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The computer is incredibly fast, accurate, and stupid.

Man is incredibly slow, inaccurate, and brilliant.

The marriage of the two is a force beyond calculation.

L. Cherne





Abstract

In the scope of technical and scientific computing the rush towards larger simulations,

with higher complexity and accuracy, has been so far assisted by a steady downsizing of

micro-processing units, which has allowed increasing the compute capacity of general-

purpose architectures at constant power. As side effects of the end of Dennard’s scal-

ing, this process is now hitting its ultimate power limits and is just about to come to

an end. Today is not more possible to maintain the expected grow of supercomputers

performance without increase the power consumption. Thus, power and thermal walls

stand in front of the evolution of supercomputers towards the exaflops era. These tech-

nological walls are big challenges to face for assuring a constant grow of performance

in scientific applications. Next generation architectures for high-performance comput-

ing systems implement hardware and software components to address power and ther-

mal issues for increasing performance and efficiency. The continuous grow of power

consumption at peak performance of supercomputers, start to require to well-defined

power budget at design time which should considers the worst-case power consump-

tion of the computing resources to avoid outages. But supercomputers rarely cause the

worst-case power consumption during their life limiting the performance achievable in

normal conditions. Power capping mechanisms are necessary to aggregate more com-

puting units to target the “average-case power consumption” of the system by limiting

the performance at execution time when peak power consumption is demanded. Power

capping systems can be implemented using hardware or software mechanisms, but they

have different advantages and challenges which need to be explored. Another drawback

of the end of the Dennard’s scaling is that power density of high-end processors starts

to increase at every technologically steps leading to overheating and thermal gradient

on the same die. As result, thermal-bound machines show performance degradation

and heterogeneity which limits the peak performance of the system. Thermal manage-

ment solutions are needed in order to avoid thermal hazards which make the system too

unreliable to use. Power capping and thermal controls are both safety mechanisms, but

none of them address energy efficiency in applications. It is well known that in large

application runs, the time spent by the application in the communication is not neg-

ligible and impacts the power consumption of the system. Today’s supercomputer can

leverage on low power states to reduce the power consumption during communication,

but due to the time scale at which communication happens, transitioning in low power
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states during communication’s idle times may introduce overheads. As a matter of

fact, there is no known low-overhead mechanism for reducing the power consumption

during communication slacks. In this thesis have been developed software strategies

in order to face the main bottlenecks of power and thermal issues that affects super-

computers of next generation. It targets scientific applications which are the principal

candidates that are negatively affected from the power and thermal constraints of su-

percomputers. To respond to the above challenges, this work shows that propagating

workload requirements from application to the runtime and operating system level is

the key to provide efficiency. But this is possible only if the proposed software method-

ologies have little or no overhead in term of application performance. The run-times

libraries developed in this work respect this constraint, and to prove it, they have been

largely tested in real production HPC systems with widely used scientific applications

and datasets. Moreover, in this thesis has been shown that hardware mechanisms to

enforce a power cap at execution time can induce overhead due the unawareness of

the application workload. While software policies, which can be integrated in the ap-

plication, can take advantage on relaxing the power constraint consistently with the

application’s workload. While, in thermal-bound HPC machines, workload-aware run-

times can leverage hardware knobs to guarantee the best operating points in term of

performance and power saving without violating thermal constraints independently for

each computing unit. To conclude, it has been proposed a methodology and a runtime

for identifying and automatically reducing the power consumption of the computing

elements during communication and synchronization primitives filtering out phases

which would detriment the time to solution of the application. The experimental re-

sults show a significant step forward respects to the current state-of-the-art solutions

in power and thermal control of HPC systems.
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Chapter 1

Introduction

1.1 Scientific Applications in the Era of Exascale

Computing

In the past four decades scientific applications in many fields have evolved from sim-

ple homebrewed codes to complex community projects steadily growing thanks to a

distributed, and often loosely coordinated, effort from a variety of groups, laborato-

ries, and institutions. This lively and creative anarchy was facilitated by the smooth

progress of hardware architecture, which did not require major disruptions of the pro-

gramming models. Notwithstanding its benefits, this loosely coordinated development

model also had a strong and detrimental impact on the long-term sustainability of

software projects, which is becoming particularly critical in the proximity of the next

hardware revolution that will occur with the transition to exascale computing. The

slowing down of Moore’s law and the end of the Dennard’s scaling [1, 2] in CMOS

technology sets new thermal and power challenges in forthcoming machines which

would disrupt the typical programming model adopted so far by scientific community.

1.2 Energy and Power Walls

While Moore’s law is approaching its end, Dennard’s scaling has already run out of

steam. This has caused a constant increase of the power density required to operate

each new processor generation at its maximum performance: causing de facto, the

total power consumption of each device to limit the practical achievable performance.

In addition of the detrimental effect of power density on the final performance, total
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power consumption needs to be delivered and removed through cooling consuming

additional power. All these issues impact on the total power budget available to the

data centres, which limits the computing capacity [3]. As a matter of fact, energy

and power walls are the key challenges to be faced in order to deliver the planned

performance growth in future.

The effects of energy and power walls are already visible today in the Top500[4]

and Green500[5] lists. Until June 2013, every new most powerful supercomputer in

the world (1st in the Top500 list) has marked an increase in its power consumption.

Reaching with Tianhe-2, 17.8 MWatts of IT peak power consumption, which increases

to 24MWatts when considering also the cooling power [6]. This has set the record for

the power consumption of a single supercomputer installation, reaching a power pro-

visioning around 20MWatts [7]. The total cost of ownership TCO of a supercomputer

is moving from architecture to the power budget, this has set a new practical limit.

The fact is that to maintain the performance grown of the past decades, is nowadays

possible only increasing the power budget: as a matter of fact, supercomputers are

becoming power limited [8]!

1.3 Time Constraints in Power-limited HPC Systems

As it previously seen, supercomputer power consumption is a critical aspect and im-

poses to target a well-define power budget for the system at design time. The power

design must consider the worst-case power consumption of the computing resources of

a supercomputer. However, supercomputer workloads rarely cause worst-case power

consumption during their life making worst-case design approaches a bad choice which

decreases the average supercomputing performance. Power capping approaches sup-

port the design for “the average power consumption case” by packing more computing

capacity, with a feasible power budget under average workload and dynamically reduc-

ing the performance during the execution of workloads with peak power consumption.

At the basis of these approaches there is the capability of computing elements

to trade off performance with power consumption. Dynamic and voltage frequency

states (DVFS, also known as performance states or P-states [9])) allow the reduction

of the power consumption during active computation. Dynamic power management

policies take advantage of these HW states to create feedback loops adapting the
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performance to workload phases aiming to reduce the energy consumption or ensure

a specific power and thermal budget. Pure software implementations of these policies

have clear software advantages but need to be executed on the same computational

resources, interrupting the application flow and causing overheads.

Recently vendors have added HW components to implement these policies in hard-

ware allowing a more fine-grain control. Intel Running Average Power Limits (RAPL)

technology can enforce in hardware a given power limit. This is done exploiting power

sensors and power management knobs. Current RAPL implementations aim to en-

force a constant power consumption within a ten-milliseconds time window. However

this is far below the timescale of supercomputing centres where the power budget

must be respected in large time windows coming from the power grid and supplier

[10, 11].

1.4 Thermal Capacitance and Heterogeneity in HPC

Compute Nodes

Power capping mechanisms are very effective to control the power consumption during

supercomputers’ life. But the trend of increasing supercomputers’ power consumption

has also seen as collateral effects of the rapid increase of CPU’s power density that in

turn have limited the achievable performance caused by higher temperatures. Power

capping mechanisms do not guarantee a safe and reliable use of high-performance

computing (HPC) nodes from a thermal point of view, which need specific thermal

policies and controllers to avoid overheating and thermal hazards.

The maximum safe temperature at which the processing elements of HPC nodes can

run depends on the cooling technologies. For instance, Intel Xeon E5-26XX v3 server

class processors have specifications on the maximum silicon temperature ranging from

69oC to 101oC according to the package thermal resistance (cost) and the nominal

thermal design power (TDP)1. To enforce a safe working temperatures, HPC nodes

use active-cooling solutions which translate in additional power consumption.

Dynamic thermal management (DTM) has been studied to limit the cooling effort

by controlling and reducing the heat generation. This is achieved monitoring the

HW thermal sensors and the application workload reacting on DVFS states. New

1Intel Xeon R©Processor E5 v3 Family Thermal Guide
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generation multi-core CPUs, which are used in HPC systems, can apply a different

voltage and frequency to each core independently [12]. This opens new scenarios for

fine-grain DVFS control in DTM solution. Operating systems (OS) use feedback loops

between sensors and DVFS states of each core to scale down frequency states to avoid

thermal hazards.

Cooling and heat generation are rapidly becoming new key limiters for high perfor-

mance processors, especially for HPC data centres which typically are hosted clusters

of thousands of compute nodes. Each compute node could be equipped with tens

of computing units, thus scientific applications can take advantage of these parallel

architectures to speed up the execution of large-scale simulations and workloads. The

message-passing interface (MPI) programming model is the de facto standard in HPC

programs for splitting the workload in tasks that execute in parallel in the compute

nodes of the HPC machine. During the execution of an MPI-based application, the

tasks alternate phases of computation with phases of communications. A critical

design parameter in MPI applications is the balancing of the workload between the

tasks, and the minimization of the waiting time for each tasks in the synchronization

points [13, 14]. Critical tasks in a specific code segment, are the ones which carry

on the most workload and arrive late at a synchronization point. In practice, they

limit the application speed in the specific code segment. HPC application developers

and users parameterize the application to balance the workload. This intended to

limit the slowdown induced by critical tasks. DTM techniques can create local un-

balance between cores to maximize processor’s throughput. This can be significantly

detrimental for application performance as it may slow down critical tasks in parallel

applications.

Several solutions explore proactive techniques for DTM strategies to improve per-

formance in thermal-bound systems [15, 16, 17, 18]. DTM strategies take advantages

of the heterogeneity in the thermal dissipation of cores, which is related to chip and

board design, and manufacture, to maximize the performance. However, these ap-

proaches often result in a performance unbalance between the cores. Coldest cores

run faster than hottest cores.
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1.5 Parallelization and Energy Efficiency

Power capping and thermal control systems are both safety mechanisms to avoid

critical situations in HPC machines but none of them impact on the energy efficiency

of the application and today the power consumption is one of the most important key

limiting factor in HPC systems.

It is known that a significant amount of time in large scale HPC applications is

wasted in communication synchronization-related idle times. A typical HPC applica-

tion is composed of several processes running on a cluster of nodes which exchange

messages through a high-bandwidth, low-latency network. These processes can access

the network sub-system through the MPI library. Usually when the scale of the appli-

cation increases, the time spent by the application in the MPI becomes not negligible

and impacts the overall power consumption.

Low power design strategies enable computing resources to trade-off performance

and power consumption through low power states. These states obtained by DVFS

states (P-state), clock gating or throttling states (T-states), and idle power saving

states, which switch off unused resources (C-states) [9]. Power states transitions are

controlled by hardware policies, OS policies, and with an increasing emphasis in recent

years, at user space by the final users [19, 20, 21, 22] and at execution time [23, 24].

While OS policies focus to maximize the utilization of the computing resources —

increasing the processor’s speed proportionally to the processor’s utilization — two

main families of power control policies are emerging in scientific computing. The first

is based on the assumption that performance penalty can be tolerated to reduce the

overall energy consumption [19, 25, 20, 21]. The second is based on the assumption

that it is possible to slow down the speed of a processor only when it does not execute

critical tasks: to save energy without penalizing application performance [23, 24,

26, 22]. Both approaches are based on the concept of application slack/bottleneck

(memory and network communication) that can be opportunistically exploited to

reduce power and to save energy. However, there are drawbacks which limit of usage

of these concepts in a production environment. The first approach causes overheads

in the application time-to-solution (Tts) limiting the supercomputer throughput and

capacity. The second approach depends on the capability of predicting the critical

tasks in advance with severe performance loss in case of mispredictions.

By default, when processes are waiting in synchronization primitives, the MPI
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libraries use a busy-waiting mechanism. However, during MPI primitives the workload

is primarily composed of wait times and memory/network accesses for which running

an application in a low power mode may result in lower CPU power consumption with

limited or even no impact on the execution time.

MPI libraries implement idle-waiting mechanisms, but these are not used in prac-

tice to avoid performance penalties caused by the transition times to enter and exit

of low-power states [27]. As a matter of fact, there is no known low-overhead and

reliable mechanism for reducing selectively the energy consumption during MPI com-

munication slack.

1.6 Contributions and Organization

This thesis faces the power and thermal issues which will affect the next generation

of supercomputers leveraging to the typical programming models adopted so far by

scientific community. The presented SW approaches avoid to change the source code

of scientific applications leaving users and developers to focus only to the usability

and on the functionality of the applications. To make this possible, the proposed

run-time libraries are able to extract application requirements at execution time and

propagating them to the OS and HW level.

In the thesis is shown how i) using SW strategies for relaxing the power capping

constraint in HPC systems can have benefit in performance instead to force a constant

power consumption through HW mechanisms. ii) it has been developed an optimal

thermal control for scientific applications to address thermal capacitance and hetero-

geneity in thermal-bound HPC nodes, and iii) it has been developed an MPI-aware

runtime to save energy in large-scale scientific applications.

This thesis is organized as followed:

• In Chapter 2 are presented the state-of-the-art works in the research fields of

power capping systems, dynamic thermal control and power/energy manage-

ment approaches for scientific computing systems.

• In Chapter 3, it has been shown a novel exploration work on power capping

mechanisms for power constrained HPC nodes and it is shown how scientific

applications can have performance benefits relaxing the power constraint using

large time windows.
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• In Chapter 4, it has been developed a an optimal thermal management runtime

for scientific applications in order to face thermal hazards and heterogeneity in

HPC processors.

• In Chapter 5, it has been developed a run-time library, analysis tool and method-

ology to save energy in scientific applications by leveraging on the communica-

tion slack for real-production HPC systems.

• The conclusion of this thesis are presented in Chapter 6 with a summary of the

outcomes.
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Chapter 2

State of the Art

2.1 Power Capping

Several approaches in the literature have proposed mechanisms to constrain the power

consumption in large-scale computing infrastructures. These can be classified into

two main families. Approaches in the first class use predictive models to estimate the

power consumed by a job before its execution. At job scheduling time, this informa-

tion is used to allow into the system jobs that satisfy the total power consumption

budget. HW power capping mechanisms like RAPL are used to ensure that the pre-

dicted budget is respected during all the application phases and to tolerate prediction

errors in the job average power consumption estimation [28, 29, 30]. Approaches in

the second class distribute a slice of the total system power budget to each active

computing element. The per-compute power budget is ensured to hardware power

capping mechanisms like RAPL. The allocation of the power budget to each com-

pute node can be done statically or dynamically [31, 22, 32, 33]. It is the goal of

the runtime to trade off power reduction with application performance loss. Eastep

et al. propose GEOPM [22], an extensible and plug-in based framework for power

management in large parallel systems. GEOPM is an open-source project and it ex-

poses a set of APIs that programmers can insert into applications to combine power

management strategies and HPC workload. A plugin of the framework target power

constraint systems aiming to speed up the critical path migrating power to the CPU’s

executing the critical path tasks. Authors in [34] quantitatively evaluated RAPL as a

control system in term of stability, accuracy, settling time, overshoot, and efficiency.

While the work proposed in Chapter 3 evaluates the proprieties of RAPL mechanism
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with respect to a software-based power capping mechanism and shows how vary the

performance penalty in different application workload.

2.2 Dynamic Thermal Control

Different works were focused on thermal-aware workload allocation based on DVFS

strategies. Those techniques include: (i) on-line optimization policies [35, 36, 37, 38],

which are based on predictive models and embedded sensors to read the current

temperatures on the system; (ii) scheduling approaches for off-line allocation [39, 40]

which rely on simplified thermal models, usually embedded in the target platform [36]

or simulating chip temperature [41].

Today’s thermal management works range from mobile to large scale parallel ma-

chine, like supercomputer and HPC systems. Xie et. al. [42] show that mobile

systems are thermally constraint. Interestingly, thermal constraints come from user

experience and not from silicon limits. Conficoni et al. [43] show that the power cost

of HPC cooling depends on several factors, for instance IT power consumption, the

cooling control policies, and the ambient temperature. On the other hand, the power

consumption is intertwined with workload execution and computation phases [44, 45],

which can produce high thermal heterogeneity between nodes and CPUs. For this

reason, over-provisioning cooling design can cause severe inefficiencies.

Wang et. al. [46] show that fan power can account for up to 23% of typical server

power and scales super-linearly with node utilization. Authors in [47] extract a predic-

tive thermal model directly from the multicore device correlating power, performance

and thermal sensors implemented in hardware. They show that the thermal evolution

of a multicore device can be modeled with a linear state-space representation. The

leakage-power dependency from temperature can be modeled as a perturbation of the

state matrix of the thermal model. Due to different materials present in the heat

dissipation path, the thermal transient is multi-modal with time constants that vary

from ms to tens of seconds. Beneventi et al. [48] shows in an Intel based computing

nodes with 36 physical cores, that the increased number of processors integrated in

the same die generates significant thermal gradients and this thermal heterogeneity

can be exploited by thermal-aware MPI task allocation to reduce the fan speed and

power without impacting the application performance.
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To find a close form solution of the fast mapping problem under thermal constraint,

Hanumaiah [49] assumes the absence of direct thermal exchange from the hot to the

cold cores of the same die. Mutapcic et al. [40] formulate a convex optimization

problem to control the speed of the processor, which is subject to environment thermal

constraints. They solve it with a specialized algorithm. However, their optimization

algorithm does not cover the case of a higher number of cores than the number of

tasks (some cores remain in idle state).

Predictive controls are often based on thermal and optimization models which can

guarantee a safe-working condition applying performance constraints to the systems.

Rudi et al. [50] have developed an integer linear programming (ILP) model for task

allocation and frequency selection to avoid thermal hazards in many-core architec-

tures. This thermal control is able to leverage on the idleness of the cores when tasks

are less than the number of available cores allocating tasks on the coldest cores and

leaving hottest ones in idle states. The limit of [50] is the task allocation, which is

not handled by the systems.

2.3 Energy-aware MPI

Several works developed mechanisms and strategies to maximize the energy savings

at the expense of performance. These works focus on operating the processors at a

reduced frequency for the entire duration of the application [19, 20, 21]. The main

drawback of these approaches is the negative impact on the application performance

which is detrimental to the data centre cost efficiency.

Fraternali et al. [19, 25] analyzed the impact on frequency selection on a green HPC

machine which can lead a significant global energy reduction in real-life applications,

but can also induce significant performance penalties. Auweter et al. [20] developed a

energy-aware scheduler that relies on a predictive model to predict the wall-time and

the power consumption at different frequency levels for each running applications in

the system. The scheduler uses this information to select the frequency to apply to all

the nodes executing the job to minimize the energy-to-solution allowing unbounded

slowdown in the Tts. The main drawback of this approach is the selection of a fixed

frequency for the entire application run which can cause a significant penalty on

CPU-bound applications. Hsu et al. [21] present a different approach where users
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can specify a maximum-allowed performance slowdown for their applications while

the proposed power-aware runtime reduces frequency on time windows, respecting

the user’s specified constraint. For this purpose, the proposed runtime estimates

the instruction throughput dependency over frequency and minimizes the frequency

while respecting the user’s maximum-allowed performance slowdown. Similarly to the

previous approach, an energy gain is possible only by degrading the performance of

the application.

The main drawback of the works mentioned so far is that they lead to a systematic

increase of Tts, which may be acceptable for the user, but it is not easily acceptable

by the facility manager, since it reduces the data centre cost efficiency and TCO

[51]. For this reason, there is a trend in the literature towards HPC energy reduction

methodologies with negligible or low impact on Tts of the running applications.

Sundriyal et al. [52, 53, 54, 55] analyze the impact of fine-grain power management

strategies in MVAPICH2 communication primitives, with a focus on send/receive [52],

AlltoAll [53], and AllGather communications [54]. In [52] the authors propose an al-

gorithm to lower the P-state of the processor during send and receive primitives. The

algorithm dynamically learns the best operating points for the different send and re-

ceive calls. In the [54, 53, 55] works, the authors proposes to lower also the T-state

during the send-receive, AllGather and AlltoAll primitives as this increases the power

savings. In these works, authors discover that the overhead of this solution is more

prominent when these communication patterns are intra-node. Moreover, the over-

head of the proposed strategy decreases with message dimension. Authors shows that

this overhead is different within the different kernels implementing the communication

primitives, thus they propose a low power implementation of the studied MVAPICH2

primitives where P-state and T-state are lowered in specific stages of these primitives.

These approaches show that power saving can be achieved by entering in a low power

mode during specific communication primitives. To be effective, these predicting al-

gorithms needs to be aware of the internal logic of the communication primitive, thus

they depend on a specific MPI implementation. Differently, the work in Chapter 5

shows that important savings can be achieve without impacting the implementation

of the communication primitives.

Rountree et al. [56] analyzes the energy savings which can be achieved on MPI

parallel applications by slowing down the frequencies of processors which are not in

the critical path. Authors of the paper define tasks as the region of code between
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two MPI communication calls. In this thesis, tasks are refer to phases. The critical

path is defined as the chain of the tasks which bounds the application execution time.

Indeed, cores executing tasks in the critical path will be the latest ones to reach the

MPI synchronization points, forcing the other cores to wait. In [56] authors propose a

methodology for estimating offline the minimum frequency at which the waiting cores

can execute without affecting the critical path and the Tts.

A later work of the same authors [23], implements an online algorithm to identify the

task and the minimum frequency at which it can be executed without worsening the

critical path. In a similar way, Kappiah et al. [26] developed Jitter, an online runtime

based on the identification of the critical path on the application among compute

nodes involved in the application run. Liu et al. [57] use a similar methodology as

Kappiah et al. [26] but they apply it to a multi-core CPU.

The authors of [58], as in [56, 23], focus on saving power by entering in a low

power state for processes which are not in the critical path. The authors propose an

algorithm to save energy by reducing the application unbalance. This is based on

measuring the start and end time of each MPI barrier and MPI Allreduce primitives

to compute the duration of application and MPI code. Based on that the authors

propose a feedback loop to lower the P-state and T-state if in previous compute and

MPI region the overhead was below a given threshold. The algorithm is based on the

assumption that the duration of current application and MPI phases will be the same

of the previous ones.

To save energy during MPI phases, Lim et at. [59] propose to reduce core’s fre-

quency in “long” MPI phases. Subsequent short MPI phases are grouped together

and treated as a single long MPI phase. They use an algorithm to select the best

P-state to be applied according to the micro-operation throughput in the MPI phase.

Similarly to [56, 23], this approach is based on the assumption that the duration and

instruction composition of current MPI phase will be the same as the previous ones.

Moreover, by treating short MPI phases as a single long one, the application phases

between them is executed at reduced frequency, leading to Tts overheads.

Li et al. [60] use a similar approach to [59] to reduce power consumption in synchro-

nization points. This work focuses on collective barriers for parallel applications in

shared-memory multiprocessors. Differently from the previous approaches, instead of

using P-state, they use C-state and specific hardware extensions to account for their

transitioning (sleep and wake-up) times. As in the previously described approaches,
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this runtime uses a history-based prediction model to identify the duration of the next

barriers.

The authors of [61] show that the approaches in [56, 23] and the ones which estimate

the duration of MPI and communication phases based on a last-value prediction [59,

60] can lead to significant misprediction errors. The authors propose to solve this issue

by estimating the duration of the MPI phases with a combination of communication

models and empirical observation specialized for the different groups of communication

primitives. If this estimated time is long enough, they will reduce the P-state. In

Chapter 5, is shown the proposed approach of this thesis and how this can be achieved

without a specific library implementation and communication models.

Li et al. [24] analyzed hybrid MPI/OpenMP applications in term of performance

and energy saving and developed a power-aware runtime that relies on dynamic con-

currency throttling (DCT) and DVFS mechanisms. This runtime uses a combination

of a power model and a time predictor for OpenMP phases to select the best cores’

frequency when application manifests workload imbalance.

The works in the second group, namely [26, 57, 24, 59, 60], have in common the pre-

diction of future workload imbalances or MPI phases obtained by analyzing previous

communication patterns. However, this approach can lead to frequently mispredic-

tions in irregular applications [62] which cause performance penalties. The method-

ology proposed in Chapter 5, differs from the above approaches (and complements

them) because it is purely reactive and does not rely on assumptions and estimation

of the future workload unbalance.

The power management literature has analyzed in depth the issue of prediction

inaccuracy and predictive model overfitting [63]. One key outcome form of this work

proposed in 5, is that timeout-based policies are effective if predictions are not avail-

able (e.g. when data is being collected for building a predictive model), and are also

essential in mitigating miss-prediction overheads. Timeout-based power management

policies are simple to calibrate, as they only require to find a timeout threshold that

prevents power state changes when the duration of the slow-down (or shut-down)

phase is not long enough to amortize power state transition overhead. In the follow-

ing Chapters, it is shown how to identify the critical timeout threshold in the specific

context of MPI applications running on HPC machines.

In a similar manner, another plugin of GEOPM [22] can selectively reduce the

frequency of the processors in specific regions of codes flagged by the user by differ-
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entiating regions in CPU, memory, IO, or disk bound. Today, GEOPM is capable of

identifying MPI regions and to reduce the frequency based on MPI primitive type.

However, it cannot differentiate between short and long MPI and thus cannot control

the overhead caused by the frequency changes and runtime in short MPI primitives.

The methodology proposed in this thesis addresses this limitation and can be inte-

grated in future releases of GEOPM, as its design principles are completely compatible

with it (i.e. no application code modifications are required).
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Chapter 3

HPC Power Capping

3.1 Overview

As explained in Section 1.3, leveraging on power capping mechanisms to aggregate

more computing units in power-constrained systems adds both advantages and chal-

lenges. In this exploration work are evaluated the impact of HW power capping

mechanisms on a real scientific application composed by parallel execution. By com-

paring a HW capping mechanism against static frequency allocation schemes, it can

be seen that a speed up can be achieved if the power constraint is enforced in average,

during the application run, instead of on short time periods. RAPL, which enforces

the power constraint on a few milliseconds time scale, fails on sharing power budget

between more demanding and less demanding application phases.

In detail, it has been analyzed the efficacy (measured as application Tts) of power

capping to maintain the same power budget using (i) RAPL controller and (ii) a

simple fixed frequency allocation that statically assigns cores’ frequency for the en-

tire application time. In the first case, RAPL imposes the power constraint every

ten milliseconds modulating the operating point (i.e. clock frequency) to workload

changes with a similar time granularity. On the contrary, the second set-up uses fixed

frequency for the entire application time selected to obtain for the entire duration of

the application the same average power consumption as RAPL. This work has been

presented to the scientific community in [45].
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3.2 HPC Architectures and Power Management

Systems

3.2.1 HPC Architectures

A typical HPC system is composed of tens to thousands compute nodes interconnected

with a low-latency high-bandwidth network. Compute nodes are usually organized in

sub-clusters allocated at execution time from the system scheduler according to the

users’ request. Sub-clusters have a limited lifetime, after which resources are released

to the system scheduler. Users request resources through a batch queue system, where

they submit applications jobs. Even a single node can be split in multiple resources

shared among users. The single indivisible units in an HPC system are: CPUs,

memory and possibly accelerators (GPGPU, FPGA, many-core accelerator, etc.).

HPC applications typically is based on a single program multiple data (SPMD)

execution model, where the same executable is instanced multiple time on different

computing element of the cluster; each instance works on a partition of the global

workload and communicates with other instances to orchestrate subsequent compu-

tational steps. For this reason, an HPC application can be seen as the composition of

several tasks executed in a distributed environment which exchanges messages among

all the instances. Achieving high-performance communication on distributed applica-

tions in large clusters is not an easy task. The MPI runtime responds to these demands

by abstracting the level of network infrastructure using a simple but high-performance

interface for communication which can scale up on thousands of nodes.

HPC machines are extreme energy consumers and the server rooms require a pro-

portioned cooling system to avoid overheating. The extreme working conditions of

this machines bring a lot of inefficiencies in terms of energy and thermal control, that

turn in computational performance degradation. HW power managers are becoming a

fundamental component to control power utilization using different strategies in order

to reduce energy waste and, at the same time, assure a safe thermal environment.

3.2.2 Power Management in HPC Systems

Nowadays, operating systems can communicate with different hardware power man-

agers through an open standard interface called advanced configuration and power
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interface (ACPI) [9]. This work focuses on ACPI implementation of Intel architec-

tures, since most of the HPC machines are based on Intel CPUs. Intel implements

the ACPI specification defining different component states where a CPU can use to

reduce power consumption. Today’s CPU architectures are composed of multiple pro-

cessing elements (PE) that can communicate through a on-chip network subsystem.

Intel architecture optimizes ACPI using different power saving levels for cores and

uncore components. The ACPI standard defines P-state to select DVFS operating

points targeting the reduction of active power, while also defines specific idle states

to manage power consumption during inactivity time of the CPU. In this work, it has

been only considered P-states to manage DVFS control knobs, this because tipycal

HPC applications do not manifest idle time during the execution.
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Figure 3.1: Example of how vary the power/voltage respect to the frequency for dif-
ferent P-state level in Intel architectures

Intel P-states show in Figure 3.1 defining a number of levels which are numbered

from 0 to n, where n is the lowest frequency and 0 is the highest frequency with

the possibility to take advantage of Turbo Boost technology. Turbo Boost is an Intel

technology that enables processors to increase their frequency beyond the nominal via

dynamic control of clock rate. The maximum turbo frequency is limited by the power

consumption, thermal limits and the number of cores that are currently using turbo

frequency. Since Haswell architecture, Intel cores allow independent per-core P-state.
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Linux Power Management Driver

Intel P-states are managed by the OS power governor implemented in the Linux

kernel driver. By default on Linux system, Intel architectures are managed by a

kernel module called intel pstate developed by Intel. But intel pstate driver does not

support a governor that allows users to select per-core fixed frequency. Differently,

the standard power management driver of Linux acpi-cpufreq does it. acpi-cpufreq is

similar to Intel driver but implement a large set of governors. The available governors

are:

1. powersave: this governor runs the CPU always at the minimum frequency.

2. performance: runs the CPU always at the maximum frequency.

3. userspace: runs the CPU at user specified frequencies.

4. ondemand : scales the frequency dynamically according to current load [64].

5. conservative: similar to ondemand but scales the frequency more gradually.

It has been used acpi-cpufreq driver with userspace governor that allows to select

per-core fixed frequency.

3.2.3 Hardware Power Controller

Today’s CPU architectures implement reactive HW controller to maintain the pro-

cessor always under an assigned power budget. The HW controller tries to maximize

the overall performance while constraining the power consumption and maintaining a

safe silicon temperature. Intel architectures developed its own HW power controller

called Running Average Power Limit (RAPL) depicted in Figure 3.2. RAPL is a

control system, which receives as input a power limit and a time window. As con-

sequent, RAPL continuously tunes the P-states to ensure that the limit is respected

in the specified time window. RAPL can scale down and up cores’ frequencies when

the power constraint is not respected overriding the selected P-state. RAPL power

budget and time window can be configured writing a model-specific register (MSR).

Maximum and minimal values for both power budget and time window are specified

in a read-only architectural register. Values for both power and time used in RAPL
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Figure 3.2: Power domain identification of Intel RAPL

are represented as multiple of a reference unit contained in a specific architectural reg-

ister. At the machine startup, RAPL is configured using maximum power budget of

the CPU with a 10ms time window. RAPL also provides 32bit performance counters

for each power domain to monitor the energy consumption and the total throttled

time. RAPL implements four power domains which can be independently configured:

1. Package Domain: this power domain limits the power consumption for the entire

package of the CPU, this includes cores and uncore components.

2. DRAM Domain: this power domain is used to power cap the DRAM memory.

It is available only for server architectures.

3. PP0/Core Domain: is used to restrict the power limit only to the cores of the

CPU.

4. PP1/Graphic Domain: is used to power limit only the graphic component of the

CPU. It is available only for client architectures due Intel server architectures

do not implement graphic component into the package.

In the experimental result, the exploration focus on the package domain of RAPL

controller because core and graphic domains are not available for Intel Xeon processors

while DRAM domain is left for future exploration works. Also the time windows of

package domain (which can be set in a range of 1ms to 46ms in target system) was
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tested to check its impact on application performance. The experimental results show

that this parameter does not lead to noticeable changes in the results obtained. For

this reason, results report only the default 10ms time window configuration.

3.3 Benchmarking Scenario

3.3.1 Architecture Target

The architecture target used in the experimental Section is a Tier-1 high-performance

computing infrastructure based on IBM NeXtScale cluster. Each node of the system

is equipped with 2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz nominal

clock speed and 85W TDP [12]. As regards the software infrastructure, SMP CentOS

Linux distribution version 7.0 with kernel 3.10, runs on each node of the system. The

experimental tests have been conducted using the complete software stack of Intel

systems for HPC production environment. In particular, the Intel MPI Library 5.1

has been used as communication library and Intel ICC/IFORT 16.0 has been used

as the toolchain. This Tier-1 supercomputer is currently classified in the Top500

supercomputer list [4].The analysis focuses on a single node of the cluster.

3.3.2 Application Target

The thesis work is focused on a widely used scientific application, QuantumESPRESSO

(QE) [65]. QE has been selected as principal benchmark because is a paradigmatic

suite of scientific applications largely used in several HPC centres. QE shows sev-

eral architectural bottlenecks of typical HPC applications, like CPU, memory and IO

boundness. Moreover, the collaboration with the developers has been a key factor in

the correctness of use and in the tuning of the application. The QE version used in

the experimental Sections of this thesis is v5.4.0.

In detail, QE is an integrated suite of scientific codes for electronic-structure calcu-

lations and materials modelling at the nanoscale. It is an open source package for re-

search in molecule dynamics simulations and it is freely available to researchers around

the world under the terms of the GNU General Public License. QE is commonly used

in high-end supercomputers and it is based on main computational kernels, which in-

clude dense parallel linear algebra (LA) and 3D parallel fast Fourier transform (FFT).
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Moreover, most of application workload is based on LA and FFT mathematical ker-

nels, which makes the exploration work relevant for many HPC codes. In the following

experimental Section of this Chapter, it has been selected the QE Car-Parrinello (CP)

simulation, which prepares an initial configuration of a thermally disordered crystal

of chemical element by randomly displacing the atoms from their ideal crystalline

positions. The dataset used for this simulation is a silicon atom (SiO2) due it is one

of the common chemical element occurs in nature.

3.3.3 Monitoring Framework

In this Section, it is described in detail the monitoring framework used to profile the

application and the system. The monitoring framework is composed of two monitoring

tools. The first one can monitor several hardware performance counters with a regular

time stamping. The second monitoring tool is synchronized with parallel phases of

the application allowing to isolate performance and architectural metrics for each

program phase. However, due to the higher number of monitoring points per time

unit, it access only on a sub-set of performance counters of the first tool to avoid

excessive overhead. The monitoring framework have a minimal overhead, less than

1% with respect to application execution time.

System-aware Monitoring Tool

The system-aware monitoring tool is based on Examon [66]. This monitoring tool can

be used to read periodically per-core frequency, CPI and scalar/vector instructions

retired. In addition, it can monitor for each socket the DRAM memory bandwidth

and package power consumption using RAPL performance counters. This monitor

is a simple daemon process that can access to the performance counters of the CPU

using MSR read/write operations. The daemon starts at a given Tsamp rate and in

the following benchmarks are used Tsamp of 1 second.

Application-aware Monitoring Runtime

To extract application-based behaviours, it has been developed a monitor runtime to

extract system information synchronously with the application flow. The runtime is

a simple wrapper of the MPI library where every MPI function has been enclosed
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by an epilogue and a prologue function using the MPI standard profiling interface

(PMPI). PMPI APIs allow to intercept all the MPI library functions without modify

the application source code. The runtime is integrated in the application at linked

time. Hence, Application-aware Monitoring Runtime is able to extract information

distinguishing application and MPI phases as shows in Figure 3.3. The monitor

runtime uses RDPMC and RDTSC assembly instructions to access respectively the

time stamp counter (TSC) and Intel performance monitoring unit (PMU) counters

with an overhead of few hundreds of cycles for each counter access. PMU counters

are programmable through standard MSR operations which require administrative

permissions and are costly in terms of access overhead. However, the counter value

can be read using the RDPMC instruction directly from user space without involving

syscalls. To monitor frequency, CPI, and scalar/vector instructions retired has been

programmed the per-core PMU registers. The monitor runtime intercept all MPI

calls of the application even in application regions where the density of the calls are

very high. For this reason is not possible to use MSR operations to access low level

performance counters through syscalls, which can cause high-performance penalty.
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3.4 Experimental Results

3.4.1 Methodology

The QE-CP has been run with a configuration of 16 MPI processes with a one-to-

one bind to each core of the HPC node. This allocation is able to load as much as

possible the node. Different configurations are compared for power capping in the

test environment. Initially, the power budget has been split in an equal manner on

both sockets, RAPL has been set to maintain 48W on each socket, for a global power

envelope of 96W. This test shows that the cores’ frequency on different sockets are

heterogeneous, suggesting that the two sockets have different inherent power efficiency.

To have the same frequency among all the cores, the tested computing node needs of

11.31% higher power on socket 0. As consequence of this result, a set of benchmarks

has been run using the OS power manager to fix the same frequency for all the cores

while monitoring the power consumption of each socket during an application run.

These per-socket power budgets are set to power constraints the node to obtain the

same frequency among all the cores. The tests has been executed again using RAPL

to impose these per-socket power caps and leave RAPL decides the actual frequency.

Table 3.1 shows the results of experimental set using different levels of power caps.

In the first column are reported the target frequencies used to extract the power

limits specified in the second column. Second and third columns show the sum of

power consumption of both sockets using fixed frequency (FF) allocation and RAPL

mechanisms for power capping. it can be seen that the power consumption is the

same, so the power cap is respected, and the tests are comparable. In the frequency

columns are reported the average frequencies for the entire application among all the

cores. These columns show that RAPL has an average frequency of 11.14% higher

than FF but, it is possible to see at the execution time (reported in next columns), FF

has a lower execution time, in average 2.87% faster than RAPL. In the next Sections,

the exploration shows why FF has a lower execution time respect to RAPL which, in

contrast, has a higher average frequency.

3.4.2 System Analysis

First, It is clearly shown the correct behavior of power capping logic by looking at

the core’s frequencies and package power consumption (first two top plots). In the
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FF plot on the left part of Figure 3.4, cores’ frequency are fixed at 1.5GHz while

package power consumption floats around the average value as effect of the different

application phases. In contrast, RAPL (on the right) maintains constant the power

consumption for both sockets while cores’ frequency changes following the current

application phase. Table 3.1 reports a similar average power consumption for both

cases, thus the power cappers are working as expected. Both benchmarks show a lower

CPI when the memory bandwidth is low and SIMD instructions retired are high. In

these phases, RAPL imposes lower core’s frequency than the FF case as effect of the

higher power demand of SIMD instructions. On the other hand, RAPL assigns higher

core’s frequency than FF when CPI is high and this happens when the application

is moving data from/to memory as proved by the high memory traffic/bandwidth re-

ported by the Mem Ch[GB/s] plot. In these phases, the number of SIMD instructions

retired are lower and, as already pointed out and shown in the RAPL plot, the cores’

frequency selected by RAPL increases above average due the higher available power

budget. However, increasing cores’ frequency when the application is memory bound

does not reflect in a consequent performance gain due the higher CPI and sub-linear

dependency of application speed-up with frequency in these phases.

Figure 3.4 shows a time window of the system-aware monitoring tool for both power

capping mechanisms while QE-CP iterates on the same computational kernel. The

test reports the case of a power constraint relative to 1.5 GHz for FF and RAPL. So,

the results are comparable directly.

Hence, FF is more efficient of RAPL (shorter execution time) for two reasons: i)

FF executes with higher instruction per seconds when application has high SIMD

instructions density. ii) RAPL instead reduces the core’s frequency in the same phase

to avoid excessive power consumption. On the contrary, RAPL increases the core’s

frequency during memory bound phases obtaining a similar average power as the FF

case.

3.4.3 Application Analysis

In this Section, it shows what happen in the system through the application-aware

monitoring runtime. This runtime is able to recognize application phases marked

by global synchronization points as depicted in Figure 3.4. In the Figures 3.5, 3.6,

and 3.7 are reported the average values of performance counters of RAPL gathered
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into frequency operational intervals. In Figure 3.5 is depicted the amount of time

for computation (APP) and for communication (MPI) phases. Figure 3.6 shows the

time gain for the FF respect to RAPL distributed on different frequency operational

intervals. Negative values mean seconds of application time saved by FF with respect

to RAPL. Figure 3.7 shows the values for CPI and SIMD instructions retired for the

same phases that RAPL executes at a given frequency.

To explain the behavior that characterizes FF and RAPL, it should be taken a look

at all the three plots together. Starting from Figure 3.6, it is possible to recognize

that in the frequency intervals 1.3 to 1.5 GHz and 1.7 to 1.9 GHz, FF obtains its

highest speed up. The first gaining interval is justified by the high number of SIMD

instructions retired and by the lower CPI with respect to other application phases.

Indeed from Figure 3.7, it can be noticed that most of the SIMD instructions are

executed with these lower frequencies by RAPL.

Figure 3.5: Sum of RAPL and application time grouped for frequency operational
intervals.

In the interval 1.7 to 1.9GHz, the CPI is higher and the SIMD instructions retired

are not negligible. From Figure 3.5, it is possible to recognize that most the appli-

cation time is spent in this frequency range with a lower SIMD instructions density
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respect to the 1.3 to 1.5 GHz interval. Hence, high CPI, low density of SIMD in-

structions and high frequency suggest memory bound phases as shown by previous

Section. Interesting these phases run at higher frequency than the FF but leads to a

performance penalty. This suggests side effects of high frequency in terms of memory

contentions.

In the interval 2.0 to 2.1GHz, RAPL has a performance gain with respect to FF.

This behavior is explained by the CPI and the number of SIMD instructions retired

during this phase. In this interval, RAPL has a low CPI and does not perform

SIMD instructions, so this phase scales its execution with the frequency. RAPL can

dynamically manages the available power budget made available by the low SIMD

instructions and can increases the frequency. This leads to a consequent performance

increment.

In the turbo frequency interval, RAPL performs better than FF as it is an MPI

reduction phase where only the root process is active. During the reduction, all the

processes except the root MPI remain in a barrier to wait the termination of the root.

This is explained by the high MPI runtime time (figure 3.5) presents at this frequency

interval. Hence, RAPL can use the power budget released by the processes in barriers

to speed up the root process leading to a performance gain.

3.5 Summary on HPC Power Capping

In this work, it has been presented a novel exploration on power capping mechanisms

for power constrained HPC nodes. Differently from state-of-the-art works, the analysis

focus on power capping strategies used in real HPC system nodes. In details, it

explored the characteristics of Intel RAPL and a fixed frequency allocation during

the execution of a real scientific HPC application which is performance constrained

by the power budget assigned to the node.

The exploration work explains why RAPL mechanism has an average performance

penalty of 2.87% (up to 5.10%) with respect to the FF case, even if RAPL shows a

higher average frequency for the entire application time. This proved that dynami-

cally manage the available power budget without be aware of the application phases

is not always beneficial from performance point of view. Furthermore, RAPL mecha-

nism always increases the cores’ frequency during less demanding phases to fill in the
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available power budget, leading to unnecessary power consumption in memory bound

phases that can cause interference and as consequence performance loss.

In future works, it will be possible leverage on these considerations to design a

software-based power capping mechanism which enforces a power cap in average on

a user defined time-period. This will complement today RAPL mechanisms allowing

power shifting in between application phases. For this purpose, the following plan is

to extend previously presented approaches, which combine speculative power manage-

ment on short-time periods (OS ticks) with the ability of maintaining average power

management goals on longer periods (aging periods) [67, 68].
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Chapter 4

HPC Optimal Thermal Control

4.1 Overview

As presented in Section 1.4, advanced and costly cooling solutions are needed to sus-

tain the high computing densities of exascale HPC systems. To reduce cooling costs

and cooling overprovisioning, DTM strategies aim at controlling the device tempera-

ture by modulating online the performance of processing elements. While OS allows

the migration of threads between cores, in HPC systems the threads of parallel appli-

cations are pinned to the cores at start-time to avoid job-migration overheads. In this

scenario state-of-the-art DTM solutions, which use thermal models to map jobs to

cores, are based on long-term predictions to map the most critical job to the coldest

core. Instead, turbo-mode and DVFS controllers are based on short-term predictions

to squeeze the thermal capacitance allowing for short period performance boosts which

are thermally unsustainable.

In this Chapter is presented a DTM solution for HPC systems to increase per-

formance of thermal-bound HPC machines exploiting thermal capacitance. It is first

proposed a novel thermal model description derived from state-space representation of

a real HPC node. It is presented a study on the sensitivity of the application walltime

to cores’ frequency changes in the communication phases. The exploration reveals

that the penalty in the application walltime caused by the frequency reduction de-

creases proportionally with time spent in the MPI library. After that, the focus of this

work continue on workload distribution of a real supercomputer’s application. Critical

tasks are identified and prioritized with respect to the other MPI tasks. Secondly, two

novel integer linear programming (ILP) formulations are proposed for thermal-aware

44



task mapping and frequency selection in large parallel heterogeneous many core. A

task criticality model has been developed to intercept application workload and syn-

chronization constraints in order to reduce the slack times. Moreover, it has been done

a thermal characteristics of the compute node to formulate both the ILP problems. In

this context, the impact of the time horizons is explored at which future temperatures

are predicted in the efficacy of the proposed DTM solution. The optimization models

shows significantly improve the performance in supercomputer environments without

inducing significant overhead in Tts. This work has been presented to the scientific

community in [69, 70, 71, 72].

4.2 Workload and Thermal Modelling of HPC

Dynamic thermal management policies aim to reduce the cooling effort by adapting

the processing element’s performance to ensure a safe working temperature. First, it

is introduced the nomenclature and the thermal properties of HPC nodes with direct

measurements. Then, a model from real scientific parallel workload has been extracted

linking the performance knob to the real performance of the final application. Finally,

it has been analyzed how the application workload is distributed among all the cores.

The target machine of this work is the same presented in the Section 3.3.1.

4.2.1 Power and Thermal Management

The power management states of computing elements are divided in sub-groups. As

previously explained in Section 3.2.2, the P-states include DVFS operating points

which target the reduction of active power. Instead, C-states target idle power reduc-

tion strategies. Both P-states and C-states are numbered from 0 to n. Higher number

means higher power saving. However, in case of C-state this means also longer tran-

sitions in and out of the state itself. In recent Intel architectures [27] P-states can be

selected independently for each core. C-states are instead defined independently for

cores and the “uncore” region.

C-states are triggered from the firmware of the CPU but the OS can provide hints

on the appropriate C-state to the hardware through OS idle governors. Table 4.1

shows the different architecture impacts and dependencies for the different core and

package C-states.
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Table 4.1: C-states

Core C-states
C0 C1 C3 C6

P
ac

ka
ge

C
-s

ta
te

s
C0 Active State
C1E Lower P-state
C2 Only L3 Snoop
C3 Flush L3 - Off
C6 Low Voltage

Active
State

Clock
Gated

Flush
L1,L2

Off

Power
Gated

Light gray cells represent a valid configuration for core and package C-states, dark
gray cells are invalid ones.

4.2.2 Thermal Model

To understand the thermal properties of a computing node, three main stress tests

has been executed using the following methodology: (i) Kept the system in idle and

measured the total power and the temperature for each core after ten minutes; (ii)

Then, executed a stressmark1 in sequence on each core of each socket in the node,

leaving idle the remaining ones. The workload has been maintained constant for

ten minutes and it has been measured the power consumption and the temperature,

this test has been used to extract the maximum steady state temperature gradient.

Finally, (iii) the stressmark has been simultaneously executed for ten minutes in all

the cores of the node and measured the temperature and the power consumption.

In all the previous tests the temperature and power values are measured using an

infrastructure similar to the one presented in [73], the Turbo Boost was disabled to

avoid power consumption to workload dependency. The results of the analysis are

reported in table 4.2.

The extracted characteristics have been used to create a thermal model using a

distributed resistor capacitor (RC) approach [36], with one tuned RC per core to have

similar thermal characteristics as the measured ones.

1Cpuburn stressmark by Robert Redelmeier: it is a single-threaded application which takes advan-
tage of the superscalar architecture to load the CPU
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Table 4.2: Thermal Model

AVG temperature - Idle cores 15.93oC
AVG temperature - Active cores 33.39oC
Gradient - Idle cores 4.47oC
Gradient - Active cores 4.79oC
Gradient - Active core vs idle cores 8.05oC
Stady-state time 120sec

4.2.3 Power Model

To model the impact of DVFS states on the target system, the stressmark has been

executed in each core while scaling down the frequency for each core in all the available

speed steps. Each configuration has been maintained for ten minutes and the power

consumption has been monitored for each CPU. All these measurements have been

collected in a lookup-tables (LUTs), one for each CPU. Then, the LUTs has been

used to compute the power dissipated by each CPU on each available frequency. A

total power of 17.86W has been measured when all cores in a computing node are

idle. The total power raises to 92.44W when all the cores are active. Then, the power

consumed has been extracted by each core for each DVFS level with an average

standard deviation in between cores of 0.1W. The average uncore region of the CPUs

contributes for 11.84W and 17.85W respectively when idle or active. The Figure 4.1

shows the average power consumption for each core of the system at all available

frequency levels.

4.2.4 Workload Model

HPC communications happen by sending explicit messages through a standard MPI

programming model which takes advantage of the high-performance interconnect sub-

system. HPC tasks are composed by computationally intensive phases on indepen-

dent data segments interrupted by synchronization points and communications. This

characteristic impacts the sensitivity of the application to each core’s performance as

computational imbalance can lead to longer synchronization phases.

As support to this statement, the same benchmark presented in Section 3.3.2 has

been used, QE [65]. The following experiment have explored how the different ratio
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Figure 4.1: Average power consumption of cores at all available frequency levels.

of active code and MPI library for each QE task changes the impact of frequency

scaling on the overall application execution time. QE-CP has been executed on two

computing nodes with 32 MPI tasks to increase the number of results respects to a

run on a single node and it has been run for 32 times. At each run, one core of the

32 has been sequentially configured at minimum frequency while the other cores was

maintained at the maximum. The results has been compared with the run in which all

the cores are at the nominal frequency. Then, the overall QE-CP slow-down has been

compared with the MPI percentage of the slowed down task. Figure 4.2 shows that

the impact of frequency reduction increases with percentage of MPI library present

in each task. This information has been used for extracting on-line the sensitivity to

frequency for each MPI task and it will be used to address energy saving at execution

time.
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Workload Distribution

While Figure 4.2 shows the workload unbalance for the entire application run, it does

not show how this unbalance is distributed in time -at a finer granularity-. In this

Section is explored how the workload is spread among all the MPI tasks and in time.

QE-CP has been computed on a single compute node with 16 MPI tasks. For each

MPI task, the time spent in the application has been extracted and compared with

the time spent in the MPI library. Every 10 seconds, the ratio between application

time and MPI time has been calculated. The plot with this result can be seen in

Figure 4.3. First of all, It can be seen that the MPI task 0 spends more time in the

application with respects to the others. In the benchmark, the core that mostly slows

down the application execution is the core that host the MPI task 0. If this core was

slowed down, the penalty in the total execution time would be the highest one.

In the next Section is explained how this information can be extracted and used in

the thermal management problem.

4.3 Optimal Thermal Control

In this Section, the dynamic and thermal management ILP formulation is presented,

namely the optimal thermal controller (OTC). OTC matches all the requirements of a

proactive thermal control for HPC systems: (i) limiting the future temperature of all
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Figure 4.3: Ratio of the time spent in application phases and MPI phases for each
core and every 10 seconds.

the cores below a critical threshold by selecting the proper frequency for each core; (ii)

maximizing the application performance (frequency of all the cores); (iii) identifying

cores that host critical tasks to promote their performance; (iv) slowing down the

cores’ frequency during communication.

As shown in Figure 4.4, the OTC operates at node level and it is composed of two

main components: the thermal-aware task mapper and controller and the energy-

aware MPI wrapper.

The thermal-aware task mapper and controller (TMC) is triggered: (a) after the

job scheduler has deployed the parallel application on the reserved portion of the HPC

machine for its execution; (b) periodically, with period Ts, and (c) at the start/end of

every MPI call. At scheduling point (a) the TMC specifies the task to core mapping

which will be maintained until the application completion. Clearly, if a critical task

is mapped to a thermally inefficient core, will more likely cause a severe degradation

of the final application performance. To capture the task criticality, a criticality gen-

eration module has been used to intercepts every MPI call extracting the time spent

in both application and MPI library. At every scheduling point, this runtime uses

timestamps of the MPI calls to identify the criticality level (later named task criti-

cality) for each task, as will be described in 4.3.1. At scheduling point (b), the TMC
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Figure 4.4: Optimal thermal controller at node level

selects the optimal frequencies to be applied to the different cores for the following

interval (to maintain the future cores’ temperature below a safe threshold). The OTC

solution solves the scheduling points (a) and (b) with an ILP formulation and custom

solver strategies as described in 4.3.2 and 4.3.3.

The energy-aware MPI wrapper (EAW) is event-driven mechanism that acts as a

bridge between the MPI synchronization primitives and the core’s frequency selection.

This programming model interface is reactive and reduces the core’s frequency when

the MPI library is in a busy waiting mode. When the execution flow returns to

the application code, the frequency is restored to the one selected by the thermal
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controller.

4.3.1 Task Criticality Generator

The per-task criticality level is calculated based on the time spent by the task in the

application and waiting in the global synchronization points for each interval time.

It is not enough to consider only the total time spent in the application during the

last interval time to compute a criticality level. It needs to consider each global

synchronization point independently and for each of them compute the waiting time

of each task.

MPI 1 A1 M1

A2 M2

Time

MPIAPP

A3 M3

MPI 2

MPI 3

Figure 4.5: General HPC application section with the naming convention used to cal-
culate the criticality for each MPI task.

The per-task criticality level between two global synchronization points has been

extracted to calculate the criticality of each task for all the global synchronization

points in a single interval. The criticality level has been defined for each task in this

interval time like the average of the criticality levels weighted by the time which lasts

between each pair of global synchronization points.

Figure 4.5 shows a general HPC application section enclosed by two global synchro-

nization points where all the MPI tasks are involved. Every time that an MPI task
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encounters a global synchronization point, it must wait all other tasks to continue its

execution. For each task has been identified three key points: Tl, Ts, and Te which

represent the exit time of the last MPI call, the start time of the current MPI call,

and the exit time of the current MPI call respectively. [i] has been used as the index

to identify the MPI task id.

Tls = MAX(Ts[i]) (4.1)

Tcomp[i] = Ts[i] − Tl[i] (4.2)

Tslack[i] = Tls − Ts[i] (4.3)

Tcomm[i] = Te[i] − Tls (4.4)

Tavg = AV G(Ts[i]) (4.5)

δi =
Tcomp[i]

Tavg − Tl[i]
=
Ts[i] − Tl[1]
Tavg − Tl[i]

(4.6)

The last task that enters in the global synchronization point unlocks all the waiting

tasks which can now continue their execution. Tls in eq. (4.1), identifies the time at

which the last task enters in the synchronization point. For each application section

and for each task [i], has been defined a computation time Tcomp[i] in eq. (4.2) as

the time spent in the application code and a MPI time, which is the time spent in

the MPI library. The MPI time is composed by two factors: (i) Tslack[i] in eq. (4.3),

which represents the time that a task spends in the MPI library waiting the last task

reaching the synchronization point, (ii) Tcomm[i] in eq. (4.4), which identifies the time

spent to copy data. Tavg in eq. (4.5) is the average of all the Tcomp[i]. The task

criticality level δi in eq. (4.6) has been calculated as the ratio between the Tcomp[i]

and the Tavg. This metrics is proportional to the unbalance between the tasks in each

application section.

4.3.2 The First Step Problem - FSP

This optimization problem is solved during the initialization of the application (FSP).

Its purpose is to allocate the application tasks on the available cores and selecting

for each of them the maximum frequency which meets the thermal constraint Tmax

in the prediction interval (PIFSP ). As it will be seen in the experimental results,
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the prediction interval (i.e. the time horizon) plays an important role. Indeed, if it

is too short, the TMC cannot predict the impact of a task allocation on long term

core’s temperature as its effect is hidden by the thermal capacitance, making the

problem trivial. On the contrary if the time horizon is too long the TMC cannot take

advantage of the thermal capacitance for sustaining short time power burst.

In addition, not all tasks have the same criticality. This is captured by the opti-

mization model which maximizes the frequency of the highest critical task penalizing

the frequencies of other ones in case a thermal limit is reached. The optimization

model considers K tasks to be assigned to N cores where the number of tasks is lower

or equal to the cores i.e., K ≤ N . Each core can be configured with a frequency in a

set of M level of frequencies. The Objective Function (O.F.) maximizes the sum of

frequencies of all active cores γjf weighted by the criticality δi of the task assigned on

that core.The problem has been modeled use two sets of binary decision variables, an

ILP model with three constraints has been formulated to model the assignments and

the thermal bounds:

xijf =


1 if core j(j = 1, . . . , N) works at frequency

f(f = 1, . . . ,M) executing task i(i = 1, . . . , K)

0 otherwise.

(4.7)

yj =

1 if core j(j = 1, . . . , N) is idle,

0 otherwise, i.e., if it is working.
(4.8)
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O.F. = max

K∑
i=1

M∑
f=1

N∑
j=1

δiγjfx
i
jf (4.9)

N∑
j=1

M∑
f=1

xijf = 1 (4.10)

(i = 1, . . . , K)

K∑
i=1

M∑
f=1

xijf + yj = 1 (4.11)

(j = 1, . . . , N)

N∑
j=1

GSjl

(
~pjyj +

K∑
i=1

M∑
f=1

pjfx
i
jf

)
+ T 0

l + T a ≤ TMAX (4.12)

(l = 1, . . . , N)

The constraint (4.10) specifies that a task must be assigned only on a single core,

which works at a given frequency. In addition, it specifies that all the N tasks must

be assigned. Constraint (4.11) is needed to determine the y decision variables which

represent the idle cores. These variables are used in constraint (4.12) in case there

are less tasks than cores i.e., K ≤Mn. Finally, constraints (4.12) guarantee that the

temperature of each core does not exceed Tmax over the prediction interval (PIFSP ).

In the last constraint (4.12), GS is a gain matrix with dimension N×N . This matrix is

used to calculate the increment of temperature of all the cores when a core is subjected

to a constant power input for PIFSP seconds. T l
0 represents the dependency of the

future temperature(@ PIFSP ) from the current core’s temperature. These values

can be derived from a state-space thermal model as described by [50]. Ta is the

ambient temperature. When tasks are less than cores the decision variable yi is used

in conjunction with the vector of idle powers p̄, to add the idle power components.

4.3.3 The i-th Step Problem - ISP

After the tasks have been assigned to the cores in the FSP, the TMC has to periodi-

cally solve, at a finer time scale, the assignment problem of frequencies to cores. The

ISP has the same objective function as FSP 4.3.2 as well as the same thermal model
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formulation. However, the prediction interval for the ISP (PIISP ) can be generally

different from the FSP.

Differently from the previous case, the model considers only active cores (T ), be-

cause the thermal constraints cannot be broken by any idle core. This reduces the

overall complexity. As tasks have been already allocated in FSP in this model, tasks

and core do not need separate variables, thus a criticality is referred to a core.

xrf =


1 if core r(r = 1, . . . , T ) works at frequency

f(f = 1, . . . ,M),

0 otherwise.

The ISP model has fewer constraints than FSP due the lower number of variables.

O.F. = max
∑
a∈A

M∑
f=1

δaγafxaf (4.13)

M∑
f=1

xaf = 1 (4.14)

(∀a ∈ A)∑
a∈A

M∑
f=1

GSlapafxaf +
∑
i∈I

GSli~pi + T 0
l + T a ≤ TMAX (4.15)

(∀l ∈ A)

The constraint (4.14) bounds each core to a selected frequency. The constraint

(4.15) guarantees the thermal limits imposed on the model. Where the set A = ai

contains the index of the active cores and the set I = ii contains the index of idle

cores directly defined from the solution of FSP. Where A ∩ I is empty. In general,

the ISP problem is computationally simpler than the FSP problem due to the much

lower number of decision variables and constraints.

In the next Section, it will be evaluated the performance of the proposed TMC in

a realistic scenario and under different trade-offs in between the predicted horizons of
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the FSP and ISP problems.

4.4 Experimental Results

In this Section, it will first described the emulation framework, starting from the

results of the characterization of computing nodes and real scientific workload con-

ducted in Section 4.2. The emulation framework has been developed to study the

implication of the prediction interval/horizon and the task criticality generator in the

thermal-aware task mapping and control of supercomputer nodes.

4.4.1 Emulation Framework

The emulation framework is composed by the following components:

• The workload traces. The traces have been extracted using a commercial tracing

and profiling tool called Intel Trace Analyzer and Collector [74]. The traces

contain all the MPI activities (MPI call, data copy, source/destination MPI

task) with time stamps. These have been extracted for the QE-CP running on

a computing node.

• The thermal simulator. It is a first order discrete state-space model matched

with the computing node as described in Section 4.2.2. The model has a sample

time of 10ms (TsTM), and as state variables has the temperature of each core

of the node. Each core’s power is computed with the power model presented in

Section 4.2.3. Workload traces, which have resolution than the 10ms, have been

averaged on this period to produce the percentage of time in which each task

was in the MPI library for each (TsTM) interval. This value is used to model

the energy-aware MPI wrapper impacts on core’s power consumption.

• The thermal-aware task mapping and control problem. The TMC optimization

problem proposed in Section 4.2 has been solved using IBM Ilog CPLEX 12.6.1

[75]. The emulator calls CPLEX each time there is a new TMC problem to be

solved. This happens once at the application start (FSP) and periodically each

ISP interval TsISP which matches the prediction interval in the ISP problem

(PIISP ).
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Figure 4.6: Energy saving of MPI with reactive policy with respect to the MPI busy-
waiting

At each CPLEX call, the emulator builds a new instance of the problem with the

new thermal parameters and the criticality of the tasks and it waits for CPLEX

results. During the waiting time the emulator is frozen, in this way the overhead time

does not impact on the chronological MPI events. CPLEX has been executed on the

same machine of the emulation framework, which is the HPC node, therefore the time

overheads reflect real measurement.

4.4.2 Energy-aware MPI Wrapper

The maximum achievable energy saving for the energy-aware wrapper has been quan-

tified under ideal conditions: no interrupt, library and transitions overheads. It has

been used a simulator and the MPI traces as explained above. The results has been

compared with the baseline policy of Intel MPI busy-waiting considering the reactive

policy to select Low Freq and C-state C1, C3 and C6 during communication slack.

Figure 4.6 shows with different bars the low-power state used by the reactive policy

during communication phases. In y-axis is reported the achievable energy-saving

with respect to the busy waiting baseline for each core (x-axis). From the plot it can

be first recognized that different cores have different communication-to-computation

ratio, which leads to a significant workload unbalance in QE. This is reflected by a

different achievable saving for each core. When comparing the achievable energy-
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reduction, Figure 4.6 shows that DVFS states are more effective in saving energy

during communication phases. Indeed, while reducing the frequency to Low Freq saves

in average 7%, using C1 reduces the energy consumption by 10%. Using C3 and C6

leads to an additional saving reaching 11.7% and 12.4% respectively. Considering the

different latencies intrinsic to these low-power states, the analysis suggests that the

MPI runtime should maximize the usage of C1 during communication slack with an

energy saving opportunity of 10% for QE2.

4.4.3 Evaluation of Prediction Horizons

This Section will explore how vary the frequency level for high and low critical

tasks using different prediction horizons for FSP and ISP problem. The following

experiments has been conducted with different prediction intervals for both FSP

and ISP problems. It will be considered PIFSP=1s,10s,100s,steady state (SS) and

PIISP=1s,10s,100s,steady state (SS) because the thermal propagation in the system

is in the order of tens of seconds as reported in table 4.2. In the following, these tests

has been named with the notation PIFSP − PIISP . It must be noted that 1s-1s rep-

resent state-of-the-art DTM solutions with no thermal-aware task-to-core mapping,

while SS-SS represents state-of-the-art static DTM solutions.

For all the experiments, the temperature limit has been set to 65% of maximum

temperature which can be reached by the hottest core at the maximum frequency.

Figure 4.7 shows on the y-axis the temperature evolution of the coldest core (#0)

for five cases. Namely no thermal control active, no energy-aware MPI wrapper

active (NoTMC-NoEAW), no thermal control active but energy-aware MPI wrapper

active (NoTMC-EAW), TMC active with (1s-1s), (SS-1s), (SS-SS). For the same

configurations, the Figure 4.8 shows on the y-axis the temperature evolution of the

hottest core. Clearly, according to the capability of the FSP problem, to predict the

long-term thermal evolution the higher critical task will be mapped on the coldest

core. Indeed from Figure 4.7, it can be noticed that if no TMC calls are executed,

the coldest core executes a low critical task. When the FSP is empowered with a

steady-state thermal predictor instead the TMC allocates the higher critical task on

the coldest core and manages to run it always at the maximum frequency. Vertical

2In this exploration are only considered Core C-states because package C-states are always close to
0% of utilization due the continuous presence in C0/C1 state on at least one core
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Figure 4.7: Temperature and frequency evolution for the coldest core of the system -
core #0

spikes of the frequency are caused by the energy-aware MPI wrapper, which sets

the minimum frequency of the core during the MPI phases. As a consequence, the

maximum temperature reached by NoTMC-EAW is lower than NoTMC-NoEAW;

showing its effectiveness in reducing the power consumption. Differently, short time

horizons (1s-1s) in the FSP do not allow the solver to “see” the constraint and thus

lead to a sub-optimal task mapping allocation. As a consequence, the high critical

task needs to be frequency limited to meet the thermal constraint as the thermal

capacitance effect vanishes.

4.4.4 Evaluation of the Task Criticality Generator

As previously introduced, the task criticality is a key parameter for the final appli-

cation performance. Figure 4.9 shows the penalty in term of the execution time of

application when the criticality level is considered equal for each task respected of the
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Figure 4.8: Temperature and frequency evolution for the hottest core of the system -
core #14

one obtained by the TMC task criticality generator presented in Section 4.3.1.

Figure 4.9 reports on the x-axis the coreId where the highest critical task is allo-

cated. When the highest critical task is located on the core #6 or on the core #8

the highest and lowest penalty is given to the application, respectively 21.18% and

0.33%. When the root MPI task is located on the core #8, it is a lucky case, this

means that it runs on the “coldest” core of the system where the TMC runtime can

easily increase the core’s frequency without violating the thermal constraint. On the

other hand, when the root MPI task is located on the “hottest” core there is a high

penalty due the difficult of the runtime to increase the frequency on that core. To

conclude, It can be evidently seen that in all cases the TMC criticality generator

outperforms the cases with task with the same criticality.
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Figure 4.9: Execution time penalty in benchmarks with equal per-task criticality level
with respect to the benchmark with the TMC criticality generator. Every
run identify on which core was pinned the highest critical task.

4.4.5 Performance Gain

Figure 4.10 depicts the average frequency of the cores that host the highest critical

tasks and the average frequency for all the cores in each configuration. Interestingly,

in all the cases the highest critical task never reaches the maximum average frequency.

This is the effect of the energy-aware MPI wrapper which reduces the core frequency

during MPI calls.

The error bars show the variance for each configuration among different executions

of the same QE-CP problem while moving the highest critical task from the MPI root

task to another one. This means that if the default position of highest critical task

shift from 0 to 15 in the MPI rank, all the configurations with predict interval in the

FSP (PIFSP ) of 1 and 10 seconds have a huge variation. This can be explained by

the fact that in both experiments the FSP has a prediction horizon which is too short

to see the effect of long-term thermal evolution and thus it cannot predict which core

will hit the thermal constraint. For this case, the allocation FSP problem is trivial,

tasks are allocated on the first available core following a simple numerical binding

where the task 0 will be allocate to the core 0 and so on. This binding is also the

default on the Intel MPI library. In this particular case, if the highest critical task

is lucky, it will be pinned on a “cold” core. Vice versa, if the highest critical task is
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unlucky, it will be mapped on a “hot” core. At the steady-state the frequency of the

core will be limited by the ISP to respect the thermal constraint. On the other cases,

the PIFSP is always enough to sense the thermal constraint. The optimization model

will avoid the binding of the highest critical task on a “hot core”. In this case the

highest critical task will be pinned on a “cold” core allowing the highest critical task

to work at maximum frequency.
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Figure 4.10: Comparison between average core’s frequency (dark bars) and the fre-
quency of the highest critical core (light bars) using different configura-
tion for the optimization problem.

The baseline is the SS-SS configuration, which model state-of-the-art solutions

based on static allocation of tasks and frequency. The 1s-1s and 10s-10s induces

performance penalties on the highest critical task, while they lead to an increase of

performance of the 4.97% and 4.50% respectively in average in all the cores. For the

remaining configurations, no penalty are measured for the highest critical tasks and

a gain of to 7.46%, 7.06% and 3.65% respectively for the configuration SS-1s, SS-10s

and SS-100s. These results show that short horizon predictive models pay off in the

ISP as it allows to take advantage of the thermal capacitance. In the next Section

will be presented the conclusions on the solver overhead.
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4.4.6 Overhead Time

Figure 4.11 shows cumulative overhead for different configurations and quantify the

induced performance loss as it sums up to the execution time. The FSP bars represent

the overhead time of the FSP problem solved only once at the application start, while

the ISP bars are the sum of the overhead times of all iterations of the ISP solver.
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Figure 4.11: Cumulative overhead induces by the optimization problem using different
configurations for the optimization problem.

For all the instances and the configurations, the solver is capable of finding the

optimal solution. CPLEX allows to bound the solution time by the so-called deter-

ministic ticks, this approach has been used to limit the solution time in case of harder

problem. Authors of [50] show for a 60 core instance that the optimally gap always

reduces below the 0.002% with a maximum number of 180 ticks.

It can be seen that for the 1s-1s and 10s-10s configuration the FSP solver time

is negligible. After 1 second or 10 seconds the thermal transient has not reached

the thermal constraint, for this reason the solution is trivial and consequently it

immediately converge. Instead, all the other configurations have an average overhead

time of 0.59% of total Tts.

The total overhead time for the ISP significantly changes when vary the PTISP and

the TsISP . Obviously, the ISP with a prediction interval of 1 second will be called

hundred times more than a ISP with a prediction interval of 100 seconds. The results

respect this trend, in particular for 1 seconds of prediction interval leads to an average
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penalty of 10.20% of total execution time, which makes this configuration worse than

a static allocation SS-SS and it causes the solution overhead (7.46% of performance

gain - 10.20% of overhead). Interesting the 10 seconds case (SS-10s) reduces the total

penalty to the 0.64% which in conjunction to the 7.06% of performance gain with

respect to the static-allocation lead to an overall performance gain of the 6%. At 100

seconds the total overhead penalty decreases to the 0.09%. However, for this case the

performance gain is only of the 3.46% making it less performing than the SS-10s case.

4.5 Summary on HPC Optimal Thermal Control

In this Chapter has been proposed a thermal-aware mapping and control of thermally-

bound HPC nodes. The system implements a novel ILP formulation for thermal-

aware optimization and an exploration analysis on the workload application to address

performance promoting critical MPI tasks. The work is focused on real HPC hardware

and workload. The thermal characteristics has been extracted to a HPC compute node

as well as workload traces to study the workload distribution to identify critical MPI

tasks. The control system relies on this information to optimize the task allocation

and the frequency selections in thermal-constraint HPC nodes.

In the experimental Section, the system has been compared with state-of-the-art

DTM solutions which dynamically control only the frequency selection of the cores or

it can choose a statically task allocation with a specific frequency. The experimental

results show that using a long-time horizon for the task allocation and a short time

horizon for selecting DVFS levels at execution time can lead up to 6% performance

gain including overheads. Moreover, the task criticality model embedded in the DTM

system can avoid the pinning of critical tasks on hot cores where OTC cannot promote

this task with high frequency. This can cause high performance degradation up to

21.18% of the entire application execution.
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Chapter 5

Energy-aware MPI Runtime

5.1 Overview

Energy and power consumption are prominent issues in today’s supercomputers and

are foreseen as a limiting factor of future installations. A significant amount of power

in large scale HPC applications is wasted in communication synchronization-related

idle times. However, due to the time scale at which communication happens, tran-

sitioning in low power states during communication’s idle times may introduce over-

heads in scientific applications.

In this Chapter COUNTDOWN will be presented, a run-time library supported by

a methodology and analysis tool for identifying and automatically reducing the power

consumption of the computing elements during communication and synchronization.

COUNTDOWN saves energy without imposing significant time-to-completion in-

crease by lowering CPU’s power consumption only during idle times for which power

state transition overhead are negligible. This is done transparently to the user, with-

out touching the application code nor requiring recompilation of the application. This

methodology has been tested in a production Tier-1 system.

The main contributions of this work are:

• An analysis of the effects and implications of fine-grain power management in

today’s supercomputing systems targeting energy saving in the MPI library. The

analysis shows that in today’s HPC processors there are significant latencies in

the hardware to serve low power states transitions. This delay is at the source

of inefficiencies (overheads and saving losses) in the application for fine-grain

power management in the MPI library.
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• A set of benchmarks running on a single HPC node have been used to show

that: (a) there is a potential saving of energy with negligible overheads in the

MPI communication slack of today’s scientific applications; (b) these savings are

jeopardized by the time the hardware takes to perform power state transitions;

(c) when combined with low power states it can leverage on the turbo logic

improving the execution time of the application.

• COUNTDOWN library consists of a runtime able to automatically track at fine

granularity MPI and application phases to inject power management calls. In-

deed, it is able to identify MPI calls with energy-saving potential for which it is

worth to enter a low power state, leaving low-wait-time MPI calls unmodified to

prevent overheads in low power state transitions. COUNTDOWN’s principles

can be used to both inject DVFS capabilities as well as configure properly the

MPI runtime and take advantage of MPI idle-waiting mechanisms. COUNT-

DOWN works at execution time without requiring any off-line knowledge of the

application and it is completely plug and play. In fact, it does not require any

modification of the source code and compilation toolchain. COUNTDOWN can

be dynamically linked with the application at loading time, this means that it

can intercept dynamic linking to the MPI library instrumenting all the appli-

cation calls to MPI functions before the execution workflow jumps to the MPI

library. The runtime also provides a static version of the library which can be

injected in the application at linking time. COUNTDOWN supports C/C++

and FORTRAN HPC applications and most of the open-source and commercial

MPI libraries.

• Evaluating COUNTDOWN with a wider set of benchmarks and low power state

mechanisms. In large HPC runs, COUNTDOWN leads to savings of 23.32% in

average for the NAS[76] parallel benchmarks and to 22.36% for an optimized QE

run on 3456 cores, which increases to the 37.74% when QE is executed without

optimization for the communication.

This work has been presented to the scientific community in [77].
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5.2 Background

In this Section are used two practical examples to see the implications and challenges

of transitioning into low power states (P/C/T-states) during synchronization and

communication primitives for energy-savings.

The test platform is based on a compute node equipped with two Intel Haswell

E5-2630 v3 CPUs, with 8 cores at 2.4 GHz nominal clock speed and 85W TDP and a

real production software stack for Intel systems. Intel MPI Library 5.1 has been used

as the runtime for communication coupled with Intel ICC/IFORT 18.0 as toolchain.

The Intel software stack it is currently used in the target systems as well as well

supported in most of HPC machines based on Intel architectures.

All the tests in this work have been executed with QE presented in Section 3.3.2.

CP package has been used for these single nodes tests. QE mostly used packages are:

(i) Car-Parrinello simulation; (ii) Plane-Wave Self-Consistent Field (PWscf) which

solves the self-consistent Kohn and Sham KS equations and obtain the ground state

electronic density for a representative case study. The code uses a pseudo-potential

and plane-wave approach and implements multiple hierarchical levels of parallelism

implemented with a hybrid MPI+OpenMP approach. As of today, OpenMP is gen-

erally used when MPI parallelism saturates, and it can improve the scalability in the

highly parallel regime. Nonetheless in the following it will be only refereed to data

obtained with pure MPI parallelism since this is the main focus of this work and this

choice does not significantly impair the conclusions reported later.

To exploit the system behavior for different workload distributions in a single node

evaluation, the computation of the band structure of the Silicon has been focused

along the main symmetry. When executed by a user with no domain expertise and

with default parameter QE runs with a hybrid MPI parallelization strategy with only

one MPI process used to perform the diagonalizzation and all the MPI processes used

to perform the FFT kernel. It will be later refer to this case as QuantumESPRESSO

CP Not Expert User (QE-CP-NEU). Differently, when an expert user runs the same

problem, he changes the parameters to better balance the workload by using multiple

MPI processes to parallelize also the diagonalization kernel. It will be later refer to

this case as QuantumESPRESSO CP Expert User (QE-CP-EU). In the QE-CP-NEU

case, when a single process works on the linear algebra kernel, the other ones remain

in busy wait on the MPI call. In the following text, the fine-grain power management
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solution will be compared with the busy-waiting mode (default mode) of MPI library

where processes continuously polling the CPU for the whole waiting time in MPI

synchronization points.

5.2.1 Wait-mode/C-state MPI library

By default, MPI libraries use a busy-waiting policy in collective synchronizations to

avoid performance penalties. This is also the case of Intel MPI library. This library

can also be configured to release the control to the idle task during waiting time to

leverage the C-states of the system. This allows cores to enter in sleep states and

being woken up by the MPI library when the message is ready through an interrupt

routine. In Intel MPI library, it is possible to configure the wait-mode mechanism

through the environment variable I MPI WAIT MODE. This allows the library to

leave the control to the idle task, reducing the power consumption for the core waiting

in the MPI. Clearly the transitions into and out of the sleep mode induce overheads

in the application execution time.

In Figure 5.1 are reported the experimental results, the wait-mode strategy is iden-

tify with CS. The overhead induced by the wait mode with respect to the default

busy-waiting configuration, which worsen by 25.85% the execution time. This is ex-

plained by the high number of MPI calls in the QE application which leads to frequent

sleep/wake-up transitions and high overheads. From the same Figure, it can be seen

that the energy saving is negative, which is -12.72%, this is because the power savings

obtained in the MPI primitives does not compensate the overhead induced by the

sleep/wake-up transitions. Indeed, the power reduction is 12.83%. This is confirmed

by the average load of the system, which is 83.02% as effect of the C-states activity

in the MPI primitives. The average frequency is 2.6GHz, which is the standard turbo

frequency of the target system.

Surprisingly, the QE-CP-NEU case has a negative overhead (-1.08% overhead is a

speedup). This speed up is given by the turbo logic of the system. Indeed, the average

frequency is slightly higher than 2.6GHz, which means that the process doing the

diagonalization can leverage the power budget which is freed by the other processes

not involved in the diagonalization which are waiting in a sleep state in the MPI

runtime. In Figure 5.2, it is reported the average frequency of the process working on

the diagonalization and the average frequencies of all the other MPI processes. In the
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(a) All MPI processes are involved in the diagonalization QE-CP-EU

(b) Single MPI process is involved in the diagonalization QE-CP-NEU

Figure 5.1: Overhead, energy/power saving, average load and frequency for QE-CP-
EU (a) and QE-CP-NEU (b). Legend: C-state (CS), P-state (PS) and
T-state (TS) mode. Baseline is busy-waiting mode (default mode) of MPI
library.

target system, a single core can reach up to 3.2 GHz if only one core is running, this

is what happens when all cores are waiting in a sleep state for the termination of the

diagonalization workload. The benefit of this frequency boosting unleashed by the

idle mode on the MPI library and the unbalanced workload, can save up to 16.69%

of energy with a power saving of 20.86%.

As conclusion of this first exploration, it is possible to leverage on the wait mode

of the MPI library to save power but without increasing the execution time. Energy

savings and the impact on the Tts depends on the MPI call granularity which can

lead to significant penalties if the application is characterized by frequent calls.
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Figure 5.2: Time plot of frequency for QE-CP-NEU identifies the frequency of the MPI
process working on the diagonalization, No Diag is the average frequency
of MPI processes not involved in the diagonalization.

5.2.2 DVFS/P-state MPI library

To overcome the overheads of C-state transitions, an initial exploration focuses on the

active low power states (DVFS states). Intel MPI library does not implement such

a feature, so it has been manually instrumented all the MPI calls of the application

with an epilogue and prologue function to scale down and raise up the frequency

when the execution enters and exits from an MPI call. To avoid interference with the

power governor of the OS, the power governor has been disabled in the compute node

granting the complete control of the frequency scaling. The MSR driver has been used

to change the current P-state writing IA32 PERF CTL register with the highest and

lowest available P-state of the CPU, which corresponds to turbo and 1.2GHz with

respect to points. Figure 5.1 reports the results of this exploration, where the P-state

case is labelled with PS.

In the overhead plot in Figure 5.1.a, it can be seen that the overhead is signifi-
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cantly reduced with respect to C-state mode, reducing the 25.85% overhead obtained

previously to 5.96%. This means that the overhead of scaling the frequency is lower

respect to the sleep/wake-up transitions cost. However, the energy and power savings

are almost zero. This is due to the fact that as before in QE-CP-EU, all the MPI

processes participate to the diagonalization; thus, a high number of MPI calls report

a very short duration. This is also confirmed by the average frequency, which does

not show significant variations with respect to the baseline (busy waiting), with a

measured average frequency of 2.4GHz. The load bar reports 100% of activity, which

means that there is no idle time as expected.

Focusing in the QE-CP-NEU case, in Figure 5.1.b, the overhead is 3.88% which is

reduced with respect to QE-CP-EU. In addition, this case has a significant energy

and power saving, respectively of 14.74% and 14.75%. These saving are due to the

workload unbalance and to long time spent in the MPI calls from the processes not

involved in the diagonalization. This is confirmed by the lower average frequency

(1.95GHz) while the load is unaltered as expected.

In conclusion using DVFS states for fine-grain power management instead of the

idle mode allows to better control the overhead for both balanced and unbalanced

workload. However, the overhead is still significant and in HPC the Tts is the prime

goal.

5.2.3 DDCM/T-state MPI library

One important question is when the overheads of fine-grain power management strate-

gies are induced by the specific power management states. In that case, it would be

worth to try duty-cycling low power states. In this Section, it has been used the

Dynamic Duty Cycle Modulation (DDCM) (also known as throttling states or T-

states) available in the Intel architectures aiming to reduce the overheads. DDCM has

been supported in Intel processors since Pentium 4 and enables on-demand software-

controlled clock modulation duty cycle. In Intel CPUs, DDCM is used by the HW

power controller to reduce the power consumption when the CPU identifies thermal

hazards. Similarly to [78], DDCM is used to reduce the power consumption of the

cores in MPI calls. The application has been manually instrumented using a prologue

function of each MPI call to configure DDCM to 12.5% of clock cycles, which means

for each clock cycle are gated the next 7; while in the epilogue function, the DDCM
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is restore to 100% of clock cycles, this is possible writing to the DDCM configuration

register, called IA32 CLOCK MODULATION, through the MSR driver.

In Figure 5.1.a, the DDCM results are reported with TS bars. Surprisingly, the

overheads induced by T-states are greater than the wait mode, and equal to 34.78%.

As consequence, the energy saving is the worst, leading to an energy penalty of 14.94%.

The load is greatly reduced owing to the throttling, in average of 67.78%, while the

frequency is constant to 2.6GHz.

Figure 5.1.b reports T-state results for QE-CP-NEU. Even for this unbalanced

workload case the T-states are the worst. T-state transitions introduce an overhead

of 15.82% consequent of the power reduction, with a very small energy saving, only of

the 4.75%, and a power saving of 21.97%. The load of the system is reduced to 55.45%,

similarly to the idle mode, and the frequency remained unchanged as expected.

As a matter of fact, the phase agnostic fine-grain power management leads to signif-

icant application overheads which may nullify the overall saving. Though, it is needed

to bring knowledge of the workload distribution and the communication granularity

of the application in the fine-grain power management. In the next Section will be

introduced the COUNTDOWN approach which addresses this issue.

5.3 Framework

COUNTDOWN is a run-time library for profiling and fine-grain power management

written in C language. COUNTDOWN is based on a profiler and on a event mod-

ule to inspect and react to MPI primitives. The key idea in COUNTDOWN can be

summarized as follows: Every time the application calls an MPI primitive, COUNT-

DOWN intercepts the call with minimal overhead and uses a timeout strategy [63] to

avoid changing the power state of the cores during fast application and MPI context

switches, where doing so may result only in state transition overhead without a sig-

nificant energy and power reduction. In a nutshell, each time the MPI library asks

to enter in low power mode, COUNTDOWN defers the decision for a defined amount

of time (the timeout). If the MPI phase terminate within this amount of time, the

hardware does not enter in low power state. Thus, COUNTDOWN filters short MPI

phases with no potential for power-management-based energy reduction.

In Figure 5.3 are depicted the COUNTDOWN’s components. COUNTDOWN ex-

73



Logical View
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Runtime

Callback

MPI Interface

PMPI InterfaceLogging

Figure 5.3: Logical view of all the components of COUNTDOWN.

poses the same interface as a standard MPI library and it can intercept all MPI calls

from the application. COUNTDOWN implements two wrappers to intercept MPI

calls: i) the first wrapper is used for C/C++ MPI libraries, ii) the second one is

used for FORTRAN MPI libraries. This is mandatory due to the fact that C/C++

and FORTRAN MPI libraries produce assembly symbols which are not application

binary (ABI) compatible. The FORTRAN wrapper implements a marshalling and un-

marshalling interface to bind FORTRAN MPI handlers in compatible MPI C/C++

handlers.

When COUNTDOWN is used with an application, every MPI call is enclosed in a

corresponding wrapper function that implements the same signature. The wrapper

function calls the equivalent PMPI call, but after and before a prologue and an epilogue

function. Both functions are used by the profile and by the event modules to support

monitoring and power management, respectively. COUNTDOWN interacts with the

HW power manager through a specific Events module in the library. The Events

module can also be triggered from system signals registered as callbacks for timing

purposes. COUNTDOWN configurations can be done through environment variables,

it is possible to change the verbosity of logging and the type of HW performance
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Main(){
// Initialize MPI
MPI_Init()

// Get the number of procs
MPI_Comm_size(size)

// Get the rank
MPI_Comm_rank(rank)

// Print a hello world
printf(“Hello world from rank:“

“%rank%, size: %size%”)

// Finalize MPI
MPI_Finalize()

}

MPI_$CALL_NAME$(){
Prologue()
PMPI_$CALL_NAME$()
Epilogue()

}

Prologue(){
Profile()
Event(START)

}

Epilogue(){
Event(END)
Profile()

}

// PMPI Interface
PMPI_Init() {…}

PMPI_Comm_size() {…}

PMPI_Comm_rank() {…}

PMPI_ Finalize() {…}

// MPI Interface
MPI_Init() {…}

MPI_Comm_size() {…}

MPI_Comm_rank() {…}

MPI_ Finalize() {…}

App.x Libcntd.so Libmpi.so
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Figure 5.4: Dynamic linking events when COUNTDOWN is injected at loading time
in the application.

counters to monitor.

The library targets the instrumentation of applications through dynamic linking,

as depicted in Figure 5.4, without user intervention. When dynamic linking is not

possible, COUNTDOWN also implements a fallback as a static-linking library, which

can be used while building the the application, to add COUNTDOWN at compilation

time. The advantage of using the dynamic linking is the possibility to instrument

every MPI-based application without any modifications of the source code nor the

toolchain, even without re-compiling it. Linking COUNTDOWN to the application

is straightforward: it is enough to configure the environment variable LD PRELOAD

with the path of COUNTDOWN library and start the application as usual.

5.3.1 Profiler Module

COUNTDOWN uses three different profiling strategies targeting different monitoring

granularity.

• The MPI profiler, is responsible to collect all information regarding the MPI

activity. For each MPI process, it collects information on MPI communicators,

MPI groups, and the coreId. In addition, the COUNTDOWN run-time library
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profiles each MPI call by collecting information on the type of the call, the

entrance and exit times and the amount of data exchanged with the other MPI

processes.

• The fine-grain micro-architectural profiler, collects micro-architectural informa-

tion at every MPI call along with the MPI profiler. This profiler uses the

user-space RDPMC instruction to access the performance monitoring units im-

plemented in Intel’s processors. It monitors the average frequency, the HW

power controller and the instructions retired for each MPI call and for the ap-

plication phase. Moreover, it is able to access configurable performance counters

that can be used to monitor user-specific micro-architectural metrics.

• The coarse-grain profiler monitors a larger set of HW performance counters

available in the system. In Intel architectures, privileged permissions are re-

quired to access HW performance counters. Such level of permissions cannot

be granted to the final users in production machines. To overcome this limi-

tation, the MSR SAFE [79] driver has been configured to grant the access to

standard users to a subset of privileged architecture registers, while avoiding

security issues. At the core level, COUNTDOWN monitors TSC, instructions

retired, average frequency, C-state residencies and temperature. At uncore level,

it monitors CPU package energy consumption, C-state residencies and temper-

ature of the packages. This profiler uses RAPL to extract energy/power infor-

mation from the CPU. The coarse-grain profiler, due the high overhead needed

by each single access to the set of HW performance counters monitored, uses

a time-based sample rate. Data are collected at least Ts second delay from

the previous collection. The fine-grain micro-architectural profiler at every MPI

calls checks the time stamp of the previous sample of coarse-grain profiler and,

if it is above Ts seconds, triggers it to get a new sample. These capabilities are

added to the application through the prologue and epilogue functions as shown

in Figure 5.4.

COUNTDOWN also implement a logging module to store profile information in a

text file which can be written in local or remote storage. While the log file of MPI

profiler can grow with the number of MPI primitives and it can become significant in

long computation (thus the information is stored in binary files), the logging module
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also reports a summary of these information in an additional text file.

5.3.2 Event Module

COUNTDOWN interacts with the HW power controller of each core to reduce the

power consumption. It uses MSR SAFE to write the architectural register to change

the current P-state independently per core. When COUNTDOWN is enabled, the

Events module decides the performance at which to execute a given phase.

Application
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Figure 5.5: On the upper side is depicted the timer strategy utilized in COUNT-
DOWN, while in the lower side is depicted the idle-wait mode with timer
implemented in the Intel MPI library.

COUNTDOWN implements the timeout strategy through the standard Linux timer

APIs, which expose the system calls: setitimer() and getitimer() to manipulate users-

space timers and register callback functions. This methodology is depicted in Figure

5.5 in the top part. When COUNTDOWN encounters an MPI phase, in which oppor-

tunistically can save energy by entering in a low power state, COUNTDOWN registers

a timer callback in the prologue function (Event(start)), after that the execution con-

tinues with the standard workflow of the MPI phase. When the timer expires, a
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system signal is raised, the “normal” execution of the MPI code is interrupted, the

signal handler triggers the COUNTDOWN callback, and once the callback returns,

the execution of MPI code is resumed at the point it was interrupted. If the “nor-

mal” execution returns to COUNTDOWN (termination of the MPI phase) before the

timer expiration, COUNTDOWN disables the timer in the epilogue function and the

execution continues like nothing happened. The callback COUNTDOWN can be con-

figured to enter in the lower T-state (12.5% of load), later refereed as COUNTDOWN

THROTTLING, or in the lower P-state (1.2GHz) later refereed as COUNTDOWN

DVFS.

Intel MPI library implements a similar strategy, but it relies on the sleep power

state of the cores. Its behavior is depicted in the bottom part of Figure 5.5. If the

environment variable I MPI WAIT MODE, presented in Section 5.2.1, is combined

with the environment variable I MPI SPIN COUNT, it is possible to configure the

spin count time for each MPI call. Time after which the MPI library leaves the

execution to the idle task of the CPU. This parameter does not contain a real time

value but contains a value which is decremented by the spinning procedure on the

MPI library until it reaches zero. This allows the Intel MPI library to spin on a

synchronization point for a while, and after that, enter in an idle low power state in

order to reduce the power consumption of the core. The execution is restored when a

system interrupt wakes up the MPI library signaling the end of the MPI call. Later,

It will be refereed to this mode as MPI SPIN WAIT.

Next Section will clarify though experiment why the timeout logic introduced by

COUNTDOWN is effective in making fine-grain power management possible and con-

venient in MPI parallel applications.

5.4 Experimental Results

In this Section will be presented: (i) an overhead analysis of COUNTDOWN, (ii) the

effect of timeout strategy using different timeout delays, and (iii) the evaluation on a

single node and on a real-production HPC system with real applications.
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5.4.1 Framework Overheads

The performance overhead has been evaluated running MPI applications instrumented

with the profiler module of COUNTDOWN without changing the cores’ frequency.

QE-CP-EU has been run on a single node, which is the worst case for COUNTDOWN

in term of number and granularity of MPI calls to profile, because all network-related

overheads in MPI calls are nullified, intra-chip communication and synchronization

are orders-of-magnitude faster than the inter-chip or inter-node ones. Hence, MPI

wait-times exploitable for power management are generally much shorter.

In this run have been counted more than 1.1 million of MPI primitives for each

process in the diagonalization task: the run-time library needs to profile in average an

MPI call every 200us for each process. The overhead has been measured comparing the

execution time with and without COUNTDOWN instrumentation. The test has been

repeated five time and reported the median case. Experimental results show that even

in this unfavorable setting, the COUNTDOWN profiler introduces an overhead in the

execution time which is less than 1%. This result is also supported by the overhead

measurements of the prologue and the epilogue routines that COUNTDOWN injects

in the application for each MPI call, which costs between 1us and 2us. The same

test has been repeated changing the cores’ frequency to assess the overhead of a

fine-grain DVFS control. To measure only the overhead caused by the interaction

with the DVFS knobs, COUNTDOWN has been forced to write always the highest

P-state in the DVFS control registers. Thus, the application slowdowns caused by

the frequency variation has been avoided only profiling the overhead caused by the

register access. The experimental results report of 1.04% of overhead to access to

the DVFS control register and doing the profile. While the overhead of memory

and IO are completely negligible due the fact that the memory required is in the

order of hundreds of kilobytes for each MPI process and COUNTDOWN does not

communication among the instances.

These results prove that the source of the overheads of phase agnostic fine-grain

power management is not related to issuing the low power state transition (DVFS in

this case). Figure 5.6 focuses on understanding the source of this by replicating the

tests of Section 5.2 for both QE-CP-EU and QE-CP-NEU, but now entering in the low

power state only for MPI phases longer than a given time threshold. For the P-state

and T-state (Figure 5.6.b and Figure 5.6.c), it has been obtained that by profiling
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in advance the duration of each MPI phase instrumenting with low-power routines

only the phases which had a duration longer than the threshold. On the x-axes is

reported the time threshold value. For C-state (Figure 5.6.a) it has been used the

I MPI SPIN COUNT parameter of Intel MPI library to filter out short phases. On

the x-axis is reported the I MPI SPIN COUNT parameter.

From the plot, it is possible to recognize that there is a well-defined threshold of

500us for the T-state and P-state case and of 10K iteration steps for the C-state. After

this threshold the overhead introduced by the fine-grain power management policy is

greatly reduced and the energy savings becomes positive. The next Section analyze

why this happens by focusing on the P-state case.

5.4.2 DVFS Overheads and Time Region Analysis

To find the reason of the higher overhead when frequency reduction is applied in all

the MPI phases as highlighted in previous Section, two scatter plots has been realized.

On x-axis of the left plot is reported the time duration of each MPI phase and on the

right plot is reported the time duration of each application phase. For both plots,

the y-axes measures the average frequency of that phase. This test is conducted by

instrumenting through COUNTDOWN each MPI call: i) with a prologue function

setting the lowest frequency (1.2GHz) and ii) with an epilogue function setting the

highest frequency (Turbo).

In theory would be aspect that all MPI phases had executed at the minimum

frequency and application phases had run always at maximum frequency. Indeed,

it is a matter of fact that MPI phases running at high frequency may cause energy

waste, while application phases running at low frequency cause performance penalty

to the application. The experimental results show that for phases with a time duration

between 0us and 500us, the average frequency vary in the interval between the high

and low CPUs’ frequency values, while above it, it tends to the desired frequency

for that phase. This can be explained by the response time of HW power controller

in serving P-state transition of Intel Haswell1 CPUs [27]. The HW power controller

periodically reads the DVFS control register to check if the operating system has

specified a new frequency level, this interval has been reported to be 500us in previous

study [27] and matches with empirical threshold shown in this work.

1The Intel Broadwell’s HW power controller works as well.
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This means that every new setting for the core’s frequency faster than 500us could

be applied or completely ignored, depending on when the register was sampled the

previous time. This can cause all sort of average frequencies. Clearly, application

phases which execute at lower frequency than the maximum one may lead to a slow-

down in the application, while MPI phases which execute at higher frequency than

the minimum one may lead to energy saving loss. It is nevertheless interesting to

notice that phases with a duration in the region of 0s and 500us are more likely to

have the highest frequency for the MPI phases and the lowest frequency for the ap-

plication phases, which is opposite of what expected. This will be explained in the

next analysis.

Thus, it is not possible to have an effective control on the frequency selection for

phases shorter than 500us, while for longer phases is possible to recognize an asymp-

totic trend toward the requested frequency. The assumption is that in phases shorter

than 500us the average frequency depends more on the previous phase frequency than

the requested one.

Following this intuition, Figure 5.8 correlates the time duration of each application

phase with the time duration of the following MPI phase and its average frequency.

In the y-axis is reported the time duration of the application phase, in the x-axis

the time duration of the subsequent MPI phase, and with the color code is reported

the average frequency. While the left plot reports the average frequency of the MPI

phase, instead the right plot reports the average frequency for the application phase.

For both plots is possible to identify four regions/quadrants:

• Application & MPI>500us: this region contains long application phases

followed by long MPI phases. Points in this region show low frequency in MPI

phases and high frequency in application phases. This is the ideal behavior,

where applying frequency scaling policy reduces energy waste in MPI but with

no impact on the performance of the application. Phases in this region are

perfect candidates for fine-grain DVFS policies.

• Application>500us & MPI<500us: this region contains long application

phases followed by short MPI phases. Points in this region show for both appli-

cation and MPI phases high average frequency. This is explained by the short

duration of the MPI phases, which does not give enough time to the HW power

controller to serve the request to scale down the frequency (prologue), before
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Figure 5.7: Average frequency and time duration of Application/MPI phases of the
single node benchmark for QE-CP-EU. The lighter zones identify higher
point density.

Figure 5.8: Time and average frequency of Application/MPI phases of the single node
benchmark for QE-CP-EU.

this setting is overwritten by the request to operate at the highest frequency

(epilogue).

For this reason, fine-grain DVFS control in this region does not save energy as

the frequency reduction in MPI phases is negligible, but it also does not dete-

riorate the performance as the application phases are execute at the maximum

frequency. Phases in this region should not be considered for fine-grain DVFS

policies, being preferable to leave frequencies unaltered at the highest level.

• Application<500us & MPI>500us: this region contains short application

phases followed with long MPI phases.
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This is the opposite case of Application>500us & MPI<500us region. Points in

this region show for both application and MPI phases low average frequencies.

This is explained by the short duration of the application phases, which does

not give enough time to the HW power controller to serve the request to raise

up the frequency (requested at the exit of the previous MPI phase), before this

setting gets overwritten by the request to operate at the lowest frequency (at

the entrance of the following MPI phase).

Applying fine-grain DVFS policies in this region can save power but detriments

the overall performance, as application phases are executed at low frequencies.

Phases in this region should not be considered for fine-grain DVFS policies due

to the high overheads in the application execution time.

• Application & MPI<500us: This region shows the opposite behavior of

Application & MPI>500us region. Both application and MPI phases executes

randomly at high and low average frequencies due the inability of the HW power

controller to capture and to serve the requested frequency changes. The average

frequency at which MPI and application phases execute are strictly related to

type of the previous long phase: if it was an application phase the following

short phases will execute at high frequency in average; On the contrary, if it

was an MPI phase the following short phases will execute at low frequency in

average. Applying fine-grain DVFS policies in this region leads to unexpected

behaviors which can detriment application performance. All phases shorter than

500us should be never considered by fine-grain power managers.

5.4.3 Single-node Evaluation

The experiments reported in Section 5.2 was repeated using COUNTDOWN. COUNT-

DOWN has been configured to scale down the P- and the T-states 500us after the

prologues of MPI primitives. To reproduce the same timeout strategy leveraging the

C-states, MPI SPIN WAIT described in Section 5.3.2 has been used with 10K MPI

spincounter parameter.

The HW power controller of Intel CPUs, has a different transition latency for sleep

states with respect to DVFS scaling, as described in [27]. For this reason, the best

spin counter has been empirically determined to maximize the energy efficiency and
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(a) All MPI processes diagonalization QE-CP-EU

(b) Single MPI process diagonalization QE-CP-NEU

Figure 5.9: Overhead, energy/power saving, average load and frequency using
COUNTDOWN for QE-CP-EU (a) and QE-CP-NEU (b). Legend: C-
state (CS), P-state (PS) and T-state (TS) mode. Baseline is busy-waiting
mode of MPI library.

to minimize the overhead for the target application.

Figure 5.9 report the experimental results using COUNTDOWN THROTTLING,

COUNTDOWN DVFS and MPI SPIN WAIT. It can be seen that in all cases the

overhead, the energy saving, and the power saving are greatly improved with respect

to the baseline (only MPI library).

Figure 5.9.a shows the experimental results for QE-CP-EU. For the C-state mode

the overhead decreases from 25.85% to 1.70% by using MPI SPIN WAIT. Instead

using COUNTDOWN DVFS for the P-state the overhead decreases from 5.96% to a

negligible overhead, and for the T-state from 5.96% to 0.29% using COUNTDOWN

THROTTLING. All evaluations report a non-negative energy saving, as it was for the

MPI library without timeout strategy, but with better results. Energy saving shows
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21.80%, 14.94%, and 11.16% improvements and power saving reports 6.55%, 5.77%,

and 2.47% respectively for C-state, P-state, and T-state. These experimental results

confirm the exploration on the time duration of MPI phases reported in Figure 5.7.

Most of the MPI calls of this benchmark have been skipped from COUNTDOWN due

their short duration to avoid overheads.

Figure 5.9.b show similar improvements for QE-CP-NEU. In this configuration, for

C-state mode the speed up increases from 1.08% to 6.14% using MPI SPIN WAIT.

Instead using COUNTDOWN, the overhead of P-state decreases from 3.88% to 1.25%,

and for the T-state from 15.82% to 2.19%. As a result, the energy saving is 21.80%,

14.94%, and 11.16% while power saving corresponds to 24.61%, 19.84% and 15.23%

respectively for C-state, P-state, and T-state.

5.4.4 HPC Evaluation

After the exploration on a single compute node, this work has been extended in a

real HPC system. The target architecture has been a Tier-1 HPC system based on

an IBM NeXtScale cluster which is currently classified in the Top500 supercomputer

list [4]. The compute nodes of the HPC system, are equipped with 2 Intel Broadwell

E5-2697 v4 CPUs, with 18 cores at 2.3 GHz nominal clock speed with a peak power

consumption of 145W and interconnected with an Intel QDR (40Gb/s) Infiniband

high-performance network.

Two set of applications has been used to benchmark the parallel performances of

the HPC system. The first one is the NAS parallel benchmark suite using the large

dataset E. The NAS parallel benchmarks have been executed on 1024 cores distributed

on 29 compute nodes. The second one is the QE PWscf software configured for a

complex large-scale simulation. For this purpose, QE performs ten iterative steps of

the self-consistent loop algorithm that optimizes the electronic density starting from

the superposition of atomic charge densities. The selected system comes from an

actual scientific report [80] and reproduces a layered structure of Iridium, Cobalt and

Graphene plus a molecular compound (iron-phthalocyanin) deposited on top. The

whole simulation box includes 662 atoms which are described with 3662 KS states.

The total number of plane waves is more than a million and, during the execution,

main memory occupation may peak at 2 to 6 terabytes depending on the selected

parallelization parameters.

86



Figure 5.10: Experimental results of NAS parallel benchmarks using COUNTDOWN.
Baseline is busy-waiting mode (default mode) MPI library.

During each iteration the CPU time is mostly spent in linear algebra (matrix-matrix

multiplication and matrix diagonalization) and FFT. Both these operations are dis-

tributed on multiple processors and operate on distributed data. As a consequence,

FFT requires many AllToAll MPI communications while parallel diagonalization, per-

formed with the PDSYEVD subroutine of ScaLAPACK and requires mostly MPI

broadcasting messages. QE run on 3456 cores, using 96 compute nodes and 12 TB of

DRAM. The input dataset used for this run is capable to scale on such number of cores

and the run has been configured with a set of optimized parameters to avoid network

bottlenecks, which would limit the scalability. This configuration has been named QE

Expert User (QE-PWscf-EU), to differentiate it from the same problem but solved

without optimizing the internal parameter as it was run by a user without domain

specific knowledge, which has been called QE Not Expert User (QE-PWscf-NEU).

In these tests, T-state mode has been excluded, because in the single-node evalua-

tion it always reported worst results that the P-state mode. Also the C-state mode

has been excluded because the Intel MPI library does not support idle mode when

multiple nodes are involved in the run. The Intel MPI library overrides the request of

idle mode with the busy-wait mode when the application runs in a distribute environ-

ment. For this reason, only P-state mode (COUNTDOWN DVFS ) has been used in

the HPC evaluation. The benchmarks has been run with and without COUNTDOWN

on the same nodes and the results has been compared .
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Figure 5.10 shows the results for the NAS parallel benchmark suite[76] when ex-

ecuted on 1024 cores, while Figure 5.11 shows the results for the QE-PWscf-* ap-

plication when executed on 3456 cores. The different plots for Figure 5.10 reports

the time-to-solution overhead, the energy and power saving as well as the MPI and

application time phases distribution (in percentage of the the accumulated time spent

in phases longer and shorter than 500us) for the different large-scale benchmarks and

application runs. All the values are normalized against the default MPI busy waiting

policy. The Figure 5.10.c shows that COUNTDOWN is capable of significantly cut-

ting the energy consumption of the NAS parallel benchmarks from 6% to 50%. Figure

5.10.c shows that this savings follows the percentage of time the benchmark passes in

MPI phases longer than 500us. From the overhead plot (Figure 5.10.a), it can be seen

that all these energy savings happen with a very small time-to-solution overhead, in

average below 5%. These results are very promising as they are virtually portable to

any application, without the need to touch the application binary. When looking at

the QE (QE-PWscf-*) case reported in Figure 5.11, COUNTDOWN attains similar

results of the NAS also with real application production run optimized for scalability

— COUNTDOWN saves the 22.36% of energy with an overhead of the 2.88% in the

QE-PWscf-EU case —.

Figure 5.11.a shows the total time spent in application and in MPI phases which are

shorter and longer than 500us for the QE-PWscf-EU case. On the x-axis, the Figure

reports the Id of the MPI rank, while in the y-axis reports in percentage of the total

time spent in phases longer and shorter than 500us. It can be immediately seen that in

this real and optimized run, the application spends a negligible time in phases shorter

than 500us. In addition, the time spent in the MPI library and in the application

is not homogeneous among the MPI processes. This is an effect of the workload

parameters chosen to optimize the communications, which distribute the workload in

subsets of MPI processes to minimize broadcast and AlltoAll communications. Using

this configuration, the experimental results report 2.88% of overhead with an energy

saving of 22.36% and a power saving of 24.53% thanks to COUNTDOWN.

Figure 5.11.c shows that for the case QE-PWscf-NEU where the parameters are

not optimized, all MPI processes have the same workload composition as they are

part of same workgroup, and due the large overhead in the broadcast and AlltoAll

communications, all the processes spend almost the 80% of the time in the MPI

library. Even if it is suboptimal, this happens to HPC users running the application
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(a) QE-PWscf-EU (b) QE-PWscf-NEU

Figure 5.11: (a,b) Sum of the time spent in phases longer and shorter than 500us for
QE-PWscf-EU and QE-PWscf-NEU.

without being domain experts or before tuning the execution parameters. This is a

rather common scenario in scientific computing as only runs that are repeated multiple

times are carefully optimized by domain experts.

In this situation, COUNTDOWN increases its benefits, reaching up to 37.74% of

energy saving of and a power saving of 41.47%. In this condition, COUNTDOWN

induces a small but relevant overhead of 6.38% suspecting that some MPI primitives

suffer more than others from the frequency scaling. This problem will analyze in

dept in future works aiming to guarantee that the COUNTDOWN overhead always

remains negligible. However, an overhead below 10% is more than acceptable in many

HPC facilities, especially when considering the massive energy savings.

In summary, the results achieved by COUNTDOWN in at production scale and ap-

plication are very promising and if systematically adopted would dramatically reduce
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the power cost of today supercomputers.

5.5 Summary on Energy-aware MPI Runtime

In this Chapter has been presented COUNTDOWN, a methodology and a tool for

profiling HPC scientific applications and adding DVFS capabilities into standard MPI

libraries. COUNTDOWN implements a timeout strategy to avoid application slow-

down and for exploiting MPI communication slacks to drastically reduce energy con-

sumption. COUNTDOWN has been demonstrated on real HPC systems and work-

loads and does not require any kind of modification to application source code nor

to the compilation toolchain. The COUNTDOWN approach can leverage several low

power state technologies — P/T/C states.

COUNTDOWN has been compared with state-of-the-art power management ap-

proaches for MPI libraries, which can dynamically control idle and DVFS levels for

MPI-based application. The experimental results show that using the tuned timeout

strategy to take decisions on power control can drastically reduce overheads, maxi-

mizing the energy efficient in small and large MPI communications. COUNTDOWN

can lead up to 14.94% energy saving and 19.84% of power saving with a less than 1.5%

performance penalty on a single-compute node. However, the benefits of COUNT-

DOWN increase with the scale of the application. In NAS parallel benchmark runs,

using 1K cores, COUNTDOWN always saves energy with a saving that depends on

the application. It ranges from 6% to 50% at a negligible overhead (below 6%). In

a full-scale production run of QE on more than 3.4K cores, COUNTDOWN saves

22.36% of energy with only 2.88% performance overhead. Energy reduction reaches

37.74% when the application is executed with a default conservative parallelization

setting.

COUNTDOWN is an effective, non-intrusive and low overhead approach to cut

today’s supercomputing center energy-consumption transparently to the user. In

future work, COUNTDOWN would be integrated within standard power manage-

ment infrastructure, such as GEOPM [22], and to complement it with predictive and

application-driven power management techniques.
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Chapter 6

Conclusion

In Chapter 1 has been surveyed the main challenges for the supercomputers in the

exaflops era. These can be briefly summarized as follow:

• It is well established that the pace dictated by the Moore’s law on technological

scaling come at the cost of increasing power consumption and leads to thermally-

bound computing systems. Supercomputers as well as data centres are on the

cutting edge of this crisis, because of aggressive performance, integration density

and sustainable power budget [2, 3].

• For supercomputers ensuring a power budget at design time it is crucial to avoid

power outages, but this require to consider the worst-case power consumption

of the system. However, this approach does not consider that supercomputers

rarely cause worst-case power consumption during their life making this power

design a bad choice. Instead to packing more computing resources in power-

limited systems, designers should target the “the average power consumption

case” and reducing the system’s performance in the peaks of power consumption.

This is today possible using HW components implemented in recent CPUs,

which allow fine-grain tuning of power consumption. While the utilization of

these HW mechanisms is straightforward, they can induce performance penalties

due the unawareness of application workload and to their fast reaction on the

power consumption changes.

• As the side effect of the end of Dennard’s scaling, the power density of new gener-

ation CPUs have started to grow with every technologically scaling step. High-

power densities need aggressive cooling solutions to maintain a safe-working

91



temperature and to avoid overheating situations which creates reliability prob-

lems. Furthermore, with the continuous growth of the number of computing unit

integrated on same die, high-end processors started to show significant thermal

gradients and heterogeneity [48] which can cause performance unbalance and

degradation in application workloads.

• In the supercomputing ecosystem, the aggressive race of performance scaling

shown in the last decades in Top500 list [4], always ignored the power consump-

tion in the design of new generation of supercomputing systems. Today, this

is not more sustainable because supercomputing facilities reach their practical

limit in power provisioning, which is around 20MWatts [7]. HPC vendors and

scientific community needs to take care about efficiency in HPC systems in terms

of energy consumption.

The results presented in this thesis make it clear that propagating application re-

quirements to the operating system and runtime library is a powerful technique to

improve energy efficiency and thermal control of computing systems. Furthermore,

power and thermal control policy should embedded in the middle-ware and runtime

of the system leaving the users and developers focusing only on the functionality and

on the performance of the applications. The software mechanisms developed in this

thesis follow the above direction, they are completely application agnostic and prove

that can be very effective even without modify the application’s code.

In detail, this thesis targets the challenges listed above:

• In Chapter 3 has been explored the characteristics of the power management of

Intel architecture and it has shown that managing the available power budget

without be aware of the application workloads is not beneficial from a perfor-

mance point of view. To prove it, the application workloads the impact has

been analyzed and explained using different power capping strategies and it has

been shown how the execution time can vary using different mechanisms.

• While in Chapter 4 has been targeted energy and thermal management policies.

Differently from state-of-the-art solutions, the analysis has focused on a real

supercomputing system from which has been modeled the real thermal and

power characteristics as well as extracted real scientific workload traces. A
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thermal-aware allocation scheduler has been developed that guarantees a safe

working temperature while it maximizes performance on critical MPI tasks.

Different configurations has been explored to find-out the best performance point

in thermally-bounded systems.

• In Chapter 5, COUNTDOWN has been presented as a methodology and a tool

for profiling HPC scientific applications and injecting DVFS capabilities into

standard scientific applications. COUNTDOWN implements a timeout strat-

egy to avoid costly performance overheads and leveraging on communication

slacks to drastically reduce energy consumption. COUNTDOWN targets real

HPC systems and workloads and does not require any kind of modification to

the source code nor to the compilation toolchain of the application. Our ex-

perimental results show that using timeout strategy to take decisions on power

control can drastically reduce overheads maximizing the energy efficient in small

and large MPI communications. COUNTDOWN is able to avoid high overheads

induced by short MPI calls where the HW power manager is not fast enough to

react to high-frequency requests.

The contribution of this thesis shapes the energy efficiency and thermal control in

a significant way respect to the state-of-the-art works. It would contribute in the

energy efficiency and thermal management field for HPC systems ready to enter in

the exaflops era.
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Glossary

10s-10s A prediction horizon of 10s for the FSP problem and a prediction horizon of

10s for the ISP problem. 63, 64

1s-1s A prediction horizon of 1s for the FSP problem and a prediction horizon of 1s

for the ISP problem. 59, 63, 64

ABI Application Binary Interface. 73

ACPI Advanced Configuration and Power Interface. 30

API Application Programming Interface. 22, 35, 77

APP Application. 39

CMOS Complementary metal-oxide semiconductor. 15

CP Car-Parrinello. 34, 36, 39, 47, 48, 57, 62

CPU Central Processing Unit. 17, 19, 22, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 45,

46, 66, 68, 70, 72, 76, 78, 81, 84, 86, 91

C-state Idle power saving state. 11, 19, 26, 45, 58, 69, 70, 71, 76, 79, 81, 84, 85, 86,

87

CPI Cycles Per Instruction. 10, 35, 37, 39, 40, 42

DCT Dynamic Concurrency Throttling. 27

DRAM Dynamic Random Access Memory. 33, 35, 86

DTM Dynamic Thermal Management. 17, 18, 44, 59, 65
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DVFS Dynamic and Voltage Frequency States. 16, 17, 19, 23, 27, 30, 44, 45, 46, 58,

65, 67, 70, 72, 79, 81, 82, 83, 84, 90

EAW Energy-aware MPI wrapper active. 51, 59

FF Fixed Frequency. 10, 37, 38, 37, 39, 40, 42

FFT Fast Fourier Transform. 34, 68, 86

FPGA Field Programmable Gate Array. 29

FSP First Step Problem. 53, 55, 56, 57, 59, 62, 63, 64

GEOPM Global Extensible Open Power Manager. 22, 27

GPGPU General-Purpose computing on Graphics Processing Units. 29

HPC High-Performance Computing. 5, 10, 13, 17, 18, 19, 20, 21, 23, 24, 25, 29, 30,

34, 36, 42, 44, 45, 47, 49, 50, 52, 57, 65, 66, 67, 68, 72, 78, 86, 87, 88, 89, 90,

92, 93

HW Hardware. 16, 17, 20, 22, 29, 30, 32, 72, 74, 76, 77, 81, 82, 83, 84, 91, 93

ICC Intel C language Compiler. 34, 68

IFORT Intel FORTRAN language Compiler. 34, 68

ILP Integer Linear Programing. 24, 44, 49, 50, 54, 65

IO Input/Output. 27, 34, 79

ISP i-th Step Problem. 55, 56, 57, 59, 62, 63, 64

KS Kohn and Sham. 68, 86

LA Linear Algebra. 34

LUT LookUp-Table. 46
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MPI Message Passing Interface. 10, 11, 18, 19, 20, 23, 25, 26, 27, 30, 34, 35, 36, 39,

42, 44, 47, 48, 49, 50, 51, 52, 53, 57, 58, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69,

70, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 86, 87, 88,

89, 90, 92, 93

MSR Model-Specific Register. 32, 35

NoEAW No energy-aware MPI wrappe active. 59

NoTMC No thermal control active. 59

OpenMP Open Multiprocessing. 27, 68

OS Operating System. 17, 19, 20, 31, 36, 43, 44, 45, 70

OTC Optimal Thermal Controller. 49, 50, 65

PE Processing Element. 30

PMPI Profile Message Passing Interface. 35, 74

PMU Performance Monitoring Unit. 35

P-state Performance State. 11, 16, 19, 25, 26, 27, 30, 31, 32, 45, 69, 70, 77, 79, 81,

84, 85, 86, 87

PWscf Plane-Wave Self-Consistent Field. 68, 86

QE QuantumESPRESSO. 34, 36, 39, 47, 48, 57, 58, 62, 67, 68, 69, 86, 87

QE-PWscf-NEU QuantumESPRESSO - Plane-Wave Self-Consistent Field - Not Ex-

pert User. 12, 86, 88

QE-PWscf-EU QuantumESPRESSO - Plane-Wave Self-Consistent Field - Expert

User. 12, 86, 87, 88

QE-CP-NEU QuantumESPRESSO - Car-Parrinello - Not Expert User. 11, 68, 69,

72, 73, 79, 84, 86
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QE-CP-EU QuantumESPRESSO - Car-Parrinello - Expert User. 11, 68, 69, 71, 72,

78, 79, 82, 84, 85

RAPL Running Average Power Limits. 10, 17, 22, 29, 32, 33, 32, 33, 35, 36, 37, 38,

37, 39, 40, 42, 43, 76

RC Resistor-Capacitor. 46

SIMD Single Instruction, Multiple Data. 10, 37, 39, 40, 42

SMP Symmetric MultiProcessor. 34

SPMD Single Program, Multiple Data. 30

SS-100s Static allocation for the FSP problem and a prediction horizon of 100s for

the ISP problem. 63

SS-10s Static allocation for the FSP problem and a prediction horizon of 10s for the

ISP problem. 63, 64

SS-1s Static allocation for the FSP problem and a prediction horizon of 1s for the

ISP problem. 59, 63

SS-SS Static allocation for both optimization problems. 59, 63, 64

SW Software. 20

TCO Total Cost of Ownership. 16, 25

TDP Thermal Design Power. 17

TSC Time Stamp Counter. 35, 76

T-state Throttling State. 11, 19, 25, 26, 67, 69, 72, 73, 77, 79, 81, 84, 85, 86, 87

TMC Thermal-aware task Mapper and Controller. 10, 50, 53, 55, 56, 57, 59, 60, 61,

60

Tts Time to Solution. 19, 24, 25, 26, 29, 44, 64, 70, 72
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