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Preface

The thesis analyses threshold autoregressive moving-average models (TARMA).
They are an extension of the well known threshold autoregressive models (TAR)
as to allow serially dependent noise. In linear time series analysis, the moving-
average extension of the autoregressive model yields a parsimonious model for
linear time series analysis. Similarly, the TARMA model may provide a parsimo-
nious model for non-linear time series analysis. The systematic study of TARMA
models presents several challenges. In particular, the main issue concerns their
probabilistic structure, namely, establishing the parametric conditions for er-
godicity, due to the long-standing open problem of proving irreducibility. As
the conditions for the stationarity of TARMA models were unknown, it has not
been possible to develop the inferential aspects and use them in real applica-
tions. The thesis solves the probabilistic problems for the first order TARMA
model, and, therefore, makes a first step to enable the practical application
of TARMA models. The results allow us to develop a powerful unit root test
for both linear and non-linear processes. One of the most serious drawbacks
that affect unit root tests is the size distortion in presence of dependent errors,
especially of the moving-average kind. To the best of our knowledge, all the
proposals that address the problem of the size distortion due to MA processes
do not consider non-linear alternatives. On the other hand, tests that have a
non-linear specification in the alternative hypothesis do not deal with such issue
and, as we will show, their size is severely biased. We use TARMA models to
develop a novel unit root test based upon Lagrange multipliers that does not
suffer from size distortions and, at the same time, allows for a wide and flexible
non-linear alternative. We prove that our supLM test is consistent, it is simi-
lar (w.r.t to the MA parameter) and it is nuisance parameters free. Moreover,
in addition to the asymptotic version of the test we propose a wild bootstrap
version with very good properties in terms of size and power. The final part
of the thesis is devoted to a preliminary empirical investigation regarding the
parsimony of TARMA models.
The results are incorporated into the following articles:

Chan and Goracci [2017]: K.-S. Chan, G. Goracci (2018) “Necessary and
sufficient conditions for the ergodicity of first-order threshold autoregres-
sive moving-average processes”, submitted.

Chan et al. [2018]: K.-S. Chan, S. Giannerini, G. Goracci, H. Tong (2018)
“Unit-root testing for linear and non-linear alternatives: a TARMA based
approach”, Technical Report.

Goracci [2018] G. Goracci (2018) “On the parsimony of TARMA models
for non-linear time series”, Working paper.

The thesis is organized as follows: in Chapter 1, we present a review on threshold
models in time series analysis. In Chapter 2, we provide an essential theoretical
background that contains the main mathematical tools used throughout the
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thesis. In Chapter 3 we present the derivation of the probabilistic structure
of first order TARMA models, while, in Chapter 4, we present a novel unit
root test for both linear and non-linear alternatives based on TARMA models.
Finally, in Chapter 5, we perform an empirical investigation on the parsimony
of TARMA models and use them to analyse the Canadian lynx time series.



Chapter 1

Threshold models

Threshold autoregressive models are a class of non-linear time series models that
can describe many dynamical phenomena. They are based on the threshold
principle: when the phenomenon crosses a certain threshold then it changes
qualitatively. For instance, in Figures 1.1 and 1.2 there are two thresholds
that identify three regimes. The green lower regime, the red middle regime and
the yellow upper regime. They were introduced by Tong [1978]. Due to his
contributions, in 2007, he has been awarded the Guy medal in Silver of the
Royal Statistical Society. In a seminal work, Tong and Lim [1980] presented the
threshold autoregressive (TAR) model, defined as follows:

l-TAR(p):

Xt =


φ1,0 +

∑p
i=1 φ1,iXt−i + εt if Xt−d ≤ r1

φ2,0 +
∑p
i=1 φ2,iXt−i + εt if r1 ≤ Xt−d ≤ r2

...
...

φl,0 +
∑p
i=1 φl,iXt−i + εt if Xt−d > rl−1

(1.1)
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Figure 1.1: TARMA with 3 regimes: time plot
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Figure 1.2: TARMA with 3 regimes: lag plot

Since the introduction of the TAR model, many useful variations have
been developed and found diverse applications in non-linear time series
analysis [Tong, 1990, 2007, Cryer and Chan, 2008, Chan, 2009, Tong,
2011, Chan et al., 2017], [see also Hansen, 2011, and references therein
for a review]. Among them, the threshold moving-average model (TMA)
and the threshold autoregressive moving-average model (TARMA) play a
relevant role.

l-TMA(q):

Xt =


εt +

∑q
j=1 θ1,jεt−j if Xt−d ≤ r1

εt +
∑q
j=1 θ2,jεt−j if r1 ≤ Xt−d ≤ r2

...
...

εt +
∑q
j=1 θl,jεt−j if Xt−d > rl−1

(1.2)

l-TARMA(p,q):

Xt =


φ1,0 +

∑p
i=1 φ1,iXt−i + εt +

∑q
j=1 θ1,jεt−j if Xt−d ≤ r1

φ2,0 +
∑p
i=1 φ2,iXt−i + εt +

∑q
j=1 θ2,jεt−j if r1 ≤ Xt−d ≤ r2

...
...

φl,0 +
∑p
i=1 φl,iXt−i + εt +

∑q
j=1 θl,jεt−j if Xt−d > rl−1,

(1.3)

where (i) l is the number of regimes; (ii) p and q are the autoregressive and
moving-average orders, respectively; (iii) φi, i = 1, . . . , p and θj , j = 1, . . . , q
are the autoregressive and moving-average parameters, respectively; (iv) d the
delay parameter; (v) r1 < r2 < . . . < rl−1 are the threshold parameters. The
process {εt} is the error term (innovation) and it is assumed to be a sequence
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of independent and identically distributed (iid) random variables. The orders p
and q can be regime specific; for simplicity they are generally assumed identical
across them.

Models (1.1), (1.2) and (1.3) are piecewise-linear, since the sub-models are
linear in each regime. They are an extension of the corresponding well known
AR, MA, ARMA models, allowing the parameters to change across regimes. It
is well known that, in the linear case, ARMA models may provide more par-
simonious models with respect to AR or MA models. Analogously, TARMA
models may describe a wide range of dynamical phenomena with few parame-
ters. Therefore, they possess a great descriptive power but the theory behind
them is rather complex and the research has been stuck for 25 years due to un-
solved probabilistic and statistical challenges. In particular, the conditions for
ergodicity are necessary to develop the theoretical aspect related to parameter
estimation and hypothesis testing. In the following, we start with a review of
the relevant literature.

1.1 Probabilistic properties and parameter esti-
mation of threshold models in time series

TAR models were introduced in Tong and Lim [1980] where the authors derived
some sufficient conditions for their ergodicity. Moreover, they proposed several
applications in order to show their descriptive power. Petruccelli and Woolford
[1984] analyzed the simplest TAR model with one threshold equal to zero, d = 1,
p = 1 and without intercepts, i.e.:

Xt =

{
φ1,1Xt−1 + εt if Xt−1 ≤ 0

φ2,1Xt−1 + εt if Xt−1 > 0.
(1.4)

They assumed {εt} to be a sequence of iid random variables each having a
strictly positive density on R and zero mean. Moreover, for each t, εt is indepen-
dent from X0, X1, . . . , Xt. They showed that the ergodic region is unbounded.
In fact, they proved that the process defined in (1.4) is ergodic if and only if

φ1,1 < 1, φ2,1 < 1 and φ1,1φ2,1 < 1. (1.5)

Therefore, non-linearity allows us more freedom in the choice of parameters
with respect to the linear AR(1) case where the ergodic region is bounded: the
magnitude of each autoregressive parameter must be less then one. Moreover,
under the assumption that E

[
|εt|2+ζ

]
< ∞ for some ζ > 0, they proved the

consistency and the asymptotic normality of the least square estimators for φ1,1

and φ2,1. Finally, they proposed a test for the null hypothesis φ1,1 = φ2,1 (AR
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versus TAR). Chan et al. [1985] focused on (1.1) with d = 1, p = 1, i.e.:

Xt =


φ1,0 + φ1,1Xt−1 + σ1εt if Xt−1 ≤ r1

φ2,0 + φ2,1Xt−1 + σ2εt if r1 < Xt−1 ≤ r2

...
...

φl,0 + φl,1Xt−1 + σlεt if Xt−1 > rl−1,

(1.6)

where {εt} is a zero mean iid process with strictly positive density over the real
line and σi, 1 ≤ i ≤ l, are positive parameters. Note that the error variance can
change across the regimes. They obtained that the process defined in (1.6) is
ergodic if and only if one of the following conditions holds:

φ1,1 < 1, φl,1 < 1 and φ1,1φl,1 < 1,

φ1,1 = 1, φl,1 < 1 and φ1,0 > 0,

φ1,1 < 1, φl,1 = 1 and φl,0 < 0,

φ1,1 = 1, φl,1 = 1 and φl,0 < 0 < φ1,0,

φ1,1φl,1 = 1, φ1,1 < 0 and φl,0 + φl,1φ1,0 > 0.

Hence, the ergodicity of the process depends only on the two extreme regimes.
Moreover, the conditions are less restrictive than those found in Petruccelli
and Woolford [1984]. This is due to the presence of the intercept parameters
that allow to include the boundaries of the previous region. Assuming that the
innovations have finite absolute moment of order K, for some K, they proved
that if

φ1,1 < 1, φl,1 < 1 and φ1,1φl,1 < 1

then the invariant probability distribution of the chain has finite K-th moment
and it is geometrically ergodic. Furthermore, under the assumptions that (i)
{Xt} has a stationary distribution with finite second moment; (ii) σ2

i = E[ε2
i,t] <

∞, for i = 1, . . . , l and (iii) ri, 1 ≤ i ≤ l are known, they established strong
consistency of the estimators of φi,0 and φi,1 and σ2

i , for i = 1, . . . , l and the
asymptotic normality for the estimator of φi,0 and φi,1. Guo and Petruccelli
[1991] derived the complete classification of the parameter space of (1.6) into
parametric regions over which such model is either transient or recurrent, and
the recurrence region is further subdivided into regions of null recurrence or
positive recurrence, or even geometric recurrence. Hence Model 1.1 has been
well studied when p = 1 and d = 1. The analysis is less complete if p 6= 1 and
d 6= 1, even if some results are available. Chen and Tsay [1991] extended the
result of Petruccelli and Woolford [1984] to the model with a general positive
delay parameter, i.e.:

Xt =

{
φ1,1Xt−1 + εt if Xt−d ≤ 0

φ2,1Xt−1 + εt if Xt−d > 0,
(1.7)

where {εt} are iid random variables with absolutely continuous marginal distri-
bution and positive probability density function over the real line and E[εt] <∞,
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for each t. They proved that the process defined in (1.7) is ergodic if and only
if

φ1,1 < 1, φ2,1 < 1, φ
s(d)
1,1 φ

t(d)
2,1 < 1 and φ

t(d)
1,1 φ

s(d)
2,1 < 1,

where s(d) and t(d) are nonnegative integers depending on d and s(d) and t(d)
are odd and even numbers, respectively. They also provided the necessary and
sufficient conditions for geometric ergodicity. Ling et al. [2007] investigated the
first-order threshold moving-average model. They obtained a sufficient condi-
tion for a unique strictly stationary and ergodic solution of the model without
the need to check for irreducibility. They also established the necessary and
sufficient conditions for the invertibility of first-order TMA models. Further-
more, they discussed the extension of their results to the first-order multiple
threshold moving-average models and higher-order threshold moving-average
models. Li and Ling [2012] focused on the estimation of TMA. They showed
that the estimator of the threshold is consistent and its limiting distribution
is related to a two-sided compound Poisson process, whereas the estimators of
other coefficients are strongly consistent and asymptotically normal.

The techniques developed for the TMA models paved the way for a system-
atic study of the much more challenging TARMA models. Liu and Susko [1992]
focused on the TARMA(1,q):

Xt =


φ1,0 + φ1,1Xt−1 + εt +

∑q
j=1 θ1,jεt−j if Xt−d ≤ r1

φ2,0 +
∑p
i=1 φ2,1Xt−1 + εt +

∑q
j=1 θ2,jεt−j if r1 ≤ Xt−d ≤ r2

...
...

φl,0 +
∑p
i=1 φl,1Xt−1 + εt +

∑q
j=1 θl,jεt−j if Xt−d > rl−1,

where {εt} is a iid process of zero mean random variables having finite absolute
moment of order K, for some K. They were not able to prove the irreducibility
of the process, but proved that it is ergodic if

φ1,1 < 1, φl,1 < 1 and φ1,1φl,1 < 1. (1.8)

Moreover, they showed that φ1,1 ≤ 1 and φl,1 ≤ 1 are necessary conditions for
ergodicity. They partially answered to the conjecture that the stationarity of
the TARMA is based just on their autoregressive part as is the case for ARMA
models. Ling [1999] derived the sufficient conditions for the stationarity and
finiteness of the moments of TARMA models but they were not able to prove
their irreducibility. Therefore, they hypothesized the TARMA to be irreducible
and derived some conditions for ergodicity.

To the best of our knowledge, there are no other theoretical contributions on
the probabilistic properties of TARMA models and the above contributions are
the starting point for solving the long standing riddle of the regions of ergodicity.
This will be presented in Chapter 3.



16

1.2 Unit-root tests for non-linear alternatives

Testing for the presence of a unit root in time series has important practical
implications and is witnessed by the vast amount of literature devoted to the
problem. Indeed, the fact that there are entire books dedicated to the exercise
[Patterson, 2010, 2011, 2012, Choi, 2015] gives the idea of the many facets and of
the non-trivial theoretical and practical issues related to it [see also Haldrup and
Jansson, 2006, and references therein]. A general advice that might be drawn
from the large amount of investigations is that unit root tests should never be
applied without prior knowledge upon the process that might have generated the
data. In fact, the theoretical framework and the distribution of the associated
test statistics change according to the alternative hypothesis. In any case, as
also pointed out in [Choi, 2015, Sec. 3.6], it remains unclear whether, besides
ascertaining the presence of a unit root, these tests can be used to decide in
favour of a particular model specification.

Recently, attention has been given to unit root tests against non-linear sta-
tionary alternatives. The simulation studies of Balke and Fomby [1997], Pip-
penger and Goering [1993] and Taylor [2001] showed that the Dickey-Fuller test
[DF hereafter Dickey and Fuller, 1979], loses power against a non-linear alterna-
tive. Therefore, several different approaches have been proposed to derive more
powerful tests in this respect. One possibility is to use a non-linear model, such
as the TAR model, as the alternative hypothesis. The TAR model is particu-
larly appealing in this context as it can incorporate one or more regimes with
a unit root and still be globally stationary. It can provide a key interpretation
in terms of a stationary non-linear process of many series that were deemed as
non-stationary.

One of the main theoretical problems arising from testing for a unit root
against a TAR model is that the threshold parameters are absent under the
null hypothesis so that it is hard to derive the null asymptotic distribution of
the statistics. Usually, this issue is addressed in two different steps: i) the null
distribution of the statistic is derived assuming the threshold fixed and ii) it
is considered either the supremum or the average or the exponential average of
the statistic built on a set of possible values for the thresholds. Therefore, the
choice of such set plays a crucial role. Enders and Granger [1998] suggested
to use a F -type statistic to test a random walk against a two-regime SETAR
model with fixed threshold, but the simulation studies showed that their test
does not improve with respect to the DF test. Bec et al. [2004] focused on the
three-regime SETAR with thresholds symmetrically chosen. They proposed a
supWald test, computed on a set of possible values for the thresholds, derived
its asymptotic null distribution and proved that it is nuisance parameter free.
The model tested is a stationary three-regime SETAR model of the kind

∆Xt =


α11∆Xt−1 + · · ·+ α1p∆Xt−p+1 + µ1 + ρ1Xt−1 + εt, if Xt−1 ≤ −r
α21∆Xt−1 + · · ·+ α2p∆Xt−p+1 + µ2 + ρ2Xt−1 + εt, if |Xt−1| < r

α31∆Xt−1 + · · ·+ α3p∆Xt−p+1 + µ3 + ρ3Xt−1 + εt, if Xt−1 ≥ −r
(1.9)
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where εt ∼ i.i.d.N(0, 1) and the null hypothesis results:

H0 : ρ1 = ρ2 = ρ3 = 0.

They proved that a three-regime SETAR with unit root in the middle regime
is stationary and mixing under mild conditions. Moreover, they derived the
asymptotic distribution of the statistics under H ′0

H ′0 : ρ1 = ρ2 = ρ3 = 0;µ1 = µ2 = µ3 = 0;αij = 0 for i = 1, 2, 3 j = 1, . . . , p.

They proposed three different test statistics but they suggested to use the fol-
lowing:

BBC = sup
r∈[r,r]ᵀ

LRn(r), where LRn(r) = n log
σ̃2

σ̂2
(1.10)

and σ̃2 and σ̂2 are the residual variances from the OLS estimated model (1.9)
with and without the restriction ρ1 = ρ2 = ρ3 = 0, respectively. Also, Kapetan-
ios and Shin [2006] tested against a three-regime SETAR model with the middle
regime (usually named corridor regime) constrained to be a random walk. They
proposed a Wald statistic and proved that it is not dependent on the threshold
parameters. The thresholds grid is selected such that the corridor regime has
a finite width both under the null and the alternative hypothesis. The model
tested is a stationary three-regime SETAR model of the kind

∆Xt =


β1Xt−1 + εt, if Xt−1 ≤ r1

εt, if r1 < Xt−1 ≤ r2

β2Xt−1 + εt, if Xt−1 > r2

(1.11)

where εt ∼ iidN(0, 1) and the system of hypothesis results:{
H0 : β1 = β2 = 0

H1 : β1 < 0;β2 < 0.

The three test statistics are based upon the Wald statistic:

W(r1,r2) = β̂
ᵀ
V (β̂)−1β̂

where β̂ is the OLS estimator of β = (β1, β2)ᵀ. In particular:

KSs = sup
i∈Γ
W(i)

(r1,r2); KSa =
1

#Γ

∑
i∈Γ

W(i)
(r1,r2); KSe =

1

#Γ

∑
i∈Γ

exp

W(i)
(r1,r2)

2

 ;

here W(i)
(r1,r2) is the Wald statistic obtained from the i-th point of the threshold

parameters grid set Γ. Bec et al. [2008a] used the same model considered in
Bec et al. [2004], but revisited the choice of the set for the thresholds. They
proposed an adaptive procedure such that the set is bounded under the null
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hypothesis and unbounded under the alternative. Other contributions include
Seo [2008], Park and Shintani [2016], de Jong et al. [2007].

The aforementioned authors used models where the threshold variable coin-
cides with the lagged dependent variable. Among the works based on TAR mod-
els with possibly exogenous threshold variables we mention Caner and Hansen
[2001] that examined a two-regime TAR(p) with an autoregressive unit root.
They treated a statistical test to analyse simultaneously both non-linearity and
non-stationarity. In particular, they studied Wald tests for a threshold effect
(for non-linearity) and Wald and t tests for unit roots. Their statistic has an
asymptotic null distribution with two components: one that reflects the unit
root and deterministic trends and it is free of nuisance parameters; and one
that is identical to the empirical process found in the stationary case, and is
nuisance-parameter dependent. Moreover, they proposed bootstrap procedures
to approximate the sampling distribution. Also, Enders and Granger [1998]
used an auxiliary model where the threshold variable is taken to be the first dif-
ferences of the dependent variable. Moreover, Giordano et al. [2017] presented
a Wald test based on a double threshold process where the innovation process
has a threshold structure.

One of the most serious drawbacks that affect unit root tests is the size
distortion in presence of dependent errors, especially of the moving-average kind
[for a detailed account see Ch. 6 and 9 in Patterson, 2011]. Such distortion
is particularly evident when the root of the moving-average polynomial of the
first differenced series is large and positive1. Hosseinkouchack and Hassler [2016]
proposed a variance ratio-type unit root test and compared it with several recent
tests, some of which are nuisance parameter free. The results show clearly that
the size distortion affects practically all the tests and persists for a sample size
of 1000. The same behaviour is observed in Cook [2010] where the practical
usefulness of the so called robust range unit root tests is questioned.

A first way to cope with the issue of the size distortion is to augment the DF
regression with a number of lagged predictors (say p) as to model the moving-
average component. The problem with this approach is that it is bound to an
arbitrary lag selection step that can lead either to a severe power loss or to no
size correction at all [see e.g. Agiakloglou and Newbold, 1999]. Ng and Perron
[2001] proposed unit root tests and a modified information criterion (MIC) for
lag selection in the ADF regression that reduces considerably the size distortion
while maintaining good power properties. A slight modification of the aforemen-
tioned tests that improves over non local alternatives was proposed in Perron
and Qu [2007]. Contrary to the results reported in Ng and Perron [2001], Hos-
seinkouchack and Hassler [2016] found no size improvement when they apply
the modified information criterion to the GLS-DF test proposed in Elliott et al.
[1996]. The modified test statistics proposed in Ng and Perron [2001] are bound
to the estimation of the (autoregressive) spectral density at frequency zero.
An heteroskedasticity-robust version of the MIC criterion and a wild bootstrap

1The parametrization we use for an ARMA(p, q) process is the following: (1−Bφ1 − · · ·−
Bpφp)Xt = (1−Bθ1 − · · · −Bpθq)εt, where BpXt = Xt−p.
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ADF test were proposed in Cavaliere et al. [2015], where the authors showed
that the MAIC criterion overestimates the lag order in a number of situations
and advocated the use of their modified criterion both under homoskedastic-
ity and heteroskedasticity. Paparoditis and Politis [2018] found a theoretical
justification for the apparent contradictory behaviour of the ADF test in the
presence of correlated data. They proved that the asymptotic distribution of the
ADF statistic under the null hypothesis is valid under very general assumptions
regarding the innovation process, namely, it is valid with the innovations follow-
ing a zero mean, second order stationary (linear or non-linear) process having
a continuous and strictly positive spectral density. Despite this flexibility, they
found that the finite sample distribution of the statistic might differ consistently
from the asymptotic counterpart in virtue of the low rate of convergence of the
estimator for the autoregressive parameter which is of the order of O(

√
n/p).

This is markedly different from the expected order O(n) under the null, and
from the order O(

√
n) of other test statistics under the alternative hypothesis.

Moreover, as p diverges, the slow rate of convergence under the alternative is
due to the lagged predictors of the ADF regression becoming asymptotically
collinear. A second approach to deal with ARMA-type errors in unit root tests
is to incorporate them directly in the parametric specification of the model, [for
an account see also Ch. 7 of Patterson, 2011]. This idea was developed in Said
and Dickey [1985] where the limiting distributions of non-linear least squares
regression estimators of the parameters of an ARIMA(p, 1, q) model were de-
rived. In Galbraith and Zinde-Walsh [1999], the authors derived the asymptotic
distribution of the ADF statistics in MA processes. More recently, Davidson
[2010] analyzed the problem from the point of view of bootstrap testing and
proposed a resampling procedure to address the issue.

As mentioned in the preface, those tests that address the problem of the size
distortion do not consider non-linear alternatives. On the other hand, tests that
have a non-linear specification in the alternative hypothesis do not deal with
such issue. This motivated us to study a unit root test having good properties
in terms of size and power against non-linear alternatives. As we will show in
Chapter 4, TARMA models are the key to addressing such challenge.
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Chapter 2

Mathematical tools

In this chapter, we present some mathematical tools used to develop the main
results of the thesis. In Section 2.1 we introduce the essential concepts of Markov
Chain theory. We focus on the notion of irreducibility and the classification of
the long-run probabilistic behaviour of an irreducible Markov chain. In Sec-
tion 2.2 we summarize the theory concerning the convergence of probability
measures in metric spaces dwelling on the convergence of stochastic elements
in the functional space D and the convergence of stochastic integrals. In Sec-
tion 2.3, we introduce the definition of contiguity and the concept of change of
measure. For a detailed treatment of these topics see Meyn and Tweedie [2012]
for the Markov Chain theory; Billingsley [1968] for the convergence of proba-
bility measures in metric spaces and Øksendal [2003] for stochastic differential
equations.

2.1 Classification of a ϕ-irreducible Markov chain

Let X and B(X ) be a general set and a countably generated σ-field on it,
respectively. We assume that X is a topological space and B(X ) the Borel σ-
field. Moreover, consider X = {Xt}t∈Z+ to be a stochastic process evolving in
X and Pn(x,A) the probability that the chain reaches A from x in n steps, with
x ∈ X and A ⊂ X . In the following, we use Px (or Ex) to indicate that the
probability (expectation) is computed with the starting point equal to x, i.e.
X0 = x.

Definition 1. The family of probabilities P = {P (x,A), x ∈ X , A ⊂ X} is a
transition probability kernel or Markov transition functional if:

(i) for each A ⊂ X , P (·, A) is a non negative measurable function on X ;

(ii) for each x ∈ X , P (x, ·) is a probability measure on B(X ).

Definition 2. The process X = {Xt}t∈Z+ is a time-homogeneous Markov chain
if

Prob(Xt+n ∈ A | Xs, s < t,Xt = x) = Pn(x,A).
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The independence of Pn on the values Xs, s < t, given known value of Xt, is
named the Markov property, while the independence between Pn and t time-
homogeneity property.

Now, we introduce the key concept of irreducibility that refers to the possi-
bility for the chain to reach every part of X with non zero measure, from every
starting point.

Definition 3. The process X = {Xt}t∈Z+ is ϕ-irreducible if there exists a
measure ϕ on B(X ) such that, for every x ∈ X and A ⊂ X with ϕ(A) > 0, the
probability that the chain reaches A starting from x is positive. The measure
ϕ is called irreducibility measure.

Definition 4. Let ψ be a measure on B(X ). ψ is the maximal irreducibility
measure for the chain X if

(i) X is ψ-irreducible;

(ii) if X is ϕ-irreducible for some ϕ, then ϕ is absolutely continuous w.r.t. ψ
(ϕ� ψ), i.e.:

ψ(A) = 0 implies ϕ(A) = 0 for each A ∈ B(X ).

We set
B+(X ) = {A ∈ B(X ) : ψ(A) > 0}.

Irreducibility gives an important idea on the behaviour of the chain. In fact, if
the chain is ϕ-irreducible, it seems that small change in the initial position do not
change substantially the behaviour of the chain, allowing to reach the same set.
The definition guarantees that non negligible sets A, namely such that ϕ(A) 6= 0,
are always reached by the chain. In the analysis of the long-run probabilistic
behaviour of a Markov chain, establishing the ϕ-irreducibility of the chain is
the primary step. In fact, the problem of classifying the long-run probabilistic
behaviour of a Markov chain can be posed only if it is ϕ-irreducible. We recall
that, in the context of chains evolving in a countable space, an irreducible
Markov chain is characterized by the solidarity property in that all its states
have the same classification. Hence, it is meaningful to classify the whole chain.
When the state-space is a general set X , there is a similar solidarity property: if
the chain is ϕ-irreducible then there exists a partition of X whose elements have
the same classification. These sets are called small sets (or status sets or petite
sets). Therefore, if the chain is ϕ-irreducible, it is sufficient to analyze only
the behaviour of such sets in order to derive the probabilistic structure of the
whole chain. In addition, several powerful theorems to detect the probabilistic
structure of a chain require it to be ϕ-irreducible (e.g. the Tweedie’s criteria,
see below).

Irreducibility can be studied via the concept of reachability in Control The-
ory. In particular, it is needed to (i) analyze the deterministic control model
associated to {Xt}, where {εt} is replaced by a deterministic real-valued se-
quence {ut}; (ii) derive the reachable set which consists of all states y such that
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for each state x, there exists a positive integer m and a sequence, ut, . . . , ut+m−1,
such that Xt = x and Xt+m = y; (iii) prove that for each k ∈ N the k-step
transition probability density of {Xt} is positive over the set of states that can
be reached by the associated deterministic chain in k steps. This ensures that
if the reachable set Ω has positive Lebesgue measure, then {Xt} is irreducible
w.r.t. the Lebesgue measure restricted on Ω.

An important aspect in the analysis of a Markov chain is to study its stability.
One can refer to the stability in different ways: (i) the property of returning
at the starting point (weak stability, irreducibility), (ii) the property of visiting
the non null-measure sets with probability one or in a finite mean time (mild
stability, recurrence), (iii) the convergence of the n-step transition probability
to a invariant measure (strong stability, ergodicity).

Definition 5. A ψ-irreducible chain is recurrent if for each A ∈ B+(X ), it holds
that: ∑

n

Pn(x,A) =∞.

Otherwise, it is transient.

The notion of recurrence is based on the expected value of the random variable
ηA, which counts the number of visits to a set A, i.e.:

ηA =

∞∑
n=1

I (Xn ∈ A) .

Hence, a ψ-irreducible chain is recurrent if Ex (ηA) = ∞, for each A ∈ B+(X ).
Now, we introduce a stronger concept of recurrence, named Harris recurrence,
that considers the event that the chain enters in A infinitely often or, equiva-
lently, ηA =∞.

Definition 6. A ψ-irreducible chain is Harris recurrent if for each A ∈ B+(X ),
it holds that:

Px (ηA =∞) = 1, for each x ∈ A.

We focus on recurrent chains and divide them into positive recurrent and
null recurrent. The strongest possible form of stability is that the distribution
of Xn does not change as n assumes different values. If this is the case, then
the Markov property implies that the finite dimensional distributions of X are
invariant under translation in time. In this respect, we introduce the concept
of invariant measure.

Definition 7. A σ-finite measure π on B+(X ) is an invariant measure if it
satisfies the following balance equation:

π(A) =

∫
X
π(dx)P (x,A), for each A ∈ B(X ).
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A key characterization of recurrent chains is that they admit a unique (up
to a multiplication constant) invariant measure π. If the invariant measure is
finite, then it may be normalized as to obtain a stationary probability measure,
otherwise it is not possible to build such stationary probability measure. This
leads us to the following classification of recurrent chains.

Definition 8. A ψ-irreducible recurrent chain is positive recurrent if it admits
an invariant probability measure π. Otherwise, it is null recurrent.

Definition 9. A ψ-irreducible chain is ergodic if it is positive recurrent and
aperiodic, i.e.

gcd{n|Pn(x, x) > 0} = 1, for each x ∈ X .

Essentially, ergodicity means that the sequence of transition probability ker-
nels Pn(x, ·) converges to the invariant measure π, as n increases, i.e.:

lim
n→∞

‖Pn(x, ·)− π‖ = 0,

where ‖ · ‖ is the total variation norm, defined as:

‖µ‖ = sup
A∈B(X )

µ(A)− inf
A∈B(X )

µ(A), where µ is a measure on B(X ).

Obviously, such convergence of the transition probability kernels to the invariant
measures can occur with different rates. We examine when the convergence takes
place at uniform geometric rate.

Definition 10. A ψ-irreducible ergodic chain is geometrically ergodic if there
exists r > 1 such that:

∞∑
n=1

rn ‖Pn(x, ·)− π‖ <∞.

As stated before, the long-run probabilistic behaviour of a ϕ-irreducible chain
can be derived studying its small sets. In this respect, the most powerful tools
are the so called Tweedie’s criteria that allow to classify a ϕ-irreducible chain.
Essentially they are based on two steps: (i) proving that any compact set (e.g.
the set of the form [−M,M ]) is a small set and (ii) finding the energy functions
that satisfy such criteria. Below, we report the definition of a small set, a useful
criterion to prove if a set is a small set and some Tweedie’s criteria.

Definition 11. A set C ∈ B(X ) is called νm-small set if there exists a m > 0
and a non-trivial measure νm on B(X ) such that

Pm(x,B) ≥ νm(B), for all x ∈ C and B ∈ B(X ).

Proposition 12. (from [Nummelin, 2004, Proposition 2.11]) A set C is a small
set if there exists a set D, with µ(D) > 0 and a non-negative integer L < ∞
such that:

inf
x∈[−M,M ]

L∑
n=0

Pn(x,C) > 0, for each C ⊆ D, with µ(C) > 0.
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Proposition 13. A ψ-irreducible chain is recurrent if there exist a small set A
and a function g(·) : R→ [0,+∞] such that

(i) E[g(Vt+1)|Vt = x] ≤ g(x), for all x ∈ Ac;
(ii) g(x) > supy∈[−M,M ] g(y), for all x ∈ Ac;
(iii) Bn = {y ∈ R : g(y) ≤ n} is a small set for all sufficient large n.

Proposition 14. A ψ-irreducible is null if there exist δ > 0, a non-negative
function g(·) and a set A, with µ(A) > 0 and µ(Ac) > 0, such that:

(i) E[g(Vt+1)|Vt = x] ≥ g(x), for each x ∈ Ac;
(ii) E[|g(Vt+1)− g(x)| | Vt = x] ≤ δ, for each x ∈ R;
(iii) g(x) > supy∈A g(y), for each x ∈ Ac.

Proposition 15. A ψ-irreducible chain is ergodic if there exist a small set A
and a function g(·) : R→ [0,+∞] and some constants K, γ > 0, such that

(i) E[g(Vt+1)|Vt = x] ≤ g(x)− γ, for all x ∈ Ac;
(ii) E[g(Vt+1)|Vt = x] ≤ K, for all x ∈ A.

Proposition 16. A ψ-irreducible chain is geometrically ergodic if there exist
a function g(·) : R → [1,+∞) and some constants M,K, γ > 0, such that
[−M,M ] is a small set and

(i) E[g(Vt+1)|Vt = x] ≤ (1− γ)g(x), for all x ∈ [−M,M ]c;
(ii) E[g(Vt+1)|Vt = x] ≤ K, for all x ∈ [−M,M ].

2.2 Convergence of probability measures in a
metric spaces

Definition 17. Given a set X and a function d : X × X → R, the pair (X , d)
is a metric space if d satisfies the following conditions:

d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y, for each x, y ∈ X ;

d(x, y) = d(y, x), for each x, y ∈ X ;

d(x, y) ≤ d(x, z) + d(z, y).

Below, let (X , d) be a metric space and B(X ) the σ-field generated by the open
sets of X . For notational convenience, we will write B instead of B(X ).

Definition 18. A function P : B → [0, 1] is a probability measure if

(i) P (∅) = 0;

(ii) P (X ) = 1;
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(iii) given {An}n∈N such that Ai ∩Aj = ∅, for each i 6= j then

P

(⋃
n∈N

An

)
=
∑
n∈N

P (An).

The triplet (X ,B, P ) is called probability space.

Definition 19. Let Pn and P be probability measures on (X ,B). We say that
Pn converges weakly to P (and we write Pn  P ) if∫

X
fdPn →

∫
X
fdP for every bounded continuous real function f on X .

We are interested in studying the weak convergence in the space D.

2.2.1 Weak convergence in D
The space D is the space of functions x = x(t) that are continuous or present
a discontinuity of the first kind (i.e. x(t−) and x(t+) exist but differ and x(t)
lies between them). This functional space is suitable to describe processes that
contain jumps, as the Wiener process. A measurable map X from a probability
space to a metric space is called random element. Note that if the codomain of
X is R then it is a random variable. Now, we introduce the random elements
of the space D, that are called random functions.
Let (X ,B, P ) be a probability space and consider the map

X : (X ,B, P )→ D
ω 7→ Xt(ω), with Xt(ω) : T→ R.

In many applications, the index set T is of the form [0, T ]. Usually, Xt(ω) is
named sample path and, for notational convenience, we set Xt = Xt(ω). Now,
consider a sequence of random functions {Xn}n∈N. We indicate the correspond-
ing sequence of trajectories {Xn

t }, t ∈ T and n ∈ N. Note that Xt is a random
process and so {Xn

t } is a sequence of stochastic processes.

Definition 20. A sequence {Xn}, n ∈ N, of random elements converges in

distribution to the random element X
(

we write Xn D−−−−→
n→∞

X
)

if Pn  P ,

where Pn and P are the distributions of Xn and X, respectively.

We report below a useful criterion to prove the convergence of a sequence of
random functions. To this aim, we introduce the key concept of tightness.

Definition 21. A probability measure P on (X ,B) is tight if, for each positive
ε, there exists a compact set K such that P (K) > 1− ε.

Another useful definition of tightness is the following: a sequence is tight if each
subsequence admits a converging sub-subsequence.



27 Chapter 2. Mathematical tools

Proposition 22. (Kunita [1986]) A sequence of stochastic processes {Xn
t },

t ∈ [0, T ], n ∈ N, right continuous with the left hand limits is tight if there are
positive constants K, γ and α not depending on n such that

E[|Xn
t −Xn

t1 |
γ |Xn

t2 −X
n
t |γ ] ≤ K|t2 − t1|1+α, 0 ≤ t1 < t < t2 ≤ T, (2.1)

E[|Xn
t |γ ] ≤ K, 0 ≤ t ≤ T. (2.2)

The convergence in distribution of a sequence of random elements, lying
in a metric space, follows by proving the convergence of the finite-dimensional
distributions and the asymptotic tightness of the sequence. It is required that
for each ε > 0 the set T can be partitioned into finitely many sets T1, . . . ,Tk

such that (asymptotically) the variation of the trajectories Xn
t is smaller than

ε on every set Ti, with large probability. Then, the behaviour of the process
can be described by the behaviour of the marginal vectors

(
Xn
t1 , . . . , X

n
tk

)
for

arbitrary fixed points ti ∈ Ti. If these margins converge, then the processes
converge.

Proposition 23. (van der Vaart [1998], Theorem 18.14, p. 261) A sequence
of random functions {Xn}, n ∈ N converges in distribution to a tight random
element X if and only if the following conditions hold.

(i) The sequence (Xn
t1 , . . . , X

n
tk

) converges in distribution in Rk for every fi-
nite set of points t1, . . . , tk in T.

(ii) The sequence of stochastic processes {Xn
t }, t ∈ T, is asymptotically tight

or, equivalently, for every ε, η > 0 there exists a partition of T in finitely
many sets T1, . . . ,Tk such that:

lim sup
n→∞

P

(
sup

i∈{1,...,k}
sup

t1,t2∈Ti

∣∣Xn
t1 −X

n
t2

∣∣ ≥ ε) ≤ η.
2.2.2 Convergence of stochastic integrals

Definition 24. A process Ht is simple predictable if

Ht = H0I{0}(t) +

n∑
i=1

HiI(Ti,Ti+1](t),

where 0 = T1 ≤ T2 ≤ . . . ,≤ Tn ≤ Tn+1 < ∞ is a sequence of stopping times,
Hi ∈ FTi , |Hi| <∞ a.s. for each 1 ≤ i ≤ n.

Let P be the collection of simple predictable process and we topologize it by
the uniform convergence. Moreover, set L0 to be the set of a.s. finite random
variables.

Definition 25. A process Xt is a semimartingale if the map IX : P → L0 is
continuous on compact time sets, where

IX = H0X0 +

n∑
i=1

Hi

(
Xmin{t,Ti+1} −Xmin{t,Ti}

)
, H ∈ P,
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Set D to be the space of adapted processes whose paths are right continuous
with left limits.

Definition 26. Consider the processes Xt ∈ D and Ht ∈ P. The stochastic
integral of Ht w.r.t Xt is defined as the following process:∫

HdX = H0X0 +

n∑
i=1

Hi

(
Xmin{t,Ti+1} −Xmin{t,Ti}

)
.

Remember that D is the space of functions x = x(t) right continuous with left
limits. Therefore, if a process Xt belongs to D then its paths x live in D.

Definition 27. A sequence of functions {xn(t)}n∈N, xn(t) ∈ D, converges
in the Skorohod topology to x(t) ∈ D if there exists a sequence of functions
λn : R+ → R+ such that:

λn is an increasing, bijective function, for each n;

λn(t) converges to t uniformly as n increases;

xn(λn(t)) converges to x(t) uniformly on compacts as n increases.

If {xn} converges to x uniformly on compacts then, for large enough n, the
jumps of xn must occur at the same times as those of x and the jump sizes
of xn converge to the corresponding sizes of x. If {xn} converges to x in the
Skorohod topology then the jump sizes of xn converge to the corresponding sizes
of x, but they do not need to occur at the same time. It suffices that the times
of occurrence of the jumps converge.

Definition 28. A sequence of semimartingales {Xn
t }, n ∈ N and t ∈ T, is said

to be uniformly tight if for each u > 0, the set{∫ u

0

Hn
s−dX

n
s , H

n
t ∈ Pn, |Hn

t | ≤ 1, n ∈ N, t ∈ T

}
is stochastically bounded, uniformly in n.

Proposition 29. If (Hn, Xn) converges in distribution in the Skorohod topology
to (H,X) and if {Xn}, n ∈ N, is a sequence of semimartingales uniformly
tight then there exists a filtration H such that X is an H semimartingale and
(Hn, Xn,

∫
Hn
−dX

n) converges in distribution to (H,X,
∫
H−dX).

2.3 Contiguity and change of measure

2.3.1 Likelihood ratio

Let P and Q be two measures on a measurable space (X ,B) whose densities are
p and q, respectively. Their supports are indicated as

XP = {p > 0} and XQ = {q > 0}.
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Definition 30. We say that:

Q is absolutely continuous w.r.t. P (and we write Q� P ) if

P (A) = 0 implies Q(A) = 0, for each A ∈ B.

P and Q are orthogonal (and we write Q⊥P ) if X can be partitioned as

X = XP ∪ XQ, with XP ∩ XQ = ∅ and P (XQ) = Q (XP ) = 0.

Now, given A ∈ B, define the following two measures:

Absolutely continuous part of Q w.r.t. P :

Qa(A) = Q (A ∩ {p > 0}) .

Orthogonal part of Q w.r.t. P :

Q⊥(A) = Q (A ∩ {p = 0}) .

It holds that the measure Q can be written as the sum Q = Qa + Q⊥, which
is called the Lebesgue decomposition of Q w.r.t. P . It is easy to prove that
Qa � P and Q⊥⊥P .
Moreover, we have that:

Qa(A) =

∫
A

q

p
dP.

Therefore, the density of Qa w.r.t. P is q
p := dQ

dP , that is named the Radon-
Nikodym density or Likelihood ratio. The Likelihood ratio can be seen as a
random variable dQ

dP : X → [0,∞) and it is of interest to study its law under P .

2.3.2 Contiguity

If a probability measure Q is absolutely continuous w.r.t. P , then the Q-law of
a random vector X : X → Rk, can be derived from the knowledge of the P -law
and the Likelihood ratio, by applying the following formula:

EQf(X) = EP f(X)
dQ

dP
.

Now, consider the asymptotic version of such problem. Given two sequences of
measures {Qn} and {Pn}, n ∈ N, under which conditions can a Qn-limit law be
obtained from a Pn-limit law? The answer is based of the concept of contiguity
between measures.

Definition 31. Given two sequences of probability measures {Pn} and {Qn}
on measurable spaces (Xn,Bn), n ∈ N, we say that
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{Qn} is contiguous w.r.t. {Pn} (and we write Qn C Pn) if for each se-
quence of measurable sets {An}:

lim
n→∞

Pn(An) = 0 implies lim
n→∞

Qn(An) = 0.

{Qn} and {Pn} are mutually contiguous (and we write Qn CBPn) if PnC
Qn and Qn C Pn.

The following Lemma gives a powerful tool to address the problem of proving
the contiguity without using directly the definition.

Proposition 32. (Le Cam’s first Lemma) Let {Pn} and {Qn}, n ∈ N, be
two sequences of probability measures on measurable spaces (Xn,Bn). Then the
following statements are equivalent:

1. Qn C Pn.

2. If dPn
dQn

Qn−−−−→
n→∞

U along a subsequence, then P (U > 0) = 1.

3. If dQn
dPn

Pn−−−−→
n→∞

V along a subsequence, then E(V ) = 1.

4. For any statistics Tn : Xn → Rk, if Tn
Pn−−−−→

n→∞
0 then Tn

Qn−−−−→
n→∞

0.

The following theorem answers the question above.

Proposition 33. Let {Pn} and {Qn}, n ∈ N, be two sequences of probability
measures on measurable spaces (Xn,Bn) and let Xn : Xn → Rk be a sequence of
random vectors. Suppose that Qn C Pn and(

Xn,
dQn
dPn

)
Pn−−−−→

n→∞
(X,V ) .

Then L(B) = EIB(X)V defines a probability measure and Xn
Qn−−−−→
n→∞

L.

2.3.3 Change of probability measure

Definition 34. A stochastic process Wt is called Wiener process if it satisfies
the following properties:

(i) W0 = 0 a.s..

(ii) For every 0 < t1 < t2 ≤ t3 < t4, the increments (Wt4 −Wt3) and
(Wt2 −Wt1) are independent random variables.

(iii) For every 0 < t1 < t2, (Wt2 −Wt1) ∼ N(0, t2 − t1).

(iv) Wt is continuous in t with probability 1.
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Definition 35. We define Xt to be an Ito’s process if it satisfies the following
differential equation:

dXt = µtdt+ γtdWt,

where:

(i) µt and γt, t ∈ [0, T ], are processes adapted to the filtration It.

(ii) P
[∫ T

0
|µs| ds <∞

]
= 1.

(iii) P
[∫ T

0

∣∣γ2
s

∣∣ ds <∞] = 1.

Therefore:

Xt =

∫ t

0

µsds+

∫ t

0

γsdWs.

Proposition 36. Let P be a probability measure on (X ,B) and Xt, t ∈ [0, T ],
an Ito’s process defined as follows:

Xt =

∫ s

0

γsdWs, where Ws is the P -Wiener process.

If the Novikov’s condition is fulfilled, i.e.:

EP

[
e

1
2

∫ T
0
γ2
sds
]
<∞,

then there exists a probability measure Q on (X ,B) such that:

1. dQ
dP = eXt−

1
2 [X]t , where [X]t is the quadratic variation of the process Xt,

i.e.

[X]t =

∫ T

0

γ2
sds.

2. The process W̃t is the Q-Wiener process, where:

W̃t = Wt −
∫ t

0

γsds.
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Chapter 3

On the probabilistic
structure of TARMA
processes

This chapter analyses the long-run probabilistic behaviour of first-order TARMA
models. This includes deriving the necessary and sufficient conditions for the
models to be ergodic and studying their recurrence/transience properties. This
problem has attracted much interest in the literature [Brockwell et al., 1992,
Liu and Susko, 1992, Ling, 1999, Ling et al., 2007]. The recurrence/transience
properties of a TAR model have been well-studied. In particular, results from
[Petruccelli and Woolford, 1984, Chan et al., 1985, Guo and Petruccelli, 1991]
together provide a complete classification of the parameter space of a first-order
TAR model into parametric regions over which the TAR model is either tran-
sient or recurrent, and the recurrence region is further subdivided into regions
of null recurrence or positive recurrence, or even geometric recurrence. The
classification is less complete in the higher-order case, but see Chan and Tong
[1985], Tong [1990], Tjøstheim [1990], Cline [2009].

Since the TARMA process admits a Markovian representation, Markov chain
techniques (for instance, various drift criteria, for classifying continuous-state-
space Markov chains Tweedie [1975, 1976], Chan and Tong [1985], Tjøstheim
[1990], Tong [1990], An and Huang [1996], An and Chen [1997], Nummelin
[2004], Cline [2009], Meyn and Tweedie [2012]) provide a natural approach for
studying the long-run probabilistic behaviour of the TARMA model. How-
ever, such an approach requires the Markov chain to be irreducible. Except
under some special cases (e.g. identical moving-average noise process across
regimes studied by Brockwell et al. [1992]), the problem of characterizing when
a TARMA process admits an irreducibile Markovian representation turns out to
be very hard, even under the assumption that the probability density function
(pdf) of the independent and identically distributed (iid) innovations driving
the TARMA process is positive everywhere. Consequently, other approaches
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have been employed to study the stationarity and ergodicity of the TARMA
model. Liu and Susko [1992] derived sufficient conditions for a TARMA model
to be ergodic, under the assumption of irreducibility which, however, was not
shown to hold. They underlined that the ergodicity depends only on the autore-
gressive parts in the two outermost regimes. Ling [1999] found some sufficient
condition for the ergodicity of the TARMA model. However, this condition
is much stronger than the necessary and sufficient condition for the ergodicity
of a TAR(1) model. He concluded by remarking that “It might be possible to
find some weaker conditions, but it seems not to be an easy task”. In more
recent work, Ling et al. [2007] obtained sufficient conditions for stationarity
and ergodicity of the TMA model without proving its irreducibility. Also, they
emphasized the difficulty of establishing irreducibility for a TARMA model.

Here, our contribution is twofold. First, in Section 3.1 we introduce a novel
Markovian representation of the TARMA process. For the first-order TARMA
model, denoted as TARMA(1,1) model to be defined in Section 3.1, the 2-
dimensional Markovian representation so constructed contains an embedded
1-dimensional Markov chain with which we are able to prove in Section 3.2
that all invertible (see below for definition) TARMA(1,1) models are irreducible
under a very general distributional assumption on the iid innovations, specifi-
cally (C2) below. Moreover, the Markov chain can be shown in Section 3.3 to
be aperiodic. A key observation is that the embedded 1-dimensional Markov
chain and the 2-dimensional Markov chain share identical transience/recurrence
properties. Leveraging on the 1-dimensional embedded Markov chain, we then
derive a complete classification of the parameter space of a TARMA(1,1) model
into parametric regions over which the model is either transient or recurrent,
and the recurrence region is further subdivided into regions of null recurrence
or positive recurrence, or even geometric recurrence. By combining the re-
sults on aperiodicity and positive recurrence, we derive a set of necessary and
sufficient conditions for ergodicity, and deduce conditions for geometric ergod-
icity. For clarity of presentation, all results and proofs are first presented for
a two-regime TARMA(1,1) model, with extension to multiple regimes briefly
outlined in Section 3.5, showing that the irreducibility, transience/recurrence of
a multiple-regime TARMA(1,1) model generally depend only on the autoregres-
sive parameters of the two outermost regimes.

3.1 A Markovian representation

The p-th order two-regime threshold autoregressive moving-average TARMA(p, p)
process {Xt} satisfies the following difference equation:

Xt =

{
φ1,0 +

∑p
j=1 φ1,jXt−j + εt +

∑p
j=1 θ1,jεt−j , if Xt−d ≤ r

φ2,0 +
∑p
j=1 φ2,jXt−j + εt +

∑p
j=1 θ2,jεt−j , otherwise,

(3.1)

where the φi and θi with i = 1, . . . , p are the autoregressive and moving-average
coefficients, respectively, r is the real-valued threshold parameter and the posi-
tive integer d is the delay parameter. The dynamics of a TARMA model then
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switches between two autoregressive moving-average (ARMA) sub-models de-
pending on whether or not Xt−d ≤ r. The process is said to fall into the first
regime whenever Xt−d ≤ r, otherwise it is in the second regime. With no loss
of generality, it is assumed that d ≤ p. The innovation term {εt} is a sequence
of iid random variables, satisfying the following conditions:

(C1) The innovations admit finite k-th absolute moment, where k ≥ 1 is a
constant, and are of zero mean.

(C2) The innovations have an absolutely continuous probability distribution
whose probability density function (pdf), denoted as ρ(·), is positive and
continuous on R.

(C2) can be relaxed as to require the common probability distribution of the
innovations having an absolutely continuous component with a positive, contin-
uous pdf. It can be readily checked that all the results derived below continue to
hold with (C2) relaxed. The preceding formulation of the TARMA model admits
several generalizations: (i) the model can be made conditionally heteroscedastic
by changing the coefficient of εt in (3.1) from unity to some regime-specific co-
efficient, (ii) the AR and MA orders need not to be identical and may be regime
specific, (iii) there may be more than two regimes, and (iv) the regimes may
be delineated by a threshold variable more complex than Xt−d, for instance,
Xt−d −Xt−d−1.

To avoid certain degeneracy to be explained below, we shall assume that,
for i = 1, 2, the AR characteristic polynomial 1 −

∑p
j=1 φi,jx

j and the MA

characteristic polynomial 1 +
∑p
j=1 θi,jx

j , of the ith regime, have no common
roots, for i = 1, 2. In particular, for the case of p = 1, the assumption of the
AR and MA polynomials of each regime sharing no common roots is equivalent
to the condition that φi,1 + θi,1 6= 0, i = 1, 2. For linear ARMA models, if the
AR polynomial and the MA polynomial share some common roots, then their
common parts can be canceled out, thereby reducing the AR and MA orders
by the number of common roots. For instance in the case of an ARMA(1,1)
model, the AR and MA polynomials sharing a common root implies that the
ARMA(1,1) model is actually a white-noise model; hence the 1-step (as well
as all higher step) ahead predictor (conditional mean) is simply the stationary
mean, i.e., the 1-step ahead predictor remains the same even after observing a
new data case. For TARMA models, the AR and MA polynomials of a certain
regime having a common root in some regime per se does not result in a lower-
order ARMA sub-model in that regime, but some degeneracy would occur. For
instance, Eqn (3.3) demonstrates that for the TARMA(1,1) model, φi1+θi,1 = 0
implies that upon observing a new data case, the next 1-step ahead predictor
is a deterministic function of its current counterpart, with non-zero probability.
To sum up, the assumption of no common roots shared by the AR and MA
polynomials in each regime of a TARMA model will be maintained throughout
the paper. It is an interesting future research problem concerning the relaxation
of the no-common-root assumption.
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It is advantageous to study the probabilistic properties of a TARMA pro-
cess via some Markovian representation. Specifically, we shall express Xt as
some functional of a Markov chain. One such representation is motivated by
decomposing the time-series observation as the “one-step-ahead” predictor plus
innovation (see Akaike [1974] for a related predictor-based Markovian represen-
tation for an ARMA process), i.e., Xt = Vt + εt. In particular, the V ’s are
driven by the following difference equation:

Vt =

{
φ1,0 +

∑p
j=1 φ1,jVt−j +

∑p
j=1(φ1,j + θ1,j)εt−j , if Vt−d + εt−d ≤ r

φ2,0 +
∑p
j=1 φ2,jVt−j +

∑p
j=1(φ2,j + θ2,j)εt−j , otherwise.

(3.2)
Let

Dt = (φ0(t), 0, . . . , 0︸ ︷︷ ︸
p−1

, εt, 0, . . . , 0︸ ︷︷ ︸
p−1

)ᵀ.

Moreover, for any positive integers ` and m, let I`×` and 0`×m be the ` × `
identity matrix and the `×m null matrix, respectively. Define At, Bt, C to be
p × p matrices, which for p = 1, At = φi(t), Bt = φi(t) + θi(t) and C = 0 and
otherwise:

At =


φ1(t) φ2(t) · · · φp(t)

I(p−1)×(p−1) 0(p−1)×1

 ,

Bt =


φ1(t) + θ1(t) φ2(t) + θ2(t) · · · φp(t) + θp(t)

0(p−1)×p

 ,

C =


01×p

I(p−1)×(p−1) 0(p−1)×1

 .

Hence, the {Yt} process satisfies the following stochastic difference equation:

Yt =

(
At Bt

0p×p C

)
Yt−1 +Dt.

It is a Markov chain with the 2p-th dimensional Euclidean space as the state
space, and Xt is a linear function of Yt:

Xt = Vt + εt = (1, 0, . . . , 0︸ ︷︷ ︸
p−1

, 1, 0, . . . , 0︸ ︷︷ ︸
p−1

)Yt.

Set uᵀ = (1, 0, . . . , 0︸ ︷︷ ︸
p−1

, 1, 0, . . . , 0︸ ︷︷ ︸
p−1

), since Xt = Y1,t + Yp+1,t = uᵀYt, it follows that

Yt =

{
A10 +A11Yt−1 + εtA12, if uᵀYt−1 ≤ r
A20 +A21Yt−1 + εtA22, otherwise,
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where Ai0 and Ai2 are the 2p-dimensional vectors with all components equal
to zero except their first and the p + 1-th components: Ai0[1] = φi,0, while
Ai2[p+ 1] = 1, where Ai0[1] denotes the first component of Ai0, etc. Moreover,
for any positive integers ` and m, let I`×` and 0`×m be the `× ` identity matrix
and the ` ×m null matrix, respectively. We define the 2p × 2p matrix Ai1 as
follows:

Ai1 =

φi,1 φi,2 · · · φi,p (φi,1 + θi,1) (φi,2 + θi,2) · · · (φi,p + θi,p)

I(p−1)×(p−1) 0(p−1)×(p+1)

01×2p

0(p−1)×p I(p−1)×(p−1) 0(p−1)×1



.

For instance, if p = 4, these matrices become

Ai0 =



φi,0
0
0
0
0
0
0
0


, Ai2 =



0
0
0
0
1
0
0
0


,

Ai1 =

φi,1 φi,2 φi,3 φi,4 (φi,1 + θi,1) (φi,2 + θi,2) (φi,3 + θi,3) (φi,4 + θi,4)
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


.

The probabilistic analysis of the TARMA(1,1) model (with d = 1) can be
much simplified by noting that (i) {Vt} is itself a Markov chain:

Vt =

{
φ1,0 + φ1,1Vt−1 + (φ1,1 + θ1,1)εt−1, if Vt−1 ≤ r − εt−1

φ2,0 + φ2,1Vt−1 + (φ2,1 + θ2,1)εt−1, otherwise.
(3.3)
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and (ii) if {Vt} is irreducible (aperiodic, transient, null or positive recurrent,
(geometrically) ergodic), so is {Yt}, which are proved at the end of this section.
Thus, for studying the probabilistic properties of the TARMA(1,1) model, it
suffices to study the corresponding properties of the 1-dimensional Markov chain
{Vt}. The V process differs from the well-studied TAR(1) model in that its
threshold is random, being r − εt−1 instead of the fixed threshold r in the
TAR(1) model, and non-linearly associated with the driving noise term, which
underlines the difficulty in checking the irreducibility, even for the TARMA(1,1)
model. In the next section, we leverage on the unit dimensionality of Vt to
provide a systematic analysis of its irreducibility under (C2) and the following
condition:

(C3) If (φ1,1 + θ1,1)(φ2,1 + θ2,1) < 0, neither of the following three parametric
conditions on the φ’s and θ’s hold: (i) θi,1 < −1, i = 1, 2; (ii) for some
1 ≤ i 6= j ≤ 2, θi,1 = −1, θj,1 < −1 and sign(φ1,1 + θ1,1) × hi(0) ≤ 0;
(iii) θi,1 = −1 and sign(φ1,1 + θ1,1) × hi(0) ≤ 0, i = 1, 2, where hi(0) =
(φi,1 + θi,1)r + φi,0.

We note that condition (C3) is a mild condition, which is a necessary condition
in statistical inference with TARMA(1,1) model, for the following reason. For
model diagnostics or forecasting with a TARMA(1,1) model, it is necessary to
(approximately) reconstruct εt, t ≤ n, from the observed data X1, . . . , Xn, given
the model parameter such that εt differs from its reconstructed version by an
error of op(1) as t and n→∞. A TARMA(1,1) model is said to be invertible if
the preceding reconstruction condition holds. It can be checked that under any
of the conditions (i) – (iii) in (C3), the TARMA(1,1) model is non-invertible, see
[Chan and Tong, 2010]. Hence (C3) holds for any invertible TARMA(1,1) model,
even though some non-invertible TARMA(1,1) models satisfy (C3), e.g., (φ1,1 +
θ1,1)(φ2,1 + θ2,1) > 0 and θi,1 ≥ 1, i = 1, 2. Due to the random threshold, the
proof techniques used in establishing the recurrence properties of the V process
is somewhat different from those for the TAR(1) model with a deterministic
threshold.

In the rest of this section, we state several results indicating that the ir-
reducibility and recurrence/transience properties of {Yt} can be inferred from
those of the embedded Markov chain {Vt}. Denote by Fε the common probabil-
ity measure of the iid {εt}. Note that assumptions (C1)–(C3) are not required
for the validity of the following results.

Proposition 37. If {Vt} is irreducible, then so is {Yt}.

Proof. Suppose {Vt} is µ-irreducible. Since {εt} is an iid process, it is readily
seen that {Yt} is irreducible w.r.t. µ× Fε.

Henceforth in this section, assume that {Vt} is µ-irreducible and hence {Yt} is
µ× Fε-irreducible.

Proof. The result follows immediately from the independence of the two com-
ponents of the process, Vt and εt, and from the assumption on the error term
which has positive density on the whole real line.
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Proposition 38. {Vt} is recurrent (positive recurrent, null recurrent, transient)
if and only if so is {Yt}.

Proof. We first prove the necessity part. Let y0 = (v0, e0)ᵀ be any initial vector.
For any Borel set of the form A = A1×A2 with µ(A1) > 0 and Fε(A2) > 0 and
any integer t > 0,

P (Yt ∈ A|Y0 = y0) = Fε(A2)P (Vt ∈ A1|V0 = v0). (3.4)

Suppose {Vt} is recurrent, hence it admits a non-trivial (σ-finite) invariant mea-
sure, say π. Consequently, π × Fε is a non-trivial invariant measure for {Yt}.
SinceR = ∪n∈Z[n, n+1), there exists an integer n such that [n, n+1) has positive
µ-measure. But then π([n, n+1)) > 0, which follows from (i) the formula that for
any Borel set B, invariance of π implies that (1−r)−1rπ(B) =

∫
Gr(x,B)π(dx),

where 0 ≤ r < 1, Gr(x,B) =
∑∞
t=1 r

tP t(x,B) and P t(x,B) is the t-th step
transition probability kernel of {Vt}, and (ii) irreducibility implies that for any
0 < r < 1 and B with µ(B) > 0, Gr(x,B) > 0, for all x ∈ R. We claim
that there exists an interval [a, b) ⊂ [n, n + 1) such that 0 < π([a, b)) < ∞.
If π([n, n + 1)) < ∞, then we can take [a, b) = [n, n + 1). Otherwise, de-
compose [n, n + 1) into [n, n + 0.5) ∪ [n + 0.5, n + 1) and if one of the two
sub-intervals has finite, positive π-measure, then take it as [a, b). Otherwise,
one of the two sub-intervals has infinite π-measure, with which we can repeat-
edly carry out the splitting procedure to find a sub-interval with positive, finite
π-measure. The process must end in finding such a sub-interval in a finite num-
ber of steps, otherwise we construct a decreasing sequence of nesting intervals
converging to an atom of infinite π-measure, which is impossible because π is
a σ-finite measure. With no loss of generality, 0 < π([n, n + 1)) < ∞. Then
(π × Fε)([n, n + 1) × R) = π([n, n + 1)) is finite and positive, entailing that
C = [n, n+ 1)×R is a status set for {Yt}, by [Tweedie, 1976, Proposition 5.1].
Lemma 5.1 of [Tweedie, 1976] implies that the recurrence (positive recurrence)
of the chain {Yt} can be deduced from that of any status set, and, in particular,
that of C.

Below, write G(·, ·) for G1(·, ·). The G(·, ·) for {Vt} will be denoted as
GV (·, ·); similarly GY (·, ·) for {Yt}. Analogously defined are PV (·, ·) and PY (·, ·).
If {Vt} is recurrent, then [n, n+ 1) is a recurrent set for {Vt}, hence

GV (x, [n, n+ 1)) ≡ ∞ for all x,

and so

GY ((x, ε)ᵀ, [n, n+ 1)×R) = GV (x, [n, n+ 1)) ≡ ∞, for all (x, ε)ᵀ.

Therefore, C is recurrent, and hence {Yt} is recurrent. If {Vt} is weakly positive,
then [n, n+ 1) is weakly positive, i.e.,

lim sup
t→∞

P tV (x, [n, n+ 1)) > 0 for all x,

but then

lim sup
t→∞

P tY ((x, ε)ᵀ, [n, n+ 1)×R) = lim sup
t→∞

P tV (x, [n, n+ 1)) > 0,
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for all (x, ε)ᵀ. Therefore, C is weakly positive, hence {Yt} is positive recurrent.

It follows from Tweedie [1976] (Propositions 3.5 and 4.2) that if {Vt} is
null recurrent (transient), then there is a sequence B(j) ↑ R, each of the
B(j)′s is strongly null (transient), i.e., for all x, P tV (x,B(j)) → 0, as t → ∞
(GV (x,B(j)) < ∞,∀x). But then B(j) × R ↑ R2, with the B(j) × R clearly
strongly null (transient) for {Yt}. Hence {Yt} is null recurrent (transient),
[Tweedie, 1976, Lemma 5.1].

The sufficiency part is quite clear. For instance, if {Yt} is recurrent, {Vt}
must be recurrent, otherwise it is transient so that {Yt} is transient, leading to
a contradiction. This completes the proof.

Proposition 39. {Vt} is periodic of period d ≥ 1 if and only if so is {Yt}.

Proof. Suppose {Vt} is periodic of period d so that there exists a periodic par-
tition, i.e., Borel sets Di, i = 1, . . . , d such that (i) ∪di=1Dd is a partition of R
up to a µ-null set, (ii) each D has positive µ-measure and (iii)

P
(
Vt+1 ∈ Di+1 (mod d)|Vt ∈ Di

)
= 1,

for all i = 1, . . . , d. But then

P
(
Yt+1 ∈ Di+1 (mod d) ×R|Yt ∈ Di ×R

)
= 1,

for all i = 1, . . . , d, indicating that {Yt} is periodic of period d. The converse
is clear since {εt} is iid, so that the sets of any periodic partition of the state
space for {Yt} must comprise sets of the form Di ×R.

As a corollary, {Yt} is aperiodic if {Vt} is aperiodic.

Proposition 40. {Vt} is (geometrically) ergodic if and only if {Yt} is (geomet-
rically) ergodic.

Proof. Ergodicity of {Vt} means that it is positive recurrent and aperiodic, so
{Yt} is positive recurrent and aperiodic and hence ergodic, by the earlier two
propositions. Geometric ergodicity quantifies that the marginal distribution of
the Markov chain converges to the invariant probability measure at a geometric
rate in total variation norm. Specifically, geometric ergodicity of {Vt} means
that there exist a constant 0 ≤ r < 1 and a non-negative πY –integrable function,
say h(·), such that for any initial value v0,

sup
B
|P (Vt ∈ B|V0 = v0)− πV (B)| ≤ rth(v0)

where πV is the invariant probability measure of {Vt} and the supremum is
taken over all Borel sets B. To prove that {Yt} is geometrically ergodic, it
suffices to derive an analogous inequality for its invariant probability measure,
say, πY , which we do as follows. Let A ⊆ R2 be any Borel set. For any e ∈ R,
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let Ae = {x ∈ R : (x, e)ᵀ ∈ A}. Then for any initial vector y0 = (v0, e0)ᵀ,

sup
A
|P (Yt ∈ A|Y0 = y0)− πY (A)|

≤ sup
A
|E{P (Vt ∈ Aεt |V0 = v0)} − E{πV (Aεt)}|

≤ sup
A
E {|P (Vt ∈ Aεt |V0 = v0)− πV (Aεt)|}

≤ sup
B
|P (Vt ∈ B|V0 = v0)− πV (B)| ≤ rth(v0).

As h(·) is clearly πY –integrable, we conclude that Y is geometrically ergodic.
The converse of the result is trivial.

3.2 Irreducibility of TARMA(1,1) processes

In this section, we study the irreducibility of the Markov chain {Vt} defined by
(3.3), via the concept of reachability in Control Theory [Meyn and Tweedie,
2012, Meyn, 1989, Meyn and Caines, 1989]. We first analyze the deterministic
control model associated to {Vt}, where {εt} is replaced by a deterministic real-
valued sequence {ut}. A key concept is the reachable set which is the collection
of all states that can be reached by the deterministic system from any state via
a finite sequence of inputs, i.e. the reachable set, denoted by Ω, consists of all
states y such that for all state x, there exist a positive integer m and a sequence,
ut, . . . , ut+m−1, such that Vt = x and Vt+m = y. (Here, we use the general index
t to stand for a non-negative integer, even though, without loss of generality, we
can set t = 0.) We then build a link between the irreducibility of the Markov
chain {Vt} and the reachable set of its associated deterministic chain by proving
that under Assumption (C2), for each k ∈ N the k-step transition probability
density of {Vt} is positive over the set of states that can be reached by the
associated deterministic chain in k steps. This ensures that if the reachable set
Ω has positive Lebesgue measure, then {Vt} is irreducible w.r.t. the Lebesgue
measure restricted on Ω.

We begin with studying the set of states that are reachable in one step.
Given an initial value x, the real line can be decomposed as follows:

R = Gx ∪Mx,

where Gx includes the points that can be reached by the V process in one step
from x and Mx = Gcx, i.e.

Gx = {y ∈ R : Vt = x and ∃ εt such that Vt+1 = y}.

Now, we derive the set Gx. In order for Vt = x and Vt+1 = y, we exhibit a
realization of the variable εt, i.e., u, such that either

(i) {
φ1,0 + φ1,1x+ (φ1,1 + θ1,1)u = y
x ≤ r − u
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φ1,1 + θ1,1 > 0 φ1,1 + θ1,1 < 0

φ2,1 + θ2,1 > 0 Gx = (−∞, h1(x)] ∪ (h2(x),+∞) Gx = [h1(x),+∞) ∪ (h2(x),+∞)

φ2,1 + θ2,1 < 0 Gx = (−∞, h1(x)] ∪ (−∞, h2(x)) Gx = (−∞, h2(x)) ∪ [h1(x),+∞)

Table 3.1: Definition of the set Gx with respect to the signs of φ1,1 + θ1,1 > 0
and φ2,1 + θ2,1 > 0.

which is equivalent to {
u =

y−φ1,0−φ1,1x
φ1,1+θ1,1

u ≤ r − x,
or

(ii) {
φ2,0 + φ2,1x+ (φ2,1 + θ2,1)u = y
x > r − u

which is equivalent to {
u =

y−φ2,0−φ2,1x
φ2,1+θ2,1

u > r − x.

Therefore Gx 6= ∅ if and only if at least one of the following two conditions
holds:

y − φ1,0 − φ1,1x

φ1,1 + θ1,1
≤ r − x;

y − φ2,0 − φ2,1x

φ2,1 + θ2,1
> r − x.

Consequently:

Gx =

{
y ∈ R :

y − φ1,0 − φ1,1x

φ1,1 + θ1,1
≤ r − x or

y − φ2,0 − φ2,1x

φ2,1 + θ2,1
> r − x

}
.

Obviously, the set Gx assumes different forms according to the sign of (φ1,1 +
θ1,1) and (φ2,1 + θ2,1), as shown in Table 1, where:

h1(x) = (φ1,1 + θ1,1)r+φ1,0− θ1,1x and h2(x) = (φ2,1 + θ2,1)r+φ2,0− θ2,1x.

The two cases in the (off) diagonal of the table are analogous. In fact when
φ1,1 + θ1,1 and φ2,1 + θ2,1 have the same sign Gx is the union of two non-nesting
half lines, while, in the other case, Gx is a half line. We now state a main result
on the irreducibility of the two-regime TARMA(1,1) model.

Theorem 41. Let {Vt} be defined in (3.3). Table 3.2 delineates the reachable
set of the associated deterministic system assuming that {εt} were deterministic
inputs, according to the parametric conditions. The reachable set is either an
infinite interval or an empty set. In particular, Ω is empty if and only if (φ1,1 +
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Conditions on parameters Reachable set

(φ1,1 + θ1,1)(φ2,1 + θ2,1) > 0 R

(φ1,1 + θ1,1)(φ2,1 + θ2,1) < 0
∃ i such that θi,1 > 0

R

φ1,1 + θ1,1 > 0, φ2,1 + θ2,1 < 0
∃ i s.t. θi,1 = −1 andhi(0) > 0

R

φ1,1 + θ1,1 < 0, φ2,1 + θ2,1 > 0
∃ i s.t. θi,1 = −1 andhi(0) < 0

R

φ1,1 + θ1,1 > 0, φ2,1 + θ2,1 < 0
∃ i s.t. − 1 < θi,1 ≤ 0

(−∞, c) with c ≥ hi(0)
1+θi,1

φ1,1 + θ1,1 < 0, φ2,1 + θ2,1 > 0
∃ i − 1 < θi,1 ≤ 0

(c,+∞) with c ≤ hi(0)
1+θi,1

φ1,1 + θ1,1 > 0, φ2,1 + θ2,1 < 0
∃ i 6= j s.t. θi,1 < −1 and − 1 < θj,1 ≤ 0

R if hi(0)
1+θi,1

<
hj(0)

1+θj,1(
−∞, hj(0)

1+θj,1

)
otherwise

φ1,1 + θ1,1 < 0, φ2,1 + θ2,1 > 0
∃ i 6= j s.t. θi,1 < −1 and − 1 < θj,1 ≤ 0

R if
hj(0)

1+θj,1
< hi(0)

1+θi,1(
hj(0)

1+θj,1
,+∞

)
otherwise

Otherwise ∅

Table 3.2: Reachable set according to the conditions on the parameters.

θ1,1)(φ2,1 + θ2,1) < 0 and it holds that either (i) θi,1 < −1, i = 1, 2 or (ii) for
some 1 ≤ i 6= j ≤ 2, θi,1 = −1, θj,1 < −1 and sign(φ1,1 + θ1,1) × hi(0) ≤ 0
or (iii) θi,1 = −1 and sign(φ1,1 + θ1,1) × hi(0) ≤ 0, i = 1, 2. If the reachable
set is non-empty, i.e., (C3) holds, and {εt} are iid random variables satisfying
condition (C2), then {Vt} is irreducible w.r.t. µ, the Lebesgue measure restricted
to the reachable set.

We prove the preceding theorem in the remainder of this section, as follows.
Theorems 42, 43 and 44 below derive the reachable set under different para-
metric conditions. Propositions 46 and 45 show that the Markov chain {Vt} is
µ-irreducible where µ is the Lebesgue measure restricted to the reachable set.
In the following theorems we derive the conditions on the parameters such that
{Vt} is controllable. Moreover, we compute a bound of the minimum number
of steps needed to reach any target point y.

Theorem 42. Let {Vt} be as defined in (3.3). Suppose there exists i ∈ {1, 2},
such that θi,1 = 0. Then, the reachable set Ω is:

(−∞, h1(0)] if φ1,1 + θ1,1 > 0 and θ1,1 = 0;
[h1(0),+∞) if φ1,1 + θ1,1 < 0 and θ1,1 = 0;
(h2(0),+∞) if φ2,1 + θ2,1 > 0 and θ2,1 = 0;
(−∞, h2(0)) if φ2,1 + θ2,1 < 0 and θ2,1 = 0.
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Proof. The result readily follows upon noting that Ω ⊆ Gx and it does not
depend on x.

Theorem 43. Let {Vt} be as defined in (3.3). Assume θi,1 6= 0, i ∈ {1, 2}.
Then, the chain can reach any state in R from any state in at most two steps
if either of the following two conditions holds:

(43.1) (φ1,1 + θ1,1)(φ2,1 + θ2,1) > 0;

(43.2) (φ1,1 + θ1,1)(φ2,1 + θ2,1) < 0, and there exists i ∈ {1, 2} s.t. θi,1 > 0.

Proof. It suffices to prove that, for any x ∈ R, every z in Mx can be reached
by the chain from x in one step from a point of Gx, i.e., there exist w and y
satisfying at least one of the following two systems of equations. φ1,0 + φ1,1y + (φ1,1 + θ1,1)w = z

w ≤ r − y
y ∈ Gx;

(3.5)

 φ2,0 + φ2,1y + (φ2,1 + θ2,1)w = z
w > r − y
y ∈ Gx.

(3.6)

Suppose (43.1) holds and assume φ1,1 + θ1,1 > 0 and φ2,1 + θ2,1 > 0. From
Table 1, if h2(x) ≤ h1(x) then the set Mx is empty hence the whole space can
be covered in one step, otherwise

Mx = {z ∈ R : h1(x) < z ≤ h2(x)}.

Since θ1,1 6= 0, we claim that for every z in Mx, there exist w and y satisfying
(3.5), which can be seen as follows. Let then z ∈Mx be fixed. Indeed, for fixed
x and z ∈Mx, if (3.5) admits a solution pair (y, w), routine algebra yields

z ≤ φ1,0 + (φ1,1 + θ1,1)r − θ1,1y. (3.7)

On the other hand, if the preceding equation admits a solution y ∈ Gx, then
the positivity of φ1,1 + θ1,1 implies the existence of w ∈ R such that (y, w)
is a solution of (3.5), on noting that the right side of (3.7) can be written as
φ1,0 +φ1,1y+ (φ1,1 + θ1,1)(r− y). Because θ1,1 6= 0 and Gx contains all states of
sufficiently large magnitude, (3.7) always admits a solution y ∈ Gx, hence the
claim is established. On the other hand, if θ2,1 6= 0, it can similarly shown that
(3.6) admits a solution (y, w) iff the following equation has a solution y ∈ Gx:

z > φ2,0 + (φ2,1 + θ2,1)r − θ2,1y. (3.8)

Clearly, (3.8) always admits a solution y ∈ Gx. The proof for the case that
φ1,1 + θ1,1 < 0 and φ2,1 + θ2,1 < 0 is similar and hence omitted. Next suppose
condition (43.2) holds. We outline the proof under the condition that φ1,1 +
θ1,1 > 0, φ2,1 + θ2,1 < 0 and there exists i ∈ {1, 2} such that θi,1 > 0, as the
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proof for the other case is similar. Given x, without loss of generality we can
suppose h1(x) > h2(x), hence

Mx = {z ∈ R : z > h1(x)}.

If θ1,1 > 0 then (3.5) always admits a solution because (3.7) admits a solution
y ∈ Gx. If θ2,1 > 0 then (3.6) always admits a solution because the inequality

z < φ2,0 + (φ2,1 + θ2,1)r − θ2,1y (3.9)

always admits a solution y ∈ Gx. The proof for the case that φ1,1 + θ1,1 < 0,
φ2,1 + θ2,1 > 0 and there exists i ∈ {1, 2} such that θi,1 > 0 is similar and
omitted.

Under the hypothesis of the previous theorem, we have proved that the
chain can reach from anywhere every point in the real line in at most two steps,
so the reachable set is the entire real line. This implies that, under additional
conditions, {Vt} is irreducible w.r.t the Lebesgue measure on R. Now, we derive
the reachable set under the condition that (φ1,1 + θ1,1)(φ2,1 + θ2,1) < 0 and
θi,1 < 0, for each i ∈ {1, 2}. Without loss of generality, assume φ1,1 + θ1,1 > 0
and φ2,1 + θ2,1 < 0, otherwise we will consider {−Vt}. In this case, we show,
below, that either the chain can reach the whole real line but in a greater and
variable number of steps or the reachable set is restricted to the half line

(−∞, c), (3.10)

where c ∈ R. Given two points x and z, let m = m(x, z) be the number of steps
needed for the chain to go from x to z. In the following theorem, we derive the
conditions on the parameters such that {Vt} can reach any point in (−∞, c) or
(c,+∞) from any initial value. Moreover, we compute the value of c and an
upper bound of m.

Theorem 44. Let {Vt} be defined by (3.3) with (φ1,1+θ1,1) > 0, (φ2,1+θ2,1) < 0
and θi,1 < 0, for each i ∈ {1, 2}.

(44.1) Suppose there exists i ∈ {1, 2} such that θi,1 = −1 and hi(0) > 0. Then
the reachable set is (−∞,+∞).

(44.2) Suppose θi,1 ∈ (−1, 0), for some i = 1, 2. Then the reachable set is (−∞, c)
where

c ≥ hi(0)

1 + θi,1
.

(44.3) Suppose there exist 1 ≤ i 6= j ≤ 2 such that θi,1 ∈ (−∞,−1) and θj,1 ∈
(−1, 0). Then the reachable set is (−∞, c) where

c =

{
+∞, if hi(0)

1+θi,1
<

hj(0)
1+θj,1

hj(0)
1+θj,1
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(44.4) Otherwise, the reachable set is an empty set.

Proof. Recall Gx denotes the states which the chain can reach in 1 step from x.
Under the conditions that (φ1,1 + θ1,1) > 0, (φ2,1 + θ2,1) < 0 and θi,1 < 0, for
each i ∈ {1, 2}, Table 3.1 indicates that Gx is an one-sided infinite interval with
the finite right end-point equal to c(x) = max{h1(x), h2(x)}. Clearly, for each
x, c(x) ∈ Gx if and only if h1(x) ≥ h2(x). If c(x) > x, the chain may potentially
reach any state from any initial state. Thus, it is useful to define the following
functions:

di(x) = hi(x)− x = (φi,1 + θi,1)r + φi,0 − (1 + θi,1)x, i=1,2.

If di(x) > 0, it represents the maximum distance the chain can move in one step
to its right hand side via regime i. If di(x) < 0, for all i, then the chain can not
move to the right side of its initial value. Now we divide the proof in different
cases, (44.1)-(44.3), as stated in the theorem. In each of these we derive the
reachable set to be of the form (−∞, c). Moreover, we prove that for each x
and for each b < c there exist an integer m = m(x, b) and a sequence of values
ut, ut+1, . . . , ut+m−1 such that Vt+m = b, given Vt = x.

Case (44.1). In this case we have that di(x) = di(0) > 0, for all x. It is clear
that, starting from any initial state, {Vt} can reach, in one step, any state on
its left side and reach any state on its right side with distance not more than
di(0). Hence, it can reach any state b on its right side in m steps where

m =

⌊
b− x
di(0)

⌋
+ 1.

Case (44.2). In this case di(x) > 0 if and only if x < hi(0)
1+θi,1

. Indeed, starting

from x < hi(0)
1+θi,1

, the chain can reach any point b < hi(0)
1+θi,1

in m steps, where

m ≤
⌊
b− x
di(b)

⌋
+ 1.

On the other hand if x ≥ hi(0)
1+θi,1

, then there exists a point y ∈ Gx ∩ (−∞, b).
Hence {Vt} can reach any point b < hi(0)

1+θi,1
as before. The nature of the reachable

set is fully determined by the value θj,1, j 6= i. For θj,1 ∈ (0,−1), the preceding

reasoning entails that c = maxi=1,2
hi(0)

1+θi,1
. If θj,1 = −1 and hj(0) > 0 then

c = ∞, from Case (44.1). But if hj(0) ≤ 0, then c = hi(0)
1+θi,1

. The case of

θj,1 < −1 is covered below.
Case (44.3). In this case, the functions di(x) and dj(x) have the oppo-

site slope: di(x) is an increasing function, while dj(x) is a decreasing func-

tion. If
(φi,1+θi,1)r+φi,0

1+θi,1
<

(φj,1+θj,1)r+φj,0
1+θj,1

then there exists η > 0, such that

max{d1(x), d2(x)} > η. Hence, the result follows from using a similar argument
for proving Case (44.1). Otherwise, from any starting point, {Vt} can reach any

point b <
hj(0)
1+θj,1

, by using a similar argument for Case (44.2).
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Case (44.4) follows readily from arguments laid out in the previous three
cases.

Proposition 45. Let {Vt} be defined by (3.3). Suppose condition (C2) holds.
Then, for each x ∈ R and y ∈ Gx, the 1-step transition probability density of
{Vt} is given by

p(x, y) =
ρ
(
y−φ1,1x−φ1,0

φ1,1+θ1,1

)
|φ1,1 + θ1,1|

IG1
x
(y) +

ρ
(
y−φ1,1x−φ1,0

φ1,1+θ1,1

)
|φ1,1 + θ1,1|

+
ρ
(
y−φ2,1x−φ2,0

φ2,1+θ2,1

)
|φ2,1 + θ2,1|

 IG2
x
(y)

+
ρ
(
y−φ2,1x−φ2,0

φ2,1+θ2,1

)
|φ2,1 + θ2,1|

IG3
x
(y)

=
ρ
(
y−φ1,1x−φ1,0

φ1,1+θ1,1

)
|φ1,1 + θ1,1|

IG1
x∪G2

x
(y) +

ρ
(
y−φ2,1x−φ2,0

φ2,1+θ2,1

)
|φ2,1 + θ2,1|

IG1
x∪G3

x
(y),

where I is the indicator function and Gix with i = 1, 2, 3, defined below, is a
partition of Gx:

G1
x =

{
y ∈ R :

y − φ1,1x− φ1,0

φ1,1 + θ1,1
≤ r − x, y − φ2,1x− φ2,0

φ2,1 + θ2,1
≤ r − x

}
;

G2
x =

{
y ∈ R :

y − φ1,1x− φ1,0

φ1,1 + θ1,1
≤ r − x, y − φ2,1x− φ2,0

φ2,1 + θ2,1
> r − x

}
;

G3
x =

{
y ∈ R :

y − φ1,1x− φ1,0

φ1,1 + θ1,1
> r − x, y − φ2,1x− φ2,0

φ2,1 + θ2,1
> r − x

}
.

(3.11)

Proof. The theorem is proved only when φ1,1 + θ1,1 > 0 and φ2,1 + θ2,1 > 0,
since in the other cases the argument is similar. It is clear that p(x, y) = 0, for
each y ∈ Gcx. Therefore, given y ∈ Gx, we compute P (Vt+1 ≤ y | Vt = x) and,
hence, derive the first step transition pdf p(x, y).

P (Vt+1 ≤ y | Vt = x) = P (φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt ≤ y, εt ≤ r − x)

+ P (φ2,0 + φ2,1x+ (φ2,1 + θ2,1)εt ≤ y, εt > r − x)

= P

(
εt ≤

y − φ1,1x− φ1,0

φ1,1 + θ1,1
, εt ≤ r − x

)
+ P

(
εt ≤

y − φ2,1x− φ2,0

φ2,1 + θ2,1
, εt > r − x

)
.

According to the position of
y−φ1,1x−φ1,0

φ1,1+θ1,1
and

y−φ2,1x−φ2,0

φ2,1+θ2,1
w.r.t. r − x, the set

Gx is decomposed into three disjoint sets:

Gx = G1
x ∪G2

x ∪G3
x,

where Gix, i = 1, 2, 3 are defined in (3.11).
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For y ∈ G1
x, we have

P (Vt+1 ≤ y | Vt = x) = P

(
εt ≤

y − φ1,1x− φ1,0

φ1,1 + θ1,1

)

=

∫ y−φ1,1x−φ1,0
φ1,1+θ1,1

−∞
ρ(u)du.

Consequently,

p(x, y) = ρ

(
y − φ1,1x− φ1,0

φ1,1 + θ1,1

)
·
∂
(
y−φ1,1x−φ1,0

φ1,1+θ1,1

)
∂y

=
ρ
(
y−φ1,1x−φ1,0

φ1,1+θ1,1

)
φ1,1 + θ1,1

.

Similarly,

p(x, y) =


ρ
(
y−φ1,1x−φ1,0
φ1,1+θ1,1

)
φ1,1+θ1,1

+
ρ
(
y−φ2,1x−φ2,0
φ2,1+θ2,1

)
φ2,1+θ2,1

, y ∈ G2
x

ρ
(
y−φ2,1x−φ2,0
φ2,1+θ2,1

)
φ2,1+θ2,1

, y ∈ G3
x.

Therefore, the proposition follows from summing the 1-step probability densities
over all these cases.

For each integer k ≥ 2 the k-step probability density of Vt is

pk(x, z) =

∫
Gx,k−1

pk−1(x, y)p(y, z)dy,

for z ∈ Gx,k and zero otherwise, where Gx,k is the set reachable from x in k
steps and Gx,1 = Gx.

Corollary 46. Assume (C2) holds. For each integer k ≥ 1 and each x ∈ R,
the k-step probability density of {Vt} is positive on the set of states reachable in
k steps from each x ∈ R.

Proof. The claim follows immediately by mathematical induction and since the
density ρ(·) is positive over R.

3.3 Aperiodicity of TARMA(1,1) processes

Proposition 47. Let {Vt} be defined by (3.3). Suppose (C2) holds and {Vt}
is µ-irreducible, where µ is the Lebesgue measure restricted to the reachable set.
Then {Vt} is aperiodic.

Proof. We prove by contradiction. Suppose the chain is periodic, with period
d ≥ 2, then there exists a d-cycle of µ-positive sets D1, . . . , Dd such that:
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(i) Di ∩Dj = ∅, for each i 6= j;

(ii) N =
[⋃d

i=1Di

]c
has null µ-measure;

(iii) P (x,Di+1) = 1, for each x ∈ Di, with i = 1, . . . , d mod(d).

Suppose x ∈ D1. From (iii), µ (Gx ∩D2) > 0 and µ (Gx ∩Di) = 0, for each i 6=
2. Now consider y ∈ D2; as before we have µ (Gy ∩D3) > 0 and µ (Gy ∩Di) =
0, for each i 6= 3 mod(d). From Table 1, Gx ∩ Gy is either a half line or the
union of two half lines, which has non-empty intersection with the reachable
set. Therefore, µ (Gx ∩Gy) > 0. Furthermore,

µ (Gx ∩Gy) = µ

(
(Gx ∩Gy) ∩

[
d⋃
i=1

Di ∪N

])
=

d∑
i=1

µ (Gx ∩Gy ∩Di) > 0.

Hence, there exists an integer i ∈ {1, . . . , d}, such that µ (Gx ∩Gy ∩Di) > 0.
This is a contradiction since µ (Gx ∩Di) = 0, for each i 6= 2 and µ (Gy ∩Di) =
0, for each i 6= 3 mod(d), therefore the result is proved.

3.4 Recurrence properties of the TARMA(1,1)
processes

In this section we provide a complete parametric classification of the long-run
probabilistic behaviour of {Yt} for the 2-regime TARMA(1,1) model with unit
delay, i.e., d = 1. Specifically, assuming (C1)–(C3), we provide the parametric
condition for recurrence versus transience, and finer sub-division of recurrence
into null recurrence versus positive recurrence and even geometric ergodicity.
Such a complete classification is enabled by the fact that the univariate time
series {Vt} is a one-dimensional Markov chain and that it resembles the standard
TAR(1) model except for having a random threshold r− εt−1 instead of a fixed
threshold r. In particular, under conditions (C1)–(C3), we show that the long-
run probabilistic behaviour (transience versus recurrence etc.) of a TARMA(1,1)
process driven by (3.3) is same as that of the associated TAR(1) process {Ṽt}
satisfying the following equation:

Ṽt =

{
φ1,0 + φ1,1Ṽt−1 + (φ1,1 + θ1,1)εt−1, if Ṽt−1 ≤ r
φ2,0 + φ2,1Ṽt−1 + (φ2,1 + θ2,1)εt−1, otherwise.

(3.12)

The classification is proved mainly via the general drift criteria for the recur-
rence classification of a continuous-state-space Markov chain [Tweedie, 1976].
Our general approach is to verify the drift criteria for {Vt} with a test (gener-
alized energy) function that works for {Ṽt}, and demonstrate that the random
threshold has a negligible impact on the drift criteria. In several cases noted
below, we develop new test functions that makes it easier to verify the relevant
drift criteria.
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Theorem 48. Let {Vt} defined by (3.3). Suppose (C1), with k ≥ 1, (C2) and
(C3) hold. Then the following characterization holds.
Part 1. {Vt} is geometrically ergodic if it satisfies (48.1):

(48.1) φ1,1φ2,1 < 1, φ1,1 < 1, φ2,1 < 1.

Part 2. {Vt} is ergodic if and only if it satisfies one of (48.2)-(48.6):

(48.2) φ1,1φ2,1 < 1, φ1,1 < 1, φ2,1 < 1;

(48.3) φ1,1 = 1, φ2,1 < 1, φ1,0 > 0;

(48.4) φ1,1 < 1, φ2,1 = 1, φ2,0 < 0;

(48.5) φ1,1 = 1, φ2,1 = 1, φ2,0 < 0 < φ1,0;

(48.6) φ1,1 < 0, φ1,1φ2,1 = 1, φ2,0 + φ2,1φ1,0 > 0.

Part 3. If furthermore there exists k > 2 such that (C1) holds then {Vt} is null
recurrent if and only if it satisfies one of (48.7)-(48.11):

(48.7) φ1,1 = 1, φ2,1 = 1, φ2,0 = 0, φ1,0 ≥ 0;

(48.8) φ1,1 = 1, φ2,1 = 1, φ2,0 < 0, φ1,0 = 0;

(48.9) φ1,1 < 1, φ2,1 = 1, φ2,0 = 0;

(48.10) φ1,1 = 1, φ2,1 < 1, φ1,0 = 0;

(48.11) φ1,1 < 0, φ1,1φ2,1 = 1, φ2,0 + φ2,1φ1,0 = 0.

Part 4. If furthermore there exists k ≥ 2 such that (C1) holds then {Vt} is
transient if and only if it satisfies one of (48.12)-(48.17):

(48.12) φ1,1 > 1;

(48.13) φ2,1 > 1;

(48.14) φ1,1 < 0, φ1,1φ2,1 > 1;

(48.15) φ1,1 < 0, φ1,1φ2,1 = 1, φ2,0 + φ2,1φ1,0 < 0;

(48.16) φ1,1 ≤ 1, φ2,1 = 1, φ2,0 > 0;

(48.17) φ1,1 = 1, φ2,1 ≤ 1, φ1,0 < 0.

We remark that ergodicity of {Vt} implies that of {Yt} and hence they ad-
mit a unique stationary distribution. In particular, under (C1)–(C3), (48.2)–
(48.6) are the necessary and sufficient conditions for the stationarity of the
TARMA(1,1) model. Moreover, under the conditions imposed in Part 1 of The-
orem 48, the stationary distribution of {Vt} has finite k-th absolute moments
and so has Xt [see Tweedie, 1983a]. The Central Limit Theorem is applicable
under some further conditions, see Chan [1993] for details. Before providing the
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proof of the preceding classification results, we establish some preliminary lem-
mas. Note that, with no loss of generality, the threshold can and will be assumed
to be zero. Otherwise, we can consider {Xt−r} which is a TARMA(1,1) process
with zero threshold, and all the parametric conditions stated in Theorem 48 are
shift invariant. We first prove that any compact set [−M,M ] of sufficiently
large M is a small set, which is required in verifying the aforementioned drift
criteria.

Lemma 49. Suppose the conditions stated in Theorem 48 hold. Then, every
set of the form [−M,M ] is a small set, where M > 0 is arbitrary if the support
of the irreducibility measure µ is the real line, and otherwise greater than |c|
where c is listed in Table 3.2.

Proof. The conditions on M implies that [−M,M ] has positive µ-measure. Its
smallness then follows from [Nummelin, 2004, Proposition 2.11], if we find a set
D, with µ(D) > 0 and a non-negative integer L < +∞ such that:

inf
x∈[−M,M ]

L∑
n=0

Pn(x,C) > 0, for each C ⊆ D, with µ(C) > 0.

We consider different cases according to the hypotheses on the parameters. In
each case, we show that there exists a set D such that P 1(x,C) ≥ η > 0, for
each C ⊆ D with µ(C) > 0. We analyze only the case in which the irreducible
measure is the Lebesgue measure on R. Otherwise, we consider the intersection
between D and the reachable set defined in Table 2. The proof is divided into
two cases according to the sign of φ1,1 + θ1,1.

Case 1. Assume φ1,1 + θ1,1 > 0 and define the set D = (−∞, d), with

d =


h1(+M), if θ1,1 > 0

h1(−M), if θ1,1 < 0

h1(0), if θ1,1 = 0.

It is clear that D ⊂ (−∞, h1(x)] ⊂ Gx, for each x ∈ [−M,M ]. Now, let
x ∈ [−M,M ] and C ⊆ D with µ(C) > 0. Since C has a positive Lebesgue
measure then there exists an interval [a, b], such that µ([a, b] ∩ C) > 0. We
claim that there exists δ > 0 such that p(x, y) > δ, for each y ∈ [a, b]. Assuming
the validity of the claim, we have:

P 1(x,C) =

∫
Gx∩C

p(x, y)dy =

∫
C

p(x, y)dy

>

∫
[a,b]∩C

δdy = δµ([a, b] ∩ C) = η > 0.
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Now, we verify the claim. for each y ∈ (−∞, h1(x)], it holds that

p(x, y) =


ρ
(
y−φ1,1x−φ1,0
φ1,1+θ1,1

)
φ1,1+θ1,1

, if h1(x) < h2(x)

ρ
(
y−φ1,1x−φ1,0
φ1,1+θ1,1

)
φ1,1+θ1,1

+
ρ
(
y−φ2,1x−φ2,0
φ2,1+θ2,1

)
φ2,1+θ2,1

I(h2(x),h1(x)](y), if h1(x) ≥ h2(x)

≥ p?(x, y) =
ρ
(
y−φ1,1x−φ1,0

φ1,1+θ1,1

)
φ1,1 + θ1,1

,

hence the validity of the claim since p?(x, y), as a function of y, is continuous
and positive over Gx, therefore attaining a positive minimum over [a, b].

Case 2. Assume φ1,1 + θ1,1 < 0. The argument is the same of Case 1, where
D = (d,+∞), with

d =


h1(−M), if θ1,1 > 0

h1(+M), if θ1,1 < 0

h1(0), if θ1,1 = 0.

Next, we present three lemmas that furnish technical tools useful for verifying
the drift criteria, with the first two essentially being Lemmas 1 and 2 in Guo
and Petruccelli [1991], and hence their proofs are omitted.

Lemma 50. Let η be a random variable, s any positive number and t any
real number. If furthermore η has finite second moment, then for any events
A ⊆ {s+ tη > 0} and B ⊆ {−s+ tη > 0},

E[ln(s+ tη)IA] ≤ P (A) ln(s) + (t/s)E[ηIA]
−{t2/(2s2)}E[η2I{A∩{tη<0}}].

(3.13)

If η admits finite first moment,

E[ln(−s+ tη)IB ] ≤ P (B){ln(s)− 2}+ (t/s)E[ηIB ]. (3.14)

Lemma 51. Let η be a random variable with distribution function G, E(η) = 0
and E(η2) < +∞. Moreover, let t, c, u2 and v2 be positive numbers, and let
s1 ≥ s2 and u1, v1, s be real numbers. Then the following hold

lim
x→−∞

xE[ηI{η<s+tx}] = lim
x→+∞

xE[ηI{η>s+tx]}] = 0;

lim
x→−∞

xE[ηI{η>s+tx}] = lim
x→+∞

xE[ηI{η<s+tx}] = 0;

lim sup
x→−∞

x2[−G(s1 + tx) ln(u1 − u2x) +G(s2 + tx){ln(v1 − v2x)− c)}] ≤ 0;

lim sup
x→+∞

x2[−{1−G(s2 + tx)} ln(v1 + v2x) + {1−G(s1 + tx)}{ln(u1 + u2x)− c}] ≤ 0.

We also need the following technical result to prove that the random threshold
has a negligible impact on the drift criteria.
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Lemma 52. Let η be a random variable with E(η) = 0 and E(|η|k) < ∞ for
some k > 0. Let t be any positive number and let s1 and s2 be any real numbers.
Then it holds that

lim
x→+∞

xkP (s1 + tx+ s2η < 0) = 0; (3.15)

lim
x→+∞

xkP (s1 − tx+ s2η > 0) = 0. (3.16)

Proof. The results are trivial if s2 = 0. So, without loss of generality, assume
s2 6= 0. Equation (3.15) holds because

0 ≤ lim inf
x→+∞

xkP (s1 + tx+ s2η < 0)

≤ lim sup
x→+∞

xkP (s1 + tx+ s2η < 0)

≤ lim
x→+∞

E
[
{−s1/t− (s2/t)η}kI{s1+tx+s2η<0}

]
=

limx→+∞E
[
{−s1/t− (s2/t)η}kI{η<−s1/s2−(t/s2)x}

]
, if s2 > 0

limx→+∞E
[
{−s1/t− (s2/t)η}kI{η>−s1/s2−(t/s2)x}

]
, if s2 < 0.

These latter limits exist and they are equal to zero, thanks to the Lebesgue
dominated convergence theorem. Eqn (3.16) can be similarly proved.

Proof of Part 1 of Theorem 48.

From Lemma 49, every set of the form [−M,M ] for all sufficiently large M is a
small set. Hence, the result follows by verifying the drift criterion in Tweedie
[1983b], Theorem 3, i.e., there exist a function g(·) : R → [1,+∞) and some
constants M,K, γ > 0, such that [−M,M ] is a small set and

(i) E[g(Vt+1)|Vt = x] ≤ (1− γ)g(x), for all x ∈ [−M,M ]c;

(ii) E[g(Vt+1)|Vt = x] ≤ K, for all x ∈ [−M,M ].

It can be seen in the proof that M can be chosen to be arbitrarily large, hence
[−M,M ] is small. The test function g(·) is of the following form

g(x) =

{
bk|x|k + 1, x < 0

akxk + 1, x ≥ 0

with a and b positive constants listed in Table 3.3. Conditions (i) and (ii) are
satisfied with Vt there replaced by Ṽt, [Chan et al., 1985, Theorem 2.3]. We
claim that

E[g(Vt+1)|Vt = x] ≤ E[g(Ṽt+1)|Ṽt = x] + τ(x) (3.17)

where τ(x) is a bounded function and τ(x) = o(1) as |x| → ∞, which implies
that conditions (i) and (ii) hold with a possibly smaller γ > 0 and a possibly
larger K > 0. Thus it remains to verify (3.17). For simplicity, we do so for
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the case that 0 ≤ φ1,1 < 1, φ2,1 ≤ −1, as the proof is similar for other cases.
Consider

E[g(Vt+1)|Vt = x] =

∫ −x
−∞

[
ak{φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}k + 1

]
(3.18)

× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε≥0}ρ(ε)dε

+

∫ +∞

−x

[
ak{φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}k + 1

]
× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε≥0}ρ(ε)dε

+

∫ −x
−∞

[
bk|φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε|k + 1

]
× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε<0}ρ(ε)dε

+

∫ +∞

−x

[
bk|φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε|k + 1

]
× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε<0}ρ(ε)dε

It holds that all the integrals in Eqn (3.18), except the last one, tends to zero
as x → ∞. Consequently, it is readily seen that they are bounded over x > 0.
We only verify that the first integral on the right hand side of Eqn (3.18) tends
to zero as x → ∞, as the zero limits of the second and third integrals can be
similarly shown. The limit of the first integral can be expressed as

lim
x→+∞

E
[[
ak{φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt}k + 1

]
I{φ1,0+φ1,1x+(φ1,1+θ1,1)εt≥0, εt≤−x}

]
≤ lim
x→+∞

E
[
ak|{φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt}k + 1|I{εt≤−x}

]
≤ lim
x→+∞

E
[
[ak2k{|φ1,1|kxk + |φ1,0 + (φ1,1 + θ1,1)εt|k}+ 1]I{εt≤−x}

]
= lim
x→+∞

2kak|φ1,1|kxkP (εt ≤ −x)

+ lim
x→+∞

E
[
{2kak|φ1,0 + (φ1,1 + θ1,1)εt|k + 1}I{εt≤−x}

]
.

Because E[|εt|k] < ∞, it follows from Lemma 52 and the Lebesgue dominated
convergence theorem that the last two limits are zero, hence the claim holds.
It can be similarly proved that all the integrals in Eqn (3.18), except the third
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Conditions on parameters Constants a and b in the test function

0 ≤ φ1,1 < 1
φ2,1 ≤ −1

a = 1
b < |φ2,1|−1

φ1,1 ≤ −1
0 ≤ φ2,1 < 1

a < |φ1,1|−1

b = 1

−1 ≤ φ1,1 < 0
φ2,1 ≤ −1
φ1,1φ2,1 < 1

a = 1
|φ1,1| < b < |φ2,1|−1

φ1,1 ≤ −1
−1 ≤ φ2,1 < 0
φ1,1φ2,1 < 1

a = 1
|φ2,1| < b < |φ1,1|−1

|φ1,1| < 1
|φ2,1| < 1

a = 1
b = 1

Table 3.3: Test functions in the drift criterion for the geometric ergodicity.

one, tends to zero as x→ −∞. Thus (3.17) follows by noting that

E[g(Ṽt+1)|Ṽt = x] = I{x≤0}

∫ ∞
−∞

[
ak{φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}k + 1

]
× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε≥0}ρ(ε)dε

+ I{x>0}

∫ +∞

−∞

[
ak{φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}k + 1

]
× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε≥0}ρ(ε)dε

+ I{x≤0}

∫ ∞
−∞

[
bk|φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε|k + 1

]
× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε<0}ρ(ε)dε

+ I{x>0}

∫ +∞

−∞

[
bk|φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε|k + 1

]
× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε<0}ρ(ε)dε,

which completes the proof.

Proof of Part 2 of Theorem 48.

In view of the proof of the preceding part and since geometric ergodicity implies
ergodicity, we need only verify the ergodicity of {Vt} under any one of (48.3)-
(48.6). The results follows from [Tweedie, 1976, Theorem 9.1(i)] if there exist a
small set of the form [−M,M ] (c.f. the remark on M in the proof of Part 1 of
Theorem 48) and a function g(·) : R → [0,+∞] and some constants K, γ > 0,
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such that

(i) E[g(Vt+1)|Vt = x] ≤ g(x)− γ, for all x ∈ [−M,M ]c;

(ii) E[g(Vt+1)|Vt = x] ≤ K, for all x ∈ [−M,M ].

For (48.3)-(48.5), the function g(x) takes the form

g(x) =

{
−bx, x < 0

ax, x ≥ 0

with a and b being positive constants as determined in [Chan et al., 1985, Lemma
2.2]. For (48.6), g(x) takes the form

g(x) =

{
−x+ d, x < 0

−φ2,1x+ c, x ≥ 0

where c, d are two positive constants chosen such that d ≥ |φ2,0| and

−φ2,0 + d < c < φ2,1φ1,0 + d,

which is feasible because φ2,0 + φ2,1φ1,0 > 0. Conditions (i) and (ii) hold with

g so defined for {Ṽt}, c.f. Lemma 2.2 in Chan et al. [1985] although we have
constructed a new g function for (48.6) while that used in Chan et al. [1985]
is based on {Ṽ2t}. Moreover, (3.17) can be readily seen to hold so the drift
criterion using the same g function is satisfied for {Vt} as well.

Proof of Part 3 of Theorem 48.

The proof is divided into two steps. First, we show that the chain is recurrent,
and then we prove that it is not ergodic under these conditions and so {Vt}
must be null recurrent. We start by proving the recurrence of the chain, using
the drift criterion in [Tweedie, 1976, Theorem 10.2]. The result follows if there
exist a small set of the form [−M,M ] (c.f. the remark on M in the proof of
Part 1 of Theorem 48) and a function g(·) : R→ [0,+∞] such that

(i)E[g(Vt+1)|Vt = x] ≤ g(x), for all x ∈ [−M,M ]c;

(ii)g(x) > sup
y∈[−M,M ]

g(y), for all x ∈ [−M,M ]c;

(iii)Bn = {y ∈ R : g(y) ≤ n} is a small set for all sufficient large n.

Following [Guo and Petruccelli, 1991], the test function g(·) takes the fol-
lowing form:

g(x) =

 ln(−bx+ β), x < −M ,
0 −M ≤ x < M ,
ln(ax+ α), x ≥M

with a and b positive constants and α and β determined in [Guo and Petruccelli,
1991, lemma 3]. The test function so defined satisfies conditions (i)-(iii) with
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Vt there replaced by Ṽt [Guo and Petruccelli, 1991, lemma 3]; specifically they
showed that

E[g(Ṽt)|Ṽt = x] ≤ g(x)− κx−2 + o(x−2),

where κ is a positive constant and o(x−2) is an expression that multiplied by
x2 tends to zero as x→ +∞ or x→ −∞. Hence, for the drift criterion to hold
for {Vt}, it suffices to show that

E[g(Vt)|Vt = x] ≤ E[g(Ṽt)|Ṽt = x] + τ(x), (3.19)

with τ(x) = o(x−2).
We prove (3.19) only in the case that φ1,1 = 1, φ2,1 = 1, φ2,0 = 0, φ1,0 ≥ 0,

since the proof is similar for other cases. Set a = b = α = β = 1 and consider

E[g(Vt+1)|Vt = x] =
∫ −x
−∞ ln{1 + φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}

×I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε>0}ρ(ε)dε

+
∫ +∞
−x ln{1 + φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}

×I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε>0}ρ(ε)dε

+
∫ −x
−∞ ln[1− {φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}]

×I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε<0}ρ(ε)dε

+
∫ +∞
−x ln[1− {φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}]

×I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε<0}ρ(ε)dε.

(3.20)

For positive x, the validity of (3.19) follows from the following claim and after
some routine algebra:

lim
x→+∞

x2

∫ −x
−∞

ln{1 + φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}

× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε>0}ρ(ε)dε = 0,

lim
x→+∞

x2

∫ −x
−∞

ln[1− {φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}]

× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε<0}ρ(ε)dε = 0.

We only verify the first limit as the other one can be similarly shown. Applying
(3.13) to the expression in the first limit, we have that

x2E
[
ln{1 + φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt}I{φ1,0+φ1,1x+(φ1,1+θ1,1)εt>0, εt≤−x}

]
≤x2P (φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt > 0, εt ≤ −x) ln(1 + φ1,0 + φ1,1x)

+x2(φ1,1 + θ1,1)(1 + φ1,0 + φ1,1x)−1E
[
εtI{φ1,0+φ1,1x+(φ1,1+θ1,1)εt>0, εt≤−x}

]
−x2(φ1,1 + θ1,1)2(1 + φ1,0 + φ1,1x)−22−1

× E
[
ε2
t I{φ1,0+φ1,1x+(φ1,1+θ1,1)εt>0, εt≤−x, (φ1,1+θ1,1)εt<0}

]
.
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We prove separately that the three addends tend to zero. Consider the first
addend. Recall E[|εt|k] <∞ for some k > 2. Let δ > 0 be such that 2 + δ < k.

0 ≤ lim inf
x→+∞

x2 ln(1 + φ1,0 + φ1,1x)P (φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt > 0, εt ≤ −x)

≤ lim sup
x→+∞

x2 ln(1 + φ1,0 + φ1,1x)P (φ1,0 + φ1,1x+ (φ1,1 + θ1,1)εt > 0, εt ≤ −x)

≤ lim
x→+∞

x2 ln(1 + φ1,0 + φ1,1x)P (εt ≤ −x)

= lim
x→+∞

x2+δ ln(1 + φ1,0 + φ1,1x)x−δP (εt ≤ −x) = 0,

from Lemma 52. Hence the first addend tends to 0 as x→ +∞. It is clear that
the second addend is non-negative for all sufficiently large x. In order to prove
that it tends to 0 as x→ +∞, it suffices to show that

lim sup
x→+∞

x2(φ1,1 + θ1,1)(1 + φ1,0 + φ1,1x)−1E
[
εtI{φ1,0+φ1,1x+(φ1,1+θ1,1)εt>0, εt≤−x}

]
≤ lim
x→+∞

(φ1,1 + θ1,1)[(1 + φ1,0)/x+ φ1,1]−1xE
[
εtI{εt≤−x}

]
= 0,

from Lemma 51. Since the variance of εt is finite, the Lebesgue dominated
convergence theorem implies that the limit of the third addend is zero. Since
x→ +∞, we can consider x to be positive and therefore it follows that

E[g(Ṽt+1)|Ṽt = x] =

∫ +∞

−∞
ln{1 + φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}

× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε>0}ρ(ε)dε

+

∫ +∞

−∞
ln[1− {φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}]

× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε<0}ρ(ε)dε.

That (3.19) holds for non-positive x can be similarly proved. The same argument
holds also for x tending to −∞ and so the proof is completed. Now, we prove
the nullity of the chain. First we prove it when (48.11) holds. We use the drift
criterion in Tweedie [1976], Theorem 9.1(ii). The chain is null if there exist
δ > 0, a non-negative function g(·) and a set A, with µ(A) > 0 and µ(Ac) > 0,
such that:

(i) E[g(Vt+1)|Vt = x] ≥ g(x), for each x ∈ Ac;
(ii) E[|g(Vt+1)− g(x)| | Vt = x] ≤ δ, for each x ∈ R;
(iii) g(x) > supy∈A g(y), for each x ∈ Ac.

Let the test function be

g(x) =

{
−bx+ β, x < 0

ax+ α, x ≥ 0.

Set a, b, α and β as in Chan et al. [1985],Lemma 2.3, i.e., satisfying the following
conditions:
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1. φ1,1 = −ba−1 and φ2,1 = −ab−1;

2. aφ1,0 ≥ β − α ≥ bφ2,0.

The test function so defined satisfies Conditions (i)-(iii) with Vt replaced by Ṽt
Chan et al. [1985], Lemma 2.3. It is not hard to show that (3.17) holds. In fact,
consider

E[g(Vt+1)|Vt = x] =

∫ −x
−∞

[a{φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}+ α]

× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε≥0}ρ(ε)dε

+

∫ +∞

−x
[a{φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}+ α]

× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε≥0}ρ(ε)dε

+

∫ −x
−∞

[−b{φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε}+ β]

× I{φ1,0+φ1,1x+(φ1,1+θ1,1)ε<0}ρ(ε)dε

+

∫ +∞

−x
[−b{φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε}+ β]

× I{φ2,0+φ2,1x+(φ2,1+θ2,1)ε<0}ρ(ε)dε. (3.21)

Applying Lemma 52, with k = 1, and the Lebesgue dominated convergence
theorem, it is readily seen that all the integrals in Eqn (3.21), except the last
(first) one, tends to zero as x→∞ (x→ −∞).
Finally, we prove the nullity of the chain when:

(φ1,1 = 1 and φ1,0 = 0) or (φ2,1 = 1 and φ2,0 = 0),

with an approach different from the random-walk argument in Chan et al. [1985]
that is invalidated by the random threshold. It is easy to prove that the Condi-
tions (i)-(iii) hold by choosing g(·) as follows. If φ1,1 = 1 and φ1,0 = 0, take
A = (0,+∞) and

g(x) =

{
−x, x < 0

0, x ≥ 0

if φ2,1 = 1 and φ2,0 = 0, take A = (−∞, 0) and

g(x) =

{
0, x < 0

x, x ≥ 0.
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Proof of Part 4 of Theorem 48.

The result follows from Tweedie [1976], Theorem 11.3(ii), if there exist a bounded
non-negative function g(·), a set A, with µ(A) > 0 and µ(Ac) > 0, such that

(i) E[g(Vt+1)|Vt = x] ≥ g(x), for all x ∈ Ac;
(ii) g(x) > sup

y∈A
g(y), for all x ∈ Ac.

We provide some details for the case (48.15). Since φ2,1 < 0 and φ1,1φ2,1 = 1,
there exist two positive constants, a and b such that

φ1,1 = −ba−1 and φ2,1 = −ab−1.

Since φ2,0 + φ2,1φ1,0 < 0, there exist two real constants, α and β, such that

−aφ1,0 < aα+ bβ < −bφ2,0.

Moreover, let c be a positive constant such that

ca−1 − α > 0 and − cb−1 − β < 0.

Consider the test function g(·) defined in Guo and Petruccelli [1991], lemma 4,
that is,

g(x) =


1 + 1/{b(x+ β)}, x < −cb−1 − β
1− 1/c, −cb−1 − β < x < ca−1 − α
1− 1/{a(x+ α)}, x > ca−1 − α.

As (3.19) can be readily shown by applying Lemma 52, with k = 2, the proof
follows from that of Guo and Petruccelli [1991], lemma 4. For other cases,
the proof is similar, so we only spell out the form of the test function and the
corresponding set A. The test functions constructed for the cases (48.12–13,
48.16–17) are new.

Case (48.12). Let c be a positive constant such that c − 1 > 0. Then, take
A = [−c− 1,+∞) and define

g(x) =

{
1 + 1/(x+ 1), x < −c− 1

1− 1/c, x ≥ −c− 1.

Case (48.13). Let c be a positive constant such that c − 1 > 0. Then, take
A = (−∞, c− 1] and define

g(x) =

{
1− 1/c, x ≤ c− 1

1− 1/(x+ 1), x > c− 1.

Case (48.14). Let a be a positive constant such that −φ−1
1,1 < a < −φ2,1 (note

that this is attainable since φ1,1 < 0 and φ1,1φ2,1 > 1) and let c be a positive
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constant such that c/a− 1 > 0. Then, take A = [−c− 1, c/a− 1] and define

g(x) =


1 + 1/(x+ 1), x ≤ −c− 1

1− 1/c, −c− 1 ≤ x ≤ c/a− 1

1− 1/{a(x+ 1)}, x > c/a− 1.

Case (48.16). Let c be a positive constant such that c − 1 > 0. Then, take
A = (−∞, c− 1] and define

g(x) =

{
1− 1/c, x ≤ c− 1

1− 1/(x+ 1), x > c− 1.

Case (48.17). Let c be a positive constant such that c − 1 > 0. Then, take
A = [−c− 1,+∞) and define

g(x) =

{
1 + 1/(x+ 1), x < −c− 1

1− 1/c, x ≥ −c− 1.

3.5 Extension to multiple-regime TARMA(1,1)
processes

We now extend the results from the 2-regime TARMA(1,1) model to the multiple-
regime TARMA(1,1) model. More generally, the m-regime TARMA(p, p) pro-
cess satisfies the following difference equation:

Xt =

m∑
i=1

φi,0 +

p∑
j=1

φi,jXt−j + εt +

p∑
j=1

θi,jεt−j

× I(ri−1 < Xt−d ≤ ri)

where −∞ = r0 < r1 < · · · < rm−1 < rm = ∞. The Markovian representation
detailed in Section 3.1 can be readily lifted to the multiple-regime TARMA
process. Moreover, Propositions 37–40 continue to hold for multiple-regime
TARMA(1,1) processes so that we can study the long-run behaviour of {Xt} by
studying those of {Vt}. We now state two main results.

Theorem 53. Let {Xt} be a multiple-regime TARMA(1,1) process. Suppose
(C2) holds. Then, {Vt} is irreducible and aperiodic if (i) (C3) holds with the
coefficients of the second regime there replaced by those of the last regime, or
(ii) if θi,1 = 0 for some i.

Theorem 54. Let {Xt} be a multiple-regime TARMA(1,1) process. Suppose
(C1) and (C2) hold, and either (C3) holds for the outermost two regimes of
{Xt} or one of its regimes is defined by an AR(1) model, i.e., θi,1 = 0 for some
i. Then the classification results stated in Theorem 48 hold for {Vt} with the
parametric conditions pertaining to the outermost two regimes.
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We outline the proofs in the case with three regimes:

Vt =


φ1,0 + φ1,1Vt + (φ1,1 + θ1,1)εt, if Vt ≤ r1 − εt
φ2,0 + φ2,1Vt + (φ2,1 + θ2,1)εt, if r1 − εt < Vt−1 ≤ r2 − εt
φ3,0 + φ3,1Vt + (φ3,1 + θ3,1)εt, if Vt > r2 − εt.

(3.22)

We derive the set Gx, the reachable set in 1 step from x, as follows. In order
for Vt = x and Vt+1 = y, we exhibit a realization of the variable εt, i.e., u, such
that at least one of the following systems admits a solution.

(i) {
φ1,0 + φ1,1x+ (φ1,1 + θ1,1)u = y

x ≤ r1 − u;

(ii) {
φ2,0 + φ2,1x+ (φ2,1 + θ2,1)u = y

r1 − u < x ≤ r2 − u;
.

(iii) {
φ3,0 + φ3,1x+ (φ3,1 + θ3,1)u = y

x > r2 − u.
.

Define the following functions:

h1(x) = (φ1,1 + θ1,1)r1 + φ1,0 − θ1,1x;

h2(x) = (φ2,1 + θ2,1)r1 + φ2,0 − θ2,1x;

h3(x) = (φ2,1 + θ2,1)r2 + φ2,0 − θ2,1x;

h4(x) = (φ3,1 + θ3,1)r2 + φ3,0 − θ3,1x.

The set Gx has a different form according to the signs of φi,1 +θi,1, i = 1, 2, 3, as
summarized in the Table 3.4. Obviously, there are some cases in which Gx = R.
For instance, if φi,1+θi,1 > 0, i = 1, 2, 3, then Gx = R if one of the two following
conditions holds:

(1) h1(x) > h4(x);

(2) h1(x) > h2(x) and h3(x) > h4(x).

In the other cases, note that

Gx ⊂ (−∞, h1(x)] ∪ (h4(x),+∞),if φ1,1 + θ1,1 > 0 and φ3,1 + θ3,1 > 0;

Gx ⊂ (−∞, h1(x)] ∪ (−∞, h4(x)),if φ1,1 + θ1,1 > 0 and φ3,1 + θ3,1 < 0;

Gx ⊂ [h1(x),+∞) ∪ (h4(x),+∞),if φ1,1 + θ1,1 < 0 and φ3,1 + θ3,1 > 0;

Gx ⊂ [h1(x),+∞) ∪ (−∞, h4(x)),if φ1,1 + θ1,1 < 0 and φ3,1 + θ3,1 < 0.
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φ1,1 + θ1,1 φ2,1 + θ2,1 φ3,1 + θ3,1 1-step Reachable set

+ + + (−∞, h1(x)] ∪ (h2(x), h3(x)] ∪ (h4(x),+∞)

+ + - (−∞, h1(x)] ∪ (h2(x), h3(x)] ∪ (−∞, h4(x))

+ - + (−∞, h1(x)] ∪ [h3(x), h2(x)) ∪ (h4(x),+∞)

- + + [h1(x),+∞) ∪ (h2(x), h3(x)] ∪ (h4(x),+∞)

+ - - (−∞, h1(x)] ∪ [h3(x), h2(x)) ∪ (−∞, h4(x))

- + - [h1(x),+∞) ∪ (h2(x), h3(x)] ∪ (−∞, h4(x))

- - + [h1(x),+∞) ∪ [h3(x), h2(x)) ∪ (h4(x),+∞)

- - - [h1(x),+∞) ∪ [h3(x), h2(x)) ∪ (−∞, h4(x))

Table 3.4: Gx according to the parametric conditions.

Therefore if either θ1,1 6= 0 or θ2,1 6= 0 then we can apply the same arguments
used in the case of two regimes to study the irreducibility. To sum up, the
three-regime TARMA(1,1) model is irreducible if φ1,0, φ3,0, φ1,1, φ3,1, θ1,1 and
θ3,1 satisfy the modified condition (C3) (c.f. Theorem 41). On the other hand,
irreducibility holds automatically if any θi,1 = 0, because of the existence of
an infinite interval that is a subset of the reachable set Ω ⊆ Gx that does not
depend on x. For instance, if θ2,1 = 0, it follows that:

Ω = (h2(0), h3(0)], if φ2,1 > 0;

Ω = [h3(0), h2(0)), if φ2,1 < 0.

It is then readily checked that {Vt} is aperiodic as Proposition 47 holds
regardless of the number of regimes. The classification of long-run probabilistic
behaviour depends only on the parameters in the extreme regimes, as is also
the case for the TAR(1) model [Chan et al., 1985]. For example, when we
apply the drift criterion for verifying the geometric ergodicity, the expectation
E[g(Vt+1)|Vt = x] can be decomposed into a sum of three integrals:

E[g(Vt+1)|Vt = x] =

∫ r1−x

−∞
g(φ1,0 + φ1,1x+ (φ1,1 + θ1,1)ε)ρ(ε)dε

+

∫ r2−x

r1−x
g(φ2,0 + φ2,1x+ (φ2,1 + θ2,1)ε)ρ(ε)dε

+

∫ +∞

r2−x
g(φ3,0 + φ3,1x+ (φ3,1 + θ3,1)ε)ρ(ε)dε.

By using the Lebesgue dominated convergence theorem, it is readily checked
that the intermediate integral tend to zero as x→ +∞ (or x→ −∞), resulting
in the equation being akin to the case of two regimes so that we can lift the
proof techniques used in the two-regime case to multiple regimes. Obviously, the
same argument holds if there are more than three regimes and can be modified
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appropriately for the other drift criteria. This completes the outline of the two
proofs.



Chapter 4

Unit-root testing for linear
and non-linear alternatives:
a TARMA based approach

4.1 Introduction

In this Chapter we propose a novel unit root test that does not suffer from
size distortions and, at the same time, allows for a wide and flexible non-linear
alternative and is robust against heteroskedasticity. This is made possible by
the recent results on the probabilistic structure of the TARMA model derived in
Chan and Goracci [2017]. We specify an IMA(1, 1) model as the null hypothesis
and a TARMA(1, 1) with a unit root regime as the alternative. As we will show,
both the IMA(1,1) and the TARMA(1,1) are able to encompass a wide range of
stationary and non-stationary linear and non-linear models. In particular, the
IMA(1,1) formalizes the exponential smoothing approach, a popular general-
purpose forecasting tool (see Gardner [1985], Holt [2004], Hyndman et al. [2008],
Chatfield [2000]) that predates the Box-Jenkins approach of forecasting via the
ARIMA models. It is based on the simple idea that past data contain relevant
information for predicting future values, with the relevance declining with time
at some geometric rate quantified by the MA coefficient.

We propose a supremum Lagrange Multiplier test statistic (supLM) and
derive its asymptotic distribution both under the null hypothesis and local al-
ternatives. We prove that the test is consistent and free of nuisance parameters.
Moreover, we also prove that it is similar in that its distribution does not depend
on the value of the MA parameter. The derivation of the asymptotic theory is
highly non-standard and the approach is completely new and not based on ex-
isting results e.g. those of Park and Phillips [2001]. We also introduce a wild
bootstrap version of the supLM statistic. We perform a simulation study where
we compare our proposals with existing tests where the alternative hypothesis is

65
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that of a threshold model. In general, the size of such tests is severely biased in a
number of cases so that their use in practical applications remains questionable
if no additional information on the data generating process is available. Also,
the comparison includes the best performing unit root tests to date, where the
alternative hypothesis does not specify explicitly a non-linear process. The strik-
ing evidence from the simulations confirms that rejection of the null hypothesis
does not necessarily imply a non-linear specification so that, as also suggested
in Choi [2015], unit root tests should not be applied without previous knowledge
on the series. Finally, we apply our tests to the monthly real exchange rates
from September 1973 to December 1998 for a set of European countries. We
are able to reject with confidence the null hypothesis for Germany and find a
plausible TARMA fit that might help shedding some light on the PPP puzzle.

The chapter is structured as follows. In Section 4.2 we present the parametriza-
tion of TARMA models that will be used in the theoretical derivation of our
test. In particular, we describe the TARMA(1,1) parametrization under the
alternative hypothesis that reduces to the IMA(1,1) process under the null. In
Section 4.3 we present the supLM test statistic. We derive its asymptotic dis-
tribution both under the null hypothesis and local alternatives. Moreover, we
present the wild bootstrap version of our test statistic. In Section 4.4 we per-
form a large scale simulation study to show the performance of the tests in finite
samples, in terms of size and power, and compare them with existing proposals.
Section 4.5 contains the empirical illustration where we apply the tests to the
pre-Euro monthly real exchange rates of a set countries. Finally, in Section 4.6
we outline in details all the proofs.

4.2 TARMA models in the unit-root setting

The two-regime TARMA(1,1) model specifies that the time series {Xt, t =
0, 1, · · · } satisfies the following equation:

Xt =

{
φ1,0 + φ1,1Xt−1 + θ1,0εt − θ1,1εt−1, if Xt−d ≤ r
φ2,0 + φ2,1Xt−1 + θ2,0εt − θ2,1εt−1 otherwise,

(4.1)

where the innovations {εt} are iid random variables of zero mean and vari-
ance σ2, εt is independent of past X’s, i.e., Xt−j , j = 1, · · · , t; the delay d is
a positive integer which, for simplicity, is taken to be 1 henceforth; r is the
real-valued threshold parameter; the φ’s and θ’s are unknown coefficients. The
preceding TARMA model is not identifiable without further parametric con-
straints. One way to ensure model identifiability is to set σ2 = 1. The TARMA
process is said to fall into the first (second) regime if Xt−1 ≤ r (Xt−1 > r).
The TARMA model specifies that the data-generating mechanism switches be-
tween two ARMA(1,1) sub-models depending on whether the threshold variable
Xt−1 exceeds the threshold r. Clearly, the TARMA(1,1) model subsumes the
IMA(1,1) model. In order to develop our test, we introduce the following con-
strained TARMA(1,1) model that states a general hypothesis including both the
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IMA(1,1) model and against which a certain competitive direction of non-linear
departure:

Xt =

{
φ̃1,0 + φ̃1,1Xt−1 + εt − θεt−1, if Xt−d ≤ r
φ̃2,0 +Xt−1 + εt − θεt−1 otherwise,

(4.2)

where the innovations are re-parameterized to make the innovation variance a
positive parameter. The preceding (constrained) TARMA(1,1) model assumes
that the sub-model in the second (upper) regime is an IMA(1,1) model while
the sub-model in the lower regime is a general ARMA(1,1) model.

Statistical inference with a TARMA model hinges on whether the model
is invertible in the sense that the innovations can be asymptotically recovered
were the model parameters known [Chan and Tong, 2010]. Note that model
(4.2) is invertible if |θ| < 1 [Chan and Tong, 2010]. Henceforth, θ is assumed
to lie inside (−1, 1). Assuming the innovations admit a positive, continuous
probability density function (pdf) of finite second moment, Chan and Goracci
[2017] showed that model (4.2) is an ergodic Markov chain if and only if φ̃2,0 < 0

and either (i) φ̃1,1 < 1, or (ii) φ̃1,1 = 1, φ̃1,0 > 0; ergodicity then implies that
the TARMA(1,1) model admits a unique stationary distribution. Furthermore,
Chan and Goracci [2017] provides a complete classification of the parametric
regions of the TARMA(1,1) model into sub-regions of ergodicity, null recurrence
and transience: the (constrained) TARMA(1,1) defined by (4.2) is null-recurrent
if (iii) φ̃2,0 ≥ 0 or (iv) φ̃1,1 = 1, φ̃1,0 < 0; if none of (i)–(iv) hold, then the model
is transient. Thus model (4.2) is a rich model that encompasses both linear or
non-linear processes spanning a wide spectrum of long-run behaviours including
ergodicity, null recurrence and transience.
Model (4.2) can be re-parametrized as follows:

Xt = φ0 +Xt−1 + εt − θεt−1 + {φ1,0 + φ1,1Xt−1} × I(Xt−1 ≤ r),

where φ0 = φ̃2,0, φ1,0 = φ̃1,0 − φ̃2,0 and φ1,1 = φ̃1,1 − 1.

4.3 Lagrange multiplier test

Let {Xt, t = 1, . . . , n}, be a time series and assume that, for each t, Xt satisfies
the difference equation:

H : Xt = φ0 +Xt−1 + εt− θεt−1 + {φ1,0 +φ1,1Xt−1}× I(Xt−1 ≤ r), (4.3)

where the parameters and the innovations are those defined above. Our interest
is in testing whether φ1,0 = φ1,1 = 0, i.e., the data are generated by the IMA(1,1)
model with an intercept term:

H0 : Xt = φ0 +Xt−1 + εt − θεt−1. (4.4)

If the intercept φ0 6= 0, then the IMA(1,1) process superimposes on a linear
trend. If no such linear trend is apparent in the data, it is reasonable to omit
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the intercept from the IMA(1,1) model. However, the intercept terms on the
two regimes of any competing stationary TARMA(1,1) model will be required to
model the mean of the data. Indeed, even for mean-deleted data, the intercept
terms of the TARMA(1,1) model are not necessarily zero. Hence, the intercept
terms are retained in the constrained TARMA model.

Under the null hypothesis, the threshold parameter is absent thereby compli-
cating the test. Our approach is to develop a Lagrange multiplier test statistic
for H0 with the threshold parameter fixed at some r. Denote the test statistic as
Tn,r. Since r is unknown and indeed undefined under H0, we shall compute Tn,r
for all r over some data-driven interval, say, [rL, rU ] with the end points being
some percentiles of the observed data. For instance, rL is the 20 percentile and
rU the 80 percentile. Then the overall test statistic Tn = supr∈[rL,rU ] Tn,r. Be-
sides taking supremum, other approaches including integration can be employed
to derive an overall test statistic.

For fixed r, the Lagrange multiplier test is developed based on the Gaussian
likelihood conditional on X0:

` = − log(σ22π)× n/2−
n∑
t=1

ε2
t/(2σ

2), (4.5)

where

εt = Xt − [φ0 +Xt−1 + {φ1,0 + φ1,1Xt−1} × I(Xt−1 ≤ r)] + θεt−1. (4.6)

Letψ = (φ0, θ, σ
2, φ1,0, φ1,1)ᵀ, with its components denoted by ψj , j = 1, 2, . . . , 5.

Denote by ψ1 the sub-vector comprising the first three components of ψ, and
ψ2 the sub-vector consisting of the remaining two components, i.e.:

ψ1 =
(
φ0, θ, σ

2
)ᵀ

ψ2 = (φ1,0, φ1,1)
ᵀ
.

Consider the score and the Fisher information matrix partitioned according to
ψi, i = 1, 2 into

∂`

∂ψ
=

(
∂`
∂ψ1
∂`
∂ψ2

)

In(τ) =

(
I1,1,n(τ) I1,2,n(τ)
I2,1,n(τ) I2,2,n(τ)

)
.

The IMA(1,1) model under the null hypothesis can be estimated by solving the

score equation ∂`
∂ψ1

= 0, yielding ψ̂1 = ψ̂1,n = (φ̂0,n, θ̂n, σ̂
2
n)ᵀ. Let ∂ ˆ̀

∂ψ2
be equal

to ∂`
∂ψ2

evaluated at ψ1 = ψ̂1 and ψ2 = 0. Similarly, Îi,j,n(τ) is obtained by

evaluating Ii,j,n(τ), i, j = 1, 2 at ψ1 = ψ̂1 and ψ2 = 0.
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Our test statistic is

Tn = sup
r∈[rL,rU ]

Tn,r; (4.7)

Tn,r =

(
∂ ˆ̀

∂ψ2

)ᵀ (
Î2,2,n(τ)− Î2,1,n(τ)Î−1

1,1,n(τ)Î1,2,n(τ)
)−1 ∂ ˆ̀

∂ψ2

. (4.8)

Some notation and conventions, to be adopted throughout, follow. Unless stated
otherwise, all the expectations are taken under the true probability distribution
for which H0 holds. Let τ be such that r =

√
nσ(1− θ)τ and {Wt, t = 1, . . . , n}

be the standard Wiener process. Set

I(τ) =

(
I1,1(τ) Iᵀ2,1(τ)
I2,1(τ) I2,2(τ)

)
,

where

I1,1(τ) =

 σ2(1− θ)2 0 0
0 · 0
0 0 ·

 ;

I2,1(τ) =

(
1

(1−θ)2σ2

∫ 1

0
I(Ws ≤ τ)ds 0 0

1
(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds 0 0

)
;

I2,2(τ) =

(
1

(1−θ)2σ2

∫ 1

0
I(Ws ≤ τ)ds 1

(1−θ)σ
∫ 1

0
WsI(Ws ≤ τ)ds

1
(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2
s I(Ws ≤ τ)ds

)
.

Moreover, define the following two matrices:

Qn =

(
n−1/2 0

0 n−1

)
and Pn =

n−1/2 0 0
0 n−1/2 0
0 0 ·

 .

4.3.1 The asymptotic null distribution

We now derive the asymptotic distribution of both Tn,r and Tn under the null
hypothesis of an IMA(1,1) model with zero intercept:

Xt = Xt−1 + εt − θεt−1. (4.9)

For simplicity, we assume Gaussian innovations. From (4.5), it follows that the
components of the score vector are

∂`

∂ψ1

=

 n∑
t=1

εt
σ2

t−1∑
j=0

θj ,

n∑
t=1

εt
σ2

t−1∑
j=0

θjεt−1−j ,

n∑
t=1

ε2
t − σ2

σ4

ᵀ

,

∂`

∂ψ2

=

 n∑
t=1

εt
σ2

t−1∑
j=0

θjI

(
Xt−1−j√
nσ(1− θ)

≤ τ
)
,

n∑
t=1

εt
σ2

t−1∑
j=0

θjXt−1−jI

(
Xt−1−j√
nσ(1− θ)

≤ τ
)ᵀ

,
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while

diag (I1,1,n(τ)) =

 n∑
t=1

1

σ2

t−1∑
j=0

θj

2

,

n∑
t=1

1

σ2

t−1∑
j=0

θjεt−1−j

2

,

n∑
t=1

(ε2
t − σ2)2

4σ8


ᵀ

,

the first column of I2,1,n(τ) is ∑n
t=1

1
σ2

(∑t−1
j=0 θ

j
)(∑t−1

j=0 θ
jI
(

Xt−1−j√
nσ(1−θ) ≤ τ

))
∑n
t=1

1
σ2

(∑t−1
j=0 θ

j
)(∑t−1

j=0 θ
jXt−1−jI

(
Xt−1−j√
nσ(1−θ) ≤ τ

))  ;

I2,2,n(τ) has the diagonal equal to ∑n
t=1

1
σ2

(∑t−1
j=0 θ

jI
(

Xt−1−j√
nσ(1−θ) ≤ τ

))2

∑n
t=1

1
σ2

(∑t−1
j=0 θ

jXt−1−jI
(

Xt−1−j√
nσ(1−θ) ≤ τ

))2


and the off-diagonal elements coincide and are equal to

n∑
t=1

1

σ2

t−1∑
j=0

θjI

(
Xt−1−j√
nσ(1− θ)

≤ τ
)t−1∑

j=0

θjXt−1−jI

(
Xt−1−j√
nσ(1− θ)

≤ r
) .

Note that, in the above derivation, we exploited the fact that, asymptotically,
ε2
t/σ

2 can be replaced by 1. The next proposition shows that, as n increases,

the distribution of ∂ ˆ̀

∂ψ2
can be derived from those of ∂`

∂ψ1
and ∂`

∂ψ2
. This is of

fundamental importance in the development of the asymptotic theory since it
allows us to replace ψ̂ with ψ.

Proposition 55. It holds that

∂ ˆ̀

∂ψ2

≈ (I−1
2,2,n(τ))−1

(
I−1
2,1,n(τ)

∂`

∂ψ1

+ I−1
2,2,n(τ)

∂`

∂ψ2

)
=

∂`

∂ψ2

− I2,1,n(τ)(I1,1,n)−1(τ)
∂`

∂ψ1

,

where I−1
2,2,n(τ) denotes the (2, 2) block of the inverse of In(τ) that is partitioned

according to ψ1 and ψ2 etc., and the RHS of the preceding equation is evaluated
at the true value under the null hypothesis with φ0 = 0.

We now focus on the asymptotic distribution of Qn
∂ ˆ̀

∂ψ2
. Since

I2,1(τ)I−1
1,1 (τ) =

(
1

(1−θ)2σ2

∫ 1

0
I(Ws ≤ τ)ds 0 0

1
(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds 0 0

) σ2(1− θ)2 0 0
0 · 0
0 0 ·



=

( ∫ 1

0
I(Ws ≤ τ)ds 0 0

σ(1− θ)
∫ 1

0
WsI(Ws ≤ τ)ds 0 0

)
,
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the only elements that play a role in the limiting distribution are

∇1
n(τ) =

1√
n

∂`

∂φ0
=

1√
n

n∑
t=1

εt
σ

t−1∑
j=0

θj ; (4.10)

∇2
n(τ) =

1√
n

∂`

∂φ1,0
=

1√
n

n∑
t=1

εt
σ

t−1∑
j=0

θjI

(
Xt−1−j√
n(1− θ)σ

≤ τ
)

; (4.11)

∇3
n(τ) =

1

n

∂`

∂φ1,1
=

1√
n

n∑
t=1

εt
σ

t−1∑
j=0

θj
Xt−1−j√

nσ
I

(
Xt−1−j√
n(1− θ)σ

≤ τ
)
. (4.12)

Let DR(−b, b), b > 0 be the space of functions from (−b, b) to R that are right
continuous with left-hand limits. DR(−b, b) is equipped with the topology of
uniform convergence on compact sets. ∇in(τ), i = 1, 2, 3 are random elements
living in DR(−b, b). In order to establish their weak convergence, we need to
prove the following propositions.

Proposition 56. Under the null hypothesis, for every fixed τ , it holds that

∇1
n(τ)

d−−−−→
n→∞

1

(1− θ)σ

∫ 1

0

dWs, (4.13)

∇2
n(τ)

d−−−−→
n→∞

1

(1− θ)σ

∫ 1

0

I(Ws ≤ τ)dWs, (4.14)

∇3
n(τ)

d−−−−→
n→∞

∫ 1

0

WsI(Ws ≤ τ)dWs. (4.15)

Proposition 57. Under the null hypothesis {∇in(τ),−b ≤ τ ≤ b}, i = 1, 2, 3,
b > 0 are tight.

Now we are able to prove the following

Theorem 58. Let ∇n(τ) =
(
∇1
n(τ),∇2

n(τ),∇3
n(τ)

)ᵀ
and

Ξ(τ) =

(
1

(1− θ)σ

∫ 1

0

dWs,
1

(1− θ)σ

∫ 1

0

I(Ws ≤ τ)dWs,

∫ 1

0

WsI(Ws ≤ τ)dWs

)ᵀ

.

Under the null hypothesis, {∇n(τ)} converges weakly to Ξ(τ) in the space
DR(−b, b).

Proof. Propositions (56) and (57) allow to apply Theorem 18.14, p. 261 of van
der Vaart [1998] so that the result follows.

The following theorem allows to derive the weak limit of functions of In.

Theorem 59. Let Kn be the 5 by 5 diagonal matrix where
diag(Kn) = (

√
n,
√
n,
√
n,
√
n, n). Under the null hypothesis, it holds that

sup
τ∈[a,b]

‖K−1
n In(τ)K−1

n − I(τ)‖ p−−−−→
n→∞

0,
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where −∞ < a < b <∞, and ‖ · ‖ is the L2 matrix norm (the Frobenius’ norm,

i.e. ‖A‖ =
√∑n

i=1

∑m
j=1 |aij |2, where A is a n×m matrix. )

The following theorem is the main result of the section. Theorems 58 and
59 are used to derive the asymptotic distribution of the supLM statistic under
the null hypothesis.

Theorem 60. Let H(τ) = (
∫ 1

0
dWs,

∫ 1

0
I(Ws ≤ τ)dWs,

∫ 1

0
WsI(Ws ≤ τ)dWs)

ᵀ

and

Λ(τ) =

 1
∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2
s I(Ws ≤ τ)ds


Let Λτ be partitioned into a 2×2 block matrix with the (2, 2)-th block being 2×2.
Similarly partitioned is Hτ = (H1(τ), H2(τ))ᵀ. Then, the asymptotic null dis-

tribution of Tn,r is the same as that of
∥∥((Λ−1

τ )2,2)1/2 (H2(τ)− Λ2,1(τ)H1(τ))
∥∥2

where ‖·‖ is the Euclidean vector norm. Hence, the asymptotic null distribution
of Tn = sup{Tn,r, r ∈ [

√
n(1 + θ)rL,

√
n(1 + θ)rU ]} converges in distribution to

sup
τ∈[rL,rU ]

∥∥∥((Λ−1
τ )2,2)1/2 (H2(τ)− Λ2,1(τ)H1(τ))

∥∥∥2

which is parameter-free under the null distribution with φ0 = 0.

Proof. The result readily follows by routine algebra.

4.3.2 The distribution under local alternatives

In this section we derive the asymptotic distribution of the supLM statistic
under a sequence of local alternatives and prove the consistency of associated
test. For each n we have the null hypothesis
H0,n: (X0, X1, . . . , Xn) follows the model

Xt = Xt−1 + εt − θεt−1.

versus the alternative hypothesis
H1,n: (X0, X1, . . . , Xn) follows the model

Xt =


h1,0√
n

+
(

1 +
h1,1

n

)
Xt−1 + εt − θεt−1 if Xt−1

σ
√
n(1−θ) ≤ τ0

h2,0√
n

+
(

1 +
h2,1

n

)
Xt−1 + εt − θεt−1 if Xt−1

σ
√
n(1−θ) > τ0.

where h = (h1,0, h2,0, h1,1, h2,1)ᵀ is a fixed vector and τ0 is a fixed scalar. In
the following we develop the theory for h2,0 = h2,1 = 0 and, for notational
convenience, we set h1,0 = h0 and h1,1 = h1. We constrain h1 to be negative
so {Xt} is a stationary process in the lower regime. Moreover, we assume h0 to
be negative. Let P0,n and P1,n be the probability measures of (X0, X1, . . . , Xn)
under H0 and H1, respectively.
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Proposition 61. It holds that:

1. If h1 ∈
(
− π

2(1−θ) , 0
)

then {P1,n} is contiguous to {P0,n}.

2. Under the null hypothesis, as n increases, the log likelihood ratio log
dP1,n

dP0,n

converges to Xt−1/2[Xt], where [Xt] is the quadratic variation of Xt and

Xt =

∫ t

0

{
h0

σ
I (Ws ≤ τ0) + (1− θ)h1WsI (Ws ≤ τ0)

}
dWs.

Let {Wt} and {W̃t} be the P0,n-Wiener process and P1,n-Wiener process, re-
spectively. In the following proposition we derive the distribution of {Wt} under
P1,n.

Proposition 62. Assume that H1 holds. Then, Wt satisfies the following
threshold stochastic differential equation on [0, 1]:

dWt = dW̃t +

{
h0

σ
I (Wt ≤ τ0) + (1− θ)h1WtI (Wt ≤ τ0)

}
dt

=

{
dW̃t +

[
h0

σ + (1− θ)h1Wt

]
dt if Wt ≤ τ0

dW̃t if Wt > τ0

Let θ̃ = −(1 − θ)h1 and µ̃ = − h0

σ(1−θ)h1
. In the following Corollary, we prove

that as µ̃ → −∞, {Wt} behaves as a stochastic differential equation without
threshold.

Corollary 63. Suppose µ̃ → −∞ and τ0 > 0. Then, except for an asymp-
totically negligible event, Wt is the following Ornstein-Uhlenbeck process over
[0, 1]:

dWt = θ̃ (µ̃−Wt) dt+ dW̃t. (4.16)

Note that, for each t,

Wt = µ̃(1− e−θ̃t) +

∫ t

0

e−θ̃(t−s)dW̃t ∼ N

(
µ̃(1− e−θ̃t), 1− e−2θ̃t

2θ̃µ̃2

)

. Now, consider the SDE 4.16. The normalized process
{
Wt

|µ̃|

}
satisfies the

following equation:

d
Wt

|µ̃|
= −θ̃

(
1 +

Wt

|µ̃|

)
dt+ d

W̃t

|µ̃|
. (4.17)

Proposition 64. Define the deterministic process {Gt}, such that

Gt = e−θ̃t − 1.
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It holds that {
Wt

|µ̃|
, 0 ≤ t ≤ 1

}
p−−−−→

|µ̃|→∞
{Gt, 0 ≤ t ≤ 1} (4.18)

i.e.

sup
0≤t≤1

∣∣∣∣Wt

|µ̃|
− Gt

∣∣∣∣ p−−−−→
|µ̃|→∞

0.

Now, consider our test statistic

T = sup
τ∈[rL,rU ]

L(τ)ᵀ∆(τ)−1L(τ),

where

L(τ) = (H2(τ)− Λ2,1(τ)H1(τ))
ᵀ

;

∆(τ) =
(
Λ22(τ)− Λ21(τ)Λ−1

11 (τ)Λ12(τ)
)

;

H(τ) =

(∫ 1

0

dWs,

∫ 1

0

I(Ws ≤ τ)dWs,

∫ 1

0

WsI(Ws ≤ τ)dWs

)ᵀ

;

Λ22(τ) =

( ∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2
s I(Ws ≤ τ)ds

)
;

Λ21(τ) = Λ12(τ)ᵀ =

(∫ 1

0

I(Ws ≤ τ)ds,

∫ 1

0

WsI(Ws ≤ τ)ds

)ᵀ

;

Λ11(τ) = (1).

Proposition 65. Let qi

(
Ws

|µ̃| , 0 ≤ s ≤ 1
)

and qi (Gs, 0 ≤ s ≤ 1), i = 1, 2, be two

quantiles of the processes
{
Ws

|µ̃|

}
and {Gs}, respectively. It holds that

qi

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
p−−−−→

|µ̃|→∞
qi (Gs, 0 ≤ s ≤ 1) .

Moreover, ∫ 1

0

I(Ws ≤ τ)ds
p−−−−→

|µ̃|→∞

∫ 1

0

I(Gs ≤ τ̃)ds;∫ 1

0

Ws

|µ̃|
I(Ws ≤ τ)ds

p−−−−→
|µ̃|→∞

∫ 1

0

GsI(Gs ≤ τ̃)ds;∫ 1

0

W 2
s

|µ̃|2
I(Ws ≤ τ)ds

p−−−−→
|µ̃|→∞

∫ 1

0

G2
sI(Gs ≤ τ̃),

where, given a constant s̃:

τ = s̃q1

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
+ (1− s̃)q2

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
τ̃ = s̃q1 (Gs, 0 ≤ s ≤ 1) + (1− s̃)q2 (Gs, 0 ≤ s ≤ 1) .
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Let

a =

∫ 1

0

I (Gs ≤ τ̃) ds; b = GsI (Gs ≤ τ̃) ds; c = G2
sI (Gs ≤ τ̃) ds.

In the following proposition we establish the orders of the various quantities
defining the test statistic 4.7.

Proposition 66. It holds that:∫ 1

0

I(Ws ≤ τ)ds = O(1);

∫ 1

0

WsI(Ws ≤ τ)ds = O(|µ̃|);
∫ 1

0

W 2
s I(Ws ≤ τ)ds = O(|µ̃|2);∫ 1

0

I (Ws ≤ τ) dWs −
[∫ 1

0

I (Ws ≤ τ) ds

] ∫ 1

0

dWs = Op
(
|µ̃|−1

)
;∫ 1

0

WsI (Ws ≤ τ) dWs −
[∫ 1

0

WsI (Ws ≤ τ) ds

] ∫ 1

0

dWs = Op
(
|µ̃|−2

)
.

Moreover, let

Rµ̃ =

(
1 0
0 µ̃

)
,

then:

lim
µ̃→−∞

Rµ̃
(
Λ22(τ)− Λ21(τ)Λ−1

11 (τ)Λ12(τ)
)−1

Rµ̃ = ∆̃(τ) =

(
c−b2

(1−a)(ac−b2) − b
ac−b2

− b
ac−b2

a
ac−b2

)
,

and ∆̃(τ) is invertible.

Based on the above results we are able to assess the asymptotic behaviour
of the supLM statistic and prove the consistency of the associated test.

Theorem 67. It holds that, under the local alternatives, as µ̃ → −∞, the
statistic Tn diverges.

4.3.3 A wild bootstrap approach

In this section we introduce a wild bootstrap version of our supLM statistic. This
bootstrap scheme has proved to deliver valid inference under heteroskedastic
disturbances Liu [1988], Mammen [1993], Davidson and Flachaire [2008]. As
also shown in Cavaliere and Taylor [2008] in the context of unit root testing,
the wild bootstrap is able to correctly reproduce the first-order limiting null
distribution of the statistics in case of non-stationary volatility. The algorithm
has the following structure:

1. Compute X̃t = Xt − β̂
ᵀ
dt, where dt is a vector of deterministic compo-

nents and β̂ is obtained through either OLS or GLS detrending;

2. Obtain θ̂, the maximum likelihood estimate for θ and the residuals êt from
the following IMA(1,1) model: X̃t = X̃t−1 + εt − θεt−1;
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3. Compute wild bootstrap errors: ê∗t = êtηt, where ηt is a random variable
such that E(ηt) = 0 and E(η2

t ) = 1. In this paper we use the Rademacher
variable ηt = (1,−1) with probability (1/2, 1/2). We also experimented
with ηt being standard Gaussian leading to no significant differences.

4. Obtain the bootstrap sample

X̂∗t =

t∑
j=i

(
ê∗j − θ̂ê∗j−1

)
,

and compute the supLM bootstrap statistic T ∗n upon it.

5. Repeat steps 3–4, B times as to obtain replications of the bootstrap test
statistic, T ∗bn , b = 1, . . . B and derive the bootstrap p-value as

B−1
B∑
b=1

I(T ∗bn ≥ Tn),

where I(·) is the indicator function and Tn is the value of the supLM
statistic computed on the original sample.

4.4 Finite sample performance

In this section we present a Monte Carlo simulation to investigate the finite
sample performance of our supLM tests and compare them with existing unit-
root tests. We have simulated from a plethora of data generating processes
(hereafter DGPs), both linear and non-linear. In Table 4.1 we present the
set of integrated DGPs used to assess the empirical size of the tests. Models
1–7 are linear integrated processes. In particular, models 2,4,6,7 are linear
processes close to non-invertibility and model 6 is an ARIMA(1,1,1) process
where there is near-cancellation of the MA and AR polynomials. Models 8–
12 are non-linear integrated processes. Table 4.2 reports the stationary DGPs
used to compute the empirical power. Models 15–20 are linear and stationary; in
particular, models 19–20 are the stationary counterparts of models 6–7. Models
21–24 are two-regime TAR models whereas models 25–26 follow a three-regime
TAR. Models 27 and 28 are the heteroskedastic counterparts of models 22 and
23, respectively. Also, models 29–32 are the stationary versions of models 9–
12. The upper percentage points of the asymptotic null distribution of the
test statistic Tn can be obtained by simulation. Since we have proved the
asymptotic similarity of the test, we derived the quantiles of the distribution
of Tn from 20000 independent replications of an IMA(1,1) model of sample
size 5000, with θ = φ0 = 0 and iid standard Gaussian innovations, with the
threshold searched between the 15th and 85th percentiles. In practice, since
the finite sample distribution of Tn might depend upon θ and differ from the
asymptotic one we have simulated the null distributions for the sample sizes in
use. Moreover, since we have found that the finite sample distribution of Tn
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changes appreciably only when |θ| is close to one we have adopted the following,

conservative, approach: if |θ̂| > 0.3 we use the quantiles of the simulated null

with θ = sign(θ̂) · 0.9. We denote our asymptotic test with sLM. The wild
bootstrap version of the test is denoted with sLM.b. The set of competing tests
can be divided in those whose alternative is a threshold autoregressive model
and those that do not specify explicitly a non-linear alternative. As for the
former set, we have implemented the tests by i) Kapetanios and Shin [2006]
(KS): both the asymptotic and the bootstrap version. Of the three statistics
proposed we report in the paper the one suggested by the authors, i.e. the
average of the exponential of the Wald statistic over the threshold range. The
results for remaining statistics are reported in the supplementary material; ii)
Enders and Granger [1998] (EG): we have implemented the two statistics for the
estimated constant and report the results for panel C, whereas the results for
the statistic relative to panel D are relegated to the supplementary material; iii)
Bec et al. [2004] (BBC): we have implemented the suggested asymptotic supLR
statistic and a bootstrap version of it along the scheme detailed in Kapetanios
and Shin [2006]. Note that the bootstrap test is a novel implementation not
present in literature. We have decided not to include the tests by Caner and
Hansen [2001] since the threshold variable there is taken as the first difference
of Xt. Preliminary investigations showed that their performance is similar to
the tests by Bec et al. [2004]. The second set of implemented unit-root tests
includes the tests by: i) Dickey and Fuller [1979]: the ADF test; ii) Ng and
Perron [2001]: the class of M tests with GLS detrending and MIC criterion
for selecting the lags of the ADF regression. In particular, we implemented all
the tests proposed and reviewed in the aforementioned article and report the
M̄ZGLS

α which is essentially the M test proposed in Perron and Ng [1996] where
the data have been GLS detrended and the MAIC criterion is used (see also
Eq. (3) in Ng and Perron [2001]). We denote this test as M̄GLS. Also, we report
the results for the M̄PGLS

t the modified feasible point optimal tests (see also
Eq. (9) in Ng and Perron [2001]) and the GLS detrended version of the ADF
test (denoted with ADFGLS); iii) The test MZGLS

α as proposed by Perron and
Qu [2007], which is essentially the same as M̄ZGLS

α but the lag of the ADF
regression is selected upon OLS detrended data. We denote it with MGLS. We
selected the above tests by virtue of their good performance, the results for the
remaining tests can be found in the supplementary material.
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linear

13. AR1.1 Xt = −0.9Xt−1 + εt
14. AR1.2 Xt = 0.9Xt−1 + εt
15. AR1.3 Xt = −0.6Xt−1 + εt
16. AR1.4 Xt = 0.6Xt−1 + εt
17. ARMA11.1 Xt = 0.7Xt−1 − 0.9εt−1 + εt
18. ARMA11.2 Xt = 0.7Xt−1 + 0.9εt−1 + εt

non-linear

19. TAR1.1 Xt =

{
0.6Xt−1 + εt, if Xt−1 ≤ r
0.35Xt−1 + εt, if Xt−1 > r

20. TAR1.2 Xt =

{
0.6Xt−1 + εt, if Xt−1 ≤ r
−0.35Xt−1 + εt, if Xt−1 > r

21. TAR1.3 Xt =

{
−2Xt−1 + εt, if Xt−1 ≤ r
0.3Xt−1 + εt, if Xt−1 > r

22. TAR3.1 Xt =

{
0.3Xt−1 − 0.7Xt−2 + 0.6Xt−3 + εt, if Xt−1 ≤ r
−0.3Xt−1 + 0.7Xt−2 − 0.6Xt−3 + εt, if Xt−1 > r

23. 3TAR1.1 Xt =


0.3 + 0.5Xt−1 + εt, if Xt−1 ≤ −1
0.3 +Xt−1 + εt, if − 1 > Xt−1 ≤ 1
0.3 + 0.5Xt−1 + εt, if Xt−1 > 1

24. 3TAR2.1 Xt =


−3.9 +Xt−1 − 0.3Xt−2 + εt, if Xt−1 ≤ −10
1.3Xt−1 − 0.3Xt−2 + εt, if − 10 > Xt−1 ≤ 10
3.9 +Xt−1 − 0.3Xt−2 + εt, if Xt−1 > 10

25. TAR1h.1 Xt =

{
0.6Xt−1 + 1 · εt, if Xt−1 ≤ r
−0.35Xt−1 + 1.5 · εt, if Xt−1 > r

26. TAR1h.2 Xt =

{
−2Xt−1 + 1 · εt, if Xt−1 ≤ r
0.3Xt−1 + 1.5 · εt, if Xt−1 > r

27. NLMA.1 Xt = εt − 0.8ε2t−1

28. NLMA.2 Xt = εt + 0.8ε2t−1

29. AR-GARCH.1 Xt = 0.9Xt−1 + εt σt, where σ2
t = 0.05 + 0.90ε2t−1 + 0.05σ2

t−1

30. AR-GARCH.2 Xt = 0.9Xt−1 + εt σt, where σ2
t = 0.05 + 0.30ε2t−1 + 0.65σ2

t−1

Table 4.2: Stationary data generating processes used to investigate the power of
the tests. Unless otherwise stated r = 0 and {εt} follows a standard Gaussian
white noise.
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The sample sizes considered are 100, 300 and 500. The rejection percentages
are derived with a nominal size α = 0.05 and based upon 1000 replications and
B = 500 bootstrap resamples for the bootstrap tests. Preliminary experiments
proved that these are sufficient to ensure Monte Carlo stability in our setting.
In Table 4.3 we show the empirical size of the tests, derived from the rejection
percentages computed upon the integrated processes of Table 4.1. The table for
n = 500 does not differ significantly from that with n = 300 and is reported in
the appendix. Notably, all the tests that have a TAR model as the alternative
hypothesis (last five columns of the table) break down completely in several
cases, especially for models 2, 5, 6, 7, not only when the MA parameter is
close to -1. Moreover, note that the bias gets worse for increasing sample size.
These results suggest that such tests cannot be used without previous knowledge
or a preliminary investigation upon the data at hand. Our supLM tests are
generally well behaved in terms of size. In particular, the asymptotic test sLM
is oversized only for the conditional heteroskedastic models 08-09. The wild
bootstrap version sLM.b is never oversized. The three M tests are generally
comparable in size, except for model 02 (IMA(1,1) model with θ = −0.9) for
which the MGLS test of Perron and Qu [2007] results oversized for n = 100.
Also, the ADF test is severely oversized for models 02 and 05 and the GLS
version partly overcomes the problem, at least for model 05. As mentioned
earlier, model 06 is an ARIMA(1,1,1) model with near cancellation of the AR
and MA polynomials. This is the instance where all the tests fail to achieve the
correct size.

The empirical power of the test is presented in Table 4.4 that reports the
rejection percentages computed on the stationary processes listed in Table 4.2
for n = 300. The cases n = 100, 500 are reported in the appendix. Notably,
the supLM test is uniformly more powerful than the M tests M̄GLS, MPT and

the ¯ADF
GLS

test, except for the ARGARCH model (models 29,30). Our test is
almost always more powerful than the MGLS of Perron and Qu [2007], both for
linear and for threshold processes, except for the ARMA(1,1) model with near
cancellation and for model 20. Our test is less powerful than the MGLS for the
non-linear MA (models 25 and 26), a borderline case where the representation
in terms of a TARMA process might not provide a good approximation. In
general, our tests seems to lose power in presence of heteroskedasticity (models
27–30), even though this depends on the values of the parameters. In fact, for
models 28 and 30 the power is superior or comparable to that of the M tests.
An important evidence emerging from the results is that our supLM tests do
have power against all the alternatives and in every setting. This is not the case

for the M tests; for instance, for model 1, the tests M̄GLS, MPT and ¯ADF
GLS

have practically zero power even for n = 300. This is even more evident when
the DGP is a TARMA model, as shown in the next section.
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4.4.1 TARMA models

We simulated data from the following TARMA(1,1) model:

Xt =

{
φ1,0 + φ1,1Xt−1 + εt − θεt−1, if Xt−d ≤ r
φ2,0 + φ2,1Xt−1 + εt − θεt−1, otherwise,

(4.19)

where (φ1,0, φ1,1, φ2,0, φ2,1) = t× (0, 0.7,−0.02, 0.99) + (1− t)× (0, 1, 0, 1) with
t increasing from 0 to 1.5 with increments 0.5. When t = 0, the model is
an IMA(1,1) model with zero intercept, while the model becomes a stationary
TARMA(1,1) model with t > 0, of increasing disparity from the IMA(1,1) model
with increasing t. The empirical size of the tests is displayed in Table 4.5.
Note that in this instance we have partitioned the set of tests according to
their nature: either asymptotic or bootstrap. Moreover, we have increased the
number of the Monte Carlo replications to 10000 for the asymptotic tests. As
also shown in Section 4.4, the ADF, the KS, the BBC and the EG tests are
severely oversized also for n = 500. Clearly, the sLM.b test is the only test that
shows a correct size in all the settings, whereas the both sLM and the M class
of tests show some bias, albeit small.

The size-corrected power and of the asymptotic tests and the empirical power
of the bootstrap tests is presented in Table 4.6. The results for n = 500 are
similar to the those for n = 300 and are reported in the appendix. Note that,
for the sake of readability, we have kept the rows corresponding to t = 0,
that contain the empirical size for the bootstrap tests and the corrected 5%
size otherwise. The case n = 300 (lower panel) shows that our supLM tests are
always more powerful than the other tests, especially as t increases. For instance,
when t = 1.5 the sLM test has almost double the power of M tests. The same
trend is observed for n = 100 when t is large but the power is comparable to
that of the M tests for smaller values of t. The power (be it size-corrected or
bootstrap) of the ADF, KS, BBC, EG tests reflects the severe size bias and
should not be considered.

4.5 A real application: testing the PPP hypoth-
esis

In this section we apply our supLM tests to the post-Bretton Woods and pre-
euro real exchange rates of a panel of European countries. The idea is to con-
tribute to the widely debated issue of the power of purchase parity (PPP) and
show that the TARMA model can be a useful tool to this aim. As mentioned in
the introduction, based on macroeconomic theory, there is some consensus on
the fact that price gaps (measured in a common currency) for the same goods
in different countries should rapidly disappear. However, the empirical evidence
points to a strong persistence and unit root tests generally fail to reject the
null hypothesis of a random walk. As also pointed out in Taylor [2001] this
can be ascribed to two factors. First, the way economic data are produced or
aggregated may lead a severe bias in the inference based upon them. This is
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PT DE FR BE AT GB NL IT

sLM 0.167 0.002 0.126 0.900 0.329 0.318 0.900 0.874
sLM.bI 0.384 0.009 0.292 0.833 0.417 0.259 0.802 0.836
sLM.bT 0.379 0.013 0.283 0.837 0.440 0.243 0.817 0.880

M̄GLS . . . . . . X .
MGLS . . . . . . X .
MPT . . . . . . X .
ADF . . . . . . . .
ADFGLS . . . . . . . .
KSe . . . . . . . .
KSe.b . . . . . . . .
BBC . X . . . . . X
BBC.b . X . . . . . X
EGc . . . . . . . .

Table 4.7: Results of the application of the set of unit root tests on the 8
monthly series of real exchange rates. The first three rows report the p-value
for the supLM tests whereas the remaining rows show the checkmark Xif the
test results significant at 5%.

also noted in Pelagatti and Colombo [2015] where the authors show that real
exchange rates based on the consumer price index do not preserve the possible
stationarity properties of the ratios. A second factor is represented by the incor-
rect linear specification for the price dynamics. Indeed, the presence of trading
costs implies that the mechanisms governing price adjustments are non-linear
and threshold autoregressive models provide a solution to the problem by allow-
ing a “band of inaction” random walk regime where arbitrage does not occur,
and other regimes where the mean reversion takes place so that the model is
globally stationary [see Bec et al., 2004, and references therein for further dis-
cussion]. For a review on how TAR models are used to analyse the exchange
rates dynamics see also Hansen [2011]. Among other approaches, Bec et al.
[2008b], Gourieroux and Robert [2006] introduce switching models to incorpo-
rate the possibility that the threshold that defines the regimes where arbitrage
takes place is a random variable.

We consider the monthly log real exchange rates for the following coun-
tries: Portugal (PT), Germany (DE), France (FR), Belgium (BE), Austria (AT),
Great Britain (GB), Netherland (NL), Italy (IT). The series range from 1973:09
to 1998:12 (n = 304) and are produced by the Bank of International Settlements
(BIS) by taking the geometric weighted average of a basket of bilateral exchange
rates (27 economies), adjusted with the corresponding relative consumer prices.
Such weights are constructed from manufacturing trade flows as to encompass
both third-market competition and direct bilateral trade through a double-
weighting scheme. See Klau and Fung [2006] and https://www.bis.org/ for
more details on the construction of the indexes.

Table 4.7 reports the results of the application of the battery of unit root

https://www.bis.org/
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Figure 4.1: Left: values of the LM statistic Tr over the threshold grid. The
value that maximizes Tr, r̂ = 4.700, is taken as the estimated threshold and is
indicated with a dashed line. Right: time series of real monthly exchange rates
for Germany. The estimated threshold is indicated with a horizontal red line.
The gray shaded area indicates the periods associated to the upper regime.

tests described in the previous section on the 8 monthly series of real exchange
rates. The first three rows show the p-values from our supLM tests. To enhance
readability, the remaining rows show a checkmark X if the corresponding test
rejects the null hypothesis at level 5%. Based upon our tests, we can reject the
null hypothesis with some confidence for Germany (DE). Interestingly, with the
exception of the BBC tests, all the other tests fail to reject and the finding is
somehow consistent with that of Bec et al. [2004] where the authors rejected
for the pairwise real exchange rates of Germany versus France, Italy, Belgium,
Netherland and Portugal. Indeed, the BBC tests reject also for Italy but our
tests do not and this might be due to the oversize of the BBC tests. Moreover,
as shown in Section 4.4.1, the M tests may have very little power against some
TARMA alternatives and this explains their failure to reject the null hypothesis.
This result raises the question whether a TARMA model is plausible for the
series for Germany. Hence, we fit the following TARMA(1,1) model

Xt =

{
φ1,0 + φ1,1Xt−1 + εt − θεt−1, if Xt−1 > r

φ2,0 + φ2,1Xt−1 + εt − θεt−1, if Xt−1 ≤ r
(4.20)

In Figure 4.1(left) we plot the values of the LM statistic Tr computed over
a threshold grid that ranges from the 15th to the 85th percentiles of the data.
The estimated threshold r̂ = 4.700, that maximizes Tr, is also the value that
minimizes the AIC criterion over the same grid. In the right panel of the fig-
ure we plot the time series of the monthly real exchange rates for Germany
(DE) where we have indicated the selected threshold with a red line. The gray
shaded area indicates the months associated to the upper regime. The param-
eter estimates are presented in Table 4.8 and point to a lower regime with a
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θ φ1,0 φ1,1 φ2,0 φ2,1

estimate 0.305 -1.250 0.735 -0.149 0.968
s.e. (0.055) (0.281) (0.059) (0.088) (0.019)

Table 4.8: Parameter estimates from the TARMA(1,1) fit of Eq. 4.20 on the
monthly real exchange rates for Germany (DE) with r̂ = 4.700.
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Figure 4.2: Global and partial correlograms of the residuals from the TARMA
fit for the time series of monthly real exchange rates for Germany.

possible unit root and an upper regime where the slope is strictly smaller than
1. This is consistent with the idea of a non-linear adjustment mechanism that
activates when the rate crosses the threshold. Figure 4.1(right) shows that the
intervention regime is visited mostly before 1980 and after 1995 and this is in
general agreement with the results of Bec et al. [2004] and Bec et al. [2008b] ob-
tained on the real exchange rate series of French Franc against Deutsche Mark.
The MA parameter θ greatly enhances the fitting ability of the model while
retaining parsimony. This is witnessed by the diagnostics computed on the
residuals. Figure 4.2 shows the global and partial sample autocorrelations up to
36 months, computed on the residuals of the TARMA model. Clearly, there is
no sign of residual correlation. In order to rule out the possibility of non-linear
serial dependence in the residuals we have computed the test based upon the
entropy measure Sρ described in Giannerini et al. [2015]. The results are shown
in Figure 4.3(left) where the rejection bands correspond to the null hypothesis
of serial independence at level 95% (green dashed line) and 99% (blue dashed
line) up to 24 months. The results confirm that the residuals do not present
any kind of dependence. We complete the diagnostic analysis by looking at
the quantile-quantile plot of the residuals and by computing the Shapiro-Wilk’s
normality test. This is shown in Figure 4.3(right). The results do not point to
important deviations from normality and confirm the goodness of the proposed
fit.
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Figure 4.3: Entropy measure Sρ computed on the residuals from the TARMA fit
for the time series of monthly real exchange rates for Germany. The confidence
bands at 95% (green) and 99%(blue) correspond to the null hypothesis of serial
independence (left) and qqplot of the residuals with the p-value of the Shapiro-
Wilk’s normality test (right).

4.6 Proofs

Proof of Proposition 56

We give the proof of (4.15), via the following uniform approximation argument
[Pollard, 2012, Example 11, p.70]. Let G,G1, G2, . . . be a sequence of random
elements in a metric space (X , d), with the support of G being a separable
set of completely regular elements. Suppose for each ε > 0, δ > 0, there exist
approximating random elements AG,AG1, AG2, . . . such that

(i) P ∗{d(G,AG) > ε} < δ;

(ii) lim supP ∗{d(Gn, AGn} > ε} < δ;

(iii) AGn  AG,

where P ∗(·) denotes the outer probability measure of the enclosed expression
and  the weak convergence. Then Gn  G, as n → ∞. The complete
regularity condition holds in our current setting, first for the case of the sample
space being some Euclidean space and also for the case of some product space of
D[0, 1] with the limiting distribution concentrated on the corresponding C[0, 1]
product sub-space; in both cases, the sample space is equipped with the metric
induced by the supremum norm. Hence, we focus on verifying conditions (i)–(iii)
below. Recall that

1

n

∂`

∂φ1,1
=

n∑
t=1

1√
n

εt
σ

1

1− θB

{
Xt−1√
nσ

I

(
Xt−1√
n(1− θ)σ

≤ τ
)}

.
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Let An,k =
∑n
t=k+1

1√
n
εt
σ

∑k
j=0 θ

j Xt−1−j√
nσ

I
(

Xt−1−j√
n(1−θ)σ ≤ τ

)
. We claim that for

any fixed positive integer k and as n→∞,

An,k  (1− θk+1)×
∫ 1

0

WsI(Ws ≤ τ)dWs, (4.21)

which will be verified later. We shall check conditions (i)–(iii) with Gn = 1
n

∂`
∂φ1,1

,

AGn = An,k, G =
∫ 1

0
WsI(Ws ≤ τ)dWs and AG = (1 − θk+1)G; indeed con-

dition (iii) obtains due to (4.21). Clearly, (i) holds by Slutsky’s theorem. It
remains to show (ii), which can be done by first bounding the difference

Dn,k =
1

n

∂`

∂φ1,1
−An,k

=

k∑
t=1

1√
n

εt
σ

t−1∑
j=0

θj
{
Xt−1−j√

nσ
I

(
Xt−1−j√
n(1− θ)σ

≤ τ
)}

+

n∑
t=k+1

1√
n

εt
σ

t−1∑
j=k+1

θj
{
Xt−1−j√

nσ
I

(
Xt−1−j√
n(1− θ)σ

≤ τ
)}

.

The summands of Dn,k form a martingale difference sequence with respect to
the σ-algebra Ft generated by the innovations εt−j , j ≥ 0, hence Dn,k is of zero
mean and Jensen’s inequality implies that its variance is bounded by

var(Dn,k) =

k∑
t=1

1

n
E

∣∣∣∣∣∣
t−1∑
j=0

θj
{
Xt−1−j√

nσ
I

(
Xt−1−j√
n(1− θ)σ

≤ τ
)}∣∣∣∣∣∣

2

+

n∑
k+1

1

n
E

∣∣∣∣∣∣
t−1∑

j=k+1

θj
{
Xt−1−j√

nσ
I

(
Xt−1−j√
n(1− θ)σ

≤ τ
)}∣∣∣∣∣∣

2

≤
k∑
t=1

1

n
E

t−1∑
j=0

|θ|j |Xt−1−j |√
nσ

2

+

n∑
k+1

1

n
E

 t−1∑
j=k+1

|θ|j |Xt−1−j |√
nσ

2

≤
k∑
t=1

1

n
E{

t−1∑
j=0

|θ|jX2
t−1−j/(nσ

2)}/(1− |θ|) +

n∑
k+1

1

n
E{

t−1∑
j=k+1

|θ|jX2
t−1−j)/(nσ

2)}/(1− |θ|)

≤ K

(1− |θ|)2


k∑
t=1

t− 1

n2
+ |θ|k+1

n∑
j=k+1

t− 1

n2


≤ K

(1− |θ|)2

{
k(k − 1)

2n2
+ |θ|k+1 1

2

}
(4.22)
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where K > 0 is a constant such that E(X2
t ) = σ2{1+θ2+(t−1)(1−θ)2} ≤ tKσ2.

Since the true θ is less than 1 in magnitude, (4.22) indicates that for any positive
ε, by choosing k sufficiently large and then letting n → ∞, P (|Dn,k| ≤ ε) → 1.
Thus, (ii) holds by Markov’s inequality.

It remains to verify (4.21). The claim (4.21) would follow readily from
Theorem 7.3 of Kurtz and Protter [1996] were the step function I(x ≤ τ) a
continuous function. Unfortunately, this is not the case but it is discontinuous
only at τ . The idea of proof is to approximate the step function by a net of
smooth functions, say Gδ(x), such that |Gδ(x) − I(x ≤ τ)| ≤ Hδ(x) with the
bound Hδ(x) being uniformly bounded, continuous functions and with support
inside [τ − δ, τ + δ]. Define

An,k,δ =

n∑
t=k+1

1√
n

εt
σ

k∑
j=0

θj
Xt−1−j√

nσ
Gδ

(
Xt−1−j√
n(1− θ)σ

)
.

Then, for fixed k and δ, An,k,δ  (1 − θk+1)
∫ 1

0
WsGδ(Ws)dWs, as n → ∞.

Consider

An,k −An,k,δ =
∑n
t=k+1

1√
n
εt
σ

∑k
j=0 θ

j Xt−1−j√
nσ

{
I
(

Xt−1−j√
n(1−θ)σ ≤ r

)
−Gδ

(
Xt−1−j√
n(1−θ)σ

)}
,

whose summands form a martingale difference sequence, so it is of zero mean
and its variance can be bounded as follows:

E(An,k −An,k,δ)2 ≤ 1

1− |θ|

n∑
t=k+1

1

n
E


k∑
j=0

|θ|j
{
Xt−1−j√

nσ

}2

H2
δ

(
Xt−1−j√
n(1− θ)σ

)
≤ (1− θ)2 max(|r − δ|2, |r + δ|2)

1− |θ|
E


n∑

t=k+1

1

n

k∑
j=0

|θ|jH2
δ

(
Xt−1−j√
n(1− θ)σ

) .

On the other hand, it follows from Theorem 7.3 of Kurtz and Protter [1996]
that

n∑
t=k+1

1

n

k∑
j=0

|θ|jH2
δ

(
Xt−1−j√
n(1− θ)σ

)
 

1− |θ|k+1

1− |θ|

∫ 1

0

H2
δ (Ws)ds. (4.23)

Since H2
δ (·) is continuous, uniformly bounded, say, by K > 0, and its support

lies inside [r − δ, r + δ], the expectation of the LHS of (4.23) converges to

E

∫ 1

0

H2
δ (Ws)ds ≤ K

∫ 1

0

P (Ws ∈ [τ − δ, τ + δ])ds

≤ K
{
ν +

∫ 1

ν

P (Ws ∈ [τ − δ, τ + δ])ds

}
≤ K

{
ν +

∫ 1

ν

∫ τ+δ

τ−δ

1√
2πs

exp(−y2/(2s))dyds

}
,
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where 0 < τ < 1 can be chosen to be an arbitrary small, fixed number, and then
the double integral having a bounded integrand can be made arbitrarily small by
rendering δ > 0 small. Hence, for any fixed ε > 0 and γ > 0 it holds that for all
sufficiently small δ, P (|An,k −An,k,δ| > ε) < γ for all sufficiently large n. Also,

the difference
∫ 1

0
WsGδ(Ws)dWs −

∫ 1

0
WsI(Ws ≤ r)dWs =

∫ 1

0
Ws{Gδ(Ws) −

I(Ws ≤ r)}dWs is of zero mean and variance equal to∫ 1

0

E[W 2
s {Gδ(Ws)− I(Ws ≤ τ)}2]ds ≤

∫ 1

0

E[W 2
sH

2
δ (Ws)]ds

≤K max(|τ − δ|2, |τ + δ|2)

∫ 1

0

P (Ws ∈ [τ − δ, τ + δ])ds

which can be similarly shown to be made arbitrarily small for all sufficiently
small δ. Thus, the claim (4.21) can be verified, by routine arguments [see e.g.
Pollard, 2012, Example 11, p.70].

Proof of Proposition 57

Since, τ1 ≤ Xt−1−j
σ
√
n(1−θ) ≤ τ2, then the process defined by (4.12) differs from that

defined in (4.11) just for a multiplicative constant. Therefore we just need to
prove the tightness of (4.11). First, we prove that the tightness of (4.12) is
implied by the tightness of {T (τ), a ≤ τ ≤ b}, where

T (τ) =

n∑
t=2

1√
n

εt
σ

t−2∑
j=0

θjI

(
Xt−1−j√
n(1− θ)σ

≤ τ
)
. (4.24)

In fact, noting that I
(

X0√
n(1−θ)σ ≤ τ

)
is no longer a random variable, such

implication immediately follows since the variable

∇2(τ)− T (τ) =
1√
n

ε1

σ
I

(
X0√

n(1− θ)σ
≤ τ

)
+

n∑
t=2

1√
n

εt
σ
θt−1I

(
X0√

n(1− θ)σ
≤ τ

)
is of zero mean and its variance tends to zero as n increases. Hence, we focus
on verify the tightness of {T (τ), a ≤ τ ≤ b} below. Following the argument of
Theorem 2.2 in Chan [1990] and theorem 22.1 in Billingsley [1968] (see also pp.
94 of Billingsley [1968]), we shall show that there exists a constant C > 0 such
that, for any fixed a ≤ τ1 < τ2 ≤ b,

E


∣∣∣∣∣∣
n∑
t=2

1√
n

εt
σ

t−2∑
j=0

θjI

(
τ1 ≤

Xt−1−j√
n(1− θ)σ

≤ τ2
)∣∣∣∣∣∣

4
 ≤ C(τ2 − τ1)2
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Essentially, we need to compute the following expectation:

1

σ4n2

∑
t1,t2,t3,t4

E [εt1εt2εt3εt4 × I(t1)I(t2)I(t3)I(t4)]

where

I(s) =

s−2∑
j=0

θjI

(
τ1 ≤

Xs−1−j√
n(1− θ)σ

≤ τ2
)
.

Below, K denote a general constant that may depend on θ and vary from occur-
rence to occurrence. Assume that t = maxi∈{1,2,3,4} ti. Since E[εt] = E[ε3

t ] = 0,
the law of iterated expectations implies that

1

σ4n2

∑
t1,t2,t3,t4

E [εt1εt2εt3εt4 × I(t1)I(t2)I(t3)I(t4)]

=
1

σ4n2

n−1∑
t=2

E
[
ε4
t I

4(t)
]

+
K

σ4n2

n−1∑
t=2

∑
u,v<t

E
[
ε2
t εuεvI

2(t)I(u)I(v)
]

We verify separately that there exists two constants C1, C2 > 0 such that

1

σ4n2

n−1∑
t=2

E
[
ε4
t I

4(t)
]
≤ C1

n
(τ2 − τ1) (4.25)

K

σ4n2

n−1∑
t=3

∑
u,v<t

E
[
ε2
t εuεvI

2(t)I(u)I(v)
]
≤ C2(τ2 − τ1)2 (4.26)

By using the low of iterated expectations, the Jensen’s inequality and the fact
the E

[
ε4
t

]
and

∑∞
j=0 |θ|j can be absorbed into K, we have:

1

σ4n2

n−1∑
t=2

E
[
ε4
t I

4(t)
]

=
K

n2

n−1∑
t=2

E

ε4
t


t−2∑
j=0

θjI

(
τ1 ≤

Xt−1−j√
n(1− θ)σ

≤ τ2
)

4


≤K
n2

n−1∑
t=2

E

t−2∑
j=0

|θ|jI
(
τ1 ≤

Xt−1−j√
n(1− θ)σ

≤ τ2
)

=
K

n2

n−1∑
t=2

t−2∑
j=0

|θ|jP
(
τ1 ≤

Xt−1−j√
n(1− θ)σ

≤ τ2
)

≤K
n

n−3∑
j=0

|θ|j 1

n

n−1∑
s=0

P

(
τ1 ≤

Xs+1√
n(1− θ)σ

≤ τ2
)
.
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The last inequality holds since we have fixed j and done the change of variables

s + 1 = t − 1 − j → s = t − 2 − j. Since Xs√
nσ(1−θ) ∼ N

(
0, (1−θ)2(s−1)+1+θ2

n(1−θ)2

)
and e

− y2n(1−θ)2

2{(1−θ)2s+1+θ2} < 1, the previous expression is bounded by

K

n

n−3∑
j=0

|θ|j 1

n

n−1∑
s=0

[∫ τ2

τ1

{ √
n(1− θ)2√

2π {(1− θ)2s+ 1 + θ2}

}
dy

]

=
K(τ2 − τ1)

n

n−3∑
j=0

|θ|j 1

n

n−1∑
s=0

√
1

s
n + 1+θ2

n(1−θ)2
≤ K(τ2 − τ1)

n

n−3∑
j=0

|θ|j 1

n

n−1∑
s=0

√
1

s+1/2
n

.

Let ζ(t) = t−1/2, with t ∈ [0, 1]. Since ∂2ζ
∂t2 > 0, for each t ∈ [0, 1], the middle

point rule implies that

K(τ2 − τ1)

n

n−3∑
j=0

|θ|j 1

n

n−1∑
s=0

√
1

s+1/2
n

≤K(τ2 − τ1)

n

n−3∑
j=0

|θ|j
∫ 1

0

t−1/2dt ≤ K(τ2 − τ1)

n
.

Hence, Condition 4.25 holds. Below, we verify Condition 4.26.

K

σ4n2

n−1∑
t=3

∑
u,v<t

E
[
ε2
t εuεvI

2(t)I(u)I(v)
]

=
K

n2

n−1∑
t=3

E

I2(t)

{∑
u<t

εuI(u)

}2


=
K

n2

n−1∑
t=3

E



t−2∑
j=0

θjI

(
τ1 ≤

Xt−1−j√
n(1− θ)σ

≤ τ2
)

2
t−1∑
u=2

εu

u−2∑
j=0

θjI

(
τ1 ≤

Xu−1−j√
n(1− θ)σ

≤ τ2
)

2


=
K

n2

n−1∑
t=3

E



t−1∑
u=2

t−1−u∑
j1=0

u−2∑
j2=0

θj1+j2I

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)
εuI

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

2


+
K

n2

n−1∑
t=3

E



t−1∑
u=2

t−2∑
j1=t−u

u−2∑
j2=0

θj1+j2I

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)
εuI

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

2


Now, we consider the two addends separately. Since j1 > t−u→ t−1− j1 < u,
the latter one is a sequence of martingale difference and applying a similar
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argument of that previously used we obtain:

K

n2

n−1∑
t=3

E



t−1∑
u=2

t−2∑
j1=t−u

u−2∑
j2=0

θj1+j2I

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)
εuI

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

2


≤K
n2

n−1∑
t=3

t−1∑
u=2

E

ε2
u


t−2∑

j1=t−u
|θ|j1

u−2∑
j2=0

|θ|j2I
(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)
I

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

2


≤K
n2

n−1∑
t=3

t−1∑
u=2

t−2∑
j1=t−u

|θ|j1
u−2∑
j2=0

|θ|j2P
(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2, τ1 ≤
Xu−1−j2√
n(1− θ)σ

≤ τ2
)

=
K

n2

n−1∑
j2=0

|θ|j2
n−1∑
j1=1

|θ|j1
n−1∑
s2=0

n−1∑
s1=0

P

(
τ1 ≤

Xs1+1√
n(1− θ)σ

≤ τ2, τ1 ≤
Xs2+1√
n(1− θ)σ

≤ τ2
)

≤K
n2

n−1∑
j2=0

|θ|j2
n−1∑
j1=1

|θ|j1
n−1∑
s2=0

n−1∑
s1=0∫ τ2

τ1

∫ τ2

τ1

n(1− θ)2√
{(1− θ)2s1 + 1 + θ2} {(1− θ)2s2 + 1 + θ2} − {(1− θ)2 min(s1, s2) + 1}2

dy1dy2

=
K(τ2 − τ1)2

n2

n−1∑
j2=0

|θ|j2
n−1∑
j1=1

|θ|j1
n−1∑
s2=0

n−1∑
s1=0

× n(1− θ)2√
{(1− θ)2s1 + 1 + θ2} {(1− θ)2s2 + 1 + θ2} − {(1− θ)2 min(s1, s2) + 1}2

≤K(τ2 − τ1)2
n−1∑
j2=0

|θ|j2
n−1∑
j1=1

|θ|j1 1

n2

n−1∑
s2=0

n−1∑
s1=0

1√
s1+1/2
n

s2+1/2
n −

(
min(s1,s2)+1/2

n

)2
.

Since
∫ 1

0

∫ 1

0
1√

xy−min2(x,y)
dxdy = 2π, the summation

1

n2

n−1∑
s2=0

n−1∑
s1=0

1√
s1+1/2
n

s2+1/2
n −

(
min(s1,s2)+1/2

n

)2

is bounded and this implies:

K(τ2 − τ1)2
n−1∑
j2=0

|θ|2j2
n−1∑
j1=1

|θ|2j1 1

n2

n−1∑
s2=0

n−1∑
s1=0

1√
s1+1/2
n

s2+1/2
n −

(
s1+1/2
n

)2

≤ K(τ2 − τ1)2.
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Therefore, it remains to verify that:

K

n2

n−1∑
t=3

E



t−1∑
u=2

t−1−u∑
j1=0

u−2∑
j2=0

θj1+j2I

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)
εuI

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

2


≤K(τ2 − τ1)2.

The entity is composed by the square terms and the double products. Firstly,
we consider the sum of square terms and apply the Jensen’s inequality:

K

n2

n−1∑
t=3

E

t−1∑
u=2

ε2
u


t−1−u∑
j1=0

θj1I

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)

2

×


u−2∑
j2=0

θj2I

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

2


=
K

n2

·∑
j1=0

|θ|j1
·∑

j2=0

|θ|j2
n−1∑

t=j1+3

n−2∑
u=j2+2

E

[
ε2
uI

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
)
I

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)]

=
K

n2

·∑
j1=0

|θ|j1
·∑

j2=0

|θ|j2
n−1∑

t=j1+3

n−2∑
u=j2+2

∫ +∞

−∞

∫ τ2

τ1

∫ τ2

τ1

ε2
uf(y1, y2, y3)dy1dy2dy3,

where f(y1, y2, y3) is the probability density function of the random vector

(
Xt−1−j1

σ
√
n(1− θ)

, εu,
Xu−1−j2

σ
√
n(1− θ)

)ᵀ

.

It holds that

E

[
ε2
u

∣∣∣∣ Xs1

(1− θ)2σ
√
n
,

Xs3

(1− θ)2σ
√
n

]
=σ2 − σ2 (1− θ)4s1 + 2(1− θ)2θ

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

+

( √
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

×
[

Xs3

σ
√
n(1− θ)

{
s1(1− θ)2 + 2θ

}
− Xs1

σ
√
n(1− θ)

{
s1(1− θ)2 + θ

}])2

.
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Hence,

∫ +∞

−∞

∫ τ2

τ1

∫ τ2

τ1

ε2
uf(y1, y2, y3)dy1dy2dy3

=

∫ τ2

τ1

∫ τ2

τ1

σ2f(y1, y3)dy1dy3

−σ2 (1− θ)4s1 + 2(1− θ)2θ

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

∫ τ2

τ1

∫ τ2

τ1

f(y1, y3)dy1dy3

+

( √
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

)2

×
∫ τ2

τ1

∫ τ2

τ1

([
y3

{
s1(1− θ)2 + 2θ

}
− y1

{
s1(1− θ)2 + θ

}])2
f(y1, y3)dy1dy3,

≤
∫ τ2

τ1

∫ τ2

τ1

σ2f(y1, y3)dy1dy3

+σ2 |(1− θ)4s1 + 2(1− θ)2θ|
|s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2|

∫ τ2

τ1

∫ τ2

τ1

f(y1, y3)dy1dy3

+

( √
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

)2

×
∫ τ2

τ1

∫ τ2

τ1

([
y3

{
s1(1− θ)2 + 2θ

}
− y1

{
s1(1− θ)2 + θ

}])2
f(y1, y3)dy1dy3

≤
∫ τ2

τ1

∫ τ2

τ1

σ2f(y1, y3)dy1dy3

+

( √
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

)2

×
∫ τ2

τ1

∫ τ2

τ1

([
y3

{
s1(1− θ)2 + 2θ

}
− y1

{
s1(1− θ)2 + θ

}])2
f(y1, y3)dy1dy3,

where f(y1, y3) is the probability density function of the normal distributed ran-

dom vector
[

Xs1√
nσ(1−θ)2 ,

Xs3√
nσ(1−θ)2

]
. The last inequality holds because s1(s3 −

s1)(1− θ)4 + 2θ+ s3(1− θ)2 + 3θ2 > 0. We prove that each of the previous two
integrals can be reduced to an integrable function in the variable x = s1

n and

y = s3
n . We have already shown that this holds for the

∫ τ2
τ1

∫ τ2
τ1
σ2f(y1, y3)dy1dy3

hence consider the second integral. For notation convenience, set

D1 = s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

D2 =
[
y2

3{s1(1− θ)2 + 2θ}+ y2
1{s3(1− θ)2 + θ} − 2y1y3{s1(1− θ)2θ}

]
.
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Note that D1/n
2 is the determinat of the variance - covariance matrix of the

normal distributed random vector
[

Xs1√
nσ(1−θ)2 ,

Xs3√
nσ(1−θ)2

]
. Since

y2
3{s1(1− θ)2 + 2θ}2 + y2

1{s1(1− θ)2 + θ}2 − 2y1y3{s1(1− θ)2 + 2θ}{s1(1− θ)2 + θ}

={s1(1− θ)2 + 2θ}
[
y2

3{s1(1− θ)2 + 2θ}+ y2
1

{s1(1− θ)2 + θ}2

s1(1− θ)2 + 2θ
− 2y1y3{s1(1− θ)2θ}

]
≤{s1(1− θ)2 + 2θ}

[
y2

3{s1(1− θ)2 + 2θ}+ y2
1{s3(1− θ)2 + θ} − 2y1y3{s1(1− θ)2θ}

]
={s1(1− θ)2 + 2θ}D2,

we have that

( √
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

)2

×
∫ τ2

τ1

∫ τ2

τ1

([
y3

{
s1(1− θ)2 + 2θ

}
− y1

{
s1(1− θ)2 + θ

}])2
f(y1, y3)dy1dy3

≤nσ
2(1− θ)4

D2
1

∫ τ2

τ1

∫ τ2

τ1

{s1(1− θ)2 + 2θ}D2
n(1− θ)2

√
D1

exp

{
−n(1− θ)2

D1
D2

}
dy1dy3

=
nσ2(1− θ)4

√
D1

{s1(1− θ)2 + 2θ}
D1

∫ τ2

τ1

∫ τ2

τ1

D2
n(1− θ)2

D1
exp

{
−D2

n(1− θ)2

D1

}
dy1dy3

≤K(τ2 − τ1)2 n√
D1

{s1(1− θ)2 + 2θ}
D1

≤K(τ2 − τ1)2 n√
D1

.

The last inequality comes because

{s1(1− θ)2 + 2θ}
D1

≤ (1− θ)2 + 2θ

(s3 − s1)(1− θ)4 + 2θ s3
s1(1−θ)2 + 3 θ

2

s1

that is bounded by a constant since s3 > s1. Hence, the results immediately

follows since
∫ 1

0

∫ y
0

x

y
√
x(y−x)

dxdy = π
2 (see Appendix B). Now, we focus on the
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double products. The inequality 2|εuεv| ≤ ε2
u + ε2

v implies that:

K

n2

n−1∑
t=3

E

t−1∑
u=2

∑
v<u

εuεv


t−1−u∑
j1=0

θj1I

(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
) u−2∑
j2=0

θj2I

(
τ1 ≤

Xu−1−j2√
n(1− θ)σ

≤ τ2
)

×


t−1−v∑
j3=0

θj3I

(
τ1 ≤

Xt−1−j3√
n(1− θ)σ

≤ τ2
) v−2∑
j4=0

θj4I

(
τ1 ≤

Xv−1−j4√
n(1− θ)σ

≤ τ2
)


≤K
n2

n−1∑
t=3

E

[
t−1∑
u=2

∑
v<u

|εuεv|

×


t−1−u∑
j1=0

|θ|j1I
(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
) v−2∑
j4=0

|θ|j4I
(
τ1 ≤

Xv−1−j4√
n(1− θ)σ

≤ τ2
)


≤K
n3
n

n−1∑
t=3

E

[
t−1∑
u=2

∑
v<u

(ε2
u + ε2

v)

×


t−1−u∑
j1=0

|θ|j1I
(
τ1 ≤

Xt−1−j1√
n(1− θ)σ

≤ τ2
) v−2∑
j4=0

|θ|j4I
(
τ1 ≤

Xv−1−j4√
n(1− θ)σ

≤ τ2
)

 .
It is easy to see that the same argument used in the previous case holds and so
Condition 4.26 is completely verified. The tightness is proved if we show that
there exists a constant u > 0 such that

E

∣∣∣∣∣∣ 1√
n

n−1∑
t=2

εt

t−2∑
j=0

θjI

(
ri ≤

Xt−1−j√
nσ(1− θ)

≤ r
)∣∣∣∣∣∣
 ≤ u√n, for r1 ≤ r ≤ ri + u.

The condition is satisfied since

E

∣∣∣∣∣∣ 1√
n

n−1∑
t=2

εt

t−2∑
j=0

θjI

(
ri ≤

Xt−1−j√
nσ(1− θ)

≤ r
)∣∣∣∣∣∣


≤ K√
n

n−1∑
t=2

E |εt| ≤ u
√
n.

Now, consider the partition [τ1 = r0, r1, r2, . . . , rL−1, rL = τ2] such that

ri = ri−1 + u, with 0 ≤ i ≤ L− 1 and rL − rL−1 ≤ u.

The proof is completed using the same argument of which used in Theorem 2.2
of Chan [1990] and Theorem 22.1 of Billingsley [1968].

Proof of Theorem 59

Let Fn(τ) = K−1
n InK

−1
n − I. It suffices to demonstrate the desiderated con-

vergence entrywise. By using Theorem 7.3 in Kurtz and Protter [1996] and
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Example 11 in Pollard [2012] (the argument is the same of that in proof of
Proposition 56), it holds that Fn(τ) → 0 in probability, for any fixed τ . In
fact, when the limiting variable is a constant-valued random variable (i.e. a
constant) the weak convergence is equivalent of the convergence in probability.
Fix a < b and consider a grid a = τ0 < τ1 < . . . < τm = b with equal mesh size,
i.e. τi − τi−1 ≡ c, for some c > 0. It holds that

sup
τ∈[τi−1,τi]

‖Fn(τ)− Fn(τi−1)‖ ≤ Cn for all i.

Moreover, E(Cn)→ 0 as c→ 0. Because for any τ ∈ [a, b], there exist an i such
that τi−1 ≤ τ ≤ τi and hence

Fn(τ) = Fn(τ)− Fn(τi−1) + Fn(τi−1)

sup
τ∈[a,b]

‖Fn(τ)‖ ≤ max
i=0,...,m

Fn(τi) + Cn.

The results follows since for fixed m, maxi=0,...,m Fn(τi)→ 0 in probability and
E(Cn)→ 0 as c→ 0 in probability.

Proof of Proposition 55

Since of the MLE admits the asymptotic representation P−1
n

(
ψ̂1,n −ψ

)
=

(I1,1(τ))−1Pn
∂`
∂ψ1

+ oP (1), the essence in deriving the limiting distribution of

the proposed test is to demonstrate that

Qn
∂ ˆ̀

∂ψ2

= Qn
∂`

∂ψ2

− I2,1(τ)P−1
n

(
ψ̂1,n −ψ

)
+ op(1), (4.27)

For notation simplicity, we will omit n in the subindex of ψ̂1,n. We prove (4.27)
componentwise, i.e. we show that:

1√
n

∂ ˆ̀

∂φ1,0
=

1√
n

∂`

∂φ1,0
−
{

1

(1− θ)2σ2

∫ 1

0

I(Ws ≤ τ)ds

}√
n
(
φ̂0 − φ0

)
+ op(1)

1

n

∂ ˆ̀

∂φ1,1
=

1

n

∂`

∂φ1,1
−
{

1

(1− θ)σ

∫ 1

0

WsI(Ws ≤ τ)ds

}√
n
(
φ̂0 − φ0

)
+ op(1).

We prove only the first equality, since the proof of the second one uses the same
argument. To this aim, remember that

∂ ˆ̀

∂φ1,0
= −

n∑
t=1

ε̂t
σ̂2

∂ε̂t
∂φ1,0

and
∂`

∂φ1,0
= −

n∑
t=1

εt
σ2

∂εt
∂φ1,0

.

By routine algebra it is readily checked that

ε̂t − εt = (φ0 − φ̂0)

t−1∑
j=0

θ̂j + (θ̂ − θ)
t−1∑
j=0

θjεt−1−j + θ̂tε0;

∂ε̂t
∂φ1,0

− ∂εt
∂φ1,0

= (θ̂ − θ)
t−1∑
j=0

θj
∂εt−1−j

∂φ1,0
− θ̂t ∂ε0

∂φ1,0
.
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In fact:

ε̂t − εt =
(
φ0 − φ̂0

)
+ θ̂ε̂t−1 − θεt−1

= θ̂ (ε̂t−1 − εt−1) + (θ̂ − θ)εt−1 +
(
φ0 − φ̂0

)
...

= (θ̂ − θ)(εt−1 + θ̂εt−2 + θ̂2εt−3 + · · ·+ θ̂t−1ε0)

+ (φ0 − φ̂0)(1 + θ̂ + θ̂2 + · · ·+ θ̂t−1) + θ̂tε0

= (φ0 − φ̂0)

t−1∑
j=0

θ̂j + (θ̂ − θ)
t−1∑
j=0

θjεt−1−j − θ̂tε0.

∂ε̂t
∂φ1,0

− ∂εt
∂φ1,0

= θ̂
∂ε̂t−1

∂φ1,0
− θ∂εt−1

∂φ1,0

= θ̂

(
∂ε̂t−1

∂φ1,0
− ∂εt−1

∂φ1,0

)
+ (θ̂ − θ)∂εt−1

∂φ1,0

...

= (θ̂ − θ)
(
∂εt−1

∂φ1,0
+ θ̂

∂εt−2

∂φ1,0
+ · · ·+ θ̂t−1 ∂ε0

∂φ1,0

)
− θ̂t ∂ε0

∂φ1,0

= (θ̂ − θ)
t−1∑
j=0

θj
∂εt−1−j

∂φ1,0
− θ̂t ∂ε0

∂φ1,0
.

Since 1
σ̂2 − 1

σ2 = σ2−σ̂2

σ2σ̂2 = Op(n
−1/2), we have that:

1√
n

∂ ˆ̀

∂φ1,0
= − 1√

n

n∑
t=1

ε̂t
σ2

∂ε̂t
∂φ1,0

+O(n−1/2)

=
1√
n

∂`

∂φ1,0

+
1√
n

n∑
t=1

εt
σ2

∂εt
∂φ1,0

− 1√
n

n∑
t=1

ε̂t
σ2

∂ε̂t
∂φ1,0

+O(n−1/2).

We focus on the term which is not negligible and therefore the result is proved
if we show that:

1√
n

n∑
t=1

εt
σ2

∂εt
∂φ1,0

− 1√
n

n∑
t=1

ε̂t
σ2

∂ε̂t
∂φ1,0

= −
√
n
(
φ̂0 − φ0

) 1

(1− θ)2σ2

∫ 1

0

I (Ws ≤ τ) ds+ op(1).
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It holds that

1√
n

n∑
t=1

εt
σ2

∂εt
∂φ1,0

− 1√
n

n∑
t=1

ε̂t
σ2

∂ε̂t
∂φ1,0

=

√
n

nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

}

=

√
n

nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

}

−
√
n
(
φ̂0 − φ0

) 1

n

n∑
t=1

1

σ2

∂εt
∂φ1,0

∂εt
∂φ0

.

Since

1

n

n∑
t=1

1

σ2

∂εt
∂φ1,0

∂εt
∂φ0

 
1

(1− θ)2σ2

∫ 1

0

I (Ws ≤ τ) ds,

it remains to verify that

√
n

nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

}
= op(1).

It holds that

1√
n

n∑
t=1

εt
σ2

∂εt
∂φ1,0

− 1√
n

n∑
t=1

ε̂t
σ2

∂ε̂t
∂φ1,0

=

√
n

nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

}

−
√
n
(
φ̂0 − φ0

) 1

n

n∑
t=1

1

σ2

∂εt
∂φ1,0

∂εt
∂φ0

.

Since

1

n

n∑
t=1

1

σ2

∂εt
∂φ1,0

∂εt
∂φ0

 
1

(1− θ)2σ2

∫ 1

0

I (Ws ≤ τ) ds,

it remains to verify that

√
n

nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

}
= op(1).
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It holds that
√
n

nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

}

=
1√
nσ2

n∑
t=1

{
εt

∂εt
∂φ1,0

− ε̂t
∂εt
∂φ1,0

+ ε̂t
∂εt
∂φ1,0

− ε̂t
∂ε̂t
∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

}

=
1√
nσ2

n∑
t=1

 ∂εt
∂φ1,0

(
φ̂0 − φ0

) t−1∑
j=0

θ̂j − ∂εt
∂φ1,0

(
θ̂ − θ

) t−1∑
j=0

θjεt−1−j −
∂εt
∂φ1,0

θ̂tε0

−ε̂t

(θ̂ − θ)
t−1∑
j=0

θj
∂εt−1−j

∂φ1,0
− θ̂t ∂ε0

∂φ1,0

+
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0


Since 1√

n

∑t−1
j=0 θ̂

j = 1√
n

∑t−1
j=0 θ

j +O(n−1/2), then

1√
nσ2

 ∂εt
∂φ1,0

(
φ̂0 − φ0

) t−1∑
j=0

θ̂j +
(
φ̂0 − φ0

) ∂εt
∂φ1,0

∂εt
∂φ0

 = op(1).

We claim that:

1√
nσ2

n∑
t=1

− ∂εt
∂φ1,0

(
θ̂ − θ

) t−1∑
j=0

θjεt−1−j −
∂εt
∂φ1,0

θ̂tε0

−ε̂t

(θ̂ − θ)
t−1∑
j=0

θj
∂εt−1−j

∂φ1,0
− θ̂t ∂ε0

∂φ1,0

 = op(1).

As each it is possible to show that each of the terms is negligible by using the
same argument, we below prove

1√
nσ2

n∑
t=1

− ∂εt
∂φ1,0

(
θ̂ − θ

) t−1∑
j=0

θjεt−1−j = op(1).

Since (θ̂ − θ) = Op(n
−1/2), it holds that

1√
nσ2

n∑
t=1

− ∂εt
∂φ1,0

(
θ̂ − θ

) t−1∑
j=0

θjεt−1−j

=Op(1)× 1

nσ2

n∑
t=1


t−1∑
j=0

θjI (Xt−1−j ≤ r)



t−1∑
j=0

θjεt−1−j

 .

The result follows if:

N(τ) =
1

nσ2

n∑
t=1


t−1∑
j=0

θjI

(
Xt−1−j√
nσ(1− θ)

≤ τ
)


t−1∑
j=0

θjεt−1−j

 = op(1).
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It suffices to verify that

(i) N(τ) is asymptotically tight;

(ii) E

[(
1
nσ2

∑n
t=1

{∑t−1
j=0 θ

jI
(

Xt−1−j√
nσ(1−θ) ≤ τ

)}{∑t−1
j=0 θ

jεt−1−j

})2
]
−−−−→
n→∞

0.

To prove (ii), note that:

E


 1

nσ2

n∑
t=1


t−1∑
j=0

θjI

(
Xt−1−j√
nσ(1− θ)

≤ τ
)


t−1∑
j=0

θjεt−1−j


2


=
1

n2σ4
E

 n∑
t=1


t−1∑
j1=0

θj1I

(
Xt−1−j1√
nσ(1− θ)

≤ τ
)

2
t−1∑
j2=0

θj2εt−1−j2


2


+
1

n2σ4
E

 n∑
t1=1

n∑
t2=1


t1−1∑
j1=0

θj1I

(
Xt1−1−j1√
nσ(1− θ)

≤ τ
)


t1−1∑
j2=0

θj2εt1−1−j2


×


t2−1∑
j3=0

θj3I

(
Xt2−1−j3√
nσ(1− θ)

≤ τ
)


t2−1∑
j4=0

θj4εt2−1−j4


 .

We prove separately that the two expectations are op(1).

1

n2σ4
E

 n∑
t=1


t−1∑
j1=0

θj1I

(
Xt−1−j1√
nσ(1− θ)

≤ τ
)

2
t−1∑
j2=0

θj2εt−1−j2


2


≤ 1

n2σ4
E

 n∑
t=1


t−1∑
j1=0

|θ|j1I
(

Xt−1−j1√
nσ(1− θ)

≤ τ
)

2
t−1∑
j2=0

|θ|j2 |εt−1−j2 |


2


≤ K

n2σ4
E

 n∑
t=1


t−1∑
j1=0

|θ|j1




t−1∑
j2=0

|θ|j2ε2
t−1−j2


 ≤ K

n2σ4
E

 n∑
t=1


t−1∑
j2=0

|θ|j2ε2
t−1−j2




=
K

n2σ4

n∑
t=1

t−1∑
j2=0

|θ|j2E
[
ε2
t−1−j2

]
=

K

n2σ4

n∑
t=1

t−1∑
j2=0

|θ|j2 = op(1).
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Moreover,

1

n2σ4
E

 n∑
t1=1

n∑
t2=1


t1−1∑
j1=0

θj1I

(
Xt1−1−j1√
nσ(1− θ)

≤ τ
)


t1−1∑
j2=0

θj2εt1−1−j2


×


t2−1∑
j3=0

θj3I

(
Xt2−1−j3√
nσ(1− θ)

≤ τ
)


t2−1∑
j4=0

θj4εt2−1−j4




≤ 1

n2σ4
E

 n∑
t1=1

n∑
t2=1


t1−1∑
j1=0

|θ|j1I
(

Xt1−1−j1√
nσ(1− θ)

≤ τ
)


t1−1∑
j2=0

|θ|j2 |εt1−1−j2 |


×


t2−1∑
j3=0

|θ|j3I
(

Xt2−1−j3√
nσ(1− θ)

≤ τ
)


t2−1∑
j4=0

|θ|j4 |εt2−1−j4 |




≤ K

n2σ4
E

n−1∑
j1=0

|θ|j1
n−1∑
j2=0

|θ|j2
n−1∑
j3=0

|θ|j3
n−1∑
j4=0

|θ|j4

×
n−1∑
s1=1

n−1∑
s2=1

|εs1εs2 |I
(

Xs1√
nσ(1− θ)

≤ τ
)
I

(
Xs2√

nσ(1− θ)
≤ τ

)]

≤ K

n2σ4
E

n−1∑
j1=0

|θ|j1
n−1∑
j2=0

|θ|j2
n−1∑
j3=0

|θ|j3
n−1∑
j4=0

|θ|j4

×
n−1∑
s1=1

n−1∑
s2=1

ε2
s1I

(
Xs1√

nσ(1− θ)
≤ τ

)
I

(
Xs2√

nσ(1− θ)
≤ τ

)]

+
K

n2σ4
E

n−1∑
j1=0

|θ|j1
n−1∑
j2=0

|θ|j2
n−1∑
j3=0

|θ|j3
n−1∑
j4=0

|θ|j4

×
n−1∑
s1=1

n−1∑
s2=1

ε2
s2I

(
Xs1√

nσ(1− θ)
≤ τ

)
I

(
Xs2√

nσ(1− θ)
≤ τ

)]
.

The result follows by using the same argument used in the proof Proposition 57
upon noting that

lim
n→∞

∫ τ

−∞

∫ τ

−∞

1

nα
dy1dy2 = 0, for each α > 2.

Finally the proof of the tightness is equal to which derived in Proposition 57
and hence the result is completely verified.
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Proof of Proposition 61

Let Λn be the logarithm of the likelihood ratio log
dP1,n

dP0,n
. Under the null hy-

pothesis, it holds that

Λn = − 1

2σ2

n∑
t=1

[
Xt −Xt−1 −

(
h0√
n

+
h1

n
Xt−1

)
I

(
Xt−1

σ
√
n(1− θ)

≤ τ0
)

+ θεt−1

]2

+
1

2σ2

n∑
t=1

[Xt −Xt−1 + θεt−1]
2

= − 1

2σ2

n∑
t=1

[Xt −Xt−1 + θεt−1]
2 − 1

2σ2

n∑
t=1

[{
h0√
n

+
h1

n
Xt−1

}2

I

(
Xt−1

σ
√
n(1− θ)

≤ τ0
)]

+
1

σ2

n∑
t=1

[
{Xt −Xt−1 + θεt−1}

{
h0√
n

+
h1

n
Xt−1

}
I

(
Xt−1

σ
√
n(1− θ)

≤ τ0
)]

+
1

2σ2

n∑
t=1

[Xt −Xt−1 + θεt−1]
2

=− 1

2σ2

n∑
t=1

[{
h2

0

n
+
h2

1

n

X2
t−1

n
+

2h0h1

n

Xt−1√
n

}
I

(
Xt−1

σ
√
n(1− θ)

≤ τ0
)]

+
1

σ2

n∑
t=1

[{
h0

εt√
n

+ h1
εt√
n

Xt−1√
n

}
I

(
Xt−1

σ
√
n(1− θ)

≤ τ0
)]

.

The last inequality holds because, under the null hypothesis, Xt−Xt−1+θεt−1 =
εt. As n tends to infinity Λn converges weakly to

Λ̄ =− h2
0

2σ2

∫ 1

0

I (Wt ≤ τ0) dt− (1− θ)2h2
1

2

∫ 1

0

W 2
t I (Wt ≤ τ0) dt

− (1− θ)h1h0

σ

∫ 1

0

WtI (Wt ≤ τ0) dt

+
h0

σ

∫ 1

0

I (Wt ≤ τ0) dWt + (1− θ)h1

∫ 1

0

WtI (Wt ≤ τ0) dWt.

It is easy to see that Λ̄ can be written in terms of the Ito’s process {Xt} as
follows:

Λ̄ = Xt −
1

2
[Xt],

Xt =

∫ t

0

δsdWs

with δs = h0

σ I (Ws ≤ τ0) + (1− θ)h1WsI (Ws ≤ τ0).

Set Υ(t) = exp
(
Xt − 1

2 [X]t
)

= limn→∞
dP1,n

dP0,n
. Note that Υ(t) is the stochastic

exponential of the process {Xt} and we claim that it is a martingale. Since
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Υ(0) = 1, E [Υ(t)] = 1, for each t and therefore Le Cam’s first lemma [van der
Vaart, 1998, Lemma 6, pag 88] is fulfilled. Hence the proof is completed if we
verify the martingale claim. From Kazamaki [1977], it suffices to verify that

E
[
e

1
2

∫ 1
0
δ2sds

]
<∞.

Let C1 =
(1−θ)2h2

1

2 and C2 = 2(1−θ)|h0h1|
σ and consider

E
[
e

1
2

∫ 1
0
δ2sds

]
=E

[
exp

{
1

2

∫ 1

0

[
h2

0

σ2
I (Ws ≤ τ0) + (1− θ)2h2

1W
2
s I (Ws ≤ τ0)

+2(1− θ)h0h1

σ
WsI (Ws ≤ τ0)

]
ds

}]

≤KE

exp

C1

∫ 1

0

W 2
s ds+ C2

√∫ 1

0

W 2
s ds




=K

∫ ∞
0

exp {C1y + C2
√
y} dF (y),

where K = eh
2
0/σ

2

and F (y) is cdf of the random variable Y =
∫ 1

0
W 2
s ds. The

last integral is finite if and only if
∫∞

1
exp

{
C1y + C2

√
y
}
dF (y) is finite. Since

√
y = o(y), it suffices to prove that

∫∞
1

exp {C1y} dF (y) <∞. It holds that:∫ ∞
1

eC1ydF (y) ≤
∫ ∞

1

eC1ydF (y)

=

∫ ∞
1

[
eC1y − 1

]
dF (y) +

∫ ∞
1

dF (y)

=

∫ ∞
0

∫ y

0

1

C1
eC1xdxdF (y) + 1 =

1

C1

∫ ∞
1

∫ ∞
x

dF (y)eC1xdx+ 1.

Therefore, it suffices to verify that∫ ∞
0

F̄ (x)eC1xdx <∞, where F̄ (x) = 1− F (x).

From Li [1992, lemma 2], it follows that

F̄ (x) ∼ Kx−1/2e−
x
2λ , with λ =

4

π2
.

Since h1 ∈
(
− π

2(1−θ) , 0
)

, the integral
∫∞

0
x−1/2e

(
−π2

8 +C1

)
x
dx is finite and this

completes the proof.

Proof of Proposition 62

The result readily follows by applying Girsanov’s formula [Girsanov, 1960].
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Proof of Corollary 63

Since W0 = 0 and τ0 > 0, the process starts in the lower regime, i.e.:

dW0 = θ̃ (µ̃−W0) dt+ dW̃0 = θ̃µ̃dt+ dW̃0.

Let t̄ be the stopping time that indicates the first time at which the process
jumps in the upper regime:

t̄ = inf {t ∈ [0, 1]|Wt > τ0} .

We claim that P (t̄ < 1) tends to zero as µ̃ tends to −∞. In fact, since µ̃ tends
to −∞, it is possible to choose an arbitrary fixed λ > 0 and a sufficient small
µ̃ such that µ̃ + λ < τ0. Hence, by using the Chebyshev’s inequality, it follows
that:

P (Wt > τ0) < P (Wt > µ̃+ λ)

< P (Wt > µ̃+ λ ∪ Wt < µ̃− λ)

= P (|Wt − µ̃| > λ) <
1

λ2
.

Since λ is arbitrary, the statement is verified.

Proof of Proposition 64

We prove that the stochastic differential equation (4.17) converges in probability
to the deterministic ordinary differential equation (ODE) of which the function
Gs, 0 ≤ s ≤ 1, is the solution. Consider the solution of (4.16)

Wt = µ̃
(

1− e−θ̃t
)

+

∫ t

0

e−θ̃(t−s)dW̃s

⇒ Wt

|µ̃|
= Gs +

∫ t

0

e−θ̃(t−s)d
W̃s

|µ̃|
.

The result then follows since∫ t

0

e−θ̃(t−s)d
W̃s

|µ̃|
p−−−−→

|µ̃|→∞
0

because ∫ t

0

e−θ̃(t−s)d
W̃s

|µ̃|
= e−θ̃(t−s) × 1

|µ̃|

∫ t

0

dW̃ ,

with mean

E

[
1

|µ̃|

∫ t

0

dW̃

]
= 0

and variance

Var

[
1

|µ̃|

∫ t

0

dW̃

]
=

t

|µ̃|
−−−−→
|µ̃|→∞

0.
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Proof of Proposition 65

We start proving that for i = 1, 2

qi

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
p−−−−→

|µ̃|→∞
qi (Gs, 0 ≤ s ≤ 1) .

Given α ∈ [0, 1], and let qα (Gs, 0 ≤ s ≤ 1) be the upper α × 100 quantile. It
holds that

` ({s ∈ [0, 1]|Gs > qα (Gs, 0 ≤ s ≤ 1)}) = α

` ({s ∈ [0, 1]|Gs ≤ qα (Gs, 0 ≤ s ≤ 1)}) = 1− α.

Since
(
Ws

|µ̃| , 0 ≤ s ≤ 1
)

p−−−−→
|µ̃|→∞

(Gs, 0 ≤ s ≤ 1) uniformly in probability , it holds

in probability that for all sufficiently large |µ̃| such that for each ξ > 0

`

({
s ∈ [0, 1]|Ws

|µ̃|
< qα−ξ (Gs, 0 ≤ s ≤ 1)

})
> 1− α;

`

({
s ∈ [0, 1]|Ws

|µ̃|
> qα+ξ (Gs, 0 ≤ s ≤ 1)

})
> α.

Therefore,

qα+ξ (Gs, 0 ≤ s ≤ 1) ≤ qα
(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
≤ qα−ξ (Gs, 0 ≤ s ≤ 1) .

Since qα (Gs, 0 ≤ s ≤ 1) is continuous in α and ξ can be chosen arbitrarily small
the proof is completed. Now, we prove that

∫ 1

0

I(Ws ≤ τ)ds
p−−−−→

|µ̃|→∞

∫ 1

0

I(Gs ≤ τ̃)ds.

It suffices to show that, given τ̃ , it follows that

∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds

p−−−−→
|µ̃|→∞

∫ 1

0

I(Gs ≤ τ̃)ds. (4.28)

In fact, let q1 (Ws, 0 ≤ s ≤ 1) and q2 (Ws, 0 ≤ s ≤ 1) be two fixed quantiles for
{Ws, 0 ≤ s ≤ 1} and choose τ ∈ [q1, q2]. Therefore, there exists s̃ such that
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τ = s̃q1 (Ws, 0 ≤ s ≤ 1) + (1− s̃)q2 (Ws, 0 ≤ s ≤ 1). We have that∫ 1

0

I (Ws ≤ τ) ds

=

∫ 1

0

I (Ws ≤ s̃q1 (Ws, 0 ≤ s ≤ 1) + (1− s̃)q2 (Ws, 0 ≤ s ≤ 1)) ds

=

∫ 1

0

I

(
|µ̃|Ws

|µ̃|
≤ s̃q1

(
|µ̃|Ws

|µ̃|
, 0 ≤ s ≤ 1

)
+ (1− s̃)q2

(
|µ̃|Ws

|µ̃|
, 0 ≤ s ≤ 1

))
ds

=

∫ 1

0

I

(
|µ̃|Ws

|µ̃|
≤ s̃|µ̃|q1

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
+ (1− s̃)|µ̃|q2

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

))
ds

=

∫ 1

0

I

(
Ws

|µ̃|
≤ s̃q1

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

)
+ (1− s̃)q2

(
Ws

|µ̃|
, 0 ≤ s ≤ 1

))
ds.

On the other hand, (4.28) would immediately follows if the step function I(x ≤
τ) was a continuous function. Unfortunately, this is not the case but it is
discontinuous only at τ̃ . We use the following uniform approximation argument
[Pollard, 2012, Example 11, p.70]: Let G,G1, G2, . . . be a sequence of random
elements in a metric space (X , d), with the support of G being a separable
set of completely regular elements. Suppose for each ε > 0, δ > 0, there exist
approximating random elements AG,AG1, AG2, . . . such that

(i) P ∗{d(G,AG) > ε} < δ;

(ii) lim supn→∞ P ∗{d(Gn, AGn} > ε} < δ;

(iii) AGn  AG,

where the notation  denotes weak convergence, P ∗(·) denotes the outer prob-
ability measure of the enclosed expression. Then Gn  G, as n → ∞. Given
a fixed and positive number 0 < δ < 1, define the continuous function Gδ(x)
such that |Gδ(x) − I(x ≤ τ)| ≤ Hδ(x) with the bound Hδ(x) being uniformly
bounded, continuous functions and with support inside [τ̃ − δ, τ̃ + δ]. We have
that ∣∣∣∣∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds−

∫ 1

0

Gδ

(
Ws

|µ̃|

)
ds

∣∣∣∣
≤
∫ 1

0

∣∣∣∣I (Ws

|µ̃|
≤ τ̃

)
−Gδ

(
Ws

|µ̃|

)∣∣∣∣ ds ≤ ∫ 1

0

Hδ

(
Ws

|µ̃|

)
ds.

For each fixed positive number δ,

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
−−−−→
|µ̃|→∞

0

uniformly for each 0 ≤ t ≤ 1 such that e−θ̃t − 1 6∈ (τ̃ − 2δ, τ̃ + 2δ). Note that
the quantity τ̃ + 1 is positive. we prove this claim by contradiction. Since
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τ̃ is a quantile of the distribution implies by Gt, 0 ≤ t ≤ 1, it holds that

P
(
e−θ̃ − 1 ≤ τ̃

)
> 0 and therefore P

(
e−θ̃ ≤ τ̃ + 1

)
> 0 that is impossible

if τ̃ + 1 < 0.
Now, we compute the expectation of the previous integral

E

[∫ 1

0

Hδ

(
Ws

|µ̃|

)
ds

]
=

∫ 1

0

E

[
Hδ

(
Ws

|µ̃|

)]
ds

≤K
∫ 1

0

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
ds

=K

∫ bδ

aδ

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
ds+K

∫
[0,1]∩[aδ,bδ]c

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
ds

with 0 < K <∞ being the upper bound of all Hδ, 0 < δ < 1 and

aδ = min

(
max

(
0,−1

θ̃
log(1 + τ̃ + 2δ)

)
, 1

)
,

bδ = min

(
max

(
0,−1

θ̃
log(1 + τ̃ − 2δ)

)
, 1

)
.

Therefore for each fixed δ > 0, P
(
Ws

|µ̃| ∈ (τ̃ − δ, τ̃ + δ)
)
−−−−→
|µ̃|→∞

0 uniformly on

s ∈ [0, 1] ∩ [aδ, bδ]
c since e−θ̃s − 1 ∈ (τ̃ − 2δ, τ̃ + 2δ) if and only if s ∈ [aδ, bδ].

Hence

K

∫
[0,1]∩[aδ,bδ]c

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
ds −−−−→
|µ̃|→∞

0

So that, for each ξ > 0, it is possible to chose |µ̃| sufficiently large such

that K
∫

[0,1]∩[aδ,bδ]c
P
(
Ws

|µ̃| ∈ (τ̃ − δ, τ̃ + δ)
)
ds ≤ ξ/2. Moreover, we can take

δ sufficiently small such that 1 + τ̃ − 2δ > 0 and K (bδ − aδ) ≤ ξ
2 . Hence

E
[∫ 1

0
Hδ

(
Ws

|µ̃|

)
ds
]
< ξ. Since ξ > 0 is arbitrary, so the Markov’s inequality

implies that {∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds−

∫ 1

0

Gδ

(
Ws

|µ̃|

)
ds

}
= op(1).

Now, we show that, for each η > 0∣∣∣∣∫ 1

0

I (Gs ≤ τ̃) ds−
∫ 1

0

Gδ (Gs) ds
∣∣∣∣ < η. (4.29)

It holds that ∣∣∣∣∫ 1

0

{I (Gs ≤ τ̃)−Gδ (Gs)} ds
∣∣∣∣

≤
∫ 1

0

|I (Gs ≤ τ̃)−Gδ (Gs)| ds ≤
∫ 1

0

Hδ (Gs) ds.
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Obviously, if Gs ∈ [τ̃ − 2δ, τ̃ + 2δ] ⇒ Gs ∈ [τ̃ − δ, τ̃ + δ] ⇒ Hδ (Gs) 6= 0. Set

Aδ =
[
− 1
θ̃

log (τ̃ + 1 + 2δ) ,− 1
θ̃

log (τ̃ + 1− 2δ)
]
. Note that Gs ∈ [τ̃ − 2δ, τ̃ + 2δ]

if and only if s ∈ Aδ. Choose δ sufficient small such that τ̃+1−2δ > 0 Therefore

∫ 1

0

Hδ (Gs) ds ≤
∫

[0,1]∩Aδ
Hδ(Gs)ds ≤

∫
Aδ

Hδ(Gs)ds

≤ K
∫
Aδ

ds = K

(
−1

θ̃
log (τ̃ + 1− 2δ) +

1

θ̃
log (τ̃ + 1 + 2δ)

)
.

So, since we can choose δ > 0 sufficiently small to make

(
−1

θ̃
log (τ̃ + 1− 2δ) +

1

θ̃
log (τ̃ + 1 + 2δ)

)

arbitrary small, (4.29) is proved. The proof of (ii) is completed upon applying
the continuous mapping theorem that implies

∫ 1

0

Gδ

(
Ws

|µ̃|

)
ds

p−−−−→
|µ̃|→∞

∫ 1

0

Gδ (Gs) ds.

By using the same argument if follows that

∫ 1

0

Ws

|µ̃|
I(Ws ≤ τ)ds

p−−−−→
|µ̃|→∞

∫ 1

0

GsI(Gs ≤ τ̃)ds;∫ 1

0

W 2
s

|µ̃|2
I(Ws ≤ τ)ds

p−−−−→
|µ̃|→∞

∫ 1

0

G2
sI(Gs ≤ τ̃).

In fact,

∫ 1

0

E

[
Ws

|µ̃|
Hδ

(
Ws

|µ̃|

)
ds

]
≤ K max {|τ̃ − δ|, |τ̃ + δ|}

∫ 1

0

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
ds∫ 1

0

E

[(
Ws

|µ̃|

)2

Hδ

(
Ws

|µ̃|

)
ds

]
≤ K max

{
|τ̃ − δ|2, |τ̃ + δ|2

}∫ 1

0

P

(
Ws

|µ̃|
∈ (τ̃ − δ, τ̃ + δ)

)
ds.

Proof of Proposition 66

The proof of the equalities in the first line readily follows upon noting that the
indicators functions can not be always equal to zero since τ̃ is selected in a
interval based on the quantiles of the data. Now, we prove the equality in the
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second line. We have that

1

|µ̃|

{∫ 1

0

I (Ws ≤ τ) dWs −
[∫ 1

0

I (Ws ≤ τ) ds

] ∫ 1

0

dWs

}
−
[∫ 1

0

I (Ws ≤ τ) ds

] ∫ 1

0

{
θ̃(µ̃−Ws)ds+ dW̃s

}}
=

∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

){
−θ̃
(

1 +
Ws

|µ̃|

)
ds+ d

W̃s

|µ̃|

}

−
[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds

] ∫ 1

0

{
−θ̃
(

1 +
Ws

|µ̃|

)
ds+ d

W̃s

|µ̃|

}

=− θ̃
∫ 1

0

(
1 +

Ws

|µ̃|

)
I

(
Ws

|µ̃|
≤ τ̃

)
ds+

∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
d
W̃s

|µ̃|

+θ̃

[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds

] ∫ 1

0

(
1 +

Ws

|µ̃|

)
ds−

[
I

(
Ws

|µ̃|
≤ τ̃

)
ds

] ∫ 1

0

d
W̃s

|µ̃|

=θ̃

[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds

] ∫ 1

0

(
1 +

Ws

|µ̃|

)
ds− θ̃

∫ 1

0

(
1 +

Ws

|µ̃|

)
I

(
Ws

|µ̃|
≤ τ̃

)
ds+ op(1)

The last equality holds since

E

[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
d
W̃s

|µ̃|

]
= E

[∫ 1

0

d
W̃s

|µ̃|

]
= 0;

Var

[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
d
W̃s

|µ̃|

]
=

1

µ̃2
E

[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds

]
p−−−−→

|µ̃|→∞
0

Moreover,

θ̃

[∫ 1

0

I

(
Ws

|µ̃|
≤ τ̃

)
ds

] ∫ 1

0

(
1 +

Ws

|µ̃|

)
ds− θ̃

∫ 1

0

(
1 +

Ws

|µ̃|

)
I

(
Ws

|µ̃|
≤ τ̃

)
ds

p−−−−→
|µ̃|→∞

θ̃

{∫ 1

0

e−θ̃sds

∫ 1

0

I (Gs ≤ τ̃) ds−
∫ 1

0

e−θ̃sI (Gs ≤ τ̃) ds

}

Now we show that∫ 1

0

e−θ̃sds

∫ 1

0

I (Gs ≤ τ̃) ds−
∫ 1

0

e−θ̃sI (Gs ≤ τ̃) ds > 0.

In fact, let A = {s ∈ [0, 1]|Gs ≤ τ̃} and `(·) the length of the enclosed interval.
Note that, since Gs is a decreasing negative function over [0, 1], A = [s̄, 1] where
s̄ = mins∈[0,1]{s|Gs ≤ τ̃}.
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It holds that

θ̃

{∫ 1

0

e−θ̃sds

∫ 1

0

I (Gs ≤ τ̃) ds−
∫ 1

0

e−θ̃sI (Gs ≤ τ̃) ds

}
=

(∫
A

e−θ̃sds+

∫
Ac
e−θ̃sds

)
`(A)−

∫
A

e−θ̃sds

=`(A)

∫
Ac
e−θ̃sds− {1− `(A)}

∫
A

e−θ̃sds.

Since e−θ̃s is a decreasing positive function on [0,1], there exists a positive real
value γ such that

`(A)

∫
Ac
e−θ̃sds− {1− `(A)}

∫
A

e−θ̃sds

>γ`(A)`(Ac)− {1− `(A)}γ`(A) = 0.

Therefore the first claim is proved. In the same manner, it is possible to verify
the last equality. We have:

1

µ̃2

{∫ 1

0

WsI (Ws ≤ τ) dWs −
[∫ 1

0

WsI (Ws ≤ τ) ds

] ∫ 1

0

dWs

}
p−−−−→

|µ̃|→∞
θ̃

{∫ 1

0

GsI (Gs ≤ τ̃) ds

∫ 1

0

(1 + Gs) ds−
∫ 1

0

Gs (1 + Gs) I (Gs ≤ τ̃) ds

}
Below, we show that∫ 1

0

GsI (Gs ≤ τ̃) ds

∫ 1

0

(1 + Gs) ds−
∫ 1

0

Gs (1 + Gs) I (Gs ≤ τ̃) ds 6= 0.

Let A = {s ∈ [0, 1]|Gs ≤ τ̃} = [a, 1], where 0 < a < 1. Therefore we have to
prove that ∫

A

(e−θs − 1)ds

∫ 1

0

e−θsds−
∫
A

e−θs(e−θs − 1)ds 6= 0

that is equivalent to show that∫
A

(1− e−θs)ds
∫ 1

0

e−θsds−
∫
A

e−θs(1− e−θs)ds 6= 0 (4.30)

The mean value theorem for definite integrals implies that there exists b ∈ A
such that ∫

A

e−θs(1− e−θs)ds = e−θb
∫
A

(1− e−θs)ds.
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Therefore ∫
A

(1− e−θs)ds
∫ 1

0

e−θsds−
∫
A

e−θs(1− e−θs)ds

=

∫
A

(1− e−θs)ds
∫ 1

0

e−θsds− e−θb
∫
A

(1− e−θs)ds

=

∫
A

(1− e−θs)ds
{∫ 1

0

e−θsds− e−θb
}

Hence, (4.30) is verified if we show that∫ 1

0

e−θsds− e−θb 6= 0.

We prove that ∫ 1

0

e−θsds− e−θb > 0. (4.31)

In fact, it holds that∫ 1

0

e−θsds− e−θb =
1− e−θ

θ
− e−bθ =

1− e−θ − θe−θb

θ
,

that is positive if and only if

1− e−θ − θe−θb > 0⇔ −θe−θb > e−θ − 1⇔ θe−θb < 1− e−θ

⇔e−θb < 1− e−θ

θ
⇔ −θb < ln

(
1− e−θ

θ

)
⇔ b >

1

θ
ln

(
1− e−θ

θ

)
.

Hence, Condition 4.31 is verified we show that the function z(θ) = 1
θ ln

(
1−e−θ
θ

)
is negative for each θ > 0. But this is readily checked because

lim
θ→0+

z(θ) = 0,

∂z(θ)

∂θ
= e−θ − 1 < 0, for each θ > 0.

Finally, we prove the invertibility of ∆̃(τ):(
c−b2

(1−a)(ac−b2) − b
ac−b2

− b
ac−b2

a
ac−b2

)
Its determinant results

c− b2

(1− a)(ac− b2)
× a

ac− b2
− b2

(ac− b2)
2

=
a(c− b2)− b2(1− a)

(1− a)(ac− b2)2
=

1

(1− a)(ac− b2)
.
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Note that 1−a is positive since τ̃ is selected in a interval based on the quantiles
of the data. It suffices to show that c− b2 > 0 and ac− b2 > 0. But this readily
follows upon using

c− b2 > 0 and ac− b2 > 0.

the Cauchy-Schwarz inequality, i.e., for each f, g ∈ L2∣∣∣∣∫ 1

0

f(s)g(s)ds

∣∣∣∣2 ≤ ∫ 1

0

|f(s)|2 ds×
∫ 1

0

|g(s)|2 ds

For the fist case take f(s) = GsI (Gs ≤ τ̃) and g(s) = I (Gs ≤ τ̃), while for the
second case f(s) = GsI (Gs ≤ τ̃) and g(s) = 1.

Appendix

Appendix A

In this appendix we derive the distribution, used in several proofs, of:

Xs√
nσ(1− θ)

;

(
Xs1

σ
√
n(1− θ)

, εs2 ,
Xs3

σ
√
n(1− θ)

)ᵀ

; εs2

∣∣∣∣ Xs1√
nσ(1− θ)

,
Xs3√

nσ(1− θ)
,

where s, s1, s2, s3 = 1, . . . , n and s1 < s2 < s3.

Proposition 68. Let Xs = Xs−1 + εs − θεs−1, with εs ∼ N(0, σ2) and assume
X1 = 0. Then it holds that

Xs√
nσ(1− θ)

∼ N
(

0,
(1− θ)2(s− 1) + 1 + θ2

n(1− θ)2

)
. (4.32)

Proof. We have that:

X1 = ε1 − θε0;

Xs = εs + (1− θ)
s−1∑
j=1

εj − θε0, for each s ≥ 2;

Xs2 = Xs2−1 + εs2 − θεs2−1;

Xs2 = Xs1 + (1− θ)
s2−1∑
j=s1+1

εj + εs2 − θεs1 for each s1 < s2 − 1.

V (Xs) = V

εs + (1− θ)
s−1∑
j=1

εj − θε0


= V (εs) + (1− θ)2

s−1∑
j=1

V (εj) + θ2V (ε0)

=
{

(1− θ)2(s− 1) + 1 + θ2
}
σ2

and this completes the proof.
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Proposition 69. Let Xs = Xs−1 + εs − θεs−1, with εs ∼ N(0, σ2) and assume
X1 = 0. Given s1 < s2 ≤ s3, consider the three-dimension random vector(

Xs1

σ
√
n(1− θ)

, εs2 ,
Xs3

σ
√
n(1− θ)

)ᵀ

.

It has a three-dimensional normal distribution with zero mean vector and variance-
covariance matrix: 

s1(1−θ)2+2θ
n(1−θ)2 0 s1(1−θ)2+θ

n(1−θ)2

0 σ2 σ√
n

s1(1−θ)2+θ
n(1−θ)2

σ√
n

s3(1−θ)2+2θ
n(1−θ)2


Proof. We start computing the mean:

E




Xs1
σ
√
n(1−θ)
εs2
Xs3

σ
√
n(1−θ)


 =

 0
0
0

 .

The variance-covariance matrix is
V
(

Xs1
σ
√
n(1−θ)

)
Cov

(
Xs1

σ
√
n(1−θ) , εs2

)
Cov

(
Xs1

σ
√
n(1−θ) ,

Xs3
σ
√
n(1−θ)

)
Cov

(
Xs1

σ
√
n(1−θ) , εs2

)
V (εs2) Cov

(
Xs3

σ
√
n(1−θ) , εs2

)
Cov

(
Xs1

σ
√
n(1−θ) ,

Xs3
σ
√
n(1−θ)

)
Cov

(
Xs3

σ
√
n(1−θ) , εs2

)
V
(

Xs1
σ
√
n(1−θ)

)


Here we compute the Cov
(

Xs1
σ
√
n(1−θ) ,

Xs3
σ
√
n(1−θ)

)
, where s2 < s3

Cov

(
Xs1

σ
√
n(1− θ)

,
Xs3

σ
√
n(1− θ)

)
=

1

σ2(1− θ)2n
Cov

Xs1 , Xs1 + (1− θ)
s3−1∑
j=s1+1

εj + εs3 − θεs1


=

1

σ2(1− θ)2n
{Cov (Xs1 , Xs1)− θCov (Xs1 , εs1)}

=
1

σ2(1− θ)2n

[
σ2
{

(1− θ)2(s1 − 1) + 1 + θ2
}
− θσ2

]
=

(1− θ)2(s1 − 1) + 1 + θ2 − θ
(1− θ)2n

=
(1− θ)2(s1 − 1) + 1 + θ2 − 2θ + θ

(1− θ)2n

=
(1− θ)2(s1 − 1) + (1− θ)2 + θ

(1− θ)2n

=
(1− θ)2(s1 − 1 + 1)

(1− θ)2n
+

θ

(1− θ)2n

=
s1

n
+

θ

(1− θ)2n
.
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Therefore the variance-covariance matrix results
s1
n + 2θ

n(1−θ)2 0 s1
n + θ

n(1−θ)2

0 σ2 σ√
n

s1
n + θ

n(1−θ)2
σ√
n

s3
n + 2θ

n(1−θ)2

 =


s1(1−θ)2+2θ
n(1−θ)2 0 s1(1−θ)2+θ

n(1−θ)2

0 σ2 σ√
n

s1(1−θ)2+θ
n(1−θ)2

σ√
n

s3(1−θ)2+2θ
n(1−θ)2


Note that the case with s2 = s3 can be done in the identic manner because
the variance and covariance matrix changes just for a constant. In fact, when
s2 = s3, we have that

s1
n + 2θ

n(1−θ)2 0 s1
n + θ

n(1−θ)2

0 σ2 σ
(1−θ)

√
n

s1
n + θ

n(1−θ)2
σ

(1−θ)
√
n

s3
n + 2θ

n(1−θ)2

 .

Hence, the statement is completely verified.

Proposition 70. Let Xs = Xs−1 + εs − θεs−1, with εs ∼ N(0, σ2) and assume
X1 = 0. Then it holds that

εs2

∣∣∣∣ Xs3

σ
√
n(1− θ)

,
Xs1

σ
√
n(1− θ)

is a univariate normal distributed random variable with mean equal

√
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

×
[

Xs3

σ
√
n(1− θ)

{
s1(1− θ)2 + 2θ

}
− Xs1

σ
√
n(1− θ)

{
s1(1− θ)2 + θ

}]
and variance equal

σ2 − σ2 (1− θ)4s1 + 2(1− θ)2θ

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2
.

Proof. We will use the following result concerning the k-dimensional normal
random vector: Let X ∈ Rk has a multivariate normal distribution, whose
mean is µX and the variance-covariance matrix Σ. Consider

X = (X1, X2)
ᵀ
, X1 ∈ Rk1 , X2 ∈ Rk2 and k1 + k2 = k.

µX =

(
µX1

µX2

)
, Σ =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
.

Then X2|X1 is distributed as a k2-dimensional normal random vector with

E [X2|X1] = Σ2,1Σ−1
1,1(x1 − µX1

) + µX2

ΣX2|X1
= Σ2,2 − Σ2,1Σ−1

1,1Σ1,2.
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This result implies that εs2

∣∣∣ Xs3
σ
√
n(1−θ) ,

Xs1
σ
√
n(1−θ) is a univariate normal dis-

tributed random variable with

E

[
εs2

∣∣∣∣ Xs3

σ
√
n(1− θ)

,
Xs1

σ
√
n(1− θ)

]
=

n(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

×

[
Xs3

σ
√
n(1− θ)

{
s1(1− θ)2 + 2θ

}
σ

√
n

− Xs1

σ
√
n(1− θ)

{
s1(1− θ)2 + θ

}
σ

√
n

]

=

√
nσ(1− θ)2

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

×
[

Xs3

σ
√
n(1− θ)

{
s1(1− θ)2 + 2θ

}
− Xs1

σ
√
n(1− θ)

{
s1(1− θ)2 + θ

}]

V

[
εs2

∣∣∣∣ Xs3

σ
√
n(1− θ)

,
Xs1

σ
√
n(1− θ)

]
=σ2 − σ2 (1− θ)4s1 + 2(1− θ)2θ

s1(s3 − s1)(1− θ)4 + 2θs3(1− θ)2 + 3θ2

and, therefore, the proposition is proved.

Appendix B

Here we report some integrals used in the proofs.

1.
∫ 1

0

∫ 1

0
1√

xy−min2(x,y)
dxdy = 2π. In fact:

∫ 1

0

∫ 1

0

1√
xy −min2(x, y)

dxdy

=2

∫ 1

0

∫ 1

x

1√
xy − x2

dydx

=2

∫ 1

0

1√
x

∫ 1

x

1√
y − x

dydx

=4

∫ 1

0

√
1− x√
x

dx

=8

∫ 1

0

√
1− t2dt

=8

[
1

2
arcsin t+ t

√
1− t2

]t=1

t=0

= 2π.
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2.
∫ 1

0

∫ y
0

x

y
√
x(y−x)

dxdy = π
2 . In fact:

we do the change of variables t =
√
y − x that implies

t2 = y − x⇒ x = y − t2

⇒dx = −2tdt⇒ dt =
−dx
2t

=
−dx

2
√
y − x

when x = y we have t = 0; when x = 0 we have t =
√
y.

Hence,∫ 1

0

∫ y

0

x

y
√
x(y − x)

dxdy =

∫ 1

0

1

y

∫ y

0

(−2)

√
x

(−2)
√
y − x

dxdy

=

∫ 1

0

−2

y

∫ 0

√
y

√
y − t2dtdy

=

∫ 1

0

2

y

∫ √y
0

√
y − t2dtdy

=

∫ 1

0

2
√
y

∫ √y
0

√
y − t2
y

dtdy

=

∫ 1

0

2
√
y

∫ √y
0

√
1− t2

y
dtdy.

Now, we do another change of variables:

w =
t
√
y
⇒ dw =

1
√
y
dt and w2 =

t2

y

when t = 0, we have w = 0 and when t =
√
y we have t = 1. Therefore:∫ 1

0

2
√
y

∫ √y
0

√
1− t2

y
dtdy

=

∫ 1

0

2

∫ 1

0

√
1− w2dwdt

=2

∫ 1

0

dy

∫ 1

0

√
1− w2dwdt

=2

∫ 1

0

√
1− w2dwdt.

From the previous computation we know that
∫ 1

0

√
1− w2dw = π

4 , there-
fore ∫ 1

0

∫ y

0

x

y
√
x(y − x)

=
π

2
.



Chapter 5

On the parsimony of
TARMA models

The well known Wold decomposition states that any stationary process admits
a MA(∞) representation (for more details see Brockwell and Davis [2001]).
This implies the duality between MA and AR processes so that, for instance,
an MA(1) admits a AR(∞) representation and viceversa. On the operational
strand, this leads to the fact that ARMA(1,1) processes can describe and fit
well data coming from AR(p) processes with p large. Interestingly, Bickel and
Bühlmann [1997] proved that the class of linear processes, that admit an AR(∞)
representation can approximate virtually everything provided the autoregressive
order is sufficiently large, and this is at the base of the so called sieve bootstrap.
The ARMA(1,1) process is notable since it retains the approximating capability
of AR(∞) process with just two parameters. In the same spirit, we investi-
gate whether a similar representation holds in non-linear case. In particular,
we focus on the possible duality between the TARMA(1,1) model and TAR(p)
models with large p. The aim of this chapter is twofold. First, we show that
if we generate data from several TARMA(1,1) processes and fit TAR(p) mod-
els with p chosen using information criteria then, in many cases, the selected
order can be very large. This indicates that TARMA(1,1) models may exhibit
complex high-dimensional dynamic behaviour with parsimony. Second, we as-
sess the descriptive power of TARMA(1,1) models by generating data from a
plethora of data generating processes and fitting both TARMA(1,1) and AR(p)
models with p possibly large. The results show that, in presence of MA com-
ponents, the TARMA model outperforms AR models even for linear processes.
This is especially true for integrated processes and for nonlinear processes. In
Section 5.3 we analyse the Canadian lynx time series by using TARMA models.
Even if the preliminary results point at TAR models as having the best fit, the
TARMA(1,1) model allows to shed additional light on the lynx data. Further
investigations are definitely required.
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Figure 5.1: Ergodicity region

5.1 Order selection

We have generated B = 10000 time series of length n = 100, 200 from several
TARMA models with different parameters. The TARMA(1,1,2) we consider is

Xt =

{
φ1,0 + φ1,1Xt−1 + εt + θεt−1, if Xt−d ≤ r
φ2,0 + φ2,1Xt−1 + εt + θεt−1, otherwise,

(5.1)

with the parameters chosen as follows:

(φ1,0, φ1,1, φ2,0, φ2,1) = (0, 0.3, 0, 0.4)× t+ (0,−0.5, 0,−0.3)× (1− t),
with t = 0, 0.5, 1, 1.5 and θ = −0.9,−0.65,−0.5, 0.5, 0.65, 0.9.

The parameters belong to the region where the process is geometrically ergodic.
They are indicated with red stars in Figure 5.1. We fitted a two-regime TAR
over each time series by selecting the order that minimizes the AIC. Let p1

and p2 be the orders selected in the first and second regime, respectively. The
maximum value they can assume is 15 and we set p = max{p1, p2}. Table 5.1
and 5.2 show the frequency distribution (percentage) of p for each choice of
the parameters for n = 100 and n = 200, respectively. Analogously, we report
in Table 5.3 and Table 5.4 (Table 5.5 and Table 5.6) the same distributions
for the selected order in the first (second) regime. Each row corresponds to a
distribution for a set of parameters. In agreement with the linear case, when the
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processes are close to the region of non-invertibility (i.e. |θ| close to 1) then the
selected order tends to be very high. In Table 5.7 we aggregate the distributions
of Tables 5.1-5.2 according to the selected order p ≤ 5 or p > 5. Clearly, even
when θ = 0, i.e. the DGP is a TAR(1,1), the selected order is greater than
5 most of the times. This raises the question of the suitability of the AIC for
model selection in the non-linear setting.

n = 100 p

t ; θ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0;-0.9 0 5 6 9 7 8 6 7 5 6 5 6 7 9 13
0.5;-0.9 0 1 2 7 6 8 7 7 6 7 6 8 8 11 15
1.0;-0.9 0 0 1 5 5 9 7 8 6 7 6 8 9 12 17
1.5;-0.9 0 0 1 4 5 9 7 9 6 7 7 8 9 12 17

0.0;-0.65 8 16 9 8 5 5 4 4 4 4 4 5 5 8 12
0.5;-0.65 1 12 11 11 7 6 5 5 4 4 4 5 5 7 12
1.0;-0.65 0 5 10 14 8 7 6 5 5 4 5 5 6 8 13
1.5;-0.65 0 3 10 14 8 8 5 6 5 4 5 5 6 8 12

0.0;-0.5 15 12 7 6 5 5 4 4 4 4 4 5 5 8 12
0.5;-0.5 6 19 9 8 5 4 4 4 4 4 4 4 6 7 12
1.0;-0.5 1 16 12 10 6 5 5 4 4 4 5 4 5 7 12
1.5;-0.5 0 12 13 12 6 6 4 4 4 4 4 5 6 7 12

0.0;0.0 21 10 8 6 5 4 4 4 3 4 3 5 5 7 12
0.5;0.0 16 10 8 6 5 4 4 4 4 4 4 5 5 7 13
1.0;0.0 18 10 7 6 5 5 4 4 3 3 4 4 6 8 12
1.5;0.0 25 11 7 5 4 4 4 3 3 3 4 4 5 6 11

0.0;0.5 1 13 13 10 7 5 4 5 4 4 4 5 6 7 13
0.5;0.5 6 15 12 8 6 5 4 4 4 4 3 4 5 7 12
1.0;0.5 13 11 8 7 5 5 4 4 4 4 4 5 6 8 13
1.5;0.5 13 14 8 7 5 5 4 4 3 4 4 4 6 7 12

0.0;0.65 0 4 11 13 8 7 6 5 4 5 5 5 6 8 13
0.5;0.65 1 8 12 11 8 6 5 5 4 4 4 5 5 8 12
1.0;0.65 7 12 11 8 7 6 4 4 4 4 4 5 5 8 12
1.5;0.65 16 10 7 6 5 4 4 4 4 4 4 5 6 8 13

0.0;0.9 0 0 2 6 8 9 7 8 6 7 6 6 8 10 16
0.5;0.9 0 0 3 6 7 8 7 7 7 6 6 7 8 10 16
1.0;0.9 0 3 6 8 7 8 6 6 6 6 6 6 7 10 16
1.5;0.9 8 8 8 7 5 6 5 5 4 5 5 5 6 9 14

Table 5.1: Distribution of p = maxi∈{1,2} pi when n = 100
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n = 200 p

t ; θ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0;-0.9 0 0 2 5 6 9 8 9 7 9 7 8 7 9 13
0.5;-0.9 0 0 0 1 3 7 6 10 8 10 8 10 9 12 16
1.0;-0.9 0 0 0 0 1 4 6 9 8 11 9 10 10 14 17
1.5;-0.9 0 0 0 0 1 4 5 9 8 11 9 11 10 14 19

0.0;-0.65 3 15 12 11 7 6 5 4 4 4 4 4 4 6 11
0.5;-0.65 0 4 10 15 9 9 6 6 4 5 4 5 5 6 11
1.0;-0.65 0 1 6 14 11 10 7 6 5 5 5 5 6 7 12
1.5;-0.65 0 0 3 13 11 11 7 7 5 6 5 6 6 7 11

0.0;-0.5 14 13 8 7 6 5 4 4 4 4 4 5 5 6 11
0.5;-0.5 1 17 13 10 7 5 4 5 4 4 4 4 5 6 10
1.0;-0.5 0 8 14 13 8 7 5 5 4 4 4 4 5 7 10
1.5;-0.5 0 4 14 16 8 8 5 5 5 4 4 4 6 6 11

0.0;0.0 24 11 8 6 5 5 4 4 4 3 4 4 5 6 10
0.5;0.0 16 10 8 7 5 5 4 4 4 4 4 4 5 7 12
1.0;0.0 21 11 8 6 5 5 4 4 3 4 4 5 4 6 10
1.5;0.0 22 11 7 6 6 4 4 4 4 4 4 4 5 6 10

0.0;0.5 0 6 16 13 9 7 5 5 4 4 4 5 5 7 10
0.5;0.5 1 13 15 11 7 6 5 4 4 4 4 4 5 6 11
1.0;0.5 10 13 10 8 6 5 4 4 4 4 4 4 5 7 12
1.5;0.5 7 18 12 8 6 5 4 4 4 4 4 4 5 6 11

0.0;0.65 0 1 6 14 12 10 8 6 5 5 4 5 6 7 11
0.5;0.65 0 2 11 14 10 9 6 6 5 5 4 5 5 7 10
1.0;0.65 2 11 12 11 8 6 5 5 4 4 4 4 5 7 10
1.5;0.65 14 12 9 6 6 4 4 4 4 4 4 5 5 7 11

0.0;0.9 0 0 0 1 4 8 10 11 9 9 8 8 9 10 14
0.5;0.9 0 0 0 1 4 6 8 9 9 9 8 9 9 11 17
1.0;0.9 0 0 1 3 5 7 8 9 8 8 8 8 9 10 15
1.5;0.9 3 6 8 9 7 8 7 6 5 6 5 5 6 8 12

Table 5.2: Distribution of p = maxi∈{1,2} pi when n = 200
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n = 100 p1

t ; θ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0;-0.9 7 12 10 10 7 8 5 5 4 4 3 4 4 6 9
0.5;-0.9 3 10 10 12 8 8 6 6 4 4 4 5 5 6 8
1.0;-0.9 1 8 9 12 9 10 6 6 4 5 4 5 5 7 9
1.5;-0.9 0 5 8 13 9 10 7 7 5 5 4 5 5 7 9

0.0;-0.65 15 18 9 8 5 4 4 4 4 3 3 4 4 6 10
0.5;-0.65 10 22 13 11 6 5 4 3 3 3 3 3 3 5 8
1.0;-0.65 5 23 15 13 7 6 4 3 3 3 3 3 3 5 7
1.5;-0.65 2 20 17 15 7 6 4 3 3 3 3 3 3 4 7

0.0;-0.5 20 14 8 6 5 4 4 4 3 3 4 4 4 6 10
0.5;-0.5 18 23 9 7 5 4 3 3 3 2 3 3 4 5 8
1.0;-0.5 14 28 12 8 5 4 3 2 2 3 3 3 3 4 6
1.5;-0.5 6 31 14 10 5 4 3 3 2 2 2 3 3 4 7

0.0;0.0 41 10 7 5 4 3 3 3 2 2 2 3 3 5 7
0.5;0.0 22 12 8 6 5 4 3 4 3 4 3 4 5 6 11
1.0;0.0 31 11 7 5 5 4 3 3 3 3 3 3 4 6 9
1.5;0.0 48 11 6 4 3 3 2 2 2 2 2 2 3 4 6

0.0;0.5 16 23 14 9 5 4 3 3 2 2 2 3 3 4 7
0.5;0.5 23 20 11 7 5 4 3 3 3 3 2 3 3 4 7
1.0;0.5 23 13 8 6 5 4 3 3 3 3 3 4 5 6 10
1.5;0.5 24 15 8 6 4 4 4 3 3 3 3 3 5 5 8

0.0;0.65 7 17 17 12 7 6 4 3 3 3 3 3 4 4 7
0.5;0.65 12 18 15 10 6 5 4 4 3 3 3 3 3 5 7
1.0;0.65 20 15 11 8 6 4 3 3 3 3 3 3 4 5 9
1.5;0.65 22 12 8 6 5 4 3 4 3 3 4 3 5 7 11

0.0;0.9 2 8 11 13 10 9 6 6 4 5 4 4 4 6 9
0.5;0.9 3 9 10 11 9 8 6 5 5 5 4 5 5 6 9
1.0;0.9 8 12 11 10 7 6 5 5 4 4 4 4 4 6 9
1.5;0.9 15 12 9 8 5 5 4 4 3 4 4 4 4 7 11

Table 5.3: Distribution of p1 when n = 100
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n = 200 p1

t ; θ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0;-0.9 3 6 8 10 9 10 7 8 5 6 4 5 4 6 8
0.5;-0.9 1 4 5 8 8 11 8 9 7 7 5 6 5 7 9
1.0;-0.9 1 3 3 7 7 10 9 10 8 8 6 7 6 7 9
1.5;-0.9 0 2 3 6 6 10 9 10 8 8 6 7 6 8 10

0.0;-0.65 14 20 13 10 6 5 4 3 3 3 2 3 3 4 7
0.5;-0.65 5 16 16 16 8 6 4 4 3 3 3 3 3 3 6
1.0;-0.65 2 11 16 18 10 8 5 4 3 3 3 3 3 4 6
1.5;-0.65 1 8 14 19 12 10 5 5 3 3 3 3 3 4 6

0.0;-0.5 21 15 8 7 5 5 3 3 4 3 3 3 4 5 10
0.5;-0.5 13 26 14 10 5 4 3 3 2 2 2 3 3 4 6
1.0;-0.5 5 24 18 12 6 5 3 3 3 2 2 2 3 4 5
1.5;-0.5 2 21 22 15 6 5 4 3 3 2 2 2 3 3 6

0.0;0.0 45 11 6 5 4 3 3 2 2 2 2 2 3 3 6
0.5;0.0 25 12 8 7 5 4 4 4 3 3 3 3 4 5 10
1.0;0.0 40 11 7 5 4 4 3 2 2 3 3 3 3 4 6
1.5;0.0 47 10 6 4 4 3 3 2 2 2 2 2 2 4 6

0.0;0.5 7 20 21 12 7 5 3 3 2 3 2 3 3 4 5
0.5;0.5 14 23 16 9 5 4 3 3 2 3 2 3 3 4 6
1.0;0.5 25 17 10 7 5 4 3 3 3 3 3 3 3 5 8
1.5;0.5 20 23 12 7 5 4 3 3 2 3 2 2 3 4 7

0.0;0.65 3 9 17 18 12 8 5 4 3 3 3 3 3 4 6
0.5;0.65 5 13 18 16 10 7 4 4 3 3 2 3 3 4 6
1.0;0.65 14 19 14 11 7 5 4 3 3 3 3 3 3 4 6
1.5;0.65 21 15 9 7 5 4 4 4 3 3 3 3 4 6 9

0.0;0.9 1 2 4 8 10 11 10 10 7 7 5 5 5 6 8
0.5;0.9 2 3 5 8 9 9 9 9 8 7 5 6 6 7 9
1.0;0.9 3 6 6 9 9 10 9 8 6 6 5 5 6 6 8
1.5;0.9 11 12 10 9 8 7 5 4 4 4 4 4 4 6 8

Table 5.4: Distribution of p1 when n = 200
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n = 100 p2

t ; θ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0;-0.9 6 17 10 12 7 7 5 6 4 4 3 4 4 6 7
0.5;-0.9 2 11 9 13 8 9 6 6 4 5 4 5 4 6 8
1.0;-0.9 1 7 9 13 8 10 6 7 5 5 4 5 5 6 8
1.5;-0.9 0 5 8 13 9 11 7 8 5 5 4 5 5 7 9

0.0;-0.65 18 21 10 8 5 4 4 3 3 3 3 3 3 5 7
0.5;-0.65 10 26 13 11 5 5 3 3 3 3 3 3 3 4 6
1.0;-0.65 4 22 16 14 7 6 4 3 3 2 2 3 3 4 6
1.5;-0.65 1 20 18 16 7 6 4 4 3 3 3 3 3 4 6

0.0;-0.5 24 14 9 7 5 4 3 3 3 3 3 4 4 6 9
0.5;-0.5 19 26 10 7 5 3 3 2 3 3 2 3 4 4 6
1.0;-0.5 11 31 13 9 4 4 3 3 2 3 3 3 3 3 6
1.5;-0.5 6 32 15 10 5 4 3 3 3 2 2 3 3 4 6

0.0;0.0 35 11 8 5 5 3 3 3 3 3 2 4 3 5 7
0.5;0.0 23 12 9 6 5 4 3 4 3 3 3 4 4 6 9
1.0;0.0 37 11 7 5 4 4 3 3 2 2 3 3 4 5 8
1.5;0.0 50 11 6 4 3 3 2 2 2 2 2 2 2 3 6

0.0;0.5 11 29 14 9 5 4 3 3 2 2 2 3 3 4 6
0.5;0.5 16 24 13 8 5 4 3 3 3 3 2 3 3 5 7
1.0;0.5 20 14 9 7 5 5 4 4 3 3 3 3 5 6 9
1.5;0.5 26 16 9 6 5 4 3 3 2 2 3 3 4 5 8

0.0;0.65 4 22 17 13 7 5 4 3 3 3 3 3 3 4 6
0.5;0.65 8 22 16 11 7 5 4 3 3 2 3 3 3 4 7
1.0;0.65 15 18 12 9 6 5 3 4 3 3 3 3 4 5 8
1.5;0.65 24 13 8 6 5 4 4 3 3 3 3 4 4 6 9

0.0;0.9 1 9 12 14 10 9 6 6 4 5 4 4 5 5 8
0.5;0.9 2 11 11 12 9 8 6 6 5 4 4 5 5 5 8
1.0;0.9 5 12 11 11 8 8 5 5 4 4 4 4 5 5 9
1.5;0.9 15 13 10 8 5 6 4 4 4 4 4 4 5 6 10

Table 5.5: Distribution of p2 when n = 100
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n = 200 p2

t ; θ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0;-0.9 2 8 7 11 9 10 8 8 5 6 4 5 4 5 7
0.5;-0.9 1 4 5 7 8 10 8 10 7 7 6 6 5 7 8
1.0;-0.9 0 3 3 7 7 10 8 10 8 8 6 7 6 8 9
1.5;-0.9 0 2 3 6 6 10 9 11 8 9 6 7 6 7 9

0.0;-0.65 15 25 13 10 6 4 3 3 3 3 3 2 3 3 6
0.5;-0.65 3 18 17 17 8 7 4 4 3 3 2 3 3 3 6
1.0;-0.65 1 11 15 19 12 8 5 4 3 3 2 3 3 3 6
1.5;-0.65 1 8 15 21 12 10 5 4 4 3 3 3 3 4 5

0.0;-0.5 27 16 9 6 5 4 3 3 3 2 3 3 4 4 7
0.5;-0.5 10 30 15 9 5 4 3 3 3 2 2 2 3 3 5
1.0;-0.5 4 25 20 13 7 5 4 3 2 2 2 2 3 4 5
1.5;-0.5 2 21 22 15 7 6 3 3 3 3 2 2 3 3 5

0.0;0.0 45 11 6 5 4 3 3 2 2 2 2 2 3 3 5
0.5;0.0 24 13 9 6 5 4 4 3 3 3 3 4 4 6 8
1.0;0.0 44 11 7 5 4 3 3 2 2 2 2 3 2 3 6
1.5;0.0 49 11 6 5 4 3 3 2 2 2 2 2 3 3 5

0.0;0.5 4 25 20 12 7 5 3 3 2 2 2 2 3 3 5
0.5;0.5 9 27 17 10 6 4 3 3 3 2 2 2 3 3 6
1.0;0.5 20 17 11 7 6 4 4 3 3 3 3 3 4 5 8
1.5;0.5 23 23 12 7 5 4 3 3 2 2 2 3 3 4 6

0.0;0.65 1 12 17 18 11 8 6 4 3 3 2 2 3 4 5
0.5;0.65 2 15 19 16 9 7 5 4 3 3 3 3 3 4 5
1.0;0.65 11 20 16 11 7 5 4 3 3 3 2 3 3 4 6
1.5;0.65 24 15 10 6 5 4 3 3 3 3 3 4 4 5 7

0.0;0.9 0 4 5 9 12 12 10 9 7 6 5 5 5 5 7
0.5;0.9 1 4 6 7 9 11 9 9 7 7 6 6 5 6 8
1.0;0.9 2 6 7 9 9 9 8 8 7 6 5 5 5 6 8
1.5;0.9 10 13 11 10 8 7 5 5 4 4 4 4 4 5 7

Table 5.6: Distribution of p2 when n = 200
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n = 100 n = 200

t ; θ p ≤ 5 p > 5 p ≤ 5 p > 5

0.0;-0.9 27 72 13 72
0.5;-0.9 16 83 4 83
1.0;-0.9 11 89 1 89
1.5;-0.9 10 91 1 91

0.0;-0.65 46 55 48 55
0.5;-0.65 42 57 38 57
1.0;-0.65 37 64 32 64
1.5;-0.65 35 64 27 64

0.0;-0.5 45 55 48 55
0.5;-0.5 47 53 48 53
1.0;-0.5 45 55 43 55
1.5;-0.5 43 56 42 56

0.0;0.0 50 51 54 51
0.5;0.0 45 54 46 54
1.0;0.0 46 53 51 53
1.5;0.0 52 47 52 47

0.0;0.5 44 57 44 57
0.5;0.5 47 52 47 52
1.0;0.5 44 57 47 57
1.5;0.5 47 53 51 53

0.0;0.65 36 64 33 64
0.5;0.65 40 58 37 58
1.0;0.65 45 56 44 56
1.5;0.65 44 56 47 56

0.0;0.9 16 83 5 83
0.5;0.9 16 82 5 82
1.0;0.9 24 77 9 77
1.5;0.9 36 64 33 64

Table 5.7: Aggregated distribution of p aggregated according to p ≤ 5 and
p > 5, when n = 100, 200

5.2 The descriptive power of TARMA models

As mentioned, Wold decomposition implies that, under mild assumptions, a
stationary process admits an AR representation. Hence, an AR(p) model with
large p should fit well time series coming from several different DGPs. In this
section we compare the descriptive power of TARMA models with respect to AR
models. We simulate from 13 DGPs from those described in Table 4.1. Some
of these are either linear or non-linear, stationary or non-stationary. Then,
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we fit the best AR(p) with p ranging from 1 to 10, selected through the AIC
and compare it with the two-regime TARMA(1,1). The results are reported
in Table 5.8 that shows the percentages of model selection between the best
AR(p) and the TARMA model. In general, when the DGP is not stationary
(integrated) then the TARMA(1,1) model provides a better fit. Clearly, the
MA component plays a role in determining the fitting inability of AR models.
The ARI5.1 model is fit well by the AR(6) model as shown in Table 5.9. The
TARMA model is also preferred when the DGP is non-linear with the exception
of the TAR3.1 model where, again, the AR(5) or AR(6) models seem to provide
a better fit. Note that a two-regime TAR(3) has 6 parameters to be estimated.
Interestingly, even when the DGP is linear, a TARMA model provides a better fit
nearly half of the times. As for non linear moving-average models (NLMA), the
TARMA model is always preferred, whereas, as expected, for the AR-GARCH
model an AR of low order outperforms the TARMA. The percentage distribution
of the selected AR order p is reported in Table 5.9. Note that the modal selected
p results 10 both for the IMA(1,1) and the NLMA models.

n = 100 n = 300 n = 500

AR TARMA AR TARMA AR TARMA

IMA11.1 18 82 6 94 2 98
IMA11.3 18 82 9 91 7 93
ARI5.1 73 27 75 25 72 28
ARIMA111.1 37 63 37 63 57 43
AR1.1 54 46 57 43 58 42
AR1.2 53 47 57 43 58 42
ARMA11.1 46 54 21 79 11 89
TAR1.1 51 49 24 76 10 90
TAR3.1 95 5 100 0 100 0
3TAR1.1 9 91 0 100 0 100
NLMA.1 0 100 0 100 0 100
NLMA.2 0 100 0 100 0 100
ARGARCH.1 60 40 66 34 68 32

Table 5.8: Percentages of model selection between AR and TARMA for different
DGPs and n = 100, 300, 500.
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p

n = 100 1 2 3 4 5 6 7 8 9 10

IMA11.1 5 5 9 14 18 14 13 9 8 5
IMA11.3 0 5 1 10 11 19 13 17 10 14
ARI5.1 1 7 11 3 6 51 9 5 4 3
ARIMA111.1 52 17 12 7 5 3 2 1 1 1
AR1.1 72 12 5 4 2 2 1 1 1 1
AR1.2 72 11 6 4 2 2 1 1 1 1
ARMA11.1 22 21 14 13 8 7 4 4 3 3
TAR1.1 71 11 6 4 2 2 1 1 1 1
TAR3.1 0 0 4 12 48 19 6 5 3 2
3TAR1.1 54 14 10 6 5 3 3 2 2 2
NLMA.1 8 10 15 13 13 11 10 8 7 6
NLMA.2 7 10 15 13 14 10 10 7 7 6
ARGARCH.1 38 23 15 8 6 3 3 1 1 1

n = 300 1 2 3 4 5 6 7 8 9 10

IMA11.1 0 0 1 2 4 8 14 19 25 28
IMA11.3 0 4 0 2 0 5 7 18 22 41
ARI5.1 1 3 8 3 13 52 9 5 3 3
ARIMA111.1 9 10 14 13 14 11 10 7 6 5
AR1.1 72 11 6 3 2 2 1 1 1 1
AR1.2 72 11 6 4 2 2 1 1 1 1
ARMA11.1 3 7 11 14 14 14 10 10 9 9
TAR1.1 70 12 6 4 2 2 1 1 1 1
TAR3.1 0 0 0 0 34 35 6 12 6 6
3TAR1.1 27 13 11 9 8 7 7 6 6 7
NLMA.1 0 0 1 2 5 9 14 17 23 30
NLMA.2 0 0 1 2 5 9 14 17 23 29
ARGARCH.1 24 18 16 13 9 6 5 4 3 2

n = 500 1 2 3 4 5 6 7 8 9 10

IMA11.1 0 0 0 0 1 2 6 13 26 51
IMA11.3 0 5 0 2 0 2 2 10 21 58
ARI5.1 1 3 5 3 18 51 9 5 3 2
ARIMA111.1 1 3 6 10 13 14 14 13 13 13
AR1.1 72 12 6 4 2 2 1 1 1 1
AR1.2 72 11 6 3 2 2 1 1 1 1
ARMA11.1 0 1 4 8 12 15 15 15 14 16
TAR1.1 68 12 7 4 3 2 2 1 1 1
TAR3.1 0 0 0 0 17 41 6 17 8 10
3TAR1.1 12 9 10 8 9 9 9 9 11 13
NLMA.1 0 0 0 0 1 2 6 13 26 51
NLMA.2 0 0 0 0 1 2 7 13 26 51
ARGARCH.1 18 15 16 13 10 8 6 5 4 4

Table 5.9: Percentages of selected AR order p for different DGPs and n =
100, 300, 500.
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5.3 The Canadian lynx time series

In this section we use TARMA models to fit the Canadian lynx data. This
data set, as well as the ongoing Wolf’s sunspot numbers, has attracted great
attention among non-linear time series analysts. The Canadian lynx data set is
the annual record of the number of the Canadian lynx trapped in the Mackenzie
River district of the North-West Canada for the period 1821-1934 inclusively.
The population cycle of these animals has received wide attention especially
from biologists due to the regularity in the hunted quantities by the Hudson’s
Bay Company that has been using them for a long period to produce furs. The
data set and further useful materials for the analysis are reported in Elton and
Nicholson [1942]. These data are the total fur return, or total sales, from the
London archives of the aforementioned company and is a proxy of the dynamics
of the population size. There is a time lag between the year in which a lynx was
trapped and the year in which its fur was sold and this complicates the analy-
sis. Since TAR models may be seen as the discrete time version of continuous
time prey-predator models, [Tong, 1990, Chapter 7, Section 7.2] suggested to
fit a TAR model and showed that it was the most appropriate among several
alternative models proposed in literature. Here, we revisit the problem by using
TARMA models.

In Figure 5.2 we show both the raw (left) and the log10 transformed series
(right). Figure 5.3 shows the 2-dimensional lag plots of yt versus yt−1 (left) and
yt−2 (right), whereas in Figure 5.4 we present the 3d lag plot of (yt−1, yt−1, yt−2).
These plots highlight the non-linear oscillatory nature of the lynx time series.
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Figure 5.2: Time series of the Canadian lynx time series, from 1821 to 1934.
(Left) raw time series. (Right) log-transformed series.

We have fitted several two-regime TAR and TARMA models, including those
proposed in literature. Some of them include a single, common intercept rather
than one intercept per-regime. Note that in TARMA models the MA parameter
θ is also common. A summary of the models, that includes information criteria is
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presented in Table 5.10. The threshold that minimises the AIC criterion results
r = 3.310 whereas the value 3.1163, which was used in Tong and Lim [1980]
has been used for comparison purposes. This is also reported in Figure 5.5 that
shows the values of the AIC versus the threshold r. The minimizer of the AIC is
indicated with a blue dashed line whereas the value 3.1163 is indicated in green.
Note that, as reported in Tong [1990], 3.1163 corresponds to the antimode but
the minimizer of the AIC r = 3.310 is closer to the dominant mode of the
distribution. This is shown in the right panel of Figure 5.5.

The presence of a single intercept term in indicated with an asterisk in
Table 5.10, and the lags column indicates the subset of lags included in the
two-regime fit (0 stands for intercept). The best model in terms of AIC is the
TAR(9)∗, whereas, according to the BIC, the TAR(2)∗ results the best fit. Note
that, both of them have a common intercept and this is consistent with the
underlying biology. Moreover, the TAR(9)∗ may reflect the 9-year cycle of the
lynx population and the fit resulted superior with respect to those with lag 7.
The TARMA(2,1)∗ with common intercept outperforms the original TAR(2)
(also proposed in [Tong, 1990, Section 7.2]) but results slightly inferior to the
TAR models with common intercept.
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Figure 5.3: Lag plot of the time series of the Canadian lynx. (Left) Lag 1.
(Right) Lag 2.

The parameter estimates are presented in Table 5.11 where the set is parti-
tioned in common parameters and parameters belonging to the lower or upper
regime. One appreciable difference between the fits with r = 3.1163 and r cho-
sen as the minimizer of the AIC is that in the latter case the two intercepts are
not so different (see models TAR(2) and TARMA(2,1)). This suggests to refit
the models with a single, common intercept and this improves the fit consider-
ably (see models TAR(2)∗ and TARMA(2,1)∗). The inclusion of lag 9 improves
further the fit. Note that when lag 9 was added to the TARMA model, then
the parameter θ becomes negligible.

The diagnostics for the TAR(2)∗ fit are presented in Figure 5.6 and Fig-
ure 5.7. In particular, Figure 5.6 shows the global and partial correlograms for
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histogram of yt with a kernel density estimate superimposed in red. In both
panels, the value that minimizes the criterion is indicated with a blue dashed
line, while the value used in Tong and Lim [1980] is reported as a green line.
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MODEL common intercept lags AIC BIC threshold

TARMA(2,1) 0,1,2 -33.459 -9.711 3.310
TARMA(2,1) 0,1,2 -28.522 -4.774 3.116
TARMA(2,1)∗ * 1,2 -35.459 -14.429 3.310
TARMA(9,1)∗ * 1,2,9 -37.495 -11.609 3.310
TAR(2) 0,1,2 -34.017 -12.987 3.310
TAR(2) 0,1,2 -29.279 -8.249 3.116
TAR(2)∗ * 1,2 -35.579 -17.268 3.310
TAR(9)∗ * 1,2,9 -39.469 -16.238 3.310

Table 5.10: TAR vs TARMA: lags, AIC, BIC and threshold values. The lags
indicate the subset of lagged variables for which two regimes are estimated.
A zero in the lag indicates a model with two intercepts, otherwise only one
common intercept is estimated.
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Figure 5.6: Correlograms of the residuals from the TAR(2)∗ fit for the time
series of Canadian lynx.

the residuals and these do not show any structure. The result is reinforced by
the entropy measure Sρ [Giannerini et al., 2015] computed up to lag 12 Fig-
ure 5.7(left), and by the qqplot, shown in Figure 5.7(right), together with the
Shapiro-Wilk test for normality. We have performed the same analysis for the
residuals of the TARMA(2,1)∗ fit. The results are presented in Figure 5.8 and
Figure 5.9. Not that, in this case, the entropy measure, points at a significant
dependence at lag 9 in the residuals Figure 5.9(right). If we analyse the resid-
uals of the TARMA(9,1)∗, then such dependence is not present anymore, see
Figure 5.11(right).
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Figure 5.7: Entropy measure Sρ computed on the residuals from the TAR(2)∗ fit
for the time series of the Canadian lynx. The confidence bands at 95% (green)
and 99%(blue) correspond to the null hypothesis of serial independence (left)
and qqplot of the residuals with the p-value of the Shapiro-Wilk’s normality
test. (right).
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Figure 5.8: Correlograms of the residuals from the TARMA(2,1)∗ fit for the
time series of Canadian lynx.
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Figure 5.9: Entropy measure Sρ computed on the residuals from the
TARMA(2,1)∗ fit for the time series of the Canadian lynx. The confidence
bands at 95% (green) and 99%(blue) correspond to the null hypothesis of serial
independence (left) and qqplot of the residuals with the p-value of the Shapiro-
Wilk’s normality test. (right).
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Figure 5.10: Correlograms of the residuals from the TARMA(9,1)∗ fit for the
time series of Canadian lynx.
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Figure 5.11: Entropy measure Sρ computed on the residuals from the
TARMA(9,1)∗ fit for the time series of the Canadian lynx. The confidence
bands at 95% (green) and 99%(blue) correspond to the null hypothesis of serial
independence (left) and qqplot of the residuals with the p-value of the Shapiro-
Wilk’s normality test. (right).



140



Bibliography

C. Agiakloglou and P. Newbold. Empirical evidence on Dickey-Fuller-type
tests. Journal of Time Series Analysis, 13(6):471–483, 1999. doi: 10.1111/j.
1467-9892.1992.tb00121.x.

H. Akaike. Markovian representation of stochastic processes and its application
to the analysis of autoregressive moving average processes. Annals of the
Institute of Statistical Mathematics, 26(1):363–387, Dec 1974. doi: 10.1007/
BF02479833. URL https://doi.org/10.1007/BF02479833.

H.Z. An and S.G. Chen. A note on the ergodicity of non-linear autoregressive
model. Statistics & Probability Letters, 34(4):365–372, 1997.

H.Z. An and F.C. Huang. The geometrical ergodicity of nonlinear autoregressive
models. Statistica Sinica, 6(4):943–956, 1996.

N.S. Balke and T.B. Fomby. Threshold cointegration. International economic
review, pages 627–645, 1997.

F. Bec, M. Ben Salem, and M. Carrasco. Tests for unit-root versus threshold
specification with an application to the purchasing power parity relationship.
Journal of Business & Economic Statistics, 22(4):382–395, 2004.

F. Bec, A. Guay, and E. Guerre. Adaptive consistent unit-root tests based
on autoregressive threshold model. Journal of Econometrics, 142(1):94–133,
2008a.

F. Bec, A. Rahbek, and N. Shephard. The ACR Model: a multivariate dynamic
mixture autoregression. Oxford Bulletin of Economics and Statistics, 70(5):
583–618, 2008b.
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