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Abstract

The present work focuses on the study and extension of ROC analysis meth-
odology for multiple-class classification problems. In clinical medical re-
search, the need for developing an approach to measure the diagnostic accur-
acy of biomedical tests in classifying the true status of a patient is a critical
point when doing both diagnosis and prognosis. In a two-category classifica-
tion setting, the ROC analysis is the natural approach and the Area Under
the Curve (AUC) is a summary measure of the diagnostic accuracy. How-
ever, many real classification problems rely to more than two classes; thus,
the ROC manifold generalization of curve and the hypervolume (HUM) gen-
eralization of area recently appeared in the literature to address classification
problems with more than two classes. Motivated by a real research question
arose during a four-class classification study for early detection of colorectal
cancer, we review the literature on ROC analysis and on its extension to
multiple classes. Then, we develop a new estimator of the accuracy measure
of a diagnostic marker. We derive the analytical form of the HUM estimator
and the analytical representation of its variance. To assess the performance
of the proposed estimator and compare it with the two alternatives existing
in the literature, we perform simulation exercises and empirical applications.
The first application deals with the topic that initially moved our interest,
the early detection of colorectal cancer patients; the second concerns the
classification of synovial tissue inflammatory cells, a typical case study in
the biostatistics literature. Finally, in the last part of our work, we suggest
a statistical method to combine multiple tests for multicategory classifica-
tion. The novelty of our approach is the use of the classification accuracy
(HUM) of the combined marker as the objective function to be maximized.
The methodology is evaluated trough a simulation study and two empirical
applications.
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Introduction

In clinical studies the accurate diagnosis of a patient condition is crucial for
an appropriate treatment, as well as to evaluate the prognosis. Thus, before
implementing a new test, it is of primary importance to quantify how well
the medical test discriminates among different status. In practical medicine
there exist many kinds of diagnostic tests, the simplest we can imagine are,
for example, serum ferritin levels in blood to check for anaemia, diagnostic
imaging tests such as mammogram to detect any breast abnormalities, or
faecal immunochemical test to detect colorectal cancer risk patients. More
complicated data, such as the genetic expression profile or a clinical score
obtained as result of different simple tests, can be even considered as dia-
gnostic test and could be used, for instance, to establish the severity degree
of a particular disease.

Although the interest in the present work is mainly on the clinical re-
search, these problems are part of the general classification issues that could
arise in almost all the fields of scientific and social research. The procedures
considered in this thesis, in fact, could be generalized to whatever procedure
of classification that assigns a subject or an object to a class on the basis of
the information observed.

It could happen that the diagnostic test, or more generally, the assignment
procedure, might fail and assign the individual to an incorrect class. It
becomes, thus, fundamental to measure the qualitative performance of the
procedure. Obviously, the stakes in clinical classification are extremely high
and a quantification of the risk of an erroneous classification would help
to evaluate the accuracy and implementability of the diagnostic strategy.
As it is to imagine, the list of situations in which we pursue this objective
is practically unlimited; in this thesis we will refer to medical and clinical
situations especially in the applications of the proposed methodologies to real
data.

In order to depict the quality of a diagnostic marker or a diagnostic test
in a supervised classification problem, the Receiver Operating Characteristic
(ROC) curve analysis plays a prominent role. This analysis was introduced
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in the second half of the last century in a two class classification problem. It
consists of a graphical representation of the relationship between sensitivity
and specificity of a test as the cut-off of the test varies. At each value of
the decision making threshold, the curve depicts the trade-off between true
positive rate (sensitivity) and false positive rate (1-specificity).

The AUC, Area Under the Curve, is perhaps the most frequently used
summary measure of the information reported in the ROC curve. It is a
global measure of the performance of a diagnostic marker in discriminating
the two status. An alternative interpretation refers to the measure of separ-
ability between the statistical distributions of the diagnostic test in the two
populations.

Nowadays, ROC curve and AUC are still major instruments in the eval-
uation of a twofold classifier. However, many real situations in diagnostic
decisions are not limited to a binary choice; an example could be the case
of staging a level of a illness or classify a subject as low risk, moderate risk
or high risk for a certain pathology. To address this more complicated m-
class classification problem, later in the last century, different contributions
in ROC analysis focused on deriving suitable generalizations of the curve.
The ROC surface has been introduced to cope with three-class issues while
the ROC manifold when more than three classes were considered. Con-
sequently, the notion of the Area Under the Curve has been extended to
the Volume Under the Surface (VUS) and, in the more complex situations
of more than three classes, to the hypervolume (HUM). From a statistical
perspective, (theoretical) inferential studies about generalized ROC analysis
appear only at the beginning of 2000. Furthermore, since those first works,
only few theoretical and empirical contributions have been developed in the
literature, leaving the four-class classification issue almost unexplored. The
present work mainly focuses on this specific topic.

The idea of dealing with classifying subjects in a four-class framework
was born few years ago while we were investigating the classification abil-
ity of biomarkers in detecting colorectal cancer. In that specific case, the
population was divided in four groups according to the level of the disease:
healthy subjects, positives to the faecal immunochemical test with negative
colonoscopy, positives to the faecal immunochemical test with small polyps,
faecal immunochemical test with confirmed diagnosis of colorectal cancer.
In situations like that, the largely used approach to conduct ROC analysis
consists in reducing the dimensionality of the problem by pursuing pairwise
two-class ROC curve. Although its simplicity, the standard approach has
the undesirable limit of attacking the problem by considering a subset of the
entire sample at the time, and, perhaps, ignoring hidden patterns detectable
only through a detailed analysis of the whole sample. The aim of our work,
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thus, is to shed light on the state of the art on the four-class classification
literature and to propose a new methodology to address the problem.

The thesis is organized in four main parts. The first one introduces the
problem through a detailed review of the literature; in particular, in Chapter
1 we present the ROC curves theory in the dichotomous case while Chapter
2 summarizes the relevant literature on the generalization of ROC analysis.
The second part, Chapter 3, is dedicated to the presentation of the statistical
methodology we propose; specifically, we show how we derive an estimator of
the volume under the ROC surface in a four-class framework and, moreover,
how we derive the analytical form of the variance of the estimator. The
third part, instead, is devoted to the evaluation of the performances of our
estimator. In Chapter 4 we perform some simulation exercises under different
data generating processes, while in chapter 5 we apply our methodology to
real data concerning two clinical studies. In both simulated and real data,
we compare, our methodology to other two alternatives already existing in
the literature. Finally, the last part, Chapter 6, addresses the purpose of
combining multiple tests for multiple-category classification. We propose a
new statistical approach, a simulation exercise and an application to real
data.
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Chapter 1

ROC curves and dichotomous
outcome

Receiver Operating Characteristic (ROC) analysis was born and developed
in statistical decision theory and later applied to signal detection theory.
Lusted (1960), for the first time, introduced the ROC curve in the field of
diagnostic medicine to distinguish between the criteria that an observer uses
to decide whether or not a condition is present and the observer’s ability for
detecting the condition. Nowadays, the ROC curve has become a standard
tool in medicine for evaluating the diagnostic accuracy of a classifier and it
is widely treated in many books (Pepe, 2003).

Medical tests, such as biomarkers for cancer, standard biochemical meas-
urements in blood test or subjective probability estimates by a physician
who makes diagnostic judgments, can result in binary, ordinal or continu-
ous measures depending on the level of measurement of each variable. Even
though, they are often used to make a medical decision in order to classify
a subject in a dichotomous way (i.e. diseased/healthy or to be treated/not
treated, presence or absence of pain). Therefore, to make a dichotomous
decision based on a continuous or ordinal test, a decision rule involving the
choice of a threshold, is needed. In most cases the choice of the threshold
will depend on the trade-off between failing to detect and falsely identifying
the ill. Such a decision often depends on specific circumstances that may
change in time, thus is helpful to have a way of displaying and summarizing
the performance of the test over a wide range of conditions. The ROC curve
is a useful device that simply describes the diagnostic test performance as
the choice of the threshold varies. In this chapter we revise the ROC topic
before extend it to accommodate problems of multiple-class classification.
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CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

1.1 Definition of ROC curve

Although ROC curves are defined for both continuous and ordinal data,
without loss of generality, in this work we will focus on continuous test
results only. Using the correct diagnostic test to implement a dichotom-
ous decision rule is of fundamental importance to make medical decisions.
Let think, for example, to the very common situation where the decision is
whether a patient should be treated or not; the decision rule is based on
whether or not a test result is greater of a fixed threshold. For example,
in evaluating thyroid function and diagnose thyroid disease, the Thyroxine
test (commonly indicated by T4) is performed. It consists in measuring the
amount of thyroxine (a thyroid hormone) in the blood. Depending on the
level of T4 one fixes as pathologic threshold, the subjects will be classified
as hypothyroid or euthyroid and consequently treated or not. Generaliz-
ing, let X be the continuous diagnostic test result with probability density
function f(x), cumulative distribution function F (x) and survival function
S(x) = 1 − F (x). Suppose also that larger values of the test are more in-
dicative of disease. The corresponding binary test is defined, according to
a particular classification rule, as positive if X ≥ c and negative if X < c,
where c is a fixed threshold. If the diagnostic test is positive, the individual
will be classified in the diseased population (D = 1), if the test is negative
will be classified in the healthy (non diseased) population (D = 0). In order
to asses the efficacy of the test in classifying subjects, we need to calculate
the probability of making an error of misclassification. Such a probability
tells us the rate at which a new individual will be misallocated. More gener-
ally, at each threshold c, we can define four probabilities associated with the
diagnostic test:

True Positive Rate: TPR(c) = P [X ≥ c|D = 1]

False Positive Rate: FPR(c) = P [X ≥ c|D = 0]

True Negative Rate: TNR(c) = P [X < c|D = 0]

False Negative Rate: FNR(c) = P [X < c|D = 1].

A true positive arises when a subject belonging to class 1 presents a test
measure greater than the threshold and is correctly assigned to class 1, a
false positive arises when a subject which really belongs to class 0 is assigned
to class 1 because his test score falls above the threshold. Evaluating the four
quantities above at different values of c will provide full information about the
classification performance of the diagnostic test. Given that TPR+FNR = 1
and FPR+ TNR = 1, knowing TPR and FPR is enough to summarize all
the information about the classification test. The TPR is also known as

9



CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

the sensitivity of the test while the TNR is the specificity of the test. In
biomedical research, sensitivity and specificity (1-FPR) are commonly used
as descriptive measures of the test performance. The ROC curve is the curve
obtained by plotting on orthogonal axis the set of all possible true positive
(sensitivity) and false positive (1-specificity) fractions that are attainable
dichotomizing X with different thresholds:

ROC(·) = {(FPR(c), TPR(c); c ∈ (−∞,∞))}

where limc→∞ TPR(c) = 0 and limc→∞ FPR(c) = 0 while limc→−∞ TPR(c) =
1 and limc→−∞ FPR(c) = 1.

In a continuous domain, we can rewrite the ROC curve as the function
that maps p into t, where c is the threshold such that p = FPR(c) and
t = TPR(c)

ROC(·) = {p,ROC(p); p ∈ (0, 1)}
or alternatively in a more compact form

t = h(p)

where t is the true positive rate corresponding to the p false positive rate at
threshold c. When there is not possibility to chose a particular threshold for
the test result to categorize it as positive, then a ROC curve is very useful
in providing a complete description of the possible operating characteristics
of the test.

1.1.1 Principal properties of the ROC curve

We now report some important properties of the ROC curve that can be
useful further on:

• ROC curve is a monotone increasing function in the positive quadrant,
lying between the points (0, 0) and (1, 1).

• ROC curve is invariant to strictly increasing transformations of X.

• ROC curve has a functional relation with the survivor function. Let S1

and S0 be the survivor functions of X in the diseased and healthy pop-
ulations respectively: S1(x) = P [X ≥ y|D = 1] and S0(x) = P [X ≥
x|D = 0], then the ROC curve can be represented as:

ROC(p) = S1(S−1
0 (p)) p ∈ (0, 1). (1.1)

Being the survivor function S(x) = 1− F (x) where F (x) is the cumu-
lative distribution function of the test random variable X, the ROC
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CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

may also be interpreted as the curve which summarizes the information
on the cumulative distribution functions of the test measures in the two
classes.

• The ROC’s slope is

∂ROC(p)

∂p
=
f1(S−1

0 (p))

f0(S−1
0 (p))

=
f1(x)

f0(x)

where f1 is the probability density function of X in the diseased pop-
ulation and f0 is the probability density function of X in the healthy
population. Interestingly, the slope of the curve can also be interpreted
as the likelihood ratio at the threshold x

LR(x) =
f1

f0

where x = S−1
0 (p) is the threshold corresponding to the point (p,ROC(p)).

From the last property we can conclude that the slope of the ROC curve in
a generic point x, tells us how much more probable is a value x of the test
to have occurred in the diseased population than in healthy population.

Moreover, a connection with the Neyman-Pearson theory of hypothesis
testing can be deduced. Consider the case of testing the null hypothesis
H0 that a subject belongs to the healthy population D = 0 against the
alternative, H1, that subject belongs to population D = 1. The classification
test X is performed to allocate the individuals. Let SR be the set of values
of X for which the subject is allocated in population D = 1 (the rejection
region), then the Neyman-Pearson lemma states that the most powerful test
of size α is the test that has SR = {x : LR(x) ≥ k} where k is determined
under the condition of P (x ∈ SR|D = 0) = α. Thus, in our diagnostic
framework, P (x ∈ SR|D = 0) = α if and only if FPR = α, consequently
FPR is the size of the test while TPR is the power of the test.

This connection with the Neyman-Pearson theory assures that a classi-
fication rule based on LR(x) ≥ k is an optimal decision rule for classifying
subjects as positive for disease. If test result X is such that LR(·) is mono-
tone increasing, than decision rules based on X exceeding a threshold are as
optimal as decision rules based on LR(x) exceeding a threshold. In other
words, for a fixed FPR value, this rule is the one who allows to achieve the
highest value of the TPR among all possible criteria based on X. In many
practical settings the biological theory behind the diagnostic tests assures
that LR(x) is monotonic increasing in X. Furthermore our assumption that
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CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

higher values of X are more indicative of disease is the same as stating that
LR(x) is monotonic increasing.

Due to the above properties, the ROC curve has found large applica-
tion in different biostatistics frameworks such as guide on the choice of the
best threshold, compare between two different medical tests or measure the
separation between two different distributions S1 and S0.

1.1.2 Area Under the Curve

To summarize information about the ROC curve, numerical indexes are often
used. They play an important role in interpreting the curve and, in inferential
statistics, to compare different curves and different medical tests. The Area
Under the ROC curve (AUC) is the most used summary measure, it is a
global measure of the separability between the distributions of test measures
in the diseased and healthy populations. It is defined as:

AUC =

∫ 1

0

ROC(p)dp.

The values of AUC are in the range (0,1); a perfect test (in the sense
of fully discriminant) has AUC = 1 and a completely uninformative test
has AUC = 0.5, in the latter case the ROC curve is the diagonal line
ROC(p) = p.
AUC has different interpretations; from the definition we stated above im-
mediately follows the interpretation of AUC as the average true positive
rate taken uniformly over all possible false positive rates in the range (0, 1).
Some other interpretations are also possible, such as a more probabilistic one
according to which AUC can be seen as the probability that two random
sampled cases, one from diseased population and one from healthy popula-
tion, are correctly ordered, i.e. AUC = P [X1 > X0].

Sometimes, in the clinical practice, the whole set of TPR is not of interest
due to the fact that some values of p are not acceptable. In these cases, partial
AUC can be calculated restricting the attention to p < p0:

AUCpar(p0) =

∫ p0

0

ROC(p)dp.

Other summary measures have been formalized and available in the literature
although not reported in the present work.

1.1.3 The binormal ROC curve

A special case of the ROC curve is the binormal ROC. It derives from the
assumption of normally distributed tests in the two populations of interest.

12



CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

If we state that Y0 and Y1 are two independent Gaussian random variables:

X0 ∼ N(µ0;σ2
0) and X1 ∼ N(µ1;σ2

1)

then

Z0 =
X0 − µ0

σ2
0

and Z1 =
X1

−
µ1σ

2
1

are two standard Normal distributions. The false positive rate is

S0(c) = P (X > c|D = 0) = P (Z > [c− µ0]/σ0)

= P (Z ≤ [µ0 − c]/σ0)

= Φ

(
µ0 − c
σ0

)
thus

zp = Φ−1(S0(c)) =
µ0 − c
σ0

and
c = µ0 − σ0zp.

Hence, the ROC curve at this FPR is

S1(c) = P (X > c|D = 1) = P (Z > [c− µ1]/σ1)

= P (Z ≤ [µ1 − c]/σ1)

= Φ

(
µ1 − c
σ1

)
.

Now, substituting the value of c from above, we obtain

S1(c) = Φ

(
µ1 − µ0 + σ0zp

σ1

)
. (1.2)

The ROC curve, thus, takes the form:

ROC(p) = Φ(a+ bΦ−1(p)) (1.3)

where

a =
µ1 − µ0

σ1

and b =
σ0

σ1

(1.4)

and Φ is the Normal standard cumulative distribution function.
It is important to notice that any monotonic transformation of the test

variable changes the form of the test result distributions but does not change
the ROC, which depends only on the order of test results. Despite its sim-
plicity, this model presents some points of weakness. For instance, the ROC
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CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

curve is not concave in the whole domain (0,1). This is a problem when the
likelihood ratio function of X is monotone (that, as we have said before, it is
intuitively reasonable for most clinical tests) because, as we said before, the
slope of the ROC(p) curve can be interpreted as the likelihood ratio function
of X at the threshold c so, if the likelihood ratio function is monotone, the
optimal ROC curve must be concave. However, if b 6= 1 the binormal ROC
is not concave.1

The AUC of a binormal ROC curve has a simple functional form; in fact,
it can be proved that it takes the form

AUC = Φ

(
a√

1 + b2

)
(1.5)

with a and b defined as in eq. (1.4).

1.2 Estimation and Inference

Several approaches have been proposed in the literature to estimate the ROC
curve. Some of them are based on parametric techniques and some others on
non parametric or semi-parametric ones. In this sections we briefly illustrate
some of these estimation approaches.

1.2.1 Empirical estimation

The empirical estimation of the ROC curve is the most popular approach in
settings with continuous data due to its simplicity and low computational
efforts. In fact, the empirical ROC is obtained simply by plot the empirical
estimator of the true positive rate of a test (sensitivity) versus the empirical
estimator of the false-positive rate (1-specificity)2 for all possible cut points
c. Assume we have n1 test results from disease population and n0 test results
from non diseased population, realizations of the X1i and X0j independent
random variables with i = 1, . . . , n1, j = 1, . . . , n0 and population survivor
function S1 and S0, respectively. The empirical estimators of the TPR and
FPR are:

T̂PR(c) =

∑n1

i=1 1[X1i ≥ c]

n1

and F̂PR(c) =

∑n0

j=1 1[Y0 ≥ c]

n0

.

1Other parametric models that constraint the ROC to be concave have been proposed
in the literature. For further details see: Dorfman et al. (1997) and Metz and Pan (1999).

2We recall that, in a binary classification test, the sensitivity is defined as the proportion
of true positives identified by the test while the specificity is defined as the proportion of
true negatives.
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CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

In terms of survival functions, the empirical ROC is

R̂OC = Ŝ1(Ŝ−1
0 (p)).

The result is an increasing step function on the unit square, with steps of
size 1/n0 horizontally and steps of size 1/n1 vertically. Although in many
representations of the ROC curves the points are interpolated in a smoothed
curve, the empirical estimation produces a discrete function since FPR can

only assume values in
{

0, 1
n0

; 2
n0

; . . . ; 1
}

. To obtain a measure of variability

of the empirical ROC curve there are different methods depending on the
definition of the sampling variability adopted. The corresponding estimator
for the AUC is the empirical AUC:

ÂUC =

∫ 1

0

R̂OC(p)dp.

As the ROC curve has been estimated empirically we can exploit the defin-
ition of the AUC we have seen before in Section 1.1.2; AUC is equal to the
probability that a randomly chosen subject from diseased population yields a
value of the diagnostic test larger than that of a randomly chosen individual
from healthy population. This definition recalls the two sample rank Mann-
Whitney U-statistic, which is an unbiased estimator of AUC (see Mann and
Whitney (1947) ). The definition of the U statistic is:

U =

n0∑
j=1

n1∑
i=1

{
I[X1i > X0j ] +

1

2
I[X1i = X0j ]

}
.

If we consider all possible pairs of individuals one from each sample, than
U is the sum of the proportion of pairs for which the score for an individual
from sample D = 1 is higher than that for the subject from sample D = 0 and
half the proportion of ties. In this dissertation, since we deal with continuous
statistics, the probability of obtaining ties is negligible. Thus, it follows that:

E(U) = p(X1 > X0) = AUC.

Thus,the U-statistic framework may be used to estimate the AUC. As we will
see in the next chapter, this result is crucial in the development of higher
dimensional ROC framework.

1.2.2 Estimation based on diagnostic test distributions

The approach we are introducing is based on the idea of modeling the dis-
tribution of the classification test in a parametric way, in both populations
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(diseased and healthy). This assumption provides induced smooth paramet-
ric form for the two distribution functions and hence a smooth estimate of
the ROC curve. Assuming a distribution function for X1 and X0 and estim-
ating the associated parameters, the induced ROC curve can be consequently
derived.

Let
S0(x) = Sα,0(x) and S1(x) = Sβ,1(x)

be the two survivor functions with vector of parameters α and β respectively;
estimating α from the diseased subjects test results and β from the healthy
subjects test results, the estimated ROC curve will be

R̂OCα̂,β̂(p) = Sβ̂,1(S−1
α̂,0(p)).

An example of this approach is given by the binormal ROC. We can as-
sume two Gaussian distributions for the diagnostic test in the two populations
such as X1 ∼ N(µ1;σ2

1) and X0 ∼ N(µ0;σ2
0) and the vectors of parameters

denoted by α = (µ1, σ
2
1) and β = (µ0, σ

2
0). Estimating the parameters with

their sample values leads to obtain the estimates of the distribution functions
for X1 and X0. As we have seen in eq. (1.3), the ROC curve is estimated by:

R̂OC(p) = Φ

(
µ̂1 − µ̂0

σ̂1

+

(
σ̂0

σ̂1

)
Φ−1(p)

)
.

This method is extremely sensitive to the validity of its distributional as-
sumptions and it may introduce unnecessary nuisance since the ROC curve
depends on the relationship of the two distributions, not on the distributions
themselves. Anyway, the estimated AUC is obtained by substituting the
estimated parameters in eq. (1.5), obtaining thus

ÂUC = Φ

(
â√

1 + b̂2

)
. (1.6)

Differently, a semi-parametric approach for estimating the ROC curve
requires to assume a location-scale model for the diagnostic test results

X1i = µ1 + σ1εi; X0j = µ0 + σ0εj

where the ε’s are zero-mean unit-variance random variables with survivor
function S0. If we estimate the location-scale parameters with the sampled
data and the survivor function by a non parametric method based on the
residuals{

(X1i − µ̂1)/σ̂1, i = 1, 2, . . . , n1; (X0j − µ̂0)/σ0, j = 1, 2, . . . , n0

}
,

16



CHAPTER 1. ROC CURVES AND DICHOTOMOUS OUTCOME

the empirical survivor function becomes

Ŝ0(x) =
1

n1 + n0

{∑
i

1

[
X1i − µ̂1

σ̂1

≥ x

]
+
∑
i

1

[
X0i − µ̂0

σ̂0

≥ x

]}

. It is a consistent estimator of S0. Thus, the ROC curve estimator can be
written as

R̂OC(p) = Ŝ0((µ̂0 − µ̂1)/σ̂1 + (σ̂0/σ̂1)Ŝ−1
0 (p)).

The latter model is defined as semi-parametric because it depends on some
parameters whilst the S0 functional form is not specified.

Another approach to the estimate of the ROC curve has been proposed
by Lloyd (1998); the author suggests the use the Kernel smoothing estimator
of the test result distributions. Defining the kernel estimators as

Ŝ1 = 1− 1

n1

n1∑
i=1

Φ

(
x− xi
h1

)
and Ŝ0 = 1− 1

n0

n0∑
j=1

Φ

(
x− xi
h0

)
,

where Φ is the standard normal distribution function and h is the smooth
parameter, the estimate of the ROC curve can be easily derived as

R̂OC = Ŝ1(Ŝ−1
0 (p)).

The author also shows that the resulting kernel estimate of the AUC can be
expressed as:

ÂUC =
1

n1n0

n1∑
i=1

n0∑
j=1

Φ

(
x1j − x0j√
h2

0 + h2
1

)
. (1.7)

1.2.3 Parametric distribution-free methods

Metz et al. (1998) propose a parametric distribution-free approach to ROC
curve estimate. In their contribution the author parametrize the form of the
curve without any assumption on the distribution of the two variables YD
and YD̄. They get inspired by the work of Dorfman and Alf (1968) that was
conceived for use with ordered categorical data. Such procedure assumes the
existence of a latent random variable that underlies the distribution of the
diagnostic test. Assuming a Normal distribution for the latent variable in
the intervals corresponding to the classes of the categorical observed variable,
it is possible to define a binormal model for each class of the categorical
variable. The authors developed an iterative algorithm to maximize the
log likelihood of the sample with respect to the parameters of the model.
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According to that approach, Metz et al. (1998) note that the maximum
likelihood estimation of a ROC curve from continuously distributed data is
equivalent to the maximum likelihood estimation from ordinal data if the
resulting runs of truth state test values are interpreted as categorical data,
conditional on having pooled and arranged the test result in increasing order
while maintaining their disease labels. Doing that, any information relevant
to ROC curve fitting is retained. Hence, they propose to fit binormal ROC
curves to continuous data by means of two algorithms. The first performs a
ML estimate and the second, less computationally demanding, is based on
quasi-ML estimation.

The ROC-GLM estimator is the result of a different parametric distribution-
free method based on the idea of estimating the ROC curve within the gen-
eralized linear model binary regression framework proposed by Pepe (2000).
The use of GLM framework is suggested by the interpretation of the ROC
curve as the set of conditional probabilities that X1 exceeds X0 given that
X0 is the (1 − t)-th quantile of the test result distribution in the healthy
population. In fact,

P [X1 ≥ X0|S0(X0) = p] = P [X1 ≥ X0|X0 = S−1
0 (p)]

= P [X1 ≥ S−1
0 (p)]

= S1(S−1
0 (p)) = ROC(p).

The estimator of the curve is derived starting from a parametric model for
the curve such as

ROCs(p) = g

(∑
s

αshs(p)

)
where g is a link function and h = {h1, h2, . . . , hS} are basis functions. If
g = Φ, h1(p) = 1 and h2(p) = Φ−1 the binormal model arises. To fit
the model to data, the author proposes to construct indicator variables
{Uij, i = 1, . . . , n1; j = 1, . . . , n0} using all n1 × n0 possible pairs of test res-
ults. These indicator variables are defined as:

Uij = 1[X1i ≥ X0j ].

Thus, the expected value of Uij conditional on S0(X0j) = pj becomes

E[Uij|S0(X0j) = pj] = ROCs(pj).

The estimation of the s parameters can be performed trough few steps:
first calculate the Ŝ0 estimator using {X0j ; j = 1, . . . , n0}, second calcu-

late p̂j = Ŝ0(X0j) with j = 1, . . . , n0 measures; third use the n1 × n0 pairs
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(X1i , X1j) to calculate {Uij; i = 1, . . . , n1, j = 1, . . . , n0} finally fit the gener-
alized linear model, with link function g and predictors hs(p), to the binary
variables Uij. When the ROC curve is estimated by fitting a smooth curve,
the corresponding AUC estimate can be obtained by numerical integration.

1.2.4 Lehmann family of ROC curves

A semi-parametric estimator of the ROC curve and its AUC, based on
the proportional hazards specification of the test results, was provided for
the first time by Gönen and Heller (2010). The authors propose a semi-
parametric model for the marker values based, not on the functional form
of the marker, but on the relationship between the survivor functions of the
marker in the two groups of interest. If we define X the diagnostic marker
random variable, D = {0, 1} the binary indicator representing the groups
(D = 0 non diseased, D = 1 diseased) and S0 and S1 the survival func-
tions of the marker for the two different values of the binary indicator, the
semi-parametric relationship suggested by the author is:

S1(x) = S0(x)θ (1.8)

where the two survival functions are left unspecified and the only parameter
of the model is θ who governs the relationship. More generally, the family
of distributions defined by this relation is called the Lehmann family, due to
the fact that it was used for the first time by Lehmann (1953) in the study
of the power function of statistical tests. If we define p as the false positive
rate and t the true positive rate, the relation between p and t, as we have
seen in eq. (1.1), defines the ROC curve:

t = S1(S−1
0 (p)). (1.9)

If we use eq. (1.8) in (1.9), the general form of the Lehmann family ROC
curve arises:

t = pθ (1.10)

As we will be much more clear in the next sections, it is worth stressing
that the Lehmann relationship can be written in terms of hazard functions.
In fact, given the definition of the hazard function of the marker:

h(x) = lim
x→0

P (x ≤ X < x+ ∆x|X ≥ x)

∆x
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with simple algebra, the Lehmann condition in eq. (1.8) may be rewritten
in the following, alternative, specification:

h1(x)

h0(x)
= θ (1.11)

where h1 and h0 are the hazard functions in the diseased and non dis-
eased group, respectively. The latter equality shows the relationship of the
Lehmann specification with the Cox proportional hazards model (Cox, 1972)
and provides the opportunity of using a well developed framework for estima-
tion and inference.3 The proportional hazards model is a well known survival
model who specifies the way that the covariates affect the hazard function;
if we use x as the realization of the diagnostic test random variable X and D
as the covariate, the Cox proportional hazards model is of the form:

h1(x|d) = h0(x) exp{βd} (1.12)

thus θ = exp{β}. The β parameter can be estimated using the Cox partial
maximum likelihood (Cox, 1975). As the author states, under these con-
ditions, the usual large-sample properties of maximum likelihood estimates
and tests apply when partial likelihood is used. Estimation and inference
of the ROC curve and AUC can be derived from the proportional hazards
framework, therefore:

θ̂ = exp{β̂}. (1.13)

The area under the curve is estimated as:

ÂUC =

∫ 1

0

pθ̂dp = (θ̂ + 1)−1

and its variance as:
V (ÂUC) = (θ̂ + 1)−4V (θ̂).

3See Appendix A for the details of the Cox proportional hazards model and how to
estimate the unknown parameters.
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Chapter 2

Generalization of the ROC
curve to multiple class
outcomes

In the last twenty years, several authors have approached the concept of high
dimensional ROC in different ways related to the different aspects that each
researchers was concerned with and to the different ways they had chosen to
deal with the complexity of the problem. In fact, when there are more than
two classes, there is some flexibility about which aspects of the classification
problem are of interest. Moreover, the generalization of the dichotomous
framework is not so trivial as, when moving from the binary ROC analysis
to the M-class analysis, the dimension of the problem increases much more
than proportionally.

As an example we can think at the three-class problem compared to
the two-class one. In the two-class framework, as we have seen before,
there are four decision outcomes (false positive, false negative, true posit-
ive, and true negative), associated with four diagnostic accuracy fractions
(FPR, FNR, TPR, and TNR). Since the relationships FPR+TNR = 1 and
FNR+TPR = 1 hold, only two diagnostic accuracy fractions are needed to
fully describe the two-class classification accuracy. In fact, the ROC curve
is the set off all points (FPR; TPR) at different thresholds. In the three-
class problem there are nine decision outcomes and nine diagnostic accuracy
fractions with three relationships holding TCR11 + FCR21 + FCR31 = 1,
FCR12 + TCR22 + FCR32 = 1 and FCR13 + FCR23 + TCR33 = 1 where
the generic FCRij indicates the fraction of individuals from class j clas-
sified in class i. Therefore six diagnostic accuracy fractions are needed to
fully describe the three-class classification accuracy. As the ROC curve for
binary diagnosis represents the trade-off between sensitivity and specificity
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for the two categories framework, the ROC surface represents the three-way
trade-off among the correct classification probabilities for the three categor-
ies. Hence going from two to three classes, the total number of fractions
needed to fully describe the classification performance increases from 2 to 6
(He et al. (2006)). In this chapter we review, in a chronological order, some
of the foundational works which addressed the generalization of ROC curves.
Particular emphasis has been devoted to two contributions (Scurfield (1996)
and Mossman (1999)) that, while presenting study designs quite different
from the one treated in this thesis, are foundational works in the field of
generalization of ROC curve and AUC.

2.1 The Scurfield’s approach

Scurfield (1996) generalized the ROC curve introducing the concept of ROC
surface in the Theory of Signal Detectability (TSD) framework. In TSD the
ROC curves were already employed to distinguish between discriminability
of the observer and his decision bias. In this framework, the ROC curve
represents the relationship between the probability of detecting the ‘signal’
event when it occurs and the probability of detecting the ‘signal’ event when
the ‘noise’ event occurs at all possible levels of the threshold. In this sense,
it takes into account the decision bias.

Starting from the assumption that the ROC curve is the most satisfactory
among all the measures of discriminability for two events task, the author
develops the generalization to three events. A couple of years later, Scurfield
wrote a compound to his first work extending the concept of the ROC surface
to the case of multiple classes and multiple events, introducing the notion of
ROC manifold (Scurfield, 1998) and providing the basis for the theoretical
development of a higher dimensional ROC framework at the population level.
However in his works, no inferential procedures are suggested. In the next
section we describe the Scurfield (1998) contribution in detail.

2.1.1 The general model

The theory of signal detectability assumes that an observer is exposed to a
realization of one of n possible events. After the observation, the subject is
asked to guess which event occurred and to select one decision among a set
of n decisions C = {1, 2, . . . , n}, where C = i with i = 1, 2, . . . , n indicates
that the observer decided an event of class D = i occurred. In the model
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proposed by the author the observer is assumed to represent the stimulus as
a numerical value x, thus X is a random variable, and X1, X2, . . . , Xn are
conditional random variable associated to each event. However, because of
the overlapping of stimulus distributions, the perfect discrimination of events
is not possible. In what follows, we will see how in this context the ROC
curve is adopted as a discriminability measure.

For simplicity, imagine a three-event forced task,1 in which the observer
has to discriminate among three events C = {1, 2, 3}. The observer repres-
ents the stimulus associated with the event as a numerical value x, which is a
realization of the univariate random variable X. The quantity x constitutes
the evidence the decision is based on, while X1, X2 and X3 are the condi-
tional random variables with distribution P (X|D = 1), P (X|D = 2) and
P (X|D = 3), respectively. Assume that the decision is taken with reference
to the values of two criteria, denoted as c1 and c2. The decision rule is

if x < c1 then C = 1, (2.1)

if c1 < x < c2 then C = 2, else

if x > c2 then C = 3.

Table 2.1: Decision Matrix.
Decision

Event C = 1 C = 2 C = 3
D = 1 P (C = 1|D = 1) P (C = 2|D = 1) P (C = 3|D = 1)
D = 2 P (C = 1|D = 2) P (C = 2|D = 2) P (C = 3|D = 2)
D = 3 P (C = 1|D = 3) P (C = 2|D = 3) P (C = 3|D = 3)

The decision matrix of such scenario is represented in Table 2.1. Each
element of the matrix represents the probability that the observer will make a
particular decision given that a particular event occurred. The matrix has six
degrees of freedom because each row sums up to one. Under the decision rule
above and if X is a continuous variable, we have that, for each permutation,
the equations below hold:

P (C = 1|D = α(1)) = P (Xα(1) < c1) (2.2)

P (C = 2|D = α(2)) = P (c1 < Xα(2) < c2) (2.3)

P (C = 3|D = α(3)) = P (Xα(3) > c2) (2.4)

1In m-event forced task, m randomly sampled events, one from each of the m classes
are produced simultaneously, and the observer has to categorize the events to each of the
m classes. The decision is correct if all the m events are correctly classified.
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where α indicates a permutation that maps the set {1, 2, 3} to the set {1, 2, 3},
while α(i) is the index obtained after the permutation α is applied. Varying
the two criteria over the domain of X, and plotting the probability presented
in eq.s (2.2)-(2.4), one can generate the (123)−ROC surface. In Figure 2.1,
we report six ROC surfaces and the related six volumes under the surface,
each corresponding to a different permutation of the indexes. The volume
under each ROC surfaces is related to the discriminability of the events, and
thus to the separation degree of the distributions.

If X1, X2, X3 are identically distributed then, from equations (2.2)-(2.4),
we have:

P (C = 1|D = 1) + P (C = 2|D = 2) + P (C = 3|D = 3) = 1.

In each ROC space, the ROC surface is a triangular plane with vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1) and the Volume Under the Surface (VUS) equals
1/6, that is the minimum value possible. On the other hand, if the three
variables are perfectly separated, such that every value of X1 is less than
every value of X2, that is less than every value of X3, the 123-ROC surface
is determined by the three planes

P (C = 1|D = 1) = 1

P (C = 2|D = 2) = 1

P (C = 3|D = 3) = 1.

In this case the ROC curves collapse to the axes of their respective spaces.
The VUS of 123-ROC will be one, that is its maximum value.

In general if there exist a permutation α such that P (Xα(1) < Xα(2) <
Xα(3)) = 1, than the observer will be able to perfectly discriminate among
the three distributions and one VUS will be equal to one, while the remaining
five will be equals to zero.

As a consequence of the above statements, the author states that the
volumes under the ROC surfaces are related to the ordering of the variables
X1, X2, X3, i.e.

V USα(1,2,3) = P (Xα(1) < Xα(2) < Xα(3)). (2.5)

Finally, Scurfield (1998) provides the generalization of the above concepts
to the case of n-events and m-evidences, and states the definition of ROC
manifold as an extension of the ROC surface and of the Hypervolume Under
the Manifold (HUM) as extension of the volume under the surface.
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Figure 2.1: Examples of ROC surfaces.

 

Notes: Six illustrative ROC surfaces generated from three normal distributions with means

µ1 = −1, µ2 = 0, and µ3 = 1, and variances σ2
1 = 1, σ2

2 = 1.96, and σ2
3 = 1.44. The

ROC surfaces are: (A) the 123-ROC surface, (B) the 132-ROC surface, (C) the 213-ROC

surface, (D) the 231-ROC surface, (E) the 312-ROC surface, and (F) the 321-ROC surface.

Each contour line represents the variation in one criterion with respect to a fixed value of

the other criterion. The contour lines bunch at two outer edges of each surface because

the tails of the normal distributions extend to infinity in either direction.
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2.2 The Mossman’s approach

Approximately in the same period as Scurfield, Mossman (1999) developed
high dimensional ROC concepts too, extending the ROC curve analysis to
multiple class medical classification settings. Starting from a three-class
problem, the author gives a major contribution suggesting a method to es-
timate the volume under the curve (VUS) in a non-parametric way. Fur-
thermore, bootstrap techniques are proposed to estimate the variance of the
estimator. In the next section we deal more diffusely with the Mossman’s
contribution.

2.2.1 Decision task

The author starts from a practical problem slightly similar as the Scurfield’s
one. A subject is asked to examine n images of three figures (Circle, Pentagon,
Square) presented in a highly degraded form. For each image the subject
must estimate a triplet of probabilities. If we denote Ti the triplet for the
i-th imagine

Ti = (p1i, p2i, p3i)

where p1i, p2i, p3i represent the subject’s confidence about the i-th true status.
More in detail, p1i is the subject’s probability estimate that image i ia a circle,
p2i is the subject’s probability estimate that image i ia a pentagon and p3i

is the subject’s probability estimate that image i ia a square, for each image
the estimates should sum to unity so that

p1i + p2i + p3i = 1.

In addition, the subject is asked to use his estimates to make a decision about
the true shape (indicated by D = 1, D = 2, D = 3 for circle, pentagon and
square respectively). Let

Cij = 1, Cij = 2, Cij = 3

be the three possible subject’s decisions about the i-th image, where C =
1, C = 2, C = 3 stand for circle, pentagon and square choice respectively,
whilst let Rj be the decision rule that guides the subject’s choice. Even if
there are infinite numbers of possible decision rules that the subject could
use, the author suggests three possible rules according to the experimental
design that the researcher has to deal with. The rules are reported and
discussed in the Section 2.2.3.
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2.2.2 Diagnostic Performance

If a series of test results Ti is interpreted under a decision rule Rj, the dia-
gnostic performance can be depicted by a 3 × 3 contingency table. In this
table there are three correct classification rates TCR1j = P (Cj = 1|D = 1),
TCR2j = P (Cj = 2|D = 2), TCR3j = P (Cj = 3|D = 3), which are the
probabilities that the subject, using rule Rj, makes the correct choice. All
off-diagonal values indicate diagnostic errors. As Scurfield pointed out, Moss-
man also outlines that, in a task with a three-class outcome, there will be
six possible diagnostic errors, but, given that the focus is to find a ROC
index that summarizes the diagnostic performance, he proposes to ignore
the misclassified values (the off diagonal values). Thus, while extending the
two-way ROC approach into a third dimension, he suggests to consider only
the values lying on the main diagonal of the decision matrix and plot the
correct classification rates in a three dimensional space for a set of decision
rules. Hence, the points produced can be connected with line segments to
obtain a polyhedral ROC surface, the volume under this surface is the VUS.
The author proposes an empirical calculation of VUS as average of AUCs at
different vertical and horizontal cut-offs of the decision plane. According to
the Mossman’s interpretation, the ROC curve is obtained starting from the
probability triplet of each subject; the VUS is equivalent to the probability
that three randomly chosen subjects, one from each of the three classes, will
be rated correctly.

2.2.3 Decision rules

We can now report the three decision rules proposed by the author, largely
used in subsequent works. If one has to rate three randomly sampled images,
each from one of the three classes, the following rules can be used:

RI : if p1i ≥ α, treat case i as a circle; if p1i < α and p1i − p3i ≥ β, treat
case i as a pentagon; if p1i < α and p2i − p3i < β, treat case i as a
square. In figure 2.2 a graphical representation of this rule is showed.
RI is valid if the outcome doesn’t present pre-ordered levels.

RII : given a triplet Ti, treat case i as a circle if p1i is the greatest element
in the triplet Ti, treat it as a pentagon if p2i is the greatest element
in the triplet Ti, treat it as square if p3i is the greatest element in the
triplet Ti. Put differently, RII is a general decision rule to be used
when the subject must sort a trio of images drawn randomly from the
population. This rule assigns the triplet closest to the circle vertex
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Figure 2.2: Partition of the triangular estimate plane associated with the
following type RI decision rule: If p1i ≥ 0.6 treat case as circle, if p1i < 0.6
and p1i − p3i ≥ 0.2 treat case as a pentagon, if p1i < 0.6 and p2i − p3i < 0.2

.

to the circle category, of the two remaining triplets the closest to the
pentagon vertex to the pentagon category and the closest to the square
vertex to the square category.

RIII : if one plotted the trio’s three triplets on the triangular estimate plane
with circle vertex (1,0,0), pentagon vertex (0,1,0) and square vertex
(0,0,1), six different combinations of line segments to link one triplet
to one of the three vertex are available. This rule states that one must
find the combination of vertex to triplet connections such that the sum
of the lengths of the three lines is the shortest, and classify the images
associated with each triplet according to the vertex with which each
triplet is linked.

2.3 The estimation of the ROC surface and

the VUS

In the present section we will revise the main approaches to the estimation
of multidimensional ROC surface and volume under the surface (VUS). We
will move toward non parametric, semi-parametric and completely paramet-
ric estimators of the ROC surface and the ROC volume. Although in the
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literature the volume under the ROC surface is commonly named VUS and
it is defined as the probability of correctly classifying m subjects, each of
which randomly chosen from each of the m classes, the estimation procedure
changes depending on whether the true classes are ordered or not.

2.3.1 Non parametric approach for non-ordered classes:
Dreiseitl et al. (2000)

Imagine a scenario in which a three-class diagnostic test (that results in a
triplet of probabilities) is performed to classify subjects into three classes
(C = {1, 2, 3}) and in which subjects can belong to one of the three-disease
classes (D = {1, 2, 3}). In this case, despite of what happens in the dicho-
tomous case, it is not possible to plot TPR versus FPR since for each TPR
there exist two alternative FPR. As we have previously pointed out, in a 3×3
decision matrix there are two off-diagonal values for each row representing
the misclassified values. Dreiseitl et al. (2000), according to Mossman (1999),
state that the trichotomous version of plotting sensitivity versus specificity
is to plot TCR1 = P (C = 1|D = 1) versus TCR2 = P (C = 2|D = 2) versus
TCR3(C = 3|D = 3), that are the three diagonal values of the decision
matrix. The authors also formalize the empirical estimator of the VUS as a
measure of the discriminatory power and propose a non-parametric method
to estimate its variance using the Mann-Whitney U statistic.

Starting from Mossman’s definition of the VUS as the probability of cor-
rectly classifying three subjects, one from each class, and applying his third
rule to decide whether the subjects are correctly classified, Dreiseitl et al.
(2000) give the expression of the VUS estimator. We now define piji as the
vector of probability of subject ji to belongs to class i, where the first element
of the vector is the probability of belonging to class 1, the second element
is the probability of belonging to class 2 and the third is the probability of
belonging to class 3. Specifically, p1j1 j1 = 1, . . . , n1 are the triples for the n1

subjects of class 1, p2j2 j2 = 1, . . . , n2 the triples for the n2 subjects of class
2 and p3j3 j3 = 1, . . . , n3 the triples for the n3 subjects of class 3. Under
the assumption of independence and identical distribution of the triples, an
unbiased estimator of V US = P [CR(p1, p2, p3) = 1], is given by

V̂ US = θ̂V =
1

n1n2n3

n1∑
j1=1

n2∑
j2=1

n3∑
j3=1

CR(p1j1 , p2j2 , p3j3) (2.6)

where

CR(p1, p2, p3) =

{
1 if the three triplets (p1, p2, p3) are correctly classified
0 otherwise
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is the function denoting the correctly rated triples. As the VUS is the prob-
ability of rating three estimate triples correctly, θ̂V gives the fraction of all
possible three subject combinations that are rated correctly. For a non dis-
criminatory test the chance of correctly rating the triples p1, p2, p3 is 1

3!
.

Finally, the variance of the estimator is

V ar(θ̂V ) =
1

n1n2n3

[θV (1− θV ) + (n3 − 1)(q12 − θ2
V )+

+ (n2 − 1)(q13 − θ2
V ) + (n1 − 1)(q23 − θ2

V )

+ (n2 − 1)(n3 − 1)(q1 − θ2
V ) + (n1 − 1)(n3 − 1)(q2 − θ2

V )

+ (n1 − 1)(n2 − 1)(q3 − θ2
V )] (2.7)

where

q12 = P [CR(P1j1 , P2j2 , P3j3) = CR(P1j1 , P2j2 , P3j3)]; J3 6= j3

is the probability of correctly classifying three subjects of class 1,2,3 and
correctly classifying two subjects of class 1,2 and a different subject of class
3 (see Dreiseitl et al., 2000, for a proof of eq. 2.7). In the same way we have:

q13 = P [CR(P1j1 , P2j2 , P3j3) = CR(P1j1 , P2j2 , P3j3)]; J2 6= j2

q23 = P [CR(P1j1 , P2j2 , P3j3) = CR(P1j1 , P2j2 , P3j3)]; J1 6= j1

q1 = P [CR(P1j1 , P2j2 , P3j3) = CR(P1j1 , P2j2 , P3j3)]; J2 6= j2, J3 6= j3

q2 = P [CR(P1j1 , P2j2 , P3j3) = CR(P1j1 , P2j2 , P3j3)]; J1 6= j1, J3 6= j3

q3 = P [CR(P1j1 , P2j2 , P3j3) = CR(P1j1 , P2j2 , P3j3)]; J1 6= j1, J2 6= j2.

(2.8)

The quantity above can be estimated by counting the fraction of triples
combinations for which the definitions hold, for example:

q̂12 =
1

n1n2n3

∑
j1

∑
j2

∑
j3

∑
j3 6=J3

CR(P1j1 , P2j2 , P3j3)CR(P1j1 , P2j2 , P3j3).

Thus, an estimator of variance of the VUS can be obtained by substituting
in eq. (2.7) the estimators q̂12, q̂13, . . .

σ̂2 =
1

n1n2n3

[θ̂v(1− θ̂) + (n3 − 1)(q̂12 − θ̂2
v)+

+ (n2 − 1)(q̂13 − θ̂2
v) + (n1 − 1)(q̂23 − θ̂2

v)

+ (n2 − 1)(n3 − 1)(q̂1 − θ̂2
v) + (n1 − 1)(n3 − 1)(q̂2 − θ̂2

v)

+ (n1 − 1)(n2 − 1)(q̂3 − θ̂2
v)]. (2.9)
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According to the Mann-Whitney U-statistic theory, the authors use the
asymptotic normality of the estimator to test the hypothesis that two VUS
values resulting from two raters who classify the same sample of subjects,
are equal. Let θ̂V 1 be the VUS estimator obtained from estimates triples of
rater 1 and θ̂V 2 the VUS estimator obtained from estimates triples of rater 2,

their asymptotic normality implies that, for large samples, θ̂V 1
d→ N(µ1;σ2

1)

and θ̂V 2
d→ N(µ2;σ2

2), and therefore, (θV 1 − θV 2)
d→ N(µ1 − µ2;σ2

1 + σ2
2 −

2Cov(θ̂V 1, θ̂V 2)). Then, the test statistics,

z =
θ̂V 1 − θ̂V 2√

σ̂1 + σ̂2 − 2r̂σ̂1σ̂2

(2.10)

is the quantity to be compared to the critical values of the normal distribution
to determine whether to reject the null hypothesis or not, where r̂ is the
estimator of the correlation between the two VUS’s, that can be calculated
similarly as the variance of VUS (see Dreiseitl et al. (2000) for the precise
formula).

2.3.2 Non parametric approach for ordered classes :
Nakas and Yiannoutsos (2004)

Nakas and Yiannoutsos (2004) unify the approach of Mossman and Scurfield
and state the theoretical basis to extend the ROC curve analysis to the mul-
ticlass (M > 3) ordered classification problems. The authors describe the
functional form of the ROC manifold when a continuous diagnostic marker is
used to discriminate patients that belong to M ordered classes and discuss a
non parametric estimator for Hypervolume Under the Manifold (HUM). Al-
though the condition on the order in the population distributions may seem
restrictive, in medical studies is very common to deal with naturally ordered
groups. The authors suppose that subjects in class 3 tend to have higher
values of the marker than subjects in class 2 and that the latter tend to have
values greater than those in class 1 (see Fig. 2.3). For simplicity of exposure
we rewrite the ROC curve in eq. (1.1) in terms of distribution function. Let
X1 ∼ F1(·), X2 ∼ F2(·), X3 ∼ F3(·) three overlapping distributions corres-
ponding to the distribution functions of the marker in the three populations
of patients, and let the rule adopted to classify the subjects, based on the
marker values, be the following:

- if marker X < c1 then assign subject to class 1

- if c1 < X < c2 then assign subject to class 2
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- else assign subject to class 3.

Then the functional form of the ROC surface is

ROC(p1, p3) = F2(F−1
3 (1− p3))− F2(F−1

1 (p1)), 0 ≤ p1, p3 ≤ 1 (2.11)

where p1 = TCR1 = P (C = 1|D = 1) = P (X1 < c1) and p3 = TCR3 =
P (C = 3|D = 3) = P (X3 > c2) are the probabilities of correct classifications
into the first and the third class respectively. The ROC surface is obtained by
plotting the points {F1(c1), F2(c2)− F2(c1), 1− F3(c2); −∞ < c1 < c2 <∞}
in a three-dimensional space at different values of the thresholds c1 and c2.
This corresponds to the definition provided in equations (2.2)-(2.4) already
discussed in Section 2.1.1, but now expressed in terms of distribution func-
tions.
According to this approach the volume under the ROC surface can be seen
as an index of the overlap of the three distributions under study and it is
obtained by

V US = θV = P [X1 < X2 ∩X2 < X3]

=

∫ 1

0

∫ 1

0

[F2(F−1
3 (1− p3))− F2(F−1

1 (p1))]dp1dp3.

The non parametric estimator of the volume under the ROC surface, as
we can see below, has a very similar form as that of Dreiseitl et al. (2000)
the only difference is in the rule to determine the correct classifications.

V̂ US = θ̂v =
1

n1n2n3

n1∑
j1=1

n2∑
j2=1

n3∑
j3=1

1(X1j1 , X2j2 , X3j3)

where {j1, j2, j3} is a permutation of {1, 2, 3} and 1(X1j1 , X2j2 , X3j3) is the
indicator function which equals one if X1, X2, X3 are in the correct order,
that is if subjects from class 1, 2, 3 are correctly classified in classes 1,2,3
respectively, and zero otherwise.

Nakas and Yiannoutsos (2004) provide the generalization of the estimator
in the case of M (M > 3) populations using M-1 ordered decision thresholds,
ci, i = 1, 2, . . . ,M − 1, together with the same decision rule of the three class
framework. Thus, when X1, X2, . . . , XM are randomly selected from each
diagnostic category, the generalized volume under the hypersurface (HUM)
is

HUM = θH = P [X1 < X2 ∩X2 < X3 ∩ · · · ∩XM−1 < XM ]
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Figure 1. Three overlapping continuous distributions based on some diagnostic marker with X1 ∼

N(0; 1); X2 ∼N(1; 1:12); X3 ∼N(1:4; 1:32). Two simultaneous, ordered decision thresholds are needed
for the de�nition of each point of the ROC surface in the unit cube.

of marker measurements as in the example shown in Figure 1. Assume further that subjects
from class 3 tend to have higher measurements than subjects in class 2 and the latter tend
to have higher measurements than class-1 subjects. In an analogous fashion to the primary
and secondary decision rule used by Mossman [2] in the context of contingency tables, two
decision thresholds are needed in order to perform the classi�cation to the three classes.
For two ordered decision thresholds c1¡c2 (Figure 1) the following decision rule may be
applied:

IF X¡c1 THEN decision is ‘class 1’
ELSE IF c1¡X¡c2 THEN decision is ‘class 2’
ELSE decision is ‘class 3’

In practice ties between measurements and threshold values may occur and the less than
signs ‘¡’ above can arbitrarily be replaced with less than or equal signs ‘6’ as long as the
requirement c1¡c2 is not contradicted.
The decision thresholds c1; c2 need to be ordered otherwise the proposed decision rule

does not apply since if c2¡c1 no measurement will be assigned to the second class. Using
the ordered decision thresholds results in a primary and secondary decision rule as in the
formulation of Mossman [2, 4]. Varying the decision thresholds in the union of the supports of
the distributions of the three classes, di�erent true class rates are de�ned, which can be plotted
in three dimensions and produce the ROC surface in the unit cube. The true classi�cation
rates TCk ; k=1; 2; 3 take values in [0; 1] with corner co-ordinates {(1; 0; 0); (0; 1; 0); (0; 0; 1)}
in analogy with the two-dimensional ROC curve, since ignoring c2 and the sub-rules that
this implies, a conventional ROC curve between classes 1 and 2 is produced based on the
true pairwise classi�cation rates. Equivalently, ignoring c1 an ROC curve between classes 2
and 3 is produced. Thus, the proposed construction in three dimensions is well de�ned as a
generalization of the ROC curve. If X1 ∼F1(:); X2 ∼F2(:); X3 ∼F3(:) the functional form of
the ROC surface is

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:3437–3449
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Figure 2.3: Three overlapping continuous distributions based on a diagnostic
marker with three different Gaussian distribution. Two ordered decision
threshold are fixed to define each point of the ROC surface in the unit cube.

whose value varies from 1
M !

to 1.
A non parametric estimate of the hypervolume is given by

ĤUM = θ̂h =
1

n1, n2, ,̇nM

n1∑
j1=1

n2∑
j2=1

· · ·
nM∑
jM=1

1(X1j1 , X2j2 , . . . , XMjM ).

The variance of the hypervolume under the manifold estimator is obtained
by generalizing to M classes the variance formula presented in eq. (2.7) and
has the following form

V ar(θ̂h) =
1

n1, n2, . . . , nM
[θH(1− θH) +

∑
i

(ni − 1)(qi − θ2
H)+

+
∑
i1

∑
i2 6=i1

(ni1 − 1)(ni2 − 1)(qi1i2 − θ2
H) + · · ·+

+
∑
i1

· · ·
∑
ik−1

(n1 − 1) . . . (nk−1 − 1)(q12...k−1 − θ2
H)]. (2.12)

It can be estimated in the same way as eq. (2.9) by substituting the estimates
of θH and qi in the equation above.
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2.3.3 Kernel smoothing based approach: Kang and
Tian (2013)

More recently, Kang and Tian (2013) propose an extension of the work of
Lloyd (1998) to the case of three ordered classes . The estimator they suggest
refers to the situation in which there are three independent random variables
X1, X2, X3 that are the result of a continuous diagnostic test, evaluated in
three different populations, basically the same scenario as the one we have
seen in Section 2.3.2 with a different proposal for the estimator. The authors
suggest a new VUS estimator obtained with kernel smoothing techniques.
We recall the VUS definition:

V US =

∫ 1

0

∫ 1−F3(F−1
1 (p1))

0

F2(F−1
3 (1− p3))− F2(F−1

1 (p1))dp1p3. (2.13)

According to the result that VUS is mathematically equivalent to P (X1 <
X2 < X3) and stating the independence of the three random variables, we
can rewrite the VUS as:

V US = P (X1 < X2 < X3) = E(X1,X2,X3)[1(X1 < X2 < X3)]

= E(X2)E(X1,X3)[1(X1 < X2 < X3)|X2 = x]

= E(X2)E(X1,X3)[1(X1 < X2) ∩ 1(X2 < X3)|X2 = x]

= E(X2)P (X1 < x)P (X3 > x)

=

∫ +∞

−∞
[F1(x)(1− F3(x)]f2(x)dx). (2.14)

Applying the Gaussian kernel estimator, the probability density function f2,
becomes:

f̂2(x) =
1

n2

n2∑
j2=1

1

h2

φ

(
x− x2j2

h2

)
(2.15)

if we then apply the same Gaussian kernel estimator to the cumulative dis-
tribution functions F2 and F3 we obtain the estimates:

F̂1(x) =
1

n1

n1∑
j1=1

Φ

(
x− x1j1

h1

)
(2.16)

F̂3(x) =
1

n3

n3∑
j3=1

Φ

(
x− x3j3

h3

)
(2.17)
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that, substituted in eq. 2.13, gives the VUS estimator:

V̂ US = θ̂v =

∫ +∞

−∞
F̂1(x)(1− F̂3(x)f̂2(x)dx). (2.18)

The terms hi in the equations above, are the parameters of bandwidth which
control the amount of smoothing of the curve. According to Silverman (1986),
the asymptotic value

hi =

(
4

3ni

1/5
)

min(SDi, IQRi/1.349)

is suggested since it works well with a wide range of density functions. In
the formula above, SDi and IDRi are the standard deviation and the in-
terquartile range of the sample distributions respectively.

2.3.4 Non parametric approach for multi-category mul-
tiple tests: Li and Fine (2008)

The generalization of the AUC to the multi-category and multiple test prob-
lems has been definitely formalized with the contribution of Li and Fine
(2008). Starting from the works of Dreiseitl et al. (2000) and Nakas and Yi-
annoutsos (2004), they generalize the problem to multiple classes and mul-
tiple tests. The authors interpret the third rule of Mossman in a math-
ematical way and, doing that, they develop an inferential method that,
some years later, will be even implemented in the statistical software R.
They argue that the correct classification may not need to be established
by the order of the test results, but can be determined by a more com-
plicated geometrical rule derived from the third rule of Mossman. We now
illustrate the rule in the simpler case of a forced-choice task with M sub-
jects, each sampled from one of the M different classes. Let pi, with i =
1, 2, . . . ,M , be the probability ratings of subjects coming from class i such
that pi = (Ei,1, Ei,2, . . . , Ei,M) where the generic Ei,k stands for the assessed
probability of subject i to belong to class k, with k = 1, 2, . . . ,M . Let
ν1 = (1, 0 . . . , 0), ν2 = (0, 1 . . . , 0), . . . , νM = (0, 0 . . . , 1), according to RIII

the authors establish to assign subjects to class α(1), α(2), . . . , α(M) 2 such
that ‖p1−να(1)‖2+‖p2−να(2)‖2 + · · ·+‖pM −να(M)‖2 is minimized among all
possible assignments α(1) 6= α(2) 6= . . . 6= α(M) where ‖·‖ is the euclidean
distance.
Consider now the case in which there are N subjects sampled from M dif-
ferent populations. Let pij with i = 1, 2, . . . ,M and j = 1, 2, . . . , ni be

2α(k) as we as seen in 2.1.1 indicates the permutation of the index
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the probability ratings of subject j coming from class i such that pij =
(Ei,j,1, Ei,j,2, . . . , Ei,j,M), where the generic Ei,j,k stands for the probability of
subject j from class i to belong to class k, with k = 1, 2, . . . ,M . The non
parametric HUM estimator proposed by the author becomes:

HUM = θh =
1∏M
i=1 ni

n1∑
j1=1

n2∑
j2=1

. . .

nM∑
jM=1

CR (p1j1 , p2j2 , . . . , pMjM )

This formula for the hypervolume seems very similar to that suggested by
Nakas and Yiannoutsos (2004), nevertheless it is more general because it
applies to the case of unordered variables. Moreover Li and Fine (2008)
addressed a very common issue in applied research, that is the case in which
the probabilities pij are unknown and must be estimated from diagnostics
tests. Let now see their proposal. Suppose each subject has q test scores,
let Tij = (Tij1, . . . , Tijq)

T , i = 1, . . . ,M ; j = 1, . . . , ni be the vector of scores,
the class probabilities can be modelled with multinomial logistic regression
where

Pij,c(β) = Pr(subject ij is from class c|Tij) =
1(c > 1) exp (βTc−1Tij) + 1(c = 1)

1 +
∑M−1

k=1 exp (βTk Tij)
(2.19)

TheM×q matrix of parameters β = (βT1 ,β
T
2 , . . . ,β

T
M−1) can be estimated

maximizing the log-likelihood function. Substituting β̂ = (βT1 , . . . ,β
T
M−1)T

for β in eq.(2.19), the estimated probabilities p̂ij = (p̂ij,1, . . . , p̂ij,M) are ob-
tained. These probability multiplets may then be replaced in the HUM
estimator to obtain

ĤUM = θ̂v =
1∏M

h=1 nh

n1∑
j1

n2∑
j2

. . .

nM∑
jM

CR(p̂1j1 , p̂1j2 , . . . , p̂MjM ). (2.20)

For M > 2 and/or q > 1 the variance of the HUM estimator is influenced
by the estimation of the probability assessment β̂. As a consequence, in this
case it is not possible to use the U-statistic variance formula as the previous
authors did. Thus, to make inference about HUM, the bootstrap standard
errors are preferable.

Denoting the bootstrap estimator as ĤUM b, b = 1, 2, . . . , B, where b
indicates the bootstrap sample, the bootstrap standard error is

ŝeB (HUM) =

√√√√ 1

B − 1

B∑
b=1

(
ĤUM b − ĤUM

)2

.
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A 100(1−α)% confidence interval for HUM can be calculated using the α/2
percentiles of the standard distribution as below:

ĤUM ± zα/2ŝeB (HUM) .

As an alternative, the interval between the α/2 and 1 − α/2 percentiles of

the bootstrap distribution of ĤUM may be used.

2.3.5 Parametric approach for ordered classes: Xiong
et al. (2006)

The first parametric approach to multiple ROC estimate has been offered
by Xiong et al. (2006). The authors propose a parametric framework under
two main hypothesis: the Gaussian distribution of the diagnostic test and
the ordering of the subjects diagnostic groups. Starting from the same idea
of ordered groups as that of Nakas and Yiannoutsos (2004) illustrated in the
previous section, the authors provide the functional form of the three-class
ROC together with the functional form of the VUS and partial V USpar. In
the special case in which rather than general distributions for X1, X2 and
X3, three normal distributions are assumed X1 ∼ N(µ1;σ1); X2 ∼ N(µ2;σ2)
X3 ∼ N(µ3;σ3), with µ1 < µ2 < µ3, the parametric form of the surface
becomes:

ROC(p1, p3) =
{

Φ(β1 + β2Φ−1(1− p3))− Φ(β3 + β4Φ−1(p1))
}

1[β3+β4Φ−1(p1)≤β1+β2Φ−1(1−p3)](p1, p3)

where 1 is the indicator function, Φ is the distribution function of the stand-
ard normal random variable and β = (β1, β2, β3, β4) is the parameters vector
of the ROC surface.

Holding these assumptions, the volume under the curve can be written
as:

V US =

∫ 1

0

∫ 1

0

Φ(β1 + β2Φ−1(1− p3))− Φ(β3 + β4Φ−1(p1))dp1p3

where

β1 =
µ3 − µ1

σ2

; β2 =
σ3

σ2

; β3 =
µ1 − µ2

σ2

; β4 =
σ1

σ2

.

The maximum likelihood estimate of the VUS is obtained by replacing the
parameters vector β with its maximum likelihood estimate β̂ = (β̂1, β̂2, β̂3, β̂4).
Thus, the estimated ROC surface is

R̂OC(p1, p3) =
{

Φ(β̂1 + β̂2Φ−1(1− p3))− Φ(β̂3 + β̂4Φ−1(p1))
}

1[β̂3+β̂4Φ−1(p1)≤β̂1+β̂2Φ−1(1−p3)](p1, p3),
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and therefore the VUS estimator is

V̂ US =

∫ 1

0

∫ 1

0

Φ(β̂1 + β̂2Φ−1(1− p3))− Φ(β̂3 + β̂4Φ−1(p1))dp1p3 (2.21)

The authors suggest to adopt numerical methods to solve the integral. Due
to the asymptotic normality of the ML estimates, the Delta method can be
applied to yield the asymptotic variance of the estimated parameters (for
more detailed explanation see Xiong et al. (2006)).

Although the above results apply to the particular situation of Normal
distributed tests, we would interestingly point out that, due to the invariance
of the ROC surface under monotonic transformations, the estimating proced-
ure holds if a known monotonic transformation can be applied to non-normal
data to transform it into normal ones.

2.3.6 Lehmann family approach

Recently, Nze Ossima et al. (2015) developed a model extending the results
reached by Gönen and Heller (2010) presented in Section 1.2.4 to the three-
class problem. They obtain an analytical form for both the ROC surface and
the volume under the surface. Furthermore the model they propose allows
for the covariate adjustments.

The model

Let X1, X2, X3 be the random variables corresponding to the marker distribu-
tion in the three classes, and S1, S2, S3 the corresponding survival functions.
The unique assumption they pose is that of the Lehmann alternatives:

S2 = Sθ11 0 < θ1 ≤ 1

S3 = Sθ22 0 < θ2 ≤ 1

whereas the survival functions are left unspecified. They define two thresholds
c1 and c2 with c1 < c2, and then the correct classification probabilities as:

u1 = 1− S1(c1); u2 = S2(c1)− S1(c2); u3 = S3(c2).

The ROC surface for the marker is obtained by expressing u2 as a function
of u1 and u3:

u2 = S2[S−1
1 (1− u1)]− S2[S−1

3 (u3)]; 0 ≤ u1 ≤ 1; 0 ≤ u3 ≤ S3[S−1
1 (1− u1)].

after some substitutions, the semi-parametric form of the surface is obtained:

u2 = (1− u1)θ1 − u1/θ2
3 .
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The volume under the surface is the overall accuracy measure they derive by
integrating the surface:∫ 1

0

∫ (1−u1)θ1θ2

0

u2(u1, u3)du3du1 =

∫ 1

0

∫ (1−u1)θ1θ2

0

(1− u1)θ1 − u1/θ2
3 du3du1.

As a result of the integration the authors get the analytical form of the entire
volume under the surface:

V US =
1

(θ2 + 1)(θ1(θ2 + 1) + 1)
.

The estimation procedure they adopt exploits the proportional hazards
framework as in the spirit of Gönen and Heller (2010). More in detail, in
this approach the marker plays the role of the dependent variable while the
class indicators are the regressors. Clearly, given the generality of the Cox
regression model, other possible explanatory variables are also allowed. The
estimation of the regression parameters is based on the well known Cox
partial maximum likelihood. Instead, the θ’s can be easily obtained from
these latter exactly as shown in Section 1.2.4, eq.s (1.11)-(1.13).

As a result, the authors derive the maximum likelihood estimate for the
VUS, that takes the form:

V̂ US =
1

(θ̂2 + 1)(θ̂1(θ̂2 + 1) + 1)
.

Furthermore the authors evaluate the asymptotic variance of the parameters
using the Delta method and consequently the variance of the VUS estimator
is obtained. The variance-covariance matrix for the parameters is:

Σθ̂1,θ̂2
=

[
σ2
θ̂1

σθ̂1,θ̂2
σθ̂2,θ̂1 σ2

θ̂2

]
(2.22)

where σ2
β̂i

= exp(2β̂i)σ
2
β̂i

, i = 1, 2 and the covariance σθ̂1,θ̂2 = ∂θ̂1
∂β̂1
× ∂θ̂2

∂β̂2
×

σβ̂1,β̂2 = exp(β̂1 + β̂2)× σβ̂1,β̂2 and the asymptotic variance of V̂ US is:

σ2

V̂ US
= σ2

θ̂1

(
∂ ˆV US

∂θ̂1

)2

+ σ2
θ̂2

(
∂ ˆV US

∂θ̂2

)2

+ 2

(
∂ ˆV US

∂θ̂1

∂ ˆV US

∂θ̂2

)
σθ̂1θ̂2 . (2.23)

In the next chapter we extend this result to a four-class problem providing
an analytical form of the ROC manifold and of its hypervolume.
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Chapter 3

Four-class classification models

In a recent contribution Rodia et al. (2018) evaluate a panel of four RNA
messengers as putative markers of colorectal cancer detection. Specifically,
the authors investigated a sample of patients which can be classified in four
distinct groups according to the severity level of the disease. In that pa-
per, the ROC analysis is conducted and based on comparisons between the
markers observed in the control group, composed by the healthy subjects,
and the values observed for the other groups, taken one at the time. Such a
way of proceeding through a sequence of pairwise analysis is quite standard
in the empirical literature when the sample is characterized by more than
two groups. This clearly represents a limit for this approach, that does not
perform the investigations using simultaneously all the data composing the
sample of observations.

Thus, motivated by this real research question, in this chapter we develop
a new theoretical framework to investigate the ability of a specific marker
to distinguish among four groups characterizing the population. In paral-
lel, we explore different approaches to estimate the hypervolume under the
manifold (HUM) as a measure of classification accuracy. We propose a new
HUM estimator, that we call HUML4. It is a generalization of the recent ap-
proach proposed by Gönen and Heller (2010) for the dichotomous framework
and already presented in Section 1.2.4. As we have exposed in Section 2.3.6,
Nze Ossima et al. (2015) generalized the idea of Gönen and Heller (2010) to
the estimate of the volume under the ROC surface in a three-group classific-
ation framework. In the same spirit we derive the analytical formula for the
four-category HUM estimator and for the calculation of its variance. As we
will discuss in the following sections, this last point represents a novelty in
the literature.

Our approach is, also, compared to other estimators existing in the lit-
erature and characterized by both different theoretical assumptions and es-
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timation procedures. The first, which we call HUMEX , as already seen in
Section 2.3.1 and Section 2.3.2, is based on a non parametric approach and
relies on the Mann-Whitney U statistic from which it takes the theoretical
and inferential framework The second, which we indicate HUMLF , is the
estimator presented by Li and Fine (2008) and described in Section 2.3.4. It
is based on the multinomial logistic model and, importantly, is not affected
by the order of the outcome’s categories. . In this chapter we also deal with
the issue of computational efforts. In fact, we recall that the HUM is math-
ematically equivalent to the probability that random variables corresponding
to the test results are in a defined order. Hence, a four-class classification
problem should require the computation of 4! = 24 HUMs in order to find
the highest one. As we will see later, we propose a technique to avoid the
computational burden of calculating 24 HUMs and, consequently, to reduce
the time complexity.

The chapter is organized as follows: the next section discusses the Lehmann
assumption in a four-class classification framework, that plays a relevant role
in our theoretical contribution. Section 3.2 presents the new estimator we
propose to classify subjects in a population characterized by four distinct
groups, while Section 3.3 presents an analytical formula for the variance of
the proposed estimator. Given the key role played by the Lehmann assump-
tion, in Section 3.4 we discuss a testing approach to verify whether such
assumption is supported by the data. In Section 3.5 we outline how the pro-
posed methodology can provide information about the separation degree of
the classes. Section 3.6 is dedicated to a comparison between our proposal
and the alternative methodologies already existing in the literature. Finally,
in Section 3.7 we discuss on how to detect the optimal ordering of the groups
and introduce the notion of relative effects.

3.1 Lehamnn family assumption in a four-

class problem

Suppose we employ a diagnostic test with continuous values to distinguish
between four classes of disease. Let X1, X2, X3, X4 be the continuous vari-
ables of the test result for subjects from classes 1 to 4. Moreover, let D be an
ordinal categorical variable taking on values from 1 to 4, and indicating for
each subject, the class he belongs to. Suppose, further, that the test results
for class 1, X1,i, with i = 1, 2, . . . , n1 are i.i.d., and the same for all the other
classes. Moreover, let S1, S2, S3 and S4 indicate the corresponding survival
functions.
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The survival distributions are assumed to have the family of Lehmann
alternatives, i.e.:

S2(x) = S1(x)θ1 , 0 < θ1 ≤ 1 (3.1)

S3(x) = S2(x)θ2 , 0 < θ2 ≤ 1 (3.2)

S4(x) = S3(x)θ3 , 0 < θ3 ≤ 1. (3.3)

Using the log transformation allows to rewrite the relationships among the
survival functions as

log(Si+1(x)) = θi log(Si(x)). (3.4)

Moreover, based on the general definition of the hazard function

h(x) =
−dS(x)

dx

1

S(x)
=
−d[logS(x)]

dx

and taking the first derivative in 3.4 with respect to x, we obtain

hi+i(x) = hiθi.

Thus, the unknown parameters θ can be modelled through the Cox propor-
tional hazards model assuming the marker value instead of the time index as
the argument of the hazard function. The general formula of the Cox model
is:

h(x|d) = h1(x)exp{β′d} (3.5)

where x is the marker value, d is the vector of appropriate dummy variables
to detect the group, β is the vector of parameters with θi = exp{βi} and h1

is the hazard function of the baseline group.1 Note that the condition on the
parameters θs indicates that subjects from class 4 tend to have higher levels
of the diagnostic test than subjects from class 3, and that subjects of class 3
tend to have higher measurements than those from class 2 and so on.

3.1.1 The ROC manifold

Suppose to have three assigned thresholds c1 < c2 < c3. The four probabil-
ities of correct classification, in this case, are:

u1 = P (X1 < c1); u2 = P (c1 ≤ X2 < c2); u3 = P (c2 ≤ X3 < c3); u4 = P (X4 ≥ c3)

1See Appendix A for a discussion on the Cox proportional hazards model.
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in terms of survival functions we can rewrite:

u1 = 1− S1(c1) (3.6)

u2 = S2(c1)− S2(c2) (3.7)

u3 = S3(c2)− S3(c3) (3.8)

u4 = S4(c3). (3.9)

Now, starting from the definition of ROC surface as the function obtained
by writing a correct-classification probability for a class as a function of the
other classes, the equation for the ROC surface can be obtained by writing the
correct-classification probability of, for example, class three u3 as a function
of u1, u2 and u4.

u3 = S3(c2)− S3(c3) (3.10)

= S3[S−1
2 (S2(c1)− u2)]− S−1

3 (u4)

= [S2(c1)− u2]θ2 − u1/θ3
4

= [S1(c1)θ1 − u2]θ2 − u1/θ3
4

= [(1− u1)θ1 − u2]θ2 − u1/θ3
4

The ROC hypersurface is thus a four-dimensional manifold with the following
expression:

ROC(u) = ((1− u1)θ1 − u2)θ2 − u1/θ3
4 (3.11)

where
u = (u1, u2, u4), with ui ∈ [0, 1], i = {1, 2, 3},

and
0 ≤ u1 ≤ 1;

0 ≤ u2 ≤ S2(c1)

0 ≤ u4 < S4(c2).

Moreover, from eq.s (3.6)-(3.9), we can rewrite

0 ≤ u2 ≤ (1− u1)θ1

and
0 ≤ u4 < [(1− u1)θ1 − u2]θ2θ3 .

Note that if the four distributions are identical, the discriminating power
of the diagnostic test is null and the ROC hypersurface satisfies the equation
u1 + u2 + u3 + u4 = 1.
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3.1.2 The hypervolume under the manifold

As for the simpler cases of two- and three-classification issues, the accuracy
measure of the discriminating function ROC(u) can be given by the hy-
pervolume under the manifold, denoted by HUM. In the next theorem we
report an analytical formula for calculating the HUM, that represents the
first important theoretical result in this section.

Theorem 1. Consider a four-class classification problem where the survival
functions, under the Lehmann conditions, are given as in eq.s (3.1)-(3.3).
Moreover, let the quantities u1, u2, u3 and u4 be defined as in eq.s (3.6)-
(3.9).

If the discriminating function is given by the ROC(u) function as defined
in eq. (3.11), then the hypervolume under the manifold HUM is given by

HUM(θ1, θ2, θ3) =
1

(θ3 + 1)(θ2(θ3 + 1) + 1)(θ1(θ2(θ3 + 1) + 1) + 1)
(3.12)

for some parameter 0 < θ1 ≤ 1, 0 < θ2 ≤ 1 and 0 < θ3 ≤ 1.

Proof. The hypervolume under the ROC manifold represents the accuracy
measure we are interested in and it is obtained integrating the ROC surface
defined in eq. (3.11) over its domain:
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HUM(θ1, θ2, θ3) =

∫ 1

0

∫ (1−u1)θ1

0

∫ ((1−u1)θ1−u2)θ2θ3

0

S3(c2)− S3(c3)du4du2du1

=

∫ 1

0

∫ (1−u1)θ1

0

∫ ((1−u1)θ1−u2)θ2θ3

0

((1− u1)θ1 − u2)θ2 − u1/θ3
4 du4du2du1

=

∫ 1

0

∫ (1−u1)θ1

0

∣∣∣∣∣u4

{
((1− u1)θ1 − u2)θ2 − θ3u

1/θ3
4

θ3 + 1

}∣∣∣∣∣
((1−u1)θ1−u2)θ2θ3

0

du2du1

=

∫ 1

0

∫ (1−u1)θ1

0

((1− u1)θ1 − u2)θ2θ3
{

((1− u1)θ1 − u2)θ2 +

−θ3((1− u1)θ1 − u2)θ2

θ3 + 1

}
du2du1

=

∫ 1

0

∫ (1−u1)θ1

0

((1− u1)θ1 − u2)θ2(θ3+1)

θ3 + 1
du2du1

=

∫ 1

0

∣∣∣∣−((1− u1)θ1 − u2)θ2(θ3+1)+1

(θ3 + 1)(θ2(θ3 + 1) + 1)

∣∣∣∣(1−u1)θ1

0

=

∫ 1

0

(1− u1)θ1(θ2(θ3+1)+1)

(θ3 + 1)(θ2(θ3 + 1) + 1)

=

∣∣∣∣− (1− u1)θ1(θ2(θ3+1)+1)

(θ3 + 1)(θ2(θ3 + 1) + 1)(θ1(θ2(θ3 + 1) + 1) + 1)

∣∣∣∣1
0

=
1

(θ3 + 1)(θ2(θ3 + 1) + 1)(θ1(θ2(θ3 + 1) + 1) + 1)
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Eq. (3.12) represents the entire hypervolume under the manifold in a
four-dimensional classification problem. As it can be seen, the closed form
depends only on the parameters of the Lehmann assumption. The following
corollary to Theorem 1 provides an interesting result when the ROC function
associated to the classification problem is unable to discriminate among the
different classes.

Corollary 1. Consider a four-class classification problem as the one defined
in Theorem 1. If the diagnostic test is non-discriminatory, the HUM is equal
to

HUM(θ1, θ2, θ3) = 1/24 (3.13)

which is its minimum possible value.

Proof. In the case of a non-discriminatory test, we have that θ1 = θ2 = θ3 =
1, indicating that there is no difference among the four survival functions.
As a consequence, the solution of the integral in eq. (3.12) simply becomes
HUM = 1/24, which is also equal to 1/4!, that represents the minimum
value as described before.

Corollary 2. When θ3 goes to zero, HUM = V US = 1/((θ2 + 1)(θ1(θ2 +
1) + 1)), as in Nze Ossima et al. (2015). If both θ3 and θ2 go to zero,
HUM = V US = AUC = 1/(θ1 + 1), i.e. the volume under the surface
collapses to the area under the Lehmann family ROC curve as shown in
Gönen and Heller (2010).

Proof. The result can be easily obtained from the proof of Theorem 1, by
solving the integral fixing θ3 = 0 first, and then both θ3 = 0 and θ2 = 0.

The result in Corollary 2 simply states that the analytic formula for the
HUM developed in Theorem 1 is a generalization, in the four-class classifica-
tion framework, of the findings by Nze Ossima et al. (2015) and, originally, by
Gönen and Heller (2010) in the three- and two-class classification framework,
respectively.
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3.2 Estimation

In the previous section we have derived the ROC manifold and the associ-
ated summary measure represented by the HUM. In this section, instead, we
propose a semi-parametric approach to estimate the hypersurface and the
hypervolume.

Under the Lehmann condition, the four survival functions are related one
to the others by means of the parameters θ1, θ2 and θ3. As a consequence,
both the ROC surface and the HUM are functions of such unknown para-
meters, that represent the object of our inferential analysis.

Following the intuition by Gönen and Heller (2010) for the two-class clas-
sification issue, we propose to estimate the parameters θ1, θ2 and θ3 by means
of the proportional hazards regression model already presents in several stat-
istical packages. As we will show here below, the problem, in fact, can be
written in terms of regression model. Let x be the generic realization of the
diagnostic test X. Under the Lehmann condition we have that:

θ1 =
h2(x)

h1(x)
(3.14)

θ2 =
h3(x)

h2(x)
(3.15)

θ3 =
h4(x)

h3(x)
(3.16)

where hi(x) are the hazard functions of X in the group i-th, with i = 1, . . . , 4.
In order to estimate the parameters, we define the Cox model with the

diagnostic test X in place of the usual “time”variable. To implement the
model, the four levels categorical variableD can be replaced by a combination
of three ad hoc dummy variables D1,D2,D3, defined as follows. If D = 1,
then D1 = 0, D2 = 0, D3 = 0; if D = 2, then D1 = 1, D2 = 0, D3 = 0; if
D = 3 then D1 = 1, D2 = 1, D3 = 0 and, finally, if D = 4 then D1 = 1,
D2 = 1, D3 = 1.

The Cox proportional hazards model, thus, can be written as:

h(x|d1, d2, d3) = h1(x) exp{β1d1 + β2d2 + β3d3} (3.17)

where d1,d2,d3 are the realizations of the dummies D1, D2, D3, respectively,
and h1(x) is the baseline hazard function. Specifically, the hazard in the first
group is:

h(x|d1 = 0, d2 = 0, d3 = 0) = h1(x), (3.18)

in group 2 is:

h(x|d1 = 1, d2 = 0, d3 = 0) = h2 = h1(x) exp{β1} (3.19)
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in group 3 :

h(x|d1 = 1, d2 = 1, d3 = 0) = h3(x) = h1(x) exp{β1 + β2} (3.20)

and in group 4:

h(x|d1 = 1, d2 = 1, d3 = 1) = h4(x) = h1(x) exp{β1 + β2 + β3}, (3.21)

where the scalars β1, β2 and β3 are the parameters of the regression model we
have to estimate. Now, substituting the hazard functions in eq.s (3.18)-(3.21)
into the definition of the θ parameters in eq.s (3.14)-(3.16), it is possible to
rewrite the latter as a function of the β parameters:

θ1 =
h1(x) exp{β1}

h1(x)
= exp{β1} (3.22)

θ2 =
h1(x) exp{β1 + β2}
h1(x) exp{β1}

= exp{β2} (3.23)

θ3 =
h1(x) exp{β1 + β2 + β3}
h1(x) exp{β1 + β2}

= exp{β3}. (3.24)

Therefore we can estimate the vector of parameters θ by estimating the
vector of parameters β. Concerning the latter, we can use the well known
estimation techniques for the Cox proportional hazards model based on the
maximization of the partial likelihood. Moreover, as the properties of the ML
estimators hold for the parameters βs and, given that, the θs are obtained
by applying a monotonic and continuous transformation, they maintain the
same properties. Under the usual regularity conditions, thus, the estimators
θ̂1, θ̂2 and θ̂3 are consistent and asymptotically normal distributed.

Finally, substituting the θ̂s in eq. (3.12) we obtain the partial maximum

likelihood estimate of the hypervolume under the manifold ĤUML4:

ĤUML4 =
1

(θ̂3 + 1)(θ̂2(θ̂3 + 1) + 1)(θ̂1(θ̂2(θ̂3 + 1) + 1) + 1)
. (3.25)

The procedure described above is extremely simple and has the enormous
advantage of being easily implementable with packages already developed in
practically all the statistical software, without the need of ad hoc codes to
be written by researchers interested in the field. Moreover, as will be largely
discussed in the following Chapter 4 devoted to the implementation of the
procedure using simulated datasets, the simplicity of the procedure goes in
parallel with enormous gains in terms of computational time. Finally, an-
other point of interest, is the relatively simple way of obtaining an analytical
formula for the standard error of the estimator of the HUM, as presented in
the next section.
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3.3 An analytical formula for the variance of

the estimator

The asymptotic variance for the HUML4 estimator can be obtained, accord-
ing to Nze Ossima et al. (2015), with the Delta method.

The variance-covariance matrix for the vector of parameters θ̂ can be
decomposed as

Σθ̂1,θ̂2,θ̂3
=

 σ2
θ̂1

σθ̂1,θ̂2 σθ̂1,θ̂3
σθ̂2,θ̂1 σ2

θ̂2
σθ̂2,θ̂3

σθ̂3,θ̂1 σθ̂3,θ̂2 σ2
θ̂3


= JTV J (3.26)

where J is the Jacobian of θ̂ = (θ̂1, θ̂2, θ̂3):

J =

exp{β̂1} 0 0

0 exp{β̂2} 0

0 0 exp{β̂3}

 (3.27)

and V is the variance-covariance matrix of β̂ = (β̂1, β̂2, β̂3):

V = Σβ̂1,β̂2,β̂3
=

 σ2
β̂1

σβ̂1,β̂2 σβ̂1,β̂3
σβ̂2,β̂1 σ2

β̂2
σβ̂2,β̂3

σβ̂3,β̂1 σβ̂3,β̂2 σ2
β̂3

 . (3.28)

Substituting (3.27) and (3.28) in (3.26) the variance-covariance matrix for θ̂
becomes:

Σθ̂1,θ̂2,θ̂3
=

 exp{2β̂1}σ2
β̂1

exp{β̂1} exp{β̂2}σβ̂1β̂2 exp{β̂1} exp{β̂3}σβ̂1β̂3
exp{β̂1} exp{β̂2}σβ̂1β̂2 exp{2β̂2}σ2

β̂2
exp{β̂2} exp{β̂3}σβ̂2β̂3

exp{β̂3} exp{β̂1}σβ̂3β̂1 exp{β̂3} exp{β̂2}σβ̂3β̂2 exp{2β̂3}σ2
β̂3



=


exp{2β̂1}σ2

β̂1
exp{β̂1 + β̂2}σβ̂1β̂2 exp{β̂1 + β̂3}σβ̂1β̂3

exp{β̂1 + β̂2}σβ̂1β̂2 exp{2β̂2}σ2
β̂2

exp{β̂2 + β̂3}σβ̂2β̂3
exp{β̂3 + β̂1}σβ̂3β̂1 exp{β̂3 + β̂2}σβ̂3β̂2 exp{2β̂3}σ2

β̂3

 .
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Using the Delta method, thus, the variance for HUML4 is:

σ2

ĤUML4
= σ2

θ̂1

(
∂ĤUML4

∂θ̂1

)2

+ σ2
θ̂2

(
∂ĤUML4

∂θ̂2

)2

+ σ2
θ̂3

(
∂ĤUML4

∂θ̂3

)2

+

+2

(
∂ĤUML4

∂θ̂1

∂ĤUML4

∂θ̂2

)
σθ̂1θ̂2 + 2

(
∂ĤUML4

∂θ̂1

∂ĤUML4

∂θ̂3

)
σθ̂1θ̂3 +

+2

(
∂ĤUML4

∂θ̂2

∂ĤUML4

∂θ̂3

)
σθ̂2θ̂3 (3.29)

where the single partial derivatives are given by:

∂ĤUML4

∂θ̂1

= − 1

(θ̂3 + 1)[θ̂1(θ̂2θ̂3 + θ̂2 + 1) + 1]2

∂ĤUML4

∂θ̂2

= − 2θ̂1(θ̂2θ̂3 + θ̂2 + 1)− 1

(θ̂2θ̂3 + θ̂2 + 1)2[θ̂1(θ̂2θ̂3 + θ̂2 + 1) + 1]2

∂ĤUML4

∂θ̂3

=
−θ̂2

(θ̂3 + 1)[θ̂2(θ̂3 + 1) + 1]2[θ̂1(θ̂2(θ̂3 + 1) + 1) + 1]
+

− θ̂1θ̂2

(θ̂3 + 1)[θ̂2(θ̂3 + 1) + 1][θ̂1[θ̂2(θ̂3 + 1) + 1] + 1]2
+

− 1

(θ̂3 + 1)2[θ̂2(θ̂3 + 1) + 1][θ̂1(θ̂2(θ̂3 + 1) + 1) + 1]
. (3.30)

This result is extremely interesting as, to the best of our knowledge, it rep-
resents the first time a standard error for the HUM related to a four-class
classification problem has been derived analytically. Being all the derivatives
derived analytically, the empirical calculation is extremely simple and not-
ably faster than any other technique based on simulation. Examples will be
provided in the next Chapter 4.

3.4 Validation of the Lehmann assumption

As we have largely discussed in the previous sections, the HUML4 estimator
is derived under the Lehmann assumption, i.e. by imposing a proportionality
among the distributions of the different groups. Conditional on the validity
of such an assumption, we can consider our estimator more or less reliable.
Here below, we describe two different approaches to check the validity of
the Lehmann assumption: the first is a graphical one and the other is a
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statistical test. Before introducing the graphical method, we briefly recall
some relationship satisfied by the proportional hazards model (for details see
Appendix A).

In general, the cumulative hazard function H(t) relates to the survival
function S(t) by H(t) = −log(S(t)). Given that under the Cox model H(t) =

H0(t) exp{z′
β} then it is possible to write S(t) = S

exp{z′β}
0 . From this follows

that the plot of the log(−logS(t)) function versus the t/log(t) should produce
approximately parallel curves. Hence, a graphical evidence of crossing curves
is indicative of violation of proportional hazards assumption.

Even though graphical methods are easy to implement, they present some
limitations. In fact, it is not possible to quantify to what extent the curves
are far from the perfect parallel situation and, consequently, the decision to
accept the proportionality assumption can be subjective.

Another way to investigate the departure from Lehmann condition is
through a test based on the residuals of the model. The test proposed here
below is a re-adaptation of the work developed by Grambsch and Therneau
(1994). The authors take inspiration from the proportional hazards regres-
sion model by Cox (1972). As described in Appendix A, the Cox model
describes the hazard rate of a particular event to occur at a certain moment
in time as a combination of a baseline hazard function and some covariates.
Specifically, it is assumed the effect of the covariates on the hazards to be
multiplicative. Moreover, the effect of such covariates is transmitted to the
hazards through fixed coefficients, generally indicated by the vector β.

The general assumption in the Cox regression is that such parameters re-
main fixed, and do not depend on the time t. The test proposed by Grambsch
and Therneau (1994) aims to check about the plausibility of fixed β when
compared to a generic alternative function β(t). This test represents a gen-
eralization of many other contributions in the same field, which, instead,
focused on specific deviations from the proportional hazards (see, among
others, Cox, 1972; Schoenfeld, 1980 and Wei, 1984).

Using the traditional notation, the hazard at time t for the i-th subject
with covariates Zi can be written as

h(t) = h1(t) exp{z′
β}

where h1(t) is the baseline hazard function and describes the risk for the
subject with Zi = 0, while exp{z′

β} is the relative risk associated with the
set of covariates Zi. The null hypothesis is that the vector of parameters
β remains constant over time. The alternative, instead, is that the generic
parameter βj, j = 1, . . . , p, with p indicating the number of covariates, is
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time-varying, and specifically, taking the form

βj(t) = βj + δj gj(t)

where gj(t) is a predictable function of t (e.g., a polynomial in t). The null
hypothesis, thus, reduces to a joint test on δj = 0, j = 1, . . . , p. Grambsch
and Therneau (1994) define a test statistics, which depends on the function
g(t), in general indicated by T (G), whose asymptotic distribution follows a
χ2 with p degrees of freedom.

If we move from the traditional specification of the Cox model, generally
used in survival analysis, to the one introduced in Section 3.2, where the
time variable is replaced with the diagnostic test result variable and the
covariates are the three ad hoc dummy variables D1, D2, D3 indicating the
different groups, then the Grambsch and Therneau’s test can be interpreted
as a test for constant hazards within the groups, and proportional between
the groups. In fact, if we write the Cox model as in eq. (3.17)

h(x|d1, d2, d3) = h1 exp{β1d1 + β2d2 + β3d3}

where x is the generic realization of the diagnostic test X, d1,d2,d3 are
the realizations of the dummies D1, D2, D3, respectively, and h1(x) is the
baseline hazard function, then the test verifies the assumption of constant
β = (β1, β2, β3), against the alternative of the βs to be a function of the
values of the markers within each group, i.e.

βj(x) = βj + δj gj(x),

for any j = {1, 2, 3}. If the null hypothesis H0 : δj = 0, j = {1, 2, 3}, cannot
be rejected, then β1, β2, β3 are constant scalars and, according to eq.s (3.14)-
(3.16) and eq.s (3.22)-(3.24), the hazards functions are proportional between
groups. The implementation of the test, however, requires the specification
of the deterministic function gj(x), j = {1, 2, 3}, that could be any simple
polynomial in the marker values x, e.g. gj(x) = x.

A test on the βj coefficients in the Cox regression framework, hence, be-
comes a test on the Lehmann assumption. This re-adaptation of the Gramb-
sch and Therneau’s approach allows to statistically test whether the main
theoretical assumption underlying the HUML4 estimator is likely to be sup-
ported by the data.

3.5 Assessing separability among the classes

A very important point in any classification issue is whether all the classes are
effectively different, at least according to the information we have and, more

52



CHAPTER 3. FOUR CLASS CLASSIFICATION MODELS

importantly, for the marker we use. In the first stages of the experimental
design the researcher proposes a distinction between different classes, based
on some a priori information he has about the phenomenon. However, it
might be the case that for some specific marker we are dealing with, two
or more classes do not present substantial differences in their distribution
patterns. We do not say that the researcher belief was definitely wrong, but
rather that the classification power of this specific marker does not allow
to discriminate among the different classes. Verifying this issue through
appropriate inferential statistical approach would provide the researcher with
important suggestions about the prior belief and/or discriminatory power of
the marker at hand and decide to pursue the analysis in this direction or
maybe, focus on alternative markers.

In the previous sections of this chapter we have considered an overall
indicator about the discriminatory power of the marker, such as the HUM.
Specifically, in Section 3.2 we have proposed an estimator of the HUM under
the assumption that the distributions of the marker in the classes follow a
specific ordering and that the relationships among such distributions can
be described parametrically, without however imposing any assumption on
the distribution within each class. This assumption, that is indicated as
the Lehmann assumption, can be verified through the appropriate testing
strategy described in Section 3.4. The obtained HUM indicator, thus, can be
seen as a measure about the discriminatory power of the marker in classifying
the subjects as a whole.

Although it is not the aim of the present research, a by-product of our
methodology is that it can easily allow to verify whether the classes are all
sufficiently different according to the marker we are dealing with. If this
is effectively the case, then it would be worth continuing with the analysis
of four distinguished classes and use the previous methodology to quantify
the discriminatory power of the marker through the estimated HUM. If,
instead, two classes are not sufficiently different, then we should either revise
the empirical investigation by changing the marker, or combining it with
one more marker (see Chapter 6, below), or even moving to a three-class
classification approach, if it is allowed to aggregate the two similar classes.

Thus, the methodology we proposed in the previous sections presents
an important advantage in this direction too. Specifically, the Cox propor-
tional hazards regression model, provides a way to estimate the parameters
describing the relationships among the different distributions θi = exp{βi},
i = {1, 2, 3}, as shown in eq.s (3.22)-(3.24). Moreover, based on the well
known property of the partial likelihood estimator used for estimating the
coefficients of the Cox proportional hazards model, under the usual regularity
conditions, the inference on the θ̂1, θ̂2 and θ̂3 parameters can be conducted
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in the usual way, being asymptotically normally distributed. As the generic
θi coefficient can be interpreted as the relationship between the distribution
of marker in the i -th class with respect to that in the i-1 -th one, the null
hypothesis H0 : θi = 1 indicates that the marker’s distribution in the two
mentioned classes is the same. Given the transformations in eq.s (3.22)-
(3.24), the test can be directly implemented on the parameters of the Cox
proportional hazards regression model, i.e. H0 : βi = 0. If the null hypo-
thesis cannot be rejected by the data, from a statistical point of view, the
two classes are distributed in the same way and, importantly, the marker is
unable to discriminate between subjects belonging to the two classes. As we
have said before, this represents a signal that the a priori distinction among
classes is not supported by the data and, as a consequence, either more in-
formation should be used in the empirical analysis, such as considering a new
marker, or alternatively, if it makes sense, try to move to a simpler three-class
classification framework. In this latter perspective, the test could be also re-
peated sequentially to further reduce the complexity of the problem to the
standard dichotomous setting. Furthermore, this simple and standard test
of hypothesis can be extremely useful to explain potential low values of the
estimated HUM indicator. Investigating the significance of the coefficients
one can detect the classes the marker is unable to discriminate among.

3.6 Comparisons between HUML4 and other

estimators for the HUM

The literature on ROC surface analysis when the disease presents more than
three stages is rather limited. To the best of our knowledge, there are only
two contributions focusing on estimators of the hypervolume as a measure
of the discrimination accuracy of a continuous biomarker. In this section we
discuss the main characteristics of each estimator and make a comparison
with our proposal, with particular attention to settings in which they can
find application and to the distributional assumptions they need.

The three methods, our contribution and the other two alternatives, draw
on the same idea of disregarding the distribution of the marker; in fact,
two of them are non parametric while our proposal can be defined as semi-
parametric.

The HUMEX estimator, introduced by Nakas and Yiannoutsos (2004)
and largely discussed in Section 2.3.2, is a completely non parametric estim-
ator. This approach assumes an inherited order in the marker measurements
between the classes and do not account for multiple marker analysis. Thus,
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in order to compute the HUM value, the order of the classes should be de-
termined in advance or, in alternative, all possible 4! HUM values must be
calculated. The largest HUM will be the sensible measure of the accuracy of
the test. The inferential framework is based on the Mann-Whitney U stat-
istic. Clearly, as the hypervolume under the ROC surface is calculated from
the ranks of the test measurement results, it is invariant under monotonically
increasing transformations. This is, in applied research, a highly desirable
property. The variance of the estimator, as suggested by the authors, must
be calculated using bootstrap methodology because, when the sample size
increases and the number of classes is greater than three, the U-statistic
approach presents computational burden.

From an operational point of view, this approach is highly demanding
firstly because, as we pointed out in Section 2.3.2, it requires to evaluate all
the permutations of the marker measures and secondly due to fact that 4!
hypervolumes need to be calculated in order to identify the largest one. This
estimator has been implemented in the “Biocomb”R package (Novoselova
et al., 2017).

The HUMLF estimator, as well as the HUMEX , does not require any
assumption on the functional form of the distribution of the biomarker in
the population. Furthermore, the condition on the ordering of test results
with respect to the class of disease is relaxed. This estimator has been de-
rived by Li and Fine (2008) trough an approach based on the estimated class
probabilities, thus it allows to overcome the limit to analyse one marker at a
time. The multinomial logistic regression model simply provides the estim-
ated class probabilities jointly taking into account several markers, moreover
any classification method generating estimated class probabilities could be
used. It is worth noting that this approach is the only one that accounts
for multiple markers. An analytical form for the variance of the estimator
is not provided by the authors, they suggest to adopt bootstrap techniques.
This estimator has been implemented in R and, as we will see in the following
chapter, it is computationally demanding. In a recent package called “mcca”,
provided by Gao and Li (2018), different methods for the estimation of the
class probability vectors, such as classification tree, support vector machine
and linear discrimination analysis, are available.

Our proposal, HUML4, is a semi-parametric estimator in the sense that
it is obtained with an approach that does not require a full parametric spe-
cification of the marker distribution for the four populations. As we have
seen, it is based on the Lehmann assumption, that postulates the existence
of a monotone transformation producing marker values with an extreme value
distribution without specifying and estimating the transformation. Thus, the
only parameters to be estimated are those governing the relationship among
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the survival distributions. This approach, like the one of the HUMEX , needs
an assumption on the ordering of the disease categories. Even though it
presents the same limit as HUMEX in modelling only one marker, it has the
advantage of allowing to control for covariate effects and as we have stated in
the previous section, to give information on the separation among the classes
through the significance of the coefficients of the Cox proportional hazards
regression model. The variance of HUML4 has the analytical form obtained
with the Delta method showed in Section 3.3. It is computationally very fast
due to the fact that relies on proportional hazards framework, thus inference
using standard statistical software is enabled.

3.7 Defining the optimal ordering

In many real world biomedical situations the categories of the outcome we
are interested in have an intrinsic natural order. However, quite often, the
quantitative test results do not display the corresponding actual ordering.
As a consequence, the problem of identifying the relative order of test among
groups still remains. This is extremely relevant for estimators as HUML4 or
HUMEX that depend on the ordering of the test measure over the classes.
In a four-class classification problem, as we stated before, in order to find
out the highest HUM value it is necessary to calculate all possible 4! HUM
values. This might cause high computational efforts.

3.7.1 Relative effects

A way to avoid the computational burden of calculating M ! HUM values is
to compute the sample mean for each class. Li et al. (2014), in their work,
demonstrate (Theorem 3.1) that, if the test result is Gaussian distributed,
the order of the sample means can be used to prescribe the order of the M
classes. As in practice the data could present an empirical distribution far
from the normal one even after normalization attempts, parametric methods
are not always suitable. To overcome this issue Li et al. (2014), suggest a
distribution-free non parametric method. The idea is to sort categories using
a descriptive statistic called relative effect. More in detail, for each test X
from each category k, the relative effect ek can be calculated based on the
cumulative distribution of the marker in the k-th group, denoted by Gk(x).
Specifically, the relative effect is defined as:

ek =

∫
G+(x)dGk(x), k = 1, 2, . . . ,M
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where

G+ =
M∑
k=1

wkGk(x), with

(
M∑
k=1

wk = 1

)
is a weighted average of the k distribution functions Gk and wk is the relev-
ance of the k-th category. In order to define the correct ordering based upon
the sample data, the estimated relative effect êk can be obtained by replacing
the unknown distribution functions with their empirical counterpart:

Ĝk(x) =

∑nk
i=1 1(Xik ≤ x)

nk
.

The ordering of the relative effects of each group suggests the optimal order-
ing of the groups maximizing the HUM. Furthermore, Li et al. (2014) prove
the almost surely convergence of the sample relative effect to the true one.
The êk can be used to determine the category ordering before applying our
hypervolume estimator. As we will see later in the empirical applications,
implementing this method allows us to save a huge amount of computational
time when estimating the HUM.
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Chapter 4

Simulation studies

In this chapter we present a comparison among three different approaches
in estimating the HUM value. We report simulations studies with differ-
ent scenarios in order to evaluate the impact of different data generating
processes (DGP) on the estimators performances.

4.1 General setting

We hypothesize a setting in which a diagnostic marker is evaluated in a
sample with subjects belonging to four different groups, for example four
stages of disease. We consider a set of scenarios according to different sample
size and different characteristics of the DGP. As we have deeply discussed in
the previous sections, an important assumption characterizing our approach
is the Lehmann condition, which is however not necessary for the other es-
timators already existing in the literature. An important distinction in the
following simulation exercises is whether the DGP satisfies such condition or
not.

As we have introduced in Section 2.3.6, the Lehmann assumption states
that

S2 = Sθ11 ; S3 = Sθ22 ; S4 = Sθ33

where Si, with i = 1, . . . , 4, represents the survival function in each stage
of disease, and θ1, θ2 and θ3 are the parameters. The main difficulty in the
simulation exercises is that the Cox model, as reported in Section 3.1, is
formulated in terms of the hazard functions, while we need to generate the
data starting from probability distributions. To overcome the problem we
apply the Monte Carlo inversion method. Given that

S(x) = exp{−H1(x) exp(β
′
d)}, (4.1)
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where H1(x) =
∫ x

0
h1(u)du is the cumulative hazard function of the baseline

class and d is the vector of appropriate dummy variables to detect the class,
it is possible to obtain the distribution function under this model, i.e.

F (x) = 1− exp{−H1(x) exp(β
′
d)}. (4.2)

Given that F (x) is a cumulative distribution function, it can assume values
in the interval (0, 1). Denoting with X the marker value in the Cox model
and with Y the Uniform distribution, Y ∼ Uni(0, 1), then from eq. (4.2) it
is possible to write:

Y = exp
{
−H1(x) exp{β′d}

}
∼ Uni(0, 1). (4.3)

If h1(x) > 0 for all x, then H1 can be inverted and X can be obtained
following the algebra below:

log(y) = −H1(x) exp{β′d}
−H−1

1 [log(y)] = x exp{β′d}
x = H−1

1 [−log(y) exp{−β′d}]. (4.4)

Generating random values for the marker, thus, reduces to generate random
numbers from a Uni(0, 1) distribution and make the transformation in eq.
(4.4) as shown in Bender et al. (2005).

One of the probability distribution functions that presents the propor-
tional hazards property is the Weibull distribution. The hazard function of
a Weibull random variable X is:

h(x) = λνxν−1 (4.5)

where λ ∈ R+ is the scale parameter and ν ∈ R+ is the shape parameter.
Its cumulative hazard function is:

H1(x) = λxν (4.6)

and the inverse cumulative hazard function is:

H−1
1 (x) = λ−1x1/ν . (4.7)

Applying the transformation in eq. (4.4), the marker variable can be ex-
pressed as:

x = λ−1[−log(y) exp{−β′d}]1/ν

= −
(

log(y)

λ exp{β′d}

)1/ν

. (4.8)
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The corresponding hazard function in the Cox model is:

h(x|d) = λνxν−1 exp{β′d}, (4.9)

meaning that the marker we generated follows a Weibull distribution with
scale parameter λ(d) = λ exp{β′d} and fixed shape parameter equal to ν. In
the first simulation exercise, the Cox regression model with known regression
coefficients is simulated.

4.2 Data Generating Process under the Lehmann

condition

The first set of simulations are obtained by assuming that the Lehmann
condition is met. As described above, we generate the data starting from
different Weibull distributions according to the procedure proposed in eq.s
(4.4)-(4.9). Specifically, we generate from a Cox proportional hazards model
with different vectors of parameters β = (β1; β2; β3)′ and groups covariate
vector d. The hazard functions, thus, assume the form

hi(t|d1, d2, d3) =


h1(t) d1i = 0, d2i = 0, d3i = 0

h1(t) exp{β1d1i} d1i = 1, d2i = 0, d3i = 0

h1(t) exp{β1d1i + β2d2i} d1i = 1, d2i = 1, d3i = 0

h1(t) exp{β1d1i + β2d2i + β3d3i} d1i = 1, d2i = 1, d3i = 1.

Generating under these conditions corresponds to assume thatXi ∼ Wei(λi, ν)
is the marker’s distribution in the i-th class, with i = 1, . . . , 4. In other words,
we consider distributions with class-specific scale parameter and constant
shape parameter. The three cases presented below simply differ according to
different vectors of parameters β.

Interestingly, for any scenario, it is possible to calculate the exact value of
the HUM. The true HUM, thus, represents the reference value for comparing
the estimated one and for evaluating the performance of the estimators in
terms of the bias.

The first scenario, denote with Case 1, is characterized by the vector of
parameters β = (−1.4;−0.8;−0.6)′. In detail, the four distributions charac-
terizing the four classes of disease are:

X1 ∼ Wei(4, 2)

X2 ∼ Wei(4 ∗ exp{−1.4}, 2)

X3 ∼ Wei(4 ∗ exp{−1.4− 0.8}, 2)

X4 ∼ Wei(4 ∗ exp{−1.4− 0.8− 0.6}, 2).
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As said above, in the second and third scenario we use the same strategy
as for case 1 but with different vectors of parameters β. Specifically, the
second scenario (case 2 ) is characterized by the parameters β = (−2.5;−1.2;−1.7)′,
while the third one (case 3 ) by the parameters β=(−4.1;−3.5;−3.8)′. In Fig-
ure 4.1 we show the four probability density functions we use for generating
the data in the three cases (case 1, case 2 and case 3 ). As can be easily
noted from the figure, from case 1 to case 3 the distributions become more
and more separate. The true HUMs, thus, are expected to increase from
case 1 to case 3. In fact, when solving the integral in eq. (3.13), the true
values of the HUM for case 1, case 2 and case 3 are 0.263, 0.561 and 0.933,
respectively.

Finally, for each of the three cases, we generate the data for different
sample sizes, N=120, N=200 and N=320, under the assumption of groups of
equal dimension (30 individuals, 50 individuals and 80 individuals, respect-
ively). These sample sizes are absolutely in line with clinical studies using
real data.

The estimation results are shown in Table 4.1. For each of the three es-
timators presented in Chapter 3: the HUMEX by Nakas and Yiannoutsos
(2004) presented in Section 2.3.2, the HUMLF by Li and Fine (2008) de-
scribed in Section 2.3.4 and our estimator HUML4 derived in Section 3.1,
the first three columns of the table report the characteristics of the DGP,
in terms of the parameters β, the true value of the HUM, and the sample
size of each simulation. The following columns, instead, are devoted to the
simulation results, for each of these estimators we show the estimated HUM
(hum), the standard error (se) and the bias, expressed both in absolute value
and in percentage, with respect to the true HUM. Concerning the calculation
of the standard errors, for our estimator we use the formula in eq. (3.29),
while for the other two estimators, as there do not exist analytical results,
we apply the bootstrap technique.

Looking at Table 4.1, for case 1 and case 2 the HUML4 and HUMEX

perform very well and in a very similar way. Both estimators present re-
duced bias even in small sample, although our estimator has systematically
smaller standard errors. For case 3, these first two estimators have practic-
ally no bias. In all the three cases, the third estimator, HUMLF , performs
systematically worse, both in terms of bias and standard errors.

Interestingly, in Table 4.2 we report, for each simulation, the computa-
tional times, in seconds, for obtaining the results presented in Table 4.1.
The clear message, from this table, is that our estimator is computationally
extremely efficient when compared to the other two estimators. Moreover,
the computational time for the HUML4 remains practically the same as the
sample size increases while it explodes for the other two, in particular for

61



CHAPTER 4. SIMULATION STUDIES

the HUMLF . This is clearly not a surprise, as the HUMLF estimator needs
to compute, for each subject of each class, all the combinations of the four
probabilities to belong to a class, to find out the HUM value.

Overall, when the DGP supports the Lehmann condition, our estimator
performs extremely well both in small and larger samples, and reveals to
be extremely efficient in term of computational time. Among the other two
estimators, the HUMEX also performs very well, but the computational
time is much longer and increases exponentially with the size of the sample.
The HUMLF estimator, under the Lehmann condition, presents the poorest
performances in term of bias, precision and computational time.
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HUML4

β true N est. se bias bias
hum hum (abs value) %

120 0.270 0.042 0.006 2.133
case 1 (−1.4;−0.8;−0.6)′ 0.264 200 0.267 0.032 0.003 0.996

320 0.266 0.026 0.002 0.638

120 0.565 0.053 0.004 0.712
case 2 (−2.5;−1.2;−1.7)′ 0.561 200 0.563 0.041 0.002 0.396

320 0.561 0.033 <0.001 0.069

120 0.933 0.024 <0.001 0.005
case 3 (−4.1;−3.5;−3.8)′ 0.933 200 0.933 0.018 <0.001 0.034

320 0.933 0.015 <0.001 0.036

HUMEX

120 0.270 0.047 0.006 2.283
case 1 (−1.4;−0.8;−0.6)′ 0.264 200 0.266 0.037 0.003 0.952

320 0.265 0.030 0.001 0.283

120 0.565 0.061 0.004 0.740
case 2 (−2.5;−1.2;−1.7)′ 0.561 200 0.563 0.048 0.002 0.360

320 0.561 0.039 <0.001 0.083

120 0.934 0.032 0.001 0.130
case 3 (−4.1;−3.5;−3.8)′ 0.933 200 0.933 0.025 <0.001 0.012

320 0.933 0.020 <0.001 0.006

HUMLF

120 0.252 0.048 0.012 4.609
case 1 (−1.4;−0.8;−0.6)′ 0.264 200 0.249 0.038 0.015 5.563

320 0.248 0.031 0.016 6.127

120 0.531 0.063 0.030 5.315
case 2 (−2.5;−1.2;−1.7)′ 0.561 200 0.529 0.049 0.032 5.680

320 0.526 0.038 0.035 6.218

120 0.925 0.035 0.008 0.879
case 3 (−4.1;−3.5;−3.8)′ 0.933 200 0.922 0.027 0.011 1.175

320 0.922 0.022 0.011 1.205

Table 4.1: Simulation results for the Weibull case under the Lehmann as-
sumption and three different vectors of parameters β of the Cox propor-
tional hazards regression model. Bias is expressed in absolute value, while
the percentage is calculated with respect to the true HUM value.
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HUML4 HUMEX HUMLF

n1=n2=n3=n4=30 2.93 78.510 506.79
case 1 n1=n2=n3=n4=50 3.09 339.220 3052.530

n1=n2=n3=n4=80 3.55 1430.370 19739.520
n1=n2=n3=n4=30 3.04 76.69 502.89

case 2 n1=n2=n3=n4=50 3.22 347.85 2782.18
n1=n2=n3=n4=80 3.64 1458.08 20393.03
n1=n2=n3=n4=30 3.08 76.42 479.56

case 3 n1=n2=n3=n4=50 3.20 342.68 2751.72
n1=n2=n3=n4=80 3.69 1445.08 20036.58

Table 4.2: Computational time in seconds for the Weibull case under the
Lehmann assumption and three different vectors of parameters β of the Cox
proportional hazards regression model.
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4.3 Data Generating Process under depar-

tures from the Lehmann condition

In this section we evaluate the performance of our estimator when the data
are generated under less favourable conditions. Our estimator, the HUML4,
is based on the validity of the Lehmann condition. The DGP featuring the
next simulation exercises presents departures from the Lehmann condition
in different directions. In particular, we first continue to consider Weibull
distributions, although with group-specific shape parameters ν(d), then we
move to Gaussian distributions, for which the Lehmann condition is never
satisfied.

4.3.1 DGP from Weibull distributions with group-specific
shape parameters

In Section 4.1 we have presented the case of Weibull distributions with the
same shape parameter ν, for which the Lehmann condition does hold. When
the shape parameter is group-dependent, i.e. ν = ν(di), the Lehmann con-
dition is not supported anymore. The next three scenario, case 4 to case
6, consider samples generated from Weibull distributions with different scale
(λ) and shape (ν) parameters, each corresponding to a different HUM value.
In particular, from case 4 to case 6, the distributions are progressively more
separated, showing thus increasing values of the true HUM. Figure 4.2 shows
the distributions of the three cases described here below.

In case 4 we generate using the Monte Carlo inversion method we illus-
trated in Section 4.1 with vector of parameters β = (−1.2,−0.5,−0.8)′ and
ν1 = 5, ν2 = 4, ν3 = 2, ν4 = 5 . The real HUM is 0.234. The results on the
performance of the three estimators are shown in Table 4.3. The structure
of the table is the same as before, where we first reports the parameters of
the simulation setting, then the performance of the estimators in terms of
estimated HUM, standard errors and bias. In all cases but one, regardless
of the size of the sample, all the estimators tend to underestimate the true
value of the HUM, with a remarkable bias. The only exception is represented
by the HUMEX estimator, that in large samples performs extremely well.

In case 5 we generate using the Monte Carlo inversion method with vec-
tor of parameters β = (−1.4,−1.2,−3.2)′ and ν1 = 2, ν2 = 2, ν3 = 3, ν4 = 4.
The true value of the HUM is 0.553. The performance of the three estimators
is practically the same as in the previous case 4, with a tendency of under-
estimating the value of the true HUM, except for the HUMEX estimator in
large samples.
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In case 6, the data are generated with parameters β = (−2.0,−3.0,−6.0)′

and ν1 = 2, ν2 = 2.5, ν3 = 4, ν4 = 7. As can be seen in Figure 4.2, right
panel, the four distributions are rather well separated; this is consistent with
the extremely high real HUM, which is 0.836. The results of the simulation
exercise are shown in Table 4.3. The bias is quite large for all the estimators,
which continue to systematically underestimate the true value of the HUM.
Interestingly, for all the estimators, the bias slightly increases with the raise
of the sample size.

In general, we can remark that our estimator, the HUML4, although the
failure of the Lehmann condition, continues to perform systematically better
than the HUMLF , in terms of both bias and precision (standard error).
Regardless the sample size and the magnitude of the hum, the best estimator
in terms of bias is the HUMEX .

In Table 4.4 we show the computational time for estimating the HUM for
the three estimators. It clearly emerges that our estimator is much faster, re-
gardless of the size of the sample. The computational time, instead, explodes
with both HUMEX and HUMLF .
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HUML4

β true N est. se bias bias
hum hum (abs value) %

β = (−1.2,−0.5,−0.8)′ 120 0.160 0.024 0.075 31.972
case 4 ν1 = 5, ν2 = 4, 0.234 200 0.159 0.018 0.076 32.332

ν3 = 2, ν4 = 5 320 0.158 0.015 0.076 32.447

β = (−1.4,−1.2,−3.2)′ 120 0.481 0.055 0.073 13.150
case 5 ν1 = 2, ν2 = 2, 0.553 200 0.478 0.045 0.076 13.644

ν3 = 3, ν4 = 4 320 0.475 0.035 0.079 14.267

β = (−2.0,−3.0,−6.0)′ 120 0.721 0.049 0.115 13.753
case 6 ν1 = 2, ν2 = 2.5, 0.836 200 0.716 0.039 0.120 14.375

ν3 = 4, ν4 = 7 320 0.713 0.032 0.123 14.683

HUMEX

β = (−1.2,−0.5,−0.8)′ 120 0.186 0.034 0.048 20.558
case 4 ν1 = 5, ν2 = 4, 0.234 200 0.182 0.028 0.053 22.484

ν3 = 2, ν4 = 5 320 0.235 0.028 0.001 0.237

β = (−1.4,−1.2,−3.2)′ 120 0.513 0.059 0.040 7.283
case 5 ν1 = 2, ν2 = 2, 0.553 200 0.514 0.048 0.040 7.195

ν3 = 3, ν4 = 4 320 0.554 0.038 0.001 0.094

β = (−2.0,−3.0,−6.0)′ 120 0.773 0.049 0.063 7.508
case 6 ν1 = 2, ν2 = 2.5, 0.836 200 0.771 0.038 0.064 7.715

ν3 = 4, ν4 = 7 320 0.771 0.030 0.065 7.818

HUMLF

β = (−1.2,−0.5,−0.8)′ 120 0.117 0.042 0.118 50.175
case 4 ν1 = 5, ν2 = 4, 0.234 200 0.111 0.033 0.124 52.768

ν3 = 2, ν4 = 5 320 0.104 0.023 0.130 55.513

β = (−1.4,−1.2,−3.2)′ 120 0.473 0.058 0.080 14.540
case 5 ν1 = 2, ν2 = 2, 0.553 200 0.473 0.047 0.080 14.487

ν3 = 3, ν4 = 4 320 0.470 0.036 0.083 15.049

β = (−2.0,−3.0,−6.0)′ 120 0.714 0.056 0.122 14.547
case 6 ν1 = 2, ν2 = 2.5, 0.836 200 0.711 0.044 0.125 14.939

ν3 = 4, ν4 = 7 320 0.710 0.035 0.126 15.073

Table 4.3: Simulation results for the Weibull case with group-specific shape
parameters (Lehmann condition is not satisfied) and three different vectors
of parameters β . Bias is expressed in absolute value, while the percentage
is calculated with respect to the true HUM value.
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HUML4 HUMEX HUMLF

n1=n2=n3=n4=30 2.95 77.39 508.87
case 4 n1=n2=n3=n4=50 3.14 346.70 2802.82

n1=n2=n3=n4=80 3.59 1471.26 20311.33
n1=n2=n3=n4=30 3.01 76.66 515.41

case 5 n1=n2=n3=n4=50 3.20 344.50 2813.94
n1=n2=n3=n4=80 3.61 1448.56 20181.73
n1=n2=n3=n4=30 3.01 76.39 498.56

case 6 n1=n2=n3=n4=50 3.16 343.69 2800.65
n1=n2=n3=n4=80 3.61 1453.50 20238.43

Table 4.4: Computational time for the Weibull case with group-specific shape
parameters (Lehmann condition is not satisfied) and three different vectors
of parameters β of the Monte Carlo inversion method.
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CHAPTER 4. SIMULATION STUDIES

4.3.2 DGP from Normal distributions with equivalent
variances

The following set of simulations continues to move away from the Lehmann
condition, and focuses on DGPs based on Gaussian distributions. We con-
sider three new scenarios - case 7, case 8 and case 9 - where the Normal
variables have different group-specific expected values but constant variances.
As for the previous cases, the parameters are selected in order to have differ-
ently separated distributions and, accordingly, featuring different values of
the real HUM. The probability density functions of the distributions for each
scenario are reported in Figure 4.3. As before, in each scenario we consider
three different sample sizes, with groups having the same dimension.

The results of the simulation exercises are shown in Table 4.5, where we
report the parameters of the DGP, the true value of the HUM, the sample
size N, and the performance (estimated value, standard error and bias) of
each of the three estimators: HUML4, HUMEX and HUMLF .

As can be seen in Figure 4.3, case 7 is characterized by highly overlapped
distributions. The expected values are µ1 = 0.1, µ2 = 0.3, µ3 = 0.5, µ4 = 0.7,
while the standard deviation is common in all groups, σ1 = σ2 = σ3 = σ4 = 1.
As expected, the true HUM is very small and amounts to 0.077. Focusing on
the performances of the estimators, it emerges that, differently with respect
to the Weibull distributions, the best estimator is the HUMLF , that presents
a very small bias for small and large samples. The HUML4 and HUMEX ,
instead, show similar bias, in term of magnitude, although the former tends
to underestimate, while the latter to overestimate.

The case 8 is characterized by Normal distributions with expected val-
ues µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4 and constant standard deviations
σ1 = σ2 = σ3 = σ4 = 1. The real value of the HUM is 0.369. For this
scenario, regardless of the size of the sample, the HUMEX estimator per-
forms systematically better, in terms of bias, than the other two estimators.
Our estimator, instead, presents the highest bias, around the double than
those observed for the HUMLF . However, HUML4 continues to be the most
efficient one, presenting the lowest values of the standard error for all sample
sizes.

The last simulation, case 9, considers rather separated Gaussian distri-
butions, with parameters given by µ1 = 1, µ2 = 3, µ3 = 5, µ4 = 7 and
σ1 = σ2 = σ3 = σ4 = 1. The true HUM is 0.771. The HUMEX estim-
ator practically presents no bias and a very small standard error. Both the
HUML4 and HUMLF substantially overestimate the true HUM, with worse
performance for the former. Interestingly, our HUML4 shows slightly in-
creasing bias the larger the sample size. This is due to the fact that the
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HUML4 is based on the Lehmann condition that, as said before, is at odds
with DGPs coming from Gaussian distributions. The larger is the sample
size, the bigger we expect to be the bias.

In Table 4.6 we report the computational time for case 7, case 8 and
case 9. What emerges, practically, is that our estimator continues to be
enormously less time consuming than the other two alternatives, in particular
when the sample size does increase.

Overall, when considering departures from the Lehmann conditions ori-
ginating from Gaussian distributions, the HUML4 estimators show increas-
ing bias the larger the sample size and the more separate variables for the
groups. Although such unfavorable conditions, the bias remains relatively
contained and in line with the HUMLF estimator, which is, however, much
more computationally demanding. The HUMEX estimator, in general, is the
one presenting the lowest bias, although it becomes computationally time
consuming as the sample size increases.
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HUML4

parameters β true N est. se bias bias
hum hum (abs value) %

µ1 = 0.1, µ2 = 0.3 120 0.069 0.016 0.009 11.218
case 7 µ3 = 0.5, µ4 = 0.7 0.077 200 0.069 0.012 0.008 10.792

σ1 = σ2 = σ3 = σ4 = 1 320 0.069 0.010 0.008 10.633

µ1 = 1, µ2 = 2 120 0.305 0.050 0.064 17.397
case 8 µ3 = 3, µ4 = 4 0.369 200 0.300 0.039 0.069 18.633

σ1 = σ2 = σ3 = σ4 = 1 320 0.299 0.031 0.071 19.148

µ1 = 1, µ2 = 3 120 0.672 0.060 0.099 12.818
case 9 µ3 = 5, µ4 = 7 0.771 200 0.664 0.047 0.107 13.876

σ1 = σ2 = σ3 = σ4 = 1 320 0.659 0.039 0.111 14.450

HUMEX

µ1 = 0.1, µ2 = 0.3 120 0.090 0.018 0.012 15.754
case 7 µ3 = 0.5, µ4 = 0.7 0.077 200 0.084 0.014 0.007 8.552

σ1 = σ2 = σ3 = σ4 = 1 320 0.082 0.012 0.004 5.712

µ1 = 1, µ2 = 2 120 0.365 0.053 0.004 1.206
case 8 µ3 = 3, µ4 = 4 0.369 200 0.367 0.042 0.003 0.717

σ1 = σ2 = σ3 = σ4 = 1 320 0.369 0.034 <0.001 0.037

µ1 = 1, µ2 = 3 120 0.768 0.049 0.002 0.322
case 9 µ3 = 5, µ4 = 7 0.771 200 0.769 0.038 0.002 0.248

σ1 = σ2 = σ3 = σ4 = 1 320 0.770 0.031 0.001 0.080

HUMLF

µ1 = 0.1, µ2 = 0.3 120 0.077 0.021 0.001 0.844
case 7 µ3 = 0.5, µ4 = 0.7 0.077 200 0.074 0.016 0.003 4.354

σ1 = σ2 = σ3 = σ4 = 1 320 0.073 0.014 0.005 5.928

µ1 = 1, µ2 = 2 120 0.334 0.052 0.035 9.558
case 8 µ3 = 3, µ4 = 4 0.369 200 0.337 0.041 0.033 8.875

σ1 = σ2 = σ3 = σ4 = 1 320 0.339 0.033 0.030 8.085

µ1 = 1, µ2 = 3 120 0.703 0.057 0.068 8.768
case 9 µ3 = 5, µ4 = 7 0.771 200 0.702 0.045 0.068 8.872

σ1 = σ2 = σ3 = σ4 = 1 320 0.703 0.036 0.068 8.808

Table 4.5: Simulation results for Normal distributions with group-specific
expected values and equal variances (Lehmann condition is not satisfied).
Bias is expressed in absolute value, while the percentage is calculated with
respect to the true HUM value.
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HUML4 HUMEX HUMLF

n1=n2=n3=n4=30 2.92 77.55 493.97
case 7 n1=n2=n3=n4=50 3.15 348.39 2814.59

n1=n2=n3=n4=80 3.57 1469.82 20528.60
n1=n2=n3=n4=30 2.95 77.39 506.53

case 8 n1=n2=n3=n4=50 3.14 346.70 2792.03
n1=n2=n3=n4=80 3.59 1471.26 19866.11
n1=n2=n3=n4=30 2.86 76.33 504.18

case 9 n1=n2=n3=n4=50 3.12 346.87 2795.04
n1=n2=n3=n4=80 3.54 1450.50 20416.80

Table 4.6: Computational time for the Normal case with group-specific ex-
pected values and equivalent variances.
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Chapter 5

Empirical applications

In this chapter we report two empirical applications of the methodology
developed in Chapter 3 on how one can measure the accuracy of a classifier
in a four-class classification framework. The first empirical study investigates
the classification power of four blood markers in detecting four different levels
of colorectal disease, up to the highest level characterizing the full-blown
colorectal cancer. The second empirical study, instead, concerns a problem
of immunohistological synovial tissue classification presented in Della Beffa
et al. (2013) and broadly used in the literature on multicategory diagnostic
accuracy (see for example (Li et al., 2017)).

5.1 Blood markers for colorectal cancer

Cancer detection at early stage has been one of the main research topics un-
dertaken by the scientific community over the recent decades. In particular,
colorectal cancer (henceforth CRC) has been largely studied as it represents
the last stage of genetic and molecular alterations of the originating tumour
Such a process is generally quite slow (in some case up to 15 years) and hav-
ing early detection can represent the most effective strategy for a complete
recovery.

As the deterioration from pre malignant lesion to carcinoma and meta-
stasis involves several molecular events, the idea of detecting solid tumours
through simple blood tests has received growing interest. At the same time,
medical and chemical research has enormously widen the amount of testable
components using human blood samples, including cell-free DNA (cfDNA)
and RNA (cfRNA), as well as proteins and circulating vesicles, known as
exosomes.

With the aim of early detection of CRC, over the recent years many coun-
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tries have promoted a massive campaign to resort to faecal immunochemical
test (FIT) as a simple, non-invasive and acceptable test. As an example,
in most Italian regions, positive patients are considered as those with an
FIT> 100 ng/ml. Under these premises, about 5.5% of the screened pop-
ulation (aged 50-69 years) will be FIT positive and only 2.9% will receive
a diagnosis of CRC and 20.1% a diagnosis of advanced adenomas (at first
round). The rate of false positive FITs, hence, is the incentive for the in-
vestigation of new non-invasive and more specific screening tests, including
blood markers.

5.1.1 Data and descriptive statistics

The data we analyse come from a recent study on colorectal cancer conducted
with the purpose of evaluating a panel of four messenger RNAs (mRNAs)
as putative markers of the cancer (Rodia et al., 2018). Specifically, the au-
thors tested four markers: carcinoembryonic antigen-related cell-adhesion
molecule 6 (CEACAM6), lectin galactoside binding soluble 4 (LGALS4),
tetraspanin 8 (TSPAN8), collagen type I alpha 2 chain (COL1A2), hereafter
referred to with the acronym of CELTiC (CEACAM6, LGALS4, TSPAN8
and COL1A2), on subjects positive to the faecal immunochemical test (FIT)
and undergoing colonoscopy. The researchers investigated 231 participants
that can be classified in four distinct groups: 67 healthy subjects (N), 36
FIT positive with negative colonoscopy (NFIT), 36 low risk that is FIT pos-
itive with small polyps (LR), 92 FIT positive with advanced adenomas or
a histologically confirmed diagnosis of colorectal cancer (HR/CCR). Before
proceeding with the discussion, a clarification about the study design is in
order. In fact, as recognized by the authors, the study presents some limit-
ations in the data. In particular, an in-depth analysis of the design would
suggest to examine additional healthy subjects as well as FIT negative sub-
jects and to increase the record of FIT positive and CRC subjects. Although
we are aware of the preliminary nature of the study, the reason we decided to
apply our methodology to the CELTiC dataset is twofold: firstly, the data-
set presents the characteristics of classifying the subjects in four categories;
secondly, a recent parallel paper investigating the same data offers a way to
compare our results to those obtained through the traditional dichotomous-
forced approach.

Table 5.1 provides the descriptive statistics of the four biomarkers char-
acterizing each group. In particular, for each biomarker, we report means,
standard deviations and relative effects divided by class. As we can see,
means and relative effects present the same trend going from Normal to
HR/CCR group for all the markers with the exception of COL1A2. It is
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important to note that, in line with standard practice in molecular genetics,
the marker measures have been transformed such that they are inversely cor-
related to the amount of gene expression, thus high values indicate low levels
of the relative gene.

In Figure 5.2, the relative values for the four groups of healthy control sub-
jects (N), negative colonoscopy (NFIT), low risk lesion (LR), high risk lesion
or colorectal cancers (HR/CRC) are reported for each marker CEACAM6,
LGALS4, TSPAN8 and COL1A2.

A more detailed descriptive statistical analysis can be found in Rodia
et al. (2018). Anyway, the simple descriptive investigation of the relative
effects confirms that we should not consider the four categories as completely
ordered.

5.1.2 Statistical analysis using the HUM

In the recent paper by Rodia et al. (2018), the authors propose to use a mul-
tinomial logistic regression model in order to study the association between
outcome and a linear combination of the proposed markers; two-tailed p-
values less than 0.05 were considered statistically significant; the reference
group is N (healthy subjects). However, the authors force the statistical
methodology and use dichotomous ROC curve and AUC analysis to assess
the accuracy of the model in discriminating among the four groups of sub-
jects. In this section, instead, we implement the methodology developed in
Chapter 3, which is explicitly designed for classification problems character-
ized by four groups. Specifically, we aimed to compute the ability of the four
biomarkers in discriminating subjects among the four groups. The accuracy
summary measure we adopt, thus, is given by the HUM.

As proposed in Section 3.2 we estimate HUML4 for each single marker
using the relative effect values to establish the correct categories ordering.
Furthermore, exploiting the results developed in Section 3.3, we also estim-
ate the analytical asymptotic standard errors of the HUML4, which provide
a measure of the sample uncertainty associated to the accuracy summary
indicator.

TheHUML4, moreover, is compared with the other two estimators already
existing in the literature: the HUMLF by Li and Fine (2008) described in
Section 2.3.4 and the HUMEX by Nakas and Yiannoutsos (2004) presented
in Sections 2.3.1. For the latter, however, given that there are no analytical
formula for calculating the standard errors, bootstrap techniques have been
used. Finally, for the sake of completeness, bootstrap standard errors have
been also calculated for the HUML4 estimator. As suggested in Li and Fine
(2008), bootstrap estimation of the standard errors for the three estimates
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are calculated with B = 100 bootstrap re-samples.
Specifically, the HUMEX has been estimated by the R-function Calcu-

late HUM-EX included in the R-package Biocomb (Novoselova et al., 2017),
which internally computes the maximal HUM value between all the possible
permutations of class labels. We recall that HUMLF , instead, is not affected
by the ordering of the categories.

5.1.3 Results

Before presenting the results, we check for the Lehmann assumption through
the graphical method and the statistical test introduced in Section 3.4. As
already widely discussed, our estimator HUML4 is based the Lehmann con-
dition, and the result of the test together with analysis of the survival curves
can provide a useful evaluation about the reliability of the obtained estim-
ates. The plots of the survival curves for all the markers are reported in
Figure 5.1. Even thought it is not easy to interpret the plots in four-class
framework, when considering TSPAN8 and COL1A2, it emerges that the
curves are overall parallel, although three of them are practically indistin-
guishable for a wide range of marker values. For the two remaining markers,
instead, the parallelism is questionable, especially for LGALS4.

To deeply understand if the Lehmann condition holds, we present in Table
5.2 the p-values of the statistical test, as discussed in Section 3.4. As can be
seen in the table, the null hypothesis of the proportional hazards assump-
tion (compatible with the Lehmann condition), cannot be rejected for the
TSPAN8 and COL1A2, while only at the 1% critical level for CEACAM6.
It has to be rejected, instead, for the LGALS4 marker. Overall, however,
the p-values remain relatively low, even when the null hypothesis cannot be
rejected by the data.

The results of the estimation procedures are reported in Table 5.3. In
particular, for each of the three estimators we show the point estimates and
the bootstrap standard errors. Moreover, given the theoretical result shown
in Section 3.3, for the HUML4, in brackets, we also report the asymptotic
analytical standard errors. The procedure has been performed for each of
the four blood markers, CEACAM6, LGALS4, TSPAN8 and COL1A2, and
the results are reported row-by-row.

From Table 5.3, we can deduce five general results: a) for all the es-
timators and for all the markers, the HUM is rather low; b) the HUMEX

estimator always produces the highest values of the HUM; c) the HUML4,
on the contrary, is the one giving the lowest values of the HUM; d) the worst
results for the HUML4 are those associated to LGALS4 and CEACAM6; e)
the HUML4 is largely the most efficient one, both in terms of analytical and
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bootstrapped standard errors. A possible explanation for the poor perform-
ance of the HUML4 in terms of the magnitude of the point estimate can be
ascribed to the fact that the Lehmann condition is only marginally supported
for the first two markers while has to be rejected for the last two, at least at
the 5% critical level (see Table 5.2). Moreover, as we have stated in Section
3.5, our approach, through the analysis of the p-values of the Cox regres-
sion coefficients, offers detailed information about the discriminatory power
of the marker for each single class. In Table 5.4, for each marker, we show
the estimated coefficients of the Cox model with the associated p-values. As
we can see, the intermediate classes, where the ordering is suggested by the
relative effects discussed in Section 3.7.1, are practically indistinguishable for
almost all the markers.

On the other side, regardless of the estimator used, the estimated HUM
values confirm the LGALS4 biomarker as the most powerful blood marker
discriminating among the four groups. Our result reinforces the one obtained
in Rodia et al. (2018) with the rough pairwise ROC analysis. This marker
is able to correctly classifying four subjects randomly chosen from the four
groups with a probability that ranges between 0.129 of the HUML4 estimator
and 0.219 of the HUMEX estimator. If we recall that the null value of HUM
for a four-category classification problem is 1/4! = 0.042, we can argue that
the accuracy of this marker is sufficiently better than a random guess.
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CHAPTER 5. EMPIRICAL APPLICATIONS

marker p-value
TSPAN8 0.185
COL1A2 0.139
LGALS4 < 0.01
CEACAM6 0.011

Table 5.2: Test for proportional hazards assumption.

HUML4 HUMEX HUMLF

ĥum se ĥum se ĥum se
TSPAN8 0.087 0.012 (0.013) 0.110 0.019 0.108 0.029
COL1A2a 0.102 0.015 (0.015) 0.111 0.020 0.111 0.035
LGALS4 0.129 0.021 (0.020) 0.219 0.034 0.151 0.041
CEACAM6 0.096 0.016 (0.015) 0.144 0.024 0.139 0.029

Table 5.3: Estimated HUMs by marker.
a The HUMEX estimator suggests a different categories order (HR/CCR, LR, NFIT, N);
however, if we impose this order in the HUML4 estimator, the estimated HUM decreases
to 0.081.

5.2 Tissue biomarkers of synovitis

In this section we provide an application of the HUML4 estimator to a real
dataset obtained from a medical study presented by Della Beffa et al. (2013).
As before, we also give a comparison between the HUML4 estimator and the
two non parametric estimators we have seen before: the one proposed by
Li and Fine (2008) (HUMLF ) and the one based on the idea of Nakas and
Yiannoutsos (2004) and implemented by Novoselova et al. (2014) (HUMEX).

The dataset we analyse comes from a study in which the number of cells
expressing a certain marker is used in immunohistological synovial tissue clas-
sification. It is quite common in such a literature to employ absolute densities
(e.g. number of cells/mm2 of subintimal tissue) of specific inflammatory cell
types to classify synovial tissue samples for diagnostic or prognostic purposes.
Della Beffa et al. (2013) refine this way of proceeding by looking at qualit-
ative features of inflammatory cell populations as a possible further source
of information. In this line, the authors consider subjects belonging to six
different disease groups and, in each subject, five major inflammatory cell
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Figure 5.1: Log(-log(survival))curves as function of marker value for
TSPAN8, COL1A2, LGALS4 and CEACAM6.

N N FIT LR HR/CCR

6
8

10
12

14
16

18

tspan8

N N FIT LR HR/CCR

6
8

10
12

14
16

18

col1a2

N N FIT LR HR/CCR

8
10

12
14

16
18

lgals4

N N FIT LR HR/CCR

8
10

12
14

16

ceacam6

Figure 5.2: Box plot of the four blood markers for colorectal cancer detection
in the four groups.
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TSPAN8
β θ = exp(β) se z p-value

LR -0.065 0.937 0.197 -0.330 0.740
N FIT 0.014 1.014 0.236 0.060 0.950
N -0.839 0.432 0.216 -3.890 < 0.001

COL1A2
β θ = exp(β) se z p-value

N FIT -0.006 0.994 0.236 -0.030 0.980
HR/CCR -0.207 0.813 0.199 -1.040 0.300
N -0.836 0.433 0.168 -4.960 < 0.001

LGALS4
β θ = exp(β) se z p-value

HR/CCR -0.918 0.399 0.164 -5.590 < 0.001
LR -0.228 0.796 0.197 -1.160 0.250
N FIT -0.356 0.700 0.243 -1.460 0.140

CEACAM6
β θ = exp(β) se z p-value

HR/CCR -0.446 0.641 0.162 -2.750 0.006
LR -0.099 0.906 0.199 -0.500 0.620
N FIT -0.465 0.628 0.239 -1.950 0.052

Table 5.4: Estimated coefficients for the Cox proportional hazards regression
model. Note that, for each marker, the ordering is the one established by the
relative effects and the omitted class is the reference one.

types values (markers) are observed. The dataset utilized is available in the
R package called HUM.

The sample is composed by N = 92 patients with chronic septic arthritis
(SeA, n=11), rheumatoid arthritis (RA, n=25), early undifferentiated arth-
ritis (EA, n=10), osteoarthritis (OA, n=26), “non-inflammatory” orthopedic
arthropathies (OrthArthr, n=6) and healthy volunteers (Normal, n=15). For
simplicity, we focus on the analysis of two synovial tissue biomarkers only,
neutrophilic granulocytes called CD15 and T cells called CD3. The vari-
ables are measured as the absolute cell densities expressed as the number of
positive staining cells per mm2. The aim of our analysis is twofold: firstly,
we want to assess the diagnostic accuracy of the biomarkers in classifying a
subject in one of the six categories using the definition of HUM derived in
eq. (3.12) as measure of accuracy; secondly, we aim to analyse the perform-
ance of HUML4 estimator making a comparison with the HUMEX and the
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HUMLF estimators. The standard errors are computed using a bootstrap
procedure. Concerning the HUML4 estimator, standard errors obtained ana-
lytically through the formula presented in eq. (3.29) are also provided.

As the focus of this work is on four-class classification issues, we restrict
the analysis to four classes considering all the possible sets of four groups
containing at least the “Normal” and the “SeA” patients.

Marker CD15

We first present some descriptive statistics and the box plot of the marker’s
distribution in the four groups. Means and standard deviations for each cat-
egory, together with the relative effects for each of the six possible sets of
four categories, are reported in Table 5.5, while the box plots are shown in
Figure 5.2.

mean sd relative effect
(1) (2) (3) (4) (5) (6)

Normal 0.057 0.112 0.142 0.203 0.160 0.214 0.175 0.133
OrthArthr 0.330 0.380 0.431 0.295 0.405

OA 0.536 0.594 0.365 0.531 0.453
Early 4.223 3.336 0.621 0.702 0.495

RA 6.713 7.013 0.702 0.611 0.576
SeA 37.664 21.747 0.910 0.914 0.878 0.874 0.915 0.882

Table 5.5: Descriptive statistics of marker CD15 by the six groups.

In the first two columns of Table 5.5 we report the mean and the standard
deviation for each of the six groups. Furthermore, column (1) reports the
relative effects of marker CD15 in subset 1 (Normal, OA, RA and SeA),
column (2) reports the relative effects of marker CD15 in subset 2 (Normal,
OrthArthr, OA and SeA), column (3) reports the relative effects of marker
CD15 in subset 3 (Normal, OrthArthr, RA and SeA), column (4) reports
the relative effects of marker CD15 in subset 4 (Normal, OrthArthr, Early
and SeA), column (5) reports the relative effects of marker CD15 in subset
5 (Normal, OA, Early and SeA) and column (6) reports the relative effects
of marker CD15 in subset 6 (Normal, Early, RA and SeA). They are used to
determine the ordering of the categories that allows to obtain the maximum
value of the estimated hypervolume.

The following step consists in evaluating the Lehmann assumption using
the test for the proportional hazards assumption proposed by Grambsch and

85



CHAPTER 5. EMPIRICAL APPLICATIONS

Therneau (1994) together with the plots of the log-minus-log transformation
of the survival curve. In Table 5.6 we show the significance levels of the test.
As the test starts with the null hypothesis of validity of the proportional
hazards assumption (i.e. the Lehmann condition does hold), from the table
we can see that the test is not significant for all the subsets, indicating that
our HUML4 estimator should work well in each subset of patients. The
inspection of the curves, see Figure 5.4, strongly confirms the indication
given by the statistical test.
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Figure 5.3: Box plots comparing absolute cell densities of marker CD15 in
the 6 subsets of patient’s groups

Finally, we apply the HUML4 estimator developed in Section 3.2 to the
data in order to evaluate the discrimination capability of CD15 marker. The
results for the estimated HUMs are summarized in Table 5.7. The perform-
ance of the HUML4 is compared with the two other estimators, HUMEX

and HUMLF , described before. For each estimator we report the estimated
HUM and the associated standard errors obtained with bootstrap techniques.
Moreover, for the HUML4 estimator, we show the analytic asymptotic stand-
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Group p-value
Normal, OA, RA, SeA 0.945
Normal, OrthArthr, OA, SeA 0.980
Normal, OrthArthr, RA, SeA 0.949
Normal, OrthArthr, Early, SeA 0.974
Normal, OA, Early, SeA 0.997
Normal, Early,RA, SeA 0.921

Table 5.6: Test for proportional hazards assumption in the six subgroups.
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Figure 5.4: Log(-log(survival)) curves as function of CD15 marker value for
the six different subsets.
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ard errors developed in Section 3.3. Apart for the second combination (Nor-
mal, OrthArthr, OA, SeA), the estimated values of the HUM is relatively
high. The three different estimators provide very similar values of the HUM.
However, our estimator, based on the Lehmann assumption, systematically
produces smaller standard errors (both analytical and bootstrapped) com-
pared to the other non parametric estimators. In Table 5.8, we also report
the summaries of the estimated Cox proportional hazards models to show
how informative our method can be if a researcher wants to have a deeper
insight on the differences among the classes in each marker. The p-values
reported in the last column of the table confirm that the distribution of CD15
is statistically different among the classes in all the subgroups except in the
second, when the classes “OA”and “SeA”are compared with the class “Or-
thArthr”, and marginally in the sixth, when the class “RA”is compared with
the class “Early”.

Group HUML4 HUMEX HUMLF

ĥum se ĥum se ĥum se
Normal, OA, RA, SeA 0.657 0.068 (0.069) 0.616 0.082 0.688 0.087
Normal, OrthArthr, OA, SeA 0.388 0.075 (0.068) 0.281 0.104 0.503 0.133
Normal, OrthArthr, RA, SeA 0.650 0.119 (0.097) 0.544 0.162 0.708 0.101
Normal, OrthArthr, Early, SeA 0.621 0.086 (0.097) 0.479 0.150 0.605 0.124
Normal, OA, Early, SeA 0.669 0.076 (0.077) 0.564 0.095 0.605 0.129
Normal, Early,RA, SeA 0.526 0.077 (0.087) 0.528 0.082 0.463 0.120

Table 5.7: Estimated HUMs with marker CD15 by subgroup.

Marker CD3

The same kind of analysis is performed for the marker CD3, too. This
marker presents higher means and standard deviations in all groups com-
pared with marker CD15. Descriptive statistics and box plots are shown in
Table 5.9 and Figure 5.5, respectively. Moreover, as reported in Table 5.10,
the proportional hazards condition strongly holds for all the subsets of sub-
jects (the test presents extremely large p-values, denoting that it is never
significant). Further evidence in favor of the Lehmann assumption derive
by the graphical inspection of the curves reported in Figure 5.6. Thus, as
before, we expect our HUML4 estimator to perform rather well, being the
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underlying assumption satisfied.
In Table 5.11 we report the estimated HUMs using the three estimators

HUML4, HUMEX and HUMLF . Overall, the estimated values are lower
than those produced by marker CD15, indicating the that marker CD3 is
substantially less powerful in discriminating between the four categories of
patients. Table 5.12 corroborates those results, showing that, in some sub-
groups, CD3 has not a significantly different distribution among classes. Such
as, for example, in the second subgroup, where the coefficient of class “OA”is
not statistically different from zero, indicating that the distribution in class
“OA”is substantially the same as the one in class “OrthArthr”. Concerning
the three different estimators, the results are pretty in line and it is impossible
to highlight one estimator systematically performing better than the others.
However, HUMLF always presents higher standard errors than the other two
estimators.
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Figure 5.5: Box plots comparing absolute cell densities of marker CD3 in the
6 subsets of patient’s groups.
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Figure 5.6: Log(-log(survival)) curves as function of CD3 marker value for
the six different subsets.
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Normal, OA, RA, SeA
β θ = exp(β) se z p-value

OA -1.477 0.228 0.388 -3.810 < 0.001
RA -2.828 0.059 0.494 -5.730 < 0.001
SeA -1.921 0.147 0.495 -3.880 < 0.001

Normal, OrthArthr, OA, SeA
β θ = exp(β) se z p-value

OrthArthr -0.877 0.416 0.502 -1.750 0.081
OA -0.578 0.561 0.473 -1.220 0.222
SeA -20.400 0.000 4020.000 -0.010 0.996

Normal, OrthArthr, RA, SeA
β θ = exp(β) se z p-value

OrthArthr -1.237 0.290 0.600 -2.060 0.039
RA -3.572 0.028 0.839 -4.260 < 0.001
SeA -1.921 0.147 0.495 -3.880 < 0.001

Normal, OrthArthr, Early, SeA
β θ = exp(β) se z p-value

OrthArthr -1.219 0.296 0.577 -2.110 0.035
Early -2.032 0.131 0.718 -2.830 0.005
SeA -2.842 0.058 0.805 -3.530 < 0.001

Normal, OA, Early, SeA
β θ = exp(β) se z p-value

OA -1.423 0.241 0.382 -3.720 < 0.001
Early -2.224 0.108 0.638 -3.490 < 0.001
SeA -2.852 0.058 0.804 -3.550 < 0.001

Normal, Early,RA, SeA
β θ = exp(β) se z p-value

Early -4.500 0.011 1.092 -4.120 < 0.001
RA -0.592 0.553 0.396 -1.500 0.130
SeA -1.942 0.144 0.493 -3.940 < 0.001

Table 5.8: Estimated coefficients for the Cox proportional hazards regres-
sion model for marker CD15. Note that the order of the groups is the one
established by the relative effects and the missing class is the reference one.
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mean sd relative effect
1 2 3 4 5 6

Normal 2.956 3.274 0.177 0.259 0.174 0.232 0.217 0.137
OrthArthr 6.977 5.776 0.425 0.265 0.357

OA 11.096 9.641 0.357 0.506 0.431
Early 47.460 50.299 0.693 0.756 0.512

RA 91.198 66.185 0.753 0.690 0.662
SeA 94.691 69.092 0.770 0.900 0.703 0.812 0.859 0.674

Table 5.9: Descriptive statistics of marker CD3 by the six possible groups of
four categories.

Group p-value
Normal, OA, RA, SeA 0.918
Normal, OrthArthr, OA, SeA 0.863
Normal, OrthArthr, RA, SeA 0.996
Normal, OrthArthr, Early, SeA 0.997
Normal, OA, Early, SeA 0.922
Normal, Early,RA, SeA 0.984

Table 5.10: Test for the proportional hazards assumption for marker CD3.

Group HUML4 HUMEX HUMLF

ĥum se ĥum se ĥum se
Normal, OA, RA, SeAa 0.335 0.076 (0.074) 0.358 0.063 0.377 0.078
Normal, OrthArthr, OA, SeA 0.334 0.062 (0.064) 0.331 0.074 0.251 0.097
Normal, OrthArthr, RA, SeAb 0.347 0.088 (0.083) 0.350 0.085 0.229 0.121
Normal, OrthArthr, Early, SeA 0.463 0.105 (0.097) 0.448 0.105 0.406 0.119
Normal, OA, Early, SeA 0.434 0.091 (0.081) 0.463 0.090 0.423 0.104
Normal, Early,RA, SeA 0.250 0.079 (0.071) 0.268 0.067 0.040 0.120

Table 5.11: Estimated HUMs with marker CD3 by subgroup.
a The HUMEX estimator suggests a different categories order (Normal, OA, SeA, RA)
if we impose this order in the HUML4 estimator the estimated HUM remains practically
the same (0.336).
b The HUMEX estimator suggests a different categories ordering (Normal, OrthArthr,
SeA, RA), if we impose this last ordering in the HUML4 estimator the estimated HUM
slightly decreases to 0.346.
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Normal, OA, RA, SeA
β θ = exp(β) se z p-value

OA -1.443 0.236 0.378 -3.820 < 0.001
RA -2.478 0.084 0.409 -6.050 < 0.001
SeA 0.002 1.002 0.371 0.010 0.996

Normal, OrthArthr, OA, SeA
β θ = exp(β) se z p-value

OrthArthr -0.914 0.401 0.504 -1.810 0.070
OA -0.510 0.600 0.469 -1.090 0.280
SeA -2.419 0.089 0.570 -4.250 < 0.001

Normal, OrthArthr, RA, SeA
β θ = exp(β) se z p-value

OrthArthr -1.001 0.367 0.550 -1.820 0.069
RA -3.831 0.022 0.850 -4.510 < 0.001
SeA -0.002 0.998 0.371 0.000 0.997

Normal, OrthArthr, Early, SeA
β θ = exp(β) se z p-value

OrthArthr -1.016 0.362 0.551 -1.840 0.065
Early -2.935 0.053 0.856 -3.430 0.001
SeA -0.812 0.444 0.474 -1.710 0.087

Normal, OA, Early, SeA
β θ = exp(β) se z p-value

OA -1.416 0.243 0.377 -3.750 < 0.001
Early -1.881 0.152 0.460 -4.090 < 0.001
SeA -0.788 0.455 0.475 -1.660 0.097

Normal, Early,RA, SeA
β θ = exp(β) se z p-value

Early -3.780 0.023 0.817 -4.630 < 0.001
RA -0.790 0.454 0.395 -2.000 0.045
SeA 0.005 1.005 0.371 0.010 0.990

Table 5.12: Estimated coefficients for the Cox proportional hazards regression
model for marker CD3 in the synovitis dataset. Note that, for each marker,
the ordering is the one established by the relative effects and the missing
class is the reference one.

93



Chapter 6

Combining multiple markers

6.1 Introduction

Often, in medical research, multiple diagnostic markers are measured on the
same individual to assess an optimal result for prognosis as it is well estab-
lished that, in most cases, one single biomarker is not sufficient to perform a
screening for early detection or for a correct prognosis. The statistical ana-
lysis, however, continues to focus mainly on one single marker at the time.
A natural theoretical development, thus, is to try to combine information
from different biomarkers in order to maximize the discrimination of patients
belonging to different classes of disease. Recently, especially in medical re-
search, different methods for combining biomarkers in the best fashion have
been proposed; starting from a binary diagnostic category setting, hence
maximizing the AUC, up to approach aiming to maximize the HUM in a
multiple categories outcome setting.

In this section we focus on a new proposal for finding the optimal linear
combination of continuous markers. The intuition is based on the idea of
searching for the linear combination of markers that achieves the maximum
accuracy over all possible linear combinations. Su and Liu (1993) provide
a way to estimate the coefficients of the best linear combination of markers
that maximizes the AUC. The authors derived the results under the assump-
tion of multivariate Gaussian distribution of markers with both proportional
and non proportional covariance matrices. Pepe (2000) proposes two differ-
ent approaches in finding the linear combination that maximizes the AUC
without any restriction on the markers distribution. Moreover, Pepe et al.
(2006) provide a comparison between the method based on maximization
of empirical AUC and the multinomial logistic approach. As we have seen
before in this thesis, the method introduced by Li and Fine (2008) allows to
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deal with multiple markers and multi-category outcome through a multino-
mial logistic model. However, as Zhang and Li (2011) said in their paper “it
is not clear if the method yields the best combination to maximize VUS or
HUM” because in their approach the objective function to be maximized is
not the VUS/HUM function. More recently Zhang and Li (2011) overcame
the less general assumption of binary outcome providing an approach that is
valid in a medical classification problem with more than two potential out-
comes. Unfortunately, we are not able to compare our approach with the one
proposed by Zhang and Li (2011) since no code or packages to implement
the estimator are available at the moment.

6.2 A new proposal

In this section we propose a new semi-parametric approach based on the
Lehmann assumptions to linearly combine multiple biomarkers with the pur-
pose of maximizing the most important diagnostic accuracy index for a four-
category outcome, the HUM. Our proposal is to use numerical methods to
estimate the coefficients of the optimal linear combination of markers with
HUML4 as objective function.

Consider the simplest situation in which we have four classes of patients,
as, for example, in a case-control study on carcinoma as presented in Rodia
et al. (2018). Let D1, D2, D3 and D4 denote the four classes, that could
be the codification for “Normal”, “Very low risk”, “Low risk”, “High risk or
carcinoma”. Moreover, suppose that two biomarkers, M1,M2, are measured
in all subjects. Our purpose is to find the vector of coefficients α = (α1, α2)T

of the linear combination of markers that maximizes the Hypervolume Under
the Manifold defined in eq.(3.13), i.e.

HUML4 =
1

(θ3 + 1)(θ2(θ3 + 1) + 1)(θ1(θ2(θ3 + 1) + 1) + 1)
.

More specifically, define a linear combination of the markers as follows

LCα = M1α1 +M2α2

= M α

where the vector α = (α1 , α2)T contains the loadings of the linear combin-
ation, while M = (M1 , M1) contains the two markers. However, for sake
of identification, we fix one of the two coefficients of the linear combination
as equal to one, say β1 = 1 and rescale the second coefficient as β = α2/α1.
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Thus, the new vector of coefficients can be defined as β = (1 , β)T . In this
way, the linear combination of markers becomes

LCβ = M1 +M2β

= M β. (6.1)

The generalization to more than two markers is straightforward. In fact, in
the more general case of q markers M1, . . . ,Mq providing information on a
specific four-class classification issue, the linear combination can be written
as

LCβ = M1 +M2β2 + . . .+Mqβq

= M β, (6.2)

where, as before, β1 is normalized to one, and the vector containing the scores
of the linear combination is β = (1 , β2 , . . . , βq)

T , whileM = (M1 , . . . , Mq).
The quantity LCβ, that clearly depends on the unknown parameters βs,

is our latent marker that should have the best diagnostic power in classifying
the subjects to the four classes characterizing our population. As largely
discussed in previous sections, for a four-class classification problem, the best
diagnostic power can be calculated in terms of the HUM. Our optimization
problem, thus, can be written as

max
β

(
HUM(LCβ)

)
(6.3)

whereHUM(LCβ) indicates the HUM calculated on the LCβ (latent) marker.
Clearly, any possible estimator for the HUM can be used in the max-

imization problem. However, given the results of the simulation analysis
performed in Chapter 4, the HUML4 estimator developed in Section 3.2,
might be a very good candidate. In fact, in order to find the optimal value of
β maximizing the quantity in eq. (6.3) we propose to use numerical methods
based on grid search on a range of reasonable values for β. In this respect,
having the possibility to deal with a well performing and fast estimator for
the HUM can be extremely convenient.

Our proposal, thus, is to focus on the HUML4 estimator in the maximiz-
ation problem in eq. (6.3). An estimator for the optimal linear combination
in term of the HUM, hence, becomes

β̂L4 = max
β

(
ĤUML4(LCβ)

)
(6.4)

= max
β

(
ĤUML4(M β)

)
(6.5)
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where eq. (6.5) explicitly emphasizes the argument of the function to be
maximized.

Importantly, as we have discussed in the previous chapters, the HUML4

depends on the ordering of the classes, that, however, are generally unknown
in advance. Thus, our implemented method, while searching for the max-
imum HUM, must take into account this issue. Before proceeding with the
calculation of the HUM, our method calculates the relative effects (see Section
3.7) of each marker and sorts the markers according to the order suggested
by the relative effects.

In the following sections, the performances of the proposed method are
investigated through and extensive simulation study and two applications to
real data. Specifically, in Section 6.3 we simulate data from a simple set up
for which the optimal linear combination of markers can be known a priori.
In Section 6.4 and Section 6.5, instead, we implement our procedure using
real datasets: we first investigate the data collected in the colorectal cancer
study explained in Section 5.1, then the same approach is applied to the
Synovitis data described in Section 5.2.

6.3 Simulation study

In this section we evaluate the performances of the proposed estimator of the
linear combination maximizing the HUM. We consider a simulation study in
which, for each individual, two markers are observed. Moreover, suppose the
population be divided into four classes according to different levels of the
disease.

6.3.1 Assumptions on the Data Generating Process

In this simulation exercise, for the reason that will be more clear below, we
assume a specific parametric case in which the random vectors of the markers
in the four classes follow a Gaussian distribution. Being M1 = (M11 , M21)
the markers vector in group D1, M2 = (M12 , M22) the markers vector in
group D2, M3 = (M13 , M23) the markers vector in group D3 and M4 =
(M14 , M24) the markers vector in group D4, we thus assume:

MT
1 ∼ N(µ1; Σ); MT

2 ∼ N(µ2; Σ); MT
3 ∼ N(µ3; Σ); MT

4 ∼ N(µ4; Σ)

with:
δ = µ1 − µ2 = µ2 − µ3 = µ3 − µ4.

and
Σ1 = Σ2 = Σ3 = Σ4 = I2.
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Under these assumptions, the exact order of the markers can be determined
in advance and it is equal to the order of the groups mean. Moreover, the
differences in the vector of the means for subsequent groups remain constant
and equal to the vector δ. Finally, we assume that the variance-covariance
matrices are all equivalent and equal to the identity matrix. Within and
across groups, thus, the markers are not correlated.

These set of assumptions, although rather restrictive and relatively un-
likely in practical experiments, are extremely useful from a theoretical point
of view. In fact, according to Su and Liu (1993) and Zhang and Li (2011),
under these assumptions, the coefficients of the best linear combination β0

have the characteristic that β0 ∝ Σ−1δ. Moreover, for any given value of β,
the distribution of the linear combination is also known. More precisely, if we
define the linear combination in each group as LCi = Miβ, with i = 1, 2, 3, 4,
for any vector of coefficients β, then LCi ∼ N(µTi β ; βTΣiβ).

Importantly, as we assume Gaussian distributions of the markers, the
Lehmann condition is clearly not satisfied, invalidating the theoretical back-
ground of the HUML4 estimator. However, based on the reassuring results
of the simulation exercises presented in Section 4.3.2, we expect limited con-
sequences on our estimator of the optimal linear combination coefficients.

6.3.2 Data Generating Process and results

Given the distributional assumptions described in the previous section, we
assume the following values for the parameters:

µ1 = (3; 0)T ; µ2 = (5; 1)T ; µ3 = (7; 2)T ; µ4 = (9; 3)T .

The distance between the barycentre of adjacent distributions, as discussed
before, is constant and equal to δ = (2 , 1)T . We hypothesize three different
sample sizes in line with standard empirical applications: N = 120, N = 200
and N = 320, respectively. Moreover, we impose the groups to have the
same dimension.

Based on these simulated data, we apply the method developed in Section
6.2 to obtain the optimal linear combination which maximizes the HUM. For
each of the three dimensions, k = 500 Monte Carlo samples are generated.
Importantly, based on the set of assumptions discussed in the previous sec-
tion, and normalizing for the first coefficient, the true value of the coefficients
of the optimal linear combination is β0 = (1 , β)T = (1 , 0.5)T . Furthermore,
the real HUM, obtained by numerical integration, is 0.833. For each draw,
thus, we calculate the optimal value of β through the β̂L4 estimator defined
in eq.s (6.4)-(6.5).

98



CHAPTER 6. COMBINING MULTIPLE MARKERS

The results of this simulation exercise are reported in Table 6.1. In the
table we report the true value of the coefficient β, the average of the estimated
coefficients mean( β̂ ) and standard deviation of the estimated coefficients
sd( β̂ ). As we can see from the results, the distribution of the estimated
coefficients is centred very close to the real value of the parameter and we
can notice that the standard deviations decrease as the sample size increases.
We can conclude that, even if the proportional hazards model does not hold,
our method works in a very good way.

Finally, in order to evaluate the improvement in the discrimination ac-
curacy due to the combined information of the two markers, we calculate the
estimated HUM for one single marker at the time and we make a comparison
with the HUM obtained with the linear combination of the two markers.
The results are reported in Table 6.2. For each sample size, the sample mean
of the estimated HUM are reported. In columns M1 and M2 we show the
hypervolumes obtained with the single markers while in column M1 + β̂M2

we report the hypervolume obtained with the linear combination of the two
markers. The first marker is clearly more informative than the second in
discriminating the four classes. In fact, it correctly classifies around the 70%
of the subjects while the second only slightly more that 33%, nevertheless
combining the two markers we can improve the classification accuracy obtain-
ing a HUM value of almost 0.8 for all the sample dimensions we considered.
Although our estimator underestimates the true value of the HUM, which
is 0.833, it works pretty well in increasing the classification accuracy with
respect to single markers.

sample size β mean( β̂ ) sd( β̂ )
120 0.50 0.509 0.231
200 0.50 0.504 0.182
320 0.50 0.506 0.134

Table 6.1: Simulation results for multivariate normal distributions with
constant difference of expected values vector among groups and constant
variance-covariance matrix equal to the identity matrix.

6.4 Empirical application on CRC data

In this section we apply our methodology to a set of markers studied in Rodia
et al. (2018) and widely analysed in Section 5.1. Data refer to a sample of 231
subjects investigated with the aim of early detecting the presence of colorectal
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HUML4

M1 M2 M1 + β̂M2

sample size ĥum ĥum ĥum
120 0.705 0.335 0.786
200 0.704 0.337 0.781
320 0.703 0.338 0.777

Table 6.2: Estimated hypervolumes with single markers and optimal linear
combination of makers.

carcinoma. Among the entire sample, 67 individuals are classified as normal
subjects (N), 36 present positive faecal immunochemical test (NFIT) with
a negative colonoscopy, 36 present positive faecal immunochemical test and
small, low risk polyps (LR), while 92 are positive to faecal immunochemical
test and have high risk polyps or carcinoma (HR/CCR). We consider, thus,
the population of subjects to be divided in four classes. Moreover, for each
subject, four markers have been measured in the blood sample. Differently
with respect to the simulation exercise, the number of markers, thus, is q = 4.

The statistical analysis consists, first, in estimating the HUM associated
with each single marker and, second, in estimating the HUM associated with
the best linear combination using the β̂L4 estimator. Concerning the first
step, it is the one already performed in Section 5.1, whose results are shown
in Table 5.3. Among the four markers, the highest HUM is the one associ-
ated with the lectin, galactoside binding soluble 4 marker (lgals4), obtained
through the HUMEX estimator (HUM=0.219). For all the other markers,
instead, we obtained values of the HUM slightly larger than 0.1. In order
to exploit all the variability contained in the four markers and increase their
discriminatory ability on future observations we adopt the proposed method
based on the linear combination of markers maximizing the HUM.

We perform, thus, the β̂L4 estimator and search for the optimal linear
combination considering 61 values ranging from -3 to 3 for each β coefficient.
As for the simulation exercise, for identification purposes, we normalize for
the first coefficient. For seek of comparison, we also performed the HUM
estimation by means of the HUMLF estimator that, as we highlighted in
Section 3.6, allows to compute the HUM taking jointly into account multiple
markers, too.

In Table 6.3 the estimated coefficients obtained with the proposed method
are reported together with bootstrap standard deviations. Coefficient β2

refers to the col1a2 marker, β3 to the lgals4 and β4 to the ceacam6 marker.
As expected, the highest coefficient is the one associated to the lgals4 marker.
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Moreover, the hypervolume corresponding to the combined marker is listed

in column ĥum. As we can see, using the four markers panel the measure of
the discrimination accuracy doubles in comparison to the one obtained with
each single marker (see the results reported in Table 5.3). Finally, for seek of
comparison, the HUM estimated with HUMLF is reported in the last column.
We recall that the HUMLF approach, while estimating the joint HUM, does
not search for an optimal combination of markers. Thus, the comparison
necessarily remains limited to the HUM values, and not on the coefficients
of the linear combination, that cannot be obtained from their approach.
However, interestingly, we notice that the magnitude of the hypervolumes
obtained with the two approaches is essentially the same.

HUML4 HUMLF

β̂2 se β̂3 se β̂4 se ĥum ĥum
-1.818 0.059 2.364 0.063 1.091 0.057 0.266 0.295

Table 6.3: Estimated coefficients of the optimal linear combination together
with their bootstrap standard errors (k = 500 replications), estimated hy-
pervolume for the combined marker. For identification issues, we fix β1 = 1.
The last column reports the hypervolume value relative to the four markers,
resulting from the Li and Fine (2008) approach.

6.5 Empirical application on Synovitis data

In this second empirical application, we employ our methodology to the data-
set presented in Section 5.2, concerning synovial tissue biomarkers classific-
ation. In particular, the dataset consists in five inflammatory cells markers
observed in a sample of 92 patients. The patients are classified in six differ-
ent disease groups: chronic septic arthritis (SeA, n=11), rheumatoid arthritis
(RA, n=25), early undifferentiated arthritis (EA, n=10), osteoarthritis (OA,
n=26), “non-inflammatory” orthopedic arthropathies (OrthArthr, n=6) and
healthy volunteers (Normal, n=15). For sake of simplicity, we focus only on
two markers: CD15 and CD3, that are both largely used to classify synovial
tissues in the literature. Thus, the number of markers, in this empirical
example, is q = 2.

As the aim of our analysis is to evaluate the classification accuracy in a
four-class framework, we generate all possible combinations of four groups
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taken from the set of six disease groups, always including the Normal and
the SeA groups. The analysis, thus, refers to six different subsets of disease,
as shown in Table 6.4.

For each of the investigated subset of groups, reported in the first column
of the table, we implement our β̂L4 estimator. Table 6.4 shows the estimated
HUM, as well as the estimated coefficients of the linear combination and
their standard errors obtained with the proposed approach. The coefficient
associated to the CD15 marker has been fixed to one, while the β2 coefficient
is the one associated to the CD3 marker. Finally, in the last column of the
table, the joint HUM calculated with the HUMLF estimator is reported.

The estimated β2 coefficients are relatively low, although they present
very small standard errors. The reduced magnitude of the coefficients de-
notes a limited contribution of CD3 to the optimal linear combination. This
result, however, is not surprising if we refer to Table 5.7 and Table 5.11
in Chapter 5, where both markers were investigated individually. As also
reported for convenience in Table 6.4, when taken one at the time, the clas-
sification accuracy of CD15 was always almost the double than the one of
CD3. Interestingly, when taken together, the estimated HUM of the linear
combination, for each of the subsets of disease, is always substantially higher
than the one associated to the individual marker. This fundamental result
further stresses the importance of combining markers in order to increase the
accuracy in classifying subjects to the different classes. Finally, the compar-
ison of the last two columns shows an HUM value completely in line with
the one estimated through the HUMLF estimator, reinforcing what we have
already concluded in the previous section.
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Concluding remarks and
further researches

This work was motivated by a real research question in the field of biostat-
istics. We were interested in finding out a method to evaluate the accuracy
measure of a biomarker in discriminating a sample of patients divided in four
classes according to the severity of a disease. The natural way to afford the
problem has been to start reviewing the literature over the Receiver Operat-
ing Characteristic curve analysis. The ROC curve is a graphical tool used to
perform analysis of classification in different scientific fields. In medicine it
is often used to evaluate the accuracy of a diagnostic test for discriminating
between two classes with respect to a gold standard. A summary measure
of the classification accuracy is provided by the Area Under the Curve. The
ROC curve analysis is applicable, by construction, only to problems with
dichotomous outcomes.

However, it often happens to deal with studies in which the aim is to clas-
sify in more than two classes. The ROC manifold and that of Hypervolume
Under the Manifold are two theoretical concepts introduced in the literature
at the beginning of this century, with the aim of generalizing the idea of
the ROC curve to more than two groups. These theoretical contributions,
however, have not been accompanied by a large diffusion of implementable
methodologies and related empirical applications.

As our problem was related to a four-class sample, we focused on ROC
Manifolds and its relative HUM. We proposed a semi-parametric approach
to derive the ROC manifold and the hypervolume under the manifold. Our
contribution relies on the Lehmann assumptions and constitutes the gener-
alization of the work by Gönen and Heller (2010) and Nze Ossima et al.
(2015) to a four-class setting. We provided the analytical representation of
the HUM estimator, that we called HUML4, and of its variance. Further-
more an inferential solution for the estimator and for the variance has been
proposed.

To evaluate the performance of the suggested estimator we carried out
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extensive simulation studies in which we made a comparison with two other
estimators present in the literature. As expected, our estimator presents
highly satisfactory performances under the Lehmann conditions in both small
and large samples. In addition, we observed that the behaviour of HUML4

does not dependent on the distance among the distributions. In fact, it
performs well in estimating both small and large hypervolumes. Moreover,
the coverage rate is always large and very close to the nominal level.

Departures from the Lehmann assumptions influence the bias of the es-
timator that increases as the sample size increases. Overall, the performances
of our estimator are never dramatically inferior with respect to those of the
two other estimators, even when the data are generated under very unfavour-
able conditions, i.e. large departures from the Lehmann assumption.

Furthermore, we also evaluated our proposed method in terms of com-
putational time. Using our approach, calculating the HUM takes no more
than few seconds, even for large samples. This is a good advantage of our
procedure, especially when compared to the two alternative estimators ex-
isting in the literature, that, in addition to requiring more than the double
in small samples, presents exploding computational times when the sample
size becomes relatively large.

Moreover, our method is based on a well developed framework, easy to
handle and implementable in all standard statistical packages. In addition,
the regression framework at the base of our approach, provides multiple ad-
vantages. Firstly, it enables to control for the possible effects of covariates on
the accuracy of the diagnostic test. Secondly, the estimates of the coefficients
related to the class variables indirectly provides a way to test whether the
classes are significantly different one to another. If it were not the case, one
could simplify the analysis by grouping classes with the same distributions.
These are remarkable points of our methodology.

Finally, with the aim of extending the scope of our methodological contri-
bution, we considered the case of a linear combination of markers. Often, in
applied medical research, using a linear combination of distinct markers can
produce a different indicator which enhances diagnostic capability. Thus, in
the last part of this thesis, we proposed a method to linearly combine multiple
markers for four-category classifications, directly based on the optimization
of the accuracy of the combined marker under the ROC criteria. We suggest
to numerically maximize the HUML4 while searching for the optimal linear
combination of markers. The data analyses proved that the resulting models
based upon the related linear combinations generate a HUM notably larger
than the one obtained with the single markers. Thus, we can conclude that
our method can be considered a good candidate when a more informative
insight in the capability of a panel of markers to distinguish and classify
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patients in different categories is needed.
Some points may deserve future investigation. As we stated diffusely in

this thesis, our estimator is a generalization to four classes of the original
idea by Gönen and Heller (2010) and Nze Ossima et al. (2015) for two-
and three-classification frameworks. Thus, a first line of research would be
to search for the existence of a recursive formula for the general m-class
estimator. Second, as the scope of this thesis was principally empirical, we
have not treated in detail the theoretical properties of the new estimator,
that thus remains an open issue for future research. Finally, in medical
research the interest in combining the information of multiple markers is still
increasing; thus we think that another research point might focus on the
optimal combination of biomarkers, such as attempting to solve for a more
efficient algorithm in maximizing the HUM and trying to deal with potential
non linear combinations.
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Appendix A

Some notes on the Cox
Regression

In the previous chapters we have introduced the Cox regression as an import-
ant tool in the estimation process of the classification accuracy of a particular
marker. The Cox regression (sometimes also indicated as proportional haz-
ards regression) has been originally proposed by Cox (1972) as a method for
investigating the effect of several variables upon the time a particular event
occurs. While it is a reference model in survival analysis, it finds much less
applications outside this specific field. In this appendix we recall some main
concepts about this methodology.

A.1 The model

Suppose T is a non negative random variable representing a survival time,
f(t) is the probability density function, F (t) is the cumulative distribution
function and S(t) = P (T ≥ t) = 1 − F (t) is the survival function. Further-
more, we also assume that T is a continuous random variable. The variable
T is non negative by definition and, in medicine, usually denotes the elapsed
time until an event takes to happen. It is commonly characterized by the
so called “hazard function”. Based on the definition of cumulative density
function and survival function, we know that:

P (t ≤ T < t+ δt|T ≥ t) =
P (t ≤ T < t+ δt)

P (T ≥ t)
=
F (t+ δt)− F (t)

S(t)
.

Considering infinitesimal variations, we can define the hazard function h(t)
as

h(t) = lim
δ→0

{
F (t+ δt)

δt

}
1

S(t)
=
f(t)

S(t)
.
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The hazard function, thus, is the ratio between the probability density func-
tion and the survival function. More simply, it can be interpreted as the
instantaneous risk that the event of interest happens, within a very narrow
time frame.

We also know that:

f(t) =
d

dt
F (t) =

d

dt
[1− S(t)],

thus, an alternative formulation of the hazard function becomes:

h(t) =
−dS(t)

dt

1

S(t)
=
−d[logS(t)]

dt

Finally, the cumulative hazard function is defined as:

H(t) =

∫ t

0

h(u)du = −logS(t).

As an example, if we assume an hazard function constant over time, then, it is
possible to show that the survival time will be distributed as an Exponential
random variable of parameter λ. In fact, let

h(t) = λ

be the hazard function. Then

S(t) = exp{−
∫ t

0

λdu} = e−λt

and
f(t) = λe−λt.

Thus, the survival time will be distributed as an Exponential random vari-
able T ∼Exp(λ). If, instead, the hazard function is allowed to depend on
time, then the hazard function will be modeled, for example, has a Weibull
distribution. In fact, let

h(t) = λνtν−1

be the hazard function with parameters λ, ν > 0. Then the survival function
will be

S(t) = exp{−
∫ t

0

λνuν−1du} = exp(−λtν)

and the probability density function will be

f(t) = λνtν−1 exp(−λtν).
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In this particular case, T ∼ Wei(λ, ν), where λ, ν > 0 are the scale and
shape parameters respectively.

If the lifetimes of all units of our sample are not governed by the same
survival function S(t), the survival model should allow for the presence of a
vector of covariates or explanatory variables that may affect survival time.
The Proportional hazards model introduced by Cox (1992) is one of the
simplest survival models. It focuses directly on modeling the hazard function
rather than the survival time. The hazard at time t for the i-th subject with
covariates Zi can be written as

h(t) = h0(t) exp{z′
β}

where h0(t) is the baseline hazard function and describes the risk for subject
with Zi = 0, while exp{Z ′

β} is the relative risk associated with the set of
covariates Zi. For example, consider a situation similar to the one showed
in Section 5.1.1, in which the population is characterized by four distinct
groups. In this case, the covariates are represented by variables indicating
the groups and there will be four different hazard functions. More specifically,
if we define three dichotomous variables d1, d2, d3 which serve to indicate the
groups, then, for the i -th individual, the proportional hazards model is

hi(t|d1, d2, d3) =


h0(t) d1i = 0, d2i = 0, d3i = 0
h0(t) exp{β1d1i} d1i = 1, d2i = 0, d3i = 0
h0(t) exp{β1d1i + β2d2i} d1i = 1, d2i = 1, d3i = 0
h0(t) exp{β1d1i + β2d2i + β3d3i} d1i = 1, d2i = 1, d3i = 1.

Thus, for example, if we want to compare group 1 with group 0, h0(t) repres-
ents the risk at time t in group 0 (the reference group), and θ1 = exp{β1d1}
is the ratio of the risk in group 1 relative to group 0 at any time t.

Finally, given that all the elements in the model are positive, if we take
the logs, the proportional hazards model becomes an additive model for the
log of the hazard, with

log (hi(t | d1, d2, d3)) = log (h0(t)) + d
′

iβ

with d
′
i collecting information on the group indicators for the i -th subject .

A.2 Estimation of the Cox model

Let the hazard function be a function of a set of p covariates, whose realiza-
tion for the i -th subject is denoted as Zi = (Zi1, Zi2, . . . , Zip). The hazard
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function in the Cox specification, thus, can be written as

h(t |Zi) = h0(t) exp (β1Zi1 + · · ·+ βpZip)

= h0(t) exp (Zi β). (A.1)

As we have defined before, the probability that at time Ti the event occurs
for subject i can be defined as

Li(β) =
h(Ti |Zi)∑

j:Tj≥Ti h(Ti |Zj)

=
h0(Ti)θi∑

j:Tj≥Ti h0(Ti)θj

=
θi∑

j:Tj≥Ti θj
(A.2)

where, for simplicity, we have defined θj = exp (Zjβ). Importantly, the
summation at the denominator is over the set of subjects for which the event
has not yet occurred before time Yi (including subject i itself). Cox named
this quantity, that is only a function of the unknown parameters, “partial
likelihood”. Moreover, he observed that the unknown parameters β without
the need to model the change of the hazard function over time.

Under the standard assumption of subjects being independent of each
other, it is possible to derive the joint probability of all the events as

L (β) =
∏

i:Ci=1

Li(β) (A.3)

where Ci = 1 indicates the occurrence of the event. Moreover, given that
Li (β) > 0 by definition, is becomes easier to transform L (β) in log terms:

l (β) =
∑
i:Ci=1

Zi β − log
∑

j:Tj≥Ti

θj (A.4)

that represents the so called log partial likelihood. Maximizing the function
over β produces the maximum partial likelihood estimator of the unknown
parameters of the Cox proportional hazards model. The maximization of the
partial likelihood function is generally performed using the Newton-Raphson
algorithm, which benefits of the relatively simple way of obtaining analytic-
ally the first two derivatives. Specifically, the partial score function (vector
of first derivatives) is

l′(β) =
∑
i:Ci=1

Zi −

(∑
j:Tj≥Ti θjZj∑
j:Tj≥Ti θj

)
, (A.5)
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while the Hessian matrix (matrix of second derivatives) is

l′′(β) = −
∑
i:Ci=1

∑j:Tj≥Ti θjZjZ
T
j∑

j:Tj≥Ti θj
−

(∑
j:Tj≥Ti θjZj

)(∑
j:Tj≥Ti θjZ

T
j

)
(∑

j:Tj≥Ti θj

)2

.
(A.6)

Importantly, the Hessian matrix, evaluated at the estimate of β, provides
information on how precise the estimates are. In fact, as the Fisher Informa-
tion Matrix in the maximum likelihood estimator, the inverse of the observed
Hessian matrix approximates the variance-covariance matrix for the estim-
ates, whose elements on the main diagonal produce standard errors for the
regression coefficients.

Finally, from an inferential point of view, it is extremely important to
stress that the partial likelihood estimators have the desirable properties of
being consistent and asymptotically normally distributed. The inference on
the unknown parameters β, thus, is standard and, asymptotically, refers to
multivariate normal distribution, where the asymptotic covariance matrix
can be estimated through the inverse of the observed Hessian matrix.
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Appendix B

Simulations coverage rate

In this appendix we report the results of the empirical coverage probability
of the 95% confidence intervals associated with the estimates obtained under
the three data generation process exposed in Chapter 4.

The first set of simulations are based on data generated under the Lehmann
condition (see Section 4.2). In order to evaluate if the expected coverage
probability is achieved, in Table B.1 we present the empirical coverage prob-
ability of the 95% confidence intervals associated with the estimates obtained
under the approach we propose. The last column reports the percentage of
the 1000 computed independent confidence intervals which contains the true
HUM value. We can notice that the empirical coverage probabilities are
reasonably close to the nominal level.

HUML4 se coverage
n1=n2=n3=n4=30 0.270 0.042 94.4

case 1 n1=n2=n3=n4=50 0.267 0.032 94.8
n1=n2=n3=n4=80 0.266 0.026 94.0
n1=n2=n3=n4=30 0.565 0.053 95.0

case 2 n1=n2=n3=n4=50 0.563 0.041 94.9
n1=n2=n3=n4=80 0.561 0.033 94.5
n1=n2=n3=n4=30 0.933 0.024 92.5

case 3 n1=n2=n3=n4=50 0.933 0.018 93.6
n1=n2=n3=n4=80 0.933 0.015 93.8

Table B.1: Empirical coverage rate of the 95% CI in the Weibull case under
the Lehmann assumption and three different vectors of parameters β of the
Cox proportional hazards regression model.

If the data are generated from Weibull distributions with group specific
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shape parameters the Lehmann condition does not hold (see Section 4.3.1).
Looking at Table B.2, it emerges that the coverage rates are dramatically
low. However, this can be due to the combination of two factors: the bias
of our estimator under departure from the Lehmann condition and the low
standard errors of the estimates.

HUML4 se coverage
n1=n2=n3=n4=30 0.160 0.024 0.313

case 4 n1=n2=n3=n4=50 0.159 0.018 0.096
n1=n2=n3=n4=80 0.158 0.015 0.015
n1=n2=n3=n4=30 0.481 0.055 0.681

case 5 n1=n2=n3=n4=50 0.478 0.045 0.508
n1=n2=n3=n4=80 0.475 0.035 0.307
n1=n2=n3=n4=30 0.721 0.049 0.299

case 6 n1=n2=n3=n4=50 0.716 0.039 0.083
n1=n2=n3=n4=80 0.713 0.032 0.004

Table B.2: Empirical coverage rate of the 95% CI in the Weibull case with
group-specific shape parameters (Lehmann condition is not satisfied) and
three different vectors of parameters β of the Monte Carlo inversion method.

The last simulations proposed in the thesis focus on data generated from
Gaussian distributions (see Section 4.3.2). The coverage probabilities associ-
ated with the estimation procedure reflects the bias of the HUML4 estimator,
as shown in Table B.3 where the empirical coverage probabilities are listed.
Although in the first scenario (case 7 ) the coverage is greater than 80 per
cent, in case 8 and case 9 it systematically decreases.
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HUML4 se coverage
n1=n2=n3=n4=30 0.069 0.016 85.0

case 4 n1=n2=n3=n4=50 0.069 0.012 83.9
n1=n2=n3=n4=80 0.069 0.010 81.5
n1=n2=n3=n4=30 0.305 0.050 57.9

case 5 n1=n2=n3=n4=50 0.300 0.039 42.3
n1=n2=n3=n4=80 0.299 0.031 26.2
n1=n2=n3=n4=30 0.672 0.060 48.0

case 6 n1=n2=n3=n4=50 0.664 0.047 22.1
n1=n2=n3=n4=80 0.659 0.039 5.7

Table B.3: Empirical coverage rate of the 95% CI in the Normal case with
group-specific expected values and equivalent variances.
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