
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Dottorato di R icerca in

COMPUTER SCIENCE AND ENGINEERING

C iclo 31°

Settore Concorsuale di afferenza : 09/H1

Settore Scientifico -D isciplinare : ING-INF/05

C O M P U T E R V I S I O N A N D D E E P
L E A R N I N G F O R R E TA I L S T O R E

M A N A G E M E N T

Presentata da : Alessio Tonioni

Coordinatore dottorato Relatore

Chiar .mo Prof . Ing . Chiar .mo Prof . Ing .

Paolo C iaccia Luigi D i Stefano

Esame finale anno 2019

Alessio Tonioni: Computer Vision and Deep Learning for Retail Store Management,
Dottorato di ricerca in Computer Science and Engineering, © 2018

supervisor:
Luigi Di Stefano

location:
Bologna, Italy

A B S T R A C T

The management of a supermarket or retail store is a quite complex pro-
cess that requires the coordinated execution of many different tasks (e.g.,
shelves management, inventory, surveillance, customer support. . .). Cur-
rently, the vast majority of those tasks still rely on human personnel that
for this reason spend most of their working hours on repetitive and boring
jobs. More often than not this will cause below expectancy efficiency that is
obviously undesirable from the management perspective. Thank to recent
advancements of technology, however, many of those repetitive tasks can
be completely or partially automated easing and speeding up the job for
sales clerks, improving the overall efficiency of the store, providing real-time
analytics and resulting in potential additional services for the customers (e.g.,
customized shopping experience). One of the key technology requirement
shared between most of the aforementioned tasks is the ability to understand
something specific about a scene based only on information acquired by
a camera, for this reason, we will focus on how to deploy state of the art
computer vision techniques to solve some management problems inside
a grocery retail store. In particular, we will address two main problems:
(a) how to detect and recognize automatically products exposed on store
shelves and (b) how to obtain a reliable 3D reconstruction of an environment
using only information coming from a camera. A good solution to (a) will
be crucial to automate management tasks like visual aisle inspection or auto-
matic inventory. At the same time it could drastically improve the customer
experience with visual aid during the shopping, improved interaction via
augmented reality or automatic assistance for visually impaired. We will
tackle (a) both in a constrained version where the objective is to verify the
compliance of observed items to a planned disposition, as well as an uncon-
strained one where no assumption on the observed scenes are considered.
For both cases, we will show how to overcome some shortcoming resulting
from naively applying state of the art computer vision techniques in this
domain. As for (b), a good solution represents one of the first crucial steps
for the development and deployment of low-cost autonomous agents able
to safely navigate inside the store either to carry out management jobs or
to help customers (e.g., autonomous cart or shopping assistant). We believe

iii

that algorithms for depth prediction from stereo or mono camera are good
candidates for the solution of this problem thanks to the low price of the
required sensors, the great deployment flexibility and the achievable preci-
sion. However, the current state of the art algorithms for depth estimation
from mono or stereo rely heavily on machine learning by deploying huge
convolutional neural networks that take RGB images as input and output an
estimation of the distance of each pixel from the camera. Those techniques
might be hardly applied in the retail environment due to problems arising
from the domain shift between data used to train them (usually synthetic
images) and the deployment scenario (real indoor images). To overcome
those limitations we will introduce techniques to adapt those algorithms
to unseen environments without the need of acquiring costly ground truth
data and, potentially, in real time as soon as the algorithm starts to operate
on unseen scenes.

iv

A C K N O W L E D G E M E N T S

I would like to thank Centro Studi srl1 for financing my Ph.D. and providing
support for the development of some of the projects discussed in this work.
I would like to thank my supervisor Prof. Luigi Di Stefano for all the time
and effort spent mentoring me during the three years of my Ph.D.My thanks
extend to Prof. Philip Torr for offering me the possibility to spend six months
in the Torr Vision Group at the University of Oxford, a period that I consider
fundamental for my growth as a researcher. Moreover, I would like to thank
all the people with whom I have worked together during these years: Matteo
Poggi, Fabio Tosi, Stefano Mattoccia, Pierluigi Zama Ramirez, Daniele De
Gregorio, Riccardo Spezialetti, Samuele Salti, Federico Tombari, Eugenio
Serra, Alioscia Petrelli, Tommaso Cavallari, Gianluca Berardi, Paolo Galeone,
Oscar Rahnama, Tom Joy and Ajanthan Thalaiyasingam. Nevertheless, I
would also like to thank all the other people that have worked at CVLab
in Bologna and Torr Vision Group in Oxford for the insightful talks and
discussions inside and outside the office. Finally, I would like to thank my
family and friends for always supporting me during all my university and
Ph.D. years. Last but not least, my greatest thanks goes to my girlfriend
Arianna for helping me during my Ph.D. and always being there when I
needed support during particularly stressful periods.

1 https://www.orizzontiholding.it/centro-studi/

v

https://www.orizzontiholding.it/centro-studi/

C O N T E N T S

1 introduction 1

1 .1 Automatic Detection and Recognition of items on store shelves . 3

1 .2 Reliable 3D reconstruction of unseen environments 5

i recognition of products on store shelves

2 initial remarks 11

2 .1 Related Work . 12

3 planogram compliance check 15

3 .1 Related Works . 15

3 .2 Proposed Pipeline . 16

3 .2 .1 Unconstrained Product Recognition 18

3 .2 .2 Graph-based Consistency Check 19

3 .2 .3 Product Verification . 22

3 .3 Experimental Results . 24

4 unconstrained product detection 29

4 .1 Related Works . 30

4 .2 Proposed Approach . 31

4 .2 .1 Detection . 32

4 .2 .2 Recognition . 32

4 .2 .3 Refinement . 34

4 .3 Experimental Results . 35

4 .3 .1 Datasets and Evaluation Metrics 35

4 .3 .2 Implementation Details . 36

4 .3 .3 Customer Use Case . 37

4 .3 .4 Qualitative Results . 43

5 domain invariant hierarchical embedding for gro-
cery products recognition 45

5 .1 Related Work . 46

5 .2 Domain invariant hierarchical embedding 48

5 .2 .1 Hierarchical Embedding . 49

5 .2 .2 Domain Invariance . 49

5 .3 Implementation details . 51

5 .4 Experimental Results . 53

5 .4 .1 Ablation Study . 56

vii

5 .4 .2 Product Recognition . 58

5 .4 .3 Beyond product recognition . 63

5 .4 .4 Qualitative Results . 64

5 .4 .5 DIHE for product detection . 65

6 conclusions 69

ii unsupervised adaptation for deep depth

7 initial remarks 73

7 .1 Related Work . 77

8 unsupervised domain adaptation for learned depth

estimation 79

8 .1 Related work . 81

8 .2 Domain adaptation for depth sensing 81

8 .2 .1 Confidence Guided Loss . 83

8 .2 .2 Smoothing Term . 85

8 .2 .3 Image Reconstruction Loss . 85

8 .3 Experimental results . 86

8 .3 .1 Effectiveness of Confidence Estimation 87

8 .3 .2 Deep Stereo . 90

8 .3 .3 Depth-from-Mono . 94

8 .3 .4 Qualitative Results . 99

8 .3 .5 Qualitative evaluation on Supermarket Environment 102

9 online unsupervised domain adaptation for deep stereo103

9 .1 Related Work . 104

9 .2 Online Domain Adaptation . 105

9 .2 .1 MADNet - Modularly ADdaptive Network 105

9 .2 .2 MAD - Modular ADaptation . 107

9 .3 Experimental Results . 109

9 .3 .1 MADNet performance . 111

9 .3 .2 Online Adaptation . 111

9 .3 .3 Different online adaptation strategies 114

9 .3 .4 Deployment on embedded platforms 116

10 learning to adapt for stereo 117

10 .1 Related Works . 118

10 .2 Problem Setup and Preliminaries 118

10 .2 .1Online Adaptation for Stereo . 118

10 .2 .2Model Agnostic Meta Learning 120

10 .3 Learning to Adapt for Stereo . 121

viii

10 .3 .1Meta Learning for Stereo Adaptation 121

10 .3 .2Confidence Weighted Adaptation 123

10 .4 Experiments . 126

10 .4 .1Experimental Setup . 126

10 .4 .2Results . 127

10 .4 .3Confidence Weighted Loss Function 131

11 conclusions 133

iii final remarks

12 conclusions 137

ix

AU T H O R ’ S P U B L I C AT I O N S

During the PhD period, the author contributed to the following publications.
Research conducted during the development of some of them is integral
part of this thesis.

[1] Alessio Tonioni and Luigi Di Stefano. ‘Product recognition in store
shelves as a sub-graph isomorphism problem’. In: International
Conference on Image Analysis and Processing. Springer. 2017, pp. 682–
693.

[2] Alessio Tonioni, Matteo Poggi, Stefano Mattoccia and Luigi Di
Stefano. ‘Unsupervised adaptation for deep stereo’. In: The IEEE
International Conference on Computer Vision (ICCV). Vol. 2. 7. 2017,
p. 8.

[3] Pierluigi Zama Ramirez, Alessio Tonioni and Luigi Di Stefano. ‘Ex-
ploiting Semantics in Adversarial Training for Image-Level Domain
Adaptation’. In: International Conference on Image Processing, Applica-
tions and Systems. 2018.

[4] Alessio Tonioni, Samuele Salti, Federico Tombari, Riccardo Spezialetti
and Luigi Di Stefano. ‘Learning to Detect Good 3D Keypoints’. In:
International Journal of Computer Vision 126.1 (2018), pp. 1–20.

[5] Alessio Tonioni, Eugenio Serra and Luigi Di Stefano. ‘A deep learning
pipeline for fine-grained products recognition on store shelves’. In:
International Conference on Image Processing, Applications and Systems.
2018.

[6] Oscar Rahnama, Tommaso Cavallari, Stuart Golodetz, Alessio To-
nioni, Tom Joy, Luigi Di Stefano, Simon Walker and Philip H.S. Torr.
‘Real-Time Highly Accurate Dense Depth on a Power Budget using
an FPGA-CPU Hybrid SoC’. In: Procedings of the IEEE International
Symposium on Circuits and Systems. 2019.

[7] Daniele De Gregorio, Alessio Tonioni, Gianluca Palli and Luigi Di
Stefano. ‘Semi-Automatic Labeling for Deep Learning in Robotics’.
In: Machine Vision and Applications. under review.

xi

[8] Alessio Tonioni and Luigi Di Stefano. ‘Domain invariant hierarchical
embedding for grocery products recognition’. In: Computer Vision
and Image Understanding (under review).

[9] Alessio Tonioni, Matteo Poggi, Stefano Mattoccia and Luigi Di
Stefano. ‘Unsupervised Domain Adaptation for Depth Prediction
from Images’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence. under review.

[10] Alessio Tonioni, Oscar Rahnama, Tom Joy, Luigi Di Stefano, Ajanthan
Thalaiyasingam and Philip Torr. ‘Learning to adapt for stereo’. In:
Conference on Computer Vision and Pattern Recognition. under review.

[11] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattocia and Luigi
Di Stefano. ‘Real-time self-adaptive deep stereo’. In: Conference on
Computer Vision and Pattern Recognition. under review.

xii

1
I N T R O D U C T I O N

The management of grocery stores or supermarkets is a challenging task that
requires many people constantly busy with the supervision of shelves and of
the whole shop. Technology advances may help by providing more reliable
information in real time to the store manager, so that he may coordinate in
a more targeted way the human resources at his disposal. New technologies
may not only lead to better and more effective management of the store, but
also to improvements for the customers by giving to store owners the ability
to provide better services without additional fixed costs like new employees.
Since understanding an observed scene is one of the crucial premises for
most tasks, in this work we are going to study how to develop, deploy
and tune state of the art computer vision techniques to ease and partially
automate some management tasks for stores. Some examples of such tasks
are automatic inventory, store surveillance, aided shopping for visually
impaired people, customer tracking and analytics. . . . In the following, we
are going to address some of these tasks by developing computer vision
systems based on state of the art techniques. We will spend quite some time
discussing in details how we overcome some of the several problems arising
from a naive deployment of general solutions in real applications. All the
works featured in this thesis will share some common traits that we are
going to briefly discuss here.

Firstly we work under the assumption of modifying existing stores and
commercial practices as little as possible. By assuming this constraint we
hope to achieve solutions viable from an economic perspective even for small-
medium operators, that don’t modify dramatically the current customer
experience and that are more interesting from a research perspective. This
assumption is, however, in direct contrast with the way industrial practices
are currently evolving: the most successful proposals so far try to ease
the management of a store by completely changing the way we build and
organize them. Some practical examples of these solutions have already
reached the commercial phase and are available across stores all around
the world. For example, commercial outlets belonging to the Decathlon
retail chain already includes on almost all the products on sale a disposable

1

RFID tag both to protect items from being stolen as well as to perform
automatic recognition for inventory and fast checkout. This solution is
very effective and fail-safe but can hardly be applied to grocery stores that
may feature goods for which the selling price would be lower than the cost
of the disposable RFID tag itself. Another famous example of disruptive
technology in retails is the Amazon Go project1, the first, and currently only,
implementation of an almost completely autonomous grocery store. Inside,
customers can benefit from a checkout free experience with no queue or
cashier. By taking an item from a shelve and walking out of the store the
customer agrees to purchase the item and automatically charge the cost on its
bill. While potentially disruptive and intriguing, technological solutions like
these require huge investments that are often not viable for the vast majority
of retail chains. Moreover covering the whole store with camera and sensors
to track the customers, as in the Amazon Go project, can be perceived as a
quite invasive technology that can lead to potential loss of customers due to
serious concerns regarding the user privacy during shopping. In contrast,
all our proposals will not require ad-hoc stores or packaging nor additional
sensors besides a camera. We believe that our proposals could be easily
integrated with the current job of sales clerk blending unnoticed and without
threatening the customer experience. Besides these extremes, in recent years
some research and industrial solutions which rely on assumption closer to
ours have started to emerge to solve some of the aforementioned problems,
however, to the best of our knowledge, established scientific approaches
have not emerged yet while the few commercial solutions seems either at a
prototype stage or in the very early part of their life cycle.

The second common feature among all the researches presented in this
thesis will be to solve problems arising in the retail scenario with the hope
of proposing solutions to more general problems. For example one of the
recurrent topics across this work will be the loss in performance due to
domain shift between training and testing data for machine learning based
algorithms. We faced this kind of issue when applying state of the art deep
learning based algorithms to the solution of retail problems, however, the
same problem arises across countless other applications and research fields.
As such for most of the works we have tried to keep the presentation and the
proposed solutions as general as possible, using the retail environment only
as an exemplary test case rather than developing more ad-hoc and specific

1 https://www.amazon.com/b?ie=UTF8&node=16008589011

2

https://www.amazon.com/b?ie=UTF8&node=16008589011

solutions. We believe that most of our proposals can be interesting from a
more broad research audience rather than only for practitioners searching
for a solution to specific retail related problems.

Among all the possible in-store problems addressable through computer
vision techniques, we are going to focus mainly on two: automatic recog-
nition of items on store shelves and obtaining a reliable 3D reconstruction
of an environment for navigation purpose. We will now briefly introduce
the two problems that will be more carefully analyzed in Part i and Part ii
respectively.

1 .1 automatic detection and recognition of items on store

shelves

The first task that we are going to analyze concerns the detection and
recognition of all visible products on an image of a store shelf. To perform the
recognition we assume the availability beforehand of one or more reference
images depicting each one of the possible items on sale. We addressed
the solution of this problem as it can be crucial to automate a series of
low-level repetitive management tasks, like visual shelves inspections to
detect out or low in stock products, while laying the foundations for a
completely automatic inventory. At the same time, automate the recognition
of products can be quite beneficial to offer new services to customers visiting
the store, for example, allowing assisted shopping for visually impaired and
being one of the building blocks for checkout free technologies. From a
research point of view the recognition of products on shelves can be traced
back to the more general case of object recognition, where we have one or
more reference images of the sought object and a scene image where the
objects may appear in different poses, such as rotated, translated, scaled,
or even partially covered by other objects and under diverse illumination
conditions. Analysis of products on shelves, though, may be regarded as
a quite challenging case of the general visual object recognition problem.
Firstly, it requires the simultaneous detection and recognition of the many
different instances typically exposed on a store shelf; moreover, recognition
must be carried out choosing among the thousands of possible items on
sale on a store at any given times and at a quite fine instance classification
level (e.g., two different types of pasta, even from the same brand, must be
recognized as different items). Finally, the reference images for each product

3

are usually produced for marketing purpose and, therefore, exhibit ideal,
but quite unrealistic, lighting and acquisition conditions. In store images fed
to the recognition engine, instead, are usually acquired with lower quality
equipment (e.g., smartphone cameras) and in conditions far from ideal. As
such a viable solution for the problem must somehow address this huge shift
between the image available offline (i.e., the high-quality reference ones) and
the low-quality one acquired in stores where recognition should be carried
out. The problem became even more prominent when relying on state of
the art object detectors based on machine learning that will obviously face
problems coming from the domain shift between train and test data.

In Chap. 3 we will first address a constrained version of this problem
where we assume to know in advance the expected product disposition
on store shelves, which is usually called planogram. This arrangement is
carefully planned to maximize sales and keep customers happy, currently,
however, verifying compliance of real shelves to the ideal layout is still mostly
performed by store personnel. We try to automate this step by deploying
an object recognition pipeline to verify if the observed portion of a shelve
is compliant with the planned disposition or if there are missing and/or
misplaced products, a task we will reefer as planogram compliance check.
For the solution of this task, we deploy local invariant features together
with a novel formulation of the product recognition problem as a sub-graph
isomorphism between the items appearing in the given image and the ideal
layout. This allows for auto-localizing the given image within the aisle or
store and improving recognition dramatically.

In Chap. 4 we will address the more general problem of detecting items
on store shelves without any assumption. To this end, we will deploy state
of the art object detectors based on deep learning to obtain an initial product-
agnostic items detection. Then, we pursue product recognition through a
similarity search between global descriptors computed on reference product
images and cropped (query) images extracted from the shelf picture. To
maximize performance, we learn an ad-hoc global descriptor by a CNN2

trained on reference images through an image embedding loss. Our system
is computationally expensive at training time but can perform recognition
rapidly and accurately at test time. We will also advocate why direct deploy-
ment of state of the art object recognition system based on classification is
impractical, if not completely infeasible, for this specific task.

2 Convolutional Neural Network

4

Finally, in Chap. 5 we will focus on the recognition phase of the pipeline
introduced above and explicitly address problems arising from the domain
shift between reference images for products available beforehand and query
images acquired in store. Inspired by recent advances in image retrieval,
one-shot learning and semi-supervised domain adaptation, we propose an
end-to-end architecture comprising a GAN3 to address the domain shift at
training time and a deep CNN trained on the samples generated by the GAN
to learn an embedding for product images that enforces a hierarchy between
product categories. At test time, we perform recognition by means of K-NN4

search against a database consisting of one reference image per product.
We will also show experimentally how our proposed solution generalizes
fairly well to domains different than the retail one where might be useful to
explicitly address the distribution shift between training and testing data.

1 .2 reliable 3d reconstruction of unseen environments

While not immediately related to problems typically addressed in retail
environments, the ability to correctly sense the 3D structure of an environ-
ment is one of the crucial building blocks for any applications that want
to rely on autonomous agents moving inside an environment. Example of
such agents inside a store could be automatic shopping carts, personalized
robotic shopping assistants or autonomous platform for aisle inspection and
management. All these systems should be able to correctly sense the 3D
structure of the environment that surrounds them to navigate safely inside
the store and to ease the interaction with customers or items exposed on the
shelves. More in general, the availability of reliable 3D information could be
helpful for other retail-oriented tasks such as the detection of out of stocks
products on shelves or to allow virtual shopping and tour in a realistic 3D
reconstruction of stores.

Among the available technologies for 3D sensing, we have mostly invest-
igated the use of algorithms which relies only on one or two passive RGB
cameras and ignored all the active alternatives. We have made this choice
both due to the well-known shortcoming of active sensors when dealing
with dark or highly reflective surfaces, being both quite common among the
pattern on product packages, and for the cheapest cost and higher flexibility

3 Generative Adversarial Network
4 K Nearest Neighbour

5

offered by passive sensors. State-of-the-art to obtain accurate and dense
depth measurements out of RGB images currently consists of training deep
CNN models in end-to-end fashion on large amounts of data. Despite the
outstanding performance achievable, these frameworks suffer from drastic
drops in accuracy when running on unseen imagery different from those
observed during training either in terms of appearance (synthetic vs real) or
context (indoor vs outdoor). The effect due to this domain shift is usually
softened by fine-tuning on smaller sets of images with depth labels, but in
practice, it is not always possible, or it is extremely costly, to acquire such
kind of data required to supervise the network. For example, one possible
way to acquire reliable 3D labels mandate the use of costly Lidar5 sensors, a
careful calibration between sensors and, finally, a noise removal step from
the sensor raw output. Unfortunately, as we will see, only a few selected
environments and applications offer publicly available annotated dataset
suitable for supervised fine-tuning, and none of these concerns a supermar-
ket like environments. To overcome these shortcomings, we have mainly
worked on methods to perform these adaptation steps effectively without
requiring ground truth information. We have mostly tested our solutions on
autonomous driving environments due to the public availability of datasets
with precise ground-truth data for evaluation, but all the proposed solution
can be generalized to any environments without changes.

In Chap. 8 we will introduce an effective off-line and unsupervised do-
main adaptation technique enabling to overcome the domain shift problem
without requiring any ground-truth label. Relying on easier to obtain stereo
pairs we deploy traditional non-learned stereo algorithms to produce dispar-
ity/depth labels and confidence measures to assess their degree of reliability.
With these cues, we can fine-tune deep models by means of a confidence-
guided loss function, neglecting the effect of possible outliers outcome of the
stereo algorithms. Experimental results prove that our technique is effective
to adapt models for both stereo and monocular depth estimations.

In Chap. 9 we address the domain shift problem by performing a con-
tinuous and unsupervised on-line adaptation of a deep stereo network to
preserve good performance in challenging environments. Performing con-
tinuous training of a network can be extremely demanding on computational
resources, however, we mitigate the requirements by introducing a new light-

5 Laser Imaging Detection and Ranging, active sensors that measures distance to a target by
illuminating the target with pulsed laser light and measuring the reflected pulses with a
sensor.

6

weight yet effective deep stereo architecture and by developing an algorithm
to train independently only sub-portions of the network. We will show how
using both our new architecture and our fast adaptation schema we are able
to continuously fine-tune a network to unseen environments at ∼ 25FPS on
a GPU, opening the way to widespread applications.

Finally in Chap. 10 we will present some ongoing work on how to deploy
meta-learning techniques to speed up and make more efficient the adaptation
process for depth prediction models. We will introduce a novel training
schema to condition the initial weight configuration of a network to be more
suitable to be adapted once exposed to unseen environments, i.e. it will
require fewer adaptation steps to get optimal performance in an unseen
environment. This will obviously help in the deployment of the online
adaptation schema described before.

7

Part I

R E C O G N I T I O N O F P R O D U C T S O N S T O R E

S H E LV E S

2
I N I T I A L R E M A R K S

The arrangement of products in supermarket shelves is planned very care-
fully in order to maximize sales and keep customers happy. Shelves void,
low in stock or misplaced products renders it difficult for the customer to
buy what she/he needs, which, in turn, not only leads to unhappy shoppers
but also to a significant loss of sales. As pointed out in [5], 31% of customers
facing a void shelf purchase the item elsewhere and 11% do not buy it
at all. The planned layout of products within shelves is called planogram:
it specifies where each product should be placed within shelves and how
many facings it should cover, that is how many packages of the same product
should be visible in the front row of the shelf. Keeping shelves full as well as
compliant to the planogram is a fundamental task for all types of stores. The
key step to verify the compliance between the planned and observed layout
is the recognition of products displayed on store shelves. If properly solved
this task could be used for many different applications ranging from fast
store management to improved customer experience inside the store. For
these reasons, in this chapter we are going to address the problem of visual
shelf monitoring through computer vision techniques and in particular the
automatic detection and recognition of packaged products exposed on store
shelves. A visual representation of the task we are trying to solve is depicted
in Fig. 2.1

The seminal work on product recognition dates back to [13], where Merler
et al. highlights the particular issues to be addressed in order to achieve a
viable approach. First of all, the number of different items to be recognized
is huge, in the order of several thousand for small to medium shops, well
beyond the usual target for current state-of-the-art object detector based on
image classifier. Moreover, product recognition can be better described as
a hard instance recognition problem, rather than a classification one, as it
deals with lots of objects looking remarkably similar but for small details
(e.g., different flavors of the same brand of cereals). Then, any practical
methodology should rely only on the information available within existing
commercial product databases, i.e. at most just one high-quality image for
each side of the package, either acquired in studio settings or rendered (see

11

(a) - Query (b) - References

Figure 2.1: Illustration of the product recognition task with images from the Grocery
Product dataset [39]. Given a query image featuring multiple products
(a) identify regions associated with individual items and recognize the
product enclosed in each region based on a database featuring only few
(usually one) reference images per product (two examples are shown in
(b)). Example of correct recognition are showed in (a) with bounding
boxes colored according to the recognized classes.

Fig. 2.1-(b)). Query images for product recognition are, instead, taken in
the store with cheap equipment (e.g., a smart-phone) and featuring many
different items displayed on a shelf (see Fig. 2.1-(a)).

To address all these problems we will propose two different object detec-
tion and recognition pipeline. Our first proposal will be discussed in Chap. 3

and leverage on local feature matching and geometric verification as the
first step of a more complex pipeline to solve the specific task of planogram
compliance check. In Chap. 4 we will present, instead, a more generic deep
learning based pipeline for unconstrained product detection and recognition,
while in Chap. 5 we will focus on the product recognition problem and we
will introduce a deep learning framework to tackle some of the challenges it
poses. But first in Sec. 2.1 we will cover most of the related work in the field
of automatic detection and recognition of products on store shelves.

2 .1 related work

Grocery products recognition was firstly investigated in the already men-
tioned paper by Merler et al. [13]. Together with a thoughtful analysis of the

12

problem, the authors propose a dataset and a system based on local invariant
features to realize an assistive tool for visually impaired customers. They
assume that no information concerning product layout may be deployed to
ease detection. Given these settings, the performance of the proposed sys-
tems turned out quite unsatisfactory in terms of both precision and efficiency.
Further research has then been undertaken to ameliorate the performance of
automatic visual recognition of grocery products [21], [64], [36]. In particular,
Cotter et al. [36] report significant performance improvements by leveraging
on machine learning techniques, such as HMAX and ESVM, together with
HOG-like features. Yet, their proposal requires many training images for
each product, which is unlikely feasible in real settings and deploys a large
ensemble of example-specific detectors, which makes the pipeline rather
slow at test time. Moreover, adding a new type of sought product is rather
cumbersome as it involves training a specific detector for each exemplary
image, thereby also further slowing down the whole system at test time. The
approach proposed in [36] was then extended in [48] through a contextual
correlation graph between products. Such a structure can be queried at
test time to predict the products more likely to be seen given the last k
detections, thereby reducing the number of ESVM computed at test time
and speeding up the whole system. A similar idea of deploying contextual
information to ease the recognition phase was also deployed by [66]. More
recently, Franco et al. [91] proposed a hierarchical multi-stage recognition
pipeline that seems to be able to obtain remarkably good performance but
has only been tested on small-scale problems regarding the detections of
few tens of different items. Yet, all these recent papers focus on a relatively
small-scale problem, i.e. recognition of a few hundred different items at
most, whilst usually, several thousand products are on sale in a real shop
George et al. [39] address more realistic settings and propose a multi-stage
system capable of recognizing ∼ 3400 different products based on a single
model image per product. First, they carry out an initial classification to
infer the macro categories of the observed items to reduce the recognition
search space. Then, following detection, they run an optimization step based
on a genetic algorithm to detect the most likely combination of products
from a series of proposals. Despite the quite complex pipeline, when relying
on only one model image per product the overall precision of the system is
below 30%. The paper proposes also a publicly available dataset, referred
to as Grocery Products, comprising 8350 product images classified into 80

hierarchical categories together with 680 high-resolution images of shelves.

13

The same large-scale realistic problem has been subsequently tackled by
[86] using a standard local feature based recognition pipeline and an op-
timized Hough Transform to detect multiple object instances and filter out
inconsistent matches, which brings in a slight performance improvement.
More recently, [98] have shown how it is possible to improve detection
and recognition performance on the same dataset relying on a probabilistic
model based on local feature matching and refinement by a deep network.

14

3
P L A N O G R A M C O M P L I A N C E C H E C K

In this section, we will describe a computer vision pipeline that, given an
expected product disposition (referred herein as planogram) and an image
depicting supermarket shelves, can correctly localize each product, check
whether the real arrangement is compliant to the planned one and detect
missing or misplaced items. Key to our approach is a novel formulation of
the problem as a sub-graph isomorphism between the product detected in
the given image and those that should ideally be found therein given the
planogram. Accordingly, our pipeline relies on a standard feature-based
object recognition step, followed by a novel graph-based consistency check
and a final refinement step to improve the overall product recognition rate.

3 .1 related works

Beside works related to unconstrained product recognition already discussed
in Sec. 2.1, it is worth mentioning the closely related work by Marder et
al. [56] since it addresses the very same problem of checking planogram
compliance through computer vision. Their approach relies on detecting and
matching SURF features [11] followed by visual and logical disambiguation
between similar products. To improve product recognition the authors
deploy information dealing with the known product arrangement through
specific hand-crafted rules, such as ‘conditioners are placed on the right of
shampoos‘. Differently, we propose to deploy automatically these kinds of
constraints by modeling the problem as a sub-graph isomorphism between
the items detected in the given image and the planogram. Unlike ours, their
method mandates a-priori categorization of the sought products into subsets
of visually similar items. Systems to tackle the planogram compliance problem
are described also in [38], [52] and [29]. These papers delineate solutions
relying either on large sensor/camera networks or mobile robots monitoring
shelves while patrolling aisles. In contrast, our proposal would require just
an off-the-shelf device, such as a smartphone, tablet or hand-held computer.

15

Inputs
Unconstrained Product

Recognition
Graph-based Consistency Check Product Verification Output

Observed Planogram

Reference Planogram

Missing detection

False Detections

Figure 3.1: Overview of our pipeline. For each step we highlight the inputs and
outputs through red and yellow boxes, respectively. Product detections
throughout stages are highlighted by green boxes, while blue lines show
the edges between nodes on the graphs enconding both the Reference
and the Observed planograms.

3 .2 proposed pipeline

We address the typical industrial settings in which at least one model image
per product together with a general schema of the correct disposition of
items (the planogram) are available. At test time, given one image featuring
products on shelves, the system would detect and localize each item and
check if the observed product layout is compliant to the given planogram.
As depicted in Fig. 3.1, we propose to accomplish the above tasks by a visual
analysis pipeline consisting of three steps. We provide here an overview of
the functions performed by the three steps, which are described in more
detail in the following.

The first step operates only on model images and the given shelves image.
Indeed, to pursue seamless integration with existing procedures, we assume
that the information concerning which portion of the aisle is observed is
not available together with the input image. Accordingly, the first step
cannot deploy any constraint dealing with the expected product disposition
and is thus referred to as Unconstrained Product Recognition. As most
product packages consist of richly textured piecewise planar surfaces, we
obtained promising result through a standard object recognition pipeline
based on local invariant features (as described, e.g., in [7]). Yet, the previ-

16

ously highlighted nuisances cause both missing product items as well as
false detections due to similar products. Nonetheless, the first step can
gather enough correct detections to allow the successive steps to identify the
observed portion of the aisle in order to deploy constraints on the expected
product layout and improve product recognition dramatically. The output of
the first step consists of a set of bounding boxes corresponding to detected
product instances (see Fig. 3.1).

From the second step, dubbed Graph-based Consistency Check, we start
leveraging on the information about products and their relative disposition
contained in planograms. We choose to represent a planogram as a grid-like
fully connected graph where each node corresponds to a product facing and
is linked to at most 8 neighbors at 1-edge distance, i.e. the closest facings
along the cardinal directions. We rely on a graph instead of a rigid grid to
allow for a more flexible representation; an edge between two nodes does
not represent a perfect alignment between them but just proximity along
that direction.

This abstract representation, referred to as Reference Planogram, encodes in-
formation about the number of facings related to each product and the items
placed close together in shelves. An example of Reference Planogram is shown
in Fig. 3.1. The detections provided by the first step are used in the second
to automatically build another grid-like graph having the same structure as
the Reference Planogram and referred to as Observed Planogram. Then, we find
the sub-graph isomorphism between the Observed and Reference planograms,
so as to identify local clusters of self-consistent detected products, e.g., sets
of products placed in the same relative position in both the Observed and
Reference planograms. As a result, the second step ablates away inconsistent
nodes from the Observed Planogram, which typically correspond to false
detections yielded by the first step. It is worth pointing out that, as the
Observed Planogram concerns the shelves seen in the current image while the
Reference Planogram models the whole aisle, matching the former into the
latter implies localizing the observed scene within the aisle1.

After the second step the Observed Planogram should contain true detec-
tions only. Hence, those nodes that are missing compared to the Reference
Planogram highlight items that appear to be missing w.r.t. the planned
product layout. The task of the third step, referred to as Product Verific-
ation, is to verify whether these product items are really missing in the

1 More generally, matching the Observed to a set of Reference planograms does localize
seamlessly the scene within a set of aisles or, even, the whole store.

17

scene or not. More precisely, we start considering the missing node showing
the highest number of already assigned neighbors, for which we can most
reliably determine a good approximation of the expected position in the
image. Accordingly, a simpler computer vision problem than in the first step
needs to be tackled, i.e. verify whether or not a known object is visible in a
well-defined ROI (Region of Interest) within the image. Should the verifica-
tion process highlight the presence of the product, the corresponding node
would be added to the Observed Planogram, so to provide new constraints
between found items; otherwise, a planogram compliance issue related to
the checked node is reported (i.e., missing/misplaced item). The process is
iterated till all the facings in the observed shelves are either associated with
detected instances or flagged as compliance issues.

3 .2 .1 Unconstrained Product Recognition

For the initial detection step, we rely on the classical multi-object and multi-
instance object recognition pipeline based on local invariant features presen-
ted in [7], which is effective with planar textured surfaces and scales well
to database comprising several hundreds or a few thousands models, i.e.
comparable to the number of different products typically sold in grocery
stores and supermarkets. Accordingly, we proceed through feature detection,
description, and matching, then cast votes into a pose space by a Generalized
Hough Transform that can handle multiple peaks associated with different
instances of the same model in order to cluster correspondences and filter
out outliers. In our settings, it turns out reasonable to assume the input
image to represent an approximately frontal view of shelves, so that both
in-plane and out-of-plane image rotations are small. Therefore, we estimate
a 3 DOF pose (image translation and scale change).

Since the introduction of SIFT [7], a plethora of other feature detectors and
descriptors have been proposed in the literature. Interestingly, the object
recognition pipeline we implemented may be deployed seamlessly with
most such newer proposals. Moreover, it turns out just as straightforward
to rely on multiple types of features jointly to pursue higher sensitivity
by detecting diverse image structures. Purposely, our implementation of
the standard object recognition pipeline can run in parallel several detec-
tion/description/matching processes based on different features and have
them eventually cast vote altogether within the same Hough pose space. In

18

Sec. 3.3, we will report an extensive experimental investigation to establish
which features (or combination) would yield the best performance.

3 .2 .2 Graph-based Consistency Check

To build the Observed Planogram we first instantiate a node for each item
detected in the previous step, then perform a loop over all detections to
seek for link existing between detected instances. For each node, the search
is performed along 8 cardinal directions (N, S, E, W, NW, NE, SW, SE)
and, if another bounding box is found at a distance less than a dynamically
determined threshold, an edge is created between the two nodes. In each
node, the edge is labeled according to the search direction (e.g., N) and
oppositely in the found neighbor node (e.g., S). The graph is kept self-
coherent, e.g. if node B is the North node of A, then A must be the South
node of B. In case of ambiguity, e.g. both A and C are found to be the South
node of B, we retain only the edge between the two closest bounding boxes.

Once built, we compare the Observed to the Reference Planogram so to
determine whether and how the two graphs overlap one to another. In
theoretical computer science this problem is referred to as subgraph isomorph-
ism and known to be NP-complete[10]. A general formulation may read
as follows: given two graphs G and H, determine whether G contains a
subgraph for which does exist a bijection between the vertex sets of G and
H. However, given our strongly bounded graphs, we choose not to rely
on one of the many general algorithms, like e.g. [20], and, instead, devised
an ad hoc heuristic algorithm that, casting ours as a constraint satisfaction
problem, works fairly well in practice.

We formulate our problem as follows: given two graphs I (Reference
Planogram) and O (Observed Planogram), find an isomorphism between a
subset of nodes in I and a subset of nodes in O such that the former subset
has the maximum feasible cardinality given product placements constraints.
Each node in I can be associated with a node in O only if they both refer to
the same product instance and exhibit coherent neighbors. In other words,
we find the maximum set of nodes in graph O that turn out self-consistent,
i.e. their relative positions are the same as in the reference graph I.

As illustrated in Algorithm Alg. 1, the process starts with procedure Cre-
ateHypotheses, which establishes the initial set of hypotheses, H = {. . . hi . . .},
hi = {nI,nO, c(nI,nO)}, with nI and nO denoting, respectively, a node in I

19

1 2

43

Ideal Planogram (I)

I II

III IV

Observed Planogram (O)

𝐻 = { [𝑛𝐼
1, 𝑛𝑂

𝐼 , Τ2 8], [𝑛𝐼
3, 𝑛𝑂

𝐼𝐼𝐼, Τ2 8],
[𝑛𝐼

4, 𝑛𝑂
𝐼𝑉, Τ2 8], [𝑛𝐼

1, 𝑛𝑂
𝐼𝐼, Τ1 8],

[𝑛𝐼
3, 𝑛𝑂

𝐼𝑉, Τ1 8], [𝑛𝐼
4, 𝑛𝑂

𝐼𝐼𝐼, Τ0 8] }

a) Pick the best hypothesis and add it to the solution. In case more hypotheses have equal score
randomly pick one.

𝑆 = {[𝑛𝐼
1, 𝑛𝑂

𝐼 , Τ2 8]}

b) Remove hypotheses and increase scores.

𝐻 = { [𝑛𝐼
3, 𝑛𝑂

𝐼𝐼𝐼, Τ10
8], [𝑛𝐼

4, 𝑛𝑂
𝐼𝑉, Τ10

8],[𝑛𝐼
3, 𝑛𝑂

𝐼𝑉, Τ1 8], [𝑛𝐼
4, 𝑛𝑂

𝐼𝐼𝐼, Τ0 8] }

𝐻 = { [𝑛𝐼
1, 𝑛𝑂

𝐼 , Τ2 8], [𝑛𝐼
3, 𝑛𝑂

𝐼𝐼𝐼,1 + Τ2 8], [𝑛𝐼
4, 𝑛𝑂

𝐼𝑉, 1 + Τ2 8], [𝑛𝐼
1, 𝑛𝑂

𝐼𝐼, Τ1 8], [𝑛𝐼
3, 𝑛𝑂

𝐼𝑉, Τ1 8],
[𝑛𝐼

4, 𝑛𝑂
𝐼𝐼𝐼, Τ0 8] }

1 2

43

I II

III IV

𝑆 = { [𝑛𝐼
1, 𝑛𝑂

𝐼 , Τ2 8]}

c) Compute 𝐵𝐶 . If 𝐵𝑐 < 𝐶𝑚𝑎𝑥 return C = 𝐵𝑐.

1 2

43

I 2

III IV

𝑆 = { [𝑛𝐼
1, 𝑛𝑂

𝐼 , Τ2 8], [𝑛𝐼
3, 𝑛𝑂

𝐼𝐼𝐼, Τ10
8],

[𝑛𝐼
4, 𝑛𝑂

𝐼𝑉, Τ18
8]}

d) Restart from step (a) until 𝐻 = ∅ or 𝑐 𝑛𝐼 , 𝑛𝑂 < 𝜏 for all remaining hypotheses.

𝐵𝑐 = B (S, H) = 3

C = C (S) = 3

ℎ0 = [𝑛𝐼
1, 𝑛𝑂

𝐼 , Τ2 8]

e) Compute C and return.

Figure 3.2: Toy example concerning two small graphs with 4 nodes used to describe
procedure FindSolution. The color of each node denotes the product the
numbers within squares identify the different nodes in the text.

20

Algorithm 1 Find sub-graph isomorphism between I and O

Cmax ← 0

Sbest ← ∅
H← CreateHypotheses(I,O)
while H 6= ∅ do
C, S,h0 ← FindSolution(H,Cmax, τ)
if C > Cmax then
Sbest,Cmax ← S,C

H← H− h0
return Sbest,Cmax

and O related to the same product and c(nI,nO) = nnc
nnt

with nnc number
of coherent neighbors (e.g., refering to the same product both in O and I)
and nnt number of neighbors for that node in I. CreateHypotheses iterates
over all nI ∈ I so to instantiate all possible hypotheses. An example of the
hypotheses set determined by CreateHypotheses given I and O is shown in
the first row of Fig. 3.2. Then, procedure FindSolution finds a solution, S, by
iteratively picking the hypothesis featuring the highest score. The first hypo-
thesis picked in the considered example is shown in Fig. 3.2-a). Successively,
H is updated by removing the hypotheses containing either of the two nodes
in the best hypothesis and increasing the scores of hypotheses associated
with coherent neighbors (Fig. 3.2-b)). Procedure FindSolution returns also a
confidence score for the current solution, C, which takes into account the
cardinality of S, together with a factor which penalizes the presence in O of
disconnected sub-graphs that exhibit relative distances different than those
expected given the structure of I2 which instead is always fully connected.
FindSolution takes as input the score of the current best solution, Cmax, and
relies on a branch-and-bound scheme to accelerate the computation. In par-
ticular, as illustrated in Fig. 3.2-c), after updating H (Fig. 3.2-b)), FindSolution
calculates an upper-bound for the score, BC, by adding to the cardinality of
S the number of hypotheses in H that are not mutually exclusive, so as to
early terminate the computation when the current solution can not improve
Cmax. The iterative process continues with picking the new best hypothesis
until H is found empty or containing only hypotheses with confidence lower
than a certain threshold (τ) (Fig. 3.2-d). The found solution, S, contains all
the hypotheses that are self-consistent and such that each node nI is either
associated with a node nO or to none, as shown in the last row of Fig. 3.2.
In the last step ((Fig. 3.2-e)), the procedure computes C and returns also the

2 In the toy example in Fig. 3.2, O does not contain disconnected sub-graphs.

21

ROI Estimation Detections

Proposals

Chosen Detection

Figure 3.3: One iteration of our proposed Product Verification step. The estimated
ROI is drawn in yellow. The correct proposal is highlighted in green
while others are in red.

first hypothesis, h0, that was added into S, i.e. the one with the highest score
c(nI,nO) (Fig. 3.2.-a)). Upon returning from FindSolution, the algorithm
checks whether or not the new solution S improves the best one found so
far and removes h0 from H (see Algorithm Alg. 1) to allow evaluation of
another solution based on a different initial hypotheses.

As a result, Algorithm Alg. 1 finds self-consistent nodes in O given I,
thereby removing inconsistent (i.e. likely false) detections and localizing the
observed image wrt to the planogram. Accordingly, the output of the second
steps contains information about which items appear to be missing given
the planned product layout and where they ought to be located within the
image.

3 .2 .3 Product Verification

We use an iterative procedure whereby each iteration tries to fill the observed
planogram with one seemingly missing object. As illustrated in Fig. 3.3, each
iteration proceeds through three stages. We start with the missing element
featuring the highest number of already detected neighbors. The positions
of these neighbors provide clues on where the missing product should
appear in the image. In particular, the position and size of each neighbor,
together with the average edge length in the Observed Planogram, provide an
estimation of the center of the missing element: averaging estimations across
the neighbors yields a good approximate position. Then, we define a coarse
image ROI centered at this position by estimating the size of the missing

22

element3 and allowing for some margin on account of possible localization
inaccuracies.

Given the estimated ROI, the second stage attempts to find and localize
the missing product therein. As already pointed out, unlike the initial step
of our pipeline, here we now know exactly which product is sought as well
as its approximate location in the image. To look for the sought product
within the ROI, we have experimented with template matching techniques
as well as with a similar pipeline based on local features as deployed for
Unconstrained Product Recognition (Sec. 3.2.1). The latter, in turn, would
favorably reuse the image features already computed within the ROI in
the first step of our pipeline, so as to pursue matching versus the features
associated with the model image of the sought product only and, accordingly,
cast votes in the pose space. Both approaches would provide a series of
Detection Proposals (see Fig. 3.3).

Detection proposals are analyzed in the last stage of an iteration by first
discarding those featuring bounding boxes that overlap with already detec-
ted items and then scoring the remaining ones according to the coherence
of the position within the (Observed Planogram) and the detection confidence.
As for the first contribution to the score, we take into account the error
between the center of the proposal and that of the ROI estimated in the first
stage (so to favor proposals closer to the approximated position inferred from
already detected neighbors); the second component of the score, instead,
depends on the adopted technique: for template matching methods we use
the correlation score while for approaches based on local features we rely
on the number of correct matches associated with the proposal. Both terms
are normalized to 1 and averaged out to get the final score assigned to each
Detection Proposal. Based on such a score, we pick the best proposal and
add it to the Observed Planogram, so as to enforce new constraints that may
be deployed throughout successive iterations to select the best-constrained
missing item as well as improve ROI localization. If either all detection
proposals are discarded due to the overlap check or the best one exhibits
too low a score, our pipeline reports a planogram compliance issue related
to the currently analyzed missing product. We have not investigated yet on
how to disambiguate between different issues such as low in stock items and
misplaced items. In real settings, however, such different issues would both
be dealt with by manual intervention of sales clerks. The iterative procedure

3 Store databases contain product sizes: the image size of a missing product can be estimated
from those of the detected neighbors and the known metric sizes.

23

(a)-Customer[39] (b)-Management

Figure 3.4: Ground-truth dealing with product types provided with the Grocery
Products dataset (a) and our instance-specific bounding boxes (b). In
(a) a system should identify at least one instance for each product type,
while in (b) it should find and correctly localize all the displayed product
instances. We will refer to the two task in Chap. 4 as Customer use case
and Management use case.

stops when all the seemingly missing products have been either detected or
labeled as compliance issues.

3 .3 experimental results

To assess the performance of our pipeline we rely on the Grocery Products
dataset [39]. However, as the ground-truth available with shelves images
concerns product types while we aim at detecting each individual instance,
we have manually annotated a subset of images with item-specific bounding
boxes (see Fig. 3.4-b). Moreover, for each image, we have created an ideal
planogram encoded in our graph-like representation for the perfect disposi-
tion of products (e.g., if the actual image contains voids or misplaced items
they will not be encoded on the ideal planogram that instead will model
only the correct product disposition). The annotation used are available at
our project page 4.

Our chosen subset consists of 70 images featuring box-like packages and
dealing with different products such as rice, coffee, cereals, tea, juices,
biscuits. . . . Each image depicts many visible products, for a total of 872

instances of 181 different products, that is on average ≈ 12 instances per im-
age. According to the metric used in the PASCAL VOC challenge, we judge
a detection as correct if the intersection-over-union between the detected
and ground-truth bounding boxes is > 0.5. For each image we compute Pre-

4 vision.disi.unibo.it/index.php?option=com_content&view=article&id=111&catid=78

24

vision.disi.unibo.it/index.php?option=com_content&view=article&id=111&catid=78

0,543444794

0,546391278

0,585297931

0,653671185

0,697201406

0,70248215

0,708543372

0,72462017

0,728284908

0,739289332

0,764505117

0,503033349

0,510239968

0,50120875

0,613688125

0,790300502

0,721576748

0,672802246

0,806630091

0,753502071

0,697562891

0,752929081

0,590916366

0,588055975

0,703291013

0,6992273

0,623725233

0,684372075

0,748294876

0,657747148

0,704700953

0,786325316

0,776442667

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

BOLD

KAZE

MSD/FREAK

AKAZE

ORB

SIFT

OPPONENT SURF

BRISK+SURF

SURF

BRISK/FREAK

BRISK

Precision Recall F-Measure

Figure 3.5: Evaluation of different features for Unconstrained Product Recognition.
Results ordered from top to bottom alongside with F-Measure scores.

0,836170601

0,843071758

0,735181004

0,739475587

0,969323671

0,98042328

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

BRISK+SURF

BRISK

Precision Recall F-Measure

Figure 3.6: Results after Graph-based Consistency Check when using either BRISK
or BRISK+SURF in the first step.

cision (number of correct detections over total number of detections), Recall
(number of correctly detected products over number of products visible in
the image) and F-Measure (harmonic mean of Precision and Recall). Then, we
provide charts reporting average figures across the dataset.

We will now follow the processing flow along our pipeline so as to evaluate
performance gain upon execution of each step. We start with evaluating the
Unconstrained Product Recognition step, in order to find the best suitable
local features to be used in this scenario.

We have tested all the detectors and descriptors available in OpenCV, i.e.
SIFT [7], SURF [11], ORB [24], BRISK [23], KAZE [26], AKAZE [22], STAR
[14], MSD [46], FREAK [25], DAISY [19], LATCH [72], Opponent Color

25

0,837077873

0,842530284

0,903683273

0,835598284

0,840220009

0,902630484

0,838562711

0,844853298

0,904738521

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

BRISK + BB

BRISK + ZNCC

BRISK + BRISK

Precision Recall F-Measure

Figure 3.7: Evaluation of different choices for the final Product Verification step of
our pipeline, with BRISK features used in the first step.

Figure 3.8: Qualitative results obtained by our pipeline: detected items are enclosed
by green boxes while planogram compliance issues are highlighted by
red boxes.

Space Descriptors [15], as well as the the line segments features known as
BOLD[35] (original code distributed by the authors for research purposes).
We have considered features providing both the detector and descriptor (e.g.
SIFT) as well as many different detector/descriptor pairs (e.g. MSD/FREAK)
and multiple feature processes voting altogether in the same pose space (e.g.
BRISK+SURF). A summary of the best results is reported in Fig. 3.5. As it can
be observed, binary descriptors, such as BRISK and FREAK performs fairly
well in the addressed product recognition scenario, yielding the highest
Precision and best F-Measure scores. SURF features provide good results
alike, in particular as concerns Recall. It is also worth noticing how the
use of multiple features, such as BRISK + SURF, to capture different image
structures may help to increase the sensitivity of the pipeline, as vouched by
the highest Recall. ORB features may yield a comparably high Recall, but at
expense of a lower Precision. The use of color descriptors (Opponent SURF),
instead, does not seem to provide significant benefits. As the second step is
meant to prune out the false detections provided by the first, one would be
lead to prefer those features yielding higher Recall. Yet, it may turn out hard
for the second step to solve the sub-graph isomorphism problem in presence
of too many false positives. Thus, a good balance between the two types
of detection errors turns out preferable, rather. As such, we will consider
both BRISK and BRISK+SURF features within the Unconstrained Product

26

Recognition step in order to further evaluate the results provided by our
pipeline after the Graph-based Consistency Check step.

For the second step we fixed τ = 0.25 and deployed the algorithm pro-
posed in Sec. 3.2.2, the results are displayed in Fig. 3.6. First, the boost
in Precision attained with both types of features compared to the output
provided by the first step (Fig. 3.5) proves that the proposed sub-graph iso-
morphism formulation described in Sec. 3.2.2 is very effective to improve
product recognition by removing false detections arising in unconstrained
settings. In particular, when using BRISK features, Precision raises from ≈
78% to ≈ 98% and with BRISK+SURF from ≈ 66% to ≈ 97%. Alongside,
though, we observe a decrease in Recall, such as from ≈ 75% to ≈ 74% with
BRISK and from ≈ 81% to ≈ 74% with BRISK+SURF. This is mostly due
to items that, although detected correctly in the first step, cannot rely on
enough self-coherent neighbors to be validated (i.e. c(nI,nO) < τ). Overall,
the Graph-based Consistency Check does improves performance signific-
antly, as the F-Measure increases from ≈ 76% to ≈ 84% and from ≈ 72% to
≈ 84% with BRISK and BRISK+SURF, respectively.

Given that in Fig. 3.6 BRISK slightly outperforms BRISK+SURF according
to all the performance indexes and requires less computation, we pick
the former features for the first step and evaluate different design choices
as regards the final Product Verification. In particular, as mentioned in
Sec. 3.2.3, we considered different template matching and feature-based
approaches. The best results, summarized in Fig. 3.7, concern template
matching by the ZNCC (Zero-mean Normalized Cross Correlation) in the
HSV color space, the recent Best-buddies Similarity method [51] in the RGB
color space and a feature-based approach deploying the same features used
for the first step, that is BRISK. As shown in Fig. 3.7, using BRISK features
in both the first and last step does provide the best results, all the three
performance indexes getting now as high as ≈ 90%.

Eventually, in Fig. 3.8 we present some qualitative results obtained by our
pipeline both in case of compliance between the observed scene and the
planogram as well as in the case of missing products.

27

4
U N C O N S T R A I N E D P R O D U C T D E T E C T I O N

After having addressed the problem of verifying planogram compliance, in
this section, we are going to focus on the more general task of unconstrained
product detection and recognition on store shelves. Due to the already dis-
cussed peculiarities of this scenario, unfortunately, the deployment of state
of the art multi-class object detectors based on deep learning [59, 96, 111]
cannot offers a trivial solution since all of them will require a large corpus of
annotated images as similar as possible to the deployment scenario in order
to provide good performance. Even acquiring and manually annotating
with product labels a huge dataset of in-store images is not a viable solution
due to the products on sale in stores, as well as their appearance, changing
frequently over time, which would mandate continuous gathering of annot-
ated in-store images and retraining of the system. Conversely, a practical
approach should be trained once and then be able to handle seamlessly
new stores, new products and/or new packages of existing products (e.g.,
seasonal packages).

We propose to address product recognition by a pipeline consisting of
three stages. Given a shelf image, we perform first a class-agnostic object
detection to extract region proposals enclosing the individual product items.
This stage relies on a deep learning based object detector trained to localize
product items within images taken in the store; we will refer to this network
as to the Detector. In the second stage, we perform product recognition
separately on each of the region proposal provided by the Detector. Purposely,
we carry out K-NN (K-Nearest Neighbours) similarity search between a
global descriptor computed on the extracted region proposal and a database
of similar descriptors computed on the reference images available in the
product database. Rather than deploying a general-purpose global descriptor
(e.g., Fisher Vectors [17]), we train a CNN using the reference images to learn
an image embedding function that maps RGB inputs to n-dimensional global
descriptors amenable for product recognition; this second network will be
referred to as to the Embedder. Eventually, to help prune out false detections
and improve disambiguation between similarly looking products, in the

29

third stage of our pipeline we refine the recognition output by re-ranking
the first K proposals delivered by the similarity search.

It is worth pointing out how our approach needs samples of annotated
in-store images only to train the product-agnostic Detector, which, however,
does not require product-specific labels but just bounding boxes drawn
around items. In Sec. 4.3 we will show how the product-agnostic Detector
can be trained once and for all so to achieve remarkable performance across
different stores despite changes in shelves disposition and product appear-
ance. Therefore, new items/packages are handled seamlessly by our system
simply by adding their global descriptors (computed through the Embedder)
in the reference database. Besides, our system scales easily to the recognition
of thousands of different items, as we use just one (or few) reference images
per product, each encoded into a global descriptor in the order of a thousand
float numbers.

Finally, while computationally expensive at training time, our system
turns out light (i.e., memory efficient) and fast at deployment time, thereby
enabling near real-time operation. Speed and memory efficiency do not
come at a price in performance, as our system compares favorably with
respect to previous work on the standard benchmark dataset for product
recognition.

4 .1 related works

CNN-based systems are widely recognized as state-of-the-art across many
object detection benchmarks. The different proposals can be broadly sub-
divided into two main families of algorithms based on the number of stages
required to perform detection. On one hand, we have the slower but more
accurate two stage detectors [59], which decompose object detection into a
region proposal followed by an independent classification for each region.
On the other hand, fast one stage approaches [96, 111] can perform detection
and classification jointly. A very recent work has also addressed the specific
domain of grocery products, so as to propose an ad hoc detector [107] that
analyzes the image at multiple scales to produce more meaningful region
proposals.

Besides, deploying CNNs to obtain rich image representations is an es-
tablished approach to pursue image search, both as a strong off-the-shelf
baseline [43] and as a key component within more complex pipelines [69].

30

Detector

Embedder

Crop
Refinement

Search

Query Image Region Proposals

Reference
images

Reference
Database Final Output

Figure 4.1: Schematic structure of our proposed product recognition pipeline.
Dashed arrows denotes elaboration that can be performed offline just
once since are not related to the query images.

Inspiration for our product recognition approach came from [49, 61]. In [61],
Schroff et al. train a CNN using triplets of samples to create an embedding
for face recognition and clustering while in [49] Bell et al. rely on a CNN
to learn an image embedding to recognize the similarity between design
products. Similarly, in the related field of fashion items recognition, relying
on learned global descriptor rather than classifiers is an established solution
shared among many recent works [47, 53, 115].

4 .2 proposed approach

Fig. 4.1 shows an overview of our proposed pipeline. In the first step, de-
scribed Sec. 4.2.1, a CNN (Detector) extracts region proposals from the query
image. Then, as detailed in Sec. 4.2.2, each region proposal is cropped from
the query image and sent to another CNN (Embedder) which computes an
ad-hoc image representation. These will then be deployed to pursue product
recognition through a K-NN similarity search in a database of representa-
tions pre-computed off-line by the Embedder on the reference images. Finally,
as illustrated in Sec. 4.2.3, we combine different strategies to perform a final
refinement step which helps to prune out false detections and disambiguate
among similar products.

31

4 .2 .1 Detection

Given a query image featuring several items displayed in a store shelf, the
first stage of our pipeline aims at obtaining a set of bounding boxes to be
used as region proposals in the following recognition stage. Ideally, each
bounding box should contain exactly one product, fit tightly the visible
package and provide a confidence score measuring how much the detection
should be trusted.

State-of-the-art CNN-based object detectors may fulfill the above require-
ments for the product recognition scenario, as demonstrated in [107]. Given
an input image, these networks can output several accurate bounding boxes,
each endowed by confidence and a class prediction. To train CNN-based
object detectors, such as [59, 96, 111], a large set of images annotated with the
position of the objects alongside with their class labels is needed. However,
due to the ever-changing nature of the items sold in stores, we do not train
the Detector to perform predictions at the fine-grained class level (i.e., at the
level of the individual products), but to carry out a product-agnostic item
detection. Accordingly, the in-store training images for our Detector can be
annotated for training just by drawing bounding-boxes around items without
specifying the actual product label associated with each bounding-box. This
formulation makes the creation of a suitable training set and the training
itself easier and faster. Moreover, by training the Detector to recognize generic
products from everything else we hope to achieve a solution that is more
general therefore deployable across different stores and products. Training a
CNN to directly perform detection and recognition would require a much
more expensive and slow image annotation process which should be carried
out, again and again, to keep up with changes of the products/packages to
be recognized. This continuous re-training of the Detector is just not feasible
in any practical settings.

4 .2 .2 Recognition

Starting from the candidate regions delivered by the Detector, we perform
recognition by means of K-NN similarity search between a global descriptor
computed on each candidate region and a database of similar descriptors
(one for each product) pre-computed off-line on the reference images. Recent
works (e.g., [43]) have shown that the activations sampled from layers of

32

pre-trained CNNs can be used as high quality global image descriptors. [47]
extended this idea by proposing to train a CNN (i.e., the Embedder) to learn
a function E : I → D that maps an input image i ∈ I into a k-dimensional
descriptor dk ∈ D amenable to recognition through K-NN search. Given a
set of images with associated class labels, the training is performed sampling
triplets of different images, referred to as anchor (ia), positive (ip) and negative
(in), such that ia and ip depict the same class while in belongs to a different
one. Given a distance function in the descriptor space, d(X, Y), with X, Y ∈ D,
and denoted as E(i) the descriptor computed by the the Embedder on image
i, the network is trained to minimize the so called triplet ranking loss:

L = max(0,d(E(ia),E(ip)) − d(E(ia),E(in)) +α) (4.1)

with α a fixed margin to be enforced between the pair of distances. Through
minimization of this loss, the network learns to encode into nearby positions
within D the images depicting items belonging to the same class, whilst
keeping items of different classes sufficiently well separated.

We use the same formulation and adapt it for the context of grocery
product recognition where different products corresponds to different classes
(e.g. the two reference images of Fig. 2.1-(b) belong to different classes and
could be used as ip and in). Unfortunately, we can not sample different
images for ia and ip due to available commercial datasets featuring just
a single exemplar image per product (i.e., per class). Thus, to create the
required triplet, at each training iteration we randomly pick two products
and use their reference images as ip and in. Then, we synthesize a new ia

from ip by a suitable data augmentation function A : I → I, to make it
similar to query images (i.e., ia = A(ip))1.

To perform recognition, firstly, the Embedder network is used to describe
each available reference image ir by a global descriptor E(ir) and thus create
the reference database of descriptors associated with the products to be
recognized. Then, when a query image is processed, the same embedding
is computed on each of the candidate regions, ipq, cropped from the query
image, iq, so to get E(ipq). Finally, for each ipq we compute the distance in
the embedding space with respect to each reference descriptor, denoted as
d(E(ipq),E(ir)), in order to sift-out the first K-NN of E(ipq) in the reference
database. These are subject to further processing in the final refinement step.

1 The details concerning the adopted augmentation function are reported in Sec. 4.3

33

4 .2 .3 Refinement

The aim of the final refinement is to remove false detections and re-rank the
first K-NN found in the previous step in order to fix possible recognition
mistakes.

Since the initial ranking is obtained comparing descriptors computed on
whole images, a meaningful re-ranking of the first K-NN may be achieved
by looking at peculiar image details that may have been neglected while
comparing global descriptors and yet be crucial to differentiate a product
from others looking very similar. Therefore, we describe both the Query and
each of the first K-NN reference images by a set of local features F1, F2, ..., Fk,
each consisting in a spatial position (xi,yi) within the image and a com-
pact descriptor fi. Given these features, we look for similarities between
descriptors extracted from query and reference images, to compute a set of
matches. Matches are then weighted based on the distance in the descriptor
space, d(fi, fj) and a geometric consistency criterion relying on the unit-
norm vector, ~v, from the spatial location of a feature to the image center.
In particular, given a match, Mij = (Fqi , Frj), between feature i of the query
image and feature j of the reference image, we compute the following weight:

Wij =
(~vqi ·~v

r
j) + 1

d(fqi , frj) + ε
(4.2)

where · marks scalar products between vectors and ε is a small number
to avoid potential division by zero. Intuitively Wij is bigger for matching
features which share the same relative position with respect to the image
center (high (~vqi ·~v

r
j)) and have descriptors close in the feature space (small

d(fqi , frj)). Finally, the first K-NN are re-ranked according to the sum of
the weights Wij computed for the matches between the local features. In
Sec. 4.3.2 we will show how good local features can be obtained at zero
computational cost as a by-product of our learned global image descriptor.
This refinement technique will be referred to as +lf .

A simple additional refinement step consists in filtering out wrong recog-
nitions by the distance ratio criterion [7] (i.e., by thresholding the ratio of the
distances in feature space between the query descriptor and its 1-NN and
2-NN). If the ratio is above a threshold, τd, the recognition is deemed as

34

ambiguous and discarded. In the following, we will denote this refinement
technique as +th.

Finally, as commercial product databases typically provide a multilevel
classification of the items (e.g., at least instance, and category level), we
propose a re-ranking and filtering method specific to the grocery domain
where, as pointed out by [39], products belonging to the same macro category
are typically displayed close one to another on the shelf. Given the candidate
regions extracted from the query image and their corresponding sets of K-NN,
we consider the 1-NN of the region proposals extracted with high confidence
(> 0.1) by the Detector in order to find the main macro category of the image.
Then, in case the majority of detections votes for the same macro category, it
is safe to assume that the pictured shelf contains almost exclusively items of
that category thus filter the K-NN for all candidate regions accordingly.It is
worth observing how this strategy implicitly leverages on those products
easier to identify (i.e., the high-confidence detections) to increase the chance
to correctly recognize the harder ones. We will refer to this refinement
strategy as to +mc.

4 .3 experimental results

To validate the performance of our product recognition pipeline we take
into account two possible use cases dealing with different final users:

• Customer: the system should be deployed for a guided or partially
automated shopping experience (e.g., product localization inside the
shop, augmented reality overlays or support to visually impaired). As
proposed in [39] the goal is to detect at least one instance of each visible
type of product displayed in a shelf picture.

• Management: the system will be used to partially automate the man-
agement of a shop (e.g., automatic inventory, and restocking). Here,
the goal is to recognize each product instance displayed on the shelve.

4 .3 .1 Datasets and Evaluation Metrics

For our experimental evaluation, we rely on the publicly available Grocery
Products dataset [39], which features more than 8400 grocery products or-
ganized in hierarchical classes and with each product described by exactly

35

one reference image. The dataset contains also 680 in-store (query) images
that display items belonging to the Food subclass of the whole dataset. The
annotations released by the authors for the query images allow for evaluating
performance in the Customer use case, as they consist in bounding boxes
drawn around spatial clusters of instances of the same products. To test
our system also in the Management use case, we deploy the annotations that
we have presented in Sec. 3.3. Fig. 3.4 shows examples of the two kinds of
annotations used to evaluate the system in the two different use cases.

To compare our work with previously published results we use the met-
rics proposed by the authors in [39]: mean average precision-mAP (the
approximation of the area under the Precision-Recall curve for the detector)
and Product Recall-PR (average product recall across all the test image).
As for scenario (a), we report also mean average multi-label classification
accuracy-mAMCA.

To train the Detector we acquired multiple videos with a tablet mounted
on a cart facing the shelves and manually labeled a subset of sampled
frames to create a training set of 1247 images. Thus, our videos are acquired
in different stores with respect to those depicted in the Grocery Products
dataset and feature different products on different shelves, vouching for the
generalization ability of our system.

4 .3 .2 Implementation Details

For all our tests we have used as Detector the state-of-the-art one-stage object
detector known as yolo_v2 (shortened in yolo) [111]. We choose this network
as it grants real-time performance on a GPU and for the availability of the
original implementation. Starting from the publicly available weights2, we
have fine-tuned the network on our 1247 in-store images for 80000 steps
keeping the hyperparameters suggested by the original authors.

The backbone network for our Embedder is a VGG_16 [62] pre-trained on
the Imagenet-1000 classification task (weights publicly available3). From this
network we obtain global image descriptors by computing MAC features
[83] on the conv4_3 convolutional layer and applying L2 normalization to
obtain unit-norm embedding vectors. To carry out the comparison between
descriptors, both at training and test time, we used as distance function

2 https://github.com/pjreddie/darknet
3 https://github.com/tensorflow/models/tree/master/research/slim

36

https://github.com/pjreddie/darknet
https://github.com/tensorflow/models/tree/master/research/slim

d(X, Y) = 1−X · Y with X, Y ∈ D (i.e., 1 minus the cosine similarity between
the two descriptors). The motivation for the choice of network, layers, and
encoding will be discussed in details in Sec. 5.4. To better highlight the
advantage of learning an ad-hoc descriptor in the following we will report
experiments using general purpose descriptors obtained without fine tuning
the Embedder with the suffix _gd (general descriptor), while descriptors
obtained after fine-tuning as described in Sec. 4.2.2 will be denoted by the
suffix _ld (learned descriptor). To train the Embedder we use the reference
images of Grocery Products dealing with the products belonging to the Food
subclass (i.e., 3288 different product with exactly one training image each).
To enrich the dataset and create the anchor images, ia, we randomly perform
the following augmentation functions A: blur by a Gaussian kernel with
random σ, random crop, random brightness and saturation changes. These
augmentations were engineered so to transform the reference images in a
way that renders them similar to the proposals cropped from the query
images. The hyper-parameters obtained by cross-validation for the training
process are as follows: α = 0.1 for the triplet loss, learning rate lr = 0.000001,
ADAM optimizer and fine-tuning by 10000 steps with batch size 24.

We propose a novel kind of local features for the +lf refinement: as MAC
descriptors are obtained by applying a max-pool operation over all the
activations of a convolutional layer, by changing the size and stride of the
pool operation it is possible to obtain a set of local descriptor with the
associated location being the center of the pooled area reprojected into the
original image. By leveraging on this intuition, we can obtain in a single
forward computation both a global descriptor for the initial K-NN search
(Sec. 4.2.2) as well as a set of local features to be deployed in the refinement
step (Sec. 4.2.3). For our test we choose kernel size equal 16 and stride equals
2 obtaining 64 features per reference image.

4 .3 .3 Customer Use Case

In this section, we evaluate the effectiveness of our system in the Customer
scenario. To measure performance we rely on the annotations displayed in
Fig. 3.4-(a) and score a correct recognition when the product has been cor-
rectly identified and its bounding box has a non-empty intersection with that
provided as ground-truth. We compare our method with already published
work tested on the same dataset: FV+RANSAC (Fisher Vector classifica-

37

Method mAP(%) PR(%) mAMCA(%)

FV+RANSAC[39] 11.26 23.14 6.41

RF+PM+GA[39] 23.49 43.13 21.19

FM+HO[86] 23.71 41.60 32.50

yolo_gd 21.49 47.03 13.34

yolo_ld 27.84 53.17 16.32

yolo_ld+th 30.46 37.88 28.74

yolo_ld+lf 32.34 58.41 17.72

yolo_ld+mc 30.15 55.25 21.09

yolo_ld+lf-mc-th (full) 36.02 57.07 31.57

Table 4.1: Product recognition on the Grocery Products dataset in the Customer scen-
ario. Best result highlighted in bold. Our proposals (in italic) yields large
improvements in terms of both mAP and PR with respect to previously
published results.

tion re-ranked with RANSAC) [39], RF+PM+GA (Category prediction with
Random Forests, dense Pixel Matching and Genetic Algorithm) [39] and
FM+HO (local feature matching optimized with Hough) [86]. We report the
results obtained by the different methods according to the tree metrics in
Tab. 4.1. As [86] does not provide the mAP figure but only the values of
precision and recall, for FM+HO we report an approximate mAP computed
by multiplying precision and recall.

Using our trained yolo network for product detection, in Tab. 4.1 we
report the results obtained by either deploying a general purpose VGG-
based descriptor (yologd) or learning an ad-hoc embedding for grocery
products yolold. Moreover, we report the results achieved with the different
refinement strategies presented in Sec. 4.2.3.

Tab. 4.1 shows that our pipeline can provide a higher recall than previously
proposed methods even with a general purpose image descriptor (yolo_gd),
although with a somehow lower precision, as demonstrated by the slightly
inferior mAP score. However, our complete proposal relies on learning an
ad-hoc descriptor for grocery products (yolo_ld), which yields a significant
performance improvement, as vouched by an average gain of about 6%
in terms of both Recall and mAP. Wrongly classified proposals can be
discarded to further improve accuracy by the threshold refinement strategy
(yolo_ld + th - with τd = 0.9), thereby increasing the mAMCA from 16.32%
to 28.74%. Re-ranking based on the proposed local features (yolo_ld+lf)

38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

o
n

Recall

Category Recognition Product Recognition

Figure 4.2: Precision-recall curves obtained in the customer use case by the yolo_ld
system when trying to recognize either the individual products or just
their category.

turns out an effective approach to ameliorate both precision and recall, as
demonstrated by a gain of about 5% in mAP and PR with respect to the
pipeline without final refinement (yolo_ld). The category-based re-ranking
strategy (yolo_ld + mc) seems to fix some of the recognition mistakes and
improve the recognition rate with respect to (yolo_ld), providing gains in all
metrics. Finally, by mixing all the refinement strategies to obtain our overall
pipeline (yolo_ld+lf-mc-th), we neatly get the best trade-off between precision
and recall, as vouched by the 57.07% PR and 36.02% mAP, i.e. about 14% and
12.5% better than previously published results, respectively, with a mAMCA
turning out nearly on par with the best previous result.

We found that casting recognition as a similarity search through learned
global descriptors can provide a multi-level classification for free. For
example, even when the 1-NN does not correspond to the right product,
it usually corresponds to items belonging to the correct macro category(i.e.
cereals, coffee,. . .). We believe this behavior being due to items belonging
to the same macro class sharing similar peculiar visual patterns that are
effectively captured by the descriptor and help to cluster nearby items
belonging to the same categories (e.g., coffee cups often displayed on coffee
packages or flowers on infusions). To highlight this generalization property,
we perform here an additional test in the Customer scenario by considering a
recognition as correct if the category of the 1-NN match is the same as those
of the annotated bounding box. Accordingly, we compare the performance

39

Method mAP(%) PR(%)

FS 66.37 75.0

yolo_gd 66.95 78.89

yolo_ld 74.32 84.75

yolo_ld+th 75.62 81.55

yolo_ld+lf 76.37 86.56
yolo_ld+mc 74.80 85.28

yolo_ld+lf-mc-th (full) 76.93 85.71

Table 4.2: Product recognition for Management use case. Our proposal highlighted
(in italic), best results in bold.

Method mAP(%) PR(%)

FS 47.32 57.0

yolo_gd 60.17 73.66

yolo_ld 67.88 80.27

yolo_ld+th 69.70 76.01

yolo_ld+lf 70.69 82.83
yolo_ld+mc 69.01 81.55

yolo_ld+lf-mc-th (full) 73.50 82.66

Table 4.3: Results in the Management use case performing recognition against all
the items belonging to the Food subclass of the Grocery Products dataset
(∼ 3200). Our proposals highlighted (in italic), best results in bold.

of yolo_ld when trying to recognize either the individual products or their
category. The results of this experiment are reported as Precision-Recall
curves in Fig. 4.2. The large difference between the two curves proves
that very often the system mistakes items at the product level but correctly
recognizing their category. Eventually, it is worth pointing out that our
method not only provides a significant performance improvement with
respect to previously published results but turns out remarkably fast. Indeed,
our whole pipeline can be run on a GPU in less than one second per image.

Management Use Case

The experiments presented in this Section concern the Management use case
where we are required to correctly detect and recognize all the individual

40

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

P
re
ci
si
o
n

Recall

full@180 full@3200

Figure 4.3: Precision-Recall curves for our full pipeline in the Management use case.
full@180 denotes performing recognition on the small reference database
of Chap. 3 (∼ 180 entries), full@3200 against all the products in the Food
category of Grocery Products (∼ 3200).

(a) (b) (c)

Figure 4.4: Examples of correct product recognitions in query images from Grocery
Products.

products displayed on shelves. Thus, we rely on the annotations pictured
in Fig. 3.4-(b) and consider recognition as correct when the item has been
correctly recognized and the intersection over union (IoU) between the
predicted and ground truth bounding boxes is higher than 0.5.

We compare our new proposal to the most effective configuration of
the first stage of the previous pipeline presented in Chap. 3, referred to
hereinafter as FS, which is based on matching BRISK local features[23]
followed by Hough Voting and pose estimation through RANSAC. We
compare our new proposal only to the first stage of FS because we are
interested only on unconstrained product recognition without considering
the availability of planogram to ease the detection. To compare our two
pipelines, we perform recognition against the smaller reference database of
182 products used in Chap. 3. The results are reported in Tab. 4.2. Firstly, it
is worth pointing out how, despite the task being inherently more difficult

41

than in the Customer use case, we record higher recognition performance. We
ascribe this mainly to the smaller subset of in-store images used for testing,
(i.e., 70 vs. 680) as well as to these images featuring mainly rigid packaged
products, which are easier to recognize. Once again, the use of a learned
descriptor (yolo_ld) provides a substantial performance gain with respect to
a general purpose descriptor (yolo_gd), as the mAP improves from 66.95%
to 74.32% and the PR from 78.89% to 84.75%. The different refinement
strategies provide advantages similar to those discussed in Sec. 4.3.3, the
best improvement yielded by re-ranking recognitions based on the local
features extracted from the Embedder network (yolo_ld+lf). The optimal trade-
off between precision and recall is achieved again by deploying together all
the refinement strategies (yolo_ld+lf-mc-th), which provided a mAP and PR
as high as 76.93% and 84.75%, respectively (i.e., both about 10% better than
the previously published results on this dataset).

Tab. 4.3 reports results aimed at assessing the scalability of the methods
with respect to the number of products in the reference database. We carried
out an additional experiment by performing the recognition of each item
detected within the 70 query images against all the 3200 products of the
"Food" category in Grocery Products rather than the smaller subset of 182

products considered before. By comparing the values in Tab. 4.2 and Tab. 4.3,
we can observe how, unlike FS, this pipeline can scale nicely from few to
thousands of different products: our full method yolo_ld+lf-mc-th looses
only 3.43% mAP upon scaling-up the reference database quite significantly,
whilst the performance drop for FS is as relevant as 19.05%. In Fig. 4.3 we
also plot the precision-recall curves obtained by our full pipeline (yolo_ld+lf-
mc-th) using the smaller (full@180) and larger (full@3200) sets of reference
products. The curves show clearly how our pipeline can deliver almost
the same performance in the two setups, which vouches for the ability of
our proposal to scale smoothly to the recognition of thousands of different
products. As far as recognition time is concerned, our pipeline can scale
fairly well regardless of the size of the reference database, due to the NN
search, even if extensive, amounting to a negligible fraction of the overall
computation: the difference in inference time between recognizing 180 and
3200 product is less than a tenth of a second.

42

4 .3 .4 Qualitative Results

Fig. 4.4 reports some qualitative results obtained by our pipeline. Picture (a)
shows the recognition results on an image taken quite far from the shelf and
featuring a lot of different items; (b) deal with some successful recognition in
a close-up query image, where only a few items are visible at once. Finally, (c)
refers to recognition of products featuring deformable and highly reflective
packages, which are quite challenging to recognize due to the appearance of
the items within the query images turning out significantly different than in
the available reference images. Yet, in (c) our system was able to find at least
one item for each product type (i.e., as required in the Customer use case).

43

5
D O M A I N I N VA R I A N T H I E R A R C H I C A L E M B E D D I N G F O R
G R O C E RY P R O D U C T S R E C O G N I T I O N

After describing in Chap. 4 a complete computer vision pipeline to solve
the problem of unconstrained product recognition on store shelves, in this
section we will explore more in detail how to properly address the recognition
phase. As in Chap. 4 we still rely on a global image descriptor learned to
disentangle grocery products and to pursue recognition through K-NN
search within a database featuring one reference image per sought product.
We rely on learned image embeddings as this approach allows seamlessly
to perform recognition both on products seen or unseen at training time.
For example, should a new product be put on sale in the store, our system
would just require to add its image into the reference database without
the need to perform new costly training. Moreover, K-NN search is quite
amenable to product recognition from a computational standpoint alike.
Indeed, compared to typical image retrieval settings, the database is very
small, i.e. in the order of several thousand images rather than millions or
even billions of images. Thus, a global image descriptor of about a few
hundred entries turns out viable in terms of time and memory efficiency.

In Chap. 4 we have already show how a standard triplet loss can be
deployed to learn an embedding suitable for product recognition. Here,
instead, we wish to go one step further and directly address some criticality
of the product recognition task: the domain shift between data acquired in-
store and those available during training (e.g., see Fig. 5.1) and the similarity
between products belonging to the same category. We propose to learn an
image embedding through a deep CNN trained by a loss function that forces
both similar looking items as well as items belonging to the same high-level
category to map close one to another in the descriptor space. Moreover,
to tackle the domain shift between images available at training time and
those acquired in stores, and to increase the training set size we propose to
deploy an image-to-image translation GAN together with the embedding
CNN and to optimize the whole architecture end-to-end. In particular,
some of the training samples for the embedding network are generated by a
GAN that learns without supervision to transform images taken in studio

45

(a) (b) (c) (d)

Figure 5.1: Exemplar images for the grocery recognition task: reference images (c-d)
carefully acquired in studio (available at training time), query images: (a)
captured in the store (query at test time) and (b) synthetic query generated
by our GAN (used at training time).

settings into in-store images without introducing excessive modifications
to product appearance (Fig. 5.1 (b) shows an exemplary image synthesized
by the GAN). These training samples force the embedding CNN to learn
robustness to domain shift; moreover, the GAN can be trained to produce
samples that are particularly hard to embed, thereby allowing the CNN to
learn a stronger embedding function thanks to these adversarial samples.
Despite the use of multiple networks, the overall architecture can be trained
end-to-end effortlessly via simple gradient descent.

5 .1 related work

Using CNNs to obtain rich image representations is nowadays an established
approach to pursue image retrieval, both as a strong off-the-shelf baseline
([43]) and as a key component within more complex pipelines ([69]). Schroff
et al. [61], firstly proposed to train a CNN using triplets of samples to create
an embedding for face recognition and clustering. This approach has, since
then, been extensively used to learn representations for a variety of different
tasks, with more recent works advocating smart sampling strategies ([124])
or suitable regularizations ([125]) to ameliorate performance. Similarly to
our proposal, [88] extend the idea of triplets by a novel formulation amenable
to embed label structure and semantics at training time based on tuples.
Unlike [61, 88], in this section we propose to embed label structure within
the learning process using only standard triplets; moreover, our method
uses only one exemplary image per class and augment the training set by a
GAN trained jointly together with the embedding network.

46

The grocery product recognition problem shares commonalities with
the exact street to shop task addressed in [53, 85, 115], which consists in
recognizing a real-world example of a garment item based on the catalog
of an online shop. Similarly to ours, these works rely on matching and
retrieval using deep features extracted from CNN architectures. However,
the exact street to shop task can leverage on labeled paired couples of samples
depicting the same item in the Street and Shop domain to learn a cross-
domain embedding at training time; while our proposal leverages only on
labeled images from one domain, thereby vastly relaxing the applicability
constraint.

Few-shot learning has been addressed successfully in [94] through classifi-
ers trained on top of a fixed feature representation by artificially augmenting
a small training set with transformations in the feature space. Yet, in the
grocery product recognition scenario the items to be recognized at test time
change quite frequently, which would mandate frequent retraining of new
classifiers. Besides, as product packages exhibit very low intra-class variab-
ility, the generalization ability of a classifier may not be needed. Thus, we
prefer to learn a strong image embedding and rely on K-NN similarly to
perform recognition. Our approach shares commonalities with [84], where
the authors address few-shot learning by a matching network that computes
K-NN similarity in a learned embedding space.

Starting from the pioneering works of Goodfellow et al. [40] and Redford
et al. [157], GANs have received ever-increasing attention in the computer
vision community as they enable to synthesize realistic images with few
supervision. Recently GAN frameworks have been successfully deployed
to accomplish image-to-image translation, with ([97]) and without ([117,
128]) direct supervision, as well as to tackle domain shift issues by forcing a
classifier to learn invariant features [121]. We draw inspiration from these
works and deploy a GAN at training time to pursue domain adaptation as
well as to improve the effectiveness of the learned embedding. A related
idea is proposed in [108] though, unlike [108], a) we explicitly deploy the
GAN while learning the embedding to attain domain adaptation, b) use
only one sample per class and c) train the GAN to produce realistic though
hard to embed training samples, i.e. the generator of our GAN not only plays
an adversarial game against the discriminator but also against the encoder
network that learns the embedding.

47

Positive Image (𝒊𝒑
𝑨)

Negative Image (𝒊𝒏
𝑨)

Domain B Image (𝒊𝑩)

Generated Synthetic
Image (𝒊𝒂

𝑩)

Generator
Network

Minimize 𝑳𝒈𝒆𝒏

Discriminator
Network

Real

Minimize 𝑳𝒅𝒊𝒔𝒄

Fake

Encoder Network

Embeddings

Minimize 𝑳𝒆𝒏𝒄

𝑑𝑘

Figure 5.2: Overview of DIHE at training time. Each training sample consists of
three images, two from domain A (enclosed in green) and one from
domain B (enclosed in yellow). The generator and discriminator imple-
ments a classic GAN for domain translation from A to B. The encoder
network uses two images from domain A alongside with the generated
one to learn an image embedding by a modified triplet ranking loss. iBa
is generated to be both indistinguishable from images sampled from
domain B as well as hard to encode.

5 .2 domain invariant hierarchical embedding

An overview of our Domain invariant hierarchical embedding (DIHE) is
depicted in Fig. 5.2. We use a deep CNN (encoder) to learn an embedding
function E : I → D that maps an input image i ∈ I to a k-dimensional
descriptor dk ∈ D amenable to pursue recognition through K-NN similarity
search. During training, we exploit, if available, a taxonomy of classes by
means of a novel loss function that forces descriptors of different items to
be closer if they share some portion of the taxonomy, distant otherwise. To
learn a descriptor robust to domain shifts between training and testing data,
we use an image-to-image translation GAN, consisting of a generator and
a discriminator, which augments the training set with samples similar to
those belonging to the test domain while simultaneously producing hard
examples for the embedding network. The three networks can be trained
jointly by standard gradient descent in order to minimize the three loss
functions described in the following sections.

48

5 .2 .1 Hierarchical Embedding

As already discussed in Sec. 4.2.2 an effective image embedding for product
recognition can be obtained by training a deep CNN according to the triplet
ranking loss ([47]). We propose to modify the original formulation presented
in Eq. 4.1 for domains that feature a hierarchical structure between classes
(e.g., ImageNet classes taxonomy), so as to mimic this structure within the
learned descriptor space. This is a quite common scenario for problems
where a multi-level classification is available, for instance, grocery products
included in existing commercial databases feature both labels at instance as
well as multiple category levels (e.g., for the product depicted in Fig. 5.1 (c)
we would have three different classification labels with increasing generality:
Kellog’s Special K Classic→Cereal→Food). Our aim is to force the network
to embed images nearby in the descriptor space not only based on their
appearance but also on higher level semantic cues, like those shared between
items belonging to the same macro-class. We argue that doing so will help to
produce a stronger image descriptor and may provide better generalization
to products whose reference images are unseen at training time.

Using the notation of Sec. 4.2.2 and assuming a taxonomy of classes
encoded in a tree like structure, we propose to impose a hierarchy in D by
rendering α inversely proportional to the amount of hierarchy shared between
the classes of ia, ip and in. Each image sample i in the training set has a fine
class c (foil level in the taxonomy) and a set of higher level classes H(i) (all
the parent nodes in the class tree excluding the common root). Using this
notation and defining the minimum and maximum margin, αmin and αmax
respectively, our hierarchical margin, α ∈ [αmin,αmax], can be computed as:

α = αmin +

(
1−

|H(ia)∩H(in)|

|H(ia)|

)
· (αmax −αmin) (5.1)

where | · | is the cardinality operator for sets. Thus, if ia and ib share all the
parent nodes α = αmin, whilst the margin is proportionally increased until
completely disjoint fine classes will produce α = αmax.

5 .2 .2 Domain Invariance

A common trait across many computer vision tasks is that easily available
labeled training data (e.g., tagged images published online) are usually

49

sampled from a different distribution than the actual test images. Thus,
machine learning models straightly trained with such samples, such as
embedding networks, will typically perform poorly at test time due to
domain shift issues. However, annotating samples from the test distribution,
even if possible, is usually very expensive and time-consuming. We propose
to address this problem by dynamically transforming the appearance of
the available labeled training images to make them look similar to samples
from the unlabeled test images. This transformation is carried out by two
CNNs, referred to in Fig. 5.2 as generator and discriminator, realizing an
image-to-image translation GAN which is trained end-to-end together with
the embedding network (encoder).

Given two image domains A,B ⊂ I consisting of iAk ∈ A and iBk ∈ B, the
standard image-to-image GAN framework can be summarized as a generator
network that tries to learns a generative function G : A → B by playing a
two player min-max game against a discriminator network D : I → R that
tries to classify examples either as real images from B or fake ones produced
by G. In the following we will denote with G(iAk) ∈ I the output of the
generator network given the input image iAk and with D(i) ∈ R the output
of the discriminator network for image i. To generate samples similar to
the images from domain B without drastically changing the appearance of
the input image iAk , we introduce an additional term in the generator loss
function (Lreg) that, similarly to the self regularization term deployed in
[117], forces G(iAk) to be visually consistent with iAk . In our architecture, A
is the training set while B is a set of unlabeled images from the test data
distribution. Thus, in the grocery product recognition scenario, A will be the
training images, either rendered or studio quality, while B a set of unlabeled
product images acquired in the store.

During each training iteration of the whole architecture we sample one
image iB ∈ B to train the discriminator and two from the other domain
iAp , iAn ∈ A to train the encoder and generator. As mentioned in Sec. 5.2.1, the
encoder needs triplets of samples to compute its loss, so we synthesize the
missing image using the generator iBa = G(iAp). With this architecture the
triplet used to calculate Eq. 4.1 consists of two images from domain A and
one from the simulated domain B, thereby mimicking the test conditions
where the query images to be recognized will came from B and the reference
images to perform K-NN similarity from A.

50

The encoder is trained to minimize Eq. 4.1 with the margin defined in
Eq. 5.1. The discriminator tries to minimize a standard cross entropy loss:

Ldisc = log(D(iB)) + log(1−D(G(iAp))) (5.2)

while the generator minimizes a loss consisting of three terms:

Lgen = Ladv + λreg · Lreg + λemb · Lemb
Ladv = −log(D(G(iAp)))

Lreg = φ(i
A
p , iBa)

Lemb = −d(E(iAp),E(G(i
A
p)))

(5.3)

with φ(x,y), x,y ∈ I a similarity measure between the appearance of image
x and y, either at pixel level (e.g., mean absolute difference. . .) or at image
level (e.g., SAD, ZNCC. . .), and λreg, λemb two hyper parameters that weigh
the different terms of the loss function. The contribution of the three terms
can be summarized as follows. Ladv is the standard adversarial loss for the
generator network that forces the synthesized images to be indistinguishable
from those sampled from domain B; Lreg is aimed at synthesizing images
that preserve the overall structure of the input ones (avoiding thereby the
mode collapse issue often occurring in unconstrained GAN generators);
Lemb forces an additional adversarial behaviour against the encoder, so as to
create hard to embed samples.

At training time, given a minibatch of M different triplets of samples
(iAp , iAn , iB), the three networks are trained jointly to minimize their average
loss on the M samples.

5 .3 implementation details

For the implementation of DIHE we have used tensorflow1 as our deep
learning framework. For the initialization of the encoder network on the fine
tuning tests we have used the weights publicly available in the tensorflow/-
models repository2. The three networks that compose DIHE can easily fit in
a single GPU, so training our system, once implemented, in a deep learning
framework is straightforward. For all our test we used as generator U-Net
([60]) and as discriminator PatchGAN ([97]), the latter producing a dense grid

1 https://www.tensorflow.org/
2 https://github.com/tensorflow/models/tree/master/research/slim

51

https://www.tensorflow.org/
https://github.com/tensorflow/models/tree/master/research/slim

of predictions for each input image. For the encoder we tested different avail-
able CNN model with or without pre-trained weights on the ImageNet-1000

classification task. We will show how for the grocery product recognition
scenario, the best performance can be obtained using as embedding the
maximum activation of convolution features (MAC [83]) extracted from
different layers, which are concatenated and L2-normalized to get a final
representation laying on the unit hypersphere. For all our tests, we used
as distance function d(X, Y) = 1− X · Y with X, Y ∈ D (i.e., one minus the
cosine similarity between the two descriptors). As for φ in Lreg, we tried the
pixel-wise L1 or L2 norms, the Structured Similarity Index (SSIM) ([8]) and
the Zero Mean Normalized Cross Correlation (ZNCC) and found out the
last to work best in all our tests, in the following φ(x,y) = ZNCC(x,y). The
weights of each network are trained to minimize their specific loss functions
as introduced in Sec. 5.2. We use Adam ([54]) as optimizer at different
learning rates across the different tests. Concerning data preprocessing, we
use as input color images with a fixed size of 256X256X3 and intensities
rescaled between [−1, 1]. To obtain the input dimension the original images
are rescaled to the target resolution preserving the aspect ratio and filling
the extra pixels with 0s. The only additional data augmentation is a random
crop with size at least 80% of the original image to attain the input of the
generator network performed before rescaling the images to input resolution.

At test time the encoder network is extracted from the whole DIHE and
used as a stand-alone global image descriptor. Our implementation is quite
efficient and can easily encode, on GPU, more than 200 images per second
taking into account also the time needed to load the images from disk
and rescale them to the 256x256 input size. Finally, given that usually our
reference database only provide a single image per product and the descriptor
dimension is relatively low (between 256 and 1024 floats across different
tests), we perform the K-NN similarity search extensively without any kind
of approximation. The biggest descriptor database considered in our tests is
the one obtained from Product8600 using a 1024 float dimensional embedding
vector (i.e., the reference database is a matrix of float with 8600 rows and
1024 column). Even on this kind of database given a query descriptor the
whole similarity search can be solved in a tenth of a second using brute
force search, nevertheless, the search could potentially be speeded up using
KD-Tree or approximate search technique.

52

Food

Figure 5.3: Visualization of the hierarchy of categories of the Grocery_Food dataset
used as training set throughout our experiments. Each outermost cat-
egory contains several different fine classes (products) not depicted for
clarity.

5 .4 experimental results

To evaluate the effectiveness of DIHE in recognizing grocery products we
rely on two products datasets comprising thousands of items: the publicly
available Grocery Products dataset ([39]) and a standard commercial database,
referred to here as Product8600. Both datasets include more than 8500 grocery
products, each described by exactly one studio-quality (reference) image of
the frontal face of the package, and feature a multi-level class hierarchy
in the categorization of products. As already discussed, at test time we
pursue recognition from a different set of images (query). To create this set,
for Grocery Products we automatically cropped individual items from the
available shelf images according to the annotation used in Chap. 3, thereby
obtaining a total of 938 query images. As for Product8600, we cropped and
annotated individual items from shelf videos that we acquired in a grocery
store by a tablet camera, for a total number of 273 query images. As the
shelf images available in Grocery Products concern only items belonging to
the Food macro class, which accounts for 3288 products, we consider also
this smaller subset of products, which will be referred to as Grocery_Food,
whilst Grocery_Full will denote all the products of the Grocery Product dataset.
We depict in Fig. 5.3 the taxonomy of macro categories that compose the
Grocery_Food dataset which we are going to use as the training set, each
category features several fine-grained classes (one for each product) not

53

depicted in the figure. As for the samples from domain B needed to train the
discriminator and generator of our architecture (see Sec. 5.2.2), we have used
547 additional images cropped from the shelf images available in Grocery
Products, picked as to have no overlap with the previously mentioned 938

query images used at test time. We wish to point out how our formulation
requires images from domain B only for the discriminator of the GAN
system. Therefore, few samples without any kind of annotation are sufficient
to learn the appearance of products on the shelf. Moreover, we can use
images from domain B that depict any kind of product, even items not in A.

network architectures For the implementation of DIHE we have
used tensorflow3 as our deep learning framework. For all our test we
used as generator U-Net ([60]) and as discriminator PatchGAN ([97]), the
latter producing a dense grid of predictions for each input image. For the
encoder we tested different available CNN model with or without pretrained
weight on the ImageNet-1000 classification task. For the initialization of the
encoder network on the fine tuning tests we have used the weights publicly
available in the tensorflow/models repository4. The three networks that
compose DIHE can easily fit in a single GPU, so training our system, once
implemented, in a deep learning framework is straightforward.

descriptor computation We will show how for the grocery product
recognition scenario, the best performance can be obtained using as embed-
ding the maximum activation of convolution features (MAC [83]). We extract
these descriptors from different layers, concatenate them and finally perform
L2-normalization to get a final representation laying on the unit hypersphere.
For all our tests, we used as distance function d(X, Y) = 1 − X · Y with
X, Y ∈ D (i.e., one minus the cosine similarity between the two descriptors).

training details As for φ in Lreg, we tried the pixel-wise L1 or L2
norms, the Structured Similarity Index (SSIM) ([8]) and the Zero Mean
Normalized Cross Correlation (ZNCC) and found out the last to work best
in all our tests, in the following φ(x,y) = ZNCC(x,y). The weights of each
network are trained to minimize their specific loss functions as introduced
in Sec. 5.2. We use Adam ([54]) as optimizer with different learning rates
for the different tests. Concerning data preprocessing, we use as input color

3 https://www.tensorflow.org/
4 https://github.com/tensorflow/models/tree/master/research/slim

54

https://www.tensorflow.org/
https://github.com/tensorflow/models/tree/master/research/slim

images with a fixed size of 256× 256 and intensities rescaled between [−1, 1].
To obtain the input dimension the original images are rescaled to the target
resolution preserving the aspect ratio and filling the extra pixels with 0s.
The only additional data augmentation is a preliminary random crop with
size at least 80% of the original image to attain the input of the generator
network.

evaluation protocol To test our embedding network we encode all
the reference images of the considered dataset to create a reference database,
then compute the same encoding for the query images. For each query
vector we perform similarity search against all the reference vectors and
retain the K most similar database entries; if the reference image for the
product depicted in the query does belong to this set of nearest neighbors
we consider recognition to be successful. As a measure of the effectiveness
of the embedding, we report the accuracy (number of successful recognitions
over the number of queries) for different K values.

Based on these premises, we train once and for all our architecture using
only the reference images belonging to Grocery_Food, (i.e., one reference
image for each of 3288 different products organized in a multi-level hierarchy
of products categories). We then use the trained embedding model to address
three different test scenarios:

(a) Grocery_Food: we recognize the 938 query images from Grocery Products
based on the 3288 reference images from Grocery_Food. Thus, all the
reference images were deployed at training time.

(b) Grocery_Full: we recognize the 938 query images from Grocery Products
based on the 8403 reference images from Grocery_Full. Thus, only 40%
of the reference images were deployed at training time.

(c) Product8600: we recognize the 273 query images cropped from our
videos based on the 8597 reference images from Product8600. Thus,
none of the reference images was deployed at training time.

Among the three, (b) is the most likely to happen in practical settings
as product appearance changes frequently over time and it is infeasible to
constantly retrain the embedding network, although perhaps a portion of
the reference images dealing with the items actually on sale in the store had
been used at training time

55

(a) Grocery_Food (b) Grocery_Full (c) Product8600

Training loss K=1 K=5 K=1 K=5 K=1 K=5

(1) triplet 0.301 0.430 0.277 0.390 0.351 0.490

(2) hierarchy 0.325 0.491 0.302 0.433 0.355 0.553

(3) triplet+GAN 0.454 0.626 0.418 0.586 0.512 0.706

(4) hierarchy+GAN 0.479 0.660 0.455 0.621 0.538 0.699

(5) triplet+GAN+adv 0.470 0.648 0.431 0.595 0.548 0.717

(6) hierarchy+GAN+adv (DIHE) 0.481 0.688 0.463 0.642 0.553 0.732

Table 5.1: Ablation study for DIHE. Recognition accuracy for 1-NN and 5-NN sim-
ilarity search in the three considered scenarios. Best results highlighted
in bold.

At test time the encoder network is used as a stand-alone global image
descriptor. Our implementation is quite efficient and can easily encode,
on GPU, more than 200 images per second taking into account also the
time needed to load the images from disk and rescale them to the 256× 256
input size. Finally, given that usually our reference database only provides
a single image per product and the descriptor dimension is relatively low
(between 256 and 1024 floats across different tests), we perform the K-
NN similarity search extensively without any kind of approximation. The
biggest descriptor database considered in our tests is the one obtained
from Product8600 using a 1024 float dimensional embedding vector (i.e., the
reference database is a matrix of float with 8600 rows and 1024 column). Even
on this kind of database given a query descriptor the whole similarity search
can be solved in a tenth of a second using brute force search, nevertheless, the
search could be speeded up using KD-Tree or approximate search technique.

5 .4 .1 Ablation Study

To understand the impact on the performance of the different novel compon-
ents proposed in our architecture, we carry out a model ablation study using
as encoder PatchGAN ([97]) with MAC features ([83]) extracted from the
last convolutional layer before the output. We use this randomly initialized
small network to better highlight the gains provided by the different kind
of proposed losses. We will show how to obtain the best performance we
rely on a larger pre-initialized network. We train this architecture on the
reference images of Grocery_Food according to six different training losses
and report the accuracy dealing with the three test scenarios presented in

56

Sec. 5.4 in Tab. 5.1. In particular, with reference to the first column, triplet
denotes training by triplet loss with fixed margin (α = 0.3 obtained by
cross-validation); hierarchy denotes training by our triplet loss with variable
margin introduced in Sec. 5.2.1 (αmin = 0.1,αmax = 0.5); entries with +GAN
denote deploying the image translation GAN to generate the anchor image
iBa (Eq. 5.3: λreg = 1, λemb = 0); finally, entries with +GAN+adv concerns
introducing also the adversarial term in the loss of the GAN generator
(Eq. 5.3: λreg = 1, λemb = 0.1). For all the models that do not use GANs, we
rely on standard data augmentation techniques (e.g., crop, gaussian blur,
color transformation. . .) to obtain the anchor image given the positive one.
In all the tests the networks are randomly initialized and trained for the
same number of steps and identical learning rates.

The results reported in Tab. 5.1 show how each individual novel compon-
ent proposed in our DIHE architecture provides a significant performance
improvement with respect to the standard triplet ranking loss. Indeed, by
comparing rows (2),(4) and (6) to (1),(3) and (5), respectively, it can be ob-
served that modifying the fixed margin of the standard triplet loss into our
proposed hierarchically adaptive margin can improve accuracy with all mod-
els and in all scenarios, with a much larger gain in (c)(i.e., completely unseen
reference images). This proves that embedding a hierarchy into the descriptor
space is an effective strategy to help to learn an embedding amenable to
generalize to unseen data. The main improvements are clearly achieved by
methods featuring a GAN network to pursue domain adaptation by gener-
ating training samples similar to the images coming from the test domain.
Indeed, comparison of (3) and (4) to (1) and (2), respectively, highlights
how performance nearly double across all models and scenarios, testifying
that the domain shift between test and train data and the lack of multiple
training samples are indeed the key issues in this task that the proposed
image-to-image translation GAN can help to address very effectively. Finally,
comparing (5) and (6) to (3) and (4), respectively, vouches that training the
generator to produce anchor images not only realistic but also hard to embed
turns out always beneficial to performance. Indeed, the adversarial game
played by the generator and encoder may be thought of as an online and
adaptive hard-mining capable of dynamically synthesize hard to embed
samples that help training a more robust embedding. Performance of our
overall DIHE architecture are reported in the row (6) and show a dramatic
improvement with respect to the standard triplet loss, row (1).

57

5 .4 .2 Product Recognition

model and descriptor selection To ameliorate product recogni-
tion performance we can rely on larger networks pre-trained on the Im-
ageNet classification benchmark. To chose the best CNN model as our
encoder network we downloaded the public available weights of different
models trained on ImageNet-1000 classification and test them as general
purpose off-the-shelf feature extractors on our datasets without any kind of
fine-tuning. We considered three different popular CNN models (VGG_16

[62], resnet_[50/101/152] [70] and inception_v4 [119]) and compute three
kind of different descriptors from activations extracted at various layers:

• Direct: directly use the vectorized activation of a given layer. The
dimension of the descriptor is the number of elements in the feature
maps for that layer.

• AVG: perform average pooling on the feature map with a kernel
with width and height equals those of the map. Therefore, we use as
descriptor the average activation of each convolutional filter for a given
layer. The dimension of the descriptor is the number of convolutional
filters in the selected layer.

• MAC [[83]]: perform max pooling on the feature map with a ker-
nel with width and height equals those of the map. Therefore, we
use as descriptor the maximum activation of each convolutional filter
for a given layer. The dimension of the descriptor is the number of
convolutional filters in the selected layer.

We applied the three different descriptors above at different layers of
the three networks and report in Tab. 5.2 the 1-NN accuracy using the test
protocol described in Sec. 5.4.1. For all our tests the descriptors were L2

normalized to the unit norm and the similarity search is performed using
cosine similarity. In Tab. 5.2 we report only some of the best performing
layers for each network and additional tests where the descriptors are ob-
tained by concatenation of representations extracted at different depths in
the CNN (e.g., conv4_3+conv5_3 is the concatenation of representations ex-
tracted at layers conv4_3 and conv5_3) with L2 normalization performed
after concatenation.

Looking at the results in Tab. 5.2 we can observe how, in our settings,
newer and more powerful CNN, like inception_v4 or resnet_152, fail to

58

CNN Layer Type Grocery_Food Grocery_Full Product8600

VGG_16

conv4_3
MAC 0.789 0.785 0.717

AVG 0.515 0.510 0.538

conv5_3
MAC 0.724 0.720 0.611

AVG 0.406 0.398 0.395

conv4_3+conv5_3
MAC 0.792 0.787 0.725
AVG 0.501 0.493 0.523

fc6 Direct 0.560 0.549 0.549

fc7 Direct 0.444 0.433 0.432

inception_v4

Mixed_7a MAC 0.610 0.603 0.509

AVG 0.673 0.670 0.560

Mixed_7b MAC 0.652 0.641 0.512

AVG 0.675 0.668 0.5091

Mixed_7a+Mixed_7b MAC 0.655 0.646 0.534

AVG 0.690 0.685 0.542

resnet_50

Block3
MAC 0.731 0.729 0.703

AVG 0.441 0.433 0.432

Block4
MAC 0.654 0.646 0.509

AVG 0.571 0.558 0.465

Block3+Block4
MAC 0.723 0.720 0.644

AVG 0.547 0.538 0.545

resnet_101

Block3
MAC 0.737 0.735 0.695

AVG 0.389 0.388 0.432

Block4
MAC 0.636 0.662 0.490

AVG 0.570 0.556 0.417

Block3+Block4
MAC 0.714 0.708 0.626

AVG 0.535 0.524 0.520

resnet_152

Block3
MAC 0.708 0.703 0.655

AVG 0.345 0.337 0.446

Block4
MAC 0.571 0.561 0.435

AVG 0.571 0.561 0.435

Block3+Block4
MAC 0.678 0.671 0.542

AVG 0.506 0.500 0.504

Table 5.2: 1-NN accuracy for different descriptors obtained from layers of network
pre-trained on the ImageNet-1000 classification dataset without any kind
of additional fine-tuning. Best results are higlighted in bold.

59

(a) Grocery_Food (b) Grocery_Full (c) Product8600

Training loss K=1 K=5 K=1 K=5 K=1 K=5

(1) triplet 0.799 0.922 0.775 0.894 0.765 0.915

(2) hierarchy 0.812 0.933 0.816 0.926 0.805 0.952

(3) triplet+GAN 0.829 0.941 0.821 0.937 0.816 0.945

(4) hierarchy+GAN 0.832 0.943 0.826 0.933 0.819 0.952

(5) triplet+GAN+adv 0.833 0.948 0.821 0.937 0.816 0.945

(6) hierarchy+GAN+adv (DIHE) 0.853 0.948 0.842 0.942 0.827 0.959

Table 5.3: Ablation study for DIHE on a VGG-16 network pretrained on ImageNet-
1000. Recognition accuracy for 1-NN and 5-NN similarity search in the
three considered scenarios. Best results highlighted in bold.

achieve the same instance-level distinctiveness of VGG_16. We conjecture
that deeper architectures, trained on Imagenet, tend to create more abstract
representations that may not provide out-of-the-box features distinctive
enough to tell apart many items looking almost identical as required by
our problem. Some evidence to support this conjecture may be found
in Tab. 5.2 due to deeper layers providing typically inferior performance
when compared to shallower ones (e.g., VGG_16: conv5_3 vs conv4_3,
resnet_50,resnet_101,resnet_152: Block4 vs Block3) Concerning the type of
descriptor to use, from Tab. 5.2 it seems quite clear that MAC descriptor
is the best choice for grocery recognition with respect to AVG or direct
activations of fully connected layers.

Given these results, we selected for our fine tuning tests the VGG_16

network with MAC descriptor computed on the concatenation of conv4_3

and conv5_3 layers, and train the overall architecture according to our losses.
As the encoder is already pre-trained, we perform 5000 iterations of pre-
training for the generator and discriminator (Eq. 5.3: λreg = 1, λemb = 0) before
training jointly the whole DIHE architecture. The chosen hyper-parameters
obtained by cross validation for the training process are as follows. Learning
rates 10−5,10−5 and 10−6 for generator, discriminator and encoder, respectively;
λemb = 0.1, λreg = 1, αmin = 0.05 and αmax = 0.5.

Before comparing our proposal to other embedding losses, it is interesting
to verify whether the improvements provided by the different components
(Sec. 5.4.1) are valid even when relying on the VGG-16 network pretrained
on Imagenet. Purposely, we carry out the same ablation study as in Tab. 5.1
and report the results in Tab. 5.3. Indeed, the ranking of performances
among the different training modalities turns out coherent, although, as

60

(a) Grocery_Food (b) Grocery_Full (c) Product8600

Training Loss K=1 K=5 K=1 K=5 K=1 K=5

MAC 0.792 0.917 0.787 0.9093 0.725 0.908

Triplet [47] 0.799 0.922 0.775 0.894 0.765 0.915

Spread [125] 0.784 0.916 0.764 0.893 0.758 0.923

Structured [88] 0.809 0.931 0.804 0.926 0.750 0.912

Siamese [12] 0.810 0.931 0.805 0.928 0.733 0.926

MatchNet [84] 0.834 0.939 0.810 0.929 0.820 0.948

DIHE 0.853 0.948 0.842 0.942 0.827 0.959
+0.02 +0.01 +0.03 +0.02 +0.007 +0.01

Table 5.4: Recognition accuracy for 1-NN and 5-NN similarity search in the three
considered scenarios. Best results highlighted in bold, differences between
DIHE and best performing competitor reported in the last line.

expected, the margins are smaller due to the higher performance provided
by the baseline.

comparison with other embedding losses We compare our archi-
tecture to the already mentioned concatenation of MAC descriptors without
fine tuning (MAC) and to our implementation of different embedding learn-
ing methods: [47] fine tuning using the classic triplet ranking loss (Triplet);
[12] fine tuning using Siamese networks and the contrastive loss (Siamese);
Matching networks [84] without the full context embedding which does not
scale to thousands of classes (MatchNet); [88] tuplet loss to embed label
structure (Structured); and [125] triplet loss regularized by a spread out
term (Spread). Similarly to DIHE, all methods are trained on the reference
images of Grocery_Food starting from the very same VGG16 pre-trained on
ImageNet-1000 and using the same concatenation of MAC descriptors as
embedding function.

We use the same test scenarios presented in Sec. 5.4.1 and report the
result in Tab. 5.4. As already shown in our model study, MAC activations
have strong absolute performance without any need of fine tuning with
accuracy at K=1 ranging from 0.72 in the worst case to 0.79 in the best.
Starting from such a strong baseline the standard Triplet loss is able to only
slightly increase performance in scenario (a) and (c) while being slightly
penalized in (b), which testifies how in the cross-domain and low shot

61

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50
A
cc
u
ra
cy

K-NN

MAC Triplet Spread Structured Siamese MatchNet DIHE

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50

A
cc
u
ra
cy

K-NN

MAC Triplet Spread Structured Siamese MatchNet DIHE

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50

A
cc
u
ra
cy

K-NN

MAC Triplet Spread Structured Siamese MatchNet DIHE

(a) Grocery_Food (b) Grocery_Full (c) Product8600

Figure 5.4: Accuracy with increasing K in the three scenarios.

regime is quite hard to properly fine tune an embedding network. The
additional regularization term introduced by Spread does not seems to help
with a slight decrease in performance across all scenario compared with
the standard Triplet. Structured is the first method to consistently improve
performance across all scenario, vouching for the importance of deploying
label structure in the embedding space for this type of recognition task.
Siamese based on a simple contrastive loss is able to obtain performance
comparable to Structured on the scenario (a) and (b) while performing
slightly worse on the generalization to the dataset (c). MatchNet is definitely
the best competing method for embedding learning in a few shot regime as
testified by the good improvement obtained with respect to the initial MAC
descriptors. Nevertheless, DIHE thanks to the combined use of GAN and
hierarchical information is still able to improve the performance, obtaining
recognition accuracies for K=1 consistently over 82% across all test. It
is worth pointing out that the largest improvement, with respect to the
initial MAC results, is obtained on the completely unseen products of the
Product8600, which vouches for mixing GAN-based domain adaptation and
hierarchical embedding to learn an embedding that can generalize very well
to unseen items.

In Fig. 5.4 we report the accuracy of the methods while increasing K. In
Fig. 5.4(a-b) almost all methods converge to more than 95% accuracy for
K > 30. However, DIHE can provide substantially better results for lower
values of K. In Fig. 5.4(c) DIHE still outperforms the competitors with
performance almost equal to those achieved by Matching Networks but
showing higher margin against the competitor trained with variants of triplet
ranking loss.

62

(a) Webcam (b) DSLR

Training Loss K=1 K=5 K=1 K=5

FC6 0.470 0.698 0.489 0.712

MAC 0.382 0.640 0.393 0.660

Triplet [47] 0.596 0.675 0.628 0.710

Spread [125] 0.591 0.660 0.590 0.670

Siamese [12] 0.469 0.547 0.576 0.630

MatchNet [84] 0.522 0.579 0.566 0.618

DIHE 0.628 0.691 0.662 0.742

Table 5.5: Recognition accuracy for 1-NN and 5-NN similarity search on two subset
of the Office31 using as reference images the Amazon subset.

5 .4 .3 Beyond product recognition

To investigate the generality of our proposal as an improvement over es-
tablished embedding learning methods, we perform additional tests on the
Office31 benchmark dataset for domain adaptation ([18]). This dataset con-
sists of 4652 images dealing with 31 classes of office objects acquired in three
different domains, namely Amazon, concerning ideal images downloaded
from the web, Webcam, consisting of real images acquired by cheap cameras,
and DSLR, featuring real images acquired by a high-quality camera. Akin
to the setup of Grocery Recognition experiments, we use Amazon as the
reference set, thus deploying these images to train the encoder, while images
from Webcam and DSLR are used both as training samples for the GAN
discriminator in DIHE and as two separate query sets for the tests. This
scenario is compliant to the full protocol setting described by [32]: train on
the entire labeled source and unlabeled target data and test on annotated
target samples. Unfortunately, as the Office31 dataset does not provide a
taxonomy of classes, in these additional experiments DIHE can not leverage
the hierarchical loss to improve the learned representation. However, unlike
the Grocery Recognition scenario, all methods can be trained here by more
than one sample per class.

Based on the above described experimental setup, we train different
encoders starting, once again, from a VGG16 network pre-trained on the
ImageNet-1000 dataset. We report the accuracy for 1-NN and 5-NN simil-
arity search in Tab. 5.5. To asses the performance of DIHE we compare it

63

once again against the methods considered in Sec. 5.4.2, with the exception
of Structured due to Office31 lacking a class taxonomy. The first two rows of
Tab. 5.5 show that, differently from the Grocery Recognition setup, between
activations extracted from the pretrained VGG16 network, FC6 outperforms
MAC descriptors (computed as in Sec. 5.4.2). Coherently with the findings
of Tab. 5.2, we believe this difference to be due to the office task concerning
the recognition of the category of objects rather than instances. Accordingly,
to obtain the encoder network for these tests we substitute the original FC6

layer with a smaller fully connected layer consisting of 512 neurons with
randomly initialized weights and then perform fine tuning on the Amazon
images.

In this different experimental settings wherein more training samples per
class are available, both Siamese, Spread Out and Matchnet are outperformed
by the plain Triplet ranking loss of [47], which turns out the best performing
established method achieving a 1-NN accuracy of 59% and 62% for test
datasets Webcam and DSLR, respectively. Yet, thanks to the introduction of
the Generator in the training loop, DIHE can yield a significant performance
improvement reaching a 1-NN accuracy of 62% (+3%) and 66% (+4%) for
Webcam and DSLR, respectively, with best or comparable 5-NN accuracy
when compared with competing methods using descriptors with the same
dimension. Moreover, our proposal can outperform the descriptor extracted
by FC6 that is twice larger on 3 experiments out of 4, obtaining comparable
performance on the fourth.

Although performance on Office31 turns out well below the state-of-the-
art attainable by image recognition methods based on classifiers, amenable
to handle a fixed and possible small number of classes, we argue that
the experiments reported in this Section further highlight the advantages
provided by our proposed DIHE architecture with respect to common feature
learning approaches.

5 .4 .4 Qualitative Results

Fig. 5.5 and Fig. 5.6 report some successful recognitions obtained by K-NN
similarity search based on DIHE. The upper portion of Fig. 5.5, dealing with
the Grocery_Food scenario, shows query images for products quite hard to
recognize due to both the reference database featuring several items looking
remarkably similar as well as nuisances like shadows and partial occlusions

64

(first query) or slightly deformed products (third query). The lower portion
of Fig. 5.5 concerns the Product8600 scenario: as clearly highlighted by the
third and second query, despite differences between items belonging to the
same brand and category (e.g., the pasta boxes in the last row) being often
subtle, DIHE can recognize products correctly. In Fig. 5.6 we report some
results dealing with the Office-31 dataset which vouches how DIHE can
correctly retrieve images depicting objects belonging to the same category
as the query. In Fig. 5.7, we highlight some failure cases. In the first row
DIHE wrongly recognizes a stapler as a bookshelf, whilst in the second
a ring binder is mistaken as a trash bin. In the third row DIHE seems to
recognize the macro class and brand of the query product though missing
the correct instance level label (i.e., the correct NN, highlighted in green,
is retrieved as the 3-NN). A similar issue pertains the fourth query image:
all the first 5-NNs belong to the Tea macro class, but the correct item is not
ranked among them.

Finally, in Fig. 5.8 we show some training images generated by our GAN
framework to pursue domain invariance (Sec. 5.2.2). It is worth observing
how the training samples created by our GAN seem to preserve both the
overall structure and details of the input images, which is very important
when addressing instance level recognition between many similar looking
items, while modifying significantly the brightness and colors and injecting
some blur, thereby realizing a domain translation between the input and
output images.

5 .4 .5 DIHE for product detection

Finally we have tried to plug an Embedder trained using DIHE in the product
detection and recognition pipeline described in Chap. 4. Considering the
challenging test environment described in Sec. 4.3.3 we have measured a
mAP of 38.54 (+2.52 with respect to the previous best result) and a PR of
60.82 (+2.41 with respect to the previous best result). Comparing these
improvements with the difference between Triplet and DIHE in Tab. 5.4
it seems that the not perfectly cropped regions produced by the Detector
harm the improvement achievable by DIHE without nevertheless making it
pointless. We leave to future work the exploration of training the generator of
DIHE to generate images similar to actual detection produced by a product
detector.

65

Grocery_Food
Query 1-NN 2-NN 3-NN 4-NN 5-NN

Product8600
Query 1-NN 2-NN 3-NN 4-NN 5-NN

Figure 5.5: Qualitative results for K-NN similarity search by DIHE on Grocery_Food
and Product8600. Correct results highlighted in green.

66

DSLR
Query 1-NN 2-NN 3-NN 4-NN 5-NN

Webcam
Query 1-NN 2-NN 3-NN 4-NN 5-NN

Figure 5.6: Qualitative results for K-NN similarity search by DIHE on the Of-
fice31 dataset. Upper portion: Amazon→DSLR scenario, lower portion:
Amazon→Webcam.

67

Failure Cases
Query 1-NN 2-NN 3-NN 4-NN 5-NN

Figure 5.7: Some wrong recognitions yielded by DIHE on the different datasets.

Webcam Grocery_Food
Original Generated Original Generated

Figure 5.8: Images generated by the GAN trained jointly with the embedding net-
work in DIHE for the Office31-Amazon→Webcam (left) and Grocery_Food
(right) scenarios. Columns labeled as Original depict images provided
as input to the Generator while those labeled as Generated show the
corresponding outputs.

68

6
C O N C L U S I O N S

In this part, we have extensively addressed the recognition of products in
store shelves either assuming the availability beforehand of the expected
product layout (Chap. 3) or in a completely unconstrained setup (Chap. 4).
For the solution of the first task, we relied on classic algorithms based on local
features to achieve detection and recognition, while for the second we have
shown how modern machine learning based methods can be successfully
deployed. We have put a lot of effort into designing a system that does
not require expensive manually annotated dataset, nor constantly retraining
and relies only on information available in commercial databases. By self-
imposing such limitations, we hope to produce an appealing solution for
real stores. By comparing the results obtained by our two pipelines it is clear
how machine learning based approaches can outperform feature based ones
both in terms of accuracy and scalability. While features work remarkably
well on textured packaged products, they tend to fail in presence of reflective
surface or deformable packages, machine learning based method instead
seems to be able to handle seamlessly even those situations (if properly
trained). Finally in Chap. 5 we have shown how a CNN can be trained to
directly address some of the criticality of the product recognition process
such as the difference between images available during training and those
to be recognized at test time.

Our system is still composed of multiple independent parts and features
a lot of hyperparameters that need to be carefully tuned to achieve good
performances. For the future we would like to investigate the possibility to
deploy a unified CNN architecture acting as both Detector and Embedder for
our machine learning based pipeline. Fusing the multiple stages in a single
network will hopefully result in a lighter system that will be easier to deploy
on mobile or resource-constrained platforms. However, the development of
an all in one system for detection and image embeddings is non-trivial. Typ-
ically the solution of the former task involves a certain degree of invariance
in learned image representation, while for the latter we wish to represent in
a compact way peculiar image details. One possible solution that we wish to
explore is to split the model into two parts, an initial feature extractor shared

69

across the different problems and two separate final portions specialized for
the solution of detection and image embedding respectively.

70

Part II

U N S U P E RV I S E D A D A P TAT I O N F O R D E E P

D E P T H

7
I N I T I A L R E M A R K S

The focus of this part of the thesis will be on the problem of acquiring inform-
ation about the 3D structure of an observed scene. This problem is one of
the key steps to enable the solution of more complex tasks, like autonomous
navigation, reconstruction and augmented reality and as such has always
attracted huge research efforts. This technology has also wide applications
in the supermarket environment where it could pave the way to augmented
shopping experience for customers as well as be a fundamental building
block for the development of autonomous agents moving inside the shop to
monitor shelves or serve as personal shopping assistants. A more straight-
forward application concern the use of depth information to ease other tasks,
for example, the planogram compliance check pipeline described in Chap. 3

would more easily detect missing product if depth information could be de-
ployed by detecting discontinuities in the 3D structure of the items exposed
on shelves. Moreover, even the object detection pipeline described in Chap. 4

could leverage on 3D information to improve the accuracy when detecting
deformable objects or items with characteristic shapes. Other applications in
the retail environment concern the 3D mapping and virtual reconstruction
of real stores by using SLAM techniques. A 3D map of the shop would
also be useful both for planning tasks as well as for interactive customer
experiences like virtual tours or navigation aid to reach specific items. By
combining the product detection capabilities shown in the previous chapter
with the 3D sensing technologies that we are going to introduce here we
can also think of reconstructing the shelves of a whole salespoint with the
real product disposition in near real time, completely revolutionizing the
way store are currently managed. For example, the concept of planogram
could be completely redefined by allowing the head office to provide stores
with a precise rendering of how the product should be arranged inside their
specific shelves rather than a generic abstract representation.

The more commonly used technologies for depth sensing can be broadly
categorized in active and passive sensors. The first family concerns devices
that emits some signals (e.g., lasers or infra-red light) and measure how they
get perturbed by the environment to estimate the underlining 3D geometry

73

(a) (b) (c)

Figure 7.1: Example of depth sensing in a retail environment, (a) left rgb frame from
a stereo couple acquired in a store, (b) depth map estimated using a
commercial stereo sensor, (c) depth map estimated using DispNet stereo
network [76]. White pixels correspond to unknown depth estimation.

of the scene; members of this family are laser scanners (e.g., Velodyne LIDAR
scanner1), time of flight device (e.g., Microsoft Kinect 2) and active stereo
sensors (e.g., Microsoft Kinect 1). Devices belonging to this family have
the advantage of being quite accurate and able to achieve a high frame
rate, however, they suffer from some important drawbacks when applied to
the retail environment. For example, noisy estimations when dealing with
reflective or really dark surfaces that will deviate or absorb, respectively,
the emitted rays; unfortunately, this kind of surfaces are quite common in
stores. Other more general drawbacks concern the quite limited range of
cheap sensors (e.g., few meters for Kinect like sensors) and the high cost for
the most accurate and versatile ones (e.g., Velodyne LIDAR scanners). The
passive family of sensors instead relies only on one or two RGB cameras and
shift the focus of the problem from designing good sensing modalities to
designing good algorithms that rely only on images to estimate 3D structures.
By using only RGB cameras passive sensors are more cheap, compact and
easy to deploy than their active counterpart, but, especially thanks to recent
advantages in the field, they have also shown to be potentially as accurate
without suffering from most of the limitations. Following the common
nomenclature used in the field, we will refer to depth-from-mono when trying
to estimate 3D information from a single RGB image and to depth-from-stereo
when we will use couples of synchronized RGB frames acquired by two
cameras with known relative positions. Since one of possible application
we are targeting is autonomous indoor navigation we are not considering
depth sensing modalities more targeted for offline 3D reconstruction like
multi-view stereo and structure from motion pipelines.

1 https://velodynelidar.com/

74

https://velodynelidar.com/

We initially experimented with ready to use commercially available sensors
like the ZED stereo camera2 that allows to easily acquire synchronized ste-
reo frames, rectify them and estimate the 3D structure of the scene using
proprietary stereo algorithms. We opted for this sensor for the high accuracy,
the easy deployment and the ability to produce depth estimation at 5 fps
on a laptop GPU at 720p resolution. Using this sensor we carried out some
preliminary acquisition in a real store but unfortunately, the results were
not really satisfactory as can be observed in Fig. 7.1 -(b). While the general
structure of the scene is estimated correctly, a lot of points do not have a
valid depth estimation (white pixels in the image, i.e., usually points near
to objects boundaries where occlusions between left and right frames do
not allow to compute a disparity). Even worse, some portion of the image
features huge mistakes (e.g., the skewed signboard on the left is completely
missing in the depth map while there is a ghost flying blob slightly to the
left of where the signboard is supposed to be).

Since we were not satisfied with the quality of the depth predictions
produced by the black box development kit provided with the sensor, we
tried to apply state of the art stereo algorithm on the acquired rectified
stereo pairs to improve the results. Among all the possible algorithms we
considered those that would provide depth estimation in timespan feasible to
deployment on mobile platforms, i.e., we do not consider stereo algorithms
based on global energy minimization that required minutes to estimate a
disparity map. At that time one of the best algorithm to fit our requirement
of speed and accuracy was Dispnet [76] an end-to-end disparity estimation
network that takes a couple of frames as input and directly outputs a
disparity estimation. Dispnet had proven to be able to obtain remarkably
accurate estimations on the challenging Kitti dataset [27, 57] while keeping
an execution time of only 0.06s on a high-end GPU. Given these good
premisses, we were pretty confident that it would be able to obtain good
performance in our indoor environment as well. Unfortunately, we soon
realized that without a proper fine-tuning the performance was meant to
be low. Fig. 7.1 (c) display the prediction of a Dispnet network trained on
synthetic data from the FlyingThings3D dataset [76] when tested on real
in-store data. Once again the overall structure of the scene seems right and,
compared to (b), we are also able to correctly detect the billboard on the left,

2 https://www.stereolabs.com/

75

https://www.stereolabs.com/

however, the disparity map still features huge mistakes in the background
area (that seems to cut off after a certain distance) and on the ceiling.

We ascribe those unsatisfactory result to the domain shift between training
data (i.e., rendered abstract synthetic images) and real ones (i.e., our in-
store acquisition). The usual practice to address domain shift is to fine
tune the deep network on the target environment, however, in the depth
estimation case, this procedure became quite challenging since it requires
the acquisition of multiple frames from the new scenarios and a careful
annotation of each pixel with its distance or disparity from the camera. The
only way to generate such annotations, unfortunately, is to rely on costly
high precision sensors like LIDAR laser scanners that, however, require
careful calibration, can sense depth information only for a sparse subset of
points in the image and still have to deal with possible mistakes coming
from moving objects and reflective surfaces. Since the deployment of such
sensors in our scenario was completely unrealistic we focused our research
effort on possible way to adapt a deep depth estimation network to unseen
environments without relying on ground truth data, i.e., we wish to realize
a self-supervised adaptation. Having ground truth information is, however,
crucial to measure quantitatively if an algorithm is performing well or not.
For this reason, and to compare our results with those achieved by other
research groups, we are going to introduce and test our proposal in the
context of autonomous driving where the KITTI datasets [27, 31, 57] offer
rectified stereo frames coupled with sparse ground truth data coming from
a LIDAR scanner that act as ground truth annotations.

In Chap. 8 we are going to describe a procedure to produce pseudo
ground-truth labels by filtering noisy estimation using state of the art con-
fidence measures and test it for offline fine tuning of a stereo network to
unseen environments. In Chap. 9 we are going to introduce a new disparity
estimation network and a procedure to adapt it online without the need of
ground truth data to a new environment as soon as new frames are sensed.
Finally in Chap. 10 we are going to present some ongoing work on how to
use meta-learning techniques to make a depth estimation network able to
adapt to unseen environments better and faster. But first, in Sec. 7.1 we are
going to revise some of the recent literature on depth estimation from mono
and stereo images.

76

7 .1 related work

We briefly review the literature for deep stereo matching and depth-from-
mono.

Deep stereo matching. Since early works on stereo [6], traditional al-
gorithms are thought as a number of subsequential steps, involving initial
matching cost computation, local aggregation, disparity optimization and
refinement. The firsts attempt to plug deep learning into stereo algorithms
aimed at replacing single steps of the established pipeline, such as matching
cost computation [50, 65, 74] and more recently optimization [82, 113] or
refinement [92]. While these works substantially proved the superiority of
learning based methods with respect to their non-learned counterparts on
the single subtasks, in most cases they still required traditional optimization
strategies, such as Semi Global Matching (SGM) [9], to reach top accuracy.
The shift to end-to-end models started with Dispnet [76]. While previous
works [50, 65, 74] processed small image patches to compute similarity
scores, Dispnet works on a much larger receptive field and jointly extract
features from two input frames, compute correlations between them and
predict final disparities. Because of the large inputs processed, the few
hundreds of images available from KITTI [27, 57] are not enough to train
such model. To this aim a large synthetic dataset [76] is used for training,
while KITTI images are used to address the domain shift when running on
real imagery. Despite Dispnet did not reach the top of KITTI, it inspired
many other end-to-end models [102, 139] able to assess this approach as
state-of-the-art. Kendall et al. introduced the use of 3D convolutions [99]
to explicitly exploit geometry and context, followed by [131, 152]. Despite
the different architectural details, all of these techniques follow the same
synthetic-to-real completely supervised training schedule. Only recently,
this training paradigm has been questioned by proposing an unsupervised
training schema. Pang et al. [143] propose a novel way of fine-tuning a deep
network for stereo estimation by exploiting the output of the network at mul-
tiple resolutions combined within an iterative optimization problem with
graph Laplacian regularization. Zhou et al. [126] use an iterative procedure
based on the left-right check to train a network from scratch. Finally, Zhang
et al. [155] propose a novel loss formulation based on image reprojection for
depth estimation using an active stereo acquisition system.

Depth-from-mono. Deep learning dramatically boosted the quality of
results obtained through depth-from-mono techniques. While most works

77

addressed it as a supervised learning problem [16, 37, 41, 55, 71, 73, 123,
135, 150], an exciting trend concerns the possibility of self-supervising
CNNs during training by solving an image reconstruction problem. These
solutions earned a lot of attention from researchers thanks to the possibility
of training them without requiring hard to source depth labels. They can
be broadly classified into two main categories according to the cues used
to replace ground-truth labels, that are respectively monocular [127] and
stereo [93] self-supervision. In the first case, images are acquired by an
unconstrained moving camera [127, 140, 149, 151]. Estimated depth is used
to reconstruct views across the different frames by means of camera-to-world
projection and vice-versa. To do so, the network also needs to estimate the
relative camera pose between the different images, which is unknown. These
approaches are weak in presence of dynamic objects, making reprojections
in non-static regions of the frames not matching the real image content.
The second category requires calibrated stereo pairs to be used as training
dataset [68, 93, 129, 144, 153]. In this case, the relative pose is known thanks
to stereo geometry, making the network only in charge of learning depth
(actually, disparity) to minimize the reprojection between the two views. This
solves the problem of moving objects, being images synchronized, but adds
constraints for collecting data. Networks trained with this second approach
usually results to be more accurate. This approach can be extended to
trinocular setup [145] to compensate for occlusions inherited by the binocular
stereo. Finally, we mention the semi-supervised frameworks proposed in
[101, 134] and the joint use of these two supervisions [153].

78

8
U N S U P E RV I S E D D O M A I N A D A P TAT I O N F O R L E A R N E D
D E P T H E S T I M AT I O N

For years the problem of depth estimation from images has been tackled
with hand-engineered algorithms, but recently deep learning proved to be
much more effective and to provide superior accuracy. For the case of depth-
from-stereo, initially, deep learning based methods replaced single steps
of the traditional pipelines, afterward embodied the entire pipeline within
deep end-to-end architectures. This latter approach currently represents
the undisputed state-of-the-art in this field when enough training data is
available. With these methods, training initially relies on large synthetic
datasets [76], then fine-tuning on a few realistic images framing the target
domain. For both training phases, stereo pairs with accurate ground-truth
depth labels are mandatory. The popular KITTI online benchmarks [27,
57] witness the supremacy of these approaches, while it is less evident
on Middlebury [42], where traditional, not learning-based algorithms, still
keep the top rankings on the leaderboards due to the minimal amount of
training images available. Deep learning also boosted the development of
depth-from-mono systems, which requires only one image and thus can be
potentially deployed on a broader range of devices equipped with a single
camera. For monocular methods, deep learning enabled quite accurate
results despite the strong ill-posed nature of the problem. Nevertheless, for
stereo and monocular setups, deep architectures are affected by the domain
shift curse, which drops the effectiveness of learning based frameworks
when processing data (i.e., images) much different from those on which
the training process was carried out. This fact is particularly evident, for
instance, when moving between indoor and outdoor environments or from
synthetic to real data without any fine-tuning on the target environments.
For example, Figure 8.1 (c) shows how DispNet [76] yields gross errors on a
stereo pair of a dataset [30] lacking the ground-truth information to fine-tune
the network. Unfortunately, besides a few research datasets, images paired
with ground-truth depth information are quite rarely available as well as
cumbersome and expensive to create in any practical settings. This state

79

(a) (b) (c) (d)

Figure 8.1: Effectiveness of unsupervised adaptation. (a),(b): Left and right images
belonging to a challenging stereo pair of the dataset without ground-
truth proposed in [30]. (c): Output provided by Dispnet [76]. (d): Output
achieved after unsupervised adaptation of Dispnet.

of affairs may limit deployability of modern depth estimation architectures
significantly.

To address the domain shift problem, in this paper we propose an unsu-
pervised technique, enabling to fine-tune end-to-end architectures to new
data domains without requiring any ground-truth measurement. To develop
our method we build upon two key observations: i) computer vision re-
searchers have pursued for decades the development of general-purpose
stereo correspondence algorithms for depth estimation that does not require
any adaptation to be deployed in different scenarios, ii) although traditional
stereo algorithms exhibit well-known shortcomings in specific conditions
(e.g., occlusions, texture-less areas, photometric distortions ..), recent state-
of-the-art confidence measures, more often than not relying on machine
learning [58, 79, 80], can effectively highlight uncertain disparity assign-
ments. Therefore we leverage on traditional stereo matching knowledge
employing well-known algorithms from the literature to produce dispar-
ity/depth labels. Since these algorithms are sub-optimal solutions to the
problem, some outliers occur among the obtained labels, and for this reason,
we deploy confidence measures to attenuate or neglect their influence on
the network employing a novel confidence-guided loss function. Following
this strategy, with CNN-based depth estimation networks, we can tackle the
domain shift problem by merely using synchronized stereo images without
any depth annotation. Figure 8.1 (d) shows that our unsupervised adapta-
tion approach can improve dramatically the output provided by DispNet
[76] on a dataset lacking the ground-truth to fine-tune the network with
supervision.

80

8 .1 related work

Confidence measures have been extensively reviewed by Hu and Mordohai
[28] and by Poggi et al. [106] more recently including methods based on
machine-learning. These latter methods can be broadly categorized into
random-forest based [33, 45, 58, 79] and CNN based [80, 82, 136, 148]. While
the first category, except [79], usually combines different cues available from
the intermediate cost volume processed by traditional stereo algorithms [3, 9,
87], CNN based approaches only process disparity map and image content
cues, making them better suited to work on custom systems or frameworks
not explicitly providing a cost volume (i.e., end-to-end CNNs). In general,
this second category vouches for better outliers detection properties. Par-
allel works proposed an effective strategy to improve confidence measures
by exploiting local consistency [103] and a method [105] to improve ran-
dom forest-based approaches for confidence fusion [45, 58, 79] by using a
CNN. Shaked and Wolf [114] embedded confidence estimation inside a deep
model stereo matching, while Poggi et al. [104] propose an evaluation of
conventional confidence measures and their simplifications when targeting
embedded systems. Some works looked deeper into the learning process of
confidence measures, by studying features augmentation [100] or by design-
ing self-supervised techniques to train them on static video sequences [77]
or stereo pairs [120]. In addition to otuliers detection and the unsupervised
domain adaptation technique proposed in this paper, other applications of
confidence measures aim at improving stereo accuracy [45, 58, 79, 82, 113],
combine multiple algorithms [63, 78] and sensor fusion [75].

8 .2 domain adaptation for depth sensing

This section describes our domain adaptation framework, which is suited to
both deep stereo as well as monocular depth estimation networks. To adapt
a pre-trained model to face a new environment, we first acquire stereo pairs
from the target domain. Then, we deploy a classical (i.e., not learning-based)
stereo algorithm to generate dense depth measurements together with a
state-of-the-art confidence measure to estimate the reliability of the depth
values calculated by the stereo algorithm. A key observation behind our
method is that classical stereo algorithms, although affected by well-known
shortcomings such as occlusions, poorly-textured regions and repetitive

81

patterns, are substantially agnostic to the specific target environment and
thus behave similarly across different scenarios. More importantly, they
fail in the same predictable way, thereby enabling confidence measures to
achieve remarkably good accuracy in detecting mistakes regardless of the
sensed environment [106]. Based on the above observations, we advocate
deploying the depths delivered by a classical stereo algorithm as noisy labels
endowed with reliability estimations in order to fine-tune a network aimed
at depth prediction. This is achieved through a novel per-pixel regression
loss wherein the error between each model prediction and the corresponding
depth measurement provided by the stereo algorithm is weighted according
to the reliability estimated by the confidence measure, with higher weights
associated to more reliable depth measurements. Thereby, the learning pro-
cess is guided by the high-confidence depth measurements, i.e. those labels
that appear to be more reliable, while the errors due to the shortcomings of
the stereo algorithm have a negligible impact.

Thus, given a pre-trained depth estimation network, either stereo or
monocular, and a set of stereo pairs, (Il, Ir) ∈ I, acquired from the target
domain, for each pair we compute a dense disparity map, D ∈ D, by means
of a classical stereo algorithm, f : (I, I) → D, such as, e.g., SGM [9] or AD-
CENSUS[3]. Moreover, for each disparity map, D, we estimate a pixel-wise
degree of reliability according to a confidence measure, c : D → C. The
resulting confidence map, C ∈ C, encodes the reliability of the disparity
calculated at each pixel as a score ranging from 0 (not reliable) to 1 (reliable).

We run f and c on each stereo pair available from the target domain
so as to produce the training set deployed to perform fine-tuning of the
pre-trained depth estimation network. Therefore, each sample, (Si), in the
training set is a tuple of four elements:

Si = (Ili, I
r
i ,Di,Ci) = (Ili, I

r
i , f(I

l
i, I
r
i), c(f(I

l
i, I
r
i))) (8.1)

Given the depth estimation network (either stereo or monocular), which
takes input images and outputs per pixel disparities, we fine tune it toward
the target domain by minimizing a loss function, L, consisting of three terms:

82

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.2: Visualization of our confidence guided loss: (a) left frame Il; (b) Dis-
parity map, D̃, predicted by the model; (c) Disparity map, D, estimated
by a stereo algorithm; (d) Confidence map, C, on D; (e) L1 regression
errors between (b) and (c), (f-h) same L1 errors weighted by C with
τ = 0.00 (f), τ = 0.50 (g) and τ = 0.99 (h). (e-h) Hotter colors marks
bigger differences.

a confidence guided loss (Lc), a smoothing loss (Ls) and an image reconstruction
loss (Lr):

L = Lc + λ1 · Ls + λ2 · Lr (8.2)

with λ1, λ2 hyper-parameters aimed at weighting the contribution of the
associated loss terms. All the three components of our loss can be applied
seamlessly to deep learning models aimed either at depth-from-stereo or
depth-from-mono (the latter one just need to convert disparities into depths).
The structure of the three terms in Eq. 8.2 is detailed in the next sections,
while in Sec. 8.3 we present model ablation experiments aimed at assessing
their individual contribution to performance.

8 .2 .1 Confidence Guided Loss

The inspiration for the Lc term in the loss function of Eq. 8.2 comes from
the observation that deep models can be successfully fine-tuned to new
environments even by deploying only a few sparse ground truth annotations.
This is vouched by the performance achievable on the KITTI datasets [27,
31, 57], where only a subset of pixels carries depth annotations (roughly
1
3 of the image). The common strategy to account for the missing values
consists simply in setting the loss function to 0 at those locations, thereby
providing the network with meaningful gradients only at a subset of the
spatial locations. Indeed, even in these sub-optimal settings, networks are
able to adapt and ameliorate accuracy remarkably well. We build on these

83

observations and leverage on the confidence measure, c, to obtain sparse
and reliable depth labels from the noisy output D of the stereo algorithm.
With reference to 8.1, denoting as D̃ the output predicted by the model at
the current training iteration, we compute Lc as

Lc =
1

|Pv|

∑
p∈Pv

E(p) (8.3)

E(p) = C(p) · |D̃(p) −D(p)| (8.4)

Pv = {p ∈ P : C(p) > τ} (8.5)

where P is the set of all spatial locations on the image and τ ∈ [0, 1] a
hyper-parameter that controls the sparseness and reliability of the disparity
measurements provided by f that are actually deployed to update the model.
A higher value of τ will mask out more mistakes in D though permitting
less spatial locations to contribute to model update. Hence, points belonging
to Pv define a set of sparse labels that, assuming the availability of a perfect
confidence measure, may be used as if they were groundtruth annotations,
e.g. akin to the LiDAR measurements deployed in the KITTI dataset. Yet,
confidence measures are not perfect and often show some degree of uncer-
tainty in the score assigned to disparity measurements. Thus, we weight
the contribution at location p by C(p) ∈ [0, 1], i.e. as much as the depth
measurement, D(p), can be trusted according to the confidence estimation,
C(p). We point out that, re-weighting the loss function in presence of noisy
labels has been successfully exploited in supervised classification [137, 146].
Our formulation deploys a similar idea for a dense regression problem. Yet,
we leverage on an external and highly accurate strategy to detect noise in
the labels (i.e., the confidence measure) and mask out those labels which,
according to the adopted strategy, are very likely wrong, i.e., {D(p) : p /∈ Pv}.
In Sec. 8.3.2 we will show how both masking and re-weighting are crucial
components to maximize performance in presence of noisy depth labels.

A graphical visualization of the errors that our Lc loss term tries to min-
imize can be observed in the bottom row of Fig. 8.2. On (e) we report the
errors that will be minimized trying to directly regress the noisy depth

84

labels of (c) given the model prediction on (b); on (f-g-h) we report, instead,
the errors minimized by applying Lc with different τ values (0, 0.5 and 0.99
respectively). By tuning τ we can control the number of pixels, and therefore
labels, taking part in the network adaptation process. Clearly, leveraging on
more labels comes at the cost of injecting more noise in the process, which,
in turn, may harm adaptation, even if their contribution will be attenuated
by C, e.g. compare (f) to (e) where the only difference is the scaling of errors
by C(p) in (f). In (h) we can appreciate how even with τ = 0.99 the amount
of pixels considered during the optimization process is still quite high.

8 .2 .2 Smoothing Term

As Lc produces error signals to improve disparity prediction only at the
subset of sparse image locations Pv, similarly to [34] we use an additional
loss term, Ls, to propagate model update signals across neighbouring spatial
locations. In particular, Ls tends to penalize large gradients in the predicted
disparity map (∂D̃) taking into acocunt the presence of gradients in pixel
intensities (∂I):

Ls =
1

|P|

∑
p∈P

∂xD̃(p) · e−||∂xI(p)|| + ∂yD̃(p) · e−||∂yI(p)|| (8.6)

Thus, based on the consideration that depth discontinuities occur in
correspondence of edge, Ls constrains the predicted disparity map, D̃, to be
smooth everywhere but at image edges. To efficiently compute gradients
along x and y we use convolution with 3× 3 Sobel filter.

8 .2 .3 Image Reconstruction Loss

To further compensate for the sparse model update information yielded by
Lc, we include in the loss function a pixel-wise image reconstruction term,
denoted as Lr in Eq. 8.2. Inclusion of this term in our loss has been inspired
by [93], which has shown how deploying image re-projection between
stereo frames can deliver a form of self-supervision to train a depth-from-
mono network. Hence, given a stereo pair, Il can be reconstructed from
Ir according to the current disparity prediction D̃ by employing a bilinear
sampler in order to render the process locally differentiable. Denoted as Ĩl

85

the re-projection of Ir according to D̃, we define the image reconstruction
loss, Lr, as a weighted combination of the L1 norm and the single scale SSIM
[8]:

Lr =
1

|P|

∑
p∈P

α
1− SSIM(Il(p), Ĩl(p))

2
+ (1−α)|Il(p) − Ĩl(p)| (8.7)

Similarly to [93], we use a simplified SSIM based on a 3× 3 block filter
and set α = 0.85 throughout all our experiments.

8 .3 experimental results

In this section, we report exhaustive experiments showing the effectiveness
of the proposed unsupervised domain adaptation technique. We run two
main experiments i) adaptation of a stereo network and ii) adaptation of a
depth-from-mono network. For the first case, we run extensive experiments
on the entire KITTI raw dataset [31], counting about 40k images, thanks
to a large amount of ground truth labels made recently available [122] in
the official website. Concerning the second evaluation, we follow common
protocols from the literature of self-supervised monocular depth estimation
[93], splitting the KITTI raw data into train and test portions according to
Eigen et al. [37].

To deploy the confidence guided loss described in Sec. 8.2.1, in our
evaluation we consider two classical stereo algorithms (f): AD-CENSUS
(shortened AD) [3] and Semi-Global Matching (shortened SGM) [9] and
leverage the implementations of [44]. We have selected these two popular
algorithms because they show quite different behaviors. While AD tends
to generate prediction errors in the form of small spikes in the disparity
maps, the errors generated by SGM can often cause over-smoothing. The
effectiveness of our proposal with both types of error patterns may help
testify its general validity. Besides, while SGM may turn out remarkably
accurate, AD is notoriously significantly more prone to errors, which, in our
framework, leads to fewer disparity measurements used at training time to
compute Lc due to fewer pixels belonging to Pv. To measure the confidence
of the disparity measurements coming from the stereo algorithms, we rely
on CCNN [80] as it can yield state-of-the-art performance and does require
as input just the disparity map to be analyzed. Thanks to the latter trait,

86

AD-CENSUS SGM

τ gt ∩ τ (%) bad3 (%) gt ∩ τ (%) bad3 (%)

0.00 100.00 38.64 100.00 16.53

0.50 61.89 7.83 87.87 6.58

0.80 53.16 2.90 83.64 4.37

0.90 48.71 1.70 80.58 3.40

0.95 44.49 1.06 77.48 2.67

0.99 32.15 0.35 68.01 1.40

Table 8.1: Intersection between confident points and ground-truth data as function
of the threshold value τ and its error rate, for both AD-Census and SGM
algorithms.

CCNN can be applied to any stereo system, even in case one has no access
to the source code of the algorithm or is willing to employ an off-the-shelf
external device. As CCNN consists of a network trained to classify each
disparity pixel as reliable or not according to a small support region, it needs
to be trained before deployment. To avoid reliance on expensive depth an-
notations, we used the original authors’ implementation1 and trained two
variants of the network - one for AD and the other for SGM - on synthetic
images taken from the Sceneflow dataset [76]. More precisely, we took six
random stereo pairs from the Driving portion of such dataset (0040, 0265

forward from 15mm focal length set and 0075 forward, 0099, 0122, 0260

backward from 35mm set) and trained CCNN for 14 epochs, as suggested
in [80].

8 .3 .1 Effectiveness of Confidence Estimation

Before testing our unsupervised adaptation loss we carried out some pre-
liminary evaluation of the effectiveness of CCNN [80] to detect mistakes
in disparity maps. We have produced disparity maps using AD and SGM
on the KITTI 2012[27] training dataset and compute confidence maps on
the predictions with the two properly trained variants of CCNN. Tab. 8.1
reports both the intersection between confident (i.e., having a confidence
value higher than the threshold τ) and ground-truth pixels as the percentage
of the total amount of available ground-truth samples and the average error

1 https://github.com/fabiotosi92/CCNN-Tensorflow

87

Figure 8.3: Spatial distribution of training samples on a stereo pair from KITTI
dataset. Top row: reference image, disparity map yielded by AD-
CENSUS algorithm and corresponding confidence map obtained by
CCNN. Bottom row from left ot right, three colormaps obtained by
thresholding the confidence map with with τ equal to 0, 0.5 and 0.99,
respectively. The colormap depicts in green points above threshold and
in blue their intersection with the available ground truth points obtained
through a lidar scanner

rate (bad 3) on the intersection. As expected, increasing τ the intersection
gets smaller as fewer pixels are considered, however, we can clearly see
how the error decrease as well, going as low as 0.35% and 1.40% for 0.99

τ, thus testifying the effectiveness of CCNN. Our formulation, however,
weights prediction mistakes according to the score produced by the confid-
ence measure, so even using a τ < 0.99 we can weaken the contribution to
lose computation of pixel with low confidence. Another interesting obser-
vation is that the distribution of pixel with high confidence in the image is
quite different from the distribution of points featuring gt labels commonly
used for fine-tuning. For example using the threshold value of 0.99 and
the AD-Census algorithm the subset of pixels that would be used by our
confidence guided loss contains only 32% of the ground-truth data used
by the common fine-tuning technique, while with the same threshold and
the SGM algorithm this percentage rises to 68%. This means that all the
remaining samples contributing to adaptation (i.e. 68 and 32% for, respect-
ively, AD-CENSUS and SGM) encode patterns unseen using a traditional
fine-tuning procedure. Thus, the network can learn from more varied and
generic samples with respect to ground-truth which is, among other things,
all contained in the lower part of the images. A visualization of how points
with high confidence might be scattered across an image is depicted in
Fig. 8.3

88

Hyper parameters Adaptation Generalization

Test τ λ1 λ2 bad3 MAE bad3 MAE

(a) AD-CENSUS [3] / / / / / 32.03 19.60

(b) No Adaptation / / / / / 10.86 1.73

(c) Regression / / / 11.73 2.49 12.23 2.47

(d) Weighted 0 0 0 3.66 1.03 4.57 1.12

(e) Masked 0.8 0 0 3.17 1.02 3.97 1.09

(f) Masked+Smoothness 0.8 0.1 0 3.17 0.98 3.78 1.05

(g) Masked+Reprojection 0.8 0 0.1 3.03 0.98 3.70 1.05

(h) Complete Adaptation 0.8 0.1 0.1 2.96 0.96 3.66 1.04

Table 8.2: Ablation study on the effectiveness of the different components of our
adaptation formulation using AD-CENSUS as noisy label estimator. Res-
ults computed on the KITTI RAW dataset using a 4-fold cross validation
schema, best results highlighted in bold.

bad3: 38.12 bad3: 3.56

(a) (b) (c)
bad3: 12.06 bad3: 1.54 bad3: 1.35

(d) (e) (f)

Figure 8.4: Ablation experiments: adaptation of DispNet using AD algorithm. (a)
input image from KITTI, (b) disparity estimated using AD-CENSUS
algorithm, (c) results before adaptation, (d) adapting by stereo al-
gorithm only (Regression), (e) using confidence to weight the loss function
(Weighted) and (f) running our full adaptation.

89

8 .3 .2 Deep Stereo

Our first experimental scenario is about the adaptation of a depth-from-
stereo network to a new environment. The common training procedure
for this kind of models consists of first training on the large synthetic
FlyingThings3D dataset [76] and then fine-tuning on the target environment.
In these settings, our proposal brings in the advantage of enabling fine-
tuning without reliance on depth annotations from the target environment,
which would be costly or prohibitive to collect. For all our tests we have used
the DispNet-Corr1D [76] architecture, from now on shortened as DispNet.
Following the authors’ guidelines [76], we have trained a re-implementation
of DispNet on FlyingThings3D by the standard and supervised L1 regression
loss. Then, we have used these pre-trained weights as initialization for all
the tests discussed hereinafter.

For our experiments we rely on the KITTI RAW [31] dataset, which
features ∼ 43K images with depth labels [122] converted into disparities by
known camera parameters. Images are taken from stereo video sequences
concerning four diverse environments, namely Road, Residential, Campus and
City, containing 5674, 28067, 1149 and 8027 frames, respectively. Although
all images come from driving scenarios, each environment shows peculiar
traits that would lead a deep stereo model to gross errors without suitable
fine-tuning. For example, City and Residential often depict road surrounded
by buildings, while Road mostly concerns highways and country roads where
the most common objects are cars and vegetation. Using this data we wish
to measure both target domain performance, i.e., how the network performs
on the target domain upon unsupervised adaptation without access to any
ground-truth information, as well as similar domains performance, i.e., how
the network adapted without supervision generalizes to unseen images from
similar domains. To analyze both behaviors, we have alternatively used one
of the environments as the training set to perform fine-tuning, then tested
the resulting model on all the four environments. In fact, this allows for
assessing target domain performance by testing on the environment used for
unsupervised fine-tuning and similar domains performance by testing on the
other three. Since the environments amenable to perform fine-tuning are
four, we can carry out 4-fold cross-validation in order to average performance
figures. Hence, for each fold we average performance figures within an
environment (i.e., across all of its frames), obtaining, thereby, four sets of
measurements. Then, we compute target domain performance by averaging

90

the scores dealing with the four training sets in the corresponding four folds
and similar domains performance by averaging across the other twelve scores.

As for the per-frame performance figures, we compute both the Mean
Average Error (MAE) and the percentage of pixels with disparity error larger
than 3 (bad3) as suggested in [27, 57]. Due to image formats being different
across the KITTI RAW dataset, we extract a central crop of size 320× 1216
from each frame, which matches to the downsampling factor of DispNet and
allows for validating almost all pixels with respect to the available ground
truth disparities.

Ablation

i) Can we simply use D as noisy ground truth without deploying C? ii) Is
masking by τ really needed or could we just use C as a per-pixel weighting
in Lc? iii) How important is the contribution of the additional loss terms Ls,
Lr?

To answer the above questions, we set AD as the stereo algorithm, CCNN
as confidence measure and run a set of experiments according to the cross-
validation protocol described in Sec. 8.3.2. The resulting performance figures
are reported in Tab. 8.2 as follows. Starting from the top row: (a) AD, i.e.
the stereo algorithm providing us with the noisy labels, (b) DispNet trained
only on synthetic data (i.e. the initial weights used for all the subsequent fine
tunings), (c) DispNet fine-tuned to directly regress AD without deploying
a confidence measure, (d) DispNet fine-tuned to minimize Lc with τ = 0

(thereby weighting all disparities yielded by AD without masking out likely
mistakes), (e-g) training to minimize different combinations of Lc,Ls and Lr
using a fixed τ = 0.8. The values for τ, λ1 and λ2 are obtained by preliminary
cross-validation and will be kept fixed across all experiments. Since rows (a)
and (b) do not need any kind of fine-tuning on KITTI we report the same
performances for both target and similar domains.

To answer question i), we can compare results between rows (c) and (b). As
expected. fine-tuning the network to directly regress the noisy measurements
produced by AD is not a valid optimization strategy as it worsens the initial
network performance both in the target domain as well as in similar domains.
Interestingly, the network structure seems to behave as a regularizer and
does not overfeat too much to the noise in the labels as testified by the huge
performance gap between rows (c) and (a). To answer question ii), we can
compare line (e) and (d), where the only difference is the value of τ. The

91

presence of τ = 0.8 in (e) helps to improve the performance by about 0.5%
bad3 while obtaining comparable performance in MAE. These results testify
how masking out disparity measurements that are likely wrong yields better
performance even though it increases the sparsity of the gradient signal
actually deployed to update the model. A possible explanation for the close
performance gap between (d) and (e) may be ascribed to the confidence
maps produced by CCNN being highly bi-modal, with the vast majority
of pixels having confidence score either 0 or 1. Therefore, even without
applying a fixed threshold, many completely mistaken labels will see their
contribution masked out during loss computation. To answer question (iii)
we can compare the performance reported in the last four rows. Adding Ls
in the optimization process does not improve target domain performance but
slightly helps in similar domains, as clearly observable by comparing rows (f)
and (e). The introduction of Lr, instead, seems more effective and results in
improvement across all metrics, as observable by comparing rows (g) and
(e). Once again, larger improvements are obtained in case of unseen images
from similar domains. Eventually, it is worth pointing out how our complete
Adaptation loss yields the best results, as vouched by the performance figures
reported in the row (h).

Fig. 8.4 shows qualitative results related to the ablation study proposed
in this subsection. The top row depicts the reference image (a), the noisy
disparities provided by AD (b) and the prediction produced by DispNet
trained only on synthetic data (c). The bottom row, instead, reports three
different predictions obtained by the three adaptation approaches referred to
as Regression (d), Weighted (e) and Complete (f) in Tab. 8.2. By comparing (f) to
(d) and (e) we can clearly verify that our adaptation schema can successfully
mask out all the noise in the labels and learn only from good disparities.
Moreover, we can perceive the effectiveness of our adaptation approach
by comparing (f) to (c), for example by observing how it can significantly
reduce the errors caused by the reflective surface on the right portion of the
image, without at the same time introducing many artifacts, as unfortunately
does happen in (c) and (d).

Comparison with other self supervised losses

In this section, we compare our proposal to other loss functions known
in the literature that may be employed in order to fine-tune a deep stereo
network without supervision. In particular, we consider two losses that, akin

92

Target Domain Similar Domains

Loss bad3 MAE bad3 MAE

No Adaptation / / 10.86 1.73

GT Tuned (K12/15) / / 5.04 1.28

Godard et. al.[93] 4.01 1.07 4.20 1.09

Yinda et. al.[155] 3.59 1.00 5.15 1.14

Masked-AD + Smooth. 3.17 0.98 3.78 1.05

Masked-SGM + Smooth. 2.99 1.01 3.63 1.09

Adaptation-AD 2.96 0.96 3.66 1.04

Adaptation-SGM 2.58 0.91 3.39 1.01
Adaptation-AD-SGM 2.74 0.92 3.39 1.02

Table 8.3: Results obtained performing fine tuning of a pre-trained DispNet network
using different unsupervised strategy. All results are computed on the
KITTI raw dataset using a 4-fold cross validation schema, best results
highlighted in bold, our proposals in italic.

to ours, rely only on stereo frames to achieve a form of self-supervision: the
appearance based re-projection and smoothness loss by Godard et al. [93]
and the local constraint normalization with window-based optimization loss
of [155]. As the underlying principles and mechanisms are quite straightfor-
ward to reproduce, we have re-implemented the two losses following the
authors’ guidelines. Thus, we apply these alternative losses together with
three variants of our proposal, relying either on AD or SGM or both stereo
algorithms, in order to fine-tune DispNet upon pre-training on synthetic
data. As an additional comparison, we also report results obtained by our
loss formulation without the use of reprojection between frames. Again,
we follow the same 4-fold cross validation protocol as in Sec. 8.3. Results
are reported in Tab. 8.3 alongside with the performance of the pre-trained
DispNet model (No Adaptation) and those attainable by fine-tuning the pre-
trained model by the LiDAR groundtruth available for the 400 frames of the
KITTI2012 [27] and KITTI2015 [57] training sets (GT Tuned), i.e. according
to the standard training methodology adopted in the vast majority of works
dealing with deep stereo. For the sake of fair comparison, all methods are
evaluated based only on the disparity map predicted for the left frames of
the stereo pairs and can not leverage additional external networks besides

93

DispNet (i.e., as for [155] we do not deploy also an external Invalidation
Network).

Tab. 8.3 shows that our proposal outperforms other approaches both in the
target domain as well as similar domain experiments. In particular, Adaptation-
SGM delivers the best performance across all metrics and scenarios, with gain
as large as ∼ 1% in the bad3 metric with respect to the closest alternatives
known in literature beside our previous work (more than 25% relative
improvement in the target domain and almost 20% in similar domains). The
improvement is less substantial in the MAE figure, though our proposal
still consistently outperforms alternative approaches. We also point out
how even Masked-AD + Smooth. and Masked-SGM + Smooth. in Tab. 8.3,
already outperforms competitors, which suggests the key component in
our technique to be the confidence-guided loss. Yet, the novel Adaptation
proposed here further ameliorates performance significantly. By comparing
Adaptation-AD and Adaptation-SGM we can verify how a more accurate
stereo algorithm (SGM vs AD) yields better performance. This can be
ascribed to less noise in the disparities leading to a larger number of pixels
scoring confidence > τ which, in turn, is conducive to denser and more
accurate pseudo-groundtruths. Using both the disparity maps obtained by
the two algorithms (Adaptation-AD-SGM) does not seem to help, yielding,
indeed, slightly worse performance in the target domain and comparable
performance in similar domains compared to Adaptation-SGM. We believe
that mistakes made by AD and not detected by the confidence measure may
explain the slight loss in performance. Finally, it is interesting to compare
the performance achievable by fine tuning without supervision on many
data (rows from 3 to 9) to those achievable by fine-tuning with supervision
on few similar data (i.e., GT Tuned). The large performance margin in favour
of almost all the unsupervised approaches indicates that training on much
more data with a sub-optimal objective turns out not only easier and cheaper
but also beneficial to performance with respect to training on few, perfectly
annotated samples (e.g., 1.65 gain in bad3 and 0.27 in MAE by comparing
Adaptation-SGM to GT Tuned).

8 .3 .3 Depth-from-Mono

To investigate the application of our approach to depth prediction from
a single image, we run experiments based on the popular depth-from-

94

Lower is better Higher is better

Supervision Encoder Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Godard et al. [93] VGG 0,124 1,076 5,311 0,219 0,847 0,942 0,973

Masked-AD VGG 0.119 0.989 4.981 0.207 0.859 0.950 0.977

Masked-SGM VGG 0.123 1.055 4.900 0.208 0.860 0.951 0.977

Godard et al. [93] VGG+pp 0.118 0.923 5.015 0.210 0.854 0.947 0.976

Masked-AD VGG+pp 0,111 0,871 4,852 0,199 0,858 0,952 0,980

Masked-SGM VGG+pp 0,112 0,848 4,766 0,197 0,859 0,953 0,981

Godard et al. [93] ResNet50+pp 0,114 0,898 4,935 0,206 0,861 0,949 0,976

Masked-AD ResNet50+pp 0,109 0,867 4,810 0,197 0,866 0,953 0,979

Masked-SGM ResNet50+pp 0,109 0,837 4,703 0,194 0,867 0,955 0,980

Adaptation-SGM ResNet50+pp 0,109 0,831 4,681 0,193 0,867 0,956 0,981

Table 8.4: Experimental results on the KITTI dataset [31] on the data split proposed
by Eigen et al. [37]. On even conditions, the proposed adaptation scheme
outperforms the supervision by Godard et al. [93]. Combining the two
produces the best results.

Lower is better Higher is better

Configuration Encoder Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Regression-AD VGG+pp 0.209 2.121 7.788 0.402 0.639 0.818 0.900

Weighted-AD VGG+pp 0.124 1.010 5.446 0.236 0.825 0.932 0.968

Masked-AD VGG+pp 0.111 0.871 4.852 0.199 0.858 0.952 0.980

Regression-SGM VGG+pp 0.136 1.697 5.540 0.220 0.848 0.942 0.973

Weighted-SGM VGG+pp 0.117 0.983 4.987 0.202 0.857 0.951 0.979

Masked-SGM VGG+pp 0.112 0.848 4.766 0.197 0.859 0.953 0.981

Masked-AD-SGM VGG+pp 0.114 0.915 4.909 0.199 0.859 0.953 0.980

Regression-AD ResNet50+pp 0.230 3.24 8.361 0.418 0.624 0.806 0.893

Weighted-AD ResNet50+pp 0.120 0.952 5.288 0.225 0.836 0.937 0.971

Masked-AD ResNet50+pp 0.109 0.867 4.810 0.197 0.866 0.953 0.979

Regression-SGM ResNet50+pp 0.129 1.456 5.385 0.214 0.854 0.943 0.973

Weighted-SGM ResNet50+pp 0.115 0.966 4.925 0.199 0.863 0.952 0.979

Masked-SGM ResNet50+pp 0.109 0.837 4.703 0.194 0.867 0.955 0.980

Masked-AD-SGM ResNet50+pp 0.110 0.866 4.775 0.195 0.867 0.955 0.980

Table 8.5: Ablation experiments on the KITTI dataset [31] on the data split proposed
by Eigen et al. [37].

95

mono system developed by Godard et al. [93]. This choice is driven by
two main factors i) despite a large number of works in this field [127,
140, 149, 151], it still represents one of the most effective solutions for
unsupervised monocular depth estimation and ii) the image reconstruction
loss proposed by Godard et al. represent the main competitor to our approach,
thus comparison to [93] turns out the ideal test bench for our proposal.

The network proposed in [93], referred to here as monodepth, consists
in a DispNet-like architecture featuring a backbone encoder followed by
a decoder to restore the original input resolution and predict the final
depth map. In [93], both VGG [62] and ResNet50 [70] were tested as
encoders. The output is provided as disparity (e.g., inverse depth), and
used at training time to warp the stereo images. This also eases the use
of our unsupervised adaptation technique, that could be deployed anyway
also in case of architectures directly predicting depth by simply converting
our disparity labels based on known camera parameters. Moreover, in [93]
a post-processing step is proposed to deal with occlusions and artifacts
inherited from stereo supervision, by producing both normal and flipped
depth maps and combining them. We will run experiments with and without
this optional step, referred to as ’+pp’.

We start from the TensorFlow codebase provided by the authors of [93],
adding our proposal therein and running experiments within the same
framework to ensure perfectly fair test conditions.

Evaluation protocol:
We follow exactly the same protocol as reported in [93]. In particular,

the KITTI raw dataset [31] is split into a training set and an evaluation
set according to the guidelines by Eigen et al. [37]. Unlike the adopted
stereo evaluation protocol [122], raw LiDAR measurements are usually
assumed as groundtruth in the depth-from-mono literature despite their
being sparse and noisy. Nonetheless, we adhere to the standard depth-from-
mono evaluation protocol to ensure consistency with existing literature and
enable a fair comparison with respect to [93].

Several works in this field [93, 127, 151] deploy pre-training on the City-
Scapes dataset [67] before fine-tuning on the KITTI training split [37], [31].
Indeed, training only on KITTI leads to inferior accuracy due to the fewer
training images, whilst training only on CityScapes let the network predicts
depth maps of acceptable quality, but totally wrong in terms of the actual
depth values. This scenario, thus, points out again how a domain shift
severely affects the accuracy of depth-from-images networks, i.e. exactly

96

bad3: 38.12 Abs Rel: 0.602

(a) (b) (c)
Abs Rel: 0.203 Abs Rel: 0.120 Abs Rel: 0.098

(d) (e) (f)

Figure 8.5: Ablation experiments: adaptation of monodepth (VGG encoder) using
AD algorithm. a) input image from KITTI b) result from AD algorithm
c) result before adaptation d) adapting with stereo algorithm only e)
using confidence to weight the loss function f) running full adaptation.

the issue we aim to address by the general domain adaptation framework
proposed in this paper. Therefore, to assess the effectiveness of our proposal
also in depth-from-mono settings, we will start from models pre-trained on
CityScapes in order to adapt them to KITTI. In particular, relying on the very
same models pre-trained on CityScapes we compare the results attained
on the KITTI test split by performing fine-tuning on the KITTI train split
by either our approach or the reconstruction loss proposed in [93]. As for
our method, we use the same stereo algorithms (AD and SGM), confidence
measure (CCNN) and hyper-parameter settings as in depth-from-stereo
experiments. Coherently to [93], we used the Adam optimizer and found
that, while our competitor needs to run 50 epochs of training on KITTI, our
method reaches convergence after only 5 epochs with a fixed learning rate of
0.001, thus resulting in faster and, as we shall see in the next section, more
effective adaptation.

Results on KITTI:
We discuss here the outcomes of our experiments on the KITTI RAW

dataset [31]. In particular, we report the standard error metrics, i.e. Absolute
Relative error (Abs Rel), Square Relative error (Sq Rel), Root Mean Square
Error (RMSE), logaritmic RMSE and the δ accuracy score computed as:

δ = D̃i,j% : max(
D̃i,j

Di,j
,
D̃i,j

D̃i,j
) < th (8.8)

Tab. 8.4 reports a detailed comparison between the self-supervised loss pro-
posed in [93] and our proposal, both applied to adapt the same pre-trained
monodepth model. From top to bottom, we show the results dealing with

97

a monodepth with a VGG encoder, a VGG encoder and the post-processing
step (+pp) and finally a ResNet50 encoder with the post-processing step.
Starting from the basic VGG-based model, we can observe that adapting
by either AD or SGM with the masked configuration alone leads to better
performance with respect to using the image reconstruction loss proposed
in [93]. In general, adapting by SGM yields superior results, outperforming
the model based on AD on nearly all metrics. This finding is confirmed
when applying the post-processing step (i.e., VGG+pp), as our adaptation
approach outperforms [93] under all evaluation metrics. Moreover, VGG+pp
networks optimized by our technique can deliver better results than using a
ResNet+pp network trained according to the image reconstruction loss of
[93] despite the large difference in complexity between the two networks
(VGG features about 31 millions learnable parameters, ResNet50 about
57 millions). By applying the considered adaptation approaches to the
ResNet50-based monodepth, the margin turns out even higher. Finally, in
the last row of Table 8.4, we report the results obtained by our approach
when using SGM together with the complete adaptation loss of Eq. 8.2, the
performance metrics scoring slightly better than those achieved by Masked-
SGM. This, again, highlights how in Eq. 8.2 the confidence-guided loss
term provides a more relevant contribution to performance than the image
re-projection term inspired by [93].

Ablation experiments: Similarly to the previously addressed stereo set-
tings, we report here an ablation study aimed at establishing upon the
relative importance of the key ingredients deployed in our framework. Table
8.5 collects the results obtained in this evaluation. We comment about four
main experiments, dealing with running our method with both AD and
SGM in order to adapt VGG and ResNet50. The post-processing step is
enabled in all tests, thereby solving most issues near occlusions and left
border and highlighting how the full confidence-guided loss ameliorates
results in many regions of the images where post-processing cannot operate.
Three setups are considered in descending order in the Table for each of the
four experiments: i) adaptation by minimization of the L1 loss with respect
to the disparity maps estimated by the stereo algorithm (AD or SGM) "as is"
(Regression) ii) adaptation by weighting the L1 loss with per-pixel confidence
scores (Weighted) iii) full confidence-guided loss using threshold τ (Masked).
We turn off additional terms to focus on the different key factors of the
confidence-guided loss. In all experiments, we can notice how using the
disparity labels alone leads to poor results, in particular when adapting the

98

model by the AD algorithm, which is much more prone to outliers. This
further highlights how, in our framework, deploying the confidence measure
is crucial to avoid the impact of the wrong disparities possibly computed by
the stereo algorithms. Formulating the confidence-guided loss as a simple
weighting between confidence scores and loss signals reduces the impact of
the outliers, but does not completely removes it as they can still contribute to
the entire loss function with a lower weight and thus may lead, as reported,
to worse performance. To better perceive this effect, Fig. 8.5 shows some
qualitative results obtained by the three ablated configurations reported
in the Table. In particular, we point out how on (c) the results from the
original model trained on different environments look good qualitatively,
but the range of the predicted depth values is totally wrong (Abs Rel of
0.620). We can observe how ablated configurations of our technique (d-e) do
yield gradual improvements, whereas the full adaptation scheme (f) greatly
ameliorates the quality of the estimated depth maps, i.e. so as to bring the
error down to 0.098 Abs Rel.

As an additional experiment, and similarly to the stereo experiments, we
tried to adapt the model using labels from both AD and SGM by simply
computing the loss function according to both disparity hypotheses. This
leads to slightly worse results, possibly because some outliers not correctly
masked out from the one algorithm may interfere with the correct assign-
ments suggested by the other.
8 .3 .4 Qualitative Results

Finally we show some qualitative results, concerning both stereo and depth-
from-mono networks, on the Middlebury v3 [42] and ETH3D [112] datasets.
Fig. 8.6 shows examples of depth maps obtained by monodepth pre-trained
on CityScapes [67] before and after adaptation by our technique. The overall
quality of the maps is greatly improved by the adaptation step, which is
also vouched by the drastic drop of the absolute error reported in the Figure.
We show similar results for DispNet on Fig. 8.7: the column labeled as
No Adaptation concerns predictions obtained by the model pre-trained on
FlyingThings3D while the Adaptation column deals with the results obtained
after fine-tuning by our unsupervised adaptation approach. Results indicate
clearly how our proposal can successfully correct the prediction range and
drastically reduce the percentage of wrong pixels.

99

Input No Adaption Adaptation

Abs Rel: 0.6827 Abs Rel: 0.1797

Abs Rel: 0.9996 Abs Rel: 0.1271

Abs Rel: 0.6466 Abs Rel: 0.1655

Abs Rel: 0.6740 Abs Rel: 0.1827

Figure 8.6: Adaptation results for depth-from-mono on Middlebury v3 [42] (top)
ETH3D dataset [112] (bottom). From left to right: input (left) image,
depth maps from network before adaptation and after fine tuning with
our adaptation technique. The absolute error rate is overimposed on
each depth map.

100

Input No Adaption Adaptation
Bad1: 88.94% Bad1: 47.28%

Bad1: 40.54% Bad1: 21.54%

Bad1: 63.30% Bad1: 7.29%

Bad1: 33.32% Bad1: 16.31%

Figure 8.7: Adaptation results for Dispnet on Middlebury v3 [42] (top) ETH3D data-
set [112] (bottom). From left to right input (left) image, disparity maps
predicted from network before any adaptation and after fien tuning with
our adaptation technique. The bad1 error rate is overimposed on each
disparity map.

101

Input No Adaption Adaptation

Figure 8.8: Adaptation results for Dispnet on stereo frames acquired in a supermar-
ket with a ZED stereo camera

8 .3 .5 Qualitative evaluation on Supermarket Environment

We are interested in testing the effectiveness of our adaptation schema in
the supermarket scenario, therefore we acquired video sequences using
a ZED stereo camera inside a store and split them in a training and test
set. For each acquisition this kind of commercial sensor provides left and
right RGB frames together with disparities and confidences estimated using
proprietary algorithms. Therefore instead of relying on the stereo algorithm
and confidence measures used in all the other tests we directly used this
kind of measurements provided by the sensor to fine tune a stereo network
according to the loss formulation described in Sec. 8.2. We report a couple
of qualitative results in Fig. 8.8. First we would like to point out how
the disparity predicted from DispNet without any kind of adaptation are
relatively good except for the presence of errors due to reflective surface (e.g.,
the image on the second row) or mistakes for points far from the camera
(e.g., the area on the right of the shelf in the first row seems truncated after a
certain distance). After the adaptation both types of mistakes seems mitigate
with the reflection being mostly solved and the predictions for points far
from the camera being way more smooth.

102

9
O N L I N E U N S U P E RV I S E D D O M A I N A D A P TAT I O N F O R
D E E P S T E R E O

In Chap. 8 we have proposed a novel loss function to address the domain
shift issue for depth estimation networks by means of unsupervised offline
fine tuning. In this section, instead, we want to go one step further and
cast adaptation as a continuous unsupervised learning process whereby a depth
estimation network evolves online based on the images gathered by a camera
during its real deployment. We believe that the ability to constantly adapt
itself in real-time is key to any deep learning machinery meant to work
in relevant practical scenarios, like autonomous driving, where gathering
training samples to be deployed offline from all possible surroundings turns
out definitely unfeasible.

We will show how continuous online adaptation can be achieved by
leveraging on one of the unsupervised losses proposed in the literature to
compute the loss on the current frames, update the whole network by back-
propagation (from now on shortened back-prop) and move to the next couple
of input frames. Adapting, however, comes with the side effect of reducing
inference speed to ∼ 1

3 at best, as we will show experimentally, a price far
too high to pay for most modern state of the art deep stereo systems which
are relatively slow. To keep a high enough frame rate we have developed a
novel Modularly ADdaptive Network (MADNet) designed to be lightweight,
fast and modular. Our architecture exhibits accuracy comparable to DispNet
yet use 1

10 of the parameters, runs at ∼ 40FPS for disparity inference and
performs online adaptation of the whole network at ∼ 15FPS. Moreover, to
allow a higher frame rate during the adaptation at the cost of slightly worse
accuracy, we have developed Modular ADaptation (MAD) an algorithm that
leverage on the modular architecture of MADNet and train independently
sub-portion of the whole network. Using MADNet together with MAD we
are able to adapt our system without supervision to unseen environment at
∼ 25FPS.

Fig. 9.1 shows the disparity maps predicted by MADNet on three success-
ive frames of a video from the KITTI dataset [31] either without undergoing
any adaptation (b) or by adapting online the whole network (c) or by our

103

(a)

(b)

(c)

(d)

0th frame 150th frame 300th frame

Figure 9.1: Disparity maps predicted by MADNet on a KITTI sequence [31]. Left
images (a), no adaptation (b), online adaptation of the whole network (c),
online adaptation by MAD (d).

computationally efficient approach MAD (d). Thus, (c) and (d) show how
online adaptation can improve significantly the quality of the predicted
disparity maps in as few as 150 frames, i.e. with a latency of about 10 and 6

seconds for whole adaption and MAD, respectively. Extensive experimental
results on KITTI raw dataset [31] will evidence that i) our network is more
accurate than models with similar complexity (e.g., [138]) ii) it can dramatic-
ally boost its accuracy in few hundred frames (i.e., a couple of seconds) to
be comparable to offline fine-tuning over ground truth. To the best of our
knowledge, MADNet and MAD realize the first-ever real-time, self-adapting,
deep stereo system.

9 .1 related work

A recent trend to train deep depth estimation networks in an unsupervised
manner relies on image reconstruction losses. In particular, for monocular
depth estimation this is achieved by warping different views, coming from
stereo pairs or image sequences, and minimizing the reconstruction error
[68, 93, 127, 144, 145, 155]. This principle has been used also for optical
flow [141] and stereo [126]. For the latter task, an alternative unsupervised
learning approach consists in: deploying traditional stereo algorithms and
confidence measures (see Chap. 8) or by combining with iterative optimiza-
tion prediction obtained at multiple resolutions [143]. However, we point
out that all these works have addressed offline training only, while we pro-
pose to address the very same problem casting it as an online (thus fast)
adaptation to an unseen environment. Concurrently with our work Zhong et

104

al. [156] propose to directly train from scratch a deep stereo system on video
sequences in an unsupervised manner, but this process takes several minutes
limiting its effectiveness in case of sudden changes. In contrast, we maintain
the offline training phase on synthetic data and limit the online training to
solve domain adaptation dramatically reducing runtime requirements.

9 .2 online domain adaptation

Modern machine learning models can suffer from a loss in accuracy when
tested on data significantly different from the training set, an issue commonly
referred to as domain shift. Despite all the research work done to soften this
issue, the most effective practice still relies on additional offline training
on samples from the target environments to get a new model tuned to
that scenario. The domain shift curse is inherently present in deep stereo
networks due to most training iterations being performed on synthetic
images quite different from real ones. Then, adaptation can be effectively
achieved by offline fine-tuning the model on samples from the target domain
either relying on expensive annotations or using unsupervised loss functions
(Chap. 8 or [68, 93, 155]).

In this chapter we move one step further and argue that adaptation can
be effectively performed online as soon as new frames are available, thereby
obtaining a deep stereo system capable to adapt itself dynamically. For our
online adaptation strategy we do not rely on the availability of ground truth
annotations and instead, use one of the proposed unsupervised loss. To
adapt the model we perform a single train iteration (forward and backward
pass) for each incoming stereo pair on-the-fly. Therefore, our model is always
in training mode and continuously fine-tuning to the sensed environment.

9 .2 .1 MADNet - Modularly ADdaptive Network

We believe that one of the main limitations that have prevented exploration
of online adaptation is the computational cost of performing a full train
iteration for each incoming frame. Indeed, we will show experimentally how
it roughly corresponds to a reduction of the inference rate of the system to
roughly one third, a price far too high to be paid with most modern archi-
tectures. To address this issue, we have developed Modularly ADdaptive

105

ℱ 1

ℱ 2

ℱ 3

ℱ 4

ℱ 5

ℱ 6

ℱ 1

ℱ 2

ℱ 4

ℱ 5

ℱ 6

Initial disparity

Cost
Volume k

Pyramid Towers

Left Right

k-th layer

warp

Refinement

𝐷 2

𝐷 4

𝐷 5

𝐷 6

Disparity Estimator

(a) (b)

Disparity

𝐷3ℱ 3 𝑀 3

Figure 9.2: Schematic description of the proposed MADNet architecture (a), each
circle between an Fk and the corresponding Dk representing a warp
and correlation layer (b). Each pair (Fi,Di) composes a module Mi,
adaptable independently by means of MAD (blue arrow) much quickly
compared to performing full back-prop (red arrow)

.

Network (MADNet), a novel lightweight model for depth estimation inspired
by very recent fast, yet accurate, architectures for optical flow [109, 147].

We deploy a pyramidal strategy for dense disparity regression for two
key purposes: i) maximizing speed and ii) obtaining a modular architecture
as depicted in Fig. 9.2. Two pyramidal towers extract features from the
left and right frames through a cascade of independent modules sharing
the same weights. Each module consists of convolutional blocks aimed at
reducing the input resolution by two 3× 3 convolutional layers, respectively
with stride 2 and 1, followed by Leaky ReLU non-linearities. According to
Fig. 9.2, we count 6 blocks providing us with feature representations F from
half resolution to 1/64, namely F1 to F6, respectively. These blocks extract
16, 32, 64, 96, 128 and 192 features.

At the lowest resolution (i.e., F6), we forward the features from left and
right images into a correlation layer [76] to get the raw matching costs.
Then, we deploy a disparity decoder D6 consisting of 5 additional 3× 3
convolutional layers, with 128, 128, 96, 64, and 1 output channels. Again,
each layer is followed by Leaky ReLU, except the last one, which provides
the disparity map at the lowest resolution.

Then, D6 is up-sampled to level 5 by bilinear interpolation and used both
for warping right features towards left ones before computing correlations
and as input to D5. Thanks to our design, from D5 onward, the aim of
the disparity decoders Dk is to refine and correct the up-scaled disparities
coming from the lower resolution. In our design, the correlation scores

106

computed between the original left and right features aligned according to
the lower resolution disparity prediction should provide the network with
guidance for the refinement process. We compute all correlations inside our
network along a [-2,2] range of possible shifts.

This process is repeated up to quarter resolution (i.e., D2), where we add
a further refinement module consisting of 3× 3 dilated convolutions [147],
with, respectively 128, 128, 128, 96, 64, 32, 1 output channels and 1, 2, 4, 8,
16, 1, 1 dilation factors, before bilinearly upsampling to full resolution.

MADNet has a smaller memory footprint and delivers disparity maps
much more rapidly than other more complex networks such as [liang2018learning,
99, 132] with a small loss in accuracy. Concerning efficiency, working at
decimated resolutions allows for computing correlations on a small ho-
rizontal window [147], while warping features and forwarding disparity
predictions across the different resolutions enables to maintain a small
search range and look for residual displacements only. With a 1080Ti GPU,
MADNet runs at about 40 FPS at KITTI resolution and can performs online
adaptation with full back-prop at 15 FPS.

9 .2 .2 MAD - Modular ADaptation

As we will show, MADNet is remarkably accurate while performing the
online adaptation of the whole network at 15 FPS. However, for some
applications, it might be desirable to have a higher frame rate without losing
the ability to tune the network to unseen environments automatically. Most
of the time needed to perform online adaptation is effectively spent executing
back-prop and weights update across the whole network layers. A naive way
to speed up the process will be to freeze the initial part of the network and
fine tune only a subset of k final layers, thus realizing a shorter back-prop
that would yield a higher frame rate. However, there is no guarantee that
these last k layers are indeed those that would benefit most from online
fine-tuning. One might reasonably guess that other portions of the network
should be adapted as well, in particular, the initial layers, which directly
interacts with the images from a new, unseen, domain. Indeed, we will show
in Sec. 9.3.3 that training only the final layers is not enough for handling
drastic domain changes that typically occur in practical applications.

Thus, following the key intuition that to keep up with fast inference
we should pursue a partial, though effective, online adaptation, we de-

107

veloped Modular ADaptation (MAD) an approximate online adaptation
algorithm tailored for MADNet, but extensible to any multi-scale inference
network. The key intuition for our method is to take a network N and
subdivide it into p non-overlapping portions, each referred to as n, such
that N = [n1,n2, ..np]. Each portion ni consists of k connected layers with
the last one (the deeper) able to output a disparity estimation of yi. Given
as input a couple of stereo frames x, N will output p+ 1 disparity estima-
tion [y,y1, . . . ,yp] = forward(N, x), with y being the final prediction of the
model at full resolution. Due to its modular structure, MADNet naturally
allows such subdivision by assigning to the same ni layers working at the
same resolution both in the convolutional towers and among the disparity
estimators (e.g., referring to Fig. 9.2 ni = [Fi,Di]). Each ni can be independ-
ently trained by computing a loss directly on the disparity yi and back-prop
only across the layers belonging to ni, thereby skipping the costly backward
pass through lower resolution layers in between. This process can be figured
out as an approximation of the standard full back-prop. In fact, by altern-
ating the portion ni of the network that is trained, it sequentially allows
updating all layers. Such a strategy drastically reduces the time needed
to compute and apply gradients without sacrificing too much accuracy as
confirmed by experimental results.

Offline, we statically subdivide the network into different portions, that
with MADNet correspond to different layers of the pyramids. Online, for
each incoming stereo pair, first we perform a forward pass to obtain all
the disparity predictions at multiple scales [y,y1, . . . ,yp], then, we choose a
portion θ ∈ [1, . . . ,p] of the network to train according to some heuristic and
update the weights of layers belonging to nθ according to a loss computed
on yθ. We consider a valid heuristic any function that outputs a probability
distribution among the p trainable portions of N from whom we could
perform sampling.

Among different functions, we obtained effective results using a simple
reward/punishment mechanism detailed in Algorithm Alg. 2. We start by
creating a histogram H with p bins all initialized at 0. For each stereo pair we
perform a forward pass to get the disparity predictions (line 5) and measure
the performance of the model by computing the loss Lt using the full
resolution disparity y and potentially the input frames x, e.g., reprojection
error between left and right frames [93] (line 6). Then, we sample the
portion to train θ ∈ [1, . . . ,p] according to the distribution softmax(H)

(line 7) and compute one optimization step for layers of nθ with respect

108

Algorithm 2 Independent online training of MADNet

1: Require: N = [n1, . . . ,np]
2: H = [h1, . . . ,hp]← 0

3: while not stop do
4: x← readFrames()
5: [y,y1, . . . ,yp]← forward(N, x)
6: Lt ← loss(x,y)
7: θ← sample(softmax(H))
8: Lθt ← loss(x,yθ)
9: updateWeights(Lθt ,nθ)

10: if firstFrame then
11: Lt−2 ← Lt,Lt−1 ← Lt, θt−1 ← θ

12: Lexp ← 2 ·Lt−1 −Lt−2
13: γ← Lexp −Lt
14: H← 0.99 ·H
15: H[θt−1]← H[θt−1] + 0.01 · γ
16: θt−1 ← θt,Lt−2 ← Lt−1,Lt−1 ← Lt

to the loss Lθt computed on the lower scale prediction yθ (line 8-9). We
have now partially adapted the network to the current environment. Next,
we update H increasing the probability of being sampled for the ni that
have proven effective. To do so, we can compute a noisy expected value
for Lt by linear interpolation of the losses at the previous two time step:
Lexp = 2 · Lt−1 − Lt−2 (line 13). By comparing it with the measured Lt

we can assess the impact of the network portion sampled at the previous
step (θt−1) as γ = Lexp − Lt, and then increase or decrease its sampling
probability accordingly (i.e., if the adaptation was effective Lexp > Lt, thus
γ > 0). We found out that adding a temporal decay to H helps increasing
the stability of the system, so the final update rule for each step is: H =

0.99 ·H,H[στ−1]+ = 0.01 · γ (lines 15 and 16). We will show how with the
proposed MAD we can online adapt MADNet at ∼ 25FPS without losing
much accuracy.

9 .3 experimental results

To properly address practical deployment scenarios in which there is no
ground truth data available for fine-tuning in the actual testing environments,
we train our stereo network using only synthetic data [76].

To test the online adaptation we use those weights as a common initializa-
tion and carry out an extensive evaluation on the large and heterogeneous

109

KITTI raw dataset [31] with depth labels [122] converted into disparities
by knowing the camera parameters. Overall, we assess the effectiveness
of our proposal on 43k images. Specifically, according to the KITTI classi-
fication, we evaluate our framework in four heterogeneous environments,
namely Road, Residential, Campus and City, obtained by concatenation of
the available video sequences and resulting in 5674, 28067, 1149 and 8027

frames respectively. Although these sequences are all concerned with driv-
ing scenarios, each has peculiar traits that would lead a deep stereo model
to gross errors without a suitable fine-tuning in the target domain. For
example, City and Residential often depict road surrounded by buildings,
while Road mostly concern highways and country roads where the most
common objects depicted are cars and vegetation.

By processing stereo pairs within sequences, we can measure how well
the network adapts, either with full back-prop or MAD, to the target domain
compared to an offline trained model. For all experiments, we analyze both
average End Point Error (EPE) and the percentage of pixels with disparity
error larger than 3 (D1-all). Due to image format being different for each
sequence, we extract a central crop of size 320 × 1216 from each frame,
which suits to the downsampling factor of our architecture and allows for
validating almost all pixels with available ground-truth disparities.

Finally, we highlight that for both full back-prop and MAD, we compute
the error rate on each frame before applying the model adaptation step.
That is, we measure performances achieved by the current model on the
stereo frame at time t and then adapt it according to the current prediction.
Therefore, the model update carried out at time t will affect the prediction
only from frame t+ 1 and so on. As unsupervised loss for online adaptation,
we rely on the photometric consistency between the left frame and the right
one reprojected according to the predicted disparity. Following [93], to
compute the reprojection error between the two images we combine the
Structural Similarity Measure (SSIM) and the L1 distance, weighted by 0.85

and 0.15, respectively. We selected this unsupervised loss function as it is
the fastest to compute among those proposed in literature (Chap. 8 and [126,
143] and does not require additional information besides a couple of stereo
pairs.

110

D1-all: 4.70 D1-all: 3.75 D1-all: 2.70

Figure 9.3: Qualitative comparison between disparity maps from different archi-
tectures. From left to right, reference image from KITTI 2015 online
benchmark and disparity map by DispNetC [76], StereoNet [138] and
MADNet.

Model D1-all Runtime

DispNetC [76] 4.34 0.06

StereoNet [138] 4.83 0.02

MADNet (Ours) 4.66 0.02

Table 9.1: Comparison between fast disparity regression architectures on the KITTI
2015 test set without online adaptation.

9 .3 .1 MADNet performance

Before assessing the performance obtainable through online adaptation,
we test the effectiveness of MADNet by following the canonic two-phase
training using synthetic [76] and real data. Thus, after training on synthetic
data, we perform fine-tuning on the training sets of KITTI 2012 and KITTI
2015 and submit to the KITTI 2015 online benchmark. On Tab. 9.1 we
report our result compared to other (published) fast inference architectures
on the leaderboard (runtime measured on nVidia 1080Ti). At the time of
writing, our method ranks 90

th. Despite the mid-rank achieved in terms of
absolute accuracy, MADNet compares favorably to StereoNet [138] ranked
92
nd, the only other high frame rate proposal on the KITTI leaderboard.

Moreover, we get close to the performance of the original DispNetC [76]
while using 1

10 of the parameter and running at more than twice the speed.
Figure 9.3 also reports a qualitative comparison between the output of the
three architectures, showing how MADNet better maintains thin structures
compared to StereoNet.

9 .3 .2 Online Adaptation

We will now show how online adaptation is an effective paradigm, com-
parable to or better than offline fine-tuning. Tab. 9.2 reports extensive
experiments on the four different KITTI environments. We report results
achieved by i) DispNetC [76] implemented in our framework and trained,

111

City Residential Campus Road

Model Adapt. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE FPS

DispNetC No 8.31 1.49 8.72 1.55 15.63 2.14 10.76 1.75 15.85

DispNetC Full 4.34 1.16 3.60 1.04 8.66 1.53 3.83 1.08 5.22

DispNetC-GT No 3.78 1.19 4.71 1.23 8.42 1.62 3.25 1.07 15.85

MADNet No 37.42 9.96 37.41 11.34 51.98 11.94 47.45 15.71 39.48

MADNet Full 2.63 1.03 2.44 0.96 8.91 1.76 2.33 1.03 14.26

MADNet MAD 5.82 1.51 3.96 1.31 23.40 4.89 7.02 2.03 25.43

MADNet-GT No 2.21 0.80 2.80 0.91 6.77 1.32 1.75 0.83 39.48

Table 9.2: Performance on the City, Residential, Campus and Road sequences from
KITTI [31]. Experiments with DispNetC [76] (top) and MADNet (bottom)
with and without online adaptations.

from top to bottom, on synthetic data following authors’ guidelines, using
online adaptation or fine-tuned on ground-truth and ii) MADNet trained
with the same modalities and, in addition, using MAD. These experiments,
together to Sec. 9.3.1, support the three-fold claim of this work.

DispNetC: Full adaptation. On top of Tab. 9.2, focusing on the D1-all
metric, we can notice how running full back-prop online to adapt DispNetC
[76] decimates the number of outliers on all scenarios compared to the
model trained on the synthetic dataset only. In particular, this approach
can consistently halve D1-all on Campus, Residential and City and nearly
reduce it to one third on Road. Alike, the average EPE drops significantly
across the four considered environments, with improvement as high as a
nearly 40% relative improvement on the Road sequences. These massive
gains in accuracy, though, come at the price of slowing the network down
significantly to about one-third of the original inference rate, i.e. from nearly
16 to 5.22 FPS. As mentioned above, the Table also reports the performance
of the models fine-tuned offline on the 400 stereo pairs with ground-truth
disparities from the KITTI 2012 and 2015 training dataset [27, 57]. It is worth
pointing out how online adaptation by full back-prop turns out competitive
with respect to fine-tuning offline by ground-truth, even more accurate in the
Residential environment. This fact may hint at training without supervision
by a more considerable amount of data possibly delivering better models
than supervision by fewer data.

MADNet: Full adaptation. On bottom of Tab. 9.2 we repeat the aforemen-
tioned experiments for MADNet. Due to the much higher errors yielded
by the model trained on synthetic data only, full online adaptation turns
out even more beneficial with MADNet, leading to a model which is more
accurate than DispNetC with Full adaptation in all sequences but Campus

112

and can run nearly three times faster (i.e. at 14.26 FPS compared to the 5.22

FPS of DispNetC-Full). These results also highlight the inherent effectiveness
of the proposed MADNet. Indeed, as vouched by the rows dealing with
MADNet-GT and DispNetC-GT, using for both our implementations and
training them following the same standard procedure in the field, MADNet
yields better accuracy than DispNetC while running about 2.5 times faster.

MADNet: MAD. Having proven that online adaptation is feasible and
beneficial, we show that MADNet employing MAD for adaptation (marked
as MAD in column Adapt.) allows for effectively and efficient adaptation.
Since the proposed heuristic has a non-deterministic sampling step, we
have run the tests regarding MAD five times each and reported here the
average performance. We refer the reader to Sec. 9.3.3 for analysis on the
standard deviation across different runs. Indeed, MAD provides a significant
improvement in all the performance figures reported in the table compared
to the corresponding models trained by synthetic data only. Using MAD,
MADNet can be adapted paying a relatively small computational overhead
which results in a remarkably fast inference rate of about 25 FPS. Overall,
these results highlight how, whenever one has no access to training data from
the target domain beforehand, online adaptation is feasible and definitely
worth. Moreover, if speed is a concern MADNet combined with MAD
provides a favorable trade-off between accuracy and efficiency.

Short-term Adaptation. Tab. 9.2 shows also how all adapted models
perform significantly worse on Campus with respect to the other sequences.
We ascribe this mainly to Campus featuring fewer frames (1149) compared the
other sequences (5674, 28067, 8027), which implies a correspondingly lower
number of adaptation steps being executed online. Indeed, a key trait of
online adaptation is the capability to improve performance as more and more
frames are sensed from the environment. This favourable behaviour, not
captured by the average error metrics reported in Tab. 9.2, is highlighted in
Fig. 9.4, which plots the D1-all error rate over time for MADNet models in the
four modalities. While without adaptation the error keeps being always large,
models adapted online clearly improve over time such that, after a certain
delay, they become as accurate as the model that could have been obtained by
offline fine-tuning had ground-truth disparities been available. In particular,
full online adaptation achieves performance comparable to fine-tuning by
the ground-truth after 900 frames (i.e., about 1 minute) while for MAD it
takes about 1600 frames (i.e., 64 seconds) to reach an almost equivalent

113

0

15

30

45

60

75

90

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

D
1

-a
ll

Frame

NO Adaptation GT Tuned Full Adaptation MAD

Figure 9.4: MADNet: error across frames in the 2011_09_30_drive_0028_sync se-
quence (KITTI dataset, Residential environment).

performance level while providing a substantially higher inference rate (∼ 25
vs ∼ 15).

Long-term Adaptation. As Fig. 9.4 hints at online adaptation delivering
better performance when processing a higher number of frames, in Tab. 9.3
we report additional results obtained by concatenating together the four
environments without network resets to simulate a stereo camera traveling
across different scenarios for ∼ 43000 frames. Firstly, Tab. 9.3 shows how both
DispNetC and MADNet models adapted online by full back-prop yield much
smaller average errors than in Tab. 9.2, as small, indeed, as to outperform
the corresponding models fine-tuned offline by ground-truth labels. Hence,
performing online adaptation through long enough sequences, even across
different environments, can lead to more accurate models than offline fine-
tuning on few samples with ground-truth, which further highlights the great
potential of our proposed continuous learning formulation. Moreover, when
leveraging on MAD for the sake of run-time efficiency, MADNet attains larger
accuracy gains through continuous learning than before (Tab. 9.3 vs.Tab. 9.2)
shrinking the performance gap between MAD and Full back-prop. We
believe that this observation confirms the results plotted in Fig. 9.4: MAD
needs more frame to adapt the network to a new environment, but given
sequences long enough can successfully approximate full back propagation
over time (i.e., 0.20 EPE difference and 1.2 D1-all between the two adaptation
modalities on Tab. 9.3) while granting nearly twice FPS. On long term (e.g.,
beyond 1500 frames on Fig. 9.4) running MAD, full adaptation or offline
tuning on ground-truth grants equivalent performance.

9 .3 .3 Different online adaptation strategies

To assess the effectiveness of MAD for fast online adaptation we carried
out additional tests on the whole KITTI RAW dataset [31] and compare

114

Model Adapt. D1-all(%) EPE FPS

DispNetC No 9.09 1.58 15.85

DispNetC Full 3.45 1.04 5.22

DispNetC-GT No 4.40 1.21 15.85

MADNet No 38.84 11.65 39.48

MADNet Full 2.17 0.91 14.26

MADNet MAD 3.37 1.11 25.43

MADNet-GT No 2.67 0.89 39.48

Table 9.3: Results on the full KITTI raw dataset [31] (Campus→ City→ Residential
→ Road).

Adaptation Mode D1-all(%) EPE FPS

No 38.84 11.65 39.48

Final-1 38.33 11.45 38.25

Final-7 31.89 6.55 29.82

Final-13 18.84 2.87 25.85

MAD-SEQ 3.62 1.15 25.74

MAD-RAND 3.56 (±0.05) 1.13 (±0.01) 25.77

MAD-FULL 3.37 (±0.1) 1.11 (±0.01) 25.43

Table 9.4: Results on the KITTI raw dataset [31] using MADNet trained on synthetic
data and different fast adaptation strategies

performance obtainable deploying different fast adaptation strategies for
MADNet. Results are reported on Tab. 9.4 together with those concerning a
network that does not perform any adaptation.

First, we compare MAD keeping the weights of the initial portions of
the network frozen and training only the final K layers (Final-K). Using the
notations of Fig. 9.2, Final-1 corresponds to training only the last prediction
layer, Final-7 to fine-tuning the last Refinement block, Final-13 to training
Refinement and D2. Then, since MAD consists in splitting the network in
independent portion and choosing which one to train, we compare our full
proposal (MAD-FULL) to: keeping the split in independent portions and
choosing which one to train at each step either randomly (MAD-RAND) or
using a round-robin schedule (MAD-SEQ). Since MAD-FULL and MAD-
RAND feature non-deterministic sampling steps, we report their average

115

performance obtained across 5 independent runs on the whole dataset with
the corresponding standard deviations between brackets.

By comparing the Final entries with the ones featuring MAD we can clearly
see how training only the final layers is not enough to successfully perform
online adaptation. Even training as many as 13 last layers (at a comparable
computational cost with our proposed MAD) we are at most able to halve
the initial error rate, with performance still far from optimal. The three
variants of MAD by training the whole network can successfully reduce
the D1-all to 1

10 of the original. Among the three options, our proposed
layer selection heuristic provides the best overall performance even taking
into account the slightly higher standard deviation caused by our sampling
strategy. Moreover, the computational cost to pay to deploy our heuristic is
negligible losing only 0.3 FPS compared to the other two options.

9 .3 .4 Deployment on embedded platforms

All the tests reported so far have been executed on a desktop PC equipped
with a Nvidia 1080 Ti GPU. Unfortunately for many application like robotics
or autonomous vehicles, it is unrealistic to rely on such high end and power-
hungry hardware. One of the key benefits of MADNet, however, is its
lightweight architecture conducive to easy deployment on lower-power
embedded platforms. Thus, we evaluated MADNet on a Nvidia Jetson TX2

while processing stereo pairs at the full KITTI resolution and compared
it to StereoNet [138] implemented using the same framework (i.e., same
level of optimization). We measured 0.26s for a single forward of MADNet
versus 0.76-0.96s required by StereoNet, respectively with 1 or 3 refinement
modules. Thus, MADNet runs faster and more accurately than existing fast
architectures [138], making it an appealing alternative also for embedded
applications.

116

10
L E A R N I N G T O A D A P T F O R S T E R E O

In Chap. 9 we have shown how online adaptation can be deployed to adapt a
deep stereo model to an unseen environment, in this chapter we are going to
expand on the topic and propose a way of improving the effectiveness of the
adaptation process. In detail, we propose to investigate the use of synthetic
data to learn a model offline, which, when deployed, can quickly adapt to
any unseen target domain online in an unsupervised manner, eliminating
the need for expensive data collection.

We formulate this learning-to-adapt problem using a model agnostic meta-
learning framework [90]. Specifically, we devise a meta-learning scheme for
continuous adaptation. Our goal is to learn a model offline using synthetic
data, which can continuously adapt to unseen real video sequences in an un-
supervised manner at test time. This means our model is always in training
mode and its parameters are automatically tuned to the current environment
online without the need for supervision. Such an online adaptation scenario
has been considered previously in the literature Chap. 9 and [156]. However,
in this work, we explicitly learn-to-adapt which allows us to achieve superior
performance.

Our meta-learning approach directly incorporates the online adaptation
step into the learning objective, thus allowing us to obtain a base set of
weights that are better suited for unsupervised online adaptation. However,
since the adaptation is performed in an unsupervised manner (e.g., based
on re-projection loss [68, 93]), it is inherently noisy, causing an adverse effect
on the overall algorithm. To alleviate this deficiency, we learn a confidence
measure on the unsupervised loss and use the confidence weighted loss
to update the network parameters. This effectively masks the noise in
the adaptation step, preventing detrimental parameter updates. In our
case, the confidence measures are predicted using a small CNN which is
incorporated into the meta-learning framework, allowing the network to be
trained end-to-end with no additional supervision.

In our experiments, we make use of a synthetic stereo dataset (Syn-
thia [81]), a real-world dataset (KITTI-raw [122]), and generate a new
synthetic dataset containing multiple sequences of varying weather and

117

lighting conditions using the Carla simulator [89]. We evaluate our al-
gorithm between two pairs of dataset domains: 1) Carla to Synthia; and 2)
Carla or Synthia to KITTI-raw. In all experiments, our learning-to-adapt
method consistently outperforms the previous unsupervised adaptation
method (Chap. 9), validating our hypothesis that learning-to-adapt provides
an effective framework for stereo.

10 .1 related works

Meta-learning is a long-standing problem in machine learning [1, 2, 4] that
tries to exploit structures in data to learn more effective learning rules or
algorithms. Most of the recent development in meta-learning algorithms
have been focused on the few shot classification task [84, 110, 118], with few
exceptions like [90, 142] extending their models for simple function regres-
sion and reinforcement learning. In [90] the authors propose to constrain
the learning rule for the model to be stochastic gradient descent and update
the initial weight configuration of a network to make it more suited to learn
new tasks. This simple formulation has been recently extended to address
online adaptation in reinforcement learning using meta-learning to adapt
to changing agents [133] or non-stationary and competitive environments
[116]. Our work builds on [90] by modifying it to use structured regression,
unsupervised loss functions and temporal consistency during the update
process.

10 .2 problem setup and preliminaries

In this section, first we formalize online adaptation and discuss its advant-
ages. We then briefly review a meta-learning algorithm which we will
transpose into our continuous adaptation scenario.

10 .2 .1 Online Adaptation for Stereo

Let us denote two datasets of stereo video sequences: Ds (supervised), with
available ground truth, and Du (unsupervised), without ground truth. We
would like to learn network parameters offline using Ds, and use Du as
the target (or test) domain. However, in contrast to the standard evaluation

118

(a) Left frame (b) Equalized (c) KITTI tuned (d) Ours

Figure 10.1: We demonstrate the effectiveness of continuous adaptation on a chal-
lenging video sequence from [30]. (a) Left input frame, (b) histogram
equalized frame for visualization purpose, (c) disparity map produced
by a Dispnet-Corr1D [76] trained on annotated real data from KITTI, (d)
disparity map produced by a Dispnet-Corr1D [76] trained on synthetic
data using our learning-to-adapt framework and continuously adapted
on this video sequence. As shown, the prediction of our method does
not suffer from the same artifacts as (c) (highlighted in white), thus
illustrating the advantage of continuous unsupervised adaptation.

setting and following the evaluation protocol of Chap. 9 and [156], the model
is allowed to adapt to the target domain in an unsupervised manner.

Formally, let the parameters of the base model trained on Ds be θ. Given
an unseen target video sequence V ∈ Du, the adaptation is iteratively
performed for each pair of frames in the sequence, using gradient descent
on a predefined unsupervised loss function (Lu). At iteration t, the online
adaptation can be written as:

θt ← θt−1 −α∇θLu(θt−1, it) , (10.1)

where θ0 = θ, α > 0 is the learning rate and it denotes the stereo pair of tth

frame of the sequence V. Note that the network parameters are continuously
updated for the entire video in a sequential manner. This process is repeated
for each video sequence starting from the learned parameters θ.

motivating example . To show that deep CNN based stereo networks
are highly sensitive to domain-shift and that online adaptation is indeed
necessary, we give a motivating example below. We select a video sequence
from [30] as a test domain, where the environment is similar to that of
KITTI but features extreme weather conditions (e.g., night, snow, etc.). We
compare the predicted disparities of a Dispnet-Corr1D network [76] for two
training regimes. The first is fine-tuned on the KITTI training sets [27, 57],
and the second is trained on synthetic data using our learning-to-adapt

119

framework and performs unsupervised online adaptation for the target
domain. The results are shown in Fig. 10.1. Here it is evident that fine
tuning on real images is not sufficient to obtain reliable performance across
all environments as evidenced by the major mistakes in (c) bordered in
white. Indeed, (c) behaves worse than the network trained only on synthetic
data and adapted online to the target domain in an unsupervised manner
by our formulation (d).

10 .2 .2 Model Agnostic Meta Learning

Model Agnostic Meta Learning (MAML) [90] is a popular meta-learning
algorithm designed for few-shot learning problems. The main idea is to rep-
licate the procedure performed at test time throughout the training process.
Specifically, since the authors focus on few-shot learning, they include the
few-shot adaptation steps into the training procedure and measure the loss
function on the adapted parameters. In short, the parameters of the model
are trained so that they can quickly adapt to a given new task within a few
gradient steps.

Assuming that a single gradient step descent is performed at each adapta-
tion step. Let T be the set of tasks in the training set and for each τ ∈ T, the
corresponding task-specific training and validation sets be Dtrain

τ and Dval
τ ,

respectively. Now, the overall MAML objective can be written as:

min
θ

∑
τ∈T

L(θ−α∇θL(θ,Dtrain
τ),Dval

τ) , (10.2)

where α > 0 is the learning rate used for adaptation. This meta-objective
function is optimized via a two-stage gradient descent algorithm. Spe-
cifically, at each optimization iteration, the inner-loop performs a gradient
descent update for each task separately starting from a common base model
θ (adaptation step). Then, the outer-loop performs an update on the com-
mon base model, where the gradient is the sum of task-specific gradients
computed using the parameters updated in the inner loop. We refer the
interested reader to the original paper for more detail [90].

120

+

+

+

Figure 10.2: Schematic representation of one iteration of meta-learning of network
parameters θ using a batch of b sequences and sampling k frames from
each. We represent loss computation steps with hexagons and gradient
descent steps with colored arrows. Blue and orange arrows denote
adaptation steps and meta-learning steps, respectively. Starting from
an initial set of parameters θ, the network is adapted independently on
each sequence using loss function Lu. Then, the adapted models are
evaluated on the following frame of each sequence using loss function
Ls. Finally, the initial parameters θ are updated via a gradient descent
step to minimize the sum of loss functions obtained by all evaluated
models.

10 .3 learning to adapt for stereo

We first design a meta-learning algorithm for stereo adaptation by incorpor-
ating unsupervised continuous adaptation in the training paradigm. Then,
we introduce a new mechanism to re-weight the pixel-wise errors estimated
by the unsupervised loss function, making the adaptation more effective.

10 .3 .1 Meta Learning for Stereo Adaptation

Our hypothesis is that for any deep stereo network, before performing
online adaptation to a target domain, it is beneficial to learn a base set of
parameters (θ) that can be adapted effectively to unseen environments. We
observe that our objective of learning-to-adapt to unseen video sequences is
similar in spirit to that of MAML which tackled different tasks. Here, we
perform the single task of dense disparity regression, but learn how to adapt
to different environments and conditions.

We model an environment through a stereo video sequence Vτ = [iτ1, . . . , i
τ
n]

1.
At test time, the parameters are continuously adapted to the sequence Vτ

in an unsupervised manner according to Eq. 10.1. At training time, we
mimic the same adaptation process on training sequences and evaluate the

1 For simplicity we assumed that all video sequences are of same length, but it is not a
necessity.

121

Algorithm 3 Adaptation at training time for sequence Vτ

Require: θ,Vτ = [iτ1, . . . , i
τ
n]

1: θτ0 ← θ . Parameter initialization
2: for t← 1, . . . ,n− 1 do
3: θτt ← θτt−1 −α∇θτt−1Lu

(
θτt−1, it

)
. Adaptation

4: Ls
(
θτt , i

τ
t+1

)
. Supervised evaluation

performance of the model after each adaptation step on the subsequent
frame. To measure the performance, we rely on a supervised loss function
Ls (e.g., L1 or L2 regression). This procedure for a single sequence Vτ is
given in Alg. 3.

During training we perform this adaptation on a supervised training set
of video sequences Ds (e.g., a set of rendered synthetic video sequences).
The final objective of our problem is to maximise the measured performance
across all frames and all sequences in Ds. This can be written in a compact
form as:

min
θ

∑
Vτ∈Ds

n−1∑
t=1

Ls(θ
τ
t , i

τ
t+1) , (10.3)

where θτt is obtained sequentially through updates as detailed in Alg. 3.
Note that this formula extends Eq. 10.2 (MAML) to the continuous and

unsupervised adaptation scenario. Contrary to Eq. 10.2, we use two different
loss functions: 1) an unsupervised loss (Lu) to adapt a model to a video
sequence; and 2) a supervised loss (Ls) for the optimization of the set of
parameters θ. We make this distinction to mimic the test time behaviour.
Specifically, Lu (i.e., some form of unsupervised loss function) will be used
at test time, while Ls can use all the available annotations of the training set
for optimization. Our intuition is that by using two different loss functions,
θ can be optimized such that it is better suited to be adapted without
supervision (i.e., by Lu), while the performance is measured with respect to
the ground truth (i.e., by Ls).

Note that optimizing Eq. 10.3 on complete video sequences would be
infeasible for long video sequences as the memory requirement grows
linearly with n. To alleviate this, we approximate it by optimizing over
batches of sequences of k randomly sampled consecutive frames. Our meta-
learning algorithm is detailed in Alg. 4. After sampling a batch of sequences

122

Algorithm 4 Learning to Adapt for Stereo
Require: Training set Ds, and hyper-parameters α,β,k,b

1: Initialize θ
2: while not done do
3: Db ∼ Ds . Sample a batch of sequences
4: for all Vτ ∈ Db do
5: θτ ← θ . Initialize model
6: Lτ ← 0 . Initialize accumulator
7: [is, . . . , is+k] ∼ Vτ . Sample k frames
8: for t← s, . . . , s+ k− 1 do
9: θτ ← θτ −α∇θτLu(θτ, it) . Adaptation

10: Lτ ← Lτ +Ls(θ
τ, it+1) . Evaluation

11: θ← θ−β∇θ
∑

Vτ∈Db L
τ . Optimization

(line 3) and k random frames from each sequence (line 7), we perform
unsupervised adaptation on the current frame (line 9) and measure the
effectiveness of this update on the following frame (line 10). This process is
repeated for k frames. Finally, we optimize the initial model parameters θ to
minimize the loss computed across all the sequences and all the frames (line
11). Here, α and β are the two learning rates used for online adaptation and
for meta training, respectively. In Fig. 10.2, we illustrate one optimization
iteration of the network parameters θ using a batch of b sequences and k
frames from each.

By optimizing Eq. 10.3 we are able to learn a base parameter configuration
θ suited for adaptation. However, the use of an imperfect unsupervised
loss function (Lu) for adaptation introduces mistakes in the optimization
process that may have an adverse effect on the overall algorithm. To alleviate
this issue, we introduce a mechanism to learn to recognize the noise (or
mistakes) in the unsupervised loss estimation which can then be masked
effectively.

10 .3 .2 Confidence Weighted Adaptation

Unsupervised loss functions for dense disparity estimation often compute
some form of pixel-wise error map and minimize over the average mistake.
Unfortunately, this process is not perfect and usually introduces errors in
the optimization process. This may result in sub-optimal performance when
compared to the use of supervised loss functions. For example, the left-
right re-projection loss proposed in [68] is well-known to produce mistakes

123

Weighting Network

Reprojection Loss

Network

Figure 10.3: Schematic representation of our weighted adaptation for a single stereo
frame using an unsupervised re-projection based loss function Lu
(bright colors indicate higher values). The system takes a stereo-pair
(it) and computes a disparity map as well as a re-projection loss (εt).
This loss is then weighted according to Wt effectively masking the
mistakes.

in occluded areas and reflective surfaces. These mistakes are not due to
bad predictions by the disparity estimation model, but instead are due to
differences between the left and right frames. Ideally, we would like to have
a confidence function to detect erroneous estimations of this loss such that
they can be effectively masked. However, training such a confidence function
might be difficult since there is no easy procedure to produce ground-truth
annotations for this task. We propose to avoid explicit supervised training,
and instead, automatically learn to detect noise in the loss estimations by
incorporating this new objective into our meta-learning formulation.

In particular, we propose to learn a small CNN that takes a pixel-wise
error map estimated by Lu as an input and produces a tensor W as an
output, which has the same shape as the input and its elements are between
0 and 1. This output can be interpreted as a per pixel confidence on the
reliability of the loss estimation with 1 corresponding to high reliability. We
can now mask out potentially erroneous estimations by multiplying the loss
values by their corresponding confidence values. The result is a cleaner
measurement of the loss function that would reduce detrimental weight
updates due to incorrect loss values. The idea of masking or weighting the
contribution of single examples in the presence of noise or class imbalance
in the labels has been previously studied for supervised classification in [137,

124

146]. In our case, we transpose the similar idea to pixel-wise loss, estimated
for a dense regression task and directly predict a dense confidence map.

Let W = F(η, ε) be the mask produced by the re-weighting network
parametrized by η and ε = Lu(θ, i) be the estimated pixel-wise error map
computed on the prediction of the disparity model with parameter θ on
stereo frame i. We normalize the elements of W by dividing each one of
them by the number of elements in W. Now, by modifying Eq. 10.1, the final
weighted adaptation formula can be written as:

θ̃t ← θ̃t−1 −α∇θ
(
Wt �Lu(θ̃t−1, it)

)
,

Wt = F(η,Lu(θ̃t−1, it)) ,
(10.4)

where θ̃0 = θ and � indicating the element-wise product between the
matrices. We denote θ̃ as the network parameters which are updated accord-
ing to the unsupervised loss weighted by W.

In Fig. 10.3, we show a schematic representation of our proposed weighted
adaptation computed from a single stereo input frame it. On the bottom
right corner we give a visualization of the error map produced by an unsu-
pervised re-projection loss Lu, while the top right corner shows a possible
confidence mask Wt. In this example the weighting network is masking
errors due to occlusions (e.g., on the left side of the car) and due to reflections
(e.g., the puddles on the road).

Since supervision is not available for W, we indirectly train η by incorpor-
ating Eq. 10.4 inside the meta-learning objective described in Eq. 10.3. The
final objective of our complete system becomes:

min
θ,η

∑
Vτ∈Ds

n−1∑
t=1

Ls(θ̃
τ
t , i

τ
t) . (10.5)

Here, θ̃τt are the parameter of the model updated according to the weighted
unsupervised loss function on sequence Vτ. As such it depends on η and θ
at the same time. The whole network can be trained end-to-end with the
only supervision coming from the depth annotations used to compute Ls.
Both θ and η are tuned to maximize the network performances after few
steps of optimization as measured by Ls. By optimizing a single objective
function we are able to learn the parameter (η) of the weighting network,
and a set of base weights for the disparity estimation model (θ) which allow
for fast adaptation.

125

10 .4 experiments

This section presents an evaluation of the quality of our proposed adaptation
method. Firstly, we lay out our evaluation setup in Sec. 10.4.1. Secondly,
in Sec. 10.4.2, we provide qualitative and quantitative results for two pairs
of domains: 1) synthetic to real (i.e., training on synthetic data and testing
on real data from KITTI); and 2) synthetic to synthetic (i.e., training on one
synthetic dataset and testing on a different synthetic domain). Finally, in
Sec. 10.4.3 we report qualitative results illustrating our confidence weighted
loss.

10 .4 .1 Experimental Setup

datasets . In our experimental evaluation we simulate realistic test con-
ditions, in which no data from the target domain is available. We therefore
use training and testing data sampled from two completely disjoint datasets.
For the real dataset, we use the 71 different sequences of the KITTI-raw
dataset [31] (denoted as KITTI) accounting for ∼43K images with sparse
depth annotations provided by [122].

For the synthetic dataset, we have used the FlyingThings3D dataset [76]
(shortened F3D) to perform an initial training of the networks from random
initialization. Then, we use the Synthia dataset [81] as a synthetic dataset
containing scenarios similar to KITTI. The dataset is composed of 50 different
video sequences rendered in different seasons and weather conditions for a
total of ∼45K images. For this dataset we scaled the image to half resolution
to bring the disparity into the same range as KITTI.

Finally, using the Carla simulator[89], we have rendered a new dataset
(referenced as Carla) composed of 25 different video sequences, each being
a thousand frames long, with accurate ground truth data for each frame.
Each video sequence is rendered in 15 different weather conditions to add
variance to the dataset. Resulting in a total of 375K frames. During the
rendering we set up the virtual cameras to match the geometry of the real
KITTI dataset (i.e., same baseline, field of view and similar image resolution).

network architectures . For the experiments we have selected the
Dispnet-Corr1D [76] architecture (shortened to Dispnet). For all the evalu-
ation tests, we pretrain the networks on F3D to obtain a set of weights that

126

will be used as an initialization across all the other tests. We implement
the confidence function introduced in Sec. 10.3.2 as a small three layer fully
convolutional CNN with batch normalization. The network takes the re-
projection error scaled to quarter resolution as an input and produces an
output at the same resolution. The prediction is then scaled to full resolution
using bilinear upsampling.

evaluation protocol . After an initial offline training, we perform
online adaptation and evaluate models on sequences of stereo frames. To test
independent adaptations for each sequence, we reset the disparity network
to its trained weight configuration at the beginning of each test sequence.
Then, for each frame, first, we measure the performance of the current model
and then we adapt it by a single step of back-propagation and weight update
according to Eq. 10.1 before moving to the next frame. We do not measure
the performance on frames already used for adaptation.

metrics . We measure performance according to both average End Point
Error (EPE) and percentage of pixels with disparity error larger than 3

(D1-all). Firstly, we measure both metrics independently for each frame
to plot performance as a function of the number of frames processed for
adaptation. Secondly, we can average both metrics over each sequence and
finally average over all the dataset.

offline training . After the initial pretraining on F3D we fine tune
the networks on a training set with our learning-to-adapt framework, we
use k = 3 consecutive frames for each sample and set the learning rates
α = 0.00001 and β = 0.0001

online adaptation. We use the left-right re-projected unsupervised
loss [93] for the adaptation. Optimization is performed with SGD with
momentum, where the momentum value is set to 0.9 and a learning rate set
to 0.0001.

10 .4 .2 Results

We evaluate our learning-to-learn method between pairs of datasets, one
for training, and one for evaluation. We consider two scenarios: 1) synthetic

127

Method Training set D1-all (%) EPE ∆D1 ∆EPE

(a) SL - 9.43 1.62 - -
(b) SL+Ad - 7.81 1.44 -1.62 -0.18

(c) SL Carla 7.46 1.48 - -
(d) SL+Ad Carla 5.26 1.20 -2.20 -0.28

(e) SL Synthia 8.55 1.51 - -
(f) SL+Ad Synthia 5.33 1.19 -3.22 -0.32

O
ur

s

(g) L2A Carla 8.41 1.51 - -
(h) L2A+WAd Carla 4.49 1.12 -3.92 -0.39
(i) L2A Synthia 8.22 1.50 - -
(j) L2A+WAd Synthia 4.65 1.14 -3.57 -0.36

(k) SL (ideal) KITTI 4.26 1.12 - -

Table 10.1: Performance on KITTI for the Dispnet network trained according to
different methods after initialization from F3D. It can clearly be seen
that online adaptation (+Ad/+WAd) provides a significant improvement
compared to when it is left out. The best results are obtained when the
training is achieved using the L2A+WAd framework. Line (k) indicates
an upper bound on how well Dispnet can perform when fine tuned
on a subset of samples from the target domain. The last two columns
indicate the performance improvement with adaptation, and as it is
evident in the table, our L2A+WAd method obtains the largest increase
in performance with adaptation.

to real and 2) synthetic to synthetic. We compare the results of our learning-
to-adapt framework (L2A), and the method trained using a supervised L1
regression loss (SL). Methods performing unsupervised online adaptation
at test time are indicated by appending +Ad to the training method, and
confidence weighted adaptation by +WAd.

Synthetic to Real

The most interesting scenario is the one where training on a synthetic
domain is followed by testing on a real-life domain. Specifically, we train on
Synthia or Carla and then evaluate on the KITTI dataset.

The results for the Dispnet architecture are provided in Tab. 10.1. Lines
(a) to (f) report the performance when the network weights are obtained
in a standard way (using a supervised L1 loss function). As expected, the
network performs poorly when tested on a different domain with respect to

128

0 50 100 150 200 250 300 350 400 450 500
Adaptation steps

2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

D1
-A

ll
SL L2A SL+Ad. L2A+WAd.

Figure 10.4: Average D1-all error with respect to the number of adaptation steps
performed on the KITTI database by a Dispnet network trained accord-
ing to supervised learning (SL) or our learning to adapt framework
(L2A).

the one it was trained on - lines (a, c, e). The use of adaptation for this setup
provides a significant improvement - lines (b, d, f) - further motivating the
need to adapt to a new domain.

The two rows (h) and (j) report results obtained by learning to adapt on
Carla or Synthia using the L2A+WAd framework. Our proposed framework
clearly outperforms the baseline methods for both training datasets. Com-
paring lines (h) and (d) clearly shows that our training process is able to
learn a model which is better suited for continuous adaptation. The same
conclusions hold even for the results with Synthia (lines (j) and (f)). In
the last two columns we can observe the relative improvement provided by
adaptation for each method. In these results, it is evident that our L2A+WAd
framework provides the largest increase in accuracy when performing ad-
aptation. Line (k) provides the performance of Dispnet obtained by fine
tuning the base model using a supervised L1 regression loss on samples
from the target domains (i.e., KITTI2012 and KITTI2015 training sets). Our
L2A+WAd framework obtains competitive results, even when compared to
fine-tuning on a small dataset from the target domain with accurate ground
truths.

adaptation performance over time : To further highlight the dif-
ference of behaviour between models trained to regress and those trained
to adapt, we plot the average D1-all error achieved by Dispnet on KITTI as
a function of the number of adaptation steps in Fig. 10.4. The vertical axis

129

Method Training Set Ad. Unsupervised Ad. Supervised
D1-all (%) EPE D1-all (%) EPE

(a) SL+Ad - 26.56 3.96 15.60 2.24

(b) SL+Ad Carla 25.07 3.62 13.89 1.97

(c) L2A+Ad Carla 22.69 3.08 12.01 1.80
(d) L2A+WAd Carla 21.07 2.90 7 7

Table 10.2: Comparison of the different training methods when evaluated on se-
quences from Synthia. It can be seen that the best performing training
method is L2A+WAd. We also provide results for when we use a L1
supervised adaptation loss. Best results in bold.

represents the average D1-all error of the kth frame in all of the sequences
in KITTI. Comparing the methods with and without online adaptation,
it is clear that in both cases, adaptation drastically improves the perform-
ance. The comparison between SL+Ad (green line) and L2A+WAd (red line)
shows how quickly our method adapts to the given video sequence. The
poor results of L2A can easily be explained since our formulation never
explicitly optimizes the base model for regression. Instead it optimizes
the network to quickly learn-to-adapt, therefore the base model results
can be sub-optimal, providing the performance can be improved in a few
adaptation steps.

Synthetic to Synthetic

Here, we perform a more controlled synthetic-to-synthetic evaluation where
we can measure the difference in performance more explicitly thanks to
the availability of dense and accurate ground truth labels. The aim of the
following series of tests will be to quantify the performance of the two
key aspects of the learning-to-adapt framework, namely, learning to adapt
through meta-learning and learning to weight noisy loss estimation. To
further prove the generality of our learning to adapt formulation, we also
provide results when the networks are trained to perform online adaptation
using a supervised L1 loss (i.e., Lu ≡ Ls).

For these tests, we again use Dispnet trained on Carla but tested on all
the sequences of the full Synthia dataset. Specifically, to show that we can
adapt using different loss functions, we train for both unsupervised and

130

supervised adaptation2, and evaluate the performance of the following train-
ing scenarios: (a) Using the initial model trained using F3D; (b) Training
on Carla using a supervised L1 loss; (c) Using the learning-to-adapt frame-
work without confidence weighted loss; (d) Using the learning-to-adapt
framework with confidence weighted loss.

We report the results in Tab. 10.2, where it can be seen that explicitly
training Dispnet to adapt using our learning-to-learn formulation (c), al-
lows the network to exploit the online adaptation and greatly improve the
performance both in the unsupervised and supervised adaptation setups.
Finally, it can also be seen that weighting the unsupervised loss values
results in superior performance (d). For this test set up, the results clearly
demonstrate how our formulation is able to learn a weight configuration
that is more inclined to be adapted to a new environment.

10 .4 .3 Confidence Weighted Loss Function

In Fig. 10.5, we show a visualization of the confidence masks and weighted
errors optimized by our confidence guided adaptation loss described in
Sec. 10.3.2. The predicted confidence maps effectively mask out occluded
regions in the image while keeping the useful error signals in the rest of the
image (low confidence areas are encoded as dark pixels). Errors on occluded
regions, e.g., to the left of the traffic sign in the left column or to the left of the
car in the right column, are effectively masked out, producing a cleaner error
estimation that will improve adaptation performances. We wish to highlight
that the confidence network has been trained without any direct supervision
and only on Carla, nevertheless, it seems to be able to generalize well to
KITTI. We believe this ability to generalize is mainly due to the avoidance
of working directly with RGB inputs, which inevitably change drastically
between datasets. Instead, the confidence network relies on the estimated
re-projection error, which is more consistent across different environments.

2 In online adaptation we use the L1 loss between the predicted disparity and the ground
truth annotations for each stereo pair.

131

Carla KITTI
(a) Left RGB Frame

(b) Disparity Predicted

(c) Reprojection Error (ε)

(d) Confidence Mask (W)

(e) W � ε

Figure 10.5: Visualization of the errors optimized to achieve unsupervised adapt-
ation with reprojection based loss function and using our weighting
function. Brighter colours encode higher values.

132

11
C O N C L U S I O N S

In this part, we have proposed different procedures to adapt depth estima-
tion networks to unseen environments without the need for ground truth
data. In Chap. 8 we have shown how classic stereo algorithms can be used to
produce noisy label estimation and how confidence measure can be deployed
to identify such mistakes. By combining the two source of information we
were able to design a novel confidence guided loss able to outperform all
the other self-supervised proposal in our extensive experimentation. While
the focus of Chap. 8 was more on the achievable precision disregarding the
training time and amount of data needed to achieve it, in Chap. 9 we tackle
the adaptation problem from an online and continuous learning perspective
and focus on the best trade-off between speed and accuracy. To do so we
have introduced a new fast depth estimation architecture for stereo cameras
(MADNet) and a novel way to adapt it online to unseen environments while
keeping a high throughput (MAD). In terms of absolute performance, our
online proposal is still worse than the offline procedure proposed in Chap. 8,
but we believe this to be a key contribution for real-world applications
where the deployment environment is unknown beforehand and dynamic-
ally changing (e.g., weather conditions in an autonomous driving scenario).
To furthermore boost the performance of our online formulation in Chap. 10

we have shown how it is possible to train a depth prediction model that is
more amenable to be adapted effectively to new and unseen environments
by changing the training paradigm and deploying meta-learning techniques.
We believe this to be an exciting new direction to explore as for many applic-
ations having a reactive system able to compensate for sudden unexpected
changes is key to success. We have mainly reported quantitative results only
on an autonomous driving scenario due to the lack of properly annotated
dataset in different environments. However, the qualitative results shown
on our target supermarket environment seems to imply the effectiveness of
our solutions even in this completely different setup.

All the test proposed in this work concern adaptation of a pre-trained
deep neural network to new environments, however, we believe that both
our unsupervised loss formulations could also be effective in training from

133

scratch a deep neural network without any kind of supervision, we leave
this to future research. Moreover, in Chap. 8 we have shown how combining
naively noisy labels obtained from two very different stereo algorithms
does not result in an improvement in performance. Recent works like
[130], however, have shown how combining different disparity estimations
taking into account their confidence maps can result in reliable disparity
predictions. We plan to include in our work a similar procedure to obtain
more reliable noisy labels that might be used as pseudo ground truth for
off-line adaptation. We wish also to investigate a fast way to implement
the loss function we introduced in Chap. 8 as to deploy it inside the online
adaptation pipeline presented in Chap. 9 since in our experiments our
confidence guided loss always outperformed the competing reprojection
based methods. Regarding our online formulation, we plan to test and
eventually extend MAD to be applicable to any end-to-end stereo system. We
would also like to investigate more effective methods to select the portion of
the network to be updated online at each step. In particular, we might deploy
a small network trained by reinforcement learning in order to contextually
choose which training action to perform based on the current frame and/or
current network state. Finally, even with our lightweight MADNet, the
computational cost to deploy the system on embedded low power device is
still too high for most practical application as shown in Sec. 9.3.4, for this
reason, we would like to focus some research efforts on ways to make our
network even faster and lighter. Inspirations for this extension can come from
works regarding the deployment of neural networks on mobile low power
device such as [95, 154] where different paradigms for the implementation of
efficient convolutional layers are deployed. Finally we believe that the use of
more complex training paradigm, for example the meta-learning procedure
described in Chap. 10, represent a still quite fresh research field that has not
yet been properly addressed, for this reason in the future we plan to better
explore the deployment of the learning to learn paradigm in the context of
adaptation to unseen environments.

134

Part III

F I N A L R E M A R K S

12
C O N C L U S I O N S

The works presented in this thesis have concerned how to effectively deploy
state of the art computer vision techniques to ease and automate man-
agement tasks in retail shops or supermarket. We have mainly discussed
two macro problems: the detection and recognition of products on store
shelves (discussed in Part i) and the estimation of reliable 3D information
on unknown environments (discussed in Part ii). For both sections, we
have explained some of the peculiar shortcomings emerging from naively
applying state of the art computer vision techniques and how to effectively
overcome them.

For example, referring to Part i, we have shown how classic local feature
based object detection pipeline provide satisfying results when dealing
whit rigid boxed products but fails in presence of deformable packages and
rotated or skewed products (see Chap. 3). We then moved on to more modern
deep learning based object detectors and verified that they can indeed be
trained to effectively detect and recognize products with remarkable accuracy.
Such good performance comes at the cost of requiring huge annotated
dataset at training time to tune the network behavior. Since in a common
retail environment is unfeasible to think of keeping an up to date annotated
dataset concerning all possible types of products exposed on shelves and
constantly retraining an inference engine to keep up with changes, we
propose in Chap. 4 to split the detection and recognition phases into two
separate steps solved by two different algorithms. First, we carry out a
class agnostic detection phase where the task is only to recognize individual
instances of products on store shelves, then we perform recognition through
similarity search in a learned embedding space for product images. We
proved that our solution is able to outperform other competing methods in
the commonly used public Grocery product dataset in terms of accuracy
while keeping runtime efficiency. Finally in Chap. 5 we examined in depth
the task of performing product recognition through similarity search and
propose a novel metric learning network to directly address one of the
main problems in the retail scenario: the huge domain gap between images
acquired in-store and those available for training.

137

Moving on to Part ii, we have shown how the modern state of the art
algorithms for depth estimation suffers from huge performance drops when
exposed to environments different from those used at training time. To mitig-
ate the negative effects of this domain shift we have introduced in Chap. 8 a
novel way to adapt depth estimation networks to new environments without
the need of annotated data that are usually too costly to acquire for dense
3D estimation. We have proven the effectiveness of our proposal both in
indoor and outdoor environments, with stereo and mono depth estimation
networks, and only assuming the availability of stereo images from the
target domain at training time. In Chap. 9 we tackle the same problem but
propose to solve the domain shift online performing continuous domain
adaptation to new environments as soon as new frames are sensed. In our
proposal we keep the deep network always in training mode, thus slowing
it down considerably, for this reason we have introduced a novel lightweight
depth estimation network (MADNet) and a modular update process (MAD)
to improve network efficiency. Finally in Chap. 10 we have explored the idea
of designing the training process of a network from the beginning to make
it more suitable to be adapted quickly to new environments, we achieve so
by deploying training techniques taken from the meta-learning literature.

In this thesis, we have analyzed how to apply state of the art computer
vision techniques in real environments to solve two very different tasks.
Even if the two applications, at first sight, do not seems closely related,
most of the problems that we had to face to solve them are shared. For
example, since almost all our proposed solutions are based on deep learning
techniques, one of the main limitations that we had to overcome was how
to effectively train them without relying on a huge annotated dataset that
are often too costly to produce for many real applications. We tackled this
problem in the product recognition scenario by deploying GANs to easily
perform data augmentation and relying on embedding rather than classifier
to perform product recognition, while in the dense depth estimation scenario
we designed an ad hoc unsupervised loss function. Another common
obstacle that we had to overcome across the two tasks was how to close the
domain gap between train and test data. To address this problem in the
product scenario we deployed GANs to solve the domain shift at training
time by transforming images from one domain to the other, while for the
dense depth estimation we have designed systems and loss functions to
allow efficient continuous training and adaptation of deep learning based
methods. We believe these problems to be more general than the single

138

examples presented in this thesis and we are excited to test some of our
proposed solutions in contexts different from those considered so far. For
example, our online adaptation formulation could be extended to different
tasks like semantic segmentation or optical flow as long as it is possible to
define some kind of unsupervised loss function. At the same time, we have
already shown some preliminary results obtained by applying our metric
learning technique (Chap. 5) to scenario different than the retail ones. Finally,
the preliminary results in Chap. 10 seems to suggest that it is possible to
design more efficient learning algorithms able to converge to good solutions
using only a few examples. Besides applications to dense depth regression,
we would like to apply the same concept to object detection algorithm so
as to obtain a flexible system able to learn how to recognize new categories
based only on few annotated samples.

139

L I S T O F F I G U R E S

Figure 2.1 Illustration of the product recognition task with im-
ages from the Grocery Product dataset [39]. Given a
query image featuring multiple products (a) identify
regions associated with individual items and recog-
nize the product enclosed in each region based on
a database featuring only few (usually one) reference
images per product (two examples are shown in (b)).
Example of correct recognition are showed in (a) with
bounding boxes colored according to the recognized
classes. 12

Figure 3.1 Overview of our pipeline. For each step we highlight
the inputs and outputs through red and yellow boxes,
respectively. Product detections throughout stages are
highlighted by green boxes, while blue lines show the
edges between nodes on the graphs enconding both
the Reference and the Observed planograms. 16

Figure 3.2 Toy example concerning two small graphs with 4

nodes used to describe procedure FindSolution. The
color of each node denotes the product the numbers
within squares identify the different nodes in the text. 20

Figure 3.3 One iteration of our proposed Product Verification
step. The estimated ROI is drawn in yellow. The
correct proposal is highlighted in green while others
are in red. 22

Figure 3.4 Ground-truth dealing with product types provided
with the Grocery Products dataset (a) and our instance-
specific bounding boxes (b). In (a) a system should
identify at least one instance for each product type,
while in (b) it should find and correctly localize all
the displayed product instances. We will refer to
the two task in Chap. 4 as Customer use case and
Management use case. 24

141

Figure 3.5 Evaluation of different features for Unconstrained
Product Recognition. Results ordered from top to
bottom alongside with F-Measure scores. 25

Figure 3.6 Results after Graph-based Consistency Check when
using either BRISK or BRISK+SURF in the first step. 25

Figure 3.7 Evaluation of different choices for the final Product
Verification step of our pipeline, with BRISK features
used in the first step. 26

Figure 3.8 Qualitative results obtained by our pipeline: detected
items are enclosed by green boxes while planogram
compliance issues are highlighted by red boxes. . . . 26

Figure 4.1 Schematic structure of our proposed product recog-
nition pipeline. Dashed arrows denotes elaboration
that can be performed offline just once since are not
related to the query images. 31

Figure 4.2 Precision-recall curves obtained in the customer use
case by the yolo_ld system when trying to recognize
either the individual products or just their category. . 39

Figure 4.3 Precision-Recall curves for our full pipeline in the
Management use case. full@180 denotes performing
recognition on the small reference database of Chap. 3

(∼ 180 entries), full@3200 against all the products in
the Food category of Grocery Products (∼ 3200). 41

Figure 4.4 Examples of correct product recognitions in query
images from Grocery Products. 41

Figure 5.1 Exemplar images for the grocery recognition task: ref-
erence images (c-d) carefully acquired in studio (avail-
able at training time), query images: (a) captured in
the store (query at test time) and (b) synthetic query
generated by our GAN (used at training time). 46

142

Figure 5.2 Overview of DIHE at training time. Each training
sample consists of three images, two from domain A
(enclosed in green) and one from domain B (enclosed
in yellow). The generator and discriminator implements
a classic GAN for domain translation from A to B.
The encoder network uses two images from domain A
alongside with the generated one to learn an image
embedding by a modified triplet ranking loss. iBa is
generated to be both indistinguishable from images
sampled from domain B as well as hard to encode. . . 48

Figure 5.3 Visualization of the hierarchy of categories of the Gro-
cery_Food dataset used as training set throughout our
experiments. Each outermost category contains sev-
eral different fine classes (products) not depicted for
clarity. 53

Figure 5.4 Accuracy with increasing K in the three scenarios. . . 62

Figure 5.5 Qualitative results for K-NN similarity search by DIHE
on Grocery_Food and Product8600. Correct results
highlighted in green. 66

Figure 5.6 Qualitative results for K-NN similarity search by DIHE
on the Office31 dataset. Upper portion: Amazon→DSLR
scenario, lower portion: Amazon→Webcam. 67

Figure 5.7 Some wrong recognitions yielded by DIHE on the
different datasets. 68

Figure 5.8 Images generated by the GAN trained jointly with
the embedding network in DIHE for the Office31-
Amazon→Webcam (left) and Grocery_Food (right) scen-
arios. Columns labeled as Original depict images
provided as input to the Generator while those labeled
as Generated show the corresponding outputs. 68

Figure 7.1 Example of depth sensing in a retail environment, (a)
left rgb frame from a stereo couple acquired in a store,
(b) depth map estimated using a commercial stereo
sensor, (c) depth map estimated using DispNet stereo
network [76]. White pixels correspond to unknown
depth estimation. 74

143

Figure 8.1 Effectiveness of unsupervised adaptation. (a),(b): Left
and right images belonging to a challenging stereo
pair of the dataset without ground-truth proposed
in [30]. (c): Output provided by Dispnet [76]. (d):
Output achieved after unsupervised adaptation of
Dispnet. 80

Figure 8.2 Visualization of our confidence guided loss: (a) left
frame Il; (b) Disparity map, D̃, predicted by the
model; (c) Disparity map, D, estimated by a stereo
algorithm; (d) Confidence map, C, on D; (e) L1 re-
gression errors between (b) and (c), (f-h) same L1

errors weighted by C with τ = 0.00 (f), τ = 0.50 (g)
and τ = 0.99 (h). (e-h) Hotter colors marks bigger
differences. 83

Figure 8.3 Spatial distribution of training samples on a stereo
pair from KITTI dataset. Top row: reference image,
disparity map yielded by AD-CENSUS algorithm and
corresponding confidence map obtained by CCNN.
Bottom row from left ot right, three colormaps ob-
tained by thresholding the confidence map with with
τ equal to 0, 0.5 and 0.99, respectively. The colormap
depicts in green points above threshold and in blue
their intersection with the available ground truth points
obtained through a lidar scanner 88

Figure 8.4 Ablation experiments: adaptation of DispNet using
AD algorithm. (a) input image from KITTI, (b) dispar-
ity estimated using AD-CENSUS algorithm, (c) results
before adaptation, (d) adapting by stereo algorithm
only (Regression), (e) using confidence to weight the
loss function (Weighted) and (f) running our full ad-
aptation. 89

Figure 8.5 Ablation experiments: adaptation of monodepth (VGG
encoder) using AD algorithm. a) input image from
KITTI b) result from AD algorithm c) result before
adaptation d) adapting with stereo algorithm only e)
using confidence to weight the loss function f) run-
ning full adaptation. 97

144

Figure 8.6 Adaptation results for depth-from-mono on Middle-
bury v3 [42] (top) ETH3D dataset [112] (bottom).
From left to right: input (left) image, depth maps
from network before adaptation and after fine tuning
with our adaptation technique. The absolute error
rate is overimposed on each depth map. 100

Figure 8.7 Adaptation results for Dispnet on Middlebury v3 [42]
(top) ETH3D dataset [112] (bottom). From left to
right input (left) image, disparity maps predicted from
network before any adaptation and after fien tuning
with our adaptation technique. The bad1 error rate is
overimposed on each disparity map. 101

Figure 8.8 Adaptation results for Dispnet on stereo frames ac-
quired in a supermarket with a ZED stereo camera . 102

Figure 9.1 Disparity maps predicted by MADNet on a KITTI
sequence [31]. Left images (a), no adaptation (b),
online adaptation of the whole network (c), online
adaptation by MAD (d). 104

Figure 9.2 Schematic description of the proposed MADNet archi-
tecture (a), each circle between an Fk and the corres-
ponding Dk representing a warp and correlation layer
(b). Each pair (Fi,Di) composes a module Mi, adapt-
able independently by means of MAD (blue arrow)
much quickly compared to performing full back-prop
(red arrow) . 106

Figure 9.3 Qualitative comparison between disparity maps from
different architectures. From left to right, reference
image from KITTI 2015 online benchmark and dis-
parity map by DispNetC [76], StereoNet [138] and
MADNet. 111

Figure 9.4 MADNet: error across frames in the 2011_09_30_drive_0028_sync
sequence (KITTI dataset, Residential environment). . 114

145

Figure 10.1 We demonstrate the effectiveness of continuous ad-
aptation on a challenging video sequence from [30].
(a) Left input frame, (b) histogram equalized frame
for visualization purpose, (c) disparity map produced
by a Dispnet-Corr1D [76] trained on annotated real
data from KITTI, (d) disparity map produced by a
Dispnet-Corr1D [76] trained on synthetic data using
our learning-to-adapt framework and continuously
adapted on this video sequence. As shown, the pre-
diction of our method does not suffer from the same
artifacts as (c) (highlighted in white), thus illustrating
the advantage of continuous unsupervised adapta-
tion. 119

Figure 10.2 Schematic representation of one iteration of meta-
learning of network parameters θ using a batch of
b sequences and sampling k frames from each. We
represent loss computation steps with hexagons and
gradient descent steps with colored arrows. Blue and
orange arrows denote adaptation steps and meta-
learning steps, respectively. Starting from an initial
set of parameters θ, the network is adapted independ-
ently on each sequence using loss function Lu. Then,
the adapted models are evaluated on the following
frame of each sequence using loss function Ls. Finally,
the initial parameters θ are updated via a gradient
descent step to minimize the sum of loss functions
obtained by all evaluated models. 121

Figure 10.3 Schematic representation of our weighted adaptation
for a single stereo frame using an unsupervised re-
projection based loss function Lu (bright colors in-
dicate higher values). The system takes a stereo-pair
(it) and computes a disparity map as well as a re-
projection loss (εt). This loss is then weighted accord-
ing to Wt effectively masking the mistakes. 124

Figure 10.4 Average D1-all error with respect to the number of
adaptation steps performed on the KITTI database by
a Dispnet network trained according to supervised
learning (SL) or our learning to adapt framework (L2A).129

146

Figure 10.5 Visualization of the errors optimized to achieve un-
supervised adaptation with reprojection based loss
function and using our weighting function. Brighter
colours encode higher values. 132

147

L I S T O F TA B L E S

Table 4.1 Product recognition on the Grocery Products dataset in
the Customer scenario. Best result highlighted in bold.
Our proposals (in italic) yields large improvements in
terms of both mAP and PR with respect to previously
published results. 38

Table 4.2 Product recognition for Management use case. Our
proposal highlighted (in italic), best results in bold. . 40

Table 4.3 Results in the Management use case performing re-
cognition against all the items belonging to the Food
subclass of the Grocery Products dataset (∼ 3200). Our
proposals highlighted (in italic), best results in bold. . 40

Table 5.1 Ablation study for DIHE. Recognition accuracy for
1-NN and 5-NN similarity search in the three con-
sidered scenarios. Best results highlighted in bold. . . 56

Table 5.2 1-NN accuracy for different descriptors obtained from
layers of network pre-trained on the ImageNet-1000

classification dataset without any kind of additional
fine-tuning. Best results are higlighted in bold. 59

Table 5.3 Ablation study for DIHE on a VGG-16 network pre-
trained on ImageNet-1000. Recognition accuracy for
1-NN and 5-NN similarity search in the three con-
sidered scenarios. Best results highlighted in bold. . . 60

Table 5.4 Recognition accuracy for 1-NN and 5-NN similarity
search in the three considered scenarios. Best results
highlighted in bold, differences between DIHE and
best performing competitor reported in the last line. . 61

Table 5.5 Recognition accuracy for 1-NN and 5-NN similarity
search on two subset of the Office31 using as reference
images the Amazon subset. 63

Table 8.1 Intersection between confident points and ground-
truth data as function of the threshold value τ and its
error rate, for both AD-Census and SGM algorithms. 87

149

Table 8.2 Ablation study on the effectiveness of the different
components of our adaptation formulation using AD-
CENSUS as noisy label estimator. Results computed
on the KITTI RAW dataset using a 4-fold cross valid-
ation schema, best results highlighted in bold. 89

Table 8.3 Results obtained performing fine tuning of a pre-
trained DispNet network using different unsuper-
vised strategy. All results are computed on the KITTI
raw dataset using a 4-fold cross validation schema,
best results highlighted in bold, our proposals in italic. 93

Table 8.4 Experimental results on the KITTI dataset [31] on the
data split proposed by Eigen et al. [37]. On even con-
ditions, the proposed adaptation scheme outperforms
the supervision by Godard et al. [93]. Combining the
two produces the best results. 95

Table 8.5 Ablation experiments on the KITTI dataset [31] on the
data split proposed by Eigen et al. [37]. 95

Table 9.1 Comparison between fast disparity regression archi-
tectures on the KITTI 2015 test set without online
adaptation. 111

Table 9.2 Performance on the City, Residential, Campus and
Road sequences from KITTI [31]. Experiments with
DispNetC [76] (top) and MADNet (bottom) with and
without online adaptations. 112

Table 9.3 Results on the full KITTI raw dataset [31] (Campus→
City→ Residential→ Road). 115

Table 9.4 Results on the KITTI raw dataset [31] using MADNet
trained on synthetic data and different fast adaptation
strategies . 115

150

Table 10.1 Performance on KITTI for the Dispnet network trained
according to different methods after initialization from
F3D. It can clearly be seen that online adaptation
(+Ad/+WAd) provides a significant improvement com-
pared to when it is left out. The best results are
obtained when the training is achieved using the
L2A+WAd framework. Line (k) indicates an upper
bound on how well Dispnet can perform when fine
tuned on a subset of samples from the target domain.
The last two columns indicate the performance im-
provement with adaptation, and as it is evident in
the table, our L2A+WAd method obtains the largest
increase in performance with adaptation. 128

Table 10.2 Comparison of the different training methods when
evaluated on sequences from Synthia. It can be seen
that the best performing training method is L2A+WAd.
We also provide results for when we use a L1 super-
vised adaptation loss. Best results in bold. 130

151

B I B L I O G R A P H Y

[1] Jürgen Schmidhuber. ‘Evolutionary principles in self-referential learning, or

on learning how to learn: the meta-meta-... hook’. PhD thesis. Technische

Universität München, 1987 (cit. on p. 118).

[2] Devang K Naik and RJ Mammone. ‘Meta-neural networks that learn by

learning’. In: Neural Networks, 1992. IJCNN., International Joint Conference on.

Vol. 1. IEEE. 1992, pp. 437–442 (cit. on p. 118).

[3] Ramin Zabih and John Woodfill. ‘Non-parametric Local Transforms for

Computing Visual Correspondence’. In: Proceedings of the Third European
Conference on Computer Vision (Vol. II). ECCV ’94. Stockholm, Sweden:

Springer-Verlag New York, Inc., 1994, pp. 151–158 (cit. on pp. 81, 82, 86, 89).

[4] Sebastian Thrun and Lorien Pratt. ‘Learning to learn: Introduction and

overview’. In: Learning to learn. Springer, 1998, pp. 3–17 (cit. on p. 118).

[5] Thomas W Gruen, Daniel Corsten and Sundrr Bharadwaj. ‘Retail out of

stocks: A worldwide examination of causes, rates, and consumer responses’.

In: Grocery Manufacturers of America, Washington, DC (2002) (cit. on p. 11).

[6] Daniel Scharstein and Richard Szeliski. ‘A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms’. In: International journal
of computer vision 47.1-3 (2002), pp. 7–42 (cit. on p. 77).

[7] David G Lowe. ‘Distinctive image features from scale-invariant keypoints’.

In: International journal of computer vision 60.2 (2004), pp. 91–110 (cit. on

pp. 16, 18, 25, 34).

[8] Zhou Wang, Alan C Bovik, Hamid R Sheikh and Eero P Simoncelli. ‘Image

quality assessment: from error visibility to structural similarity’. In: IEEE
transactions on image processing 13.4 (2004), pp. 600–612 (cit. on pp. 52, 54,

86).

[9] Heiko Hirschmuller. ‘Accurate and efficient stereo processing by semi-

global matching and mutual information’. In: Computer Vision and Pattern
Recognition. Vol. 2. IEEE. 2005, pp. 807–814 (cit. on pp. 77, 81, 82, 86).

[10] Ingo Wegener. Complexity theory: exploring the limits of efficient algorithms.

Springer Science & Business Media, 2005 (cit. on p. 19).

[11] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. ‘Surf: Speeded up robust

features’. In: European conference on computer vision. Springer. 2006, pp. 404–

417 (cit. on pp. 15, 25).

153

[12] Raia Hadsell, Sumit Chopra and Yann LeCun. ‘Dimensionality reduction by

learning an invariant mapping’. In: Computer vision and pattern recognition,
2006 IEEE computer society conference on. Vol. 2. IEEE. 2006, pp. 1735–1742

(cit. on pp. 61, 63).

[13] Michele Merler, Carolina Galleguillos and Serge Belongie. ‘Recognizing

groceries in situ using in vitro training data’. In: Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE. 2007, pp. 1–8 (cit. on

pp. 11, 12).

[14] Motilal Agrawal, Kurt Konolige and Morten Rufus Blas. ‘Censure: Cen-

ter surround extremas for realtime feature detection and matching’. In:

Computer Vision–ECCV 2008. Springer, 2008, pp. 102–115 (cit. on p. 25).

[15] Koen EA van de Sande, Theo Gevers and Cees GM Snoek. ‘Color descriptors

for object category recognition’. In: Conference on Colour in Graphics, Imaging,
and Vision. Vol. 2008. 1. Society for Imaging Science and Technology. 2008,

pp. 378–381 (cit. on p. 26).

[16] Ashutosh Saxena, Min Sun and Andrew Y Ng. ‘Make3d: Learning 3d scene

structure from a single still image’. In: IEEE transactions on pattern analysis
and machine intelligence 31.5 (2009), pp. 824–840 (cit. on p. 78).

[17] Florent Perronnin, Yan Liu, Jorge Sánchez and Hervé Poirier. ‘Large-scale

image retrieval with compressed fisher vectors’. In: Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 3384–

3391 (cit. on p. 29).

[18] Kate Saenko, Brian Kulis, Mario Fritz and Trevor Darrell. ‘Adapting visual

category models to new domains’. In: European conference on computer vision.

Springer. 2010, pp. 213–226 (cit. on p. 63).

[19] Engin Tola, Vincent Lepetit and Pascal Fua. ‘Daisy: An efficient dense

descriptor applied to wide-baseline stereo’. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 32.5 (2010), pp. 815–830 (cit. on p. 25).

[20] Julian R Ullmann. ‘Bit-vector algorithms for binary constraint satisfaction

and subgraph isomorphism’. In: Journal of Experimental Algorithmics (JEA)
15 (2010), pp. 1–6 (cit. on p. 19).

[21] Tess Winlock, Eric Christiansen and Serge Belongie. ‘Toward real-time

grocery detection for the visually impaired’. In: Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on.

IEEE. 2010, pp. 49–56 (cit. on p. 13).

[22] Pablo F Alcantarilla and TrueVision Solutions. ‘Fast explicit diffusion for

accelerated features in nonlinear scale spaces’. In: IEEE Trans. Patt. Anal.
Mach. Intell 34.7 (2011), pp. 1281–1298 (cit. on p. 25).

154

[23] Stefan Leutenegger, Margarita Chli and Roland Y Siegwart. ‘BRISK: Binary

robust invariant scalable keypoints’. In: Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE. 2011, pp. 2548–2555 (cit. on pp. 25, 41).

[24] Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary Bradski. ‘ORB: an

efficient alternative to SIFT or SURF’. In: Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE. 2011, pp. 2564–2571 (cit. on p. 25).

[25] Alexandre Alahi, Raphael Ortiz and Pierre Vandergheynst. ‘Freak: Fast

retina keypoint’. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. Ieee. 2012, pp. 510–517 (cit. on p. 25).

[26] Pablo Fernández Alcantarilla, Adrien Bartoli and Andrew J Davison. ‘KAZE

features’. In: Computer Vision–ECCV 2012. Springer, 2012, pp. 214–227 (cit.

on p. 25).

[27] Andreas Geiger, Philip Lenz and Raquel Urtasun. ‘Are we ready for

autonomous driving? the kitti vision benchmark suite’. In: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012,

pp. 3354–3361 (cit. on pp. 75–77, 79, 83, 87, 91, 93, 112, 119).

[28] Xiaoyan Hu and Philippos Mordohai. ‘A quantitative evaluation of confid-

ence measures for stereo vision’. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) (2012), pp. 2121–2133 (cit. on p. 81).

[29] Kunal Mankodiya, Rajeev Gandhi and Priya Narasimhan. ‘Challenges and

opportunities for embedded computing in retail environments’. In: Sensor
Systems and Software. Springer, 2012, pp. 121–136 (cit. on p. 15).

[30] Stephan Meister, Bernd Jähne and Daniel Kondermann. ‘Outdoor stereo

camera system for the generation of real-world benchmark data sets’. In:

Optical Engineering 51.2 (2012), p. 021107 (cit. on pp. 79, 80, 119).

[31] Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urtasun. ‘Vision

meets Robotics: The KITTI Dataset’. In: International Journal of Robotics
Research (IJRR) (2013) (cit. on pp. 76, 83, 86, 90, 95–97, 103, 104, 110, 112, 114,

115, 126).

[32] Boqing Gong, Kristen Grauman and Fei Sha. ‘Connecting the dots with

landmarks: Discriminatively learning domain-invariant features for un-

supervised domain adaptation’. In: International Conference on Machine
Learning. 2013, pp. 222–230 (cit. on p. 63).

[33] R. Haeusler, R. Nair and D. Kondermann. ‘Ensemble Learning for Confid-

ence Measures in Stereo Vision’. In: CVPR. Proceedings. 1. 2013, pp. 305–312

(cit. on p. 81).

155

[34] Philipp Heise, Sebastian Klose, Brian Jensen and Alois Knoll. ‘Pm-huber:

Patchmatch with huber regularization for stereo matching’. In: Proceedings
of the IEEE International Conference on Computer Vision. 2013, pp. 2360–2367

(cit. on p. 85).

[35] Federico Tombari, Alessandro Franchi and Luigi Stefano. ‘BOLD features to

detect texture-less objects’. In: Proceedings of the IEEE International Conference
on Computer Vision. 2013, pp. 1265–1272 (cit. on p. 26).

[36] Matthew Cotter, Siddharth Advani, Jack Sampson, Kevin Irick and Vi-

jaykrishnan Narayanan. ‘A hardware accelerated multilevel visual classifier

for embedded visual-assist systems’. In: Proceedings of the 2014 IEEE/ACM
International Conference on Computer-Aided Design. IEEE Press. 2014, pp. 96–

100 (cit. on p. 13).

[37] David Eigen, Christian Puhrsch and Rob Fergus. ‘Depth map prediction

from a single image using a multi-scale deep network’. In: Advances in
neural information processing systems. 2014, pp. 2366–2374 (cit. on pp. 78, 86,

95, 96).

[38] Emanuele Frontoni, Adriano Mancini, Primo Zingaretti and Valerio Pla-

cidi. ‘Information management for intelligent retail environment: The Shelf

Detector system’. In: Information 5.2 (2014), pp. 255–271 (cit. on p. 15).

[39] Marian George and Christian Floerkemeier. ‘Recognizing products: A per-

exemplar multi-label image classification approach’. In: Computer Vision–
ECCV 2014. Springer, 2014, pp. 440–455 (cit. on pp. 12, 13, 24, 35, 36, 38,

53).

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio. ‘Generative

adversarial nets’. In: Advances in neural information processing systems. 2014,

pp. 2672–2680 (cit. on p. 47).

[41] Lubor Ladicky, Jianbo Shi and Marc Pollefeys. ‘Pulling things out of

perspective’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2014, pp. 89–96 (cit. on p. 78).

[42] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl,

Nera Nesic, Xi Wang and Porter Westling. ‘High-Resolution Stereo Datasets

with Subpixel-Accurate Ground Truth.’ In: GCPR. Ed. by Xiaoyi Jiang,

Joachim Hornegger and Reinhard Koch. Vol. 8753. Lecture Notes in Com-

puter Science. Springer, 2014, pp. 31–42. isbn: 978-3-319-11751-5 (cit. on

pp. 79, 99–101).

156

[43] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan and Stefan Carls-

son. ‘CNN features off-the-shelf: an astounding baseline for recognition’. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2014, pp. 806–813 (cit. on pp. 30, 32, 46).

[44] Robert Spangenberg, Tobias Langner, Sven Adfeldt and Raúl Rojas. ‘Large

scale semi-global matching on the cpu’. In: Intelligent Vehicles Symposium
Proceedings, 2014 IEEE. IEEE. 2014, pp. 195–201 (cit. on p. 86).

[45] Aristotle Spyropoulos, Nikos Komodakis and Philippos Mordohai. ‘Learn-

ing to Detect Ground Control Points for Improving the Accuracy of Stereo

Matching.’ In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2014, pp. 1621–1628 (cit. on p. 81).

[46] Federico Tombari and Luigi Di Stefano. ‘Interest Points via Maximal Self-

Dissimilarities’. In: Computer Vision–ACCV 2014. Springer, 2014, pp. 586–

600 (cit. on p. 25).

[47] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang,

James Philbin, Bo Chen and Ying Wu. ‘Learning fine-grained image similar-

ity with deep ranking’. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 1386–1393 (cit. on pp. 31, 33, 49, 61,

63, 64).

[48] Siddharth Advani, Brigid Smith, Yasuki Tanabe, Kevin Irick, Matthew

Cotter, Jack Sampson and Vijaykrishnan Narayanan. ‘Visual co-occurrence

network: using context for large-scale object recognition in retail’. In:

Embedded Systems For Real-time Multimedia (ESTIMedia), 2015 13th IEEE
Symposium on. IEEE. 2015, pp. 1–10 (cit. on p. 13).

[49] Sean Bell and Kavita Bala. ‘Learning visual similarity for product design

with convolutional neural networks’. In: ACM Transactions on Graphics
(TOG) 34.4 (2015), p. 98 (cit. on p. 31).

[50] Zhuoyuan Chen, Xun Sun, Liang Wang, Yinan Yu and Chang Huang. ‘A

Deep Visual Correspondence Embedding Model for Stereo Matching Costs’.

In: The IEEE International Conference on Computer Vision (ICCV). 2015 (cit. on

p. 77).

[51] Tali Dekel, Shaul Oron, Michael Rubinstein, Shai Avidan and William

T Freeman. ‘Best-Buddies Similarity for robust template matching’. In:

Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on.

IEEE. 2015, pp. 2021–2029 (cit. on p. 27).

[52] Emanuele Frontoni, Adriano Mancini and Primo Zingaretti. ‘Embedded

Vision Sensor Network for Planogram Maintenance in Retail Environments’.

In: Sensors 15.9 (2015), pp. 21114–21133 (cit. on p. 15).

157

[53] M Hadi Kiapour, Xufeng Han, Svetlana Lazebnik, Alexander C Berg and

Tamara L Berg. ‘Where to buy it: Matching street clothing photos in online

shops’. In: Proceedings of the IEEE International Conference on Computer Vision.

2015, pp. 3343–3351 (cit. on pp. 31, 47).

[54] Diederik Kingma and Jimmy Ba. ‘Adam: A method for stochastic op-

timization’. In: Proceedings of the 3rd International Conference for Learning
Representations. 2015 (cit. on pp. 52, 54).

[55] Bo Li, Chunhua Shen, Yuchao Dai, Anton van den Hengel and Mingyi

He. ‘Depth and surface normal estimation from monocular images using

regression on deep features and hierarchical CRFs’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 1119–

1127 (cit. on p. 78).

[56] M Marder, S Harary, A Ribak, Y Tzur, S Alpert and A Tzadok. ‘Using

image analytics to monitor retail store shelves’. In: IBM Journal of Research
and Development 59.2/3 (2015), pp. 3–1 (cit. on p. 15).

[57] Moritz Menze and Andreas Geiger. ‘Object Scene Flow for Autonomous

Vehicles’. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2015 (cit. on pp. 75–77, 79, 83, 91, 93, 112, 119).

[58] Min Gyu Park and Kuk Jin Yoon. ‘Leveraging Stereo Matching With

Learning-Based Confidence Measures’. In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2015 (cit. on pp. 80, 81).

[59] Shaoqing Ren, Kaiming He, Ross Girshick and Jian Sun. ‘Faster R-CNN:

Towards real-time object detection with region proposal networks’. In:

Advances in neural information processing systems. 2015, pp. 91–99 (cit. on

pp. 29, 30, 32).

[60] Olaf Ronneberger, Philipp Fischer and Thomas Brox. ‘U-net: Convolutional

networks for biomedical image segmentation’. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer. 2015,

pp. 234–241 (cit. on pp. 51, 54).

[61] Florian Schroff, Dmitry Kalenichenko and James Philbin. ‘Facenet: A

unified embedding for face recognition and clustering’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 815–823

(cit. on pp. 31, 46).

[62] Karen Simonyan and Andrew Zisserman. ‘Very deep convolutional net-

works for large-scale image recognition’. In: (2015) (cit. on pp. 36, 58,

96).

158

[63] A. Spyropoulos and P. Mordohai. ‘Ensemble Classifier for Combining Stereo

Matching Algorithms’. In: 2015 International Conference on 3D Vision. 2015

(cit. on p. 81).

[64] Gül Varol and Rıdvan S Kuzu. ‘Toward retail product recognition on

grocery shelves’. In: Sixth International Conference on Graphic and Image
Processing (ICGIP 2014). International Society for Optics and Photonics.

2015, pp. 944309–944309 (cit. on p. 13).

[65] Jure Zbontar and Yann LeCun. ‘Computing the stereo matching cost with

a convolutional neural network’. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 1592–1599 (cit. on p. 77).

[66] Ipek Baz, Erdem Yoruk and Mujdat Cetin. ‘Context-aware hybrid classifica-

tion system for fine-grained retail product recognition’. In: Image, Video, and
Multidimensional Signal Processing Workshop (IVMSP), 2016 IEEE 12th. IEEE.

2016, pp. 1–5 (cit. on p. 13).

[67] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus

Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth and Bernt Schiele.

‘The cityscapes dataset for semantic urban scene understanding’. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 3213–3223 (cit. on pp. 96, 99).

[68] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro and Ian Reid. ‘Unsupervised

cnn for single view depth estimation: Geometry to the rescue’. In: European
Conference on Computer Vision. Springer. 2016, pp. 740–756 (cit. on pp. 78,

104, 105, 117, 123).

[69] Albert Gordo, Jon Almazán, Jerome Revaud and Diane Larlus. ‘Deep image

retrieval: Learning global representations for image search’. In: European
Conference on Computer Vision. Springer. 2016, pp. 241–257 (cit. on pp. 30,

46).

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. ‘Deep residual

learning for image recognition’. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on pp. 58, 96).

[71] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari and

Nassir Navab. ‘Deeper depth prediction with fully convolutional residual

networks’. In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE.

2016, pp. 239–248 (cit. on p. 78).

[72] Gil Levi and Tal Hassner. ‘LATCH: learned arrangements of three patch

codes’. In: 2016 IEEE winter conference on applications of computer vision
(WACV). IEEE. 2016, pp. 1–9 (cit. on p. 25).

159

[73] Fayao Liu, Chunhua Shen, Guosheng Lin and Ian Reid. ‘Learning depth

from single monocular images using deep convolutional neural fields’. In:

IEEE transactions on pattern analysis and machine intelligence 38.10 (2016),

pp. 2024–2039 (cit. on p. 78).

[74] Wenjie Luo, Alexander G Schwing and Raquel Urtasun. ‘Efficient deep

learning for stereo matching’. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 5695–5703 (cit. on p. 77).

[75] Giulio Marin, Pietro Zanuttigh and Stefano Mattoccia. ‘Reliable Fusion of

ToF and Stereo Depth Driven by Confidence Measures’. In: 14th European
Conference on Computer Vision (ECCV 2016). 2016, pp. 386–401 (cit. on p. 81).

[76] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,

Alexey Dosovitskiy and Thomas Brox. ‘A Large Dataset to Train Convolu-

tional Networks for Disparity, Optical Flow, and Scene Flow Estimation’. In:

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016

(cit. on pp. 74, 75, 77, 79, 80, 87, 90, 106, 109, 111, 112, 119, 126).

[77] Christian Mostegel, Markus Rumpler, Friedrich Fraundorfer and Horst

Bischof. ‘Using Self-Contradiction to Learn Confidence Measures in Stereo

Vision’. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 2016, pp. 4067–4076 (cit. on

p. 81).

[78] Matteo Poggi and Stefano Mattoccia. ‘Deep Stereo Fusion: combining

multiple disparity hypotheses with deep-learning’. In: Proceedings of the 4th
International Conference on 3D Vision, 3DV. 2016 (cit. on p. 81).

[79] Matteo Poggi and Stefano Mattoccia. ‘Learning a general-purpose confid-

ence measure based on O(1) features and a smarter aggregation strategy for

semi global matching’. In: Proceedings of the 4th International Conference on
3D Vision, 3DV. 2016 (cit. on pp. 80, 81).

[80] Matteo Poggi and Stefano Mattoccia. ‘Learning from scratch a confidence

measure’. In: Proceedings of the 27th British Conference on Machine Vision,
BMVC. 2016 (cit. on pp. 80, 81, 86, 87).

[81] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez and Ant-

onio M. Lopez. ‘The SYNTHIA Dataset: A Large Collection of Synthetic

Images for Semantic Segmentation of Urban Scenes’. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2016 (cit. on pp. 117,

126).

[82] Akihito Seki and Marc Pollefeys. ‘Patch Based Confidence Prediction for

Dense Disparity Map’. In: British Machine Vision Conference (BMVC). 2016

(cit. on pp. 77, 81).

160

[83] Giorgos Tolias, Ronan Sicre and Hervé Jégou. ‘Particular object retrieval

with integral max-pooling of CNN activations’. In: (2016) (cit. on pp. 36, 52,

54, 56, 58).

[84] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra et al. ‘Match-

ing networks for one shot learning’. In: Advances in Neural Information
Processing Systems. 2016, pp. 3630–3638 (cit. on pp. 47, 61, 63, 118).

[85] Xi Wang, Zhenfeng Sun, Wenqiang Zhang, Yu Zhou and Yu-Gang Jiang.

‘Matching user photos to online products with robust deep features’. In:

Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval.
ACM. 2016, pp. 7–14 (cit. on p. 47).

[86] Erdem Yörük, Kaan Taha Öner and Ceyhun Burak Akgül. ‘An efficient

Hough transform for multi-instance object recognition and pose estimation’.

In: Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE.

2016, pp. 1352–1357 (cit. on pp. 14, 38).

[87] Jure Zbontar and Yann LeCun. ‘Stereo matching by training a convolutional

neural network to compare image patches’. In: Journal of Machine Learning
Research 17.1-32 (2016), p. 2 (cit. on p. 81).

[88] Xiaofan Zhang, Feng Zhou, Yuanqing Lin and Shaoting Zhang. ‘Embedding

label structures for fine-grained feature representation’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 1114–

1123 (cit. on pp. 46, 61).

[89] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez and

Vladlen Koltun. ‘CARLA: An Open Urban Driving Simulator’. In: Proceed-
ings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16 (cit. on

pp. 118, 126).

[90] Chelsea Finn, Pieter Abbeel and Sergey Levine. ‘Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks’. In: Proceedings of the
34th International Conference on Machine Learning. Ed. by Doina Precup

and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.

International Convention Centre, Sydney, Australia: PMLR, Aug. 2017,

pp. 1126–1135 (cit. on pp. 117, 118, 120).

[91] Annalisa Franco, Davide Maltoni and Serena Papi. ‘Grocery product de-

tection and recognition’. In: Expert Systems with Applications (2017) (cit. on

p. 13).

[92] Spyros Gidaris and Nikos Komodakis. ‘Detect, Replace, Refine: Deep

Structured Prediction for Pixel Wise Labeling’. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 77).

161

[93] Clément Godard, Oisin Mac Aodha and Gabriel J Brostow. ‘Unsupervised

monocular depth estimation with left-right consistency’. In: CVPR. Vol. 2.

6. 2017, p. 7 (cit. on pp. 78, 85, 86, 93, 95–98, 104, 105, 108, 110, 117, 127).

[94] Bharath Hariharan and Ross Girshick. ‘Low-shot visual recognition by

shrinking and hallucinating features’. In: Proc. of IEEE Int. Conf. on
Computer Vision (ICCV), Venice, Italy. 2017 (cit. on p. 47).

[95] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto and Hartwig Adam. ‘Mobilenets:

Efficient convolutional neural networks for mobile vision applications’. In:

arXiv preprint arXiv:1704.04861 (2017) (cit. on p. 134).

[96] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Kor-

attikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio

Guadarrama and Kevin Murphy. ‘Speed/Accuracy Trade-Offs for Modern

Convolutional Object Detectors’. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. 2017,

pp. 3296–3297. doi: 10.1109/CVPR.2017.351 (cit. on pp. 29, 30, 32).

[97] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A Efros. ‘Image-to-

Image Translation with Conditional Adversarial Networks’. In: Computer
Vision and Pattern Recognition, CVPR 2017. 2017 (cit. on pp. 47, 51, 54, 56).

[98] Leonid Karlinsky, Joseph Shtok, Yochay Tzur and Asaf Tzadok. ‘Fine-

grained recognition of thousands of object categories with single-example

training’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4113–4122 (cit. on p. 14).

[99] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan

Kennedy, Abraham Bachrach and Adam Bry. ‘End-To-End Learning of Geo-

metry and Context for Deep Stereo Regression’. In: The IEEE International
Conference on Computer Vision (ICCV). 2017 (cit. on pp. 77, 107).

[100] Sunok Kim, Dongbo Min, Seungryong Kim and Kwanghoon Sohn. ‘Feature

Augmentation for Learning Confidence Measure in Stereo Matching’. In:

IEEE Transactions on Image Processing 26.12 (2017), pp. 6019–6033 (cit. on

p. 81).

[101] Yevhen Kuznietsov, Jorg Stuckler and Bastian Leibe. ‘Semi-Supervised Deep

Learning for Monocular Depth Map Prediction’. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 78).

[102] Jiahao Pang, Wenxiu Sun, Jimmy SJ. Ren, Chengxi Yang and Qiong Yan.

‘Cascade Residual Learning: A Two-Stage Convolutional Neural Network

for Stereo Matching’. In: The IEEE International Conference on Computer Vision
(ICCV) Workshops. 2017 (cit. on p. 77).

162

https://doi.org/10.1109/CVPR.2017.351

[103] Matteo Poggi and Stefano Mattoccia. ‘Learning to Predict Stereo Reliability

Enforcing Local Consistency of Confidence Maps’. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 81).

[104] Matteo Poggi, Fabio Tosi and Stefano Mattoccia. ‘Efficient confidence

measures for embedded stereo’. In: 19th International Conference on Image
Analysis and Processing (ICIAP 2017). 2017 (cit. on p. 81).

[105] Matteo Poggi, Fabio Tosi and Stefano Mattoccia. ‘Even More Confident

predictions with deep machine-learning’. In: 12th IEEE Embedded Vision
Workshop (EVW2017) held in conjunction with IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 81).

[106] Matteo Poggi, Fabio Tosi and Stefano Mattoccia. ‘Quantitative Evaluation

of Confidence Measures in a Machine Learning World’. In: The IEEE
International Conference on Computer Vision (ICCV). 2017 (cit. on pp. 81, 82).

[107] Siyuan Qiao, Wei Shen, Weichao Qiu, Chenxi Liu and Alan Yuille. ‘Scalenet:

Guiding object proposal generation in supermarkets and beyond’. In: 2017
IEEE International Conference on Computer Vision, ICCV. 2017, pp. 22–29

(cit. on pp. 30, 32).

[108] Zhaofan Qiu, Yingwei Pan, Ting Yao and Tao Mei. ‘Deep Semantic Hashing

with Generative Adversarial Networks’. In: Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 2017, pp. 225–234 (cit. on p. 47).

[109] Anurag Ranjan and Michael J. Black. ‘Optical Flow Estimation Using a

Spatial Pyramid Network’. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017 (cit. on p. 106).

[110] Sachin Ravi and Hugo Larochelle. ‘Optimization as a model for few-shot

learning’. In: In International Conference on Learning Representations (ICLR).
2017 (cit. on p. 118).

[111] Joseph Redmon and Ali Farhadi. ‘YOLO9000: Better, Faster, Stronger’. In:

2017 IEEE Conference on Computer Vision and Pattern Recognition,CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. 2017, pp. 6517–6525. doi: 10.1109/

CVPR.2017.690 (cit. on pp. 29, 30, 32, 36).

[112] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler,

Konrad Schindler, Marc Pollefeys and Andreas Geiger. ‘A Multi-View

Stereo Benchmark with High-Resolution Images and Multi-Camera Videos’.

In: Conference on Computer Vision and Pattern Recognition (CVPR). 2017 (cit.

on pp. 99–101).

163

https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690

[113] Akihito Seki and Marc Pollefeys. ‘SGM-Nets: Semi-Global Matching With

Neural Networks’. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017 (cit. on pp. 77, 81).

[114] Amit Shaked and Lior Wolf. ‘Improved Stereo Matching With Constant

Highway Networks and Reflective Confidence Learning’. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2017 (cit. on

p. 81).

[115] Devashish Shankar, Sujay Narumanchi, HA Ananya, Pramod Kompalli and

Krishnendu Chaudhury. ‘Deep learning based large scale visual recom-

mendation and search for E-Commerce’. In: arXiv preprint arXiv:1703.02344
(2017) (cit. on pp. 31, 47).

[116] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor

Mordatch and Pieter Abbeel. ‘Continuous adaptation via meta-learning

in nonstationary and competitive environments’. In: arXiv preprint
arXiv:1710.03641 (2017) (cit. on p. 118).

[117] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda

Wang and Russ Webb. ‘Learning from Simulated and Unsupervised Images

through Adversarial Training’. In: Computer Vision and Pattern Recognition,
CVPR 2017. 2017 (cit. on pp. 47, 50).

[118] Jake Snell, Kevin Swersky and Richard Zemel. ‘Prototypical networks for

few-shot learning’. In: Advances in Neural Information Processing Systems.

2017, pp. 4077–4087 (cit. on p. 118).

[119] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke and Alexander A Alemi.

‘Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning.’ In: AAAI. 2017, pp. 4278–4284 (cit. on p. 58).

[120] Fabio Tosi, Matteo Poggi, Alessio Tonioni, Luigi Di Stefano and Stefano

Mattoccia. ‘Learning confidence measures in the wild’. In: Proceedings of
the 28th British Machine Vision Conference (BMVC 2017), London, UK. 2017,

pp. 4–7 (cit. on p. 81).

[121] Eric Tzeng, Judy Hoffman, Kate Saenko and Trevor Darrell. ‘Adversarial dis-

criminative domain adaptation’. In: Computer Vision and Pattern Recognition
(CVPR). Vol. 1. 2. 2017, p. 4 (cit. on p. 47).

[122] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox

and Andreas Geiger. ‘Sparsity Invariant CNNs’. In: International Conference
on 3D Vision (3DV). 2017 (cit. on pp. 86, 90, 96, 110, 117, 126).

164

[123] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer,

Eddy Ilg, Alexey Dosovitskiy and Thomas Brox. ‘Demon: Depth and

motion network for learning monocular stereo’. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Vol. 5. 2017 (cit. on p. 78).

[124] Chao-Yuan Wu, R Manmatha, Alexander J Smola and Philipp Krähenbühl.

‘Sampling matters in deep embedding learning’. In: The IEEE International
Conference on Computer Vision (ICCV). 2017 (cit. on p. 46).

[125] Xu Zhang, Felix X Yu, Sanjiv Kumar and Shih-Fu Chang. ‘Learning Spread-

out Local Feature Descriptors’. In: The IEEE International Conference on
Computer Vision (ICCV). 2017 (cit. on pp. 46, 61, 63).

[126] Chao Zhou, Hong Zhang, Xiaoyong Shen and Jiaya Jia. ‘Unsupervised learn-

ing of stereo matching’. In: The IEEE International Conference on Computer
Vision (ICCV). Vol. 2. 8. 2017 (cit. on pp. 77, 104, 110).

[127] Tinghui Zhou, Matthew Brown, Noah Snavely and David G Lowe. ‘Unsu-

pervised learning of depth and ego-motion from video’. In: CVPR. Vol. 2.

6. 2017, p. 7 (cit. on pp. 78, 96, 104).

[128] Jun-Yan Zhu, Taesung Park, Phillip Isola and Alexei A Efros. ‘Unpaired

image-to-image translation using cycle-consistent adversarial networks’. In:

International Computer Vision Conference, ICCV 2017. 2017 (cit. on p. 47).

[129] Filippo Aleotti, Fabio Tosi, Matteo Poggi and Stefano Mattoccia. ‘Generative

Adversarial Networks for unsupervised monocular depth prediction’. In:

15th European Conference on Computer Vision (ECCV) Workshops. 2018 (cit. on

p. 78).

[130] Konstantinos Batsos, Changjiang Cai and Philippos Mordohai. ‘CBMV: A

Coalesced Bidirectional Matching Volume for Disparity Estimation’. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018

(cit. on p. 134).

[131] Jia-Ren Chang and Yong-Sheng Chen. ‘Pyramid Stereo Matching Network’.

In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2018 (cit. on p. 77).

[132] Jia-Ren Chang and Yong-Sheng Chen. ‘Pyramid Stereo Matching Network’.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 5410–5418 (cit. on p. 107).

[133] Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey

Levine and Chelsea Finn. ‘Learning to Adapt: Meta-Learning for Model-

Based Control’. In: arXiv preprint arXiv:1803.11347 (2018) (cit. on p. 118).

165

[134] Arun CS Kumar, Suchendra M. Bhandarkar and Prasad Mukta. ‘Monocular

Depth Prediction using Generative Adversarial Networks’. In: 1st Inter-
national Workshop on Deep Learning for Visual SLAM, (CVPR). 2018 (cit. on

p. 78).

[135] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich and

Dacheng Tao. ‘Deep Ordinal Regression Network for Monocular Depth Es-

timation’. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018 (cit. on p. 78).

[136] Zehua Fu and Mohsen Ardabilian. ‘Learning Confidence Measures by Multi-

modal Convolutional Neural Networks.’ In: The IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2018 (cit. on p. 81).

[137] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li and Li Fei-Fei. ‘Ment-

orNet: Regularizing very deep neural networks on corrupted labels’. In:

Procedings of the International Conference on Machine Learning (ICML). 2018

(cit. on pp. 84, 124).

[138] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien

Valentin and Shahram Izadi. ‘StereoNet: Guided Hierarchical Refinement

for Real-Time Edge-Aware Depth Prediction’. In: 15th European Conference
on Computer Vision (ECCV 2018). 2018 (cit. on pp. 104, 111, 116).

[139] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei Chen, Linbo Qiao,

Li Zhou and Jianfeng Zhang. ‘Learning for Disparity Estimation Through

Feature Constancy’. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018 (cit. on p. 77).

[140] Reza Mahjourian, Martin Wicke and Anelia Angelova. ‘Unsupervised

Learning of Depth and Ego-Motion from Monocular Video Using 3D Geo-

metric Constraints’. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018 (cit. on pp. 78, 96).

[141] Simon Meister, Junhwa Hur and Stefan Roth. ‘UnFlow: Unsupervised

Learning of Optical Flow with a Bidirectional Census Loss’. In: AAAI. New

Orleans, Louisiana, 2018 (cit. on p. 104).

[142] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen and Pieter Abbeel. ‘A simple

neural attentive meta-learner’. In: In International Conference on Learning
Representations (ICLR). 2018 (cit. on p. 118).

[143] Jiahao Pang, Wenxiu Sun, Chengxi Yang, Jimmy Ren, Ruichao Xiao, Jin

Zeng and Liang Lin. ‘Zoom and Learn: Generalizing Deep Stereo Matching

to Novel Domains’. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018 (cit. on pp. 77, 104, 110).

166

[144] Matteo Poggi, Filippo Aleotti, Fabio Tosi and Stefano Mattoccia. ‘Towards

real-time unsupervised monocular depth estimation on CPU’. In: IEEE/JRS
Conference on Intelligent Robots and Systems (IROS). 2018 (cit. on pp. 78, 104).

[145] Matteo Poggi, Fabio Tosi and Stefano Mattoccia. ‘Learning monocular depth

estimation with unsupervised trinocular assumptions’. In: 6th International
Conference on 3D Vision (3DV). 2018 (cit. on pp. 78, 104).

[146] Mengye Ren, Wenyuan Zeng, Bin Yang and Raquel Urtasun. ‘Learning to re-

weight examples for robust deep learning’. In: Procedings of the International
Conference on Machine Learning (ICML). 2018 (cit. on pp. 84, 124).

[147] Deqing Sun, Xiaodong Yang, Ming-Yu Liu and Jan Kautz. ‘PWC-Net: CNNs

for Optical Flow Using Pyramid, Warping, and Cost Volume’. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2018 (cit. on

pp. 106, 107).

[148] Fabio Tosi, Matteo Poggi, Antonio Benincasa and Stefano Mattoccia. ‘Bey-

ond local reasoning for stereo confidence estimation with deep learning’.

In: 15th European Conference on Computer Vision (ECCV). 2018 (cit. on p. 81).

[149] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu and Simon Lucey.

‘Learning Depth from Monocular Videos using Direct Methods’. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018

(cit. on pp. 78, 96).

[150] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe and Elisa Ricci. ‘Struc-

tured Attention Guided Convolutional Neural Fields for Monocular Depth

Estimation’. In: The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2018 (cit. on p. 78).

[151] Zhichao Yin and Jianping Shi. ‘GeoNet: Unsupervised Learning of Dense

Depth, Optical Flow and Camera Pose’. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018 (cit. on pp. 78, 96).

[152] Lidong Yu, Yucheng Wang, Yuwei Wu and Yunde Jia. ‘Deep Stereo Matching

With Explicit Cost Aggregation Sub-Architecture’. In: AAAI Conference on
Artificial Intelligence. 2018 (cit. on p. 77).

[153] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh

Agarwal and Ian Reid. ‘Unsupervised Learning of Monocular Depth Es-

timation and Visual Odometry with Deep Feature Reconstruction’. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018

(cit. on p. 78).

167

[154] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin and Jian Sun. ‘ShuffleNet: An

Extremely Efficient Convolutional Neural Network for Mobile Devices’. In:

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018

(cit. on p. 134).

[155] Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien Valentin,

Adarsh Kowdle, Vladimir Tankovich, Michael Schoenberg, Shahram Izadi,

Thomas Funkhouser and Sean Fanello. ‘ActiveStereoNet: End-to-End

Self-Supervised Learning for Active Stereo Systems’. In: 15th European
Conference on Computer Vision (ECCV). 2018 (cit. on pp. 77, 93, 94, 104, 105).

[156] Yiran Zhong, Hongdong Li and Yuchao Dai. ‘Open-World Stereo Video

Matching with Deep RNN’. In: 15th European Conference on Computer Vision
(ECCV 2018). 2018 (cit. on pp. 105, 117, 119).

[157] Alec Radford, Luke Metz and Soumith Chintala. ‘Unsupervised Represent-

ation Learning with Deep Convolutional Generative Adversarial Networks’.

In: International Conference on Learning Representation, ICLR 2016 () (cit. on

p. 47).

168

	1 Introduction
	1.1 Automatic Detection and Recognition of items on store shelves
	1.2 Reliable 3D reconstruction of unseen environments

	 Recognition of products on store shelves
	2 Initial remarks
	2.1 Related Work

	3 Planogram Compliance Check
	3.1 Related Works
	3.2 Proposed Pipeline
	3.2.1 Unconstrained Product Recognition
	3.2.2 Graph-based Consistency Check
	3.2.3 Product Verification

	3.3 Experimental Results

	4 Unconstrained Product Detection
	4.1 Related Works
	4.2 Proposed Approach
	4.2.1 Detection
	4.2.2 Recognition
	4.2.3 Refinement

	4.3 Experimental Results
	4.3.1 Datasets and Evaluation Metrics
	4.3.2 Implementation Details
	4.3.3 Customer Use Case
	4.3.4 Qualitative Results

	5 Domain invariant hierarchical embedding for grocery products recognition
	5.1 Related Work
	5.2 Domain invariant hierarchical embedding
	5.2.1 Hierarchical Embedding
	5.2.2 Domain Invariance

	5.3 Implementation details
	5.4 Experimental Results
	5.4.1 Ablation Study
	5.4.2 Product Recognition
	5.4.3 Beyond product recognition
	5.4.4 Qualitative Results
	5.4.5 DIHE for product detection

	6 Conclusions

	 Unsupervised adaptation for deep depth
	7 Initial remarks
	7.1 Related Work

	8 Unsupervised domain adaptation for learned depth estimation
	8.1 Related work
	8.2 Domain adaptation for depth sensing
	8.2.1 Confidence Guided Loss
	8.2.2 Smoothing Term
	8.2.3 Image Reconstruction Loss

	8.3 Experimental results
	8.3.1 Effectiveness of Confidence Estimation
	8.3.2 Deep Stereo
	8.3.3 Depth-from-Mono
	8.3.4 Qualitative Results
	8.3.5 Qualitative evaluation on Supermarket Environment

	9 Online unsupervised domain adaptation for deep stereo
	9.1 Related Work
	9.2 Online Domain Adaptation
	9.2.1 MADNet - Modularly ADdaptive Network
	9.2.2 MAD - Modular ADaptation

	9.3 Experimental Results
	9.3.1 MADNet performance
	9.3.2 Online Adaptation
	9.3.3 Different online adaptation strategies
	9.3.4 Deployment on embedded platforms

	10 Learning to Adapt for Stereo
	10.1 Related Works
	10.2 Problem Setup and Preliminaries
	10.2.1 Online Adaptation for Stereo
	10.2.2 Model Agnostic Meta Learning

	10.3 Learning to Adapt for Stereo
	10.3.1 Meta Learning for Stereo Adaptation
	10.3.2 Confidence Weighted Adaptation

	10.4 Experiments
	10.4.1 Experimental Setup
	10.4.2 Results
	10.4.3 Confidence Weighted Loss Function

	11 Conclusions

	 Final Remarks
	12 Conclusions

