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Chapter 1

Measuring Global Macroeconomic
Uncertainty

Abstract

This paper provides new measures of global and country-specific macroeconomic uncer-
tainty using a global vector autoregressive (GVAR) model. Uncertainty is measured as
the time-varying dispersion of forecasts that results from the distribution of model pa-
rameters estimated by bootstrap methods on recursive windows. The proposed approach
takes into account the international propagation of uncertainty, captures global uncer-
tainty shocks and allows to quantify cross-country spillovers. Country-specific indices
are computed by averaging standardized uncertainty across real and financial variables
and global indices are constructed as GDP-weighted averages of country-specific mea-
sures. As a result of global economic linkages, uncertainty is highly correlated across
countries. Moreover, the paper exploits the error correction representation of the GVAR
to distinguish between short-run and long-run uncertainty measures, and shows that
such distinction may help reconcile popular indicators of uncertainty, such as the VIX
and the index of economic policy uncertainty (EPU) by Baker, Bloom and Davis (2016).

1.1 Introduction

Economic uncertainty has been a major concern at a global level during the last decade. It is
often mentioned among the factors that negatively affect economic activity (e.g. ECB 2009;
Stock and Watson 2012; Bloom, Floetotto, Jaimovich, Sapora-Eksten and Terry 2012) and
its international transmission plays a key role in shaping macroeconomic outlooks (e.g. IMF
2012). As uncertainty is not directly observable, a growing literature has proposed a variety
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of methods to measure it and capture its fluctuations (Bloom 2014). Within this strand
of research, however, some issues need to be further investigated. In particular, how best
to measure global uncertainty, how to characterize the international propagation of uncer-
tainty and how to quantify cross-country spillovers remain to some extent open questions.
Several indicators of uncertainty have been developed for a number of countries separately
(e.g. Baker, Bloom and Davis 2016; Scotti 2016; Ozturk and Sheng 2018), while global ap-
proaches that have been recently proposed (Berger, Grabert and Kempa 2017; Mumtaz and
Theodoridis 2017) leave the cross-country transmission of uncertainty largely unexplored and
are subject to additional limitations, such as limited scope in terms of variables or countries
covered.

Furthermore, existing indicators of uncertainty show at times remarkable differences.
In particular, the divergence between measures of economic policy uncertainty and stock
market volatility has recently attracted market participants’ and policymakers’ attention
(ECB 2017). More generally, uncertainty is a multifaceted concept and different indicators
are likely to capture different aspects of it: it would be desirable to have a framework that
reconciles the existing measures by providing an explanation of their differences.

This paper deals with such issues. It proposes new measures of global and country-specific
macroeconomic uncertainty using a global vector autoregressive (GVAR) model. First intro-
duced by Pesaran, Schuermann and Weiner (2004), the GVAR is a high-dimensional, flexible
multi-country model, which allows to explicitly account for the international propagation of
uncertainty, to capture common (global) uncertainty shocks and to measure cross-country
uncertainty spillovers. At the same time, the proposed approach distinguishes between short-
run and long-run uncertainty measures, and shows that this may help reconcile existing
indicators of uncertainty.

Uncertainty is measured as the conditional standard deviation of forecasts resulting from
the dispersion of global parameter estimates, which is tracked over time by iterating a boot-
strap procedure over recursive sample windows. In each window, (i) the distribution of
parameters of the GVAR is estimated by bootstrap methods, (ii) parameter uncertainty
translates into distributions of (pseudo-)out-of-sample forecasts and (iii) forecast uncertainty
is measured for all variables in the global model (real GDP levels, inflation rates, short-
term interest rates, exchange rates and stock market prices). Uncertainty therefore rises
whenever point forecasts become less reliable estimates of the expected future values of vari-
ables.1 Since cross-country economic linkages are explicitly modeled in the GVAR, each

1In this respect, the advantage of using a high-dimensional model with a limited amount of restrictions,
such as the GVAR, is that this reduces the dependence of the uncertainty measures on arbitrary modeling
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variable-specific measure of uncertainty is consistent not only with those of other domestic
variables, but also with time profiles of uncertainty in the rest of the world. To provide
comprehensive measures of macroeconomic uncertainty, variable-specific uncertainties are
aggregated into country-specific indices, which turn out to be highly correlated with each
other as a result of global interdependencies. Global indices are then computed as weighted
averages of the country-specific indices, using GDP levels at purchasing power parity (PPP)
as weights. Finally, this framework allows to measure uncertainty spillovers between coun-
tries by bootstrapping individual country models one at a time and computing the effects on
other countries’ forecast uncertainty. Results are reported for U.S. uncertainty spillovers.

The paper develops measures of short-run and long-run uncertainty. The distinction
is based on whether uncertainty concerns only short-run economic relationships or also the
long-run behavior of the economy,2 and is addressed using the error correction representation
of the GVAR model. More specifically, short-run uncertainty is measured as the dispersion of
forecasts that is obtained when the short-run parameters are treated as uncertain (i.e. boot-
strapped), while the long-run (cointegrating) parameters are assumed to be known (i.e. their
estimates are taken as the true parameter values and are fixed across bootstrap iterations).
On the other hand, long-run uncertainty is measured as the dispersion of forecasts obtained
when all parameters are treated as uncertain. Importantly, both types of measures turn
out to have remarkable similarities with popular indicators of uncertainty, suggesting that
the distinction between short-run and long-run uncertainty may be helpful to interpret the
differences between existing indicators (cf. Barrero et al. 2016). In particular, the short-run
uncertainty index is shown to be broadly consistent with the VIX index of expected stock
market volatility and with the macro uncertainty index developed by Jurado, Ludvigson
and Ng (2015), while the long-run uncertainty index is more similar to the economic policy
uncertainty (EPU) index by Baker, Bloom and Davis (2016).3

choices.
2Cf. Barrero, Bloom and Wright (2016), where the distinction relates instead to the forecast horizon.
3The economic literature suggests at least three reasons why the distinction between short-run and long-

run uncertainty may be relevant. First, the relative importance of short-run as opposed to long-run unpre-
dictability arguably varies across economic agents. For instance, “financial risk management has generally
focused on short-term risks rather than long-term risks” (Engle 2011). On the other hand, long-run uncer-
tainty is central to a number of policy issues. For instance, uncertainty about potential (long-run) output
affects the reliability of the output gap estimates, which are key inputs for both fiscal policy and monetary
policy (Orphanides and van Norden 2002). Also, reducing uncertainty about long-run inflation and interest
rates is often seen as critical for the effectiveness of monetary policy (Bernanke 2007; Gürkaynak, Sack and
Swanson 2005; Orphanides and Williams 2002). Second, forecasters may be not equally exposed to these
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By focusing on parameter uncertainty as a source of forecast uncertainty, the paper
aims to provide measures that are conceptually closer to Knightian (or radical) uncertainty
than to risk, as parameter uncertainty undermines individuals’ confidence in the estimated
probability distributions of economic outcomes. Measuring uncertainty with the estimated
volatility of shocks, as is often done in the literature, implicitly relies on the assumption that
probability distributions can be treated as known, which pertains more to the concept of
risk.4

The remainder of the paper is organized as follows. Section 1.2 reviews the related
literature, highlighting the contributions of this paper. Section 1.3 presents the methodology
used to measure uncertainty. Section 1.4 introduces the empirical implementation. Section
1.5 presents the results. Section 1.6 concludes.

1.2 Related literature

A thriving literature has investigated fluctuations in uncertainty and developed methods to
measure it. Among the proposed proxies, some are based on observable variables, while
others are model-based. Measures of the first type include indices of option-implied stock
market volatility, such as the VIX index in the United States, measures of disagreement
among professional forecasters, the dispersion of survey forecast errors and newspaper word

two types of uncertainty, depending on the specification of their forecasting models. As documented by the
literature on cointegration, modeling long-run economic relationships is not invariably beneficial for forecast
performance (see, for example, Hoffman and Rasche 1996; Lin and Tsay 1996), which means that it may be
reasonably omitted under certain circumstances. Third, the effects of short-run and long-run uncertainty on
economic activity may differ. For instance, investment may be more responsive to long-run than to short-run
uncertainty (Barrero, Bloom and Wright 2016).

4Moreover, the literature has emphasized the importance of parameter uncertainty in several contexts. In
a seminal paper, Brainard (1967) showed that parameter uncertainty affects policymakers’ optimal choices,
whereas uncertainty about additive error terms can be ignored when setting the policy variables, at least
under standard quadratic objective functions. A subsequent literature has expanded on the implications
of parameter uncertainty for monetary policy (Wieland 2000; Söderström 2002). Theoretical models with
parameter uncertainty and learning have been proposed to improve on rational expectations models by ac-
counting for key macro puzzles, such as the equity premium puzzle (Hansen 2007; Collin-Dufresne, Johannes
and Lochstoer 2016; Weitzman 2007). In finance, uncertainty about the degree of predictability of returns
affects the relationship between the investment horizon and the optimal portfolio allocation (Xia 2001). This
paper aims to provide comprehensive measures of uncertainty, covering a wide range of such specific types
of uncertainty. Another paper that stresses the importance of measuring parameter uncertainty is Orlik and
Veldkamp (2014).
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counts. Bloom (2009) pioneered the use of stock market volatility indices. Bachmann,
Elstner and Sims (2013) use forecast disagreement and ex-post forecast errors from German
and U.S. business survey data. Rossi and Sekhposyan (2015) propose an index based on the
unconditional probabilities of observing the realized forecast errors, using the U.S. Survey
of Professional Forecasters. Rossi and Sekhposyan (2017) adopt the same methodology to
construct uncertainty indices for the Euro Area and its member countries and investigate
spillover effects. Baker, Bloom and Davis (2016) measure economic policy uncertainty in the
United States and in other 11 major economies, using the frequency of newspaper articles
containing words related to uncertainty, the economy and policy.

Observable indicators are unlikely to be perfectly correlated with underlying uncertainty.
Bekaert, Hoerova and Lo Duca (2013) underscore that movements in the VIX index reflect
changes in risk aversion as well as changes in uncertainty. Measures of disagreement and
survey forecast error distributions may be affected by the omission of relevant information
in surveys (empirical evidence on information rigidities in survey forecasts can be found in
Coibion and Gorodnichenko 2012). Lahiri and Sheng (2010) argue that disagreement is a
weak proxy for forecast uncertainty when the volatility of aggregate shocks changes over time
and differences in point forecasts across forecasters depend solely on idiosyncratic errors that
are uncorrelated with observed common shocks.

To address some of the limitations of observable measures, model-based measures of un-
certainty have recently been proposed in the literature. Jurado, Ludvigson and Ng (2015)
measure uncertainty in the United States through a factor-augmented vector autoregression
(FAVAR) with stochastic volatility, using a large dataset of monthly macro and financial in-
dicators. Orlik and Veldkamp (2014) estimate a hidden state model for the U.S. GDP growth
and measure uncertainty as the conditional standard deviation of forecasts, taking into ac-
count parameter uncertainty. Berger, Grabert and Kempa (2016) use a dynamic factor model
with stochastic volatility to measure output growth uncertainty in a multi-country setting.
Output growth in each country is decomposed into a common (or global) and country-specific
latent factors, plus an effect of domestic inflation, assumed as exogenous. Berger, Grabert
and Kempa (2017) extend the approach by also considering inflation uncertainty. Mumtaz
and Theodoridis (2017) use a factor model with stochastic volatility to decompose uncer-
tainty in eleven OECD countries into country-specific and common components. Using U.S.
data, Carriero, Clark and Marcellino (2017) jointly estimate uncertainty and its impact on
the economy through a large VAR in which stochastic volatility is driven by common factors.

Hybrid approaches combining direct measurement and model-based methods have also
been developed. Scotti (2016) measures uncertainty in a group of advanced economies by av-
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eraging the observed squared forecast errors associated with Bloomberg median expectations
across several real-activity indicators. A dynamic factor model is used to assign weights to
the indicators in the construction of the uncertainty measures. Similarly to Lahiri and Sheng
(2010), Ozturk and Sheng (2018) decompose the uncertainty of a typical forecaster into com-
mon uncertainty, i.e. the variance of the consensus forecast error, and idiosyncratic uncer-
tainty, i.e. disagreement. Using survey forecast data, they estimate the common component
through a stochastic volatility model and measure disagreement as the interquartile range
of forecasts. They construct time series of the two components for a large set of countries
and derive a measure of global uncertainty as the PPP-weighted average of country-specific
uncertainties.

Differences between short- and long-run components of uncertainty, in terms of drivers
and effects on investment and employment, have been investigated by Barrero, Bloom and
Wright (2016), using macro- and firm-level data on option-implied volatility at different
horizons.

This paper contributes to research on macroeconomic uncertainty along several dimen-
sions. First, it provides comprehensive measures of global uncertainty, country-specific un-
certainty and international spillovers of uncertainty, using a GVAR model to account for
economic linkages across a large set of countries and covering both real and financial vari-
ables. Among the other global approaches to uncertainty, Mumtaz and Theodoridis (2017)
investigate common and country-specific uncertainty in OECD countries only. Berger et al.
(2017) also adopt a global perspective, but their measures of uncertainty are based on GDP
growth and inflation only, thus ignoring financial variables. Also, they impose strong restric-
tions on the international interactions between variables, in order to achieve identification
of common components of uncertainty. Ozturk and Sheng (2018) develop an index of global
uncertainty covering 45 countries and 8 variables for each country, but do not model global
economic interrelations nor analyze the transmission of uncertainty. Spillovers of uncertainty
have been investigated by Rossi and Sekhposyan (2017) in the context of the Euro Area only.
Second, the paper develops distinct measures of uncertainty about short-run and long-run
macroeconomic relationships, and shows that they match important features of widely-used
indices of uncertainty. The proposed interpretation of the results is to some extent in keep-
ing with Barrero et al. (2016), who distinguish short- and long-run uncertainty based on
the forecast horizon. Third, the paper measures forecast uncertainty that incorporates pa-
rameter uncertainty, whereas the other model-based approaches do not focus on parameter
uncertainty, except for Orlik and Veldkamp (2014) who measure parameter uncertainty in
a univariate model. The paper also contributes to the GVAR literature. Cesa-Bianchi, Pe-
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saran and Rebucci (2014) use a GVAR model to study the relationship between asset price
volatility and economic activity. Unlike in this paper, they do not construct GVAR-based
measures of uncertainty, but use observed proxies for uncertainty as an input to the model.

Finally, a literature review on both macro and micro uncertainty is provided by Bloom
(2014). ECB (2016) also surveys the literature on macroeconomic uncertainty.

1.3 Methodology

This section illustrates the econometric framework used to measure global macroeconomic
uncertainty and to distinguish short- and long-run uncertainty.

1.3.1 The GVAR model

The GVAR model (Pesaran et al. 2004) results from the aggregation of country-specific
VARX* models, in which domestic macroeconomic variables are related to their foreign
counterparts. To reduce the dimensionality of the parameter space, the foreign variables are
built as cross-country weighted averages, using weights based on international trade flows.
The foreign aggregates are treated as weakly exogenous in each VARX*, which implies that
the estimation is performed at the country level. Here, the GVAR model is estimated on
quarterly data and all VARX* models include two lags for both the domestic and the foreign
variables.

Consider a generic country i, with i = 1, ..., N , where N is the total number of countries.
Denote with xit the ki× 1 vector of domestic macroeconomic variables of country i at time t

and with x∗
it the k∗i × 1 vector of foreign variables. The VARX* model for country i can be

written as

xit = a0i + a1it +
2∑

j=1

Φjixi,t−j +
2∑

l=0

Λlix
∗
i,t−l + νit (1.1)

where a0i and a1i are ki× 1 vectors of constants and trend coefficients, respectively, Φji, for
j = 1, 2, and Λli, for l = 0, 1, 2, are ki × ki and ki × k∗i matrices of parameters, respectively,
and νit ∼ iid(0, Σi) is the vector of errors.

Denote with k the total number of endogenous variables in the global economy, i.e. k =∑N
i ki. Domestic and foreign variables can be expressed in terms of the k× 1 stacked vector
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of global endogenous variables xt:

(
xit

x∗
it

)
= Wi


x1t

x2t

...
xNt

 = Wixt

where Wi is the (ki + k∗i )× k matrix of country-specific trade-based weights.
The error correction reparametrization of the country-specific model, or VECX*, dis-

tinguishes long-run (cointegrating) relationships between variables and short-run dynamics.
Defining zit = (x′

it,x
∗
it
′)′, it can be written as

∆xit = ā0i −Πi [zi,t−1 − γi (t− 1)]−Φ2i∆xi,t−1 +Λ0i∆x∗
it −Λ2i∆x∗

i,t−1 + νit (1.2)

where Πi is a ki×(ki+k∗i ) matrix of parameters, ā0i is a ki×1 vector of constants and γi is a
(ki+k∗i )×1 vector of trend coefficients.5 Given (1.1), a0i = ā0i−Πiγi and a1i = Πiγi. The
rank ri of matrix Πi represents the number of long-run relationships between the variables
in zit. In particular, Πi = αiβ

′
i, where αi is the ki × ri matrix of loadings and βi is the

(ki+k∗i )×ri matrix of cointegrating vectors (see Johansen 1995). Also, given (1.1) it is readily
seen that Πi =

(
Iki −

∑2
j=1Φji,−

∑2
l=0Λli

)
, where Iki is the ki × ki identity matrix.

Stacking all country-specific VARX* models provides a vector autoregressive representa-
tion of the global economy:

Gxt = a0 + a1t +H1xt−1 +H2xt−2 + νt

where a0 = (a0
′
1,a0

′
2, · · · ,a0′N )′ and a1 = (a1

′
1,a1

′
2, · · · ,a1′N )′ are the k×1 stacked vectors of

global constants and trends, respectively, νt = (ν ′
1t,ν

′
2t, · · · ,ν ′

Nt)
′ is the k× 1 stacked vector

of errors and

G =


(Ik1 ,−Λ01)W1

(Ik2 ,−Λ02)W2

...
(IkN ,−Λ0N )WN

 , H1 =


(Φ11,Λ11)W1

(Φ12,Λ12)W2

...
(Φ1N ,Λ1N )WN

 , H2 =


(Φ21,Λ21)W1

(Φ22,Λ22)W2

...
(Φ2N ,Λ2N )WN


5The VECX with restricted trends corresponds to case IV in Pesaran et al. (2000).
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The reduced form of the global model can be written as

xt = c0 + c1t + F1xt−1 + F2xt−2 + εt (1.3)

where

c0 = G−1a0, c1 = G−1a1,

F1 = G−1H1, F2 = G−1H2

and εt = G−1νt is the vector of reduced-form global residuals. Assuming that νt is normally
distributed, εt ∼ N(0,Σε), where Σε = G−1Σ(G−1)′ and Σ is the k × k covariance matrix
of νt. In particular, Σ is a block matrix whose (i, j) block is the ki × kj matrix Σij of shock
covariances between country i and country j, with Σii = Σi from model (1.1).

Finally, it is useful to express the model in companion form:

[
xt

xt−1

]
=

[
c0

0

]
+

[
c1

0

]
t +

[
F1 F2

Ik 0

][
xt−1

xt−2

]
+

[
εt

0

]

In what follows, the companion form will be denoted as

x̃t = c̃0 + c̃1t + F̃x̃t−1 + ε̃t (1.4)

1.3.2 Time-varying uncertainty

In order to derive time profiles of short- and long-run uncertainty from the GVAR model, a
bootstrap procedure is implemented over recursive windows.6 The measurement methodology
can be described as follows.

1. The GVAR is estimated over time using recursive windows. The shortest window spans
the period 1979Q4-2000Q1, then the sample is extended by one-quarter increments, up
to 1979Q4-2016Q1. The country-specific VECX* models are estimated on each window,
i.e. they are all re-estimated every time an additional quarter is included in the sample.
To this aim, window-specific foreign variables are constructed, based on trade patterns
that were observed at the end of the window under consideration (Section 1.4 provides

6Bootstrap techniques were first applied to the GVAR model by Dees et al. (2007a, 2007b).
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details). Let us define the baseline GVAR in a given quarter as the GVAR estimated on
actual data over the window ending in that quarter. Consider a generic window w ending
in period Tw. The baseline GVAR for quarter Tw can be written as

xt = ĉ
(w)
0 + ĉ

(w)
1 t+ F̂

(w)
1 xt−1 + F̂

(w)
2 xt−2 + ε̂

(w)
t (1.5)

where ̂ denotes estimates and t = 1, 2, . . . , Tw.

2. In each sample window, a non-parametric bootstrap of the estimates is performed. First,
I simulate alternative historical paths that the variables in the global model might have
followed within the sample window, given the dynamics and the empirical distribution of
errors of model (1.5). Then, I re-estimate all the VECX* models and, accordingly, the
global model on the simulated time series.

In window w,

(a) the window-specific baseline GVAR model (1.5) produces a k × Tw matrix of global
residuals Ê(w)

=
(
ε̂
(w)
1 , ε̂

(w)
2 , . . . , ε̂

(w)
Tw−1, ε̂

(w)
Tw

)
;

(b) in the generic b-th bootstrap iteration (b = 1, . . . , B), the Tw columns of matrix Ê
(w)

are resampled. Then, artificial time series for all the variables are generated through
an in-sample simulation of the baseline GVAR (1.5) using the resampled residuals
as shocks. Denoting iteration b in window w with the superscript (w, b), let us call
ε
(w,b)
t the bootstrap shocks, generated by randomly drawing columns from Ê

(w) with
replacement. The simulated time series are given by

x
(w,b)
t = ĉ

(w)
0 + ĉ

(w)
1 t+ F̂

(w)
1 x

(w,b)
t−1 + F̂

(w)
2 x

(w,b)
t−2 + ε

(w,b)
t

with x
(w,b)
0 = x0 and x

(w,b)
−1 = x−1.

Iteration-specific foreign variables x
∗(w,b)
it are then constructed using the window-

specific trade weight matrix W
(w)
i for every i;

(c) in each bootstrap iteration, all the VECX* models are re-estimated on the simulated
data. Two alternative cases are considered:

i. uncertainty about both short-run and long-run parameters is considered. Ac-
cordingly, all parameters are re-estimated in each iteration, also allowing for
iteration-specific cointegration ranks r

(w,b)
i (details on rank selection are pro-
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vided below):

∆x
(w,b)
it = ̂̄a(w,b)

0i − α̂
(w,b)
i β̂

(w,b)

i
′
[
z
(w,b)
i,t−1 − γ̂

(w,b)
i (t− 1)

]
+

− Φ̂
(w,b)
2i ∆x

(w,b)
i,t−1 + Λ̂

(w,b)
0i ∆x

∗(w,b)
it − Λ̂

(w,b)
2i ∆x

∗(w,b)
i,t−1 + ν̂

(w,b)
it

(1.6)

ii. only short-run parameter uncertainty is considered. The long-run vectors βi

and γi are fixed at their baseline estimates β̂
(w)

i and γ̂
(w)
i across all iterations

(the cointegration rank is fixed at r̂(w)
i ):

∆x
(w,b)
it = ̂̄a(w,b)

0i − α̂
(w,b)
i β̂

(w)

i
′
[
z
(w,b)
i,t−1 − γ̂

(w)
i (t− 1)

]
+

− Φ̂
(w,b)
2i ∆x

(w,b)
i,t−1 + Λ̂

(w,b)
0i ∆x

∗(w,b)
it − Λ̂

(w,b)
2i ∆x

∗(w,b)
i,t−1 + ν̂

(w,b)
it

(1.7)

As a result, in either case B estimates of the GVAR model are obtained for each quarter
from 2000Q1 to 2016Q1:

x
(w,b)
t = ĉ

(w,b)
0 + ĉ

(w,b)
1 t+ F̂

(w,b)
1 x

(w,b)
t−1 + F̂

(w,b)
2 x

(w,b)
t−2 + ε̂

(w,b)
t (1.8)

3. Each of the B window-specific GVAR versions produces forecasts out of the estimation
window. More specifically, dynamic pseudo-out-of-sample forecasts are jointly calculated
for all the variables in the global economy, taking as initial values for each variable the
last two actual values within the estimation window. Recalling the companion form (1.4)
of the GVAR model and denoting forecasts with the superscript (f), the h-step-ahead
forecasts of the model estimated on window w in iteration b can be expressed as

x
(f)(b)
Tw+h = S

(̂̃
F(w ,b)

)h
x̃Tw + S

h−1∑
τ=0

(̂̃
F(w ,b)

)τ [̂̃c0(w,b) + ̂̃c1(w,b) (Tw + h − τ)
]

where S = (Ik,0k×k) is a selection matrix. This is repeated for all windows.

The outcome of the procedure consists of multivariate distributions of forecasts in all
quarters from 2000Q1 to 2016Q1. In each quarter, variable-specific uncertainty is measured
as the standard deviation of 4-quarter-ahead forecasts. Denoting with xv,t the generic v-th
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variable in the global vector xt and with uv,t the corresponding uncertainty measure,

uv,t =

√√√√ 1

B − 1

B∑
b=1

(
x
(f)(b)
v,t+4 − 1

B

B∑
b=1

x
(f)(b)
v,t+4

)2

The procedure delivers time series of uncertainty for all variables in the global model. Each
time series is then standardized by subtracting the mean and dividing by the standard devi-
ation. Aggregate indices of uncertainty are computed for each country by averaging across
the respective domestic variables. Like Jurado et al. (2015), I assign equal weights to the
variables (using principal components yields almost identical results). Finally, an index of
global uncertainty is calculated as a weighted average of country-specific uncertainties. The
weights are given by the annual GDP levels in PPP terms (in each quarter, the previous
year’s GDP data are used).

This approach provides country-level uncertainty indicators that incorporate substantial
information about international macroeconomic dynamics. Relying on a GVAR ensures that
(i) all countries are jointly simulated in the sample, which is reflected in the bootstrap
distributions of estimates, and (ii) all variables in the global economy are jointly forecast out
of the sample and depend on each other.

The distinction between long- and short-run uncertainty is summarized by (1.6) and
(1.7). Long-run uncertainty is the standard deviation of forecasts that is obtained when
all parameters, including the cointegrating vectors, are treated as unknown. Accordingly, it
is measured by considering (1.6) in the bootstrap procedure. Short-run uncertainty is the
standard deviation of forecasts obtained when only the short-run parameters are treated as
unknown. It is measured by considering equation (1.7). In the case of long-run uncertainty,
the number of long-run relationships (i.e. the number of common stochastic trends) is also
treated as unknown. Accordingly, the cointegration ranks are re-estimated in each bootstrap
iteration. Each iteration-specific rank r̂

(w,b)
i (as well as each baseline rank r̂

(w)
i ) is determined

by the Johansen trace test7, provided that this ensures stability, as explained below. In the
case of short-run uncertainty, the cointegration ranks are allowed to vary across windows but
not across iterations.

The measures of uncertainty may be unduly inflated by explosive roots in (1.8). For this
reason, in each iteration I check whether the estimated models are dynamically stable, i.e.
whether all the eigenvalues of the companion matrices are less than or equal to 1 in modulus.

7The 5% critical values are considered.
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I perform the stability analysis both on the country-specific models and on the resulting
global model. Uncertainty is measured using stable models only. At the country level, the
cointegration rank r

(w,b)
i is allowed to deviate from the indications of the Johansen test if the

estimated rank results in an unstable country model. In that case, I select the highest rank
that makes the model stable. Since this does not ensure the stability of the global model,
I also check the eigenvalues of the global companion matrix ̂̃Fw,b. If the global model is
unstable, the bootstrap iteration is repeated until a stable model is found.

To further mitigate the impact of extreme forecasts on the uncertainty measures, I remove
those iteration-specific forecasts that are outliers with respect to a particularly relevant vari-
able, namely U.S. GDP (of course, the interconnectedness of variables in the GVAR implies
that such extreme values are transmitted across variables throughout the global economy).
The iteration-specific forecasts are omitted whenever the 4-quarter-ahead forecast of the U.S.
GDP lies more than 3 standard deviations away from the average forecast across iterations.

1.4 Empirical implementation

1.4.1 Countries and variables

The proposed approach is implemented for the 33 countries considered in Cesa-Bianchi,
Pesaran and Rebucci (2014). Sixteen countries are aggregated into three areas, therefore
20 economies are included in the GVAR: Australia, Brazil, Canada, China, the Euro area,
India, Japan, a Latin American area, Mexico, New Zealand, Norway, Saudi Arabia, South
Africa, South-East Asia, South Korea, Sweden, Switzerland, Turkey, the United Kingdom
and the United States. The composition of the three areas is the following: the Euro area
includes Austria, Belgium, Finland, France, Germany, Italy, the Netherlands and Spain; the
Latin American area comprises Argentina, Chile and Peru; South-East Asia is composed by
Indonesia, Malaysia, Philippines, Thailand and Singapore.

As mentioned above, the variables included in the GVAR model are real GDP levels,
CPI quarterly inflation rates, short-term interest rates, exchange rates with respect to the
U.S. dollar and equity price indices. Exchange rates and equity indices are expressed in
real terms by deflating the nominal values using the consumer price index (this definition
of “real exchange rate” is often used in the GVAR literature, see Pesaran et al. 2004 and
Dees et al. 2007a). Logarithms are used for the real GDP, exchange rates and equity indices.
Each interest rate is transformed to 0.25 [1 + ln(Rt/100)], where Rt is the rate expressed in
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percentage values on an annual basis. Domestic and foreign GDP, inflation and exchange
rates are included in all the VARX* models (except for the domestic exchange rate in the
U.S. model, as the U.S. dollar is the numeraire currency). Domestic short-term interest rates
are included as endogenous in all VARX* models except for Saudi Arabia and for countries
that experienced skyrocketing interest rates (higher than 100% on an annual basis) during
major crises in the 80s and 90s (Brazil, Mexico, the Latin American area and Turkey), while
foreign interest rates are included in all country models except for the United States. Stock
market indices are included for the major financial economies, namely the United States,
the Euro area, the United Kingdom and Japan. Foreign equity indices are considered in the
models for the Euro area, the U.K. and Japan. As usual in the GVAR literature, the U.S.
model has fewer weakly exogenous variables, given the special status of the United States in
the global economy: I include foreign GDP, inflation and exchange rate.

For any pair of countries i and j, the weight assigned to j in the construction of i’s foreign
variables is based on the average of i’s exports to j and i’s imports from j. In particular, to
calculate window-specific foreign variables I use the average trade weights observed in the 3
years prior to the window end year. The weights used to aggregate countries into areas are
based on annual GDP levels in PPP. In each quarter, the aggregation weights are computed
as the GDP shares in the previous year.

1.4.2 Data

The quarterly dataset used in this paper extends up to 2016Q1 the data used in Cesa-Bianchi,
Pesaran and Rebucci (2014), which span the period 1979Q1-2013Q1. The data sources used
for the period 2013Q2-2016Q1 are reported in Appendix 1.A.

Unlike financial data, GDP and inflation data are typically revised, which raises the
question of whether the accuracy of uncertainty measures can be improved by using real-
time vintage data (see e.g. Clements 2017). On the other hand, Jurado et al. (2015) point
out that the use of real-time data may actually lead to biased estimates of uncertainty, since
a substantial amount of information on macro variables becomes available to economic agents
and forecasters well before official data releases. The present study does not use real-time
vintages, which may be considered for future extensions. However, I did not include revisions
to the original data used in Cesa-Bianchi et al. (2014).
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1.5 Results

This section presents the uncertainty indices constructed using the proposed approach.8 All
the results are obtained with 1000 bootstrap iterations and all the indices are expressed in
standardized units.9

Figure 1.1 shows the index of global short-run uncertainty over the period 2000Q1-
2016Q1. The index peaks around the Lehman Brothers collapse in 2008Q4, when variable-
specific uncertainties rise on average 4 standard deviations above their means. It then drops
during 2009 and 2010, and exhibits only minor peaks afterwards. Figure 1.2 plots the index
of global long-run uncertainty. The index surges during the Great Recession of 2008-2009,
decreases in 2010, rises again in 2011 and gradually subsides afterwards. The two plots show
some similarities, stemming from the fact that the two indices are affected by the same shocks
(the residuals used to generate the bootstrap samples coincide in the two cases, since the
baseline model is the same). In particular, at the height of the global financial crisis, large
shocks lead to increases in both short-run and long-run uncertainty. On the other hand, the
two indices also exhibit remarkable differences, reflecting their different scope. The short-run
uncertainty index concerns short-run fluctuations and the adjustment towards the long-run
equilibrium. It is a constrained measure of uncertainty, since the long-run parameters are
fixed in the bootstrap procedure, and it is estimated on stationary time series, namely the
first differences (or growth rates) of trending variables and the cointegration residuals. Dur-
ing 2009 and 2010, when first differences typically return to normal after experiencing large
deviations from their means, short-run uncertainty quickly reverts to lower values. On the
contrary, the long-run uncertainty index is an unconstrained measure of uncertainty: in this
case, all parameters are allowed to vary across bootstrap iterations, including the equilib-
rium relationships between variables in levels. Therefore, long-run uncertainty is effectively
measured on non-stationary time series. As the shocks realized during and after the global
crisis had permanent or highly persistent effects on the levels of the variables, increases in
long-run uncertainty persist after short-run uncertainty abates. As the figures show, short-
run uncertainty rises more sharply than long-run uncertainty, in standardized terms, during
the global crisis.10

8The code, written for EViews and R, makes use of software developed by Baier, T. and E. Neuwirth
(2007), “Excel :: COM :: R.” Computational Statistics, 22 (1), 91–108.

9The complete set of country-specific indices is reported in Appendix 1.B, Figures 1.9 and 1.10.
10In absolute terms, long-run uncertainty is systematically higher due to the additional variability of

cointegrating vectors. Figure 1.11 in Appendix 1.B shows the different magnitudes of the pre-standardization

15



Figure 1.1: Global short-run uncertainty index

Notes: The index is calculated as the PPP GDP-weighted average of the country-specific short-run uncertainty
indices and is expressed in standardized units. Each country-specific index is calculated as the average
uncertainty across the domestic variables included in the GVAR model. The data are quarterly and span the
period 2000Q1-2016Q1. Shaded areas are NBER recession periods.

Figure 1.2: Global long-run uncertainty index

Notes: The index is calculated as the PPP GDP-weighted average of the country-specific long-run uncertainty
indices and is expressed in standardized units. Each country-specific index is calculated as the average
uncertainty across the domestic variables included in the GVAR model. The data are quarterly and span the
period 2000Q1-2016Q1. Shaded areas are NBER recession periods.
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Commonalities in uncertainty across countries clearly emerge from Figures 1.3 and 1.4,
which plot short- and long-run uncertainty, respectively, for the U.S., the Euro area, the
U.K., China and India. The strong co-movement between country-specific indicators reflects
both common (global) uncertainty shocks, as captured by cross-country contemporaneous
correlations of residuals in the GVAR, and the dynamic propagation of uncertainty from any
country to the others. Global patterns of uncertainty appear therefore to be dominant.11

Let us now examine how the short- and long-run uncertainty indices relate to different
popular measures of uncertainty. Figure 1.5 compares the short-run uncertainty index (SRU)
for the United States with the VIX, i.e. the index of option-implied volatility in the S&P500,
and with the U.S. macro uncertainty index developed by Jurado et al. (2015) (JLN hence-
forth). All three measures peak in 2008Q4 and the magnitudes of their increases during the
financial crisis are highly comparable, as well as the subsequent declines in the period 2009-
2010. The correlation between SRU and VIX is 0.74, while the correlation between SRU and
JLN is 0.59. Thus, the SRU index appears broadly in line with financial markets’ volatility
expectations over short horizons (the VIX measures 30-day-ahead expected volatility). Also,
the JLN index is constructed using stationary time series, which seems consistent with a
short-run perspective focusing on cyclical fluctuations rather than on trends.

Barrero, Bloom and Wright (2016) find that economic policy uncertainty is more tightly
linked to long-run than to short-run components of uncertainty. Figure 1.6 contrasts the
GVAR-based long-run uncertainty index (LRU) for the United States with the EPU index
developed by Baker, Bloom and Davis (2016).12 Unlike the indicators in Figure 1.5, both
the LRU index and the EPU index exhibit relatively high values in the period 2010-2013,
compared to the respective pre-crisis averages. The correlation between LRU and EPU is
0.67. While the results do not imply a systematic relationship between the two measures, it
is arguably the case that uncertainty about the long run has been relevant for a variety of
primary policy issues debated in the aftermath of the crisis, such as those relating to financial
regulation and public debt sustainability.

The VIX and EPU indices emerge therefore as primary benchmarks for the different

measures for the United States. Figure 1.12 compares global short-run uncertainty with the measure of
uncertainty calculated using a GVAR in first differences, where Πi = 0 in (1.2) for every i.

11All cross-country correlations are reported in Appendix 1.B, Tables 1.4 and 1.5.
12The index considered here is the overall EPU index, which combines the news-based EPU index with three

additional measures of policy uncertainty: an index of tax expirations, a measure of forecast disagreement
over consumer prices and a measure of forecast disagreement over federal/state/local government purchases.
The overall index is available at www.policyuncertainty.com.
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Figure 1.3: Short-run uncertainty indices for U.S., Euro area, U.K., China and India

Notes: Each index is calculated as the average short-run uncertainty across the domestic variables included
in the GVAR model and is expressed in standardized units. The data are quarterly and span the period
2000Q1-2016Q1.

Figure 1.4: Long-run uncertainty indices for U.S., Euro area, U.K., China and India

Notes: Each index is calculated as the average long-run uncertainty across the domestic variables included
in the GVAR model and is expressed in standardized units. The data are quarterly and span the period
2000Q1-2016Q1.
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uncertainty measures developed in this paper. While many events that trigger increases in
economic policy uncertainty also have repercussions on stock market volatility,13 the indices
show remarkable differences, which have already been ascribed to several factors by Baker et
al. (2016).14 It is worth adding here that there exist widespread concerns about stock market-
listed firms focusing too much on short-term outcomes (a phenomenon known as short-
termism, see Davies, Haldane, Nielsen and Pezzini 2014; Asker, Farre-Mensa and Ljungqvist
2015), which contrasts with the long-term focus of many policy issues (Barrero et al. 2016).
The results presented in this paper may be supportive of the idea that the VIX reflects
a stronger focus on short-run issues, while economic policy uncertainty is more related to
long-run issues, at least in the period under consideration (cf. Barrero et al. 2016).

Table 1.1 shows the correlations between the different uncertainty measures considered
in this section.

1.5.1 Spillovers of uncertainty

The proposed GVAR-based methodology can be used to quantify the international spillovers
of uncertainty. This section illustrates such feature by presenting results on the spillovers
of U.S. uncertainty. These are quantified by measuring the component of each country’s
forecast uncertainty that only depends on parameter uncertainty in the U.S. model. In
practice, in step (2c) of the algorithm presented in Section 1.3.2, only the U.S. VARX* is
re-estimated on simulated data.15 As a result, in each iteration the global model is built by
combining the bootstrapped U.S. model with the baseline models for the other countries,
and forecasts are produced accordingly. For each variable in the global model, the resulting
forecast uncertainty is expressed as a fraction of total variable-specific uncertainty, i.e. the
uncertainty that is obtained when all countries are bootstrapped. Finally, the ratios thus
derived are averaged across domestic variables for each country. The average ratio is taken as
a measure of the strength of the spillovers, both direct and indirect (i.e. transmitted through
third-party countries).

Figure 1.7 plots the spillovers of U.S. short-run uncertainty on the Euro area, the U.K.,

13This has been the case, for instance, with the Lehman Brothers default and the Troubled Asset Relief
Program (TARP) in 2008, as well as with the Euro crisis of 2011.

14In particular, as argued by Baker et al. (2016): (i) the VIX has a short horizon, while the news-based
component of EPU has no specific horizon; (ii) policy issues do not necessarily relate to equity returns; (iii)
the VIX covers publicly traded firms only.

15Note however that the data are jointly simulated for all countries in step (2b), so that the U.S. foreign
variables are also simulated.
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Figure 1.5: U.S. short-run uncertainty: a comparison

Notes: In this figure, SRU is the U.S. short-run uncertainty index from Figure 1.3, VIX is the volatility
index by the Chicago Board Options Exchange and JLN is the updated version (as of March 2017, source:
www.sydneyludvigson.com) of the 12-month-ahead macro uncertainty index originally proposed in Jurado et
al. (2015). Data are quarterly. For VIX and JLN, quarterly data are obtained by averaging daily and monthly
data, respectively. VIX and JLN are standardized by subtracting the means and dividing by the standard
deviations over the 2000Q1-2016Q1 interval.

Figure 1.6: U.S. long-run uncertainty compared to EPU

Notes: In this figure, LRU is the U.S. long-run uncertainty index from Figure 1.4, EPU is the overall index of
U.S. economic policy uncertainty by Baker, Bloom and Davis (2016), which combines the news-based index
with other three measures of uncertainty (an index of tax expirations, a measure of forecast disagreement over
consumer prices and a measure of forecast disagreement over federal/state/local government purchases). The
source for EPU is www.policyuncertainty.com and quarterly data are obtained by averaging monthly data.
EPU is standardized by subtracting the mean and dividing by the standard deviation over the 2000Q1-2016Q1
interval.
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Table 1.1: Correlations of uncertainty measures

VIX JLN EPU EPUn SRU LRU
VIX 1.00
JLN 0.70 1.00
EPU 0.54 0.15 1.00
EPUn 0.61 0.16 0.89 1.00
SRU 0.74 0.59 0.44 0.41 1.00
LRU 0.12 -0.04 0.67 0.35 0.33 1.00

Notes: In this table, SRU is the U.S. short-run uncertainty index, LRU is the U.S. long-run uncertainty index,
VIX is the volatility index by the Chicago Board Options Exchange, JLN is the U.S. macro uncertainty index
by Jurado et al. (2015), EPU is the overall index of U.S. economic policy uncertainty by Baker, Bloom and
Davis (2016) and EPUn is the news-based component of EPU. All correlations are computed over the period
2000Q1-2016Q1.

China and India, as well as the ratio for the United States itself. Table 1.2 reports the
average spillovers over the period 2000Q1-2016Q1 for all countries. Over the measurement
period, the direct and indirect effects of domestic parameter uncertainty amount on average
to almost 80% of total short-run uncertainty in the U.S. The ratio falls in 2008, signaling
larger effects of international uncertainty starting in the crisis period. For both the Euro area
and the U.K., the total spillover effects of U.S. uncertainty exceed 30% of total short-run
uncertainty on average, while for China and India the spillovers represent lower fractions of
total uncertainty (10% and 16% on average, respectively). Also, the spillovers do not exhibit
large fluctuations over time. Figure 1.8 and Table 1.3 report the results on spillovers of U.S.
long-run uncertainty. The ranking of countries is broadly similar, while the ratios are lower
than their short-run counterparts, which means that U.S. uncertainty weighs relatively more
on short-run relationships than on long-run ones.

1.6 Concluding remarks

This paper has developed global and country-specific indices of macroeconomic uncertainty.
The proposed methodology is based on a GVAR model and provides comprehensive indicators
by measuring uncertainty about real and financial variables in a large number of countries
simultaneously. Since countries are interconnected in the GVAR, this approach takes into
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Figure 1.7: Spillovers of U.S. short-run uncertainty

Notes: For each country (U.S., Euro area, U.K., China and India), the figure plots the component of fore-
cast uncertainty that only depends on U.S. parameter uncertainty, expressed as a fraction of total forecast
uncertainty. Quarterly data for the period 2000Q1-2016Q1.

Table 1.2: Average spillovers of U.S. short-run uncertainty (2000Q1-2016Q1)

USA 0.784 KOR 0.168
CAN 0.427 NOR 0.168
EUR 0.323 SEA 0.167
UK 0.313 NZL 0.163
CHE 0.257 IND 0.158
BRA 0.231 LAM 0.154
MEX 0.224 SAU 0.138
JAP 0.218 AUS 0.131
SWE 0.211 TUR 0.126
ZAF 0.178 CHN 0.101

Notes: For each country, the table reports the component of forecast uncertainty that only depends on U.S.
parameter uncertainty, expressed as a fraction of total forecast uncertainty and averaged over the period
2000Q1-2016Q1. Countries are identified by ISO codes. For the three areas, the following codes are used:
EUR = Euro area, LAM = Latin American area and SEA = South-East Asia.
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Figure 1.8: Spillovers of U.S. long-run uncertainty

Notes: For each country (U.S., Euro area, U.K., China and India), the figure plots the component of fore-
cast uncertainty that only depends on U.S. parameter uncertainty, expressed as a fraction of total forecast
uncertainty. Quarterly data for the period 2000Q1-2016Q1.

Table 1.3: Average spillovers of U.S. long-run uncertainty (2000Q1-2016Q1)

USA 0.616 KOR 0.127
CAN 0.309 SEA 0.122
MEX 0.216 IND 0.121
EUR 0.206 LAM 0.120
UK 0.202 AUS 0.118
CHE 0.191 ZAF 0.114
BRA 0.172 NOR 0.113
JAP 0.161 SAU 0.106
SWE 0.137 TUR 0.097
NZL 0.132 CHN 0.073

Notes: For each country, the table reports the component of forecast uncertainty that only depends on U.S.
parameter uncertainty, expressed as a fraction of total forecast uncertainty and averaged over the period
2000Q1-2016Q1. Countries are identified by ISO codes. For the three areas, the following codes are used:
EUR = Euro area, LAM = Latin American area and SEA = South-East Asia.
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account the international propagation of uncertainty as well as common uncertainty shocks,
so that each country-specific index incorporates uncertainty about the global economy. The
country-specific indices turn out to be highly correlated, which makes global measures par-
ticularly informative. The approach is also used to quantify the international spillovers of
uncertainty.

Moreover, the paper proposes the distinction between short-run and long-run uncertainty
as a possible way to reconcile existing indicators of uncertainty. In particular, it develops
indices of short-run and long-run uncertainty based on the error-correction properties of the
GVAR model and shows that such measures encompass key features of different indicators
of uncertainty. The short-run uncertainty index is highly correlated with the VIX index of
stock market volatility, while the long-run uncertainty index is closer to the EPU index by
Baker, Bloom and Davis (2016). The results therefore suggest a possible interpretation of
the differences between existing indicators, as reflecting different weights assigned to short-
run and long-run issues. Further research may explore this interpretation by investigating
how commonly used measures of uncertainty relate to the short-run or long-run concerns of
different economic agents.
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Appendix 1.A Data sources

The dataset used in this paper was obtained by extending up to 2016Q1 the data used by
Cesa-Bianchi et al. (2014). The sources for the period 2013Q2-2016Q1 are the following.

For real GDP, the year-on-year percent changes (not seasonally adjusted) from the IMF’s
International Financial Statistics (IFS) were used to extend the GDP level series for all
countries except China and Singapore. For China, the year-on-year GDP growth data (sea-
sonally adjusted) released by the National Bureau of Statistics of China/Thomson Reuters
were used. For Singapore, I used the year-on-year percent changes in GDP at constant prices
(in 2010 Singapore Dollars, seasonally adjusted) released by the Department of Statistics of
Singapore.

For CPI, the year-on-year percent changes (not seasonally adjusted) from the IFS (item:
“Consumer Prices, All items”) were used for all countries to extend the index levels. For
Argentina, due to missing values in the series, the IFS data were used only up to 2013Q4;
from 2014Q1 onwards, I used the year-on-year percent changes (seasonally adjusted) provided
by the OECD.

For all the short-term interest rates, I used quarterly changes to extend forward the levels
in the original dataset. Following Cesa-Bianchi et al. (2014), I used the IFS data for China
(item: “Deposit Rate”); New Zealand (item: “Discount Rate”); Canada, Malaysia, Philip-
pines, South Africa, Sweden, U.K., U.S. (item: “Treasury Bill Rate”); Australia, Finland,
Indonesia, Japan, South Korea, Singapore, Spain, Switzerland and Thailand (item: “Money
Market Rate”). For Austria, Belgium, France, Germany, Italy and the Netherlands I used
the 3-month Euribor rate (from Datastream). For India, I used the 3-month Treasury bill
yield provided by the Reserve Bank of India. For Norway, the IFS item “3 Months Forward
Rate (Dollar)” was used.

For exchange rates, all the data were collected from Datastream (source: Global Trea-
sury Information Services). Quarter-on-quarter percentage changes were used to extend the
original data.

The time series for the equity indices were provided by Datastream. Quarter-on-quarter
percentage changes were used to extend the original data.

The 2013-2015 data on imports (c.i.f.) and exports are from the IMF’s Direction of Trade
Statistics.

The data on annual GDP levels in purchasing power parity terms (current international
$) are from the World Bank’s World Development Indicators.
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Appendix 1.B Figures and tables

Figure 1.9: Country-specific short-run uncertainty indices
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Notes: Each index is calculated as the average short-run uncertainty across the domestic variables included
in the GVAR model and is expressed in standardized units. The data are quarterly and span the period
2000Q1-2016Q1.

Figure 1.10: Country-specific long-run uncertainty indices
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Notes: Each index is calculated as the average long-run uncertainty across the domestic variables included
in the GVAR model and is expressed in standardized units. The data are quarterly and span the period
2000Q1-2016Q1.

32



Figure 1.11: Magnitudes of U.S. short-run and long-run uncertainty

Notes: This figure compares the U.S. short-run uncertainty index (SRU) and the U.S. long-run uncertainty
index (LRU) without applying the standardization described in the paper. Here, for each U.S. variable, the
variable-specific absolute measures of short-run and long-run uncertainty are both divided by the average
of the long-run measure. SRU and LRU are then calculated by averaging the variable-specific uncertainty
measures. The data are quarterly and span the period 2000Q1-2016Q1.

Figure 1.12: First-difference GVAR and short-run uncertainty

Notes: In this figure, SRU is the global short-run uncertainty index and FD is the global uncertainty index
obtained by applying the same measurement procedure to a GVAR model in first differences (i.e. without
cointegration). Both indices are expressed in standardized units. The data are quarterly and span the period
2000Q1-2016Q1.
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Table 1.4: Cross-country correlations of short-run uncertainty

AUS BRA CAN CHE CHN EUR UK IND JPN KOR LAM MEX NOR NZL SAU SEA SWE TUR USA ZAF
AUS 1.00
BRA 0.85 1.00
CAN 0.81 0.93 1.00
CHE 0.91 0.92 0.90 1.00
CHN 0.89 0.89 0.86 0.92 1.00
EUR 0.88 0.93 0.94 0.97 0.90 1.00
UK 0.90 0.87 0.87 0.97 0.91 0.97 1.00
IND 0.93 0.84 0.79 0.90 0.88 0.87 0.87 1.00
JPN 0.85 0.89 0.82 0.87 0.87 0.89 0.85 0.86 1.00
KOR 0.91 0.92 0.87 0.94 0.89 0.90 0.88 0.90 0.87 1.00
LAM 0.88 0.78 0.67 0.88 0.89 0.80 0.86 0.87 0.84 0.84 1.00
MEX 0.90 0.81 0.71 0.87 0.86 0.81 0.85 0.89 0.85 0.89 0.94 1.00
NOR 0.79 0.75 0.71 0.87 0.88 0.85 0.90 0.79 0.79 0.77 0.87 0.79 1.00
NZL 0.95 0.85 0.82 0.94 0.93 0.91 0.93 0.92 0.89 0.91 0.91 0.90 0.87 1.00
SAU 0.84 0.83 0.83 0.90 0.87 0.85 0.88 0.82 0.78 0.88 0.82 0.82 0.85 0.86 1.00
SEA 0.77 0.69 0.57 0.74 0.77 0.71 0.73 0.81 0.86 0.75 0.88 0.83 0.76 0.85 0.66 1.00
SWE 0.91 0.92 0.90 0.96 0.90 0.98 0.95 0.90 0.89 0.92 0.83 0.84 0.83 0.94 0.83 0.74 1.00
TUR 0.66 0.80 0.89 0.77 0.69 0.86 0.79 0.62 0.64 0.68 0.49 0.48 0.61 0.67 0.67 0.40 0.82 1.00
USA 0.83 0.93 0.97 0.91 0.87 0.93 0.89 0.81 0.83 0.88 0.72 0.78 0.72 0.85 0.84 0.61 0.90 0.85 1.00
ZAF 0.90 0.85 0.83 0.94 0.91 0.92 0.92 0.90 0.86 0.90 0.86 0.84 0.86 0.94 0.85 0.79 0.95 0.72 0.82 1.00

Notes: Countries are identified by ISO codes. For the three areas, the following codes are used: EUR = Euro area, LAM = Latin American
area and SEA = South-East Asia.
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Table 1.5: Cross-country correlations of long-run uncertainty

AUS BRA CAN CHE CHN EUR UK IND JPN KOR LAM MEX NOR NZL SAU SEA SWE TUR USA ZAF
AUS 1.00
BRA 0.97 1.00
CAN 0.92 0.91 1.00
CHE 0.95 0.94 0.90 1.00
CHN 0.96 0.95 0.95 0.92 1.00
EUR 0.95 0.93 0.92 0.98 0.93 1.00
UK 0.94 0.93 0.88 0.98 0.90 0.98 1.00
IND 0.90 0.88 0.81 0.94 0.84 0.94 0.96 1.00
JPN 0.85 0.85 0.64 0.84 0.75 0.82 0.86 0.86 1.00
KOR 0.94 0.93 0.87 0.91 0.94 0.90 0.89 0.84 0.81 1.00
LAM 0.82 0.82 0.66 0.87 0.73 0.85 0.90 0.93 0.90 0.78 1.00
MEX 0.82 0.80 0.63 0.82 0.76 0.78 0.81 0.76 0.87 0.82 0.75 1.00
NOR 0.91 0.90 0.84 0.95 0.88 0.96 0.96 0.96 0.83 0.84 0.88 0.77 1.00
NZL 0.73 0.73 0.55 0.79 0.62 0.78 0.84 0.88 0.89 0.67 0.93 0.72 0.83 1.00
SAU 0.85 0.81 0.90 0.80 0.90 0.84 0.78 0.71 0.57 0.83 0.56 0.58 0.77 0.42 1.00
SEA 0.63 0.59 0.39 0.68 0.51 0.67 0.72 0.77 0.87 0.60 0.83 0.73 0.71 0.90 0.37 1.00
SWE 0.95 0.93 0.96 0.96 0.95 0.98 0.95 0.89 0.75 0.90 0.77 0.73 0.92 0.70 0.88 0.58 1.00
TUR 0.87 0.85 0.94 0.88 0.89 0.92 0.89 0.82 0.61 0.81 0.70 0.57 0.85 0.62 0.87 0.46 0.95 1.00
USA 0.93 0.92 0.99 0.92 0.96 0.94 0.91 0.84 0.68 0.88 0.70 0.67 0.87 0.60 0.89 0.44 0.97 0.94 1.00
ZAF 0.94 0.91 0.88 0.96 0.90 0.98 0.98 0.95 0.85 0.89 0.87 0.80 0.95 0.82 0.78 0.72 0.95 0.88 0.90 1.00

Notes: Countries are identified by ISO codes. For the three areas, the following codes are used: EUR = Euro area, LAM = Latin American
area and SEA = South-East Asia.

35



Chapter 2

Financial Cycles and GDP
Predictions in the United States

Abstract

This paper documents the predictive potential of financial-cycle indicators for real eco-
nomic activity by means of an extensive comparative evaluation conducted on a large
dataset for the United States. The analysis combines standard methods for assessing
in-sample and out-of-sample predictive performance with a variety of techniques for
data-rich environments. The results indicate that two housing and balance-sheet indica-
tors, namely a cyclically-adjusted house price-rent ratio and the liabilities-income ratio of
the non-corporate business sector, have been the most powerful predictors of U.S. GDP
over a range of horizons between 1 and 7 years during the last decades. Their predictive
ability appears comparatively robust to the choice of evaluation method and stable over
time. Overall, financial-cycle variables provide valuable predictive content, both when
considered individually and when pooled. Large data-intensive models and forecast com-
binations that use all available predictors generally fail to produce forecast gains over the
best single-predictor models. As an additional indication of the practical relevance of the
findings, the paper shows that small models based on the best financial-cycle indicators
beat the IMF forecasts over all horizons.

2.1 Introduction

Investigating financial cycles and macro-financial linkages is essential to understand business
cycles. Following the global financial crisis and the Great Recession, the interactions between
asset price dynamics, balance sheets and real economic activity have become increasingly
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important ingredients of macroeconomic analysis (see, e.g., Taylor and Uhlig [eds.] 2016;
Gertler and Gilchrist 2018; Mian and Sufi 2014b). In particular, house prices and credit have
received a great deal of attention and have been argued to provide “the most parsimonious
description of the financial cycle” (Borio 2012).

From an empirical perspective, recent research has delivered substantial results on the
predictive potential of financial-cycle variables for business cycles (e.g., Mian and Sufi 2014b;
Jordà, Schularick and Taylor 2014). However, comprehensive comparative evaluations of
alternative predictors are still needed to answer questions such as: are housing and credit-
cycle indicators generally more powerful predictors of real activity than other macroeconomic
and financial variables? How best to exploit information on financial cycles to predict output?
Do any specific indicators, among those related to credit, balance sheets and housing, stand
out as effective predictors? Since the wild movements in output of the last decades have been
largely blamed on financial excesses, there are reasons to assume that variables containing
information on both financial conditions and observed economic fundamentals, such as debt-
to-income ratios and asset price-to-earnings ratios, may convey superior predictive content
about future economic activity.

This paper offers a novel assessment of the predictive power of macroeconomic and finan-
cial indicators for U.S. real GDP in the last four decades, with a special focus on housing
and credit-cycle indicators. The evaluation is extensive both in terms of data and in terms
of methodologies. Regarding the data, the analysis is conducted on a dataset of 272 quar-
terly indicators, which contains the FRED-QD macroeconomic database developed at the
St. Louis Fed (McCracken and Ng 2015), but also includes additional variables. Concerning
the methodologies, the paper explores a variety of approaches for performance measurement,
variable selection and shrinkage, in order to exploit the possibilities offered by a data-rich
environment. The evaluation takes into account both in-sample and out-of-sample measures
of predictive importance over several horizons. In-sample performance is assessed through
measures that range from the regression R2 of single-predictor autoregressive distributed lag
(ARDL) models to statistical significance in post-LASSO regressions and best subset selec-
tion. Out-of-sample evaluation is conducted using both direct forecasts from ARDL models
and iterated forecasts from bivariate and multivariate VAR models, including data-intensive
variants such as LASSO VARs, Large Bayesian VARs and factor models using principal com-
ponents. Forecast combinations are also examined as an alternative way to pool information.

The main findings can be summarized as follows. First, the paper documents that the
log house price-to-rent ratio, computed over the aggregate stock of owner-occupied housing
and corrected for business-cycle fluctuations (Davis, Lehnert and Martin 2008; Contessi and
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Kerdnunvong 2015), has been the most powerful predictor of U.S. GDP over medium/long
horizons (i.e. longer than 3 years), the result being robust across the different evaluation
methods considered. The ratio also features among the top predictors for horizons of 1-3
years, while it appears relatively less valuable for 1-quarter-ahead forecasts. The unadjusted
log price-rent ratio also ranks among the best predictors, although it generally falls short of
its adjusted counterpart. Second, the aggregate balance sheet of the noncorporate business
sector also provides outstanding predictive information. Specifically, the ratio of nonfinancial
noncorporate business sector liabilities to disposable business income exhibits the highest out-
of-sample performance for horizons of 1-3 years and in general ranks among the most powerful
predictors based on both in-sample and out-of-sample criteria.1. The paper also shows that
other housing and credit indicators rank prominently overall, although their importance is
more sensitive to the choice of the evaluation criteria and more unstable over time. This is
the case for the credit-GDP ratio and residential fixed investment. Other variables that rank
highly based on several evaluation metrics include the OECD composite leading indicator, the
unfilled orders for durable goods and the ratio of household net worth to disposable income.
Large forecasting models, which pool information across time series at the estimation stage,
do not improve over the best single-predictor models. Also, standard forecast combinations
using equal weights or Bayesian model averaging do not generate gains in forecast accuracy.
At the same time, pooling financial-cycle variables provides better results than pooling all
available information, at least for multi-year horizons.

The main contribution of the paper is a set of stylized facts on macro-financial inter-
actions. Overall, the empirical analysis corroborates the importance of financial-cycle indi-
cators for predictions of business cycles and offers fresh evidence for research on financial
vulnerabilities and risk-taking. As far as the housing sector is concerned, on the one hand
the results confirm the leading role of house prices in capturing real-financial interactions,
on the other hand they indicate that using an appropriate valuation ratio, as opposed to
simple price movements, considerably improves forecast performance. In particular, asset
price-to-earnings ratios, which are commonly used to detect market overheating and to test
for bubbles (e.g. Phillips et al. 2015), seem particularly suitable for investigating the effects
of asset booms and the associated financial vulnerabilities on economic fluctuations. The
cyclically-adjusted price-to-rent ratio (CAPR) (see Contessi and Kerdnunvong 2015), which
stands out in the evaluation, is the housing-market counterpart of the popular cyclically-
adjusted price-to-earnings ratio (CAPE) proposed by Campbell and Shiller (1998) for the

1The result is all the more interesting given that the nonfinancial noncorporate business sector includes
the activities associated with tenant-occupied housing.
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equity market, using a simple methodology that consists in dividing an asset price index in
real terms by the ten-year moving average of real earnings on the index.

The remainder of the paper is structured as follows. Section 2.2 reviews the related lit-
erature. Section 2.3 introduces the dataset. Section 2.4 presents the in-sample evaluation.
Section 2.5 presents the (pseudo) out-of-sample evaluation. This includes results from bivari-
ate models (ARDL and VAR), small multivariate models as well as high-dimensional models
(Large Bayesian VAR, LASSO VAR and factor models) and forecast combinations. Section
2.6 concludes.

2.2 Related literature

Evaluating predictors of economic activity is one of the traditional tasks of empirical macroe-
conomics. In this field, a number of papers have dealt with broad-based evaluations using
large datasets of predictors. In particular, Stock and Watson (2003) assess forecasts of GDP
growth in several countries including the United States, with a special focus on the role of
asset prices. Marcellino, Stock and Watson (2003) and Banerjee, Marcellino and Masten
(2005) evaluate leading indicators for the Euro Area. Rossi and Sekhposyan (2014) analyze
density forecasts of U.S. output growth using the Stock and Watson (2003) updated dataset.

Based on their own evaluation and on previous literature, Stock and Watson (2003) con-
clude that the evidence on the predictive usefulness of asset prices (including interest rates)
for GDP growth is generally mixed. When taken together, asset prices have clear predictive
content and tend to perform better than non-financial variables. However, no single variable
stands out as a reliable predictor. In particular, they find strong empirical instability of
predictive relations and show that in-sample evaluations typically provide poor guidance for
forecasting. Interestingly, financial variables that should have substantial predictive content
based on economic theory, such as stock prices and log dividend yields, often perform poorly
in practice. Others, most notably the term spread of interest rates, have higher predictive
content only in some periods. Moreover, Stock and Watson (2003) find that simple combi-
nations of forecasts lead to improvements in forecast accuracy compared to benchmark AR
forecasts and forecasts from individual predictors.

More recently, Claessens and Kose (2017) have surveyed the literature on the interac-
tions between asset prices and the real economy. A general conclusion is that equity and
house prices have some predictive content for economic activity. Empirical studies provide
evidence that equity prices tend to affect investment in particular, while house prices have
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a larger impact on consumption. Standard channels through which asset prices affect eco-
nomic outcomes, according to the economic theory, include wealth and redistribution effects,
substitution effects, collateral and credit effects. Also, asset prices are forward-looking and
therefore tend to lead output growth. Among others, Bluedorn et al. (2016) find that they
help predict recessions in advanced economies (see also IMF 2000). However, research also
suggests that there are significant limits to the forecasting power of asset prices (Claessens
and Kose 2017).

In the wake of the crisis, the notion of financial cycles, as distinct from business cycles,
has been increasingly investigated. At a basic level, financial cycles can be defined as cy-
cles in credit, housing and equity markets, which are typically longer than business cycles
(Claessens, Kose and Terrones 2011; Drehmann, Borio and Tsatsaronis 2012; Borio 2012).
A richer definition has been proposed, for instance, by Borio (2012), who characterizes the
financial cycle as the “interactions between perceptions of value and risk, attitudes towards
risk and financing constraints, which translate into booms followed by busts”. The concept of
financial cycle conveys the idea that credit, asset prices and financial leverage are mutually
reinforcing, or at least tend to co-move.2 In this respect, while credit and housing are gen-
erally recognized as key components of the financial cycle, the role of equity prices is more
questionable. Drehmann et al. (2012) show that credit and property prices co-vary closely,
whereas equity price variability concentrates at relatively higher frequencies. Claessens, Kose
and Terrones (2011) also point out that cycles in credit and house prices appear to be the
most highly synchronized within countries, while credit and equity cycles exhibit the highest
synchronization across countries. Borio and Drehmann (2009) show that a leading indicator
based on equity prices alone failed to give early warnings of the recent banking system dis-
tress, and that incorporating information on property prices has proved effective in several
countries, including the United States. Interactions between credit and house prices can
be especially strong as a result of collateral constraints and the use of housing wealth as
collateral (Claessens, Kose and Terrones 2011, Borio 2012, Piazzesi and Schneider 2016).

Jordà, Schularick and Taylor (2013, 2014, 2016) provide stylized facts on the relationship
between long trends in credit and business cycles in advanced economies. They find that
the aftermath of lending booms is typically characterized by deeper recessions and slower
recoveries than normal, as a result of debt overhang and deleveraging (see also Reinhart and

2While the study of macro-financial linkages has gained new popularity in recent years, the idea that
interactions between credit, asset prices and leverage represent the key mechanisms at the root of financial
crises is a long-standing one in economics and was central in the work of authors such as Charles Kindleberger
and Hyman Minsky (Kindleberger 1978, Minsky 1982).

40



Rogoff 2009). Moreover, they show that the unprecedented increase of the credit-GDP ratio
in advanced economies starting in the mid-20th century was mainly driven by a boom in
mortgage credit, especially to households, and find that real estate credit has become a more
powerful predictor of financial turmoil during the same period. When the 2007-2008 financial
crisis broke out, real estate credit accounted for around two thirds of total bank credit in the
United States.

In a series of influential contributions, Mian and Sufi (2013, 2014a, 2014b, 2018) provide
extensive evidence on the prominent role of housing wealth and household debt in the recent
financial crisis, the Great Recession and the subsequent slow recovery. In particular, they
document that the deterioration in the housing net worth of households is a key explanatory
factor of the drop in U.S. employment during the 2007-2009 crisis.3 Leamer (2007, 2015)
argues that housing is the economic sector with the largest contribution to recessions in
the United States. Buiter (2010) investigates the effects of housing wealth on consumption
within a theoretical framework. He shows that in an overlapping generations model increases
in house prices that are justified by fundamentals boost consumption only if the birth rate
is positive, whereas in a representative agent model (with zero birth rate) there is a wealth
effect of housing on consumption if changes in house prices reflect speculative bubbles. A
recent survey on housing is provided by Piazzesi and Schneider (2016). As they point out,
“the first half of the 2000s saw not only the largest housing boom in postwar U.S. history,
but also new research that introduced an explicit role for housing in macroeconomics”.

Relatedly, the financial crisis and its aftermath have spurred a renewed interest in asset
price bubbles. Building on a literature from the 1980’s and 1990’s (e.g. Diba and Grossman
1988, Evans 1991), new bubble detection tests have been proposed, such as the test by Phillips
et al. (2015). Brunnermeier and Oehmke (2013) provide an overview of the literature on
bubbles, financial crises and systemic risk. Broadly in line with the theoretical framework
adopted by Kindleberger (1974) and Minsky (1982), they distinguish two phases of financial
crises. In the run-up phase, bubbles and imbalances gradually build up, setting the stage for
financial vulnerability. The second phase is the crisis phase, in which risks materialize and a

3One of the key questions Mian and Sufi address is why the housing market appears to have had much
more dramatic effects on economic activity than the stock market in recent decades. In fact, while the bursting
of the stock market bubble of the late 1990’s only resulted in a mild recession, the housing market crash of
2006-2007 was associated with the most severe recession after the Great Depression. According to Mian and
Sufi (2014a), the main reason “is that the marginal propensity to consume out of a housing-wealth shock is
much higher — housing wealth is a levered asset held by lower net-worth households. The rich are the primary
owners of tech stocks, and they respond much less to a decline in wealth. The larger MPC of indebted home
owners is crucial for understanding why the housing crash was so much worse than the tech crash.”

41



financial meltdown occurs. The interactions of asset prices, leverage and investment amplify
the effects of financial crashes on the real economy.4

Finally, this paper relates to the literature on valuation ratios, such as price-earnings,
price-dividend and price-rent ratios, and their predictive power for output. Campbell (1999)
provides theoretical justification for using the stock market log price-dividend ratio to forecast
output growth. Empirically, he finds that the variable shows no clear predictive ability.
Sommer, Sullivan and Verbrugge (2011) calculate that approximately half of the run-up in
the U.S. house price-rent ratio between 1995 and 2005 can be explained as the equilibrium
response of the housing market to changes in fundamentals, such as interest rates, the required
down payment and income. The cyclically-adjusted price-to-earnings ratio (CAPE) has been
introduced by Campbell and Shiller (1998) for the equity market (see also Shiller 2015) as a
way to smooth spikes due to expansions and recessions. Contessi and Kerdnunvong (2015)
use the cyclically-adjusted price-rent (CAPR) ratio to test for bubbles using the Phillips et
al. (2015) test.5 Like in this paper, they use data on the aggregate stock of owner-occupied
housing collected by Davis et al. (2008) (see the next section). While there has long been
an interest in valuation ratios as potential predictors of economic activity (Campbell 1999,
Stock and Watson 2003), this paper is the first to show the outstanding predictive power of
the CAPR in recent decades.

2.3 Variables and data

Most of the analysis in the paper is conducted using a large quarterly dataset (272 variables)
that combines the FRED-QD dataset6 (Tables 2.35 to 2.48) with the variables contained in
Table 2.1, which I will refer to as the “reduced dataset”. To stress the macroeconomic rele-
vance of the analysis (and to circumvent some pitfalls that result from high dimensionality),
additional results are presented using the reduced dataset only, which contains a selection of
particularly popular macroeconomic variables along with a number of meaningful financial-
cycle indicators. Importantly, some of these financial-cycle indicators are not present in

4The literature on financial imbalances, bubbles and crises is too broad to be covered exhaustively here.
Two popular books that are related to the topics of this paper are Reinhart and Rogoff (2009) and Shiller
(2015).

5They find three bubbly periods between 1960Q1 and 2014Q1: 1965Q3-1968Q4, 1977Q4-1978Q1 and
2000Q2-2006Q1.

6Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/. This paper uses the 2018-
06 vintage.
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FRED-QD.7 Throughout the analysis, lowercase labels identify variables from the reduced
dataset and uppercase labels identify variables from FRED-QD.

The analysis is conducted using data over the period 1960Q1-2017Q4. The dataset is
unbalanced: Table 2.2 summarizes the structure of the full dataset by reporting the number
of available and unavailable series (after transformation) at several key dates in which data
availability increases. In particular, 85% of the transformed series are available in 1960Q2,
approximately 90% are available in 1967Q1 and approximately 95% are available in 1974Q1.8

The FRED-QD dataset is made up of 248 variables, which cover in detail a wide spectrum
of macro areas. McCracken and Ng (2015) classify the variables into 14 groups: National
Income and Product Accounts (NIPA); Industrial Production; Employment and Unemploy-
ment; Housing; Inventories, Orders, and Sales; Prices; Earnings and Productivity; Interest
Rates; Money and Credit; Household Balance Sheets; Exchange Rates; Stock Markets; Non-
Household Balance Sheets; Other.

At a different level of detail, the reduced dataset is meant to combine a broad picture of
the macroeconomy with a special focus on the financial cycle. Key macro variables include
CPI inflation, interest and exchange rates, money growth, unemployment, oil price inflation,
the OECD composite leading indicator and business confidence index, and fiscal policy as
captured by public debt growth in real terms and the public debt/GDP ratio. Financial-cycle
variables include: total credit to the non-financial sector, the credit-GDP ratio, households’
mortgage debt and mortgage-income ratio, house prices and price-rent ratios, residential fixed
investment, housing starts, stock market prices and the cyclically-adjusted price-earnings
ratio, and households’ interest payments as a fraction of disposable income. The dataset also
includes the comprehensive National Financial Conditions Index (NFCI) by the Chicago Fed
to capture a variety of other financial factors. In more detail, the cyclically-adjusted house
price-rent ratio (CAPR) is constructed by dividing house prices in real terms by the 10-year

7The data transformations suggested by McCracken and Ng (2015) are applied to the FRED-QD raw
data, the only adaptation being the use of year-on-year changes/growth rates instead of quarter-on-quarter
changes/growth rates. While several variables in Table 2.1 are also included in FRED-QD, the reduced dataset
generally adopts different transformations compared to FRED-QD, so that in practice the only duplicate is the
BAA corporate spread. When the analysis is conducted on the full dataset, both types of transformations are
included and, overall, the transformations in the reduced dataset achieve better results in terms of predictive
power.

8All time series in FRED-QD end in 2017Q4. In the reduced dataset, all time series end in 2017Q3 or
2017Q4 except those for the CAPR and the simple price-rent ratio, which end in 2016Q1 (based on original
data available at http://www.lincolninst.edu/resources/) and have not been extrapolated forward.
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average real rents:

CAPRt =
HPIt

1
40

∑40
i=1Rt−1

where HPIt denotes the house price index in real terms at time t (in quarters) and Rt is the
imputed real rent at time t.9 Both prices and rents are computed using data on the aggregate
stock of owner-occupied houses.10

Although the focus of the paper is on empirical predictive ability, the inclusion of price-
to-rent and price-to-earnings ratios in (log) levels also relates to theoretical considerations
that are critical for investigating booms and busts in asset prices. In particular, based on
standard asset pricing models such as the dividend discount model, in the absence of bubbles
an asset price should exhibit the same order of integration as the dividends or earnings
paid by the asset. Such logic provides the foundations for several bubble detection tests
proposed in the literature, such as the Diba and Grossman (1988) test. However, as shown
by Evans (1991), the stationarity of a price-to-earnings ratio, as determined by unit root
and cointegration tests, can be equally consistent with periodically collapsing bubbles, a
point that has been recently developed by Phillips et al. (2015) to propose a new test.11

Irrespective of considerations on bubbles, the levels of price-to-earnings ratios are generally
monitored by investors and researchers to make judgments on asset market valuations (e.g.,
Shiller 2015) and appear to be more suitable metrics then the price levels or price growth
rates to evaluate asset market expensiveness and to investigate its effects on the economy.

Figures 2.1 and 2.2 plot the two variables that will stand out as the top performers
throughout the analysis: the log CAPR ratio and the nonfinancial noncorporate business
sector liabilities-to-income ratio (NNBLI).

9To construct the CAPR from 1960Q1, the time series of rents is extrapolated backward to 1950Q1 using
the quarterly growth rate of the rent of primary residence, as released by the U.S. Bureau of Labor Statistics
and provided by the FRED website (https://fred.stlouisfed.org/).

10See Davis et al. (2008) for methodological details. The raw data on house prices and rents
are provided by the Lincoln Institute for Land Policy at http://www.lincolninst.edu/resources/. The
homeownership rate in the United States in the period 1965-2017 ranged between 63% and 69% (see
https://www.census.gov/housing/hvs/index.html).

11The augmented Dickey-Fuller test for unit roots indicates that the CAPR ratio is (trend) stationary over
the period 1960Q1-2016Q1. At the same time, as mentioned earlier, the test by Phillips et al. (2015) signals
multiple bubbly periods.
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2.4 In-sample evaluation

The in-sample evaluation of predictive power is conducted using autoregressive distributed
lag (ARDL) models for multi-period-ahead cumulative GDP growth, estimated over the
timespan 1974Q1-2017Q4 for the full dataset and 1971Q1-2017Q4 for the reduced dataset.
The starting date for the full dataset is chosen so as to ensure that approximately 95% of the
time series do not have missing data in the sample (see Table 2.2). These series are included
in the analysis, while shorter series are excluded here but will be used in the out-of-sample
evaluation of section 2.5. In the reduced dataset, 1971Q1 is chosen because it is the starting
period of the shortest series (nfci).

From a forecast-oriented perspective, the in-sample evaluation can be seen as a prelim-
inary analysis that gives a sense of which variables better capture the variability in GDP
growth and are potentially more useful for out-of-sample predictions. In addition, consistent
results across the in-sample and the out-of-sample analyses would provide a basic indication
of the robustness and stability of the predictive relationships.

Let h denote the prediction horizon. Throughout the analysis, five values of h are con-
sidered: 1, 4, 12, 20 and 28 quarters.12

2.4.1 Autoregressive distributed lag (ARDL) models with one predictor
at a time

The first in-sample approach consists in predicting the GDP level h steps ahead using a
bivariate model that includes one predictor at a time plus lags of GDP growth. The economic
significance of alternative indicators as predictors is then evaluated using the R2 of the
regressions. Let us therefore consider ARDL regressions of the following type:

yht = β0 + β1(L)yt−h + β2,i(L)xi,t−h + ut (2.1)

where yht is the log approximation of the cumulative GDP growth rate over a period of length
h, i.e. yht = ln(GDPt) − ln(GDPt−h), yt is the log approximation of the year-on-year GDP

12For h ≥ 12 the number of observations used for estimation is the same for all predictors in the dataset.
For h = 4, the estimation sample ends in 2017Q4 for all variables except capr and pr, for which the sample
ends in 2017Q1 (as data are available until 2016Q1. See note 8). Finally, for h = 1 the regressions using capr

and pr have 5 missing observations and those using cred_gdp and cred have 1 missing observation at the end
of the sample.
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growth rate at time t, i.e. yt = ln(GDPt)− ln(GDPt−4), xi,t is the i-th candidate predictor,
ut is the error term, β0 is a constant, β1(L) and β2,i(L) are lag polynomials, such that
β1(L)yt−h =

∑p
j=1 β1,jyt−h+1−j and β2,i(L)xi,t−h =

∑q
j=1 β2,i,jxi,t−h+1−j . To ensure perfect

comparability, the lag length is fixed across models. In particular, both p and q are set to 5,
which appears adequate to account for serial correlation given the quarterly frequency of the
data.

Table 2.3 reports the regression R2 of the models. Variables are listed in descending order
of R2 and only the best 30 predictors are shown for each horizon, out of the 272 predictors
in the full dataset. The adjusted log price-rent ratio (label: capr) dominates over longer
horizons. It is the best predictor for h = 12, 20, 28 and the second best for h = 4. The OECD
composite leading indicator (cli) is a particularly strong predictor over short horizons. It
ranks first for h = 1, 4, then it gradually falls down the ranking as the horizon increases
(it is 5th for h = 12, 9th for h = 20 and 37th for h = 28). Most of the top positions are
occupied by financial-cycle indicators. Private residential fixed investment, both as a share
of GDP and in growth rates (labels: prfi_gdp and PRFIx or prfi respectively), performs well
over short horizons, while the mortgage/income ratio (mortg_inc) and the credit/GDP ratio
(cred_gdp) are effective predictors over longer horizons. The noncorporate liabilities-income
ratio or NNBLI (FRED-QD label: NNBTILQ027SBDIx) also ranks highly for h ≥ 4.

The usefulness of the log CAPR appears even more remarkable if the lag orders p and q are
selected by the Bayes information criterion (BIC) (estimating p first and then q conditional
on p, given the maximum lag length of 5). In this case, it is the best predictor for all horizons
except h = 1.

The comparatively good performance of financial-cycle ratios such as capr, mortg_inc

and cred_gdp over long horizons does not appear to be determined by the omission of a
time trend in GDP growth. When the latter is included in the models, capr is still the
best predictor for h = 12 and the third best predictor for h = 20, 28, while cred_gdp and
mortg_inc rank first and second, respectively, for h = 20, 28.

2.4.2 Post-LASSO regressions

While in section 2.4.1 predictors are considered one at a time, the second approach presented
here selects predictors after pooling all available data. In this context, where the number of
predictors exceeds the number of observations, the LASSO regression is a viable method to
deal with such a task. After a LASSO-based variable-selection step, the statistical signifi-
cance of the shortlisted predictors can be tested using OLS regressions to provide a measure
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of predictive power. When interpreting the results, it should be kept in mind that, since
predictors outnumber observations and therefore regressors are perfectly collinear, it is in
general not possible to pin down which variables are truly explanatory of GDP, and the
LASSO can only select one subset of predictors that performs particularly well. Still, the
two-step procedure can offer valuable evidence on which types of variables prove useful for
predictions in a multivariate setting. Consider the following large ARDL regression:

yht = β0 + γ0t+

p∑
j=1

(
β1,jyt−h+1−j + β̄′

2,j x̄t−h+1−j

)
+ ut (2.2)

where x̄t is the vector containing all available predictors, i.e. x̄t = (x1,t, . . . , xi,t, . . . , xn,t)
′, n

is the total number of predictors and β̄2,j = (β2,i,j , . . . , β2,n,j)
′. A deterministic trend with

coefficient γ0 is also taken into consideration. p is the maximum number of lags.
In the LASSO regression, a penalty on the ℓ1 norm of the parameter vector shrinks

some coefficients estimates to zero. To estimate model (2.2), the LASSO solves the following
minimization problem:

min
β

∥ȳh − ιβ0 − X̄β∥22+λ∥β∥1

where ȳh =
(
yh1 , . . . , y

h
T

)′, X̄ = (X̄1, . . . , X̄T )
′, X̄t = (yt−h, . . . , yt−h+1−p, x̄

′
t−h, . . . , x̄

′
t−h+1−p, t)

′,
ι is a T×1 vector of ones, T is the length of the sample, β = (β′

1, β
′
2, γ0)

′, β1 = (β1,1, . . . , β1,p)
′

β2 = (β̄′
2,1, . . . , β̄

′
2,p)

′ and λ denotes the penalty parameter. The absence of β0 from the
penalty term implies that the constant is included with certainty in the shrunk model. The
selected predictors are those that minimize the mean square error (MSE) given the shrinkage
determined by λ. The penalty parameter is tuned using a 10-fold cross-validation procedure.
Two values of λ are selected to report the results: the value that minimizes the cross-validated
MSE and the largest value at which the MSE lies within one standard deviation of the min-
imal MSE. As the partition of the sample into folds is random 13, the procedure is repeated
1000 times and the estimated λ’s are averaged across iterations.

Once the LASSO has been used to perform variable selection, the significance of the
selected regressors is tested by running a post-LASSO step, which estimates the shrunk model
by OLS using heteroskedasticity- and autocorrelation-consistent (HAC) standard errors. To

13For the procedure to be applicable to time series data, the sample is partitioned by selecting rows of the
matrix (ȳh, X̄), which ensures that the lag ordering is maintained.
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facilitate the analysis, Tables 2.4 to 2.7 report the outcome of the post-LASSO step for the
case p = 1. For each horizon, the tables present the shortlist of predictors selected by the
LASSO, with an indication of the significance of the respective coefficients. Variables from
the reduced dataset are included first in the tables. Variables in Tables 2.4 and 2.5 are
selected using the value of λ that minimizes the cross-validated MSE, whereas in Tables 2.6
and 2.7 the one-standard-error rule applies, which results in more parsimonious models (note
however that the BIC favors the models obtained using the MSE-minimizing λ).

As can be seen in Tables 2.4 and 2.5, in the case of minimum cross-validated MSE, six
variables are significant at the 5% level for at least three horizons out of five considered.
The log CAPR (capr) and the NNBLI ratio (NNBTILQ027SBDIx) are significant for every
h ≥ 12. The term spread of interest rates (GS10TB3Mx) is significant for horizons up to
12 quarters. The other variables are real M1 money creation (M1REALx), the change in
private inventories as a share of GDP (A014RE1Q156NBEA) and an employment indicator
(USMINE). When the one-standard-error rule is considered, the CAPR ratio is still highly
significant at h = 12 and h = 20. Three out of the six variables mentioned above are still
significant at the 5% level for at least three horizons (NNBLI, the inventories/GDP ratio and
the employment indicator). In particular, the NNBLI ratio is now significant at h = 1, h = 4

and h = 28. In addition, an index of job seeking (HWIx) is significant at the 5% level for
h = 4, h = 12 and h = 20. Another money variable (MZMREALx) is significant for h ≥ 12.
The term spread of interest rates is still significant for h = 4, 12 and real M1 for h = 12, 28.

For both cross-validation methods, the set of indicators that are significant for at least
two horizons includes credit or balance-sheet variables, labor market indicators, the OECD
composite leading indicator and price indices.

2.4.3 Best subset selection for different model sizes

In the previous sections, the analysis was carried out using either one-predictor models or
large models. This section proposes an additional step of in-sample evaluation by investi-
gating which predictors are the most useful for a range of different model sizes. This is
implemented on the reduced dataset (Table 2.1), for reasons of economic relevance - given
the popularity of macro variables contained therein - as well as for econometric reasons (as
recalled in section 2.4.2, special caution is required in the interpretation of results when
predictors outnumber observations) and for computational convenience.
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Let us consider the following multivariate ARDL model:

yht = β0 + γ0t+

5∑
j=1

ϕ′
j z̄t−h+1−j + ut (2.3)

where z̄t is the vector of variables other than GDP that are included in Table 2.1, while ϕj

is a vector of coefficients. Five lags are included for all variables. Given model (2.3), best
subset selection consists in finding, for k = 1, 2, . . . ,K, the k-sized subset of predictors that
minimizes the in-sample MSE of the model, i.e.

min
ϕ

∥ȳh − ιβ0 − Zϕ′∥22 subject to ∥ϕ∥0 ≤ k

where ȳh =
(
yh1 , . . . , y

h
T

)′, Z̄ = (Z̄1, . . . , Z̄T )
′, Z̄t = (z̄′t−h, z̄

′
t−h−1, . . . , z̄

′
t−h−4, t)

′, ϕ =

(ϕ1, . . . , ϕ5, γ0)
′. As before, the constant is always included.

Equation (2.3) has to be estimated using all possible combinations of k regressors, with
k = 1, 2, . . . ,K, where “regressor” here means any lagged term for one of the 26 predictors in
Table 2.1. While exact computations are likely to become infeasible even for moderate values
of K, as they require exploring a number of models equal to

∑K
k=1

(
k
K

)
, recently developed

algorithms use mixed integer optimization to deliver accurate yet fast approximations.14 As
the in-sample MSE invariably decreases when additional regressors are included, the BIC is
used to detect the best k.

In this setup, two criteria are used to evaluate the usefulness of variables as predictors:
the order of appearance (i.e. the smallest model size at which a given predictor is selected)
and the inclusion in the best model as selected by BIC.15

Tables 2.8 to 2.12 display the results given K = 30. For each model size k, a colored
cell indicates that the variable in row is included in the (approximate) MSE-minimizing
specification, whereas empty cells indicate exclusion from the model. In each table, variables
are listed in order of appearance. As in section 2.4.1, capr is the single most powerful
predictor for every h ≥ 12. Conversely, it is not included in the most parsimonious models
for h = 1 and h = 4, although in both cases it enters the specification selected by the BIC.

14The results in this section are obtained using the R package developed by Hastie et al. (2016) on a 2-core
CPU with 2.4 GHz speed, setting a time limit of 1200 seconds for each k.

15Note that the results are exact only for small values of k (in general, the algorithm converges to a solution
for k < 5), while they are approximations of the true MSE-minimizing models for larger values.
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The OECD composite leading indicator (cli) is the second variable in order of appearance for
h = 1, 4, 12, 20. The growth rate of private residential fixed investment (prfi) is particularly
useful for horizons up to 3 years, while the credit/GDP ratio (cred_gdp) features in the upper
part of the table for all horizons (although it is not included in the BIC-selected model for
h = 1). The financial condition index (nfci) is especially useful in parsimonious specifications
for short horizons, while the 10-year Treasury rate (gs10) is second in order of appearance
for h = 28 and fourth for h = 20.

2.5 Out-of-sample evaluation

The second part of the analysis deals with evaluating the forecasting power of the predictors
out of the estimation sample. To this aim, direct and iterated forecasts are tracked over time
using a recursive-window scheme.16 Direct forecasts are made using multi-period ARDL
models, while iterated forecasts are produced by bivariate and multivariate VAR models as
well as by three data-intensive variants: LASSO VARs, Large Bayesian VARs and factor
models using principal components. The forecast horizons are the same as in the in-sample
evaluation, i.e. 1, 4, 12, 20 and 28 quarters. As a result of the recursive-window scheme,
time series of forecasts for different horizons are constructed for each one of the competing
models and are used for comparisons. In particular, predictors are evaluated using the
mean square forecast errors (MSFE) computed over the period 1990Q1-2017Q4. Given the
maximum forecast horizon of 28 quarters, this implies setting the ending point of the shortest
estimation window in 1983Q1, which is accommodated by moving the starting point at an
earlier date than in the previous sections, namely 1968Q2. As the maximum number of lags
is set to 5, this specific start date is chosen to ensure that all the VAR and the one-step
ARDL models are estimated using data as far back as 1967Q1, which is the first quarter
in which data are available (after transformation) for at least 90% of the time series in the
dataset. Concerning the multi-step ARDL models, the range of data used for estimation will
depend on the relevant horizon, the longest range starting in 1960Q1 (28 quarters of horizon
plus 5 lags before 1968Q2). In 1960Q1, 66.7% of the transformed variables have data and

16Rolling windows of various fixed lengths (40, 60 and 80 quarters) have also been considered. However,
the lowest mean square forecast errors are generally achieved in the recursive-window case, which is therefore
reported in the paper.
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in 1960Q2 the percentage jumps to 85.0% (see Table 2.2).17 Multivariate VAR models in
section 2.5.2.2 are estimated using the reduced dataset of Table 2.1. In 1967Q1, all variables
in the reduced dataset have data except nfci, which starts in 1971Q1.

Competing models are initially estimated on the shortest sample 1968Q2-1983Q1 and used
to make forecasts for the interval 1983Q2-1990Q1. Then the sample is recursively expanded
by one quarter at a time and the estimation and forecasting steps are repeated in each
iteration. The procedure ends upon reaching the sample 1968Q2-2016Q1, while subsequent
quarters are used for forecast evaluation only.18

2.5.1 Direct forecasts: ARDL models

The first out-of-sample evaluation procedure is based on direct forecasts produced by bivariate
ARDL models as in (2.1), in which the lag lenghts p and q are selected recursively using the
BIC. Let ŷhi,t+h|t denote the direct out-of-sample forecasts of yht+h made by the model with
the i-th predictor, estimated on data up to time t:

ŷhi,t+h|t = β̂
(t)
0 + β̂

(t)
1 (L)yt + β̂

(t)
2,i(L)xi,t (2.4)

and let ûi,t+h|t = yht+h− ŷhi,t+h|t denote the forecast error incurred by the model at time t+h.
The i-th predictor is ranked based on the following MSFE:

17Given the unbalanced nature of the dataset, the actual starting date of the sample will adjust to the
availability of the time series used for estimation. In sections 2.5.1 and 2.5.2.1, which consider one predictor
at a time, all predictors are used regardless of the length of the respective time series. Therefore, when
interpreting the results it should be kept in mind that a fraction of the predictors have fewer observations
available for estimation than others. To ensure that the MSFE is computed over the same timespan for all
predictors, only variables that have sufficient data to produce forecasts for 1990Q1 should be considered.
However, even if the variables with an insufficient number of observations are included in the evaluation, none
of them ranks among the best performing predictors, as reported in sections 2.5.1 and 2.5.2.1. The large
pooling models presented in sections 2.5.3.1 to 2.5.3.3 exclude from estimation those variables (21 in total)
whose time series start after 1967Q1 (as they would lead to discard observations for all other regressors), while
the 14 predictors with the shortest time series (which do not have enough data to make direct forecasts for
as early as 1990Q1, at least over the longest horizon) are excluded from the forecast combinations.

18Accordingly, the MSFE for the 1-quarter horizon is computed using actual GDP data up to 2016Q2 and
the MSFE for the 4-quarter horizon is computed using data up to 2017Q1. For the 12-, 20- and 28-quarter
horizons, actual observations are used up to 2017Q4.
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MSFEi,h =
1

T1 − h− T0 + 1

T1−h∑
t=T0

(
ûi,t+h|t

)2
where T0 is the end date of the shortest sample and T1 − h is the end date of the longest
sample.

Table 2.13 reports the MSFE of the ARDL models relative to the benchmark AR, i.e.
model (2.1) without the terms associated with xi and with the lag length p selected recursively
by the BIC. Table 2.15 shows the root mean square forecast error (RMSFE) of the benchmark
AR. The log CAPR ratio is by far the best predictor over long horizons (h > 12) and the
second best predictor for both h = 4 and h = 12. The NNBLI ratio is the most effective
predictor for h ≤ 12 and among the three best predictors for horizons longer than 3 years.
Stock market valuation ratios, namely the S&P 500 dividend yield and the log CAPE ratio,
are particularly useful for 1-quarter-ahead forecasts. For the shortest horizon, forecast gains
over the benchmark are limited: when h = 1, the smallest relative MSFE is 0.89 (RMSFE
of 0.54%). Conversely, for longer horizons, the log CAPR ratio and the NNBLI ratio achieve
MSFE values as low as 0.27 (log CAPR for h = 28), 0.29 (log CAPR for h = 20) and 0.32
(NNBLI for h = 12). For h = 4, NNBLI has a relative MSFE of 0.53. Such results are all
the more remarkable if one considers that only two variables have MSFE values lower than
0.8 for h = 4, only 4 variables for h = 12, 20 and only 3 variables for h = 28. The absolute
RMSFE also helps appreciate the forecast performance of CAPR and NNBLI. In terms of
28-quarter cumulative GDP growth, the RMSFE of CAPR is 4.15%, corresponding to an
average annual error of 0.59 percentage points of GDP growth for 7 years. For h = 20, the
RMSFE of CAPR is 3.32%, implying an average annual error of 0.66%. For h = 12, the
RMSFE of NNBLI is 2.50%, corresponding to an average annual error of 0.83%.

Other top performers include the new orders for durable goods (AMDMNOx) (for h

between 1 and 12), the OECD composite leading indicator (cli) (for h = 4, 12, 20) and the
unadjusted price-rent ratio (pr) (for h = 4, 20, 28).

.

2.5.2 Iterated forecasts: VAR models

The second out-of-sample approach consists in using VAR models to compute multi-step-
ahead iterated forecasts of GDP. As before, the resulting MSFE is used to build rankings of
predictors.

52



2.5.2.1 Bivariate VAR

First, evaluation of the predictors is conducted using VAR models that include only real
GDP growth and one predictor at a time. The i-th VAR can be written as:

ỹ
(i)
t = a

(i)
0 + a

(i)
1 t+

p∑
j=1

B
(i)
j ỹ

(i)
t−j + ε

(i)
t (2.5)

where ỹ
(i)
t is the vector containing the year-on-year growth rate of real GDP and the i-th

predictor at time t, a(i)0 is a 2×1 vector of constants, a(i)1 is a 2×1 vector of trend coefficients,
B

(i)
j is a 2 × 2 matrix of coefficients, ∀j = 1, . . . , p, and ε

(i)
t is a 2 × 1 vector of error terms.

The lag length p is recursively selected by the BIC for the whole system and the maximum
length is again fixed at 5.

Predictors are ranked based on the performance of the VARs in terms of forecasts of the
h-period-ahead GDP level:

MSFE
(i,h)
GDP =

1

T1 − h− T0 + 1

T1−h∑
t=T0

(
ln(GDPt+h)− ln(ĜDP

(i)

t+h|t)

)2

where ln(ĜDP
(i)

t+h|t) is the forecast of the log GDP level for period t+h obtained from model
i by cumulating the growth rate forecasts over time.19

Table 2.14 reports the MSFE of the best 30 VAR models for each horizon, relative to the
benchmark AR.20 Table 2.16 shows the RMSFE of the AR. The top positions remain largely
unchanged with respect to Table 2.13. Once again, the log CAPR is the best predictor
for h = 20, 28 and ranks second for h = 4, 12. The NNBLI ratio is still the most useful
predictor for h = 4, 12, whereas its relative predictive ability is weaker for h = 1 compared

19Let r denote the remainder of the division of h by 4 and ŷ
(i)

t+s|t the forecast of GDP growth produced by
model i for period t+ s, then:

ln(ĜDP
(i)

t+h|t) =


ln(GDPt) +

1+h/4∑
τ=1

ŷ
(i)
t+τ ·4|t if h is a multiple of 4

ln(GDPt−4+r) +
1+(h−r)/4∑

τ=1
ŷ
(i)
t−4+r+τ ·4|t if h is not a multiple of 4

20In this case the benchmark AR follows specification (2.5).
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to Table 2.13. Regarding 1-quarter-ahead forecasts, the credit/GDP ratio now exhibits the
best performance, while the S&P dividend yield is still the second best variable.

Just as in Table 2.13, the forecast gains provided by CAPR and NNBLI over the bench-
mark AR are substantial for every h ≥ 4. In particular, for h = 12 the relative MSFE of
NNBLI is 0.37, corresponding to an absolute RMSFE of 2.58% (an annual average of 0.86
percentage points of GDP growth). For h = 20, the log CAPR gives a relative MSFE of
0.44 and an absolute RMSFE of 4.13% (annual average: 0.83%), while for h = 28 it gives
a relative MSFE of 0.50 and a RMSFE of 6.19% (0.88%). For h = 4, the relative MSFE of
NNBLI is 0.54, corresponding to an absolute RMSFE of 1.3%. Only 11 bivariate VARs beat
the AR for h = 1. Once again, the lowest relative MSFE is much higher in this case: 0.91
(RMSFE of 0.64%).

2.5.2.2 Multivariate VAR

This section deals with the evaluation of the relative importance of predictors in the context
of VAR models that include more than one predictor at the same time. As already mentioned,
the analysis focuses on the reduced dataset. Specifically, a collection of multivariate VAR
models are estimated by taking as endogenous variables the real GDP growth rate plus
all possible combinations of k predictors from the set of 26 predictors in Table 2.1, with
k = 1, . . . , 4. Accordingly, up to 5 endogenous variables are included in the VARs and the
total number of estimated models is 17,901. Given the generic combination m of predictors,
the resulting VAR model is:

ỹ
(m)
t = a

(m)
0 + a

(m)
1 t+

p∑
j=1

B
(m)
j ỹ

(m)
t−j + ε

(m)
t (2.6)

where ỹ
(m)
t = S(m)ỹt and S(m) is a

(
1 + k(m)

)
× (1 + n) selection matrix that extracts GDP

and k(m) additional variables from ỹt, which is the vector containing all variables in the
dataset. a

(m)
0 is the

(
1 + k(m)

)
× 1 vector of constants, a(m)

1 is the
(
1 + k(m)

)
× 1 vector of

trend coefficients, B(m)
j is a

(
1 + k(m)

)
×
(
1 + k(m)

)
matrix of coefficients. The lag selection

method is the same as before.
The direct outcome of the analysis is a ranking of different subsets of predictors for

each forecast horizon, based on the MSFE. Then, to measure the relative importance of
single predictors, variables are ranked based on the frequency of inclusion in the list of best
performing models. Such rankings are built using the top 5%, top 1%, top 100 and top 10
models, in addition to the single best model. As in the previous section, the relevant MSFE
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is the MSFE for the GDP level.
Table 2.17 indicates the single best-performing VAR for each target horizon. The table

shows the composition of each model and the relative MSFE over all horizons. All models
outperform the best bivariate VARs from Table 2.14 over their respective target horizons,
except for the model with target horizon 4 (which is only beaten by NNBLI). What is more,
the models tend to improve over bivariate VARs even for horizons that are not their direct
target.

Tellingly, all models except the best one for h = 1 include the house price-rent ratio,
either in the form of capr or pr. On top of that, other housing indicators are present in all
five models: the best models for h = 1 and h = 28 include residential investment, models
for h = 12 and h = 20 include housing starts and the model for h = 4 includes the house
price growth rate. In keeping with Tables 2.5 and 2.7, money growth appears useful when
included in multivariate models for longer horizons. In particular, m2 is included in the best
models for h = 20 and h = 28. Once again the stock market is especially valuable for shorter
horizons, while the OECD composite leading indicator is included in the best models for
h = 1, h = 12 and h = 20.

Figures 2.3 to 2.7 report the predictors’ frequencies of inclusion in the best-performing
VARs for each horizon. In each figure, the left panel shows the frequencies computed over
the top 5%, top 1%, top 100 and top 10 models, as well as the composition of the single best
model. The right panel displays the histogram based on the top 1% models. The log CAPR
is the variable with the highest frequency in the top 1% for h = 20, 28 and the second highest
frequency for h = 12. The OECD composite leading indicator has the highest frequency for
h = 12 and the second highest frequency for h = 1 and for h = 20. As in Table 2.3 for
in-sample evaluation, residential fixed investment ranks high for short horizons, but is also
the second most included variable for h = 28. The S&P 500 index growth in real terms is
quite useful over short horizons, as it has the third highest frequency in the top 1% models
for both h = 1 and h = 4, but it also ranks high for h = 28.

2.5.3 Pooled-information methods

The approaches presented in the previous sections make comparisons between single variables
or small subsets of variables to find the best predictors. How useful is it to focus on the most
powerful predictors only? This section explores methods that pool all available information,
or a large portion of it, and investigates whether they can achieve forecast gains over methods
that focus on a few predictors at a time. Two types of information pooling are considered:
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pooling at the estimation stage and pooling at the forecasting stage. In the first case, several
data-intensive models are estimated using shrinkage or factor extraction: Large Bayesian
VAR (LBVAR) (Bańbura et al. 2011), LASSO VAR and post-LASSO VAR models, factor
models using principal components of the predictors. Each method allows to exploit all
predictors simultaneously. In the second case, the forecasts produced by different predictors
are combined using standard weighting schemes.

The different pooling models are intended to reflect three different approaches to the
problem of high dimensionality. The LBVAR approach retains all available predictors in the
forecasting model, as it applies a shrinkage method that does not restrict any coefficient to be
exactly zero. The LASSO VAR (and its post-LASSO extension) performs variable selection
by setting a subset of coefficients exactly to zero. Finally, the principal component approach
reduces the dimension of the model by summarizing the dataset of predictors into a small
number of factors.

In addition to pooling all available predictors, each method is also implemented using
large specific subsets of predictors. In particular, the methods are applied to the pool of
variables representing financial-cycle indicators and to the subsets of 50 predictors that are
in the upper part of the rankings in section 2.5.2.2.21 Moreover, the LBVAR, the LASSO
VAR and the post-LASSO VAR are also estimated on the reduced dataset.

2.5.3.1 Large Bayesian VAR (LBVAR)

The LBVAR model has been shown by Bańbura et al. (2011) to be a valid alternative to
factor-based approaches for forecasting (see also Karlsson 2013).

Let us consider a VAR model as in equation (2.6), but specified for the entire vector ỹt.22

Let us also express the VAR as a simultaneous equations system:

Y = XB + E (2.7)

21Financial-cycle indicators are identified as follows: (i) variables in the FRED-QD dataset that are are clas-
sified into one of the following groups: Housing (Table 2.38), Money and Credit (excluding the 5 money stock
variables) (Table 2.43), Household Balance Sheets (Table 2.44), Stock Market (Table 2.47), Non-Household
Balance Sheets (Table 2.48); (ii) additional variables in FRED-QD: residential investment and residential
utilities, mortgage interest rates and rents; (iii) in the reduced dataset, variables from sp500 to the bottom
in Table 2.1.

22Actually, 251 out of 272 variables are used, due to data availability reasons explained before (see note
17).
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where Y = (ỹ1, . . . , ỹT )
′ is the T ×N stacked vector of endogenous variables and N = n+1 is

the total number of variables in the full dataset. X = (x̃1, . . . , x̃T )
′ is a T × (Np+2) matrix

where x̃t =
(
ỹ′t−1, . . . , ỹ

′
t−p, 1, t

)′, B = (B1, B2, . . . , Bp, a0, a1)
′ is the (Np + 2) × N matrix

of coefficients and E = (ε1, . . . , εT )
′ is the T × N stacked vector of error terms. Following

Bańbura et al. (2011), the normal inverted Wishart prior is considered:

vec(B)|Ψ ∼ N(vec(B0),Ψ⊗ Ω0)

Ψ ∼ IW (S0, α0)

where Ψ denotes the covariance matrix of the errors and the hyperparameters B0, Ω0, S0 and
α0 are chosen so to match the Minnesota prior. In particular, Bańbura et al. (2011) show
that the normal inverted Wishart prior can be implemented by adding dummy observations
to system (2.7). Additional dummies can be included to impose a further prior on the sum
of coefficients of the lagged terms.

In more detail, let Yd1 and Xd1 denote the dummies that implement the Minnesota prior.
These are given by:

Yd1 =



diag (δ1σ1, . . . , δNσN ) /λ

0N(p−1)×N

. . . . . . . . . . . . . . . . . . . . . . . .

diag (σ1, . . . , σN )

. . . . . . . . . . . . . . . . . . . . . . . .

02×N


, Xd1 =



Jp ⊗ diag (σ1, . . . , σN ) /λ 0Np×2

. . . . . . . . . . . . . . . . . . . . . . . .

0N×Np 0N×2

. . . . . . . . . . . . . . . . . . . . . . . .

02×Np diag (e0, e1)



where Jp = diag (1, 2, . . . , p), δi = 1 is the prior mean for the coefficient on the first lag
of variable i, λ is an inverse measure of the tightness of the prior on the VAR coefficients,
σ1, . . . , σN define the prior on the covariance matrix of the errors, while e0 and e1 determine
the tightness of the priors on the constant and the time trend, respectively (this is an adap-
tation of the setup considered by Bańbura et al. 2011, where there is no time trend). The
additional prior on the sum of coefficients is introduced by adding the following dummies Yd2
and Xd2:

Yd2 =
diag (δ1µ1, . . . , δNµN )

τ
Xd2 =

(
(11×p)⊗ diag (δ1µ1, . . . , δNµN ) /τ 0N×2

)
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where µi is the mean of variable i and τ determines the tightness of the prior.
Following Alessandri and Mumtaz (2017), the prior mean δi is set to the OLS estimate of

an AR(1) regression for variable i and σi is set to the standard error from the same regression.
A flat prior is imposed on both the constant and the time trend by setting e0 = e1 = 10000.
µi is set to the mean of variable i over the estimation sample. The model is estimated
using a grid of possible values for the shrinkage parameters λ and τ . In particular, the
values considered for λ lie in the range [0.0001, 0.1], while τ can assume values τ = 10λ and
τ = 100λ. The value τ = 100λ generally provides better forecast performance and is used to
report the results.

Eventually, adding a total of Td dummy observations Yd and Xd, where Yd = (Y ′
d1, Y

′
d2)

′

and Xd = (X ′
d1, X

′
d2)

′, is equivalent to imposing B0 = (X ′
dXd)

−1X ′
dYd, Ω0 = (X ′

dXd)
−1,

S0 = (Yd − XdB0)
′(Yd − XdB0) and α0 = Td − κ, where κ = Np + 2 is the number of

coefficients in any single equation of system (2.7). The dummy-augmented system can be
written as:

Y∗
T∗×N

= X∗
T∗×κ

B
κ×N

+ E∗
T∗×N

where Y∗ = (Y ′, Y ′
d)

′, X∗ = (X ′, X ′
d)

′, E∗ = (E′, E′
d)

′ and T∗ = T + Td. The posterior means
of the parameters coincide with the OLS estimates of the regression of Y∗ on X∗, i.e.:

B̂ =
(
X ′

∗X∗
)−1

X ′
∗Y∗

which also correspond to the modes, as the posterior distribution for B is normal. Therefore,
B̂ is used to compute the LBVAR point forecasts to be evaluated.

The LBVAR considered so far includes all available predictors. To evaluate the potential
gains from information pooling, it is also worth examining how the model performs when a
large subset of predictors is selected using an ex-post perspective. To this aim, five additional
LBVAR models are estimated and reported, each of which includes real GDP growth plus
the best 50 predictors for each horizon, selected using the VAR-based rankings of section
2.5.2.1.23 In addition, the model is estimated using financial-cycle predictors only.

Table 2.18 shows the relative MSFE for the LBVAR using all available (251) predictors,

23In this case, the value of λ is selected recursively across windows by maximizing the marginal likelihood
over the interval λ ∈ [0.001, 0.1]. Again, two possibilities are considered for τ : τ = 10λ and τ = 100λ, where
the ratio of τ to λ is fixed across windows. The value τ = 100λ still provides better forecast performance.
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the 5 alternative subsets of 50 predictors and the pool of financial-cycle indicators. In general,
no model outperforms the best bivariate VARs from Table 2.14. The full LBVAR performs
poorly regardless of the values used for the shrinkage parameters. Conversely, the model
using the best predictors for h = 20 exhibits a good performance: it beats all other LBVARs
for every forecast horizon and would rank second in Table 2.14 for h = 4 (its MSFE is 0.75),
5th for h = 12 (0.75), 9th for h = 20 (0.82) and 6th for h = 28 (0.70).24 The LBVAR using
financial-cycle indicators performs better than the largest LBVAR for every h ≥ 12. Over the
same horizons, it also outperforms the models using the best 50 predictors for target horizons
1,4 and 28 quarters. Conversely, it shows quite a poor performance over short horizons.

Finally, the LBVAR estimated on the reduced dataset performs poorly and is not reported
in order to save space.

2.5.3.2 LASSO VAR and post-LASSO VAR

The second pooling method consists in estimating a high-dimensional VAR model using the
LASSO penalty (LASSO VAR). To illustrate the LASSO VAR, let us consider an additional
representation of the VAR model, which is obtained by stacking the equations in system
(2.7), i.e. by rewriting (2.7) as a system of seemingly unrelated regressions (SUR):

ỹ = (IN ⊗X) β̃ + ε ≡ X̃β̃ + ε (2.8)

where ỹ = vec(Y ), β̃ = vec(B) is a Nκ × 1 matrix and IN is the identity matrix of size
N . Also, ε ∼ N (0,Ψ ⊗ IT ), where IT is the identity matrix of size T . This representation
allows for different equations in the VAR to have different explanatory variables. The LASSO
estimator of model (2.8) solves:

min
β̃

∥ỹ − X̃β̃∥22+λ∥Sβ̃∥1 (2.9)

where S is a N(κ − 1) × Nκ selection matrix that excludes the constants from the penalty
term, so that they are included with certainty in the final model.

Tables 2.19-2.22 report the results of a LASSO VAR(1) estimated on the large dataset

24Out of the best 50 predictors, the number of financial-cycle indicators is 18 for h = 1, 21 for h = 12 and
h = 20, 22 for h = 4 and 23 for h = 28.
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of 252 variables and a LASSO VAR(5) for the reduced dataset.25 Tables 2.19 and 2.21 show
the relative MSFE for several values of λ. Both LASSO VAR models achieve relatively
high forecast accuracy over long horizons for some values of the penalty term, while they
always perform poorly over short horizons. Even for long horizons, however, the models fail
to outperform the best bivariate VARs. The LASSO VAR has also been estimated using
subsets of highly performing predictors as in section 2.5.3.1 and the results do not change
much. Tables 2.20 and 2.22 display square matrices summarizing the degree of sparsity in the
estimated LASSO VARs. In particular, each row corresponds to an equation in the system
and each column corresponds to a predictor on the right-hand side of the equations. Blue
cells identify predictors that are assigned non-zero coefficients in the last estimation window,
which ends in 2016Q1 (using the value of λ that gives the best forecasts for h ≥ 4).26

Table 2.24 shows the MSFE of the LASSO VAR estimated on GDP and financial-cycle
indicators only. For the purpose of comparison with the other LASSO VARs, both the lag
length of 1 and the lag length of 5 are considered. For λ = 0.0025, the model with lag length
5 outperforms the reduced LASSO VAR over all horizons except h = 1, while the model with
lag length 1 produces almost the same results as the largest LASSO VAR (when the latter
has λ = 0.0005).

Table 2.23 shows the relative MSFE of the post-LASSO VAR estimated on the reduced
dataset, for different values of the penalty parameter. In this case, the LASSO penalty is
only used to select the non-zero coefficients, then the system is estimated by SUR.27 The
post-LASSO tends to improve over the LASSO in terms of 1-quarter forecasts, but does not
generally yield forecast gains for other horizons.

25The lag length of 1 is used for the largest LASSO VAR to prevent computational problems.
26Note that in the LASSO VAR(5) for the reduced dataset a given predictor may have zero coefficients on

specific lags and non-zero coefficients on others, so that a colored cell indicates that at least one lag of the
variable in column is included in the shrunk equation for the variable in row.

27When the full dataset is considered, the number of non-zero coefficients makes estimation by SUR in-
feasible, so the system is estimated using OLS equation by equation. The model becomes explosive for many
values of λ and is not reported. Note however that for λ = 0.001 the model is stable and performs slightly
worse than the LASSO VAR with the same penalty parameter.
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2.5.3.3 Factor model: VAR with principal components

Next, I consider a factor model, in the form of a VAR process for GDP growth and a set of
factors extracted from all predictors:

(
yt

F̂t

)
=

(
a0,y

a
0,F̂

)
+

(
a1,y

a
1,F̂

)
t+

p∑
j=1

Bj

(
yt−j

F̂t−j

)
+

(
εt

ε
F̂ ,t

)

where F̂t denotes the v × 1 vector of the first v estimated principal components of the
n predictors in the full dataset, a

0,F̂
and a

1,F̂
are v × 1 vectors of coefficients and Bj is

a (1 + v) × (1 + v) matrix of coefficients, ∀j = 1, . . . , p. Table 2.25 presents results for
v = 1, 2, 3, 4. No model beats all the one-predictor VARs from Table 2.14. The model with 2
principal components delivers good forecasts for the 1-quarter horizon, being outperformed
by only one bivariate VAR. The same holds true for the model with 3 principal components
when h = 4.

Interestingly, restricting attention to financial-cycle indicators lead to substantial forecast
gains for longer horizons. Table 2.26 presents the results of VAR models in which the principal
components are extracted from financial-cycle variables only. For h ≥ 12, the models using 2
and 3 principal components outperform all models in Table 2.25 and would rank in the top
10 positions in Table 2.14.

2.5.3.4 Forecast combinations

While the approaches in sections 2.5.3.1-2.5.3.3 pool information prior to forecasting, an
alternative pooling strategy is given by forecast combination, which finds widespread ap-
plication in the forecasting literature (Elliott and Timmermann 2016) on the grounds that
individual models are likely to be misspecified and that combining forecasts from different
models should increase efficiency compared to individual forecasts. Measuring the perfor-
mance of combined forecasts helps give a sense of how useful it is in practice to establish
rankings of predictors. If combined forecasts turn out to outperform forecasts from every
individual model, then the information contained in poorly-ranking predictors should not be
discarded.

This section presents results on forecast combinations for both direct and iterated fore-
casts from one-predictor models, using two standard combination schemes. Let wi denote
the weight assigned to model i and M the number of models to be combined. The simplest
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approach consists in using an equal-weighted average of the forecasts:

wequal
i = 1/M

There is ample empirical evidence that equal weighting performs well for point forecasts
(e.g., Stock and Watson 2003) and often outperforms more sophisticated weighting strategies,
giving rise to a “forecast combination puzzle” (Elliott and Timmermann 2016, Smith and
Wallis 2009). The second approach is Bayesian model averaging (BMA). In particular, since
the value of the BIC for model i provides an asymptotic approximation to its marginal
likelihood, the BMA weights are approximated by:

wbma
i =

exp(−0.5BICi)∑M
i=1 exp(−0.5BICi)

The weights are computed recursively across estimation windows.
In analogy with the previous sections, results are presented for three cases: (i) all possible

predictors are taken into account;28 (ii) combinations are limited to an ex-post selection of
predictors: for M = 10, 100, 200, the models considered are the best-performing ones from
sections 2.5.1 and 2.5.2.1; (iii) combinations are computed over financial-cycle predictors
only.

The results of the first two cases are presented in Tables 2.27 and 2.28 for direct and
iterated forecasts, respectively. Let us first focus on the combinations comprising all available
models. The resulting forecasts perform systematically worse than the best individual models.
In the case of direct (ARDL) forecasts, they perform poorly except for the 1-quarter horizon.
In the case of iterated (VAR) forecasts, they would enter the top 30 list in Table 2.14 for
every horizon, the exact position ranging from 5th (for h = 1) to 24th (for h = 20). In
general, the choice between equal and BMA weights has little impact on the precision of the
forecasts. Averaging forecasts over ex-post selected subsets of predictors lowers the MSFE.
Combining the 10 best models improves over every individual models for h = 1, both for
ARDL and VAR models, and for h = 28 in the case of VAR models, whereas for all other
horizons the combined forecasts fail to beat the best single-predictor models.

Finally, Tables 2.29 and 2.30 show the results obtained by averaging forecasts over

28As explained before (see note 17), the 14 predictors with the shortest time series are excluded from the
combinations. Accordingly, the total number of models to be combined is 258. In the case of VAR models,
two additional models producing explosive forecasts are excluded, so that the total number of models is 256.
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financial-cycle predictors exclusively. The results for iterated forecasts are noteworthy.
The combined forecasts perform better than the top-100 averages from Table 2.30 for h =

12, 20, 28. Moreover, they outperform all individual models in Table 2.14 for h = 1, while
they would rank second for h = 4 and within the top 10 for all other horizons. Direct fore-
casts perform quite well for short horizons: they have a lower MSFE than the 100-predictor
average forecasts for h = 1 and approximately the same MSFE for h = 4. Conversely, they
fare worse than the 200-predictor combination for h = 12, while they rank between the 100-
and the 200-predictor combinations for h = 20, 28. Like iterated forecasts, they beat the
individual models for h = 1.

2.5.4 Tests of forecast accuracy and encompassing

In sections 2.5.1 and 2.5.2.1, forecasts based on the best predictors perform much better
than forecasts from the benchmark AR models. To determine if the predictive content of
the variables is statistically significant, I rely on the ENC-F test by Clark and McCracken
(2001, 2013), which is suitable for comparing nested models and has been shown to have
comparatively high power among forecast encompassing and accuracy tests (Busetti and
Marcucci 2013). Under the null hypothesis, the candidate predictor has no marginal pre-
dictive power, i.e. the benchmark AR encompasses the candidate model, while under the
alternative the variable has predictive power. The models in sections 2.5.1 and 2.5.2.1 can-
not be used to conduct the test because the number of lags changes over time. There-
fore, I compute forecasts from all models using a fixed number of lags equal to 5. Let
ĉt+h|t = ε̂

(m1)
GDP,t+h|t

(
ε̂
(m1)
GDP,t+h|t − ε̂

(m2)
GDP,t+h|t

)
, where ε̂GDP,t+h|t denotes a forecast error, while

m1 and m2 identify the benchmark AR model and the alternative model, respectively. The
ENC-F test statistic is:

ENC-F =

T1−h∑
t=T0

ĉt+h|t

 /MSFE
(m2)
GDP

In addition, I use the MSE-F statistic (Clark and McCracken 2001) to test if a bivariate
model and the benchmark AR have equal predictive accuracy in terms of MSFE, against the
alternative hypothesis that the candidate model beats the AR. Let d̂t+h =

(
ε̂
(m1)
GDP,t+h

)2
−
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(
ε̂
(m2)
GDP,t+h

)2
. The MSE-F test statistics is given by:

MSE-F =

T1−h∑
t=T0

d̂t+h

 /MSFE
(m2)
GDP

The critical values for the ENC-F and MSE-F tests are computed using the restricted VAR
bootstrap explained in Clark and McCracken (2013).

Table 2.31 reports the results of the tests, focusing on the case of iterated forecasts
provided by the log CAPR, the NNBLI ratio and the credit/GDP ratio, which are best
performing predictors over the different horizons in Table 2.14. All three variables have
significant predictive content based on the ENC-F test. In particular, the predictive content
of CAPR and NNBLI is significant at the 1% level for all horizons. CAPR and NNBLI provide
a significantly lower MSFE than the benchmark AR for every h ≥ 4, while the difference in
forecast accuracy is not significant for h = 1. Conversely, the credit/GDP ratio only provides
a significant improvement in MSFE for h = 1.

Finally, I also report the results of the Diebold–Mariano (DM) test of forecast accuracy,
making comparisons on a pairwise basis between the best performing direct (iterated) fore-
casts for any given horizon and the other 29 forecasts from Table 2.13 (Table 2.14). The
results must be taken with great caution for several reasons relating to the validity of the
DM assumptions. In particular, the use of a recursive-window scheme, the time-varying spec-
ification of the models due to changing lag length, and the high persistence of the forecast
variable for long horizons (multi-period cumulative GDP growth) may affect the reliability
of the results (see Elliott and Timmermann 2016 and Rossi 2005). The null hypothesis in
this case is that the two models provide equal MSFE over the period of interest. I consider
the left-tail alternative hypothesis that the best performing model has a significantly lower
MSFE. Table 2.32 and 2.33 show the results. The lowest average p-values are achieved by
the best performing models for h = 4 and h = 12, in which the NNBLI ratio is used as
predictor. In this case, most p-values fall below 10%. Higher p-values are generally obtained
for longer horizons, although not exceeding 20% in most cases (as mentioned above, however,
a longer horizon may imply more severe problems for the DM test, due to the persistence of
the forecast variable).29 Finally, the highest average p-values are obtained for the 1-quarter

29As a hint of possible problems with the DM test, the average p-value across the 25 worst predictors for
h = 28 (among all predictors in the dataset) is 0.13 for iterated forecasts and 0.12 for direct forecasts, and
the minimum p-value is 0.07 in both cases, even though a number of predictors have a relative MSFE that
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forecasts, both in the case of ARDL and in the case of VAR models, meaning that the fore-
cast improvement provided by the best performing model appears less significant over a very
short horizon.

2.5.5 Comparison with IMF forecasts

To assess the practical relevance of the results for forecasters, this section reports the forecast
performance of a major forecasting institution, the IMF, and compares it with the models
considered in this paper.30 Table 2.34 summarizes the performance of the IMF forecasts over
the period 1990-2017 using the RMSFE and the relative MSFE with respect to both the
direct and the iterated forecasts by the benchmark AR models. In particular, since the IMF
World Economic Outlook (WEO) provides forecasts in the form of annual growth rates up to
5 years ahead, I adopt the following approach to construct 4-quarter-ahead, 12-quarter-ahead
and 20-quarter-ahead forecasts of the GDP level: (i) I focus on the Spring issues of the WEO;
(ii) I use the last quarter of the year prior to each issue as the starting point for forecasting,
i.e. the latest available observation of GDP; (iii) I apply the annual forecast growth rates to
the starting value to compute forecasts of the GDP level and (iv) I assign each resulting value
to the last quarter of the relevant forecast year. For example, the annual forecast growth rate
for 1990 published in the 1990 Spring issue is used to compute the 4-quarter-ahead forecast
for 1990Q4 based on data up to 1989Q4, the annual rates up to 1992 are used to compute
the 12-quarter-ahead forecast for 1992Q4 based on data up to 1989Q4, and so on.

As can be seen by comparison of Table 2.34 with Tables 2.13, 2.14 and 2.17, the IMF
forecasts do not outperform the best small multivariate models nor the best one-predictor
models for any forecast horizon. In more detail, the relative performance of the IMF is
quite high for h = 4 and deteriorates as the forecast horizon increases. For h = 4, the IMF
forecasts are only outperformed by the bivariate models using the NNBLI ratio and by the

exceeds 2.
30The IMF forecasts are particularly suitable for comparisons in this context, as they cover horizons from

1 to 5 years. In the case of other major forecasters, comparisons would necessarily have more limitations in
terms of horizons. For instance, the Fed Greenbook forecasts cover a maximum horizon of 2 years. The OECD
publishes annual forecasts for the following year and long-term projections (currently, the horizon is 2060)
in 10-year steps. The Survey of Professional Forecasters (SPF) includes quarterly forecasts up to 4 quarters
ahead, annual forecasts for the next three years but only starting from the 2009Q2 survey, and 10-year annual
average forecasts. However, as OECD (2014) points out, “the profile and magnitude of the errors in the GDP
growth projections [over 2007-2012] of other international organizations and consensus forecasts are strikingly
similar”.
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best multivariate VAR model with target horizon equal to 4. For h = 12, they are beaten by
bivariate models using the NNBLI ratio, the log CAPR ratio, the OECD CLI, the unfilled
orders for nondurable goods (AMDMUOx) plus a few more bivariate VAR models (most
notably, those using the unadjusted price/rent ratio and residential fixed investment). They
are also outperformed by all VAR models in Table 2.17 except the one with target h = 1.
Finally, for h = 20 the IMF forecasts fall short of the benchmark AR models and, a fortiori,
perform much worse than the best performing models in this paper. In particular, the relative
MSFE with respect to the direct AR forecasts is 1.082, far above the 0.2859 achieved by capr

and higher than all top 30 ARDL models in Table 2.13. The relative MSFE with respect to
the iterated AR forecasts is 1.07, once again much higher than the relative MSFE provided
by capr (0.4381) and by the best VAR models with target h ≥ 12 in Table 2.17, and worse
than all top 30 VARs from Table 2.14.

Figure 2.8 contrasts different forecasts of U.S. GDP made on the verge of the crisis. The
green line represents the 20-quarter-ahead iterated forecast from the bivariate VAR using
the log CAPR ratio, estimated on data up to 2007Q2. The dashed orange line identifies the
iterated forecast from the bivariate VAR using the NNBLI ratio. The dashed red line is the
forecast from the Fall 2007 issue of the IMF WEO. The blue line is the realized level of real
GDP. While the IMF forecast more or less follows the pre-crisis trend, both the CAPR and
the NNBLI correctly anticipate the magnitude of the slump.

2.5.6 Predictive importance over time

According to Stock and Watson (2003), the instability of predictive relationships is the norm.
Considering the rankings in Tables 2.13-2.14, a variable may rank high overall as a result of
producing accurate forecasts only in some specific time intervals, while being a poor predictor
in other periods. In this section, the forecast evaluation sample 1990Q1-2017Q4 is partitioned
into three sub-samples to evaluate the stability of the rankings over time. The three sub-
samples are given by the pre-crisis period 1990Q1-2007Q2, the crisis period 2007Q3-2009Q4
and the post-crisis period 2010Q1-2017Q4. The relative MSFE of direct and indirect forecasts
from bivariate models are computed over each sub-sample.

For h = 1 and h = 4, no variable among the best-performing ones from Tables 2.13-2.14
is included in top 30 list for every sub-sample, except for the log housing starts (houst) in
the case of direct forecasts with h = 4. For h = 12, only the log CAPR and the NNBLI ratio
feature in the top 30 list in every sub-sample for both direct and iterated forecasts. The
Fed funds rate (both in levels and in differences) is among the best 30 for all three periods
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only in the case of direct forecasts, while the OECD CLI is always among the top performers
only for iterated forecasts. For h = 20, only the log CAPR and the unadjusted log price-rent
ratio are among the top 30 in all periods for both types of forecasts. The NNBLI ratio and
the growth rate of housing starts (HOUST) are always among the best predictors for direct
forecasts, while residential fixed investment as a share of GDP (prfi_gdp) is always included
in the top 30 for iterated forecasts. Finally, only the log CAPR is invariably included in the
top 30 for h = 28. The NNBLI ratio and 10-year BAA corporate spread are always included
for direct forecasts, while the growth rate of real estate assets of households and nonprofit
organizations (HNOREMQ027Sx) and prfi_gdp are always included in the case of iterated
forecasts.

The instability of predictive importance is widespread across predictors. For each list in
Tables 2.13-2.14, the majority of predictors (on average, approximately 21 predictors out of
30, with peaks of 26-28 for short horizons) feature among the best 30 in no more than one
period out of three.

Against this backdrop, the predictive importance of the log CAPR and the NNBLI ratio
appears remarkably stable for horizons of 3-5 years. The CAPR is always among the best
4 predictors for h = 20, regardless of the period and the type of forecast. In particular,
over the period 1990Q1-2007Q2 it ranks 1st in terms of iterated forecasts (relative MSFE of
0.35) and 2nd in terms of direct forecasts (relative MSFE of 0.60). During the crisis period,
it is 1st for direct forecasts (0.18) and 3rd for iterated forecasts (0.35). For h = 12, it has
a comparatively good performance throughout all periods (between the 1st and the 13th
position in the rankings) and is especially accurate during the crisis period: it is 4th in terms
of direct forecasts (0.27) and 1st for iterated forecasts (0.20). For h = 28, it improves during
and after crisis, climbing from the 11th and 30th positions in 1990Q1-2007Q2, for direct and
iterated forecasts respectively, to the 1st (direct) and 3rd (iterated) positions in 2010Q1-
2017Q4. Its relative performance is more unstable for h = 4: it only ranks high during the
crisis period (1st for direct and 3rd for iterated forecasts), which is enough to be 2nd in the
overall rankings of Tables 2.13-2.14. The NNBLI is the best predictor for h = 12 both before
and after the crisis, and fares only slightly worse during the crisis (5th and 3rd for direct
and iterated forecasts, respectively). For h = 4, it is the best predictor during the period
1990Q1-2007Q2 for both types of forecasts, and in the top 4 during the crisis period, while its
performance considerably deteriorates after the crisis. For h = 20, it ranks either 1st or 2nd
both before and after the crisis, while it appears less useful during the crisis. Similar results
are obtained for h = 28, although not as good as for h = 20. Overall, it appears that the
predictive importance of CAPR increases during the crisis, while that of NNBLI decreases.
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In addition to the log CAPR, other financial-cycle indicators dominate the rankings of
MSFE during the crisis period. House price growth indicators (USSTHPI, SPCS10RSA,
hpi), the credit-GDP ratio (cred_gdp) and the mortgage-income ratio (mortg_inc) provide
good long-horizon forecasts for the period 2007Q3-2009Q4. Interestingly, during the crisis,
household balance sheets also provide the best predictors for 1-quarter-ahead forecasts: the
growth rates of real total assets (TABSHNOx) and real net worth (TNWBSHNOx) of house-
holds and nonprofit organizations are the best predictors in terms of both direct and iterated
forecasts (with a relative MSFE ranging between 0.34 and 0.5), and the ratio of net worth
to disposable income (NWPIx) ranks 3rd-4th.

Regarding short horizons, the high position of the S&P dividend yield in Tables 2.13 and
2.14 is largely driven by its good performance in the period 1990Q1-2007Q2, as the variable
performs poorly after the crisis. The CAPE ratio is good for short-horizon direct forecasts
before and during the crisis, but not after. Still, in the overall ranking of Table 2.13 it is
third for h = 1 and 16th for h = 4.

2.5.7 Further remarks

To get a further indication on the robustness and stability of predictive relationships, it
is worth assessing whether in-sample and out-of-sample evaluations offer consistent results.
When comparing the different pieces of evidence presented in the paper, only a few results
appear robust throughout. In particular, the predictive usefulness of the log CAPR ratio,
the NNBLI ratio and, to a lesser extent, of the OECD CLI is a recurrent outcome of the
analysis. In fact, it is indicated almost unanimously by the different evaluation methods.

A further question to be addressed is how much the results depend on the specific data
transformations considered in the paper. In particular, the transformations recommended
by McCracken and Ng (2015) for the FRED-QD dataset, which are applied here, entail
heterogeneous treatment of the ratios included in the FRED-QD, most notably the financial-
cycle ratios. For instance, while the business sector liabilities-to-income ratios are taken in
levels, the ratios of business sector net worth to income are transformed to differences.31

31In some cases, the additional series from Table 2.1 provide complementary transformations to the FRED-
QD series, as in the case of the public debt-to-GDP ratio. In other cases, they provide approximately
complementary transformations. For instance, while the household liabilities-to-income ratio is transformed
to growth rates in the FRED-QD, the reduced dataset includes the household mortgage debt-to-income ratio
(which co-varies closely with the total liabilities-to-income ratio) in levels. Another example is given by the
inclusion of the CAPE in levels in the reduced dataset, which complements to some extent the S&P dividend
yield in differences included in the FRED-QD dataset.
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As a robustness check, I consider the case in which all ratios and rates are considered in
levels. The main results regarding the leading role of CAPR and NNBLI hold true in this
case. In the in-sample analysis, the top positions in the R2 ranking remain unchanged. As
for the out-of-sample analysis, the top positions in the ranking of direct forecasts are also
unaffected. In the case of iterated forecasts, two ratios, namely the ratios of net worth to
disposable business income for the nonfinancial noncorporate and corporate business sectors
(FRED-QD labels: TNWBSNNBBDIx and TNWMVBSNNCBBDIx, respectively), provide
comparable results to those produced by CAPR and NNBLI. In particular, they rank in
the first two positions for h = 20 and they are third and second respectively for h = 12

(between NNBLI and CAPR). Also, the corporate ratio ranks second for h = 4 (between
NNBLI and CAPR) and for h = 28 (between CAPR and PR). However, unlike the CAPR
and the NNBLI, the two net worth-income ratios perform poorly in direct forecasts (158th
and 133th respectively for h = 12, 93th and 96th for h = 28, 100th and 129th for h = 20),
therefore their forecasting power does not appear to be robust.

2.6 Conclusions

A new emphasis on the role of macro-financial linkages has permeated macroeconomics in
recent years. Financial cycles, building up in the background of business cycles and interact-
ing with them through a variety of mechanisms, can have profound and disruptive effects on
economic activity. This paper has presented an in-depth, financial-cycle-oriented exploration
of a broad range of potential predictors of real GDP in the United States, using data from
1960 to 2017. In-sample explanatory power and out-of-sample forecast ability have been mea-
sured through several criteria and compared with each other to assess the robustness of the
results. Throughout, the analysis has made extensive use of techniques for high-dimensional
modelling and variable selection.

The paper offers new stylized facts on financial cycles and their role in predictions of real
activity, highlighting the leading role of specific housing and balance-sheet ratios, especially
over long horizons. First, a log cyclically-adjusted house price-rent ratio (CAPR) has emerged
as the most powerful predictor over horizons longer than 12 quarters and one of the best two
predictors for horizons of 4-12 quarters. The ratio of liabilities to income in the nonfinancial
noncorporate business sector (NNBLI) has been the second key predictor for horizons ranging
from 4 to 28 quarters. Compared to the other candidate predictors, the performance of the
log CAPR and the NNBLI has proved remarkably robust to different evaluation criteria
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and stable across time periods. Among the other variables, a composite leading indicator
(the OECD CLI) has provided high-ranking results for some horizons across all evaluation
methods.

The empirical evidence is suggestive that financial-cycle variables as a whole contain valu-
able predictive content. Variables such as the credit-to-GDP ratio, the household mortgage
debt-to-income and net worth-to-income ratios, residential fixed investment or stock market
ratios show high predictive ability in several occasions. Also, the small VAR models that
provide the most accurate forecasts in the paper invariably include financial-cycle indicators.
Furthermore, when information-pooling methods are used to produce forecasts, restricting
attention to financial-cycle predictors appears in general a better strategy than pooling all
available information, at least for horizons longer than one year. Overall, housing, credit and
balance-sheet indicators appear more valuable than stock market indicators for explaining
GDP fluctuations over multi-year horizons, especially during and after the crisis.

While valuable predictive content is scattered across variables, the choice of specific
financial-cycle information to be used for predictions appears critical. Except for the shortest
horizons, no large pooling method (nor the forecasts by a major institution such as the IMF)
is able to outperform small models that include selected financial-cycle variables or even the
simplest models using only the log CAPR or the NNBLI ratio as predictors.

70



Bibliography

[1] Alessandri, P. and H. Mumtaz (2017), “Financial conditions and density forecasts for US
output and inflation.” Review of Economic Dynamics, 24, 66–78.

[2] Bańbura, M., D. Giannone, and L. Reichlin (2010). “Large Bayesian vector auto regres-
sions.” Journal of Applied Econometrics, 25 (1), 71–92.

[3] Banerjee, A., M. Marcellino and T. Masten (2005). “Leading indicators for euro-area
inflation and GDP growth.” Oxford Bulletin of Economics and Statistics, 67(S1), 785–
813.

[4] Bluedorn, J. C., J. Decressin and M. E. Terrones (2016), “Do Asset Price Drops Fore-
shadow Recessions?” International Journal of Forecasting, 32 (2), 518–26.

[5] Borio C. (2012). “The financial cycle and macroeconomics: what have we learnt?” BIS
working paper 395.

[6] Brunnermeir, M. and M. Oehmke, (2013), “Bubbles, financial crises, and systemic risk.”
In Handbook of the Economics of Finance, vol. 2. M. H. Constantinides and R. M. Stulz
(eds.), pp. 1221–1288, North Holland Elsevier, Oxford,

[7] Buiter, W. H. (2010), “Housing Wealth Isn’t Wealth.” Economics: The Open-Access,
Open-Assessment E-Journal, Vol. 4, Article 2010–22.

[8] Busetti, F., and J. Marcucci (2013), “Comparing forecast accuracy: A Monte Carlo
investigation.” International Journal of Forecasting, 29, 13–27.

[9] Campbell, J. Y. and R. Shiller (1998), “Valuation ratios and the long-run stock market
outlook.”, The Journal of Portfolio Management, 24 (2), 11-26.

[10] Campbell, J. Y. (1999) “Asset Prices, Consumption and the Business Cycle.” In Hand-
book of Macroeconomics, vol. 1., J. B. Taylor and M. Woodford (eds.), pp. 1231–303,
Amsterdam, Elsevier.

71



[11] Claessens, S., M. A. Kose and M. E. Terrones (2011). “Financial Cycles: What? How?
When?” IMF Working Paper 76.

[12] Claessens, S. and M. A. Kose (2017). “Asset prices and macroeconomic outcomes: a
survey.” BIS Working Paper No 676.

[13] Clark, T. E., and M. W. McCracken (2001), “Tests of Equal Forecast Accuracy and
Encompassing for Nested Models.” Journal of Econometrics, 105, 85-110.

[14] Clark, T. E., and M. W. McCracken (2013), “Evaluating the Accuracy of Forecasts from
Vector Autoregressions.” Federal Reserve Bank of St. Louis Working Paper 2013-010A.

[15] Contessi S. and U. Kerdnunvong (2015), “Asset Bubbles. Detecting and Measuring Them
Are Not Easy Tasks.” The Regional Economist, Federal Reserve Bank of St. Louis.

[16] Davis, M. A., A. Lehnert and R. F. Martin (2008), “The Rent-Price Ratio for the
Aggregate Stock of Owner-Occupied Housing.” Review of Income and Wealth, 54 (2),
279-284.

[17] Drehmann, M., C. Borio, and K. Tsatsaronis (2012), “Characterising the Financial Cy-
cle: Don’t Lose Sight of the Medium Term!” BIS Working Paper 380.

[18] Elliott, G. and Timmermann, A. (2016), Economic Forecasting. Princeton, Princeton
University Press.

[19] Gertler M. and S. Gilchrist (2018), “What Happened: Financial Factors in the Great
Recession.” The Journal of Economic Perspectives, 32 (3), 3-30.

[20] Hastie, T., R. Tibshirani amd R. J. Tibshirani (2017), “Extended Comparisons of Best
Subset Selection, Forward Stepwise Selection, and the Lasso.”, mimeo.

[21] International Monetary Fund (2000), World Economic Outlook: Asset Prices and the
Business Cycle (May). Washington, IMF.

[22] International Monetary Fund (2003), “When Bubbles Burst.” In World Economic Out-
look (April). Washington, IMF.

[23] International Monetary Fund (2011), “IMF Performance in the Run-Up to the Finan-
cial and Economic Crisis. IMF Surveillance in 2004–07.” Washington, IMF, Independent
Evaluation Office.

72



[24] Jordà O., M. Schularick and A. Taylor (2013), “When credit bites back.” Journal of
Money, Credit and Banking, 45 (2), 3–28.

[25] Jordà O., M. Schularick and A. Taylor (2014), “The Great Mortgaging: Housing Finance,
Crises, and Business Cycles.” Federal Reserve Bank of San Francisco Working Paper 2014-
23.

[26] Jordà O., M. Schularick and A. Taylor (2016), “Macrofinancial History and the New
Business Cycle Facts.” Federal Reserve Bank of San Francisco Working Paper 2016-23.

[27] Karlsson, S. (2013), “Forecasting with Bayesian Vector Autoregression.” In Handbook of
Economic Forecasting, vol. 2, part B, G. Elliott and A. Timmermann (eds.), pp. 791-897,
Amsterdam, North Holland.

[28] Kindleberger, C. P. (1978), “Manias, Panics, and Crashes: A History of Financial
Crises.” New York, Basic Books.

[29] Leamer, E. E., (2007), “Housing is the Business Cycle.” Proceedings of Economic Policy
Symposium, Housing, Housing Finance, and Monetary Policy, Federal Reserve Bank of
Kansas City, August 30–September 1, Jackson Hole, pp. 149–233.

[30] Marcellino, M., J. Stock and M. Watson (2003), “Macroeconomic forecasting in the Euro
area: country specific versus Euro wide information.” European Economic Review, 47(1),
1–18.

[31] McCracken M. and S. Ng (2015), FRED-QD Appendix to “FRED-MD: A Monthly
Database for Macroeconomic Research.” Federal Reserve Bank of St. Louis Working Paper
2015-012B. Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.

[32] Mian A. and A. Sufi (2013), “Household balance sheets, consumption, and the economic
slump.” Quarterly Journal of Economics, 128 (4), 1687–1726.

[33] Mian A. and A. Sufi (2014a), “House of Debt: How They (and You) caused the Great
Recession, and How We Can Prevent It from Happening Again.” Chicago, University of
Chicago Press.

[34] Mian A. and A. Sufi (2014b), “What explains the 2007-2009 drop in employment?”
Econometrica, 82 (6), 2197–2223.

[35] Mian A. and A. Sufi (2018), “Finance and Business Cycles: The Credit-Driven House-
hold Demand Channel.” The Journal of Economic Perspectives, 32 (3), 3-30.

73



[36] Minsky, H (1982): “Can ’it’ happen again? Essays on Instability and Finance.” Armonk:
M. E. Sharpe.

[37] OECD (2014), “OECD forecasts during and after the financial crisis: a post mortem.”
Economics Department Working Papers No. 1107.

[38] Piazzesi, M., and M. Schneider (2016), “Housing and Macroeconomics.” In Handbook of
Macroeconomics, vol. 2, J. B. Taylor and H. Uhlig (eds.), pp. 1547–1640, Amsterdam,
North-Holland.

[39] Phillips, P. C. B., S.P. Shi and J. Yu (2015), “Testing for Multiple Bubbles: Historical
Episodes of Exuberance and Collapse in the S&P 500.” International Economic Review,
56 (4), 1043-1078.

[40] Reinhart, C. and K. Rogoff (2009), This Time is Different: Eight Centuries of Financial
Folly. Princeton, Princeton University Press.

[41] Rossi, B. (2005), “Testing Long-Horizon Predictive Ability with High Persistence, and
the Meese-Rogoff Puzzle.” International Economic Review, 46 (1), 61-92.

[42] Rossi, B. and T. Sekhposyan T. (2014), “Evaluating predictive densities of US out-
put growth and inflation in a large macroeconomic data set.” International Journal of
Forecasting, 30 (3), 662–682.

[43] Shiller, R. (2015), Irrational Exuberance. Princeton, Princeton University Press.

[44] Smith, J., and K. F. Wallis (2009), “A simple explanation of the forecast combination
puzzle.”, Oxford Bulletin of Economics and Statistics, 71, 331–55.

[45] Sommer, K., P. Sullivan and R. Verbrugge (2011), “Run-up in the House Price-Rent
Ratio: How Much Can Be Explained by Fundamentals?” BLS Working Paper 441.

[46] Stock, J. and M. Watson (2003). “Forecasting output and inflation: The role of asset
prices.” Journal of Economic Literature, 41 (3), 788–829.

[47] Stock, J. and M. Watson (2012) “Disentangling the Channels of the 2007-2009 Reces-
sion.” NBER WP No. 18094.

[48] Taylor, J. B. and H. Uhlig (eds.) (2016), Handbook of Macroeconomics. Amsterdam,
North-Holland.

74



Figures and tables

Figure 2.1: Log cyclically-adjusted house price-to-rent ratio (CAPR)

Notes: Quarterly data from 1960Q1 to 2016Q1. Data on prices and rents are from the Lincoln
Institute of Land Policy (https://www.lincolninst.edu/), based on Davis et al. (2008), and from the
FRED website (https://fred.stlouisfed.org/). See section 2.3 in the text for more details. Shaded
areas indicate NBER recessions.

Figure 2.2: Nonfinancial noncorporate business sector liabilities-to-income ratio (NNBLI)

Notes: Quarterly data from 1960Q1 to 2016Q1. The data are from the FRED-QD dataset (McCracken
and Ng 2015) available at https://research.stlouisfed.org/econ/mccracken/fred-databases/. Shaded
areas indicate NBER recessions.
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Table 2.1: Reduced dataset

label description data source source label transformation
gdp Real GDP growth rate FRED GDPC1 ln(xt)− ln(xt−4)

infl Inflation rate FRED CPIAUCSL ln(xt)− ln(xt−4)

fedfunds Federal funds rate FRED FEDFUNDS xt

gs10 10-year Treasury constant maturity rate FRED GS10 xt

baa10ym Moody’s BAA 10-year yield minus Treasury FRED BAA10YM xt

reer Real narrow effective exchange rate FRED RNUSBIS ln(xt)− ln(xt−4)

m2 M2 money growth FRED M2SL ln(xt)− ln(xt−4)

unrate Civilian unemployment rate FRED UNRATE xt

bci OECD Business Confidence Index OECD — xt

cli OECD Composite Leading Indicator OECD — xt

oil Oil price inflation rate FRED WTISPLC ln(xt)− ln(xt−4)

sp500 Real S&P500 index growth Shiller — ln(xt)− ln(xt−4)

cape Cyclically adjusted price/earnings ratio Shiller — ln(xt)

pdebt Real public debt growth FRED GFDEBTN/CPIAUCSL ln(xt)− ln(xt−4)

pdebt_gdp Public debt/GDP ratio FRED GFDEGDQ188S xt

cred Real credit growth FRED CRDQUSAPABIS/CPIAUCSL ln(xt)− ln(xt−4)

cred_gdp Credit/GDP ratio BIS — xt

hpi Real house price growth Shiller — ln(xt)− ln(xt−4)

houst Housing starts FRED HOUST ln(xt)

pr Price/rent ratio Lincoln Institute — ln(xt)

capr Cyclically-adjusted price/rent ratio Lincoln Institute; FRED — ; CUUR0000SEHA, CPIAUCNS ln(xt)

mortg Households’ real mortgage debt growth FRED HHMSDODNS/CPIAUCSL ln(xt)− ln(xt−4)

mortg_inc Households’ mortgage/income ratio FRED HHMSDODNS/DSPI xt

prfi Private residential fixed investment growth FRED PRFI/CPIAUCSL ln(xt)− ln(xt−4)

prfi_gdp Private residential fixed investment/GDP ratio FRED PRFI/GDP xt

pip_inc Personal interest payments/income ratio FRED B069RC1/DSPI xt

nfci Chicago Fed national financial condition index FRED NCFI xt

Notes: Shiller = http://www.econ.yale.edu/~shiller/data.htm; Lincoln Institute = Lincoln Institute of Land Policy, http://www.lincolninst.edu/resources/, based
on original data by Davis et al. (2008) (using the Case-Shiller price index after 2000).
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Table 2.2: Time series availability in the full dataset

available % total not available % total
1960Q1 181 66.5% 91 33.5%
1960Q2 231 84.9% 41 15.1%
1967Q1 245 90.1% 27 9.9%
1974Q1 258 94.9% 14 5.1%
1988Q1 269 98.9% 3 1.1%
2001Q1 272 100.0% 0 0.0%

Notes: The full dataset is composed of the reduced dataset (Table 2.1) and the FRED-QD dataset
(Tables 2.35-2.48. Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/). The
table refers to data after transformations (see Table 2.1 and McCracken and Ng 2015).
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Table 2.3: Regression R2 of single-predictor ARDL models

h = 1 h = 4 h = 12 h = 20 h = 28

1 cli 0.4402 cli 0.4323 capr 0.6254 capr 0.6797 capr 0.7284
2 prfi_gdp 0.3668 capr 0.4022 pr 0.5710 pr 0.6535 pr 0.6982
3 PCESVx 0.3427 NNBTILQ027SBDIx 0.3607 NNBTILQ027SBDIx 0.5647 mortg_inc 0.5780 mortg_inc 0.6838
4 PRFIx 0.3421 prfi_gdp 0.3487 AMDMUOx 0.5544 NNBTILQ027SBDIx 0.5503 cred_gdp 0.6493
5 prfi 0.3370 pr 0.3469 cli 0.5050 cred_gdp 0.5284 NWPIx 0.5281
6 nfci 0.3339 DOTSRG3Q086SBEA 0.3326 mortg_inc 0.4545 NWPIx 0.4736 gs10 0.4810
7 houst 0.3299 nfci 0.3273 cred_gdp 0.4181 AMDMUOx 0.4419 NNBTILQ027SBDIx 0.4719
8 bci 0.3137 PRFIx 0.3245 NWPIx 0.4075 gs10 0.4318 prfi_gdp 0.4302
9 CUSR0000SAS 0.3069 AMDMUOx 0.3203 fedfunds 0.3802 cli 0.4014 REALLNx 0.4299
10 PERMIT 0.3054 prfi 0.3171 gs10 0.3473 EXCAUSx 0.3694 TLBSHNOx 0.4262
11 PCECC96 0.3040 IPCONGD 0.3098 HWIx 0.3421 fedfunds 0.3588 mortg 0.4113
12 CLAIMSx 0.2930 fedfunds 0.2969 CPIAUCSL 0.3286 bci 0.3307 NDMANEMP 0.4105
13 PERMITS 0.2914 CP3M 0.2926 bci 0.3235 GS1TB3Mx 0.2638 LIABPIx 0.4066
14 HOUSTW 0.2857 PCECC96 0.2923 CUSR0000SA0L5 0.3222 mortg 0.2566 fedfunds 0.3747
15 FPIx 0.2838 PERMITMW 0.2906 PCECTPI 0.3205 TWEXMMTH 0.2540 EXCAUSx 0.3461
16 PERMITW 0.2816 NWPIx 0.2890 prfi_gdp 0.3195 prfi_gdp 0.2415 hpi 0.3011
17 CPILFESL 0.2724 houst 0.2872 mortg 0.3193 DFSARG3Q086SBEA 0.2381 cred 0.3003
18 PERMITMW 0.2715 T5YFFM 0.2833 CPILFESL 0.3166 reer 0.2355 USINFO 0.2902
19 CPF3MTB3Mx 0.2695 USSTHPI 0.2820 fedfunds 0.3063 nfci 0.2347 AMDMUOx 0.2835
20 HWIx 0.2592 CUSR0000SAS 0.2805 CP3M 0.3040 REALLNx 0.2135 USSTHPI 0.2811
21 MANEMP 0.2559 hpi 0.2719 PCEPILFE 0.3000 LIABPIx 0.2078 cape 0.2715
22 A014RE1Q156NBEA 0.2558 PERMIT 0.2714 DFSARG3Q086SBEA 0.2998 unrate 0.2049 unrate 0.2632
23 DMANEMP 0.2476 PCESVx 0.2714 B020RE1Q156NBEA 0.2937 TLBSHNOx 0.2049 USPBS 0.2624
24 HOUST 0.2466 HOUSTW 0.2692 infl 0.2881 USSERV 0.1942 bci 0.2622
25 IMPGSC1 0.2442 PERMITW 0.2687 CUSR0000SAS 0.2771 USINFO 0.1915 houst 0.2560
26 IPMANSICS 0.2435 MORTGAGE30US 0.2590 hpi 0.2728 TB3SMFFM 0.1912 NNBTILQ027Sx 0.2520
27 fedfunds 0.2428 HWIx 0.2575 USSTHPI 0.2664 AHETPIx 0.1884 GS1TB3Mx 0.2456
28 USSTHPI 0.2420 CPILFESL 0.2555 TB3MS 0.2607 hpi 0.1853 NNBTASQ027Sx 0.2305
29 capr 0.2410 TB6M3Mx 0.2540 CPIULFSL 0.2599 cape 0.1825 MANEMP 0.2052
30 MORTG10YRx 0.2376 mortg 0.2538 PERMITMW 0.2586 HWIx 0.1749 NONREVSLx 0.2043

Notes: For each h, the dependent variable is the h-quarter cumulative GDP growth. Estimated on data from 1974Q1 to 2017Q4.
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Table 2.4: Statistical significance in post-LASSO regressions: h ≤ 12 (λ: min MSE)

h = 1 h = 4 h = 12
(Intercept) · (Intercept) ** (Intercept) ***
houst · fedfunds * infl *
bci gs10 * sp500 ***
cli hpi hpi
prfi unrate *** houst **
nfci bci cli **
PCESVX cli * capr ***
A014RE1Q156NBEA *** prfi * mortg_inc
GCEC1 nfci Y033RC1Q027SBEAX
A823RL1Q225SBEA A014RE1Q156NBEA * A014RE1Q156NBEA
DPIC96 A823RL1Q225SBEA A823RL1Q225SBEA
IPNCONGD · IPMAT · OUTNFB **
NDMANEMP NDMANEMP *** IPNCONGD **
USMINE ** USMINE ** IPBUSEQ
USWTRADE USGOVT USEHS
CES9091000001 * USWTRADE USINFO **
HOUSTNE * CES9093000001 USMINE *
ANDENOX UNRATELTX *** USGOVT
GPDICTPI * LNS14000012 USTRADE
DMOTRG3Q086SBEA LNS13023557 CES9092000001 ***
DFDHRG3Q086SBEA LNS13023705 *** UNRATELTX
DODGRG3Q086SBEA HOANBS LNS14000012
DFXARG3Q086SBEA * HWIX LNS14000025 **
DGOERG3Q086SBEA HOUST5F * UEMPLT5
DTRSRG3Q086SBEA AMDMUOX AWOTMAN
DRCARG3Q086SBEA ANDENOX HWIX ***
DFSARG3Q086SBEA INVCQRMTSPL PCEPILFE
DOTSRG3Q086SBEA GDPCTPI DSERRG3Q086SBEA *
WPSFD4111 GPDICTPI *** DREQRG3Q086SBEA
WPU0531 DMOTRG3Q086SBEA DODGRG3Q086SBEA **
CES3000000008X *** DREQRG3Q086SBEA DHLCRG3Q086SBEA **
OPHNFB *** DODGRG3Q086SBEA ** DTRSRG3Q086SBEA
MORTG10YRX DFXARG3Q086SBEA · DOTSRG3Q086SBEA
GS10TB3MX *** DCLORG3Q086SBEA WPU0531
CPF3MTB3MX DGOERG3Q086SBEA WPU0561
AMBSLREALX DONGRG3Q086SBEA AHETPIX ***
M2REALX DHUTRG3Q086SBEA · CES2000000008X **
CONSUMERX *** DHLCRG3Q086SBEA CES3000000008X *
REVOLSLX DRCARG3Q086SBEA OPHNFB
TABSHNOX DFSARG3Q086SBEA ** GS10TB3MX ***
EXSZUSX * DOTSRG3Q086SBEA *** AMBSLREALX
EXUSUKX CES2000000008X M1REALX **
EXCAUSX CES3000000008X · MZMREALX **
IPB51222S OPHPBS BUSLOANSX ·
UEMPMEAN ** MORTGAGE30US REVOLSLX
TOTRESNS MORTG10YRX *** EXSZUSX
CPIAPPSL GS10TB3MX ** UMCSENTX *
CUSR0000SAD AMBSLREALX *** UEMPMEAN ·
CUSR0000SA0L2 M1REALX *** NONBORRES
DTCTHFNM · M2REALX GS5
INVEST BUSLOANSX *** TB3SMFFM ·
COMPAPFF ** CONSUMERX * WPSID62
PERMITNE REVOLSLX * DTCOLNVHFNM
PERMITMW LIABPIX DTCTHFNM ***
TLBSNNCBX · TARESAX INVEST ·
TLBSNNCBBDIX VXOCLSX * PERMITNE
TTAABSNNCBX EXSZUSX PERMITS
NNBTILQ027SBDIX EXJPUSX · NASDAQCOM ***

EXUSUKX TTAABSNNCBX
IPFUELS *** TNWMVBSNNCBX
NONBORRES NNBTILQ027SBDIX **
PPICMM
CPITRNSL
CPIMEDSL *
CUSR0000SAD *
CES0600000008
DTCOLNVHFNM
DTCTHFNM *
CONSPIX **
NIKKEI225
NASDAQCOM
TLBSNNCBX
TNWMVBSNNCBX
NNBTILQ027SX ***
NNBTILQ027SBDIX

Notes: OLS regressions estimated on data from 1974Q1 to 2017Q4 using HAC standard errors.
For each h, the dependent variable is the h-quarter cumulative GDP growth. Regressors are at
time t − h and are selected by LASSO, using the value of λ that minimizes the cross-validated
MSE. Significance levels: *** 0.1%, ** 1%, * 5%, · 10%.

79



Table 2.5: Statistical significance in post-LASSO regressions: h > 12 (λ: min MSE)

h = 20 h = 28
(Intercept) *** (Intercept) ***
gs10 *** fedfundsv *
reer gs10 ·
m2 *** m2 ***
houst * hpi
bci ** cred_gdp ***
cli bci *
capr *** capr **
A014RE1Q156NBEA *** mortg ***
A823RL1Q225SBEA pcdgx ·
SLCEX ** PNFIX *
EXPGSC1 A014RE1Q156NBEA **
IPB51110SQ * GCEC1
IPB51220SQ A823RL1Q225SBEA ·
USEHS DPIC96 ·
USMINE *** TCU
CES9091000001 * USFIRE *
CES9093000001 *** USINFO
CIVPART ** USMINE **
UEMP27OV *** USGOVT ·
LNS13023705 CES9092000001
LNS13023569 *** CES9093000001 **
HWIX *** UEMP27OV **
AMDMUOX LNS13023705 ***
INVCQRMTSPL ** DODGRG3Q086SBEA
DGDSRG3Q086SBEA ** DFXARG3Q086SBEA
DDURRG3Q086SBEA DHUTRG3Q086SBEA *
DMOTRG3Q086SBEA WPSFD4111 *
DOTSRG3Q086SBEA OPHPBS *
WPSFD4111 * UNLPNBS
WPU0531 * GS1 **
CES3000000008X MORTG10YRX
COMPRNFB *** M1REALX **
OPHPBS · MZMREALX ***
TB6M3MX *** NONREVSLX ***
MZMREALX · EXCAUSX ·
REALLNX *** B021RE1Q156NBEA
REVOLSLX *** NONBORRES **
TOTALSLX *** WPSID62
EXSZUSX CUSR0000SAD ***
EXJPUSX *** CUSR0000SAS
GFDEBTNX · COMPAPFF
IPFUELS · PERMITS
CPIMEDSL * NIKKEI225
CES0600000008 *** NASDAQCOM
INVEST TLBSNNCBX
NIKKEI225 TLBSNNCBBDIX ***
NASDAQCOM TTAABSNNCBX **
TNWMVBSNNCBBDIX NNBTILQ027SBDIX ***
NNBTILQ027SX
NNBTILQ027SBDIX *

Notes: OLS regressions estimated on data from 1974Q1 to 2017Q4 using HAC standard errors. For
each h, the dependent variable is the h-quarter cumulative GDP growth. Regressors are at time t−h

and are selected by LASSO, using the value of λ that minimizes the cross-validated MSE. Significance
levels: *** 0.1%, ** 1%, * 5%, · 10%.
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Table 2.6: Statistical significance in post-LASSO regressions: h ≤ 12 (λ: one-s.e. rule)

h = 1 h = 4 h = 12

(Intercept) * (Intercept) * (Intercept) ***
bci hpi ** infl
cli ** unrate ** sp500 **
PCESVX * bci · hpi
A014RE1Q156NBEA *** nfci · houst *
USMINE · PCESVX cred
PERMIT A014RE1Q156NBEA *** cli *
GPDICTPI A823RL1Q225SBEA capr ***
DFDHRG3Q086SBEA IPB51220SQ mortg_inc
DFXARG3Q086SBEA USMINE * A823RL1Q225SBEA
MORTG10YRX · USGOVT IPB51110SQ
CPF3MTB3MX USWTRADE * IPNCONGD **
TABSHNOX · LNS14000012 * IPBUSEQ *
IPB51222S LNS13023705 *** USEHS
CUSR0000SAS HWIX * USINFO *
PERMITMW HOUST5F USMINE
PERMITW AMDMUOX CES9091000001
TLBSNNCBBDIX * DMOTRG3Q086SBEA · CES9092000001 ***
NNBTILQ027SBDIX ** DREQRG3Q086SBEA AWOTMAN ·

DODGRG3Q086SBEA ** HWIX ***
DFXARG3Q086SBEA * DSERRG3Q086SBEA *
DCLORG3Q086SBEA DREQRG3Q086SBEA
DGOERG3Q086SBEA · DODGRG3Q086SBEA ***
DHUTRG3Q086SBEA DTRSRG3Q086SBEA
DHLCRG3Q086SBEA DOTSRG3Q086SBEA
DRCARG3Q086SBEA WPU0531
DFSARG3Q086SBEA AHETPIX ·
DOTSRG3Q086SBEA ** OPHNFB **
WPSFD4111 TB3MS **
CES2000000008X GS1TB3MX
CES3000000008X GS10TB3MX ***
OPHPBS AMBSLREALX
MORTGAGE30US * M1REALX ***
MORTG10YRX * MZMREALX ***
TB6M3MX REVOLSLX
GS10TB3MX ** EXSZUSX
AMBSLREALX * EXJPUSX
M1REALX UMCSENTX *
M2REALX UEMPMEAN *
CONSUMERX ** TB3SMFFM
REVOLSLX WPSID62 *
TARESAX DTCOLNVHFNM
VXOCLSX *** DTCTHFNM ***
EXUSUKX · INVEST
UMCSENTX COMPAPFF
IPFUELS * PERMITNE ·
PPICMM · PERMITS **
CES0600000008 NASDAQCOM **
DTCOLNVHFNM TTAABSNNCBX
DTCTHFNM · TNWMVBSNNCBX
CONSPIX *** NNBTILQ027SBDIX
NIKKEI225
TLBSNNCBX *
TNWMVBSNNCBX *
NNBTILQ027SX ***
NNBTILQ027SBDIX ***

Notes: OLS regressions estimated on data from 1974Q1 to 2017Q4 using HAC standard errors.
For each h, the dependent variable is the h-quarter cumulative GDP growth. Regressors are
at time t − h and are selected by LASSO, using the one-standard-error rule for λ. Significance
levels: *** 0.1%, ** 1%, * 5%, · 10%.
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Table 2.7: Statistical significance in post-LASSO regressions: h > 12 (λ: one-s.e. rule)

h = 20 h = 28

(Intercept) *** (Intercept) ***
gs10 *** fedfunds **
reer gs10
m2 *** m2 ***
houst hpi
cli cred_gdp ***
capr *** bci *
pip_inc * capr
A014RE1Q156NBEA *** mortg ***
A823RL1Q225SBEA prfi_gdp
SLCEX *** PNFIX
EXPGSC1 * A014RE1Q156NBEA ***
IPB51110SQ GCEC1
IPB51220SQ ** A823RL1Q225SBEA
USEHS TCU ·
USMINE *** USFIRE *
CES9091000001 · USINFO
CES9093000001 *** USMINE **
CIVPART *** USGOVT
UEMP27OV *** CES9092000001 ·
LNS13023705 CES9093000001 **
LNS13023569 * UEMP27OV ***
HWIX *** LNS13023705 ***
AMDMUOX DODGRG3Q086SBEA
DGDSRG3Q086SBEA *** DFXARG3Q086SBEA
DDURRG3Q086SBEA DHUTRG3Q086SBEA *
DMOTRG3Q086SBEA · WPSFD4111 **
DOTSRG3Q086SBEA OPHPBS ***
WPSFD4111 * UNLPNBS
WPU0531 ** GS1 ***
CES3000000008X MORTG10YRX
COMPRNFB *** M1REALX **
TB6M3MX *** MZMREALX ***
MZMREALX * CONSUMERX
REALLNX *** NONREVSLX ***
REVOLSLX *** EXCAUSX *
TOTALSLX *** GS5 ·
EXJPUSX ** CUSR0000SAD ***
GFDEBTNX ** COMPAPFF
CPIMEDSL ** PERMITS
CES0600000008 ** NIKKEI225 **
INVEST NASDAQCOM *
CONSPIX * TLBSNNCBX
NIKKEI225 TLBSNNCBBDIX ***
NASDAQCOM TTAABSNNCBX **
TNWMVBSNNCBBDIX ** NNBTILQ027SBDIX ***
NNBTILQ027SX *
NNBTILQ027SBDIX

Notes: OLS regressions estimated on data from 1974Q1 to 2017Q4 using HAC standard errors. For
each h, the dependent variable is the h-quarter cumulative GDP growth. Regressors are at time t−h

and are selected by LASSO, using the one-standard-error rule for λ. Significance levels: *** 0.1%, **
1%, * 5%, · 10%.
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Table 2.8: Best subset selection for increasing model size: h = 1

Notes: The table shows the selected subsets of regressors for an increasing number of regressors k, based on MSE minimization. Note that for
k > 4 the results should be taken as approximations of the true MSE-minimizing subsets (see note 14 in the text). The dependent variable
is the h-quarter cumulative growth rate of GDP. Regressors are lagged variables between time t − h − 4 and time t − h. Blue cells indicate
inclusion in the best subset. The red border identifies the model with the lowest BIC. Estimated over the period 1974Q1-2017Q4.
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Table 2.9: Best subset selection for increasing model size: h = 4

Notes: The table shows the selected subsets of regressors for an increasing number of regressors k, based on MSE minimization. Note that for
k > 4 the results should be taken as approximations of the true MSE-minimizing subsets (see note 14 in the text). The dependent variable
is the h-quarter cumulative growth rate of GDP. Regressors are lagged variables between time t − h − 4 and time t − h. Blue cells indicate
inclusion in the best subset. The red border identifies the model with the lowest BIC. Estimated over the period 1974Q1-2017Q4.
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Table 2.10: Best subset selection for increasing model size: h = 12

Notes: The table shows the selected subsets of regressors for an increasing number of regressors k, based on MSE minimization. Note that for
k > 4 the results should be taken as approximations of the true MSE-minimizing subsets (see note 14 in the text). The dependent variable
is the h-quarter cumulative growth rate of GDP. Regressors are lagged variables between time t − h − 4 and time t − h. Blue cells indicate
inclusion in the best subset. The red border identifies the model with the lowest BIC. Estimated over the period 1974Q1-2017Q4.
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Table 2.11: Best subset selection for increasing model size: h = 20

Notes: The table shows the selected subsets of regressors for an increasing number of regressors k, based on MSE minimization. Note that for
k > 4 the results should be taken as approximations of the true MSE-minimizing subsets (see note 14 in the text). The dependent variable
is the h-quarter cumulative growth rate of GDP. Regressors are lagged variables between time t − h − 4 and time t − h. Blue cells indicate
inclusion in the best subset. The red border identifies the model with the lowest BIC. Estimated over the period 1974Q1-2017Q4.
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Table 2.12: Best subset selection for increasing model size: h = 28

Notes: The table shows the selected subsets of regressors for an increasing number of regressors k, based on MSE minimization. Note that for
k > 4 the results should be taken as approximations of the true MSE-minimizing subsets (see note 14 in the text). The dependent variable
is the h-quarter cumulative growth rate of GDP. Regressors are lagged variables between time t − h − 4 and time t − h. Blue cells indicate
inclusion in the best subset. The red border identifies the model with the lowest BIC. Estimated over the period 1974Q1-2017Q4.
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Table 2.13: Direct forecasts by single-predictor ARDL models: mean squared forecast errors

h = 1 h = 4 h = 12 h = 20 h = 28

1 NNBTILQ027SBDIx 0.8905 NNBTILQ027SBDIx 0.5250 NNBTILQ027SBDIx 0.3223 capr 0.2859 capr 0.2683
2 S_P_div_yield 0.8999 capr 0.7265 capr 0.5153 NNBTILQ027SBDIx 0.4293 pr 0.4318
3 cape 0.9106 AMDMUOx 0.8139 cli 0.6170 pr 0.4576 NNBTILQ027SBDIx 0.5188
4 LNS12032194 0.9216 pr 0.8349 AMDMUOx 0.7760 cli 0.7847 NASDAQCOM 0.8143
5 AMDMUOx 0.9263 cli 0.8496 NWPIx 0.8228 AHETPIx 0.9012 EXCAUSx 0.8284
6 IPCONGD 0.9264 IPCONGD 0.8574 cred_gdp 0.8588 IPCONGD 0.9125 baa10ym 0.8798
7 TLBSHNOx 0.9349 NWPIx 0.8649 IPCONGD 0.8651 reer 0.9204 IPNCONGD 0.8825
8 CUSR0000SAS 0.9379 IPNCONGD 0.8700 fedfunds 0.8755 SLCEx 0.9222 VXOCLSX 0.8858
9 PCECC96 0.9404 PCECC96 0.8728 GS1TB3Mx 0.8841 LNS13023557 0.9328 IPCONGD 0.8880
10 CMRMTSPLx 0.9427 prfi_gdp 0.8780 IPNCONGD 0.9036 ANDENOx 0.9356 WPU0531 0.8915
11 TABSHNOx 0.9551 prfi 0.8840 gs10 0.9078 IPNCONGD 0.9513 reer 0.8994
12 TNWBSHNOx 0.9586 PERMITS 0.8850 PERMITMW 0.9201 AMDMUOx 0.9535 HWIx 0.9028
13 IPMANSICS 0.9590 CUSR0000SAS 0.9027 PERMIT 0.9319 PERMITMW 0.9561 B021RE1Q156NBEA 0.9056
14 HNOREMQ027Sx 0.9631 S_P_div_yield 0.9063 CUSR0000SAS 0.9366 TNWBSNNBBDIx 0.9590 cli 0.9091
15 HOUSTMW 0.9640 REVOLSLx 0.9151 bci 0.9375 baa10ym 0.9602 TWEXMMTH 0.9209
16 prfi_gdp 0.9680 cape 0.9172 PCECC96 0.9397 LNS14000026 0.9607 TNWBSNNBBDIx 0.9213
17 NIKKEI225 0.9683 PERMIT 0.9192 DFXARG3Q086SBEA 0.9415 UNRATE 0.9618 hpi 0.9217
18 pr 0.9696 PERMITW 0.9208 PCESVx 0.9418 IPDCONGD 0.9623 LNS13023557 0.9220
19 IPNCONGD 0.9703 HOUSTW 0.9275 USMINE 0.9419 UEMP27OV 0.9636 prfi_gdp 0.9242
20 mortg_inc 0.9710 IPB51220SQ 0.9308 PERMITW 0.9432 B021RE1Q156NBEA 0.9648 TNWMVBSNNCBBDIx 0.9313
21 CPILFESL 0.9729 S_P_500 0.9353 PERMITNE 0.9436 HOUST 0.9648 LNS13023705 0.9424
22 DTRSRG3Q086SBEA 0.9736 HOUSTS 0.9363 HOUST 0.9443 HWIx 0.9651 unrate 0.9428
23 PCNDx 0.9746 NASDAQCOM 0.9411 FEDFUNDS 0.9452 HOUSTMW 0.9657 PERMITS 0.9437
24 IPDCONGD 0.9754 houst 0.9429 HOUSTW 0.9461 PERMIT 0.9679 AHETPIx 0.9523
25 cred_gdp 0.9760 hpi 0.9430 SLCEx 0.9492 UEMP15T26 0.9684 PERMIT 0.9525
26 PERMITMW 0.9761 PRFIx 0.9440 CPILFESL 0.9495 USMINE 0.9685 HOUSTS 0.9555
27 IPB51110SQ 0.9761 S_P_indust 0.9448 UEMP15T26 0.9512 DFSARG3Q086SBEA 0.9695 UNRATE 0.9595
28 S_P_indust 0.9762 CPILFESL 0.9489 UEMP5TO14 0.9531 PCECC96 0.9707 ANDENOx 0.9627
29 IPDBS 0.9783 GS1TB3Mx 0.9501 ISRATIOx 0.9534 cred_gdp 0.9712 OUTBS 0.9628
30 S_P_500 0.9789 PCNDx 0.9511 EXCAUSx 0.9544 LNS13023705 0.9730 IPDCONGD 0.9629

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR (Table 2.15). All models are estimated
recursively (shortest sample 1967Q1-1983Q1, longest sample 1967Q1-2016Q1). MSFE computed over the period 1990Q1-2017Q4.
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Table 2.14: Iterated forecasts by bivariate VAR models: mean squared forecast errors

h = 1 h = 4 h = 12 h = 20 h = 28

1 cred_gdp 0.9112 NNBTILQ027SBDIx 0.5421 NNBTILQ027SBDIx 0.3679 capr 0.4381 capr 0.5035
2 S_P_div_yield 0.9307 capr 0.8056 capr 0.6610 NNBTILQ027SBDIx 0.4870 pr 0.5465
3 CUMFNS 0.9442 CPF3MTB3Mx 0.8094 cli 0.7063 pr 0.5782 prfi_gdp 0.6669
4 CPILFESL 0.9469 prfi_gdp 0.8112 AMDMUOx 0.7275 AMDMUOx 0.7191 NNBTILQ027SBDIx 0.6928
5 TLBSHNOx 0.9634 AMDMUOx 0.8260 pr 0.7958 NWPIx 0.7344 HNOREMQ027Sx 0.6939
6 DFSARG3Q086SBEA 0.9667 S_P_div_yield 0.8438 prfi_gdp 0.8287 prfi_gdp 0.7440 cli 0.7950
7 BAA 0.9689 pr 0.8471 AAA 0.8525 cli 0.7702 AMDMUOx 0.7973
8 CUSR0000SAS 0.9708 TLBSNNCBBDIx 0.8567 USMINE 0.8588 HNOREMQ027Sx 0.7954 REALLNx 0.8111
9 CMRMTSPLx 0.9771 hpi 0.8627 PRFIx 0.8615 TNWBSNNBBDIx 0.8610 USGOVT 0.8122
10 TCU 0.9850 nfci 0.8723 NWPIx 0.8714 TNWMVBSNNCBBDIx 0.8756 PRFIx 0.8449
11 FPIx 0.9886 EXPGSC1 0.8789 GS10TB3Mx 0.8959 GS10TB3Mx 0.8765 NWPIx 0.8532
12 cape 1.0111 sp500 0.8893 USGOVT 0.8994 CNCFx 0.8807 GS10TB3Mx 0.8818
13 LNS12032194 1.0123 PCNDx 0.8972 CPF3MTB3Mx 0.9023 PRFIx 0.8862 CP3M 0.8982
14 sp500 1.0128 CUSR0000SAS 0.9006 nfci 0.9078 USGOVT 0.8980 TB3MS 0.8990
15 pr 1.0177 cape 0.9036 GS10 0.9107 CPILFESL 0.9002 PERMITS 0.9065
16 PERMITMW 1.0195 S_P_500 0.9040 houst 0.9147 TLBSHNOx 0.9019 TB6MS 0.9109
17 S_P_500 1.0306 cli 0.9047 T5YFFM 0.9168 REALLNx 0.9084 FEDFUNDS 0.9119
18 CES0600000007 1.0346 mortg 0.9087 BAA 0.9169 houst 0.9161 CPIMEDSL 0.9155
19 AAA 1.0346 S_P_indust 0.9148 GS5 0.9190 nfci 0.9223 houst 0.9156
20 bci 1.0373 PERMITMW 0.9159 hpi 0.9230 PERMITNE 0.9245 GS1 0.9180
21 GPDIC1 1.0383 OILPRICEx 0.9197 CP3M 0.9247 S_P_div_yield 0.9264 PERMITNE 0.9180
22 nfci 1.0420 OUTBS 0.9200 PERMITNE 0.9271 PERMITS 0.9288 sp500 0.9214
23 PERMITS 1.0445 CPILFESL 0.9224 HOUSTNE 0.9328 GS1TB3Mx 0.9379 TLBSHNOx 0.9263
24 UNLPNBS 1.0448 DFSARG3Q086SBEA 0.9244 S_P_div_yield 0.9335 CES0600000008 0.9435 GPDIC1 0.9314
25 DPIC96 1.0463 oil 0.9251 CPILFESL 0.9358 T5YFFM 0.9444 BAA 0.9314
26 cred 1.0477 MORTG10YRx 0.9251 CES0600000008 0.9384 S_P_500 0.9449 CES0600000008 0.9318
27 OILPRICEx 1.0478 PERMITS 0.9259 sp500 0.9418 sp500 0.9452 S_P_500 0.9331
28 CUSR0000SA0L5 1.0511 NWPIx 0.9269 MZMREALx 0.9442 UEMP27OV 0.9456 S_P_indust 0.9348
29 S_P_indust 1.0513 CES0600000008 0.9309 AAAFFM 0.9458 AWHNONAG 0.9490 NNBTASQ027Sx 0.9362
30 oil 1.0523 GS1TB3Mx 0.9450 HOUSTMW 0.9492 GDPCTPI 0.9501 nfci 0.9387

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR (Table 2.16). All models are estimated
recursively (shortest sample 1967Q1-1983Q1, longest sample 1967Q1-2016Q1). MSFE computed over the period 1990Q1-2017Q4.
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Table 2.15: Benchmark AR for direct forecasts: root mean squared forecast error (RMSFE)

h = 1 h = 4 h = 12 h = 20 h = 28

RMSFE 0.00571 0.01787 0.04402 0.06211 0.08014

Notes: Out-of-sample RMSFE for the h-period-ahead real GDP level. The model is estimated recur-
sively (shortest sample 1967Q1-1983Q1, longest sample 1967Q1-2016Q1). The RMSFE is computed
over the period 1990Q1-2017Q4.

Table 2.16: Benchmark AR for iterated forecasts: root mean squared forecast error (RMSFE)

h = 1 h = 4 h = 12 h = 20 h = 28

RMSFE 0.00679 0.01796 0.04252 0.06244 0.08718

Notes: Out-of-sample RMSFE for the h-period-ahead real GDP level. The model is estimated recur-
sively (shortest sample 1967Q1-1983Q1, longest sample 1967Q1-2016Q1). The RMSFE is computed
over the period 1990Q1-2017Q4.

Table 2.17: Best small multivariate VAR models: mean squared forecast errors

target h best model h = 1 h = 4 h = 12 h = 20 h = 28

1 fedfunds cli prfi pip_inc 0.826 0.829 0.918 2.395 3.158
4 infl sp500 hpi pr 0.927 0.587 0.660 1.001 1.024
12 houst oil cli capr 0.959 0.767 0.342 0.292 0.427
20 m2 houst cli capr 0.965 0.893 0.350 0.246 0.410
28 reer m2 pr prfi 1.218 0.905 0.762 0.388 0.262

Notes: For each target horizon h, the table shows the VAR model with the lowest out-of-sample MSFE
for the h-period-ahead real GDP level, considering all possible combinations of k predictors of GDP
from the reduced dataset (Table 2.1), with k = 1, 2, 3, 4. For each model, the MSFE is reported for all
horizons, relative to the benchmark AR (Table 2.16). All models are estimated recursively (shortest
sample 1967Q1-1983Q1, longest sample 1967Q1-2016Q1). The MSFE are computed over the period
1990Q1-2017Q4.
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Figure 2.3: Predictors’ frequencies of inclusion in best-performing VAR models: h = 1

Notes: The left panel shows the frequencies of inclusion in the best-performing (top 5%, top 1%, top 100, top 10 and single best) VAR models
estimated on the reduced dataset (Table 2.1). The VARs include GDP growth plus all possible combinations of k predictors, for k = 1, 2, 3, 4

(17,901 models in total), and are ranked using the MSFE of iterated forecasts for the h-period-ahead GDP level (see also Table 2.17). The
histogram in the right panel shows the frequencies of inclusion in the top 1% models.
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Figure 2.4: Predictors’ frequencies of inclusion in best-performing VAR models: h = 4

Notes: The left panel shows the frequencies of inclusion in the best-performing (top 5%, top 1%, top 100, top 10 and single best) VAR models
estimated on the reduced dataset (Table 2.1). The VARs include GDP growth plus all possible combinations of k predictors, for k = 1, 2, 3, 4

(17,901 models in total), and are ranked using the MSFE of iterated forecasts for the h-period-ahead GDP level (see also Table 2.17). The
histogram in the right panel shows the frequencies of inclusion in the top 1% models.
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Figure 2.5: Predictors’ frequencies of inclusion in best-performing VAR models: h = 12

Notes: The left panel shows the frequencies of inclusion in the best-performing (top 5%, top 1%, top 100, top 10 and single best) VAR models
estimated on the reduced dataset (Table 2.1). The VARs include GDP growth plus all possible combinations of k predictors, for k = 1, 2, 3, 4

(17,901 models in total), and are ranked using the MSFE of iterated forecasts for the h-period-ahead GDP level (see also Table 2.17). The
histogram in the right panel shows the frequencies of inclusion in the top 1% models.
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Figure 2.6: Predictors’ frequencies of inclusion in best-performing VAR models: h = 20

Notes: The left panel shows the frequencies of inclusion in the best-performing (top 5%, top 1%, top 100, top 10 and single best) VAR models
estimated on the reduced dataset (Table 2.1). The VARs include GDP growth plus all possible combinations of k predictors, for k = 1, 2, 3, 4

(17,901 models in total), and are ranked using the MSFE of iterated forecasts for the h-period-ahead GDP level (see also Table 2.17). The
histogram in the right panel shows the frequencies of inclusion in the top 1% models.
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Figure 2.7: Predictors’ frequencies of inclusion in best-performing VAR models: h = 28

Notes: The left panel shows the frequencies of inclusion in the best-performing (top 5%, top 1%, top 100, top 10 and single best) VAR models
estimated on the reduced dataset (Table 2.1). The VARs include GDP growth plus all possible combinations of k predictors, for k = 1, 2, 3, 4

(17,901 models in total), and are ranked using the MSFE of iterated forecasts for the h-period-ahead GDP level (see also Table 2.17). The
histogram in the right panel shows the frequencies of inclusion in the top 1% models.
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Table 2.18: Large Bayesian VAR: mean squared forecast error

predictors λ h = 1 h = 4 h = 12 h = 20 h = 28

all 0.0010 4.7603 1.0798 1.3588 1.7666 1.8463
all 0.0025 2.0043 0.8035 1.0290 1.2266 1.2395
all 0.0050 1.8854 0.8409 1.0554 1.1268 1.1611
all 0.0075 1.8402 0.9053 1.1120 1.0863 1.1532
all 0.0100 4.7603 1.0798 1.3588 1.7666 1.8463

best 50 for h = 1 λ∗ ∈ [0.001, 0.1] 1.0378 0.8953 1.1578 1.2574 1.1216
best 50 for h = 4 λ∗ ∈ [0.001, 0.1] 1.0493 0.8246 0.9024 1.0850 0.9906
best 50 for h = 12 λ∗ ∈ [0.001, 0.1] 1.0596 1.0238 0.8163 0.9203 0.7501
best 50 for h = 20 λ∗ ∈ [0.001, 0.1] 0.9986 0.7456 0.7500 0.8177 0.6952
best 50 for h = 28 λ∗ ∈ [0.001, 0.1] 1.0705 1.1472 1.1542 1.3102 0.9532
financial cycle (68) λ∗ ∈ [0.001, 0.1] 3.1697 0.8889 0.8772 0.8754 0.8428

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). λ is the inverse measure of tightness of the prior on VAR coefficients and λ∗ denotes the
value that maximizes the marginal likelihood, selected recursively. The tightness of the prior on the
sum of coefficients is given by τ = 100λ for all models. On the selection of the best 50 predictors for
different horizons, see section 2.5.2.1. See also note 21 on how financial-cycle indicators (68 variables)
are identified.
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Table 2.19: LASSO VAR on full dataset: mean squared forecast error

λ h = 1 h = 4 h = 12 h = 20 h = 28

0.00025 1.17 1.58 6.14 >10 >10
0.00050 1.32 0.88 0.80 0.76 0.65
0.00075 1.53 0.91 0.83 0.79 0.67
0.00100 1.79 0.94 0.86 0.81 0.69
0.00125 2.07 0.97 0.88 0.82 0.70
0.00150 2.42 0.99 0.90 0.83 0.71

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). λ denotes the penalty parameter in the LASSO VAR regression.

Table 2.20: LASSO VAR on full dataset: sparsity in 2016Q1 (λ = 0.0005)

Notes: Each row represents an equation of the LASSO VAR, each column a right-hand-side variable.
Colored cells identify non-zero coefficients in the model estimated in 2016Q1.
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Table 2.21: LASSO VAR on reduced dataset: mean squared forecast error

λ h = 1 h = 4 h = 12 h = 20 h = 28

0.0010 1.2035 1.0259 >10 >10 >10
0.0025 1.3214 0.9665 0.8773 0.7984 0.6675
0.0050 1.4678 0.8834 0.8536 0.7962 0.6559
0.0075 1.6846 0.9142 0.8790 0.8232 0.6863
0.0100 1.9680 0.9562 0.8993 0.8436 0.7128
0.0125 2.2893 0.9877 0.9120 0.8535 0.7281

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). λ denotes the penalty parameter in the LASSO VAR regression.

Table 2.22: LASSO VAR on reduced dataset: sparsity in 2016Q1 (λ = 0.005)

Notes: Each row represents an equation of the LASSO VAR, each column a right-hand-side variable.
Colored cells identify non-zero coefficients in the model estimated in 2016Q1.
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Table 2.23: Post-LASSO VAR on reduced dataset: mean squared forecast error

λ h = 1 h = 4 h = 12 h = 20 h = 28

0.0025 1.3390 1.1249 0.9157 1.2095 1.9520
0.0050 1.2201 0.9159 0.8634 0.8830 0.7536
0.0075 1.2526 0.9596 0.9746 0.8646 0.6285
0.0100 1.2895 1.0221 1.0966 1.1087 0.7586
0.0125 1.2724 0.9803 1.0502 1.0061 0.7985

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). λ denotes the penalty parameter in the LASSO VAR regression.

Table 2.24: LASSO VAR using financial-cycle indicators: mean squared forecast error

λ h = 1 h = 4 h = 12 h = 20 h = 28

0.0025 (lag=1) 1.40 0.85 0.81 0.79 0.67
0.0025 (lag=5) 1.37 0.87 0.82 0.74 0.60
0.005 (lag=1) 2.37 0.98 0.89 0.83 0.71
0.005 (lag=5) 2.28 0.96 0.87 0.82 0.69

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). λ denotes the penalty parameter in the LASSO VAR regression. Only financial-cycle
indicators (68 variables) are included in the LASSO VAR in addition to GDP (see note 21 in the
text).

Table 2.25: VAR with principal components: mean squared forecast errors

n. PC h = 1 h = 4 h = 12 h = 20 h = 28

1 1.285 1.180 1.146 1.058 1.015
2 0.925 0.776 1.250 1.045 0.983
3 1.151 0.756 1.070 0.946 0.835
4 1.377 1.150 1.256 1.193 1.174

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). The first column indicates the number of principal components (PC) included in the
VAR. The principal components are extracted from all predictors in the full dataset (Tables 2.1 and
Tables 2.35-2.48).
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Table 2.26: VAR with principal components of financial-cycle indicators: mean squared
forecast errors

n. PC h = 1 h = 4 h = 12 h = 20 h = 28

1 1.099 1.040 1.117 1.211 1.180
2 1.151 0.915 0.884 0.876 0.796
3 1.079 0.986 0.792 0.800 0.773
4 0.986 1.013 1.093 1.278 1.786

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). The first column indicates the number of principal components (PC) included in the
VAR. The principal components are extracted from the pool of financial-cycle indicators included in
the dataset (see note 21 in the text).

Table 2.27: Combinations of direct (ARDL) forecasts: mean squared forecast errors

n. models weights h = 1 h = 4 h = 12 h = 20 h = 28

258 equal 0.948 0.960 0.999 0.999 0.996
bma 0.946 0.960 1.001 1.000 0.994

200 equal 0.926 0.917 0.961 0.967 0.958
bma 0.922 0.914 0.960 0.965 0.953

100 equal 0.906 0.862 0.914 0.930 0.915
bma 0.904 0.857 0.911 0.926 0.911

10 equal 0.817 0.578 0.632 0.687 0.655
bma 0.817 0.578 0.627 0.690 0.662

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.15). The first column indicates the number M of single-predictor ARDL models that are
combined. The total number of available models is 258 (see note 17 in the text). When M < 258, the
models considered are those with the lowest individual MSFE. In the second column, “equal” denotes
equal weighting, “bma” denotes Bayesian model averaging.
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Table 2.28: Combinations of iterated (VAR) forecasts: mean squared forecast errors

n. models weights h = 1 h = 4 h = 12 h = 20 h = 28

256 equal 0.960 0.896 0.927 0.941 0.919
bma 0.956 0.893 0.924 0.941 0.917

200 equal 0.930 0.862 0.913 0.922 0.904
bma 0.925 0.858 0.910 0.921 0.902

100 equal 0.858 0.794 0.834 0.852 0.836
bma 0.853 0.791 0.832 0.851 0.834

10 equal 0.813 0.595 0.464 0.441 0.486
bma 0.814 0.599 0.469 0.447 0.493

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). The first column indicates the number M of of single-predictor VAR models that are
combined. The total number of available models is 256 (see notes 17 and 28 in the text). When
M < 256, the models considered are those with the lowest individual MSFE. In the second column,
“equal” denotes equal weighting, “bma” denotes Bayesian model averaging.

Table 2.29: Combinations of direct (ARDL) forecasts by financial-cycle predictors

weights h = 1 h = 4 h = 12 h = 20 h = 28

equal 0.875 0.868 0.982 0.958 0.926
bma 0.878 0.865 0.986 0.961 0.921

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.15). The combined models are single-predictor ARDL models using financial-cycle indicators
(70 models). In the first column, “equal” denotes equal weighting, “bma” denotes Bayesian model
averaging. See note 21 in the text.
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Table 2.30: Combinations of iterated (VAR) forecasts by financial-cycle predictors

weights h = 1 h = 4 h = 12 h = 20 h = 28

equal 0.893 0.798 0.827 0.826 0.828
bma 0.888 0.795 0.827 0.829 0.829

Notes: Out-of-sample MSFE for the h-quarter-ahead real GDP level, relative to the benchmark AR
(Table 2.16). The combined models are single-predictor VAR models using financial-cycle indicators
(70 models). In the first column, “equal” denotes equal weighting, “bma” denotes Bayesian model
averaging. See note 21 in the text.

Table 2.31: Forecast encompassing and accuracy: ENC-F and MSE-F tests

h = 1 h = 4 h = 12 h = 20 h = 28

capr
ENC-F 0.000 0.000 0.000 0.000 0.000
MSE-F 0.182 0.003 0.007 0.001 0.000

NNBTILQ027SBDIx
ENC-F 0.005 0.000 0.000 0.001 0.009
MSE-F 0.493 0.000 0.000 0.001 0.009

cred_gdp
ENC-F 0.000 0.004 0.013 0.024 0.020
MSE-F 0.002 0.085 0.840 0.929 0.722

Notes: The table reports the p-values of the ENC-F test of forecast encompassing and the MSE-F
test of equal forecast accuracy (Clark and McCracken 2001, 2013) for the h-period-ahead iterated
forecasts of real GDP. Each test compares the bivariate VAR that includes GDP plus the predictor in
the first column of the table with the benchmark AR. In the ENC-F test, the null hypothesis is that
the AR model encompasses the VAR, while under the alternative hypothesis the candidate variable
has predictive content. In the MSE-F test, the null hypothesis is that the AR and VAR models have
equal MSFE, while under the alternative the VAR has a lower MSFE. For both tests, the p-values
are computed using bootstrapped critical values (see Clark and McCracken 2013).
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Table 2.32: Diebold-Mariano test: direct (ARDL) forecasts

h = 1 h = 4 h = 12 h = 20 h = 28

1 NNBTILQ027SBDIx - NNBTILQ027SBDIx - NNBTILQ027SBDIx - capr - capr -
2 S_P_div_yield 0.47 capr 0.09 capr 0.02 NNBTILQ027SBDIx 0.22 pr 0.14
3 cape 0.43 AMDMUOx 0.07 cli 0.03 pr 0.12 NNBTILQ027SBDIx 0.17
4 LNS12032194 0.39 pr 0.04 AMDMUOx 0.08 cli 0.13 NASDAQCOM 0.15
5 AMDMUOx 0.33 cli 0.02 NWPIx 0.05 AHETPIx 0.13 EXCAUSx 0.15
6 IPCONGD 0.35 IPCONGD 0.11 cred_gdp 0.07 IPCONGD 0.14 baa10ym 0.15
7 TLBSHNOx 0.35 NWPIx 0.02 IPCONGD 0.11 reer 0.14 IPNCONGD 0.15
8 CUSR0000SAS 0.32 IPNCONGD 0.10 fedfunds 0.08 SLCEx 0.13 VXOCLSX 0.16
9 PCECC96 0.34 PCECC96 0.09 GS1TB3Mx 0.11 LNS13023557 0.14 IPCONGD 0.15
10 CMRMTSPLx 0.31 prfi_gdp 0.02 IPNCONGD 0.11 ANDENOx 0.13 WPU0531 0.15
11 TABSHNOx 0.33 prfi 0.02 gs10 0.10 IPNCONGD 0.14 reer 0.14
12 TNWBSHNOx 0.33 PERMITS 0.06 PERMITMW 0.07 AMDMUOx 0.14 HWIx 0.14
13 IPMANSICS 0.28 CUSR0000SAS 0.12 PERMIT 0.08 PERMITMW 0.13 B021RE1Q156NBEA 0.14
14 HNOREMQ027Sx 0.27 S_P_div_yield 0.12 CUSR0000SAS 0.11 TNWBSNNBBDIx 0.13 cli 0.14
15 HOUSTMW 0.22 REVOLSLx 0.12 bci 0.10 baa10ym 0.14 TWEXMMTH 0.13
16 prfi_gdp 0.23 cape 0.09 PCECC96 0.09 LNS14000026 0.13 TNWBSNNBBDIx 0.15
17 NIKKEI225 0.25 PERMIT 0.04 DFXARG3Q086SBEA 0.10 unrate 0.14 hpi 0.16
18 pr 0.21 PERMITW 0.03 PCESVx 0.10 IPDCONGD 0.13 LNS13023557 0.15
19 IPNCONGD 0.21 HOUSTW 0.03 USMINE 0.09 UEMP27OV 0.14 prfi_gdp 0.15
20 mortg_inc 0.21 IPB51220SQ 0.13 PERMITW 0.09 B021RE1Q156NBEA 0.14 TNWMVBSNNCBBDIx 0.16
21 CPILFESL 0.22 S_P_500 0.09 PERMITNE 0.10 HOUST 0.14 LNS13023705 0.15
22 DTRSRG3Q086SBEA 0.22 HOUSTS 0.04 HOUST 0.08 HWIx 0.12 unrate 0.15
23 PCNDx 0.21 NASDAQCOM 0.09 fedfunds 0.09 HOUSTMW 0.13 PERMITS 0.15
24 IPDCONGD 0.21 houst 0.03 HOUSTW 0.08 PERMIT 0.14 AHETPIx 0.14
25 cred_gdp 0.21 hpi 0.02 SLCEx 0.11 UEMP15T26 0.14 PERMIT 0.15
26 PERMITMW 0.21 PRFIx 0.02 CPILFESL 0.11 USMINE 0.13 HOUSTS 0.16
27 IPB51110SQ 0.22 S_P_indust 0.10 UEMP15T26 0.11 DFSARG3Q086SBEA 0.14 unrate 0.15
28 S_P_indust 0.25 CPILFESL 0.12 UEMP5TO14 0.11 PCECC96 0.14 ANDENOx 0.15
29 IPDBS 0.21 GS1TB3Mx 0.08 ISRATIOx 0.09 cred_gdp 0.06 OUTBS 0.14
30 S_P_500 0.23 PCNDx 0.09 EXCAUSx 0.10 LNS13023705 0.14 IPDCONGD 0.15

Notes: P-values of the Diebold-Mariano test of equal MSFE comparing the GDP forecasts made by the best predictor and those made by each
of the following 29 predictors in the ranking of Table 2.13. Under the alternative hypothesis, forecasts by the best predictor have lower MSFE.
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Table 2.33: Diebold-Mariano test: iterated (VAR) forecasts

h = 1 h = 4 h = 12 h = 20 h = 28

1 cred_gdp - NNBTILQ027SBDIx - NNBTILQ027SBDIx - capr - capr -
2 S_P_div_yield 0.43 capr 0.06 capr 0.12 NNBTILQ027SBDIx 0.42 pr 0.20
3 CUMFNS 0.37 CPF3MTB3Mx 0.11 cli 0.06 pr 0.18 prfi_gdp 0.20
4 CPILFESL 0.38 prfi_gdp 0.14 AMDMUOx 0.07 AMDMUOx 0.17 NNBTILQ027SBDIx 0.17
5 TLBSHNOx 0.27 AMDMUOx 0.03 pr 0.11 NWPIx 0.16 HNOREMQ027Sx 0.20
6 DFSARG3Q086SBEA 0.31 S_P_div_yield 0.13 prfi_gdp 0.06 prfi_gdp 0.13 cli 0.18
7 BAA 0.32 pr 0.03 AAA 0.10 cli 0.18 AMDMUOx 0.15
8 CUSR0000SAS 0.26 TLBSNNCBBDIx 0.10 USMINE 0.03 HNOREMQ027Sx 0.15 REALLNx 0.21
9 CMRMTSPLx 0.25 hpi 0.03 PRFIx 0.06 TNWBSNNBBDIx 0.14 USGOVT 0.19
10 TCU 0.24 nfci 0.09 NWPIx 0.06 TNWMVBSNNCBBDIx 0.15 PRFIx 0.25
11 FPIx 0.26 EXPGSC1 0.10 GS10TB3Mx 0.09 GS10TB3Mx 0.14 NWPIx 0.10
12 cape 0.18 sp500 0.09 USGOVT 0.12 CNCFx 0.15 GS10TB3Mx 0.15
13 LNS12032194 0.20 PCNDx 0.08 CPF3MTB3Mx 0.10 PRFIx 0.17 CP3M 0.17
14 sp500 0.20 CUSR0000SAS 0.09 nfci 0.09 USGOVT 0.16 TB3MS 0.17
15 pr 0.16 cape 0.10 gs10 0.09 CPILFESL 0.15 PERMITS 0.19
16 PERMITMW 0.17 S_P_500 0.09 houst 0.10 TLBSHNOx 0.15 TB6MS 0.15
17 S_P_500 0.16 cli 0.01 T5YFFM 0.08 REALLNx 0.15 fedfunds 0.17
18 CES0600000007 0.12 mortg 0.02 BAA 0.09 houst 0.15 CPIMEDSL 0.19
19 AAA 0.17 S_P_indust 0.10 GS5 0.09 nfci 0.13 houst 0.16
20 bci 0.17 PERMITMW 0.05 hpi 0.06 PERMITNE 0.17 GS1 0.14
21 GPDIC1 0.11 OILPRICEx 0.09 CP3M 0.09 S_P_div_yield 0.15 PERMITNE 0.22
22 nfci 0.16 OUTBS 0.09 PERMITNE 0.11 PERMITS 0.15 sp500 0.13
23 PERMITS 0.14 CPILFESL 0.09 HOUSTNE 0.13 GS1TB3Mx 0.15 TLBSHNOx 0.15
24 UNLPNBS 0.16 DFSARG3Q086SBEA 0.08 S_P_div_yield 0.10 CES0600000008 0.14 GPDIC1 0.15
25 DPIC96 0.12 oil 0.08 CPILFESL 0.11 T5YFFM 0.15 BAA 0.12
26 cred 0.08 MORTG10YRx 0.10 CES0600000008 0.10 S_P_500 0.15 CES0600000008 0.15
27 OILPRICEx 0.14 PERMITS 0.05 sp500 0.10 sp500 0.14 S_P_500 0.13
28 CUSR0000SA0L5 0.15 NWPIx 0.05 MZMREALx 0.12 UEMP27OV 0.15 S_P_indust 0.13
29 S_P_indust 0.12 CES0600000008 0.11 AAAFFM 0.06 AWHNONAG 0.15 NNBTASQ027Sx 0.12
30 oil 0.14 GS1TB3Mx 0.09 HOUSTMW 0.07 GDPCTPI 0.14 nfci 0.09

Notes: P-values of the Diebold-Mariano test of equal MSFE comparing the GDP forecasts made by the best predictor and those made by each
of the following 29 predictors in the ranking of Table 2.14. Under the alternative hypothesis, forecasts by the best predictor have lower MSFE.
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Table 2.34: IMF forecasts: mean squared forecast error

h = 4 h = 12 h = 20

RMSFE 0.015 0.040 0.065
relative MSFE direct 0.723 0.819 1.082
relative MSFE indirect 0.715 0.877 1.070

Notes: The results are based on forecasts published in the IMF World Economic Outlook from 1990 to
2017 (Spring issues, see section 2.5.5 in the text for details). The benchmarks for the relative MSFE
are the direct and iterated AR forecasts (Tables 2.15 and 2.16, respectively).

Figure 2.8: Forecasting the crisis: a comparison

Notes: The labels “forecast NNBLI 2007Q2” and “forecast CAPR 2007Q2” indicate the iterated
forecasts from bivariate VAR models using NNBLI and CAPR, respectively, estimated on data up to
2007Q2.
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Table 2.35: FRED-QD. Group 1: NIPA

A014RE1Q156NBEA Shares of gross domestic product: Gross private domestic investment: Change
in private inventories (Percent)

A823RL1Q225SBEA Real Government Consumption Expenditures and Gross Investment: Federal
(Percent Change from Preceding Period)

B020RE1Q156NBEA Shares of gross domestic product: Exports of goods and services (Percent)
Shares of gross domestic product: Imports of goods and services (Percent)

DPIC96 Real Disposable Personal Income (Billions of Chained 2009 Dollars)
EXPGSC1 Real Exports of Goods & Services, 3 Decimal (Billions of Chained 2009

Dollars)
FGRECPTx Real Federal Government Current Receipts (Billions of Chained 2009 Dollars),

deflated using PCE
FPIx Real private fixed investment (Billions of Chained 2009 Dollars), deflated

using PCE
GCEC1 Real Government Consumption Expenditures & Gross Investment (Billions of

Chained 2009 Dollars)
GDPC1 Real Gross Domestic Product, 3 Decimal (Billions of Chained 2009 Dollars)
GPDIC1 Real Gross Private Domestic Investment, 3 decimal (Billions of Chained 2009

Dollars)
IMPGSC1 Real Imports of Goods & Services, 3 Decimal (Billions of Chained 2009

Dollars)
OUTBS Business Sector: Real Output (Index 2009=100)
OUTMS Manufacturing Sector: Real Output (Index 2009=100)
OUTNFB Nonfarm Business Sector: Real Output (Index 2009=100)
PCDGx Real personal consumption expenditures: Durable goods (Billions of Chained

2009 Dollars), deflated using PCE
PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2009 Dollars)
PCESVx Real Personal Consumption Expenditures: Services (Billions of 2009 Dollars),

deflated using PCE
PCNDx Real Personal Consumption Expenditures: Nondurable Goods (Billions of 2009

Dollars), deflated using PCE
PNFIx Real private fixed investment: Nonresidential (Billions of Chained 2009

Dollars), deflated using PCE
PRFIx Real private fixed investment: Residential (Billions of Chained 2009 Dollars),

deflated using PCE
SLCEx Real government state and local consumption expenditures (Billions of

Chained 2009 Dollars), deflated using PCE
Y033RC1Q027SBEAx Real Gross Private Domestic Investment: Fixed Investment: Nonresidential:
Y033RC1Q027SBEAx Equipment (Billions of Chained 2009 Dollars), deflated using PCE
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Table 2.36: FRED-QD. Group 2: Industrial Production

CUMFNS Capacity Utilization: Manufacturing (SIC) (Percent of Capacity)
INDPRO Industrial Production Index (Index 2012=100)
IPB51110SQ Industrial Production: Durable Goods: Automotive products (Index 2012=100)
IPB51220SQ Industrial Production: Consumer energy products (Index 2012=100)
IPB51222S Industrial Production: Residential Utilities (Index 2012=100)
IPBUSEQ Industrial Production: Business Equipment (Index 2012=100)
IPCONGD Industrial Production: Consumer Goods (Index 2012=100)
IPDCONGD Industrial Production: Durable Consumer Goods (Index 2012=100)
IPDMAT Industrial Production: Durable Materials (Index 2012=100)
IPFINAL Industrial Production: Final Products (Market Group) (Index 2012=100)
IPFUELS Industrial Production: Fuels (Index 2012=100)
IPMANSICS Industrial Production: Manufacturing (SIC) (Index 2012=100)
IPMAT Industrial Production: Materials (Index 2012=100)
IPNCONGD Industrial Production: Nondurable Consumer Goods (Index 2012=100)
IPNMAT IP:Nondur gds materials Industrial Production: Nondurable Materials

(Index 2012=100)
TCU Capacity Utilization: Total Industry (Percent of Capacity)

Table 2.37: FRED-QD. Group 3: Employment and Unemployment

AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees:
Manufacturing (Hours)

AWHNONAG Average Weekly Hours Of Production And Nonsupervisory Employees:
Total private (Hours)

AWOTMAN AWH Overtime Average Weekly Overtime Hours of Production and
Nonsupervisory Employees: Manufacturing (Hours)

CE16OV Civilian Employment (Thousands of Persons)
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees:

Goods-Producing
CES9091000001 All Employees: Government: Federal (Thousands of Persons)
CES9092000001 All Employees: Government: State Government (Thousands of Persons)
CES9093000001 All Employees: Government: Local Government (Thousands of Persons)
CIVPART Civilian Labor Force Participation Rate (Percent)
CLAIMSx Initial Claims
DMANEMP All Employees: Durable goods (Thousands of Persons)
HOABS EmpHrs:Bus Sec Business Sector: Hours of All Persons (Index 2009=100)
HOAMS Manufacturing Sector: Hours of All Persons (Index 2009=100)
HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2009=100)
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HWIURATIOx Ratio of Help Wanted/No. Unemployed
HWIx Help-Wanted Index
LNS12032194 Employment Level - Part-Time for Economic Reasons, All Industries

(Thousands of Persons)
LNS13023557 Unemployment Level - Reentrants to Labor Force (Thousands of Persons)
LNS13023569 Unemployment Level - New Entrants (Thousands of Persons)
LNS13023621 Unemployment Level - Job Losers (Thousands of Persons)
LNS13023705 Unemployment Level - Job Leavers (Thousands of Persons)
LNS14000012 Unemployment Rate - 16 to 19 years (Percent)
LNS14000025 Unemployment Rate - 20 years and over, Men (Percent)
LNS14000026 Unemployment Rate - 20 years and over, Women (Percent)
MANEMP All Employees: Manufacturing (Thousands of Persons)
NDMANEMP All Employees: Nondurable goods (Thousands of Persons)
PAYEMS All Employees: Total nonfarm (Thousands of Persons)
SRVPRD All Employees: Service-Providing Industries (Thousands of Persons)
UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks (Thousands of Persons)
UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over (Thousands of Persons)
UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks (Thousands of Persons)
UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks (Thousands of Persons)
UEMPMEAN Average (Mean) Duration of Unemployment (Weeks)
UNRATE Civilian Unemployment Rate (Percent)
UNRATELTx Unemployment Rate for more than 27 weeks (Percent)
UNRATESTx Unemployment Rate less than 27 weeks (Percent)
USCONS All Employees: Construction (Thousands of Persons)
USEHS All Employees: Education & Health Services (Thousands of Persons)
USFIRE All Employees: Financial Activities (Thousands of Persons)
USGOOD All Employees: Goods-Producing Industries (Thousands of Persons)
USGOVT All Employees: Government (Thousands of Persons)
USINFO All Employees: Information Services (Thousands of Persons)
USLAH All Employees: Leisure & Hospitality (Thousands of Persons)
USMINE All Employees: Mining and logging (Thousands of Persons)
USPBS All Employees: Professional & Business Services (Thousands of Persons)
USPRIV All Employees: Total Private Industries (Thousands of Persons)
USSERV All Employees: Other Services (Thousands of Persons)
USTPU All Employees: Trade, Transportation & Utilities (Thousands of Persons)
USTRADE All Employees: Retail Trade (Thousands of Persons)
USWTRADE All Employees: Wholesale Trade (Thousands of Persons)
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Table 2.38: FRED-QD. Group 4: Housing

HOUST Housing Starts: Total: New Privately Owned Housing Units Started (Thousands
of Units)

HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More (Thousands of Units)
HOUSTMW Housing Starts in Midwest Census Region (Thousands of Units)
HOUSTNE Housing Starts in Northeast Census Region (Thousands of Units)
HOUSTS Housing Starts in South Census Region (Thousands of Units)
HOUSTW Housing Starts in West Census Region (Thousands of Units)
PERMIT New Private Housing Units Authorized by Building Permits (Thousands of Units)
PERMITMW New Private Housing Units Authorized by Building Permits in the Midwest

Census Region (Thousands, SAAR)
PERMITNE New Private Housing Units Authorized by Building Permits in the Northeast

Census Region (Thousands, SAAR)
PERMITS New Private Housing Units Authorized by Building Permits in the South Census

Region (Thousands, SAAR)
PERMITW New Private Housing Units Authorized by Building Permits in the West Census

Region (Thousands, SAAR)
SPCS10RSA S&P/Case-Shiller 10-City Composite Home Price Index (Index January 2000 = 100)
SPCS20RSA S&P/Case-Shiller 20-City Composite Home Price Index (Index January 2000 = 100)
USSTHPI All-Transactions House Price Index for the United States (Index 1980 Q1=100)

Table 2.39: FRED-QD. Group 5: Inventories, Orders, and Sales

ACOGNOx Orders(ConsGoods/Mat.) Real Value of Manufacturers’ New Orders for Consumer
Goods Industries (Million of 2009 Dollars), deflated by Core PCE

AMDMNOx Real Manufacturers’ New Orders: Durable Goods (Millions of 2009 Dollars),
deflated by Core PCE

AMDMUOx Real Value of Manufacturers’ Unfilled Orders for Durable Goods Industries
(Million of 2009 Dollars), deflated by Core PCE

ANDENOx Real Value of Manufacturers’ New Orders for Capital Goods: Nondefense Capital
Goods Industries (Million of 2009 Dollars), deflated by Core PCE

BUSINVx Total Business Inventories (Millions of Dollars)
CMRMTSPLx Real Manufacturing and Trade Industries Sales (Millions of Chained 2009 Dollars)
INVCQRMTSPL Real Manufacturing and Trade Inventories (Millions of 2009 Dollars)
ISRATIOx Total Business: Inventories to Sales Ratio
RSAFSx Real Retail and Food Services Sales (Millions of Chained 2009 Dollars), deflated

by Core PCE
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Table 2.40: FRED-QD. Group 6: Prices

CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel (Index
1982-84=100)

CPIAUCSL Consumer Price Index for All Urban Consumers: All Items (Index
1982-84=100)

CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food &
Energy (Index 1982-84=100)

CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care (Index
1982-84=100)

CPITRNSL Consumer Price Index for All Urban Consumers: Transportation (Index
1982-84=100)

CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food
(Index 1982-84=100)

CUSR0000SA0L2 Consumer Price Index for All Urban Consumers: All items less shelter
(Index 1982-84=100)

CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: All items less medical
care (Index 1982-84=100)

CUSR0000SAC Consumer Price Index for All Urban Consumers: Commodities (Index
1982-84=100)

CUSR0000SAD Consumer Price Index for All Urban Consumers: Durables (Index
1982-84=100)

CUSR0000SAS Consumer Price Index for All Urban Consumers: Services (Index
1982-84=100)

CUSR0000SEHC CPI for All Urban Consumers: Owners’ equivalent rent of residences
(Index Dec 1982=100)

DCLORG3Q086SBEA Personal consumption expenditures: Nondurable goods: Clothing and
footwear (chain-type price index)

DDURRG3Q086SBEA Personal consumption expenditures: Durable goods (chain-type price
index)

DFDHRG3Q086SBEA Personal consumption expenditures: Durable goods: Furnishings and
durable household equipment (chain-type price index)

DFSARG3Q086SBEA Personal consumption expenditures: Services: Food services and
accommodations (chain-type price index)

DFXARG3Q086SBEA Personal consumption expenditures: Nondurable goods: Food and
beverages purchased for off-premises consumption (chain-type price
index)

DGDSRG3Q086SBEA Personal consumption expenditures: Goods (chain-type price index)
DGOERG3Q086SBEA Personal consumption expenditures: Nondurable goods: Gasoline and

other energy goods (chain-type price index)
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DHCERG3Q086SBEA Personal consumption expenditures: Services: Household consumption
expenditures (chain-type price index)

DHLCRG3Q086SBEA Personal consumption expenditures: Services: Health care (chain-type
price index)

DHUTRG3Q086SBEA Personal consumption expenditures: Services: Housing and utilities
(chain-type price index)

DIFSRG3Q086SBEA Personal consumption expenditures: Financial services and insurance
(chain-type price index)

DMOTRG3Q086SBEA Personal consumption expenditures: Durable goods: Motor vehicles and
parts (chain-type price index)

DNDGRG3Q086SBEA Personal consumption expenditures: Nondurable goods (chain-type price
index)

DODGRG3Q086SBEA Personal consumption expenditures: Durable goods: Other durable goods
(chain-type price index)

DONGRG3Q086SBEA Personal consumption expenditures: Nondurable goods: Other
nondurable goods (chain-type price index)

DOTSRG3Q086SBEA Personal consumption expenditures: Other services (chain-type price
index)

DRCARG3Q086SBEA Personal consumption expenditures: Recreation services (chain-type
price index)

DREQRG3Q086SBEA Personal consumption expenditures: Durable goods: Recreational goods
and vehicles (chain-type price index)

DSERRG3Q086SBEA Personal consumption expenditures: Services (chain-type price index)
DTRSRG3Q086SBEA Personal consumption expenditures: Transportation services (chain-type

price index)
GDPCTPI Gross Domestic Product: Chain-type Price Index (Index 2009=100)
GPDICTPI Gross Private Domestic Investment: Chain-type Price Index (Index

2009=100)
IPDBS Business Sector: Implicit Price Deflator (Index 2009=100)
OILPRICEx Real Crude Oil Prices: West Texas Intermediate (WTI) - Cushing,

Oklahoma (2009 Dollars per Barrel), deflated by Core PCE
2009=100)

PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index
PCEPILFE Personal Consumption Expenditures Excluding Food and Energy

(Chain-Type Price Index) (Index 2009=100)
PPIACO Producer Price Index for All Commodities (Index 1982=100)
PPICMM Producer Price Index: Commodities: Metals and metal products: Primary

nonferrous metals (Index 1982=100)
PPIIDC Producer Price Index by Commodity Industrial Commodities (Index
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1982=100)
WPSFD4111 Producer Price Index by Commodity for Finished Consumer Foods (Index

1982=100)
WPSFD49207 Producer Price Index by Commodity for Finished Goods (Index 1982=100)
WPSFD49502 Producer Price Index by Commodity for Finished Consumer Goods (Index

1982=100)
WPSID61 Producer Price Index by Commodity Intermediate Materials: Supplies &

Components (Index 1982=100)
WPSID62 Producer Price Index: Crude Materials for Further Processing (Index

1982=100)
WPU0531 Producer Price Index by Commodity for Fuels and Related Products and

Power: Natural Gas (Index 1982=100)
WPU0561 Producer Price Index by Commodity for Fuels and Related Products and

Power: Crude Petroleum (Domestic Production) (Index 1982=100)

Table 2.41: FRED-QD. Group 7: Earnings and Productivity

AHETPIx Real Average Hourly Earnings of Production and Nonsupervisory
Employees: Total Private (2009 Dollars per Hour), deflated by Core PCE

CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees:
Goods-Producing (Dollars per Hour)

CES2000000008x Real Average Hourly Earnings of Production and Nonsupervisory Employees:
Construction (2009 Dollars per Hour), deflated by Core PCE

CES3000000008x Real Average Hourly Earnings of Production and Nonsupervisory Employees:
Manufacturing (2009 Dollars per Hour), deflated by Core PCE

COMPRMS Manufacturing Sector: Real Compensation Per Hour (Index 2009=100)
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour (Index 2009=100)
OPHMFG Manufacturing Sector: Real Output Per Hour of All Persons (Index 2009=100)
OPHNFB Nonfarm Business Sector: Real Output Per Hour of All Persons (Index 2009=100)
OPHPBS Business Sector: Real Output Per Hour of All Persons (Index 2009=100)
RCPHBS Business Sector: Real Compensation Per Hour (Index 2009=100)
ULCBS Business Sector: Unit Labor Cost (Index 2009=100)
ULCMFG Manufacturing Sector: Unit Labor Cost (Index 2009=100)
ULCNFB Nonfarm Business Sector: Unit Labor Cost (Index 2009=100)
UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments (Index 2009=100)
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Table 2.42: FRED-QD. Group 8: Interest Rates

AAA Moody’s Seasoned Aaa Corporate Bond Yield © (Percent)
AAAFFM Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate
BAA Moody’s Seasoned Baa Corporate Bond Yield © (Percent)
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity (Percent)
COMPAPFF 3-Month Commercial Paper Minus Federal Funds Rate
CP3M 3-Month AA Financial Commercial Paper Rate
CPF3MTB3Mx 3-Month Commercial Paper Minus 3-Month Treasury Bill,

secondary market (Percent)
FEDFUNDS Effective Federal Funds Rate (Percent)
GS1 1-Year Treasury Constant Maturity Rate (Percent)
GS10 10-Year Treasury Constant Maturity Rate (Percent)
GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill,

secondary market (Percent)
GS1TB3Mx 1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill,

secondary market (Percent)
GS5 5-Year Treasury Constant Maturity Rate
MORTG10YRx 30-Year Conventional Mortgage Rate Relative to 10-Year Treasury

Constant Maturity (Percent)
MORTGAGE30US 30-Year Conventional Mortgage Rate© (Percent)
T5YFFM 5-Year Treasury Constant Maturity Minus Federal Funds Rate
TB3MS 3-Month Treasury Bill: Secondary Market Rate (Percent)
TB3SMFFM 3-Month Treasury Constant Maturity Minus Federal Funds Rate
TB6M3Mx 6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market (Percent)
TB6MS 6-Month Treasury Bill: Secondary Market Rate (Percent)
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Table 2.43: FRED-QD. Group 9: Money and Credit

AMBSLREALx St. Louis Adjusted Monetary Base (Billions of 1982-84 Dollars), deflated by CPI
BUSLOANSx Real Commercial and Industrial Loans, All Commercial Banks (Billions of 2009

U.S. Dollars), deflated by Core PCE
CONSUMERx Real Consumer Loans at All Commercial Banks (Billions of 2009 U.S. Dollars),

deflated by Core PCE
DRIWCIL FRB Senior Loans Officer Opions. Net Percentage of Domestic Respondents

Reporting Increased Willingness to Make Consumer Installment Loans
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding Owned by Finance Companies

(Millions of Dollars)
DTCTHFNM Total Consumer Loans and Leases Outstanding Owned and Securitized by

Finance Companies (Millions of Dollars)
IMFSLx Real Institutional Money Funds (Billions of 2009 Dollars), deflated by Core PCE
INVEST Securities in Bank Credit at All Commercial Banks (Billions of Dollars)
M1REALx Real M1 Money Stock (Billions of 1982-84 Dollars), deflated by CPI
M2REALx Real M2 Money Stock (Billions of 1982-84 Dollars), deflated by CPI
MZMREALx Real MZM Money Stock (Billions of 1982-84 Dollars), deflated by CPI
NONBORRES Reserves Of Depository Institutions, Nonborrowed (Millions of Dollars)
NONREVSLx Total Real Nonrevolving Credit Owned and Securitized, Outstanding (Billions of

Dollars), deflated by Core PCE
REALLNx Real Real Estate Loans, All Commercial Banks (Billions of 2009 U.S. Dollars),

deflated by Core PCE
REVOLSLx Total Real Revolving Credit Owned and Securitized, Outstanding (Billions of

2009 Dollars), deflated by Core PCE
TOTALSLx Total Consumer Credit Outstanding, deflated by Core PCE
TOTRESNS Total Reserves of Depository Institutions (Billions of Dollars)
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Table 2.44: FRED-QD. Group 10: Household Balance Sheets

CONSPIx Nonrevolving consumer credit to Personal Income
HNOREMQ027Sx Real Real Estate Assets of Households and Nonprofit Organizations (Billions of

2009 Dollars), deflated by Core PCE
LIABPIx Liabilities of Households and Nonprofit Organizations Relative to Personal

Disposable Income (Percent)
NWPIx Net Worth of Households and Nonprofit Organizations Relative to Disposable

Personal Income (Percent)
TABSHNOx Real Total Assets of Households and Nonprofit Organizations (Billions of 2009

Dollars), deflated by Core PCE
TARESAx Real HHW:TA_RESA Real Assets of Households and Nonprofit Organizations

excluding Real Estate Assets (Billions of 2009 Dollars), deflated by Core PCE
TFAABSHNOx Real Total Financial Assets of Households and Nonprofit Organizations (Billions

of 2009 Dollars), deflated by Core PCE
TLBSHNOx Real Total Liabilities of Households and Nonprofit Organizations (Billions of 2009

Dollars), deflated by Core PCE
TNWBSHNOx Real Net Worth of Households and Nonprofit Organizations (Billions of 2009

Dollars), deflated by Core PCE

Table 2.45: FRED-QD. Group 11: Exchange Rates

EXCAUSx EX rate:Canada Canada / U.S. Foreign Exchange Rate
EXJPUSx Japan / U.S. Foreign Exchange Rate
EXSZUSx Switzerland / U.S. Foreign Exchange Rate
EXUSEU U.S. / Euro Foreign Exchange Rate (U.S. Dollars to One Euro)
EXUSUKx U.S. / U.K. Foreign Exchange Rate
TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies (Index March 1973=100)

Table 2.46: FRED-QD. Group 12: Other

UMCSENTx Cons. Expectations University of Michigan: Consumer Sentiment
(Index 1st Quarter 1966=100)

USEPUINDXM Economic Policy Uncertainty Index for United States
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Table 2.47: FRED-QD. Group 13: Stock Markets

NASDAQCOM NASDAQ Composite (Index Feb 5, 1971=100)
NIKKEI225 Nikkei Stock Average
S&P 500 S&P’s Common Stock Price Index: Composite
S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio
S&P: div yield S&P’s Composite Common Stock: Dividend Yield
S&P: indust S&P’s Common Stock Price Index: Industrials
VXOCLSX CBOE S&P 100 Volatility Index: VXO

Table 2.48: FRED-QD. Group 14: Non-Household Balance Sheets

CNCFx Real Disposable Business Income, Billions of 2009 Dollars (Corporate cash flow
with IVA minus taxes on corporate income, deflated by Implicit Price Deflator for
Business Sector IPDBS)

GFDEBTNx Real Federal Debt: Total Public Debt (Millions of 2009 Dollars), deflated by PCE
GFDEGDQ188S Federal Debt: Total Public Debt as Percent of GDP (Percent)
NNBTASQ027Sx Real Nonfinancial Noncorporate Business Sector Assets (Billions of 2009 Dollars),

Deflated by Implicit Price Deflator for Business Sector IPDBS
NNBTILQ027SBDIx Nonfinancial Noncorporate Business Sector Liabilities to Disposable Business

Income (Percent)
NNBTILQ027Sx Real Nonfinancial Noncorporate Business Sector Liabilities (Billions of 2009

Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS
TLBSNNCBBDIx Nonfinancial Corporate Business Sector Liabilities to Disposable Business

Income (Percent)
TLBSNNCBx Real Nonfinancial Corporate Business Sector Liabilities (Billions of 2009 Dollars),

Deflated by Implicit Price Deflator for Business Sector IPDBS
TNWBSNNBBDIx Nonfinancial Noncorporate Business Sector Net Worth to Disposable Business

Income (Percent)
TNWBSNNBx Real Nonfinancial Noncorporate Business Sector Net Worth (Billions of 2009

Dollars), Deflated by Implicit Price Deflator for Business Sector IPDBS
TNWMVBSNNCBBDIx Nonfinancial Corporate Business Sector Net Worth to Disposable Business Income

(Percent)
TNWMVBSNNCBx Real Nonfinancial Corporate Business Sector Net Worth (Billions of 2009 Dollars),

Deflated by Implicit Price Deflator for Business Sector IPDBS
TTAABSNNCBx Real Nonfinancial Corporate Business Sector Assets (Billions of 2009 Dollars),

Deflated by Implicit Price Deflator for Business Sector IPDBS
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Chapter 3

Optimal Regime-Switching Density
Forecasts

Abstract

This paper investigates an approach for enhancing density forecasts of non-normal macroe-
conomic variables using Bayesian Markov-switching models. Alternative views on the
regime-switching behavior of the economy are pooled to form flexible composite fore-
casts, which are optimized with respect to standard objective functions, such as the sum
of log predictive scores and a test of uniformity on the probability integral transforms
(PITs). The optimization explores both forecast combinations and Bayesian averaging
of views as pooling methods. In an application to U.S. GDP growth, the approach is
shown to produce forecast distributions that are well-calibrated in absolute terms and
better calibrated than those produced by a variety of alternative approaches, including
popular methods for dealing with non-normality and heteroskedasticity. At the same
time, it delivers good accuracy in terms of average predictive densities. The proposed
framework can be used to evaluate the time-varying contribution of different views to
forecast calibration and accuracy. The empirical application examines views derived
from the Fed supervisory scenarios used for bank stress tests.

3.1 Introduction

In recent years, it has become essential for forecasting institutions to characterize the uncer-
tainty around their point forecasts by assigning probabilities to a range of possible economic
outcomes. Accordingly, generating economic predictions in the form of continuous proba-
bility distributions, or density forecasts, is now common practice (Elliott and Timmermann
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2016). The task of forming reliable density forecasts of macroeconomic variables is a challeng-
ing one, which requires accounting for the departures from normality that are often observed
empirically. In this respect, econometric research has recently shown that gains in density
forecast performance can often be achieved by combining different predictive distributions
(Hall and Mitchell 2007; Geweke and Amisano 2011; Elliott and Timmermann 2016; Ganics
2017). At the same time, as the recent crisis and its aftermath have highlighted, macroeco-
nomic projections should in general allow for the possibility of discrete shifts or fundamental
changes occurring in the economy, whether they be outbreaks of financial instability, political
changes or other. Relatedly, while many economic agents, most notably financial institutions,
routinely evaluate their potential losses as draws from continuous distributions, macroeco-
nomic outlooks are often reduced to a limited number of distinct scenarios or regimes (e.g.,
Moody’s 2017). This logic facilitates communication regarding economic uncertainty and
finds important practical applications, for instance in the design of bank stress tests which
are now integral part of the financial regulatory framework and risk management practices
in major economies (e.g., Federal Reserve Board 2018). The specific characteristics of differ-
ent economic regimes are themselves subject to uncertainty, and a great deal of qualitative
assessments are generally required to define macro scenarios, giving rise to different views or
beliefs that may be considered when producing density forecasts.

This paper investigates a method for enhancing density forecasts of macroeconomic vari-
ables using regime-switching models. In the proposed approach, composite density forecasts
are constructed by pooling alternative views on the regime-switching behavior of the econ-
omy. The composition of such forecasts is optimized with respect to standard evaluation
criteria for density forecasts, such as the log predictive scores and a test of uniformity based
on the probability integral transform (PIT). Views differ in terms of the assumed number of
unobserved regimes and/or in terms of the prior distributions on the parameters of a Bayesian
Markov-switching model, resulting in different predictive densities. Two forms of pooling are
explored: ex-post combinations of density forecasts from different views and Bayesian av-
eraging of views. Based on the past performance of alternative combinations of views, an
optimization procedure selects forecast weights or Bayesian prior probabilities to be used
for forecasting future periods. The resulting mixture forecasts are evaluated by means of a
recursive out-of-sample forecasting exercise. Empirically, the approach is illustrated using
a Markov-switching autoregressive model (MSAR) for U.S. GDP growth, considering both
vague views and strong views derived from the Fed macroeconomic scenarios used in the bank
stress tests 2015-2018. In the application, the proposed strategy is found to be especially
useful to improve the calibration of forecast distributions. In this respect, it outperforms
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a number of alternative approaches by generating PITs that are well-behaved according to
several criteria. The optimization step appears instrumental in producing such result. At the
same time, the method achieves comparatively good accuracy in terms of log scores, although
along this second dimension it does not outperform the best alternative methods.

The approach is intended to deal with non-normality by producing extremely flexible
predictive distributions. Such flexibility results from three key elements. First, density
forecasts from any Markov-switching model are weighted averages of the different regime-
specific predictive densities, where the weights are the probabilities of the economy ending
up in the different regimes. In other words, forecasts allow for regime changes to occur over
the forecast horizon and this alone gives rise to mixture distributions, which are in general
non-normal even if their individual components are normal (on regime-switching models,
see Frühwirth-Schnatter 2006 and Hamilton 2016, among many others). Second, composite
predictions are formed here by averaging different views on the Markov-switching model,
which means that the forecast densities will be mixtures of mixtures of normals, thereby
adding a further layer of flexibility. Moreover, as a result of Bayesian estimation, density
forecasts incorporate the uncertainty on the coefficients of the Markov-switching model for
any given view.

This approach connects different strands of research on forecasting. First, it is similar
in spirit to other Bayesian regime-switching approaches, such as those adopted by Pesaran,
Pettenuzzo and Timmermann (2006), who use a break point model (a generalization of
regime-switching models) with hyperparameter uncertainty, and by Bauwens, Carpantier
and Dufays (2017), who estimate a Markov-switching model with an unknown and poten-
tially infinite number of regimes. However, this paper focuses on a finite set of experts’ views
to elicit values for the hyperparameters of the regime-switching model, while in Pesaran et
al. (2006) and Bauwens et al. (2017) the hyperparameters are random draws from statistical
distributions. More generally, unlike those studies, this paper is concerned with optimiz-
ing regime-switching density forecasts, based on out-of-sample evaluation criteria.1 Second,
the paper is closely related to research on optimal density forecast combinations (Hall and
Mitchell 2007; Geweke and Amisano 2011; Ganics 2017). In fact, the proposed approach can
be thought as a convenient alternative to forecast combinations of different models, since

1The proposed methodology fixes a maximum number of regimes, whereas Bauwens et al. (2017) allow
for infinite regimes using a nonparametric Dirichlet process. However, when estimating a model for U.S. GDP
growth (with different breaks for the mean and variance parameters), they find that the posterior probability
that the number of regimes is at most 5 lies between 98% and 100% for the mean parameters and between
74% and 100% for the variance, depending on the prior used for estimation.
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it combines views on a single Markov-switching model. Given its ability to produce highly
flexible approximations of unknown distributions, by means of finite mixtures of mixtures of
normals, it can also be seen as a parsimonious alternative to nonparametric methods. In ad-
dition, it differs from approaches that assume non-normal errors (e.g., Hansen 1994), in that
it allows for a clear economic explanation of non-normality based on different macroeconomic
regimes.

While the available evidence on the point forecast performance of regime-switching models
is mixed (Elliott and Timmermann 2016), the rise of density forecasting has opened up
new opportunities for such models. For instance, Geweke and Amisano (2011) have shown
the usefulness of hidden Markov mixtures for producing density forecasts of stock market
returns. In Alessandri and Mumtaz (2017), a threshold VAR (in which changes in regime
depend on financial conditions) produces good density forecasts of U.S. GDP during the
Great Recession. As already mentioned, Bauwens, Carpantier and Dufays (2017) use an
infinite Markov-switching autoregressive moving average (ARMA) model to produce density
forecasts of U.S. GDP.

Density forecasts can be evaluated using several criteria (see Corradi and Swanson 2006,
Elliot and Timmermann 2016 for reviews). This paper adopts two of most popular criteria
as objective functions to build optimal composite forecasts. The first one is the log score,
which measures the ability to assign high probabilities to outcomes that are truly likely to
be observed. The second one is a uniformity test on the sequence of PITs, which provides
a measure of the calibration of the forecasts.2 Both measures have already been used to
compute forecast combinations.3 Moreover, to evaluate the results, two other measures of
correct calibration are also considered, namely two tests of independence based on the first
two moments of the PITs (Rossi and Sekhposyan 2014).

The remainder of the paper is organized as follows: Section 3.2 explains the methodology,
Section 3.3 introduces the empirical application and presents the results, and Section 3.4
concludes.

2A well-calibrated forecast is one that does not make systematic errors: if p is the predicted probability
assigned to a given random event, then that event should empirically occur with frequency p.

3Hall and Mitchell (2007) pioneered density forecast combinations using log scores. Geweke and Amisano
(2011) use the log scores to combine five different models of stock returns. Ganics (2017) provides theoretical
results on the use of PITs for optimal forecast combinations and presents an empirical application using linear
autoregressive distributed lag (ARDL) models of industrial production.
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3.2 Methodology

3.2.1 The Markov-switching autoregressive (MSAR) model

This section illustrates the approach using a Markov-switching autoregressive (MSAR) model
in which the intercept and the variance of the error term depend on the unobserved state of
the economy. Let yt denote a macroeconomic variable of interest at time t. The MSAR can
be expressed as:

yt =

p∑
j=1

αjyt−j + βSt + εt (3.1)

εt ∼ N(0, σ2
St
)

where St is the unobserved state variable at time t, βSt is the intercept in regime St, αj for
j = 1, . . . , p is a state-independent autoregressive term,4 p is the maximum lag, εt is the error
term and σ2

St
is the regime-dependent variance of the error. In particular, St is a Markov

chain characterized by a transition matrix ξ, where the element ξkj in row k and column j

represents the probability of transition from state k to state j:

ξkj = Pr(St = j|St−1 = k) (3.2)

with k, j = 1, . . . ,K, where K is the number of regimes in the economy. Therefore, the
MSAR captures the typical autocorrelation of macro variables in two ways: by means of
the autoregressive coefficients in (3.1) and through the persistence in the state variable
St as expressed by the transition matrix. Finally, let ϑ denote the vector of parame-
ters of the MSAR model, i.e. ϑ = (β1, . . . , βK , σ1, . . . , σK , α1, . . . , αp, ξ), and let θ =

(β1, . . . , βK , σ1, . . . , σK , α1, . . . , αp).

3.2.2 Bayesian estimation with multiple views

3.2.2.1 Bayesian estimation of Markov-switching models

This section summarizes the Bayesian approach to the estimation of Markov-switching mod-
els following Frühwirth-Schnatter (2006) and adopting her notation. Let us define y =

4Hamilton (1989) uses state-independent autoregressive coefficients to study U.S. GDP growth.
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(y0, y1, . . . , yT ) and S = (S0, S1, . . . , ST ). The posterior distribution p(ϑ|y) for model (3.1)
is obtained using Bayes’ theorem:

p(ϑ|y) ∝ p(y|ϑ)p(ϑ)

where p(ϑ) is the prior on the parameters and p(y|ϑ) is the likelihood function, which in this
case is a Markov mixture of normals. Treating S as data, the Markov mixture likelihood can
be expressed as the sum of the complete-data likelihood p(y,S|ϑ) over all possible values of
the state vector S:

p(y|ϑ) =
∑
S∈SK

p(y,S|ϑ)

=
∑
S∈SK

p(y|S,θ1 . . . ,θK)p(S|ξ) (3.3)

As shown in Frühwirth-Schnatter (2006), expression (3.3) factors in a convenient way that
simplifies estimation. In particular, it can be shown that if the prior assumes (i) the inde-
pendence of the parameter vector θ across regimes and (ii) the independence between the
parameter vector θ and the transition matrix ξ, i.e.

p(ϑ) =

K∏
k=1

p(θk)p(ξ)

then the complete-data posterior, i.e.

p(ϑ|y,S) =
K∏
k=1

p(θk|y,S)p(ξ|S)

factors in the same way as the complete-data likelihood p(y,S|ϑ). This facilitates the ap-
plication of conventional Markov Chain Monte Carlo (MCMC) methods used for Bayesian
estimation, in a context where, due to the Markov-switching nature of the model, the prior
p(ϑ) and the posterior p(ϑ|y) are not conjugate and the posterior does not assume any
convenient analytical form.

Finally, the posterior p(ϑ|y) can be expressed as the sum of the posterior for the aug-
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mented parameter vector (S,ϑ) over all possible realizations of S:

p(ϑ|y) =
∑
S∈SK

p(S,ϑ|y)

In practice, Bayesian estimation samples from the joint posterior p(S,ϑ|y), using:

p(S,ϑ|y) ∝ p(y|S,ϑ)p(S|ϑ)p(ϑ)

3.2.2.2 Estimating the MSAR with multiple views

In line with the estimation framework presented so far, the MSAR (3.1) is estimated here
using MCMC methods and assuming independence priors of the following form:

p(α1, . . . , αp, , β1, . . . , βK , σ2
1, . . . , σ

2
K) =

p∏
j=1

p(αj)

K∏
k=1

p(βk)

K∏
k=1

p(σ2
k)

The priors follow conventional distributions, which are:

βk ∼ N (b0,k, B0,k)

σ2
k ∼ G−1 (c0, C0)

αj ∼ N (aj,0, Aj,0)

j = 1, . . . , p

whereN and G−1 denote Normal and inverse Gamma distributions, respectively, and b0,k, B0,k,

c0, C0, aj,0, Aj,0 are hyperparameters to be selected by the researcher.
In addition, for the transition matrix ξ it is assumed that the rows are independent and

each row follows a Dirichlet distribution D:

ξk ∼ D (ek1, . . . , ekK)

where ek1, . . . , ekK are hyperparameters, for k = 1, . . . ,K.
The number of regimes is also treated as unknown. Accordingly, a discrete prior is defined
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for K, fixing a maximum number K:

π0
K = Pr (K) (3.4)

K = 1, . . . ,K

K∑
K=1

π0
K = 1

Note that the letter π will be used throughout the text to denote discrete probability distri-
butions.

Next, for any given number of states K, a number PK of alternative priors on the MSAR
parameters are considered. Each prior is identified by a specific set of values for the hyperpa-
rameters (b0,1, . . . , b0,K , B0,1, . . . , B0,K , a0,1, . . . , a0,p, A0,1, . . . , A0,p, c0, C0, e11, . . . , eKK). Let
ϑ0
K,i denote the generic i-th prior assuming K states. A hyperprior probability π(ϑ0

K,i|K)

is assigned to ϑ0
K,i, such that

PK∑
i=1

π(ϑ0
K,i |K) = 1 (3.5)

In other words, a discrete hierarchical prior is defined with respect to ϑ. The unconditional
prior probability of ϑ0

K,i is equal to the joint prior probability of ϑ0
K,i and the number K of

regimes, i.e. π(ϑ0
K,i) = π(ϑ0

K,i,K). Using π0
K,i to denote this unconditional probability, we

have that:

π0
K,i ≡ π(ϑ0

K,i) = π(ϑ0
K,i |K)π0

K

In what follows, let us refer to ϑ0
K,i as a view about the regime-switching properties of the

economy. Thus, defining a view implies (i) choosing the number of regimes and (ii) choosing
a prior for the MSAR parameters ϑ. Also, let π0 denote the vector of length

∑K
K=1 PK

containing the unconditional prior probabilities of all views, i.e. π0 = (π0
1,1, . . . , π

0
K,PK

).
The posterior probabilities of the views depend on the prior π0 and on the marginal

likelihood of the MSAR model under the different views. In particular, the unconditional
posterior probability of view ϑ0

K,i is equal to the joint posterior probability of ϑ0
K,i and the
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number K of regimes, i.e. π(ϑ0
K,i|y) = π(ϑ0

K,i,K|y), and is given by:

πK,i ≡ π(ϑ0
K,i|y) =

p(y|ϑ0
K,i)π

0
K,i∑K

K=1

∑PK
j=1 p(y|ϑ

0
K,j)π

0
K,j

(3.6)

where p(y|ϑ0
K,i) = p(y|ϑ0

K,i,K) =
∫
p(y|ϑK ,ϑ0

K,i,K)p(ϑK |ϑ0
K,i,K)dϑK , with ϑK denoting

the parameter vector in the MSAR model with K regimes.

3.2.3 Density forecasts

Computing density forecasts from a MSAR model requires three steps (Frühwirth-Schnatter
2006). In what follows, let us add a time subscript to the vector of observations y, so that
yt = (y0, y1, . . . , yt). Also, let us assume that the current time period is T and the forecast
horizon is one period. The first step consists in using the MCMC algorithm to sample both the
current unobserved regime ST and the MSAR parameters ϑ from the posterior distribution
p(S,ϑ|yT ). Let (ϑ(d), S

(d)
T ) denote a generic MCMC draw. Next, each draw is used to forecast

the future state of the economy. Taking S
(d)
T as the starting value, a stochastic forecast S(d)

T+1

is computed using the matrix of transition probabilities ξ(d), i.e. based on (3.2). Third, y(d)T+1

is sampled from the normal predictive density p(yT+1, |yT ,ϑ
(d), S

(d)
T+1). In particular,

yT+1|yT ,ϑ
(d), S

(d)
T+1 = k ∼ N

 p∑
j=1

α
(d)
j yT+1−j + β

(d)
k , σ

(d)2
k


Conditional on knowing the state of the economy in the future period T+1, the predictive

distribution of yT+1 is a Normal for any given parameter vector. However, since the future
state of the economy is unknown, the density forecast of yT+1 produced by the MSAR will be
a mixture of the different regime-specific normals, where the mixture weights are given by the
probabilities of the economy ending up in the different possible regimes at T +1. As a result,
the MSAR is generally able to produces highly flexible, non-normal forecast distributions.5

In addition, Bayesian estimation incorporates the uncertainty on the parameters ϑ into the
density forecasts. What is more, considering alternative views allows for an additional degree
of flexibility, as formalized below.

Assuming a known number of regimes K and a known parameter vector ϑ, the one-step-

5Also, the predictive densities are non-linear in yT and heteroskedastic (Frühwirth-Schnatter 2006).
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ahead density forecast at time T is the following finite mixture of K normal components:

p (yT+1|yT ,ϑ) =
K∑
k=1

p (yT+1|yT ,θk)Pr (ST+1 = k|yT ,ϑ)

Next, as a result of Bayesian estimation, the density forecast for any given view integrates
out parameter uncertainty:

p
(
yT+1|yT ,ϑ

0
K,i

)
=

∫
p
(
yT+1|yT ,ϑK ,ϑ0

K,i

)
p(ϑK |yT ,ϑ

0
K,i)dϑK

where, as before, ϑK denotes the parameter vector ϑ when K regimes are assumed. Finally,
averaging over different views ϑ0

K,i, we get:

p
(
yT+1|yT ,π

0
)
=

K∑
K=1

PK∑
i=1

p
(
yT+1|yT ,ϑ

0
K,i

)
πK,i (3.7)

where πK,i depends on the prior probability vector π0 and on the marginal likelihoods of the
different views according to equation (3.6). Forecast (3.7) is a composite forecast in which
the weight assigned to the view-specific forecast p

(
yT+1|yT ,ϑ

0
K,i

)
is given by the posterior

probability of the view, πK,i. Therefore, (3.7) is a mixture of mixtures. If we take the set of
alternative views as given, the forecast combination weights are unambiguously pinned down
by the data yT and by the prior vector π0.

In addition to the Bayesian averaging of views in (3.7), let us also consider standard
non-Bayesian forecast combinations. In this case, let us express a forecast combination of
different MSAR views, where the vector of combination weights is denoted by w, as:

p (yT+1|yT ,w) =

K∑
K=1

PK∑
i=1

p
(
yT+1|yT ,ϑ

0
K,i

)
wK,i (3.8)

where wK,i ≥ 0 is the weight assigned to view ϑ0
K,i and

∑K
K=1

∑PK
i=1wK,i = 1.

3.2.4 Optimizing density forecasts

The composite density forecasts from the MSAR with multiple views are optimized with
respect to two alternative objective functions, based on statistics that are commonly used to
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evaluate density forecast performance: the log score and the probability integral transform
(PIT).

The log score is the log of the predictive density function evaluated at the actual re-
alization of the forecast variable. Let yot+h (where “o” stands for “observed”) denote the
realization of variable yt+h, which is not observed at time t, when the forecast for t + h is
produced. Also, let R be the length of the timespan over which forecasts are optimized. The
first objective function, denoted by f1, is given by the sum of log scores over the period of
interest. For combinations using generic weights w as in (3.8), the sum of log scores at time
τ can be expressed as:

f1,τ (w) =

τ−h∑
t=τ−h−R+1

ln
(
p
(
yot+h|yt,w

))

For combined forecasts using Bayesian averaging as in (3.7), the objective function can be
written as:

f1,τ
(
π0
)
=

τ−h∑
t=τ−h−R+1

ln
(
p
(
yot+h|yt,π

0
))

The PIT is the cumulative predictive density function evaluated at the actual realization
of the variable. If the density forecast used to compute the PIT corresponds to the true dis-
tribution of the variable, then, for h = 1, the PIT values are the realizations of independently
and identically distributed (i.i.d.) Uniform (0, 1) variables (Diebold et al. 1998). Therefore,
a uniformity test on the PITs is a test of correct specification of the density forecasts (see
also Rossi and Sekhposyan 2014). Accordingly, the second objective function for forecasts of
type (3.8) is given by:

f2,τ (w) = −ks
({

Φ
(
yot+1|yt,w

)}τ−1

t=τ−R

)
where Φ(·) denotes the cumulative predictive density function, i.e.

Φ
(
yot+1|yt,w

)
≡
∫ yot+1

−∞
p (yt+1|yt,w) dyt+1

while function ks(·) represents the test statistics of a Kolmogorov-Smirnov (KS) test of
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uniformity. Note that maximizing −ks(·) is equivalent to maximizing the p-value of the KS
test. Analogously, for Bayesian averaging we have:

f2,τ
(
π0
)
= −ks

({
Φ
(
yot+1|yt,π

0
)}τ−1

t=τ−R

)
Both the optimization based on f1 and the one based on f2 are solved numerically. For

each fi, with i = 1, 2, the optimization algorithm delivers two vectors at time τ : the vector
of optimal forecast weights w∗

i,τ for the set of alternative views, i.e.:

w∗
i,τ ≡ arg max

w
fi,τ (w) (3.9)

and the vector of optimal prior probabilities π0∗
i,τ :

π0∗
i,τ ≡ arg max

π0

fi,τ
(
π0
)

(3.10)

The former represents the typical problem addressed in the literature on density forecast
combination, whereas the latter can be seen as an empirical method for eliciting priors in
the context of Bayesian model averaging. The optimal prior π0∗

i,τ represents the discrete
prior probability distribution of views such that the resulting posterior π∗

i,τ , when used as a
vector of forecast weights, maximizes the density forecast performance, based on the selected
objective function. In practice, the main difference between (3.9) and (3.10) is that the first
problem directly delivers weights for forecast combination, while in the second case the actual
forecast weights will also depend on the marginal likelihoods of all views, i.e. p(y|ϑ0

K,i) ∀K, i.

3.3 Empirical application

This section assesses the empirical performance of the approach proposed in the paper. The
application deals with density forecasts of U.S. real GDP growth and uses quarterly data from
1948Q1 to 2017Q2 (Figure 3.1). The growth rate considered is the year-on-year growth rate
(expressed in percentage points in what follows). The lag length p is set to 5, in consideration
of the quarterly frequency of the variable. The optimal weights w∗ and optimal priors π0∗ are
tracked over time by means of a recursive optimization scheme. Their forecast performance
is assessed on an evaluation sample, i.e. using observations of the target variable that have

128



not been used in the optimization procedure, as described in section 3.3.2.

3.3.1 Views

A total of 13 alternative views on the regime-switching properties of U.S. GDP are considered.
Eight views impose strongly informative priors derived from the scenarios of the Fed stress
tests 2015-2018.6 The remaining five views are vague views, defined by imposing a diffuse
prior on the MSAR parameters under different assumptions on the number of regimes K =

1, 2, 3, 4, 5.
Let us first consider the Fed-based views. For each of the four stress tests under consid-

eration, two views are constructed, one with K = 3 and the other with K = 5. In the view
with K = 3, one of the regimes (which may be called the “normal times” regime), is derived
from the Fed baseline scenario, another (“adverse regime”) from the adverse scenario and
the last one (“severely adverse regime”) from the severely adverse scenario.7 In particular,
each regime is “centered” on the corresponding scenario using the following rule. Consider
an AR(5) model where the coefficients are given by the k-state-specific hyperparameters of
the prior ϑ0

K,i, i.e.:

yt =
5∑

j=1

a
(K,i)
j yt−j + b

(K,i)
0,k + εt

In this model, the unconditional expectation of yt is

E (yt) =
b
(K,i)
0,k

1−
∑5

j=1 a
(K,i)
j

(3.11)

Then, after making an assumption on the state-independent a
(K,i)
j , with j = 1, . . . , 5, each

regime-specific b(K,i)
0,k is chosen in such a way that expectation (3.11) matches a specific value

derived from the relevant scenario of the Fed stress test. For the normal times regime, this
value is the average growth rate in the last 4 quarters of the baseline scenario, which is
assumed to be close to the convergence value of the year-on-year growth rate in the absence

6See https://www.federalreserve.gov/supervisionreg/dfa-stress-tests.htm.
7Although the Fed stress scenarios represent hypothetical paths and not forecasts, they are intended to

be plausible even when severe. Therefore, they can legitimately be assigned predictive probabilities (see e.g.,
Yuen 2013) and used to form density forecasts.
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of shocks.8 For both the adverse and the severely adverse regimes, the value to be matched
is the average growth rate in the first 4 quarters of the corresponding scenario, as the first
quarters are those when the negative shocks are assumed to occur and the growth rates are
lowest.

An example may help. Let us consider the view with K = 3 derived from the 2018
Fed stress test. The average growth rate of GDP in the last 4 quarters of the baseline
scenario is 2.1%, while the average growth rates in the first 4 quarters of the adverse and
severely adverse scenarios are -2.125% and -6.275% respectively. Assuming that the prior
mean for the autoregressive coefficients is 0.9 for the first lag and 0 for higher-order lags, which
approximates the OLS estimate of a simple AR(1) for GDP growth over the entire sample,
then

∑5
j=1 a

(K,i)
j = 0.9. Accordingly, the prior means for the regime-specific intercepts are set

to b0,1 = 2.1/(1−0.9) = 0.21 for the normal times regime, b0,2 = −2.125/(1−0.9) = −0.2125

for the adverse regime and b0,3 = −6.275/(1−0.9) = −0.6275 for the severely adverse regime.
The four stress test-based views with K = 5 expand the views with K = 3 by adding

two regimes: a regime which we may call “recovery from adverse shock”, designed to match
the last 4 quarters of the adverse scenario, and a regime of “recovery from severely adverse
shock”, which matches the last 4 quarters of the severely adverse scenario. This is done in
consideration of the fact that growth rates in the last 4 quarters of the adverse and severely
adverse scenarios are assumed to be higher than the baseline rates, implying a rebound of the
economy after a negative shock. Of course, such regimes may be more generally interpreted
as “favorable regimes” characterized by positive shocks and not necessarily as recoveries from
recessions.

In the five vague views, all priors on the intercepts are centered on 0 and have a variance
of 1 percentage point, while the priors on the autoregressive coefficients are centered on 0.5
for the first lag, on 0 for the higher-order lags, and have a variance of 1. The combination
of these assumptions implies a large prior variance on the regime-specific means of the GDP
growth rate. In the Fed-based views, the priors for both β and α are strongly informative,
so as to ensure that the regime-specific prior means are tightly centered on the stress test
values, based on equation (3.11). In particular, both priors are assumed to have a minimal
variance, equal to 10−5. For the autoregressive coefficients α, the prior mean is assumed to
be 0.9 for the first lag and 0 for higher-order lags, as in the previous example.

No strong assumption is made regarding the regime-switching error variance σ2
k. Instead,

a diffuse hierarchical prior is assumed for all views. Specifically, a Gamma hyperprior is

8The stress test scenarios are defined in terms of annualized quarter-on-quarter growth rates, so that
averaging over the last 4 quarters approximates the year-on-year growth rate in the last quarter.
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defined for C0:9

C0 ∼ G (g0, G0)

To make the prior on σ2
k diffuse, the following values are selected for the hyperparameters:

c0 = 3, g0 = 0.5 and G0 = 0.5. These imply that σ2
k has a prior expected value of 0.5

percentage points of GDP and a high prior variance, equal to 1.25 percentage points (see
Appendix 3.A for the derivations).

Finally, the hyperparameters for the k-th row of the transition matrix ξ are ekk = 2

and ekj = 1/(K − 1) if k ̸= j, ∀k, j. Given the properties of the Dirichlet distribution,
E(ξkj) = ekj/(

∑K
l=1 ekl). Therefore, the prior expected probability of remaining in the same

state k in the next period is E(ξkk) = 2/3 regardless of the number of regimes K, while the
probability of moving to a different, specific state j decreases with the number of regimes,
E(ξkj) = 1/[3(K − 1)].

The summary of the alternative views is provided in Table 3.1, where views 1-5 are the
vague views while views 6-13 are those derived from the Fed stress tests 2015-2018. Table
3.2 displays the GDP scenarios of the Fed stress tests.

3.3.2 Optimization scheme

In the empirical application, a recursive-window estimation scheme is used to generate a
sequence of density forecasts.10 Next, forecasts are used to carry out the optimization of
weights/priors, which is iterated over time. The procedure can be described as follows. Let
us assume that the current period is Tw and the forecast horizon is h. For each view under
consideration, the MSAR model is recursively estimated using observations between time t0

and time t, with t = T0, T0 + 1, . . . , Tw − h. T0 is therefore the end period of the shortest
estimation sample. Estimates at T0 are used to make forecasts for period T0 + h, estimates
at T0 + 1 are used to make forecasts for T0 + 1 + h, and so on. At time Tw, a sequence of
past forecasts is available for each view. At this point, the algorithm computes the optimal

9Accordingly, the independence prior of the MSAR model becomes:

p(α1, . . . , αp, β1, . . . , βK , σ2
1 , . . . , σ

2
K , C0) =

p∏
j=1

p(αj)

K∏
k=1

p(βk)

K∏
k=1

p(σ2
k)p(C0)

10In this context, the choice of using expanding windows for estimation, as opposed to rolling windows,
increases the probability that the variable “visits” the highest possible number of regimes within the sample.
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weights/priors based on the last R forecasts, i.e. maximizes the relevant objective function
between Tw − R + 1 and Tw. Once the optimal weights/priors are retrieved, they are used
to combine the different view-specific forecasts for the future period Tw + h, which is out of
the optimization sample. When the actual value of the variable of interest is observed, at
time Tw+h, the performance of the composite forecast is measured. The index Tw runs from
T0 + h+R− 1 to T + h, where T is the end of the largest estimation sample. T + 2h is the
last available observation for the target variable. Therefore, the period from T0 +2h+R− 1

to T + 2h defines the evaluation sample. Figure 3.2 summarizes the procedure (cf. Ganics
2017).

More specifically, the application to U.S. GDP growth sets t0 = 1948Q1, T0 = 1967Q4,
R = 40 quarters, h = 1 quarter and T = 2016Q4. Accordingly, the evaluation sample runs
from 1978Q1 to 2017Q2. Results are also reported for R = 20.11

3.3.3 Results

Table 3.3 shows the performance of the optimal forecast weights and optimal priors over the
evaluation sample and compares it with five alternative benchmark approaches. The first
approach is a simple linear AR(5) model, corresponding to view no. 1 in Table 3.1. In the
second approach, forecasts are produced using the individual view that exhibits the highest
marginal likelihood, selected recursively across estimation windows. The third approach uses
an AR model estimated on rolling windows of 80 quarters to accommodate time-varying
parameters.12 The remaining two approaches consider uniform combination schemes for the
alternative views, assigning equal forecast weights and equal prior probabilities, respectively,
to different values of K and, given K, equal weights/probabilities to the alternative views
defined using K regimes.13 As mentioned in section 3.2.4, weights w∗

1 and priors π∗
1 result

from the optimization taking the sum of log scores as objective function, while w∗
2 and π∗

2

are obtained by maximizing the p-value of the Kolmogorov-Smirnov (KS) test of uniformity
for the PITs. The table shows the average predictive density (APD) (i.e. the average of
the exponential of the log scores) and the p-value of the KS test. Besides, two additional

11To estimate the MSAR model I use the MATLAB package bayesf Version 2.0 by Frühwirth-Schnatter
(2008). For each MSAR estimate, the MCMC algorithm uses 1000 iterations as burn-in and 1000 iterations
to store the results. Starting from the sample of forecasts produced by the MCMC algorithm, a complete
probability density function is fitted using standard kernel methods.

12Using rolling windows of 40 quarters gives similar results.
13For instance, in the case of equal prior probabilities, it is assumed that π0

K = 1/K for each K and that
π(ϑ0

K,i|K) = 1/PK for each view ϑ0
K,i. See (3.4) and (3.5).
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measures of correct specification of density forecasts are taken into consideration, namely the
p-values of the Ljung–Box test of serial independence for the first and second moment of the
PITs (see Rossi and Sekhposyan 2014). Since correct calibration implies that the PITs are
realizations of i.i.d. variables, both tests should not reject the null of serial independence
for forecasts to be considered well-calibrated. In the table, LB1 denotes the test on the first
moment and LB2 the test on the second moment. Following Rossi and Sekhposyan (2014),
in both tests the null hypothesis is serial independence over up to 4 lags.

The main result is that optimized regime-switching composite forecasts achieve well-
behaved PITs, unlike all benchmarks considered. The optimization step generates substantial
improvements in density forecast performance as measured by the uniformity of the PIT. As
can be seen from Table 3.3, using the optimal priors π∗

2 and the optimal weights w∗
2 results

in the highest p-values in the KS test of PIT uniformity, 0.32 and 0.21 respectively, while
also ensuring that both tests of independence of the PITs do not reject the null hypothesis.
By contrast, the recursively estimated linear AR, the two uniform weighting schemes and
the approach using the views with the highest marginal likelihood all lead to rejection of the
null of uniformity at the 5% level. The AR model estimated on a rolling window gives a
p-value of 10% in the KS test, but strongly rejects serial independence in the second moment
of the PITs. In general, for all MSAR-based forecasts the null of independence cannot be
rejected, whereas in the case of the linear AR model the independence of the second moment
is rejected regardless of the estimation scheme. Interestingly, weights w∗

1 and priors π∗
1 both

lead to increases in the KS p-value relative to uniform combinations, even though they are
optimized using the log scores as objective function.

Second, the optimization step appears less useful for producing gains in terms of log
scores. The APDs of the log-score-optimized forecasts are higher than those achieved by the
recursive-window AR, the rolling-window AR and equal forecast weights, but are roughly
the same as those obtained by using uniform prior probabilities or by recursively selecting
the view with the highest marginal likelihood. Moreover, using the sum of log scores as
objective function results in small increases in APD compared to using the KS statistics.
Overall, the comparatively good accuracy in terms of APDs appears to be driven more by
the Markov-switching model than by the optimization procedure.

To summarize, optimizing the combinations of views enhances the calibration of den-
sity forecasts in terms of PIT uniformity, i.e. improves the specification of the predictive
distribution. This, combined with the regime-switching setup, leads to PITs that are not
significantly different from i.i.d uniform variables. At the same time, the approach is capable
of producing results in terms of log-score accuracy that are roughly in line with the best ones
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across several benchmarks.
Figure 3.3 shows the evolution over time of the well-calibrated 1-quarter-ahead forecasts

based on the optimal priors π∗
2, plotting the p.d.f. of the forecasts in each period. Figure

3.4 summarizes the same density forecasts using a fan chart, where different shades of color
identify different percentiles, from 0.01 to 0.99.

The approach can be used to evaluate the time-varying contribution of different views
to the composite forecasts. Figures 3.5-3.8 display the evolution over time of the optimal
forecast weights and of the weights resulting from the optimal priors, i.e. the optimized
posterior probabilities. In each figure, the area chart in the left panel shows the time-varying
weights for all views from 1978Q1 to 2017Q2. The right panel plots the cumulative weight
assigned to the views derived from the Fed supervisory scenarios. Figures 3.5 and 3.7 show
the results of the optimization based on log scores, while Figures 3.6 and 3.8 show the
results of the optimization based on the PITs. As can be seen from Figures 3.5 and 3.7,
the vague views tend to dominate in the case of log-score optimization, especially when the
prior probabilities are optimized. In terms of optimal weights w∗

1, the cumulative weight
of the Fed-based views lies in the range 10%-35% between 1979 and 1990, remains flat at
zero from the end of 1990 until 2006, then starts increasing in 2007 and peaks at 61% in
2010. It rapidly declines afterwards. On average, the vague views account for more than
90% of the composite forecasts. As regards the optimized posteriors, the Fed-based views
only have short-lived spikes in 1984 (21%) and 2010 (100%). Overall, the results indicate a
minor role of Fed-based views in boosting density forecast accuracy. This is consistent with
the fact that the maximum marginal likelihood criterion (used in the second row of Table
3.3), which gives as high APDs as the log-score-optimized weights and priors, never selects
any Fed-based views.

When the PIT-based optimization is considered, the contribution of the Fed-based views
is much higher. On average, they account for 33% of the combined forecasts in the case of
optimal weights and over 20% in the case of optimal priors. In terms of w∗

2, their cumulative
weight exceeds 60% in 1982-1983, increases quite rapidly during the period 2007-2009 and
remains steadily between 75% and 100% from 2009 to 2017. The Fed-based views also
dominate in terms of optimized posteriors for most of the period 2008-2017. Their cumulative
posterior probability has a first peak in 1983, while it remains close to zero from 1984 to 2008.
It is important to remark that using Fed-based views is not sufficient to achieve well-calibrated
forecasts. None of these views, when considered individually, leads to non-rejection of the
null hypothesis in the KS test. Instead, as already stressed, the combination of different
views is what produces good results in terms of PIT uniformity.
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Finally, Table 3.5 shows the results for R = 20. The main conclusions hold true in this
case, except that for PIT-based optimal weights and priors the LB1 test does nor reject at
the 5% level but still rejects at the 10%.

3.3.3.1 Comparison with non-normal and heteroskedastic AR models

To evaluate the approach within the broader perspective of non-normal and heteroskedastic
models, this section shows the density forecast performance of three alternative models: an
AR with Student-t errors, an AR with ARCH errors and an AR with GARCH errors. The
models have been estimated on both recursive windows and rolling windows of 40 and 80
quarters.14 As with the MSAR models, the lag length for the AR component is set to 5 for
all three models, while the ARCH and GARCH components have a lag length of 1.

For each model, Table 3.4 shows the APDs and the p-values for the KS, LB1 and LB2 tests
over the same evaluation sample as in the previous section. When estimated on recursive
windows, all three models generate non-uniform PITs and lower APDs than any MSAR-
based method in Table 3.3. Their performance considerably improves when rolling windows
are used, which accommodate structural instabilities. In particular, the AR with t errors
achieves the highest APD (0.37) and generates PITs that do not reject the hypotheses of
uniformity and independence in the first moment. Regarding independence in the second
moment, the LB2 test rejects the null at the 5% when estimated on 80-quarter windows,
whereas it does not reject the null at the 5% but rejects it at the 10% level when estimated on
40-quarter windows. The models with ARCH/GARCH errors always reject the hypothesis of
second-moment independence and are generally outperformed by the MSAR-based methods
in terms of APDs.

The results suggest that, when the PIT optimization is used, the approach proposed in the
paper is able to achieve a more reliable specification of the conditional predictive distribution,
based on the joint indications offered by the KS, LB1 and LB2 tests. In terms of log-score
accuracy, the approach produces results that are close but below the best alternative, namely
the AR model with Student-t errors estimated on rolling windows.

14The AR-GARCH model on rolling windows of 40 quarters is not supported by the data and is therefore
not reported.
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3.4 Conclusions

This paper has proposed a procedure for constructing comparatively reliable density forecasts
using a regime-switching model. Composite forecasts are formed by pooling alternative
model assumptions (or views) and are optimized with respect to measures of calibration
(probability integral transforms or PITs) and accuracy (log scores). The approach merges
the well-established benefits of forecast combination with the flexibility of mixture predictive
densities provided by a single, Markov-switching model. Different sources of uncertainty are
incorporated into the density forecasts. First, uncertainty on the future state of the economy
is dealt with by means of the Markov-switching setup. Second, as a result of Bayesian
estimation, parameter uncertainty enters the predictive densities for any given view on the
regime-switching behavior of the economy. Third, “disagreement” between views is taken
into account through forecast combination.

The approach appears to strike a good balance between the specification of flexible dis-
tributional shapes and the accuracy of density forecasts. In an application to U.S. GDP, the
optimized regime-switching forecasts achieve PITs that are not significantly different from
i.i.d uniform variables, thereby complying with theoretical prescriptions on density forecast
calibration. At the same time, they exhibit a good level of accuracy in terms of average
predictive densities. Moreover, the forecasts appear better calibrated than those provided by
a variety of competing approaches.

Unlike an AR model with non-normal errors, which in the paper turns out to be the best
competitor in terms of density forecast performance, this methodology allows for flexible
predictions to be constructed by incorporating different macroeconomic scenarios as defined
by experts. To illustrate this possibility, the empirical application makes use of views de-
rived from the Fed supervisory scenarios, which are adopted in the annual bank stress tests,
and tracks their contribution to the optimized forecasts over time. This feature appears
particularly valuable in all contexts in which tail risks have a clear economic interpretation
and when predictive simulations have to comply with external, possibly judgmental views.
Researchers and practitioners interested in this kind of analysis may fine-tune the approach
by selecting different objective functions in the optimization step and by tailoring the range
of views to be explored.
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Figures and tables

Figure 3.1: U.S. real GDP growth 1948Q1-2017Q2

Notes: The left panel plots the quarterly time series of the U.S. real GDP growth rate (year-on-year)
from 1948Q1 to 2017Q2. The histogram in the right panel summarizes the frequency distribution. The
red line represents the normal p.d.f. with the same mean and variance as the empirical distribution.
The Jarque-Bera test rejects the hypothesis of normality at the 5% level.
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Figure 3.2: Optimization scheme

Notes: The figure summarizes the density forecast optimization scheme. First, the MSAR model is
recursively estimated on actual GDP data (dark blue bar) using alternative views. The sample start
date is denoted with t0, the end date runs from T0 to T . For each sample window, the estimates
generate density forecasts with horizon h (light blue bar). A rolling sequence of R forecasts is used
to compute optimal forecast weights and prior probabilities (green bar) for the views. The optimal
weights/priors obtained in each period are used to combine the view-specific forecasts for subsequent
periods. The resulting composite forecasts (dark yellow bar) are evaluated by comparison with the
actual data over the period from T0 + 2h+R− 1 to T + 2h.
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Table 3.1: Alternative views for the MSAR model of U.S. GDP growth

view no. view type K b0 B0 a0 A0 e c0 g0 G0

1 vague 1 0 1 (0.5, 0, 0, 0, 0) 1 2 3 0.5 0.5
2 vague 2 (0, 0) 1 (0.5, 0, 0, 0, 0) 1 2 3 0.5 0.5
3 vague 3 (0, 0, 0) 1 (0.5, 0, 0, 0, 0) 1 2 3 0.5 0.5
4 vague 4 (0, 0, 0, 0) 1 (0.5, 0, 0, 0, 0) 1 2 3 0.5 0.5
5 vague 5 (0, 0, 0, 0, 0) 1 (0.5, 0, 0, 0, 0) 1 2 3 0.5 0.5
6 Fed stress test 3 (0.265, -0.0475, -0.4275) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
7 Fed stress test 3 (0.2275, -0.1850, -0.5675) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
8 Fed stress test 3 (0.205, -0.1950, -0.59) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
9 Fed stress test 3 (0.21, -0.2125, -0.6275) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
10 Fed stress test 5 (0.39, 0.1975, 0.265, -0.0475, -0.4275) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
11 Fed stress test 5 (0.39, 0.3, 0.2275, -0.1850, -0.5675) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
12 Fed stress test 5 (0.39, 0.3, 0.205, -0.1950, -0.59) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5
13 Fed stress test 5 (0.43, 0.32, 0.21, -0.2125, -0.6275) 10−5 (0.9, 0, 0, 0, 0) 10−5 2 3 0.5 0.5

Notes: The table lists the 13 views considered in the empirical application. K denotes the number of regimes, b0, B0, a0, A0, e, c0, g0 and G0

are the hyperparameters of the Bayesian MSAR model, as described in the text.
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Table 3.2: Fed stress tests 2015-2018: scenarios of U.S. GDP growth

2015 2016 2017 2018
time base adv. sev. base adv. sev. base adv. sev. base adv. sev.
2014Q4 3 -0.6 -3.9
2015Q1 2.9 -1.3 -6.1
2015Q2 2.9 -0.2 -3.9
2015Q3 2.9 0.2 -3.2
2015Q4 2.9 0.3 -1.5
2016Q1 2.9 0.8 1.2 2.5 -1.5 -5.1
2016Q2 2.9 1.2 1.2 2.6 -2.8 -7.5
2016Q3 2.9 1.7 3 2.6 -2 -5.9
2016Q4 2.9 1.8 3 2.5 -1.1 -4.2
2017Q1 2.7 1.8 3.9 2.4 0 -2.2 2.2 -1.5 -5.1
2017Q2 2.7 1.9 3.9 2.5 1.3 0.4 2.3 -2.8 -7.5
2017Q3 2.6 2 3.9 2.3 1.7 1.3 2.4 -2 -5.9
2017Q4 2.6 2.2 3.9 2.3 2.6 3 2.3 -1.5 -5.1
2018Q1 2.6 2.6 3 2.4 -0.5 -3 2.5 -1.3 -4.7
2018Q2 2.4 3 3.9 2.4 1 0 2.8 -3.5 -8.9
2018Q3 2.3 3 3.9 2.4 1.4 0.7 2.6 -2.4 -6.8
2018Q4 2.3 3 3.9 2.3 2.6 3 2.5 -1.3 -4.7
2019Q1 2.1 3 3.9 2 2.6 3 2.3 -0.7 -3.6
2019Q2 2.1 3 3.9 2.3 0.4 -1.3
2019Q3 2.1 3 3.9 2.1 1 -0.2
2019Q4 2 3 3.9 2 2.5 2.8
2020Q1 2 3 3.9 2.1 2.8 3.5
2020Q2 2.1 3 4
2020Q3 2.1 3.2 4.2
2020Q4 2.1 3.3 4.5
2021Q1 2.1 3.3 4.5

Notes: For each year from 2015 to 2018, the table reports the baseline, adverse and severely adverse
supervisory scenarios for U.S. GDP growth (quarter-on-quarter, annualized) included in the annual
stress tests conducted by the Federal Reserve.
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Table 3.3: Density forecast performance of optimal pools of MSAR views vs. benchmarks

APD KS LB1 LB2
AR (view no. 1) 0.27 0.00 0.61 0.01
View max marg. lik. 0.35 0.03 0.73 0.84
AR rolling window 0.33 0.10 0.59 0.00
Equal forecast weights 0.31 0.01 0.39 0.34
Equal prior prob. 0.35 0.02 0.70 0.83
Optimal weights w∗

1 0.35 0.08 0.69 0.81
Optimal priors π∗

1 0.35 0.06 0.74 0.75
Optimal weights w∗

2 0.32 0.21 0.26 0.80
Optimal priors π∗

2 0.33 0.32 0.36 0.89

Notes: APD denotes the average predictive density, KS denotes the p-value of the Kolmogorov-
Smirnov test of uniformity of the PITs. LB1 and LB2 denote the p-values of the Ljung-Box test
of serial independence in the first and second moment of the PITs, respectively. All statistics are
computed over the period 1978Q1-2017Q2.

Table 3.4: Density forecast performance of Student-t AR, AR-ARCH and AR-GARCH mod-
els

APD KS LB1 LB2
AR(5) with t errors (recursive) 0.30 0.00 0.56 0.06
AR(5) with t errors (rolling 80) 0.37 0.50 0.76 0.04
AR(5) with t errors (rolling 40) 0.37 0.32 0.96 0.06
AR(5)-ARCH(1) (recursive) 0.27 0.00 0.57 0.00
AR(5)-ARCH(1) (rolling 80) 0.32 0.12 0.82 0.00
AR(5)-ARCH(1) (rolling 40) 0.33 0.69 0.94 0.00
AR(5)-GARCH(1,1) (recursive) 0.20 0.00 0.92 0.00
AR(5)-GARCH(1,1) (rolling 80) 0.29 0.00 0.79 0.00

Notes: APD denotes the average predictive density, KS denotes the p-value of the Kolmogorov-
Smirnov test of uniformity of the PITs. LB1 and LB2 denote the p-values of the Ljung-Box test
of serial independence in the first and second moment of the PITs, respectively. The AR-GARCH
model on 40-quarter rolling windows is not supported by the data and is therefore not reported. All
statistics are computed over the period 1978Q1-2017Q2.

143



Figure 3.3: Calibrated regime-switching density forecasts: evolution of p.d.f. over time

Notes: For each quarter from 1978Q1 to 2017Q2, the figure plots the p.d.f. of the 1-quarter-ahead
composite density forecast produced in the previous quarter using the PIT-based optimal priors.

Figure 3.4: Calibrated regime-switching density forecasts: fan chart

Notes: In this fan chart, different shades of color identify different percentiles (0.01, from 0.05 to 0.95
in steps of 0.05, and 0.99). For each quarter in 1978Q1-2017Q2, the chart summarizes the 1-quarter-
ahead composite density forecasts produced in the previous quarter using the PIT-based optimal
priors. The red line is the realized time series of GDP growth.
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Figure 3.5: Optimal weights w∗
1 over time

Notes: The area chart in the left panel shows the time-varying weights for all 13 views from 1978Q1 to 2017Q2. The right panel plots the
cumulative weight assigned to the views derived from Fed supervisory scenarios. See Table 3.1.
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Figure 3.6: Optimal weights w∗
2 over time

Notes: The area chart in the left panel shows the time-varying weights for all 13 views from 1978Q1 to 2017Q2. The right panel plots the
cumulative weight assigned to the views derived from Fed supervisory scenarios. See Table 3.1.
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Figure 3.7: Posterior probabilities from π0∗
1 over time

Notes: The area chart in the left panel shows the posterior weights for all views from 1978Q1 to 2017Q2. The right panel plots the cumulative
posterior weight assigned to the views derived from Fed supervisory scenarios. See Table 3.1.
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Figure 3.8: Posterior probabilities from π0∗
2 over time

Notes: The area chart in the left panel shows the posterior weights for all views from 1978Q1 to 2017Q2. The right panel plots the cumulative
posterior weight assigned to the views derived from Fed supervisory scenarios. See Table 3.1.
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Table 3.5: Density forecast performance of optimal pools of views vs. benchmarks (R = 20)

APD KS LB1 LB2
AR (view no. 1) 0.26 0.00 0.68 0.00
View max marg. lik. 0.33 0.01 0.82 0.64
AR rolling window 0.31 0.12 0.51 0.00
Equal forecast weights 0.30 0.01 0.33 0.45
Equal prior prob. 0.33 0.01 0.80 0.59
Optimal weights w∗

1 0.33 0.12 0.52 0.54
Optimal priors π∗

1 0.33 0.05 0.68 0.41
Optimal weights w∗

2 0.30 0.12 0.05 0.65
Optimal priors π∗

2 0.31 0.16 0.09 0.42

Notes: This table shows the results obtained using a rolling sequence of R = 20 forecasts to compute
optimal weights and priors. APD denotes the average predictive density, KS denotes the p-value of
the Kolmogorov-Smirnov test of uniformity of the PITs. LB1 and LB2 denote the p-values of the
Ljung-Box test of serial independence in the first and second moment of the PITs, respectively. All
statistics are computed over the period 1973Q1-2017Q2 (see Figure 3.2).

Appendix 3.A Prior on the regime-switching variance

Based on the properties of the Gamma and inverted Gamma distributions, it holds that:
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Given the values of the hyperparameters, c0 = 3, g0 = 0.5 and G0 = 0.5, it follows that:

E(σ2
k) =

E(C0)

c0 − 1
= 0.5

and
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=
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0 )

(c0 − 1)2(c0 − 2)
+

Var(C0)

(c0 − 1)2
=

=
3

4
+

1

2
= 1.25

150




