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Abstract

Cable-Driven Parallel Robots employ multiple cables, whose lengths are
controlled by winches, to move an end-effector (EE). In addition to the

advantages of other parallel robots, such as low moving inertias and the po-
tential for high dynamics, they also provide specific advantages, such as large
workspaces and lower costs. Thus, over the last 30 years, they have been the
object of academic research; also, they are being employed in industrial ap-
plications. The main issue with cable actuation is its unilaterality, as cables
must remain in tension: if they become slack, there is a risk of losing control
of the EE’s pose. This complicates the control of cable-driven robots and is
among the most studied topics in this field. Most previous works resort to ex-
tra cables or rigid elements pushing on the EE to guarantee that cables remain
taut, but this complicates robot design. An alternative is to use the gravita-
tional and inertial forces acting on the EE to keep cables in tension. This thesis
shows that the robot’s workspace can be greatly increased, by considering two
model architectures. Moreover, practical limits to the feasibility of a motion,
such as singularities of the kinematic chain and interference between cables,
are considered. Even if a motion is feasible, there is no guarantee that it can
be performed with an acceptable precision in the end-effector’s pose, due to
the inevitable errors in the positioning of the actuators and the elastic deflec-
tions of the structure. Therefore, a set of indexes are evaluated to measure the
sensitivity of the end-effector’s pose to actuation errors. Finally, the stiffness
of one of the two architectures is modeled and indexes to measure the global
compliance of the robot due to the elasticity of the cables are presented.



Riassunto

I robot paralleli a cavi impiegano cavi, la cui lunghezza è controllata da ar-
gani, per muovere un elemento terminale o end-effector (EE). Oltre ai van-

taggi degli altri robot paralleli, come basse inerzie in movimento e la possibilità
di raggiungere velocità e accelerazioni elevate, possono anche fornire vantaggi
specifici, come ampi spazi di lavoro e costi inferiori. Pertanto, negli ultimi 30
anni, questi robot sono stati oggetto di ricerche accademiche e stanno trovando
applicazione anche in campo industriale. Il problema principale dell’azionamento
mediante cavi è che è unilaterale, poiché i cavi possono essere tesi ma non
compressi: quando diventano laschi, si rischia di perdere il controllo della posa
dell’EE. Questo complica il controllo dei robot ed è uno dei temi più studiati nel
settore. Gli studi compiuti sinora ricorrono prevalentemente a cavi addizionali
o a elementi rigidi che spingono sull’EE per garantire che i cavi rimangano tesi,
ma questo complica la progettazione dei robot. Un’alternativa è sfruttare le
forze gravitazionali e inerziali che agiscono sull’EE per mantenere i cavi in ten-
sione. Questa tesi dimostra che, in questo caso, lo spazio di lavoro del robot può
essere notevolmente aumentato, applicando questo concetto a due architetture
modello. Inoltre, vengono considerati i limiti imposti all’effettiva realizzabilità
di un movimento, come le singolarità della catena cinematica e l’interferenza
tra i cavi. Anche se un movimento è fattibile, non è garantito che si possa
eseguire con precisione accettabile, a causa degli inevitabili errori di posiziona-
mento degli attuatori e delle deformazioni elastiche della struttura. Si valutano
quindi alcuni indici per misurare la sensibilità della posizione dell’elemento ter-
minale agli errori di azionamento. Infine, è modellata la rigidezza di una delle
due architetture proposte e sono presentati indici per misurare la cedevolezza
globale del robot dovuta all’elasticità dei cavi.
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1 Introduction

in which the goals of this thesis are presented, the state of the art on cable-driven
robots is described, and the thesis structure is outlined. Relevant robot architectures

are also presented, that will be used throughout the thesis as examples.

1.1 Prologue
In the last 50 years, an important shift has been taking place in the field
of automation: thanks to advancements principally in power electronics and
control systems, automated machines designed to perform repeatedly a certain
operation, with little room for adjustments to accommodate for different tasks,
have faced growing competition from flexible automation systems: this has lead
to the birth of the field of robotic automation.

The word “robot” was coined in 1920 by Czech novelist Karel Capek: in one
of his plays, robots are “artificial people” built to substitute human work. More
recently, in 1979, the Robot Institute of America provided a practical definition
of a robot as “a reprogrammable, multifunctional manipulator designed to
move material, parts, tools, or specialized devices through various programmed
motions for the performance of a variety of tasks”.

After the first prototypes produced in the ’50s, starting from the latter half
of the ’70s the first commercial robots to find widespread use in automated
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production cells were released, such as the Cincinnati Milacron T3, UNIMATE
and PUMA robots. Since then, robotics market has boomed and found wider
and wider application in industrial production: just in the years from 2009 to
2016, the annual worldwide supply of industrial robots grew from 60000 to
294000 units and a growth of about 15% a year is forecast for years 2017-2020
(source: IFR World Robotics 2017).

This success is justified by the advantages that robotic automation sys-
tems provide: the main one is their flexibility, in that they can be easily repro-
grammed depending on the task at hand. Robots can thus substitute humans
in tasks that are either tedious, stressful or dangerous, while allowing their
programming to be adapted to best suit our needs. At the same time, robots
maintain the advantages of non-flexible, hard automation, such as reduced pro-
duction times and increased accuracy and repeatability of the finished product.

Moreover, robots are starting to find their way outside the manufacturing
industry: for example, robots for care and assistance to elderly, disabled or
injured people have found increased acceptance by institutional and private
users. The class of service robots, that are to work in direct contact with
people, is thought to be close to a breakthrough of a similar scale to the one
seen by industrial robots in the ’80s.

Broadly speaking, robots are generally composed of:

• links, the components that form the physical structure of the robot;
• joints, that connect the links and allow them to move with respect to

one another;
• a base that is fixed and provides an immovable reference frame∗;
• an End-Effector (EE), which is generally the terminal element of the

robot and the one whose motion is directly defined by the task to be
executed: for example, a spray-painting robot in a car-manufacturing

∗ There are also mobile robots, such as drones and Automated Guided Vehicles (AGVs),
which are defined by having no fixed base. Such robots, however, are outside the scope
of this thesis.

2
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line will have a spray-paint nozzle whose motion must follow the profile
of the vehicle’s chassis;
• sensors that measure the operational parameters of the robot during

operation (such as the position and orientation of the EE with their
time derivatives, the forces/torques applied on the structure, etc.);
• a user interface where one can define the desired operation to be per-

formed;
• a control system that compares the current parameters of the robot (as

detected by the sensors) and compares them with the target ones to
execute the task at hand as desired;
• a set of actuators that act directly or indirectly on the joints and links

of the robot and provide the necessary actuation forces/torques to move
the EE as requested: their motion is controlled by the control system.

The independent parameters that are required to completely define a gen-
eral mechanism’s configuration are commonly called its Degrees of Freedom
(DoFs). For example, most industrial manipulators have 6-DoFs, to control
the pose (that is, the position and orientation) of a rigid-body EE, since a
rigid body in space has 6 DoFs (3 translational and 3 rotational ones). Usu-
ally, a robot has a number nD of DoFs equal to the number nA of actuators,
in what is commonly defined a fully-actuated architecture. However, various
architectures of under-actuated and redundantly-actuated robotic systems have
been proposed: these are defined by having respectively nD < nA or nD > nA.
Each of these architectures offers specific advantages and disadvantages: for
instance, redundant robots offer in general a superior dexterity and flexibil-
ity, but are also more complicated to control and more expensive due to their
higher number of actuators. This thesis will concern fully-actuated systems.

In a general robotic architecture one can further define kinematic chains
as a set of links connected by joints. A fundamental distinction is then made
depending on the robot architecture (see Fig. 1.1), which can be either

• serial or open-loop, if there is only one kinematic chain connecting any

3
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Serial
robot 

Parallel 
robot

End effector

Fixed base

Kinematic 
chains

Figure 1.1: A comparison of serial (left) and parallel (right) robots.

two given links;
• parallel or closed-loop, if every couple of links is connected by (at least)

two paths;
• hybrid, if there are both closed- and open-loop chains.

Since their appearance, parallel robots have shown strong advantages in
industrial applications for their superior stiffness and payload-to-robot-weight-
ratio with respect to traditional serial robots; however, their workspace is lim-
ited by the interference between multiple kinematic chains.

This thesis is concerned with the analysis of a particular class of robots
where the actuation is obtained through flexible cables. Cable-Driven Parallel
Robots (CDPRs) are a subset of parallel robots where the EE is not moved by
rigid-body kinematic chains, but instead by flexible cables. Thus, cable robots
operate like multiple-DoF, high-flexibility cranes controlled by several cables.

Due to their peculiar architecture, cable robots increase the classical ad-
vantages of parallel robots over serial ones, such as

• reduced mass and inertia;
• a high payload-to-robot-weight ratio;
• superior dynamic performance in terms of velocities and accelerations

(see [101], where a cable robot able to reach accelerations up to 400 m/s2

4



1.2. Motivations and goals

was presented);
• smaller and cheaper actuators.

Cables, which are both lightweight and high-resistance, are readily available
on the market, having a wide application in civil engineering [93]. Moreover,
cables work under pure axial tension, which is the optimal stress condition.

Besides the classical advantages of parallel manipulators, CDPRs also pro-
vide characteristic advantages of their own. For instance:

• they can operate in a large workspace, potentially a very large one, by
employing long cables. In this, they represent a vast improvement over
standard parallel manipulators (see the CDPR presented in [145, 214],
which has a 500-meter wide workspace);
• they have generally reduced costs, both for manufacturing and mainte-

nance, as cables are relatively inexpensive;
• they are easier to assemble, disassemble and transport where needed;
• finally, they offer superior modularity and reconfigurability, as their de-

sign makes it easier to change the number of cables and the placement of
their attachment points (either on the fixed frame [64] or on the EE [11])
according to the user’s needs.

A subclass of CDPRs that is of particular interest are Cable-Suspended
Parallel Robots (CSPRs), where cables are kept in tension mainly by the grav-
ity force pulling the EE downward. This architecture gives greater accessibility
to the robot working area below the EE itself.

Cable robots, for the reasons listed before, are attracting intense interest
from both academic and industrial researchers.

1.2 Motivations and goals
One of the main downsides of cable actuation is in that it is unilateral: cables
can only pull, but cannot push, and when subjected to compressive forces they

5
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become slack and thus unable to properly control the robot motion. This is the
main issue in the control and development of such robots, for which different
approaches have been proposed:

(a) some robots employ more cables than DoFs, thus being redundantly-
actuated. In this way, the cables remain taut by pulling on each other;

(b) others use hybrid cable/rigid-link actuation systems, where the rigid el-
ements guarantee that cables are kept in tension;

(c) finally, some rely on external forces to maintain positive tensions. For ex-
ample, CSPRs generally use the own weight of the EE, which is dangling
from the cables pulling it upwards, to keep the cables taut.

Most previous works on cable robots employ strategies (a) and (b), but it is
apparent that these complicate the robot design and ultimately increase its
cost.

In recent years, researchers have given more attention to option (c); specifi-
cally, it was proposed to apply inertial effects to maintain the cables in tension.
First proposed by the group led by C. Gosselin in Canada [59, 60, 98] and fur-
ther expanded by the team of S. Cong in China [210–212], this idea has proven
fruitful, in that it was empirically proved that it allows the workspace of the
robot to be greatly expanded. This can be helpful especially when the robot
footprint is limited due to space reasons, as dynamic motions allow the EE to
reach a much wider workspace.

Also, dynamic motions can be used to recover a robot in case of a cable
breakdown [21, 29]; if a cable robot undergoes a sudden cable break, it could
be brought back to a safe zone by using dynamic trajectories.

Finally, there is an intrinsic interest in studying the dynamics of cable
robots: given that CDPRs can move with very high accelerations, it becomes
necessary to take into account the inertial forces acting on them.

Once a feasible trajectory has been defined, to be able to actually per-
form it, one must verify other conditions for feasibility, such as avoiding kine-

6
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matically indeterminate configurations and interference between the robot’s
components.

Moreover, even if a robot can move along a dynamic motion as desired,
there is in general no guarantee that it will be able to do so with an acceptable
precision: the effect of unavoidable control errors and the elastic deflections
of the manipulator will result in a displacement between the desired and the
real pose of the robot. A common method to tackle this problem is to define
performance indexes that capture this complex behavior with a set of scalar,
real-valued numbers which can be defined for every pose of the robot. These
indexes can then be used to verify whether the performance remains accept-
able during the motion; also, they can be used to compare different robot
architectures and optimize the robot’s geometrical parameters.

The goals of this thesis are thus threefold:

(I) to define new dynamic trajectories that guarantee positive cable tensions
throughout the motion, thereby increasing the “library” of available dy-
namic motions for CSPRs;

(II) to consider practical issues that limit the application of said trajectories,
such as singularities and interference between cables, and show how these
influence the workspace available for dynamic motions;

(III) to give measures of the sensitivity to errors and of the elastic compliance
of CSPRs that may aid the designer in choosing the optimal architecture;
these indexes ought to be physically significant and have a clear practical
interpretation.

These goals were carried out by focusing on two model robots: a first,
simpler one with point-mass EE and a second one with a finite-size EE. The
latter is designed with the goal of having a purely-translational motion. In
fact, most of the previous works on dynamically-feasible trajectories for CSPRs
considered only robots like the former model defined above; in this thesis, it
will also be shown how to apply previous work on point-mass robots to a
translational cable robot such as the second model considered, which is more

7
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realistic and can thus find a greater application.

Part of the work in this thesis has been published by the author in [136–
138].

1.3 State of the art
Robotics is now a mature research field, on which a vast literature is avail-
able. Even on the relatively recent topic of cable robotics, it is speculated that
around 1000 journal and conference papers might exist [161, p. 7]. This section
will thus provide a very brief introduction to parallel robots (serial architec-
tures are beyond the scope of the present work) and focus on cable robots,
specifically on their dynamics.

1.3.1 Parallel Robotics

Using the distinction between serial and parallel architectures introduced in
Sec. 1.1, the first truly parallel robotic systems were proposed in the early ’60s
by Gough [76] and Stewart [182] working independently: the robotic architec-
ture they developed is thus called the Gough-Stewart platform. This robotic
mechanism was based on a 6-DoF EE connected to the fixed frame through
6 UPS legs; here, U denotes a universal joint, while P is a prismatic joint
(the overline denotes the fact that the joint is actuated). The original Gough-
Stewart platform employed rigid links; later, cable-robots were designed based
on this architecture (see Sec. 1.3.2.4 and Refs. [2, 13, 89, 164, 195]).

1.3.2 Cable-Driven Parallel Robots

Some of the first robots to employ cables for their actuation were called tenseg-
rity robots [152], so named after the work of architect Buckminster Fuller on
tensegrity structures (the name was coined as a combination of “tension” and
“integrity”). These robots employ both rigid links (struts) and flexible cables,
all under pure axial loads, where no compressed struts are directly connected

8
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to each other [9]; the tensegrity condition requires that in any configuration
the nature of loading remains the same in each link, so that cables are always
under tension.

It is also worth mentioning tendon mechanisms as predecessors of cable-
driven robots: these are mechanisms with open-loop architectures where the
actuation is obtained with cables that are routed from the fixed base, allowing
the designer to place all motors on the frame, which makes the design com-
pact and reduces the total weight [95]. The first designs were proposed in the
’80s and early ’90s and were mainly applied to actuate the fingers of robotic
hands [94, 125, 176]. Here, these systems are not considered as purely cable-
driven, as the terminal element of the mechanism is connected to the fixed
frame by rigid links; however, it must be mentioned that the nomenclature is
not completely settled [161, p. 15] and some include CDPRs in the class of
tendon-driven systems [195]. For coherence, the expression “cable-robot” or
its acronym CDPR will be used throughout this thesis, as these are the most
commonly used terms.

The team of J. Albus at NIST is generally credited for the development of
the first cable-driven robot, the ROBOCRANE [2, 55], which was designed as
a flexible crane for large-scale robotic operations, such as painting and welding
of ships and planes; working independently, a cable-actuated system was also
proposed by Landsberger [112] to operate under water or in space. A cable-
suspended camera had also been proposed for the recording of sports events in
stadiums [52], taking advantage of the large workspaces of CSPRs and the fact
that cable actuation is less obtrusive than traditional alternatives: this robot,
called SkyCam, remains so far the main industrial application of CDPRs. An-
other early design was Charlotte [41], a light-weight, compact robot developed
by McDonnell Douglas Corp. for space applications, which was tested during a
Space Shuttle/MIR joint mission. In one of the first patents in this field [116],
a cable robot was proposed as a cargo transfer system from ship to dock or
vice versa.

9



1. Introduction

For general surveys on the state of the art, the reader can refer to [72, 131,
135, 143, 161, 165, 190] and [129, pp. 68–70].

1.3.2.1 Classification

As seen in Sec. 1.1, robots can be characterized depending on the number nD
of DoFs and the number nA of actuators. With cable robots, however, another
classification is introduced that is more relevant in this field, depending on the
number of constraints nC (which is given by the number of taut cables and the
number of constraints set by rigid joints):

(A) over-constrained (or redundantly-restrained) robots where nC > nD: the
kinematic and static analyses of the robot are completely decoupled, that
is, one can separately study the pose of the robot and the cable tensions.
In this case there are infinitely many possible combinations of positive
cable tensions that balance a given external wrench We. The “best”
combination is then usually found through an optimization algorithm [63,
85];

(B) fully-constrained (or completely-restrained) robots for whose nC = nD;
the kinematics and statics are still fully decoupled, but in this case there
is one and only one possible set of cable tensions to balance an external
We;

(C) under-constrained (or incompletely-restrained) robots, where nC < nD:
these cannot control all DoFs of the EE, whose motion depends not only
on the actuators’ motion but also on the We applied to the EE: the
twist space (the subspace of all EE velocities that are compatible with
the kinematic constraints) has dimension greater than zero even when all
actuators are locked. The kinematic and static problems must then be
solved simultaneously [44–46], which leads to a geometrico-static problem
(see Subsec. 1.3.2.3). These robots have proven to be useful when the
consequent reduction in dexterity is acceptable in exchange for a simpler
design with an easy-to-access working area [91].

With this classification, a given robot can be under-, fully- or over-constrained

10
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depending on its pose and on the applied wrench We, as the number of cables
in tension (and thus the number of constraints nC) might change.

The number of cables is generally—but not necessarily, see for instance [13]—
equal to nA. Therefore, a robot can be at the same time fully- or redundantly-
actuated but under-constrained: see the Cablev robot [87] developed at the
University of Rostock, which has seven independent actuators and a 6-DoF
EE. Since this CSPR has only three cables attached to the EE, the robot can
move even when all actuators are locked.

It is however necessary to mention that this terminology is far from settled,
especially when applied to CSPRs. As proven by Ming and Higuchi in [134],
the number of cables nC should be at least equal to nD + 1 if one wants to
have at least nD taut cables for any We (at least in some robot poses); the
results in [134], valid for robots having one rigid body (the EE), were later ex-
tended to multi-body cable-driven systems [142]. Therefore, CDPRs architec-
tures are sometimes classified as under-, fully- or over-constrained respectively
if nC ≤ nD, nC = nD + 1 or nC > nD + 1 [161, pp. 19–20]. This classification
however appears potentially misleading if compared with the definitions of full
constraining from classical mechanics; therefore, this thesis will use the classi-
fication outlined in cases (A) to (C) above, coherently with Refs. [22, 44–46].

In this thesis, the models of cable robots used to study the dynamic feasi-
bility of trajectories are all cable-suspended (see Subsecs. 1.5.1 and 1.5.2) and
will be denoted as fully-constrained and fully-actuated.

CDPRs are also frequently classified depending on their actuation system.
The cables are usually coiled and uncoiled on fixed cable winches: these are
composed of actuated drums and pulley systems guiding the cables. The drums
have helical grooves to ensure that the cables are properly wound at a (usually)
constant radius rD, without overlapping [163]. Avoiding overlapping has two
main advantages: it increases cable lifetime (as wear and fatigue are reduced)
and leads to a much greater accuracy in the estimation of the cable lengths, by
using the data from the motor encoders. However, using winches also brings
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about an increase in complexity and cost; moreover, the length of the cables
that can be used is limited by the length of the drum, which must be machined
with high precision. For these reasons, the prototypes presented in the exper-
imental parts of this thesis (Subsecs. 3.7.1 and 3.7.2) do not use winches, but
instead simple pulleys (directly connected to the actuators) where the cables
wrap freely. This is acceptable for non-fully-engineered prototypes, which are
meant to be proofs-of-concept of the feasibility of dynamic motions; in any
case, in Subsecs. 3.7.1 and 3.7.2 it will also be shown that the accuracy thus
obtained is acceptable for the goals of the current work.

Beside the winches previously mentioned, there are other cable actuation
designs worth mentioning: for example, some authors use linear actuators [184],
in some cases with a system of sliding pulleys to multiply the velocity of the ca-
ble [130]. The Cablev robot also uses linear actuators, that move the winches
on the fixed frame [87]. In [179], Shoham first applies twisting wire actuation
(an ancient technique, used for instance in Roman artillery) to cable robots:
here, a rotary motion applied to two parallel wires is transformed into a linear
motion as the wire pair shortens: this provides high forces and precise motions
with small friction, but the workspace is reduced. Yet other authors place the
cable exit points directly on rotary links [123], to maintain the actuation sys-
tem as simple and low-cost as possible. It is also worth mentioning the hybrid
cable actuation system in [215], based on a five-bar parallel mechanism, to
increase the admissible payload.

A final classification could be based on whether the robot is fixed or mobile.
Most CDPRs fall into the first category, as is commonly the case for industrial
robots. However, mobile cable robots have also been proposed: the mobile base
can either be aerial [133, 150] or terrestrial [31, 166].

1.3.2.2 Applications

Cable robots were first proposed for industrial, heavy-duty applications, as was
the case of the NIST’s ROBOCRANE [2]. Later, various industrial applications
were proposed for CDPRs:

12
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• maintenance and assembly of large scale naval [34] and aerospace [148]
structures;
• loading and unloading of cargo containers for the shipping industry [68,

116, 149];
• remediation of radioactive waste storage tanks [35];
• storage retrieval in automated warehouses [39];
• large-scale 3D printing [13].

Cable robots have found their way also as service robots. For instance:

• haptic interfaces (either attached to the user’s hands [140] or feet [157]);
• upper-limb [169] or lower-limb [184] rehabilitation;
• virtual reality simulation [187];
• simulation of sport activities [216];

There are various applications of CDPRs in field robotics: this sector is
defined by dynamic, unstructured environments, such as farms, construction
areas, in the air or under water. See the following examples:

• search and rescue operations [31] in disaster-struck areas;
• large-scale construction [33];
• assembly of solar power plants [162];
• actuated marine platforms [89];
• flying cable robots, attached to either single [150] or multiple [133] aerial

platforms;
• fruit harvesting in farms [146].

Finally, CDPRs were proposed in various other sectors, such as:

• motion of telescope reflectors [144, 145, 214];
• scanning of sculpted artifacts [27];
• motion systems for wind tunnels [111];
• measurement devices of the inertial properties of an object [66] or of

its pose [198]; see also [96, 163], where cable-driven parallel mechanisms
were used to calibrate a robot by measuring its pose.
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1.3.2.3 Theoretical issues

Kinematics

One of the main issues to consider in any robot architecture is its kinematics,
that is, the relationship between the motion of the nA actuated joints and
the corresponding motion of the EE. Kinematics considers the movement of a
mechanism from a purely geometric viewpoint, disregarding the effect of any
wrenches applied to said mechanism: if θ denotes the nA × 1 vector of the ac-
tuated joints’ positions and by x the pose of the EE (defined by nD DoF), the
general relationship between the two vectors can be written as F (θ,x) = 0.
Here, F is a vector-valued function (dependent on the robot pose), derived by
analyzing the robot geometry, that defines the relationship between the input
(the joints’ position) and the output (the EE pose) of the mechanism: this po-
sition relationship is also denoted as the 0th-order kinematics. Differentiating
with respect to time, one obtains the relationship

Fxẋ + Fθθ̇ = 0 (1.1)

(see [74]) where Fx = ∂F/∂x and Fθ = ∂F/∂θ are called Jacobian matrices
of the robot. The relationship (1.1) between the joint velocities θ̇ and the
derivatives of the robot pose ẋ defines the 1st-order kinematics of the system;
the 2nd-order kinematics, that concerns the accelerations, is obtained in a
similar way.

One can further define the Direct-Kinematics Problem (DKP) that requires
obtaining x for a known θ and the Inverse-Kinematics Problem (IKP), where
one needs to find θ as x is known: clearly, both the direct and the inverse
kinematics are required to properly control the robot. It is well known that in
general for serial architectures the DKP is easier to solve than the IKP, while
for parallel architectures such as those considered in this thesis the opposite is
true [129, Ch. 3–4].

The kinematics of cable-driven robots is generally approached with the
tools of classical robot analysis, assuming that all cables are either under ten-
sion (so the free cable length is equal to the one set by the actuators, if cable
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Figure 1.2: Schematic of the robot: the i-th cable, of length ρi and direction ei, is
attached to the frame at point Ai and to the EE (in gray) at point Bi.

elasticity is disregarded) or slack, in which case they apply no constraint on the
EE motion. This is the modeling approach used in this thesis, unless otherwise
specified. Here, the notation of Fig. 1.2 will be used, where p is the position
vector of P , the Operation Point (OP) on the EE (that is, the point that de-
fines the robot position), ai is the position of the cable attachment point Ai
on the frame and bi the vector connecting P to the cable attachment point Bi

on the EE (expressed in the base frame Oxyz): the kinematic constraint set
by the i-th cable is thus

ρiei = p + bi − ai (1.2)

where ρi and ei respectively denote the length and direction of the cable.
The input joint position for cable robots is usually ρi, which is set by the
corresponding actuator (this does not apply for CDPR with constant-length
cables such as [19, 123, 133]).

As for most parallel architectures, the IKP of fully-actuated cable-based
platforms is generally fairly easy to solve [168] both analytically and numeri-
cally; moreover, it can be seen from Eq. (1.2) that the solution always exists
and is unique. The kinematic model presented here has been generalized to
CDPR with multiple rigid links in [114]. Also, the pulley mechanism changes
the kinematic model, as shown in [160], since in this case the cable attachment
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point on the frame Ai is no longer fixed. In this thesis, however, the simpler
model of Fig. 1.2 will be employed, as it is sufficient to gather the essential
properties of the dynamic trajectories under study.

When considering the DKP, the situation is significantly more complicated:
even for standard parallel robots, there is no guarantee that a given input joint
position will give a unique solution. In fact, for the Gough-Stewart platform
mentioned in 1.3.1, it has been proven that up to 40 solutions may exist [58]. To
further complicate the situation, Eq. (1.2) is valid under the assumption that
cable i is in tension, which could be not true. If the number of taut cables is
lower than the number of EE DoFs (which is the case for an under-constrained
robot, see case (C) in Sec. 1.3.2.1), a pure kinematic analysis is not sufficient to
fully determine the robot pose: the static equilibrium conditions must then be
taken into account and thus the Direct Geometrico-static Problem (DGP) is
obtained. Assuming that m of the nC cables are under tension, the DGP gives
a system of equations that can have multiple solutions: for instance, it has been
shown in [1, 44, 45] that the DGP for a robot with 3, 4 or 5 cables in tension can
have respectively up to 156, 216 and 140 solutions. The solutions which have
at least one negative tension in the cables are then discarded as unfeasible [46].
Common numerical algorithms used to obtain the full set of possible solution
are obtained by homotopy continuation [1] and interval analysis [22]: this latter
method is especially interesting as it is known to be robust (that is, insensitive
to small changes in the data) and safe, as it guarantees that all solutions can
be found in a reasonably short time. The union of all feasible solutions, for m
going from 1 to nC , gives the full solution set for the robot pose [131].

The results above are valid under the assumption of massless, infinitely stiff
cables that form a straight line segment as in Fig. 1.2. These concepts can be
generalized by using the classical model from [93] of a cable with both mass
(uniformly distributed along the cable length) and finite stiffness: the cable
will then sag under its own weight and form what is called an elastic catenary
curve. The IKP for this case was also studied [109].
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Workspaces

A number of workspaces have been defined for cable robots, that define the
CDPR region where the robot can operate while respecting a number of con-
straints due to its actuation, kinematics, and so on.

By taking into account the necessity of avoiding intersection between the
cables, the interference-free workspace has been defined in [127, 158]; in [25],
the authors also take into account the effects of cable sagging and elasticity.
The interference of cables with obstacles in their environment of known shape
and position was considered in [124, 212]. It is also worth noting that cable
interference is generally less dangerous than interference between the rigid
legs of a classical parallel robot, and it has been shown [201] that a CDPR can
retain functionality even when two cables collide.

Another kinematic constraint is given by the limits on the cable lengths:
indeed, for each cable there will be a maximum length ρmax given by the span
of the cable that can be accommodated on the winch. One can also set a
lower limit ρmin to ensure that the EE remains far enough from the winches,
a situation that could be dangerous both for the risk of collisions and the fact
that is usually leads to very high cable tensions. The Reachable Workspace
(RW) can then be defined [132] as the set of positions that can be reached by
the EE (with any orientation) while respecting the kinematic constraints on
the joints ρi ∈ [ρmin, ρmax] , i = 1, . . . , 6. This workspace can then be found by
using the tools of classical robot analysis [129, Ch. 7], for both planar [132]
and spatial robots [105, 126], under the assumption that all cables remain in
tension.

It has been shown in Subsec. 1.3.2.1 that, for over-constrained robots, there
are poses where any external wrench applied on the EE can be balanced by
positive cable tensions; the set of all such poses is called the Wrench-Closure
Workspace (WCW) [77]. This concept has been studied for both single-link
robots (either planar [77] or spatial [78]) and multiple-link mechanisms [113].
The WCW becomes especially important for dynamic motions: if a robot tra-
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jectory is entirely within the WCW, then it surely can be described by the
EE while keeping positive cable tensions. However, the WCW leads in many
cases to unnecessarily strict conditions and is not defined for under or fully-
constrained robots.

For CSPRs specifically, it is customary to define a Static Equilibrium
Workspace (SEW) as the set of positions where the EE can remain in equi-
librium with positive tensions under the sole effect of gravity, either for point-
mass EEs [167] or EEs having finite extension [164, 183] assuming a constant
orientation of the EE. In particular, [164] considers a 6–6 cable spatial robot
conceptually similar to a Gough-Stewart platform, while [183] considers both
planar and spatial robots. A CSPR can then move anywhere in its SEW, pro-
vided that the motion is slow enough to be quasi-static, so that dynamic effects
can be disregarded, and no disturbance forces are applied on the EE.

The requirement for a pose to be in the WCW is sometimes relaxed: one
can define thus the available wrench set [30] as the set of all possible wrenches
that can be applied on the EE under given constraints on the cable tensions
τmax � τ � 0, where τ denotes the nC×1 vector of cable tensions and τmax is
the vector of the upper cable tension limits (depending on the maximum safe
load provided by the cable manufacturer and the peak torque of the motors)†.

If the manipulator is to withstand wrenches in a given set, the Wrench-
Feasible Workspace (WFW) is then defined [61] as the set of all poses where
this set of required wrenches is entirely contained within the available wrench
set: in other words, the WFW is the set of poses where any of the required
wrenches can be exerted by the robot on its surroundings while respecting
the limits on cable tensions. Clearly, if the set of required wrenches is the
full vector space of forces and torques in the motion space of the robot and
τmax → +∞, the WFW coincides with the WCW; if the only element of the
required wrench set is instead a pure gravitational force (and if, again, upper

† Here, as in the rest of this thesis, the symbol � denotes component-wise inequality, so
for instance τ � 0 means that every element of τ is ≥ 0.

18



1.3. State of the art

cable tension limits tend to infinity), then the WFW coincides with the SEW. A
method to find the WFW for either planar CDPRs or spatial fully-constrained
robots with point-mass EE was presented in [32]; later, in [36], the method
was extended to consider both fully- and over-actuated robots, either planar
or spatial and with a generic lower bound τmin � 0 on the cable tensions.
Interval analysis has proven useful also for obtaining the WFW with reduced
computation times [79] and at the same time handle small uncertainties in the
design parameters. The WFW is less restrictive than the WCW, however it
requires defining beforehand a set of required wrenches, a decision that can
often be arbitrary.

The results on the workspaces described above can be used as a guide during
the design phase: for example, the selection of an optimal robot geometry,
under the constraint of a required workspace, was presented in [80].

1.3.2.4 Translational motion

Many robotic applications do not require a full control of the EE pose, but only
of the EE position while its orientation remains constant. There are numerous
architectures of conventional, rigid-link robots that fulfill this requirement,
such as the 3-UPU [194], the Tripteron [47, 108] and the Delta robot [50];
a classification and a synthesis method of such manipulators was proposed
in [47]. The Delta robot architecture in particular is based on three “legs”,
each composed of a parallelogram linkage connected to a rotating lever: the
actuation is provided by a motor fixed on the base which rotates the lever.

Various cable robots have also been proposed with purely translational
motion. Some of the simplest models [28, 68, 71, 136, 137, 167] simply use
a point-mass EE, that is, one whose dimensions are compact enough that
all the mass can be considered concentrated in the Center of Mass (CoM):
the rotational DoFs can thus be disregarded and the robot has only three
translational DoFs (this is the first architecture considered in this thesis, see
Subsec. 1.5.1). However, this is only a crude approximation, as point masses
do not exist in nature, and has limited applications.
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A number of cable-driven mechanisms with translational motion has been
proposed whose legs are based on a parallelogram structure: that is, each leg
is composed of two cables that at all times must have the same length and
remain parallel. If three or more parallelograms of this kind are employed, it
can be shown that the orientation of the EE remains fixed.

One of the first robots of this kind was presented in [31], a CSPR with
6 cables: this robot is conceptually analogous to the Delta [50], with the dif-
ference that here the parallelograms are extensible (being composed of cables
that can be coiled and uncoiled on winches) while the Delta had fixed-length
kinematic chains. The robot in [31] was designed for search-and-rescue oper-
ations: in this paper, the authors showed how the DKP can be reduced to a
trilateration problem, that is to say finding the intersection of three spheres
of known centers and radii. In [31] the authors also found the SEW through a
numerical procedure and defined a calibration method.

This concept was extended in [33] to a robot devised for the construction
sector with over-constrained architecture, having 4 parallelogram cable pairs
and 4 extra tensioning cables: in [33], the authors showed how to find the WFW
with a numerical procedure, while in a later work [199] the robot dynamics
was considered by simulating various trajectories and a control scheme was
proposed.

Another translational robot with an over-constrained architecture was pro-
posed in [174]: here, the authors use 3 active cables (that is, directly connected
to cable winches) with a common attachment point on the EE to control its
position, while 6 other passive cables (which are not actuated, but kept in
tension by springs) set in a parallelogram fashion to maintain a constant plat-
form orientation. The authors also showed the design of a gripper attached to
the EE, as the proposed application was for pick-and-place operations; later,
in [173], they also studied the wrench-feasibility conditions.

Numerous other cable-based, parallelogram-actuated manipulators have
been proposed, where the cables were kept in tension by either antagonis-
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tic jacks (see for instance the DeltaBot [19] and BetaBot [15, 16] robots
developed by Behzadipour et al. or [213]) or by antagonistic additional ca-
bles [4, 5, 115, 172]; over-constrained robots are more complicated to design
and more expensive to build compared to the simpler, fully-constrained archi-
tecture in [31].

Proposed applications for 3-DoF cable robots were in service robotics to
help disabled people in navigating around architectural barriers [49] or for
large-scale 3D printing [13].

CSPRs with parallelogram actuation have thus proven useful in a number
of potential applications; however, they were usually assumed to move quasi-
statically and the potential advantages of dynamic motions were not studied.

1.4 Thesis Outline
The remainder of this thesis is structured as follows. To show how dynamical
trajectories can be realized (aim (I) in Sec. 1.2), two CSPR architectures will
first be developed, that will be used throughout this work: a 3-cable robot with
point-mass EE (Subsec. 1.5.1) and a 6-cable robot with a finite-size platform
(Subsec. 1.5.2); both models have only translational DoFs. These are models
that are simple enough to give an immediate sense of the properties of dy-
namic motions for cable robots, while at the same time being able to capture
the behavior of real cable-driven systems. Special architectures will also be
presented (Subsecs. 1.5.2.1 to 1.5.2.3) that are particular cases of the most
general 6-cable model and which provide useful features.

In Ch. 2, the state of the art on the dynamic modeling of CDPRs will
be presented and the kineto-static model of the two reference robots will be
derived.

In Ch. 3, then, new dynamic trajectories will be presented and applied to
the two model robots; also, the results from experimental tests will be presented
(Subsecs. 3.7.1 and 3.7.2) that confirm the theoretical work.
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For the 6-cable robot in particular, there are practical limits on the motions
that can be realized: even if a trajectory is feasible (that is, it can be described
with all cables taut) the robot can pass through a singularity pose. Also,
the cable lengths might reach their limits or have interference between them.
Therefore, in Ch. 4 the singularity loci (Sec. 4.2), the reachable workspace RW
(Sec. 4.3) and the interference-free workspace (Sec. 4.4) will be presented. This
covers the second goal of the present work (point (II) in Sec. 1.2).

In Ch. 5, indexes will be introduced to provide a physically coherent mea-
sure of the behavior of a spatial parallel robot in terms of its sensitivity to
control errors: if said sensitivity is excessively high, even small errors on the
actuators’ positions could lead to a large error on the robot pose. Said indexes
will be calculated for the 6-cable robot model defined in Subsec. 1.5.2 to show
how they vary throughout the robot’s RW.

Ch. 6 will show how to model the stiffness properties of the 6-cable ma-
nipulator and prove that, for the special architecture in 1.5.2.1, this can be
expressed in a particularly simple form. Indexes that measure the global stiff-
ness properties of a parallel manipulator will be presented: these indexes, like
the ones presented in Ch. 5, are shown to be meaningful for the designer. Ch.
6 is concluded by presenting the variation of these indexes across the robot
workspace. Together, Chapters 5 and 6 fulfill goal (III) in Sec. 1.2.

The conclusions in Ch. 7 highlight the advantages of the work in this thesis
and outline possible future work on the topic.

The proofs of some theorems in the Thesis are reported in Appendix A.

1.5 Robot architectures
For all robot models presented in this section, the following assumptions will
be used:

• cables are modeled as infinitely stiff and massless, with negligibly small
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Figure 1.3: (Left) Schematic of a spatial CSPR with point-mass EE and 3 DoFs.
(Right) Auxiliary vectors and plane Π.

diameter; therefore, they are represented as straight line segments;
• the EE is an ideal rigid body of mass m;
• an OP P is chosen on the EE that defines the robot’s position; having

defined a fixed coordinate system on the frame Oxyz, the position of P
is given by p = P −O = [x, y, z]T . For convenience, the OP is chosen to
coincide with the CoM;
• the only wrenches acting on the EE are due to the cables’ tensions,

gravity and dynamic inertial effects;
• cables have fixed attachment points Ai on the frame; the position vectors

of said attachment points are ai = Ai −O = [xai, yai, zai]T . Without loss
of generality, it is convenient to set O ≡ A1 (see Figs. 1.3 and 1.4).
• the attachment points on the EE are modeled as perfect spherical joints

in points Bi having positions (with respect to the OP) bi = Bi − P ;
when the robot has a point-mass EE, all points Bi coincide in P and
thus bi = 0 for all i.
• the cables are always assumed to be at a strictly positive length ρi =
‖ai − p− bi‖ > 0.

1.5.1 Point-mass robot

The first robot model considered in this thesis is a spatial CSPR whose EE is
modeled as a point mass P . It is also useful to define some auxiliary vectors:

vjk = [xajk, yajk, zajk]T = ak − aj (j, k ∈ {1, 2, 3}) (1.3)
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Also, it is useful to define the plane Π that passes through points Ai’s, which
has equation

ax+ by + cz + d = 0 (1.4)

The coefficients in Eq. (1.4) depend on vectors ai as follows:

a =

∣∣∣∣∣∣∣∣∣
1 ya1 za1

1 ya2 za2

1 ya3 za3

∣∣∣∣∣∣∣∣∣ , b =

∣∣∣∣∣∣∣∣∣
xa1 1 za1

xa2 1 za2

xa3 1 za3

∣∣∣∣∣∣∣∣∣
c =

∣∣∣∣∣∣∣∣∣
xa1 ya1 1
xa2 ya2 1
xa3 ya3 1

∣∣∣∣∣∣∣∣∣ , d = −

∣∣∣∣∣∣∣∣∣
xa1 ya1 za1

xa2 ya2 za2

xa3 ya3 za3

∣∣∣∣∣∣∣∣∣

(1.5)

In this case, the unit vectors along the cables are ei = (p− ai) /ρi for i ∈
{1, 2, 3} (compare with Fig. 1.2). For the 3-cable robot, it is convenient to
define the unit vectors from Ai to P , to maintain a coherent notation with [71,
137]; for the same reason, the z axis in the reference frame chosen is oriented
downwards.

1.5.2 Translational robot

The second robot model used in this thesis is a spatial robot with finite-
size EE having a purely translational motion as described in Subsec. 1.3.2.4.
This CSPR is a 6-cable robot having three parallelogram “legs”: therefore, its
orientation remains constant.

The robot is conceptually analogous to the ones presented in [13, 31, 196];
however, while the cited references considered special architectures, this thesis
will consider the most general case, thereby including all the robots from [13,
31, 196] in the analysis.

One interesting feature of this architecture is that it allows using just as
many actuators as DoFs, thereby reducing the total cost and the design com-
plexity: indeed, since the two cables in a given parallelogram ought to remain
at the same length at all times, they can be actuated by the same motor.
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Figure 1.4: A 6-cable CDPR with 3 translational DoFs.

Also, the robot is controlled by the minimum number of cables needed for a
fully-constrained CSPR, without introducing tensioning devices such as pas-
sive spines [16, 19].

In this case, the cable directions are given by ei = (ai − p− bi) /ρi, which
are the unit vectors from Bi to Ai (again, compare with Fig. 1.2); also, the
z-axis of the fixed coordinate frame is oriented upwards.

In the “start” position, the cables are pairwise parallel and at equal lengths,
so that ρ1 = ρ2, ρ3 = ρ4, ρ5 = ρ6, e1 = e2, e3 = e4, and e5 = e6. Moreover,
the placement of points Ai and Bi is chosen in such a way that ‖a2 − a1‖=
‖b2 − b1‖, ‖a4 − a3‖=‖b4 − b3‖, and ‖a6 − a5‖=‖b6 − b5‖. Therefore, the 6
cables define 3 parallelograms A1B1B2A2, A3B3B4A4, and A5B5B6A6 at the
start of the motion; since the motors control the cables in pairs, this condition
remains true at all times, assuming that the cables remain taut and that the
EE does not rotate. In this case, the parallelogram defined by cables i and j,
which is contained in plane Πij, blocks the rotation of the EE in a direction
nij; this is defined as the unit vector normal to Πij. Unless the three vectors
n12, n34 and n56 are coplanar, no rotation is allowed: therefore, the EE will
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Figure 1.5: The planar parallelogram formed by cables i and j.

only have a translational motion. Note that vectors bi’s (i = 1, . . . , 6), which
depend only on the EE’s orientation, will remain constant throughout any
purely-translational movement. This architecture is similar to that of the Delta
robot [31, 48].

Here, some auxiliary elements can be usefully introduced:

• auxiliary points A∗i (i = 1, . . . , 6) are defined by position vector a∗i =
ai − bi. Note that, if the i-th and j-th cables form a parallelogram,
a∗i = ai−bi = (aj−bj + bi)−bi = aj−bj = a∗j , since ai−aj = bi−bj
and thus ai = aj − bj + bi (Fig. 1.5). Therefore, there is actually one
such point for each pair A∗ij = A∗i = A∗j , whose position is a∗ij = a∗i = a∗j ;
these positions are constant, as vectors ai and bi do not depend on the
robot pose.
• auxiliary vectors dij = bi − bj, which go from Bj to Bi; these vectors

are also constant.
• plane Π is the one passing through points A∗12, A∗34 and A∗56.

It is now convenient to introduce some special architectures, that are sub-
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1.5. Robot architectures

cases of the most general schematic shown in Fig. 1.4 which will be useful later
in this work. A general schematic of the various robot sub-cases is presented
in Fig. 1.6 on page 28.

1.5.2.1 Special architecture L

The first special architecture L (on the left of Fig. 1.6) is defined by point P ,
the CoM of the EE, being on the intersection of segments B1B2, B3B4, and
B5B6.

Further specializations of L
A special case L1 of architecture L is found if P is exactly in the midpoint of
segments BiBj. A further restriction is obtained by requiring that the three
segments BiBj are of equal length: this gives the special architecture L2.

1.5.2.2 Special architecture R

The second special architectureR (on the right of Fig. 1.6) is defined by having
vectors dij all parallel to Π.

Further specializations of R
Architecture R1 is defined by having all Ai’s coplanar, on a plane Γ . This is
a special case of R: indeed, since ai − aj = bi − bj = dij, one can see that
vectors dij will all be parallel to Γ and thus points Bi will also be coplanar,
on a plane parallel to Γ . Then, Π will also be parallel to Γ ‡.

1.5.2.3 Special architecture LR

This special architecture is given by the intersection of the conditions for R1

and L2: therefore, all Ai’s are coplanar and P is in the middle of segments
BiBj, which are of equal length. This “final” architecture is the one actually
used to build the prototype for the experimental tests (Subsec. 3.7.2).

‡ P does not have to be in the plane through points Bi’s; if it is so, then Π ≡ Γ .
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Figure 1.6: A general schematic of the possible special architectures for the translational robot.



2 Kinetostatic model

in which the dynamics of CSPRs is introduced with the kinetostatic model of two
classes of robots, with a point-mass EE and with a finite-size EE, respectively.

2.1 Dynamics of CSPRs: state of the art
CSPRs are usually considered to move quasi-statically, so their accelerations
(and, correspondingly, the inertial forces on the EE) are negligible. In this case,
as seen in Subsec. 1.3.2.3, the robot can only move within its SEW.

However, one of the most interesting advantages of cable robots is their
ability to reach very high accelerations (see Sec. 1.1), thanks to their parallel
architecture and the low inertias of the cables. If the cable weight is neglected,
as is usually done, the effect of dynamic actions on the robot amounts to a
wrench acting on the EE which is composed of the inertia force and the inertia
moment.

Here, a first necessary distinction must be made between under-constrained
and fully- or over-constrained CSPRs: for the latter, the pose can be directly
derived by solving the DKP, while for the former one must also consider the
force and moment equilibrium conditions. Therefore, the dynamic analysis of
under-constrained cable robots is more challenging.

One of the earliest studies on the dynamics of fully-actuated robots con-
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cerned a 3-cable robot with a point-mass EE [68], like the one presented in
Subsec. 1.5.1. Later, dynamic models of 6-cable, 6-DoF CSPRs were proposed
in [144, 214], which studied robots designed respectively for the LAR telescope
(in Canada) and for the FAST telescope (in China); these works were among
the first to include the effect of the cable mass in the dynamic model. The
dynamics of over-actuated cable robots is studied in [199], specifically for a
translational CSPR conceptually similar to the one in Subsec. 1.5.2.

An interesting generalization is the study of the dynamics of multi-stage
cable robots. For instance, [150] presents an aerial mobile robot composed
of two stages, a helicopter carrying a cable-actuated crane, while in [149], the
stages are two mobile platforms connected to the fixed frame and to each other
by cables. The exchange of forces between multiple stages makes the dynamic
analysis especially complex.

One of the first studies about the dynamic modeling of an under-constrained
(and under-actuated) system was presented in [203], for a 3-cable robot with
a 6-DoF EE: the authors developed an inverse dynamics model and proposed
a feedback control method to keep the sway motion under control while per-
forming a desired trajectory. Another example was presented in [10]: here, the
authors derived the dynamic equations of a hybrid serial-parallel robot (with
a serial arm composed of two rigid links carried by a parallel, cable-actuated
platform) using both a Newtonian and Lagrangian approach. In [91], the goal
was to move an under-constrained CSPR along a given trajectory between two
endpoints—both at rest—where a suitable subset of the EE generalized coordi-
nates was set (the remaining generalized coordinates, along with the cable ten-
sions, were then defined by the Inverse Geometrico-static Problem (IGP)); the
authors showed how to apply general results about under-constrained robotic
systems to reduce sway at the endpoints.

An approach that sometimes can be used to simplify the analysis and con-
trol of under-constrained cable robots is differential flatness which offers a
framework to plan feasible trajectories for kinematically undetermined sys-
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2.2. Model for a point-mass EE

tems, by defining flat outputs that can be arbitrarily controlled: this approach
has been successfully applied to some planar [12] and spatial [87] cable-driven
robots.

One issue that is sometimes included in the dynamic modeling of CSPRs is
the vibration analysis: since cables are flexible, their oscillations might become
a source of concern, especially for robots with long cable spans. A complete
vibration model of a generic cable-driven robot was presented in [57]: it was
shown through a numerical investigation that the vibration of the EE is mostly
due to axial flexibility of the cables. In [104] the effect of longitudinal vibrations
in cables was thus assumed to be their dominant dynamic effect, a control
system was designed specifically to reduce elastic effects and the conditions for
stability of the closed-loop system were found.

The dynamic workspace of CSPRs (and of CDPRs in general) has been
introduced in [14] for planar manipulators and is defined as the set of all poses
where the EE can be in dynamic equilibrium, that is, with all cables in tension
under some combination of velocity/acceleration. This is a generalization of the
SEW, which is thus strictly contained in the dynamic workspace. The interest
of studying the dynamic workspace, indeed, is especially in the fact that it
allows greater freedom in planning the movements of the robot.

In the rest of this chapter, the dynamic models of the two architectures
presented in Subsecs. 1.5.1 and 1.5.2 will be derived, according to the modeling
method outlined in Sec. 1.5. For the translational cable robot, the advantages
of the special architecture L introduced in Subsec. 1.5.2.1 (and of its sub-cases
L1 and L2) will be presented: it is found that these architectures lead to an
especially simple dynamic model.

2.2 Model for a point-mass EE
The first model will now be considered (see Fig. 1.3). The forces applied to the
EE are the following:
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2. Kinetostatic model

• the cable tensions τi, directed along vectors ei;
• the EE’s own weight mg∗;
• the inertia force −mp̈.

By Newton’s equation, the dynamic equilibrium is given by:

mg−
3∑
i=1

τiei = mp̈ (2.1)

which can be rewritten in matrix form as

m(g− p̈) = M[τ1, τ2, τ3]T (2.2)

by introducing the structure matrix M = [e1 e2 e3].

It has been proven in [71, Eqs. (17)–(19)] that τi > 0 is equivalent to

µi = [p× (ak − aj) + ak × aj]T (p̈− g) > 0 (2.3)

as long as det M < 0; here, indexes j and k depend on index i, as follows:
i = 1→ j = 3, k = 2

i = 2→ j = 1, k = 3

i = 3→ j = 2, k = 1

(2.4)

Inequality det M < 0 holds true if the following conditions are respected:
the cable exit points Ai must be clockwise numbered when observed from
above (along the positive z direction) and the EE must remain below plane
Π as in Fig. 1.3. Note that the EE could actually move above Π by applying
dynamic trajectories designed specifically to safely pass through a singularity
condition [212]; this possibility, however, will not be explored here.

2.3 Model for a finite-size EE
For the kineto-static model of the 3-parallelogram robot introduced in Subsec.
1.5.2 the first step is to consider two cables i and j in a parallelogram pair;
∗ Note that, as in Subsec. 1.5.1 the reference frame was chosen with the z axis pointing
downwards, the gravitational acceleration is given by g = [0, 0, g]T .
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Figure 2.1: The planar parallelogram formed by cables i and j (cf. Fig. 1.5).

these exert two forces Fi = τiei and Fj = τjej = τjei on the EE (see Fig. 2.1).
Therefore, the resultant wrench is given by a force Ftot and a moment Mtot

about P , namely

Ftot = Fi + Fj = (τi + τj)ei (2.5a)

Mtot = bi × Fi + bj × Fj = (τibi + τjbj)× ei (2.5b)

One can define here the total tension given by τtot,ij = τi + τj and the tension
ratios σi, σj as

σi = τi
τtot,ij

, σj = τj
τtot,ij

= 1− σi (2.6)

It is thus found that the wrench
[
FT
tot,MT

tot

]T
is equivalent to the wrench given

by a single force Fij = eiτtot,ij applied in point Bij whose position is given by
p + bij†, where bij is the position vector

bij = τibi + τjbj
τtot,ij

= σibi + σjbj = σibi + (1− σi)bj (2.7)

† Eqs. (2.6) and (2.7) are defined only for τtot,ij 6= 0. The case τtot,ij = 0 is disregarded
since it would necessarily imply either that τi = τj = 0 or that one of τi, τj is negative.
In both cases the cables are no longer taut, against the original assumptions.
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2. Kinetostatic model

From the definition of bij in Eq. (2.7), point Bij is on the straight line through
Bi and Bj; it coincides with Bi (respectively, Bj) if σi = 1 and thus τj = 0
(resp. if σi = 0 and τi = 0). If otherwise τi, τj ∈ [0, τtot,ij], then σi, σj ∈ [0, 1]:
in this case Bij lies on the segment through Bi and Bj.

The dynamic equations read in this case‡

6∑
i=1

eiτi = mp̈−mg = −Fe (2.8a)

6∑
i=1

bi × eiτi = 0 (2.8b)

Fe = m(g − p̈) is the total force due to inertia and to the EE’s own weight:
since it is applied in P , the CoM of the platform, the external moment around
P (due to Fe) is zero. Eqs. (2.8) can be expressed in matrix form as

M̃τ = We (2.9)

where τ = [τ1, ..., τ6]T is the vector of cable tensions, We =
[
−FT

e ,0T
]
is the

wrench due to gravity and inertia acting on the platform and

M̃ =
 e1 e1 · · · e5 e5

b1 × e1 b2 × e1 · · · b5 × e5 b6 × e5

 (2.10)

M̃ is a 6×6 wrench matrix; here, the property of cables being pairwise parallel
has been used, so e1 = e2 and so on.

Eq. (2.9) is a system of 6 equations in 6 unknowns, namely, cable tensions
τ1, . . . , τ6; however, this system can be simplified by introducing Fij (applied
in Bij, as seen before) to replace the cable forces Fi and Fj in a cable pair.
Eq. (2.9) then becomes

Mτ tot = We (2.11)

Here, the total cable tensions are in vector τ tot = [τtot,12, τtot,34, τtot,56]T , while
the 6× 3 matrix M is defined by

M =
 e1 e3 e5

b12 × e1 b34 × e3 b56 × e5

 =
Msup

Minf

 (2.12)

‡ Here, with the notation from Subsec. 1.5.2 where z points upwards, g = [0, 0,−g]T .
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2.3. Model for a finite-size EE

This approach simplifies the dynamic equilibrium equations: one still ob-
tains 6 equations in 6 unknowns, however this system is decoupled. Indeed,
the first three unknowns (namely, the total tensions τtot,ij) can be obtained by
solving the first three equations; solving the remaining three equations yields
the other three unknowns (the ratios σi’s, which define vectors bij’s).

The first three equations in Eq. (2.11) are Msupτ tot = −Fe = −m(g − p̈).
Then, τ tot is obtained from the inverse of Msup (the upper block of M) as:

τ tot = −M−1
supFe (2.13)

Calculating M−1
sup requires Msup = [e1 e3 e5] to be non-singular: therefore,

vectors e1, e3 and e5 cannot be linearly dependent. This issue will be dealt
with in Sec. 4.2; for now, Msup will be assumed non-singular. Note that the
unit cable direction ei is ei = (ai − bi − p) /‖ai − bi − p‖ (Subsec. 1.5.2):
substituting the definition a∗ij = ai−bi, one obtains ei = (a∗ij−p)/‖a∗ij−p‖ =
ej.

Given the similarity between (2.2) and the first three equations of (2.11),
one can introduce an equivalent robot having three cables (attached in points
A∗ij) which move a point-mass EE: this equivalent robot has cable tensions
τtot,12, τtot,34 and τtot,56. If the cables of the real (6-cable) robot are all taut, the
three total tensions must be positive:

τ tot � 0 (2.14)

From this equivalent model, one can derive the conditions for the τ tot,ij to be
positive, which are conceptually the same as those in (2.3):

µij := [p× (amn − akl) + amn × akl]T (p̈− g) > 0 (2.15)

where indexes k, l, m and n depend on indexes i and j as follows:
i = 1, j = 2→ k = 5, l = 6,m = 3, n = 4

i = 3, j = 4→ k = 1, l = 2,m = 5, n = 6

i = 5, j = 6→ k = 3, l = 4,m = 1, n = 2

(2.16)
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2. Kinetostatic model

For Eqs. (2.15) to hold, P must remain below Π, and points A∗12, A∗34 and
A∗56 must be numbered clockwise (when seen along the positive z direction),
analogously to the conditions seen in Sec. 2.2.

Requiring τ tot to be component-wise positive is a necessary, but not suffi-
cient condition to guarantee that cable tensions in the translational CSPR are
positive, since it might be the case that τtot,ij > 0 with τi > 0 and τj < 0 (or
vice versa). A second condition to satisfy emerges from the last three equations
in Eq. (2.11), namely

(b12 × e1)τtot,12 + (b34 × e3)τtot,34 + (b56 × e5)τtot,56 = 0 (2.17)

By considering the expression of bij in Eq. (2.7) and recalling the definition
of auxiliary vectors dij = bi − bj on page 26, Eq. (2.17) can be rewritten as

Aσ135 = −b246 (2.18)

where

A =
[
(d12 × e1)τtot,12 (d34 × e3)τtot,34 (d56 × e5)τtot,56

]
(2.19)

σ135 =
[
σ1 σ3 σ5

]T
(2.20)

and

b246 = (b2 × e1)τtot,12 + (b4 × e3)τtot,34 + (b6 × e5)τtot,56 (2.21)

Eq. (2.18) is a system of 3 equations in the unknowns σ1, σ3, σ5, which
can be solved once one knows the total tensions τ tot. The second and final
condition for positive tensions in all cables is, thus§:

0 � σ135 � 1 (2.22)
§ Note that one could also solve Eq. (2.17) for the other three tension ratios as

Aσ246 = b135

with
σ246 =

[
σ2 σ4 σ6

]T
b135 = (b1 × e1)τtot,12 + (b3 × e3)τtot,34 + (b5 × e5)τtot,56

In this case, condition (2.22) could equivalently be set as 0 � σ246 � 1.
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Figure 2.2: Scheme of the special architecture: the external force Fe acts on P ,
which is the intersection of segments B1B2, B3B4 and B5B6.

2.3.1 Special architecture L

In this subsection the general kineto-static model developed in the previous
section will be applied to the special architecture L introduced in Subsec.
1.5.2.1. It will be shown that said architecture allows the user to define global
conditions on a given trajectory so that condition (2.22) is always satisfied.

Let P lie at the intersection of lines B1B2, B3B4, and B5B6 (Fig. 2.2).
Vectors bi and bj are then aligned, so bj = αijbi, where αij is a generic
scalar, and thus dij = bi(1−αij). Substituting these expressions in Eqs. (2.19)
and (2.21), one obtains that the column vectors of matrix A have the form
(bi × ei)τtot,ij(1− αij) and that vector b246 is given by a sum of vectors (bi ×
ei)τtot,ijαij. Eq. (2.18) then becomes∑

ij

(bi × ei)τtot,ij(1− αij)σi = −
∑
ij

(bi × ei)τtot,ijαij (2.23)

which after rearranging becomes∑
ij

(bi × ei)τtot,ij [(1− αij)σi + αij] = 0 (2.24)

where the indexes in the summations on both sides take values (i, j) ∈ {(1, 2),
(3, 4), (5, 6)}.
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2. Kinetostatic model

It can now be seen that Eq. (2.24) always holds if (1 − αij)σi = −αij,
namely

σ135 =
[

α12
α12−1

α34
α34−1

α56
α56−1

]T
(2.25)

Since the problem is linear, this is the only solution to Eq. (2.23), and it
depends on neither the position p nor the external force Fe.

It can be easily shown that the condition required for positive cable ten-
sions, namely 0 ≤ σi ≤ 1, becomes in this case αij ≤ 0. This in turn means
that P , the CoM of the robot, must lie on segment BiBj between points Bi

and Bj.

In summary, if the three segments B1B2, B3B4, and B5B6 pass through
the CoM P and the external wrench We has zero moment about P (in this
case because We is only due to gravity and inertia), then the tension ratios
are constant, and in order to verify that cable tensions are positive one can
simply check the total tensions τtot,ij, namely condition (2.14).

It is worth observing that this result also leads to a very simple formulation
of the SEW which can be analytically defined for architecture L (cf. other
translational cable-driven systems, such as those in [31, 33], where the SEW
was only numerically found).

Indeed, for the most general geometry of the translational robot (Subsec.
1.5.2), the SEW is the set of poses for which, when Fe = mg, τ tot � 0
(Eq. (2.14)) and 0 � σ135 � 1 (Eq. (2.22)). In general, these conditions define
a complex volume in space: for instance, it may be proven that σ135 � 0
defines a 3rd-degree variety in x, y, z. However, for the special architecture L,
condition (2.22) is always satisfied, and only condition (2.14) must be checked.
Due to the equivalence between this robot and the 3-cable robot with point-
mass EE, it can immediately be seen that τ tot � 0 defines a vertical triangular
prism having its upper vertices in A∗12, A∗34 and A∗56 [167].

A virtual 3-cable robot with a point-mass EE has thus been obtained, that
is dynamically equivalent to the original robot. By this result, the feasibility
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2.3. Model for a finite-size EE

conditions for dynamic trajectories of 3-cable point-mass robots [137] can be
fully reused here.

A particular design of special architecture L was proposed in [196] (special
architecture L1): in the latter article, P lies in the midpoint of the three seg-
ments B1B2, B3B4, and B5B6, so that αij = −1 and σ135 = [1/2, 1/2, 1/2]T .
Hence, the two cables in each parallelogram always have the same tension.

The result obtained in this section is analogous to the one found in [121] for
a planar case, where the authors study a 3-cable planar CSPR with a finite-size
EE, and with cables 2 and 3 defining a parallelogram, so that the EE motion
is purely translational. The authors of [121] found that, if the external forces
(gravity and inertia) are applied in a point P lying on the segment through the
attachment points of cables 2 and 3, and cable 1 is attached to P , this robot is
dynamically equivalent to a 2-cable point-mass robot: this case is conceptually
similar to the translational spatial robot seen in this section, where again the
CoM is in the intersection of the segments between points Bi.
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3 Dynamical trajectories

in which dynamical trajectories that allow the robot to move outside the SEW are
presented. Experiments that confirm the theoretical results are also described.

3.1 Introduction
In this chapter, the kineto-static models from Ch. 2 will be applied to define
dynamic trajectories that allow a CSPR to move beyond its SEW by taking
advantage of the inertial forces to keep cables in tension, thus fulfilling goal
(I) from Sec. 1.2.

State of the art

As seen in Ch. 2, the dynamic motion of CSPRs is radically dependent on
whether the robot is under- or fully-constrained [1, 22, 46]. As far as the
former are concerned, one of the first works on dynamically feasible trajectories
focused on a 2-DoF 1-cable robot moving in a plane [54]. The authors used
a pendular motion to pump energy in the system and progressively increase
the oscillation amplitude. Dynamic point-to-point motions of under-actuated
CSPRs were also studied in [91, 117, 209, 218].

Regarding fully constrained CSPRs, reference [73] focused on a 2-DoF,
fully-actuated planar robot. Here, the authors defined harmonic trajectories
whose feasibility can be verified by checking if the motion frequency falls
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within an admissible range, without the necessity to solve the inverse dy-
namics problem; furthermore, they found a special motion frequency, which
is always within this range and is similar to the natural frequency of a pen-
dulum. In later works, these results were applied to harmonic trajectories of
3-DoF spatial point-mass robots [71, 210] and 3-DoF planar robots [97]; later,
point-to-point motions [60, 75, 98, 211] were also considered. For 3-DoF spatial
robots in particular, some authors defined static-to-dynamic motions [59, 71]
so that the robot can reach a dynamic condition when starting from rest; also, a
method was recently proposed [212] to allow such robots to move beyond their
singularity loci (a potentially dangerous condition, as one might lose control of
the robot), again by using dynamic movements. More recently, 6-DoF robots
(with a finite-size EE) were also considered, performing dynamic motions in
space where both the orientation and the position are varied [99, 100].

Finally, some authors considered redundantly-actuated robots, either pla-
nar [189] or spatial [178]. The work presented in [191–193] is also worth men-
tioning, which focused on the dynamical trajectories of CSPRs with a passive
serial support composed of rigid links.

Chapter description

In this chapter, elliptical dynamic trajectories for a spatial CSPR with 3 DoFs
and a point-mass EE will be defined (Sec. 3.2). For these trajectories a special
frequency will be found, akin to the one found in [71], which allows the EE
to achieve arbitrarily large oscillations (Sec. 3.3). A range of frequencies will
also be defined (Sec. 3.4) that guarantee that cable tensions remain always
positive (hereafter, this property will be referred to as feasibility condition).
The trajectories presented in [71], [210] and [211] are special cases of the ellipses
studied here. In Sec. 3.4, results provided by computer simulations will be
shown and the trajectories presented in this chapter will be compared with
previous works. The possibility of changing the oscillation frequency along a
given ellipse will also be studied (Sec. 3.5).

In Subsec. 3.6.1, transition motions will be defined to connect a state of
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3.2. General trajectories

rest to a dynamic trajectory and vice versa. In the same way, yet another kind
of transition motions will be shown, that connects two identical ellipses laying
on parallel planes, but having different centers (Subsec. 3.6.2).

In the rest of this chapter, unless otherwise specified, the robot with point-
mass EE will be considered. These trajectories can also be applied to the
translational robot with architecture L from Sec. 2.3.1, since in this case the
finite-size robot is dynamically equivalent to the point-mass one. For this archi-
tecture, all harmonic and transition trajectories from [137] and point-to-point
motions from [98] (for instance) can also be re-used, and the total tensions are
guaranteed to be always positive.

The theoretical results will then be experimentally verified for both the
robot with point-mass EE (Subsec. 3.7.1) and the one with finite-size EE (Sub-
sec. 3.7.2).

Finally, the results presented in this chapter will be reviewed in Sec. 3.8.

3.2 General trajectories
Consider a point P moving along a trajectory Γ and having a position p
defined by three sine functions (Fig. 3.1):

p =


x

y

z

 =


xC

yC

zC


︸ ︷︷ ︸

pC

+


xA sin(ψ + φx)
yA sin(ψ + φy)
zA sin(ψ + φz)


︸ ︷︷ ︸

pd

(3.1)

where

• xC , yC , zC are the coordinates of the center C of Γ ;
• xA, yA, zA are the amplitudes of oscillation;
• φx, φy, φz are phase angles;
• ψ = ψ(t) gives the position of P along Γ ;
• pd is the displacement of point P from point C.
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Figure 3.1: (Left) Schematic of a 3-DoF spatial CSPR performing an elliptical
motion. (Right) Auxiliary vectors.

Eq. (3.1) represents the most general 3D trajectory defined by sinusoidal func-
tions and can be shown to be an ellipse (or an elliptical arc); see Appendix
A.1. Special cases include circles and line segments, either horizontal, vertical
or oblique (cases dealt with in [71], [210] and [211]). It should be noted that
general elliptical trajectories were first considered in [177]; however, the authors
did not consider phase angles nor provided conditions for these trajectories to
be feasible.

Said trajectories will now be applied to the 3-cable robot introduced in
Subsec. 1.5.1. Note that here the most general location of the cable exit points
Ai will be considered, even at different heights, while previous works usually
considered only special cases: in [71, 98], for example, the exit points are on a
horizontal equilateral triangle, whereas in [210–212] the fixed base is a generic
horizontal triangle.

It is convenient to define some auxiliary vectors, that depend on both the
architecture and the trajectory, as follows:

vCi = [xCai, yCai, zCai]T = ai − pC (i ∈ {1, 2, 3}) (3.2)

λi = [λxi, λyi, λzi]T = vCj × vCk (3.3)

These are the position vectors vCi from C to Ai (Fig. 3.1), whereas λi is their
cross product; in Eq. (3.3), indexes j and k depend on i as per Eq. (2.4), so
for example λ1 = vC3 × vC2.
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3.3. Natural frequency

As seen in Sec. 2.2, the EE must remain below the plane Π passing through
points A1, A2 and A3 (Fig. 1.3) for Eqs. (2.3) to be valid. Then, trajectory Γ
must not intersect Π; to check this condition, Eq. (3.1) is substituted into
Eq. (1.4) which defines Π, thus obtaining

Q0 +Qs sin(ψ) +Qc cos(ψ) = 0 (3.4)

where Q0, Qs and Qc are as follows:

Q0 = axC + byC + czC + d

Qs = axA cosφx + byA cosφy + czA cosφz
Qc = axA sinφx + byA sinφy + czA sinφz

(3.5)

Eq. (3.4) can be solved by the tangent half-angle method, by setting tn =
tan(ψ/2). In this way, a quadratic equation in tn is found, which must have no
solutions for Γ not to intersect Π. Its discriminant must then be negative, so

4(Q2
s +Q2

c −Q2
0) < 0 (3.6)

This is a condition for feasibility that can easily be checked.

3.3 Natural frequency
In [71, 73], it was found that arbitrarily large motions may be achieved, while
keeping positive tensions, if the robot moves with a special frequency ωn =√
g/zC , where zC is the z coordinate of center C of the trajectory. It will now

be shown that there is a similar frequency for the trajectories studied in this
chapter.

In analogy to [98], it will be assumed that tensions τi are kept proportional
to cable lengths ρi, which (in theory) can be done by suitably controlling the
actuators. The dynamic equilibrium in Eq. (2.1) becomes

mg−
3∑
i=1

ki(p− ai) = mp̈ (3.7)

where ki is a “virtual” cable stiffness. Eq. (3.1) can be rewritten as

p = pC + c cos(ωt) + s sin(ωt) = pC + pd (3.8)
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3. Dynamical trajectories

where ωt = ψ and ω is the motion frequency. By substituting Eq. (3.8) in
Eq. (3.7), one finds

m[g + ω2(p− pC)] =
3∑
i=1

ki(p− ai) (3.9)

Here, ωn is defined as the natural frequency of the second order Ordinary
Differential Equation (ODE) in Eq. (3.7), namely mω2

n = k1 + k2 + k3 = K.
By setting ω = ωn in Eq. (3.9), the terms in p cancel out:

mg−KpC = −
3∑
i=1

kiai (3.10)

If all three ki’s are positive and Eq. (3.10) holds, the cable tensions τi = kiρi are
positive, since ρi > 0. The trajectory may then be realized with τi = kiρi if and
only if Eq. (3.10) is satisfied: this, together with the condition k1 +k2 +k3 = K,
gives a linear system of equations in the unknowns ki, which has solution[

k1 k2 k3

]
= −mg

Q0

[
λz1 λz2 λz3

]
(3.11)

where Q0 was defined in Eq. (3.5). The natural frequency ωn is then

ωn =
√
K

m
=
√
−g(λz1 + λz2 + λz3)

Q0
=
√
gc

Q0
(3.12)

Note that c—given by Eq. (1.5)—is twice the (signed) area of the triangle
Txy defined by points (xai, yai)∗; having numbered points Ai in clockwise order
(Sec. 2.2), this signed area is negative and so c < 0. Also, ωn > 0, so it must
be Q0 < 0. It then follows from Eq. (3.11) that, for the k1, k2 and k3 to be
positive, λzi must be positive too: it may be shown that this implies that the
projection of point C on plane x − y must be within the triangle Txy (see
Appendix A.2). This condition and the requirement that Γ must be below Π

imply that C has to be within the SEW (which is the set of all points within
the convex hull of the A1, A2 and A3 or below this region).

These results expand those presented in [71, 210, 211], where the authors
assumed points Ai’s to have the same z coordinate and Γ to be a circle.
∗ It is implicitly assumed that plane Π is not vertical, otherwise Txy degenerates into
a segment and the SEW vanishes; this is a degenerate architecture that is intuitively
avoided for a spatial robot.
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3.4 Generic frequency
It is possible to have harmonic motions along a trajectory Γ with a frequency
ω different from the frequency ωn given in Eq. (3.12).

As seen in Ch. 2, the feasibility condition (τi > 0 for all cables at every
instant) holds if and only if µi > 0, where the auxiliary variables µi are given by
either Eq. (2.3) in Sec. 2.2 (for the robot with point-mass EE) or by Eq. (2.15)
in Sec. 2.3 (for the robot with finite size EE). Since working with the µi’s leads
to generally simpler expressions, these variables will be used in the rest of this
chapter†.

To study the general case, Eq. (3.1) is substituted into Eq. (2.3). Each µi
can now be written as

µi = Ci cos(ψ) +Di sin(ψ) + Ei (3.13)

with
Ci = Ci,aψ̈ + Ci,vψ̇

2 + Ci,c

Di = Di,aψ̈ +Di,vψ̇
2 +Di,c

Ei = Ei,aψ̈ + Ei,c

(3.14)

having defined the following auxiliary parameters:

φxy = φx − φy φyz = φy − φz φzx = φz − φx
ne =

[
yAzA sinφyz zAxA sinφzx xAyA sinφxy

]
pd,c =

[
xA cosφx yA cosφy zA cosφz

]
pd,s =

[
xA sinφx yA sinφy zA sinφz

]
(3.15)

and
Ci,a = −λi · pd,c Di,a = λi · pd,s
Ci,v = Di,a Di,v = −Ci,a
Ci,c = g · (pd,s × vkj) Di,c = g · (pd,c × vkj)

Ei,a = vkj · ne Ei,c = gλzi

(3.16)

† Note that, for the point-mass robot, the indexes i, j, k in µi permute as shown in Eq. (2.4),
while for the finite-size robot the index pairs (i, j), (k, l) and (m,n) in µij permute as
shown in (2.16).
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3. Dynamical trajectories

Here, j and k depend on i as per Eq. (2.4) (Eq. (2.16) for the finite-size robot)
and ne is a vector normal to the plane of the ellipse.

If ψ = ωt, then ψ̇ = ω, ψ̈ = 0 and Ci = Ci,vω
2+Ci,c, Di = Di,vω

2+Di,c, Ei =
Ei,c. In this case, coefficients Ci, Di, Ei are constant, once the trajectory Γ has
been chosen: Ci and Di are linear functions of ω2, while Ei only depends
on g and the position of C. Eq. (3.13) is analogous to one reported in [71]
for the special case of circular trajectories (either horizontal or vertical). The
definitions in Eq. (3.16) also generalize the ones first provided in [136]; while
in [136] the argument of the sine functions was a linear function of time t, here
ψ(t) can be a general function of class C1.

The extreme values of Eq. (3.13) are

µi,1 =
√
C2
i +D2

i + Ei, µi,2 = −
√
C2
i +D2

i + Ei (3.17)

If both extrema are positive, then µi is guaranteed to be positive. From Eq.
(3.17) it is clear that, if Ei = λzig < 0, then µi,2 < 0, so µi will be negative
at some point for any value of ω. One then requires λzi > 0, which is the
condition already found in Sec. 3.3.

Since µi,2 < µi,1, it is sufficient to check that µi,2 > 0, so that Ei >√
C2
i +D2

i . Both sides of this equation are positive, so they may be squared
to find E2

i > C2
i + D2

i . After inserting the definitions of Ci, Di and Ei in
Eq. (3.14), one obtains a fourth degree inequality:

µi,2 > 0 ⇔ αiω
4 + 2βiω2 + γi < 0 (3.18)

with
αi = C2

i,v +D2
i,v

βi = Ci,cCi,v +Di,cDi,v

γi = C2
i,c +D2

i,c − E2
i,c

(3.19)

The authors of [71, 210, 211] found ranges of feasible values for ω that guarantee
the feasibility of a given circular trajectory, assuming points Ai to be at the
same height. It can be assumed that a similar range may be defined in the
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broader case considered here, if there is at least one value of ω satisfying
condition (3.18); ωn is indeed one such value, since in this case the trajectory
is certainly feasible (see Sec. 3.3).

To find the aforementioned range, one can set ω2 = w in Eq. (3.18), thus
obtaining a quadratic inequality in w, namely αiw2 +2βiw+γi < 0. Note that,
by the definition in Eq. (3.19), αi ≥ 0, so αiw2 +2βiw+γi = ζ defines a convex
parabola in the w− ζ plane for positive αi; the degenerate case αi = 0 will be
considered later.

Depending on the sign of ∆i = β2
i − αiγi, there can be 3 cases:

(1) ∆i > 0: there are two values wi,min and wi,max (which in general will
be different for the three cables) such that, if w ∈ ]wi,min, wi,max[, then
αiw

2 + 2βiw + γi < 0;
(2) ∆i = 0: the inequality has a single solution, i.e. ω = ωn;
(3) ∆i < 0: the inequality has no solutions.

Inequality (3.18) has at least one solution, ω = ωn, as long as the trajectory
Γ respects the conditions found in Sec. 3.3 (C must be in the SEW and Γ is
below Π): under these conditions, ∆1, ∆2 and ∆3 must be positive (case (1)).

When ∆i > 0, the values wi,min and wi,max are given by

wi,min = −βi −
√

∆i

αi
, wi,max = −βi +

√
∆i

αi
(3.20)

Recalling that w = ω2 > 0, there can be the following cases:

(A) If wi,min and wi,max are ≤ 0, no value of ω is feasible;
(B) If wi,min ≤ 0 and wi,max > 0, the range of ω satisfying condition (3.18)

is
]
0,√wi,max

[
;

(C) If wi,min and wi,max are positive, the condition is ω ∈
]√
wi,min,

√
wi,max

[
.

One can finally define three ranges for ω, one for each cable: these ranges are
either in the form

]
0,√wi,max

[
(case (B)) or in the form

]√
wi,min,

√
wi,max

[
(case (C)), depending on the sign of wi,min. The extremes of the range for ω
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that ensure positive cable tensions can now be defined as:

ωmin =
√

max {max {wi,min} , 0} ,

ωmax =
√

min {wi,max}
(3.21)

Under the conditions in Sec. 3.3 (namely, C is in the SEW and trajectory Γ
is below plane Π), the condition for feasibility is ωmin ≤ ω ≤ ωmax. Note that
ωmin and ωmax are defined by explicit algebraic formulas and, thus, they are
easy to calculate.

From Eq. (3.21), one can see that ωmin might be zero. For ω sufficiently
close to zero, the EE moves quasi-statically, so the inertial force is negligible:
ωmin is then zero if and only if Γ is completely within the SEW (the case ω = 0
will be disregarded, since in this case the robot does not move).

Note that if ω = ωmin or ω = ωmax, one or more of the cable tensions
has a minimum value equal to zero along the trajectory. The conditions above
are therefore strict, while those found in [211] are only sufficient (but not
strictly necessary): the range for ω found here is therefore larger than that
given in [211] (with the exception of horizontal circular trajectories, where the
two ranges coincide). In [211], moreover, the authors considered only spatial
circular trajectories, which are a subclass of the ellipses studied here.

An interesting particular case is when za,i = za (i ∈ {1, 2, 3}), so that
cable exit points Ai’s are all at the same height za: in this case Eq. (1.5)
gives a = b = 0, d = −c · za, so Q0 = c(zC − za) and, from Eq. (3.12),
ωn =

√
g/(zC − za) [21]. For ω = ωn, one obtains (after some simplification)

µi = λzi [g + zAω
2
n sin(ωnt+ φz)]: this implies µi ≥ 0 as long as g ≥ zAω

2
n =

max {|z̈|}. This condition means that the maximum acceleration along z cannot
be greater than g, as expected, and is automatically fulfilled if Γ is below Π.

Finally, the degenerate case for which αi = 0 for some i is addressed. Since
αi is a sum of squares, it can be zero only if both squares are zero, namely
Ci,v = Di,v = 0. This is a linear homogeneous system of two equations in the
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three unknowns xA, yA, zA: its solutions are in the form
xA

yA

zA

 = f1


λyiλzi sin(φyz)
λziλxi sin(φzx)
λxiλyi sin(φxy)

 (3.22)

where f1 is any positive scalar. Substituting Eq. (3.22) in Eq. (3.19), one finds
that βi = 0, too; then, in order to satisfy the inequality in (3.18), the only
condition to check is γi < 0, which no longer depends on ω. It can also be
proved that αi = 0 if and only if Γ lies on the plane through C, Aj and Ak,
with j, k 6= i.

Some simulations were also performed to verify the theoretical findings
presented above.

Fig. 3.2 shows a harmonic motion along an elliptical trajectory. For the tra-
jectory shown, the method described in [211] gives a range of admissible motion
frequencies comprised between ω′min = 1.548 rad/s and ω′max = 2.55 rad/s. By
the present approach one finds that the actual endpoints of the admissible
range, as defined in Eq. (3.21), are ωmin = 1.387 rad/s and ωmax = 2.75 rad/s.
As expected, the first range is smaller and strictly contained in the second.

Fig. 3.3 shows a plot of the cable tensions τi divided by the EE mass m
as a function of time, as the EE moves along Γ . Here, the continuous lines
correspond to ω = ω′max, while the dashed ones are for ω = ωmax; this latter
case corresponds to a strict limit on the value of ω, so one cable tension reaches
zero at one point (while remaining positive otherwise). When ω = ω′max, the
motion period is longer (since ω′max < ωmax) and tensions do not reach the
zero value, which shows that the conditions given in [211] are not strict.

It is worth emphasizing that the special frequency ωn found in Sec. 3.3
does not depend on the motion amplitudes xA, yA and zA, but only on the
position of center C with respect to the cable exit points Ai’s. Consider now a
series of elliptical trajectories having the same center and phase angles φx, φy
and φz, but different oscillation amplitudes: specifically, the latter are given by
xA = cAxA0, yA = cAyA0 and zA = cAzA0, where cA is akin to a size factor that

51



3. Dynamical trajectories

-2
-1

-2.5
-2

2

-1.5
-1

0

-0.5
0

1 10 -1 2-2 3-3

Figure 3.2: An elliptical trajectory Γ with pC = [−1, 1, 2]T ,a1 = [2, 1, 0]T ,a2 =
[−3,−2, 0]T ,a3 = [−1, 3, 0]T and lying on a plane normal to ne =
[1, 2, 3]T . In this special case, the cable exit points Ai’s are all at the
same height and the trajectory is a circle with radius R = 1.2. The
length units are arbitrary.

defines the dimension of the trajectory Γ . Therefore, all trajectories are scaled
versions of a “base” trajectory having amplitudes xA0, yA0 and zA0 (see Fig.
3.4). One thus finds that ωn is the same for all such trajectories and is always
contained in the range of feasible frequencies [ωmin, ωmax] (Fig. 3.5). Even as
the size of the trajectory increases, therefore, the motion remains feasible for
ω = ωn, but the feasible range around ωn becomes smaller and smaller.

3.5 Variable frequency
The possibility of varying the velocity by which the robot moves along an
assigned trajectory will now be studied: in particular, the case where the angle
ψ in Eq. (3.1) is a general function of time will be considered. In this case,
coefficients Ci, Di and Ei in Eq. (3.13) are no longer constant. To find the
minimum of µi, Eq. (3.13) is differentiated with respect to time and the result
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Figure 3.3: The cable tensions divided by the mass of the EE during one period of
the trajectory Γ in Fig. 3.2. For each cable, the solid line corresponds
to ω = ω′max, while the dashed line corresponds to ω = ωmax > ω′max.

4
2

-4

-4

-2

-2 0

0

0 2 -24 6

Figure 3.4: A 3D view of a base elliptical trajectory (thinner line) and a scaled
up version (cA > 1, thicker line) having the same center C. The SEW
is also highlighted as a gray volume (here, the cables are omitted for
clarity, cf. Fig. 3.2).

is set to zero. The exact solution of this problem is however complex and
(seemingly) unsuitable for real-time applications.
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Figure 3.5: Plot of the three different ranges defined for ω2 ∈ [wmin, wmax], with
the range endpoints given by Eq. (3.20). The intersection of the three
ranges, which gives the global feasible range, is highlighted in gray.
If cA is small enough that the corresponding trajectory Γ is entirely
contained in the SEW, then ω = 0 is contained in the admissible range,
as seen in Sec. 3.4. In this particular case, the feasible range for cable 1
is strictly contained in the corresponding admissible ranges for cables
2 and 3.

A simpler alternative is to find a lower bound for the extrema of µi by
interval analysis. If the values of Ci, Di are kept fixed for assigned values of ψ̇
and ψ̈ while varying ψ in Eq. (3.13), one can use the same approach described
in Sec. 3.4 to find the minimum of µi. It is thus found that

min {µi} = −
√
C2
i +D2

i + Ei (3.23)

A sufficient condition for having µi > 0 is then

Ei >
√
C2
i +D2

i (3.24)

Assuming Ei > 0 (this assumption will be verified later on), both sides can
be squared to obtain again three biquadratic inequalities, expressed as αiψ̇4 +
2βiψ̇2 + γ′i < 0. The coefficients αi and βi are the same as in Eq. (3.19), while
γ′i = ψ̈2γi,ψ̈ + γi and γi,ψ̈ = C2

i,v +D2
i,v − E2

i,a.
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Figure 3.6: Plane ψ̈ − ψ̇2 with the three ellipses Ωi, rectangle Rψ (in gray) and
curve Γψ (black line). Notice how Rψ ∈ Ω1 ∩ Ω2 ∩ Ω3 and Γψ ∈ Rψ.

Setting w = ψ̇2, the parabola defined in the w−ζ plane by αiw2+2βiw+γ′i =
ζ shifts along the ζ axis as ψ̈ varies, since the only coefficient that depends on
ψ̈ is the constant term. The parabola is convex (see Sec. 3.4), so the range of
w satisfying αiw2 + 2βiw + γi ≤ 0 is given by [wi,min, wi,max], with wi,min and
wi,max given by the points of intersection of the parabola with the w axis; the
center of this range is wi,c = −βi/αi. Changing ψ̈ leaves the middle point wi,c
unaltered, but the width of the admissible range varies, since ∆′i = β2

i −αiγ′i =
β2
i − αi

(
ψ̈2γi,ψ̈ + γi

)
= ∆i − αiψ̈2γi,ψ̈ changes.

It may be proven that, if C is in the SEW (so ∆i > 0), then γi,ψ̈ > 0 (see
Appendix A.3). The figure Ωi defined by all points in the ψ̈−w plane satisfying
αiw

2 + 2βiw+ γ′i
(
ψ̈
)
≤ 0 is then an ellipse, symmetrical with respect to the w

axis (γ′i only depends on ψ̈2; see Fig. 3.6). It can also be proved that, for every
point in Ωi, Ei > 0, as required (see Appendix A.3).

Now, a motion law ψ(t) is required, that allows the user to change the
motion frequency along Γ from ωI to ωF . Here, ωI and ωF must be in the
admissible range for ω defined in Sec. 3.4. Therefore, one can set ψ̇ = U(t) and
ψ̈ = V (t) = dU/dt, where U(t) is a function of class C1 defined for t ∈ [0, T ]
and T is the transition time from ωI to ωF . Also, the boundary conditions
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U(0) = ωI , U(T ) = ωF and V (0) = V (T ) = 0 are imposed, together with
condition V (t) ≥ 0 for t ∈ [0, T ], so that the function U(t) is monotonically
increasing.

The extreme values of ψ̇ are ωI and ωF (since U is monotonic), while
the extreme value of

∣∣∣ψ̈∣∣∣ is ψ̈e = max |V (t)|. As a consequence, the curve Γψ
described in the plane ψ̈ − ψ̇2 during the transition is then entirely contained
in a rectangle Rψ defined by wI = ω2

I < w < wF = ω2
F and

∣∣∣ψ̈∣∣∣ < ψ̈e (Fig. 3.6).

One then has only to find the minimum time T such that Rψ ∈ Ω1∩Ω2∩Ω3.
Since the ellipses Ωi’s are convex, one only has to check that the corners of Rψ

are within all three Ωi’s. Moreover, since the latter are symmetric with respect
to the w axis, one only has to check the two corners of Rψ with ψ̈ > 0, that
is, those with coordinates

(
ψ̈e, wI

)
and

(
ψ̈e, wF

)
.

The point
(
ψ̈I,∂Ωi

, wI
)
on the boundary ∂Ωi can be found analytically by

solving αiw2
I + 2βiwI + γ′i

(
ψ̈I,∂Ωi

)
= 0: see Fig. 3.6, where such points have

been marked by squares. Equivalent results (with wF in place of wI) can be
found for the points

(
ψ̈F,∂Ωi

, wF
)
, marked by circles in Fig. 3.6. Finally, one

defines a maximum ψ̈ as follows:

ψ̈max = min
{
ψ̈I,∂Ω1 , ψ̈I,∂Ω2 , ψ̈I,∂Ω3 ,

ψ̈F,∂Ω1 , ψ̈F,∂Ω2 , ψ̈F,∂Ω3

} (3.25)

If ψ̈e < ψ̈max, Rψ is contained within all Ωi’s and the transition motion is
feasible.

The only issue that is left is to pick a suitable motion law U(t) and find
the minimum transition time T . U(t) has to be of class C1; moreover, it would
be convenient to choose U(t) such that its first derivative V (t) quickly reaches
its maximum value and then remains constant for most of the motion. In this
way, the curve Γψ closely follows the borders of rectangle Rψ, the acceleration
is (for most of the motion) only slightly under its maximum prescribed value
ψ̈max and the transition time is reduced: a linear motion law with parabolic
blends [24, pp. 62–76] appears to be suitable.
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3.6 Transition trajectories

3.6.1 Variable amplitudes

The sinusoidal trajectory defined in Eq. (3.1) has velocity ṗ and acceleration
p̈ that are nonzero at all points (if ω 6= 0), so the robot cannot be in a state
of rest. For practical applications, however, the robot has to reach a dynamic
state starting from rest and vice versa. For this purpose, transition motions
will be defined as follows:

p = pC + U(ξ)pd (3.26)

where pC and pd are defined as in Sec. 3.3 (here again ψ = ωt, with ω being
a constant frequency). U(ξ) is a function of class C2 and depends on the
adimensional variable ξ = t/T ∈ [0, 1] (with T being the duration of the
transition). Eq. (3.26) is a generalization of Eq. (3.1); the former degenerates
in the latter when U(ξ) = 1 (constant amplitudes).

Having introduced the derivatives V (ξ) = dU/dξ andW (ξ) = d2U/dξ2, the
following boundary conditions are set:

U(0) = 0, U(1) = 1

V (0) = 0, V (1) = 0

W (0) = 0, W (1) = 0

(3.27)

U(ξ) must be monotonically increasing, so V (ξ) is always positive. With these
conditions, the robot starts moving from position p = pC at t = 0, when it is
at rest (ṗ = p̈ = 0); then the amplitudes of motion along the coordinate axes
grow until, at time t = T , the trajectory can be blended with the harmonic
elliptical motion (ellipse Γ , defined by Eq. (3.26) for U(ξ) = 1).

With another choice of boundary conditions (namely, for U(0) = 1 and
U(1) = 0), Eq. (3.26) can be similarly used to slow down a robot moving on
an ellipse Γ until it stops in the center C of the ellipse. Moreover, it can be
used to connect two ellipses Γs and Γf , where Γf is Γs “scaled” by a factor
F , so the two ellipses have the same center C and the same phase angles, but
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different amplitudes (xAf = FxAs and so on): for this case, one can simply set
U(1) = F · U(0). For the sake of brevity, only the first case will be studied
here, with U(0) = 0 and U(1) = 1; the other cases can be studied in a similar
way.

Substituting Eq. (3.26) in Eq. (2.3), one obtains

µi = qi,W
W (ξ)
T 2 + qi,V

V (ξ)
T

+ qi,UV
U(ξ)V (ξ)

T

+ qi,UU(ξ) + Ei︸ ︷︷ ︸
µi,0

(3.28)

with
qi,W = −λi · pd
qi,V = −2λi · ṗd
qi,UV = 2ωEi,a
qi,U = Ci cos(ωt) +Di sin(ωt)

(3.29)

where Ci, Di are as in Eq. (3.14) and Ei,a is defined in Eq. (3.16).

To see whether the so-defined motion is feasible, consider T →∞, so that,
from Eq. (3.28), µi → µi,0 = qi,UU(ξ) + Ei.

The minimum value of qi,U is qi,U,min = −
√
C2
i +D2

i , while the maximum
value of U (for ξ ∈ [0, 1]) is Umax = 1, since U is monotonically increasing from
U(0) = 0 to U(1) = 1. A lower bound for the minimum value of µi,0 is then
µi,0,LB = qi,U,minUmax+Ei = −

√
C2
i +D2

i +Ei = µi,2: this is the minimum value
defined in Eq. (3.17), which is positive if the target trajectory Γ is feasible (see
Sec. 3.4). Therefore, the transition motion is feasible by taking a sufficiently
large value of T , since in this case µi ≈ µi,0 > µi,0,LB > 0.

It would be clearly of practical interest to know the minimum value of
T that guarantees positive cable tensions. In order to find it, one could set
the time-derivative of Eq. (3.28) to zero: then, the extrema µi,min and µi,max
of µi could be found. Then, one should search for the minimum T such that
µi,min > 0 (for i = 1, 2, 3). This method however leads to complex equations
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that must be solved numerically; thus, it does not appear suitable for real-time
problems.

A simpler alternative will then be adopted here, finding a lower bound
for the minimum value of µi. The extreme values of qi,W and qi,V , which are
functions of time, are (see Appendix A.4)

qi,W,e = max {|qi,W |} = ‖Φi‖
qi,V,e = max {|qi,V |} = 2ω‖Φi‖

(3.30)

with
‖Φi‖ =

√
C2
i,a +D2

i,a (3.31)

Also, the following terms are defined: Ve = max {|V (ξ)|}, We = max {|W (ξ)|}
and (UV )e = max {|U(ξ) · V (ξ)|}. Here, all extrema are those found in the
interval ξ ∈ [0, 1] and depend on the chosen function U(ξ). A lower bound for
Eq. (3.28) is then

µi,LB = −qi,W,e
We

T 2 − qi,V,e
Ve
T

+ qi,UV
(UV )e
T

+ µi,0,LB (3.32)

if qi,UV < 0, and

µi,LB = −qi,W,e
We

T 2 − qi,V,e
Ve
T

+ µi,0,LB (3.33)

otherwise. If one sets T such that µi,LB > 0, then µi ≥ µi,LB > 0 and the
trajectory is feasible. µi,LB can now be expressed as a function of T :

µi,LB(T ) = µi,c + µi,TT + µi,T 2T 2

T 2 = Mi(T )
T 2 ≤ µi (3.34)

with
µi,c = −qi,W,eWe

µi,T =


−qi,V,eVe + qi,UV (UV )e qi,UV < 0

−qi,V,eVe qi,UV ≥ 0

µi,T 2 = µi,0,LB

(3.35)

It has already been shown that, if the target trajectory Γ (defined by Eq. (3.26)
with U(ξ) = 1) is feasible, then µi,T 2 = µi,0,LB = µi,2 > 0. From this it is found
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that, if µi,LB(T ) = 0 (which implies Mi(T ) = 0) has solutions Tmin, Tmax, then
µi,LB(T ) < 0 for T in the interval [Tmin, Tmax] and µi,LB(T ) > 0 otherwise.
Moreover, µi,c < 0 (by definition), soMi(0) < 0 and thus 0 ∈ [Tmin, Tmax]. The
condition for positive µi along the trajectory is then

T > Ti,max =
−µi,T +

√
µ2
i,T − 4µi,T 2µi,c

2µi,T 2
(3.36)

Finally, the sufficient (albeit not necessary) condition on T to ensure feasibility
is

T > max {T1,max, T2,max, T3,max} (3.37)

The strategy defined above has a drawback in the limit cases where ω = ωmin

or ω = ωmax (with ωmin, ωmax defined as in Eq. (3.21)). In such cases one has
respectively ω2 = wi,min or ω2 = wi,max, for one i ∈ {1, 2, 3}: the corresponding
µi has then minimum value µi,2 = 0. When this happens, at least one of the
cable tensions τi reaches zero at some point, while being still greater than zero
along the rest of the trajectory (see Fig. 3.3).

However, if µi,0,LB = µi,2 = 0, there are no finite values of T that make
µi,LB > 0 (as defined in Eq. (3.34)), since all terms on the right side are
negative, except for µi,0,LB, which is zero. As ω gets close to the limits ωmin,
ωmax of the admissible range, at least one of the Ti,max approaches +∞ (see
Eq. (3.36), where µi,T 2 = µi,0,LB → 0).

Note that having T approaching +∞ is a mathematical consequence of
the conditions found in Eq. (3.37), which are sufficient but not strictly neces-
sary. The actual minimum value of T that makes a given transition trajectory
feasible has been numerically found in a series of computational experiments
and compared with the minimum defined in Eq. (3.37): it was found that T
is acceptably close to the actual minimum when ω is close to the middle of
the admissible range [ωmin, ωmax]. When instead ω is close to the limits of the
range, the minimum value of T to ensure feasibility remains bounded, while
the lower bound defined by Eq. (3.37) goes to infinity. This limit can be cir-
cumvented in practice by using the frequency changing method introduced in
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Sec. 3.5: one might choose an ω which is roughly in the middle of the admis-
sible range for the corresponding elliptical trajectory Γ , move the robot from
a rest condition to Γ using the transition trajectory just outlined, and finally
change the frequency ω to the desired value.

It is worth considering the special case ωmin = 0, which can only happen
when Γ is entirely within the SEW (see Sec. 3.4). In such a case, the three
wi,min in Eq. (3.21) are negative, µi,T 2 from Eq. (3.36) is positive and the three
Ti,max remain bounded even if ω → ωmin. This case has little practical interest.

3.6.2 Variable center

In this subsection, the possibility of moving the ellipse center will be studied.
A new transition trajectory will be defined, based on the original one shown
in Eq. (3.1), as follows:

p = [pC,s + U(ξ)psf ] + pd (3.38)

with pd as in Sec. 3.3 (where ψ = ωt and ω is a constant frequency) and U(ξ)
being a function of class C2 in the variable ξ = t/T , where T is the duration
of the transition.

This is another possible generalization of Eq. (3.1), which smoothly con-
nects two elliptical trajectories Γs and Γf having the same shape and orienta-
tion, but different centers pC,s and pC,f , with psf = pC,f−pC,s = [xsf , ysf , zsf ]T .

In order to do this, one has to set the boundary conditions seen in Eq. (3.27)
and require V (ξ) to be positive for any value of ξ, as already done for the
transition motion with variable amplitudes (Subsec. 3.6.1).

Substituting the trajectory Eq. (3.38) in the conditions (2.3), one obtains
(after some simplification)

µi = µi,s + U(ξ)(µi,f − µi,s) + W (ξ)
T 2 qi,sf (3.39)
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Here, the following variables will be introduced:

vCi,s = ai − pC,s, vCi,f = ai − pC,f
λi,s = [λxi,s, λyi,s, λzi,s]T = vCj,s × vCk,s
λi,f = [λxi,f , λyi,f , λzi,f ]T = vCj,f × vCk,f
qi,sf = (pd × vjk − λi,s) · psf

(3.40)

where again indexes j and k depend on index i (Eq. (2.4)). In Eq. (3.39), µi,f
and µi,s are functions of time and are defined as per Eqs. (3.13) to (3.16),
with ψ̇ = ω and ψ̈ = 0; here, however, parameters λxi, λyi, λzi in Eq. (3.16)
are replaced respectively with λxi,f , λyi,f , λzi,f and λxi,s, λyi,s, λzi,s. With these
definitions, µi,f and µi,s correspond to µi for the start and target trajectories
Γs and Γf .

Considering Eq. (3.39) and letting T →∞, then µi → µi,s+U(ξ)(µi,f−µi,s);
since U(ξ) is required to be monotonically increasing from 0 to 1, then µi ∈
[µi,s, µi,f ] ∀t. If Γs and Γf are both feasible, then µi,s ≥ µi,2,s ≥ 0 and µi,f ≥
µi,2,f ≥ 0, for any t (here, µi,2,s and µi,2,f correspond to µi,2 from Eq. (3.17),
calculated respectively for Γs and Γf ); then, it can safely be concluded that
µi ≥ min {µi,2,s, µi,2,f} ≥ 0. It can thus be said that if the transition trajectory
defined by Eq. (3.38) connects two ellipses that are feasible, the transition itself
will be feasible, as long as T is large enough.

At this point it would be useful to find a lower bound on T such that the
transition is feasible. As in Subsec. 3.6.1, finding the minimum feasible value
T is a complex task that cannot be analytically solved; however, defining a
safe lower bound is enough for practical purposes.

For this, reconsider Eq. (3.39), specifically the second term W (ξ)/T 2qi,sf :
this is the term that may become negative along the trajectory. The upper and
lower extrema of W (ξ) are here denoted as Wmax and Wmin; these are known
from the choice of the transition motion U(ξ). Note that, in general, for any
function U(ξ) of class C2 that satisfies the boundary conditions in Eq. (3.27)
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it will hold that Wmin < 0,Wmax > 0. It can then be proved the following:

min {W (ξ)qi,sf} ≥ min
{
Wmin max {qi,sf} ,
Wmax min {qi,sf}

} (3.41)

From the definition in Eq. (3.40), qi,sf is a trigonometric function of time
(having frequency ω) that can be written as

qi,sf = Ci,sf cos(ωt) +Di,sf sin(ωt) + Ei,sf

Ci,sf = (pd,s × vjk) · psf
Di,sf = (pd,c × vjk) · psf
Ei,sf = −λi,s · psf

(3.42)

In this expression, the coefficients Ci,sf , Di,sf and Ei,sf are constant; it then
follows that the extrema of qi,sf are (cf. Eq. (3.17))

max {qi,sf} = Ei,sf +
√
C2
i,sf +D2

i,sf

min {qi,sf} = Ei,sf −
√
C2
i,sf +D2

i,sf

(3.43)

Going back to Eq. (3.39), its lower bound can now be written as

µi,LB(T ) = µi,c + µi,T 2T 2

T 2 = Mi(T )
T 2 ≤ µi (3.44)

with
µi,c = min {W (ξ)qi,sf} ≤ 0

µi,T 2 = min {µi,2,s, µi,2,f}≥ 0
(3.45)

which replace Eqs. (3.34) and Eq. (3.35). One can be sure that µi,T 2 ≥ 0 if
the ellipses Γs and Γf are feasible; the fact that µi,c ≤ 0 can be inferred by
observing that in Eq. (3.41) at least one of the two terms is negative, since
Wmin < 0, Wmax > 0, and clearly min {qi,sf} < max {qi,sf}.

The considerations in Subsec. 3.6.1 then apply: µi,LB(T ) < 0 if and only if
T is in the interval [Tmin, Tmax] (with Tmin, Tmax being the solutions ofMi(T ) =
0), since the coefficient µi,T 2 of the quadratic term in Mi(T ) is positive; also,
Mi(0) = µi,c ≤ 0, so 0 ∈ [Tmin, Tmax]. The condition for positive µi along the
trajectory is then

T > Ti,max =
√
− µi,c
µi,T 2

(3.46)
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It may be concluded that a sufficient condition to have positive tensions in the
cables along the transition motion is given by Eq. (3.37), with Ti,max given by
Eq. (3.46).

Note that, if the start and target elliptical trajectories have to be feasible,
then it must hold that ω ∈ [ωmin,s, ωmax,s]∩[ωmin,f , ωmax,f ] = [ωmin,sf , ωmax,sf ],
namely, the frequency ω along the transition motion must be in the ranges of
admissible frequencies (Eq. (3.21)) both for Γs and Γf ; clearly here one has to
assume that such ranges overlap, otherwise there are no values of ω such that
both ellipses are feasible.

As seen in Subsec. 3.6.1, some issues arise when ω is close to the boundaries
ωmin,sf or ωmax,sf of the admissible range (given by the intersection of the start
and the end range). For example, ω = ωmin,sf means either ω2 = wi,s,min or
ω2 = wi,f,min, for some i ∈ {1, 2, 3} (with wi,s,min and wi,f,min being the values
given by Eq. (3.20), for the start and the target ellipse). In such a case, the
corresponding µi,T 2 from Eq. (3.45) is zero, since either µi,2,f = 0 or µi,2,f = 0,
and Ti,max is not defined. Again, this is a consequence of using a sufficient,
but not strictly necessary condition; the actual minimum value of T remains
finite even as ω → ωmin,sf . Analogous considerations hold for ω → ωmax,sf .
The special case ωmin,sf = 0 can happen only if both Γs and Γf are within the
SEW and has little practical interest.

To conclude this section on transition trajectories, it is worth remarking
that, if the frequency ω of the transition motion (for either the case of variable
amplitude or the case of variable center) can be chosen freely, a reasonable
approach is to pick ω ≈ (ωmin + ωmax) /2, with ωmin, ωmax being the lower and
upper endpoints of the range of admissible frequencies. In this way, ω will be
the farthest from the endpoints and the transition time can be expected to be
close to the actual minimum.

If instead one has to connect two (feasible) elliptical trajectories Γs and
Γf , with assigned frequencies ωs and ωf , the transition motions described in
this section can be combined with the method shown in Sec. 3.5 to vary the
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motion frequency. For example, consider two ellipses Γs and Γf having the
same shape and orientation, but different centers pC,s and pC,f . Assume that
the admissible range of frequencies for Γs, [ωmin,s, ωmax,s], overlaps with the
admissible range for Γf , [ωmin,f , ωmax,f ]; Γs has to be followed with frequency
ωs ∈ [ωmin,s, ωmax,s] and Γf with frequency ωf ∈ [ωmin,f , ωmax,f ] (where in
general ωs 6= ωf ). An approach to smoothly connect the start and the target
trajectory could be divided in three steps, as follows:

• first, change the frequency along Γs, from ωs to ωsf ∈ [ωmin,s, ωmax,s] ∩
[ωmin,f , ωmax,f ] = [ωmin,sf , ωmax,sf ]; a good approach would be to take
ωsf ≈ (ωmin,sf + ωmax,sf ) /2.
• then move along the variable-center transition motion defined in the

present subsection, with constant frequency ωsf ;
• finally, change the frequency again, moving along Γf , from ωsf to ωf .

Should the admissible frequency ranges for Γs and Γf have no overlap, one
could find an intermediate ellipse Γi whose admissible range has nonempty
intersections with the admissible ranges for both the start and the end ellipse
and then repeat the steps defined above to smoothly connect Γs with Γi, and
Γi with Γf .

By suitably combining the various motion types described in Secs. 3.4
to 3.6, a great variety of dynamic trajectories can be obtained.

3.7 Experimental results
To validate the theoretical results presented in Secs. 3.3 to 3.6, a series of tests
were performed on the CSPR prototypes at the Laboratoire de Robotique of
Université Laval (Canada). The results of the experiments can be found in
the multimedia attachments (see the list of attachments at page 157), where
the dynamic trajectories presented here are performed by both the point-mass
robot (Subsec. 3.7.1) and the finite-size robot with special architecture L (Sub-
sec. 3.7.2). In both cases the robots are clearly moving outside their respective
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SEWs while keeping positive tensions in the cables.

The robots used in both experimental sessions are non-engineered proto-
types that were meant to be proofs of concept. In any case, it was verified that
the desired trajectories were followed with an acceptable degree of accuracy,
given the prototypes’ limitations.

3.7.1 Experimental results: point-mass EE

The first video (see page 157) shows a point-mass performing, sequentially, the
following trajectories:

(i) a harmonic elliptical trajectory from Sec. 3.2;
(ii) an elliptical trajectory with variable frequency from Sec. 3.5;
(iii) a variable-center trajectory from Subsec. 3.6.2.

Before and after each trajectory, a transition motion with variable amplitudes
(Subsec. 3.6.1) is performed, to start the robot from rest and bring it back to
a rest condition.

The cables remain taut throughout the motion. In parts of the trajectory,
however, one or more cables start vibrating: this is due to the limitations of the
prototype, since the EE has in fact finite dimensions and the cables’ attachment
points on it do not coincide: thus, the point-mass model approximation has
limited validity and the EE rotates around its CoM. In any case, it was found
that the desired trajectories were followed reasonably well.

The first trajectory shown in the video (case (i)) is a simple ellipse with
constant frequency (see Sec. 3.4). The robot starts moving with growing ampli-
tudes of oscillation, then reaches the target elliptical trajectory, finally slowing
down and going back to a rest condition within the SEW. The 3D depiction
of the trajectory is shown in Fig. 3.7; the (calculated) cable tensions along the
three parts of the trajectory described are in Fig. 3.8.

After that, the robot performs the variable frequency trajectory (case (ii)).
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The robot starts moving with a given frequency ω = ωmed along a given ellipse,
then accelerates and moves with a higher frequency ω = ωsup, namely at a
higher velocity (while remaining on the same ellipse). After that, the frequency
is lowered to ω = ωinf ; finally, the frequency is changed again to ωmed. Clearly,
it must hold ωmin < ωinf < ωmed < ωsup < ωmax for the trajectory to be
feasible, where ωmin, ωmax are those given by (3.21).

Finally, the third part of the video shows the transition trajectories defined
in Sec. 3.6. Again, the robot starts moving from a rest position in the SEW
until it reaches a target upper trajectory. After that, a variable center transition
is employed, so the robot passes on a lower trajectory. Finally, the dynamic
motion is stopped.

The control system of the prototype provides the cable length at every time-
step, by using the motor rotations measured by the encoders: by comparing
the actual lengths to the desired values set as targets, an average error over
the entire motion of about 4.4×10−2 mm and a maximum value of 1 mm were
found (for the motion in case (i)). By solving the DKP with either the desired
or the actual cable lengths, one respectively finds the desired position pd (as
set in the robot control system) and the actual one pe. Comparing pd and pe
along the motion, it was found that the corresponding average and maximum
errors ‖dp‖ = ‖pe − pd‖ in 3D space are respectively 9.5× 10−1 mm and 7.3
mm (see Fig. 3.9): given that the workspace dimensions are in the order of
meters, these errors can be considered to be acceptable.

3.7.2 Experimental results: finite-size EE

In this section, the results of the tests performed on a translational robot,
designed according to the conditions that define architecture LR, will be pre-
sented. Specifically, the robot was designed so that the cable attachment points
Bi’s define a regular hexagon, with the center of mass P in its center: there-
fore, the architecture is an instance of architecture L2 (Subsec. 1.5.2.1). The
cable exit points Ai’s are placed on the sides of an equilateral triangle, as
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Figure 3.7: Trajectory of the robot during the experiments: first part in attached
video (see page 157), simple harmonic elliptical trajectory.
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Figure 3.8: Cable tensions along a spatial trajectory.

shown in Fig. 3.10a; as all Ai are on the same plane, this is also an example
of architecture R1.

The 6 cables are wound on 3 motorized winches, each moving 2 cables
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Figure 3.9: Plot of the position error ‖dp‖ along part (i) of the motion.

simultaneously. The winches are composed of two coaxial pulleys (both con-
nected to a servomotor) of the same radius; the cables in each parallelogram
wind simultaneously on different pulleys, in order to avoid interference between
cables. In this way, if the pulley rotates by a given angle, the two cables wind
on the pulleys by the same amount (since the winding radius is the same) and
thus their lengths remain equal, provided that they were equal at the beginning
of the motion. The motor axes pass through the auxiliary points A∗ij’s, and in
this case Ai and Aj are symmetrical with respect to A∗ij. The location of the
motors and the cable exit points was chosen so as to have a large workspace
and avoid cable interference.

The final prototype is shown in Fig. 3.10b and the winches are in Fig. 3.10c.
The prototype is controlled via a Simulink model where the user can set the
desired trajectory and its parameters; the platform coordinates in Cartesian
space are converted in corresponding rotation angles in the joint space by the
inverse kinematics. The motors’ target positions are then sent to the real-time
control system of the robot, based on a PID control loop.

The results can be seen in the attached video (page 157, video 2), showing
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Figure 3.10: (a): a schematic of the prototype in the reference pose. (b): top view
of the prototype developed at Université Laval. (c): a photo of one
of the robot winches, with two cables (highlighted by dashed lines)
coiling on the same pulley.

the robot as it performs two dynamic trajectories; the video shows the robot
from two different viewpoints, one frontal and another above the robot. Again,
the robot is clearly moving outside the SEW (marked by green lines on the
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Figure 3.11: (a): 3D plot of the periodic motion. (b): 3D plot of the point-to-point
motion.

table shown in the video) while keeping positive cable tensions and maintaining
a constant orientation; also, it is easy to see that the cables remain parallel as
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Figure 3.12: (a): plot of the position error ‖dp‖ along the harmonic motion (‖dp‖
is the distance between desired position pd and the actual one pe).
(b): plot of ‖dp‖ along the point-to-point motion.

the robot moves.

The video is divided in two parts:

(a) First, the robot performs a dynamic harmonic trajectory: the robot starts
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3.7. Experimental results

from rest and oscillates with increasing motion amplitudes until it moves
along a horizontal circle centered in the center of the SEW and having
a radius larger than the workspace. For this trajectory, ω was chosen as
(ωmax + ωmin) /2, as suggested in Subsec. 3.6.2. After a few cycles, the
robot is slowed down to its starting point (see Fig. 3.11a for a 3D plot
of the trajectory).

(b) In the second part, point-to-point dynamic motions reaching outside the
SEW are performed. At the target points the robot velocity is zero, but
not the acceleration (the robot cannot be at rest out of the SEW); here,
the method in [98] is used to plan the trajectories (see Fig. 3.11b).

To verify the accuracy of the prototype in tracking the desired trajectory,
the method to analyze the position errors used in Subsec. 3.7.1 is applied
again here. The forward position kinematics algorithm for the finite-size EE
robot [31] is the same as the one for the point-mass EE robot, which simplifies
the analysis. The plots of the distance ‖dp‖ between the desired and the actual
harmonic and point-to-point trajectories are shown in Figs. 3.12a and 3.12b,
respectively. The maximum positioning error during the harmonic motion was
1.205×10−2 m, with an average error of 5.36×10−3 m (respectively 6.5×10−3

m and 3.2×10−3 m for the point-to-point motion). Considering the limitations
of the prototype and that the robot was moving with high accelerations (up to
∼ 6.6 m/s2 during the tests) in a workspace that is meters wide, these errors
can be considered to be acceptable.

To verify that the orientation was constant as the robot moved, the roll,
pitch and yaw angles of the platform were recorded during the experiments
by using the Inertial Measurement Unit (IMU) in a common smartphone that
was secured on the robot platform. An example of the results can be seen
in Fig. 3.13: the platform never rotated by more than 3◦ with respect its
start pose, which seems an acceptable error given the approximations in the
measurement of the architecture parameters. Such results are compatible with
what was observed in [49], where the authors performed a multibody simulation
of the dynamic behavior of a CSPR with a cable architecture similar to the
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3. Dynamical trajectories

Figure 3.13: Yaw, pitch and roll angles of the robot, as measured by an IMU on the
EE, with respect to the start position (where the three angles were
set to zero) along a circular horizontal motion (see video, p. 157).

one proposed here (except that the robot only moved in a vertical plane and
employed 8 cables, thus being over-constrained), observing a variation of the
EE Euler angles not bigger than 1◦. Given that in this case the accelerations
are an order of magnitude higher and the robot moves outside its SEW, a larger
orientation error is to be expected, also considering the very simple mechanical
realization of the tested prototype‡.

3.8 Summary of the chapter
In this chapter a general class of harmonic elliptical trajectories has been de-
fined for a CSPR, modeled as a point-mass EE suspended by three cables. The
robot position can be properly controlled, with positive tensions in the cables,
even as it moves beyond its static workspace.

‡ Since a smartphone IMU is not a precision instrument (the Root Mean Square (RMS)
error on the orientation angles in dynamic conditions can be up to roughly 2◦ [139]), the
results reported in Fig. 3.13 must not be intended as an accurate quantitative assessment
of the orientation error. However, they provide a clear indication that the EE orientation
remains reasonably constant.
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3.8. Summary of the chapter

Transition trajectories were also defined, to perform one of the following:

• change the frequency with which a given ellipse is followed (so as to
increase or reduce the motion velocity);
• move the robot from a state of rest to one of the aforementioned harmonic

trajectories, or vice versa;
• smoothly connect two elliptical trajectories having the same shape, ori-

entation and center, but different sizes;
• smoothly connect two elliptical trajectories having the same shape, ori-

entation and size, but different centers.

For all aforementioned trajectories conditions for feasibility were defined:
the conditions for the harmonic trajectories are necessary and sufficient,
whereas the conditions for the transition motions are only sufficient. All con-
ditions are algebraic inequalities that can be verified in a few milliseconds; this
makes the proposed work applicable for real-time problems.

The trajectories shown in this chapter expand and generalize previous re-
sults [71, 136, 210, 211]. One of the advantages of the proposed trajectories is
that there are many parameters that can be chosen; therefore, they provide a
greater flexibility during the trajectory planning phase.

It was shown both theoretically and experimentally that the above trajec-
tories can also be applied to a translational robot such as the one presented
in Subsec. 1.5.2, provided that the conditions that define architecture L are
respected. If this is not the case, the trajectories presented in this chapter
only guarantee that the condition in Eq. (2.15) are respected, so the total
tension in each cable pair is positive; to verify that all six cables are in ten-
sion, Eq. (2.22) should also be verified. Integrating both Eqs. (2.15) and (2.22)
at the trajectory planning stage is left as future work. Note that a method
to define purely-translational dynamic trajectories for a robot with finite-size
EE controlled by 6 cables was already presented in [100]: however, the archi-
tecture proposed in [100] does not take advantage of parallelogram actuation
and, thus, it requires 6 motors to be independently controlled. The application
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3. Dynamical trajectories

of dynamically feasible trajectories to CSPR with parallelogram actuation is
novel: other works have considered the dynamics of such robots [49, 199], but
the feasibility of a given trajectory was verified through numerical simulations,
which are in general too computationally expensive for real-time application.

As noted in Sec. 1.2, dynamic motions can greatly expand the available
workspace for cable-driven systems: instead of moving only within the Static
EquilibriumWorkspace, the robot can move in the full dynamic workspace [14],
in which the former is strictly contained. Practical applications of the dynamic
trajectories include recovery of the robot in case of a cable failure [21, 29] or
for pick-and-place operations over large workspaces, where the robot reaches
a series of target points with zero instantaneous velocity at each point. To
perform such pick-and-place operations, a gripper could be applied on the
EE, as proposed in [173, 174], given the high rotational stability that was
observed in the experiments. Moreover, dynamically feasible trajectories have
been proposed for entertainment [177]: a robotic roller coaster could be devel-
oped where the passengers ride in a cable-suspended cabin that moves with
high accelerations over a wide workspace. Specifically, the translational archi-
tecture (Subsec. 1.5.2) could be of interest, as it allows a full control of all
translational DoFs of the EE while avoiding rotational motions that in some
cases could be distressing for passengers.

With the results presented in this chapter, goal (I) from Sec. 1.2 can be
considered fulfilled.
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4 Practically feasible motions

To practically achieve the dynamic motions introduced in the previous chapters,
singularities and cable interferences must be avoided and conditions on cable

lengths must be respected.

4.1 Introduction
Having found the conditions for dynamic feasibility in Ch. 3, one needs to
verify that the trajectories thus defined can be followed by a robot such as
those presented in Subsecs. 1.5.1 and 1.5.2. Indeed, there are other issues that
could limit the motion of a cable-driven robot, besides cables losing tension:
for instance, the cables or the EE could interfere with the environment or with
each other, the robot could enter a singularity condition, the cable lengths
might reach their limits, the motors could be unable to exert the required
joint torques, and so on.

This chapter will focus on singularities, cable interference and cable length
limits, as these seem to be the most realistic issues that could limit the motion
for the prototypes shown in Subsecs. 3.7.1 and 3.7.2. Specifically, the second
prototype (having a finite size EE) will be analyzed in detail, as it leads to more
complete examples of the potential issues under consideration; the extension
to the simpler robot in Subsec. 1.5.1 is straightforward.



4. Practically feasible motions

State of the art

Looking at Eq. (1.1), one sees that in general a given velocity of the EE ẋ cor-
responds to one and only one set of joint velocities θ̇ (here, only fully-actuated
robots are considered). One can thus solve the 1st-order DKP as ẋ = −F−1

x Fθθ̇

or the 1st-order IKP as θ̇ = −F−1
θ Fxẋ. These problems are significantly easier

to solve than their 0th-order counterparts, as they correspond to systems of
linear equations, while the function F (θ,x) that defines the position relation-
ship yields in general a nonlinear system with multiple solutions (see Subsec.
1.3.2.3).

Solving the 1st-order kinematics requires that matrices Fx and Fθ are in-
vertible. When this is not true, the robot is at a singularity. Specifically, by
using the notation from [74], one can distinguish the following cases for the
singularities of parallel mechanisms:

• Type 1 singularity: If Fθ is singular, its kernel has dimension greater than
zero: therefore, there are nonzero joint velocities θ̇ that lead to zero veloc-
ity ẋ at the EE (these configurations are also called dead points). Also,
not all velocity vectors ẋ can be produced: this condition is generally
reached when the robot is at a boundary of the workspace (either exter-
nal or internal). The robot thus loses one or more DoFs, as ẋ cannot be
realized if it has a component normal to the workspace boundary.
• Type 2 singularity: If Fx is singular, there are nonzero output velocities

ẋ that yield zero joint velocities θ̇: therefore, when all joints are at zero
velocity, the EE can still move and the parallel kinematic chain gains
one or more DoFs. By the kinematic-static duality [197], this also means
that the EE can no longer resist an external wrench.
• Type 3 singularity: this occurs when both Fx and Fθ are singular and in
general requires the robot not only to be at specific poses but also to
fulfill special conditions on the architecture.

The literature on the singularities of parallel manipulators is vast [129,
pp. 179–213] and even a summary would be beyond the scope of the present
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4.1. Introduction

work. Instead, a brief description of the singularities of CDPRs will be pre-
sented [161, pp. 125–129].

One of the first works on the topic is [195], where it was proven that cable-
driven systems with one EE connected to the fixed frame by several cables have
no singularities of Type 1. In general, the study of singularities of cable-driven
systems is approached with the tools of classical robot analysis, assuming all ca-
bles to be in tension: see for instance [33], where an over-actuated cable-driven
robot with parallelogram actuation (conceptually similar to the translational
robot here considered) was shown to have no singular poses in the WFW. See
also [115], where it was shown (for a class of robots with parallel-cable actua-
tion) that being in a nonsingular pose is a necessary requirement for the robot
to be inside the WCW.

The study of singularity poses while taking into account the unilaterality
of cable actuation was presented in [205] for a planar, over-constrained robot:
it was shown that this manipulator has singularity configurations that are
not present in its rigid-link counterpart. The singularities of a 6-cable robot
inspired by the Gough-Stewart platform were studied in [153]: it was experi-
mentally shown that the tracking performance of the robot becomes far worse
in this case, as a small noise on the measurements of cable lengths yields a
large variation on the final robot pose.

Some authors have also developed methods to safely cross the singularities
of a parallel manipulator by taking advantage of its dynamic properties. One
of the first works on this topic was [92], where the author found dynamic
consistency conditions that must be fulfilled as the manipulator passes through
a singular pose; also, it was shown that the dynamic equations in this case
depend on higher order derivatives (beyond the 2nd) of the trajectory. This
work was later expanded in [38] where the authors found optimal conditions
for singularity crossing and provided results from experimental tests. Recently,
the concept of singularity crossing was also applied to a simple CDPR in [212].
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Chapter description

In this chapter, the following issues will be studied for the translational cable
robot introduced in Subsec. 1.5.2:

• The effect of parallel singularities (Sec. 4.2): the singularity loci will be
analytically defined and classified according to the standard taxonomy in
the literature [51, 217]. Two particular architectures will also be consid-
ered (Subsecs. 4.2.1 and 4.2.2) that lead to a particularly simple geometry
of the singularity loci; one of these architectures in particular (Subsec.
4.2.2) corresponds to the special case R presented in Subsec. 1.5.2.2 (see
also Fig. 1.6) and has a singularity surface that coincides with plane Π.
• The RW, as defined in Subsec. 1.3.2.3 (see page 17), will be presented

for the robot architecture used in the prototype;
• The interference-free workspace (see again p. 17) will be studied by using

the tools from [158]. For special architectureR1 (see again Subsec. 1.5.2.2
and Fig. 1.6), it will be proven that the zones where interference can occur
have an easy geometric interpretation.

Finally, the results of the chapter are summarized in Sec. 4.5, and design
guidelines are provided.

4.2 Singularities
In Sec. 2.3 it was assumed that matrix Msup in Eq. (2.13) is invertible, in order
to compute total cable tensions τ tot. However, this is not the case if vectors e1,
e3 and e5 are linearly dependent, in which case the robot reaches a singular
configuration.

This condition has a geometric interpretation: since the cable direction
vectors ei = (a∗ij − p)/‖a∗ij − p‖ go from P to the auxiliary points A∗ij defined
in Subsec. 1.5.2 (page 26), for matrix Msup to be singular P must be in the
plane Π passing through A∗12, A∗34 and A∗56. If these three points are on the
same line, there are infinite such planes and the robot is always in a singular
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configuration: if this degenerate architecture is avoided in the robot design,
plane Π is unique. As long as P is not on Π, then, τ tot is found from Eq. (2.13)
through inversion of Msup.

A second type of singularity emerges when matrix A in Eq. (2.18) has not
full rank, in which case tension ratios cannot be calculated. If either Msup or A
is singular, matrix M in Eqs. (2.11) and (2.12) is undefined, since it comprises
vectors bij’s that depend on cable tensions τi’s, which are undefined when the
robot is at a singular configuration∗. The union of the singularity loci of Msup

and A provides the complete singularity locus of the manipulator.

Both the singularity given by det(Msup) = 0 and the one given by det(A) =
0 are of Type 2). A further classification can also be introduced: by using the
definitions from [51, 217], the former defines an actuation singularity, while
the latter is a constraint singularity. Specifically, in the latter case the robot
gains an additional freedom: indeed, if A is re-written as

A =
[
c12 c34 c56

]
(4.1)

with
cij = (dij × ei)τtot,ij (4.2)

and in Eq. (2.14) the strict inequality holds (i.e. τtot,ij > 0), A is singular when
c12, c34 and c56 are coplanar (assuming ‖cij‖ 6= 0; the special case ‖cij‖ = 0
will be discussed later in this section). However, cij has the same direction as
the vector nij orthogonal to the plane Πij through Ai, Bi, Aj and Bj (see Sec.
1.5.2), since dij × ei is orthogonal to both dij = Bi − Bj and ei (Fig. 1.5).
Therefore, if vectors cij’s are coplanar, vectors nij’s must be coplanar too: this
is the condition where the robot is no longer purely translational and gains a
rotational freedom.

The poses where A is singular are given by

det(A) = τtot,12τtot,34τtot,56

ρ1ρ3ρ5
{[d12 × (a∗12 − p)] × [d34 × (a∗34 − p)]}

· [d56 × (a∗56 − p)] = 0
(4.3)

∗ This is equivalent to matrix M̃ in the kinetostatic problem (2.9) being singular.
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Since ρi and τtot,ij are nonzero, this reduces to finding the roots of the de-
terminant of a matrix Ã =

[
d12 × (a∗12 − p) d34 × (a∗34 − p) d56 × (a∗56 − p)

]
whose column vectors depend on position p. After expanding and simplifying,
this turns out to be a 2nd-degree variety in x, y, z, namely a quadric Σ.

In order to obtain an explicit formulation for Σ, some auxiliary parameters
can be introduced. First, define the cross products

λij,kl = dij × dkl (4.4a)

λa,ij = dij × a∗ij (4.4b)

where indexes i, j, k and l range from 1 to 6, and pairs i−j and k−l denote two
different parallelograms of the manipulator. Also, the following cross products
are defined:

λa,ij,kl = λa,ij × λa,kl (4.5)

and the two matrices

Λ =
[
λ34,56 λ56,12 λ12,34

]
(4.6a)

Λa =
[
λa,12 λa,34 λa,56

]
(4.6b)

Since a general quadric in space can be expressed as

pTe Qpe = 0 (4.7)

where pe = [x, y, z, 1]T and Q is a 4× 4 matrix with real coefficients, it can be
proven that the quadric defined by det(Ã) = 0 has

Q =
Q3,3 t

tT kQ

 (4.8)

where the blocks composing Q are

Q3,3 = −1
2
[
ΛaΛT + ΛΛT

a

]
(4.9a)

t = −1
2 [d12 × λa,34,56 + d34 × λa,56,12 + d56 × λa,12,34] (4.9b)

kQ = −λa,12,34 · λa,56 = −λa,34,56 · λa,12 = −λa,56,12 · λa,34 (4.9c)
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(the three definitions of kQ are equivalent).

The full singularity locus for the manipulator is then given by det(Msup) ·
det(Ã) = 0, where det(Msup) = 0 gives the plane Π defined in Sec. 1.5.2
and det(Ã) = 0 defines the quadric Σ. As a result, the singularity locus is
given by a third-degree polynomial in x, y and z. This is coherent with the
results reported in [180], where the authors found that the singularity locus
of the general Gough-Stewart platform in the Cartesian space (for a given
orientation of the platform) is a 3rd-degree polynomial in x, y and z. The
manipulator at hand can be seen as a particular type of the Gough-Stewart
platform (assuming that all cables are taut) where the orientation of the EE
is constant; the remarkable result is that the complex polynomial defined by
Eq. (32) and Table 4 of the cited reference [180] can here be factored in two
simpler terms of lower degree.

Analogous results were found for the 3-UPU translational manipulator
in [82, 154], where the authors distinguished between translational and rota-
tional singularities, showing that, for a specific architecture, the former define
a plane and the latter define the union of a plane and a right cylinder. In [81],
the author found the singularity locus for Delta-like translational manipulators
of general architecture, but provided no explicit formulation of the singularity
condition as a function of the platform position. A rigid-link robot with three
actuators and three translational DoFs, based on a parallelogram actuation
system, was presented in [206]; the present cable-driven architecture is con-
ceptually similar. The singularity conditions of the robot in [206] were studied
by assuming a symmetric architecture and by taking into account only trans-
lational singularities: it can be shown that the singularity conditions provided
in [206] correspond to the plane Π previously defined. Another example can
be found in [40], where the authors study a translational robot with three legs,
and prove that the singularity surface is given by the union of a quadric and
a plane (but in this case there are no constraint singularities, provided that
some conditions on the robot architecture are fulfilled).
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Figure 4.1: The singularity surface Σ for a translational cable-suspended robot
with a general architecture.

Fig. 4.1 qualitatively illustrates the singularity surface Σ for the robot at
hand. Vector n34 (in green) is orthogonal to the plane Π34 passing through
cables 3 and 4 (also in green). The same holds for vectors n12 (in red) and
n56 (in blue). Since n12, n34 and n56 are coplanar (i.e. they are parallel to a
common plane ΠΣ), there is a direction n, orthogonal to ΠΣ, around which
the robot is free to rotate.

To help the reader to visualize quadric Σ, note that Σ has the following
properties:

• It emerges from Eq. (4.3) that det(A) = 0 if p is equal to a∗12, a∗34 or a∗56.
The three points A∗ij’s are thus contained in Σ.
• Similarly, det(A) = 0 if a∗ij−p is aligned to dij, so that the cross product

of these two vectors is zero (this corresponds to the case ‖cij‖ = 0). Thus,
the line rij defined by p = a∗ij + βijdij, with βij ∈ R, is contained in Σ;
note that there are in fact three such lines, one for each parallelogram. It
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4.2. Singularities

is known from projective geometry that there is one and only one quadric
through a given set of three skew lines [88]; the quadric is then either a
hyperbolic paraboloid (if the three vectors dij are all parallel to a single
plane, but not to each other) or a hyperboloid of one sheet (otherwise).
If instead the lines are not skew, the quadric may be a cylinder (either
elliptic, parabolic or hyperbolic), a cone or the union of two planes (either
parallel, intersecting or coincident). The possibility of the quadric being
a cylinder can be ruled out by a geometric reasoning: if this were the
case, the three lines r12, r34 and r56 would be parallel, and so would be
d12, d34 and d56. In this case the three vectors n12, n34 and n56 would
have a common normal, and the robot would be architecturally singular.
Accordingly, an architecture with all vectors dij’s parallel is a degenerate
case to be avoided. In a similar manner, it can be shown that Σ cannot
be a cone: this could only happen if lines rij passed through a common
point, but again, this would lead to a singular architecture.

Two special architectures can be identified, that lead to a simplified shape
for Σ.

4.2.1 Two dij’s are parallel

Consider first the case when vectors dij and dkl are parallel, namely dij = fdkl,
f ∈ R. Since dij = bi−bj = ai−aj, this implies that segments AiAj and AkAl
are parallel too. See Fig. 4.2 for an illustration of a possible implementation,
where cables 1 and 2 (resp. 3 and 4) in the same parallelogram are controlled
by one spool rotating around an axis parallel to line A1A2 (resp. A3A4).

If dij = fdkl, the polynomial det
[
Ã(x, y, z)

]
= 0 can be factored out in

two linear terms, and Σ degenerates into the union of two planes, Πij,kl,α and
Πij,kl,β. To see this, set (without loss of generality) d34 = fd12 and consider
the determinant of Ã. One obtains

det(Ã) = {[d12 × (a∗12 − p)]× [fd12 × (a∗34 − p)]} · [d56 × (a∗56 − p)] (4.10)

Consider the quadruple vector product in the curly brackets in Eq. (4.10),
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Figure 4.2: A simplified architecture, with the spools of cables 1-2 and 3-4 having
parallel axes. The rotational singularity planes Π12,34,α and Π12,34,β

are shown with grid lines; the translational singularity planeΠ is shown
with no grid.

which can be expanded as

[d12 × (a∗12 − p)]× [fd12 × (a∗34 − p)]

= − [(a∗12 − p)× d12]× [fd12 × (a∗34 − p)]

= −{(a∗12 − p) · [d12 × (a∗34 − p)]} fd12 + {(a∗12 − p) · [d12 × fd12]} (a∗34 − p)

= −{(a∗12 − p) · [d12 × (a∗34 − p)]} fd12

(4.11)

by using known properties of vector products [20, p. 187, Eq. xxxiii)] and the
obvious fact that d12 × fd12 = 0. Eq. (4.11) can be further simplified as

−{(a∗12 − p) · [d12 × (a∗34 − p)]} fd12 = {(a∗12 − p) · [(a∗34 − p)× d12]} fd12

= {[(a∗12 − p)× (a∗34 − p)] · d12} fd12

(4.12)
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Finally, this term can be expanded as

{[(a∗12 − p)× (a∗34 − p)] · d12} fd12

= {[a∗12 × a∗34 − a∗12 × p− p× a∗34] · d12} fd12
(4.13)

which is recognized as a linear function of the position p. Substituting Eq. (4.13)
in Eq. (4.10) one recognizes the product of two terms that are linear in p:

det(Ã) = {[a∗12 × a∗34 − a∗12 × p− p× a∗34] · d12} {fd12 · [d56 × (a∗56 − p)]}
(4.14)

Therefore, the singularity surface Σ in this case is the union of two planes.
These planes are generally unrelated to the plane Π defined by det(Msup) = 0.

It can also be proved that:

• Plane Πij,kl,α passes through points A∗ij and A∗kl, whereas Πij,kl,β passes
through point A∗mn. Here, m and n are the indexes of the two cables
in the third parallelogram (in general, dmn is parallel to neither dij nor
dkl).
• Plane Πij,kl,α is orthogonal to vector fλa,kl−λa,ij, whereas plane Πij,kl,β

is orthogonal to both λij,mn and λkl,mn (which are parallel in this case).

4.2.2 All dij’s are parallel to plane Π

Another case of practical interest is found when the three vectors dij are all
parallel to the plane Π through A∗12, A∗34 and A∗56, as in Fig. 4.3 (architecture
R in Fig. 1.6). An example of such a robot is found in [196], where the authors
show a design where all points Ai’s are on the same horizontal plane Π, and
all points Bi’s are on the horizontal plane through P . Notice that, in the more
general architecture R, neither points Ai’s nor points Bi’s are coplanar (Fig.
4.3).

By choosing, without loss of generality, the fixed coordinate frame Oxyz so
that O lies in (and z is normal to) Π, the z components of both points A∗ij’s
and vectors dij’s are all zero. With these simplifications, det(Ã) = 0 becomes

det(Ã) = −(ΛΛT
a )3,3z

2 = 0 (4.15)
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Figure 4.3: A simplified architecture with lines A1A2, A3A4 and A5A6 parallel to
the plane Π through A∗12, A∗34 and A∗56.

where (·)3,3 denotes the 3rd element on the 3rd row of matrix (·). Clearly, Σ is
in this case a degenerate quadric defined by two coincident planes with z = 0,
so Σ ≡ Π.

4.3 Reachable workspace
In order to be feasible, dynamic trajectories must satisfy, other than kinematic
and kineto-static constraints concerning cable tensionability and singularity
avoidance, also physical constraints related to cable extension and interference.
With regard to the former issue, the RW is the set of poses that can be reached
with cable lengths comprised between a minimum and maximum value, that
is, ρi ∈ [ρmin, ρmax], i = 1, . . . , 6. Since, for cables i and j belonging to the same
parallelogram, ρi = ρj = ‖a∗ij − p‖, the condition on their length implies that
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Figure 4.4: SEW (gray prism) and RW (white spherical surfaces) for the robot used
in the experiment described in Section 3.7.2. The SEW is a vertical
triangular prism with upper vertexes in points A∗12, A∗34 and A∗56, as
shown in Subsec. 2.3.1. The RW is the volume comprised between three
smaller spherical surfaces defined by ρi = ρmin, three bigger spherical
surfaces defined by ρi = ρmax, and plane Π through points A∗ij .

point P must be comprised within two spheres, centered in A∗ij and having radii
ρmin and ρmax, respectively; therefore, one obtains a RW whose boundaries are
spherical surfaces. Fig. 4.4 shows the RW and the SEW for the robot used
during the experiments described in Subsec. 3.7.2.

4.4 Cable interference
Another issue to be considered is the possibility of cables interfering with each
other, as this limits the workspace (see page 17). Since two cables i and j in
a given parallelogram are on parallel lines, they cannot intersect, unless the
two lines are actually coincident: in this case Ai, Aj, Bi and Bj are aligned,
a condition which is easily ruled out in practice. Consider then two cables i
and k from two different parallelograms. In the instant they cross, they must
be contained in the same plane; it is worth emphasizing that this condition
is necessary, but not sufficient, since cable lines might cross outside the cable
span.
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The problem of defining the interference-free workspace of cable robots
when the EE orientation is constant was studied in [127, 158]. In [158], it was
shown that cables i and k are coplanar if and only if

(∆aki × dki) · (p− ai + bi) = 0 (4.16)

where ∆aki = ak − ai. Eq. (4.16) holds in these cases:

(a) ‖∆aki‖ = 0 or ‖dki‖ = 0, namely if the two attachment points Ai and
Ak, or Bi and Bk, coincide. In fact, in this case the two cables cross in
the attachment point Ai = Ak, or Bi = Bk.

(b) ∆aki is parallel to dki, so that ∆aki×dki = 0: this is a special architecture
in which cables i and k are always coplanar, regardless of the robot
position†.

(c) p − ai + bi = 0: since p − ai + bi is the vector from Ai to Bi, this can
only happen if the i-th cable has zero length.

(d) ∆aki×dki is orthogonal to p−ai+bi, which is the general case considered
in [158].

Excluding the special cases (a), (b) and (c), Eq. (4.16) defines a plane Ωik

such that, if P ∈ Ωik, the cables i and k are coplanar and thus could cross. In
order to provide geometric insight to this condition, it is useful to introduce
auxiliary points Cik having position vectors cik = ai−dki, and auxiliary planes
Γik passing through Cik, Cki, Ai, and Ak. It can be proven that the plane Ωik

defined by Eq. (4.16) is parallel to Γik and passes through A∗i and A∗k (note
that, since cables i and k are not in the same parallelogram, A∗i and A∗k are
not coincident).

Consider now special architecture R1 (Subsec. 1.5.2.2), with all points Ai’s
lying on a plane Γ and all points Bi’s lying on a plane parallel to Γ . In
this case, it is easy to see that all points Cik’s also lie on Γ : consequently,
all planes Γik’s coincide with Γ , and Ωik coincides with the singularity plane
Π ≡ Σ. For a robot such as the one in [196] (which falls in the R1 architecture

† In this case, the two cables are either always crossing or never crossing, for any position
of the robot.
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class), then, there can be no cable interference unless the robot is at a singular
configuration. This makes such an architecture attractive as the singularity-
free workspace and the interference-free workspace are coincident and very
simple to visualize: therefore, this architecture was used for the experimental
tests. Indeed, the architecture chosen for the experiments falls under both class
L2 (see Subsec. 3.7.2), so that its kineto-static model can simplified as seen
in Sec. 2.3.1, and class R1, to easily avoid singularities and cable interference
loci.

4.5 Summary of the chapter
In this chapter, the properties of the purely-translational CSPRs presented in
Subsec. 1.5.2 were investigated. Specifically, the singularity-free workspace, the
reachable workspace, and the interference-free workspace were studied, finding
in all cases analytical formulations of the corresponding loci. In this way, one
can verify that the dynamically feasible trajectories presented in Ch. 3 can
actually be followed without losing control of the EE or the cables crossing
each other; since all loci have analytical formulas, the feasibility conditions
can be verified in real time. Moreover, the special architectures presented in
Subsecs. 1.5.2.2 and 1.5.2.3 were shown to have interesting features that allow
to greatly simplify the loci defined above.

From the results summarized above, goal (II) from Sec. 1.2 can be consid-
ered satisfied.
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5 Kinematic performance indexes

in which the effects of errors in the control of actuators are analyzed, and
kinematic indexes are proposed that measure how much the robot is sensitive to

such errors in a given pose.

5.1 Introduction

Control errors

In Subsec. 1.3.2.3 the modeling method commonly applied in cable robotics
(considering taut cables as straight line segments) was presented: assuming a
fully-actuated architecture (such as those considered in this work, see Subsecs.
1.5.1 and 1.5.2), the solution of the 0-th order IKP is unique and straightfor-
ward to find, while the 0-th order DKP has usually a finite number of solutions.

From the DKP and IKP, one can infer the control algorithms for the robot.
However, the control of the actuators cannot be perfect: small errors between
the desired joint position θd and the actual one θe will always be present,
therefore the real pose xe will also be different from the desired one xd (see for
instance Fig. 3.12).

Consider for example the 6-cable robot in Subsec. 1.5.2: the motion is
purely translational only if the two cables in a parallelogram are kept at the
same length as the robot moves. In the prototype, this was obtained by having
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the cable pair wind on a common pulley (Fig. 3.10c). However, it is necessary to
ensure that the free lengths ρi of the cables are pairwise equal as motion starts;
since this condition cannot be perfectly guaranteed even with an accurate
calibration procedure, the EE starts moving with an initial difference between
lengths ρi and ρj in a pair, thus introducing small errors in the orientation as
the robot moves.

For the aforementioned reasons, it is important to study how the platform
orientation changes as joint position errors are introduced in cable lengths: one
can thus verify whether the robot, for a given architecture or at a given pose,
is especially sensitive to such errors. Since in general input joint errors have
a known maximum magnitude, which depends on the accuracy of the control
system, one can thus find an upper bound on the output error on the robot
pose.

State of the art: dexterity and manipulability

There is a very vast literature on kinematic performance indexes, which are
a way to measure the sensitivity of a robot to small control errors: see for
instance [128, 156, 170] and [129, pp. 163–171]. Here, the focus will be on
local indexes that measure the sensitivity at a given pose, as opposed to global
indexes that measure the sensitivity over the entire workspace; when global
indexes are needed, for example in order to compare different architectures,
they are generally defined as the average of local indexes evaluated at a number
of different poses.

Most commonly, kinematic performance indexes are based on the direct
Jacobian matrix J = −F−1

x Fθ, which, for a fully-actuated robot, is defined for
any pose where the robot is not at a Type 2 singularity (in which case Fx is not
invertible). The 1st-order DKP can then be written as ẋ = Jθ̇; by considering
infinitesimal variations of joint and EE coordinates, one obtains dx = Jdθ.
This relationship maps small actuation errors dθ = θd − θe to corresponding
pose errors dx = xd−xe. Frequently used indexes based on J are Yoshikawa’s
manipulability index [208] and the dexterity index first proposed in [176].
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Yoshikawa’s manipulability index [208] is defined as µ =
√

det (JTJ) and
corresponds (up to a constant) to the volume of the manipulability hyperellip-
soid: this is the projection of the unit hypersphere in the joint space (defined
by ‖θd − θe‖ = 1) in the Cartesian space, where the robot Jacobian J is the
projection matrix. In other terms, the hyperellipsoid is the set of all possible
pose errors ‖xd − xe‖ which correspond to joint errors of unit norm. Thus,
µ gives an overall measure of the amplification factor between joint and pose
errors. However, it has several drawbacks:

• It does not consider the ellipsoid shape and thus may lead, if used un-
critically in the design stage, to highly distorted architectures [43].
• The maximum joint errors are defined based on the Euclidean norm∗.

This model is not physically realistic [128], as it means that, when the
error on one joint is at its maximum, all other joint errors are zero.
• As shown in [103], µ does not depend on the position of the OP P on

the EE, which seems counterintuitive and undesirable in practical use.

In [176], the authors propose the dexterity index κ as the condition number
of the Jacobian matrix, so that κ = ‖J−1‖‖J‖. It can be proved from linear
algebra [67, pp. 87–88] that κ provides an upper bound on the error amplifica-
tion between joint and EE coordinates. However, as noted in [43], κ−1 provides
a lower bound for the error amplification, so that a smaller κ does not lead in
general to a better overall performance (the maximum error will decrease, but
the minimum error will increase at the same time).

Regarding cable robots in particular, the study of kinematic indexes for a
3D printing CSPR with an architecture similar to the one proposed in Subsec.
1.5.2 (but with six DoFs) was performed in [13], to verify that the maxi-
mum position error was within the printing accuracy; an index of kinematic
performance for a translational CDPR with parallelogram actuation was also
proposed in [213]. Also, in [110] the authors proposed indexes that extend

∗ Here and in the rest of the thesis, ‖•‖ corresponds to the 2-norm of •, unless other-
wise specified; where confusion may arise due to the use of different norms, this will be
equivalently denoted by ‖•‖2.
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the concept of dexterity by taking into account the effect of the unilateral
constraints set by cables.

A common issue for the indexes presented so far is that they are based
on J, which in general has non-homogeneous units when the robot has both
translational and rotational DoFs. Thus, changing the units of measure changes
the indexes, while clearly the robot accuracy is constant at a given pose.

This, for instance, is the case of the CSPR presented in Subsec. 1.5.2: the
1-st order DKP is written (at nonsingular poses) as Jρ̇ =

[
vT ωT

]T
, with v

and ω being the linear and angular velocities of the EE and ρ̇ being the 6× 1
array of cable velocities. Thus, while the first three rows of J (corresponding to
translational DoFs) have dimensionless entries, the last three (corresponding
to unactuated rotational DoFs) have dimension of the inverse of a length.

Several authors have proposed different ways to overcome this issue, but
they all introduce some arbitrary choice; indeed, as observed in [155] for a spa-
tial 6-DoF robot, “this arbitrariness is an unavoidable consequence of the ge-
ometry of SE(3)”, on which “there is no natural positive-definite metric” [120].
Some of the proposed methods are:

• To divide the rotational components of J by a quantity with unit of
length [7, 122]. The definition of this length is however arbitrary and it
is thus difficult to compare different architectures.
• To analyze the 1-st order kinematics of the robot by the velocities of

a set of points on the EE [70, 107]. In this way, J has homogeneous
dimensions, but there is no general criterion to pick such points on the
EE.

For the reasons above, the robotics research community has not come to a
complete consensus over the choice of such indexes [43], as they all show some
drawbacks.
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Chapter description

Here, the analysis will start from the kinematic sensitivity indexes introduced
in [43], which offer the advantages of having a clear physical interpretation
and dimensional homogeneity; then, indexes that build and upon the existing
literature will be defined (Sec. 5.2).

In Sec. 5.3, the properties of the indexes are presented. Then, in Sec. 5.4,
the indexes are applied to the translational CSPR with finite-size EE presented
in Subsec. 1.5.2. Though Sec. 5.4 focuses on the translational CSPR (which is
a more realistic robot model) the methods here presented could also be applied
to the robot with point-mass EE.

Finally, in Sec. 5.5, a way to model finite errors on the cable lengths is
presented for the translational CSPR.

In the rest of this chapter, the cables are always supposed to be kept in ten-
sion by external forces acting on the EE, for example by using the trajectories
presented in Ch. 3.

5.2 Definition of sensitivity indexes
To overcome the issues of defining kinematic indexes from a Jacobian matrix
J with nonhomogeneous units, Ref. [43] proposed to separate the pose error
dx into translational (dp) and rotational DoFs (dφ, the vector parallel to the
axis of rotation of the mobile frame on the EE—with respect to the fixed
frame—and having magnitude equal to the rotation angle). The authors then
define two kinematic sensitivity indexes that describe the sensitivity of the
robot position and orientation to actuator displacements, as follows:

σr,q = max
‖dθ‖q=1

‖dφ‖q (5.1a)

σp,q = max
‖dθ‖q=1

‖dp‖q (5.1b)
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with ‖•‖q being the q-norm (q ≥ 1) of (•)†.

Among the various kinematic performance indexes seen so far, the latter
two provide desirable characteristics:

• they have a well-defined physical meaning, that is, max{‖dp‖q} = σp,q

‖dθ‖q and max{‖dφ‖q} = σr,q‖dθ‖q;
• each of them is consistent in terms of dimensional units (assuming that

all joint coordinates have the same units, as is usually the case);
• they do not introduce an arbitrary choice in the definition and thus can

be used to compare different architectures;
• σr,q does not depend on the choice of P , but σp,q does (cf. [103]), which

corresponds to physical intuition.

In [43], the authors proposed using either the 2-norm or the ∞-norm in
Eqs. (5.1). By setting q = 2, they showed that closed-form expressions can be
obtained for σr,q and σp,q; however, as noted previously, using the 2-norm to
bound the joint errors is not realistic [128]. In [43] the possibility of setting
q = ∞ was also explored; this would be the most physically sound choice for
‖dθ‖q, as this corresponds to limiting the error on each joint’s position (for
a CDPR, on the cable lengths) to be comprised within ±1 (in a conveniently
defined system of units).

Note, however, that the method proposed in [43] for the case q = ∞ cal-
culates sensitivities by solving three linear programming problems for each
of the two indexes, at every position of interest for the robot. If one wants
to have a clear map of the sensitivities, σr,∞ and σp,∞ ought to be evaluated
for a very large number of points in the workspace, so computation becomes
impractically long. More importantly, while the ∞-norm is a sensible choice
for measuring the errors in the joint space, it is less meaningful for errors in
the Cartesian space; for example, in Eq. (5.1a), this corresponds to taking

† Following the notation from [43], this thesis will refer to the q-norm (instead of the p-
norm, which is the more common term) to avoid confusion with the subscript p which
refers to position.
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the largest component (in absolute value) of the rotation vector dφ, whose
significance in the robot design does not appear obvious.

In [151] the author proposed to use different norms, defining a kinematic
sensitivity index as

µmax = max
‖dθ‖∞=1

‖dx‖2 (5.2)

In this way, the position error ‖dx‖2 measures the Euclidean distance between
the desired and actual positions; all errors on the joint coordinates have max-
imum absolute value 1 and are independent of each other. However, Eq. (5.2)
again mixes terms in nonhomogeneous units, if the EE pose x has both trans-
lational and rotational DoFs.

Combining insights from the previous works, kinematic performance in-
dexes are here defined as follows:

σr,q,s = max
‖dθ‖q=1

‖dφ‖s (5.3a)

σp,q,s = max
‖dθ‖q=1

‖dp‖s (5.3b)

With this approach, the indexes in Eqs. (5.3) are dimensionally consistent;
moreover, by taking s = 2 and q = ∞, the errors in both the joint and
Cartesian space are measured in the most “natural” way. This idea is also
reminiscent of [6], where indexes to define an upper bound on the translational
displacement dp of the EE were proposed based on mixed norms; however, the
application was different (for path planning of serial robots in presence of
obstacles) and the authors used q = 1 for ease of computation.

This definition of sensitivity indexes is analogous to the one presented
in [171] for planar parallel manipulators with rigid links; later, the same in-
dexes were applied to cable-driven planar robots [102]. Note that, to the best
of the author’s knowledge, the properties of the kinematic indexes analyzed
in this chapter have not been investigated in the available literature; also, the
application of the kinematic indexes to spatial robots with both rotational and
translational DoFs is novel.
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5.3 Properties of sensitivity indexes
Assuming that the robot under examination is a fully-actuated parallel robot
in a non-singular pose, the relationship between joint and Cartesian errors is
dx =

[
dpT dφT

]T
= Jdθ = −F−1

x Fθdθ, as obtained from Eq. (1.1). Note
that, using this linear relationship between dx and dθ, it is implicitly assumed
that the errors are very small with respect to the nominal joint coordinates;
this assumption will be used throughout the rest of this section and in Sec.
5.4.

The Jacobian matrix can now be divided as follows: J =
[
JTp JTr

]T
, where

each of the two sub-matrices Jp and Jr, corresponding to translational and
rotational DoFs respectively, is dimensionally homogeneous. The relationships
between small errors in the joint coordinates and in the EE position/orientation
then become dp = Jpdθ and dφ = Jrdθ.

Eqs. (5.3) can now be rewritten as

σr,q,s = max
‖dθ‖q=1

‖Jrdθ‖s (5.4a)

σp,q,s = max
‖dθ‖q=1

‖Jpdθ‖s (5.4b)

The kinematic sensitivities used in this section are comprised between 0
and ∞ (since they are defined as vector norms); in fact, they can be zero only
if Fθ does not have full column rank.

Eqs. (5.4) are recognized as equivalent to the definition of a matrix norm
‖•‖q,s which is subordinate to vector norms ‖•‖q and ‖•‖s [67]. This result
is compatible with the observation from [43] that indexes (5.1) (which are a
special case of the more general indexes (5.3)) can be expressed as matrix norms
for both serial and parallel manipulators (for the latter, this only holds if the
manipulator is not redundantly-actuated or in a singularity configuration).
Finally, the proposed indexes can be computed (outside a parallel Type 2
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singularity) as follows:

σr,q,s = ‖Jr‖q,s (5.5a)

σp,q,s = ‖Jp‖q,s (5.5b)

Calculating the kinematic sensitivities from matrix norms avoids having to
solve the (generally nonlinear) convex optimization problem defined by
Eqs. (5.3). Matrix norms can sometimes be easily computed from closed-form
expressions, such as if q = s = ∞; however, no such formulas exist for the
general case. Indeed, it was proven in [86] that even the problem of approxi-
mating (up to a given relative error) the ‖•‖∞,s matrix norm is NP-hard for
any 1 ≤ s < ∞, meaning that no known algorithm can do so in polynomial
time. NP-hard problems thus become quickly intractable as the size of the
input (in this case, the matrix whose norm must be computed) grows. In the
case at hand, the input size corresponds to the size of matrices Jr, Jp: NP-
hardness could then be a problem if these matrices are large, for example for a
multi-link manipulator with a large number of DoFs. On the other hand, if one
considers 6-DoF, fully-actuated manipulators such as the translational robot
studied in this thesis, the calculation time is not an issue. Indeed, the maxi-
mum of ‖Jdθ‖s in the hypercube defined by ‖dθ‖∞ = 1 must occur, for any
matrix J, at a vector dθ ∈ {−1, 1}nA (where nA is the number of actuators),
that is, each element of dθ must be either 1 or −1 (since the maximum over
a polytope of a q-norm is attained at some vertex [26]). Therefore, it is only
necessary to evaluate ‖Jdθ‖s in 2nA points; since usually in parallel robots
nA ≤ 6, the computation times are in fact still reasonable‡. If a multi-link ma-
nipulator (such as the one in [6], which has ten DoFs) has to be analyzed, the
problem of calculating the matrix norms grows exponentially with the number
of actuators; in this case, one might use the results from [181], which provide
approximate lower and upper bounds that can be efficiently computed.

Some of the interesting features of the kinematic indexes defined in [43]

‡ The computation time can also be reduced by noting that ‖Jdθ‖s = ‖J (−dθ)‖s, there-
fore it is not necessary to check both dθ and −dθ. One can thus halve the search space, for
instance, by only considering the vectors dθ ∈ {−1, 1}nA whose first element is positive.
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still apply to the indexes employed in this thesis. For instance, such indexes
provide upper bounds on the EE displacement and rotation under joint errors
of known maximum absolute value dθmax, that is, ‖dp‖s ≤ σp,∞,sdθmax and
‖dφ‖s ≤ σr,∞,sdθmax, as follows from the properties of matrix norms [20, p. 553,
Eq. (9.4.4)]. Furthermore, these bounds are tight, meaning that there is at least
one vector dθ such that the corresponding position or rotation error reaches
its maximum value. These properties descend immediately from the general
properties of matrix norms.

It is also worth exploring the effect of changing the mobile reference frame
on the EE. Suppose that indexes (5.3) have been computed for a robot at a
certain pose and with respect to a coordinate frame A defined by PxAyAzA.
One might ask how the proposed indexes change if computed with respect to a
different reference frame B defined by QxByBzB. Let d = P −Q (see Fig. 5.1)
and RBA be the rotation matrix from A to B. If dp and dq are the infinitesimal
displacements of P and Q respectively, then dq = dp + d× dφ, and thus the
infinitesimal displacements expressed in B are{dφ}B

{dq}B

 =
 RBA 0
{d̃}BRBA RBA

{dφ}A
{dp}A

 (5.6)

where d̃ is the skew-symmetric matrix associated with vector d such that d̃w =
d×w for any vector w ∈ R3. This is called the adjoint transformation [141].
Calculating σr,q,s in frame B leads to {σr,q,s}B = max

‖dθ‖q=1
‖RBA{dφ}A‖s. From

this expression, one can see that {σr,q,s}B = {σr,q,s}A if either RBA = I, so that
frames A and B have the same orientation, or s = 2, since RBA is an orthogonal
matrix, which thus preserves the 2-norm of a vector. The translational sensitiv-
ity instead becomes {σp,q,s}B = max

‖dθ‖q=1
‖{d̃}BRBA{dφ}A + RBA{dp}A‖s, from

which it can be seen that in general {σp,q,s}B 6= {σp,q,s}A even if RBA = I. This
is consistent with physical intuition: the rotation angle ‖dφ‖2 of the EE re-
mains the same if observed from different reference frames, while the displace-
ment of different OPs on the platform is generally different (cf. [43], where
similar results were obtained for the indexes defined therein—but assuming
only a change of OP).
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Figure 5.1: A small displacement dp and a small rotation dφ expressed in two
different coordinate frames.

One might also be interested in comparing the proposed indexes with the
ones provided by previous literature. The most natural comparison is against
the kinematic sensitivities in [43]. It can be proven that

‖J‖∞,2/
√
n ≤ ‖J‖2 ≤ ‖J‖∞,2 (5.7a)

‖J‖∞,2/
√
m ≤ ‖J‖∞ ≤ ‖J‖∞,2 (5.7b)

for any m× n matrix J, including Jp and Jr (see Appendix A.5).

Considering a non-redundant parallel robot outside a singularity pose, the
indexes from [43] can be computed with the matrix norms ‖•‖∞ and ‖•‖2;
this implies σp,∞,2/

√
6 ≤ σp,2 ≤ σp,∞,2 and σp,∞,2/

√
3 ≤ σp,∞ ≤ σp,∞,2 (note

that in this case the matrices Jp and Jr are 3 × 6). Similar inequalities can
be written for the rotational sensitivity index. This shows that the proposed
indexes provide bounds for the ones already established in the literature.

It is worth observing that Eqs. (5.4) are not valid when the robot is in a
Type 2 singularity, in which case J = −F−1

x Fθ is not defined. In this case, it is
convenient to divide Fx =

[
Fx,p Fx,φ

]
in dimensionally consistent submatri-

ces. Eq. (1.1) can now be rewritten (again in terms of infinitesimal variations
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instead of time derivatives) as

Fx,pdp + Fx,φdφ = −Fθdθ (5.8)

From this expression, one can prove the following§ (see Appendix A.5):

• if R (Fx,p)
⋂
R (Fx,φ) = {0} and Fx,p does not have full column rank,

while Fx,φ does, then σp,q,s =∞, while σr,q,s remains finite;
• if R (Fx,p)

⋂
R (Fx,φ) = {0} and Fx,φ does not have full column rank,

while Fx,p does, then σr,q,s =∞, while σp,q,s remains finite;
• in all other cases of Type 2 singularity, both σr,q,s and σp,q,s go to infinity.

This shows how the proposed indexes are also useful to distinguish between
a translational singularity, in which case the robot can have an uncontrolled
displacement dp and thus σp,q,s = ∞, and a rotational singularity, where the
uncontrolled DoF is a rotation dφ.

Finally, it is to be noted that the proposed indexes are not matrix norms
when the manipulator is redundantly-actuated [43]. In this case not every
vector of joint displacements dθ that respects condition ‖dθ‖q = 1 has a
corresponding pose displacement dx that solves the kinematic equation Fxdx =
−Fθdθ (as noted for a planar robot in [171]). However, using the matrix norms
in Eqs. (5.5) still provides an upper bound on the kinematic sensitivity indexes
from Eqs. (5.3), as the function to be maximized is the same (but the search
space is smaller in the redundantly-constrained case).

5.4 Application to translational robot
The indexes defined in the previous section are now applied to the analysis of
the translational CSPR described in Subsec. 1.5.2.

Due to kinematic–static duality [197], the Jacobian can be obtained from
matrix M̃ (introduced in Eq. (2.10)): one thus has J = M̃−T .

A remarkable aspect of the translational robot studied here is that, unlike
§ Here, R (F) denotes the range of matrix F, that is, the linear span of its columns.
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Figure 5.2: The translational kinematic sensitivity σp,∞,2 calculated at a reference
height zr. The fixed cable attachment points are represented as squares
(the EE and the cables are not shown). Notice how σp,∞,2 reaches very
high values (in yellow, see the colorbar) close to the singularity quadric
Σ (whose intersection with the plane z = zr is indicated by a black
line) and also close to the singularity plane Π (whose intersection is in
red). Length unit is arbitrary.

most parallel manipulators, it has a direct Jacobian that can be calculated
analytically; indeed, one finds

Jp = 1
det(Msup)πA

[
Jp,1 Jp,2 Jp,3 Jp,4 Jp,5 Jp,6

]
(5.9a)

Jr = 1
πA

[
Jr,1 −Jr,1 Jr,3 −Jr,3 Jr,5 −Jr,5

]
(5.9b)

where πA, Jp,i and Jr,i (i = 1, . . . , 6) are defined in Appendix A.6 and Msup =
[e1 e3 e5] was introduced in Sec. 2.3 (Eqs. (2.12) and (2.13)). When the robot
approaches a rotational singularity, det (A) → 0, so πA → 0 (as shown in
Appendix A.6); from Eqs. (5.9), all elements in matrices Jr and Jp go to infin-
ity. Since kinematic sensitivities are defined from the norms of said matrices,
σp,q,s →∞ and σr,q,s →∞. Also, as the robot approaches a translational sin-
gularity, det (Msup) goes to zero, the elements of Jp go to infinity, and so does
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Figure 5.3: Same as Fig. 5.2, but for the rotational kinematic sensitivity σr,∞,2. In
this case, the index remains finite in the translational singularity Π.

σp,q,s, while σr,q,s remains finite.

Figs. 5.2 and 5.3 show respectively the contour curves of σp,∞,2 and σr,∞,2,
calculated numerically at a given height z = zr, for an example architecture. As
expected, the sensitivities become very high close to the singularity quadric Σ
(introduced in Sec. 4.2) and to the singularity plane Π defined in Subsec. 1.5.2.
In particular, both indexes tend to infinity close to Σ; meanwhile, σp,∞,2 tends
to infinity close to Π, while σr,∞,2 remains finite, so the rotational singularity
(in Σ) and the translational one (in Π) are partially decoupled.

In Subsec. 2.3.1 it was found that, if P is in the intersection of segments
B1B2, B3B4 and B5B6 (special architecture L), the dynamic equations (2.8)
can be greatly simplified.

It can also be shown that for this architecture Jp is definite as long as
Msup is invertible, so σp,∞,2 remains finite everywhere except at a translational
singularity: the two singularities are thus completely decoupled (see Appendix
A.7).
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5.4. Application to translational robot

A further specialization of this architecture happens when P is on the
midpoint of segments BiBj (special architecture L1 from Subsec. 1.5.2.1): this
choice appears sensible from an engineering point of view, as it leads to having
equal tensions in the two cables of each parallelogram (see again Subsec. 2.3.1)
and thus balanced forces on the actuated spools. In this case, the matrices in
Eqs. (5.9) simplify as

Jp =
M−T

sup

2


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 (5.10a)

Jr = Ă−T
2


1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 (5.10b)

with Ă as defined in Appendix A.6. The sensitivities can then be directly
calculated as σr,∞,2 = ‖Ă−T‖∞,2 and σp,∞,2 = ‖M−T

sup‖∞,2, as can be proven
from the ‖•‖∞,2-norm definition (see Appendix A.7); this further reduces the
computational expense, as the matrices involved have a smaller size.

Furthermore, in this case Jp (and thus σp,∞,2) only depends on position,
but not on vectors bi: the positional sensitivity is thus independent of the EE
size (measured by the largest distance from any of the attachment points Bi

to P ). As for the σr,∞,2, it can be proven that, for a given size of the EE,
it is minimized when the three segments BiBj are of equal length; in this
condition, σr,∞,2 is inversely proportional to the EE size (see Appendix A.7).
This suggests that, in order to optimize the rotational sensitivity and thus
have a better chance of preventing rotations on the platform, one should pick
all Bi’s at the same distance from P and that this distance should be the
largest compatible with size and weight constraints, which also corresponds to
physical intuition.

These results, together with the ones from Ch. 4, suggest designing the EE
such that the attachment points Bi are on a circle, with its center on P , and
to position all fixed cable exit points Ai on a plane parallel to the platform
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plane; in this way, the singularity surfaces degenerate in a single plane passing
through points Ai’s (Subsec. 4.2.2). Also, as seen in Sec. 4.4, in this case there
is no risk of cable interference, unless the robot is at a singularity. This is the
principle used in the design of the robot prototype in Subsec. 3.7.2. The final
result is an architecture similar to the one in [196].

For the robot whose architecture has points Ai’s and Bi’s on horizontal
planes, it seems interesting to separate the sensitivities along the x−y axes and
along z. To do this, the matrices in J in Eqs. (5.9) can be further subdivided
as Jp =

[
JTp,xy JTp,z

]T
and Jr =

[
JTr,xy JTr,z

]T
, with Jp,xy and Jr,xy being 2× 6

matrices, and Jp,z, Jr,z being 6-element row vectors. Then, one can define
four separate sensitivity “sub-indexes” as σr,xy,∞,2 = ‖Jr,xy‖∞,2, σp,xy,∞,2 =
‖Jp,xy‖∞,2, σr,z,∞,2 = ‖Jr,z‖∞,2 and σp,z,∞,2 = ‖Jp,z‖∞,2.

From the definition of the ‖•‖∞,2-norm, these sub-indexes are correlated to
the ones defined in Eq. (5.3) as follows (Appendix A.7):

max{σr,xy,∞,2, σr,z,∞,2} ≤ σr,∞,2 ≤
√
σ2
r,xy,∞,2 + σ2

r,z,∞,2 (5.11a)

max{σp,xy,∞,2, σp,z,∞,2} ≤ σp,∞,2 ≤
√
σ2
p,xy,∞,2 + σ2

p,z,∞,2 (5.11b)

The results, for the robot used in the experimental tests (Subsec. 3.7.2),
are shown in Fig. 5.4 where sensitivities are plotted as a function of z.

The results can be thus explained:

• z → ∞: σr,z,∞,2 increases, as the vectors nij normal to the planes Πij

through each parallelogram (Fig. 1.5) become approximately horizontal
and thus close to being linearly dependent: therefore, the ability of the
robot to prevent rotations around the z axis is reduced. As the cables
become almost vertical, a motion of the platform in the horizontal x− y
plane causes only a small change in the cable lengths: therefore, σp,xy,∞,2
also increases.
• z → 0: all planes Πij’s coalesce in a single horizontal plane (the singu-

larity plane Π through points A∗ij’s), so the rotation along the vertical
direction is blocked, but the platform can rotate along the x and y axes,

108



5.4. Application to translational robot

500 1000 1500 2000
1

2

3

4

5

 [m
m

/m
m

]

𝑧 [mm]

𝑧
𝑥-𝑦

𝑡𝑜𝑡

σ
p
,∞
,2
   

𝑧𝑜𝑝𝑡,𝑝

(a)

500 1000 1500 2000
𝑧 [mm]

0.01

0.015

0.02

0.025

0.03

0.035

 [r
ad

/m
m

] 𝑧
𝑥-𝑦

𝑡𝑜𝑡

σ
r,
∞
,2
   

𝑧𝑜𝑝𝑡,𝑟

(b)

Figure 5.4: The rotational (a) and translational (b) sensitivities, calculated at x =
y = 0, as functions of z, for the architecture used in the tests (Subsec.
3.7.2). Note that both sensitivities go to infinity as z → 0 (close to the
singularity plane Π ≡ Σ) and for z → ∞; σr,∞,2 and σp,∞,2 have a
minimum respectively at z = zopt,r and at z = zopt,p.
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Figure 5.5: The translational kinematic sensitivity for the 6-cable robot prototype,
at a height zopt,p.

thus σr,xy,∞,2 →∞. Also, it can be seen that when P is on Π all cables
are horizontal: the robot cannot move in plane Π, but it can have an
infinitesimal motion in a direction normal to Π without changing the
cable lengths. Therefore, σp,z,∞,2 goes to infinity, too.

Figs. 5.4 suggest that there is an optimal interval of z where both indexes
σp,∞,2 and σr,∞,2 are generally smaller, between z = zopt,p (where the transla-
tional sensitivity is minimal) and z = zopt,r (where σr,∞,2 is lowest). Therefore,
one may argue that the robot may move somewhere in between zopt,p and zopt,r,
depending on whether it is more important to have an accurate position or an
accurate orientation. Given that in the present case σr,∞,2 does not change
much around zopt,r, while the variation of σp,∞,2 in the neighborhood of zopt,p
is steeper, keeping z ≈ zopt,p during the motion appears as a sensible choice for
an accurate horizontal positioning.

Contour line plots of the sensitivity indexes for the prototype are displayed
in Figs. 5.5 and 5.6. Note that the indexes are smaller towards the center of
the workspace: this indicates that the robot will be more accurate (both in
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Figure 5.6: As in Fig. 5.5, for the rotational sensitivity. Note that here the indexes
always remain finite, as there is no singularity in the workspace below
the plane defined by z = 0.

terms of position and orientation) close to the center and less so the more it
moves close to the boundaries of the SEW (or even beyond said boundaries,
using the dynamical trajectories from Ch. 3). This indicates that a trade-off
must be considered when designing dynamic trajectories: these can enlarge the
zone where the robot can work, but at the expense of a reduced accuracy.

Note also the 120◦ symmetry of the plots in Figs. 5.5 and 5.6, as expected
due to the symmetry of the robot itself (where points A∗ij’s are approximately
on the vertexes of a equilateral triangle).

Finally, the sensitivity indexes have been validated by comparing them
against the positioning error observed during the experimental tests (Subsec.
3.7.2). Fig. 5.7 shows again the position error from Fig. 3.12a and compares
it with the maximum position error given by the kinematic sensitivity index
σp,∞,2. In Fig. 5.7, the position error (orange line) is obtained by solving the
DKP with both the desired and the actual cable lengths and calculating the
distance ‖dp‖2 between the desired and actual position. Multiplying the po-
sition sensitivity σp,∞,2 by the norm of the error on the cable lengths ‖dρ‖∞
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Figure 5.7: Plot of the position error ‖dp‖2 for the translational cable robot during
the periodic motion (a) described in Subsec. 3.7.2 (orange line, see
Fig. 3.12a) and the estimated maximum error (blue line) given by the
position sensitivity (calculated along the same trajectory).

(calculated at each time-step) provides an upper bound (blue line) on the po-
sition error: indeed, it can be observed from the figure that the maximum error
obtained with the sensitivity index is always larger than the actual error. This
confirms that σp,∞,2 provides a useful upper bound to the error amplification
between the joint and the Cartesian coordinates. It is worth noting that ‖dp‖2

is obtained by solving a nonlinear DKP, while σp,∞,2 was calculated assuming
a linear relationship between dρ and dp: the clear correlation between the two
plots in Fig. 5.7 suggests that this assumption (which is closer to the truth,
the smaller the errors on the cable lengths are) is in fact valid.

5.5 Parallelogram planarity error
The previous section dealt with the effect of infinitesimal errors on the actua-
tors. Suppose now that the edges AiAjBjBi in the cable pair i−j (that should
ideally define a parallelogram) are no longer coplanar: this could be due, for
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example, to a (finite) error on the cable lengths, an error in the architecture
parameters or an error in the way the robot was assembled at the initial stage.
Note that even if cables i and j have the same length (and so do the segments
AiAj and BiBj), points Ai, Aj, Bi and Bj might not be coplanar, so they do
not form a parallelogram and do not properly constrain platform rotations:
this situation is here referred to as a planarity error in one or more parallel-
ograms. Starting from an initial position I with a planarity error, this error
could grow uncontrolled as the robot moves to final position F ; moreover, the
rotation matrix R between the fixed and the mobile frame will not remain
constant (as the robot is no longer purely translational).

In order to verify whether a parallelogram planarity error may cause a
serious problem for the translational manipulator at hand, a series of numer-
ical simulations were run before the tests described in Subsec. 3.7.2. In these
simulations, it was assumed that errors were only in the cable lengths ρi (archi-
tecture parameters, such as the positions of points Ai’s in the fixed frame, can
be measured when the robot is at rest with high precision): each cable length
could thus be controlled up to a finite uncertainty ±∆ρ¶, which is assumed to
be the same for all cables.

The scheme of the numerical simulations is as follows.

(1) In the first step, the IKP is solved for the robot in ideal conditions (that
is, with no planarity errors in the parallelograms) at poses I and F , thus
obtaining the corresponding cable lengths ρi,I and ρi,F .

(2) To simulate what happens when the robot moves from I to F , two ap-
proaches are adopted:
(a) One can imagine that the maximum errors ∆ρ are introduced all at

once with the robot in the final position F , and thus solve the DKP
where each cable length is ρi ∈ [ρi,F −∆ρ, ρi,F + ∆ρ]. The initial

¶ In the numerical simulations here described, ∆ρ was ≈ 20−30 mm, which is the order of
magnitude of the errors in the robot calibration procedure used for the tests in Subsec.
3.7.2; while still small with respect to the robot size, this error is no longer clearly
infinitesimal with respect to the cable lengths.
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guess for the solver is the desired final position F . Note that, when
rotations are no longer locked, a 6-cable robot is equivalent to a
Gough-Stewart platform of general architecture (assuming that all
cables are in tension) and the DKP can have up to 40 solutions [58,
90]. Since ρi can assume any value within ρi,F −∆ρ and ρi,F + ∆ρ,
nρ equally spaced values within this interval were taken, and the
DKP was solved for each of the n6

ρ possible combinations of the
cable lengths. Finally, the solution with the highest value of the
pose error‖ was taken as the worst case scenario. This combinatorial
approach of checking all possible combinations of errors on the cable
lengths is similar to the one used in [198], but in that paper the
authors assume for simplicity that the highest error on the platform
pose is obtained when all cables have an error equal to its maximum
absolute value (an assumption that is only valid for infinitesimal
errors): therefore, they only check the 26 combinations given by
ρi = ρi,F ±∆ρ. Here instead nρ > 2 possible lengths are considered
for each cable.

(b) One can choose to set errors ∆ρ in initial position I and solve the
DKP with cable lengths ρi ∈ [ρi,I−∆ρ, ρi,I +∆ρ], so that the robot
has an initial planarity error and the EE can in fact rotate. Then
the robot is moved from I to F , by discretizing the motion in n

intermediate steps; the ideal cable length at the k-th step is ρi,k =
ρi,I + k(ρi,F − ρi,I)/n. The DKP is solved at every step, with the
actual cable length at the k-th step being ρi ∈ [ρi,k −∆ρ, ρi,k + ∆ρ],
again for each of the n6

ρ possible combinations of the cable lengths

‖ To measure the error on the pose with respect to the ideal case, the following strategy
was adopted: define the center of the platform as the point BC with coordinates (in the
mobile frame) given by

∑6
i=1 bi/6; then, take the three Bi’s who are farthest from BC

(without loss of generality, assume that these are B1, B2 and B3). The error on the
platform pose can now be defined as

∑3
i=1‖p + Rbi − bi,e‖/3, with (p + Rbi) and bi,e

being respectively the ideal position of Bi and the real one (in the fixed frame). The
idea of defining the pose of a robot with the position of three points on the EE is taken
from [70].
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(see point (a)); the solution with the highest value of the error on
the pose is retained. Here, however, three different starting guesses
are taken:
(i) the “ideal” solution (zero error on the cable lengths);
(ii) the solution from the previous step k − 1;
(iii) the “opposite” solution with respect to the one given by the

previous step: if the solution found at step k − 1 had cable
lengths ρi,k−1 ± ∆ρi,k−1, solve the DKP with ρi,k−1 ∓ ∆ρi,k−1,
and use the resulting pose as yet another starting guess.

In this way one might likely catch more than one possible solution:
the appearance of multiple solutions in the 6-dimensional space of
possible cable lengths would indicate a potential risk. In that case,
the robot may switch from one solution where the six cables define
(at least approximately) three parallelograms to another solution
which is farther from the theoretical one; from then on, the planarity
error could become uncontrolled as the robot keeps moving.

If the planarity error were an issue, one would expect the two solutions for
the final position, found by using either procedure (a)—applying all errors at
the end of motion—or (b)—applying all errors at the beginning, so that the
robot is no longer purely translational, and let the system evolve—not to be
the same in the two cases; if otherwise the two solutions were identical or
reasonably close, the architecture may be considered stable, in the sense that
a small initial planarity error does not grow uncontrolled as the robot moves.
This is exactly what was observed in the numerical simulations and shows
that the architecture proposed is robust with respect to planarity errors in the
parallelograms.

A more complete study would require using interval analysis [22, 102] to
solve the DKP at each step from I to F and for each combination of the errors
on the cable lengths, so as to be sure to find all possible solutions with errors
on the cable lengths smaller than ∆ρ. This approach is left for a future study.
In any case, the experiments performed (see Subsec. 3.7.2) seem to confirm
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what the above simulations suggested: the platform appeared in fact to be
very stable against uncontrolled rotations.

5.6 Summary of the chapter
In this chapter, the effect of control errors on the robot motion has been
studied.

The proposed indexes for kinematic performance follow the guidelines indi-
cated in [156]: they are defined everywhere in the workspace (including singu-
larities), have clearly definite lower and upper bounds (0 and ∞, respectively
in Type 1 or Type 2 singularities) and avoid combining terms with inconsis-
tent units. Also, the dependency of the indexes on the choice of the coordinate
frame on the EE is clear and consistent with design expectations. The main
drawback of such indexes is that they do not generally have an analytical,
closed-form expression, as recommended in [156]; however, they can still be
computed in a very short time for most manipulators.

Proposed applications of the study presented in this chapter are:

• to optimize the trajectory connecting a start and a target pose: different
trajectories can be compared by integrating the sensitivity indexes along
each trajectory. Lower kinematic sensitivities denote in general a better
trajectory, in the sense that the control errors will have a lower impact
on the positioning accuracy of the EE.
• to compare different robot architectures: a global sensitivity index can

be computed by integrating each index in the robot workspace. Then, an
optimal architecture can be found as the one that has the lowest overall
sensitivity in the desired workspace.

It could be the case that the kinematic sensitivities cannot be optimized
independently: for example, one might have to compare two different archi-
tectures A and B, where A has a better overall translational sensitivity σp,q,s
but B is superior in terms of rotational sensitivity σr,q,s. While in some cases
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the most important index is defined by the application (e.g., for simple pick-
and-place operations an accurate control on the EE position would be more
important than controlling the orientation), in general one needs to combine
the two indexes in a meaningful way. A common approach for multi-objective
optimization is to define a global objective function as a weighted sum of each
objective [170], but this inevitably introduces an arbitrariness in the choice of
weights and again combines quantities with different units. A more appropriate
approach is Pareto optimization [37, 56], where many different solutions are
obtained and dominated ones (that is, the ones that are “worse” than other so-
lutions in terms of every objective function) are discarded. With two objectives
(such as minimizing σp,q,s and σr,q,s) one thus obtains a boundary of possible
solutions that optimize either the first or the second objective and various
combinations in between; finally, the designer can pick the best compromise
for the application at hand. Applying Pareto optimization to the design of a
translational cable robot such as the one studied in this thesis is left as future
work.
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in which the effect of mechanical compliance in the robot is modeled and the global
stiffness is measured by using appropriate indexes.

6.1 Stiffness modeling
As seen in Ch. 5, an accurate control of the EE of a parallel robot depends on
the robot’s control system. However, even if actuators could provide a perfect
control of joint coordinates, the platform would still be not in its desired pose:
indeed, all components have been so far modeled as perfectly rigid, but in fact
some compliance is inevitable under the effect of external loads. The robot,
then, will have a displacement with respect to its “unloaded” pose, an effect
that ought to be taken into account for a complete physical model of the robot:
this effect is especially important in cable robots, as cables can have a large
mechanical compliance.

Therefore, in this chapter a model of the compliance for the translational
cable-driven robot (Subsec. 1.5.2) will be developed, to show how external
forces/torques on the EE cause displacements and/or rotations on the plat-
form. Indeed, the property of purely-translational motion for the robot under
exam was proven under the assumption of massless and infinitely stiff ca-
bles [31]. The first assumption is reasonable for most CDPRs, such as the
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prototype used in experimental tests (Subsec. 3.7.2), given that very thin ca-
bles were used; however, the compliance of the actuation system cannot be
disregarded. Like Ch. 5, this chapter will focus on the 6-cable robot; a model
of the simpler, 3-cable robot (Subsec. 1.5.1) could be promptly derived with
the tools presented in this chapter.

Once the compliance model of the robot has been established, it is helpful
to provide the designer with a measure of how much the EE pose can change
under external loads. Indeed, the stiffness of a given mechanism is posture-
dependent and is in general defined by a number of stiffness parameters whose
combined effect cannot be easily visualized. Therefore, this chapter will also
consider stiffness indexes that give a global measure of the stiffness at a given
pose.

State of the art

Many authors have considered the effect of flexibility on the control of par-
allel robots in general and CDPRs in particular: this chapter will mostly fo-
cus on the latter, as a full review of the literature on the stiffness of parallel
robots [129, pp. 266–273] would be out of the scope of this thesis.

One of the first works on the stiffness of CDPRs is [55], where the stiffness
of a 6-cable robot in a suspended configuration is studied. The stiffness matrix
for general cable robots was found in [17], where the authors modeled the
cables as massless linear springs with fixed attachment points. In [195], the
definition of a workspace with stiffness conditions was introduced as the set of
poses where the minimum eigenvalue of said stiffness matrix is greater than
a certain value (set by the designer, according to application requirements).
The effect of using a nonlinear stiffness model for cables was studied in [101],
while the effect of cable mass on stiffness is considered in [147]. In [185], the
authors included the effect of pulley motion in the stiffness modeling: in this
way, the cable attachment points on the fixed frame can move, following the
motion of the pulley. The application of stiffness modeling to the vibration
analysis of CDPRs was presented in [57]: here, the authors found that the
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effect of transversal vibrations in cables was negligible when compared to the
effect of axial vibrations. The effect of the torsional stiffness in the cables was
considered in [144]. Finally, the possibility of varying the stiffness matrix of a
cable robot at a given pose, by introducing variable stiffness elements in series
with the cables, was explored in [207].

After establishing the stiffness model of a cable robot, e.g. with the methods
from [17], it is useful to see how it varies throughout the workspace, to see if
there are poses where compliance is excessively high. Also, the stiffness matrix
varies depending on the architecture parameters: this should be taken into
account when comparing different design options. Since the stiffness of a spatial
robot is (usually) described by a matrix Kg, it is hard to visualize its variation;
thus, it is helpful to define stiffness indexes, which give a measure of the global
stiffness at a certain pose.

Various stiffness indexes were proposed in the literature, depending on the
stiffness matrix Kg. See for instance:
• [23], where the indexes are the minimum singular value and the deter-
minant;
• [62], where the indexes are the minimum and maximum eigenvalues;
• [119], where the condition number is used;
• [65], where the index is a weighted sum of the diagonal entries in Kg,

or [37], where the diagonal entries in K−1
g are used instead.

For a review of the state of the art on this topic, see [42, 170].

A common issue for such indexes is that they combine quantities in non-
homogeneous units: thus, they depend on measure units, which complicates
their use. This issue is analogous to the one regarding the measures of kine-
matic sensibility derived from the non-homogeneous Jacobian matrix J (see
Ch. 5). In [159], the author overcomes this issue by defining equivalent trans-
lational and rotational stiffness matrices (in homogeneous units); a similar
approach was used in [188], where the authors define unit-homogenized matri-
ces from the eigenvectors of sub-blocks of Kg. Some authors instead propose to
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divide the stiffness matrix by a characteristic length to obtain a dimensionally-
homogeneous matrix [118, 147]. Some authors instead [53] consider two sep-
arate eigenvalue problems, each depending only on sub-blocks of the stiffness
matrix. Yet another approach is found in [204], where the authors studied a
translational spatial robot and proposed a stiffness index defined as the inverse
of the virtual work of an external unit wrench against the elastic forces. These
stiffness indexes however lack an immediate physical interpretation or intro-
duce arbitrary definitions (either in the characteristic length or in the direction
of the external wrench).

Chapter description

This chapter will focus on the stiffness of the 6-cable robot against exter-
nal wrenches. By modeling cables as linear springs, relevant properties of the
stiffness matrix will be proven (Sec. 6.1.1); it is found that, under a specific ar-
chitecture (L1, from Subsec. 1.5.2.1), the stiffness matrix can be considerably
simplified. Then, a physically consistent measure of the manipulator’s rota-
tional and translational stiffnesses at a given pose will be provided (Subsec.
6.2) and mapped within the workspace for the 6-cable robot (Subsec. 6.3).

6.1.1 Stiffness matrix

This section presents the derivation of the Cartesian stiffness matrix Kg that
relates the external wrench We to the corresponding pose variation∗, such that
We = Kg

[
dpT dφT

]T
. Here, it is convenient to divide Kg in 3× 3 blocks as

Kg =

KF,p KF,φ

KM,p KM,φ

 (6.1)

∗ This implies assuming that the elastic displacements are small, as is usually done, oth-
erwise the wrench-twist relationship cannot be linearized by a stiffness matrix. In other
words, one assumes that the robot stiffness is large enough that a finite wrench We

causes a pose variation (given by displacement dp and rotation dφ) due to the elastic
elongations in the cables that is very small (thus, almost infinitesimal), as is usually done
in structure mechanics.
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6.1. Stiffness modeling

Since We = [FT
e ,MT

e ]T , the external force and torque are obtained as

Fe = KF,pdp + KF,φdφ (6.2a)

Me = KM,pdp + KM,φdφ (6.2b)

The stiffness of cable-driven manipulators was first studied in [17, 18],
where the authors provided a general expression of the stiffness matrix; the
same formulas will be used here.

It is assumed that the robot’s compliance is concentrated in cables, while
the EE and the frame are perfectly rigid; this approach is called the Virtual
Joint Method (VJM) [188] and is the one most commonly employed for parallel
manipulators. Introduce now the stiffnesses ki of cables, modeled as massless
linear springs; this is the commonly used model in the stiffness analysis of
CDPRs and was numerically justified in [57]. The stiffness of a cable is generally
written as ki = (ES)/ρi, where E is the elastic modulus of the cable (which
depends on the cable material) and S is its effective cross-section; a review of
values of E for different cable materials is reported in [161, p. 115, Tab. 3.6].
Here, it is assumed that all cables are equal in composition and section, as it is
usually the case, so the stiffness only varies with length ρi. Furthermore, with
this assumption, two cables in the same parallelogram have the same stiffness†.
Then, one can introduce Kl = diag(k1, . . . , k6) as the stiffness matrix in the
joint space, such that τ = Kldρ.

One can also introduce a preload tension τ0i due to an initial wrench W0;
from Eq. (2.9), it holds M̃τ 0 = W0, with τ 0 being the vector of the preload
tensions in cables. In general, preloading should be taken into account, as
confirmed experimentally in [3, 55], where it was shown that the effect of an
initial preloading is to increase the platform stiffness.

† Some authors lump in ki both the physical stiffness of the cable and the “virtual” stiffness
kc of the control loop (such as the proportional coefficient in a PID control scheme). This
effect can be included by redefining 1/ki = ρi/(ES) + 1/kc as the stiffness of two springs
in series; the stiffness of two cables in the same parallelogram is still equal in this case,
if the stiffnesses kc of the corresponding control algorithms are the same.
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6. Stiffness modeling and measuring

From [17, 18], the Cartesian stiffness matrix can be written as the sum of
three matrices:

Kg = Ke + Ks + Kf (6.3)

The first matrix Ke can be written as

Ke = M̃KlM̃T =
6∑
i=1

ki

 eieTi eieTi b̃Ti

b̃ieieTi b̃ieieTi b̃Ti

 (6.4)

where b̃i is the cross-product matrix associated with vector bi (see Ch. 5). Ke

is called the elastic stiffness, that is, the stiffness that is only due to cables’
compliance; if there is no preloading, Kg = Ke [175]. The other two matri-
ces instead depend on preloading and together they compose the antagonistic
stiffness Ks + Kf ; these are expressed as

Ks =
6∑
i=1

τ0i

ρi

 I− eieTi (I− eieTi )b̃Ti

b̃i(I− eieTi ) b̃i(I− eieTi )b̃Ti

 (6.5a)

Kf = −
6∑
i=1

τ0i

0 0

0 ẽib̃i

 (6.5b)

These two matrices are linearly dependent on the initial cable tensions τ0i. Note
that Ke and Ks are symmetric, while Kf contains skew-symmetric terms.

From here onwards, it will be assumed that all cables remain in tension
under both W0 and We (where We is the wrench that is added to W0), so
that each contributes to the total robot’s stiffness. In this case, the 6-cable
CSPR is equivalent to a classic Gough-Stewart platform; the stiffness matrices
then correspond to the ones found in [186] (when setting legs’ masses to zero),
where the authors also proved that the skew-symmetric matrix Kf is zero if
the initial wrench W0 is a pure force.

Eqs. (6.4) and (6.5) will now be specialized for the 6-cable translational
manipulator (Subsec. 1.5.2), where vectors ei, cable lengths ρi and stiffnesses ki
are pairwise equal. Specifically, the special architecture L1 from Subsec. 1.5.2.1
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6.1. Stiffness modeling

will be considered, as this was the one selected for the prototype (Subsec.
3.7.2): here, bj = −bi (and thus b̃j = −b̃i) for two cables i, j in the same
parallelogram. In this case, it also holds τ0i = τ0j for any initial wrench W0

(see Subsec. 2.3.1). Consider now the terms in the upper-right 3 × 3 block of
Ke (which corresponds to KF,φ in Eq. (6.1)) due to cables i and j; from (6.4)
one has

kieieTi b̃Ti + kjejeTj b̃Tj = kieieTi b̃Ti + kieieTi (−b̃Ti ) = 0 (6.6)

Since this result holds for all three cable pairs (i, j), the sum is zero; given
that Ke is symmetric, its lower-left 3 × 3 block (corresponding to KM,p) is
zero, too, thus the elastic stiffness matrix is block diagonal. For Ks, the sum
in the upper-right block for cables i, j becomes

τ0i

ρi
(I− eieTi )b̃Ti + τ0j

ρj
(I− ejeTj )b̃Tj =

τ0i

ρi
(I− eieTi )b̃Ti + τ0i

ρi
(I− eieTi )(−b̃i)T = 0

(6.7)

Again, the sum in the upper-right block (and thus also the sum in the lower-
left one) is zero. Finally, the sum in the lower-right block in matrix Kf is, for
i, j in the same parallelogram,

− τ0iẽib̃i − τ0j ẽjb̃j = −τ0iẽib̃i − τ0iẽi(−b̃i)T = 0 (6.8)

For the architecture L1 proposed, one can thus conclude the following:

• the Cartesian stiffness matrix Kg is symmetric even under the effect of
preloading due to any initial wrench W0, as the matrix Kf containing
skew-symmetric terms is zero;
• the stiffness matrix is block diagonal, so KF,φ = KM,p = 0. Thus the

elastic equilibrium equation (6.2) can be decoupled between the rotational
and translational degrees of freedom: a pure external force Fe leads to
a pure displacement dp and a pure external torque Me leads to a pure
rotation dφ. This does not hold in general for parallel manipulators:
see for instance [8, 219], where it was shown that a symmetric stiffness
matrix can be decoupled in this way with a coordinate change if and only
if the coupling blocks KF,φ = KT

M,p are singular, which is not generally
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6. Stiffness modeling and measuring

the case. See also [120], where the author showed that, for a generic
symmetric stiffness matrix, KF,φ and KM,p can be made diagonal (but
still nonzero) with a coordinate change.

This shows that the given architecture leads to a simpler form of the stiffness
matrix, for which the study of elastic equilibrium becomes easier.

6.2 Stiffness indexes
The aim of this section is to evaluate the stiffness of the manipulator through-
out the workspace, thus checking where stiffness reaches its extreme values.
For this, one needs to define an index which gives a measure of the global
stiffness at a given pose. Based on the idea from [43], a distinction is made be-
tween rotational and translational DoFs, thus obtaining multiple indexes with
physically consistent units. One can define the Cartesian compliance matrix as

Gg = K−1
g =

Gp,F Gp,M

Gφ,F Gφ,M

 (6.9)

This can be obtained by inverting matrix Kg provided by Eq. (6.3)‡; al-
ternatively, if there is no preloading, elastic compliance is easily found as
Gg = K−1

e = JK−1
l JT (inverting the diagonal matrix Kl is computationally

immediate and J is already known from Ch. 5). Unless otherwise specified,
matrices Kg and Gg are assumed to be invertible.

Using the compliance matrix, the displacement due to an external wrench
can be found as:

dp = Gp,FFe + Gp,MMe (6.10a)

dφ = Gφ,FFe + Gφ,MMe (6.10b)

‡ The blocks in Eq. (6.9) are not, in general, the inverses of the blocks in Eq. (6.1); for
architecture L1, however, Gp,F = K−1

F,p and Gφ,M = K−1
M,φ, since the stiffness matrix is

block diagonal.
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6.2. Stiffness indexes

(compare with Eq. (6.2)). Following the approach used in Ch. 5 (compare with
Eq. (5.3)) the following indexes can now be proposed:

κp,F,q,s = max
‖F e‖q=1

‖dp‖s (for M e = 0) (6.11a)

κp,M,q,s = max
‖Me‖q=1

‖dp‖s (for F e = 0) (6.11b)

κφ,F,q,s = max
‖F e‖q=1

‖dφ‖s (for M e = 0) (6.11c)

κφ,M,q,s = max
‖Me‖q=1

‖dφ‖s (for F e = 0) (6.11d)

Substituting Eqs. (6.10) in the above definitions, one obtains more convenient
expressions of the indexes as matrix norms§:

κp,F,q,s = max
‖F e‖q=1

‖Gp,FFe‖s = ‖Gp,F‖q,s (6.12a)

κp,M,q,s = max
‖Me‖q=1

‖Gp,MMe‖s = ‖Gp,M‖q,s (6.12b)

κφ,F,q,s = max
‖F e‖q=1

‖Gφ,FFe‖s = ‖Gφ,F‖q,s (6.12c)

κφ,M,q,s = max
‖Me‖q=1

‖Gφ,MMe‖s = ‖Gφ,M‖q,s (6.12d)

These indexes are defined based on the compliance matrix, unlike the stiff-
ness indexes proposed in the previously cited works (see page 120): thus, the
lower the indexes, the higher the robot’s stiffness. For this, they can be more
accurately called compliance indexes. From the definition of matrix norms,
these indexes are nonnegative real numbers: a zero index is obtained only for
an ideal rigidity.

The definition in Eqs. (6.11) are valid for any ‖•‖q,s-norm; practically, the
most reasonable choice appears to be q = s = 2. In this way, the indexes de-
fine the effect of forces/torques of known maximum magnitude in terms of the
magnitude of the corresponding displacement/rotation. From here onwards,
then, it will be implicitly assumed that q = s = 2, and the subscripts q and
s in the indexes will be dropped, to simplify notation. With these definitions,

§ Note that, even if Gp,M = GT
φ,F , the indexes κp,M,q,s and κφ,F,q,s may not be equal, as

the norm of a matrix is in general not invariant after transposition.
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6. Stiffness modeling and measuring

the indexes proposed here correspond to the inverses of the indexes proposed
in [202], where said indexes were applied to the stiffness analysis of a planar
manipulator (under the assumption of a symmetric stiffness matrix). Other di-
mensionally homogeneous indexes have been proposed in the past: for instance,
Ref. [84] proposes the index 1/ 3

√
det Gp,F , whereas in [106] the Frobenius norm

of the same sub-block is used. Finally, in [200], the authors define translational
and rotational stiffnesses as the 2-norms of the vectors that contain the eigen-
values of KF,p and KM,φ. However, these indexes lack an immediate physical
interpretation, therefore they will not be employed here.

The compliance indexes used here share some of the desirable characteris-
tics of the sensitivity indexes from [43]:

• They have a well-defined physical meaning: for example, suppose the
external wrench acting on the platform is a pure force whose magnitude
is known to be at most Fe. Then, the total displacement of the platform
will be at most κp,F,qFe and the rotation angle will be at most κφ,F,qFe; a
similar reasoning holds if the wrench is a pure torque. These upper limits
on the displacement and the rotation angle are strict, so they cannot be
replaced with smaller values.
• Each index is dimensionally consistent; for instance, the units of measure

of κp,F,q are a displacement divided by a force, which is coherent with
measuring a linear compliance. Moreover, the indexes do not require
arbitrary choices in their definition.

6.3 Application to robot A: stiffness maps
The stiffness indexes previously defined are applied to the translational 6-
cable robot (again assuming constant orientation, as done in Sec. 5.4 for the
kinematic indexes). These indexes are evaluated with the robot at different
positions in the workspace, to identify zones where the stiffness can be danger-
ously low (compare with [69], where the indexes plotted across the workspace
were the diagonal elements of matrix Kg).
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Figure 6.1: The stiffness index κp,F for the 6-cable robot prototype, at a height
zopt,p ≈ 510mm (see Fig. 5.4a).

In the graphs presented hereafter, the preloading in the cables is set to zero:
indeed, as the robot is not over-constrained, the preloading can only come
from the gravitational force on the EE (which is considered to be in static
conditions). Given that the weight of the EE is small, the effect of preloading
forces can be safely disregarded. With the above assumption, Kg = Ke.

To calculate Kg (and thus the compliance indexes), it is necessary to define
the cable stiffnesses ki = (ES)/ρi, which depend on the cable material and sec-
tion. Unfortunately, as observed in [160], mechanical performance figures such
as Young’s modulus cannot be easily specified, especially for cables made by
synthetic fibers. Due to the lack of available data, the product (ES) was set to
1 in arbitrary units. In any case, this does not change the qualitative behavior
of compliance indexes: since Ke depends linearly on the cable stiffnesses ki
(see Eq. (6.4)), multiplying all stiffness by a different value of (ES) implies di-
viding the indexes by the same value. Therefore, it is still possible to compare
different robot poses or different architectures.

The results are shown in Figs. 6.1 and 6.2: as expected, the compliance is
higher as the robot moves away from the center of the workspace. Therefore,
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Figure 6.2: As in Fig. 6.1, for the stiffness index κφ,M .

for accurate positioning of the EE, it is preferable to have the robot close to
the center of the SEW. In this case, too, there is an apparent 120◦ symmetry
in the plots of the indexes, which reflects the rotational symmetry of the robot
architecture itself. Here, it was not necessary to compute the indexes κφ,F and
κp,M : given that the prototype has architecture L1, the stiffness matrices Kφ,F

and Kp,M are zero (see Sec. 6.1.1) and so are the corresponding matrices Gφ,F

and Gp,M , therefore κφ,F = κp,M = 0.

6.4 Summary of the chapter
This chapter presented the stiffness modeling of the translational cable robot
studied in this thesis. Salient properties of the stiffness matrix were investigated
and it was shown that the special architecture L1 introduced in Subsec. 1.5.2.1
leads to an especially simple stiffness model. This further justifies the interest
in this architecture.

Compliance indexes have been proposed and their properties were briefly
investigated; exemplifying plots of said indexes were provided, that show the
variation of the indexes across the workspace, for the prototype used in the
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tests.

As a note on future work, the behavior of the stiffness indexes nearby
singularities ought to be investigated. Indeed, as noted in [83] for a Gough-
Stewart platform with elastic legs, a singularity of the Jacobian matrix J does
not imply a singularity of the stiffness matrix K, nor vice versa. Therefore,
it would be interesting to define the conditions in which the stiffness indexes
reach their minimum and maximum values (0 and∞, respectively) and analyze
how such behavior is related to the various types of singularities defined in Ch.
4.

The stiffness indexes defined here could be also integrated in an architecture
multi-objective optimization as outlined in Sec. 5.6, to improve the stiffness
and the accuracy of the robot at the same time. It would be especially useful to
evaluate how the stiffness indexes correlate with the accuracy indexes defined
in Eqs. (5.3): if two of the indexes are found to be strongly correlated with each
other, only one of them could be considered as an objective for optimization
and the other one will be (almost) optimized as well. This would allow the
dimensionality of the problem and thus its computational complexity to be
reduced.

With the results from this chapter and the previous Ch. 5, goal (III) defined
in Sec. 1.2 can be considered satisfied.
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7 Conclusions

in which the usefulness of the work presented in this thesis, its potential
applications and the opportunities for future work are summarized.

7.1 Conclusions
This thesis considered the dynamic behavior of cable-suspended parallel robots
and the possibility of defining motions that allow them to move outside their
static workspace, by taking advantage of the inertial and gravitational forces
acting on the EE. While this opportunity has been explored before, in this
work the goal was to expand the idea of dynamically feasible motions in order
to make said trajectories more general and at the same time easier to apply
in practice. Major limits for the practical applications of dynamic trajectories
have been identified as the risk of kinematic singularities and cable interference.
The kinematic accuracy and the effect of elastic deflections were also taken
into account, by developing indexes that measure these properties across the
workspace.

One of the guiding principles of this work was to use analytical methods
as much as possible. In this way, the results provided by modeling can be
presumably computed in real time and thus have a larger scope of application,
e.g. if dynamic trajectories are to be applied in the recovery of cable robots
after a cable failure, as suggested in Sec. 3.8. In these cases, the time required
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to define a recovery strategy becomes of paramount importance, since a cable
failure cannot be predicted. Moreover, providing analytical descriptions of the
feasibility conditions can be useful to provide the designer with a clearer picture
of the advantages and disadvantages of his/her design choices.

Throughout the thesis, two cable robots have been considered in particu-
lar: a 3-cable CSPR and a 6-cable robot. These models were chosen because,
though simple, they include many of the issues encountered in the design of
cable-actuated parallel manipulators. These two models are also linked, in the
sense that the dynamic analysis of the simpler 3-cable robot can be extended
to the more realistic model with 6 cables, provided that some conditions on
the architecture are fulfilled. For the 6-cable robot, a number of special archi-
tectures with useful and distinctive features have been found.

A series of experimental tests with both a 3-cable and a 6-cable prototype
confirmed the theoretical results: the robots can move inside and outside their
respective SEWs while keeping the cables in tension. Moreover, for the trans-
lational robot, it was observed that the orientation remains stable when the
robot moves, as desired.

7.2 Future work
While the work presented in this thesis can be seen as a useful advancement
towards the understanding of CDPR dynamics and the application of dynamic
effects in the control of cable-driven systems, a number of research questions
remain open. Ideas for future work regarding the topics of single chapters have
been outlined in Secs. 5.6 and 6.4.

A broader issue would be to generalize the motions defined in Ch. 3 to
consider how to connect various trajectories (for instance, elliptical arcs such as
those defined in Sec. 3.2) in a piecewise motion: this would be especially useful
for pick-and-place operation, where point-to-point motions are commonly used.
It would be especially useful to define trajectories that allow the robot to reach
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points that are not coplanar (note that the elliptical trajectories defined in Sec.
3.2 are spatial motions that remain constrained in a plane).

One of the interesting features of the 6-DoF cable robot studied in this the-
sis is that its Jacobian can be written analytically. Therefore, it is possible to
obtain the cable tensions in analytical form when the external force is known.
It is conjectured that in this way one could generalize the method seen for the
3-cable robot in Sec. 3.4 and define general feasibility conditions for the trans-
lational cable robot, without any special condition on its architecture. Given
the complexity of the analytical Jacobian, however, this appears a difficult task
that is left as a future work.

In the thesis, cable tensions were assumed to never reach a dangerous level
that could damage or break the cables and that the motors are always capable
of providing the required tensions. Excessively high tensions could however
become a problem if the robot moves with very high dynamics, such that the
inertial force becomes substantial, or if the robot goes close to the singularity
zone (for parallel systems, if the manipulator is close to a kinematic singularity
of Type 2, the forces/torques in the actuators can become very high). Guar-
anteeing that maximum tensions are below a required threshold τmax along a
dynamic motion is left as a future work.

All robots considered in this work are fully-constrained, as for these sys-
tems the inverse dynamics problem becomes especially easy. Dynamically fea-
sible trajectories for over-constrained systems were proposed in [178], while
under-constrained systems were tackled in [91]. However, these works could
be usefully extended with the methods presented in this thesis, to define a
broader class of applicability for these trajectories.

Finally, it would be useful to consider the dynamic capabilities of the cable
actuation systems: in the thesis it was assumed that these robots can reach
any prescribed velocity/acceleration, while in fact any real motor has limits
on its maximum speed and torque. Considering the complex interplay between
the motions of all actuators, taking into account these effects requires defining
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some measure of the maximum speed and acceleration that can be reached
by the EE at each position, similar to what was done for traditional parallel
mechanisms in [151]. This, too, is left as a future work.
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A Proofs

A.1 Proof of properties in Sec. 3.2.
Let x′y′ be a coordinate plane with origin O′ in the center C of an ellipse
and the coordinate axes directed along the principal axes (see Fig. A.1). The
parametric equations of the ellipse in plane x′y′ are

p′ =


x′

y′

z′

 =


A cos(ψ)
B sin(ψ)

0

 (A.1)

with A,B being the semi-major and semi-minor axes.

By applying the coordinate transformation p = Rp′ + pC , where R =
(rij) ∈ R3×3 is the rotation matrix fromO′x′y′z′ toOxyz and pC = [xC , yC , zC ]T

is the position vector of C in Oxyz, one still obtains an ellipse, since this trans-
formation corresponds to a rigid motion. From Eq. (A.1) the x coordinate can
be expanded as

x = r11A cos(ψ) + r12B sin(ψ) + xC (A.2)

An amplitude xA and a phase angle φx are now defined as

xA =
√
r2

11A
2 + r2

12B
2

φx = atan2

(
r11A

xA
,
r12B

xA

) (A.3)
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and, by factoring xA in Eq. (A.2), one obtains

x = xA

[
r11A

xA
cos(ωt) + r12B

xA
sin(ωt)

]
+ xC

= xA [sin(φx) cos(ωt) + cos(φx) sin(ωt)] + xC

= xA sin(ωt+ φx) + xC

(A.4)

which is equivalent to the expression for x given by Eq. (3.1); the same proof
applies for the y and z coordinates. Note that, by following the same steps
backwards, it can also be shown that all trajectories defined by Eq. (3.1) are,
indeed, ellipses.

It is also worth noting that, in Eq. (3.1), one could subtract a phase angle
φd from each of the arguments of the sine functions and still obtain the same
ellipse. For instance, by setting φd = φx, one obtains


x

y

z

 =


xC

yC

zC

+


xA sin(ψ)

yA sin(ψ − φxy)
zA sin(ψ + φzx)

 (A.5)

where φxy and φzx have been defined in Eqs. (3.15). Thus, 9− 1 = 8 indepen-
dent parameters (two phase angles, the coordinates of center C and the three
motion amplitudes xA, yA, zA) are needed to geometrically define an elliptical
trajectory, plus the frequency ω.

A.2 Proof of properties in Sec. 3.3
Here the results mentioned in Sec. 3.3 about the admissible zone for the center
C of the trajectory will be proven.

To give the inequalities λzi > 0, i ∈ {1, 2, 3} a geometric interpretation,
consider for instance the first one: from the definitions in Eqs. (1.3), (3.2)
and (3.3), one can obtain λz1 as a function of C, namely

λz1(xC , yC) = ya23xC − xa23yC + (xa3ya2 − xa2ya3) > 0 (A.6)
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Figure A.1: Scheme of the ellipse in a “local” (O′x′y′z′) and “global” (Oxyz) co-
ordinate frame.

This is recognized as a linear inequality in two variables defining a half-
plane in the xC − yC plane, the border of which is the line l1 defined by
λz1(xC , yC) = 0. One then finds that λz1(xa2, ya2) = λz1(xa3, ya3) = 0; more-
over, λz1(xa1, ya1) = −c > 0. l1, then, passes through the projections of A2

and A3 on plane x− y (which are vertexes of triangle Txy) and the half plane
defined by λz1 > 0 contains the remaining vertex of Txy (the projection of A1),
together with all points on the same side of said vertex with respect to l1.

Similar results can be found when checking that λz2 and λz3 are both
greater than zero. The intersection of the three half-planes thus defined is the
triangle Txy; if (xC , yC) is within Txy, then, all three inequalities are satisfied.

A.3 Proof of properties in Sec. 3.5
First, it is useful to prove that

Ci,vDi,c − Ci,cDi,v = Ei,aEi,c (A.7)

By substituting the definitions in Eq. (3.16) into Eq. (A.7), one finds, after
some simplification,

Ci,vDi,c − Ci,cDi,v − Ei,aEi,c = −gxAyA(vkj · λi) sin(φxy)

= −gxAyA[vkj · (vCj × vCk)] sin(φxy)
(A.8)
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where the definition of λi from Eq. (3.3) was used in the last identity. Now,
looking at the definitions in Eq. (3.2) and Eq. (1.3), it can be seen that the
three vectors vkj = aj−ak, vCj = aj−pC and vCk = ak−pC are all contained
in the same plane, passing through points C, Aj and Ak: thus, the triple vector
product vkj · (vCj × vCk) is zero, which proves Eq. (A.7).

By substituting Eq. (3.19) into ∆i = β2
i − αiγi as defined in Sec. 3.4, and

simplifying, one obtains

∆i = (C2
i,v +D2

i,v)E2
i,c − (Ci,vDi,c − Ci,cDi,v)2

= (C2
i,v +D2

i,v − E2
i,a)E2

i,c = γi,ψ̈E
2
i,c

(A.9)

where Eq. (A.7) has been used in the last equality. If the center C of the
elliptical trajectory under consideration is in the SEW, then ∆i > 0 (see Sec.
3.4) and thus γi,ψ̈ = C2

i,v +D2
i,v − E2

i,a > 0.

To prove that Ωi is an ellipse in the ψ̈−w plane, consider first its boundary
∂Ωi, as defined by αiw2 +2βiw+γ′i

(
ψ̈
)

= αiw
2 +2βiw+ ψ̈2γi,ψ̈+γi = 0. This is

a quadratic curve in the ψ̈−w plane; to verify that it is an ellipse, it is useful
to define

∆Ω,i =

∣∣∣∣∣∣∣∣∣
γi,ψ̈ 0 0
0 αi βi

0 βi γi

∣∣∣∣∣∣∣∣∣
JΩ,i =

∣∣∣∣∣∣γi,ψ̈ 0
0 αi

∣∣∣∣∣∣
IΩ,i = γi,ψ̈ + αi

(A.10)

As known from plane geometry, Ωi is an ellipse if and only if ∆Ω,i 6= 0, JΩ,i > 0
and ∆Ω,i/IΩ,i < 0. It is easy to see that ∆Ω,i = γi,ψ̈(αiγi − β2

i ) = −γi,ψ̈∆i < 0
since it has been assumed that the center of the trajectory is in the SEW, so
that ∆i > 0 and consequently γi,ψ̈ > 0.

Assume first αi > 0: in this case JΩ,i = γi,ψ̈αi > 0 and also IΩ,i > 0, so the
conditions that define an ellipse are fulfilled.

If instead αi = 0 (remember that αi ≥ 0), then βi = 0, as stated in Sec. 3.4.
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A.3. Proof of properties in Sec. 3.5

Also, recall that in this case the trajectory is contained in the plane through
points C, Aj and Ak, so Ei,a = vkj ·ne = 0, since vkj = aj − ak is contained in
this plane while ne is the vector normal to the plane containing the trajectory.
Thus, γi,ψ̈ = C2

i,v + D2
i,v − E2

i,a = αi − E2
i,a = 0 and the condition that defines

Ωi degenerates to γi < 0: if this condition is satisfied, then Ωi coincides with
the whole plane ψ̈ − w.

When ψ̈ becomes large enough, the admissible range of w degenerates into
a single point; this happens for

ψ̈2 = ψ̈2
i,e = ∆i/(αiγi,ψ̈) (A.11)

as can be seen by setting ∆′i = ∆i − αiψ̈
2γi,ψ̈ = 0 and solving for ψ̈2. The

admissible area Ωi is then contained within the limits −ψ̈i,e < ψ̈ < ψ̈i,e.

It has been previously required (in Sec. 3.5) that Ei > 0; it can now be
shown that this is in fact the case for every point in Ωi. Indeed, Eq. (3.14)
yields

Ei = Ei,aψ̈
2 + Ei,c > 0⇒


ψ̈ > ψ̈i,l, Ei,a > 0

ψ̈ < ψ̈i,l, Ei,a < 0
(A.12)

with

ψ̈i,l = −Ei,c/Ei,a,


ψ̈i,l < 0, Ei,a > 0

ψ̈i,l > 0, Ei,a < 0
(A.13)

Here, the property that Ei,c = λzig > 0 when C is in the SEW (see Sec. 3.3)
has been used. From Eqs. (A.12) and (A.13), it is found that if

∣∣∣ψ̈∣∣∣ < ∣∣∣ψ̈i,l∣∣∣ then
Ei > 0, as desired. However, Ωi is strictly contained in the range thus found,
since

∣∣∣ψ̈i,e∣∣∣ < ∣∣∣ψ̈i,l∣∣∣. This is seen by squaring both sides of the inequality and
using the definitions from Eqs. (A.11) and (A.13):

ψ̈2
i,e < ψ̈2

i,l ⇒
γi,ψ̈E

2
i,c

γi,ψ̈
(
C2
i,v +D2

i,v

) < E2
i,c

E2
i,a

(A.14)

where the equivalent definition of ∆i from Eq. (A.9) and the definition of αi
from Eq. (3.19) have been used. After simplification, this finally reduces to
C2
i,v +D2

i,v − E2
i,a = γi,ψ̈ > 0, which has already been proved.
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𝚽𝑥,𝑖 
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2𝜔

𝜔 

∠𝚽𝑖 +ω t

Figure A.2: The vectors Φx,i, Φy,i and Φz,i, with their sum Φi, rotate in the
qi,V /(2ω)− qi,W plane at angular velocity ω.

A.4 Proof of properties in Subsec. 3.6.1
To find the extreme values of qi,W and qi,V , which depend on t, remember that
a sinusoidal function having frequency ω can be seen as the projection along
a fixed line of a phase vector rotating with angular velocity ω. Note that qi,W
and qi,V from Subsec. 3.6.1 are defined respectively as sums of sinusoidal and
cosinusoidal functions (see Eq. (3.29), where λi is a constant vector, and pd, ṗd
from Eq. (3.1) are respectively a sine and a cosine function of angle ψ = ωt).
Thus, they can be expressed as the projections of a rotating phase vector Φi

along two orthogonal axes (here it is convenient to consider qi,V /(2ω) instead
of qi,V for dimensional homogeneity), with Φi = Φx,i + Φy,i + Φz,i (see Fig.
A.2) and where such vectors have the following magnitudes and phases:

‖Φx,i‖ = |xAλxi|, ∠Φx,i = φx + π/2[1 + sgn(λxi)]

‖Φy,i‖ = |yAλyi|, ∠Φy,i = φy + π/2[1 + sgn(λyi)]

‖Φz,i‖ = |zAλzi|, ∠Φz,i = φz + π/2[1 + sgn(λzi)]

(A.15)

(here, ∠ (•) denotes the phase angle). Then one has qi,V /(2ω) = ‖Φi‖ cos(∠Φi+
ωt) and qi,W = ‖Φi‖ sin(∠Φi+ωt), which can be verified by substitution. From
this, the extrema in Eq. (3.30) are proved.

The components of Φi, in the qi,V /(2ω) − qi,W plane, are respectively
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A.5. Proof of properties in Sec. 5.3

‖Φx,i‖ cos(∠Φx,i)+‖Φy,i‖ cos(∠Φy,i)+‖Φz,i‖ cos(∠Φz,i) and ‖Φx,i‖ sin(∠Φx,i)+
‖Φy,i‖ sin(∠Φy,i)+‖Φz,i‖ sin(∠Φz,i); these are respectively Ci,a andDi,a, which
again can be found by substitution. This proves Eq. (3.31).

A.5 Proof of properties in Sec. 5.3
It is known from the properties of vector q-norms that the following holds for
any x ∈ Rn [67, p. 69]:

0 ≤ ‖x‖2/
√
n ≤ ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖∞

√
n (A.16)

It then holds

‖Jx‖∞
‖x‖∞

≤ ‖Jx‖2

‖x‖∞
≤
√
m‖Jx‖∞
‖x‖∞

(A.17a)

‖Jx‖2

‖x‖2
≤ ‖Jx‖2

‖x‖∞
≤ ‖Jx‖2

‖x‖2/
√
n

(A.17b)

respectively applying inequalities (A.16) on the numerator and on the denom-
inator of ‖Jx‖2/‖x‖∞ (for the second inequality in (A.17a), note that Jx has
m terms).

The definition of subordinate matrix norms from [67, p. 72] is reported
here:

‖J‖q,s = sup
x 6=0

‖Jx‖s
‖x‖q

, J ∈ Rm×n (A.18)

Considering the supremum of each term in inequalities (A.17), the inequali-
ties (5.7) are proven (to simplify notation, here ‖•‖q,q is noted ‖•‖q).

Regarding the claims in Sec. 5.3 on the behavior of the indexes near sin-
gularities, the proof of the statements on page 104 is proven in the following
(see Tab. A.1 for a diagram of the possible cases).
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∃f ∈ R (Fx,p)
⋂
R (Fx,φ)

f 6= 0 (A)
R (Fx,p)

⋂
R (Fx,φ) = {0}
(B)

σr,q,s →∞, σp,q,s →∞ rank (Fx,φ) = 3
(1)

rank (Fx,φ) < 3
(2)

rank (Fx,p) = 3
(1)

σp,q,s finite
σr,q,s finite

σp,q,s finite
σr,q,s →∞

rank (Fx,p) < 3
(2)

σp,q,s →∞
σr,q,s finite

σp,q,s →∞
σr,q,s →∞

Table A.1: Schematic of the possibilities for a Type 2 singularity.

The possible cases are:

(A) There is a nonzero vector f which belongs at the same time to R (Fx,p)
and to R (Fx,φ). In this case, there must be nonzero vectors dp, dφ ∈ R3

such that f = Fx,pdp = Fx,φdφ; setting dx =
[
dpT dφT

]T
, one has

Fxdx = f − f = 0, so matrix Fx clearly cannot have full column
rank. Eq. (5.8) in general must have at least one solution dp = dp0,
dφ = dφ0, dθ = dθ0 having dθ0 6= 0 (unless Fx = 0, which is easily
ruled out in practice). This equation can be normalized by dividing by
‖dθ0‖q: one has Fx,pdp̂0 + Fx,φdφ̂0 = −Fθdθ̂0, where dp̂0 = d0/‖dθ0‖q,
dφ̂0 = dφ0/‖dθ0‖q and dθ̂0 = dθ0/‖dθ0‖q. The “base” solution defined
by dp̂0, dφ̂0 and dθ̂0 fulfills at the same time Eq. (5.8) and the condi-
tion ‖dθ̂0‖q = 1. Combining this solution with the dx previously found,
one gets Fx,p (dp̂0 + λdp) + Fx,φ

(
dφ̂0 − λdφ

)
= −Fθdθ̂0, which is yet

another solution of Eq. (5.8) that respects the bound on the norm of dθ;
note that λ can be any real number. In this case, the norm of the position
displacement is ‖dp‖s = ‖dp̂0 + λdp‖s ≤ ‖dp̂0‖s + λ‖dp‖s, which can
clearly be made as large as desired by taking a large enough λ: therefore,
the translational sensitivity σp,q,s goes to infinity. A similar reasoning
holds for the translational sensitivity σr,q,s.

(B) The case in which the subspaces spanned respectively by the columns
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A.5. Proof of properties in Sec. 5.3

of Fx,p and of Fx,φ have no intersection (besides the null vector) can be
subdivided in 4 sub-cases:
(B.1.1) If both Fx,p and Fx,φ have full rank, matrix Fx =

[
Fx,p Fx,φ

]
also has full column rank and the robot is not in a Type 2
singularity; to see this, note that R (Fx,p)

⋂
R (Fx,φ) = {0}

implies rank (Fx) = rank (Fx,p) + rank (Fx,φ) = 6 [20, p. 121,
Fact (2.11.4)]. Therefore, the sensitivity indexes can be written
as matrix norms (see Eqs. (5.5)), as long as the robot is not
redundantly-actuated.

(B.1.2) If Fx,φ has full rank, but Fx,p doesn’t, one can find a vector
dp∗ for which Fx,pdp∗ = 0. In general, it is possible to find
at least one “base” solution dp = dp̂0, dφ = dφ̂0 and dθ =
dθ̂0 for Eq. (5.8) that satisfies ‖dθ̂0‖q = 1 (see previous point
(A)). Combining this solution with dp∗, an class of infinitely
many solutions can be found in the form Fx,p (dp̂0 + λdp∗) +
Fx,φdφ̂0 = −Fθdθ̂0 where the norm of the displacement dp̂0 +
λdp∗ can be made as large as desired: therefore, σp,q,s tends to
infinity in this case, too.
To see that σr,q,s remains finite (even if the robot is in a singu-
larity) consider again Eq. (5.8), rearrange and take the norm of
both sides: one obtains ‖Fθdθ‖s = ‖− (−Fx,pdp) +Fx,φdφ‖s. It
must be ‖Fx,φdφ− (−Fx,pdp)‖s ≥ ‖Fx,φdφ− (−Fx,pdp)‖2/

√
n

(where n is the number of rows in both Fx,p and Fx,φ): this
can be proven from the general properties of matrix q-norms
(see [20, p. 545, Eq. (9.1.6)] and [67, p. 69, Eq. (2.2.6)]. Now,
vector Fx,pdp belongs to the subspace R (Fx,p), while in gen-
eral vector Fx,φdφ doesn’t; call Pp the projector matrix onto
R (Fx,p), a n×n symmetric matrix (which exists and is unique,
see [20, p. 175, Fact (3.5.1)]) such that R (Pp) = R (Fx,p)
and PpPp = Pp. Then, ‖Fx,φdφ − (−Fx,pdp)‖2 ≥ ‖Fx,φdφ −
PpFx,φdφ‖2, as PpFx,φdφ is the best approximation to Fx,φdφ

over the subspace R (Fx,p). Finally, the set of vectors Fθdθ
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with ‖dθ‖q = 1 is bounded, as the set of possible dθ’s is it-
self bounded [20, p. 571, Fact (9.8.1)]: therefore, there exists an
fmax > 0 such that fmax ≥ ‖Fθdθ‖s for any dθ. Taken together,
these facts imply fmax ≥ ‖(Fx,φ −PpFx,φ) dφ‖2/

√
n. Suppose

the matrix Fx,φ−PpFx,φ does not have full column rank: there
must then be a nonzero vector dφ∗ such that (Fx,φ −PpFx,φ) dφ∗

= 0. However, this implies that the vector Fx,φdφ
∗ in the sub-

space R (Fx,φ) also belongs to R (Pp) = R (Fx,p), against the
original assumption (B)—see again Tab. A.1. Therefore, Fx,φ−
PpFx,φ has full rank and thus there exists a strictly positive
real l̂ such that ‖(Fx,φ −PpFx,φ) dφ‖2 ≥ l̂‖dφ‖2 [20, p. 579,
Fact (9.8.43)]. Finally, this proves that fmax

√
n/l̂ ≥ ‖dφ‖2, so

‖dφ‖2 (and thus σr,q,s) remains bounded.
(B.2.1) If Fx,p has full rank, but Fx,φ doesn’t, then σr,q,s → ∞ while

σp,q,s remains finite. The proof is conceptually identical to the
one for case (B.1.2) and will not be repeated here.

(B.2.2) If Fx,p and Fx,φ both have rank less than 3, a reasoning similar to
the one seen for cases (A) and (B.1.2) shows that it is possible
to find vectors in the form dp̂0 + λdp∗ (where dp̂0 is part of
a “base” solution to Eq. (5.8), λ is any scalar and dp∗ is in
the kernel of Fx,p) that have arbitrarily large norm. Therefore,
σp,q,s →∞; similarly, one can prove that σr,q,s →∞.

A.6 Full expressions of quantities in Sec. 5.4
Here some of the variables from Sec. 5.4 will be defined. First, introduce

λe,ij = ei × ej, πi = ei × bi, πij = πi − πj (A.19)

from which one also gets

det(Msup) = det
([

e1 e3 e5

])
= e1 × e3 · e5 (A.20a)

det(A) = −τtot,12τtot,34τtot,56 π12 × π34 · π56︸ ︷︷ ︸
πA

(A.20b)
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so det(A) = 0 if and only if πA = 0, as stated in Sec. 5.4. Then, define

Jp,1 = + λe,51(π56 · π3 × π4) + λe,13(π34 · π6 × π5) (A.21a)

+ λe,35(π2 · π56 × π34)

Jp,2 =− Jp,1 − λe,35(π12 · π56 × π34) (A.21b)

Jp,3 = + λe,13(π12 · π5 × π6) + λe,35(π56 · π2 × π1) (A.21c)

+ λe,51(π4 · π12 × π56)

Jp,4 =− Jp,3 − λe,51(π34 · π12 × π56) (A.21d)

Jp,5 = + λe,35(π34 · π1 × π2) + λe,51(π12 · π4 × π3) (A.21e)

+ λe,13(π6 · π34 × π12)

Jp,6 =− Jp,5 − λe,13(π56 · π34 × π12) (A.21f)

and

Jr,1 = π56 × π34, Jr,3 = π12 × π56, Jr,5 = π34 × π12 (A.22)

for the general case.

If P is on the midpoint of segments BiBj, as in the special architecture L1

introduced in Sec. 1.5.2.1, it holds bj = −bi, so from (A.19) one has πj = −πi
and thus πij = 2πi and πi × πj = 0 for each pair of cables i, j in the same
parallelogram. Eqs. (A.21) and (A.22) simplify as

Jp,1 = −4λe,35(π1 · π5 × π3) = Jp,2 (A.23a)

Jp,3 = −4λe,51(π3 · π1 × π5) = Jp,4 (A.23b)

Jp,5 = −4λe,13(π5 · π3 × π1) = Jp,6 (A.23c)

and

Jr,1 = 4π5 × π3, Jr,3 = 4π1 × π5, Jr,5 = 4π3 × π1 (A.24)

Also, from (A.20), one gets πA = 8π1×π3 ·π5. One can also define matrix Ă =
[π1,π3,π5], from which the rotational kinematic sensitivity for architecture L1

(as seen in Sec. 5.4) can be derived.
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A.7 Proof of properties in Sec. 5.4
Regarding the computation of σp,∞,2 = max ‖Jpdθ‖2 (for ‖dθ‖∞ = 1) for spe-
cial architecture L1 (see page 107), recall that the maximum of ‖Jpdθ‖2 must
occur for a vector dθ whose entries are all equal to either +1 or −1, that is,
dθ ∈ {−1, 1}6. Multiplying the second matrix in Eq. (5.10a) for any such vec-
tor, the resultant is a 3×1 vector whose entries are any combination (with rep-
etitions) +2, 0 or −2; considering the 1/2 factor in (5.10a), one then seeks the
maximum of ‖M−T

supdθ‖2 for dθ ∈ {−1, 0, 1}3. Since this set contains {−1, 1}3,
where the maximum value ‖M−T

sup‖∞,2 of ‖M−T
supdθ‖2 must occur for ‖dθ‖∞ = 1,

it follows σp,∞,2 = ‖Jp‖∞,2 = ‖M−T
sup‖∞,2, as desired; a similar reasoning applies

to σr,∞,2 = ‖Jr‖∞,2 = ‖Ă−T‖∞,2.

The decoupling between rotational and translational singularities can be
explained in a geometrical fashion, as follows.

• If P is on Π, the equivalent 3-cable robot with attachment points in A∗ij
(Sec. 2.3) is in a singular position, with all three cables in the same plane
Π: thus, it can have an infinitesimal translation dp in a direction normal
to Π without changing the cable lengths and σp,q,s tends to infinity.
However, the rotation is still controlled, as the three vectors nij are in
general not coplanar in this configuration (Sec. 4.2): therefore, σr,q,s is
finite.
• If det(A) = 0, so that P is on Σ, then σr,q,s → ∞, as expected: there is

an uncontrolled rotation dφ even when the cable lengths are fixed. Still,
the behavior of σp,q,s ought to be explained.
First, consider a point O on the EE in the plane Πij through one of
the parallelograms (Fig. A.3). The line rO parallel to the vectors of cable
direction ei = ej and passing through O meets the segment BiBj at point
BO. Due to the geometry of the parallelogram leg, BO, as all points on
BiBj, has a velocity vBO

whose component vBOΠ in Πij is normal to
ei; the component of vBO

not contained in this plane will be denoted as
vBO,n and is normal to Πij (and thus to ei, which is in Πij). Thus, vBO

=
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Figure A.3: A section (in gray) of the EE through plane Πij containing one par-
allelogram. Point O is on the EE, on line rO (parallel to cables i− j).

vBOn + vBOΠ is normal to ei, since it is the sum of two components that
are both normal to ei. Since the attachment points Bi can be modeled as
spherical joints, O can only rotate around BiBj, so the relative velocity
vOn of O with respect to BO is normal to Πij and thus to ei. The absolute
velocity vO = vOn+vBO

ofO, being the sum of two velocities both normal
to ei, has thus zero component along the direction of the cables.
This goes to show that any point on the EE in one of the planes Πij

has zero velocity along the corresponding vector ei. Consider now the
point P : for architecture L, P is on B1B2, B3B4 and B5B6 and thus on
the intersection of Π12, Π34 and Π56. P must have zero velocity along
e1 = e2, e3 = e4 and e5 = e6: these three vectors span the whole of R3

(unless they are coplanar, in which case Msup = 0 and the robot is in
the translational singularity seen in Sec. 4.2) and therefore P has zero
velocity. This goes to show that in a rotational singularity, a robot with
architecture L can have no translation if the cables are kept at a constant
length: therefore, σp,q,s is finite.

It will now be proven that, as stated on page 107, the index σr,∞,2 reaches
its smallest value when the distances bi = ‖bi‖2 from P to Bi are at their
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largest value, for any robot pose. First, notice that the norm of vectors πi
from Eqs. (A.19) can be written as

πi = ‖ei × bi‖2 = ‖ei‖2︸ ︷︷ ︸
=1

‖bi‖2 sin (∠ (ei, bi)) = bi sin (∠ (ei, bi)) (A.25)

where ∠ (ei, bi) is the angle between vectors ei and bi (which clearly does
not depend on bi). The inverse transpose of matrix Ă =

[
π1π̂1 π3π̂3 π5π̂5

]
(where π̂i = πi/πi) can then be written as a function of lengths bi, namely
Ă−T (b1, b3, b5) =

[
l1/b1 l3/b3 l5/b5

]
, where vectors li are as follows:

li = π̂m × π̂k
det

([
π̂1 π̂3 π̂5

])
sin (∠ (ei, bi))

(A.26)

where indexes i, m and k permute as in Eq. (2.16). The aspect to note here is
that vectors li do not depend on bi.

It remains to be proven that the norm of matrix Ă−T has a minimum when
the distances bi are at their maximum. For this, it will first be proven that, for
any A, B ∈ Rn×n and all q, s, t ∈ [1,∞], it holds

‖AB‖q,t ≤ ‖A‖s,t‖B‖q,s (A.27)

Indeed, this is a direct consequence of a known result of induced norms [20,
p. 553, Eq. (9.4.5)].

Now, consider the rotational sensitivity when all bi’s in Ă−T are set to their
maximum value bmax, which in general depends on size and weight consider-
ations (assuming this maximum value is the same for b1, b3 and b5). Since it
holds Ă−T (bmax, bmax, bmax) = Ă−T (b1, b3, b5) diag([b1/bmax, b3/bmax, b5/bmax]),
applying the inequality in (A.27)—with q = ∞, s = ∞, t = 2—one ob-
tains ‖Ă−T (bmax, bmax, bmax)‖∞,2 ≤ ‖Ă−T (b1, b3, b5)‖∞,2 max{b1/bmax, b3/bmax,

b5/bmax} ≤ ‖Ă−T (b1, b3, b5)‖∞,2 = σr,∞,2 (the second inequality follows from
the fact that bi/bmax ∈ [0, 1]). Therefore, ‖Ă−T (bmax, bmax, bmax)‖∞,2 is the
minimum value of the rotational sensitivity, as it was required to prove.

Regarding the claim on the sub-indexes introduced in page 108, a more
general property will be proven here: for any J =

[
JTs JTi

]T
, where Js ∈
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A.7. Proof of properties in Sec. 5.4

Rms×n, Ji ∈ Rmi×n, it holds

max{‖Js‖∞,2, ‖Ji‖∞,2} ≤ ‖J‖∞,2 ≤
√
‖Js‖2

∞,2 + ‖Ji‖2
∞,2 (A.28)

of which inequalities (5.11) are direct consequences. Moreover, Eq. (A.28) also
correlates the index µmax from [151] to the general indexes proposed in this
thesis: from the respective definitions in Eqs. (5.2) and (5.3), it also follows
max{σr,∞,2, σp,∞,2} ≤ µmax ≤

√
σ2
r,∞,2 + σ2

p,∞,2.

To prove inequalities (A.28), first notice that, for any dθ ∈ Rn,

‖Jdθ‖2 =
∥∥∥∥∥∥
Jsdθ

0

+
 0
Jidθ

∥∥∥∥∥∥
2

(A.29)

Using the fact that the two vectors in the second term are orthogonal (as their
dot product is zero) and from the properties of the Euclidean norm [20, p. 564,
Eq. viii)], it then follows

‖Jdθ‖2 =
√
‖Jsdθ‖2

2 + ‖Jidθ‖2
2 (A.30)

Now, the norm ‖J‖∞,2 is the maximum value of ‖Jdθ∗‖2, achieved at somem×
1 vector dθ∗ (withm = ms+mi) for which ‖dθ∗‖∞ = 1. From (A.30), it follows
‖Jdθ∗‖2 =

√
‖Jsdθ∗‖2

2 + ‖Jidθ∗‖2
2 ≤

√
‖Js‖2

∞,2 + ‖Ji‖2
∞,2 (using the fact that

‖Jsdθ∗‖2 ≤ ‖Js‖∞,2 and ‖Jidθ∗‖2 ≤ ‖Ji‖∞,2, for any dθ∗ having ‖dθ∗‖∞ = 1).
The second inequality in (A.28) then follows. To prove the first inequality,
notice that it must be ‖Js‖∞,2 = ‖Jsdθ∗s‖2 for some dθ∗s having ‖dθ∗s‖∞ =
1. Then, again by (A.30), it must be ‖Jdθ∗s‖2 =

√
‖Jsdθ∗s‖2

2 + ‖Jidθ∗s‖2
2 ≥

‖Jsdθ∗s‖2 = ‖Js‖∞,2. Since, for any dθ∗s having unitary ∞-norm, it holds
‖J‖∞,2 ≥ ‖Jdθ∗s‖2, it follows ‖J‖∞,2 ≥ ‖Js‖∞,2; the fact that ‖J‖∞,2 ≥ ‖Ji‖∞,2
can be proved analogously.
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