is no one process dedicated to the runtime system duties. Instead,
each PE concurrently (1) performs its own scheduling and (2) han-
dles synchronization actions related to the actor being executed by
it. As a result, the StreamDrive dataflow scheduler is fully dynamic:
it schedules but also assigns actors to PEs dynamically at runtime.
The StreamDrive runtime system is still centralized from the point of
view of the memory because the runtime system uses a single, global
scheduling list.

Each runner has the same startup procedure, which initializes per-
runner data structures (the actor queue). Once the global mutex
has been unlocked, all runners proceed simultaneously and enter the
scheduling loop.
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The scheduling loop performs the following steps (see the Figure
2.10):

1. It starts in an initial state [SWITCH].

2. It calls the policy method to choose the next actor to dispatch
[CHOOSE]. If the policy method returns NULL, there are no
ready processes, so the runner checks whether all actors are in
ZOMBIE (terminated execution) state. If so, the scheduler exits
the control loop [EXIT]; otherwise the scheduler waits for the
synchronization event to be generated [IDLE].

3. The synchronization event can be generated by actors via the
push or the release, when an actor terminates execution, and by
the DMA on a data transfer completion. All this events corre-
spond to a change in the dataflow graph, wake up the scheduler,
which goes to the initial state [SWITCH].

4. If the policy method finds a ready actor, new actor’s state is
restored [RESUME].

5. The actor is dispatched on the processing element [ACTOR].

6. The actor has returned control to the scheduler because it has
blocked, yielded or exited. The actor’s state is saved [SUS-
PEND].

7. Go to step 1.

An actor may be acquired and executed by at most one runner.
In order to ensure this, actors are protected by locking the mutex
associated with the actor when the actor is acquired by the policy
method [CHOOSE]. The mutex is unlocked when, either the policy
method fails to choose this actor, or when actor is suspended, or when
actor terminates. The mutex is accessed from runner’s context and
if the mutex is already taken by another runner, the policy method
moves to the next actor in actor queue.

StreamDrive uses a priority-based scheduler where higher prior-
ity actors are selected for execution before actors of lower priority,
which are dispatched when all higher-priority actors are sleeping.
Contention among processes of equal priority is resolved by a round-
robin policy. Actor priorities are application-specific and statically
assigned at dataflow graph construction time.

All runners share a counter that reflects the total number of active
runners. The counter is set to the total number of PEs in the startup
procedure, and it is decremented every time a runner is exiting the
scheduler loop. The counter decrementing is also protected by a spe-
cial mutex. When all runners exit their scheduler loops, the main PE

invokes the dataflow graph termination procedure. Among others,
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the graph termination procedure checks that all actors and the syn-
chronization counters have been left in a consistent state (for exam-
ple, no tokens remain un-consumed in the communication channels),
cleans up the global state, and writes the collected accounting data to
the stream given as the argument, default being standard output.

2.5.3 User-Mode Context Switch

Context-switch is a mechanism that enables time-multiplexing of
several KPN actors (processes) over one runtime runner. Context-
switch is usually performed by the OS kernel as part of scheduling
threads. However in order to gain efficiency or predictability, we
have implemented our own user-mode context switch mechanism op-
timized for our platform programmable cores. The context-switch is
written in target architecture assembly language. The actor’s context
is stored as the dsched_ctx_t structure shown in Figure 2.11. The regis-
ter area stores registers necessary to resume the actor after it has been
suspended. Along with stack pointer and program counter registers,
we store only those registers that the calling convention mandates
to be saved across function calls. When a context switch occurs, the
actors’ register context is saved to a location in the off-cluster mem-
ory. Together with saving actors’ register context, the current runtime
stack is also spilled to the actors’ external stack location pointed at by
the stack field in the dsched_ctx_t data structure.

As explained earlier, StreamDrive supports two execution modes,
the DPN and the KPN. In the DPN mode, actors run-to-completion and
therefore all actors can share a single runtime stack per PE during the
execution. These runtime stacks can be fixed for the entire execution
because the stack size for each software actor is specified in actor dec-
laration and is therefore known at compile-time for all actor instances.
These runtime stacks are also reasonably small to fit inside the shared
cluster memory because typical signal processing actors do not use
recursion, and large stack-allocated variables are easily avoided. Ad-
ditionally, the stack hungry print and file manipulation routines are
not typically used with high-performance embedded code 5. Thus, in
practice a small stack of 1-2KB per actor is largely sufficient.

In the KPN mode, actor execution can be suspended on a block-
ing condition (they do not run-to-completion) - therefore each actor re-
quires its own dedicated runtime stack. Placing too many actor stacks
inside the cluster memory raises an important difficulty because this
memory is relatively small. For example, given a stack size of 2K per
actor and a relatively small number of actor instances, eg. 20, the total

5 During the development, it is often convenient to use the printing routines even
though they are usually removed from the final performance version. In this case,
bigger stack can be allocated and placed in larger off-cluster memory with an asso-
ciated performance penalty.
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Figure 2.11: Actor context descriptor and stack spilling.

stack memory requirement would be 40KB, a heavy overhead for a
relatively small cluster memory. But most importantly, the number of
actors would have to be considered along with the dataflow commu-
nication buffer sizes and other memory related trade-off parameters.
Alternatively, the individual actor stacks can be allocated in the larger
off-cluster memory. However, placing the runtime stack inside the ex-
ternal memory, with long access latency, leads to an inefficient, low
performance execution.

We address this difficulty by implementing a novel stack spilling
strategy. For this, we allocate one runtime stack per PE inside the
shared cluster memory. This runtime stacks are called current runtime
stack and are used during execution in both execution modes (the
total number of these stacks is independent of the number of appli-
cation actors). The individual actor stacks are also allocated in the
larger off-cluster memory and serve as placeholders for saving sleep-
ing KPN actors’ stacks. When a KPN actor gets blocked during the
execution, together with saving actors’ register context, the current
runtime stack is saved or spilled. When the blocked actor resumes
execution, its register context is restored, and also its stack content is
loaded to current runtime stack from the external stack location. In
the DPN execution mode, actors do not get blocked and no context
switch and stack spilling are necessary.

There are two consequences to the stack spilling. First, KPN ac-
tor assignment to PEs cannot be changed when actor is resumed af-
ter having been suspended. Indeed, because different PE’s runtime
stacks point at different addresses in the cluster shared memory, a
suspended actor can only resume its execution in the same PE (ad-
dress space) where it has been suspended. As a result, each KPN

actor keeps execution in the same PE where it has begun its execution.
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Second, using the above stack-spilling strategy increases the cost of
a context-switch: in addition to usual saving and restoring registers,
the stack contents need to be saved and restored as well. In order
to alleviate the problem, StreamDrive optimizes the KPN execution as
follows: (1) our runtime scheduler minimizes the context-switch oc-
currences, (2) we have implemented optimized, hand-crafted code for
the context switch routines. Moreover, in our experiments we have
observed that, typically, the total number of bytes of stack that need
to be spilled is quite small, and penalty for stack spilling is compa-
rable to that of register context switching. In general, we consider
the KPN execution as an intermediate step during the incremental
transformation process from a sequential reference code into a DPN

implementation with no context switching.

2.5.4 Communication Layer

In the dataflow model, the FIFO channels are the only means of
communication between actors. The communication layer must not
only fulfill the dataflow semantics, but it should also be efficient.

The StreamDrive communication layer defines three types of com-
munication channels: s_buffer_t, s_broadcast_t, s_collect_t. The commu-
nication channels use circular buffers to store tokens. All three types
are hidden from the developer and are represented by opaque han-
dles. In addition to the standard dataflow communication buffer
type, we have extended communication channels with support for
the broadcast and the collect functionality. The broadcast allows a single
communication channel to be shared by several destination dataflow
actors. Sharing the channel removes the necessity to copy-forward to-
kens to all destinations. The important operation in the broadcast
channel is release. The broadcast needs to ensure that all destination
actors have released the token before the release can be seen by the
source actor. Similarly, the collect allows a single communication chan-
nel to be shared by several source dataflow actors. Sharing the chan-
nel removes the necessity to copy-join tokens from all sources. The
collect needs to ensure that all source actors have pushed the token
before the push can be seen by the destination actor. The broadcast
release and the collect push operations are internally supported by
the StreamDrive communication layer. Therefore, there is no need to
schedule these operations - the runtime knows when the release or
the push needs to be executed. For example, a broadcast release will
only be executed if the broadcasting output port is blocked on a FIFO
full condition. Such dedicated support to the broadcast and the collect
connections ensures optimal runtime execution.

StreamDrive actors do not access the communication channels di-
rectly; they define instead instances of ports, which ensure unidi-
rectional communication. Four types of communication ports are
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defined: stream_out_t, stream_in_t, sync_out_t, and sync_in_t. The port de-
scriptor structure holds common bookkeeping data, independent of
what type of port it is, and some port-specific fields. The common
part makes it possible to treat all ports as a single object and write
code that treats all ports uniformly when necessary. The StreamDrive
API methods on ports implement StreamDrive communication proto-
col. The sync_in/out ports implement dataflow synchronization in cases
where no data between the two actors need to be communicated. In
particular, these ports implement the push and the pop methods but
do not have associated channels and do not use associated reserve or
release functions. All StreamDrive API communication methods take
a communication port id and the number of tokens involved in the
communication as parameters. The StreamDrive graph API provides
methods for connecting the stream_out_t and stream_in_t ports, as well as
the sync_out_t and sync_in_t ports together.

The reserve and pop operations use WAIT function to implement KPN

blocking semantics. The implementation of StreamDrive API port
methods is optimized such that no penalty is incurred when the chan-
nel is not blocking: ensuring that the DPN execution is not penalized
by the KPN blocking behavior. The WAIT function is a hook into the
runtime scheduler: it gives hand to the runtime scheduler when a
blocking condition is encountered, and when the blocking condition
is removed, the scheduler returns to a point in the WAIT function where
the actor has been interrupted. Semantically, the WAIT function corre-
sponds to a KPN execution mode; the runtime scheduler performs
required context-switch when entering from and returning to the WAIT

function.
The push and release operations are coordinated: when an actor

releases a token from a full channel, it must unblock the actor on the
sending side (if it was blocked). Similarly, when an actor pushes a
token to an empty channel, it must unblock the actor on the receiving
side (if it was blocked).

2.5.5 Deadlock Detection

The dataflow semantics requires that receiving a token from an
empty channel shall block the receiving actor (process) until a token
arrives. Token sending should always succeed without blocking, but
such definition of the send operation would require infinite channel
capacities, which any real implementation obviously cannot provide.
In practice, computers have only a limited memory, so the assump-
tion about infinite channel capacities is never fulfilled. Real imple-
mentations assign finite capacities to channels and redefine the send
operation to block if the output channel is full. With such modifi-
cation of operational semantics, an artificial deadlock can occur at
runtime. This is a situation where a subset of actors is blocked in a
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deadlock cycle, with at least one actor being blocked on send. The
deadlock is artificial because it would not occur with non-blocking
send, i.e. infinite channel capacities.

Generally, execution of arbitrary dataflow networks in limited
memory requires runtime detection and resolution of artificial dead-
locks, which was first addressed by Parks [157]. It is impossible to
statically compute channel capacities that are sufficiently large to en-
sure that artificial deadlock cannot occur at runtime. Parks’ algorithm
resolves the problem when a global deadlock occurs, that is, when all
actors in the network have become blocked. If at least one actor is
found to be blocked on a send, the deadlock must be artificial, and
it is resolved by increasing the capacity of the smallest full channel
in the deadlock cycle. Geilen and Basten [158] have proposed a dead-
lock detection and resolution algorithm for deadlock that is local, i.e.
involve only a part of the network.

The artificial deadlock resolution is impractical in a low-cost, low-
power resource constrained embedded platform. Instead, in a prac-
tical implementation we treat the deadlock occurrence as error con-
dition, i.e. detecting a deadlock should terminate the network exe-
cution. Indeed, an artificial deadlock can occur in two cases: (1) the
application is executable from bounded memory but communication
channels are not sufficiently large for the application working set, and
(2) the application is not executable from bounded memory.

From a practical standpoint, applications whose memory require-
ments are not bound have limited interest in our target computing
domain, therefore detecting the deadlock and raising the error con-
dition is sufficient for our purposes. In order to detect an eventual
deadlock, we are using the timer mechanism available in each cluster
in our platform. A timer interrupt is thus programmed at the begin-
ning of the dataflow graph execution. If the execution takes longer
time, the interrupt is triggered terminating the execution. Usually, de-
velopers have a good idea of how long the execution should take. For
example, when targeting a video sequence processing at 30 frames
per second, each frame shall have been processed in at most 1/30

of a second. Generally, setting the deadlock detection interrupt to
a few seconds is enough for detecting eventual deadlock even with
low-performance debug version of the application.

2.5.6 Accounting Options

Accounting, i.e., collection of detailed performance statistics data,
is a StreamDrive compile-time option because it causes noticeable ex-
tra overhead in terms of performance and memory footprint. The
overhead in the accounting mechanism stems from measurements of
runners and per-actor CPU time, as well as saving collected informa-
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tion. When enabled, the accounting mechanism collects the following
information:

• The time (consumed CPU cycles) spent inside the runners, as
well as CPU time used by actors.

• Idle time used by the runners. The idle time is the total real
time that runners spend in the IDLE state waiting for a synchro-
nization event to be raised.

• Number of actor yields and context switches; each dispatch of
an actor counts one.

• Dataflow statistics, i.e. number of tokens that have been sent
and received on each actor port.

Additionally, StreamDrive can generate full VCD traces of the execu-
tion including waveforms describing execution of all actors showing
the detailed state of the actor at any given point in time. These VCD
traces are useful for performance evaluation and debugging.

2.6 summary

In this chapter, we have presented the StreamDrive framework in-
cluding implementation details of its components: the hardware plat-
form, the programming API, the runtime scheduler, and the commu-
nication layer.

The StreamDrive platform allows integration of streaming tightly-
coupled application-specific hardware elements as actors of a
dataflow application. The platform also supports the efficient
dataflow synchronization via extending the programmable cores in-
struction set with special synchronization even handling instructions,
via the dataflow-enabled DMA engine and via the dedicated synchro-
nization event network.

The StreamDrive runtime scheduler is fully distributed allowing
automatic load balancing. The StreamDrive runtime scheduler sup-
ports simultaneous execution of two types of dataflow actors, the KPN

blocking processes and the DPN actors with firing rules. Supporting
the two types of actors has two objectives. First, it allows optimal ex-
ecution in a heterogeneous context because software actors are most
efficiently executed under the control of a DPN scheduler, while the
hardware implemented functions are most efficient running as inde-
pendent KPN processes. Second, it enables the incremental successive
refinement application development flow, starting with a sequential
reference C algorithm and proceeding to a highly optimized DPN im-
plementation. The KPN execution of software actors is intended then
as an intermediate, sub-optimal way of executing dataflow applica-
tions.
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The simultaneous support for the KPN and DPN actors and the pos-
sibility to refine a KPN process into a DPN actor during the appli-
cation design space exploration raises a number of implementation
difficulties. Among others, the StreamDrive optimizes the blocking
behavior of KPN actors vs the firing rules of DPN actors. Another dif-
ficulty is the runtime stack management. In order to optimize the
runtime stack footprint vs performance, the StreamDrive implements
the novel stack spilling technique.

The StreamDrive communication protocol is designed to allow
copy-free data exchange and is based on lock-free synchroniza-
tion counters. Both, the software actors and the hardware imple-
mented blocks support this common protocol. To further improve
the dataflow communication efficiency in a limited shared memory
clusters, the StreamDrive also implements a new broadcast and col-
lect communication channels that allow different dataflow actors to
share data buffers instead of duplicating them. This broadcast and
collect channels also allow elegant and efficient implementation of
data-parallel actors which is typically cumbersome in the standard
dataflow execution model. To enable execution in limited memory
space, the communication layer imposes finite channel capacities and
redefines the dataflow send operation to block on full channels. This
modification of dataflow semantics opens for the possibility of artifi-
cial deadlock, a problem which we address by a centralized runtime
deadlock detection timer.

Finally, we have equipped StreamDrive with extensive runtime ac-
counting of various performance data. This mechanism has overhead,
so it can be completely disabled at application compile-time.

In this chapter we have discussed how the dataflow model can be
used to develop parallel applications and how low-overhead dataflow
runtime can be implemented in a shared memory cluster. In chapter
4, we will extensively evaluate performance of StreamDrive applica-
tions as well as performance of the StreamDrive itself.



3 C O M P U T E R V I S I O N
A C C E L E R ATO R

Normal people believe that if it ain’t broke,
don’t fix it. Engineers believe that if it ain’t

broke, it doesn’t have enough features yet.

—Scott Adams

This chapter focuses on developing the Computer Vision Engine
(CVE), an implementation of the StreamDrive platform targeting the
computer vision application domain. The central element of the CVE

is the HWC tightly-coupled convolution hardware block, which can
efficiently execute CNN convolutional workloads in addition to the
standard image processing convolution.

The computer vision is the automated extraction of information
from images. Traditional approaches to computer vision date back
to the past 10-20 years and are characterized by extracting human-
engineered features (edges, corners, color) deemed to be relevant in
vision tasks, such as image classification, object detection, face recog-
nition, etc.). The techniques stemming from deep neural networks
learn these features via an automated procedure using non-linear sta-
tistical models (deep nets). Particularly popular are Convolutional
Neural Networks (CNN) that are widely used for solving artificial
intelligence problems, such as object and voice recognition, scene la-
beling and others [159].

There has been a significant amount of research into hardware ac-
celeration of traditional feature detection algorithms. The examples
include the GPU-accelerated [160, 161], and FPGA-accelerated [162,
163, 164, 165, 166] solutions. However, these solutions are either
too general and too costly for being used in constrained embedded
platforms, or are too inflexible. For instance, Bouris et al. [163] and
Svab et al. [162] both presented a fixed FPGA implementations for the
SURF algorithm. Although there are many opportunities for creating
application-specific hardware, specializing it for particular feature de-
tectors and feature generators, this would lead to over-specialization.
Such dedicated hardware is either too complex, supporting dozens
of different functions and configurations options, or too inflexible, i.e.
useful in a single image processing application.

One example of a common image processing operation that is used
by virtually all image processing algorithms is constructing the image
pyramid. The image pyramid helps detecting image patterns that ap-
pear at different scales. The image pyramid consists of a sequence of
copies of an original image in which pixel density and resolution are

75
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decreased in regular steps. The feature detection is then applied over
a series of images representing scaled down original image. Comput-
ing the image pyramid involves pixel interpolations and it is possible
to develop a tightly-coupled pixel interpolator for this task. However,
a special hardware pixel interpolator is usually readily available as
part of most embedded image processing systems. Therefore, we de-
cided to use the existing off-cluster hardware block for building the
image pyramid.

Another common basic operation used by different computer vi-
sion and image processing algorithms is the convolution. Convolu-
tion is also the most expensive operation in terms of computing re-
quirements due to the large amounts of data that needs to be pro-
cessed. For example, best commonly used feature descriptors in
terms of precision, such as the Scale-Invariant Feature Transform
(SIFT) [167] and the Speeded Up Robust Features (SURF) [168] re-
quire computing the gradient of the image in the region of each fea-
ture by convolving it with a 2D filter, which is the most time consum-
ing part of processing. Convolution is ubiquitously used in image
processing algorithms for filtering to remove useless details and noise
from images, for edge or gradient detection, for blurring and sharp-
ening images, embossing, for local range detection and local standard
deviation calculations, as well as for other transformations.

Recently, many research and development efforts have focused on
CNN inference accelerators in order to meet their high computational
requirements with reasonable energy and cost efficiency [169]. In the
CNN computation, convolution accounts for up to 90% of the pro-
cessing. Thus, in the development of a flexible solution for the CNN

acceleration, a critical keypoint is designing computationally efficient
means of performing the CNN convolution.

The straightforward approach to accelerate the convolution pro-
cessing is to use the 2D convolvers. This works well with image
filtering and traditional computer vision implementations. However,
fast implementations of a 2D convolution core are necessary but not
sufficient to accelerate the CNN workload. In CNNs, storing signifi-
cant amount of intermediate data to the off-accelerator memory and
the detailed orchestration of complex control and data flows by the
controlling processor quickly offset performance gains obtained by
using fast hardware only for 2D convolutions.

3.1 designing cnn convolution accelera-
tor

The main bottleneck for implementing efficient and cost effective
convolution hardware for the CNN inference is the memory system.
Large volume of data accessed (weights) and produced (feature maps)
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during CNN inference makes it difficult to simultaneously buffer the
input feature maps, the output feature maps, and the filter weights
in limited internal accelerator memory. This generates high memory
traffic between the accelerator internal memory and off-accelerator
memory, resulting in lowered performance and increased power con-
sumption. One way to alleviate this issue is to use large SRAM
buffers (up to a few MBytes may be used) in order to completely elim-
inate main memory traffic [32, 170]. When massive accelerator area
budget is available, this may be an acceptable approach. However,
large amounts of memory are not affordable in deeply-embedded
markets, such as mobile or IoT clients, for example. Furthermore,
even with abundant memory resources, relying solely on large inter-
nal buffers is an expensive approach in terms of area and power.

While completely absorbing all CNN memory traffic in internal ac-
celerator storage is usually not possible, the memory bandwidth re-
quirement for a given accelerator storage capacity can be significantly
reduced if sufficient data reuse happens. The data reuse pattern of
a computation, in time and space, is determined by the computation
schedule. Generally, the efficiency and performance impact of the com-
putation schedule varies with CNN topology and size making it difficult
to adapt the accelerator architecture to different CNNs.

This Chapter describes an analytical model for finding the best com-
putation schedule for a CNN convolutional layer, such that computa-
tion working set fits limited internal accelerator memory while the
number of accesses to the off-accelerator memory is minimized. It
is shown that proposed model is more accurate than previously pub-
lished models in the case of application-managed scratchpad memo-
ries, which are used in the majority of computing platforms dedicated
to CNNs [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. We have applied this
model for designing a tightly-coupled convolution hardware block,
the HWC, that we integrate with the StreamDrive shared memory clus-
ter creating a complete domain-specific computer vision platform, the
CVE. The computation schedule found using our model is not trivial and
achieves significant bandwidth reductions with respect to previously
published accelerators based on a similar architecture [29]. We show
that this computation schedule is implementable in practice by design-
ing the HWC using the CatapultC high-level synthesis tool [171]. We
have verified that our analytical model is accurate by comparing the
number of memory accesses predicted from our model with the real
number of memory accesses measured from the HWC implementation.
Finally, based on our analytical model we develop a methodology for
optimal convolution loop-nest tiling with respect to the cluster shared
memory size.
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3.1.1 Background on CNNs

The success of the AlexNet [172] CNN in the 2012 ImageNet recog-
nition competition has established it as one of the most promising
machine learning techniques.

As a classical supervised learning algorithm, CNN employs a feed-
forward process for recognition, or inference, and a backward path
for training. In industrial practice, application designers train CNN

off-line and use the off-line trained CNN to perform the inference.
So in this thesis, we focus on implementing the forward inference
computation.

A typical CNN for image recognition is composed of two compo-
nents: a feature extractor and a classifier. The feature extractor is
used to filter input images into feature maps that represent various
features of the image. These features may include corners, lines, cir-
cular arch, etc., which are relatively invariant to position shifting or
distortions. The working principle of CNN is to extract the local fea-
tures from high-resolution feature maps and combine them into more
abstract low-resolution feature maps. These are realized by two alter-
nating types of layers: convolutional and pooling layers. The last few
layers are often fully-connected layers that combine all local features
together to produce the abstracted classification results. The output
of the feature extractor is a low-dimensional vector containing these
features. This vector is then fed into the classifier, which is usually
based on traditional artificial intelligence algorithms. The purpose of
this classifier is to decide the likelihood of categories that the input
(e.g. image) might belong to.

Figure 3.1: AlexNet CNN that won the ImageNet 2012 contest [May look
weird because there are two different processing “streams”. This
is because the training process was so computationally expen-
sive that they had to split the training onto 2 GPUs.].

Figure 3.1 shows AlexNet, a CNN application, taken from [172].
This CNN is composed of 8 layers. The first 5 layers are convolutional
layers and layers 6 − 8 are fully connected. The algorithm receives
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three 224x224 input images that are from an original 256x256 three-
channel RGB image. The output vector of 1000 elements represents
the likelihoods of 1000 categories. As is shown in Figure 3.1, Layer
1 receives 3 input feature maps in 224x224 resolution and generates
96 output feature maps in 55x55 resolution. The output of Layer 1 is
partitioned into two sets, each sized 48 feature maps (this is the result
of partitioning over two GPU units in the original implementation).
Layer 1’s kernel size is 11x11 and the sliding window shifts across
feature maps in a stride of 4 pixels. The following layers also have a
similar structure.

From the inference perspective, previous studies have shown that
convolution operations will occupy up to 90% of the computation
time [173, 174]. So the hardware acceleration must focus on accelerat-
ing convolutional layers.

Figure 3.2: CNN convolutional layer illustration.

Figure 3.2 illustrates the computation of a CNN convolutional layer.
The convolutional layer receives feature maps as input. Feature maps
are 3D volume data with three dimensions: width Hx, height Hy and
depth C. Each input feature map is convolved by a shifting window
with a Rx×Ry kernel to generate one pixel in one output feature map.
The stride of the shifting window is S, which is normally smaller
than Rx and Ry. Generally, if the convolution stride is greater than
1, the output feature map dimensions are different from the input
feature maps, i.e. of width Ex and height Ey. A total of M output
feature maps will form the set of input feature maps for the next
convolutional layer. The computation in the convolution stage, that
is repeated for each pixel in each Ey×Ex output feature map over all
M output feature maps, is shown in Equation 3.1:

O[m][y][x] =

C−1∑
c=0

Ry−1∑
k=0

Rx−1∑
l=0

I[c][y · S+ k][x · S+ l] ∗W[m][c][k][l],

∀m ∈M, ∀y ∈ Ey, ∀x ∈ Ex
(3.1)
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// M output fmaps loop

LOF: for (m = 0; m < M; m++)

// C input fmaps loop

LIF: for (c = 0; c < C; c++)

// spatial loops (ExE)

LSY: for (y = 0; y < E; y++)

LSX: for (x = 0; x < E; x++)

// filter loops (RxR, stride S)

LFY: for (k = 0; k < R; k++)

LFX: for (l = 0; l < R; l++)

{

p = I[c][y*S+k][x*S+l];

w = W[m][c][k][l];

O[m][y][x] += p*w;

}

Figure 3.3: Canonical form of the CNN convolution layer loop-nest.

Symbol Description
H Input feature map size (H×H)
E Output feature map size (E× E)
R Convolution kernel size (R× R)
S Convolution kernel stride
C Number of input feature maps
M Number of output feature maps

Table 3.1: Symbols used to discuss the CNN convolution in this thesis.

Figure 3.3 shows a “canonical form” of a generic CNN convolutional
layer expressed as a 6 level loop nest. For simplification, the initializa-
tion of output feature maps to 0 before the accumulation is omitted
from the figure. Throughout the explanation, square feature maps
are used to avoid overburdening the mathematical notation, although
the discussion can be easily extended to general rectangular feature
maps. Table 3.1 lists symbols used in discussing the CNN convolu-
tional layer and their meaning. In the Figure 3.3, there are 3 arrays
referenced in the loop-nest: the I[C][H][H] holds the C input feature
maps of size H×H, the W[M][C][R][R] holds M×C convolution ker-
nels, with R× R weights each, and the O[M][E][E] holds M output
feature maps of size E× E.

Data reuse occurs when a reference within a loop accesses the same
data element in different iterations. Convolutional loop-nest shown
in Listing 3.3 contains several opportunities for data reuse:

• Convolution reuse: Each input feature map pixel is reused R2

times within each input feature map.

• Weight reuse: Each kernel weight is reused E2 times.
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Carries? LFX LFY LSX LSY LIF LOF

I 3 or 7 7 or 3 3 or 7 7 or 3 7 3

W 7 7 3 3 7 7

O 3 3 7 7 3 7

Table 3.2: Carrying loops of array references of the CNN loop-nest.

• Imap reuse: Each input feature map pixel is reused across M
output feature map computations.

• Omap accumulation: Each output feature map pixel is reused
across accumulations of partial results from C input feature
maps.

We say that reuse of a reference is carried by a loop if the same
memory location is used by different iterations of that loop [175]. In
Figure 3.3, reuse of the W[m][c][i][j] reference is carried by two loops,
LSX and LSY; reuse of the I[c][y∗S+ i][x∗S+ j] reference is carried by a
combination of loops, (LFX,LSX), and (LFY,LSY), as well as by loop LOF;
and reuse of the reference O[m][y][x] is carried by the loops LFX,LFY,
and LIF. The reuse of the I reference is slightly more complex because
it is carried by a combination of two loops: which loop in a pair of
loops, the (LFX,LSX) and the (LFY,LSY), is carrying the reuse of array I
depends on relative ordering of the loops - the reuse is carried by the
outer loop in each pair. Table 3.2 resumes which loops are carrying
each array reference in the CNN loop-nest.

In order to take full advantage of the reuse, such that every data
is loaded from main memory only once (or stored for the O array),
large local buffering capacity is necessary. In Figure 3.3, the entire set
of input feature maps needs to be stored in the local buffer to reuse
the input data across the loop LOF. To reuse the accumulated partial
output feature maps O across loop LIF, one full output feature map
needs to be stored in local buffer. To put this into perspective, the
total amount of buffering required for the second convolution layer
of AlexNet shown in Figure 3.1, with H = 55,E = 27,C = 96,M =

256,R = 5, exceeds 284 KB if we consider that each element in the
input and output feature maps and the kernel weights is 1 byte in
size.

If large local buffer is not available, optimal data reuse cannot be
achieved and some data must be accessed from the external level in
memory hierarchy multiple times. For example, the standard 2D con-
volvers buffer a few lines of input feature maps in the local memory.
Particularly, a delay line of R lines of input feature maps are buffered
locally [173]. Thus, every input feature map pixel needs to be re-
loaded M times, once for each iteration of loop LOF in Figure 3.3. The
problem is that, although there is plenty of data reuse in the CNN
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loop-nest, unless the entire working set fits the local buffer, this reuse
cannot be taken full advantage of.

3.1.2 State-of-the-Art

The most straightforward way of accelerating the CNN convolution
processing is to use the 2D hardware convolvers initially designed for
standard image processing and filtering. For a pipelined implemen-
tation of such convolvers, an input delay buffer is used [173]. For
an image of Hy ×Hx and a Ry × Rx convolution kernel, the size of
this buffer capacity needs to be able to hold at least Hx × Ry input
pixels, with some additional room to allow reading new input data
while processing the convolution. After a delay that is equal to the
time required to fill the buffer, output pixels are available every clock
cycle. In such 2D convolvers convolution weights are stored in local
registers for the duration of processing one input image. Although
simple to implement, the 2D convolvers are very inflexible and do not
scale well for bigger workloads. These implementations usually limit
the maximum convolution kernel size; at the same time when a CNN

requires a smaller kernel, the accelerator efficiency drops. They sup-
port limited variety of CNN shapes and layers. Their input buffering
capacity limits the size of images that can be processed leading to loss
of efficiency with larger images. The CNP processor [173] was the first
CNN specific FPGA implementation based on the 2D convolver oper-
ation. The CNP architecture was designed to execute the operations
for all common CNN layers. The CNP evolved into NeuFlow [176] that
used multiple CNP convolution engines together. The NeuFlow ar-
chitecture was further evolved into the nn-X [28] taking advantage of
a more powerful FPGA chip.

Numerous other research were based on similar 2D convolvers fo-
cusing on computational performance or on communication infras-
tructure issues [173, 177, 178, 28, 179, 29, 180, 181]. These CNN accel-
erators are inflexible (which makes them inefficient with most recent
CNN topologies (like Google’s Inception or ResNets) and do not scale
well to higher performance applications.

Reuse-Driven Accelerators

The large data sizes of CNN convolutional layers require the com-
putation to be tiled to avoid using very large on-chip buffers. What
makes the tiling hard is the fact that all the data, the input feature
maps, the kernel weights, and the output feature maps, are reused
multiple times. This data reuse needs to be efficiently exploited in
order to reduce off-chip memory bandwidth. Several specialized ac-
celerators attempted to overcome the 2D convolvers limitations by
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scheduling the CNN convolution computations using different trade-
off on which data reuse to favor and which to sacrifice.

Chakradhar et al. [182] proposed a convolution engine in which a
number of input feature maps and a number of output feature maps
can be processed simultaneously, therefore exploring a mix of dif-
ferent reuse opportunities. The basic computational element of this
architecture is a bank of convolvers all computing one output fea-
ture map at a time. Each bank is composed of several 2D convolvers
whose outputs are accumulated - therefore omap reuse is achieved in-
side the bank. If more input feature maps need to be combined than
there are convolvers in the bank, then the aggregated output from the
convolver bank may only be a partial output (i.e. partial sums) that
must be stored in off-chip memory. Each convolver bank can store
a number of convolution kernels internally achieving weight reuse.
Multiple convolver banks can be put together so that one input fea-
ture map can be simultaneously used to compute more than one out-
put feature map - imap reuse. By varying the number of convolvers
in a convolver bank, as well as the total number of convolver banks,
the application can control the extent to which the different reuse di-
mensions are explored to match the exact computational workload of
a given CNN layer. Each convolver bank also has a specialized hard-
ware pipeline to compute non-linearity and sub-sampling functions
used in CNN processing.

Origami [183] architecture tiles the convolutional layer into blocks
with a fixed number of input and output feature maps. The block
of input feature maps is fed in stripes of configurable height into
the processing engine and stored in an internal SRAM buffer, which
keeps a spatial window of the input data. The processing engine is
composed of a number of sum-of-product (SoP) units which process
the same input feature map, but different weight kernels, such that
each SoP computes the partial sum for a different output feature map.
Thus, the imap reuse is exploited inside the processing engine. The
processing engine iterates over the tiled input feature maps while
the partial sums are accumulated internally to compute the complete
result - omap reuse. During the processing, on-chip filter bank holds
all the weights required for processing a tile of input and output
feature maps, exploiting the weight reuse. Because Origami needs all
input data to be stored in on-chip buffer before the processing, the
processing engine idles while the hardware is configured and while
these data are transferred to the SRAM.

The DianNao work [184] analyzed in details the data reuse prop-
erties of the different layers encountered in CNNs and the more gen-
eral Deep Neural Networks (DNN). The authors then proposed a
neural network accelerator architecture consisting of three data reuse
structures: an input buffer (NBin), an output buffer (NBout) and a
weight buffer (SB) connected to a Neural Functional Unit (NFU). The
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NFU has a fixed size tailored for processing a tiled image of Ti input
feature maps producing Tn output feature maps. The input feature
maps are split into chunks which fit in NBin, and they are reused
by implementing NBin as a circular buffer. The partial output sums
of Tn output pixels are computed for a chunk of input pixels con-
tained in NBin. Then, the same input pixels are used for another
chunk of Tn output pixels, etc., exploring the imap reuse. When the
input pixels in NBin are reused for a new set of Tn output pixels,
the previous chunk partial sums are stored in the NBout buffer. Nat-
urally, the loop iterating over output chunks must be tiled so that
all simultaneously computed partial sums fit the capacity of NBout.
DianNao also implements non-linear and pooling functions in hard-
ware. In DianNao architecture, the computation schedule and buffer
sizes have been determined experimentally. The authors acknowl-
edged that, like many processing architectures, DianNao’s efficiency
and scalability remained severely limited by memory bandwidth con-
straints. Chen et al. [184] acknowledge this issue by observing that
their neural network accelerator loses at least an order of magnitude
in performance due to memory accesses. DianNao’s successor, ShiD-
ianNao accelerator [170] was directly integrated with an image pro-
cessor sensor fully eliminating the off-chip DRAM. This approach is
not scalable as only a few small CNNs can be accommodated.

One more work that must be mentioned is the Eyeriss acceler-
ator [82, 32]. In their paper, the authors first propose a taxon-
omy that classifies existing CNN computation schedules from different
research. Thus, CNN architectures have been classified as weight-
stationary, therefore favoring the convolutional and weight reuse;
output-stationary favoring the omap reuse, and no-local-reuse explor-
ing the imap and omap reuse. Eyeriss also proposed the new row-
stationary architecture enabling a trade-off between different types of
reuse. The CNN convolution computation is mapped onto an array
of processing elements (PEs) by tiling the feature maps and the input
and output feature maps volume. Each PE uses the local scratchpads
memory for both convolutional data reuse and partial sums psum
accumulation. Filter rows, input pixels and psums are also reused
within a feature map tile via the inter-PE communication network.
By exploiting the low-cost memory levels, the PE scratchpads and the
inter-PE communication, Eyeriss minimizes data accesses to the high-
cost levels, including the large on-chip global buffer and the off-chip
DRAM.

More similar architectures include Angel-Eye [185], DLAU [186],
Orlando [36], and others. The above reuse-driven architectures re-
duce accesses to external memory by exploiting convolution data
reuse. However, they use dedicated buffering schemes leading to
sub-optimal amount of reuse because there is no flexible memory hi-
erarchy with such buffers. Given different CNN layers, there is always
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a choice to increase the data reuse of some of the input feature maps,
the weights, or the partial sum accumulations, while sacrificing the
data reuse for the others. The buffering design choice and the neces-
sity to resort to complex arbitration and routing logic to share inputs
and connect outputs of the convolvers to other resources limit the
extent to which the data reuse trade-off can be exploited.

The implementation flexibility can be increased using the FPGA
based architecture template because the buffering organization can be
adjusted to exploit data reuse in memory access patterns of a partic-
ular CNN layer. Thus, Peemen et al. [27] developed a memory-centric
configurable FPGA accelerator template for CNN, with flexible data
reuse buffers. The template supports different compute patterns in
the CNN workload and can be configured with the number of PEs,
connectivity, supported addressing modes, buffer configuration, and
buffer depth. The buffer configuration parameters influence the hard-
ware instantiation and are fixed after synthesis. By reconfiguring the
memory resources, Peemen reported up to 13 times reduction in re-
quired buffer resources compared to accelerators with fixed buffering
scheme, while maintaining the performance. Peemen’s accelerator
also supports a variety of layer configurations. Thus, multiple param-
eters of a CNN can be programmed, such as convolution kernel size,
feature map size, number of input feature maps, and sub-sample size.

Zhang et al. [38] propose a CNN accelerator template for FPGA
with multiple parallel processing elements (PE) and dedicated on-chip
buffers. As with previous architectures, the CNN convolutional layer
computation is divided into tiles of Tn input and Tm output feature
maps. The feature maps are also tiled such that the entire combina-
tion of (Tm, Tn, Ty, Tx) pixels fits with accelerator internal buffers. The
accelerator implements Tm concurrently executing computation en-
gines. Each computation engine accepts Tn inputs from input feature
maps and Tn inputs from weights and one input from bias, which is
stored in the buffers of output feature maps. The accelerator is pro-
ducing partial results for Tm output feature maps every clock cycle.
On-chip buffers are built upon a basic idea of double-buffering, in
which double buffers are operated in a ping-pong manner to overlap
data transfer time with computation. Therefore, they are organized in
four sets: two for input feature maps and weights and two for output
feature maps. Every buffer set contains several independent buffer
banks. The number of buffer banks in each input buffer set is equal
to Tn (tile size of input feature maps volume). The number of buffer
banks in each output buffer set is equal to Tm (tile size of output fea-
ture maps volume). Zhang used polyhedral-based data dependence
analysis [187] to derive a series of CNN implementations through loop
unrolling, pipelining, and the tile size enumeration with the objective
to find the best performing one. Taking into consideration additional
design constraints, such as available resources, communication topol-
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ogy, etc., Zhang proposed a particular shape of the CNN tiled loop-
nest. Zhang’s architecture template allows adjusting the tile sizes of
the CNN computation in order to optimize the data reuse. Based on
experimental observation of several typical CNN layers, the authors
implemented the memory subsystem with Tm = 64 and Tn = 7; this
clearly favors omap reuse.

Shared Memory Accelerators

An alternative to dedicated buffering and communication topology
is to use shared memory subsystem in order to facilitate the flexibility
in exploiting data reuse in memory access patterns. Surprisingly, very
few research have explored this possibility.

Sankaradas et al. [188] proposed a convolution co-processor with
functional units consisting of parallel 2D convolution operators and
programmable units performing sub-sampling and non-linear func-
tions specific to CNNs. The co-processor is connected to distributed
off-chip memory banks with large data bandwidth. The convolution
weights are kept in dedicated register file during the convolution pro-
cessing, while the off-chip memory is used as a scratchpad for inter-
mediate data. Significant amount of intermediate data are transferred
over the off-chip link requiring multiple DDRx channels, which are
expensive in terms of power and cost (chip area or pin count).

DaDianNao [189] is a successor of DianNao discussed earlier, devel-
oped with the objective to overcome the size limitations of the Dian-
Nao architecture. For this, DaDianNao employed a sufficiently large
on-chip memory for storing large CNNs close to the datapath. The
accelerator is composed of multiple chips, each chip containing com-
putation logic together with enough RAM that the sum of the RAM
of all chips can contain the whole neural network, requiring no off-
chip memory. This way the convolution weights can reside in on-chip
memory, and the intermediate results do not need to be frequently
written back and read from off-chip memory, thus removing the off-
chip memory access bottleneck. This architecture requires that the
total memory footprint of CNN dataset, however large (up to tens of
GB), is fully mapped to on-chip storage (in a multi-chip system with
a reasonable number of chips). This puts the system size and power
consumption outside of the embedded domain constraints. DaDian-
Nao needs to use large on-chip eDRAM buffers exceeding embedded
systems requirements in terms of power and cost.

Neurocube [190] and TETRIS [191] architectures leverage on recent
through-silicon-via (TSV) technology 3D memory technology in or-
der to reduce the size of on-chip SRAM buffers. Compared with
the conventional DRAM technology, 3D memory provides an order
of magnitude higher bandwidth with better energy efficiency. Using
the 3D memory allows to devote more chip area for processing ele-
ments and less area for on-chip SRAM buffers. For example, TETRIS
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integrates 8 DRAM dies on top of a logic layer that contains 16 neural
network (NN) engines used to process a CNN layer in parallel. Each
NN engine is similar to a single Eyeriss accelerator [82]: hundreds of
PEs are connected through a dedicated network into a 2D array. A
global buffer is shared by all PEs to store and reuse data from mem-
ory. TETRIS reduces the global buffer size arguing that the cost of
accessing the 3D stacked DRAM is not much higher than accessing
the on-chip SRAM in terms of bandwidth and power. Therefore, us-
ing the on-chip buffers can be bypassed in favor of in PE registers
which then capture most of the data reuse.

Above shared memory CNN accelerators require chip area, power
consumption and pin count that fall outside of the embedded com-
puting domain.

We are aware of only one embedded accelerator which uses shared
memory for implementing the CNN computation. Conti et al. [29]
proposed to connect a Hardware Convolution Engine (HWCE) to a
PULP shared memory cluster [192, 193]. The HWCE communicates
with processing elements (PE) via the same cluster shared memory
(a scratchpad) used by the PEs themselves. The tight coupling of the
HWCE to shared memory allows gaining additional flexibility within
the convolutional layer (using sub-sampling, non-linearity, etc.) oper-
ations, as well as across multiple network layers of the CNN. How-
ever, the HWCE engine itself is a classical 2D convolver with a delay
line buffer for the input feature maps and a local memory for stor-
ing the current convolution kernel weights. The reported HWCE im-
plementation supports convolution kernel size of 5x5 and the input
feature map line width of 32, 64, or 128 bytes. Similar to all limited
memory size accelerators, the HWCE requires that CNN convolution
computation space is tiled into a number of smaller blocks. The over-
head of orchestrating larger convolutions or computing larger images
can quickly offset performance gains obtained by using fast hardware
convolver. Most of all, as shown in section 4.2, the computation sched-
ule implemented using standard 2D convolvers is sub-optimal.

3.2 memory performance optimization

We consider the problem of optimizing the CNN convolutional layer
memory access pattern for a two-level memory hierarchy. Figure
3.4 shows a generic view for an accelerator consisting of comput-
ing datapath, local reuse buffer optimized for this datapath, and off-
accelerator main memory external to the computing datapath. The prob-
lem consists in minimizing the number of memory accesses to the
off-accelerator memory given a limited local buffer capacity.

A generic 2-level memory hierarchy such as that exemplified in
Figure 3.4 exposes two memory levels: off-accelerator memory, where
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Figure 3.4: Generic view of a CNN accelerator combining a computing dat-
apath with an optimized application-managed local reuse buffer,
and off-accelerator memory external to the datapath.

we assume all data involved in the CNN loop-nest is resident, and a
local reuse buffer that usually cannot host the entirety of the data, but
is vastly faster and more energy-efficient than off-accelerator memory.
This buffer is used to host data that is reused multiple times. While
data reuse is inherent in the computation and not dependent on a
particular shape of the loop-nest, the usage of a local reuse buffer of
any kind implies that the reuse only translates into a reduction of
memory accesses if there is enough data locality, i.e. if data inside
the local buffer are reused within a short period of time and are not
replaced between reuse accesses.

Data caches

Existing reuse evaluation methods derive from cache behavior and
build a localized iteration space, i.e. a set of k innermost loops of a loop-
nest where data locality is exposed [40]. It is assumed that all array
references inside the localized iteration space need to be simultaneously
stored in a local reuse buffer [175, 27, 38, 39]. Indeed, in the context
of a data cache, every array reference is mapped to a unique location
in the cache. If the cache capacity is smaller than required for hold-
ing all array references, reused data can be displaced from the cache
and are not guaranteed to remain in the cache in every iteration that
they are referenced. Thus, all data touched inside the localized itera-
tion space need to be cached in order to benefit from the data reuse.
For example, in order to reuse elements of array I across the loop LSY

in Figure 3.3, the localized iteration space will have to include loops LFX,
LFY, LSX and LSY. The data cache would need to hold H×H elements
of I - otherwise referencing I could displace some other reused data,
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O for example. The data cache would also need to hold E× E ele-
ments of the output feature map array O - otherwise, referencing the
array O may displace elements of array I from the cache before they
have been reused.

Application-managed scratchpad memories

Dedicated hardware accelerators, including CNN accelerators, com-
monly use application-managed scratchpad memories as local reuse
buffers instead of caches, as these are deemed to provide better per-
formance, predictability, and energy efficiency [147, 169]. In this case,
data placement, reuse, and transfer have to be managed explicitly
by partitioning the local reuse buffer in a set of application-managed
buffers, one per each array referenced in the loop-nest. Application-
managed buffers can be partitioned statically (i.e. by using physically
separate memory to implement them) or dynamically (i.e. by parti-
tioning a single piece of memory so that all array references fit). In-
stead of a single localized iteration space, each array reference can have
its own data locality scope. Thus, utilization of the local reuse buffer
can be optimized by choosing, for each array reference, a nested loop
level at which data are buffered for reuse. We call this level the buffer-
ing level of the array reference.

The number of loop iterations, d, that separates two consecutive
accesses to the same data element, is called the dependence distance of
data reuse or simply the reuse distance [40]. Only the elements of the
array touched by d loop iterations need to be buffered in application-
managed local buffer in order to ensure that reused data is preserved
across loop iterations. For example, in Figure 3.3, the reuse distance
of the reference to array I across the loop LSY is H× R iterations (H
elements of I are touched iterating over the LSX loop). Therefore, if an
implementation chooses to buffer the array I at the LSY level, enabling
I data reuse across this loop, H× R elements of I need to be buffered
in the local buffer. Similarly, buffering the array O at the LFY level, i.e.
reusing array O data across the two innermost loops, requires only a
single element of the array O to be buffered inside the local buffer.

3.2.1 Data Locality Optimization

The memory performance optimization can be formulated as a
loop-nest optimization problem [40]. For example, methods such as
[175] or [27], use reordering and tiling of the loop-nest to maximize the
data locality. Loop reordering places a subset of the k loops that form
the localized iteration space at the innermost position. Loop tiling par-
titions the loop-nest iteration space into a number of smaller blocks,
such that data used inside the localized iteration space stays in the lo-
cal buffer until it is reused. Figure 3.5 shows a general form of tiled
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// output fmaps -- loop on tiles

LTOF: for (mm = 0; mm < M; mm += mss)

// input fmaps -- loop on tiles

LTIF: for (cc = 0; cc < C; cc += css)

// spatial -- loops on tiles

LTSY: for (yy = 0; yy < E; yy += yss)

LTSX: for (xx = 0; xx < E; xx += xss)

// output fmaps -- tile loop

LOF: for (m=mm; m<min(mm+mss,M); m++)

// input fmaps -- tile loop

LIF: for (c=cc; c<min(cc+css,C); c++)

// spatial -- tile loops

LSY: for (y=yy; y<min(yy+yss,E); y++)

LSX: for (x=xx; x<min(xx+xss,E); x++)

// kernel -- tile loops

LFY: for (k=0; k<R; k++)

LFX: for (l=0; l<R; l++)

{

p = I[c][y*S+k][x*S+l];

w = W[m][c][k][l];

O[m][y][x] += p*w;

}

Figure 3.5: Tiled CNN convolution layer loop-nest.

convolution loop-nest, where the choice of tile sizes mss, css,yss, xss
leads to different data locality results.

With caches, the order in which loops from the localized iteration
space execute is not important because the ability to reuse data de-
pends solely on the total number of data elements loaded between
reuses, i.e. only on the size of the localized iteration space. Conversely,
with application-managed buffers, the order of loop execution has a
substantial effect on data locality. To see this, consider reusing ele-
ments of array I across the LIF loop in the Figure 3.5. Let h be the
number of elements of I touched across iterations of each loop, LSX
and LSY. It is easy to see that h×R elements need to be buffered in the
local buffer to ensure the reuse of I across the loop LIF. Consider re-
ordering loops LIF and LOF. All elements of array I touched by loops
LSX and LSY are reused in every iteration of the LOF loop (i.e. h× h
elements of I). A local buffer of h× h elements of I is thus necessary
in order to ensure the reuse of I across the loop LIF.

With limited buffering capacity it is not possible to fully exploit the
full amount of data reuse for all array references at the same time.
In general, the problem of optimally scheduling computation in arbi-
trary loop-nest is complex, requiring an exhaustive search of a large
solution space. Given the large possible number of schedules — the
computation is a multiple level loop-nest - computation scheduling
needs to consider all possible loop splits and loop orders for each
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split. Several research proposed analytical memory models for opti-
mizing loop-nest computations.

3.2.2 Previous Work

Wolf and Lam [40, 175] used loop blocking and reordering tech-
niques to capture data locality and reduce the memory traffic in sci-
entific computations. They used a combination of loop interchange,
skewing, and reversal (altogether called unimodular transformations)
with loop tiling to improve data locality of loop-nests in the context
of memory hierarchies with caches. Wolf’s algorithm builds a local-
ized iteration space such that all data references inside the space can
fit within the data cache; the objective is to find the localized itera-
tion space that maximizes data reuse. Such model is inaccurate in
the context of memory hierarchies with application-managed buffers.
As a result, Wolf’s method overestimates the real buffering require-
ments and required memory bandwidth of a computation and leads
to sub-optimal computation schedules.

Peemen et al. [37] proposed an accelerator model where a compu-
tation loop nest is split into two parts: an innermost tile, (similar to
M.Wolf’s localized iteration space), for execution on the accelerator, and
outer controlling loops that run on a host processor. Peemen’s model
improves on M.Wolf’s cache model significantly by taking into ac-
count that with application managed buffers some data can be reused
between consecutive executions of the innermost tiles (for example,
in computations involving prologue, steady state, and the epilogue).
Authors proposed a design flow for selecting the best computation
schedule to maximize data reuse given a buffer size restriction. This is
achieved by exhaustively exploring all possible tilings and controlling
loop orders of a given computation loop-nest. However, Peemen’s al-
gorithm estimates accelerator buffer requirements as the number of
distinct data elements accessed in the innermost tile of the computa-
tion. Thus, the buffer capacity estimation remains inaccurate and the
solution is sub-optimal, as we show later in this section.

Zhang et al. [38], cited earlier, proposed an analytical approach for
analyzing computing throughput and required memory bandwidth
of a CNN design on an FPGA platform. Similar to Peemen’s method,
the CNN loop-nest is tiled with the innermost tiled loops executing in
the FPGA, while controlling loops execute in the host. All data nec-
essary for the computation of the innermost tile, eg. the input feature
maps and the weight kernels need to be transferred into the FPGA
BRAM buffers before the computation; resulting output feature maps
and partial sums are transferred back to off-FPGA memory after the
execution. In order to reduce the main memory traffic authors use lo-
cal memory promotion [187] for placing out-of-FPGA communication
operations optimally. The local memory promotion allows moving a
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transfer of data from array X across the innermost controlling loop,
when this loop carries full reuse of X, i.e. this loop’s iterator does not
appear in any reference to array X. Similarly, to Peemen’s method,
Zhang et al. explore 4 possibilities for the 4 different innermost con-
trolling loops in the convolution loop-nest. The resulting computation
schedules are less efficient than in Peemen’s approach because only a
subset of array references benefit from data reuse across consecutive
executions of the innermost tile.

The TETRIS system [191], also described earlier, analytically de-
rived optimal computation schedules for the CNN convolution by sim-
plifying the problem. They proposed the bypass ordering where inter-
nal on-chip storage is bypassed for two out of the three input streams
in the convolution layer using a large register file for exploiting data
reuse from the two bypassed streams instead. TETRIS explored three
variants: IW bypass (avoid the local buffer for the input feature maps
and weights), OW bypass (avoid the local buffer for the output fea-
ture maps and weights), and IO bypass (avoid the local buffer for the
input and output feature maps). As explained earlier, the main idea
of TETRIS architecture is to reduce the on-chip buffering leveraging
on high bandwidth of the 3D memory system. Bypass ordering is
significantly simpler than the general CNN computation scheduling
problem, and it is possible to analytically derive the optimal loop-
nest shape without recurring to an exhaustive search of the solution
space.

SmartShuttle [194] propose an adaptive layer partitioning and com-
putation scheduling scheme to minimize the off-chip memory ac-
cesses for CNN accelerators. The scheme is based on an analytical
framework to quantify the off-chip memory access volume for dif-
ferent layer partitioning and scheduling configurations. Unlike the
Peemen’s and Zhang’s approach, which exhaustively searches the
loops-nest tiling and reordering space, the SmartShuttle proposes to
choose the best CNN computation schedule using an empirical rule of
thumb. Based on this rule, the SmartShuttle can configure differ-
ent tiling factors for each CNN layer individually, and dynamically
match different layers by switching among three scheduling schemes,
the input reuse oriented (IRO), the output reuse oriented (ORO), and the
weight reuse oriented (WRO). Similar to previously discussed methods,
the SmartShuttle does not take into account the possibility to share
the application-managed buffer memory inside the localized iteration
space.

Yang et al. [39] published a method for the convolution loop-nest
tiling for multi-level memory hierarchies. The authors focus on im-
proving the total energy consumption in such systems. In Yang’s
work, one loop blocking is performed for each target memory hierar-
chy level, building one localized iteration space per memory level. Each
blocking builds a loop order string that indicates a particular loop order
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with the 4 loops (corresponding to iterating over the output feature
maps, input feature maps, feature maps’ height and width) tiled at
each memory hierarchy level. Blocking the convolution loop-nest at
each level can be though of as tiling the loops in the loop-nest, and
then exchanging the order in which the controlling loops are exe-
cuted. Yang et al. acknowledge that optimal application of their algo-
rithm to multiple memory hierarchy levels is quite computationally
costly. In order to achieve a reasonable computation time, instead of
optimal multi-level blocking, the authors then propose to apply a 2-
level blocking repeatedly starting from lower memory hierarchy level
to the upper, while adjusting the lower level results at each new level.
However, for the 2-level blocking, since the memory level buffering
requirements are estimated as the sum of all data elements touched
inside the level’s localized iteration space, this approach results in com-
putation schedule quality essentially similar to the Peemen’s method.

Existing memory performance evaluation methods build a unique
localized iteration space of the CNN computation and require that in-
ternal computation buffer be dimensioned to simultaneously hold all
data elements in this localized iteration space. We have observed that
under application control, different data may be buffered at different
loop-nest level, i.e. there is no one single localized iteration space. As
a result, our memory performance model results in a more accurate
buffer size estimation for application-managed buffers and in better
computation schedules.

Among related loop-nest optimization work, memory optimization
models for stencil computational kernels were published in [195] and
in [196]. Stencils differ from CNN convolutional layers in that they
do not need to handle a large amount of convolution kernel weights.
Therefore, these models cannot be used to optimize the CNN compu-
tation.

Finally, it is worth mentioning that one important research direc-
tion that aims at alleviating the CNN memory bottleneck is data com-
pression. Various data compression techniques have been proposed
in the literature: quantization [197, 198, 199], binarization [200, 201,
202, 203, 204], and other [205]. A survey on CNN data compression
can be found in [206]. The work presented in this chapter is orthog-
onal to these techniques and can be used on top of them. Indeed, in
our HWC implementation we have used a dynamic fixed-point data
quantization technique from [198]. We shall also point out that re-
cently sparse neural networks emerged as one solution to reduce the
amount of computation and memory required for the CNN process-
ing [207, 208, 209]. This is beyond the scope of this thesis.
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3.2.3 Memory Performance Model

Given a limited local reuse buffer capacity, memory performance
optimization consists in finding a computation schedule, i.e. the com-
putation order, such that i) the working set of the computation, fits
in the local reuse buffer; and ii) traffic to off-accelerator memory is
minimized, reducing energy and time dedicated to data movement.
Therefore, using the notation introduced above, building a computa-
tion schedule involves specifying the loop-nest shape via loop tiling
and reordering and choosing a buffering level for each array reference.

This section describes an analytical model for evaluating the compu-
tation schedules that is more accurate than previously published mod-
els in the case of application-managed buffers. Given a computation
schedule, this analytical model computes the local buffer size and the
number of bytes accessed from the off-accelerator memory required
for this schedule execution. Note that though the model is developed
in a context of the CNN convolution computation, in itself it is generic
and applicable to other types of computation organized in loop-nests.

Computing Local Buffer Requirements

As explained earlier, the reuse distance of an array reference with re-
spect to a loop corresponds to the number of iterations during which
the corresponding array element is used by the computation. Table
3.3 lists the reuse distances of CNN convolution array references with
respect to all loops in the loop-nest.

LFX LFY LSX LSY LIF LOF

I 1 or R5 R or 1
5

1 or R5 R or 1
5

1 M
W 1 1 E E 1 1

O R R 1 1 C 1

Table 3.3: Reuse distance of arrays in CNN convolution loop-nest.

We call the portion of an array that is touched, while iterating over
a loop, the footprint of an array inside that loop. The footprint of an
array X in loop L measures the number of distinct elements of X used
inside L. We need to compute the footprint of each array reference
in the CNN loop-nest in order to compute the local buffering require-
ments. Computing footprint of an array in the convolution loop-nest
is straightforward: it is a function of the number of loop iterations
and takes into account any data reused over different loop iterations.

Assume L0 . . . LN−1 are the loops in the current computation schedule,
ordered from the innermost to the outermost one. If we call n(Li) the
number of iterations of loop Li, and dX(Li) the reuse distance of the

5 The reuse of array I is carried by a combination of two loops: which pair of loops
– (LFX,LSX) or (LFY,LSY) – is carrying the reuse depends on relative ordering of the
loops.
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array reference X with respect to loop Li, the footprint FX(Li) of array
X in loop Li can be computed as follows:

FX(Li) = FX(Li−1) ·
n(Li)

dX(Li)
,∀i ∈ {0, · · · } (3.2)

with FX(L−1) , 1. The footprint takes into account any reuse of data
elements that exists in a loop. Thus, in order for the elements of
array X to be reused across iterations of a loop Li, the local buffer
must be big enough for holding the full footprint of one iteration of
the loop. Furthermore, if the loop does not carry reuse of the array,
the application-managed buffer can be shared by data elements from
multiple loop iterations. This means that the actual required size for
the application-managed buffer is computed as follows:

BX(Li) =

{
FX(Li−1) if Li carries reuse of X
BX(Li−1) if Li does not carry reuse of X

(3.3)

Given a reordered and tiled loop-nest, Equation 3.3 allows to re-
cursively compute local buffer requirements for all array references,
starting from the innermost loop in the loop-nest. Therefore, it al-
lows to evaluate the buffering requirements of a computation schedule,
given its loop-nest shape with buffering levels annotated for all data
references.

Off-accelerator memory traffic

Equation 3.3 allows to evaluate which computation schedules are fea-
sible given a certain buffer size, as well as to compare them based on
the minimum local buffer size they require, but does not give any in-
dication on its quality in terms of off-accelerator memory traffic. Let
us call TX the memory traffic computed as number of bytes accessed
in off-accelerator memory for array X, and PX the numerical preci-
sion (in bytes) used for its storage. At buffering level Li, the number of
memory accesses to X is given by the footprint of X with respect to Li
multiplied by the total number of times that loop Li is executed:

TX = PX · FX(Li) ·
N−1∏
j=i

n(Lj) (3.4)

Note that TX does not depend explicitly on the size of the local buffer,
but only on the computation schedule, through the footprint FX(Li) and
the iterations of the outermost loops. Whether the schedule fits with
respect to a given local buffer capacity depends only on Equation 3.3.

Memory accesses to the O array constitute a special case as they
include two distinct contributions: E× E×M writes of the final fully
computed output feature maps, and memory accesses corresponding
to the accumulation of intermediate partial results (each accumula-
tion composed of two accesses, 1 write + 1 read). Storage of accu-
mulated partial results typically uses a different (higher) numerical
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precision than that used for the final O array. The total traffic is there-
fore the sum of the traffic of the three I, W, O arrays:

T = TI + TW + TO,acc + TO,final. (3.5)

Equations 3.4 and 3.5 enable a quantitative comparison of compu-
tation schedules in terms of memory traffic, which is known to be
strongly correlated with energy consumption, and of course with sys-
tem cost [169, 204].

Computation schedule selection procedure

Unless all input or all output feature maps along with convolu-
tion weights fit within the local buffer, it is impossible to choose a
loop-nest shape such that all data reuse is exploited. The best compu-
tation schedule is a trade-off between loop ordering, loop tiling, and
the choice of buffering level for each array reference. Furthermore,
the best computation schedule depends on CNN layer shape: convolu-
tion kernel size, number and size of the feature maps, feature map
and kernel numeric precision.

The selection of the optimal CNN convolution computation schedule
proceeds in two steps. In the first step, the local buffering require-
ments for each array reference are computed, at different loop levels
across an enumeration of different loop orders and loop tile sizes.
This step is independent of a particular CNN layer shape because the
local buffering requirements at any loop-nest level depend only on
loop order and tile sizes of different loops. In the second step, given
a CNN layer, a local buffer capacity and the pre-enumerated buffer
requirements for the three CNN arrays, the layer is analyzed exhaus-
tively searching for a best combination of buffering levels for these
arrays.

The first step requires the enumeration of 6! = 720 loop-nest permu-
tations. We can reduce this number by not considering permutations
between the two kernel loops (LFX and LFY in Figure 3.5), and between
the two image loops (LSX and LSY in Figure 3.5). These permutations
can be omitted without affecting our conclusions because they result
in symmetric computation schedules. In order to reduce the enumer-
ation size further, tile sizes are enumerated selectively. We want to
quantify how different loop orderings and tile sizes affect the num-
ber of memory accesses. For this it is not necessary to enumerate all
possible tile sizes; instead we examine a sequence of monotonically
increasing, power of two, tile sizes as well as tile sizes that correspond
to common CNN layer configurations. The first step results in buffer-
ing requirements for each CNN array reference at each loop level for
different loop-nest shapes.

With above search space reduction, the first computation schedule se-
lection step yields 180 possible convolution loop-nest permutations
with multiple tiling shapes each. In the second step, we search
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Figure 3.6: Memory traffic comparison of the best computation schedules
identified by our model, the model proposed in Peemen et al.
and the cache model on a set of representative CNNs, while
sweeping the local memory constraint from 1 to 256 KB. Both
axes are in logarithmic scale. Results aggregate traffic contribu-
tions from all convolutional layers; the dashed red line indicates
the ideal memory traffic when all data reuse is fully exploited.

within this pre-enumerated loop-nest permutation space for computa-
tion schedules that fit given local reuse buffer capacity, while minimiz-
ing required off-accelerator memory access bandwidth. This search
results in the optimal computation schedule, i.e. loop-nest order, tiling
sizes, and buffering levels for CNN memory references for the given
convolution layer and local buffer capacity.

3.2.4 Comparison vs Existing Models

The main use of the memory performance model is to evaluate
the quality of computation schedules pending a set of local buffering
constraints, to determine which schedule minimizes memory traf-
fic. Therefore, to compare our model with the current state-of-the-art,
we first investigated whether it can identify better computation sched-
ules than those that can be extracted by previously published mod-
els [40, 37, 38, 39]. We selected two representative models, cache

and Peemen, to compare with our own proposed model. Similarly to
what happens with proposed model, the selection of the best compu-
tation schedules involves exhaustive search over a large solution space,
considering all possible loop tile sizes and different loop orderings.

cache

M. Wolf et al. [40] were first to apply loop-nest reordering and tiling
in order to find the localized iteration space. The method conservatively
assumes that each data element touched in the localized iteration space
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Figure 3.7: Memory traffic overhead with respect to our proposed model
when using the model proposed in Peemen et al. to select the
best computation schedule, while sweeping the local memory size
from 1 to 256 kB.

needs to be allocated a place in the cache, thus overestimating the
required memory footprint. It is also assumed that the entire localized
iteration space working set needs to be transferred between the mem-
ory and the cache for each new localized iteration space execution be-
cause it cannot be guaranteed that data from a previously execution
is still present in the cache. The original paper [40] also proposed a
heuristics for trimming the number of tiling possibilities, guided by
the cache behavior in scientific computations.

Peemen

The memory performance model proposed by Peemen et al. [37]
and independently by Zhang et al. [38], improves on the cache model
significantly by taking into account that with application managed
buffers some data can be reused between consecutive executions of
the localized iteration space, which they call the innermost tile. By chang-
ing the order of controlling loops, different quality solutions are ob-
tained. Yang et al. [39] published a similar model extended for op-
timal CNN loop-nest tiling for multiple levels of memory hierarchy.
As explained earlier, models developed by Zhang et al. and by Yang
et al. yield computation schedules essentially similar to the schedules
generated by the Peemen et al. method, therefore we implemented
the latter as a representative model for the three approaches6. For a
detailed explanation of Peemen’s model the reader is referred to [37].

In all these methods, the ordering of the loops inside the innermost
tile is not important because the ability to reuse data depends solely

6 Appendix B describes Peemen’s memory performance model that we derived for
the loop-nest from the Figure 3.5.
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on the total number of data loaded to the local reuse buffer between
reuses. In Peemen’s and Zhang’s models, only the innermost control-
ling loop affects the data reuse across consecutive iterations of the
innermost tile. Therefore, fewer loop-nest permutations need to be
explored reducing the solution search space.

We have compared the computation schedules generated by our
model with computation schedules computed by previously published
models [40], [37], [38], and [39] over the convolutional layers from
five state-of-the-art CNN topologies: AlexNet, ZFNet, VGG16, Incep-
tion v3, and ResNet-20

7. Although the following comparison is based
on generated computation schedules, it is shown in Section 4.2 that our
method is exact with respect to the real execution. Therefore, this esti-
mation corresponds to the actual amount of memory traffic generated
by these CNN layers.

Figure 3.6 plots the total number of data transfers to and from off-
accelerator memory, using the best computation schedules estimated by
the three models, while sweeping the size of the local reuse buffer
from 1 to 256 KB. We aggregate the memory traffic from the best
computation schedule identified for each layer, and we also show the
ideal result given by the “essential” memory traffic that is present
when all data reuse is exploited. From the plot, it is clear that the
cache model largely overestimates the memory traffic requirements
compared to the two application managed buffer models, and always
results in sub-optimal computation schedules for any buffer size and for
all CNN convolution layers that we tested, by a factor of up to 3.5×.

The advantage of our model when compared with Peemen’s
method is more subtle, as both exploit the characteristics of
application-managed buffers to yield a better schedule. To analyze
the difference between the two models, Figure 3.7 plots the relative
overhead in memory traffic of Peemen’s model with respect to our
model. Figure 3.7 plots the memory traffic requirements estimated
from Peemen’s model as a percentage overhead compared to our
model, given local reuse buffer capacities between 1KB and 256KB,
for the same CNN convolution layers. Our model finds computation
schedules with between 2.5% and 17.5% lower memory traffic, with
over 10% memory traffic reduction for several CNNs, especially when
targeting smaller local reuse buffer sizes. Even for a relatively large
local buffer size of 128KB and 256KB, our method results in computa-
tion schedules with more than 5% memory traffic reduction over the
set of convolution layers for several CNN networks.

For most of evaluated CNN convolution layers, our method results
in some reduction of memory traffic due to its ability to exploit data
reuse across all levels of the CNN convolution loop-nest. With rare
exceptions, Peemen’s method is able to find similar schedules only

7 Configurations of the CNN layers that we’ve used in our evaluations are listed in
the Appendix C.
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when a full volume of the input or the output feature maps can be
stored in the local reuse buffer. We have noticed the following points
that contribute to these results:

• Our method’s footprint calculation better takes into account the
data reuse because it considers independent buffering for the I,
W, O arrays. As a result, our buffer requirements are system-
atically lower for a given loop-nest shape, and allow room for
bigger tiles to be placed in local reuse buffers.

• Due to independent buffering of the 3 arrays, our method al-
ways places memory transfers optimally with respect to the to-
tal memory traffic.

• In Peemen’s method, unless LTIF is the innermost controlling
loop, the memory traffic for the O array is multiplied by 2 to
account for 1 read and 1 write of partial accumulations. This
happens even when the LIF loop is not tiled.

Moreover, for a given CNN convolution layer, the memory traffic
overhead from Peemen’s method does not necessarily decrease when
the local reuse buffer capacity is increased. Increasing the local buffer
capacity allows, in the first place, to generate larger tiles. However, at
some buffer capacity points, our method is able to find a completely
different loop ordering and buffering levels for the data references,
such that more important memory traffic reduction can be achieved
than by simply increasing the tile sizes.

It is worth noticing that Yang’s algorithm can be modified to
achieve the same quality computation schedules as the ones using our
approach. Intuitively, it is possible to generate different localized
iteration space loop orders and buffer data at different loop levels
using Yang’s loop order string approach. Indeed, it can be verified
that applying a 4-level blocking at each memory hierarchy level - es-
sentially enumerating the permutations of the 4 loops, LSX, LSY, LIF,
and LOF from the Figure 3.5, would lead to schedules equivalent to
our method. However, such 4-level blocking is quite computationally
expensive: Yang et al. reported that a 4-level blocking of a single
CNN layer takes 24 hours on a Xeon E5645 processor. Our method
is significantly faster: the first step in our computation schedule selec-
tion procedure is performed only once for many different CNN layers,
whereas in Yang’s method, a solution search needs to be performed
for each convolution layer individually. Even with densely sampled
tiling space, for example exploring all tile sizes multiple of 2, our first
step takes ∼6 minutes on a simple Intel i7 processor running at 3,4
GHz. With such sampling of the tile size space, our second step ap-
plied to 71 different CNN convolution layers took less than 2 minutes
per layer on the same processor.
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3.3 the computer vision engine

The CVE is a specialization of the StreamDrive dataflow architecture
template along three dimensions:

1. Each programmable processor core is extended with specialized
instructions common to many image processing algorithms.

2. The StreamDrive cluster is extended with a number of special-
ized HWC hardware elements for accelerating convolution com-
putation.

3. Higher performance can be achieved by adding multiple CVE

clusters together.

Figure 3.8 shows a generic CVE fabric with multiple clusters and sev-
eral programmable PEs and several HWC elements in each cluster. The
CVE can be configured at design time with respect to the number
of clusters, the number of PEs and application-specific HWC blocks,
the TCDM memory capacity, and the number of TCDM memory ac-
cess ports. Different configurations can be adapted to target different
computer vision applications and performance vs cost requirements.

Figure 3.8: The Computer Vision Engine Clusters.

In CVE, each PE is equipped with a small dedicated set of special-
ized instructions (CVAx) resulting in a 2− 4 × acceleration of com-
mon image processing functions. This set includes relatively generic
instructions, such as a MAC4CLIP, which performs Single Instruction
Multiple Data (SIMD) multiplication on bytes of two input operands,
saturates the two 16-bit results, and accumulates them with the re-
sult operand; as well as instructions dedicated to specific image pro-
cessing functions, such as a XORSBCW instruction that calculates the
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Hamming distance between two vectors, it is used in Support Vector
Machine (SVM) implementation. The CVAx extension development
has not been part of this thesis. The PEs and application-specific HWC

units are connected to the TCDM shared memory via 32-bit wide log-
arithmic interconnect ports. The use of shared memory enables effi-
cient exchange of data between PEs and the HWC blocks, achieving
high degree of flexibility by computing non-convolutional functions,
such as CNN pooling, normalization, etc., and any other processing
in software. The CVE can be configured at design time with the TCDM

memory between 64KB and 512KB. The DMA engine is connected
to 4 independent logarithmic interconnect ports for off-cluster access
capacity of 16 bytes per processor cycle.

3.3.1 The HWC Hardware Block

The HWC is an application-specific hardware element dedicated to
processing the CNN convolutional layer, which accounts for most of the
computational work and most of the memory bandwidth in existing
CNNs [169]. The HWC is meant to be connected to the shared memory
in the CVE cluster. Such tight coupling of the HWC to shared memory
allows usage of complex memory access patterns, such as sliding
kernels, repeated re-fetch of data, etc., enabling flexible computation
schedule. The HWC implementation also leverages on StreamDrive
rotating buffer mechanism from chapter 2 for efficient handling of
the application managed buffers inside the TCDM memory. The HWC

block diagram is shown in Figure 3.9.

I
96 B

W
128 B

O
1 KB

SIMD Datapath

Shared Tightly-Coupled Data Memory (TCDM)

Registers
& Controlconfig

HWC

load unit load unit store unit

Figure 3.9: HWC block internal architecture.

As we explain in Section 4.2, we specified a HWC prototype di-
rectly in C language, using the CatapultC high-level synthesis (HLS)
tool to derive a Verilog design. The architecture exposes one slave
configuration port and 3 master ports towards the TCDM (one for each
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array reference) to separate control for memory accesses for each ar-
ray, simplifying the high-level synthesis process. The two load units
read the input image data and the convolution kernel weights, while
the store unit is writing the results to the TCDM shared memory. These
units are responsible for generating the streaming accesses to the HBB,
described in chapter 2, as well as for buffering the input and out-
put data. The HWC does internal partial sum accumulation and does
not implement an additional input for the partially accumulated CNN

sums. The Registers and Control module implements the HWC regis-
ters and control logic. These registers are accessible from the system
memory map.

Figure 3.10: The SIMD datapath block diagram.

Figure 3.10 shows the block diagram of the main HWC module, the
Single Instruction Multiple Data (SIMD) datapath. The SIMD process-
ing ensures a steady datapath utilization independent on the convolu-
tion kernel size. The SIMD datapath can be dynamically configured to
perform W 8-bit × 8-bit or W/2 16× 16 fixed-point MAC (Multiply-
ACcumulate) operations per clock cycle, with accumulation precision
of 32-bits. The HWC is dimensioned to handle convolution kernel
sizes between 1 × 1 and 11 × 11 with stride and unconstrained in-
put/output feature map sizes.

The SIMD datapath width W directly impacts the HWC performance
in terms of MACs per clock cycle. However, a wide SIMD datapath
may be underutilized: a SIMD datapath of W MAC units has a 100%
utilization when working on input feature maps with line sizes mul-
tiple of W pixels. A SIMD processing is loosing its efficiency working
on shorter lines, such as used in smaller CNN layers, or at the end of
a line when there are not enough remaining pixels to fill the W MAC
units in parallel. From this prospective, a narrower SIMD datapath
can achieve a more efficient utilization. An advantage of proposed
tightly-coupled shared memory cluster is that multiple HWC units
can be added to the cluster. Therefore, each HWC can implement a
relatively narrow SIMD datapath, relying on combining several HWCs
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to deliver necessary performance. From our simulations, we have
found that SIMD width of 16 MAC units results in the average utiliza-
tion of 80% across a large set of representative CNN layers. A wider
SIMD suffers from noticeable utilization drop across evaluated CNN

layers, while a narrower SIMD leads to cost overhead as more HWCs
need to be instantiated within a cluster, and less efficient TCDM ports
usage.

Thanks to its SIMD operation and flexibility of communication sys-
tem built around the shared memory, neither the convolution kernel,
no feature map size does influence the HWC efficiency.

3.3.2 Optimizing HWC Memory Subsystem

A critical point in the design of the HWC, like most accelerators,
is what data has to be internalized within a local buffer and what
is accessed from outside the accelerator, in this case from the clus-
ter shared TCDM. Minimizing local HWC buffer capacity is important
because the HWC internal storage includes scratchpad memory and
FIFOs that are implemented as dedicated physical resources distinct
from the TCDM. In practice, all PEs and hardware blocks share most
of the data used in processing. While PEs physically share the data
via the TCDM, the hardware blocks increase the area devoted to ded-
icated (and redundant) buffers with each new block integrated. We
make the observation that the proliferation of private buffers inside
the HWC leads to significant area inefficiency and an over-provisioned
memory subsystem.

Keeping shared memory bandwidth requirements as low as pos-
sible is also important. The bandwidth to cluster shared memory
remains a scarce resource because multiple actors in the system are
accessing it simultaneously: PEs, HWC hardware blocks, and the DMA
engine. Without any local storage at all, every data access from HWC

would be done to the TCDM memory. Resulting bandwidth require-
ment for transferring data between the TCDM and the HWC exceeds
the local interconnect capacity leading to a drop in performance and
to high energy consumption. Lowering the HWC to shared memory
bandwidth allows reducing the number of ports used to connect the
HWC to the TCDM, which impacts the logarithmic interconnect area
and performance. Finally, accessing the cluster shared memory is
more expensive in terms of energy consumption than accessing inter-
nal HWC storage [204].

Reducing local storage and TCDM bandwidth are generally con-
flicting objectives. This optimization problem is readily mapped to
the conceptual view of our memory performance model (Figure 3.4),
where internalized memories constitute the application-managed local
reuse buffer, whereas the TCDM is the off-accelerator memory. It is there-
fore straightforward to apply this memory performance model as a
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tool for design space exploration, with the objective to find the best
trade-off between the HWC local storage capacity and the required
TCDM bandwidth.

In general, the trade-off between local storage and memory band-
width depends on the shape of the specific CNN layer: convolution
kernel size, number and size of the feature maps, feature map and
kernel numeric precision. Therefore, for a general-target HWC we
want to build a CNN loop-nest computation schedule that, given a local
reuse buffer capacity in the order of a few KBs, minimizes the TCDM

memory traffic – and therefore bandwidth – across a large number of
CNN layers taken from different CNNs.

We conducted the HWC design space exploration in two steps as
described in Section 3.2. We analyzed 71 different representative
CNN layers chosen from the AlexNet, ZFNet, VGG, Inception v3 and
ResNet topologies, exhaustively searching for a best computation sched-
ule for each of 180 different loop-nest permutations under different
local buffer capacities.

In the first step of the HWC design exploration, we have enumerated
CNN convolution loop-nest permutations and tile sizes, generating a
set of buffer requirements for all consistent loop-nest shapes as de-
scribed in section 3.2. In the second step, using these pre-enumerated
buffer requirements, we analyzed 71 different representative CNN lay-
ers, exhaustively searching for a best combination of buffering levels
for the three CNN arrays under different local buffer capacities.

Figure 3.11 shows the distribution of the computation schedule qual-
ity across the 180 loop-nest permutations obtained with different lo-
cal memory constraints, binned according to the amount of memory
traffic they generate. The Y-axis shows, for each local buffer capacity,
the percentage of loop-nest permutations that result in optimal traf-
fic, or add up to 10%, 20%, etc. of overhead to the optimal traffic, or
exceed 2 times the optimal traffic, respectively. For small local buffer
capacities, less than 20% of loop-nest permutations can achieve opti-
mal bandwidth. On the other hand, with a large local buffer ∼50% of
loop permutations can be tiled in such a way that optimal bandwidth
is achieved.

By analyzing computation schedules obtained in this experiment, we
confirmed the intuition that best computation schedules are those that
allow the output feature maps to be fully accumulated locally by
buffering the partial sums, especially when the local buffer capac-
ity is small. Although in these schedules the input feature maps and
weights are read from memory multiple times, they still result in
fewer total memory accesses compared to computation schedules where
the output feature maps are swapped out to memory before being
fully accumulated through all of the input feature maps. Swapping
and re-fetching the output feature maps to complete the accumula-
tion generates twice the traffic compared with the read-only input
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Figure 3.11: Distribution of computation schedules across different loop-nest
permutations, binned depending on the amount of memory
traffic they generate.

LTOF: for (mm = 0; mm < M; mm += mss)

LTIF: for (cc = 0; cc < C; cc += css)

LTSY: for (yy = 0; yy < E; yy += yss)

LTSX: for (xx = 0; xx < E; xx += xss)

// Buffering O

LIF: for (c=cc;c<min(cc+css,C);c++)

// Buffering I

LSY: for (y=yy;y<min(yy+yss,E);y++)

LFY: for (k = -R/2; k < R/2; k++)

// Buffering W

LOF: for (m = mm; m < mss; m++)

LSX: for (x=xx;x<min(xx+xss,E);x++)

LFX: for (l = -R/2; l < R/2; l++) {

p = I[c][y*S+k][x*S+l]

w = W[m][c][k][l]

O[m][y][x] += p*w

}

Figure 3.12: HWC computation schedule: gives best bandwidth trade-off
with local storage capacity less than 4KB.

feature maps and weights. Furthermore, the partially accumulated
output feature maps require higher numerical precision and there-
fore are more costly in terms of required bandwidth. It is interesting
to notice that given less than 512KB buffering capacity, no one per-
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LCOF: for (mmm = 0; mmm < M; mmm += Tm)

LCIF: for (ccc = 0; ccc < C; ccc += Tc)

LCSY: for (yyy = 0; yyy < E; yyy += Ty)

LCSX: for (xxx = 0; xxx < E; xxx += Tx)

LTOF: for (mm=mmm; mm<min(mm+Tm,M); mm+=mss) {

LTIF: for (cc=ccc; cc<min(cc+Tc,C); cc+=css) {

LTSY: for (yy=yyy; yy<min(yy+Ty,E); yy+=yss) {

LTSX: for (xx=xxx; xx<min(xx+Tx,E); xx+=xss) {

HWC (mss,css,yss,xss)

Figure 3.13: Cluster-level CNN convolution loop-nest.

mutation resulted in a computation schedule with optimal bandwidth
across the entire set of tested convolution layers.

For the HWC implementation, among several small footprint sched-
ules, we selected one that, for most tested CNN layers, leads to mini-
mal memory bandwidth requirements for local buffer sizes from 1KB
to 4KB. This selection was also guided by several hardware imple-
mentation criteria, such as the number of required simultaneous lo-
cal buffer accesses, access alignment, etc. and the compatibility with
a SIMD datapath. Figure 3.12 shows the computation schedule selected
for the HWC implementation, with the buffering level for each array
shown as a comment on top of the corresponding loop. The HWC

main loop executes an innermost tile in order LIF - LSY - LFY - LOF -
LSX - LFX. The relative order of loops LSX, LFX and LFY ensures that
the partial sum accumulation remains internal to the HWC as much
as possible. In the actual implementation, the tiling factor xss for the
LSX loop is fixed and equals the SIMD datapath width. The remaining
tile dimensions: the number of output feature maps, mss, the input
feature maps, css, and the number of output lines in a tile, yss, are
computed for each particular convolution layer also using our per-
formance model. In practice, over all tested CNN layers, the input
feature maps volume was never tiled (css = C), allowing a complete
accumulation of the partial sums inside the HWC local buffer.

3.3.3 Optimizing Off-Cluster Memory Access

At the cluster level, the TCDM shared memory is not big enough
for most CNN convolution layers to be completely stored. The convo-
lution computation volume needs to be tiled in order to fit the avail-
able TCDM memory while ensuring that off-cluster memory accesses
are minimized. With respect to our analytical memory model, we
consider the TCDM cluster shared memory as local reuse buffer, while
the off-cluster memory as the off-accelerator main memory. Figure 3.13

shows the cluster level tiling of the convolution loop-nest.
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Figure 3.14: Off-cluster bandwidth requirements vs performance of differ-
ent CNN networks under various TCDM memory capacities.

As explained earlier, for each particular CNN layer configuration,
the tile sizes mss, css,yss, xss for the HWC controlling loops need to
be computed. We also need to search for a cluster level computation
schedule: the ordering of HWC controlling loops LTSX, LTSY, LTIF, and
LTOF, the Tm, Tc, Ty, Tx tile sizes, and the data buffering levels. Thus,
the computation of the HWC configuration (tile sizes) and the cluster
level computation schedule are interdependent. If the HWC tile size is
fixed, it creates an additional constraint on the cluster level computa-
tion schedule, and vice-versa. Because optimizing off-cluster memory
traffic has bigger impact in terms of performance and power con-
sumption than reducing the internal HWC to TCDM memory traffic,
we first compute the cluster level computation schedule, setting the
Tm × Tc × Ty × Tx volume, then we compute tile sizes for the HWC

loop-nest corresponding to this volume.
Thus, overall, an implementation of a CNN network requires com-

puting two sets of parameters for each CNN convolution layer: (1)
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a computation schedule for the cluster level loop-nest, and (2) the tile
sizes for the HWC loop-nest.

We have applied the above methodology for tiling a number of
well-known CNN networks, the AlexNet [172], the VGG [210], the
ResNet [211], the Google Inception v4 [212], and the DenseNet [213].
Figure 3.14 shows the resulting optimal off-cluster bandwidth require-
ments of these CNN networks vs the TCDM memory capacity. The Y-
axis plots the bandwidth (GB/sec.) required by a particular network
vs the frame rate (frame/sec.) along the X-axis. Achieving the frame
rate of 30 frames/sec. requires only 10 GB/sec. for all but the VGG-
D network with less than 256KB of TCDM memory. This methodol-
ogy can also be used for determining the adapted off-cluster memory
technology for a given CNN network class.

3.4 summary

In this chapter, we have described the Computer Vision Engine
(CVE), which is a specialization of the StreamDrive platform for image
processing applications.

The main element of the CVE is a tightly-coupled convolution block,
HWC, designed to efficiently support CNN convolution processing.
The HWC implements non-trivial computation schedule which allows
minimizing the usage of the TCDM bandwidth with very little inter-
nal HWC buffering capacity. We have derived this computation schedule
using a novel analytical memory performance model for CNN compu-
tation optimization. Our analytical model is more accurate than ex-
isting models when applied to applications that manage data buffers
explicitly. Such application-managed buffers are the most common
architecture template with embedded convolution accelerators. Fur-
thermore, our analytical model is general and can be applied to com-
putations other than CNN convolution. Finally, based on this analyti-
cal model we have developed a method for determining the optimal
convolution computation schedule for minimizing the off-cluster mem-
ory bandwidth under a limited TCDM memory capacity.



4 P E R F O R M A N C E
E VA L U AT I O N S

Experience serves not only to confirm theory,
but differs from it without disturbing it, it

leads to new truths which theory only has not
been able to reach.

— Dalembert

In previous chapters, we have described the StreamDrive frame-
work and its Convolution Vision Engine (CVE) implementation. In this
chapter, we will use the CVE for a performance evaluations of com-
puter vision applications.

In section 4.1, we investigate traditional image processing applica-
tions in order to characterize the dynamic dataflow execution model
in the context of a shared memory cluster. Particularly, we evalu-
ate the StreamDrive parallelization and scheduling overhead, and
performance scalability of the implementation. We investigate the
effects of the trade-off between cluster shared memory capacity ver-
sus performance and scalability. With the latter evaluation, we want
to find out how well StreamDrive scales along two dimensions: the
number of processing elements in a CVE cluster, and the latency of
off-cluster memory access. We quantify the performance vs memory
capacity trade-off by considering performance in the context of Am-
dahl’s law [214]. In section 4.2, we characterize the cluster shared
memory traffic generated by the HWC convolution hardware blocks.
We quantify the HWC memory bandwidth requirement using several
well-known CNN networks.

In order to evaluate different CVE configuration options, we con-
ducted performance characterization using the time-approximate
platform simulator. In our simulator programmable cores are sim-
ulated with less than 10% inaccuracy compared to a real execution.
The HWC model is built directly from the CatapultC code, where the
CatapultC interfaces have been adapted to communicate with the rest
of the platform. The simulator also models memory and interconnect
conflicts giving a very reasonable simulation accuracy at decent simu-
lation speed. We then have derived a CVE configuration targeting mo-
bile camera applications with resolutions not exceeding VGA quality
for an FPGA implementation.

110
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4.1 case-study 1: image processing

In this section, we answer the question what are the characteristics
of traditional image processing applications implemented using the
dynamic dataflow model of computation in the context of a parallel
shared memory cluster with limited memory capacity. We use our
time-approximate platform simulator to evaluate different CVE con-
figuration options.

In general, computer vision algorithms implement two types of
processing, the feature detection and the descriptor generation. The
feature detectors examine every pixel in an image in order to deter-
mine if it meets the criteria of a feature. A good example is the Fea-
tures from Accelerated Segment Test (FAST) feature detector [215] used
with the ORB application. FAST determine keypoints of interest by
finding rapid changes in direction on image edges. Feature detectors
are highly data parallel but this parallelism is often unbalanced; the
image pixels that satisfy the feature criteria require more processing
than “uninteresting” pixels.

Feature descriptor generation requires computation across inde-
pendent image patches. For example, with binary descriptors, such as
the BRIEF [216], a patch centered around a detected keypoint needs
to be described as a binary string. Binary detectors use a sampling
pattern, pick N pairs of points on the pattern and determine whether
the first element or the second element of the pair is greater than the
other and define the pair as binary 1 or 0 correspondingly. The result-
ing N-bit vector is the feature descriptor for the patch to be used for
feature matching. This requires computations with higher complex-
ity and less data parallelism compared to the feature detection, with
irregular memory access patterns to non-contiguous image patches.
On the other hand, the processing is usually well balanced across
different patches of interest.

Given above general observations, an efficient implementation of
a computer vision algorithm requires pipelining unbalanced tasks of
the feature detection, pipelining the feature detection with feature
descriptors generation, and pipelining different pyramid levels (avoid
a barrier between the pyramid levels). Our performance evaluation
shows that the dataflow execution model has significant benefits:

• The dynamic dataflow implementation leads to efficient pipelin-
ing of application tasks, efficiently hides off-cluster access la-
tency, and achieves near optimal load balancing between paral-
lel processing elements.

• We were able to perform extensive application exploration with
respect to parallelism, its granularity, pipelining, etc., in a very
short period of time.

• Debugging dataflow implementation is simple.



4.1 case-study 1: image processing 112

• The dynamic dataflow implementation is scalable with respect
to the number of processing elements, TCDM memory capacity,
and off-cluster memory access latency.

We proceed with detailed performance characterization of two typ-
ical image processing applications: the Oriented FAST and Rotated
Brief (ORB) [25] already introduced in section 2.4, and the Face Detec-
tion (FD) [26]. Since our first implementation targets low-resolution
applications, we perform the performance characterization on a 640

× 480 VGA image containing about 12.000 FAST keypoints for the
ORB, and a 320 × 240 QVGA image containing 10 human faces for
the Face Detection. These two images are representative of the most
demanding processing requirements for both applications.

Using the StreamDrive framework, we parallelized the reference
sequential implementation, optimized the processing pipeline, and
performed extensive performance exploration of the two applications.
Each application dataflow graph has been parameterized with respect
to the target platform configuration. Thus there is a dataflow graph
tuned for each platform configuration tuple (P :M):

1. P is the number of available processing elements, which affects
how many dataflow actors are instantiated.

2. M is the capacity of cluster TCDM memory, which determines
the buffering size of dataflow channels.

Using the StreamDrive successive refinement development flow, in
less than 6 weeks, we have parallelized both applications and ex-
plored different parallelization strategies and dataflow graph param-
eters for tuples with P from 1 to 16 processing elements and M in
64KB, 128KB, 256KB, and 512KB.

4.1.1 ORB

The ORB algorithm tries to identify a set of objects inside an image
and computes their BRIEF descriptors. Figure 4.1 shows the func-
tional block diagram of the reference ORB algorithm.

The processing is applied to an image pyramid of 8 scaled down
images, generated by Scale. At each pyramid level, the objects are
identified by first detecting the keypoints of interest via the FAST algo-
rithm [217]. Irrelevant FAST keypoints are dropped in Nonmax, and
the remaining keypoints are sorted by Cull function based on Harris
scores [218]. For each “good” keypoint, the algorithm computes ori-
entation of the object around the keypoint, Angle, and the object’s
BRIEF descriptor. The Angle computation inspects a N×N patch
around the keypoint from the scaled image. The BRIEF computation
requires a M×M patch from the Gaussian blurred image produced
by the Gauss function.
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Figure 4.1: Functional blocks from reference ORB algorithm.

As explained earlier, the image pyramid scaling is done outside
of the CVE cluster by a specialized scaler hardware block. Therefore,
the input to our ORB implementation is a sequence of scaled images.
Along with several obvious parallelization choices, eg. FAST , Harris,
Angle, and BRIEF computations are naturally data-parallel, ORB also
puts to evidence several parallelization difficulties:

• ORB computation is largely spatially unbalanced - some parts
of the image may not have any keypoints, while others contain
many; this is challenging for the runtime load balancing strat-
egy.

• The Nonmax and the Cull computations are sequential and se-
rialize the processing; they account for non-parallelizable part
from the Amdahl’s law standpoint and limit performance scal-
ing.

• The Cull that performs sorting of keypoints creates a synchro-
nization barrier - Angle and Brief computations cannot start
until all keypoints in an input image have been detected and
sorted; efficient pipelining of consecutive image pyramid im-
ages is necessary in order to fill processing elements with work
while sorting is performed.

• The access pattern to image patches from the Angle and the
Brief functions is irregular and cannot be predicted in advance;
this requires efficient dynamic pipelining in order to hide mem-
ory transfers latency with computations.

• Smaller scaled-down images require much less work compared
to larger images at lower scaling factors; this requires low-
overhead runtime implementation and scheduling in order to
efficiently handle actors with small workloads.

Figure 4.2 shows the ORB StreamDrive dataflow graph. The FAST ,
Harris, Angle, and Brief actors are data-parallel such that several
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Figure 4.2: ORB StreamDrive dataflow graph.

instances of each can be created depending on number of available
processing elements. The Gaussian blur is performed using the HWC

convolution block. The DMA is used to perform several memory
transfers: (1) reading input scaled images from off-cluster memory,
the DMA is managed by a special SRC actor; (2) writing the Gaussian
blur image to off-cluster memory, the DMA is managed by a special
DST actor; (3) reading input scaled image patches used by the Angle
actor, the DMA is managed by the actor itself; and (4) reading blur
image patches used by the Brief actor, the DMA is also managed by
the actor itself.

Table 4.1 reproduces the Table 2.3 from chapter 2 showing ORB ac-
tors token granularities. Thus, the FAST actor accepts a window of 7

input image lines and generates a number of keypoints correspond-
ing to that window. All remaining actors’s inputs are keypoints gen-
erated by previous actors. In addition to keypoints, the Harris, the
Angle and Brief actors require small image patches of 9× 9, 31× 31
and 41× 41 pixels, respectively. In our implementation, the Harris
is processing keypoint line-by-line in raster scan order, and therefore
accepts a window of 9 lines of input image in addition to the FAST
keypoints. The Angle and Brief actors process keypoints in order
sorted by the Cull, they take small input image patches as additional
input.

The StreamDrive ORB implementation relies on the HWC convolu-
tion block for computing the Gaussian blurred image. The Gaussian
function implements a 7 × 7 filter over a 640 × 480 image. At 16

MAC/cycle that the HWC is able to perform, the Gauss processing
can be done in a single HWC block, in parallel to the rest of the ORB

computation.
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# Actor Port Token size
FAST IN One image line

OUT One keypoint
NONMAX IN One keypoint

OUT One keypoint
HARRIS IN One keypoint

REF One image line
OUT One keypoint

CULL IN One keypoint
OUT One keypoint

ANGLE IN One keypoint
REF One image patch
OUT One keypoint

GAUSS IN One image line
OUT One image line

BRIEF IN One keypoint
BLUR One image patch
OUT One descriptor

Table 4.1: Granularity of actors in ORB dataflow graph.

Altogether, our ORB implementation scales up to 54 actors, includ-
ing up to 16 FAST , 16 Angle, and 16 Brief actors, as well as 2 Harris

actors.

4.1.2 Face Detection

The Face Detection application detects faces in an input image.

scale integral
cascade 
detection

Scaled

images

Input

image
face-list

face-
list

faces
Integral

data

Figure 4.3: Functional blocks from reference Face Detection algorithm.

As the Figure 4.3 shows, reference FD algorithm describes a
pipeline of four main functions: the Scale that creates the image pyra-
mid with 16 scaling levels; the Intg generating an integral image and a
square integral image for each scaled input; the Cascade function that
scans the integral image patch-by-patch (a small rectangle), analyzing
these patches through a cascade database of features; when a candi-
date face is found, the patch is sent to the List function, which checks
and sorts all candidate faces in order to produce a list of found faces.
The Cascade performs the pattern-matching and is by far the most
time-consuming of all functions. The main difficulty in efficiently im-
plementing the FD is that the Cascade processing is very unbalanced:
the patch workload varies greatly (100 times or more) from one im-
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Figure 4.4: Face Detection StreamDrive dataflow graph.

age patch to other. Thus, while one of the actors blocks the process-
ing pipeline with a heavy workload patch, other actors risk to remain
waiting for the processing pipeline to unblock. We have implemented
a special Cascade Slow Vehicle (CSV) actor, which handles the heavy
workload patches while more numerous low-workload patches con-
tinue to be processed by the regular Cascade actor. The CSV actors
allow the out-of-order patch processing enabling the regular patches
that follow a heavy workload patch to be completed before the heavy
workload patch completes.

Figure 4.4 shows the Face Detection StreamDrive graph. Similar
to ORB, the image pyramid is built in a pre-processing step outside
of the FD processing. The three main actors, the Intg, the Cascade,
and the CSV are implemented as data-parallel actors. There are no
application-specific hardware elements used by the FD implementa-
tion, this would require very narrowly specialized hardware. There-
fore, all processing is done is software. The DMA is used to read
the input scaled images from off-cluster memory, and to write the
resulting face list to the off-cluster memory at the end of processing.
The DMA transfers for the input images are managed by special SRC
actor, while writing back of results is handled by the List actor itself.

Table 4.2 shows FD actors token granularities:
The FD actors token granularity is straightforward. The Intg ac-

cepts the input image one line at a time and generates integral image
patches. These patches are then processed by the Cascade and by
the Csv actors that generate face descriptors for those patches that
contain faces. The List takes the face descriptors, matches them with
the face database and outputs the matching faces as result.

The FD implementation is a full software implementation (except
for the image pyramid scaling) with no application-specific hardware
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# Actor Port Token size
INTG IN One image line

OUT One integral image patch
CASCADE IN One integral image patch

OUT One face descriptor
CSV IN One integral image patch

OUT One face descriptor
LIST IN One face descriptor

OUT One face

Table 4.2: Granularity of actors in FD dataflow graph.

elements used. Our Face Detection implementation scales up to 42

actors, including up to 8 Intg, and up to 16 Cascade and CSV actor
instances.

4.1.3 StreamDrive Parallelization Overhead

The parallelization overhead is a penalty paid for parallelizing an
application. The StreamDrive parallelization overhead results from
(1) the communication overhead including the reserve, push, pop, and
release functions; (2) the DMA management for moving the data be-
tween the off-chip memory and the cluster TCDM; and (3) the runtime
scheduler overhead including the broadcast and collect synchroniza-
tion. The communication and the DMA management overhead is
scalable, i.e. from Amdahl’s law perspective it contributes to the paral-
lelizable part of the application. The runtime scheduler overhead, on
the other hand, grows with the number of actors and communication
channels. It is important that the scheduler has as low-overhead as
possible because from Amdahl’s law standpoint, it contributes to the
non-parallelizable part of the application. In order to characterize the
StreamDrive parallelization overhead, we measure the performance
of the ORB and FD dataflow implementations configured for 1 PE and
512KB of TCDM with off-cluster latency of 1 processor cycle. In this
configuration the off-cluster data transfers are completely hidden and
do not affect measured application cycle count.

Figure 4.5 shows the breakdown of ORB actors execution time into
times spent in computation, in the communication API, and perform-
ing the DMA management tasks. The overheads from the FAST , the
Angle and the Brief actors are small compared to the computation
part and, most importantly, these actors are parallelizable including
this overhead. TheHarris actor performs relatively little computation
per input and suffers from higher communication overhead, 24.2%.
However, this overhead is also parallelizable. The Nonmax and Cull
actors also have heavy communication overheads of 35.0% and 18.7%
respectively. These actors, however, cannot be parallelized and there-
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Figure 4.6: StreamDrive parallelization overhead: ratio of time spent in com-
putation vs. data transfer vs communication API, for the FD
application.

fore contribute to performance scaling degradation (explained later).
Altogether, the three actors, the Nonmax, the Harris and the Cull,
perform each relatively little computation per input. One possibility
that we explored is to merge these three actors into a single bigger
actor. However, this only works well when the total number of actors
is low because the Nonmax and the Cull cannot be parallelized and
the resulting merged actor is difficult to load balance with the rest of
the application. The better performance is achieved by not combining
these actors in favor of a better load balancing. We have observed that
even though the relative overhead penalty seems high, the combined
total overhead of the three actors in terms of application processing
time is less than 0.5% (not counting the Gaussian filter). The Angle
and the Brief actors overhead count includes both, the communica-
tion and the DMA management overhead, because they manage the
DMA for transferring reference image patches around each keypoint
from off-cluster memory to the TCDM. Their data transfer manage-
ment overhead is 6.2% and 6.7%, respectively. This overhead corre-
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Figure 4.7: Ratio of time spent, on average, by each PE in actor computation,
runtime scheduler, and the idle, for the ORB application.

sponds to many relatively small DMA transfer requests for reference
image patches.

Figure 4.6 shows similar breakdown of FD actors execution time.
The StreamDrive communication overhead is only noticeable with
the List actor which performs very little work per input face. There
is no need to further optimize this since the List only account for
0.000332% of the FD total execution time.

It is interesting to consider our results in a context of existing state-
of-the-art runtime environments. Compared to the KPN implementa-
tion by Haid, the StreamDrive synchronization is faster: less than 40

processor cycles per blocking access (a reserve or a pop) on average
versus 150 reported in [23].

The scheduling overhead is affected by the number of actors and
the number of communication channels in the application (including
the number and size of the broadcast and the collect connections).

Figures 4.7 and 4.8 show the percentage of time spent on average
by each processing element in actor computation, runtime scheduler,
and the idle time, for different dataflow graph configurations. The
Y-axis show the percentage of time that each PE spends on average in
different parts of the processing; the X-axis plots the number of PEs
active in various dataflow graph configurations. There are plots for
dataflow graph configurations with 64KB8, 128KB, 256KB, and 512KB
of available TCDM memory. For each TCDM capacity, the number of

8 The smallest FD configuration requires 128KB, therefore there is no 64KB plot for the
FD application.
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Figure 4.8: Ratio of time spent, on average, by each PE in actor computation,
runtime scheduler, and the idle, for the FD application.

dataflow actors increases with the number of PEs. For example, a 1 PE

ORB configuration contains 8 actors, while a 16 PE configuration con-
tains 54 actors. Similarly, the 1 PE FD configuration contains 5 actors,
while the 16 PE configuration has 42 actors. The StreamDrive runtime
scheduler is very efficient: the time spent in the scheduler remains
low over different number of actors, under 6% for the largest ORB

configuration and under 4% for the largest FD configuration. These
numbers also show how efficient our broadcast and collect connections
are - the scheduling overhead remains low going from none (1 PE) to
heavy broadcast and collect operation (16 PEs).

The StreamDrive distributed scheduler results in near-optimal load
balancing. There is virtually no idle time with the StreamDrive ORB

implementation. With the FD implementation, the idle time grows
up to 12% per processing element in a 128KB TCDM and 4 PE config-
uration. The reason is that occasionally there is a very long latency
Cascade Slow Vehicle task that blocks the pipeline sufficiently longtime
for all dataflow buffers to fill, freezing all PEs but one. The problem is
alleviated with increased TCDM buffering capacity but cannot be com-
pletely hidden even with large amount of buffering with TCDM ca-
pacity 512KB. The StreamDrive scheduler’s efficiency is not affected
by the buffering capacity - the scheduler overhead remains virtually
constant under different TCDM memory sizes.



4.1 case-study 1: image processing 121

4.1.4 Memory Footprint

Application memory footprint determines how much memory the
application needs for execution. The StreamDrive application mem-
ory footprint includes the application data, the runtime system in-
cluding the runtime stack, and the dataflow buffers. There is an im-
portant design point trade-off between the application performance
and its memory footprint. While the application data and runtime
stack are specific to each particular implementation, the increase in
dataflow buffers capacity leads to higher performance. On the other
hand, large memory sizes may not be affordable for low-cost embed-
ded implementations.

In terms of the run-time system memory requirements, the debug
version of the StreamDrive library uses 944 bytes of static data. It
also needs 64 bytes of memory per actor in addition to actor private
data, and up to 60 bytes per communication channel, depending on
channel type. In comparison, an image line of a VGA image has a
size of 640 bytes. While the smallest ORB keypoints buffer requires al-
most 300 bytes, the buffer capacities in FD implementation all exceed
several KBytes. The stack contribution is application-specific and de-
pends on the size of biggest stack that any one actor may require. As
explained in section 2.5.3, the StreamDrive implementation allocates
one runtime stack per processing element inside the TCDM memory.
In our ORB and FD implementations, 2KB of the stack space per ac-
tor is enough even for a debug version of applications with printfs.
Thus, a maximal 16 PE dataflow graph configuration required 32KB
of stack space for the 16 processing elements.

The application buffering requirements are determined by the actor
granularity along with the capacity of the dataflow communication
channels. Every dataflow channel requires a minimal FIFO buffer size
that ensures a deadlock free execution 9. Additional buffer capacity
beyond such minimal size helps improve performance by reducing
scheduler overhead and by absorbing communication peaks when
actor computation is irregular and unpredictable.

Figures 4.9 and 4.10 summarize the performance improvement as-
sociated with increasing the buffering capacity for the ORB and the
FD applications. Each figure plots the frame rate, in terms of the
number of frames/sec. achieved by different dataflow graph config-
urations at operating frequency of 500 MHz. There is one figure for
each of 6 different off-cluster access latencies. For example, with off-
cluster latency of 1 processor cycle, the ORB implementation achieves
the frame rate of 15 frames/sec. with 4 PEs and only 64 KB of TCDM

memory. With the same off-cluster latency, the ORB implementation
with 16 PEs and 512KB of the TCDM memory can achieve more than
40 frames/sec. performance. Some dataflow graph configurations do

9 Unless there is uncontrolled accumulation of tokens in a channel.



4.1 case-study 1: image processing 122

(a) Latency 1 cycle

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 10 12 14 16

64KB 128KB 256KB 512KB

(b) Latency 40 cycles

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 10 12 14 16

64KB 128KB 256KB 512KB

(c) Latency 100 cycles

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 10 12 14 16

64KB 128KB 256KB 512KB

(d) Latency 200 cycles

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 10 12 14 16

64KB 128KB 256KB 512KB

(e) Latency 400 cycles

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 10 12 14 16

64KB 128KB 256KB 512KB

(f ) Latency 1000 cycles

Figure 4.9: Performance gain vs. TCDM memory capacity for different ORB
dataflow graph configurations. A minimum of 64KB of the
TCDM memory is necessary for smaller configurations. Start-
ing with larger configurations (8PEs and bigger) a minimum of
256KB of TCDM memory is necessary.

not fit with smaller memory sizes, thus there are no points plotted
for the ORB with more than 4 PEs and with 64KB TCDM capacity. Sim-
ilarly, the FD implementation requires the minimum of 128KB of the
TCDM. From these Figures, it can be seen that performance gain due
to having more memory starts to be noticeable when number of PEs
is greater than 4 in both applications. The performance gain from
TCDM increase between 256KB and 512KB is more important in the
FD application because in FD the long CSV actor’s latency can only be
hidden by increasing the communication channel buffering capacity.

With the number of PEs greater than 8, it is important to have the
TCDM memory capacity of at least 256KB due to minimal applications
buffering requirements. As a rule of thumb, the memory requirement
of this type of image processing applications is 32KB of the TCDM

memory per PE.
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Figure 4.10: Performance gain vs. TCDM memory capacity for different FD
dataflow graph configurations. A minimum of 128KB of the
TCDM memory is necessary for our implementation. Starting
with 8PEs and bigger configurations a minimum of 256KB of
TCDM memory is necessary.

4.1.5 Performance Scaling

The performance scaling of a parallel application indicates how
much performance increases when more processing elements are
added. Performance scaling is important, as the more an application
scales the larger number of PEs it can take advantage of. In practice,
application nature and overheads limit the scalability of real applica-
tions. Amdahl’s law models these limits in terms of serial and paral-
lel fractions: “The performance improvement to be gained by parallelization
is limited by the proportion of the code which is serial” [214]. Generally,
the performance scaling also shows how efficient the parallel runtime
system is. In order to gain insight into the StreamDrive performance
scaling and determine the optimal number of PEs in a CVE cluster, we
evaluated the performance of the ORB and the FD applications config-
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Figure 4.11: ORB performance scaling: speed-up vs. number of PEs.

ured for 16 PEs with different TCDM memory sizes, while varying the
number of active PEs.

Figures 4.11 and 4.12 plot the resulting Amdahl’s curve for the two
applications. In each figure, the Y-axis plots the speedup, i.e. the
ratio of performance improvement, versus the number of processing
elements along the X-axis, for dataflow graph configurations with
different TCDM memory sizes. In order to put these numbers into a
context, we also plot the “fitting” Amdahl curves corresponding to
3% serial application part for the ORB, and to 4% serial part for the
FD. These Amdahl curves fit well the performance of our implemen-
tations up to 8 PEs.

Generally, we are observing good speedup up to 8 PEs with a
clearly diminishing return when the number of PEs grows further.
It is specifically true for the ORB implementation where the speedup
does not exceed 8 times independent of the number of PEs or the
TCDM memory capacity. Particularly, the speedup with the number
of PEs exceeding 8 corresponds to Amdahl curves when increasing
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Figure 4.12: FD performance scaling: speed-up vs. number of PEs.

application serial part. The ORB speedup is limited by about 2% of
non-parallelizable processing that corresponds to the Nonmax and
Sort functions. Further, the runtime scheduler overhead grows close
to 5% as we have shown in Figure 4.7. Altogether, this limits the
potential speedup of the ORB application.

The FD speedup is not limited by a non-parallelizable algorithmic
part but instead a “non-parallelizable” part is created by an extremely
long latency Csv actors that may block the pipeline. The impact of
this long latency actor can be reduced by increasing the dataflow
buffering capacity, which allows other actors to execute while the
Csv is blocking the pipeline. That explains why the FD speedup is
higher with longer off-cluster access latencies compared to the low
latencies.

For comparison, Yviquel [24] reported performance scaling num-
bers of their dataflow implementation for an MPEG-4 video decoder.
With 10 processors their reported speedup is less than 6 times. The
authors explain this relatively low speedup numbers by the limit of
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functional parallelism in the application. The StreamDrive is able to
exploit data parallelism in addition to the functional parallelism.

As a side note, we observed that if these applications are paral-
lelized using only data-parallelism, eg. with OpenMP parallel sec-
tion pragmas, the obtained speedup corresponds to an Amdahl curve
with at least 10% of serial application part. Although the data-
parallelism is often the most obvious to exploit and may require mini-
mal parallelization effort, pipelining implementation is important for
achieving high performance.

One important quality of a parallel implementation is how well it
performs when off-cluster access latencies are increased. In a System-
on-Chip (SoC) environment, where multiple IPs compete for the ac-
cess to the DDR memory, the off-cluster access latency may grow to
tens or hundreds of cycles. Particularly demanding in terms of off-
cluster access efficiency are dataflow configurations with many PEs
because they require data to be available simultaneously for a large
number of actors. Additionally, the relatively small ORB actor granu-
larity results in many modest size DMA transfers, such as one image
line of only 640 bytes, or the Angle reference image patch of 31x31

bytes.
Figures 4.9 and 4.10 above characterize the impact of increasing the

off-cluster access latency from 1 to 1000 processor cycles, in terms of
real-time performance, on the ORB and the FD application. Figures
4.11 and 4.12 characterize this impact in terms of performance scal-
ing. Figures 4.9 and 4.10 show that there is almost no performance
impact up to off-cluster of 400 processor cycles. Even with unrealisti-
cally long latency of 1000 cycles, the performance impact is not very
significant. From Figures 4.11 and 4.12, there is no impact on perfor-
mance scaling up to the very long latency of 1000 cycles. The dynamic
dataflow performance holds well even under long off-cluster memory
latencies.

4.1.6 KPN vs. DPN Trade-off

Considering that the biggest parallelization effort is required for op-
timizing the dataflow graph after having introduced the firing rules,
it is interesting to characterize the performance achievable with the
KPN execution vs. the optimized DPN execution. For this, we compare
the KPN and the DPN implementation of the ORB application.

Figure 4.13 shows the comparison of the performance of the two
ORB implementations, the DPN and the KPN implementations, for dif-
ferent dataflow graph configurations and as a function of the off-
cluster access latency. The Y-axis plots the frame rate (frames/sec.)
vs the number of PEs for two TCDM memory capacities, 256KB and
512KB. The DPN implementation frame rate is up to 15% better that
the KPN rate with low off-cluster access latency, and up to double the
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Figure 4.13: DPN vs KPN performance for different ORB dataflow graph
configurations.

KPN frame rate even with a reasonable 200 cycles latency. While the
DPN implementation achieves a real-time rate of 30 frames/sec. with
8 PEs under all latencies, except unrealistically high 1000 cycles, the
KPN implementation does not achieve this rate with latencies greater
than 40 cycles and even with such low off-cluster access latencies re-
quires more than 10 PEs. Thus, the effort spent in optimizing the
dataflow graph is certainly necessary in order to achieve the target
real-time objective.

In both implementations, the frame rate improves with increasing
the capacity of communication buffers. However, in the KPN mode the
impact of buffering capacity increase is more significant. Unlike the
DPN implementation, the KPN implementation is also significantly im-
pacted by the off-cluster memory latency. The cost of a KPN context
switch is the reason for these impacts. The number of KPN context
switches during the application execution is related to the available
buffer sizes: the bigger are dataflow channel buffers, the fewer are
there context switches in the KPN mode. Similarly, in the DPN mode,
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the number of times that the runtime scheduler switches actors is also
related to the dataflow buffers sizes. However, a DPN actor switch is
much less penalizing than a KPN context switch. Thus, the perfor-
mance impact of the number of actor suspensions and resumptions
is much more significant in KPN mode. On the other hand, the cost
of the KPN context switch is directly related to the off-cluster memory
access time because it is not possible to hide the context saving and
restoring by performing it in parallel with other computation work.
For example, there were 202 context switches during the KPN execu-
tion of the first scaling pyramid ORB image in 1 PE. With off-cluster
latency of 1 processor cycle, they account for less than 2% of the im-
age processing time. When the off-cluster memory latency increases
to 40 cycles, these context switches account for 10% of the image pro-
cessing time. The KPN implementation performance is much more
affected by the off-cluster memory latency than the performance of
the DPN implementation. The DPN would be a better choice for real
embedded systems, where the off-cluster memory latency is often a
bottleneck.

Finally, the KPN implementation performance does not scale as well
as the DPN implementation performance when the number of process-
ing elements increases. The reason is twofold: (1) the dynamic DPN

assignment of dataflow actors to PEs outperforms the fixed KPN as-
signment, and (2) the relative contribution of the KPN scheduler is
increasing faster than the contribution of the dataflow scheduler with
more parallel actors.

4.2 case-study 2: convolutional neural
networks

In this section, we evaluate the internal TCDM memory bandwidth
requirements of the HWC hardware block. The HWC bandwidth needs
to be supported by sufficient internal HWC buffering and by sufficient
number of logarithmic interconnect ports to the TCDM shared mem-
ory. We also compare the HWC bandwidth requirements to the state-
of-the-art tightly-coupled convolution hardware unit from [29].

BiasConv Activation Pooling

Input

feature

maps

Output

feature

maps

tmp

feature

maps

Figure 4.14: Functional blocks from a typical CNN layer.

Figure 4.14 shows a typical CNN layer structure. As explained in
chapter 3, the main function blocks are the Conv (convolution), the
Activation and the Pooling. We are performing addition of the con-
volution layer Bias outside of the HWC block and therefore have pic-
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tured this as a separate function block. There may be any number of
additional functions depending on a particular CNN network, such a
the Local Response Normalization (LRN), or others.

Embedded versions of CNN networks are typically quantized, i.e. the
floating-point computations are replaced with the fixed-point compu-
tations, which are much more efficient in terms of performance, area
and power. We are using the dynamic fixed-point data quantization
technique from [198].

StreamDrive parallelization of the CNN layer over multiple HWC

blocks and processing elements is straightforward. The output fea-
ture maps volume is split into N sets processed in parallel. The CNN

processing is very regular and we can statically assign each parallel
output feature map set to a processing element eliminating the dy-
namic actor assignment overhead. The token granularity of all actors
is also straightforward - one feature map line of pixels. Figure 4.15

shows the resulting StreamDrive dataflow graph.
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Figure 4.15: StreamDrive dataflow graph for a typical CNN layer.

The input feature maps are read from off-cluster memory via the
DMA by a special SRC actor. All parallel output feature map compu-
tation sets share the input feature map buffer. The Conv actors use
the HWC blocks, while other CNN layer functions are implemented in
software. In order to eliminate the runtime scheduler overhead, all
software functions are re-grouped in a single dataflow actor. This ac-
tor also handles the DMA management for writing the output feature
maps back to the off-cluster memory. The StreamDrive runtime en-
sures the synchronization and dynamic pipelining between the DMA
transfers, the HWC blocks, and the software implemented functions.

In order to perform the bandwidth requirements evaluation, we
have configured our simulator with a single HWC and run simula-
tions of a large number of convolutional layers coming from follow-
ing CNNs: the AlexNet [172], the VGG [210], the ResNet [211], the
Google Inception [212], and the DenseNet [213]. The complete list of
CNN layers used in our evaluation and their shapes can be found in
Appendix B. We have then measured the number of bytes transferred
between the HWC and the TCDM memory for each tested CNN layer.
Figures 4.16 and 4.17 summarize the results.
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Figure 4.16: Bandwidth (in terms of Bytes/cycle) required by the HWC for
a number of different CNN layers: the input feature maps, out-
put feature maps and weights are assumed to be 8-bit values,
the accumulation is done in 32-bits. The red line corresponds
to the standard 2D convolver bandwidth.
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Figure 4.17: Bandwidth (in terms of Bytes/cycle) required by the HWC for
a number of different CNN layers: the input feature maps, out-
put feature maps and weights are assumed to be 16-bit values,
the accumulation is done in 32-bits. The red line corresponds
to the standard 2D convolver bandwidth.

The Figures show the memory bandwidth requirements (in terms
of Bytes/cycle) necessary to sustain a 16 MAC wide HWC datapath for
the different CNN layers. The Y-axes plot this bandwidth over dozens
of CNN layers marked along the X-axes. There are dots of 4 different
colors corresponding to different HWC internal buffering capacities,
namely 1KB, 2KB, and 4KB of HWC internal storage. The required
HWC to TCDM bandwidth is increasing for lower HWC internal buffer
capacities. The Figure 4.16 assumes that the feature maps and kernel
weights are all 8-bit values while the accumulation is done in a 32-
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bit precision; the Figure 4.17 assumes the feature maps and kernel
weights of 16-bits with the same accumulation precision.

To put these numbers in a context, we have also plotted the TCDM

bandwidth requirements of a state-of-the-art tightly-coupled convo-
lution accelerator, HWCE [29] - the red line. Both hardware units, the
HWC and HWCE, target low-cost and low-power applications and
implement very little internal buffer storage. Both are constrained by
the performance of the shared memory logarithmic interconnect. The
HWCE implements a 2D convolver with linear input buffering. The
HWCE runs a steady pipeline reading one input pixel per clock cy-
cle and reading and writing a partially accumulated sum every clock
cycle 10.

The HWC computation schedule results in lower bandwidth require-
ments in all cases, but one: with minimal 1KB internal buffering, the
decimated 1 × 1 convolution with the stride 2 in ResNet results in
slightly higher bandwidth requirements. Furthermore, the vast ma-
jority of CNN layers access less than 6 bytes of data per operating clock
cycle. This allows us to reduce the number of logarithmic intercon-
nect ports to 2 ports per HWC element, still allowing an uninterrupted
operation even considering occasional conflicts in shared memory ac-
cess.

4.3 putting it all together

We have implemented the HWC hardware block with the CatapultC
High-Level Synthesis tool. The design also includes the StreamDrive
hardware block bridge described in chapter 2. This HWC version im-
plements slightly over 1KB of internal storage including small input,
weight, and partial sum buffers. Table 4.3 shows the breakdown of
the local storage capacity for the three CNN arrays:

I W O

Buffer size 96B 128B 1KB

Table 4.3: The HWC buffering size for the three CNN arrays.

In 28 nm technology, the routed HWC together with the hardware
bridge occupies the 0,11 mm2 of the silicon area. For comparison,
the HWC with computing capacity of 16 MAC operations per clock
cycle, occupies 1, 7 times area of our RISC core, capable of only one
arithmetic operation per clock cycle. Total area of a shared memory
cluster, with 4 PEs (enhanced with the image processing CVAx exten-
sion) and 4 HWCs, 256KB of shared TCDM memory, and with 64KB of
shared program cache, is 3, 0mm2, i.e. while accounting for the vast

10 We aligned the HWCE required bandwidth with our precision assumptions; in ac-
tual HWCE, the accumulation is performed in 16-bit instead of the 32-bit precision.
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majority of cluster performance capacity, the 4 HWCs occupy less than
15% of the total cluster area.

The evaluations conducted in this chapter lead to following obser-
vations:

• Given a reasonable off-cluster memory access latency, 8 PEs per
CVE cluster allow achieving the frame rate of 30 frames/sec.
with the ORB application and 20 frames/sec. with the FD ap-
plication.

• Given that the HWC required bandwidth can be sustained with
2 logarithmic interconnect ports, 4 HWC per CVE cluster can be
integrated for the total of 16 master IPs on the logarithmic inter-
connect.

• 256KB of the TCDM memory is sufficient for supporting this
number of computing elements. However, higher performance
implementations should integrate 512KB.

Based on this observations, we propose three CVE implementations:
(1) the low-end implementation with 2 PEs, 1 HWC, and 128KB TCDM,
(2) the middle range implementation with 4 PEs, 4 HWCs, and 256

KB of TCDM memory, and (3) the performance implementation with
8 PEs, 4 HWCs, and 512 KB of the TCDM memory. The characteristics
of each implementation are summarized in Table 4.4:

Config PEs HWCs TCDM,KB Perf.,GOPs Cluster
Area,mm2

Low-end 2 1 128 12 1,06

Middle 4 4 256 72 2,14

Performance 8 4 512 80 3,54

Table 4.4: Proposed CVE cluster configurations.

The number of GOPs corresponds to the maximal number of 8-bit
MAC operations that the cluster is able to performed per second, as-
suming the 500 MHz operating frequency. The area estimation is a
result of the topographical mode synthesis, with a 62% density ad-
justment applied on top of the synthesis results.

The low-end configuration is able to run ORB at 20 frames/sec. and
FD at 5 frames/sec., which is a good performance for the extremely
low-cost device. It can also run a small CNN, such as the Traffic Sign
Recognition [219]. The middle range configuration runs ORB at 15

frames/sec., FD at 10 frames/sec., and is able to run a CNN similar to
AlexNet at 10 frames/sec. as well. Finally, the performance configu-
ration can achieve the real-time execution of 30 frames/sec. for many
real life applications.



5 C O N C L U S I O N S A N D
F U R T H E R D I R E C T I O N S

One of the symptoms of an approaching nervous breakdown
is true belief that one’s work is terribly important.

— Bertrand Russell

To achieve high performance at low cost and energy consumption,
the application-specific hardware acceleration has surfaced as the pre-
vailing approach across embedded application domains. Flexible ac-
celerators, where modifications and enhancements can be done by
software changes rather than by re-spins of the hardware present mul-
tiple advantages: they are applicable across a variety of applications,
allow bug fixes, and support new product requirements over the life-
time of the initial hardware. A general and structured approach for
designing flexible accelerators is to build heterogeneous multi-core
shared memory clusters. Such clusters combine programmable pro-
cessor cores and application-specific hardware elements that commu-
nicate through a common shared data memory, achieving high per-
formance, cost- and energy-efficiency, while also remaining flexible.

Many modern embedded applications are streaming in nature lend-
ing themselves to very efficient hardware implementations through
exploitation of parallelism.

To take advantage of the potential performance offered by a shared
memory clustered platform, applications need to manage multiple
programmable cores, application-specific hardware elements, limited
on-chip memory, and explicit memory hierarchy. Parallel program-
ming techniques, however, have developed at a much slower pace
compared to the hardware platforms, and most parallel computa-
tion models are targeted towards workstation-class machines. Even
though industry-backed models, such as OpenMP, have been devel-
oped, they have several drawbacks in our context: they lack sufficient
abstraction for helping to achieve the right trade-off between various
optimization constraints; they do not take advantage of the streaming
nature of many embedded applications; they do not manage hetero-
geneous processing elements; they initially target large-scale systems
instead of embedded platforms and incur significant space and time
overhead. We have therefore proposed the use of dataflow computa-
tion model as one way of addressing the disparity between embedded
platform hardware and software developments. The dataflow com-
putation model proposes many properties desirable in the context of
embedded application development:

133
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• A simple parallelism model relieves the developers from think-
ing “in parallel”. Dataflow actors can only communicate via
the FIFO communication channels; there are no locks, mutexes,
critical sections, or race conditions.

• Determinism guarantees that the program will behave identi-
cally on each execution. Potential problems can therefore be re-
liably reproduced, diagnosed and fixed, which is an otherwise
notoriously difficult with parallel applications.

• Dataflow actors are written in the usual sequential style. Devel-
opers can therefore quickly become productive in the parallel
programming domain using their existing knowledge.

• A simple memory model simplifies dealing with limited local
memories. There is a clear link between the buffer capacity and
the application performance helping the application optimiza-
tion.

• The asynchronous and pipelined dataflow execution tolerates
memory and synchronization latency efficiently.

• The dataflow execution model matches well the streaming na-
ture of many applications. Heterogeneous dataflow actors
are seamlessly integrated together; particularly, the application-
specific hardware elements are naturally handled.

Decidable dataflow models can be efficiently implemented (even
in software only) but lack necessary expressiveness to handle mod-
ern applications. The dynamic dataflow models, such as Kahn Pro-
cess Networks (KPN) and Dataflow Process Networks (DPN) have
the necessary expressiveness but existing implementations failed to
achieve efficiency required with tightly constrained embedded so-
lutions. Therefore, we have developed StreamDrive, a dynamic
dataflow framework consisting of a shared memory cluster archi-
tecture with support for efficient dataflow communication and syn-
chronization, the lightweight dataflow programming API, and the
efficient dataflow runtime system. During implementation phase,
we have focused on simplicity and performance. These properties,
together with collection of detailed run-time statistics, distinguish
StreamDrive from other existing dynamic dataflow frameworks.

While the dataflow computation model offers a more flexible de-
velopment framework than other frameworks, it may incur increased
complexity on the developer. Being able to reasonably quickly derive
a highly optimized implementation from a sequential reference algo-
rithm is “must have” for the adaption of the dataflow computation
model by the industry. Addressing this issue we have proposed a
successive refinement process for deriving an optimized dataflow im-
plementation from a sequential reference algorithm. The successive
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refinement process is based on StreamDrive double support for the
two dynamic dataflow models, the KPN and the DPN. The result-
ing application transformation process consists of a sequence of well-
defined and straightforward elementary steps, which significantly re-
duces the application development costs.

Review of Problem Statement and Contributions

Our initial idea has been to investigate how the dataflow computa-
tion model can be used to address the limitations of existing shared
memory clustered platforms. In Chapter Introduction, we have there-
fore raised 4 research questions:

• What architecture support is necessary for efficient execution of
dataflow applications in tightly-coupled clusters with streaming
hardware elements ?

To answer this question, we have extended previous shared
memory cluster [15] with several hardware elements supporting
the dataflow execution model. First, we designed a special hard-
ware block bridge that allows tightly-coupled hardware blocks
to communicate via the cluster shared memory. The hardware
block bridge takes care of dataflow synchronization letting the
hardware elements execute as KPN processes without directly
synchronizing with the software scheduler. The hardware block
bridge also makes a connection between the streaming send and
receive requests of the hardware element and a load and store ac-
cesses to the cluster shared memory. Second, although dataflow
communication via shared memory is efficient, the synchroniza-
tion based on shared memory polling is not. We have also ex-
tended the shared memory cluster with a special event network
which allows dataflow synchronization via lightweight events
rather than memory polling or processor interrupts. Third, we
have extended the DMA with event generation ability so that
DMA transfers can be seamlessly handled within the general
dataflow framework. We have thoroughly analyzed two typical
image processing applications, the oriented FAST and Rotated
Brief (ORB), and the Face Detection (FD). We have shown that
StreamDrive communication and synchronization overhead is
very low due to this dedicated hardware support. We have
measured that the cost of a single communication operation (a
dataflow send or a receive) takes less than 40 processor cycles
in our implementation.

• As part of answering the previous question, we have also de-
signed the Computer Vision Engine (CVE). The CVE is a special-
ization of StreamDrive platform targeting computer vision and
image processing applications. The CVE development has fo-
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cused on two axes: (1) designing a tightly-coupled convolution
hardware block, HWC, which can efficiently execute the Convo-
lutional Neural Networks (CNN) workloads, and (2) the CVE
configuration in terms of the number of processing elements
and the TCDM memory size. The HWC architecture explo-
ration lead us to develop an analytical memory performance
model that is more accurate than existing models in applica-
tions that manage data scratchpad buffers.

• How do we transform a sequential reference code into an op-
timized dynamic dataflow implementation and what is the re-
quired effort of doing so ?

To answer this question, we have developed a successive refine-
ment transformation flow. The transformation process starts
with a sequential reference algorithm, and proceeds with well-
defined elementary steps towards a highly optimized dataflow
implementation. Each elementary step is straightforward and
allows full functional and performance verification of the appli-
cation. For example, the very first step transforms the reference
code to the KPN form. This step requires minimal changes to
the original code and can be done one function at a time. Sim-
ilarly, going from the KPN form to the DPN requires dividing
KPN processes into firings and introducing the firing rules. The
transformation can be done one function or loop at a time, and
one firing rule at a time. The application remains executable
throughout all the intermediate steps. We have used the succes-
sive refinement process for implementing the ORB and the FD

applications. In less than 6 weeks, we have parallelized both
applications, optimized the implementation by exploring differ-
ent parallelization strategies, and fine-tuned each application
for executing in 180 target platform configurations.

• How can we make an efficient runtime system for executing
dataflow applications on top of a memory limited embedded
platform ?

To answer this question, we have implemented StreamDrive
runtime supporting efficient execution of dynamic dataflow ap-
plications. StreamDrive implements an innovative zero-copy
communication protocol, as well as special broadcast and col-
lect communication channels that allow efficient sharing of
dataflow buffers by dataflow actors. These features allow
StreamDrive implementations to have an extremely low mem-
ory footprint. Another StreamDrive memory saving feature is
the novel stack spilling technique which significantly reduces
the application runtime stack requirements. StreamDrive im-
plements distributed low-overhead combined KPN and DPN
scheduler able to simultaneously handle both types of dataflow
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actors. We have shown that applications under control of this
scheduler scale very close to optimal up to 8 processing ele-
ments, which is better than other user-space scheduler imple-
mentations: Yviquel [24] reported performance scaling less than
6 times with 10 processors on their dataflow implementation for
an MPEG-4 video decoder.

• What are the performance characteristics of applications imple-
mented within our dataflow framework?

To answer it, we have implemented the ORB and the FD applica-
tions, as well as a parameterized Convolutional Neural Network
(CNN). Our implementation clearly demonstrates the advan-
tages of using the dynamic dataflow framework. The dataflow
implementations suffer low overhead, require low memory foot-
print, scale well with more processing elements, and are almost
unaffected by the increase in off-cluster memory access latency.

• As part of answering the previous question, we have also eval-
uated the bandwidth requirements of different CNN networks
versus available HWC internal storage and the cluster shared
TCDM memory. With the HWC, with as little as 1KB of internal
storage, the CNN convolutional layers require less than 6 bytes
of data per clock cycle, dropping to around 2 bytes for most
layers with 4KB of HWC internal storage. Such low TCDM
bandwidth results from the HWC computation schedule, which
we derived using our analytical memory performance model.
On the other hand, we also used our analytical performance
model to compute optimal CNN computation loop-nest tiling
in order to minimize off-cluster bandwidth. We show that for
most well-known networks the total off-cluster memory band-
width requirements remain relatively low while achieving real-
time execution frame rates.

5.1 a critical view

A perfect work is rarely found, and it is next-to-impossible to
achieve perfection in the limited time available for fulfilling a PhD
degree. We have identified certain limitations of our work, which
addressing is left for future work.

We have run our experiments using mostly a cycle-approximate
simulator. This, however, was not our intention, but a consequence
of circumstances – we did not have sufficient time to develop a full
FPGA prototype that could be used instead. We have, however, im-
plemented an initial FPGA prototype of our framework with 8 pro-
cessing elements and a single HWC hardware block.
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We consider that using a simulator instead of real hardware would
suffice for a proof-of-concept. One particular point that is raising
question is that the TCDM memory accesses are only modeled ap-
proximately and it is uncertain how well it accounts for actual shared
memory conflicts. Further validation of the point using real hardware
prototype is left for future work.

Many of our conclusions on dataflow computation model would be
stronger if we could perform a quantitative comparison against the
OpenMP implementation, for example. We have some comparison
points but it is never really clear whether a given OpenMP imple-
mentation can be considered efficient enough to serve as a point of
reference for this computation model.

Finally, one of the most important design constraints for embedded
systems is their power consumption. Although our initial intent was
to investigate the power-related aspects of the dataflow computation
model, we discovered that it is difficult to report a meaningful power
measures in absence of an actual hardware implementation. We have
therefore reported results in terms of the number of internal and off-
cluster memory accesses, which we consider proportional to the IP
power requirements.

5.2 future directions

We judge the overall results presented in this thesis as positive, and
we are considering a full hardware implementation of our Computer
Vision Engine.

A real implementation opens at least two new challenges: the
assumptions on how well the logarithmic interconnect can handle
shared memory conflicts under very busy conditions will need to
be validated; the assumptions on how well the logarithmic intercon-
nect can handle the DMA off-cluster memory traffic will need to be
validated. The real hardware implementation will also allow to put
forward solid cost and power numbers for our computer vision plat-
form.

The StreamDrive also needs to evolve. The aspects of StreamDrive
that need to be further investigated are primarily related to automat-
ing the optimization of the dataflow graph, and improvements to
the runtime scheduler. Many elementary steps during the succes-
sive refinement transformation or during the parallelization strategy
exploration can be automated. For example, dividing a KPN pro-
cess loop into firings (iterations) could be helped by an appropriate
code rewriting tool. As another example, actor merging is a fairly
straightforward but verbose task that might be facilitated by an ap-
propriate tool. On runtime scheduler improvement side, we would
focus on providing hints from compile time, such as actor priorities,
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for example, to the runtime scheduler in order to further reduce the
StreamDrive runtime overhead.

Another future development direction is related to the CNN net-
works. CNNs are typically developed using open source tools such
as Caffe, TensorFlow, or others. Our work with these tools revealed
that it is fairly straightforward to integrate our analytical memory
performance model with them. Thus, the future work in this area in-
cludes the automatic generation of CNN computation schedules from
the standard CNN descriptions.
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=============================================================================

Actor Declaration

=============================================================================

STREAM_DECLARE_ACTOR_TYPE (a,type)

Defines an alias <a>_actor_t to the <type>. The new type is used refering to

actors’ <a> instances.

STREAM_DECLARE_SW_ACTOR (a,n,s)

Declares the software actor <a> with <n> ports and with runtime stack of <s>

bytes. <n> and <s> are constants.

STREAM_DECLARE_HW_BLOCK (a,n)

Declares the hardware actor <a> with <n> ports. <n> is a constant.

=============================================================================

Graph Construction API

=============================================================================

//

// Obfuscated type stream_bind_t is defined by the system

//

void STREAM_GRAPH_BEGIN ()

Called from graph construction function. Start a dataflow graph construction.

void STREAM_GRAPH_END ()

Called from graph construction function. Ends a dataflow graph construction.

<a>_actor_t * STREAM_ACTOR_MAKE (a, const char * n, void * p)

<a>_actor_t * STREAM_ACTOR_MAKE (a, uint8_t n, void * p)

Called from graph construction function. Allocates an instance of actor <a>

with name <n> for software actors, and with HW block id <n> for hardware

actors. Calls actor CONSTRUCTOR. The argument <p> is passed to actor

constructor.

void STREAM_ACTOR_TERM (<a>_actor_t)

Called from graph termination function. Removes an instance of actor <a>. Calls

actor DESTRUCTOR.

stream_bind_t STREAM_MAKE_BUFFER (uint32_t n, uint8_t p)

Called from graph construction function. Allocates a dataflow buffer of size

<n> bytes in memory hierarchy level <p>. Returns a handle to a buffer instance.

void STREAM_TERM_BUFFER (stream_bind_t p)

Called from graph termination function. Deletes the buffer instance with handle

<p>. Releases the dataflow buffer storage.

140
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stream_bind_t STREAM_MAKE_BROADCAST (uint8_t out, uint32_t n, uint8_t p)

Called from graph construction function. Creates a BROADCAST connection with

fanout degree <out>. A dataflow buffer of size <n> bytes is also allocated in

memory hierarchy level <p>. Returns a handle to a BROADCAST instance.

void STREAM_TERM_BROADCAST (stream_bind_t p)

Called from graph termination function. Deletes the BROADCAST instance with

handle <p>. Releases the dataflow buffer storage.

stream_bind_t STREAM_MAKE_COLLECT (uint8_t in, uint32_t n, uint8_t p)

Called from graph construction function. Creates a COLLECT connection with

fanin degree <in>. A dataflow buffer of size <n> bytes is also allocated in

memory hierarchy level <p>. Returns a handle to a COLLECT instance.

void STREAM_TERM_COLLECT (stream_bind_t p)

Called from graph termination function. Deletes the COLLECT instance with

handle <p>. Releases the dataflow buffer storage.

stream_bind_t STREAM_MAKE_COLLECT_BROADCAST (uint8_t in, uint8_t out, uint32_t n,

uint8_t p)

Called from graph construction function. Creates a combined COLLECT-BROADCAST

connection with fanin degree <in> and fanout degree <out>. A dataflow buffer

of size <n> bytes is also allocated in memory hierarchy level <p>. Returns a

handle to a COLLECT-BROADCAST instance.

void STREAM_TERM_COLLECT_BROADCAST (stream_bind_t p)

Called from graph termination function. Deletes the COLLECT-BROADCAST instance

with handle <p>. Releases the dataflow buffer storage.

void STREAM_BIND_OUT_TO_IN (

<a1>_actor_t * src,

uint16_t out,

<a2>_actor_t * dst,

uint16_t in,

stream_bind_t b

)

Called from graph construction function. Connects port <out> of a source actor

<src> to port <in> of a destination actor <dst> via the dataflow buffer <b>.

If <b> is NULL, the ports are assumed to be signal ports.

void STREAM_BIND_OUT_TO_BROADCAST (

<a>_actor_t * src,

uint16_t out,

stream_bind_t b

)

Called from graph construction function. Connects port <out> of a source actor

<src> to the input port of a BROADCAST <b>.

void STREAM_BIND_BROADCAST_TO_IN (

stream_bind_t b,

<a>_actor_t * dst,

uint16_t in,

uint8_t i

)

Called from graph construction function. Connects output port with index <i>

of a BROADCAST <b> to input port <in> of a destination actor <dst>.
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void STREAM_BIND_COLLECT_TO_IN (

stream_bind_t c,

<a>_actor_t * dst,

uint16_t in

)

Called from graph construction function. Connects output port of a COLLECT <c>

to input port <in> of a destination actor <dst>.

void STREAM_BIND_OUT_TO_COLLECT (

<a>_actor_t * src,

uint16_t out,

stream_bind_t c,

uint8_t i

)

Called from graph construction function. Connects output port <out> of a source

actor <src> to the input port with index <i> of a COLLECT <b>.

=============================================================================

Graph Execution API

=============================================================================

void STREAM_GRAPH_SET_TIMEOUT (uint32_t t)

Called at the time of initialization of the dataflow graph. Sets the execution

timeout to <t> milliseconds. If <t> = 0, no timeout is set. Default 0.

void STREAM_GRAPH_SET_PROFILING (uint8_t l)

Called at the time of initialization of the dataflow graph. Sets dataflow graph

profiling level. The runtime scheduler then will collect various runtime

statistics. They are dumped to stdout at the end of dataflow graph execution.

This is intrusive and affects performance. Default 0.

void STREAM_GRAPH_SET_VERBOSITY (uint8_t l)

Called at the time of initialization of the dataflow graph. Sets dataflow graph

verbosity level. The runtime scheduler then will output messages on current

execution state to stdout. This is intrusive and affects performance. Default

0.

void STREAM_DUMP_PORT (<a>_actor_t * a, uint16_t p)

void STREAM_DUMP_ACTOR (<a>_actor_t * a)

void STREAM_DUMP_GRAPH ()

Dumping routines. Can be called from the graph or actor functions.

void STREAM_ACTOR_ENABLE (<a>_actor_t * p)

Called at the time of initialization of the dataflow graph. The actor <p> is

enabled with all its connections in the following dataflow execution. The

actor INIT function is called at this time.

void STREAM_ACTOR_SET_PRIORITY (<a>_actor_t * p, uint8_t n)

Sets software actor scheduling priority to <n>.

void STREAM_ACTOR_SET_CORE (<a>_actor_t * p, uint16_t m)

Sets software actor scheduling affinity. The actor <p> will be eligeable for

execution in a processing core only if this core is set in the mask <m>.

void STREAM_ACTOR_ENABLE_VCD_TRACE (<a>_actor_t * p)
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Tells the scheduler to generate VCD traces of execution for actor <p>. This is

intrusive and affects the performance.

=============================================================================

Actor Construction

=============================================================================

STREAM_CONSTRUCTOR (void * arg)

Actor CONSTRUCTOR. Called at actor creation time. Inside the constructor, the

actor ports need to be created. Any other actor specific allocations and

initializations can be done. Any instantiation-specific parameters can be

passed to the CONSTRUCTOR via <arg>. The THIS pointer points at the current

actor instance.

STREAM_DESTRUCTOR ()

Actor DESTRUCTOR. Called at actor deletion time. Inside the destructor, the

actor ports need to be deleted. Any other actor specific allocations and

initializations can be undone. The THIS pointer points at the current actor

instance.

STREAM_INIT (void * arg)

Called when the actor is ENABLED for a given dataflow graph execution. Any

initializations, specific to this graph execution, can be done here. Any

specific parameters can be passed to the INIT via <arg>. The THIS pointer

points at the current actor instance.

STREAM_WORK ()

Actor WORK function. Called every time that the actor is fired. Can use actor

communication API and actor scheduler API. The THIS pointer points at the

current actor instance.

void STREAM_ACTOR_MAKE_PORT_IN (uint16_t p, const char * n, uibt32_t t)

Called from software actor CONSTRUCTOR. Allocates an input port with id <p>,

debug name <n>, and token size <t>.

void STREAM_ACTOR_TERM_PORT_IN (uint16_t p)

Called from software actor DESTRUCTOR. Removes the input port with id <p>.

void STREAM_ACTOR_MAKE_PORT_OUT (uint16_t p, const char * n, uibt32_t t)

Called from software actor CONSTRUCTOR. Allocates an output port with id <p>,

debug name <n>, and token size <t>.

void STREAM_ACTOR_TERM_PORT_OUT (uint16_t p)

Called from software actor DESTRUCTOR. Removes the output port with id <p>.

void STREAM_ACTOR_MAKE_SYNC_IN (uint16_t p, const char * n)

Called from software actor CONSTRUCTOR. Allocates an input signal port with

id <p> and debug name <n>. A signal input port only signals the availability

of "tokens" but does not have associated FIFO buffer storage.

void STREAM_ACTOR_TERM_SYNC_IN (uint16_t p)

Called from software actor DESTRUCTOR. Removes the input signal port with id

<p>.

void STREAM_ACTOR_MAKE_SYNC_OUT (uint16_t p, const char * n)
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Called from software actor CONSTRUCTOR. Allocates an output signal port with

id <p> and debug name <n>. A signal output port only signals the availability

of "tokens" but does not have associated FIFO buffer storage.

void STREAM_ACTOR_TERM_SYNC_OUT (uint16_t p)

Called from software actor DESTRUCTOR. Removes the output signal port with id

<p>.

void STREAM_ACTOR_MAKE_PORT_DMA (uint16_t p, const char * n, uint8_t c, uint16_t d

)

Called from software actor CONSTRUCTOR. Allocates a DMA port with id <p> and

debug name <n>. A DMA port allows handling DMA records as if it were output

tokens. To obtain a free record, it needs to be RESERVEd. The record is

PUSHed when the DMA transfer is launched. The record is RELEASEd when the DMA

transfer completes. The DMA port exposes when actors are waiting for the DMA

records to become available to StreamDrive runtime scheduler.

STREAM_ACTOR_TERM_PORT_DMA (uint16_t p)

Called from software actor DESTRUCTOR. Removes the DMA port with id <p>.

=============================================================================

Actor Communication API

=============================================================================

void * STREAM_IN_POP (uint16_t p, uint16_t n)

Called from actor’s WORK function. Pops <n> tokens from the input port with id

<p>. This function blocks actor execution until the <n> tokens are available.

It returns a pointer to the first available token.

void STREAM_IN_RELEASE (uint16_t p, uint16_t n)

Called from actor’s WORK function. Releases <n> tokens from the input port

with id <p>.

void * STREAM_OUT_RESERVE (uint16_t p, uint16_t n)

Called from actor’s WORK function. Reserves <n> tokens in the output port with

id <p>. This function blocks actor execution until enough room is available in

the output channel for the <n> tokens. It returns a pointer to the first

available token.

void STREAM_OUT_PUSH (uint16_t p, uint16_t n)

Called from actor’s WORK function. Pushes <n> tokens to the output port with

id <p>.

=============================================================================

Actor DMA API

=============================================================================

//

// Obfuscated type stream_dma_node_t is defined by the system

//

stream_dma_node_t * STREAM_DMA_RESERVE (uint16_t p)

Called from actor’s WORK function. Reserves one DMA record in the DMA port

with id <p>. This function blocks actor execution until the DMA record is

available. It returns a pointer to the DMA record that can be then used for

configuring a new DMA transaction.

void STREAM_OUT_PUSH_VIA_DMA (uint16_t p, stream_dma_node_t * r, uint16_t n)
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Called from actor’s WORK function. Launches a DMA transfer configured with

the DMA record <r>. When the DMA transfer is completed, the result is same as

having PUSHed <n> tokens to the output port with id <p>. The DMA transfer

should have been configured with destination address corresponding to the

output channel assoiated with the port <p>.

void STREAM_OUT_SYNC_VIA_DMA (uint16_t p, stream_dma_node_t * r, uint16_t n)

Called from actor’s WORK function. Launches a DMA transfer configured with

the DMA record <r>. When the DMA transfer is completed, a signal is send to

the output signal port with id <p> with <n> tokens. The input signal port

connected to <p> can be used to synchronize with the DMA transfer completion.

=============================================================================

Actor Execution API

=============================================================================

const char * STREAM_ACTOR_NAME ()

Called from any of a software actor CONSTRUCTOR, DESTRUCTOR, INIT, or WORK

function. Returns actor debug name.

uint8_t STREAM_GET_HWB_ID ()

Called from any of a hardware actor CONSTRUCTOR, DESTRUCTOR, or INIT, function.

Returns hardware actor ID.

void STREAM_PORT_SET_QUOTA (uint16_t p, uint16_t n)

Called from a software actor CONSTRUCTOR, INIT, or WORK function. Sets the

firing rule for actor’s port <p> to <n> tokens.

void STREAM_PORT_SET_SKIP (uint16_t p, uint16_t n)

Called from a software actor CONSTRUCTOR, INIT, or WORK function. The next

firing of this actor will happen after <n> tokens have been POPed and RELEASEd

from input port <p>. Firing rule is reset to ’0’ => fires even if there are

no more tokens after the skip. This is usefull if we want to skip some number

of tokens at the beginning or at the end of processing without having to fire

the actor. More tokens than dataflow buffer capacity can be skept.

void STREAM_YIELD ()

Called from actor WORK function. Yields execution control to the scheduler.

void STREAM_EXIT ()

Called from actor WORK function. Terminates actor execution - this actor will

no longer be fired.

void STREAM_ERROR (uint32_t x)

Called from actor WORK function. Signals the error condition. The dataflow graph

execution terminates with error code <x>.

void STREAM_TERMINATE (uint32_t x)

Called from actor WORK function. Terminates dataflow graph execution with exit

code <x>.
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T H E C N N C O N V O L U T I O N
LO O P- N E S T

The buffering requirements for the 3 array references in the CNN

convolution loop-nest are computed as shown in Equation B.1:

B(I) = css× ((yss− 1) ∗ S+ R)× ((xss− 1) ∗ S+ R)
B(W) = mss× css× R× R (B.1)

B(O) = mss× yss× xss

The terms ((yss− 1) ∗ S+ R) and ((xss− 1) ∗ S+ R) compute the di-
mensions, in pixels, of the input feature map tile, given the tile size
for the output feature map, yss × xss, the convolution kernel size,
R× R, and the convolution stride S.

The total memory traffic is computed by multiplying the buffer-
ing requirements by the total number of tiles, with one improve-
ment. Peemen noticed that using application-managed buffers, data
can also be reused between consecutive innermost tile executions.
This significantly improves the memory traffic estimation accuracy
for the computations involving prologue, steady state, and the epi-
logue. Equation B.2 shows the general form of the memory traffic
computation:

T =

⌈
M

mss

⌉⌈
C

css

⌉⌈
E

yss

⌉⌈
E

xss

⌉
(B(I) +B(W) + 2 ∗B(O)) (B.2)

The 4 cases that need to be considered for the CNN loop-nest, corre-
sponding each to one of the controlling loops, LTSX, LTSY, LTIF, and
LTOF, being the innermost controlling loop, are shown in Equations
B.3, B.4, B.5, and B.6 below.

1. Innermost LTOF:

T1 =

⌈
C

css

⌉⌈
E

yss

⌉⌈
E

xss

⌉
(B1(I) +B1(W) +B1(O)) (B.3)

with

B1(I) = css · ((yss− 1) ∗ S+ R) · ((xss− 1) ∗ S+ R)
B1(W) =M · css · R · R
B1(O) = 2 ·M · yss · xss
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2. Innermost LTIF:

T2 =

⌈
M

mss

⌉⌈
E

yss

⌉⌈
E

xss

⌉
(B2(I) +B2(W) +B2(O)) (B.4)

with

B2(I) = C · ((yss− 1) ∗ S+ R) · ((xss− 1) ∗ S+ R)
B2(W) = mss ·C · R · R
B2(O) = mss · yss · xss

3. Innermost LTSY:

T3 =

⌈
M

mss

⌉⌈
C

css

⌉⌈
E

yss

⌉
(B3(I) +B3(W) +B3(O)) (B.5)

with

B3(I) = css ·H · ((xss− 1) ∗ S+ R)
B3(W) = mss · css · R · R
B3(O) = 2 ·mss · E · xss

4. Innermost LTSX:

T4 =

⌈
M

mss

⌉⌈
C

css

⌉⌈
E

xss

⌉
(B4(I) +B4(W) +B4(O)) (B.6)

with

B4(I) = css · ((yss− 1) ∗ S+ R) ·H
B4(W) = mss · css · R · R
B4(O) = 2 ·mss · yss · E

In Equations B.3 - B.6, in order to account for the data reuse across
consecutive innermost tile executions, the memory traffic computa-
tion is done as if the innermost controlling loop were not tiled. For
example, with loop LTOF being the innermost controlling loop, the
tile size of this loop is set to the total loop count, i.e. mss =M, inside
the general equation B.2.



C
C N N L AY E R S
C O N F I G U R AT I O N U S E D I N
T H I S T H E S I S

c.1 alexnet, zfnet, vgg

Layer H×H E×E C M Conv.
AlexNet 1 224× 224 55× 55 3 96 11× 11,4
AlexNet 2 55× 55 27× 27 96 256 5× 5,2
AlexNet 3 27× 27 13× 13 256 384 3× 3,2
AlexNet 4 13× 13 13× 13 384 384 3× 3,1
AlexNet 5 13× 13 13× 13 384 256 3× 3,1
ZFNet 1 224× 224 112× 112 3 96 7× 7,2
ZFNet 3 13× 13 13× 13 256 384 3× 3,1
ZFNet 4 13× 13 13× 13 384 384 3× 3,1
ZFNet 5 13× 13 13× 13 384 256 3× 3,1
ZFNet 6 6× 6 6× 6 256 256 3× 3,1

c.2 vgg

A A-LRN B C D E

11-layer 11-layer 13-layer 16-layer 16-layer 19-layer
Input 224x224 RGB image

conv3x3,64 conv3x3,64 conv3x3,64 conv3x3,64 conv3x3,64 conv3x3,64
LRN conv3x3,64 conv3x3,64 conv3x3,64 conv3x3,64

maxpool, 3x3, stride 2

conv3x3,128 conv3x3,128 conv3x3,128 conv3x3,128 conv3x3,128 conv3x3,128
conv3x3,128 conv3x3,128 conv3x3,128 conv3x3,128

maxpool, 3x3, stride 2

conv3x3,256 conv3x3,256 conv3x3,256 conv3x3,256 conv3x3,256 conv3x3,256
conv3x3,256 conv3x3,256 conv3x3,256 conv3x3,256 conv3x3,256 conv3x3,256

conv3x3,256 conv3x3,256 conv3x3,256
conv3x3,256

maxpool, 3x3, stride 2

conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512
conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512

conv3x3,512 conv3x3,512 conv3x3,512
conv3x3,512

maxpool, 3x3, stride 2

conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512
conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512 conv3x3,512

conv3x3,512 conv3x3,512 conv3x3,512
conv3x3,512

maxpool, 3x3, stride 2

FC-4096
FC-4096
FC-1000
softmax
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c.3 google inception

Layer E×E Inception v3

Input 298x298 RGB image
conv 149x149 3x3,32, stride 2

conv 147x147 3x3,32
conv 147x147 3x3,64
pooling 73x73 3x3, max pool, stride 2

conv 71x71 3x3,80
conv 35x35 3x3,192, stride 2

conv 35x35 3x3,288

Inception A 35x35

avg pool,3x3 1x1,64 1x1,48 1x1,64
1x1,64 5x5,64 3x3,96

3x3,96

x3

Reduction A 17x17

max pool,3x3, stride 2 3x3,384, stride 2 1x1,64
3x3,96

3x3,96, stride 2



Inception B 17x17


avg pool,3x3 1x1,192 1x1,160 1x1,160
1x1,192 7x1,160 1x7,160

1x7,192 7x1,160
1x7,160
7x1,192

x5

Reduction B 8x8


max pool,3x3, stride 2 1x1,192 1x1,192

3x3,320, stride 2 7x1,192
1x7,192

3x3,192, stride 2


Inception C 8x8

avg pool,3x3 1x1,320 1x1,384 1x1,448
1x1,192 3x1,384 1x3,384 3x3,384

3x1,384 1x3,384

x2

1x1, average pool, linear, softmax
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Layer E×E Inception v4

Input 298x298 RGB image
conv 149x149 3x3,32, stride 2

conv 147x147 3x3,32
conv 147x147 3x3,64
concat 73x73

[
max pool 3x3, stride 2 conv 3x3,96, stride 2

]
concat 71x71


conv 1x1,64 conv 1x1,64

conv 3x3,96 conv 7x1,64
conv 1x7,64
conv 3x3,96


concat 35x35

[
3x3, max pool, stride 2 conv 3x3,192

]
Inception A 35x35

avg pool,3x3 1x1,96 1x1,64 1x1,64
1x1,96 3x3,96 3x3,96

3x3,96

x5

Reduction A 17x17

max pool,3x3, stride 2 3x3,384, stride 2 1x1,192
3x3,224

3x3,256, stride 2



Inception B 17x17


avg pool,3x3 1x1,384 1x1,192 1x1,192
1x1,128 1x7,224 1x7,192

7x1,256 7x1,224
1x7,224
7x1,256

x10

Reduction B 8x8


max pool,3x3, stride 2 1x1,192 1x1,256

3x3,192, stride 2 1x7,256
7x1,320

3x3,320, stride 2


Inception C 8x8


avg pool,3x3 1x1,256 1x1,384 1x1,384
1x1,256 3x1,256 1x3,256 1x3,448

3x1,512
3x1,256 1x3,256

x5

1x1, average pool, dropout, softmax

c.4 resnet

Layer E×E 18-layer 34-layer 50-layer 101-layer

Input 224x224 RGB image
conv1 112x112 7x7,64, stride 2

conv2_x 56x56
3x3 max pool, stride 2[

3x3,64
3x3,64

]
x2

[
3x3,64
3x3,64

]
x3

 1x1,64
3x3,64
1x1,256

x3

 1x1,64
3x3,64
1x1,256

x3

conv3_x 28x28

[
3x3,128
3x3,128

]
x2

[
3x3,128
3x3,128

]
x4

1x1,128
3x3,128
1x1,512

x4

1x1,128
3x3,128
1x1,512

x4

conv4_x 14x14

[
3x3,256
3x3,256

]
x2

[
3x3,256
3x3,256

]
x6

 1x1,256
3x3,256
1x1,1024

x6

 1x1,256
3x3,256
1x1,1024

x23

conv5_x 7x7

[
3x3,512
3x3,512

]
x2

[
3x3,512
3x3,512

]
x3

 1x1,512
3x3,512
1x1,2048

x3

 1x1,512
3x3,512
1x1,2048

x3

1x1 average pool, 1000-d fc, softmax

Downsampling is performed by conv3_1, conv4_1, conv5_1 with
stride 2.
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c.5 densenet

Layer E×E DenseNet-121 (k=32) DenseNet-169 (k=32) DenseNet-201 (k=32)

Input 224x224 RGB image
conv 112x112 7x7,64, stride 2

pooling 56x56 3x3 max pool, stride 2

DenseBlock 1 56x56

[
1x1

3x3

]
x6

[
1x1

3x3

]
x6

[
1x1

3x3

]
x6

Transition 1

56x56 1x1

28x28 2x2 average pool, stride 2

DenseBlock 2 28x28

[
1x1

3x3

]
x12

[
1x1

3x3

]
x12

[
1x1

3x3

]
x12

Transition 2

28x28 1x1

14x14 2x2 average pool, stride 2

DenseBlock 3 14x14

[
1x1

3x3

]
x24

[
1x1

3x3

]
x32

[
1x1

3x3

]
x48

Transition 3

14x14 1x1

7x7 2x2 average pool, stride 2

DenseBlock 4 7x7

[
1x1

3x3

]
x16

[
1x1

3x3

]
x32

[
1x1

3x3

]
x32

Classification
1x1 7x7 global average pool

1000-d fc, softmax
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