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ABSTRACT 

One of the most complex and tough challenges that the livestock industry will face in the 

next future is to fulfill the food requirement of a growing world population. In addition, the limited 

availability of arable land, continuous climate changes, the increasing cost of agricultural 

commodities used for bio-fuel production, as well as animal welfare and environmental impact 

concerns will inevitably strengthen the importance of replying to the increasing food demand in an 

efficient and sustainable way. As feeding represents the greatest cost in livestock, improving the 

exploitation of nutrients provided with the diet will positively impact on the overall productive 

efficiency. In livestock, feed efficiency (FE) could be roughly defined as the ability of an animal to 

convert feed into food outcomes and, in the specific case of broiler chickens, it represents the 

capacity of converting ingested feed into body mass. Due to the moderate heritability of FE-related 

parameters, important results have been obtained through the application of selective breeding 

programs. Alongside with genetic aspects, a better knowledge of the nutritional and environmental 

requirements of broiler chickens significantly contributed to the improvements in FE as well. 

However, the selection methods aimed at improving FE in modern fast-growing broiler lines were 

mostly performed without considering the potential alterations induced on the molecular 

mechanisms and on the physiological/metabolic features of the animals, resulting in undesirable 

side-effects such as an increased proneness to obesity and muscle disorders, as well as an 

hyperphagic feeding behavior. In addition, it has been reported that biological limits and animal 

welfare concerns will limit further genetic improvements of FE in broilers, suggesting that the 

biological potential for genetic improvement is minimal compared to the progresses already 

obtained. Therefore, a more detailed comprehension of nutritional and metabolic aspects involved 

in FE is necessary to continuously improving this trait while minimizing drawback effects.  

From a homeostatic perspective, FE could be considered as the net result among energy 

intake, which is determined by the voluntary feed intake and its complex regulatory mechanisms, 

and energy expenditure, which is affected by the maintenance metabolism, the rate of anabolic 
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processes and the intermediary metabolisms in different tissues and organs. Several external factors, 

such as diet, diseases, and environmental conditions, are also involved in the phenotypic expression 

of FE. In particular, the diet can be considered one of the most important factors affecting the rate 

of the intermediary metabolisms in animal tissues (muscle, adipose tissue, liver, etc.) which can 

influence overall FE in broilers. In addition, also the possible interaction between dietary treatments 

and animal’s genetic background should be considered when studying FE.  

In this scenario, FE appears as a very complex and multifaceted trait regulated by intrinsic 

(e.g., physiological, metabolic and immunological aspects of the animal) and extrinsic factors (e.g., 

dietary treatments, environmental conditions, or diseases) that must be taken into account in a 

holistic approach. Indeed, any nutritional treatment will inevitably integrate with the metabolic 

aspects of the animal and hence a detailed comprehension of these complex interactions appears 

necessary for further improvements of FE. This is currently possible by the development of several 

analytical techniques, identified as omics technologies, able to assess the global variation of genes, 

proteins and metabolites expression levels in animal tissues in response to different stimuli.  

Therefore, the present PhD program aimed at evaluating nutritional and physiological 

aspects involved in overall productivity of broiler chickens, with special regard to FE, combining 

both traditional and innovative approaches. Two main researches were included in this final 

dissertation. In the first trial it was investigated whether the currently adopted dietary arginine to 

lysine (Arg:Lys) ratios are sufficient to meet the modern broiler requirement in arginine, an 

essential amino acid involved in important functions in poultry. The first study aimed, therefore, to 

evaluate the effects of the dietary supplementation of L-arginine in a commercial broiler diet on 

productive performance, with special regard to FE, breast meat quality attributes, incidence and 

severity of breast muscle myopathies and foot pad dermatitis (FPD), and plasma and muscle 

metabolomics profile in fast-growing broilers. A total of 1,170 1-d-old Ross 308 male chicks was 

divided in two experimental groups of 9 replicates each fed either a commercial basal diet (CON, 

digestible Arg:Lys ratio of 1.05, 1.05, 1.06, 1.07 in each feeding phase, respectively) or the same 
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basal diet supplemented on-top with crystalline L-arginine (ARG, digestible Arg:Lys ratio of 1.15, 

1.15, 1.16, 1.17, respectively). Productive parameters, such as body weight (BW), daily feed intake 

(DFI) and feed conversion ratio (FCR), were determined on a pen basis at the end of each feeding 

phase (12, 22, 33, 43 d). At slaughter (43 d), the incidence and severity of FPD and breast 

myopathies were assessed, while plasma and breast muscle samples were collected and analyzed by 

proton nuclear magnetic resonance-spectroscopy. The dietary supplementation of arginine 

significantly reduced cumulative FCR compared to the control diet at 12 d (1.352 vs. 1.401, 

P<0.05), 22 d (1.398 vs. 1.420; P<0.01) and 33 d (1.494 vs. 1.524; P<0.05), and also tended to 

improve it in the overall period of trial (1.646 vs. 1.675; P=0.09). BW was significantly increased in 

ARG compared to CON group at 33 d (1,884 vs. 1829 g; P<0.05). No significant effect was 

observed on meat quality attributes, breast myopathies and FPD occurrence. ARG birds showed 

significantly higher plasma concentration of arginine and leucine, and lower of acetoacetate, 

glutamate, adenosine and proline. Arginine and acetate concentrations were higher, whereas acetone 

and inosine levels were lower in the breast of ARG birds (P<0.05). Based on our experimental 

conditions, the Arg:Lys ratios currently adopted at least in Countries where the animal protein 

sources are not allowed in feed formulation (i.e. European Union) appear to be inadequate to exploit 

the maximum productive potential of modern fast-growing broilers. The Arg:Lys ratios tested in 

this trial had positive effects on FE without showing any negative implication on meat quality 

attributes, foot pad condition and incidence of breast meat abnormalities. Furthermore, plasma and 

muscle metabolome showed significant alterations in response to the arginine supplementation. 

According to this analysis, the improvements in FE observed in the supplemented group might be 

likely ascribed to a potential modulatory effect of arginine on energy and protein metabolism and 

hence on the overall energy homeostasis in broiler chickens.  

The second study was undertaken to characterize productive traits and intestinal 

transcriptomic profile of two fast-growing chicken hybrids in order to better understand the 

metabolic dynamics occurring in a key organ such as the small intestine, which is involved in 
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important immunological, endocrine, and regulatory functions able to influence FE, feeding 

behavior, and overall energy homeostasis in broilers. A total of 1,170 one-day-old female chicks (n 

= 585 per genotype) were weighed and randomly divided into 18 pens (9 replications/group). Both 

the groups received the same commercial diet (starter, 0-9 d; grower I, 10-21 d; grower II, 22-34 d; 

and finisher, 35-43 d). BW, DFI and FCR were determined on a pen basis at the end of each feeding 

phase. At processing (43 d), the incidence and severity of FPD were evaluated on all the processed 

birds and ileum mucosa was collected from 1 bird/replication. Total mRNA was extracted to 

perform microarray analysis (Chicken Gene 1.1
ST

 Array Strip) and an exploratory pathway analysis 

was then conducted (Gene Set Enrichment Analysis software). The two genotypes showed different 

growth patterns throughout the study. HA birds exhibited higher BW and better FCR than HB after 

9 d (228 vs. 217 g and 1.352 vs. 1.419, respectively, P<0.05). At 21, 34 and 43 d, HB birds reported 

higher BW (807 vs. 772 g; 1,930 vs. 1,857 g and 2,734 vs. 2,607 g, respectively; P<0.01), DFI (74.9 

vs. 70.6 g/bird/d, P<0.01; 144.4 vs. 139.6 g/bird/d, P=0.06; and 196.5 vs 182.4 g/bird/d, P<0.01) 

and similar FCR compared to HA ones. HB group showed a higher percentage of birds with no 

FPD (75 vs. 48%; P<0.001). Regarding gene expression profile, a total of 114 and 179 gene sets 

resulted significantly enriched in the ileum mucosa of HA and HB broilers, respectively. In the HA 

group, a high percentage of biological gene sets involved in cellular energy metabolism and 

mitochondria structure and functionality was observed (43 and 23% of the total, respectively). 

Other gene sets that were significantly enriched in the ileum mucosa of HA birds were related to 

ribosome structure and protein synthesis (11%), cell structure and integrity (8%), as well as 

antioxidant and detox mechanisms (6%). On the other hand, a significant enrichment in gene sets 

related to the immune system activation (28% of the total) was observed in the ileum mucosa of the 

HB birds. Moreover, an increased expression of gene sets involved in signal transduction and cell 

signaling (20%), DNA remodeling and replication – chromatin/histone modification (15%), cell 

activation, migration and adhesion (12%), inflammation (7%) and bone remodeling (4%) was 

detected in the HB group. Taken together, the transcriptomic analysis revealed that HA broilers 
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might be characterized by a healthier condition of the intestinal mucosa likely supported by an 

increased mitochondria functionality and antioxidant capacity. On the other hand, HB chickens 

reported a potential inflammatory condition in the gut coupled with a marked activation of the 

immune system. The factors involved in the onset of this condition, as well as the determinants of 

the differences observed in feeding behavior in the two genotypes, are not clear and other scientific 

insights are necessary to better understand these aspects.  

Overall, the results obtained combining both traditional and innovative techniques 

(transcriptomics and metabolomics) in a holistic approach can shed some light on important 

nutritional and molecular aspects involved in productive efficiency of broiler chickens, confirming 

the usefulness of these analytical platforms in investigating the molecular mechanisms in response 

to dietary treatments or associated with different genetic backgrounds in poultry. A better and 

detailed knowledge regarding nutritional and metabolic features of modern fast-growing broiler 

chicken hybrids may allow an optimization of productive strategies to efficiently sustain the 

increasing demand of poultry meat while improving animal welfare, product quality, and 

environmental sustainability.  
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1. INTRODUCTION 

1.1. Productive efficiency in broiler chickens: overview of classical aspects and 

innovative approaches 

According to the FAO estimates (FAO, 2009), world’s population is going to reach 9.1 

billion in 2050, 34% higher than today. In order to fulfill the food requirement of this growing 

population, global food production (net of food used for biofuels) must rise by about 70%, which 

means that annual cereal and meat production need to reach approximately 3 billion and 470 million 

tons, respectively (FAO, 2009). In addition, the limited availability of arable land, as well as climate 

changes and the increased utilization of agricultural commodities for bio-fuel production, will 

increase the pressure on the agriculture production system posing serious risks regarding food 

security and availability in the next future. Therefore, an appropriate and efficient use of the 

agricultural commodities is necessary to improve food production and sustainability, to reduce 

environmental impact and pollution, as well as to guarantee food supply, both from a qualitative 

and quantitative point of view, to an increasing world population (FAO, 2009).  

Among livestock, broiler chickens showed the highest efficiency in converting feed into 

body weight (Willems et al., 2013) which is a fundamental aspect for maintaining a sustainable 

agriculture (Dridi et al., 2015). In addition, poultry meat is highly appreciated from different classes 

of consumers as indicated by the continuous increase in its consumption from 1970 to today (FAO, 

2013), which is likely ascribable to its healthy profile (high protein, low fat, balanced n-6 to n-3 

PUFA ratio, low levels of sodium and cholesterol), its relatively low price, and the absence of 

religious limitations related to its consumption (Petracci et al., 2015).  

Feed efficiency (FE) could be roughly defined as the ability of an animal to convert feed 

into food outcomes (e.g., meat, eggs, milk, etc.) and therefore it represents the productive parameter 

which correlates inputs to outputs. Among the substantial and different challenges that the poultry 

industry is currently facing, improving FE probably represents the most important one since up to 

70% of total production costs is given by feed. In broilers, FE represents the capacity of the animal 



10 
 

to convert feed into body mass. Animals considered to have a better FE typically show lower 

proportion of feed intake to body weight gain (Willems et al., 2013). FE could be assessed using 

different parameters such as feed conversion rate (FCR, also referred as gross efficiency), which 

represents the ratio between feed intake and body weight gain for a specific period of growth, or 

residual feed intake (RFI) (Koch et al., 1963), which is the variation between actual and expected 

feed intake of an animal based on the estimated requirement for its maintenance and 

growth/production (Aggrey et al., 2010). Therefore, the lowest FCR and RFI values, the more 

efficient the animal. Recently, other alternative measures of FE such as residual maintenance 

energy (Romero et al., 2009), residual gain, and residual intake and gain (Romero et al., 2009; 

Berry and Crowley, 2012) have been proposed. However, FCR and RFI are still the most used 

parameters to express FE in poultry (Dridi et al., 2015). It should be noted that FCR and RFI 

represent different strategies for the genetic improvement of FE, each one with its advantages and 

drawbacks. Indeed, FCR could be considered as a composite trait, including both feed intake and 

daily weight gain, while RFI is based only on the measurement of feed consumption. Considering 

practical aspects, both FCR and RFI require individual feed intake measurement, which is not easily 

assessable in field conditions unless using individual cages or automated electronic feeding systems 

(Willems et al., 2013). Estimated FCR and RFI heritability coefficients range from 0.47 to 0.51 and 

0.45 to 0.46 during 28-35 d of bird age, and from 0.41 to 0.43 and 0.42 to 0.43 during 35-42 d, 

respectively (Aggrey et al., 2010), indicating a moderate heritability for FE parameters. Therefore, 

important results have been obtained through the application of selection programs aimed at 

improving FE in broilers (Siegel, 2014), resulting in a 50% reduction of FCR over the last 50 years 

(Zuidhof et al., 2014). Similarly, comparing breeding lines from 1957 and 1991, significantly 

improvements in FCR (from 3.00 to 2.04) were observed at both constant age and weight 

(Havenstein et al., 1994a; Emmerson, 1997). Nevertheless, a better knowledge of the nutritional and 

environmental requirements of broiler chickens significantly contributed to the improvements in FE 

as well. Overall, it was estimated that from 85 to 90% of the improvements in FE in broilers could 
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be related to genetics, while the remaining part to a better comprehension of their environmental 

and nutritional needs (Sherwood, 1977; Havenstein et al., 1994a,b, 2003a,b). However, Tallentire et 

al. (2018) recently reported that the artificial selection for efficiency in modern broiler chickens will 

inevitably face biological limits and animal welfare concerns. Based on their estimates, they 

predicted that the biological potential for genetic improvements is minimal compared to the 

progresses already obtained (Tallentire et al., 2018), suggesting that a more detailed comprehension 

of environmental factors, such as nutritional aspects, may play a much more important role for 

further improvements of FE in broiler chickens. In addition, the selection methods finalized at 

improving FE were mostly performed without considering the potential changes induced on the 

molecular mechanisms and on the physiological/metabolic features of broilers (Dridi et al., 2015). 

Consequently, alongside with the improvements in feed efficiency, undesirable changes have been 

observed in modern fast-growing broiler lines, such as an increased proneness to obesity and 

muscle disorders as well as a hyperphagic feeding behavior (Zampiga et al., 2018).  

From a homeostatic perspective, FE could be considered as the net result among energy 

intake, which is determined by the voluntary feed intake and its complex regulatory mechanisms 

(Richards, 2003; Richards and Proszkowiec-Weglarz, 2007), and energy expenditure, which is 

affected by the maintenance metabolism, the rate of anabolic processes and the intermediary 

metabolisms in different tissues and organs (Zampiga et al., 2018). Several external factors, such as 

diet, diseases, and environmental conditions, are also involved in the phenotypic expression of FE 

(Zampiga et al., 2018). An overview of the factors affecting FE in broiler chickens is shown in 

Figure 1.1.  
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Figure 1.1. Overview of the factors affecting feed efficiency in broiler chickens. 

 

 

In particular, diet can be considered one of the most important factors affecting the rate of 

intermediary metabolisms in animal tissues (muscle, adipose tissue, liver, etc.) which can influence 

overall FE in broilers. In addition, also the possible interaction between dietary treatments and 

animal’s genetic background should be considered.  

According to the scenario described by Tallentire et al. (2018), a much more detailed 

comprehension of the environmental and physiological factors involved in FE, both applying 

traditional and innovative approaches, appears necessary to continuously improving this trait as 

well as to promote the sustainability of the whole production system. This is currently possible by 

the development of several analytical techniques, identified as omics technologies, able to assess 

the global variation of genes, proteins and metabolites expression levels. These analytical platforms 

take advantage from the extraordinary results obtained by the animal genome sequencing in the past 
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decade (Zampiga et al., 2018). Indeed, whereas genomic information remains constant during the 

lifespan of an animal, gene products such as proteins and metabolites change their expression levels 

in a rapid and dynamic manner being regulated by a plethora of different environmental and 

physiological factors. Transcriptomics, proteomics and metabolomics are the main omics 

technologies currently used to investigate the expression profile of genes, proteins, and metabolites, 

respectively. Briefly, transcriptomic aims to identify the expression levels of genes in mRNA 

transcripts in response to different environmental stimuli or during specific pathophysiological 

conditions, as well as to identify genes underlying specific traits. Northern blotting, real-time 

quantitative reverse transcription PCR (RT-PCR), microarray and RNA-sequencing (RNA-seq) are 

the main analytical platforms currently applied in transcriptomics studies. However, it’s known that 

the mRNA levels in a cell do not necessarily reflect those of the corresponding protein. Therefore, it 

might be useful to study the proteome, which is defined as the global set of proteins and all their 

post-translation modifications expressed in a cell/tissue/organ at a given time during specific 

conditions (Liebler, 2001; Twyman, 2013). Due to the wide differences in chemical and physical 

properties of proteins, and because no amplification method is provided for them, proteomic studies 

mainly rely on several chromatographic and electrophoretic methods to separate proteins (Picard et 

al., 2010), which can be subsequently identified using mass spectrometry (MS) combining soft-

ionization techniques with different mass analyzers (Soares et al., 2012). Other analytical 

techniques available for proteins are nuclear magnetic resonance (NMR) approaches or 

immunological methods such as Western blot. Finally, metabolomics represents the quali-

quantitative study of a wide range of small biological metabolites (Adamski and Suhre, 2013), 

either deriving from the genome expression (endogenous metabolites) or not (e.g., xenobiotic 

metabolites, such as environmental pollutants or drugs) (Junot et al., 2014). Usually, different 

biological samples can be analyzed through NMR or MS approaches in order to identify metabolites 

showing differential expression in relation to different conditions or stimuli (e.g., diseases or dietary 

treatments) or to discover biomarkers useful for discriminating animals or animal products with 
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different characteristics (Fontanesi, 2016). Although each of the above-mentioned analytical 

platforms provides very useful outputs, they are only able to describe “a part of the entire biological 

picture” if considered singularly. Liebler (2001) reported that “each protein, regardless its role and 

form, expresses a function that assumes significance only in the context of all the other functions 

and activities also being expressed in the same cell”. Therefore, the next step is to integrate all the 

information obtained by the different omics platforms using appropriate bioinformatics and 

statistical tools. This relatively new approach, called system biology, provides a holistic and 

methodological overview of the entire biological system rather than its singular components alone 

(D’Alessandro and Zolla, 2013). 

In this scenario, FE appears as a very complex and multifaceted trait regulated by intrinsic 

(e.g., physiological, metabolic, and immunological aspects of the animal) and extrinsic factors (e.g., 

dietary treatments, environmental conditions, or diseases) that must be taken into account in a 

holistic approach. Indeed, any nutritional treatment will inevitably integrate with the metabolic and 

physiological aspects of the animal and hence a detailed comprehension of the complex interactions 

between these aspects appears necessary. This approach, combining both traditional and innovative 

techniques, may allow a better understanding of the different aspects associated with productive 

efficiency in broiler chickens, which might be useful to improve the sustainability of the poultry 

industry as well as animal welfare, health and well-being, antibiotic consumption and 

environmental impact and pollution. In addition, the application of innovative analytical techniques 

will add important information about the molecular mechanisms in different tissues of broilers 

which may exert a major effect on FE.   

1.2. Anatomic and physiological features of the chicken’s gastrointestinal tract 

In order to understand important aspects related to FE in broilers, it is fundamental to 

evaluate the anatomic and physiological features of the gastrointestinal tract of the chickens. 

Indeed, a wide range of enzymatic and biochemical reactions necessary for nutrient digestion and 
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absorption takes place in this organ. In addition, the gastrointestinal tract shows important 

immunological and regulatory mechanisms (which will be discussed in detail in the relative 

chapter). Therefore, the gastrointestinal tract could be considered one of the most important organs 

able to influence feed efficiency and growth performance in broilers and thereby a detailed 

evaluation of the physiological aspects occurring in this organ is necessary. 

 Digestive processes include all the chemical and physical mechanisms necessary to reduce 

the dietary macronutrients into simple compounds which can be easily absorbed by the intestinal 

mucosa. A brief overview of the chicken’s enzymes involved in the digestion of dietary compounds 

is reported in the Table 1.2.  
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Table 1.2. Enzymes involved in the digestive processes in chickens (adapted from Denbow, 2015). 

Secretion Organ Enzyme Substrate Product 

Saliva Mouth and crop Alfa amylase  Starch Dextrin 

Gastric secretion Proventriculus Pepsinogen – Pepsin Protein Polypeptides 

Pancreatic secretion Pancreas Procarboxypeptidase (A and B) 

Amylase 

Chymotrypsinogen (A, B, and C) 

Trypsinogen - Trypsin 

Endopeptidases 

Lipase 

 

Di- and tripeptides  

Starch 

Polypeptides 

Polypeptides 

Polypeptides 

Triglycerides  

Amino acids 

Oligosaccharides 

Oligopeptides 

Oligopeptides 

Oligopeptides 

Monoglycerides 

and fatty acids 

Intestinal secretion Small intestine Maltase 

Isomaltase 

Sucrase 

Trypsin 

Peptidases 

Amylase 

Lipase 

Maltose 

Dextrins 

Sucrose 

Polypeptides 

Di- and tripeptides 

Starch 

Triglycerides 

Glucose 

Glucose 

Glucose 

Oligopeptides 

Amino acids 

Oligosaccharides 

Monoglycerides 

and fatty acids 

 Gross intestine Bacterial cellulases Cellulose Glucose 
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 From an anatomical perspective, chickens present some peculiarities which differentiates 

them from mammals. As birds need to fly, their gastrointestinal tract is shorter than that of 

mammals (Denbow, 2015). However, the reduced length is compensated by the reverse peristalsis 

(also defined as gut reflux), a unique feature of birds which represents a backward movement of the 

ingesta in 3 different sections of the gastrointestinal tract (i.e., gastric flux, small intestine flux, and 

cloaca-cecal flux (Duke, 1986; 1994)) finalized at increasing the retention time and then to allow a 

proper digestion of nutrients (Ravindran et al., 2016). In addition, birds lack teeth and heavy jaw 

muscles while showing a bill or a beak which presents huge anatomical differences according to the 

feeding behavior of each specie (Denbow, 2015). 

 Although the upper part of the gastrointestinal tract of the chicken plays a modest role in 

nutrient digestion, it could be stated that the digestive processes start in the mouth. The main role of 

the mouth is to facilitate the movement of food to the esophagus, which is supported by the release 

of a watery secretion containing mucus from the salivary glands (Scanes and Pierzchala-Koziec, 

2014). It has also been demonstrated that the salivary glands release alpha amylase, a starch 

digesting enzyme (Jerrett and Goodge, 1973; Rodeheaver and Wyatt, 1986) which may enhance 

starch digestion during transit and storage time of the ingesta in the crop and proventriculus (Scanes 

and Pierzchala-Koziec, 2014). However, Denbow (2015) reported that amylase is not present in the 

salivary secretion of Gallus and Meleagris spp.  

The esophagus is thin-walled, distensible tube which main function is to carry the ingested 

food from the pharynx to the stomach by means of peristaltic contractions of its circular smooth 

muscles and mucus secretion (Scanes and Pierzchala- Koziec, 2014; Denbow, 2015). However, the 

role of the esophagus in nutrient digestion and absorption is very limited (Denbow, 2015). 

The ingested food can be stored in the crop, a ventral diverticulum of the esophagus of 

chickens and other birds. Its primary role is not nutrient absorption but mainly food storage and 

fermentation. In addition, some immunological functions of the crop have been delineated (Scanes 

and Pierzchala-Koziec, 2014). Here, endogenous (mainly alpha amylase) and eventual exogenous 
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enzymes (Oluski et al., 2007), may start digestive processes of specific dietary compounds. Then, 

esophagus continues as thoracic esophagus and connects with the proventriculus (Denbow, 2015). 

In birds, the stomach is essentially divided into 2 chambers: the proventriculus and the 

muscular gizzard. The proventriculus represents the avian counterpart of the glandular component 

of the mammalian stomach, which is constituted by deep gastric glands with lobules and multiple 

secretory tubules (Scanes and Pierzchala-Koziec, 2014). The main role of the proventriculus is to 

secrete the gastric acid which contains hydrochloric acid and pepsinogen. The latter, in presence of 

hydrochloric acid, is activated into pepsin which, in turn, initiates protein digestion (Scanes and 

Pierzchala-Koziec, 2014). Gastric acid secretion is stimulated by several neural transmitters and 

neuropeptides as elegantly reviewed by Scanes and Pierzchala-Koziec (2014). The gizzard is 

defined as the “muscular stomach” in which ingested food is subjected to mechanical processes able 

to physically reduce food particle size and dimension. These physical operations are determined by 

the contraction of the circular and concentric musculature (smooth muscle) of the gizzard (Scanes 

and Pierzchala-Koziec, 2014).  

The gastrointestinal tract continues with the small intestine, which can be grossly divided 

into duodenum, jejunum, and ileum. In these parts, important processes regarding nutrient digestion 

and absorption take place. Several digestive enzymes, such as sucrase, isomaltase, amino-peptidase 

(Uni et al., 2003), lipase, amylase, maltase (Jamroz, 2005) and trypsin (Noy and Sklan, 1995), are 

produced in the small intestine of birds. At the duodenal level, the pancreatic secretion, mainly 

constituted by digestive enzymes and zymogens such as amylase, chymotrypsinogen, 

procarboxypeptidase (Marchaim and Kulka, 1967), lipase, and members of the cationic and anionic 

trypsin sub-families (Wang et al., 1995), is added to the digesta. Moreover, duodenum receives the 

hepato-enteric and the cystic-enteric duct, both carrying bile to the small intestine from the left lobe 

of the liver and the gall bladder, respectively (Scanes and Pierzchala-Koziec, 2014). Bile contains 

bile acids (mainly dihydroxycholanic and trihydroxycholanic acid) which are essential for lipid 
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digestion acting as emulsifier, as well as bile pigments, amylase, and proteins as immunoglobulins 

A (Scanes and Pierzchala- Koziec, 2014).  

The distal part of the intestine, defined as gross intestine, could be roughly divided in ceca, 

colon, and cloaca, with the latter representing a common pathway for the excretory, reproductive 

and digestive systems (Denbow, 2015). Ceca and colon present a relevant number of flat villi and 

relatively few goblet cells (Denbow, 2015). The contribution of colon and cloaca to the digestive 

processes is very limited, although the former seems to be involved in water and electrolytes 

reabsorption (Scanes and Pierzchala- Koziec, 2014). Ceca are two finger-like blind-ending sacs 

originating from the ileum-colon junction which play a much more important role in chicken 

metabolism (Scanes and Pierzchala- Koziec, 2014). Indeed, specific peristaltic movements either 

from the ileum or by retrograde transport from the colon push digesta in the ceca where undigested 

nutrients can be fermented, and water absorbed. These fermentative processes are carried out by the 

bacterial communities colonizing the ceca, which shown the highest microbial diversity and 

abundance in comparison to the other sections of the gastrointestinal tract (Gong et al., 2007). Ceca 

microbes can ferment cellulose and complex carbohydrates which have not been enzymatically 

digested in the previous parts of the gastrointestinal tract producing volatile fatty acids (Gong et al., 

2007).          

The small intestinal is also the main site for nutrient absorption (Leeson and Summers, 

2001). Indeed, the mucosa layer of the small intestine is characterized by the presence of villi and 

glandular crypts which can extend the absorptive surface. Essentially, all the glucose obtained from 

starch digestion can be absorbed there using both active and passive mechanisms (Denbow, 2015). 

Glucose is transported into the enterocytes using the Na+-dependent glucose transporters, SGLT1 

and SGLT5. Similarly, fructose absorption is mediated by the apical GLUT5-type cells (Garriga et 

al., 2004). Within the epithelial cells, glucose and fructose are transported into the interstitial space 

by the basolateral GLUT-2 transporter (Denbow, 2015). In addition, an important role in glucose 

absorption is played by the ceca (Savory and Mitchell, 1991).  
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Dietary proteins are enzymatically broken down into amino acids, dipeptides and tripeptides, 

and then absorbed through the brush border membrane of the intestinal epithelial cells. Amino acids 

can be absorbed passively as free amino acids or through a wide number of amino acid transporters 

with different substrate specificity. According to Denbow (2015), amino acids transporters can be 

classified in 4 groups: for neutral amino acids, for basic amino acids, for acidic amino acids, and for 

proline, β-alanine, and related amino acids. On the other hand, amino acids can be absorbed in the 

form of di- and tri-peptides either by the peptide transporter PepT1, via the paracellular route in 

case of increased tight-junctions permeability, or by cell-penetrating peptides which are able of 

carrying cargo across the plasma membrane (Gilbert et al., 2008). Hurwitz et al. (1972) reported 

that jejunum could be considered as the primary site for the absorption of di- and tri-peptides, even 

though more recent studies have shown discordant results as stated by Denbow (2015). In addition, 

amino acids absorption can be relevant in the ceca (Denbow, 2015). 

Fats digestion and absorption are relatively complex processes. Lipids are water-insoluble 

compounds and their digestion is due to the synergic action of bile salts and pancreatic lipase. Since 

lipids digestion takes place in the aqueous intestinal environment, bile salts ensure the 

emulsification of dietary fats allowing the pancreatic lipase to hydrolyse the triglycerides present on 

the water–oil interface, with the production of 2-monoglycerides and free fatty acids (Leeson and 

Summers 2001). Although it has no enzymatic function, co-lipase is necessary to initiates the 

activity of pancreatic lipase (Borgstrom and Erlanson, 1971). Once hydrolyzed, short-chain fatty 

acids and monoglycerides are passively absorbed by the intestinal mucosa (Pond et al., 2005). 

However, medium- and long-chain saturated fatty acids, diglycerides, fat soluble vitamins and 

cholesteryl esters need a further solubilisation in the hydrophobic core of mixed micelles prior to be 

absorbed (Davenport, 1980). In these micelles, hydrophobic molecules are kept in the inner part, 

while the hydrophilic ones face the aqueous intestinal environment (Ravindran et al., 2016). Bile 

salts, which are amphiphilic molecules, also play a key role in the formation of these mixed 

micelles (Krogdahl, 1985). Tancharoenrat et al. (2014) showed that fatty acids digestion and 
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absorption occur at different rate throughout the small intestine. These processes mainly take place 

in the jejunum (Hurwitz et al., 1973; Tancharoenrat et al., 2014) and, to a lesser extent, in the ileum 

(Tancharoenrat et al., 2014) while the contribution of the hindgut is negligible (Renner, 1965). 

Within the enterocytes, monoglycerides and long-chain fatty acids are re-esterified and together 

with cholesterol, lipoproteins, and phospholipids form chylomicrons which are directly released in 

the portal circulation as the poultry lymphatic system is poorly developed (Hermier, 1997). All 

these aspects related to the digestive physiology of the chicken should be considered during poultry 

feed formulation and diet manufacturing, whose basic concepts will be discussed in the next 

chapter.   

1.3. Basic concepts of feed formulation 

Nutrition has the primary aim of providing nutrients to meet the requirements for a proper 

growth as well as to maintain physiological and immunological functions. At the same time, 

nutrition plays a central role in preserving gut health and functionality, which are strictly associated 

with animal health, welfare and productivity, as well as to guarantee food safety and meat quality. 

As previously stated, nutrition can be likely considered one of the most important environmental 

factors affecting energy homeostasis and hence FE. Therefore, understanding important aspects 

related to poultry nutrition is fundamental to improve production efficiency in broilers. 

Modern fast-growing broiler chickens can express their extraordinary growth potential as 

long as their nutritional and environmental requirements are guarantee. Formulation is a 

mathematical exercise of setting up a blend of ingredients to meet the nutritional requirements of 

the birds (Leeson and Summers, 2001). Therefore, according to Lesson and Summers (2001), the 

necessary steps for feed formulation include to: 

 Establish which nutrients are essential for the bird 

 Set requirement values for these nutrients using quantifiable units 

 Identify which ingredients are available in the market 
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 Quantify inclusion levels and costs of each ingredient 

  Find the mathematical blend of ingredients able to meet the nutritional requirements 

previously established.   

According to these criteria, nutritionists should define a pool of raw materials able to fulfill 

the nutritional requirements of the birds at the minimum cost of formulation. Inadequately 

formulated diets can have a tremendous impact on broiler growth and FE, but also on animal health 

and welfare, carcass and meat quality, as well on feeding costs and environmental pollution.  

The knowledge regarding nutritional requirements of broilers has been subjected to 

extraordinary improvements over the past 50 years. In current commercial practice, broilers usually 

receive from 3 to 5 types of feeds which shown different physical form (mash vs. crumble vs. 

pellet) and chemical composition according to the age of the birds and to the established slaughter 

weight (National Research Council, 1994; Aviagen, 2014; Cobb-Vantress, 2018). This practice is 

known as “phase-feeding” and it has been developed to fit the diet according to the requirements of 

these animals which change dramatically during their lifespan. In general, 3 different feeding 

phases, defined as “starter”, “grower” and “finisher”, are always provided. However, when male 

broilers are raised till 55-60 d of age, another finisher feed could be included (Schiavone et al., 

2008). Regarding the physical form, starter diets are usually administered in a mash or crumble 

form while grower and finisher ones are pelleted (d = 2-3 mm) (Aviagen, 2014; Cobb-Vantress, 

2018). Breeding companies provide nutritional specifications which can be used, alongside with the 

recommendations defined by the National Research Council (NRC, 1994), as a guide for a proper 

formulation. Considering the main aspects of the diet composition, the apparent metabolizable 

energy (AME) content tends to increase from starter to finisher phase (approximately from 3,000 to 

3,200 Kcal/kg) while crude protein content follows an opposite trend (from 22-23% in starter to 17-

18% in finisher). Calcium and available phosphorous are present in the diet at ratio of 2:1, with 

calcium concentration ranging from 0.95-1.00% in starter and 0.70-0.75% in finisher phase (NRC, 

1994; Aviagen, 2014; Cobb-Vantress, 2016). The chicken’s requirements of calcium and 
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phosphorous are usually covered by supplementing the diet with limestone, dicalcium phosphate, 

and calcium carbonate. In addition, vitamin and trace minerals are usually provided in form of 

concentrated premix to cover the bird’s requirements for these nutrients while sodium needs are 

usually met by adding salt (sodium chloride) to the diet (Leeson and Summers, 2001). 

 The choice of the raw materials to be included in the diet depends upon different aspects. 

First, ingredients should not be avoided by the legislation in force (e.g. animal proteins and 

antibiotics as growth promoters in Europe) and their consumption should not represent a threaten 

for animal health and thereby product safety (e.g. not contaminated with exogenous substances such 

as toxins). Then, availability and price are important aspects that need to be carefully considered 

during feed formulation. Consequently, according to the geographical area in which the diet is 

formulated and manufactured, different blends of raw materials can be used.  

Raw materials can be broadly classified as:  

 Energy sources 

 Protein sources 

 Feed additives  

   

1.3.1. Energy sources 

1.3.1.1. Cereals 

Corn (Zea mays) is the main energy source in poultry diets and it is highly available in most of the 

geographical areas of the world. Its energy content (AME = 3,200-3,300 kcal/kg) is higher if 

compared to other cereals, while protein content is modest (from 8 to 11% with poor biological 

value). In particular, corn is poor of some essential amino acids. Different varieties of corn are 

currently available for poultry producers: yellow corn, white corn, high-lysine corn, and high-oil 

corn (6-8% oil). In commercial practices, the use of the latter two varieties is not very common and 

strictly depends on their availability and cost. Finally, particular attention should be given to field 
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practices and stocking conditions as corn is rather prone to be contaminated by mycotoxins, such as 

aflatoxins and zearalenone, or molds (Leeson and Summers, 2001).   

Sorghum (Sorghum spp.) can be considered a valid alternative for corn in poultry diets 

(Leeson and Summers, 2001) presenting a similar energy content coupled with a slightly higher 

protein level (9.5%). Furthermore, depending on the geographical area, the price of sorghum could 

be lower than corn, making its dietary inclusion advantageous from an economic point of view. The 

major concern regarding the use of sorghum in poultry diets is represented by its relatively high 

content of tannins, anti-nutritional compounds which can limit feed intake and protein digestibility 

(around 10%) (Leeson and Summers, 2001). However, different varieties of sorghum with a low 

tannin content (i.e. white sorghum) are currently available for poultry feed formulation. In addition, 

starch and protein fractions are intimately connected, potentially leading to a further reduction of 

their digestibility especially when sorghum is not subjected to heat processing. Finally, sorghum is 

characterized by a poor content of carotenes and xanthophylls which may impact on the visual 

appearance of poultry products (Leeson and Summers, 2001). 

Wheat (Tritiucm aestivum) can be used for poultry feed formulation when economically 

feasible. Indeed, most of the available wheat is usually intended for human consumption and hence 

its market price could be quite high. Its energy content is slightly lower than corn while protein 

level is higher (10-13% according to the variety). Wheat also has a relatively high concentration of 

non-starch polysaccharides, such as arabinoxilans and pentosans, which have a detrimental effect on 

productive performance mainly by increasing digesta viscosity and limiting nutrient digestibility 

(Choct and Annison, 1992). For this reason, the inclusion rate of wheat into diets for growing 

broilers should not exceed 30% (Leeson and Summers, 2001). However, the dietary 

supplementation of exogenous enzymes (i.e. xylanase) can partially overcome this limitation 

(Annison and Choct, 1991; Bedford, 1995; Choct, 2006). Finally, a limited amount of wheat could 

be useful for improving pellet durability. Wheat by-products result from flour manufacturing, in 

which wheat passes through a series of grinders of decreasing sieve size producing middlings 
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(Leeson and Summers, 2001). Wheat bran is obtained from the outer seed coat and hence its fiber 

content is markedly higher which make its use in poultry feeding, apart from specific applications, 

quite limited. Wheat bran also shows low bulk density and low metabolizable energy content 

(Leeson and Summers, 2001).     

Barley (Hordeum sativum) contains approximately 75% of the energy content of corn while 

fiber content is 3 times higher (Schiavone, 2008). Barley also has a remarkably high concentration 

of complex carbohydrates such as β-glucans. Therefore, its utilization in poultry feeding is less 

indicated than corn, even though the dietary use of β-glucanase can represent a strategy to limit 

some of the negative aspects reported above (Bedford, 1995; Choct, 2006).  

Other cereals such as oats, rye, triticale, and rice can be used for poultry feed manufacturing. 

Although each of them has interesting peculiarities, it could be stated that their actual use is very 

limited. For instance, the use of oats in poultry diets is extremely unusual due to its elevated fiber 

content even though the biological value of its protein is rather high. Oats could be used to limit the 

energy content of the diet, which represents an important aspect for laying hens and breeders. 

Similarly, rye utilization is very limited due to the high concentration of pentosans which increase 

digesta viscosity and the production of sticky feces (Schiavone, 2008). Finally, the main limitation 

related to the use of triticale and rice is represented by their price, which is usually markedly higher 

in most of the markets. 

1.3.1.2.  Fats and oils     

        Fats and oils are the feed ingredients with the highest energy density, at least twice than 

carbohydrates and proteins (NRC, 1994). Therefore, even moderate inclusions of these compounds 

can induce significant changes in the energy content of the diet (Leeson and Summers, 2001). 

Different fats and oils are currently used in feed formulation to meet the high energy demand of 

modern fast-growing broiler genotypes. In addition, fats and oils can improve feed palatability and 

absorption of lipophilic vitamins and carotenoids, as well as reducing dustiness and aiding the 
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lubrication of feed mill equipment (Ravindran et al., 2016). Ravindran et al. (2016) reported that, 

despite their wide use, feed grade fats represent the least understood feed ingredient.  

From a chemical point of view, triacylglycerols or triglycerides are the major components of 

lipids. Triglycerides are constituted by a molecule of glycerol esterified with three fatty acids, 

which degree of unsaturation significantly influence the physical appearance of the lipid source. 

Fats, mainly animal by-products, are characterized by a high amount of saturated fatty acids and 

hence its melting point is usually higher than 40°C. On the contrary, a higher percentage of 

unsaturated fatty acids can be found in vegetable oils and therefore they usually are in a liquid form 

(melting point < 0°C) (Schiavone, 2008).Therefore, according to these differences, the term “fats” 

is generally used for lipids showing a solid aspect at room temperature, while “oils” is used for 

those presenting in a liquid form (Enser, 1984). Furthermore, due to the different fatty acids 

composition, oils are more prone to oxidative and rancidity processes compared to fats. Another 

concern related to use of fats in poultry nutrition is represented by the level of free fatty acids, as 

they can be more subjected to peroxidation processes. Particularly, free fatty acids represent a huge 

problem if fat is predominately saturated and administered to young birds (Leeson and Summers, 

2001).     

 In commercial practice, a broad range of fats and oils is available for the poultry feed 

industry including vegetable oils (e.g. soybean, corn, and palm oil), rendering and processing by-

products (e.g. beef tallow, lard, poultry fat), acidulated soapstocks (i.e. by-products of vegetable oil 

refining), restaurant greases (e.g. recovered frying oils, also reported as yellow grease), and 

hydrogenated fats (i.e. fats and oils converted into saturated fatty acids by the addition of hydrogen 

atoms). These products usually show a very high variability in terms of composition and the cost is 

one of the main drivers for their utilization (Ravindran et al., 2016). Being no legislative aspects to 

comply with, the use of animal or vegetable fats completely depends upon the company choice. 

Currently, the use of vegetable oils is much more frequent than that of animal fats mainly to 

accomplish the consumer's willingness to buy products obtained by animals fed only-vegetable 
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diets. Despite this, tallow and poultry fat are still used although their dietary administration in 

young birds is not recommended as these animals have a poor ability to digest saturated fatty acids. 

Indeed, Leeson and Summers (2001) suggested that the use of pure tallow in chicken diets must be 

severely restricted until 15-17 d of life.   

1.3.2. Protein sources and amino acid 

In poultry feed formulation, protein sources represent the second greater component after 

energy-yielding raw materials and probably the most expensive one (Beski et al., 2015). From a 

biochemical perspective, proteins can be considered as polymers of α-amino acids linked together 

by means of peptide bonds (Beski et al., 2015). Important aspects to consider regarding protein 

sources are the capacity to supply adequate amounts of essential amino acids, the digestibility and 

biological value of the proteins, as well as the level of anti-nutritional compounds (Scanes et al., 

2004). Protein sources can be roughly divided in vegetable and animal protein sources with the 

former covering most of the dietary protein requirements in poultry (Beski et al., 2015).  

Vegetable protein sources are usually obtained from seeds by extracting the oil fraction 

using either mechanical or chemical methods. According to these two methods, expellers or meal 

can be respectively obtained (Schiavone, 2008). Soybean meal represents the most important 

protein source in poultry feed manufacturing and has become the worldwide standard against the 

other protein sources are compared (Leeson and Summers, 2001). Its protein content ranges from 

43-44% to 48-50%, depending on the quantity of hulls removed and oil extracted (Beski et al., 

2015). During processing, soybean is dehulled (approximately 4% by weight), cracked, and 

conditioned at 70°C. The hot cracked beans are then flaked (about 0.25 mm) to facilitate oil 

extraction by means of a solvent, usually hexane, which should be subsequently removed from the 

meal. Despite the high cost, soybean meal is preferred than the other protein sources due to its well-

balanced amino acid profile, with special regard to some essential ones (e.g. lysine and tryptophan), 

which enables it to balance most cereal-based diets (Ravindran, 2013). As most of the plant protein 
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sources, soybean contains different anti-nutritional factors such as the trypsin inhibitor and 

hemagglutinins (lectins). However, these compounds are inactivated by the heat treatment applied 

during soybean processing (Leeson and Summers, 2001). In general, besides this aspect, the thermal 

process also has the purpose of increasing the nutritional value of plant proteins (Beski et al., 2015). 

Other important vegetable protein sources available for the poultry industry are canola meal 

(high quality feed-stuff for poultry, genetic selection has reduced goitrogens and uric acid content), 

corn gluten (CP = 40-60%, poor in lysine but rich in carotenoids and xanthophyll), sunflower meal 

(CP = 28 to 45%, depending on the quantity of hulls removed), flax meal (high cost, source of ω-3 

fatty acids), and alfalfa meal (CP = 18-20%, mainly used for organic production as source of 

xanthophyll). Although all these products have a high protein content, the presence of anti-

nutritional and toxic factors, as well as their unbalanced amino acid profile, strongly limit their use 

in poultry feeding. Indeed, vegetable proteins are generally unbalanced or poor of specific essential 

and non-essential amino acids (Siegert et al., 2016). This reduces their biological value as they are 

not able to provide the limiting amino acids required for a proper growth of broiler chickens (Beski 

et al., 2015). 

Animal protein sources are mainly represented by animal by-products, defined as parts of 

slaughtered animals which do not directly contribute to human nutrition (Hazarika, 1994). These 

protein sources are usually obtained from rendering and slaughtering operations as well as from 

meat, milk, and fish processing and packaging (Denton et al., 2005). In general, animal by-products 

are characterized by a high protein content (up to 85-90% of CP on a dry basis), good digestibility 

and balanced amino acid profile while had no fiber or anti-nutritional factors (Konwar and Barman, 

2005). Blood, fish, meat, and bone meals, as well as spray-dried plasma and hydrolyzed feathers 

meal, can be likely considered the most important animal protein sources (Beski et al., 2015). In 

Europe, the use of animal protein sources for livestock nutrition has been abolished with the only 

exception of fish meal administration to non-ruminant animals (European Commission, 2001). In 

addition, the increasing interest of consumers towards products obtained from animals fed only-
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vegetable diets has dampened the use of animal proteins even in some extra-EU countries 

(Schiavone, 2008). 

As previously reported, some vegetable protein sources are generally not well-balanced and 

poor of specific essential amino acids. This limitation forces nutritionists to include animal proteins 

or synthetic amino acids in poultry feed to meet the animal’s requirements of specific amino acids 

(Beski et al., 2015). Indeed, animal proteins usually show a more balanced amino acid profile for 

maximizing body growth and development. On the other hand, synthetic amino acids can directly 

cover the lack of specific amino acids in the diet. The dietary supplementation of synthetic amino 

acids represents the only available solution when the use of animal protein sources is not allowed by 

the legislation in force (i.e. European Union). A detailed description of the use of synthetic amino 

acids will be provided in the specific chapters.       

1.3.3. Feed additives  

 The European Union’s ban of antibiotics as growth promoters have strengthened the interest 

towards alternative solutions that might provide beneficial effects on productive performance and 

health status of livestock. Furthermore, the increasing public awareness towards antibiotic-resistant 

bacteria, as well as the consumers demand for animal products from antibiotic-free production 

systems, have determined a significant reduction in the use of antibiotics as growth promoters even 

in extra-EU countries, such as the USA (Van Boeckel et al., 2015). However, the growing demand 

for meat products in middle-income countries, and the consequent shift from small-scale to large-

scale farms, could strengthened the use of antimicrobials in developing countries (Van Boeckel et 

al., 2015). 

The beneficial effect of sub-therapeutic dosages of antibiotics on productive aspects was 

mainly mediated by a positive modulation of the gut microflora, which enhances a better 

exploitation of the dietary nutrients while avoiding harmful bacteria development and subclinical 

infections (Dibner and Richards, 2005). According to the EU Regulation 1831/2003, feed additives 
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can be defined as substances, micro-organisms, or preparations other than feed materials and 

premixtures, intentionally added to the feed or water to favorably affect the characteristics of feed, 

animal products, as well as animal production, performance and welfare (particularly by affecting 

the gastrointestinal microflora), digestibility of feeding-stuffs, and the environmental consequences 

of animal production. Furthermore, feed additives can be considered compounds able to satisfy the 

nutritional needs of animals, to have a coccidiostatic or histomonostatic effect, or to be able to 

positively affect the colour of ornamental fishes and birds. Therefore, feed additives can be 

classified as: 

 Technological additives:  

any substance added to the feed for a technological purpose, such as preservatives, 

emulsifiers, antioxidants, binders, etc.   

 Sensory additives:  

any substance, such as colorants and flavouring compounds, the addition of which improves 

or changes the organoleptic properties of the feed, or the visual characteristics of the food 

derived from animals. 

 Nutritional additives: 

E.g. vitamins, pro-vitamins, and chemically well-defined substances having similar effect; 

trace elements; amino acids, their salts and analogues; urea and its derivatives. 

 Zootechnical additives:  

any additive used to favorably affect the performance of animals in good health or the 

environmental impact of animal productions (e.g. digestibility enhancers, gut flora 

stabilizers, others).  

 Coccidiostats and histomonostats.  
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1.3.3.1. Focus on the dietary utilization of a lysophospholipids-based emulsifier 

in broiler chickens 

An experiment aimed evaluating productive performance, nutrient digestibility, and carcass 

quality traits of broiler chickens fed diets supplemented with a lysophospholipids-based exogenous 

emulsifier was carried out and the manuscript written during the PhD timeframe (Zampiga et al., 

2016). Given the considerable amount of lipids in current commercial broiler diets, the use of 

exogenous emulsifiers may support bile salts in both emulsion and micelle formation process, 

determining a potential positive effect on lipids digestibility and overall productive performance. 

Lysophospholipids are mono-acyl derivatives of phospholipids (obtained by enzymatic conversion 

of soy lecithin) resulting from the action of phospholipase A1 or A2, which hydrolyse the ester 

bond at sn-1 and sn-2 position respectively (Joshi et al., 2006). Presenting a single fatty acid, these 

compounds are characterized by a higher hydrophilic–lipophilic balance and thus a better oil–water 

emulsification capacity than the corresponding phospholipids (Schwarzer & Adams, 1996). 

Lysophospholipids show a lower critical micelle concentration than bile salts and lecithin (Zubay, 

1983) and form smaller micelles compared to phospholipids (Mine et al. 1993). On the other hand, 

lysophospholipids are mentioned to improve gut permeability to macromolecules like proteins and 

dextrans (Tagesson et al., 1985), to regulate the activity of several enzymes (Shier et al. 1976; 

Tagesson et al. 1985), to influence the formation of protein channels (Lundbaek & Andersen, 1994) 

and to induces epithelial cells hypertrophy in broiler duodenum (Khonyoung et al. 2015). 1,755 

one-day-old male Ross 308 chicks were randomly divided into three experimental groups of 9 

replications each: control group (CON) fed a corn–soybean basal diet, and two groups fed CON diet 

supplemented with constant (1 kg/ton) or variable (1–1.5 kg/ton) level of emulsifier (CONST and 

VARI, respectively). At slaughter (42 d), birds receiving the emulsifier had a statistically significant 

(P<0.05) lower feed conversion rate compared to the control. Body weight and daily weight gain 

were only slightly influenced by lysophospholipids supplementation, while mortality and feed 

intake resulted similar among the groups. No statistically significant effect of the emulsifier was 
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observed on nutrient digestibility as well as slaughtering yields, skin pigmentation, and incidence of 

foot pad dermatitis. The use of two different doses of emulsifier led to the same results for all the 

considered productive parameters and for nutrient digestibility indicating that the lower dose could 

be the more suitable solution for feed formulation. Therefore, from the results obtained in this 

experiment, the use of a lysophospholipids-based emulsifier could represent a potential solution to 

improve feed efficiency in broiler chicken (Zampiga et al., 2016). 

 

1.4. Importance of amino acid nutrition in broiler chickens 

1.4.1. General aspects 

Protein represents one of the greatest costs in poultry feed manufacturing. Therefore, 

maximizing the efficiency of protein and amino acid utilization is of vital importance for the poultry 

producers. Amino acids also play an extraordinary role in physiological and metabolic aspects of 

the animal as elegantly reviewed by Wu (2014). Beyond their role as building blocks for protein, 

they can regulate gene expression, cell signaling, food intake and nutrient metabolism, as well as 

antioxidant mechanisms and hormone synthesis (Wu, 2014). In addition, an inefficient utilization of 

dietary protein may increase the amount of nitrogen excreted with the feces with a tremendous 

negative impact on the environmental sustainability of the poultry industry (Nahm, 2002; Ritz et al., 

2004). Therefore, it is strictly necessary to formulate diets with amino acids levels able to guarantee 

a proper animal growth, health, and well-being, maximizing lean deposition with minimal nitrogen 

excess and excretion in order to limit environmental impact and pollution (Han and Lee, 2000).  

Traditionally, amino acids can be classified as nutritionally essential or nonessential. 

Nutritionally essential amino acids are those whose carbon skeleton cannot be synthesized de novo 

or those amino acid which can be synthesized but not in a sufficient amount to fulfill the animal 

requirement (Wu, 2014). Therefore, essential amino acids must be supplied with the diet to sustain 

proper growth and physiological functions (Wu, 2014). Arginine, cysteine, glycine, histidine, 
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isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, tyrosine, and 

valine are considered essential amino acids for poultry (Leeson and Summers, 2001). 

As previously stated, the lack of specific amino acids in vegetable protein sources can be 

overcome by the use of synthetic crystalline amino acids, whose dietary inclusion allows to fulfill 

the requirement of limiting amino acids while achieving an optimum balance among them. 

Providing the dietary amino acids in a pattern to match the requirements of an animal has known as 

the “ideal protein concept”. This concept began to develop when Mitchell (1964) discussed the idea 

of an “ideal protein” or a “perfect amino acid balance” considering that the chemical score 

(Mitchell and Block, 1946), which use the egg protein as ideal standard, showed not to be so 

accurate due to the high concentration of certain amino acids in the egg protein. In chickens, 

researches in this field were underpinned in the late 50s when Scott’s group at the University of 

Illinois started developing a purified crystalline amino acid diet for chicks (Glista et al., 1951; Klain 

et al., 1960) and designed an ideal pattern of dietary essential amino acids according to the amino 

acid composition of the chick’s carcass (Fisher and Scott, 1954). Based on the extensive researches 

conducted in 60s and 70s, several versions of the “chick amino acid requirement standard” for the 

first three weeks of life were defined: the Dean and Scott Standard (Dean and Scott, 1965), the 

Huston and Scott Reference Standard (Huston and Scott, 1968), the modified Sasse and Baker 

Reference Standard (Sasse and Baker, 1973), and finally the Baker and Han’s Ideal Chick Protein 

(Baker and Han, 1994). In 1994, the National Research Council (NRC, 1994) defined their own 

nutritional requirements for broilers and a few years later Baker updated the ideal protein for 

chickens from 0 to 56 d of life (Baker, 1997). Recently, taking advantage from the important 

knowledge regarding nutritional and metabolic aspects of the chickens, Wu (2014) proposed the 

Texas A&M University’s optimal ratios of digestible amino acids in chicken diet which also include 

recommended levels for non-essential amino acids. Additional information regarding recommended 

dietary concentrations of amino acids are also reported in the nutrition specifications provided by 

the breeding companies (Aviagen, 2014; Cobb-Vantress, 2018).  
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 The dietary supplementation of synthetic amino acids may allow the reduction of the crude 

protein levels in the diet (i.e. “protein sparing” effect) without compromising animal performance 

while having positive outcomes on feeding costs, nutrient digestibility, and nitrogen excretion (Han 

and Lee, 2000). On the other hand, imbalances among dietary amino acids showing chemical or 

structural similarity could cause amino acids antagonism, resulting in impaired growth rate and feed 

intake as well as abnormal behavior (Wu, 2014). In corn-soybean diet, which represents the 

worldwide standard for broilers, the order of limiting amino acids was reported to be 1) methionine, 

2) threonine, 3) lysine, 4) valine, 5) arginine and 6) tryptophan (Fernandez et al., 1994). These 

amino acids are usually included in commercial diets in form of synthetic crystalline amino acids 

obtained by bacterial fermentation. At the beginning of new century, Han and Lee (2000) reported 

that lysine-HCl and DL-methionine were widely used by the poultry industry, while other 

crystalline amino acids (L-threonine and L-tryptophan) just started to be available for the producers. 

Nowadays, taking advantage from the important progresses in fermentation technologies, several 

crystalline amino acids are available in the market at a reasonable price. Among them, crystalline L-

arginine has been recently approved as feed additive in Europe (European Food Safety Authority, 

2016; 2017; 2018) resulting in a sensible reduction of its price. Beyond this aspect, arginine is 

receiving increasing attention due to its important roles in different metabolic, pathophysiological 

and immunological aspects of poultry which will be discussed in detail the next chapter.  

1.4.2. Arginine: an underestimated essential amino acid? 

Arginine is a basic amino acid and it is considered essential for chickens as they lack a 

functional urea cycle (Fouad et al., 2012). Indeed, despite to mammals which can use the enzymes 

of the urea cycle to synthesis L-arginine from ornithine, ammonia, and the amino-nitrogen of 

aspartate (Khajali and Wideman, 2010), chickens (uricotelic organisms) lack an important enzyme 

such as phosphate synthase I (EC 6.3.5.5.) and have a limited activity of hepatic arginase (EC 

3.5.3.1., 2) and ornithine transcarbamoylase (OTC, EC 4.4.4.17). Therefore, a proper amount of 



35 
 

arginine should be provided with the diet. Among livestock, chickens showed the highest 

requirement of arginine (Ball et al., 2007). Dietary arginine is absorbed in the small intestine of 

chickens through sodium-dependent and –independent mechanisms, with the latter showing a 

greater effectiveness (Brake and Balnave, 1995; Rueda et al., 2003). As most of the arginase 

activity is located in the kidney (Tamir and Ratner, 1963), a substantial amount of dietary arginine 

may pass through the brush border and then enter the blood circulation with only limited 

degradation (Wu et al., 2014).  

Arginine is involved in complex metabolic, immunological and physiological aspects of 

chickens (Khajali and Wideman, 2010; Fouad et al., 2012) being a substrate for the biosynthesis of 

several molecules including nitric oxide, creatine, ornithine, proline, glutamine, agmatine, 

glutamate, and polyamines (Fouad et al., 2012). In addition, arginine is thought to act as 

secretagogue involved in growth hormone (GH) and insulin-like growth factor (IGF) secretion 

(Fernandes and Murakami, 2010).  

Arginine is also involved in immunological aspects of poultry, either directly or indirectly 

through its metabolites. In particular, most of these effects seem to be mediated by nitric oxide 

(NO), a free radical molecule obtained by the enzymatic conversion of arginine into citrulline 

(Fernandes and Murakami, 2010, Khajali and Wideman, 2010). Activated macrophages produce 

high quantity of NO and reactive oxygen species such as superoxide. In turn, these molecules 

promote the formation of reactive nitrogen species (e.g. nitrite, nitrate, peroxynitrite) that exert 

cytostatic and cytotoxic effects to specific cells and pathogens (Tomas-Cobos et al., 2008). Several 

studies showed that L-arginine might represent a limiting substrate for the production of NO by 

avian macrophages (Taylor et al., 1992; Wideman et al., 1995; Kidd et al., 2001, Ruiz-Feria et al., 

2001; Villamor et al., 2002). Furthermore, positive effects of arginine have been reported on the 

weight of lymphoid organs (Kwak et al., 1999), percentage and absolute number of heterophils and 

heterophil/lymphocyte ratios in blood (Lee et al., 2002), percentage of CD8+ and CD3+ cells 

(Abdukalykova et al., 2008), and primary antibodies levels (Deng et al., 2005). Recently, beneficial 
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effects of arginine have been reported on the intestinal mucosal disruption in coccidiosis-challenged 

chickens (Tan et al., 2014a), on the reduction of systemic inflammation and the overexpression of 

pro-inflammatory cytokines in chickens challenged with lipopolysaccharide (Tan et al., 2014b), as 

well as in alleviating the immunosuppression caused by the infectious bursal disease vaccine (Tan 

et al., 2015).  

The pivotal role of arginine and its metabolite NO in attenuating the onset of pulmonary 

hypertension syndrome (ascites syndrome) was firstly reported by Wideman et al. (1995). Indeed, 

the dietary administration of high dosages of arginine can increase plasma concentration of NO, 

reduce pulmonary arteriole muscularization and facilitate flow-dependent vasodilation, resulting in 

a lower mortality associated with ascites in broilers (Wideman et al., 1995; 1996; Tan et al., 2005; 

2006).  The effects of the dietary supplementation of arginine on productive aspects of broiler 

chickens are somehow inconsistent and discordant. This discrepancy could be likely due to the huge 

variability in bird’s genotype, age, and sex, composition of the basal diet, number and length of 

feeding phases and inclusion rate of arginine in published studies. The results reported in literature 

will be discussed in detail in the discussion section of the RESEARCH WORK #1. 

1.4.3. Antagonism between dietary arginine and lysine: classical aspects and current 

perspectives 

The nutritional antagonism between dietary arginine and lysine was firstly studied and 

reported in the 50’s and 60’s (Anderson and Combs, 1952; Anderson and Dobson, 1959; Snetsinger 

and Scott, 1961; Jones, 1964; O’Dell and Savage, 1966; Boorman and Fisher, 1966; Dean and 

Scott, 1968). These works mainly evaluated the effects of the administration of ingredients with a 

high concentration of lysine [e.g. casein, arginine to lysine (Arg:Lys) ratio  = 0.45] or the dietary 

supplementation of lysine-HCl (Balnave and Brake, 2002). The existence of a specific relationship 

between dietary lysine and arginine was clearly demonstrated by D’Mello and Lewis (1970). In this 

work, the Authors observed that the growth depression induced by the addition of lysine in diets 
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limiting in either methionine, histidine, tryptophan, or threonine could be reversed by 

supplementing the diets with arginine and not with the originally limiting amino acid. Based on 

these observations, D’Mello and Lewis (1970) stated that “the interaction between lysine and 

arginine cannot be shown not to be specific”. This antagonism was thought to be associated either 

with a limited availability of arginine from specific feed ingredients in which lysine concentration 

was excessively high (Jones, 1964) or with an increased utilization of arginine for the excretion of 

the nitrogen surplus through the uric acid cycle (Snetsinger and Scott, 1961). Another aspect that 

was considered to explain the lysine-arginine antagonism was that both are basic amino acids and 

they may compete for the absorption in the gastrointestinal tract (Balnave and Brake, 2002). 

However, Jones et al. (1967) negated this hypothesis by showing that lysine did not affect digestion 

and absorption of arginine. However, lysine excess was associated with the inhibition of renal 

reabsorption of arginine while stimulating renal arginase activity (Boorman et al., 1968; Austic and 

Nesheim, 1970).  

It is evident that shifts from the optimal Arg:Lys ratio could negatively affect productive 

traits as well as metabolic and physiological aspects. This effect is more evident with an excess of 

lysine (low Arg:Lys ratio) rather than an excess of arginine (high Arg:Lys ratio) (Balnave and 

Brake, 2002). Several authoritative sources suggested optimal Arg:Lys ratios in broiler diets. 

According to the NRC (1994), the optimal Arg:Lys ratio should be 1.14 to 3 weeks, 1.10 from 3 to 

6 weeks, and 1.18 from 6 to 8 weeks. On the other hand, Baker (1997) indicated lower Arg:Lys 

ratio than the NRC (1.05, 1.08 and 1.08 from 0-3, 3-6 and 6-8 weeks of broiler age). Balnave and 

Brake (2002) suggested that, based on referenced literature, the optimum Arg:Lys ratio should 

range from 0.90 to 1.18. More recent reports suggested a ratio of 1.05, 1.08 and 1.08 from 0 to 21 d, 

21 to 42 d, and 42 to 56 d, respectively (Wu, 2014). Similarly, other current nutrition specifications 

(Aviagen, 2014; Cobb-Vantress, 2018) indicate lower Arg:Lys ratios than those recommended by 

the NRC. In addition, the amino acids composition of the whole-body protein of 10-d-old chicks 

showed that arginine content was 111% in respect to lysine (Wu, 2014). 
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It should be considered that the over-time reduction of the dietary Arg:Lys ratio is mainly 

due to the increase in dietary lysine concentration rather than a reduction of the arginine levels. 

Indeed, as showed by Dozier III et al. (2008), lysine concentration in commercial broiler diets 

tended to increase from 2001 to 2005. Similarly, current dietary recommendations (Aviagen, 2014; 

Cobb-Vantress, 2018) indicate higher lysine concentrations than those reported by the NRC (1994). 

This increase was mainly driven by the high lysine requirement of modern fast-growing broiler 

chickens selected for an increased feed efficiency and breast meat yield. Indeed, the importance of 

dietary lysine on growth performance, breast meat yield, and meat quality has been well 

documented and established (Hickling et al., 1990; Moran and Bilgili, 1990; Bilgili et al., 1992; 

Leclercq, 1998; Berri et al., 2008). However, when the dietary concentration of a specific amino 

acid is subjected to variation, the concentration of the other amino acids should be modified 

accordingly to maintain the ideal amino acid profile. Indeed, as suggested by Kidd et al. (1997), 

increasing the dietary concentration of lysine without considering other important amino acids such 

as threonine or arginine may lead to a marginal deficiency of those.  

In commercial diets, especially when the use of animal by-products is not allowed either by 

the legislation in force (e.g. European countries) or by voluntary decision (e.g. vegetable-only diet), 

the Arg:Lys levels are usually lower than the requirements defined by the NRC (1994). However, 

considering the important functions of arginine, it should be questioned whether the status quo of 

dietary Arg:Lys ratios are sufficient to meet the modern broiler requirement in arginine. 

Deficiencies or excesses of arginine may have a strong adverse effect on productive efficiency with 

negative effects on animal health, welfare and productivity as well as on the economic and 

environmental sustainability of the poultry industry.  

There is also a paucity of scientific information regarding the effects of different Arg:Lys 

ratios in broiler diets on meat quality attributes and occurrence of breast muscle myopathies. As 

previously reported, L-arginine can be converted stoichiometrically into citrulline and NO by means 

of the enzyme nitric oxide synthase (Fernandes and Murakami, 2010; Khajali and Wideman, 2010). 
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NO is a potent vasodilator molecule (Khajali and Wideman, 2010), which could enhance blood flow 

to the muscle improving oxygen supply as well as the removal of harmful catabolites while 

alleviating the hypoxic condition usually observed in breasts affected by severe woody breast (WB) 

or white striping (WS) myopathies. Very recently, Bodle et al. (2018) showed that WB but not WS 

average score was significantly reduced by increasing the level of dietary arginine.  

Therefore, to address these concerns, a trial was carried out to investigate the effects of the 

dietary arginine supplementation on growth performance, with special regards to FE, breast meat 

quality, incidence and severity of breast muscle myopathies and foot pad dermatitis, as well as 

plasma and muscle metabolomics profile in modern fast-growing broilers. The results of this study 

are shown in the RESEARCH WORK #1 chapter.  

In this research, an NMR approach was applied to evaluate the molecular responses to the 

different concentration of dietary amino acids. The application of innovative analytical techniques 

identified as omics technologies showed a great potential in investigating the global variations of 

genes, proteins, and metabolites expression levels in body fluids or tissues in response to dietary 

treatments (Baeza et al., 2015; Zampiga et al., 2018). In the next chapter, an overview of the 

potential applications of omics technologies in nutritional studies was provided.  

1.5. Application of –omics technologies for the evaluation of the molecular responses 

to nutritional treatments  

Nutrition can be considered one of the most important environmental factors affecting genome 

expression. Indeed, nutrients should not be merely considered as a provider of nutritive principles 

but also a source of various molecules which can be sensed by the organism and influence genome 

expression (Garcìa-Canas et al., 2012). Therefore, a possible application of omics technologies in 

nutritional studies might be the identification of the molecular mechanisms laying behind the 

phenotypic responses to the dietary administration of different kind of compounds and additives. 
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Considering macronutrients, dietary amino acids play a central role in protein metabolism (e.g. 

protein synthesis, proteolysis and amino acid oxidation). Besides this aspect, amino acids can also 

act as regulators of different metabolic pathways related to muscle development and mRNA 

translation into proteins (Tesseraud et al., 2011). It is well established that the dietary 

supplementation of lysine can improve growth performance and breast yield in broilers (Kidd et al., 

1998; Sterling et al., 2006; Berri et al., 2008), but also meat quality traits such as water holding 

capacity and pH (Berri et al., 2008). The dietary supplementation of lysine in lysine-deficient diets 

stimulated protein synthesis in skeletal muscle, whereas its dietary deprivation increased the 

fractional rate of protein breakdown (proteolysis) in Pectoralis major muscle of growing chickens 

(Tesseraud et al., 1996; 2001). Furthermore, also daily variations in dietary lysine content 

(sequential feeding) have been associated with an altered expression of genes related to proteolysis 

in breast muscle of chickens (Tesseraud et al., 2009). 

Dietary methionine levels can deeply affect productive performance and breast meat yield in 

broilers (Corzo et al., 2006; Zhai et al., 2012; Wen et al., 2014a,b). It has been reported that dietary 

methionine concentrations altered the expression of myogenic genes (myogenic factor 5, myocyte 

enhancer factor 2B and myostatin) (Wen et al., 2014a), as well as that of proteins mainly related to 

citrate cycle, calcium signaling, actin cytoskeleton and clathrin-mediated endocytosis signaling, in 

chicken breast muscle (Zhai et al., 2012). A previous work showed that peptides belonging to three 

proteins (pyruvate kinase, myosin alkali light chain-1, and ribosomal-protein-L-29) were 

exclusively detected in breast muscle of chickens fed a methionine-deficient diet (Corzo et al., 

2006). On the other hand, a higher plasma concentration of uric acid and triglycerides was observed 

in response to the dietary supplementation of methionine (Wen et al., 2014a). Wen et al. (2014b) 

also reported that increasing the dietary methionine levels could be a valuable strategy to support 

productive performance and breast yield of chickens with a low hatching weight. As stated by the 

Authors, these improvements could be likely attributable to alterations in insulin-like growth factor-
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I synthesis and expression of genes involved in the target of rapamycin/eIF4E-binding protein 1 and 

forkhead box O4/atrogin-1 pathway (Wen et al., 2014b). 

Several studies have been conducted to evaluate the effects of the dietary supplementation of 

arginine on both productive and molecular aspects. Fouad et al. (2013) reported that dietary arginine 

can modulate lipid metabolism as indicated by the reduced abdominal fat content as well as the 

lower plasma triglyceride and total cholesterol concentration in broilers fed arginine-supplemented 

diets. At the transcriptional level, arginine increased the expression of carnitine palmitoyl 

transferase1 (CPT1) and 3-hydroxyacyl-CoA dehydrogenase (3HADH) in the heart, while reduced 

that of fatty acid synthase (FAS) in the liver (Fouad et al., 2013). As previously reported, arginine 

also showed positive effects on gut mucosa health and integrity in broilers subjected to coccidia 

challenge (Tan et al., 2014a), as well as on attenuating the inflammatory response elicited by 

lipopolysaccharide treatment (Tan et al., 2014b) and on the immunosuppression induced by 

infectious bursal disease virus challenge (Tan et al., 2015). 

Considering vitamins, Vignale et al. (2015) observed that the dietary replacement of 

cholecalciferol (vitamin D3) with 25-hydroxycholecalciferol [25(OH)D3], a vitamin D metabolite 

available for commercial poultry use, increased breast meat yield and fractional synthesis rate of 

breast muscle proteins. Chickens fed 25(OH)D3 showed higher expression of vitamin D receptor, a 

DNA-binding transcription factor that mediates the action of vitamin D, and a greater activation of 

the mTOR/S6 kinase pathway, highlighting the important role played by this pathway in mediating 

the effects of 25(OH)D3 on chicken muscle proliferation and development. These in-vivo results 

were corroborated by the in-vitro functional study performed on quail myoblast cells (QM7 cells) in 

which an increased expression of vitamin D receptor, as well as a greater translocation of it into cell 

nucleus, has been observed when cells were treated with 25(OH)D3. Nonetheless, 25(OH)D3 

induced cell proliferation in a dose-dependent fashion and its effect was suppressed by blocking the 

mTOR pathway with rapamycin (Vignale et al., 2015).  
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Within the category “zootechnical additives”, a broad number of alternative compounds 

such as immunomodulators, probiotics, prebiotics, enzymes, organic acids, vegetable extracts and 

phytogenic compounds can be included. Great efforts have been reserved at evaluating the 

phenotypic responses of the animal to the dietary supplementation of these kinds of additives as 

well as to delineate the molecular mechanisms elicited by their utilization. Some examples are 

reported hereunder. The administration of phytase in broiler diet is reported to have a direct effect 

on organic phosphorus (phytate) and mineral digestibility, but also an indirect effect on 

zootechnical performance and muscle development mainly through the release of myo-inositol 

(Selle and Ravindran, 2007; Lee and Bedford, 2016). Schmeisser et al. (2017) reported that the 

administration of a 6-microbial phytase in a moderately phosphorous-deficient diet determined 

significant changes in the expression of genes involved in muscle development through 

calmodulin/calcineurin and insulin-like growth factor pathways. The activation of these pathways 

may have enhanced breast muscle development and increased its weight, even though no significant 

difference has been reported in terms of breast yield. Interestingly, birds receiving the dietary 

supplementation of dicalcium phosphate instead of phytase reported similar breast weight and yield 

compared to the phytase-supplemented group even though none of the previous pathways resulted 

significantly enriched. Therefore, the Authors suggested that the muscle growth observed in these 

birds was not probably due to the same molecular mechanism (Schmeisser et al., 2017). As 

previously reported, the dietary administration of lysophospholipids-based emulsifiers has shown a 

positive effect on feed conversion rate in broiler chickens (Zampiga et al., 2016). A microarray 

analysis performed on the jejunal epithelium of birds receiving a lysolecithin emulsifier showed an 

upregulation of genes for collagen, extracellular matrix, and integrins, suggesting that the positive 

effects of the emulsifier on productive performance might be achieved through changes in the 

intestinal epithelium (Brautigan et al., 2017). Moreover, Khonyoung et al. (2015) identified a higher 

expression of cluster of differentiation 36, an integral membrane protein involved in fat absorption, 

in jejunum of broilers fed diet supplemented with lysolecithin.  
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Prebiotics, such as yeast cell wall-derived compounds, are receiving even more attention due 

to their beneficial effects on growth performance, FE and gut health (Patterson and Burkholder, 

2003; Hajati and Rezaei, 2010; Spring et al., 2015). However, the molecular mechanism behind 

their effects has not been totally elucidated. Xiao et al. (2012) applied a genome-wide 

transcriptional approach to investigate the effects of feeding mannan-oligosaccharides (MOS)-

supplemented diets on jejunal gene expression of broiler chickens. Albeit they did not find any 

significant effect on productive performance, the transcriptomic analysis highlighted major 

expression of genes involved in protein synthesis, immune processes and antioxidant status in birds 

receiving MOS. Moreover, several signaling pathways related to mitochondrial functions showed a 

potential involvement in mediating the effects of dietary MOS (Xiao et al., 2012). In another study, 

the beneficial effects of MOS have been associated with a reduced gut cells turnover and hence an 

increased energy preservation for growth, as supported by the downregulation of genes involved in 

protein synthesis, protein metabolism, cellular assembly and organization, as well as the lower 

expression of genes of the mTOR pathway, in response to the MOS-supplementation (Brennan et 

al., 2013). In addition, transcriptomic analysis evidenced common biological functions, such as 

antiviral and antimicrobial response, between birds receiving prebiotic- or bacitracin-supplemented 

diets, indicating that MOS could actively stimulate the intestinal innate immune system (Brennan et 

al., 2013). 

The dietary use of probiotics has been reported to be beneficial for chicken health and 

productivity (Patterson and Burkholder, 2003; Kabir, 2009; Cox and Dalloul, 2015). Luo et al. 

(2013) showed that the dietary supplementation of Enterococcus faecium had only a slightly 

positive effect on FCR while stimulating the development of immune organs, number of intestinal 

microvilli, and diversity of gut microflora. A proteomic approach carried out on the intestinal 

mucosa of the birds receiving the probiotic identified a total of 42 proteins showing differential 

expression of which 60% could be associated with cytoskeleton and immune system. According to 

the Authors, the probiotic may have enhanced FE through improving the absorptive area in the 
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intestine while limiting the energy expenditure for immune system activation. It has also been 

shown that the dietary supplementation of E. faecium can improve breast and legs yield, as well as 

water-holding capacity of meat, while determined low abdominal fat deposition (Zheng et al., 

2014). A proteomic analysis performed on the breast muscle allowed the identification of 22 

differentially expressed proteins mainly involved in carbohydrate and energy metabolism, as well as 

in cytoskeleton and molecular chaperones, which might have contributed to the improvements 

observed in carcass and meat quality. Recently, the dietary administration of E. faecium was 

associated with significant changes also in the liver proteome, indicating a potential effect in 

enhancing nutrient metabolism and partitioning as well as in decreasing the inflammatory response 

(Zheng et al., 2016). Other interesting insights recently obtained in the field of broiler nutrition 

through the application of omics technologies regarded the effects of heat stress on gene expression 

and nutrients transporters in the jejunum (Sun et al., 2015), the evaluation of the dietary 

supplementation of branched-chain amino acids on the expression of hepatic fatty acids 

metabolism-related genes (Bai et al., 2015) and the modulation of the intestinal phosphate 

transporters expression in response to the administration of phosphorous and phytase in the diet 

(Huber et al., 2015).  

Overall, these studies confirmed the potential of omics technologies in investigating the 

molecular mechanisms elicited by dietary treatments, which could allow a better understanding of 

the responses observed at the phenotypic level. Besides these aspects, omics technologies might be 

also useful for assessing the molecular aspects associated with the intermediary metabolisms in 

different tissues of broiler chickens able to influence overall FE.   

1.6. Molecular aspects of feed efficiency in broiler chickens: effect of intermediary 

metabolisms 

FE is a vital economic trait for the poultry industry as feeding represents the greatest cost in 

raising meat-type chickens. From a homeostatic perspective, FE could be defined as the net result 
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between energy intake (i.e. feed intake and its complex regulatory mechanisms) and energy 

expenditure (affected by the maintenance metabolism, anabolic processes, tissue-specific 

intermediary metabolisms, and environmental effects) (Figure 1.1). The selection methods applied 

in broilers to improve FE and breast yield were mostly performed without taking in consideration 

the potential changes exerted on the molecular mechanisms and on the physiological/metabolic 

features of the animal (Dridi et al., 2015), resulting in several undesirable side-effects such as a 

hyperphagic feeding behavior, obesity, muscle disorders, and leg problems. Therefore, to 

continuously improving FE, it is fundamental to understand the molecular aspects in different 

tissues of broilers which may exert a huge effect on the phenotypic expression of this trait. This is 

achievable by a proper application of new cutting-edge omics technologies which allow to evaluate 

the global variations of gene, protein or metabolite expression levels adding important insights on 

the molecular mechanisms associated with FE. The effect of the intermediary metabolisms in the 

main tissues of broilers on overall FE was reviewed and reported in the next paragraphs. 

1.6.1. Muscle 

1.6.1.1. Mitochondria dynamics and bioenergetics processes   

In chickens, muscle is the main site for thermogenesis since they lack the brown adipose 

tissue. Being one of the main metabolic organs, the bioenergetics processes within the muscle can 

deeply influence FE in broilers. As mitochondria are responsible for producing around 90% of the 

energy pool for cells, studies have been conducted to evaluate whether the expression of different 

FE phenotypes would be associated with differences or inefficiencies in muscle mitochondria 

structure and functionality. A first confirmation of this hypothesis was obtained by Bottje et al. 

(2002) when a potential link between muscle mitochondria functionality and the phenotypic 

expression of FE was established in a broiler breeder line. The birds, belonging to the same genetic 

line, were held in thermoneutral environment in individual cages, fed the same diet, and 

individually phenotyped for FE, and therefore any behavioral, environmental or dietary effect was 
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excluded from the FE equation (Bottje and Kong, 2013). At the gene level, differences in the 

expression of genes involved in mitochondria biogenesis [peroxisome proliferator-activated 

receptor-γ (PPAR-γ), PPAR-γ coactivator-1α (PGC-1α) and inducible nitric oxide synthase (iNOS)] 

and energy metabolism [avian adenine nucleotide translocator (avANT), cytochrome oxidase III 

(COX III), and avian uncoupling protein (avUPC)] were observed in breast muscle of birds showing 

either high or low FE (Ojano-Dirain et al., 2007). Regarding the physiological aspects, the activity 

of mitochondria complexes I, II, III, and IV has been reported to be higher in breast muscle of high 

FE birds compared to low ones (Iqbal et al., 2004). Previously, Bottje et al. (2002) reported that the 

activity of complexes I and II was greater in breast and leg mitochondria of high FE birds. Recently, 

the upregulation of genes associated with electron transport chain (ETC) complex I (Kong et al., 

2011), as well as a greater predicted activity of complexes I, III, IV and V (Kong et al., 2016) in 

breast muscle of high FE birds, seem to confirm an overall increased activity of mitochondrial 

complexes in the high FE phenotype. To address whether these differences in respiratory chain 

complexes activity might be due to an altered expression of mitochondria proteins, post-

translational modifications, or oxidative damages, different proteo-genomics approaches were 

performed. At the protein level, mitochondrial ETC complexes should not be considered as single 

entities but rather the assemblies of multiprotein subunits, which expression is controlled by both 

nuclear and mitochondrial DNA (Iqbal et al., 2004). Although the activity of the different 

complexes appeared higher in most of the reported studies, no significant difference has been 

observed in complex I protein expression, as well as in the expression of 70S subunit of complex II 

or α-ATPase (complex V) in breast muscle of birds with different FE phenotype. Nonetheless, 

cytochrome b, cytochrome c1, core I (complex III) and cytochrome c oxidase subunit II (complex 

IV) showed higher expression in low FE mitochondria. Considering other chicken tissues over than 

muscle, only two mitochondrial proteins (cytochrome c1 and cytochrome c oxidase subunit II) 

exhibited differential expression between high or low FE birds in at least 4 out of 5 examined 

tissues (breast muscle, heart, duodenum, liver, and lymphocytes), suggesting the existence of tissue-
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specific regulatory mechanisms (e.g., post-translational modifications or different cell turnover) 

(Iqbal et al., 2004; Iqbal et al., 2005; Ojano-Dirain et al., 2004; Lassiter et al., 2006; Tinsley et al., 

2010). On the other hand, Kong et al. (2016), using a shotgun proteomic approach, showed a higher 

mitochondrial proteins expression in breast muscle of high FE birds belonging to the same broiler 

breeder line and identified “mitochondrial function” and “oxidative phosphorylation” as first and 

fifth top expressed pathways, respectively. Moreover, it has been reported that the activation of 

upstream regulators such as progesterone and triiodothyronine would be associated with the 

increased expression of mitochondrial proteins in the high FE phenotype (Kong et al., 2016). A 

common feature among the previously mentioned studies was the significantly higher level of 

oxidized mitochondrial proteins in the tissues of low FE chickens, as indicated by the increased 

amount of protein carbonyls. Therefore, as suggested by Bottje et al. (2006), the lower respiratory 

complexes activity observed in low FE mitochondria might be due to the increased level of oxidized 

proteins rather than a reduced expression of ETC protein subunits, as some of them showed similar 

or even higher expression in low FE mitochondria.  

In conclusion, Bottje and Kong (2013) indicated that at least 2 physiological processes 

would have contributed to mitochondrial inefficiency and hence to the overall expression of a low 

FE phenotype. The first physiological process was site-specific defects in ETC that may have 

increased reactive oxygen species (ROS) production. In turn, the higher levels of ROS were 

identified to be responsible for the greater amount oxidized proteins in the low FE phenotype 

(Bottje et al., 2006; Bottje and Carstens, 2009). An increased oxidation of mitochondrial proteins 

could have played a detrimental effect on FE since energy might have been directed towards 

reparation and synthesis of mitochondrial proteins rather than for anabolic processes. The second 

aspect associated with inefficiency was proton leak, which is a movement of protons across the 

inner mitochondrial membrane at other sites rather than through ATP synthase. Proton leak is 

fundamental for maintaining homeostasis by reducing mitochondrial ROS production, even though 

it represents an energetic wasteful process and accounts up to 50% of basal oxygen consumption 
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rate in mitochondria (Bottje and Kong, 2013). Bottje et al. (2009) reported that proton leak rates in 

the low FE phenotype were higher, or at least similar, to those observed in the high FE one. Finally, 

ROS, acting as secondary messengers, may have influenced the expression of genes and proteins 

involved in mitochondria functionality, activity, or development (Bottje and Kong, 2013).    

1.6.1.2. Protein synthesis and cellular anabolic processes  

On the same broiler breeder line, breast muscle global mRNA expression was assessed using 

microarray-based approaches (Kong et al., 2011; Bottje et al., 2012). High FE birds were 

characterized by an upregulation of genes either involved in anabolic processes (protein packaging 

and scaffolding activity, purine and pyrimidine biosynthesis, prevention or delay of apoptosis and 

modulation of gene transcription), or related to major signal transduction and cascade mechanisms 

pathways [protein kinase-A (PKA), c-Jun NH(2)-terminal protein kinase (Jnk), retinoic acid and 

retinoid X receptor (RAR-RXR)] or in sensing the energy status and regulating energy production 

in the cell [adenosine monophosphate AMP-activated protein kinase (AMPK) and protein kinase 

AMP-activated non-catalytic subunit gamma 2 (PRKAγ2)]. At the same time, high FE birds showed 

downregulation of genes associated with cytoskeletal organization, as well as architecture and 

integrity-related genes, major histocompatibility complex cell recognition, stress-related heat shock 

proteins and several platelet derived growth factors genes. A global overview of the cellular 

processes which might have contributed to the phenotypic expression of FE has been summarized 

by Bottje and Kong (2013). Recent findings also suggested a potential role of insulin receptor, 

insulin-like growth factor 1 receptor, nuclear factor erythroid 2-like 2 (Kong et al., 2016), 

progesterone (Kong et al., 2016; Bottje et al., 2017a), as well as mechanistic target of rapamycin 

(mTOR) and protein degradation pathways (Bottje et al., 2014), in the phenotypic expression of FE 

in broiler chickens. On the other hand, rapamycin independent companion of target of rapamycin 

(RICTOR), mitogen-activated protein kinase 4 (MAP4K4), and serum response factor were 

predicted to be downregulated in muscle of high FE chickens (Kong et al., 2016). Combining gene 
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and protein expression analysis, Bottje et al. (2017b) also reported an enhanced mitochondrial and 

cytosolic ribosomal construction, protein translation, proteasomes and autophagy, in breast muscle 

of high FE birds. On the other hand, consistently with previous findings, Kong et al. (2016) 

highlighted that several upstream regulators involved in the activation of cytoarchitecture-related 

genes were inhibited in the high FE phenotype. Overall, broiler chickens showing a high FE 

phenotype seem to achieve a greater efficiency through reducing the energy expenditure for 

maintaining cytoskeletal architecture and function, as well as for substituting damaged proteins, 

while directing energy towards anabolic-related processes that may enhance overall cellular 

efficiency (Kong et al., 2016). However, considering the less organized cytoskeletal architecture 

observed in high FE birds, it would be interesting to evaluate whether the selective pressure applied 

to improve FE may have negatively contributed to the increased incidence and severity of muscle 

myopathies recently observed in fast-growing broiler genotypes. 

Recently, the biological basis of the differences between high and low FE chickens was 

investigated by Zhou et al. (2015a) through mRNA-seq and pathways analysis. Despite previously 

reported studies, which were focused on a broiler breeder line, the research of Zhou et al. (2015a) 

was carried out on breast muscle of male chickens obtained by crossing three commercial pure 

lines. The RNA-seq analysis identified a total of 1,059 differentially expressed genes between high 

and low FE chickens. High FE birds had a greater expression of genes related to muscle 

development, hypertrophy, and remodeling, coupled with a decreased expression of protein 

degradation and atrophy-related genes. Moreover, transcriptional factors involved in muscle 

development resulted upregulated in these birds. These results, associated with the predicted 

activation of GH and insulin-like growth factor-I/phosphatidylinositol 3-kinase/protein kinase B 

(IGFs/PI3K/Akt) signaling pathways, might explain the higher breast yield observed in high FE 

birds. Other important findings were the upregulation of genes related to inflammatory response and 

macrophage infiltration, as well as an increased expression of glutathione s-transferase superfamily 

genes which encode for antioxidant proteins. Moreover, the activation of hypoxia-inducible 
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transcription factor-1α would suggest that a hypoxic condition may occur in breast muscle of high 

FE birds, which might be ascribed either to the increased inflammatory condition, to the excessive 

muscle remodeling, or to the higher production of ROS (Zhou et al., 2015a). It is interesting to note 

that most of the biological features observed by Zhou et al. (2015a) in the breast of high FE birds 

can overlap those reported in breast muscle of birds affected by wooden breast myopathy. Even 

though Zhou et al. (2015a) reported no clinical symptoms of sickness or muscle damages, the 

similarity in gene expression profile may indicate common biological patterns and thereby a 

possible relationship between FE and wooden breast occurrence.  

1.6.2. Adipose tissue and liver 

Adipose tissue plays a central role in energy homeostasis being a metabolically active organ 

with endocrine and regulatory functions. On the same chicken population of Zhou et al. (2015a), 

another RNA-seq analysis was conducted to investigate the gene expression profile in abdominal fat 

(Zhou et al., 2015b). Low FE chickens showed higher lipid accumulation, which was likely 

determined by the upregulation of genes involved in lipid synthesis, as well as downregulation of 

genes enhancing triglyceride hydrolysis and cholesterol transport from adipose tissue. Moreover, 

the predicted activation of sterol regulatory element binding proteins, as well as the inhibition of 

insulin-induced gene 1, was consistent with the higher cholesterol accumulation observed in low FE 

birds (Zhou et al., 2015b).  

On the other hand, adipose tissue also has a secretory function. Leptin, for instance, is a 

peptide hormone secreted by the adipose tissue which is involved in the regulation of feed intake 

and energy metabolism in both mammals and avian species. In chickens, leptin is also expressed in 

the liver and it is regulated by the nutritional state of the birds (Dridi et al., 2005). As in mammals, 

leptin is recognized as “satiety hormone” in chickens as well, since it reduces feed intake while 

increases energy expenditure through the interaction with its receptors localized both in brain 

neurons and in other peripheral tissues (Richards, 2003). Understanding the role of different 
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molecules such as leptin in both central and peripheral tissues of the chickens is fundamental to 

increase our knowledge regarding the molecular basis of FE.  

1.6.3. Brain 

Feeding behavior and body energy homeostasis are intimately connected with the brain 

(Kuenzel et al., 1999; Richards, 2003; Richards and Proszkowiec-Weglarz, 2007; Bungo et al., 

2011), in particular with the infundibular nucleus of the hypothalamus (Bungo et al., 2011). Here, 

the hypothalamic melanocortin system contains two different populations of neurons which can 

modulate feed intake through the secretion of various neuropeptides. Briefly, a reduction of feed 

consumption is mediated by the α-melanocyte stimulating hormone, released by the 

proopiomelanocortin neurons (POMC), and the cocaine- and amphetamine-regulated transcript 

(CART). On the other hand, neuropeptide Y (NPY) and agouti-related protein can stimulate 

appetite and increase feed intake by repressing the melanocortin anorexigenic effect (Bungo et al., 

2011). Differences in the expression levels of these neuropeptides and some feeding-related genes 

have been reported in the hypothalamus of chickens (Sintubin et al., 2014) and quails (Blankenship 

et al., 2016) divergently selected for RFI and FE, respectively. However, other factors such as leptin 

(Dridi et al., 2005) and several gut hormones (Honda et al., 2017) can affect central feed intake 

regulation and hence energy homeostasis in chickens. 

1.6.3.1. Focus on Neuropeptide Y (NPY) 

 This research topic was developed during my 5-month research period at the Center of 

Excellence for Poultry Science – University of Arkansas. This study was carried out to characterize 

the expression of neuropeptide Y in chicken muscle and assess its effects on mitochondria 

dynamics.  

NPY is an orexigenic 36-amino acid peptide mainly expressed in the hypothalamus of 

chickens (Kuenzel et al., 1987). While the distribution of NPY and its receptors in mammals is well 
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documented and defined, there is a paucity of scientific information regarding these aspects in avian 

(non-mammalian vertebrates) species. Indeed, NPY expression was only recently reported in other 

chicken tissues beside the brain, such as liver and skeletal muscle (Gao et al., 2017). In addition, 

although the role of hypothalamic NPY on the regulation of feeding behavior is well known 

(Saneyasu et al., 2011; Newmyer et al., 2013), its effect on physiological and metabolic features in 

peripheral tissues is still not well defined. Therefore, due to the important functions of NPY on 

overall energy homeostasis and hence on feed efficiency in chickens, a study was conducted to 

investigate whether NPY and its receptors are expressed in the skeletal muscle, the main site for 

thermogenesis in poultry species, and then to investigate its potential role in regulating the 

expression of mitochondrial biogenesis-, function-, and dynamics-related genes.  

For the characterization, 6 birds showing the same age, gender and genetic line, fed the same 

diet and raised in the same environmental conditions, were humanely euthanized to collect breast 

and leg muscle, and hypothalamus. Quail leg muscle and quail myoblast (QM7) cells were also 

used for the characterization. Total mRNA was extracted (Trizol method) according to the 

manufacturer’s recommendations, and its integrity and quality were evaluated using 1% agarose gel 

electrophoresis. RNA concentration and purity were assessed for each sample by Take 3 Micro-

Volume Plate using Synergy HT multi-mode micro plate reader (BioTek,Winooski, VT). Then, 1 

μg of RNA was reverse transcribed using qScript cDNA Synthesis Kit (Quanta Biosciences, 

Gaithersburg, MD) and the expression of NPY and its receptors was assessed with conventional 

PCR.  

To understand the physiological role of NPY in chicken muscle, QM7 cells were treated 

either with 0 (CON), 1 (NPY1) or 100 (NPY100) nM of recombinant NPY. Total mRNA was 

extracted from treated QM7 cells as described above, and RT-qPCR analysis performed to 

determine the relative expression of NPY and its receptors as well as that of mitochondrial 

biogenesis-, function-, and dynamics-related genes. Briefly, real-time quantitative PCR (Applied 

Biosystems 7500 Real-Time PCR system) was performed using 5 μL of 10X diluted cDNA, 0.5 μM 



53 
 

of each forward and reverse primer, and SYBR Green Master Mix (ThermoFisher Scientific, 

Rockford, IL) for a total 25 μL reaction. The qPCR cycling conditions were the same reported by 

Lassiter et al. (2014) and 18S gene was used as housekeeping gene. The 2
−ΔΔCt

 method (Schmittgen 

and Livak, 2008) was used to determine the relative expression of target genes considering the 

untreated group as calibrator.  

From this study emerged that NPY is expressed in both chicken breast and leg muscles, 

quail leg muscle, and in QM7 cells, as shown in Figure 1.6.1. The mRNA expression of NPY and 

its receptors in QM7 cells was reduced by the NPY1 treatment while was increased with the 

NPY100 (Figure 1.6.2). In addition, the treatment with recombinant NPY altered the mRNA 

expression of mitochondrial biogenesis-, function-, and dynamics-related genes in QM7 cells 

(Figure 1.6.3). 

Figure 1.6.1 Characterization of NPY and its receptors in chicken and quail tissues (hypothalamus 

and muscles) through conventional PCR. 
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Figure 1.6.2 mRNA expression of NPY and its receptors in QM7 cells treated with recombinant 

NPY. 
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Figure 1.6.3 mRNA expression of mitochondrial biogenesis-, function-, and dynamics-related genes in QM7 cells treated with recombinant NPY.  
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In addition, an in vivo study was performed. 10-d-old chicks were intraperitoneally injected with 

different dosages of NPY (0, 60, 120, 240 nM NPY). The results (data not showed) indicated that 

NPY treatments stimulated feed but not water consumption. Similarly, the treatments determined 

significant changes in NPY expression in blood as well as in the expression of NPY, NPY 

receptors, and mitochondria genes, in breast and leg muscle. Furthermore, we observed significant 

changes in the expression of NPY and related receptors according to the feeding state of the birds 

(fasted vs. fed). Ongoing analysis on mitochondria bioenergetics processes are defining the role of 

NPY on metabolic aspects of muscle mitochondria. However, due to the deadline anticipation for 

submitting the PhD thesis (occurred for the first time in this academic year), the results of the 

bioenergetics analysis, currently ongoing, have not been included in this dissertation. 

Taken together, these results suggest that:  

 NPY is expressed in chicken breast and leg muscle, 

 NPY regulates its own system, 

 NPY may play a pivotal role in mitochondria function and dynamics. 

Therefore, due to its important functions on feed intake and mitochondria activity in muscle 

tissue, NPY could be considered a crucial factor involved in energy homeostasis processes and 

thereby in FE in broiler chickens.  

1.6.4. Gut 

The gut is one of the most important tissues able to influence the expression of different FE 

phenotypes due to its pivotal function in nutrient digestion and absorption, as well as for its 

immunological and regulatory roles (Scanes and Pierzchala-Koziec, 2014). 

Ojano-Dirain et al. (2007) found a higher level of oxidized proteins in duodenal mucosa 

homogenate and duodenal mitochondria of low FE birds. On the other hand, higher mRNA 

expression of PPAR-γ and iNOS was observed in the duodenum of high FE birds, whereas no 
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significant difference was reported for PGC-1α, avANT and COXIII (Ojano-Dirain et al., 2007). Lee 

et al. (2015) analyzed the transcriptomic profile in duodenum of chickens divergently selected for 

RFI. The Authors observed that the selection process improved FE by reducing feed intake without 

significant changes in body weight gain. The molecular mechanism behind this improvement has 

been associated with the upregulation of genes involved in the reduction of appetite and increased 

cellular oxidative stress, prolonged cell cycle, DNA damage and apoptosis, as well as greater 

oxidation of dietary fats and efficient fatty acids transport from the intestine. Moreover, a 

differential expression of genes involved in the avian target of rapamycin (avTOR) signaling 

pathway has been observed in liver and small intestine of meat-type chickens divergently selected 

for RFI, confirming a potential involvement of avTOR/PI3K pathway in determining FE in 

chickens (Lee and Aggrey, 2016).  

Recently, the development of new omics technologies and platforms has strengthened the 

possibility to investigate the gut microbiota and its metabolic activities in farm animals (Deusch et 

al., 2015). Several papers reported differences in the intestinal microbiota between chickens 

showing different FCR (Stanley et al., 2012; 2016; Mignon-Grasteau et al., 2015). Stanley et al. 

(2012) observed no significant difference in jejunum microbiota composition between birds 

showing high or low FCR as this tract was almost exclusively populated by members of the genus 

Lactobacillus. On the contrary, caecum microbiota showed higher diversity and 24 unclassified 

bacterial species were found to be differentially expressed between high and low performing birds. 

In a recent study, three families, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae, have 

been associated with the phenotypic expression of high FE (Stanley et al., 2016). In these birds, 

higher abundance of Ruminococcus, Faecalibacterium, Clostridium, and two unknown genera from 

the Lachnospiraceae family was also observed. Even if some strains of Lactobacillus are aimed to 

improve broilers performance, Stanley et al. (2016) identified others which have an undesirable 

outcome on the overall productive efficiency mainly through a stimulation of feed consumption. In 
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another study, Mignon-Grasteau et al. (2015) reported that birds selected for a low FCR showed 

lower cecal counts of Lactobacillus, L. salivarius and E. coli compared to the high ones. These 

variations in bacterial groups affected also the equilibrium between bacteria in the gut. Indeed, low 

FCR birds exhibited less L. salivarius and more L. crispatus to Lactobacillus ratio, as well as a 

higher ratio of clostridia to Lactobacillus and to E. coli. Albeit it has been calculated on a limited 

number of animals, the genetic heritability of microbiota was rather low, even if appreciable 

heritability coefficients (between 0.16 and 0.24) were observed for the ratios of L. crispatus, C. 

leptum and C. coccoides to E. coli. Finally, the Authors identified 14 Quantitative Trait Loci (QTL) 

which can affect the composition of the microbiota, even if they resulted significant only on a 

chromosome-wide scale. Interestingly, the only QTL close to genome-wide significance (QTL for 

C. leptum on chromosome 6) was located in a region containing genes involved in inflammatory 

response and intestinal motility (Mignon-Grasteau et al., 2015). However, as emerged in three 

different trials performed by Stanley et al. (2016), the microbiota associated with the phenotypic 

expression of FE resulted characterized by a great variability, indicating that other efforts should be 

done to identify probiotic bacteria and microbiota composition able to provide positive effects on 

FE.  

The gut mucosa plays a critical role in bird’s physiology since it acts as a physical barrier 

which must be permeable to nutrients, electrolytes, and water, while at the same time should avoid 

bacteria and antigens translocation to the underneath tissues. In addition, the small intestine also has 

important immunological, endocrine, and regulatory functions (Scanes and Pierzchala-Koziec, 

2014) which can deeply affect health status (Sugiharto, 2016), as well as feeding behavior and 

overall energy homeostasis in the chickens (Honda et al., 2017). Therefore, the metabolic dynamics 

occurring in the small intestine of broiler chickens deserve much more attention when investigating 

molecular traits related to FE. A similar approach was applied in the RESEARCH WORK #2 as 

shown in the next chapter.  
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2. AIM OF THE RESEARCH 

In the present dissertation, two research works aimed at evaluating nutritional and physiological 

aspects involved on overall productivity of broiler chickens, with special regard to feed efficiency 

applying both traditional and innovative approaches, have been included. Due to the vastness of 

these research fields, special attention was paid to specific topics such as protein and amino acid 

nutrition (RESEARCH WORK #1) as well as metabolic and physiological features of the small 

intestine (RESEARCH WORK #2) in fast-growing broilers, respectively.  

Due to the progressive increase of lysine concentration in broiler diets, it may be 

questionable whether the dietary ratios between specific amino acids and lysine, currently 

recommended and adopted in commercial practices, are sufficient to meet the amino acid 

requirements of modern fast-growing broilers. In particular, this might be the case of arginine which 

received only limited attention in the past years despite its important roles in poultry as described in 

the previous chapters. To address this concern, the RESEARCH WORK #1 was aimed at evaluating 

the effects of the dietary supplementation of crystalline L-arginine to increase the arginine to lysine 

ratio beyond the ones currently suggested on growth performance, with particular focus on feed 

efficiency, breast meat quality, incidence and severity of breast muscle myopathies and foot pad 

dermatitis, as well as plasma and muscle metabolomics profile in modern fast-growing broilers. 

Regarding productive efficiency, another aspect to be considered is that, despite similar 

selection criteria have been likely adopted for all the fast‐growing chicken lines currently available 

for the poultry industry, differences in growth performance, feed efficiency and meat quality have 

been observed among commercial hybrids. However, the biological determinants of these 

differences have not been totally elucidated yet. For instance, a detailed investigation of the 

metabolic dynamics occurring in a key organ such as the small intestine, which is involved in 

nutrient digestion and absorption but also in important immunological, endocrine, and regulatory 

aspects, might be useful to explain the differences in productive efficiency among different fast-
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growing broiler lines. Therefore, the RESEARCH WORK #2 was focused on the characterization 

of productive traits, with special regard to feed efficiency, and intestinal transcriptomic profile 

through microarray analysis in two fast-growing chicken hybrids raised in the same environmental 

conditions and fed the same diet.  
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3. RESEARCH WORK #1: Effect of dietary arginine to lysine ratios on productive 

performance, plasma and muscle metabolomics profile, and meat quality in fast-

growing broiler chickens. 

3.1. Background and aim  

The selective processes applied to fast-growing broiler chicken lines have changed the 

metabolic and physiological features of these animals, and consequently their nutritional 

requirements of specific dietary compounds. In addition, the European ban of animal proteins as 

feeding-stuffs contributed to the limited provision of certain essential amino acids, including 

arginine. Arginine is considered an essential amino acid for the chickens and it is involved in 

crucial physiological, metabolic and immunological processes as described in the previous chapters 

(Fernandes and Murakami, 2010; Khajali and Wideman, 2010; Fouad et al., 2012). The 

repartitioning of arginine in the different body apparatus and organs to perform its functions may 

impair overall efficiency if inadequate amounts of this amino acid are provided with the diet. 

Hence, it should be questioned whether the currently adopted dietary arginine to lysine (Arg:Lys) 

ratios are sufficient to meet the modern broiler requirement in arginine without compromising feed 

efficiency and growth rate. The present study aimed, therefore, at evaluating the effects of the 

dietary supplementation of crystalline L-arginine in a commercial broiler diet on growth 

performance, with special regards to feed efficiency, plasma and muscle metabolomics profile, 

breast meat quality, incidence and severity of breast muscle myopathies and foot pad dermatitis, in 

modern fast-growing broilers. 

3.2. Materials and Methods 

3.2.1. Animals and housing 

A total of 1,170 one-d-old Ross 308 male chicks, obtained from the same breeder flock and 

incubated in the same environmental conditions, was vaccinated (coccidiosis, Infectious Bronchitis 

Virus, Marek’s disease virus, Newcastle and Gumboro disease) and allotted to an environmental 
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controlled poultry house. Chicks were divided in 18 pens of 6 m
2
 each (9 replications/group, 65 

birds/replication, 11 birds/m
2
) and chopped straw (2 kg/m

2
) was used as litter material. Replications 

were distributed in randomized blocks inside the poultry house in order to limit any environmental 

effect. Stocking density was defined according to the legislation in force (maximum 33 kg/m
2
) 

(European Commission, 2007). Two circular pan feeders able to guarantee at last 2 cm of front 

space/bird and 10 nipples were provided for each pen. A photoperiod of 23L:1D of artificial light 

was adopted in the first 7 d and in the last 3 d of trial, while 18L:6D was used for the remaining 

days (European Commission, 2007). The environmental temperature was settled according to the 

age of the birds following the management guide provided by the breeding company. Birds were 

handled, raised, and processed according to the European legislation (European Commission, 2007; 

2009; 2010). The experiment was approved by the Ethical Committee of the University of Bologna 

(ID: 928/2018). 

3.2.2. Experimental diets 

The same commercial corn-wheat-soybean basal diet (Table 3.1) was used to produce both 

the experimental diets. The basal diet was formulated to meet or slightly exceed the Ross 308 

nutrition recommendations (Aviagen, 2014) and maintaining the ideal amino acid profile. The 

feeding program was composed of 4 phases: starter (0-12 d), grower I (13-22 d), grower II (23-33 

d) and finisher (34-43 d). The CON group received the basal diet without any arginine 

supplementation (digestible Arg:Lys ratio = 1.05, 1.05, 1.06, 1.07 in starter, grower I, grower II and 

finisher phase, respectively). The ARG diet was obtained by supplementing on-top the basal diet 

with 1.20, 1.15, 1.10 and 0.95 g/kg of crystalline L-arginine (purity 99%, Barentz, Hoofddorp, The 

Netherlands) in starter, grower I, grower II and finisher feeding phase, respectively. Samples were 

obtained from both the experimental diets to evaluate proximate composition. Moisture and ash 

content were determined in duplicate according to the Association of Official Analytical Chemists 
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procedure (AOAC, 1990). Crude protein content was assessed by the standard Kjeldahl copper 

catalyst method as reported in AOAC (1990). Crude fat was determined using the Soxhlet method 

(AOAC, 1990), which allowed to extract the ethyl-ether soluble substances contained in the sample. 

The amino acid concentration of the experimental diets was analyzed by AMINOLab
®
 (Evonik 

Industries, Hanau, Germany). Digestible amino acid values were calculated by multiplying 

digestibility coefficients (Ajinomoto Heartland, 2015) to the analyzed total amino acid content of 

each ingredient. In the ARG diet, the crude protein concentration was 23.4, 22.7, 20.3 and 18.2% in 

starter, grower I, grower II and finisher feeding phase, respectively. The calculated digestible lysine 

and arginine concentration was 1.25, 1.15, 1.05, and 0.93%, and 1.44, 1.32, 1.22, and 1.10%, 

corresponding to digestible Arg:Lys ratios of 1.15, 1.15, 1.16 and 1.17, respectively. The values 

concerning the CON diet are reported in Table 3.1. Both the diets were administered in a mash form 

and feed and water provided for ad libitum consumption.  

3.2.3. Productive performance and slaughtering measurements  

Number and weight of the birds were recorded on a pen basis at housing (0 d), at each diet 

switch (12, 22, 33 d) and at slaughter (43 d). Feed intake was recorded at the end of each feeding 

phase (12, 22, 33, 43 d). Mortality was recorded on a daily basis and dead birds were weighed, 

necropsied, and recorded to calculate the mortality percentage and to correct the productive 

performance results. Body weight (BW), daily weight gain (DWG), daily feed intake (DFI), feed 

conversion ratio (FCR) and cumulative FCR were determined for each feeding phase and for the 

overall rearing period. At 43 d, all birds were processed in a commercial plant and slaughtered 

according to the legislation in force using water-bath electrical stunning (200-220 mA, 1,500 Hz). 

Birds and carcasses belonging to the different experimental groups were clearly identified and kept 

separated throughout the processing phases. For each experimental group, all birds were 

mechanically processed and eviscerated to obtain carcass yield on a group basis by removing blood, 
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feathers, head, neck, viscera, abdominal fat, and feet. The overall carcass weight of each group was 

recorded after air-chilling and carcass yield calculated as percentage of body liveweight. Similarly, 

skinless and deboned breast was mechanically obtained from the carcass and yield calculated on a 

group basis as percentage of carcass weight. The incidence and severity of foot pad dermatitis 

(FPD) were macroscopically evaluated on all birds (1 foot/bird) using the 3-point scale evaluation 

system proposed by Ekstrand et al. (1997) [score 0 = no lesions; score 1 = mild lesions (<0.8 cm); 

score 2 = severe lesions (>0.8 cm)]. 

3.2.4. Blood and breast muscle collection  

At slaughter (43 d), 9 birds/group (1 bird/replication) selected with similar BW and clearly 

labelled were subjected to blood withdrawal. Blood was obtained from the wing vein, collected into 

4 mL lithium-heparin vials and immediately centrifuged (4,000 × g for 15 min) to obtain plasma, 

which was transferred into 1.5 mL labeled vials and stored at -80°C until metabolomic analysis. 

From the same 9 birds/group, a sample of Pectoralis major muscle was obtained, put into a 1.5 mL 

vial, immediately frozen under liquid nitrogen and then kept at -80°C until metabolomic analysis. 

The samples were consistently obtained from the same area of the breast muscle showing no 

macroscopic defects.   

3.2.5. Incidence of breast meat abnormalities 

The incidence and severity of white striping (WS), wooden breast (WB) and spaghetti meat 

abnormalities (SM) were evaluated on 150 randomly collected breasts/group approximately 24 h 

after processing. For each defect, a 3 point-scale evaluation system (NOR: normal; MOD: 

moderate; SEV: severe) was used to classify the magnitude of the myopathy. All the scorings were 

performed by the same operator in the same environmental conditions. For WS, the classification 

criteria was the dimension of white striation (Kuttapan et al., 2012), whereas the hardness at 
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palpation was used for the WB defect (Sihvo et al., 2014). Finally, the proneness to show muscle 

deconstruction in response to an external stimulus (finger pinching), as described by Sirri et al. 

(2016), was used to score the breasts according to the SM defect.   

3.2.6. Meat quality attributes 

Twelve breasts/group not showing macroscopic defects (e.g. visual signs of muscle 

myopathies, hemorrhages, or lesions), and obtained from carcasses with BW similar to the average 

BW of each group, were collected and used to assess meat quality attributes and proximate 

composition. Breast muscle pH was determined 48 h post-mortem using a modification of the 

iodoacetate method (Jeacocke, 1977) as previously reported (Sirri et al., 2017). The system color 

profile (CIE, 1978) of breast muscle was obtained by a reflectance colorimeter (Minolta Chroma 

Meter CR-300, Minolta Italia S.p.A., Milan, Italy) using illuminant source C. The results were 

reported as lightness (L∗), redness (a∗), and yellowness (b∗) and represent the average of 3 

independent measurements performed on the medial surface of the fillet (bone side) in an area 

showing no evident color defects. In addition, a parallelepiped meat cut (8 cm × 4 cm × 3 cm) 

weighing about 80 g was excised from the cranial part of each fillet and used to determine drip (of 

refrigerated storage) and cooking losses (in a water bath at 80°C for 45 min) using the same 

procedures described in our previous study (Sirri et al., 2017). A second parallelepiped meat cut (8 

cm × 4 cm × 2 cm) weighing about 60 g was excised from the middle part of each fillet and was 

individually labeled and tumbled with a 15% (wt/wt) brine solution containing sodium 

tripolyphosphate (2.3%) and sodium chloride (7.6%) and subsequently cooked in a water bath at 

80°C for 25 min. Marinade uptake and cooking losses were calculated for each sample.  

Proximate analysis was performed on breast meat samples to assess moisture, crude protein, 

total fat and ash content. Moisture and ash were obtained in duplicate according to the procedure 

described by the AOAC (1990). Total fat and crude protein content was determined using the 
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chloroform:methanol extraction procedure reported by Folch et al. (1957) and the standard Kjeldahl 

copper catalyst method (AOAC, 1990), respectively.  

3.2.7. Plasma and muscle metabolomics analysis 

Plasma samples were prepared for proton NMR (
1
H-NMR) analysis by centrifuging 650 μL 

of each sample for 15 min at 15,000 r/min (18,630 x g) and 4°C. 500 μL of supernatant were added 

to 100 μL of a D2O solution of 2,2,3,3-D4-3-(trimethylsilyl)-propionic- acid sodium salt 10 

mmol/L, used as NMR chemical-shift reference, buffered at pH 7.00 by means of 1 mol/L 

phosphate buffer. Finally, each sample was centrifuged again at the above conditions. 

Meat samples were prepared for NMR analysis by adding 0.5 g of meat to 3 mL distilled 

water and by homogenizing the mixture for 2 min by means of a high-speed disperser (IKA, USA). 

One mL of the obtained sample was centrifuged for 15 min at 15,000 r/min (18,630 x g) and 4°C. 

To remove fat from samples, 700 μL of supernatant were added to 800 μL CHCl3, vortex mixed for 

3 min and centrifuged again at the above conditions. 500 μL of supernatant were added to 200 μL of 

a D2O solution of 2,2,3,3-D4-3-(trimethylsilyl)-propionic acid sodium salt 10 mmol/L, used as 

NMR chemical-shift reference, buffered at pH 7.00±0.02 by means of 1 mol/L phosphate buffer. 10 

μL of NaN3 2 mmol/L were also added to avoid microbial proliferation. Finally, each sample was 

centrifuged again at the above conditions. 

1
H-NMR spectra were recorded at 298 K with an AVANCE III spectrometer (Bruker, Milan, 

Italy) operating at a frequency of 600.13 MHz. Following Ventrella et al. (2016), the signals from 

broad resonances originating from large molecules were suppressed by a CPMG-filter composed by 

400 echoes with a τ of 400 μs and a 180° pulse of 24 μs, for a total filter of 330 ms. The water 

residual signal was suppressed by means of presaturation. This was done by employing the 

cpmgpr1d sequence, part of the standard pulse sequence library. Each spectrum was acquired by 

summing up 256 transients using 32,000 data points over a 7184 Hz spectral window, with an 
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acquisition time of 2.28s. In order to apply NMR as a quantitative technique (Barbara et al., 2016), 

the recycle delay was set to 5s, keeping into consideration the relaxation time of the protons under 

investigation. 
1
H-NMR spectra were baseline-adjusted by means of the peak detection according to 

the “rolling ball” principle (Kneen and Annegarn, 1996) implemented in the baseline R package 

(Liland et al., 2010). In order to make the points pertaining to the baseline randomly spread around 

zero, a linear correction was then applied to each spectrum. Differences in water and fibers content 

among samples were taken into consideration by probabilistic quotient normalization (Dieterle et 

al., 2006) applied to the entire spectra array. The signals were assigned by comparing their chemical 

shift and multiplicity with the Human Metabolome Database (Wishart et al., 2007) and Chenomx 

software library (Chenomx Inc., Canada, ver. 10). This was done by taking advantage of the 

“autofit” utility of Chenomx software (ver. 8.3). 

3.2.8. Statistical analysis  

Once assessed that the effect of the block as well as the interaction between block and 

dietary treatments were not significant, block effect was not considered in the analysis and 

productive performance data were analyzed applying the Student T-test (SAS Institute, 1988) 

considering the dietary supplementation of L-arginine as independent variable. Pen was considered 

as the experimental unit for productive performance data. Prior to analysis, mortality data were 

submitted to arcsine transformation. Similarly, meat quality attributes were analyzed by means of 

the Student T-test (SAS Institute, 1988), considering the bird as experimental unit. The occurrence 

of FPD and breast meat abnormalities was analyzed using the Chi-square test considering the bird 

as experimental unit. Differences were considered statistically significant when P-value was lower 

0.05.  

Regarding metabolomics, molecules whose concentration varied in relation to the dietary 

supplementation of L-arginine were compared by means of Wilcoxon test in agreement with 
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previous investigations (Ventrella et al., 2016; Foschi et al., 2018). For this purpose, a significance 

limit P-value of 0.05 was accepted. To highlight the underlying trends characterizing the samples, 

principal component analysis model in its robust version (rPCA) was built on the molecules 

concentrations, centered and scaled to unity variance, according to Hubert et al. (2015). For each 

rPCA model, the scoreplot, that is the projection of the samples in the PC space tailored to highlight 

the underlying structure of the data, was calculated. Besides, the correlation plot was obtained by 

relating the concentration of each variable to the components of the rPCA model, therefore tailored 

to highlight the most important molecules in determining the trends highlighted by the scoreplot.  

3.3. Results 

3.3.1. Productive performance and slaughtering measurements 

The productive performance results are reported in Table 3.2. Both the experimental groups 

showed similar body weight at the beginning of the trial. After 12 d, ARG group showed a lower 

FCR (1.352 vs. 1.401, for ARG and CON, respectively; P<0.05) whereas BW, DWG, and DFI 

remained unaffected between the groups. At 22 d, cumulative FCR was significantly lower in ARG 

compared to the control group (1.398 vs. 1.420, P<0.01). The dietary supplementation did not elicit 

any significant effect on other productive traits. After 33 d, ARG-fed birds exhibited higher BW 

(1,884 vs. 1,829 g, P<0.05) and lower cumulative FCR (1.494 vs. 1.524, P<0.05) compared to the 

CON-fed group. Furthermore, DWG tended to be higher and FCR tended to be lower in ARG 

compared to CON group (93.1 vs. 89.3 g/bird/d, and 1.571 vs. 1.610, respectively for ARG and 

CON; P= 0.08). In the finisher feeding phase (34-43d), no significant difference was observed 

between the experimental groups. In the overall period of trial (0-43 d), the dietary supplementation 

of arginine tended to improve FCR (1.646 vs. 1.675, respectively for ARG and CON; P= 0.09), 

while it had only limited effect on BW, DWG and DFI. Mortality rate was not significantly affected 

by the dietary treatment in each feeding phase as well as in the overall period of trial.  
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At processing, eviscerated carcass yield was 71.3 and 70.9% for ARG and CON, 

respectively. Skinless breast yield, expressed as percentage of carcass weight, was 30.4 and 29.3% 

for ARG and CON, respectively. As shown in Figure 3.1, no significant effect of dietary arginine 

supplementation was detected on the incidence and severity of FPD.  

3.3.2. Incidence of breast muscle myopathies and meat quality  

The dietary supplementation of arginine did not affect the incidence and severity of WS, 

WB and SM (Table 3.3). The results of the evaluation of the breast meat quality attributes are 

shown in Table 3.4. Breast meat pH, color, drip and cooking losses, as well as marinade uptake and 

purging loss, showed no significant change in response to the dietary treatment. Considering the 

proximate composition of breast meat, the dietary supplementation of arginine had no significant 

effect on moisture, crude protein, total fat, as well as ash content (Table 3.4).  

3.3.3. Plasma and breast muscle metabolome 

1
H-NMR spectra were registered on plasma samples and 62 molecules quantified. Six 

molecules, listed in Table 3.5, exhibited significant variation in their plasma concentration in 

response to the dietary supplementation of arginine. ARG birds showed significantly higher plasma 

arginine and leucine concentrations, whereas plasma acetoacetate, adenosine, glutamate and proline 

were more abundant in CON birds. To obtain an overview about the molecules undergoing the 

greatest differences between the groups, the 6 molecules of Table 3.5 were employed as a basis for 

a rPCA model shown in Figure 3.2. 

In parallel to what was done on plasma, 
1
H-NMR spectra were obtained from breast muscle 

samples. From a total of 37 quantified molecules, 4 showed a significantly different concentration 

between CON and ARG group. Breast muscle from ARG group exhibited higher levels of arginine 
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and acetate and lower levels of acetone and inosine (Table 3.6). The rPCA model obtained using the 

4 molecules of Table 3.6 is shown in Figure 3.3.  

3.4. Discussion 

In the present study, broilers were fed either a basal diet (CON group), formulated to meet 

or slightly exceed the current recommendations (Aviagen, 2014) and widely used in commercial 

practice, or the same basal diet supplemented with crystalline L-arginine (ARG group) to increase 

the digestible Arg:Lys ratio. Considering other published studies aimed at evaluating the effects of 

the dietary supplementation of arginine in broilers, huge differences regarding bird’s genotype, age, 

and gender, composition of the basal diet, number and length of feeding phases, and inclusion rate 

of arginine, were observed and therefore care should be used in comparing results from different 

studies (Brake and Balnave, 1995; Kidd et al., 2001; Corzo and Kidd, 2003; Corzo et al., 2003; 

Rueda et al., 2003; Escobar et al., 2005; Jiao et al., 2010; Fouad et al., 2013; Ebrahimi et al., 2014; 

Laika and Jahanian, 2017; Christensen et al., 2015; Jahanian and Khalifeh-Gholi, 2018; Xu et al., 

2018). 

As for productive aspects, the dietary supplementation of arginine at the level tested in this 

study improved cumulative FCR at 12, 22, and 33 d and tended to improve it in the overall period 

of trial (0-42 d). ARG birds exhibited improved FCR in each feeding phase, even though significant 

differences between the groups were detected only in the starter phase (0-12 d). Corzo and Kidd 

(2003) stated that the dietary supplementation of arginine might exert positive effects during the 

starter phase by counteracting the early microbial challenges and aiding the immune system 

development. Similarly to our findings, Jahanian and Khalifeh-Gholi (2018) reported that broilers 

fed a diet with an arginine level of 100% of NRC recommendation (total Arg:Lys = 1.14 and 1.10 

in starter and grower phase, respectively) exhibited lower FCR at 21 d, as well as from 1 to 42 d, if 

compared to broilers receiving an arginine-deficient diet (90% NRC, Arg:Lys = 1.02 and 0.99 in 
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starter and grower phase, respectively). It has been reported that feed efficiency was affected at 10, 

24 and 46 d of age by increasing the level of digestible arginine from 100% of Ross 

recommendations to 153, 168 and 183% (Ebrahimi et al., 2014). On the other hand, no significant 

difference was observed in terms of FCR in broilers fed diets with arginine levels either to meet 

(100%) or exceed (105 and 110%) the NRC recommendations (Laika and Jahanian, 2017). 

Similarly, the administration of graded levels of arginine (0.45, 0.90, 1.35 and 1.90%) in an 

arginine-deficient diet (total Arg:Lys = 0.67 and 0.69 in starter and grower, respectively) did not 

exert any significant effect on FCR from 0 to 21 d and from 21 to 42 d of broilers age, even if a 

quadratic response was observed in the overall period of trial (Xu et al., 2018). When increasing the 

total dietary Arg:Lys ratio from 1.17 to 2.10 between 21 and 42 d, Fouad et al. (2013) observed no 

significant alteration in feed to gain ratios of broilers.  

In the present study, broilers receiving the arginine-supplemented diet also showed a 

significantly higher BW at 33 d while both groups reached the same live-weight at slaughter. It has 

been reported that the dietary supplementation of arginine from 21 to 42 d (total Arg:Lys ratio = 

1.17, 1.40, 1.63 and 2.10) had no effect on BW at processing (Fouad et al., 2013). Xu et al. (2018) 

observed a quadratic improvement in BW both at 21 and 42 d of age in response to the dietary 

supplementation of arginine, with the birds fed either a arginine-deficient diet (total Arg:Lys ratio = 

0.67 and 0.69 in starter and grower, respectively) or the highest level of arginine supplementation 

(total Arg:Lys ratio = 2.07 and 2.53 in starter and grower, respectively) showing lower BW 

compared to the others. Moreover, DFI was similar between CON and ARG group, indicating that 

the dietary supplementation of arginine did not exert any effect on feeding behavior of broiler 

chickens at different age. This observation is in accordance with other previous studies (Corzo and 

Kidd, 2003; Fouad et al., 2013; Jahanian and Khalifeh-Gholi, 2018; Ebrahimi et al., 2014; Laika 

and Jahanian, 2017; Xu et al., 2018). However, Corzo et al. (2003) reported a significant effect of 

progressive amounts of dietary arginine from 42 to 56 d of broiler age on feed consumption. 
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Furthermore, mortality rate was similar between the two experimental groups, which is in line with 

previous findings (Kidd et al., 2001; Corzo and Kidd, 2003; Corzo et al., 2003; Fouad et al., 2013). 

Based on the results obtained in the present study, the Arg:Lys ratios currently adopted at least in 

Countries where the animal protein sources are not allowed in feed formulation (i.e. European 

Union) appears not adequate to exploit the productive potential of modern fast-growing broiler 

chickens.  

No significant difference was observed between the groups concerning the incidence and 

severity of WS, WB and SM. It has been previously reported that the administration of diets with an 

Arg:Lys ratio of 0.95 and 1.25 exerted no significant effect on the occurrence of WS and WB in 53-

d-old broilers (Christensen et al., 2015). Bodle et al. (2018) recently reported that increasing the 

digestible Arg:Lys ratio to from approximately 111-113% to 120-125% reduced the severity of WB 

while had no effects on WS.  

Quality attributes and proximate composition of breast meat were not significantly affected 

by the arginine supplementation. It has been reported that the dietary supplementation of 153% of 

digestible arginine in a control diet significantly increased crude protein and dry matter content in 

breast meat, whereas ash and fat content were significantly improved by supplementing 183% and 

168% of digestible arginine, respectively (Ebrahimi et al., 2014). On the other hand, Fouad et al. 

(2013) observed no significant alteration in the intramuscular fat content of breast muscle of 

broilers fed diets with different concentrations of arginine (total Arg:Lys ratio = 1.17, 1.40, 1.64 

and 2.10) from 21 to 42 d. Considering breast meat quality traits, administering diets with arginine 

levels from 80 to 140% of NRC recommendation increased L* value and cooking loss, while 

showed no effects on a* and b* value and drip loss (Jiao et al., 2010). The dietary supplementation 

of 0.80, 0.95, 1.10 and 1.25% of L-arginine from 42 to 56 d significantly affected lightness (L*) and 

yellowness (b*) of breast fillets (Corzo et al., 2003). Finally, also the incidence and severity of foot 

pad dermatitis exhibited no significant difference in response to the dietary treatment. 
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Concerning metabolomics, the rPCA models showed differential levels of plasma and 

muscle metabolites between groups (Figure 3.2 and 3.3, respectively) indicating a clear separation 

of them according to the dietary supplementation of arginine. In fact, increasing the level of dietary 

arginine significantly enhanced the plasma concentration of arginine and leucine while reduced that 

of proline, glutamate, acetoacetate and adenosine. In addition, ARG birds exhibited higher levels of 

breast muscle arginine and acetate, whereas the concentration of acetone and inosine was reduced. 

According to these findings, the dietary supplementation of L-arginine was able to increase its 

concentration in both plasma and Pectoralis major muscle, indicating that arginine can be 

effectively absorbed by the intestinal epithelium and can enter the systemic circulation reaching 

peripheral tissues such as breast muscle. As previously reported, dietary arginine is absorbed in the 

small intestine using both sodium-dependent and –independent mechanisms with the latter showing 

a greater effectiveness. As most of the arginase activity is located in the kidney, a substantial 

amount of dietary arginine may have passed the brush border and then entered the systemic 

circulation with only limited degradation. Once in the muscle, arginine could stimulate protein 

synthesis and cell proliferation (Fouad et al., 2010). Moreover, plasma concentration of leucine 

appeared higher in birds receiving the arginine-supplemented diet. Higher plasma levels of leucine 

have been associated with a greater protein synthesis in skeletal muscle of pigs (Escobar et al., 

2005). Similarly, Baeza et al. (2015) reported a positive correlation between Pectoralis major 

weight and plasma histidine concentration, which was numerically higher in ARG birds (4.85 ×10
-2

 

vs. 3.97 ×10
-2

 mmol/L, respectively for ARG and CON group, P<0.1; data not shown). Taken 

together, these results indicate that the dietary arginine supplementation may improve anabolic 

processes within breast muscle probably via protein synthesis enhancement and this merit further 

in-depth investigations.  

Furthermore, the dietary supplementation of arginine appears to modulate energy and 

protein metabolism. Two ketone bodies, acetoacetate and acetone, showed lower concentrations in 
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ARG plasma and breast muscle, respectively. Ketone bodies can be recruited from blood circulation 

by peripheral tissues, including breast muscle, and catabolized to produce energy. Therefore, these 

findings may indicate an increased utilization of ketone bodies in peripheral tissues in response to 

the dietary supplementation of arginine. Fouad et al. (2010) reported that dietary arginine 

supplementation can modulate body fat deposition in chickens. Indeed, Fouad et al. (2013) 

associated the lower abdominal fat deposition in response to the dietary supplementation of arginine 

to both the increased expression of genes involved in fatty acid β-oxidation and to the reduced 

expression of fatty acid synthase gene in heart and liver, respectively. A potential effect of the 

dietary supplementation of arginine on energy and fat metabolism has been previously reported also 

in meat-type ducks (Wu et al., 2011).  

Glutamate and proline, both resulting from arginine metabolism (Fernandes and Murakami, 

2010; Fouad et al., 2010), also showed lower concentration in plasma of ARG birds. In mammals, 

glutamate has been reported to be associated with several physiological aspects such as cell 

proliferation, biosynthesis of neurotransmitters and other amino acids, immune functionality, acid-

base balance and gene expression (Newsholme et al., 2003). Proline is involved in important 

biological functions related cellular metabolism, including the regulation of gene expression and 

cell differentiation, scavenging oxidants, protein synthesis and structure, cell signaling and 

bioenergetics (Wu et al., 2011). However, in particular metabolic conditions (e.g., nutritional or 

metabolic stress), glutamate can participate to gluconeogenesis in kidney (Newsholme et al., 2003) 

or enter the citric acid cycle (Krebs cycle) (Scanes, 2015). Similarly, proline metabolism can 

generate electrons which can enter the mitochondrial electron transport chain to produce ATP 

(Phang et al., 2008; 2010). Otherwise, proline can be also degraded to produce α-ketoglutarate, an 

intermediate of the citric acid (Krebs) cycle (Scanes, 2015). Therefore, it may be hypothesized that 

the lower concentration of glutamate and proline in plasma of ARG birds may be due to an 
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increased recruitment and utilization of these amino acids in peripheral tissues, possibly the skeletal 

muscle, to provide energy substrates for the cell. 

Inosine represents a metabolite of ATP degradation which can be converted to hypoxanthine 

and then released into blood circulation (McConell et al., 2005; Bishop, 2010). Plasma 

concentration of hypoxanthine was higher in birds received the dietary supplementation of arginine 

compared to CON (6.80 ×10
-3

 vs. 3.92 ×10
-3

 mmol/L, P<0.1; data not shown) suggesting that 

muscle ATP could have been catabolized to provide energy within the cell. Although the molecular 

mechanism is still unknown, the increased concentration of acetate in breast muscle suggests that 

the muscle acetate-mevalonate pathway is activated to promote muscle cell development through 

steroids and/or triterpenoids. 

Finally, the adenosine concentration was also reduced in plasma of birds fed the 

supplemented diet. In mammals, adenosine could be released in plasma by endothelial cells and 

myocytes in response to ischemia, hypoxia, or oxidative stress (Eltzschig et al., 2006; Hack et al., 

2006). L-arginine has also been shown to have marked antioxidant properties (Wallner et al., 2001). 

Therefore, the reduction of plasma adenosine might be related to the potential effect of arginine on 

oxidative status and hypoxic condition likely occurring in breast muscle of fast-growing broiler 

chickens.   

A global hypothesis of the molecular responses to the dietary supplementation of arginine is 

reported in Figure 3.4. Overall, arginine supplementation could stimulate anabolic processes within 

the muscles and improve FE. The increased energy depletion, as suggested by the lower value of 

inosine in breast muscle and the increased concentration of hypoxanthine in plasma, appears 

consistent with this hypothesis. In turn, skeletal muscle cells may have stimulated the recruitment of 

several plasma metabolites (e.g. acetoacetate, glutamate, proline) which can be used to restore the 

energy pool through energy producing pathways (e.g. Krebs cycle).     
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In conclusion, based on our experimental conditions, the Arg:Lys ratios currently adopted at 

least in Countries where the animal protein sources are not allowed in feed formulation (i.e. 

European Union) appear to be inadequate to exploit the maximum productive potential of modern 

fast-growing broilers, with particular regard to FE. The Arg:Lys ratios tested herein had positive 

effects on FE without showing any negative effect on meat quality attributes, foot pad condition and 

incidence of breast meat abnormalities. Furthermore, plasma and muscle metabolome showed 

significant alterations in response to the arginine supplementation. According to this analysis, the 

improvements observed in FE in the supplemented group might be likely ascribed to a potential 

modulatory effect of arginine on energy and protein metabolism and hence on the overall energy 

homeostasis in broiler chickens. In addition, the present study confirms the usefulness of NMR-

based approaches in investigating the molecular responses to different dietary treatments in avian 

species. Further studies are warranted to investigate the effects of graded Arg:Lys ratios on 

productive aspects and meat quality attributes in broiler chickens. In addition, other mechanistic 

studies are necessary to define and delineate the role of arginine on energy and protein metabolism 

in breast muscle as well as in other tissues, such as liver and adipose tissue. 
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Table 3.1 Composition of the basal diet in each feeding phase.  

Items 0-12 d 13-22 d 23-33 d 34-43 d 

Ingredients, g/100g   

   Corn 33.4 36.7 19.2 15.0 

   White corn 0.00 0.00 15.0 18.1 

   Wheat  20.0 20.0 25.0 30.0 

   Vegetable oil 2.45 2.68 3.61 3.97 

   Soybean meal 48% 18.2 20.2 14.2 9.33 

   Full-fat soybean 10.0 10.0 15.0 15.0 

   Concentrated SBM 5.00 0.00 0.00 0.00 

   Corn gluten 2.00 2.00 0.00 0.00 

   Pea 3.00 3.00 3.00 3.00 

   Sunflower 2.00 2.00 2.00 3.00 

   Lysine sulphate 0.54 0.53 0.46 0.43 

   DL-Methionine 0.29 0.00 0.00 0.00 

   Methionine hydroxy analogue 0.00 0.32 0.33 0.26 

   L-Threonine 0.12 0.11 0.10 0.08 

   Choline chloride 0.10 0.10 0.05 0.00 

   Calcium carbonate 0.53 0.52 0.60 0.69 

   Dicalcium phosphate  1.29 0.80 0.47 0.21 

   Sodium chloride 0.29 0.30 0.23 0.21 

   Sodium bicarbonate 0.05 0.05 0.15 0.25 

   Premix vit.-min.
1 

0.54 0.46 0.38 0.30 

   Phytase 0.05 0.05 0.05 0.05 

   Xylanase 0.05 0.05 0.05 0.05 

   Emulsifier 0.08 0.08 0.08 0.08 

Proximate composition      

   AME, MJ/kg  13.0 13.2 13.7 13.9 

   Dry matter*, % 88.8 88.2 88.5 88.5 

   Crude protein*, % 23.2 22.8 19.8 18.2 

   Total lipid*, % 6.25 6.51 8.29 8.64 

   Crude fiber, % 2.96 2.92 2.99 3.08 

   Ash*, % 5.24 4.60 4.29 4.03 

   Ca (total), % 0.77 0.62 0.55 0.50 

   P (total), %  0.61 0.51 0.44 0.38 

   Dig. Lysine*, % 1.25 1.15 1.05 0.94 

   Dig. Arginine*, % 1.32 1.21 1.11 1.00 

   Dig. Met.+Cys*, % 0.93 0.85 0.79 0.70 

   Dig. Threonine*, % 0.81 0.75 0.68 0.61 

   Dig. Valine*, % 0.94 0.87 0.79 0.72 

   Dig. Isoleucine*, % 0.84 0.77 0.70 0.63 

   Dig. Arg:Lys 1.06 1.05 1.06 1.07 

   Dig. Lys:AME, g/MJ 0.96 0.87 0.77 0.68 
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1 
Provided the following per kg of diet: vitamin A (retinyl acetate), 13,000 IU; vitamin D3 (cholecalciferol), 4,000 IU; 

vitamin E (DL-α_tocopheryl acetate), 80 IU; vitamin K (menadione sodium bisulfite), 3 mg; riboflavin, 6.0 mg; 

pantothenic acid, 6.0 mg; niacin, 20 mg; pyridoxine, 2 mg; folic acid, 0.5 mg; biotin, 0.10 mg; thiamine, 2.5 mg; 

vitamin B12 20 μg; Mn, 100 mg; Zn, 85 mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 mg; ethoxyquin, 100 mg. 

*Analysed values. Amino acid concentration of the experimental diets was analyzed by AMINOLab® (Evonik 

Industries, Hanau, Germany) and results reported outside the brackets. Digestible amino acid (dig.) values were 

calculated by multiplying digestibility coefficients (Ajinomoto Heartland, 2015) to the analyzed total amino acid 

content of each ingredient. 
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Table 3.2 Productive performance of broiler chickens fed a commercial basal diet (CON, digestible 

Arg:Lys = 1.05, 1.05, 1.06, 1.07 in starter, grower I, grower II and finisher feeding phase, 

respectively) or the same basal diet supplemented with L-arginine (ARG, digestible Arg:Lys = 1.15, 

1.15, 1.16, 1.17, respectively). 
 

Variables CON ARG SEM P-value 

n.  9 9  

0-12 d  

Chick body weight, g 37.1 36.9 0.09 0.27 

Body weight, g 288.5 293.0 2.47 0.38 

Daily weight gain, g/bird/d* 21.0 21.3 0.20 0.39 

Daily feed intake, g/bird/d* 29.3 28.8 0.19 0.21 

Feed conversion rate (0-12 d)* 1.401 1.352 0.01 0.02 

Mortality, % 0.00 0.17 0.01 0.33 

13-22 d  

Body weight, g/bird 846.7 856.1 6.08 0.46 

Daily weight gain, g/bird/d* 55.8 56.3 0.43 0.56 

Daily feed intake, g/bird/d* 79.7 79.8 0.60 0.92 

Feed conversion rate (13-22 d)* 1.429 1.419 0.01 0.37 

Cumulative feed conversion rate (0-22 d)* 1.420 1.398 0.01 <0.01 

Mortality, % 0.34 0.52 0.02 0.69 

23-33 d  

Body weight, g/bird 1,829 1,884 12.8 0.03 

Daily weight gain, g/bird/d* 89.3 93.1 1.11 0.08 

Daily feed intake, g/bird/d* 143.6 145.5 1.02 0.39 

Feed conversion rate (23-33 d)* 1.610 1.571 0.01 0.09 

Cumulative feed conversion rate (0-33 d)* 1.524 1.494 0.01 0.02 

Mortality, % 0.17 0.35 0.01 0.55 

34-43 d  

Body weight, g/bird 2,864 2,920 26.0 0.30 

Daily weight gain, g/bird/d* 101.6 102.3 1.62 0.83 

Daily feed intake, g/bird/d* 197.1 196.9 1.41 0.94 

Feed conversion rate (34-43 d)* 1.949 1.926 0.02 0.62 

Mortality, % 1.37 1.71 0.02 0.62 

0-43 d  

Body weight, g/bird 2,864 2,920 26.0 0.30 

Daily weight gain, g/bird/d* 65.7 67.0 0.60 0.30 

Daily feed intake, g/bird/d* 109.1 109.2 0.54 0.94 

Feed conversion rate (0-43)* 1.675 1.646 0.01 0.09 

Mortality, % 1.88 2.74 0.02 0.21 
* corrected for mortality; a, b: P< 0.05; A, B: P< 0.01. 
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Table 3.3 Incidence and severity of white striping, wooden breast and spaghetti meat defect in 

breast muscle of broiler chickens fed a commercial basal diet (CON, digestible Arg:Lys = 1.05, 

1.05, 1.06, 1.07 in starter, grower I, grower II and finisher feeding phase, respectively) or the same 

basal diet supplemented with L-arginine (ARG, digestible Arg:Lys = 1.15, 1.15, 1.16, 1.17, 

respectively). 

  

Variables CON  ARG 

n. 150 150 

White striping   

    0 (no lesions), % 17 7 

    1 (mild lesions), % 52 53 

    2 (severe lesions), % 31 39 

Chi-square 0.08 

Wooden breast   

    0 (no lesions), % 43 44 

    1 (mild lesions), % 38 37 

    2 (severe lesions), % 19 19 

Chi-square 0.99 

Spaghetti meat   

    0 (no lesions), % 65 60 

    1 (mild lesions), % 29 33 

    2 (severe lesions), % 6 7 

Chi-square 0.77 
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Table 3.4 Meat quality attributes and proximate composition of Pectoralis major muscle belonging 

to broiler chickens fed a commercial basal diet (CON, digestible Arg:Lys = 1.05, 1.05, 1.06, 1.07 in 

starter, grower I, grower II and finisher feeding phase, respectively) or the same basal diet 

supplemented with L-arginine (ARG, digestible Arg:Lys = 1.15, 1.15, 1.16, 1.17, respectively).  

Variables CON ARG SEM P-value 

n. 12 12   

Meat quality attributes     

    pH 48 h post-mortem 5.81 5.76 0.05 0.44 

    Lightness (L*) 59.5 60.4 0.94 0.29 

    Redness (a*) 2.07 2.07 0.25 0.75 

    Yellowness (b*) 5.85 6.46 0.44 0.23 

    Drip loss, % 1.97 1.81 0.18 0.47 

    Cooking loss – raw meat, % 15.4 15.4 1.02 0.98 

    Marinade uptake, % 10.6 9.9 0.95 0.61 

    Cooking loss – marinated meat, % 12.5 12.9 0.70 0.58 

Proximate composition     

    Moisture, % 76.4 76.8 0.49 0.20 

    Crude protein, % 21.7 21.8 0.43 0.91 

    Total fat, % 1.71 1.61 0.19 0.59 

    Ash, % 1.40 1.34 0.17 0.75 
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Table 3.5 Relative concentration of differentially expressed plasma metabolites in broiler chickens 

received a commercial basal diet (CON, digestible Arg:Lys = 1.05, 1.05, 1.06, 1.07 in starter, 

grower I, grower II and finisher feeding phase, respectively) or the same basal diet supplemented 

with L-arginine (ARG, digestible Arg:Lys = 1.15, 1.15, 1.16, 1.17, respectively).   

 

Metabolite
a
 CON ARG Trend P-value 

n. 9 9   

Arginine, mmol/L 4.30×10
-3

±6.86x10
-5

 5.64×10
-3

±1.08×10
-4

 ↑ 0.004 

Leucine, mmol/L 1.79×10
-1

±2.41×10
-3

 2.11×10
-1

±3.93×10
-3

 ↑ 0.01 

Acetoacetate, mmol/L 5.94×10
-2

±1.60×10
-3

 4.35×10
-2

±1.08×10
-3

 ↓ 0.02 

Glutamate, mmol/L 7.31×10
-2

±6.31×10
-4

 6.56×10
-2

±4.96×10
-4

 ↓ 0.01 

Adenosine, mmol/L 1.38×10
-3

±2.39×10
-4

 7.84×10
-5

±3.92×10
-5

 ↓ 0.04 

Proline, mmol/L 1.23×10
-1

±2.18×10
-3

 1.05×10
-1

±2.06×10
-3

 ↓ 0.04 

 

a
 Results are reported as mean ± SEM. 
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Table 3.6. Relative concentration of differentially expressed metabolites in breast muscle of broiler 

chickens fed a commercial basal diet (CON, digestible Arg:Lys = 1.05, 1.05, 1.06, 1.07 in starter, 

grower I, grower II and finisher feeding phase, respectively) or the same basal diet supplemented 

with L-arginine (ARG, digestible Arg:Lys = 1.15, 1.15, 1.16, 1.17, respectively). 

 

Metabolite
a
 CON ARG Trend P-value 

n. 9 9   

Arginine, mmol/L 3.35×10
-4

±5.59 ×10
-6

 3.98 ×10
-4

±3.78 ×10
-6

 ↑ 0.008 

Acetate, mmol/L 2.48 ×10
-4

±1.29 ×10
-6

 2.67 ×10
-4

±2.16 ×10
-6

 ↑ 0.02 

Inosine, mmol/L 4.88 ×10
-4

±8.97 ×10
-6

 4.06 ×10
-4

±3.90 ×10
-6

 ↓ 0.008 

Acetone, mmol/L 2.35 ×10
-5

±1.71 ×10
-6

 1.10 ×10
-5

±5.86 ×10
-7

 ↓ 0.03 

 

a
 Results are reported as mean ± SEM. 
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Figure 3.1 Incidence of foot pad dermatitis in broiler chickens fed a commercial basal diet (CON; n 

= 574; digestible Arg:Lys = 1.05, 1.05, 1.06, 1.07 in starter, grower I, grower II and finisher feeding 

phase, respectively) or the same basal diet supplemented with L-arginine (ARG; n = 569; digestible 

Arg:Lys = 1.15, 1.15, 1.16, 1.17, respectively) [0 = no lesions, 1 = mild lesions (<0.8 cm), and 2 = 

severe lesions (>0.8 cm)].  
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Figure 3.2 Robust Principal Component Analysis (rPCA) on plasma metabolites showing 

differential expression between CON (n = 9; digestible Arg:Lys = 1.05, 1.05, 1.06, 1.07 in starter, 

grower I, grower II and finisher feeding phase, respectively) and ARG group (n = 9; digestible 

Arg:Lys = 1.15, 1.15, 1.16, 1.17, respectively).  

 

A) In the scoreplot, samples from chicken fed with different diets are represented with squares and circles 

respectively. The wide, empty circles represent the median of the samples.  

B) Boxplot summarizing  the position of the subjects along PC 1.  

C) Loadingplot (C) reports the correlation between the concentration of each substance and its importance over 

PC 1. Highly significant correlations (p<0.05) are highlighted with gray bars. 
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Figure 3.3 Robust Principal Component Analysis (rPCA) on breast muscle metabolites showing 

differential expression between CON (n = 9; digestible Arg:Lys = 1.05, 1.05, 1.06, 1.07 in starter, 

grower I, grower II and finisher feeding phase, respectively) and ARG group (n = 9; digestible 

Arg:Lys = 1.15, 1.15, 1.16, 1.17, respectively).   

 

 

A) In the scoreplot, samples from chicken fed with different diets are represented with squares and circles 

respectively. The wide, empty circles represent the median of the samples.  

B) Boxplot summarizing  the position of the subjects along PC 1.  

C) Loadingplot (C) reports the correlation between the concentration of each substance and its importance over 

PC 1. Highly significant correlations (p<0.05) are highlighted with gray bars. 

  



87 
 

Figure 3.4 Hypothetical molecular responses to the dietary supplementation of L-arginine in broiler 

chickens. 
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4. RESEARCH WORK #2: Comparison of growth performance and ileum 

transcriptomic profile in two modern fast-growing chicken hybrids. 

4.1. Background and aim 

The intestinal mucosa can be considered as a physical barrier between the molecules located 

in the gut lumen and the underneath tissues. Gut mucosa plays a crucial role in bird’s physiology 

since it must be permeable to nutrients, electrolytes, and water, while at the same time should avoid 

bacteria and antigens translocation to the lamina propria. In addition, the small intestine also has 

important immunological, endocrine, and regulatory functions (Scanes and Pierzchala-Koziec, 

2014) which can deeply affect health status (Sugiharto, 2016) as well as feeding behavior and 

overall energy homeostasis in chickens (Honda et al., 2017). A better knowledge of the metabolic 

dynamics in a key organ such as the small intestine might be useful to explain the phenotypical 

differences observed in growth performance and feed efficiency among different fast-growing 

chicken lines. Currently, microarray analysis offers the possibility to investigate the expression 

level of thousands of genes simultaneously, allowing to extrapolate important information regarding 

the biological pathways expressed in the examined tissues (Cogburn et al., 2003; 2007). In addition, 

useful information regarding bird’s nutritional and physiological needs can be obtained, allowing in 

the future to formulate tailored diets with undoubtedly positive implications on productive 

efficiency, animal health and welfare, and environmental sustainability. Therefore, this study was 

undertaken to characterize productive traits and intestinal transcriptomic profile of two fast-growing 

chicken hybrids currently available for the poultry industry. 

4.2. Materials and Methods 

4.2.1. Animals, housing and diet 

A total of 1,170 one-day-old female chicks belonging to 2 modern fast-growing hybrids 

(585 for each genotype, HA and HB respectively) both currently available for the poultry industry 

was obtained by a commercial hatchery. The broiler chickens lines tested in this study belong to 2 
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different breeding companies and are not genetically related. For each genotype, eggs were obtained 

by the same breeder flock and incubated in the same environmental conditions following the 

procedures commonly used in the hatchery. All the chicks were vaccinated against coccidiosis, 

infectious bronchitis virus, Marek’s disease virus, Newcastle and Gumboro disease. The chicks, 

kept separated according to the genotype, were transferred to an environmental controlled poultry 

house and divided in 18 pens of 6 m
2 

each (9 replications/group, 65 birds/replication, 11 birds/m
2
). 

Stocking density was defined according to the European legislation in force (European 

Commission, 2007) to simulate the environmental conditions usually adopted in commercial 

practices. Inside the poultry house, pens were distributed in randomized blocks in order to minimize 

any environmental effect. Each pen was equipped with 2 circular pan feeders able to guarantee at 

least 2 cm of front space/bird and 10 nipples, while the floor was covered with chopped straw (2 

kg/m
2
). According to the legislation in force (European Commission, 2007), birds received 23L:1D 

of artificial light from 0 to 7 d and in the last 3 days before slaughter, whereas a photoperiod of 

18L:6D was adopted in the remaining days. Both the experimental groups received the same 

commercial corn-wheat-soybean basal diet (Table 4.1) formulated according to the current 

recommendations. The feeding program was composed of 4 phases: starter (0-9 d), grower I (10-

21 d), grower II (22-34 d) and finisher (35-43 d). All the diet switches were made uniformly for 

both the experimental groups. Water and feed were provided for ad libitum consumption. All the 

operations related to handling, raising and processing were in accordance with the European 

legislation (European Commission, 2007; 2009; 2010). The Ethical Committee of the University of 

Bologna approved the experimental protocol (ID: 928/2018). 

4.2.2. Evaluation of productive performance 

The number and weight of the birds present in each pen were recorded at housing (0 d), at each 

diet switch (9, 21, 35 d) and before slaughter (43 d). Similarly, feed was weighed at the beginning 



90 
 

(0, 10, 22, 35 d) and at the end of each feeding phase (9, 21, 34, 43 d), respectively. Number, age, 

and weight of birds that died during the trial were recorded to calculate mortality percentage. 

According to these measurements, body weight (BW), daily weight gain (DWG), feed intake (FI), 

daily feed intake (DFI) and feed conversion rate (FCR) were calculated on a pen basis and corrected 

for mortality. 

At the end of the trial (43 d), all the birds were slaughtered separately per group in a commercial 

processing plant. Eviscerated carcass yield after air-chilling, as well as skinless breast, legs, and 

wings yields, were recorded on all the slaughtered broilers and reported on a group basis. During 

slaughtering operations, a foot from each bird was collected and the severity of foot pad dermatitis 

(FPD) was macroscopically evaluated using a 3-point scale evaluation system: 0 = no lesions; 1 = 

mild lesions (<0.8 cm); 2 = severe lesions (>0.8 cm) (Ekstrand et al., 1997).  

4.2.3. Tissue Collection 

At the processing plant (43 d), ileum was collected from 1 bird/replication selected with 

similar BW and clearly labelled. The ileum was longitudinally opened, and the internal surface 

washed with phosphate buffer saline (PBS) pH 7.4. Then, the mucosa was gently scraped with a 

microscope slide, put into sterile vials, immediately frozen in liquid nitrogen and preserved at -80°C 

until further processing. 

4.2.4. RNA extraction and microarray analysis 

Total mRNA was extracted from ileum mucosa homogenate using the TAKARA® Fast Pure 

Kit (Takara Bio, Shiga, Japan) according to the manufacturer’s instructions. Purity and 

concentration of the total extracted RNA were assessed by Nanodrop ND 1000 (Nanodrop 

Technologies, Wilmington, Delaware, USA) whereas RNA integrity was evaluated through Agilent 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, California, USA). The analysis of whole 

transcript expression was performed by an outsource company (Cogentech Microarray Unit, Milan, 
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Italy) using Affimetrix© Chicken Gene Chip 1.1 ST array strips (Affymetrix, Santa Clara, 

California, USA). Hybridized arrays were scanned on a GeneAtlas imaging station (Affymetrix, 

Santa Clara, California, USA). Performance quality tests of the arrays, including the labeling, 

hybridization, scanning and background signals from a Robust Multichip Analysis were carried out 

on the CEL files using Affymetrix Expression ConsoleTM. 

4.2.5. Statistical analysis 

Productive performance data were analyzed by one-way ANOVA using the GLM procedure of 

SAS (SAS Institute, 1988) considering the genotype of the birds as the independent variable. 

Student Newman–Keuls test was used as post-hoc test to separate the means. Prior to analysis, 

mortality data were submitted to arcsine transformation. Frequency distribution of foot-pad lesions 

was analyzed using the Chi-square test. Differences were considered statistically significant when 

nominal P-value was lower than 0.05.  

As for transcriptomics, an exploratory functional analysis was conducted on the processed gene 

expression values through the Gene Set Enrichment Analysis software using the C5.V6 catalog of 

gene sets (based on Gene Ontology (GO)) 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). The normalized enrichment score (NES) 

was calculated for each gene set and p-values of the NES were obtained from a gene set-based 

permutation procedure. Gene sets were considered significantly enriched when both NES p-value 

and False Discovery Rate q-value were lower than 0.05. Significantly enriched gene sets were then 

further classified according to their main biological function.  

4.3. Results 

4.3.1. Productive performance 

The productive performance of both genotypes is shown in Table 4.2. At hatch, HA chicks were 

heavier than HB ones (43.8 vs. 40.1 g, respectively; P<0.01). After 9 days of the trial, HA birds 
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showed higher BW (228 vs. 217 g, respectively, for HA and HB; P<0.05) and lower FCR (1.352 vs. 

1.419, respectively for HA and HB; P<0.05) compared to the counterpart. Moreover, DWG was 

higher in HA group (20.5 vs. 19.6 g/bird/d, respectively for HA and HB; P= 0.06). No significant 

difference between the groups was observed for DFI and mortality. At 21 d, HA birds exhibited 

lower BW (772 vs. 807 g, respectively for HA and HB; P<0.05), DWG (45.3 vs. 49.2 g/bird/d, 

respectively, for HA and HB; P<0.01) and DFI (70.6 vs. 74.9 g/bird/d, respectively for HA and HB; 

P<0.01). However, the two genotypes showed similar FCR and mortality from 10 to 21 d of trial. 

After 34 d, HA broilers showed lower BW than HB ones (1,857 vs. 1,930 g, respectively; P<0.05). 

From 22 to 34 d of trial, DWG and DFI tended to be lower in HA birds (83.4 vs. 86.2 g/bird/d, 

respectively for HA and HB; P= 0.07; and 139.6 vs. 144.4 g/bird/d, respectively; P= 0.07). In this 

feeding phase, neither FCR nor mortality exhibited significant differences between the two chicken 

genotypes. Considering the finisher feeding phase (35-43 d), HA birds reported lower BW (2,607 

vs. 2,734 g, for HA and HB, respectively; P<0.01), DWG (83.3 vs. 91.9 g/bird/d, respectively; 

P<0.01) and DFI (182.4 vs. 196.5 g/bird/d, respectively; P<0.01), whereas similar values of FCR 

and mortality were observed. In the overall period of trial (0-43d), HA broilers showed lower DWG 

(59.6 vs. 62.6 g/bird/d, respectively; P<0.01) and DFI (104.7 vs. 110.3 g/bird/d, respectively; 

P<0.01). However, no significant differences between the groups were noticed for FCR and 

mortality. The two broiler chicken hybrids reported similar carcass yield (70.8 vs. 71.2%, 

respectively for HA and HB), as well as breast (31.3 vs. 30.8%), legs (42.2 vs. 43.9%) and wings 

(18.8 vs. 18.5%) yields. 

The results of the evaluation of FPD occurrence are reported in Figure 4.1. The HA group 

showed a lower percentage of birds with no lesions (class 0) (48 vs. 75%, respectively for HA and 

HB; P<0.001), while exhibited a higher percentage of those with moderate lesions (class 1) (50 vs. 

24%, respectively for HA and HB; P<0.001). However, both the genotypes tested in this trial 
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showed a very low percentage of birds with severe lesions (class 2) (2 and 1%, respectively for HA 

and HB).  

4.3.2. Intestinal transcriptomic profile   

A total of 114 and 179 gene sets resulted significantly enriched in the ileum mucosa of HA 

and HB broilers, respectively (Supporting Information Table 1 and 2, respectively). In the HA 

group (Table 4.3), a high percentage of biological gene sets involved in cellular energy metabolism 

and mitochondria structure and functionality was observed (43 and 23% of the total, respectively). 

Other gene sets that were significantly enriched in the ileum mucosa of HA birds were related to 

ribosome structure and protein synthesis (11%), cell structure and integrity (8%), as well as 

antioxidant and detox mechanisms (6%). On the other hand, a significant enrichment in gene sets 

related to immune system activation (28% of the total) was observed in the ileum mucosa of HB 

birds (Table 4.3). Moreover, an increased expression of gene sets involved in signal transduction 

and cell signaling (20%), DNA remodeling and replication – chromatin/histone modification (15%), 

cell activation, migration and adhesion (12%), inflammation (7%) and bone remodeling (4%) was 

detected in the HB group. 

4.4. Discussion 

In this trial, the growth pattern of two different fast-growing chicken hybrids (HA and HB), 

both currently available for the poultry industry, was characterized. In addition, ileum 

transcriptomic profile and gene set analysis were also investigated in an effort to better understand 

the physiological dynamics occurring in the small intestine of different chicken genotypes raised in 

the same environmental conditions and fed the same basal diet, which was formulated according to 

the current indications and widely used in commercial practices. 

Considering the productive performance in the overall period of trial, HB broilers reported 

higher BW, DWG, and DFI compared to HA ones, whereas no significant difference was observed 
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in terms of FCR and mortality. However, the two genotypes showed different growth patterns 

throughout the study, as previously observed by other Authors comparing different fast-growing 

broiler lines (Marcato et al., 2008; Hristakieva at al., 2014). At hatch, HA chicks were heavier than 

HB ones. It is widely known that the hatching weight of the chicks can be influenced by the age of 

the breeder hens and the environmental conditions applied during the incubation process. Since in 

the present trial eggs were obtained from breeders’ stock showing the same age and they were 

subjected to the same incubation conditions, the different body weight of the chicks might be due to 

other factors such as a different availability of yolk nutrients or a different embryonic development 

and metabolism during incubation. The chicken genotypes tested in this study have been subjected 

to different selection processes, which may have exerted differences in embryo development and 

metabolism and possibly in its incubation requirements. Previously, Suarez et al. (1997) reported a 

significant effect of the broiler breeder genotype on the hatch weight of the chicks. Similarly, 

differences in hatchling weight were observed when Cobb 500 and Ross 308 lines were compared 

(Hristakieva et al., 2014). On the contrary, Tona et al. (2010) reported no significant difference in 

the weight of day-old chicks belonging to different fast-growing broiler lines.  

After 9 d of trial, HA birds maintained higher BW than the HB ones likely through a better 

exploitation of the dietary nutrients, as suggested by the lower value of FCR observed in this group 

during the starter phase. Overall, these data suggest a greater precocity of HA chicks compared to 

the counterpart. On the other hand, HB birds achieved higher BW at 21, 34 and 43 d of trial 

indicating that this genotype is characterized by a later development compared to the counterpart. 

This improvement could be mainly attributable to the higher feed intake observed in the HB group 

during these feeding phases and in the overall period of the trial. Apart from the starter phase, in 

which HA birds showed a better FCR, the two genotypes exhibited comparable feed efficiency 

throughout the trial, confirming that the higher body weight reached by HB birds was mainly due to 

their higher voluntary feed intake rather than a better exploitation of the dietary nutrients. The 
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mechanism affecting feed intake regulation in chickens is extremely complex since different 

physiological and environmental factors are involved (Richards and Proszkowiec-Weglarz, 2007). It 

can be hypothesized that the different selective processes applied to the two genotypes may have 

exerted changes in their feeding behavior. However, other scientific insights such as the assessment 

of the expression of feeding-related neuropeptides, are necessary to confirm this hypothesis. 

Footpad dermatitis is a contact dermatitis affecting broilers and turkeys, and it has very 

important effects on animal welfare and health, food safety, and economic aspects (Shepherd and 

Fairchild, 2010). The incidence and severity of these necrotic lesions can be considered reliable 

indicators of chicken welfare and management conditions (Meluzzi and Sirri, 2009). The 

differences among various chicken strains in the proneness to develop FPD have been previously 

reported (Kestin et al., 2001; Bilgili et al., 2006). In this study, HB birds showed a lower incidence 

of FPD despite their higher body weight, which is considered a predisposing factor in the onset of 

this condition. Overall, these results indicated that the HB genotype seems characterized by a 

greater resistance of the foot pads and a lower proneness to develop FPD. 

Significant differences between the two genotypes were observed also in terms of gene and 

biological pathways expressed in the ileum mucosa. HA birds showed a greater expression of gene 

sets related to cellular energy production, mitochondria structure and functionality, as well as cell 

structure and integrity, ribosome structure and assembly, protein synthesis, and antioxidant 

capacity. Taken together, these results seem to indicate an overall healthy condition of the intestinal 

mucosa, as also suggested by the upregulation of some cell structure and integrity pathways in the 

HA birds (e.g. GO_APICAL_JUNCTION_COMPLEX, GO_BRUSH_BORDER, 

GO_CADHERIN_BINDING). Maintaining a proper epithelial integrity and functionality is a vital 

process for the animals, even though it represents a notable energy expenditure especially in the 

small intestine where cells turnover and renewal are extremely fast. In the chickens, the 

gastrointestinal tract accounts up to 8% of the energy metabolized even though it represents only 



96 
 

1.5% of the body weight (Spratt et al., 1990). The upregulation of pathways related to mitochondria 

structure (e.g. GO_RESPIRATORY_CHAIN; 

GO_INNER_MITOCHONDRIAL_MEMBRANE_PROTEIN_COMPLEX; 

GO_MITOCHONDRIAL_ENVELOPE; 

GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_ASSEMBLY) and functionality 

(e.g. GO_OXIDATIVE_PHOSPHORYLATION; GO_CELLULAR_RESPIRATION; 

GO_AEROBIC_RESPIRATION; GO_ELECTRON_CARRIER_ACTIVITY;  

GO_ENERGY_COUPLED_PROTON_TRANSPORT_DOWN_ELECTROCHEMICAL_GRADIE

NT) may indicate a greater presence and activity of mitochondria in the intestinal mucosa of HA 

birds. Overall, the upregulation of pathways related to mitochondria, as well as that of pathways 

related to cellular energy metabolism (e.g. GO_ATP_BIOSYNTHETIC_PROCESS; 

GO_NUCLEOSIDE_TRIPHOSPHATE_METABOLIC_PROCESS; 

GO_FATTY_ACID_BETA_OXIDATION; 

GO_ENERGY_DERIVATION_BY_OXIDATION_OF_ORGANIC_COMPOUNDS; 

GO_GENERATION_OF_PRECURSOR_METABOLITES_AND_ENERGY), may suggest an 

increased energy production in the epithelial cells of HA birds, which can be used for maintaining a 

proper epithelial structure and integrity. Similarly, the upregulation of protein synthesis processes, 

as well as ribosome structure and assembly (e.g. GO_RIBOSOME; 

GO_CYTOSOLIC_RIBOSOME; 

GO_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM) might be consistent 

with the phenotypic expression of an overall greater functionality of the epithelium. In HA group, 

also some antioxidant and detox mechanism related-pathways showed significant enrichment (e.g. 

GO_GLUTATHIONE_METABOLIC_PROCESS; 

GO_GLUTATHIONE_TRANSFERASE_ACTIVITY), suggesting a greater antioxidant capacity in 

the small intestine of these birds, which can be required to counteract the oxidative stress occurring 



97 
 

with the increased activation of mitochondria and, in general, with the metabolic processes within 

the cell.  

A different transcriptomic profile has been observed in the ileum mucosa of HB birds. Indeed, 

according to the functional analysis, it appeared that HB birds may have experienced an 

inflammatory condition in the small intestine, as also indicated by the upregulation of 

GO_INFLAMMATORY_RESPONSE pathway. As shown in Table 4.3, approximately 30% of the 

significantly enriched pathways were involved in the activation of the immune system (e.g. 

GO_IMMUNE_SYSTEM_DEVELOPMENT; GO_IMMUNE_RESPONSE; 

GO_ACTIVATION_OF_IMMUNE_RESPONSE; GO_ADAPTIVE_IMMUNE_RESPONSE; 

GO_POSITIVE_REGULATION_OF_IMMUNE_RESPONSE). Within this group, a noticeable 

upregulation of cytokine-related pathways (e.g. 

GO_POSITIVE_REGULATION_OF_INTERLEUKIN_2_PRODUCTION; 

GO_CYTOKINE_BINDING; GO_CYTOKINE_RECEPTOR_ACTIVITY; 

GO_REGULATION_OF_TUMOR_NECROSIS_FACTOR_SUPERFAMILY_CYTOKINE_PRO

DUCTION (FDR q-value= 0.05)) was observed. Furthermore, HB birds reported an increased 

activation of pathways related to leukocyte (e.g. 

GO_POSITIVE_REGULATION_OF_LEUKOCYTE_PROLIFERATION; 

GO_LEUKOCYTE_ACTIVATION; GO_LEUKOCYTE_DIFFERENTIATION), B cells (e.g. 

GO_B_CELL_ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE; 

GO_POSITIVE_REGULATION_OF_B_CELL_PROLIFERATION; 

GO_POSITIVE_REGULATION_OF_B_CELL_ACTIVATION) and immunoglobulins (e.g. 

GO_IMMUNOGLOBULIN_PRODUCTION; 

GO_SOMATIC_DIVERSIFICATION_OF_IMMUNOGLOBULINS). Moreover, the upregulation 

of pathways mainly involved in cell activation, migration and adhesion, such as 

GO_CELL_CHEMOTAXIS, GO_LEUKOCYTE_CHEMOTAXIS, 
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GO_LEUKOCYTE_MIGRATION, may suggest an increased afflux of immune cells toward the 

ileum mucosa in response to an inflammatory event. The enrichment of other gene sets involved in 

angiogenesis (e.g. GO_SPROUTING_ANGIOGENESIS, 

GO_POSITIVE_REGULATION_OF_VASCULATURE_DEVELOPMENT), as well as the 

upregulation of GO_RESPONSE_TO_HEAT, 

GO_NEGATIVE_REGULATION_OF_BLOOD_CIRCULATION and GO_WOUND_HEALING 

gene sets, appears consistent with an inflammatory condition as well. An increased expression of 

gene clusters involved in signal transduction and cell signaling was also observed. Within this 

group, a higher activation of phosphatidylinositol-3-kinases (PI3Ks)  (e.g. 

GO_POSITIVE_REGULATION_OF_PHOSPHATIDYLINOSITOL_3_KINASE_SIGNALING; 

GO_PHOSPHATIDYLINOSITOL_3_KINASE_ACTIVITY) and mitogen-activated protein 

(MAP) kinase  (e.g. GO_POSITIVE_REGULATION_OF_MAP_KINASE_ACTIVITY; 

GO_POSITIVE_REGULATION_OF_MAPK_CASCADE) gene sets was detected. In mammals, 

MAP kinase signaling cascades transduce different extracellular signals that regulate cellular 

responses. These cascade mechanisms can be activated by tumor necrosis factor α, leading to an 

increased expression of several inflammatory cytokines (Sabio and Davis, 2014). Similarly, a 

potential role of PI3-Ks in intestinal inflammation (Weaver and Ward, 2001; Cahill et al., 2012) and 

cell migration (Cain and Ridley, 2009) has been hypothesized in human.  

The increased expression of gene sets involved in DNA remodeling and replication (e.g. 

GO_DNA_REPLICATION; GO_DNA_HELICASE_ACTIVITY; 

GO_DNA_BIOSYNTHETIC_PROCESS)  and chromatin/histone modification (e.g. 

GO_HISTONE_DEMETHYLASE_ACTIVITY; 

GO_HISTONE_METHYLTRANSFERASE_ACTIVITY; 

GO_REGULATION_OF_CHROMATIN_ORGANIZATION) might represent a potential cellular 

response to the increased signaling status elicited by the inflammation and the immune system 
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activation. Finally, the upregulation of bone remodeling-related pathways is not clear. However, it 

would be possible that gene sets related to inflammation and immune system activation may share 

some genes with pathways involved in bone metabolism, resulting in an indirect upregulation of the 

latter biological pathway.  

Overall, the activation of the immune system and the apparent gut inflammation observed in HB 

birds pave the way to some reflections, both from a nutritional and a physiological point of view. 

The upregulation of these gene sets seems not due to clinical diseases as birds showed high 

productive performance, excellent health status and low mortality through the trial. Therefore, other 

factors should be considered to understand the reasons behind the inflammatory condition and the 

activation of the immune system. A possible explanation could lie in the high feed intake observed 

in the HB birds. The ingested feed can determine oxidative injury and intestinal inflammation 

involving the epithelium and immune/inflammatory cells (Bhattacharyya et al., 2014). Therefore, 

feed ingestion should be balanced with an efficient digestive capacity in order to exploit the dietary 

nutrients provided with the diet and allow the maximum growth and efficiency, but also to maintain 

a proper gut health and functionality. As previously reported, the different selective processes 

applied to the two genotypes may have exerted changes in their feeding behavior. In order to 

maximize growth rate, broiler chickens have been selected for decades for increased feed intake 

(Tallentire et al., 2018), resulting in hyperphagic, heavy, and obese animals (Piekarski et al., 2015; 

Piekarski-Welsher et al., 2016). Recent evidence supported that modern meat-type chickens tend to 

consume feed to maximize gut fill (Ferket and Gernat, 2006; Classen, 2016). Therefore, it can be 

hypothesized that the selective process applied to HB birds may have increased their voluntary feed 

ingestion capacity probably beyond their digestive functionality, leading to an increased oxidative 

stress and inflammation in the gut. A similar scenario has been recently defined by Kogut et al. 

(2018) as “metabolic inflammation”, which represents a chronic low-grade inflammation triggered 



100 
 

by the excessive nutrient intake and the metabolic surplus which may occur in modern fast-growing 

broiler lines.  

Moreover, the undigested or poorly digested feed can be used as a substrate for the growth of 

harmful bacteria. Potential changes in the intestinal microbiota may dysregulate cross-talk among 

bacteria, intestinal epithelium, and mucosal immune system, resulting in local inflammatory 

conditions (Kaiser and Balic, 2015). However, further insights are necessary to evaluate whether the 

gut microbes may have played any roles in triggering gut inflammation and immune system 

activation and also if the latter factors would have limited the growth potential of HB broilers. In 

addition, inflammation and immune system activation may have also exerted changes in the 

metabolic requirement of specific nutrients which should be integrated with the diet to sustain 

animal health and productivity.  

In conclusion, the two fast-growing broiler chicken genotypes tested in this trial exhibited 

different growth patterns, with HA birds showing a greater precocity and HB characterized by a 

later development mainly sustained by an increased feed intake. The transcriptomic analysis 

revealed that HA broilers might be characterized by a healthier condition of the intestinal mucosa 

likely supported by an increased mitochondria functionality and antioxidant capacity. On the other 

hand, HB chickens reported a potential inflammatory condition in the gut coupled with a marked 

activation of the immune system. The factors involved in the onset of this condition, as well as the 

determinants of the differences observed in feeding behavior of the two genotypes, are not clear and 

other scientific insights are necessary to better understand these aspects. 
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Table 4.1 Composition of the basal diet in each feeding phase. 

1 
Provided the following per kg of diet: vitamin A (retinyl acetate), 13,000 IU; vitamin D3 (cholecalciferol), 4,000 IU; 

vitamin E (DL-α_tocopheryl acetate), 80 IU; vitamin K (menadione sodium bisulfite), 3 mg; riboflavin, 6.0 mg; 

pantothenic acid, 6.0 mg; niacin, 20 mg; pyridoxine, 2 mg; folic acid, 0.5 mg; biotin, 0.10 mg; thiamine, 2.5 mg; 

vitamin B12 20 μg; Mn, 100 mg; Zn, 85 mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 mg; ethoxyquin, 100 mg. 

 
Starter 

0-9 d 

Grower I 

10-21 d 

Grower II 

22-34 d 

Finisher 

35-43 d 

Ingredients, g/100g   

   Corn 33.4 36.7 34.2 33.1 

   Wheat 20.0 20.0 25.0 30.0 

   Vegetable oil 2.45 2.68 3.61 3.97 

   Soybean meal 48% 18.2 20.2 14.2 9.33 

   Full-fat soybean 10.0 10.0 15.0 15.0 

   High-protein soybean meal 5.00 0.00 0.00 0.00 

   Sunflower  2.00 2.00 2.00 3.00 

   Pea  3.00 3.00 3.00 3.00 

   Corn gluten 2.00 2.00 0.00 0.00 

   Lysine  0.54 0.53 0.46 0.43 

   DL-Methionine 0.29 0.32 0.33 0.26 

   L-Threonine 0.12 0.11 0.10 0.08 

   Choline chloride 0.10 0.10 0.05 0.00 

   Calcium carbonate 0.53 0.52 0.60 0.69 

   Dicalcium phosphate 1.29 0.80 0.47 0.21 

   Sodium chloride 0.29 0.30 0.23 0.21 

   Sodium bicarbonate 0.05 0.05 0.15 0.25 

   Premix vit.-min.
1 

0.54 0.46 0.38 0.30 

   Phytase 0.05 0.05 0.05 0.05 

   Xylanase 0.05 0.05 0.05 0.05 

   Emulsifier 0.08 0.08 0.08 0.08 

Calculated chemical composition (* analyzed) 

   Dry matter*, % 88.8 88.2 88.5 88.5 

   Crude protein*, % 22.7 21.0 19.1 17.5 

   Total lipid*, % 6.25 6.51 8.29 8.64 

   Crude fiber*, % 2.96 2.92 2.99 3.08 

   Ash, % 5.24 4.60 4.29 4.03 

   Lysine (total), % 1.42 1.31 1.20 1.07 

   Met. + Cyst. (total), % 0.99 0.92 0.85 0.76 

   Arginine (total), % 1.46 1.34 1.25 1.13 

   Threonine (total), % 0.94 0.87 0.79 0.71 

   Ca (total), % 0.77 0.62 0.55 0.50 

   P (total), % 0.61 0.51 0.44 0.38 

   AME, kcal/kg 3,100 3,150 3,275 3,325 
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Table 4.2 Productive performance of broiler chickens of both the genotypes (HA and HB) in each 

feeding phase and in the overall period of trial. 

 

 HA HB  SEM P-value 

n. 9 9   

0-9 d 

Chick body weight (g) 43.8 40.1 0.15 <0.01 

Body weight (g) 228 217 2.84 0.02 

Daily weight gain (g/bird/d)
†
 20.5 19.6 0.32 0.06 

Daily feed intake (g/bird/d)
†
 27.6 27.7 0.37 0.84 

Feed conversion ratio
†
 1.352 1.419 0.02 0.04 

Mortality (%) 0.17 0.00 0.01 0.33 

10-21 d 

Body weight (g/bird) 772 807 9.11 0.02 

Daily weight gain (g/bird/d)
†
 45.3 49.2 0.68 <0.01 

Daily feed intake (g/bird/d)
†
 70.6 74.9 0.86 <0.01 

Feed conversion ratio
†
 1.558 1.523 0.02 0.12 

Mortality (%) 0.35 0.35 0.02 - 

22-34 d 

Body weight (g/bird) 1,857 1,930 21.1 0.02 

Daily weight gain (g/bird/d)
†
 83.4 86.2 1.07 0.07 

Daily feed intake (g/bird/d)
†
 139.6 144.4 1.67 0.06 

Feed conversion ratio
†
 1.676 1.675 0.02 0.96 

Mortality (%) 0.17 0.17 0.01 - 

35-43 d 

Body weight (g/bird) 2,607 2,734 17.9 <0.01 

Daily weight gain (g/bird/d)
†
 83.3 91.9 1.72 <0.01 

Daily feed intake (g/bird/d)
†
 182.4 196.5 2.46 <0.01 

Feed conversion ratio
†
 2.200 2.144 0.06 0.49 

Mortality (%) 0.00 0.00 0.01 - 

0-43 d 

Body weight (g/bird) 2,607 2,734 17.9 <0.01 

Daily weight gain (g/bird/d)
†
 59.6 62.6 0.42 <0.01 

Daily feed intake (g/bird/d)
†
 104.7 110.3 0.99 <0.01 

Feed conversion ratio
†
 1.772 1.776 0.01 0.85 

Mortality (%) 0.69 0.52 0.02 0.83 
†
 corrected for mortality 

Means within a row not sharing a common superscript are significantly different (A,B: P< 0.01; a,b: 

P< 0.05). 
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Figure 4.1 Incidence of foot pad dermatitis in HA and HB broiler chickens classified as 0 = no 

lesions, 1 = mild lesions (<0.8 cm), and 2 = severe lesions (>0.8 cm).  

 

 

 

 

 

***: P< 0.001 

 

 

  

---------------------------------------***--------------------------------------- 
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Table 4.3 Classification of significantly enriched gene sets (NES p-value and False Discovery Rate 

q-value<0.05) in ileum mucosa of HA and HB broiler chickens.   

 

Main biological functions of enriched gene sets  % of total enriched 

gene sets  

HA genotype   

    Cellular energy metabolism  43% 

    Mitochondria structure and functionality 23% 

    Ribosome structure and protein synthesis  11% 

    Cell structure and integrity  8% 

    Antioxidant and detox mechanisms 6% 

    Other 9% 

HB genotype  

    Immune system activation  28% 

    Signal transduction and cell signalling  20% 

    DNA remodelling and replication, 

    chromatin/histone modification  15% 

    Cell activation, migration and adhesion  12% 

    Inflammation  7% 

    Bone remodelling  4% 

    Other  14% 
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Supporting Information. Table 1. Complete list of upregulated gene sets in ileum mucosa of HA 

broiler chickens. 

 

GS 

follow 

link to 

MSigDB 

GS DETAILS ES NES NOM p-val FDR q-val 

1 
GO_INNER_MITOCHONDRIAL_MEMBRAN

E_PROTEIN_COMPLEX  

-0.70 -3.18 0.000 0.000 

2 
GO_MITOCHONDRIAL_RESPIRATORY_CH

AIN_COMPLEX_ASSEMBLY  

-0.73 -3.05 0.000 0.000 

3 GO_RESPIRATORY_CHAIN  -0.73 -3.04 0.000 0.000 

4 GO_ELECTRON_TRANSPORT_CHAIN  -0.70 -3.03 0.000 0.000 

5 
GO_NADH_DEHYDROGENASE_COMPLEX_

ASSEMBLY  

-0.77 -2.99 0.000 0.000 

6 GO_MITOCHONDRIAL_MEMBRANE_PART  -0.60 -2.98 0.000 0.000 

7 GO_OXIDATIVE_PHOSPHORYLATION  -0.72 -2.98 0.000 0.000 

8 
GO_MITOCHONDRIAL_RESPIRATORY_CH

AIN_COMPLEX_I_BIOGENESIS  

-0.77 -2.98 0.000 0.000 

9 
GO_MITOCHONDRIAL_RESPIRATORY_CH

AIN_COMPLEX_I_ASSEMBLY  

-0.77 -2.96 0.000 0.000 

10 
GO_MITOCHONDRIAL_PROTEIN_COMPLE

X 

-0.62 -2.95 0.000 0.000 

11 GO_NADH_DEHYDROGENASE_ACTIVITY  -0.76 -2.77 0.000 0.000 

12 GO_ORGANELLAR_RIBOSOME  -0.63 -2.70 0.000 0.000 

13 
GO_NUCLEOSIDE_TRIPHOSPHATE_METAB

OLIC_PROCESS  

-0.52 -2.67 0.000 0.000 

14 GO_CELLULAR_RESPIRATION  -0.56 -2.64 0.000 0.000 

15 
GO_MITOCHONDRIAL_ELECTRON_TRANS

PORT_NADH_TO_UBIQUINONE  

-0.72 -2.64 0.000 0.000 

16 GO_NADH_DEHYDROGENASE_COMPLEX  -0.71 -2.63 0.000 0.000 

17 GO_RIBOSOMAL_SUBUNIT  -0.52 -2.59 0.000 0.000 

18 

GO_OXIDOREDUCTASE_ACTIVITY_ACTIN

G_ON_NAD_P_H_QUINONE_OR_SIMILAR_

COMPOUND_AS_ACCEPTOR  

-0.66 -2.57 0.000 0.000 

19 
GO_ATP_SYNTHESIS_COUPLED_PROTON_

TRANSPORT  

-0.81 -2.56 0.000 0.000 

20 
GO_RIBONUCLEOSIDE_TRIPHOSPHATE_BI

OSYNTHETIC_PROCESS  

-0.68 -2.53 0.000 0.000 

21 

GO_ENERGY_COUPLED_PROTON_TRANSP

ORT_DOWN_ELECTROCHEMICAL_GRADIE

NT 

-0.81 -2.49 0.000 0.000 

http://www.broadinstitute.org/gsea/msigdb/cards/GO_INNER_MITOCHONDRIAL_MEMBRANE_PROTEIN_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_INNER_MITOCHONDRIAL_MEMBRANE_PROTEIN_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_ASSEMBLY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_ASSEMBLY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_RESPIRATORY_CHAIN
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ELECTRON_TRANSPORT_CHAIN
http://www.broadinstitute.org/gsea/msigdb/cards/GO_NADH_DEHYDROGENASE_COMPLEX_ASSEMBLY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_NADH_DEHYDROGENASE_COMPLEX_ASSEMBLY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_MEMBRANE_PART
http://www.broadinstitute.org/gsea/msigdb/cards/GO_OXIDATIVE_PHOSPHORYLATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_I_BIOGENESIS
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_I_BIOGENESIS
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_I_ASSEMBLY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_I_ASSEMBLY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_PROTEIN_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_PROTEIN_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_NADH_DEHYDROGENASE_ACTIVITY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ORGANELLAR_RIBOSOME
http://www.broadinstitute.org/gsea/msigdb/cards/GO_NUCLEOSIDE_TRIPHOSPHATE_METABOLIC_PROCESS
http://www.broadinstitute.org/gsea/msigdb/cards/GO_NUCLEOSIDE_TRIPHOSPHATE_METABOLIC_PROCESS
http://www.broadinstitute.org/gsea/msigdb/cards/GO_CELLULAR_RESPIRATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_ELECTRON_TRANSPORT_NADH_TO_UBIQUINONE
http://www.broadinstitute.org/gsea/msigdb/cards/GO_MITOCHONDRIAL_ELECTRON_TRANSPORT_NADH_TO_UBIQUINONE
http://www.broadinstitute.org/gsea/msigdb/cards/GO_NADH_DEHYDROGENASE_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_RIBOSOMAL_SUBUNIT
http://www.broadinstitute.org/gsea/msigdb/cards/GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NAD_P_H_QUINONE_OR_SIMILAR_COMPOUND_AS_ACCEPTOR
http://www.broadinstitute.org/gsea/msigdb/cards/GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NAD_P_H_QUINONE_OR_SIMILAR_COMPOUND_AS_ACCEPTOR
http://www.broadinstitute.org/gsea/msigdb/cards/GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NAD_P_H_QUINONE_OR_SIMILAR_COMPOUND_AS_ACCEPTOR
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ATP_SYNTHESIS_COUPLED_PROTON_TRANSPORT
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ATP_SYNTHESIS_COUPLED_PROTON_TRANSPORT
http://www.broadinstitute.org/gsea/msigdb/cards/GO_RIBONUCLEOSIDE_TRIPHOSPHATE_BIOSYNTHETIC_PROCESS
http://www.broadinstitute.org/gsea/msigdb/cards/GO_RIBONUCLEOSIDE_TRIPHOSPHATE_BIOSYNTHETIC_PROCESS
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22 GO_RIBOSOME -0.48 -2.46 0.000 0.000 

23 
GO_MULTIVESICULAR_BODY_ORGANIZA

TION 
-0.67 -2.45 0.000 0.000 

24 GO_ORGANELLE_INNER_MEMBRANE -0.42 -2.43 0.000 0.000 

25 GO_FATTY_ACID_CATABOLIC_PROCESS -0.57 -2.42 0.000 0.000 

26 GO_LARGE_RIBOSOMAL_SUBUNIT -0.54 -2.40 0.000 0.000 

27 
GO_NUCLEOSIDE_TRIPHOSPHATE_BIOSY

NTHETIC_PROCESS 
-0.58 -2.39 0.000 0.000 

28 GO_MITOCHONDRIAL_TRANSLATION -0.51 -2.37 0.000 0.000 

29 GO_FATTY_ACID_BETA_OXIDATION -0.62 -2.35 0.000 0.000 

30 GO_MICROBODY_PART -0.51 -2.35 0.000 0.000 

31 
GO_PROTON_TRANSPORTING_TWO_SECT

OR_ATPASE_COMPLEX 
-0.61 -2.35 0.000 0.000 

32 GO_TRANSLATIONAL_TERMINATION -0.53 -2.34 0.000 0.000 

33 GO_LIPID_OXIDATION -0.54 -2.32 0.000 0.000 

34 GO_OXIDOREDUCTASE_COMPLEX -0.51 -2.32 0.000 0.000 

35 GO_ATP_BIOSYNTHETIC_PROCESS -0.70 -2.31 0.000 0.000 

36 
GO_RESPONSE_TO_XENOBIOTIC_STIMUL

US 
-0.59 -2.29 0.000 0.000 

37 
GO_MULTI_ORGANISM_ORGANELLE_ORG

ANIZATION 
-0.71 -2.29 0.000 0.000 

38 
GO_MULTI_ORGANISM_MEMBRANE_BUD

DING 
-0.71 -2.29 0.000 0.000 

39 

GO_PROTON_TRANSPORTING_TWO_SECT

OR_ATPASE_COMPLEX_PROTON_TRANSP

ORTING_DOMAIN 

-0.70 -2.29 0.000 0.000 

40 
GO_MONOCARBOXYLIC_ACID_CATABOLI

C_PROCESS 
-0.50 -2.28 0.000 0.000 

41 GO_VIRAL_BUDDING -0.71 -2.28 0.000 0.000 

42 
GO_HYDROGEN_ION_TRANSMEMBRANE_

TRANSPORTER_ACTIVITY 
-0.50 -2.28 0.000 0.000 

43 GO_MICROBODY -0.47 -2.28 0.000 0.000 

44 GO_HYDROGEN_TRANSPORT -0.49 -2.28 0.000 0.000 

45 
GO_HYDROGEN_ION_TRANSMEMBRANE_

TRANSPORT 
-0.52 -2.27 0.000 0.000 

46 
GO_NUCLEOTIDE_SUGAR_BIOSYNTHETIC

_PROCESS 
-0.74 -2.27 0.000 0.000 

47 
GO_NUCLEOSIDE_MONOPHOSPHATE_MET

ABOLIC_PROCESS 
-0.42 -2.26 0.000 0.000 

48 
GO_STRUCTURAL_CONSTITUENT_OF_RIB

OSOME 
-0.44 -2.24 0.000 0.000 
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49 GO_MICROBODY_LUMEN -0.58 -2.24 0.000 0.000 

50 
GO_CYTOSOLIC_LARGE_RIBOSOMAL_SU

BUNIT 
-0.54 -2.22 0.000 0.001 

51 GO_GABA_RECEPTOR_COMPLEX -0.72 -2.22 0.000 0.001 

52 GO_MONOCARBOXYLIC_ACID_BINDING -0.57 -2.21 0.000 0.001 

53 GO_SMALL_RIBOSOMAL_SUBUNIT -0.53 -2.21 0.000 0.001 

54 GO_MITOCHONDRIAL_ENVELOPE -0.37 -2.20 0.000 0.001 

55 GO_FATTY_ACID_BINDING -0.65 -2.18 0.000 0.001 

56 
GO_PYRIMIDINE_NUCLEOSIDE_BIOSYNTH

ETIC_PROCESS 
-0.62 -2.18 0.000 0.001 

57 
GO_NUCLEOTIDE_SUGAR_METABOLIC_P

ROCESS 
-0.60 -2.17 0.000 0.001 

58 
GO_GLUTATHIONE_METABOLIC_PROCES

S 
-0.57 -2.16 0.000 0.001 

59 
GO_ORGANELLAR_SMALL_RIBOSOMAL_S

UBUNIT 
-0.66 -2.15 0.000 0.001 

60 GO_ESCRT_COMPLEX -0.65 -2.14 0.000 0.001 

61 GO_CYTOSOLIC_RIBOSOME -0.46 -2.14 0.000 0.001 

62 GO_ELECTRON_CARRIER_ACTIVITY -0.46 -2.14 0.000 0.001 

63 GO_GABA_RECEPTOR_ACTIVITY -0.65 -2.13 0.000 0.001 

64 GO_FATTY_ACYL_COA_BINDING -0.60 -2.11 0.003 0.002 

65 
GO_CELLULAR_LIPID_CATABOLIC_PROCE

SS 
-0.43 -2.11 0.000 0.002 

66 GO_ENDOSOME_ORGANIZATION -0.50 -2.10 0.000 0.002 

67 GO_MEMBRANE_BUDDING -0.45 -2.09 0.000 0.002 

68 GO_AEROBIC_RESPIRATION -0.53 -2.09 0.000 0.002 

69 
GO_GLYCOSYL_COMPOUND_METABOLIC

_PROCESS 
-0.38 -2.08 0.000 0.003 

70 
GO_OXIDOREDUCTASE_ACTIVITY_ACTIN

G_ON_NAD_P_H 
-0.45 -2.06 0.000 0.003 

71 
GO_OXIDOREDUCTASE_ACTIVITY_ACTIN

G_ON_THE_CH_CH_GROUP_OF_DONORS 
-0.52 -2.05 0.000 0.003 

72 
GO_ORGANELLAR_LARGE_RIBOSOMAL_S

UBUNIT 
-0.60 -2.04 0.000 0.004 

73 
GO_ENERGY_DERIVATION_BY_OXIDATIO

N_OF_ORGANIC_COMPOUNDS 
-0.39 -2.00 0.000 0.006 

74 
GO_NUCLEOBASE_CONTAINING_SMALL_

MOLECULE_INTERCONVERSION 
-0.58 -1.98 0.000 0.008 

75 
GO_PYRIMIDINE_RIBONUCLEOTIDE_MET

ABOLIC_PROCESS 
-0.59 -1.96 0.000 0.008 

76 GO_SOLUTE_PROTON_SYMPORTER_ACTI -0.58 -1.96 0.005 0.009 
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VITY 

77 
GO_MITOCHONDRIAL_TRANSMEMBRANE

_TRANSPORT 
-0.50 -1.95 0.000 0.010 

78 
GO_GLUTATHIONE_TRANSFERASE_ACTIV

ITY 
-0.60 -1.95 0.000 0.010 

79 
GO_MACROMOLECULAR_COMPLEX_DISA

SSEMBLY 
-0.39 -1.95 0.000 0.010 

80 GO_PEROXISOMAL_TRANSPORT -0.63 -1.94 0.002 0.010 

81 GO_TRANSLATIONAL_ELONGATION -0.41 -1.93 0.000 0.011 

82 GO_ORGANELLE_ENVELOPE_LUMEN -0.46 -1.93 0.000 0.011 

83 
GO_CELLULAR_PROTEIN_COMPLEX_DISA

SSEMBLY 
-0.40 -1.92 0.000 0.013 

84 GO_VIRION_ASSEMBLY -0.53 -1.91 0.000 0.013 

85 
GO_NUCLEOBASE_CONTAINING_SMALL_

MOLECULE_METABOLIC_PROCESS 
-0.33 -1.89 0.000 0.017 

86 
GO_REGULATION_OF_VIRAL_RELEASE_F

ROM_HOST_CELL 
-0.58 -1.88 0.000 0.017 

87 
GO_PURINE_CONTAINING_COMPOUND_M

ETABOLIC_PROCESS 
-0.33 -1.88 0.000 0.017 

88 

GO_ESTABLISHMENT_OF_PROTEIN_LOCA

LIZATION_TO_ENDOPLASMIC_RETICULU

M 

-0.41 -1.88 0.000 0.017 

89 GO_STEROL_BIOSYNTHETIC_PROCESS -0.49 -1.87 0.003 0.019 

90 
GO_PROTEIN_LOCALIZATION_TO_ENDOP

LASMIC_RETICULUM 
-0.39 -1.86 0.000 0.020 

91 
GO_REGULATION_OF_SPINDLE_ORGANIZ

ATION 
-0.60 -1.85 0.005 0.022 

92 
GO_NUCLEOSIDE_MONOPHOSPHATE_BIO

SYNTHETIC_PROCESS 
-0.42 -1.84 0.000 0.024 

93 
GO_ORGANIC_ACID_CATABOLIC_PROCES

S 
-0.35 -1.83 0.000 0.024 

94 
GO_PYRIMIDINE_CONTAINING_COMPOUN

D_BIOSYNTHETIC_PROCESS 
-0.48 -1.83 0.005 0.025 

95 
GO_CARBOXYLIC_ACID_CATABOLIC_PRO

CESS 
-0.35 -1.83 0.000 0.025 

96 GO_COFACTOR_BINDING -0.34 -1.83 0.000 0.025 

97 GO_APICAL_JUNCTION_COMPLEX -0.37 -1.81 0.000 0.029 

98 
GO_CELLULAR_ALDEHYDE_METABOLIC_

PROCESS 
-0.42 -1.80 0.003 0.030 

99 
GO_GENERATION_OF_PRECURSOR_META

BOLITES_AND_ENERGY 
-0.34 -1.79 0.000 0.034 

100 GO_MICROBODY_MEMBRANE -0.44 -1.79 0.000 0.034 
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101 
GO_INTRINSIC_COMPONENT_OF_MITOCH

ONDRIAL_INNER_MEMBRANE 
-0.59 -1.78 0.007 0.035 

102 GO_LIPID_CATABOLIC_PROCESS -0.33 -1.78 0.000 0.035 

103 GO_COENZYME_BINDING -0.35 -1.77 0.000 0.038 

104 
GO_MONOVALENT_INORGANIC_CATION_

TRANSPORT 
-0.31 -1.77 0.000 0.039 

105 
GO_INTRINSIC_COMPONENT_OF_MITOCH

ONDRIAL_MEMBRANE 
-0.47 -1.76 0.006 0.040 

106 
GO_MULTI_ORGANISM_MEMBRANE_ORG

ANIZATION 
-0.51 -1.76 0.010 0.039 

107 
GO_OXIDOREDUCTASE_ACTIVITY_ACTIN

G_ON_CH_OH_GROUP_OF_DONORS 
-0.38 -1.76 0.000 0.040 

108 GO_BRUSH_BORDER -0.38 -1.76 0.000 0.040 

109 

GO_OXIDOREDUCTASE_ACTIVITY_ACTIN

G_ON_THE_CH_OH_GROUP_OF_DONORS_

NAD_OR_NADP_AS_ACCEPTOR 

-0.39 -1.76 0.003 0.040 

110 GO_CADHERIN_BINDING -0.51 -1.76 0.010 0.040 

111 GO_DETECTION_OF_LIGHT_STIMULUS -0.45 -1.75 0.003 0.041 

112 GO_OXIDOREDUCTASE_ACTIVITY -0.30 -1.75 0.000 0.042 

113 
GO_GLYCOSYL_COMPOUND_BIOSYNTHE

TIC_PROCESS 
-0.37 -1.73 0.000 0.047 

114 GO_FATTY_ACID_METABOLIC_PROCESS -0.32 -1.73 0.000 0.048 
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Supporting Information. Table 2. Complete list of upregulated gene sets in ileum mucosa of HB 

broiler chickens. 

 

GS 

follow link 

to 

MSigDB 

GS DETAILS ES NES NOM p-val FDR q-val 

1 
GO_B_CELL_RECEPTOR_SIGNALING_PAT

HWAY  

0.77 2.51 0.000 0.000 

2 GO_CYTOKINE_RECEPTOR_ACTIVITY  0.58 2.34 0.000 0.000 

3 GO_B_CELL_ACTIVATION 0.53 2.27 0.000 0.002 

4 GO_HELICASE_ACTIVITY 0.49 2.20 0.000 0.004 

5 GO_CYTOKINE_BINDING 0.55 2.20 0.000 0.004 

6 
GO_REGULATION_OF_BONE_REMODELIN

G 

0.62 2.18 0.000 0.004 

7 
GO_ANTIGEN_RECEPTOR_MEDIATED_SIG

NALING_PATHWAY  

0.48 2.17 0.000 0.005 

8 GO_REGULATION_OF_BONE_RESORPTION  0.64 2.16 0.000 0.004 

9 GO_ADAPTIVE_IMMUNE_RESPONSE  0.47 2.15 0.000 0.005 

10 GO_RECOMBINATIONAL_REPAIR  0.54 2.14 0.000 0.006 

11 GO_B_CELL_DIFFERENTIATION  0.55 2.13 0.000 0.006 

12 
GO_PROTEIN_TYROSINE_KINASE_BINDIN

G 

0.59 2.13 0.000 0.006 

13 
GO_PRODUCTION_OF_MOLECULAR_MEDI

ATOR_OF_IMMUNE_RESPONSE  

0.58 2.12 0.000 0.006 

14 
GO_POSITIVE_REGULATION_OF_CELL_AC

TIVATION 

0.44 2.10 0.000 0.008 

15 GO_REGULATION_OF_CELL_ADHESION  0.40 2.10 0.000 0.008 

16 GO_LYMPHOCYTE_DIFFERENTIATION  0.45 2.09 0.000 0.008 

17 
GO_POSITIVE_REGULATION_OF_CELL_AD

HESION  

0.42 2.09 0.000 0.008 

18 GO_LYMPHOCYTE_ACTIVATION  0.43 2.08 0.000 0.008 

19 
GO_HISTONE_METHYLTRANSFERASE_CO

MPLEX 

0.55 2.07 0.000 0.009 

20 

GO_IMMUNE_RESPONSE_REGULATING_C

ELL_SURFACE_RECEPTOR_SIGNALING_P

ATHWAY  

0.43 2.06 0.000 0.011 

21 GO_LEUKOCYTE_DIFFERENTIATION 0.43 2.06 0.000 0.010 

22 
GO_REGULATION_OF_SMOOTHENED_SIG

NALING_PATHWAY 
0.53 2.04 0.000 0.012 

23 
GO_POSITIVE_REGULATION_OF_PHOSPH

ATIDYLINOSITOL_3_KINASE_SIGNALING 
0.53 2.04 0.000 0.012 

http://www.broadinstitute.org/gsea/msigdb/cards/GO_B_CELL_RECEPTOR_SIGNALING_PATHWAY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_B_CELL_RECEPTOR_SIGNALING_PATHWAY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_CYTOKINE_RECEPTOR_ACTIVITY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_B_CELL_ACTIVATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_HELICASE_ACTIVITY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_CYTOKINE_BINDING
http://www.broadinstitute.org/gsea/msigdb/cards/GO_REGULATION_OF_BONE_REMODELING
http://www.broadinstitute.org/gsea/msigdb/cards/GO_REGULATION_OF_BONE_REMODELING
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_REGULATION_OF_BONE_RESORPTION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_ADAPTIVE_IMMUNE_RESPONSE
http://www.broadinstitute.org/gsea/msigdb/cards/GO_RECOMBINATIONAL_REPAIR
http://www.broadinstitute.org/gsea/msigdb/cards/GO_B_CELL_DIFFERENTIATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_PROTEIN_TYROSINE_KINASE_BINDING
http://www.broadinstitute.org/gsea/msigdb/cards/GO_PROTEIN_TYROSINE_KINASE_BINDING
http://www.broadinstitute.org/gsea/msigdb/cards/GO_PRODUCTION_OF_MOLECULAR_MEDIATOR_OF_IMMUNE_RESPONSE
http://www.broadinstitute.org/gsea/msigdb/cards/GO_PRODUCTION_OF_MOLECULAR_MEDIATOR_OF_IMMUNE_RESPONSE
http://www.broadinstitute.org/gsea/msigdb/cards/GO_POSITIVE_REGULATION_OF_CELL_ACTIVATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_POSITIVE_REGULATION_OF_CELL_ACTIVATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_REGULATION_OF_CELL_ADHESION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_LYMPHOCYTE_DIFFERENTIATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_POSITIVE_REGULATION_OF_CELL_ADHESION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_POSITIVE_REGULATION_OF_CELL_ADHESION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_LYMPHOCYTE_ACTIVATION
http://www.broadinstitute.org/gsea/msigdb/cards/GO_HISTONE_METHYLTRANSFERASE_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_HISTONE_METHYLTRANSFERASE_COMPLEX
http://www.broadinstitute.org/gsea/msigdb/cards/GO_IMMUNE_RESPONSE_REGULATING_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_IMMUNE_RESPONSE_REGULATING_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY
http://www.broadinstitute.org/gsea/msigdb/cards/GO_IMMUNE_RESPONSE_REGULATING_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY
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24 GO_HISTONE_DEMETHYLASE_ACTIVITY 0.70 2.03 0.000 0.012 

25 
GO_REGULATION_OF_TISSUE_REMODELI

NG 
0.53 2.03 0.000 0.012 

26 GO_REGULATION_OF_CELL_ACTIVATION 0.40 2.00 0.000 0.017 

27 GO_CELL_CHEMOTAXIS 0.47 2.00 0.000 0.018 

28 
GO_POSITIVE_REGULATION_OF_BIOMINE

RAL_TISSUE_DEVELOPMENT 
0.57 1.99 0.000 0.018 

29 GO_DNA_HELICASE_ACTIVITY 0.54 1.99 0.000 0.019 

30 
GO_PURINE_NTP_DEPENDENT_HELICASE

_ACTIVITY 
0.49 1.99 0.000 0.018 

31 GO_IMMUNE_SYSTEM_DEVELOPMENT 0.38 1.98 0.000 0.018 

32 
GO_REGULATION_OF_CELL_SUBSTRATE_

ADHESION 
0.43 1.98 0.000 0.018 

33 
GO_REGULATION_OF_LIPID_KINASE_ACT

IVITY 
0.54 1.98 0.000 0.018 

34 
GO_EXTERNAL_SIDE_OF_PLASMA_MEMB

RANE 
0.43 1.98 0.000 0.018 

35 
GO_INTEGRIN_MEDIATED_SIGNALING_P

ATHWAY 
0.51 1.97 0.000 0.019 

36 GO_IMMUNOGLOBULIN_PRODUCTION 0.57 1.96 0.000 0.021 

37 
GO_REGULATION_OF_HOMOTYPIC_CELL

_CELL_ADHESION 
0.41 1.96 0.000 0.021 

38 
GO_REGULATION_OF_BIOMINERAL_TISS

UE_DEVELOPMENT 
0.49 1.96 0.000 0.021 

39 GO_OLFACTORY_LOBE_DEVELOPMENT 0.61 1.96 0.000 0.021 

40 GO_DNA_DEPENDENT_ATPASE_ACTIVITY 0.48 1.95 0.000 0.021 

41 GO_LEUKOCYTE_MIGRATION 0.42 1.95 0.000 0.020 

42 GO_INFLAMMATORY_RESPONSE 0.40 1.95 0.000 0.020 

43 
GO_POSITIVE_REGULATION_OF_KINASE_

ACTIVITY 
0.38 1.95 0.000 0.020 

44 
GO_REGULATION_OF_CELL_CELL_ADHES

ION 
0.39 1.95 0.000 0.021 

45 GO_LEUKOCYTE_ACTIVATION 0.39 1.95 0.000 0.020 

46 
GO_REGULATION_OF_B_CELL_DIFFEREN

TIATION 
0.68 1.94 0.002 0.021 

47 
GO_REGULATION_OF_PHOSPHATIDYLINO

SITOL_3_KINASE_ACTIVITY 
0.56 1.94 0.000 0.020 

48 
GO_NEGATIVE_REGULATION_OF_CHOND

ROCYTE_DIFFERENTIATION 
0.64 1.94 0.000 0.020 

49 
GO_REGULATION_OF_MAP_KINASE_ACTI

VITY 
0.40 1.94 0.000 0.019 

50 GO_PCG_PROTEIN_COMPLEX 0.56 1.94 0.000 0.020 
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51 GO_CELLULAR_DEFENSE_RESPONSE 0.60 1.94 0.000 0.020 

52 
GO_NEGATIVE_REGULATION_OF_IMMUN

E_EFFECTOR_PROCESS 
0.50 1.94 0.000 0.021 

53 GO_IMMUNE_RESPONSE 0.36 1.93 0.000 0.021 

54 
GO_NEGATIVE_REGULATION_OF_CHROM

ATIN_MODIFICATION 
0.55 1.93 0.002 0.022 

55 GO_CORECEPTOR_ACTIVITY 0.56 1.93 0.000 0.022 

56 GO_PROTEIN_DEALKYLATION 0.63 1.92 0.002 0.022 

57 
GO_REGULATION_OF_CELL_MATRIX_AD

HESION 
0.47 1.92 0.000 0.022 

58 GO_PROTEIN_DEMETHYLATION 0.63 1.92 0.000 0.023 

59 GO_CILIUM_MORPHOGENESIS 0.41 1.92 0.000 0.023 

60 
GO_POSITIVE_REGULATION_OF_VASCUL

ATURE_DEVELOPMENT 
0.44 1.92 0.000 0.022 

61 
GO_POSITIVE_REGULATION_OF_CELL_CE

LL_ADHESION 
0.41 1.92 0.000 0.022 

62 GO_ACTIVATION_OF_MAPKK_ACTIVITY 0.52 1.92 0.002 0.022 

63 GO_ACTIVATION_OF_IMMUNE_RESPONSE 0.39 1.91 0.000 0.022 

64 GO_BODY_MORPHOGENESIS 0.54 1.91 0.000 0.022 

65 

GO_CELLULAR_RESPONSE_TO_VASCULA

R_ENDOTHELIAL_GROWTH_FACTOR_STI

MULUS 

0.60 1.91 0.002 0.023 

66 GO_LEUKOCYTE_CHEMOTAXIS 0.48 1.91 0.002 0.023 

67 
GO_REGULATION_OF_LYMPHOCYTE_DIF

FERENTIATION 
0.44 1.91 0.000 0.023 

68 
GO_REGULATION_OF_INTERLEUKIN_2_BI

OSYNTHETIC_PROCESS 
0.66 1.91 0.000 0.023 

69 GO_DNA_GEOMETRIC_CHANGE 0.46 1.91 0.000 0.023 

70 
GO_ACTIVATION_OF_PROTEIN_KINASE_A

CTIVITY 
0.39 1.90 0.000 0.023 

71 
GO_REGULATION_OF_PROTEIN_SERINE_T

HREONINE_KINASE_ACTIVITY 
0.38 1.90 0.000 0.023 

72 GO_SIDE_OF_MEMBRANE 0.38 1.90 0.000 0.024 

73 
GO_PEPTIDYL_THREONINE_MODIFICATIO

N 
0.54 1.90 0.000 0.024 

74 
GO_NEGATIVE_REGULATION_OF_CHROM

OSOME_ORGANIZATION 
0.46 1.90 0.000 0.024 

75 
GO_REGULATION_OF_ADHERENS_JUNCTI

ON_ORGANIZATION 
0.50 1.90 0.000 0.024 

76 
GO_REGULATION_OF_LEUKOCYTE_PROLI

FERATION 
0.41 1.89 0.000 0.025 

77 GO_DNA_RECOMBINATION 0.41 1.89 0.000 0.025 
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78 
GO_REGULATION_OF_INTERLEUKIN_2_PR

ODUCTION 
0.53 1.89 0.000 0.025 

79 
GO_NUCLEOSIDE_TRIPHOSPHATASE_REG

ULATOR_ACTIVITY 
0.38 1.89 0.000 0.025 

80 
GO_POSITIVE_REGULATION_OF_INTERLE

UKIN_2_PRODUCTION 
0.58 1.89 0.000 0.025 

81 
GO_POSITIVE_REGULATION_OF_B_CELL_

ACTIVATION 
0.48 1.88 0.002 0.026 

82 
GO_POSITIVE_REGULATION_OF_LIPID_KI

NASE_ACTIVITY 
0.57 1.88 0.000 0.027 

83 GO_DNA_REPLICATION 0.40 1.87 0.000 0.028 

84 
GO_MICROTUBULE_ORGANIZING_CENTE

R_PART 
0.42 1.87 0.000 0.029 

85 
GO_POSITIVE_REGULATION_OF_FILOPOD

IUM_ASSEMBLY 
0.61 1.87 0.005 0.029 

86 
GO_GUANYL_NUCLEOTIDE_EXCHANGE_F

ACTOR_ACTIVITY 
0.39 1.87 0.000 0.029 

87 
GO_NEGATIVE_REGULATION_OF_CELL_A

DHESION 
0.40 1.87 0.000 0.029 

88 
GO_REGULATION_OF_PHOSPHOLIPID_ME

TABOLIC_PROCESS 
0.48 1.86 0.000 0.031 

89 
GO_COVALENT_CHROMATIN_MODIFICAT

ION 
0.38 1.86 0.000 0.031 

90 GO_HISTONE_H4_ACETYLATION 0.54 1.86 0.002 0.031 

91 GO_CELL_ACTIVATION 0.36 1.86 0.000 0.031 

92 
GO_REGULATION_OF_CHROMOSOME_OR

GANIZATION 
0.39 1.85 0.000 0.031 

93 
GO_REGULATION_OF_B_CELL_ACTIVATI

ON 
0.44 1.85 0.000 0.033 

94 GO_RESPONSE_TO_FLUID_SHEAR_STRESS 0.57 1.85 0.000 0.033 

95 
GO_CYCLIN_DEPENDENT_PROTEIN_KINA

SE_HOLOENZYME_COMPLEX 
0.59 1.85 0.002 0.033 

96 GO_PEPTIDYL_SERINE_MODIFICATION 0.42 1.84 0.000 0.034 

97 
GO_REGULATION_OF_CHROMATIN_ORGA

NIZATION 
0.43 1.84 0.000 0.034 

98 

GO_NEGATIVE_REGULATION_OF_CELLUL

AR_RESPONSE_TO_GROWTH_FACTOR_STI

MULUS 

0.42 1.84 0.000 0.034 

99 
GO_HISTONE_ACETYLTRANSFERASE_BIN

DING 
0.59 1.84 0.000 0.034 

100 
GO_B_CELL_ACTIVATION_INVOLVED_IN_

IMMUNE_RESPONSE 
0.54 1.84 0.002 0.034 

101 GO_MICROTUBULE_NUCLEATION 0.64 1.84 0.007 0.034 
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102 
GO_ATP_DEPENDENT_DNA_HELICASE_A

CTIVITY 
0.55 1.84 0.003 0.034 

103 
GO_POSITIVE_REGULATION_OF_LEUKOC

YTE_PROLIFERATION 
0.42 1.84 0.000 0.034 

104 GO_LEUKOCYTE_PROLIFERATION 0.48 1.84 0.000 0.034 

105 
GO_SOMATIC_DIVERSIFICATION_OF_IMM

UNOGLOBULINS 
0.58 1.83 0.005 0.035 

106 GO_DOUBLE_STRAND_BREAK_REPAIR 0.41 1.83 0.000 0.034 

107 
GO_REGULATION_OF_PHOSPHATIDYLINO

SITOL_3_KINASE_SIGNALING 
0.41 1.83 0.000 0.034 

108 
GO_REGULATION_OF_B_CELL_PROLIFER

ATION 
0.49 1.83 0.002 0.034 

109 
GO_RAB_GUANYL_NUCLEOTIDE_EXCHA

NGE_FACTOR_ACTIVITY 
0.58 1.83 0.003 0.035 

110 GO_RNA_HELICASE_ACTIVITY 0.48 1.83 0.002 0.035 

111 
GO_RAS_GUANYL_NUCLEOTIDE_EXCHA

NGE_FACTOR_ACTIVITY 
0.39 1.83 0.000 0.035 

112 
GO_NEGATIVE_REGULATION_OF_EMBRY

ONIC_DEVELOPMENT 
0.58 1.83 0.000 0.035 

113 
GO_CELL_ACTIVATION_INVOLVED_IN_IM

MUNE_RESPONSE 
0.44 1.83 0.000 0.035 

114 GO_TAXIS 0.36 1.83 0.000 0.035 

115 GO_MITOTIC_RECOMBINATION 0.53 1.82 0.000 0.035 

116 
GO_POSITIVE_REGULATION_OF_MAP_KIN

ASE_ACTIVITY 
0.39 1.82 0.000 0.035 

117 
GO_PLATELET_DERIVED_GROWTH_FACT

OR_RECEPTOR_SIGNALING_PATHWAY 
0.52 1.82 0.003 0.036 

118 GO_REGULATION_OF_OSSIFICATION 0.39 1.82 0.000 0.037 

119 GO_HISTONE_DEACETYLASE_BINDING 0.45 1.82 0.000 0.037 

120 
GO_NEGATIVE_REGULATION_OF_OSSIFIC

ATION 
0.48 1.82 0.000 0.037 

121 GO_HISTONE_METHYLATION 0.46 1.82 0.002 0.037 

122 
GO_POSITIVE_REGULATION_OF_IMMUNE

_RESPONSE 
0.35 1.81 0.000 0.037 

123 

GO_NEGATIVE_REGULATION_OF_CYCLIN

_DEPENDENT_PROTEIN_KINASE_ACTIVIT

Y 

0.61 1.81 0.003 0.037 

124 GO_RESPONSE_TO_HEAT 0.45 1.81 0.003 0.037 

125 
GO_NONMOTILE_PRIMARY_CILIUM_ASSE

MBLY 
0.61 1.81 0.002 0.039 

126 
GO_ANATOMICAL_STRUCTURE_MATURA

TION 
0.56 1.81 0.003 0.039 
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127 GO_PHAGOCYTOSIS 0.41 1.81 0.000 0.039 

128 GO_HEAD_MORPHOGENESIS 0.52 1.81 0.002 0.039 

129 
GO_POSITIVE_REGULATION_OF_B_CELL_

PROLIFERATION 
0.52 1.81 0.002 0.039 

130 
GO_POSITIVE_REGULATION_OF_TRANSFE

RASE_ACTIVITY 
0.34 1.81 0.000 0.038 

131 
GO_POSITIVE_REGULATION_OF_LOCOMO

TION 
0.36 1.80 0.000 0.039 

132 
GO_REGULATION_OF_ENDOTHELIAL_CEL

L_MIGRATION 
0.42 1.80 0.001 0.039 

133 GO_DEMETHYLASE_ACTIVITY 0.57 1.80 0.003 0.040 

134 
GO_POSITIVE_REGULATION_OF_MAPK_C

ASCADE 
0.35 1.80 0.000 0.040 

135 
GO_RENAL_SYSTEM_VASCULATURE_DE

VELOPMENT 
0.62 1.80 0.003 0.040 

136 
GO_STRESS_ACTIVATED_PROTEIN_KINAS

E_SIGNALING_CASCADE 
0.44 1.80 0.002 0.040 

137 GO_BLOOD_VESSEL_MORPHOGENESIS 0.36 1.80 0.000 0.040 

138 GO_MESENCHYME_DEVELOPMENT 0.39 1.79 0.000 0.040 

139 
GO_INTRINSIC_COMPONENT_OF_GOLGI_

MEMBRANE 
0.47 1.79 0.000 0.040 

140 
GO_REGULATION_OF_CYTOKINE_BIOSYN

THETIC_PROCESS 
0.44 1.79 0.002 0.040 

141 GO_CELL_PART_MORPHOGENESIS 0.34 1.79 0.000 0.040 

142 
GO_NEGATIVE_REGULATION_OF_CELL_S

UBSTRATE_ADHESION 
0.48 1.79 0.000 0.041 

143 
GO_REGULATION_OF_VASCULATURE_DE

VELOPMENT 
0.38 1.79 0.000 0.041 

144 GO_CENTRIOLE 0.43 1.79 0.000 0.041 

145 GO_REGULATION_OF_PHAGOCYTOSIS 0.49 1.79 0.002 0.041 

146 
GO_REGULATION_OF_IMMUNE_RESPONS

E 
0.34 1.79 0.000 0.041 

147 GO_REGULATION_OF_CHEMOTAXIS 0.39 1.79 0.000 0.041 

148 GO_SMOOTH_MUSCLE_CONTRACTION 0.47 1.79 0.000 0.041 

149 GO_CILIARY_TRANSITION_ZONE 0.60 1.79 0.003 0.041 

150 
GO_KIDNEY_VASCULATURE_DEVELOPM

ENT 
0.62 1.78 0.012 0.041 

151 GO_REGULATION_OF_GTPASE_ACTIVITY 0.34 1.78 0.000 0.042 

152 GO_CELL_CYCLE_PHASE_TRANSITION 0.37 1.78 0.000 0.042 

153 
GO_NEGATIVE_REGULATION_OF_SMOOT

HENED_SIGNALING_PATHWAY 
0.59 1.78 0.003 0.043 
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154 
GO_CARDIAC_EPITHELIAL_TO_MESENCH

YMAL_TRANSITION 
0.58 1.78 0.000 0.042 

155 
GO_PHOSPHATIDYLINOSITOL_3_KINASE_

COMPLEX 
0.58 1.78 0.005 0.043 

156 GO_REGULATION_OF_CELL_SIZE 0.39 1.78 0.000 0.043 

157 
GO_INOSITOL_PHOSPHATE_METABOLIC_

PROCESS 
0.47 1.78 0.000 0.043 

158 
GO_NEGATIVE_REGULATION_OF_CARTIL

AGE_DEVELOPMENT 
0.56 1.78 0.005 0.043 

159 
GO_EXTRACELLULAR_STRUCTURE_ORG

ANIZATION 
0.36 1.77 0.000 0.046 

160 GO_MICROTUBULE_POLYMERIZATION 0.55 1.77 0.005 0.046 

161 GO_NEGATIVE_CHEMOTAXIS 0.51 1.77 0.010 0.046 

162 GO_REGULATION_OF_AXONOGENESIS 0.39 1.77 0.000 0.046 

163 GO_DNA_BIOSYNTHETIC_PROCESS 0.42 1.77 0.000 0.046 

164 
GO_NEGATIVE_REGULATION_OF_ORGAN

ELLE_ASSEMBLY 
0.61 1.77 0.009 0.045 

165 

GO_CELLULAR_PROCESS_INVOLVED_IN_

REPRODUCTION_IN_MULTICELLULAR_OR

GANISM 

0.38 1.77 0.000 0.045 

166 
GO_NEGATIVE_REGULATION_OF_LEUKO

CYTE_MEDIATED_IMMUNITY 
0.57 1.77 0.005 0.046 

167 GO_WOUND_HEALING 0.35 1.76 0.000 0.046 

168 
GO_REGULATION_OF_NON_CANONICAL_

WNT_SIGNALING_PATHWAY 
0.60 1.76 0.007 0.046 

169 GO_METHYLTRANSFERASE_COMPLEX 0.45 1.76 0.002 0.046 

170 
GO_HISTONE_METHYLTRANSFERASE_AC

TIVITY 
0.50 1.76 0.000 0.047 

171 GO_ANGIOGENESIS 0.36 1.76 0.000 0.047 

172 
GO_NEGATIVE_REGULATION_OF_CELL_A

CTIVATION 
0.41 1.76 0.000 0.047 

173 GO_METENCEPHALON_DEVELOPMENT 0.42 1.76 0.000 0.047 

174 

GO_REGULATION_OF_EXTRINSIC_APOPT

OTIC_SIGNALING_PATHWAY_IN_ABSENC

E_OF_LIGAND 

0.51 1.76 0.005 0.047 

175 
GO_NEGATIVE_REGULATION_OF_BLOOD

_CIRCULATION 
0.53 1.76 0.006 0.048 

176 
GO_SWI_SNF_SUPERFAMILY_TYPE_COMP

LEX 
0.46 1.76 0.000 0.048 

177 
GO_NEGATIVE_REGULATION_OF_HISTON

E_MODIFICATION 
0.53 1.76 0.005 0.048 

178 
GO_PHOSPHATIDYLINOSITOL_3_KINASE_

ACTIVITY 
0.44 1.75 0.002 0.048 
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179 
GO_REGULATION_OF_OSTEOBLAST_PRO

LIFERATION 
0.58 1.75 0.002 0.049 
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5. FINAL CONCLUSIONS 

Modern fast-growing broilers have been selected for decades for increased growth rate, feed 

efficiency and breast meat yield. These selection processes have significantly changed their body 

development, nutritional needs, and metabolic features, and hence an updated evaluation of these 

aspects in current broiler genotypes is necessary to ensure high productive efficiency.  

Defining a proper ratio among dietary amino acids is a crucial aspect to improve efficiency 

in modern fast-growing broilers, as well as to promote the economic and environmental 

sustainability of the poultry industry. In this dissertation it has been shown that the dietary 

supplementation of crystalline L-arginine to increase the Arg:Lys ratio to levels higher than those 

currently recommended had a positive effect on feed efficiency without showing any negative 

outcome on meat quality attributes, foot pad condition and incidence of breast meat abnormalities. 

In addition, the application of a nuclear magnetic resonance (NMR) approach allowed to obtain 

important information about the changes exerted by the higher dietary Arg:Lys ratio on plasma and 

muscle metabolome. This analysis allowed to formulate hypothesis about the molecular 

mechanisms laying behind the improvements observed in FE in response to the dietary treatment. 

However, further studies are needed to clearly define and confirm the role of arginine on energy and 

protein metabolism considering also other tissues, such as liver and adipose tissue. 

In the second trial, the growth performance and the whole gene expression profile in the small 

intestine, a key organ involved in several aspects which can deeply affect FE, were investigated in 

two fast-growing broiler chicken hybrids. The results showed that the two genotypes exhibited 

different growth pattern and feeding behavior. Similarly, the microarray analysis revealed a 

completely different gene expression profile in the intestinal mucosa of the two hybrids that were 

raised in the same environmental conditions and fed the same diet. Indeed, while the gene 

expression profile of the first genotype seems consistent with an overall healthy condition of the 

intestinal mucosa likely supported by an increased mitochondria functionality and antioxidant 
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capacity, the second one showed a potential inflammatory condition in the gut coupled with a 

marked activation of the immune system. Although the factors triggering gut inflammation and 

different feeding behavior are still not clear, the results pave the way to some nutritional and 

physiological considerations regarding the complex interaction between genotype and nutrition, and 

also to the importance of considering these aspects for the formulation of genotype-tailored diets to 

improve productive efficiency and thereby the sustainability of the poultry industry. Furthermore, 

the ongoing study of some physiological patterns, such as the expression of NPY and its effects on 

overall energy homeostasis processes, may allow a better comprehension of the feeding behavior 

mechanisms strictly related to feed efficiency in  broiler chickens. 

In conclusion, the results obtained combining both traditional and innovative techniques 

(transcriptomics and metabolomics) in a holistic approach can shed some light on important 

nutritional and molecular aspects involved in productive efficiency of broiler chickens, confirming 

the usefulness of these analytical platforms in investigating the molecular responses to different 

dietary treatments or genetic backgrounds in poultry. A better and detailed knowledge of these 

aspects in modern fast-growing broiler chicken hybrids may allow an optimization of productive 

strategies to efficiently sustain the increasing demand of poultry meat while improving animal 

welfare, product quality, and environmental sustainability. 
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