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To my Family.
To my Friends.

But of all the water’s secrets,
he saw today only a single one-one that struck his soul.

He saw that this water flowed and flowed,
it was constantly flowing, and yet it was always there;

it was always eternally the same and yet new at every moment!
Oh, to be able to grasp this, to understand this!

Hermann Hesse, Siddharta, 1922.





Abstract

The present research work focuses on the regionalisation of hydrometric information
(i.e. transferring empirical information on streamflow regime from neighbouring catch-
ments to the catchment of interest), which is widely used for retrieving accurate estimates
of hydrological design variables (e.g. flood flows, mean annual streamflow, low-flow in-
dices, etc.) in ungauged or scarcely gauged basins. The literature reports on several statis-
tical regionalisation methods, which are characterised by different ways of accounting for
hydrological similarity between catchments and spatial correlation (or cross-correlation,
or intersite correlation) among the hydrological observations collected at different stream-
gauges. This Thesis aims at deepening our understanding on the added value and impacts
of catchment similarity and spatial correlation on the prediction of flood quantiles and
flow-duration curves in ungauged river cross-sections by presenting the results of a three-
fold study.

First, we consider the reference procedure for design flood estimation in Triveneto,
North-eastern Italy, which assumes the entire study area to be a single hydrologically
homogeneous region. Our analyses, based on an updated database of annual maximum
floods, confirm the outcomes of previous studies, that is Triveneto cannot be regarded
as homogeneous in terms of flood frequency regime; our study also highlights the need
for an update of the reference procedure for design flood estimation in the study area.
To this aim, we show that a focused-pooling approach, which delineates homogeneous
pooling-groups of sites for any given target site by referring to selected geomorphoclimatic
descriptors which are particularly relevant for describing regional flood frequency, leads
to regional samples characterised by significantly improved homogeneity and, therefore,
more reliable design flood estimates.

Although focused pooling is capable of properly exploiting catchment similarity, the
general approach does not consider the effects associated with spatial correlation among
streamflow series. Nevertheless, all regional datasets of annual sequences of flood flows
present some degree of cross-correlation between observed series. Its effects on the ac-
curacy of regional prediction are not well studied yet. Therefore, the second part of our
study addresses this important issue by considering two regionalisation procedures that do
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consider intersite correlation explicitly, although in two radically different ways. These are
the Generalized Least Squares, GLS, and a geostatistical method (i.e. Top-kriging, TK).
Recent studies show that TK outperforms GLS for predicting empirical flood quantiles,
but they also speculate that the presence of intersite correlation might affect the accuracy
of these methods in predicting true flood quantiles. To better understand this aspect, we
applied GLS and TK for predicting flood quantiles in a homogeneous pooling-group of
sites in Triveneto under different cross-correlation scenarios through a Monte Carlo simu-
lation experiment. Our analyses clearly show that, for both methods, an increasing degree
of spatial correlation among the flood sequences results in an increasing masking-effect on
the true flooding potential. Morever, we confirm that TK significantly outperforms GLS
when they both assume flood quantiles to scale with drainage area alone, yet, we clearly
point out that both methodologies (GLS and TK) significantly improve their accuracy
and reliability when flood quantiles are regressed against several catchment descriptors,
leading to rather similar overall prediction performances.

In the third and last part of our study, we compare regression methods and geosta-
tistical methods for predicting flow-duration curves in a large and heterogeneous study
region, the Danube river basin. In particular, we show that multi-regression models are
not a viable regionalisation procedure, while geostatistical models provide much more
accurate predictions of flow-duration curves over large and hydrologically heterogeneous
study areas.

In summary, all the analyses confirmed the added value for statistical regionalisation
of properly handling hydrological heterogeneity, also highlighting the pivotal role played
by intersite correlation in observed streamflow time-series.
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Premise

The knowledge of hydrological design variables is of paramount importance in many
practical engineering applications. Runoff hydrographs, low- and high-flow indices, flow-
duration curves are just some of the hydrological variables which provide useful infor-
mation for different management purposes, such as drought and flood risk managament,
design of dams, levees and water supply systems, feasibility studies for the construction
of new hydropower production facilities, etc. As gauging stations are heterogeneously
and sparsely distributed in space, one of the most common tasks in Hydrology is to pro-
duce an accurate estimation of the hydrological design streamflow of interest (i.e. high
flows, low flows, streamflow indices, flow-duration curves) at ungauged or scarcely gauged
river cross-sections. This topic received and continues to receive a great deal of atten-
tion from the scientific community; a prominent example is the Predictions in Ungauged
Basins (PUB) initiative, promoted by the International Association of Hydrological Sci-
ences (IAHS) for the decade 2003-2012, with the primary aim of reducing uncertainty
in hydrological predictions in ungauged basins (see Sivapalan et al., 2003; Blöschl et al.,
2013).

The task of estimating hydrological design variables at ungauged catchments is fre-
quently addressed by means of regional analysis, or statistical regionalisation, which con-
sists in transferring to the ungauged (or scarcely gauged) target site the hydrological
information collected at gauged sites which are supposed to be hydrologically similar to
the target one (see e.g. Hosking and Wallis, 1993, and the text book on the subject from
the same authors in 1997). For this reason, regional analysis requires the proper identi-
fication of homogeneous regions consisting of hydrologically similar catchments in terms
of the processes controlling dynamics and regime of the hydrological variable of inter-
est. The literature reports a significant evolution of the concept of homogeneous region
over the last decades: the traditional idea of contiguous and geographically identifiable
regions (see e.g. NERC, 1975) has been gradually replaced with the more general idea
of homogeneous groups of basins with similar hydrological behaviour, which may or may
not be geographically close to each other (see e.g. Acreman and Wiltshire, 1989; Burn,
1990; Ouarda et al., 2001). Hydrological similarity between catchments is a fundamental
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prerequisite for several regionalisation procedures, overlooking which they may result in
totally unrealiable regional estimates of the hydrological signature of interest.

Another important aspect is the potential effect of spatial correlation (i.e. cross-
correlation, or intersite correlation) of streamflow series on the accuracy of regional pre-
dictions; cross-correlation reduces the actual hydrological information content of a region,
impacting the prediction uncertainty of regional models and the assessment of the homo-
geneity of the region itself (see e.g. Matalas and Langbein, 1962; Stedinger, 1983; Hosking
and Wallis, 1988; Stedinger and Lu, 1995; Hosking and Wallis, 1997; Madsen and Rosb-
jerg, 1997; Madsen et al., 2002; Castellarin et al., 2008).

The present Thesis specifically addresses hydrological similarity and intersite correla-
tion, given their pivotal role in all practical applications of statistical regionalisation of
hydrological information. In particular, the study reported herein focuses on the regional-
isation of hydrometric information, meaning the regionalisation of streamflow information
and statistics, with particular reference to two useful hydrological design variables: de-
sign flood and flow-duration curves. The design flood is the flood quantile associated with
a given non-exceedance probability over an extended period of time (usually expressed
in terms of return period T , and measured in years, the so called T -year flood), for a
given river cross-section. The prediction of the design flood is required for the design of
dams’ spillways, culverts, levees, and for reservoir management, river restoration and risk
management (see e.g. Blöschl et al., 2013). Each specific application is associated with
a specific return period T : for instance, levees and dams are designed with reference to
T = 100÷ 200 years and T = 1000÷ 5000 years, respectively (see the EU Floods Direc-
tive, i.e. Directive 2007/60/EC, transposed in Italy by means of the Legislative Decree
49/2010). On the other hand, a flow-duration curve (FDC) represents the frequency with
which a given streamflow is equaled or exceeded over an historical period of time for the
river cross-section of interest (see e.g. Vogel and Fennessey, 1994). FDCs provide a simple
and compact view of the historical variability of streamflows, reflecting climate conditions
and the hydrogeological characteristics of the catchment itself (see e.g. Castellarin, 2014;
Westerberg et al., 2016). For this reason, FDCs are routinely used for addressing water
resources management problems such as hydropower feasibility studies, classification of
streamflow regimes, design of water supply systems, irrigation planning and management,
etc. (see e.g. Vogel and Fennessey, 1995; Yaeger et al., 2012).

For the regionalisation of hydrometric information, the literature reports several statis-
tical methods, all assuming the hydrological variable of interest to be a random variable,
but at the same time differing significantly in the way they identify groups of hydro-
logically similar catchments and account for spatial correlation among the variables. In
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general, statistical methods are classified in regression-based methods, index-flow meth-
ods and geostatistical methods (see e.g. Blöschl et al., 2013). Regression-based methods
relate the hydrological variable of interest to observable catchment and climate character-
istics; they can require the preliminary identification of a homogeneous region and may
or may not account for the presence of unequal record lenghts from site to site and cross-
correlation among concurrent streamflows between sites (see e.g. Thomas and Benson,
1970; Tasker, 1980; Stedinger and Tasker, 1985; Tasker and Stedinger, 1989). Index-flow
methods (see e.g. Dalrymple, 1960; Hosking and Wallis, 1997) estimate the hydrological
design variable of interest as the product between an index-flow (i.e. scale factor, depend-
ing only on the specific target site) and a dimensionless quantile (i.e. growth factor, which
is unique within the given homogeneous region). Finally, geostatistical methods have the
peculiarty of not requiring the preliminary identification of homogeneous regions and,
differently from the above mentioned methods, exploit the spatial correlation of runoff
signatures: they assume the hydrological signature of interest in the ungauged catchment
to be a weighted mean of the hydrological signatures in the neighbouring catchments,
where the weights account for the spatial correlation of the signatures and the relative lo-
cations of the catchments (see e.g. De Marsily, 1986; Chokmani and Ouarda, 2004; Skøien
et al., 2006; Skøien and Blöschl, 2007). Despite their remarkable differences in identifying
homogeneous regions and accounting for spatial correlation, these methods are widely
and successfully used for the prediction of several hydrological design variables in various
geographical and climatic contexts. With the aim of deepening our understanding on the
added value and impacts of catchment similarity and spatial correlation on the prediction
of flood flows and flow-duration curves in ungauged basins, this Thesis considers all three
of the types of statistical regionalisation methods in different contexts, as described below.

The first part of the Thesis considers the reference procedure for design flood estima-
tion in Italy, availabe from the italian CNR (Consiglio Nazionale delle Ricerche, National
Research Council) research project VAPI (VAlutazione delle PIene), which developed an
index-flood regional model based upon geographically contiguous regions identified with
reference to administrative borders and upon flood data collected up to the 1980s and
the 1990s, depending on the specific area. In particular, we focus on Triveneto, a broad
mountainous geographical area in North-eastern Italy which counts numerous dams that
routinely undergo hydrologic and hydraulic risk assessments, with the aim of verifying ac-
curacy and reliability of the VAPI project for the region (see Villi and Bacchi, 2001). As
the VAPI project for Triveneto is based upon AMS of peak discharges that were collected
up to the 1980s, we refer to an updated AMS database in order to evaluate the potential
of developing an updated reference procedure for design flood estimation in Triveneto.

3



Premise

In particular, we consider an updated index-flood method, which is based on a focused-
pooling approach (i.e. Region of Influence, RoI; see e.g. Burn, 1990), and which identifies
homogeneous pooling-groups of sites for a given target site, by accounting for the control
of geomorphological and climatic characteristics of a given catchment on flood frequency
regime.

Concerning the impact of cross-correlation on regional predictions of flood flows, in ad-
dition to the above mentioned index-flood procedures (i.e. VAPI project, RoI approach),
we test the viability of regression-based methods and geostatistical methods for predicting
the design flood in ungauged sites in Triveneto. In particular, we consider Generalized
Least Squares (GLS; i.e. Stedinger and Tasker, 1985; Tasker and Stedinger, 1989), which is
the reference procedure for estimating streamflow characteristics in ungauged catchments
in the USA, and Top-kriging (TK; i.e. Skøien et al., 2006), procedures which are widely
applied in several contexts, but are not commonly used in Italy. As it will be discussed in
the Thesis, both procedures are intimately dependent on the cross-correlation structure
of flood sequences in the study region, an important aspect which is not addressed by the
VAPI project and the RoI approach. GLS and TK are completely different in the ways
they treat cross-correlation among flows: while GLS accounts for sampling variability and
cross-correlation among concurrent streamflows in developing a regional regression model,
TK explicitly exploits spatial correlation and is increasingly used for predicting several
streamflow indices and hydrological signatures, flood quantiles included, in ungauged sites
(see e.g. Castiglioni et al., 2009; Archfield et al., 2013; Pugliese et al., 2014, 2016). In this
context, a recent study by Archfield et al. (2013) in the South-eastern USA highlighted
that when the aim is the prediction of empirical flood quantiles in an ungauged site, TK
is likely to result in better predictive models than GLS, but if the goal is to predict the
true flood quantile, based on a limited set of observations, then the effect of spatial corre-
lation could mask the real flood magnitude. As recognised by the authors themselves, the
analyses performed in Archfield et al. (2013), being entirely based on empirical data, can-
not address the fundamental science question of understanding which technique, between
GLS and TK, is better suited for predicting the true unknown flood quantiles in ungauged
catchments when the observed flood sequences are affected by cross-correlation. To this
aim, we refer to a homogeneous pooling-group of catchments in Triveneto, for which we
generate a total of 3000 realisations under different cross-correlation scenarios and evalu-
ate the performances of GLS and TK in predicting the known theoretical values and the
sample estimates of flood quantiles in a leave-one-out cross-validation scheme. In particu-
lar, our Monte Carlo experiment is aimed at confirming what one could speculate, that is
that TK has better efficiencies in predicting the sample estimator of flood quantiles, while
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GLS is a better predictor of the true and unknown regional quantiles (looking behind the
cross-correlation).

Finally, we focus on the use of geostatistical techniques for predicting flow-duration
curves (FDCs) in ungauged basins over large and hydrologically heterogeneous geograph-
ical areas. Indeed, compared to regional regression models, whose accuracy is generally
unsatisfactory for large and highly heterogeneous study regions, geostatistical procedures
have been shown to provide highly reliable predictions of streamflow point indices over
large study areas, such as low flows (see e.g. Castiglioni et al., 2011; Parajka et al., 2015)
and floods (see e.g. Archfield et al., 2013). Recently, Pugliese et al. (2014) introduced
the Total Negative Deviation Top-kriging (TNDTK), which uses TK in an index-flow
framework for predicting the entire FDC in ungauged sites. TNDTK has been shown to
be reliable for predicting FDCs both in Europe (i.e. Pugliese et al., 2014) and in the USA
(i.e. Pugliese et al., 2016). However, it has never been applied over large geographical
areas, which can be characterised by significant heterogeneities in terms of streamflow
regimes. For this reason, we perform a cross-validation of TNDTK in the Danube re-
gion, the largest watershed in Europe, with the aim of evaluating the performance of the
procedure in estimating FDCs in ungauged basins and discussing the uncertainty of the
interpolation and its dependence on the existing streamgauging network density. This
research activity was carried out within a research project with the Joint Research Centre
of the European Commission (DG JRC), with the aim of generating a GIS (Geographic
Information System) layer reporting the predicted streamflow regime (FDCs) for about
4000 prediction nodes within the watershed of the Danube River.

The Thesis is structured as follows.
Chapter 1 defines the hydrological design variables considered in the study (i.e. design

floods, flow-duration curves) and provides the reader with an overview of statistical models
for the prediction of runoff signatures in ungauged basins, highlighting the way in which
they address the issues of hydrological similarity and spatial correlation.

Chapter 2 deepens the statistical approaches which were applied for the purposes of
this Thesis, distinguishing between regression-based methods (Ordinary Least Squares,
Weighted Least Squares, and Generalized Least Squares; see Sec. 2.1), index-flow methods
(i.e. index-flood methods in this context: VAPI project and Region of Influence approach;
see Sec. 2.2), and geostatistical methods (Top-kriging and Total Negative Deviation Top-
kriging; see Sec. 2.3).

Chapter 3 reports the assessment of the VAPI project for estimating design flood
in ungauged catchments in Triveneto and the updated reference procedure based on the
Region of Influence approach, including a detailed analysis of the climate and scale controls
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on regional flood frequency distribution.
Chapter 4 compares GLS and TK for predicting flood quantiles in ungauged sites.

The section focuses on the Triveneto region and it first compares the procedures for a
real-world application which considers a hydrologically homogeneous pooling-group of
alpine catchments. Second, the analysis focuses on cross-correlated realisations of the
homogeneous region generated through a Monte Carlo simulation framework and aims at
understanding which technique, between GLS and TK, is better suited for predicting the
true unknown flood quantiles in ungauged catchments when the observed flood sequences
are affected by cross-correlation.

Chapter 5 shifts the focus from relatively small hydrologically homogeneous regions
to large heterogeneous areas, and from floods to the entire streamflow regime, from high
flows to low flows. The chapter presents the statistical regionalisation of flow-duration
curves in the Danube region, deepening our understanding on accuracy and applicability of
TNDTK over a large region and the dependence of uncertainty of predicted flow-duration
curves at ungauged sites on the streamgauging network density.
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Chapter 1

Prediction of hydrological variables
in ungauged basins

1.1 Hydrological design variables considered in the
Thesis

The knowledge of hydrological variables is of paramount importance in many practical
applications in the context of integrated water resources and flood and drought risk man-
agement (Blöschl et al., 2013). Annual and seasonal runoff, flow-duration curves, low-flow
indices, flood quantiles, runoff hydrographs characterise the spatial and temporal distri-
bution of water resources in a river basin, and are fundamental pieces of information for
different management purposes, such as water allocation and supply, hydropower produc-
tion, drought and flood management, irrigation, ecological purposes (e.g. environmental
flows for ecological stream health), design of dams and levees, etc. This dissertation
focuses on design floods and flow-duration curves, whose definitions and usefulness are
illustrated in the following paragraphs.

1.1.1 Design floods

The design flood is generally defined as the flood quantile associated with a given non-
exceedance probability FX(x) = P [x ≤ X], usually expressed in terms of return period
T (x), which denotes the average recurrence interval over an extended period of time (often
expressed in years).

In general, the concept of return period, first introduced by Fuller (1914), gives an
easily understandable indication about the rareness of an extreme event, and relies on
the basic hypotheses of stationarity (i.e. extreme events arise from a stationary distri-
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bution) and independence (i.e. extreme events are independent from each other), which
are commonly assumed as necessary conditions in conventional frequency analysis in Hy-
drology (see e.g. Chow et al., 1988). To this aim, the Annual Maximum Series (AMS)
and the Peaks Over Threshold (POT; otherwise known as Partial Duration Series, PDS)
approaches are usually adopted for the preliminary selection of independent data. The
advantage of the AMS is that flood events can be extracted easily and can be consid-
ered independent, whereas the POT approach, considering all the events above a certain
threshold level, enables one to select more data points, but requires the definition of a
criteria to identify independent consecutive events (see e.g. Madsen et al., 1997, for a
detailed comparison of the two approaches). In the present Dissertation, we refer to the
AMS approach, which is the most common approach in flood frequency analysis. Volpi
et al. (2015) recently demonstrated that, although independence is usually invoked, the
concept of return period can be applied also in the case of time-dependent processes (e.g.
rainfall processes), and, when they are strongly affected by autocorrelation, one can refer
to the concept of equivalent return period (see Volpi et al., 2015, for further details).

The conventional definition of return period is as follows:

T (x) = 1
P [x > X] = 1

1− P [x ≤ X] = 1
1− FX(x) (1.1)

where P [x > X] indicates the exceedance probability of the given value x, and FX(x) =
P [x ≤ X] represents the cumulative distribution function of the annual maxima of flood
peak discharges. In other words, the design flood associated with a given return period
T corresponds with the flood quantile x = x(T ).

The prediction of flood quantiles is needed for the design of dams’ spillways, culverts,
levees, reservoir managemet, river restoration and risk management (see e.g. Blöschl et al.,
2013), where each specific application is associated with a specific return period T . For
instance, for assessing the risk associated with levee systems the 100 ÷ 200 years flood
quantiles are generally considered, whereas the design flood for dams is associated with
T = 1000 ÷ 5000 years (see the EU Floods Directive, i.e. Directive 2007/60/EC, trans-
posed in Italy by means of the Legislative Decree 49/2010).

Clearly, the estimation of the T -year design flood requires the preliminary evaluation of
the cumulative distribution function and of the corresponding probability density function
(i.e. flood frequency distribution). For a gauged site, where an annual maximum series
(AMS) of flood peaks discharges is available, a local (i.e. at-site) flood frequency analysis
can be performed to this aim:

1. ranking the observed AMS series, QAMS = {QAMS,1, QAMS,2, . . . , QAMS,i, . . . , QAMS,n}
(where n indicates the sample size) in ascending order, and
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2. plotting each ordered AMS observation QAMS,i versus its corresponding empirical
non-exceedance probability Fi, computed with a proper plotting position, e.g. the
Weibull plotting position, which is quantile and probability unbiased (Stedinger
et al., 1993):

Fi = i

n+ 1 , i ∈ [1, n] (1.2)

3. estimating the corresponding empirical return period by applying Eq. (1.1).

In order to estimate the required flood quantile, the empirical cumulative distribu-
tion function of annual floods needs to be fitted with a proper theoretical distribution.
The selection of a suitable distribution and the estimation of its parameters are crucial
steps in flood frequency analysis, and depends on many factors such as tradition, mod-
eller expertise, complexity of study, legislative requirements, and data availability (see
Castellarin et al., 2012). In European countries, national guidelines for flood frequency
estimation preferentially reccomend the two-parameter distributions of Gumbel (GUM),
Gamma (GAM), Two-Parameter Log-Normal (LN2) and Exponential (EXP), and the
three-parameter distributions Generalized Logistic (GLO), Generalized Extreme Value
(GEV), Three-Parameter Log-Normal (LN3) and Pearson type III (PE3) (see e.g. Castel-
larin et al., 2012; Salinas et al., 2014). Other common distributions are Log-Pearson type
III (LP3), which represents the reference distribution in the USA, and the four-parameter
distribution Two-Component Extreme Value (TCEV), representing the reference distribu-
tion in Italy. Concerning the parameters estimation procedures, the most commonly used
include methods of moments, L-moments, maximum likelihood, and Bayesian methods
(see e.g. Grimaldi et al., 2011; see also Appendix A for a concise description of moments
and L-moments).

In performing an at-site flood frequency analysis, hydrologists have to consider that
the reliability of the T -year flood quantile depends on the sample size of the AMS of flood
peak discharges which is available at the gauged site of interest. In this regard, Cunnane
(1987) suggests that a number of station-years of annual maxima n ≥ T/2 is required
to get a reliable estimation of the T -year flood quantile (e.g. at least 50 station-years of
data are necessary for reliably estimating the 100-year flood), while the more recent and
restrictive 5T -rule proposed by Jakob et al. (1999) indicates that n ≥ 5T (e.g. at least
500 station-years of data are required for T = 100 yr). Figure 1.1 shows an example of
at-site flood frequency analysis, highlighting the remarkable difference between the rules
proposed by Cunnane (1987) and Jakob et al. (1999).
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Figure 1.1: Example of at-site flood frequency analysis for a gauged site having 50 station-
years of data. Green circles represent the empirical sample (i.e. empirical return periods
evaluated with the Weibull plotting position), the black line the GEV distribution fitted
with the L-moments approach, while red and blue dots indicate the maximum return period
for which the at-site estimate can be considered reliable according to Cunnane (1987) and
Jakob et al. (1999), respectively.

Given the limited sample size of the AMS of flood peak discharges available around
the world (some gauged sites can reach a hundred station-years of data, at best), the task
of estimating the design flood for a given target site is often addressed by means of re-
gional flood frequency analysis (RFFA), by transferring to the target site the hydrological
information available at other gauged river cross-sections. RFFA, which is useful also for
the estimation at ungauged basins, is described in Sec. 1.2.

1.1.2 Flow-duration curves

A flow-duration curve (FDC) is a graphical representation of the frequency (i.e. per-
centage of time, or duration) with which a given streamflow is equaled or exceeded over
an historical period of time at a given river basin (see e.g. Vogel and Fennessey, 1994).
Providing a simple and compact view of the historical variability of streamflows, from high
flows to low flows, an FDC is a key signature of the hydrological behaviour of a given
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catchment. In particular, the shape of an FDC reflects climate conditions and the hy-
drogeological characteristics (i.e. size, morphology, permeability) of the catchment itself
(see e.g. Castellarin, 2014; Westerberg et al., 2016). For this reason, FDCs are routinely
used for addressing water resources management problems such as hydropower feasibility
studies, classification of streamflow regimes, design of water supply systems, irrigation
planning and management, definition of environmental flows, habitat suitability studies,
etc. (see e.g. Vogel and Fennessey, 1995; Yaeger et al., 2012).

The empirical FDC for a gauged site can be obtained from daily runoff data as follows:

1. ranking the observed runoff series, Q = {Q1, Q2, . . . , Qi, . . . , Qn} (where n indicates
the sample size) in ascending order, and

2. plotting each ordered observation Qi versus its corresponding duration di, which
can be dimensional (e.g. in days) or dimensionless (i.e. fractional, percentage), and
coincides with an estimate of the exceedance probability of the ith observation in
the sorted sample; as seen also for flood data, the Weibull plotting position can be
used to this aim (see Eq. (1.2)).

In general, empirical FDCs can be constructed with reference to two different and
complementary representations, depending on the reference period of time (see Vogel and
Fennessey, 1994):

• period-of-record FDCs (POR-FDCs), estimated on the basis of the entire runoff
record; POR-FDCs provide a long-term representation of the streamflow regime and
are useful tools, e.g., for assessing the long-term hydropower potential of a given
site, or for patching and extending streamflow data (i.e. Hughes and Smakhtin,
1996; Smakhtin and Masse, 2000);

• annual FDCs (AFDCs), estimated year-wise (i.e. for each year of record), can be
used for quantifying the streamflow regime in a typical hydrological year, or in a
particularly wet or dry year (see Vogel and Fennessey, 1994).

Figure 1.2 shows the POR-FDC and AFDCs (one AFDC for each year of record)
for an example site, highlighting the complementarity of the two representations, which,
together, offer a perspective of the inter-annual variability of the stramflow regime for the
considered site.

As seen above, the construction of empirical FDCs requires the availability of stream-
flow data at the river cross-section of interest. However, it is common the need of estimat-
ing FDCs at sites which lack streamflow observations (i.e. estimating FDCs at ungauged
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Figure 1.2: Example of empirical POR-FDC (black line) and AFDCs (grey lines) for a
given site. The observed streamflow data are reported in log-scale versus the corresponding
(dimensionless) duration.

sites, or enhancing empirical FDCs constructed for streamgauges where streamflow ob-
servations are limited). To this aim, the literature reports the successful application of a
variety of procedures based on the regionalisation of the hydrological information (see e.g.
Fennessey and Vogel, 1990; Castellarin et al., 2004a, 2013; Ganora et al., 2009; Pugliese
et al., 2014). Because of the widespread use of FDCs in water resources engineering, the
prediction of FDCs at ungauged sites was one of the main objectives of the IAHS-PUB
initiative (see Sivapalan et al., 2003; Blöschl et al., 2013) described in the following section.

1.2 Predictions in ungauged basins

1.2.1 The IAHS-PUB (Predictions in Ungauged Basins) inter-
national scientific initiative

The vast majority of catchments around the world are ungauged (i.e. absence of hy-
drometric observations) or scarcely gauged (i.e. the available hydrometric observations
are not accurate, intermittent and/or not sufficient for estimating the hydrological vari-
able of interest), and, therefore, the only chance to estimate hydrological design variables
(e.g. design floods, and flow-duration curves) at these sites is using hydrometric informa-
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tion or hydrological knowledge gained elsewhere. This topic has been much debated and
has received increasing attention by the scientific community in recent decades, leading
to the Predictions in Ungauged Basins (PUB) initiative, promoted by the International
Association of Hydrological Sciences (IAHS) for the decade 2003-2012, with the primary
aim of reducing uncertainty in hydrological predictions in ungauged basins (see Sivapalan
et al., 2003; Blöschl et al., 2013). In particular, Blöschl et al. (2013) identified two fun-
damentally different types of methods for estimating hydrological variables in ungauged
basins: (1) statistical methods (i.e. the hydrological signature of interest is assumed to
be a random variable), and (2) process-based methods (i.e. based on some combination
of balance equations of mass, momentum and energy). This Thesis focuses on statistical
methods, which are the subject of the brief general overview reported in this section.

1.2.2 Regionalisation of the hydrological information

In order to estimate hydrological design variables at ungauged or scarcely gauged
river cross-sections, hydrologists usually resort to regional analysis (i.e. regionalisation
methods), which consists in identifying homogeneous regions in terms of the hydrological
variable of interest (e.g. annual runoff, sesonal runoff, floods, flow-duration curves, etc.),
and then transferring the hydrological information from the gauged sites to the ungauged
(or scarcely gauged) target site. Concerning floods, for instance, regional flood frequency
analysis (see e.g. Hosking and Wallis, 1993, 1997) consists in collecting flood data from
gauged basins which are supposed to be hydrologically similar to the target basin (i.e.
basins which belong to the same homogeneous region) in terms of flood frequency regime.

Homogeneous regions and catchment similarity

In order to perform a regional analysis, hydrological similarity between catchments is
a fundamental requirement. In general, catchments can be considered hydrologically sim-
ilar "if they filter the climate variability in a similar fashion, as expressed by their (scaled)
hydrological signatures" (Blöschl et al., 2013). In other words, the concept of homogene-
ity is related to the regularity of the processes leading to the signature of interest, and
permits the simplifying assumption that there is a unique relationship between predic-
tors and the signature for a given group of sites (Blöschl et al., 2013). Since catchments
are complex systems and only a partial knowledge of hydrological processes is actually
available, the concept of hydrological similarity between catchments usually refers to the
similarity between their main characteristics: as runoff is the result of the interplay of
geomorphological and climatic characteristics of the catchments, the assumption is that
catchments having similar geomorphological and climatic characteristics will have also a
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similar hydrological behaviour (Blöschl et al., 2013). The identification of homogeneous
regions in terms of the hydrological signature of interest is therefore a crucial aspect in
regional analysis. In particular, the concept of homogeneous regions has evolved signifi-
cantly over time (see Fig. 1.3).

Figure 1.3: Different approaches for identifying hydrologically homogeneous regions: (a)
geographically contiguous homogeneous regions, (b) non-contiguous homogeneous regions,
(c) hydrologic neighbourhood. This figure is an adaptation of the analogous figure reported
in Pugliese (2016) (see also Ouarda et al., 2001).

The traditional approach (see Fig. 1.3(a)) consists in identifying geographically con-
tiguous regions (see e.g. NERC, 1975). Fixed contiguous regions were used, for instance,
for developing the reference procedure for design flood estimation in Italy (i.e. VAPI
project; see Sec. 2.2.1 for a detailed description). Exploiting spatial proximity, this ap-
proach can be advantageous in homogeneous areas with smoothly varying catchment
characteristics (Blöschl et al., 2013). Nevertheless, generally, spatial proximity alone does
not imply hydrological similarity: close catchments can be very different e.g. in terms of
geological characteristics, and, on the other hand, two catchments can be hydrologically
similar even if they are far apart from each other.

In line with this consideration, a more advanced approach (see Fig. 1.3(b)) refers to
non-contiguous groups of sites which are selected on the basis of climate and catchment
characteristics without using spatial proximity as a similarity measure. Thus, this ap-
proach allows a greater flexibility in including catchments which are spatially scattered
but hydrologically similar. Multivariate statistical methods, and cluster analysis (see e.g.
Burn, 1989) in particular, are commonly used for delineating non-contiguous regions. In
cluster analysis, a clustering algorithm (see e.g. the Ward hierarchical algortihm; Ward,
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1963) is used for automatically classifying catchments into similar groups on the basis of
catchment and climate characteristics, whose selection and relative weighting represent
a crucial aspect. Moreover, differently from contiguous regions (where ungauged catch-
ments are allocated to the corresponding region according to their geographical location),
for non-contiguous regions, allocation rules (e.g. discriminant analysis, classification trees,
etc.) need to be defined on the basis of the catchment characteristics which are available
for the ungauged site (Blöschl et al., 2013).

A more straightforward approach for the identification of homogeneous regions con-
sists in delineating the hydrologic neighbourhood for the given target site (see Fig. 1.3(c)).
From this perspective, the Region of Influence (RoI) approach, introduced by Burn (1990)
and Zrinji and Burn (1994) and further refined with the addition of a hierarchical feature
by Zrinji and Burn (1996), delinates pooling-groups of sites for a given target site referring
to a minimum amount of information in terms of climatic and geomorphological descrip-
tors. A more detailed description of this approach, which is tipically used in regional
flood frequency analysis in an index-flood framework, can be found in Sec. 2.2.2.

It is important to highlight that the identification of homogeneous pooling-groups of
sites is characterised by a "trade-off between hydrological homogeneity and the size of the
group" (Blöschl et al., 2013). Indeed, the improvement of the reliability of the estimate
for the given target site associated with a larger pooling-group (i.e. higher sample size of
the corresponding regional sample) is effective only if the group is really homogeneous: as
pooling-groups are never truly homogeneous, an increase in the size of the group usually
corresponds to a decrease in homogeneity. Different methods were therefore developed
for optimising the delineation of the pooling-groups of sites (see e.g. Reed et al., 1999).

With regards to the identification of homogeneous regions, the literature on regional
flood frequency analysis proposes different homogeneity tests for the index-flood method
(see Sec. 1.2.3). For example, the test proposed by Dalrymple (1960) (see also Chow,
1964) assesses flood homogeneity by analysing the variability of the coefficient of variation
and/or the coefficient of skewness of the AMS of flood peak discharges recorded across
multiple sites. Other important contributes regarding homogeneity tests can be found,
e.g., in Lettenmaier et al. (1987), Stedinger and Lu (1995) and Hosking and Wallis (1993,
1997). In particular, Hosking and Wallis (1993, 1997) introduced a heterogeneity measure
and a procedure for selecting the most suitable regional parent distribution, both based on
L-moments statistics (Hosking, 1990; see also Appendix A). A comparison of the power of
the most common homogeneity tests is reported in Viglione et al. (2007), while Castellarin
et al. (2008) show how their performances can be affected by the cross-correlation among
sites (i.e. spatial correlation), which represents another crucial aspect in regional analysis.
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Spatial correlation

The different finite samples of observed streamflows at gauges which are close in space,
usually temporally overlap to each other (i.e. concurrent flows are recorded from different
streamgauges). Therefore, as temporal variations of streamflows are spatially correlated,
also streamflow series are usually correlated in space (i.e. cross-correlated), due to e.g.
extreme rainfall events affecting different streamgauges in the same region.

The main effect of spatial correlation concerns the reduction of the actual hydrological
information content of a region: classical studies (i.e. Matalas and Langbein, 1962; Ste-
dinger, 1983) theoretically derived this reduction, and quantified the associated increase
in the uncertainty of the regional empirical estimators of streamflow statistics. The ef-
fect of spatial correlation among concurrent streamflows in regional analysis has been
addressed by several other studies in the literature. Hosking and Wallis (1988) showed
that intersite correlation increases the variance of regional flood statistics by impacting
the prediction uncertainty of regional flood frequency models (not their bias). Rosbjerg
(2007) demonstrated the importance of including the cross-correlation of flood peaks for
properly quantifying the uncertainty of flood quantiles regional estimates. Further studies
(i.e. Hosking and Wallis, 1997; Madsen and Rosbjerg, 1997; Madsen et al., 2002) showed
that cross-correlation may also impact the assessment of the homogeneity of the region,
which is the fundamental hypothesis of the index-flood procedures (i.e. Dalrymple, 1960)
and a fundamental requirement for performing an effective regional estimation of flood
quantiles (see e.g. Lettenmaier et al., 1987; Stedinger and Lu, 1995). In this regard,
Castellarin et al. (2008) quantified the loss of performance of the homogeneity tests pro-
posed by Hosking and Wallis (1993, 1997) due to the presence of intersite correlation,
which reduces the power of the test by masking the actual degree of heterogeneity of the
region (e.g. heterogeneous pooling-groups of cross-correlated sites may be considered as
possibly homogeneous by the standard statistical test).

Other studies tackled the problem of accounting for, or exploiting, the presence of
spatial correlation when predicting flood quantiles in ungauged basins (i.e. by means of
regression methods, or spatial interpolation methods). Concerning regression methods,
one example is certainly the Generalized Least Squares regression (GLS; i.e. Stedinger and
Tasker, 1985; Tasker and Stedinger, 1989, see also Sec. 2.1.3 for a detailed description of
the method), which accounts for cross-correlation of flood peaks between sites. Another
significant example is the group of procedures (i.e. spatial interpolation methods) which
were developed in the last decade ant that explicitly exploit spatial correlation. Spatial
interpolation methods have been shown to be effective for predicting several hydrologi-
cal measures in ungauged sites. For instance, the map-correlation method introduced by
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Archfield and Vogel (2010) suggests that, for estimating daily streamflows at an ungauged
catchment, the selection of the most correlated gauge leads to better performances than
the selection of the nearest one. Moreover, Top-kriging (i.e. Skøien et al., 2006, see also
Sec. 2.3.1 for a detailed description of the method) is increasingly used for predicting sev-
eral streamflow indices in ungauged sites. A recent study by Archfield et al. (2013) in the
South-eastern USA shows that Top-kriging resulted in outperforming GLS regression for
predicting empirical flood quantiles in ungauged catchments, highlighting an important
distinction between the treatments of spatial correlation when using regression-based or
spatial interpolation methods to estimate flood quantiles at ungauged locations; neverthe-
less, the authors themselves underline that if the goal is to predict the true unknown flood
quantile, based on a limited set of observations, then the effect of spatial correlation could
mask the flood magnitude. This still represents an open issue, which will be investigated
in the present dissertation.

It is therefore clear that homogeneity and spatial correlation are two important and
much debated aspects in regional analysis. A more detailed overview on the different
statistical methods available in literature and on the way in which they address catchments
similarity and spatial correlation is reported in the following section.

1.2.3 Generalities on possibile statistical regionalisation
methods

The scientific literature reports on several possible approaches for transferring avail-
able data from gauged to ungauged sites. These approaches can be grouped into two
main categories: statistical and process-based (Blöschl et al., 2013). The present disser-
tation focuses on statistical methods, which assume the hydrological signature of interest
to be a random variable. Statistical methods can differ in the way they (1) formulate
the model between data and catchment and climate characteristics, (2) estimate model
parameters, (3) group catchments and (4) account for spatial correlation among the vari-
ables (Cunnane, 1988). The following sections offer a synthetic overview of the available
statistical methods, distinguishing between regression methods, index-flow methods, and
geostatistical methods.

Regression methods

Regression methods relate the hydrological variable of interest (e.g. flood quantile,
flow-duration quantiles), ŷ, or a given transformation of it (e.g. logarithmic), to observable
catchment and climate characteristics (e.g. drainage area, mean annual precipitation,
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etc.), xi, or a given transformation of them (e.g. logarithmic):

ŷ = β0 +
p∑
i=1

βixi + ε (1.3)

where p indicates the number of catchmet characteristics, βi are the model parameters
(i.e. regression coefficients), and ε is the total error (which, in turn, can be expressed as
ε = δ + η, where δ and η are the model error and the sampling error, respectively). In
general, the relationship between the hydrological variable of interest and catchment and
climate characteristics is non-linear, but is often approximated with transformed (e.g. log-
transformed) variables (see e.g. Thomas and Benson, 1970; Pandey and Nguyen, 1999;
Griffis and Stedinger, 2007a). The literature reports several techniques for estimating
the model parameters for linear models. The simplest method is Ordinary Least Squares
(OLS). Although unbiased, OLS has the limit of lumping sampling and model errors
into a single error term, which is supposed to have mean equal to zero and in which
the errors are uncorrelated. Therefore, when sampling errors vary from site to site (i.e.
short flood peak series are associated with larger sampling errors), OLS is inefficient and
can lead to overestimated predictive errors. The Weighted Least Squares (WLS; see e.g.
Tasker, 1980) procedure is able to overcome this problem, as it accounts for the sampling
error introduced by unequal record lenghts, but is does not deal with the presence of
correlated sampling errors in neighbouring catchments (which are tipically impacted by
the same storms). Generalized Least Squares (GLS; see Stedinger and Tasker, 1985;
Tasker and Stedinger, 1989) regression represent an extension of WLS for accounting
for cross-correlation of flood peaks between sites. A more detailed description of the
regression methods applied in the present dissertation (i.e. Ordinary Least Squares and
Generalized Least Squares) can be found in Sec. 2.1.

Regression analyses can be performed for the entire domain of interest (i.e. global
regressions) or to different regions (or pooling-groups of sites), to which apply separate
regression models (i.e. regional regressions).

With regards to the estimation of design flood, the regression approach assumes the
presence of a relationship between the T -year flood quantile of interest (or the parameters
of the distribution function of flood peaks) and catchment and climate characteristics (see
e.g. Thomas and Benson, 1970). An application of least squares regression for estimating
flood quantiles for four different regions in the USA (where GLS is the reference procedure)
is presented in Thomas and Benson (1970), while Laio et al. (2011) report an application
of GLS for predicting the moments of AMS of flood peak discharges in the Piemonte
region (Italy).

Concerning the estimation of flow-durations curves (FDCs), regional regression ap-
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proaches usually model streamflow quantiles independently of each other. The methods
consists in two phases: (1) regionalisation of a certain number of empirical runoff quantiles
through a series of multi-regression models, and (2) analytical or graphical interpolation
of the regional estimates of streamflow quantiles (see e.g. Franchini and Suppo, 1996;
Smakhtin, 2001; Shu and Ouarda, 2012). Quantile regression methods generally do not
make assumptions about the distribution or shape of the FDC (nevertheless, there are
exceptions, as in Franchini and Suppo, 1996) and avoid the normalisation of FDC and the
resulting use of regional dimensionless FDCs. Generally, the method may produce smooth
and continuous FDC predictions when a sufficient number of quantiles are regionalised;
however, the regression of a large number of streamflow quantiles implies the identifica-
tion of a large number of multi-regression models. Moreover, the application of regression
models for the estimation in ungauged basins may result in inconsistent estimates of the
streamflow quantiles, as this prediction strategy might not preserve the monotone rela-
tionship between streamflow and duration. In order to avoid such inconsistent results,
Archfield (2009) and Archfield et al. (2010) developed a recursive regression approach.

Index-flow methods

Index-flow methods assume that the hydrological variable X, within a statistically
homogeneous region, has the same frequency distribution F (X ′ = X/µ), apart from a
scale factor µ(X), called index-flow, which is usually the at-site mean of the probability
distribution (acknowledge that there are other choices as well: the Flood Estimation
Handbook published in the UK by the Institute of Hydrology, 1999, recommends using
the median). This means that in a homogeneous region, the T -year quantile for the
variable X(T ) can be estimated as the product between the index-flow µ(X) and the
dimensionless quantile X ′(T ) (growth factor):

X(T ) = X ′(T )µ(X) (1.4)

Index-flow methods can be applied to different runoff signatures, from flood quantiles
to flow-duration curves. Concerning the estimation of flood quantiles, the index-flood
method (Dalrymple, 1960; Hosking and Wallis, 1997) estimates the T -year flood as the
product of an index-flood (often defined as the mean or median of the AMS of peak
discharges; i.e. mean annual flood, MAF) and a growth factor, which describes the
relationship (i.e. growth curve) between the dimensionless flood and the return period
T . When observed annual maximum flood data are not available for the site of interest,
index-flood can be estimated by means of regression models, or more complex methods
such as geostatistical procedures or process-based methods (see e.g. Bocchiola et al., 2003).
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The choice of the model for estimating index-flood is a crucial aspect, as its efficacy affects
the efficacy of the overall index-flood method. Index-flood methods are a commonly used
approach in regional flood frequency analysis and represent the framework on the basis of
which the VAPI project (i.e. the reference procedure for estimating design floods in Italy;
see Sec. 2.2.1) was originally developed. Rosbjerg (2007) found that quantile estimates
from the index-flood method have slightly less uncertainty than quantile regressions.

Concerning flow-duration curves, index-flow methods proposed in the literature can
be broadly grouped in two classes, that is (1) parametric (i.e. regionalisation of the
parameters of the analytical expression representing the standardised, or dimensionless,
FDCs), and (2) non-parametric (i.e. the FDCs scaled with an index-flow are assumed to
be the same in all the catchments in the region). In both cases, the index-flow for the
ungauged sites needs to be estimated, tipically, as the mean annual streamflow (MAS; see
e.g. Smakhtin et al., 1997; Ganora et al., 2009) or the median annual runoff. In paramet-
ric approaches, the models used for representing the standardised FDCs are parametrised
and the parameters are regionalised through regression techniques (see e.g. Le Boutillier
and Waylen, 1993a,b; Castellarin et al., 2004a, 2007). Parametric approaches generally
consist in three steps: (1) choice of a suitable frequency distribution as parent distribution
for a specific region, (2) estimation of the parameters of the distribution on a local basis
for the gauged sites located in the pooling-group using the streamflow observations, (3)
identification of regional regression models for predicting the distribution parameters on
the basis of geomorphological and climatic characteristics of the basin. Despite the prati-
cal need to limit the number of parameters, literature (see e.g. Le Boutillier and Waylen,
1993a,b; Castellarin et al., 2004a, 2007) shows that the daily regime of daily streamflow
may not be accurately described by theoretical distributions with less than four param-
eters. Differently from parametric methods, non-parametric methods require two steps:
(1) identification of pooling-groups for gauged sites which can be assumed homogeneous in
terms of the scaled FDC, and (2) definition of an allocation rule to assign ungauged sites
to a group. For instance, in the construction of regional dimensionless FDCs described
in Ganora et al. (2009), the pooling-group of gauged sites is identified through cluster
analysis using a distance metric which expresses the dissimilarity between pairs of curves,
and the FDC of each cluster corresponds to the mean normalised duration curve. In sum-
mary, parametric and non-parametric methods are complementary. Modeling the entire
FDC, parametric methods have the advantage of producing streamflow estimates which
can be associated with any duration of the FDC, but have the limitation of requiring the
regionalisation of three or more parameters. On the other hand, non-parametric methods
do not have the need to fit a distribution function, but the identication of homogeneous

20



Chapter 1. Prediction of hydrological variables in ungauged basins

pooling-groups becomes more important.

Geostatistical methods

Recent studies have shown that geostatistical techniques, which have been originally
adopted for the spatial interpolation of point data (see e.g. De Marsily, 1986), can be
effectively applied for regionalising hydrometric information (see e.g. Skøien et al., 2006;
Skøien and Blöschl, 2007; Chokmani and Ouarda, 2004). Differently from the above
mentioned methods, geostatistical methods exploit the spatial correlation of runoff signa-
tures: they assume the hydrological signature of interest in the ungauged catchment to
be a weighted mean of the hydrological signatures in the neighbouring catchments, whose
weights are estimated considering (1) the spatial correlation of the signature themselves,
and (2) the relative locations of the catchments. The main advantage of geostatistical
methods is that they are best (i.e. the mean squared error is a minimum) linear (i.e. the
estimate is a weighted mean of the data in the area) unbiased (i.e. the mean expected
error is zero) estimators (BLUE; see Journel and Huijbregts, 1978). In particular, kriging
techniques (i.e. methods for optimising the estimation of variables which are spatially
distributed and measured at a network of points) perform the spatial interpolation as
follows:

Ẑ(x0) =
n∑
j=1

λjZ(xj) (1.5)

where Ẑ(x0) is the prediction of the variable of interest Z at location x0, Z(xj) is the
observed value at the point xj (where i = 1, 2, . . . , n), and λj represents the corresponding
weighting coefficient. For the estimation of weights, kriging considers spatial correlation
and configuration of the observation through variogram models fitted to experimental
variograms, which describe the spatial correlation structure of the sample data (i.e. ex-
press the semivariance between observations as a function of distance and direction of
pairs of sampling locations; see e.g. Cressie, 1993). In practical applications, theoretical
variogram models (see e.g. Cressie, 1993, for the most commonly used models) are fitted
to experimental variograms to ensure a positive-definite covariance matrix.

A significant advantage of geostatistical approaches is that they do not require the
delineation of homogeneous pooling-groups of sites, which is a critical but necessary phase
for the application of the vast majority of traditional regionalisation approaches (Grimaldi
et al., 2011). Moreover, they provide a continuous representation of the runoff signature
of interest in the physiographic space (i.e. PSBI, otherwise known as Canonical kriging,
CK; see e.g. Chokmani and Ouarda, 2004; Castiglioni et al., 2009, 2011) or along the
stream network (i.e. Topological kriging, or Top-kriging; see e.g. Skøien et al., 2006).
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Compared to regional regression models (see e.g. Blöschl et al., 2013), whose accuracy is
generally unsatisfactory for large and highly heterogeneous study regions, geostatistical
procedures have been shown to provide highly reliable predictions of streamflow indices
over large study areas, such as FDCs (see e.g. Pugliese et al., 2016), low flows (see e.g.
Castiglioni et al., 2011; Parajka et al., 2015), floods (see e.g. Archfield et al., 2013), or
the entire streamflow regime (see e.g. Farmer, 2016).

Concerning the estimation of flood quantiles in ungauged sites, an increasingly used
technique is topological kriging (or Top-kriging, TK; see Skøien et al., 2006), which in-
terpolates the runoff signature of interest along the stream network by taking the area
and the nested structure of catchments into account. The method, originally tested for
the prediction of specific 100-year flood for two Austrian regions (Skøien et al., 2006),
was shown to provide more plausible and accurate estimates than Ordinary kriging; Top-
kriging also provides estimates of the uncertainty, which were found to be smallest on
the main stream and to gradually increase moving towards the headwaters. In a more
recent study conducted by Archfield et al. (2013) on 61 streamgauges in the South-eastern
USA, Top-kriging was shown to outperform, particularly for large catchments, Canonical
kriging and GLS regression for predicting 10-, 50-, 100- and 500-year floods.

Geostatistical approaches are increasingly used also for the regionalisation of flow-
duration curves. Chokmani and Ouarda (2004) and Castiglioni et al. (2009) use the phys-
iographic space-based interpolation (PSBI, or Canonical kriging, CK), for spatially inter-
polating the characteristics of FDCs in terms of geomorphoclimatic characteristics. The
study by Castiglioni et al. (2009), in particular, estimates FDC quantiles with PSBI by
applying a three-dimensional kriging technique for interpolating long-term dimensionless
FDCs in the physiographic space. FDC quantiles can be estimated also with Top-kriging
(see e.g. Skøien and Blöschl, 2007). In particular, Pugliese et al. (2014, 2016) propose
a method (i.e. Total Negative Deviation Top-kriging, TNDTK) for using Top-kriging in
an index-flow framework to predict continuous FDCs at ungauged locations, overcoming
the limit of modelling streamflow quantiles independently of each other. TNDTK was
recently shown to be useful also for the local enhancement of macro-scale rainfall–runoff
simulations (see Pugliese et al., 2018). A detailed description of Top-kriging and TNDTK
can be found in Sec. 2.3.

1.3 Research questions

As introduced in the previous sections, the identification of pooling-groups of sites
that are truly hydrologically homogeneous and how best to handle and, possibly, exploit
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spatial correlation in statistical regionalisation are two crucial and, to some extent, open
issues. This Thesis aims at deepening our knowledge and understanding with a specific
reference to the regionalisation of flood quantiles (i.e. regional flood frequency analysis)
and flow-duration curves.

The first part of this Thesis focuses on the reference procedure for design flood estima-
tion in Italy (i.e. VAPI project), which is founded on geographically contiguous regions
identified with reference to administrative borders and on AMS series of peak flow dis-
charges collected up to the 1980s and the 1990s, depending on the specific area. In par-
ticular, we focus on Triveneto, a broad mountainous geographical area in North-eastern
Italy regarded as a unique homogeneus region (i.e. unique growth curve) for operational
purposes by Villi and Bacchi (2001), who also pointed out the possible presence of a not
fully homogeneous behaviour. For this reason, the first research question we pose is:

Does the reference procedure for design flood estimation in Triveneto, which is founded
on geographically contiguous homogeneous regions, need to be updated? If yes, does a
focused-pooling approach (i.e. RoI approach), accounting for climatic and scale controls on
flood frequency regime, provide more reliable estimates? To this aim, which are the most
important drivers controlling the regional frequency regime of flood flows in Triveneto?

A further step regards the treatment of spatial correlation, which cannot be prop-
erly addressed by the VAPI project, nor the RoI approach, since neither method does
consider it. Other techniques explicitly consider or exploit spatial correlation: GLS and
Top-kriging, which are not commonly used in Italy. While GLS develops a regional regres-
sion model by accounting for sampling variability and cross-correlation among concurrent
streamflows, Top-kriging produces its estimates by exploiting the spatial correlation struc-
ture of the region. In particular, a recent study (Archfield et al., 2013) on a set of 61
gauged basins located across the South-eastern USA shows that Top-kriging outperforms
GLS, highlighting that when the aim is the prediction of empirical flood quantiles in an
ungauged catchment, Top-kriging is likely to result in better predictive models than GLS.
Nevertheless, the authors also point out that if the goal is to predict the true unknown
flood quantile based on a limited set of observations, then the effect of spatial correla-
tion could mask the flood magnitude. In this context, a further aim of this Thesis is to
investigate added value and impact of spatial correlation in predicting flood quantiles in
ungauged sites, addressing the unsolved issue raised by Archfield et al. (2013). Specifi-
cally, for a simplified situation of nested catchments in a homogeneous region, the second
research question reads:

Which technique, between GLS and Top-kriging, is better suited for predicting the true
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unknown flood quantiles in ungauged sites when the observed flood sequences are affected
by cross-correlation?

Finally, we focus on the use of geostatistical techniques for predicting flow-duration
curves in ungauged basins. As introduced in the previous section, a powerful tool to this
aim is TNDTK, which was shown to be reliable for predicting flow-duration curves both
in Europe (i.e. Pugliese et al., 2014) and in the USA (i.e. Pugliese et al., 2016). However,
this geostatistical procedure has never been applied to large geographical areas, which can
be characterised by significant heterogeneities in terms of streamflow regimes. For this
reason, we perform an extensive sensitive analysis of TNDTK through the application
of the procedure to a very large and hydrologically heterogeneous region, the Danube
watershed, asking:

Do geostatisical procedures, such as TNDTK, provide reliable estimates of streamflow
regime (i.e. flow-duration curves) over very large, and therefore rather heterogeneous,
geographical areas? Moreover, is it possible to characterise the uncertainty of their pre-
dictions at ungauged sites?
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Chapter 2

Statistical methods considered in
this Dissertation

After the overview of statistical models for the prediction of runoff signatures in un-
gauged basins reported in Chapter 1, this chapter presents a more detailed description
of the statistical approaches which were applied for the purposes of this dissertation, al-
ways distinguishing between regression methods (Ordinary Least Squares, Weighted Least
Squares, and Generalized Least Squares; see Sec. 2.1), index-flow methods (i.e. index-flood
methods in this context: VAPI project and Region of Influence approach; see Sec. 2.2),
and geostatistical methods (Top-kriging and Total Negative Deviation Top-kriging; see
Sec. 2.3).

2.1 Regression methods

As introduced in Sec. 1.2.3, the general multi-variate linear regression for estimating
streamflow characteristics can be expressed as:

ŷi = β0 + β1xi1 + β2xi2 + β3xi3 + · · ·+ βkxik + εi (2.1)

where ŷi is the estimate of the streamflow characteristic (i.e. dependent variable) of
interest at gauge i = 1, 2, . . . , n, xik are basin characteristics (i.e. independent variables; k
being the number of basin characteristics), β0, β1, β2, β3, βk are the regression parameters,
and εi indicates the total error. In particular, the total error can be expressed as εi = δi+ηi,
where δi is the model error (i.e. identifies the lack of fit of the model itself), and ηi is the
time-sampling error (i.e. considers that the dependent variable itself is an estimate, often
obtained from a limited sample size et each gauge). In general, ηi values from gauges close
together are often correlated, as there is a mutual temporal overlap between finite samples
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of observed stramflows at the different gauges, and temporal variations of streamflows are
spatially correlated (Eng et al., 2009).

Equation (2.1) can be written also in matrix notation:

Ŷ = Xβ + ε (2.2)

where Ŷ is the (n× 1) vector of streamflow characteristics at n sites, X is the (n× k)
matrix of (k−1) catchment characteristics augmented with a column of 1, β is the (k×1)
vector of regression parameters, and ε is the (n× 1) vector of total errors. In particular,
ε is supposed to be a random variable with zero mean and variance equal to σ2

ε .
In general, the independent and dependent variables can be transformed to obtain a

linear relationship between Ŷ and X values: the most common transformations include
logarithms (base 10, or natural) and addition or substraction of a constant value. Several
studies report the reduction to linear additive forms by means of a log-transformation of
both sides of equation (see e.g. Thomas and Benson, 1970; Pandey and Nguyen, 1999;
Griffis and Stedinger, 2007a; Laio et al., 2011).

The general expression which indicates the estimation of regression parameters is given
by:

β̂ = (XTΛ−1X)−1XTΛ−1 Ŷ (2.3)

whereXT indicates the transpose of matrixX, and Λ−1 is the inverse of the weighting
matrix Λ. In particular, Λ can be constructed in different ways, depending on the specific
approach: Ordinary Least Squares (OLS), Weighted Least Squares (WLS), and Gener-
alized Least Squares (GLS). Once estimated, β̂ can be used to compute the regression
estimates Ŷ (i.e. ŷi at each ith gauge).

2.1.1 Ordinary Least Squares (OLS)

Ordinary Least Squares (OLS) method represents the easiest approach for estimating
regression parameters. In particular, in the OLS approach the weighting matrix Λ is equal
to the identity matrix I (see e.g. Montgomery et al., 2001), and the resulting expression
for estimating β̂ is the following:

β̂ = (XTX)−1XT Ŷ (2.4)

The OLS approach is suitable for applications in which δi values are independent
and have the same variance, i.e. (1) no variation in the precision of calculated depen-
dent variables among different gauges and (2) absence of correlation among concurrent
streamflows.
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2.1.2 Weighted Least Squares (WLS)

Because records from different gauges have different record lengths, the precision of
the estimated streamflow characteristics varies, meaning that different δi values have
different variances. In cases in which different record lenghts (but no correlation) are
present, Weighted Least Squares (WLS) approach is recommended. In WLS (see e.g.
Tasker, 1980), the regression parameters are computed as shown in Eq. (2.3), where the
weighting matrix Λ, corresponding to the covariance matrix ΛWLS, assigns larger weights
to gauges having more reliable estimates of streamflow statistics.

In particular, Tasker (1980) provides a method for estimating ΛWLS for streamflow
characteristics which are computed from a Log-Pearson type III (LP3) frequency analysis
(see e.g. Bulletin 17B of the Interagency Advisory Committee on Water Data, 1982).

Λ̂WLS,ij =


σ2
δ + c1

( 1
mi

)
if i = j

0 if i 6= j

(2.5)

where

c1 = max
[
0, σ̄2

(
1 + K̄2

2 (1 + 0.75 Ḡ2) + K̄Ḡ
)]

(2.6)

σ2
δ = max

[
0, σ2

OLS − c1

( 1
n

n∑
p=1

1
mp

)]
(2.7)

where σ2
δ is the model-error variance, mi is the record length for the ith gauge, σ2

OLS

is the observed mean square error (MSE) of estimate using OLS approach, K̄ is the
arithmetic average of the LP3 deviates for all gauges in the regression, and Ḡ is the
arithmetic average of the skew values at all gauges (either at-site skew g, or weighted skew
Gw). In particular, LP3 deviates are function of probability of exceedance (i.e. return
period T ) and at-site skew g (see Bulletin 17B of the Interagency Advisory Committee on
Water Data, 1982), and σ̄ is the arithmetic average of standard deviation of the annual
time series at each gauged site against the corresponding basin characteristics (Tasker
and Stedinger, 1989).

As reported in the Bulletin 17B of the Interagency Advisory Committee on Water
Data (1982), the weighted skew Gw,i for the ith gauged site can be computed as:

Gw,i = ωi gi + (1− ωi)GR,i (2.8)

where GR,i is the regional skew estimate for the ith gauged site, and

ωi = MSE(GR)
MSE(gi) +MSE(GR) (2.9)
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whereMSE(gi) is the estimated mean square error of the skew value at the ith gauged
site, andMSE(GR) is the estimated mean square error of the regional skew values. Several
methods are available for the determination of GR values, and also an alternative approach
for computing σ2

δ is reported in Stedinger and Tasker (1986). The method illustrated in
this section is the one reported in the User’s Guide to the Weighted-Multiple Linear
Regression Program (WREG) (i.e. Eng et al., 2009), which is the software used by the
US Geological Survey for estimating streamflow characteristics at ungauged basins in the
United States.

2.1.3 Generalized Least Squares (GLS)

In addition to the issue of different record lenghts between different stream gauges,
another important aspect is that concurrent streamflows observed at different gauges in
a region are often cross-correlated. If not properly represented in a regional analysis,
cross-correlation affects the precision of the regression parameters, and the estimators of
precision are inaccurate. For this reason, in order to account for both correlated stream-
flows and time-sampling errors, Stedinger and Tasker (1985) and Tasker and Stedinger
(1989) introduced the Generalized Least Squares (GLS) method, which improves the rep-
resentation of the overall regression error ε, by assuming it as the sum of the sampling error
η for the estimates of the streamflow statistics (e.g. flood statistics), and the modelling
error δ in modelling the true index-flows (e.g. index-floods) across catchments.

The regression parameters in GLS are computed by setting Λ = ΛGLS in Eq. (2.3),
where ΛGLS contains the estimates of the covariances of εi among gauged sites. In partic-
ular, the main diagonal elements of ΛGLS include a part associated with the model error
δi and all elements include the effect of the time-sampling error ηi. For streamflow char-
acteristics computed from a LP3 frequency analysis, Tasker and Stedinger (1989) propose
to estimate ΛGLS as follows:

Λ̂GLS,ij =


σ2
δi + σ2

i

mi

[
1 +KiGi + 0.5K2

i

(
1 + 0.75G2

i

)]
if i = j

ρ̂ijσiσjmij

mimj

[
1 + 0.5KiGi + 0.5KjGj + 0.5KiKj

(
ρ̂ij + 0.75GiGj

)]
if i 6= j

(2.10)
where i and j are indices of the gauged sites in the region of interest, Gi and Gj are

the corresponding skew values (i.e. equal to either at-site skews g, or weighted skew Gw),
mi and mj are the corresponding record lenghts, mij is the concurrent record length, and
ρ̂ij is an estimated value for the cross-correlation of time series of streamflow values used
to calculate the streamflow characteristics at gauges i and j.
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As sample estimates of ρij are imprecise due to the short record lengths of observed
flows, the resulting Λ̂GLS cannot often be inverted. To overcome this problem, values of
the cross-correlation are usually estimated approximately by referring to the non-linear
relationship introduced by Tasker and Stedinger (1989), which is useful for smoothing the
sample correlations as function of distance between gauges:

ρ̂ij = θ
dij

1+αdij = e
ln(θ) dij
1+αdij (2.11)

where dij is the distance between gauges i and j (expressed in miles), and θ and α are
the dimensionless model parameters estimated from data. In particular, ρ̂ij is a convex,
monotonically decreasing function of dij when 0 < θ < 1 and α > 0.

As reported in Stedinger and Tasker (1985), the β̂ values of Eq. (2.3) for GLS and the
σ2
δi values in Eq. (2.10) are jointly determinated by iteratively searching for a non-negative

solution to the following equation:(
Ŷ −Xβ̂

)T
Λ−1
GLS

(
Ŷ −Xβ̂

)
= n− (k + 1) (2.12)

As Eq. (2.10) does not account for the error associated with estimating G, Griffis
and Stedinger (2007b) introduced a modified version of ΛGLS, named ΛGLS,skew, which
accounts for the uncertainty in the skew estimates. For the estimation of ΛGLS,skew values,
Griffis and Stedinger (2007b) consider additional terms, such as the partial derivatives
for the gauges (calculated from the approximation for K given in Kite, 1975, 1976), the
covariance between the skew values at the different gauged sites, which, in turn, depends
on the correlation ρgigj between skew values (estimated by Martins and Stedinger, 2002)
and on the variances of the skew values at gauges i and j (estimated by Griffis and
Stedinger, 2009). Further details concerning the computation of ΛGLS,skew can be found
in Griffis and Stedinger (2007b) and Eng et al. (2009).

A great value of the GLS approach is being a best linear unbiased estimator (BLUE).
Also for this reason, GLS regressions are used in several hydrological applications and
represent the standard procedure for the estimation of streamflow characteristics (e.g.
flood statistics) in ungauged basins in the United States.

2.2 Index-flood methods

2.2.1 VAPI project

The VAPI (VAlutazione delle PIene) project is a large-scale research program car-
ried out in the 1990s by the National Group for the Prevention of Hydrogeological Dis-
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asters (GNDCI, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche) of the
italian National Research Council (CNR, Consiglio Nazionale delle Ricerche), with the
aim of defining a uniform methodology for design flood estimation in Italy. The result-
ing regionalisation model, valid under the hypothesis of stationarity and spatial-temporal
independence of the observations, is based on a modified version of the index-flood ap-
proach, arranged hierarchically into three distinct levels of analysis (corresponding to the
coefficient of skewness, the coefficient of variation and index-flood) and based on the Two-
Component Extreme Value (TCEV) distribution (see e.g. Rossi et al., 1984; Fiorentino
et al., 1987a,b).

The two components of the TCEV reflect the two different populations which are
supposed to generate the population of annual maximum value: the first one caused by
ordinary events and the second one caused by extreme events. The cumulative distribution
function of the TCEV is expressed as:

FX(x) = exp
[
−Λ1 exp

(
− x

θ1

)
− Λ2 exp

(
− x

θ2

)]
(2.13)

where the parameters Λ1 and Λ2 (with Λ1 > Λ2 > 0) are the shape parameters and
represent the mean number of annual events of the ordinary and the outlying components,
respectively, and θ1 and θ2 (with θ2 > θ1 > 0) are the scale parameters of the ordinary
and the extraordinary components, respectively.

In practice, TCEV is commonly applied with reference to the standardised variable
Y = X/θ1 − ln(θ1), whose cumulative distribution function is given by:

FY (y) = exp
[
−exp(−y)− Λ∗ exp

(
− y

θ∗

)]
(2.14)

where the shape parameter θ∗ = θ2/θ1 and the scale parameter Λ∗ = Λ2/Λ1/θ∗
1 depend

only on the coefficient of skewness γ of the distribution; moreover, the coefficient of
variation Cv of the TCEV distribution depends on the parameters Λ∗, θ∗ and Λ1.

Furthermore, the dimensionless reduced variable K = X/µ(X) is introduced, where
µ(X) = θ1 η is the expected value of the variable X, and η is function of Λ1, Λ∗ and θ∗.
The cumulative distribution function of K is expressed as:

FK(k) = exp
[
−Λ1 exp(−kη)− Λ1/θ∗

1 Λ∗ exp
(
− kη

θ∗

)]
(2.15)

Note that both the standardised variable Y and the dimensionless reduced variable
K are not analytically invertible and, therefore, the use of asympotic forms is necessary
for expressing Y and K as functions of the return period T . In particular, the function
KT = K(T ) identifies the growth curve and depends on the parameters Λ∗, θ∗ and Λ1.
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In summary, the estimation of the regional parameters of the TCEV is performed with
a hierarchical procedure, based on three successive levels:

1. the first level of regionalisation refers to the standardised variable Y and consists in
the research of regions having a constant value of γ (i.e. constant values of Λ∗ and
θ∗, which are estimated with the maximum likelihood method);

2. the second level of regionalisation refers to the dimensionless reduced variable K
and requires the research of sub-regions having constant Cv (i.e. constant Λ1, in
addition to constant Λ∗ and θ∗);

3. the third level of regionalisation consists in the identification of other sub-regions
(which do not necessarily coincide with the regions and sub-regions identified at the
above mentioned levels), for which empirical relations for estimating the index-flood
need to be defined (i.e. mono- and multi-regression models with geomorphologic and
climatic catchment descriptors).

By means of the hierarchical procedure described above, the VAPI project analysed the
italian territory referring to the compartments of the former italian National Hydrographic
and Mareographic Service (SIMN, Servizio Idrografico e Mareografico Nazionale), each one
studied independently from the others (see Fig. 2.1).

Different researchers, from both public institutions and private companies, have been
involved in the VAPI project. Concerning Northern Italy, for instance, the most significant
contributions were from Brath et al. (1995) and Brath et al. (1997) for the comparments
of Parma and Genova, Franchini and Galeati (1996) for Bologna, and Villi and Bacchi
(2001) for Venezia. Each of these studies report the estimated values of the parameters
Λ∗, θ∗, Λ1 and η for the considered compatments (see Table 2.1).

Table 2.1: Estimated values of the parameters of the growth curves for the VAPI com-
partments in Northern Italy.

Compartment Regions Λ∗ θ∗ Λ1 η

Genova unique 0.30 4.90 9.74 4.11

Parma

region 1 1.21 3.28 24.74 6.51
region 2 0.22 7.33 16.31 4.80
region 3 0.56 5.21 13.68 5.55
region 4 0.13 1.34 9.39 2.97

Bologna unique 0.75 2.51 9.50 4.22
Venezia unique 0.89 2.02 15.68 4.56
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Figure 2.1: Compartments of the former SIMN, considered as the basis for identifying
independent homogeneous (sub)regions in the VAPI project.

As shown in Tab. 2.1, the compartment of Parma was subdivided into four different
sub-regions, whereas Genova, Bologna and Venezia were regarded as single homogeneous
regions in terms of flood frequency regime. For each region, also the sub-regions for
estimating the index-flood were identified. For instance, for estimating index-flood in the
homogeneous region of Venezia (i.e. Triveneto area), Villi and Bacchi (2001) identified
different regression models with catchment area for the different main river basins in the
region.

All the regions and sub-regions identified in the VAPI project are geographically con-
tiguous, reflecting the first approach reported in Fig. 1.3 for the determination of homo-
geneous regions.

2.2.2 Region of Influence approach

In the context of index-flood methods, the Region of Influence (RoI) approach (see
Burn, 1990; Zrinji and Burn, 1994, 1996) is useful for delineating pooling-groups of sites
for the given target site (i.e. hydrologic neighbourhood; see Fig. 1.3(c)), referring to
geomorphological and climatic characteristics of the catchments. Starting from the sug-
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gestion of Acreman and Wiltshire (1987) that a station lying on the boundary between
two homogeneous regions can be regarded as a partial member in both regions, the RoI
approach is founded on the idea that "there is no need of defining boundaries between
regions but rather each site can have its own "region" consiting of those stations that are
sufficiently similar to the site of interest" (Burn, 1990).

The RoI approach measures the similarity among basins by means of a weighted Eu-
clidean distance in the M -dimensional space defined by a set of M geomorphological and
climatic descriptor of the catchments, which are considered to influence the regional flood
frequency regime of the basin. The distance metric (i.e. dissimilarity index) between the
target and the gauged catchments is usually measured by the root mean square difference
of all the catchment and climate characteristics:

Dij =
 M∑
m=1

wm(Xm,i −Xm,j)2

1/2

(2.16)

where Dij is the Euclidean distance from site i to site j, Xm,i the standardised value
of the mth attribute for site i, and wm a weight reflecting the relative importance of the
mth attribute. As catchment descriptors are usually expressed in terms of different units
and scales, in order to make them comparable, the characteristics are usually standard-
ised by their sample standard deviation, calculated using the values observed for all the
sites in the study area. A screening process (e.g. multivariate analysis) can be used for
selecting the attributes that are most indicative of similarity and, therefore, which can
be included in the computation of the Euclidean distance. Characteristics like catchment
area, mean annual precipitation (MAP), elevation are tipically used for the identification
of pooling-groups. Moreover, as expressed in Eq. (2.16), catchment characteristics can
be weighted to give preference to some of them, if a prior knowledge about the most
important hydrological controls is available (see e.g. Kjeldsen and Jones, 2009).

In particular, Burn (1990) defined a threshold value useful for defining a cutoff for the
inclusion of stations into the RoI pooling-group for the given target site (i.e. any station
having a distance which exceeds the threshold is not included in the RoI):

Ii = {j : Dij ≤ θi} (2.17)

where Ii defines the set of stations in the RoI pooling-group for site i, and θi is
the threshold for site i, reflecting the target size of the pooling-group. Moreover, Burn
(1990) introduced a weighting function ηij which reflects the relative closeness (in the M -
dimensional attribute space) to the target site of each station in the RoI, and can be useful
for pooling the information from all stations in the RoI for the target site. Burn (1990)
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proposed different options for defining the threshold value θi and the weighting function
ηij in order to maximise the information return resulting from spatial data transfer.

As introduced in Sec. 1.2.2, the effective identification of pooling-group of sites is
governed by the homogeneity of the group (see e.g. Lettenmaier et al., 1987; Stedinger
and Lu, 1995) and its target size (see e.g. the 5T -rule by Jakob et al., 1999), which are both
fundamental requirements in order to perform a reliable estimation of the T -year flood
quantile. In the search of the optimum size of the pooling-group, it is necessary to consider
that, while a higher size avoids undue extrapolations (e.g. the 5T -rule suggests that a
pooling-group should contain at least 5T station-years of data for accurately estimating
the T -year flood quantile), an excessively large pooling-group affecs homogeneity (i.e.
homogeneity usually decreases as the group size increases) and can unduly reduce the
influence of each individual site (i.e. negative effect on the estimation of floods) (see also
Castellarin et al., 2001).

To take this fundamental requirements into account, Zrinji and Burn (1994) explicitly
incorporated a homogeneity test in the process for selecting the pooling-group for the
given ungauged target site. In particular, being N the number of sites in the study area,
the RoI for a given target site can be defined by organising the dissimilarity indices in an
(N×N) lower triangular matrix, having all zeros on the main diagonal. The identification
of the RoI pooling-group starts by including the most similar basin to the site of interest.
Then, at each step of the procedure, the next most similar site is added to the RoI, and a
homogeneity test is performed in order to assess the degree of homogeneity of the pooling-
group. The procedure ends when at least one of the two following conditions is reached:
(1) the inclusion of another site leads to an unacceptable level of heterogeneity, or (2) the
target size is reached in the case of a particularly homogeneous pooling-group of sites. As
suggested in Zrinji and Burn (1994), in the sequential addition of new sites to the RoI,
the first site which results in an unacceptable heterogeneity of the overall pooling-group
is discarded and the process continues by considering the next most similar sites until one
of the two above mentioned conditions is reached. The possibility of skipping one site was
introduced by Zrinji and Burn (1994) to avoid a premature ending of the process due to
one unusual site (see also Castellarin et al., 2001).

Although the framework of the procedure allows the use of alternative homogene-
ity tests, the homogeneity test proposed by Hosking and Wallis (1993) (see also Ap-
pendix A.3) is commonly used for assessing the heterogeneity of the RoI pooling-groups
(see e.g. Zrinji and Burn, 1994, 1996; Castellarin et al., 2001). The Hosking and Wallis
test assesses the homogeneity of a group of basins at three different levels, by focus-
ing on three measures of dispersion Hk (where k = 1, 2, 3) for different orders of the
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sample L-moment ratios (see Hosking, 1990, for an explanation of L-moments; see also
Appendix A.2). In particular, H1 refers to L-Cv (i.e. L-coefficient of variation), H2 to
the sum of L-Cv and L-Cs (i.e. L-coefficient of skewness), and H3 to the sum of L-Cs and
L-Ck (i.e. L-coefficient of kurtosis). Hosking and Wallis (1993) suggest to regard a group
of sites as "acceptably homogeneous" if Hk < 1, "possibly heterogeneous" if 1 ≤ Hk < 2,
and "definitely heterogeneous" if Hk ≥ 2. Moreover, Hosking and Wallis (1993) observed
that higher-order L-moments tend to be more homogeneous in space than the lower-order
ones.

On this basis, Zrinji and Burn (1996) proposed a refinement of the RoI approach by
introducing a hierarchical feature, which follows the three different levels of the homo-
geneity test introduced by Hosking and Wallis (1993). In particular, the three different
homogeneous RoI pooling-groups for the same target site that can be identified by re-
ferring to H1, H2 and H3 are hierarchically nested. This implies that, for instance, the
RoI defined with reference to H1 is a subset of the pooling-group defined using H3 as the
homogeneity criterion. For this reason, the incorporation of the hierarchical approach in
the RoI framework results in the identification of a set of different RoI pooling-groups for
the same target site: this approach accounts for the diffent spatial similarity of different
orders of moments and is therefore able to lead to improved parameter estimation of the
pooled growth curve. As suggested in Zrinji and Burn (1996), in order to estimate the
parameters of the pooled growth curve, the approach based on PWM (i.e. Probability
Weighted Moments, introduced by Greenwood et al., 1979) can be used. The literature
reports several studies relative to the estimation of parameters for the most commonly
used distributions by using PWM (see e.g. Hosking J. R. M., 1985, for the GEV distri-
bution) or L-moments (see e.g. Hosking and Wallis, 1997). Further details on L-moments
and the Hosking and Wallis test are provided in Appendix A.

2.3 Geostatistical methods

2.3.1 Top-kriging

Top-kriging (or topological kriging) is a powerful geostatistical procedure developed
by Skøien et al. (2006) for the prediction of hydrological variables. Like all kriging ap-
proaches, Top-kriging produces predictions of hydrological variables at ungauged sites
with a linear combination of the empirical information collected at neighbouring gauging
stations. Through this method, the unknown value of the streamflow index of interest at
prediction location x0, Z(x0), can be estimated as a weighted average of the regionalised
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variable, measured within the neighbourhood:

Z(x0) =
n∑
i=1

λiZ(xi) (2.18)

where λi is the kriging weight for the empirical value Z(xi) at location xi, and n is the
number of neighbouring stations used for interpolation. Kriging weights λi can be found
by solving the typical ordinary kriging linear system (see Eq. (2.19a)) with the constraint
of unbiased estimation (see Eq. (2.19b)):

n∑
j=1

γi,jλj + θ = γ0,i i = 1, . . . , n (2.19a)

n∑
j=1

λj = 1 (2.19b)

where θ is the Lagrange parameter and γi,j is the semi-variance between catchments i and
j (Isaaks and Srivastava, 1990). The semi-variance, or variogram, represents the spatial
variability of the regionalised variable Z.

Differently from any other kriging method, Top-kriging considers the variable defined
over a non-zero support S (i.e. the catchment drainage area A; Cressie, 1993; Skøien
et al., 2006). In particular, the point variable Z(x0) is averaged over the drainge area A
to obtain the spatially average variable Zr(A):

Zr(A) = 1
A

∫
A

Z(x) dx (2.20)

In this way, the kriging system of Eq. (2.19) remains the same, but the semi-variances
between the measurements need to be obtained by regularisation, i.e. smoothing the
point variogram over the support area. In particular, considering two measurements
with catchment area Ai and Aj, respectively, the regularisation consists in assuming the
existence of a point variogram γ(h), where h = |xi−xj| represents the euclidean distance
(evaluated on a horizontal plane) between two generic position vectors xi and xj within
the corresponding catchments, and evaluating the semi-variance γri,j between the two
measurements as:

γri,j = 1
AiAj

∫
Ai

∫
Aj

γ(|xi−xj|) dxidxj−
1
2

 1
A2
i

∫∫
Ai

γ(|xi−xj|) dxidxj+
1
A2
j

∫∫
Aj

γ(|xi−xj|) dxidxj


(2.21)

As can be seen, Eq. (2.21) is composed of two parts: the first one integrates all
the variance between the two catchments, while the second one subtracts the averaged
variance within the catchments (i.e. representing the smoothing effect of the support,
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which indicates that the variance of the averaged variable decreases as the support area
increases; Skøien et al., 2006). In this way, Eq. (2.21) can be used for evaluating the
variogram of the averaged variable from the point variogram. Then, γri,j can be inserted
into the kriging matrix of Eq. (2.19) and the kriging system can be solved to compute the
weights λi.

The integration shown in Eq. (2.21) is performed over the catchment area that drains
to a particular location on the stream network (i.e. the outlet of the target catchment),
therefore enabling hydrologists to perform geo-statistics on stream network (Skøien et al.,
2006). In particular, the catchment area is discretised by a grid and the integrals in
Eq. (2.21) are replaced by sums. In order to avoid numerical problems that are likely
to flaw the results, the discretisation has to be performed so that the grid is the same
for each catchment every time it is discretised. Specifically, experiments indicate that
regularly gridded discretisations give numerically better results for the same number of
discretisation points (Skøien, 2014). As the size of areas can differ by several orders of
magnitude, usually an adaptive grid is used, where the resolution scales with the area:
the discretisation consists in starting with a coarse grid covering the region of interest,
and refining it for a certain area until a requested minimum number of points is present
(Skøien, 2014). This method is also useful for assuring that points used to discretise a large
support will be reused when discretising smaller nested catchments (e.g. sub-catchments
within larger catchments Skøien, 2014, see also Fig. 2.2).

Figure 2.2: Discretisation of two nested catchments. Smaller points represent the refined
grid for smaller areas. This figure is an adaptation of the analogous figure in Pugliese (2016).

Another important aspect which Top-kriging accounts for is the possible presence of
a nugget effect (i.e. discontinuity close to the origin, representing the variability at scales
much smaller than the distance between measurements) in the point variogram. Many
variables of interest in hydrological applications, such as streamflow data, are likely to
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have a nugget effect. As the direct regularisation with Eq. (2.21) would make the nugget
vanish (even for small catchments), Skøien et al. (2006) suggest to regularise the nugget
separately, by considering the nugget variance as the variance of a spatially independent
random variable, and then adding the regularised nugget effect to the regularised vari-
ogram of Eq. (2.21). More details about the regularisation of the nugget effect can be
found in Skøien et al. (2006).

A remarkable advantage of Top-kriging is that (like any other kriging method) it
provides an estimate of the kriging variance σ2

R, which represents the uncertainty of the
estimates at any location:

σ2
R =

n∑
j=1

γj,0λj + θ (2.22)

where γj,0 is the gamma value between the target catchment and the neighbouring
catchments.

The merits of Top-kriging over traditional kriging methods (i.e. Ordinary kriging) are
illustrated in Fig. 2.3, which highlights the influence of catchment area and the nested
structure of catchments on the evaluation of the weights λj. In all the three examples, the
neighbouring catchments have the same centre-to-centre distance to the target catchment.
While in Ordinary kriging this would imply the same weights λj for all the neighbour-
ing catchments, Top-kriging weights them differently. In particular, Fig. 2.3(a) shows
that Top-kriging assigns larger weights to larger catchments (which are regarded as the
most certain, or having the least biased measurement in comparison to the mean); more-
over, for identical catchment areas and centre-to-centre distances, a sub-catchment of the
target catchment gets a larger weight (see Fig. 2.3(b)), and, for the reverse case, more
weight is attached to the catchment into which the target catchment drains, although
the neighbours have the same areas and the same centre-to-centre distances to the target
catchment (see Fig. 2.3(c)) (Skøien et al., 2006).

Thanks to its important advantages, Top-kriging has been shown to be particularly
successful in predicting a wide spectrum of point streamflow indices and variables in
various geographical and climatic contexts: low flows (Castiglioni et al., 2011; Laaha
et al., 2014), high flows and floods (Merz et al., 2008; Archfield et al., 2013), stream
temperature (Laaha et al., 2013), habitat suitability indices (Ceola and Pugliese, 2014),
and daily streamflow series (Skøien and Blöschl, 2007; Vormoor et al., 2011; Parajka et al.,
2015; de Lavenne et al., 2016; Farmer, 2016).
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Figure 2.3: Effect of (a) catchment size, and (b, c) nesting on the kriging weights λj (red
numbers) as estimated by Top-kriging. The centre of the target river basin is indicated as
x0. This figure is an adaptation of the analogous figures reported in Skøien et al. (2006)
and Pugliese (2016).

.

2.3.2 Total Negative Deviation Top-kriging

Traditional applications of Top-kriging mainly focus on the prediction of point stream-
flow indices (e.g. flood quantiles, low-flow indices, etc.). In order to estimate the entire
FDC in ungauged sites (i.e. not separately interpolating the different FDC quantiles),
Pugliese et al. (2014) proposed a method for using Top-kriging in an index-flow frame-
work. This method, named Total Negative Deviation Top-kriging (TNDTK; see Pugliese
et al., 2014), interpolates the entire FDC (therefore ensuring its monotonicity), by reduc-
ing the dimensionality of the problem by identifying a unique index of site-specific FDCs.
This is accomplished by first standardising the empirical FDCs at site x, Ψ(x, d), for some
reference value, Q∗(x):

ψ(x, d) = Ψ(x, d)
Q∗(x) (2.23)

where ψ(x, d) denotes the dimensionless FDC, and d is a specific duration. Pugliese
et al. (2014) identify an overall point index, named Total Negative Deviation (TND), that
effectively summarizes the entire curve: TND is derived by integrating the area between
the lower limb of the FDC and the reference streamflow value Q∗ (see Fig. 2.4).

Empirical TND values are computed as:

TND(x) =
m∑
i=1
|qi(x)− 1|δi (2.24)
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where qi = Qi
Q∗ represents the ith empirical dimensionless quantile standardised for

the selected reference value Q∗, δi is half of the frequency interval between the (i + 1)th
and (i − 1)th quantile and the summation involves only the m standardised quantiles
lower than 1 (i.e. negative deviation). The equality between a given streamflow value
and the reference value Q∗ is represented by an horizontal dashed line in Fig. 2.4, i.e. the
threshold given by the equation Q

Q∗ = 1. The range of the summation, m, in Eq. (2.24) is
a function of the maximum duration dmax, which is itself a function of that sample with
minimum length across gauged sites in the study region.

Figure 2.4: Sketch of the Total Negative Deviation (TND).

Even though TND in Fig. 2.4 does not describe the portion of the curve associated
with low durations (high flows), it is very informative on the shape of the FDC, which is
controlled by climatic and geomorphologic characteristics of the catchment. In particular,
larger TND values are associated with catchments which are dominated by rapidly re-
sponding near-surface runoff processes (i.e. steeper FDC slopes), while smaller TNDs are
associated with catchments where slower responding runoff generation processes prevail
(i.e. less steep FDCs).

Having calculated empirical TNDs, Pugliese et al. (2014) use the TNDs as a region-
alised variable to develop site-specific weighting schemes. The same weights, derived
through the solution of the linear kriging system of Eq. (2.19), are used for a batch
prediction of the continuous, dimensionless FDC for the ungauged site x0:

ψ̂(x0, d) =
n∑
j=1

λjψ(xj, d) ∀d ∈ (0, 1) (2.25)

where λj, with j = 1, . . . , n, are the weights resulting from the kriging interpolation
of TNDs, ψ(xj, d) is the dimensionless empirical FDC at the donor site xj, and ψ̂(x0, d)
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is the predicted dimensionless FDC. It is worth highlighting that the computation of the
linear kriging system (see Eq. (2.19)) depends on n, the number of neighbouring sites on
which to base the spatial interpolation. In particular, Pugliese et al. (2014, 2016) suggest
to limit to n = 6 the size of the kriging neighbourhood when interpolating streamflow
indices, and standardised FDCs in particular.

If a reliable model for predicting Q∗ at the ungauged site x0 can be developed, the
prediction of the dimensional FDC, Ψ̂(x0, d), is obtained as:

Ψ̂(x0, d) = Q̂∗(x0) ψ̂(x0, d) ∀d ∈ (0, 1) (2.26)

where Q̂∗(x0) is the prediction of Q∗ at the ungauged site x0 and ψ̂(x0, d) has the same
meaning as in Eq. (2.25).

In this regard, Pugliese et al. (2014) suggest two alternative procedures for standar-
dising empirical FDCs (i.e. choice of Q∗; see Eq. (2.23)): the reference value Q∗ can be
set equal to the mean annual streamflow (MAS; the corresponding TND value is named
TND1), or to a reference streamflow (i.e. MAP ∗) equal to the catchment area A times
the mean annual precipitation MAP (the corresponding TND value is named TND2).
In particular, the standardisation with MAS (i.e. TND1) represents the traditional ap-
plication of an index-flow approach to regionalise FDCs (see Castellarin et al., 2004b;
Ganora et al., 2009), where an appropriate regional model for predicting the index-flow in
ungauged basins (e.g. multiregression models, or Top-kriging itself) is needed. However,
setting up a regional model for index-flood (i.e. MAS) is a critical and delicate step in
the regionalisation procedure (see e.g. Brath et al., 2001b; Castellarin et al., 2004a), and
its efficacy affects the efficacy of the overall index-flood method. For this reason, MAP ∗

standardisation (i.e. TND2) can represent a valid alternative, as it simply requires catch-
ment area to be known and MAP to be estimated, where the uncertainty associated with
predictions of MAP is generally significantly smaller than the uncertainty associated with
predictions of MAS for ungauged sites (i.e. large availability of raingauges and accuracy
of geostatistical procedure for interpolating point observation; see e.g. Brath et al., 2001b;
Castellarin et al., 2004a).

Figure 2.5 reports a scheme of the TNDTK approach applied by standardising the
empirical FDCs with MAS, and estimating MAS in the ungauged basin with Top-kriging.
This specific procedure, which was shown to be reliable for the prediction of FDCs in
ungauged sites (see e.g. Pugliese et al., 2016), is the same which will be implemented in
Chapter 5.
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Figure 2.5: Scheme of the index-flow framework for estimating flow-duration curves with
the TNDTK approach.

Further details on TNDTK (i.e. cross-validations in different geomorphological and
climatic regions, sensitivity analyses, etc.) can be found, e.g., in Pugliese et al. (2014,
2016) and Kim et al. (2017). TNDTK was recently shown to be useful also for the local
enhancement of macro-scale rainfall–runoff simulations (see Pugliese et al., 2018).
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Chapter 3

Design-flood regionalisation: the
added value of catchment similarity

3.1 Introduction

This chapter focuses on the estimation of design flood at ungauged or scarsely gauged
river cross-sections in Triveneto, a broad mountainous geographical area in North-eastern
Italy which counts the presence of numerous dams which routinely undergo hydrologic
and hydraulic risk assessment. Given the growing concern about the possible effects of
climate change (see e.g. Wilby et al., 2008; Fowler and Wilby, 2010) on flood frequency
regime, Triveneto was the subject of a research agreement between the Italian Direzione
Generale Dighe del Ministero delle Infrastrutture e dei Trasporti (DG Dighe) and the
department DICAM of the University of Bologna, with the aim of verifying accuracy
and reliability of the VAPI project, the reference procedure for design flood estimation in
Italy (see Sec. 2.2.1 for details; see also Villi and Bacchi, 2001, for the VAPI report for
Triveneto).

As the VAPI project for Triveneto is based upon AMS of peak discharges that were
collected up to the 1980s, and Villi and Bacchi (2001) themselves warned about the not
fully homogeneous behaviour of the unique growth curve proposed for the region, we
referred to an updated AMS database in order to evaluate the potential of developing an
updated reference procedure for design flood estimation in Triveneto. In particular, we
considered a focused-pooling approach (i.e. Region of Influence, RoI; see Burn, 1990),
which accounts for the control of geomorphological and climatic characteristics on flood
frequency regime.

Part of the analyses presented in this chapter has been published in Persiano et al.
(2016) and Persiano et al. (2018).
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3.2 Study area and database

Triveneto is a broad geographical area in North-eastern Italy which includes the Italian
Eastern Alps and consists of the administrative districts of Trentino-Alto Adige, Veneto
and Friuli-Venezia Giulia. Due to its orography, the study area counts numerous dams
that routinely undergo hydrologic and hydraulic risk assessments, which consist in up-
dating the estimate of the design flood and verifying that it can safely flow over the dam
spillways. The reference procedure for design flood estimation in Triveneto is available
from the Italian GNDCI-CNR research project VAPI (see Sec. 2.2.1 for details), which
developed an index-flood regional model based upon AMS of peak discharges that were
collected up to the 1980s, mainly referring (except for some specific integrations based
on more recent observations) to the AMS reported in the Publication n.17 of the former
italian National Hydrographic and Mareographic Service (SIMN, Servizio Idrografico e
Mareografico Nazionale), which covers a period closed in 1970. Hence, the need of veri-
fying the viability of the VAPI project for Triveneto in light of the observations collected
in the last four decades.

Figure 3.1: Location of the 76 Triveneto gauged sites (triangles indicate artificial reservoirs,
circles the other gauging stations) considered in the study: the grey colour scale depicts the
record length of the corresponding AMS series of peak flow discharges. Red triangles indicate
the ungauged dams considered in Sec. 3.4.2; grey lines represent catchments boundaries.
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To this aim, we compiled an updated AMS database, including historical data together
with more recent data for the last 40 years. In particular, we integrated the dataset pub-
lished in the Publication n.17 and in Villi and Bacchi (2001) with the AMS of peak flow
discharges reported in the several technical reports about hydrologic and hydraulic risk
assessment for the artificial reservoirs analysed within the research agreement with DG
Dighe. In particular, technical reports include also inflow flood series for artificial reser-
voirs, reconstructed by the dams’ managing companies by means of the mass balance
equation on the basis of outflow data. In summary, the update consisted of both (1) in-
cluding more recent observations for stations already considered in the previous database,
and (2) including river cross-sections which were not available before. More detailed in-
formation about the compilation of the database can be found in the reports we produced
within the research agreement (see e.g. DICAM-UniBo, 2015). The resulting detailed
AMS database includes 76 catchments (of which 18 associated with artificial reservoirs)
located in Triveneto (see Fig. 3.1), with annual flood sequences spanning from 1913 to
2013, and minimum, mean and maximum lengths of observed AMS equal to 5, 31 and
87 years, in this order.

The consistency of the updated dataset (2433 station-years of data) is shown in
Fig. 3.2, which reports the histogram of the number of station-years of data per year,
highlighting the significance of the update, especially for the period after 1970 (see verti-
cal red line in Fig. 3.2).

Figure 3.2: Histogram of the station-years of data per year available in the updated AMS
database considered in the study.
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Table 3.1 reports a summary of the dataset for the 76 gauged sites in Triveneto, in-
cluding catchment descriptors, such as drainage area, mean annual precipitation (MAP),
minimum and mean catchment elevation, longitude and latitude of the catchment cen-
troid. Information about elevation were retrieved from the 10-meter resolution DEM
provided by the italian National Institute of Geophysics and Volcanology (INGV, Istituto
Nazionale di Geofisica e Vulcanologia), which was useful also for the definition of catch-
ment boundaries, performed by using the free and open source software QGIS with the
GRASS (Geographic Resources Analysis Support System) plugin. Concerning MAP, the
avarage value for each catchment was computed from the dataset of total mean annual
precipitation for the period 1960-1990 provided by the Joint Research Centre (JRC) of the
European Commission in collaboration with the European Food Safety Authority (EFSA)
(see Hijmans et al., 2005, for a detailed description of the dataset).

Table 3.1: Catchment characteristics for the 76 river basins included in the Triveneto
dataset. For each catchment, the table provides the following information: record lenght
of the AMS series of peak flow discharges n and its average value (i.e. mean annual flood,
MAF), drainage area, mean annual precipitation (MAP), minimum and mean elevation
(Hmin and Hmean, respectively), longitude Xg and latitude Yg of the catchment centroid in
the WGS84 /UTM 32 N coordinate system.

No. Station name n
MAF

[m3 s−1]
Area
[km2]

MAP
[mm]

Hmin

[m a.s.l.]
Hmean

[m a.s.l.]
Xg

[m]
Yg

[m]

C01 Adige a Boara Pisani 70 857.3 11954.0 915.3 16 1498 676128.1 5143205.6
C02 Adige a Bronzolo 87 759.3 6926.0 974.8 220 1785 684017.2 5176198.5
C03 Adige a Pescantina 41 904.6 10957.0 924.6 73 1616 677109.6 5154336.4
C04 Adige a Ponte d’Adige 86 331.9 2642.0 989.1 236 1922 642951.8 5169470.9
C05 Diga di San Valentino alla Muta 8 68.9 176.0 1209.2 1487 2364 621844.7 5185761.1
C06 Adige a Spondigna 27 49.6 685.0 1074.4 884 2209 619881.1 5172496.6
C07 Adige a Tel 81 154.3 1675.0 1046.0 492 2110 630931.8 5169176.4
C08 Adige a Trento 75 1031.2 9763.0 938.8 160 1707 679463.6 5163787.4
C09 Agno-Guà a Cologna Veneta 11 148.9 260.0 880.4 17 405 681696.8 5050000.9
C10 Piave Ansiei ad Auronzo 32 40.0 206.5 998.8 833 1791 754712.5 5161189.5
C11 Astico alla Diga di Leda 27 233.7 520.0 807.2 232 1201 684324.9 5083195.7
C12 Astico a Forni di Val d’Astico 16 71.2 135.1 792.6 308 1178 679016.3 5086345.1
C13 Aurino a Cadipietra 74 51.8 159.0 1189.2 1045 2165 734389.8 5213288.9
C14 Aurino a Caminata 8 98.0 419.2 1163.6 848 2109 729658.8 5207591.7
C15 Aurino a San Giorgio 29 148.4 597.0 1129.5 819 2035 726556.0 5204291.8
C16 Avisio a Pezzè di Moena-Soraga 65 29.6 211.4 1007.9 1192 2044 710436.9 5147836.8
C17 Avisio a Stramentizzo 29 204.5 728.0 910.6 773 1829 702254.2 5135292.2
C18 Bacchiglione a Montegaldella 46 268.1 1384.0 881.2 17 636 689826.3 5068462.7
C19 Boite a Perarolo 23 81.8 398.8 979.3 552 1748 742343.8 5155481.7
C20 Boite a Vodo 74 82.9 323.0 989.8 835 1834 740057.9 5157769.6
C21 Brenta a Barziza (Bassano) 55 681.7 1567.0 854.8 107 1245 702187.7 5104110.6
C22 Brenta a Borgo Valsugana Brolo 25 22.2 218.0 820.5 376 948 678655.8 5098631.0
C23 Brenta a Levico 50 14.8 121.0 816.4 429 891 674504.8 5096645.4
C24 Brenta a Ospedaletto 26 58.2 465.0 827.1 295 1200 686082.8 5103323.5
C25 Brenta a Sarson 28 701.5 1564.4 854.2 113 1250 702134.6 5104264.6
C26 Cellina alla Diga di Barcis 46 400.8 392.0 1019.5 382 1305 770830.0 5130642.1

Continued on next page
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Table 3.1 – Continued from previous page

No. Station name n
MAF

[m3 s−1]
Area
[km2]

MAP
[mm]

Hmin

[m a.s.l.]
Hmean

[m a.s.l.]
Xg

[m]
Yg

[m]

C27 Cellina a Stich Lesis 5 45.3 41.2 1012.4 652 1421 776343.9 5132036.7
C28 Cimoliana a Cimolais 6 116.6 83.0 1003.1 687 1666 767876.9 5139652.7
C29 Cismon alla Diga del Corlo 71 261.8 628.0 877.9 253 1377 712574.9 5113386.4
C30 Cordevole alla Diga di Alleghe 68 66.9 246.8 966.6 965 1861 728058.5 5149323.4
C31 Cordevole a Caprile 17 33.1 223.7 972.2 977 1893 727547.0 5149893.0
C32 Cordevole a Ponte Alto 8 149.0 571.2 945.4 557 1747 726998.1 5141140.3
C33 Cordevole a Ponte Ghirlo 5 85.2 415.3 951.4 750 1815 725831.0 5144624.9
C34 Cordevole a Saviner 42 26.8 109.7 982.5 1028 1911 724942.0 5152676.0
C35 Diga di Tul 24 65.3 24.0 1206.1 282 711 798772.6 5127717.7
C36 Ega a Ponte Nova 17 11.3 118.8 826.3 865 1639 694208.0 5141631.8
C37 Fiorentina a Sottorovei 9 22.1 56.4 972.9 1073 1856 735600.9 5148893.3
C38 Gadera a Mantana 38 66.0 384.8 979.5 938 1878 723385.3 5168274.8
C39 Isarco a Bressanone 9 158.9 740.6 998.8 562 1819 687473.0 5195174.5
C40 Isarco a Fortezza 55 140.6 680.0 1011.7 720 1863 686215.3 5196921.7
C41 Isarco a Prà di Sopra 32 104.5 652.0 1015.1 764 1883 685956.0 5197280.5
C42 Isonzo a Canale 10 1332.0 1357.0 1298.2 98 884 867660.8 5126464.8
C43 Diga di Speccheri 12 18.1 13.8 776.5 743 1338 668099.3 5070253.2
C44 Diga di Ponte Racli 40 454.5 217.6 1115.9 303 952 788075.1 5132709.0
C45 Mis a Ponte Sant’Antonio 12 86.6 114.0 891.8 363 1292 731080.7 5120310.6
C46 Noce a Ponte Rovina 21 69.2 383.3 958.9 784 2140 629769.1 5131720.9
C47 Noce a Tassullo-Dermulo 23 156.5 1056.0 856.7 401 1763 644171.0 5137403.1
C48 Piave Padola a Ponte Padola 22 11.2 58.5 1049.6 1194 1834 763959.7 5171199.1
C49 Passirio a Belprato 7 49.1 53.8 1134.9 1547 2369 658266.0 5182335.7
C50 Passirio a Moso 6 10.4 181.0 1104.8 917 2245 661797.3 5189212.5
C51 Piave Busche traversa 34 979.0 3224.1 976.4 232 1414 747915.6 5138899.5
C52 Piave a Pieve di Cadore (diga) 49 287.1 818.0 1013.7 649 1646 765728.5 5160964.8
C53 Piave a Ponte Cordevole 19 20.6 63.0 1061.1 1023 1679 781818.1 5163964.1
C54 Piave a Ponte della Lasta 43 104.7 357.0 1043.0 805 1669 773660.0 5166521.0
C55 Piave a Presenaio 28 47.4 142.0 1061.7 951 1691 779893.8 5167131.1
C56 Piave Segusino 48 913.3 3333.0 971.7 195 1370 746101.2 5135945.0
C57 Plan a Plan 14 12.1 44.0 1145.3 1596 2413 657638.9 5181891.9
C58 Posina a Stancari 13 94.0 116.0 807.9 299 1102 676214.8 5076870.4
C59 Ridanna a Vipiteno 50 70.1 206.0 1010.5 939 1941 675749.9 5195334.5
C60 Rienza a Monguelfo 74 19.3 273.0 1013.8 1099 1879 743619.6 5174924.5
C61 Rienza a Vandoies 79 191.8 1923.0 1034.5 720 1863 728237.9 5188109.7
C62 Rio Anterselva a Bagni Salomone 25 14.0 83.2 1112.8 1089 2031 738426.0 5194645.4
C63 Rio Casies a Colle 28 16.3 116.6 1084.3 1196 1962 745717.4 5190657.4
C64 Rio Missiaga 19 3.4 4.7 938.0 1081 1710 739951.0 5131928.1
C65 Rio Riva a Seghe di Riva 28 53.0 91.2 1278.6 1525 2387 735218.5 5203242.9
C66 San Vigilio a Longega 6 5.6 104.0 1004.9 1025 1904 727927.5 5172589.5
C67 Tagliamento a Pioverno 9 1472.8 1884.8 1175.3 227 1163 809953.4 5153675.7
C68 Travignolo a Sottosassa 15 66.0 103.0 941.1 1197 1967 711039.0 5132116.1
C69 Val Settimana a Stalli Nucci 5 47.5 51.6 1016.4 688 1492 774895.3 5137461.3
C70 Rio Valsura a Lana 24 49.5 282.0 888.8 385 1913 649618.3 5154803.0
C71 Diga di Ambiesta 6 33.1 9.1 1190.9 470 868 803884.7 5144004.9
C72 Diga di Forte Buso 22 68.1 66.3 964.1 1407 2019 712909.5 5132574.4
C73 Diga di Santa Giustina 21 257.3 1050.0 854.8 514 1765 644187.1 5137467.2
C74 Diga di Val Schener 17 142.8 203.0 885.1 538 1513 718720.5 5119203.4
C75 Diga di Careser 25 7.7 10.4 1469.9 2535 2968 631232.1 5144698.7
C76 Diga di Zoccolo 34 29.3 181.2 940.2 1112 2160 644948.5 5151708.4
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3.3 Test of the accuracy of the VAPI project

As introduced in Sec. 2.2.1, Villi and Bacchi (2001) regarded Triveneto (i.e. the
former SIMN compartment of Venezia) as a unique homogeneous region in terms of flood
frequency regime, for which they proposed a unique TCEV growth curve (see also Tab. 2.1)
for operational purposes, warning at the same time about the possible presence of a not
fully homogeneous behaviour of the curve itself. In light of this consideration, we tested
the viability of the VAPI growth curve for the study region, referring to the updated AMS
database compiled in the present study.

In order to assess the reliability of the growth curve proposed by Villi and Bacchi
(2001), the most straightforward way was a visual comparison between the TCEV growth
curve itself and the empirical regional sample contained in the updated AMS database (see
Fig. 3.3). An empirical regional sample consists of all the dimensionless (i.e. standardised
with the corresponding MAF) AMS available for the study area in a selected period; to
allow the graphical representation, the empirical regional sample is ranked in ascending
order and each value is plotted versus the corresponding empirical non-exceedance prob-
ability computed with the Weibull plotting position (see also Sec 1.1.1). In particular,
we referred to different empirical regional samples by selecting three different periods:
the overall period available in the updated dataset (i.e. 1913-2013; 2433 station-years
of data), and the two sub-samples PRE1970 (all years up to 1970, included; i.e. 1913-
1970; 1421 station-years of data) and POST1970 (all years after 1970; i.e. 1971-2013;
983 station-years of data). As PRE1970 sub-sample includes also stations which were
not considered in the VAPI project, we also referred to a PRE1970-VAPI subset (587
station-years of data), including only the stations which were actually considered in Villi
and Bacchi (2001), while taking into account that for the period before 1970 the updated
dataset includes some additional data also for stations already considered in the VAPI.
To guarantee the reliability of the analysis, sub-records having record length lower than
5 were escluded from each sub-sample (i.e. PRE1970, PRE1970-VAPI, POST1970).

Figure 3.3 shows that the total sample and PRE1970 differ considerably from the VAPI
growth curve. This behaviour can be explained by considering that the AMS database
includes much more stations and observations than the one considered in Villi and Bacchi
(2001). Indeed, if we limit the analysis to the PRE1970-VAPI, we can observe a good
overlap with the VAPI growth curve, except for the three highest values in the sub-sample.
At the same time, an unexpected behaviour is noticed with reference to POST1970, which
results in overlapping with the VAPI growth curve. In this context, the analyses about
changes in flood frequency regime for Triveneto reported in Persiano et al. (2018) (i.e.
application of non-parametric stastical tests with 5% significance level to inspect possible
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Figure 3.3: Comparison between the regional growth curve (TCEV distribution, black
curve) proposed for Triveneto by Villi and Bacchi (2001) and the (dimensionless) empirical
regional samples collected for the overall period (i.e. 1913-2013; green dots) and for three
different sub-periods: PRE1970 (i.e. 1913-1970, blue dots), PRE1970-VAPI (i.e. 1913-1970
for only the stations considered in the VAPI; blue circles) and POST1970 (i.e. 1971-2013;
red dots).

trends as well as abrupt changes in the intensity of annual maximum floods) highlight the
spatial heterogeneity of the few statistically significant changes detected, which seem not
to be related to climate change. These resultings suggest the need of reconsidering the
VAPI growth curve proposed by Villi and Bacchi (2001).

As homogeneity is a fundamental requirement to guarantee the reliability of the region-
alisation procedure, a further step was the assessment of the actual heterogeneity degree
for each sample. To this aim, we referred to the Hosking and Wallis test (see Hosking and
Wallis, 1993), which suggests to regard a group of sites as "acceptably homogeneous" if
Hk < 1, "possibly heterogeneous" if 1 ≤ Hk < 2, and "definitely heterogeneous" if Hk ≥ 2,
where Hk (k = 1, 2, 3) are measures of dispersion for different orders of the sample L-
moment ratios (see also Hosking, 1990, and Appendix A). In particular, we considered
H1 (related to the L-coefficient of variation) and H2 (related to the sum of L-coefficient
of variation and L-coefficient of skewness). The test indicates for the study region a high
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heterogeneity degree for the overall Triveneto sample (H1 ' 10 and H2 ' 5), and also
for the three sub-samples shown in Fig. 3.3 (H1 ' 4 and H2 ' 3 for PRE1970, H1 ' 3
and H2 ' 2 for PRE1970-VAPI, H1 ' 9 and H2 ' 3 for POST1970). Therefore, even the
POST1970 sub-sample, which overlaps the VAPI growth curve, is not reliable for stating
the validity of the VAPI growth curve after 1970.

In summary, the analyses highlight that the dimensionless growth curve in Fig. 3.3
does not refer to a homogeneous regional sample: although the VAPI project considered
as a single homogeneous region for operational purposes, the significant update done in
this Thesis confirms the warning of Villi and Bacchi (2001) about the possible presence
of a not fully homogeneous behaviour for the study area, showing that the hypothesis of
homogeneity does not hold for Triveneto.

3.4 Test of the viability of a focused-pooling approach

The analyses performed in the previous section highlighted the need of updating the
reference procedure for design flood estimation in Triveneto (i.e. VAPI project), founded
on geographically contiguous homogeneous regions. Given the high heterogeneity de-
gree for the study area, we tested the viability of a focused-pooling approach (i.e. RoI
approach; see Burn, 1990; Zrinji and Burn, 1994, 1996), useful for delineating pooling-
groups of sites for a given target site accounting for climatic and geomorphologic controls
on flood frequency regime. In order to properly select the catchment characteristics to
be considered, a preliminary step was the inspection of climatic and scale controls on
flood frequency regime in Triveneto, checking their consistency with the controls that
were recently found in Europe (see Salinas et al., 2014).

3.4.1 Climate and scale controls on regional flood frequency dis-
tribution

The selection of the most suitable regional parent distribution is a key aspect in
any regional flood frequency analysis. The scientific literature recommends using the L-
moment ratio diagrams for addressing this task (see e.g. Hosking and Wallis, 1993, 1997).
Because of the unavailability or high uncertainty of sample statistics for ungauged or
poorly gauged regions, many studies have focused on the relationships between sample
L-moments and catchment descriptors. In particular, a recent study by Salinas et al.
(2014) on a data set of annual maximum series (AMS) of peak flow from a total of 813
catchments (in Austria, Italy and Slovakia) shows the great importance of incorporating
into regional models information on mean annual precipitation (MAP) and basin area as
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surrogates of climate and scale controls (see also Blöschl and Sivapalan, 1997; Padi et al.,
2011).

In this context, we inspected climatic and scale controls on flood frequency regime
in Triveneto, checking whether they are similar to the controls that were recently found
in Europe by Salinas et al. (2014). To corroborate the significance of this analysis, it is
important to highlight that the catchments included in the AMS database considered in
this Thesis have geomorphologic and climatic characteristics similar to the catchments
considered in Salinas et al. (2014), in whose study, however, Triveneto is represented
only by a limited number of catchments (less than 10). To reduce the effects of sam-
pling variability when estimating higher order L-moments (see e.g. Viglione, 2010), the
information from each site was weighted proportionally to the site record length (Hosk-
ing and Wallis, 1993) during all regionalisation phases. For comparison purposes, the
data set was divided into the same six subsets identified in Salinas et al. (2014): smaller
(area < 55 km2), intermediate (55 km2 ≤ area ≤ 730 km2) and larger (area > 730 km2)
catchments, drier (MAP< 860mm yr−1), medium (860mm yr−1≤MAP≤ 1420mm yr−1)
and wetter (MAP> 1420mm yr−1) catchments. It is evident that the majority of the
Triveneto catchments (black points in Fig. 3.4) belong to the central subset.

Figure 3.4: Catchment characteristics of the Triveneto data set (black points). Grey points
represent the Austrian, Slovakian and Italian data sets considered in Salinas et al. (2014).
Black-dashed lines identify the subdivision into the six subsets based on the 20% and 80%
quantiles of the catchments descriptor values for the European data sets.

Therefore, in order to verify the impact of catchment size and MAP on the L-moment
ratios for the Triveneto regional parent distribution, we considered only the two sub-
sets associated with intermediate site and medium MAP. For each one of them, the two
L-moment ratio diagrams L-Cv–L-Cs and L-Ck–L-Cs were plotted, including the theoret-
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ical lines for the most common two- and three-parameter distributions, respectively (see
Fig. 3.5). Similarly to Salinas et al. (2014), the points drawn in the diagrams represent
the record length weighted moving average (WMA) values of the corresponding sample
L-moments and their colour intensity is proportional to the mean value of the descriptor
not used for the stratification. WMA was computed for a window including the 35 most
similar catchments in terms of the evaluated descriptor (i.e. area or MAP).

Figure 3.5: L-moment ratio diagrams for the subsets defined by intermediate area (a, c)
and medium MAP (b, d). Each point represents a record length weighted moving average
(WMA) of L-Cv (a, b) or L-Ck (c, d) against the corresponding values of L-Cs and the colour
intensity is proportional to the catchment descriptor of interest (area or MAP); WMAs are
computed for either 35 Triveneto basins (black-border) or 70 European basins (no-border)
having similar area or MAP value.
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Figure 3.5 clearly shows the superimposition of Triveneto WMAs to WMAs obtained
by Salinas et al. (2014). Figures 3.5(a) and 3.5(b) confirm that sample L-Cv and L-Cs are
poorly described by the most common two-parameter distributions. On the other hand,
Fig. 3.5(c) shows how medium-sized (intermediate) catchments associate with high to
medium MAP are well described by the Generalized Extreme Value (GEV) distribution,
and Fig. 3.5(d) clearly reports the same behaviour for medium MAP catchments. The
strong control of area and MAP on regional L-moments (i.e. WMAs) is also confirmed
by the intensity of gradation, which increases with decreasing L-moment ratios values
for all the considered cases: average L-moment ratio values are higher for smaller than
larger catchments and for drier than wetter ones. In other words, the regional flood
frequency regime of medium-sized catchments associated with high to medium MAP is
well described by the GEV distribution and average L-moment ratio values are higher for
smaller than larger catchments and for drier than wetter ones.

3.4.2 Application of the Region of Influence approach

Once proved the influence of climatic and scale characteristics on the regional flood
frequency regime in Triveneto, we tested and applied for the study area the Region of
Influence (RoI) approach (see Burn, 1990; Zrinji and Burn, 1994, 1996, see also Sec. 2.2.2
for a detailed description of the approach), which replaces the idea of homogeneous regions
consisting of contiguous and geographically identifiable regions with the most general idea
of homogeneous groups of basins with similar hydrological behaviour, which may or may
not be geographically close to each other. The RoI approach delineates homogeneous
pooling-groups for a given target site referring to a minimum amount of information in
terms of climatic and geomorphological descriptors of the basins that strongly influence
the flood frequency regime at regional scale. In this study, we considered the following
descriptors: area and MAP (whose strong influence on the flood frequency regime has been
confirmed for the study area, see Sec. 3.4.1), mean and minimum elevation, and latitude
and longitude of catchment centroid. In particular, it is very important to consider
catchment elevation as a descriptor of the orographic effect on the flood frequency regime
(see e.g. Allamano et al., 2009). The Euclidean distance in the 6-dimensional descriptor
space was used as measure of hydrological dissimilarity (see Eq. (2.16)), where the same
weight has been assigned to each of the mentioned descriptors.

The RoI approach arranges catchments according to their dissimilarity with the target
site, pooling together only the most similar ones. The number of catchments to include in
the RoI is determined by considering the return period of the design flood T : according
to the 5T -rule proposed by Jakob et al. (1999), a number of station-years of annual
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maxima n ≥ 5T is required to get a reliable estimation of the T -year flood (T -quantile).
Therefore the RoI sample consists of a pooling-group of catchments that are the most
hydrologically similar to the target site and whose overall station-years of data sums up
to 5T (i.e. 500 station-years of data for T = 100 years). In the sequential addition
of new sites to the RoI, a homogeneity test is necessary for assessing the heterogeneity
degree of the pooling-group. To this aim, we referred to the Hosking and Wallis test
(Hosking and Wallis, 1993), consistently with what suggested in Zrinji and Burn (1996)
and Castellarin et al. (2001). In particular, Zrinji and Burn (1994) and Castellarin et al.
(2001) (see Sec. 2.2.2 for further details) allow to discard the first site which results in
an unacceptable heterogeneity of the overall pooling-group. In the present study, given
the high heterogeneity degree found for Triveneto (i.e. H1 ' 10, see Sec. 3.3), to avoid
a premature ending of the process, we decided to allow to discard more than one site,
whenever a significant increase in the heterogeneity degree was detected. Moreover, for
the same reason, in this context we accepted pooling-groups characterised by H1 values up
to 2.5, but only if associated with H2 < 2. After having identified the RoI pooling-group
of sites for the given target site, the L-moment approach proposed by Hosking and Wallis
(1993, 1997) (see also Appendix A.3) was applied in order to select the most suitable
regional parent distribution and the corresponding dimensionless T -year flood quantile.

The RoI approach was indeed applied within an index-flood framework (see Sec. 1.2.3):
the T -year design flood was computed as the product between the dimensionless T -year
flood quantile (evalutated with L-moment approach proposed by Hosking and Wallis,
1993, 1997, on the basis of the homogeneous pooling-group identified with the RoI ap-
proach) and the index-flood. The index-flood was computed as the average value of the
AMS available for the target site if at least 5 observations were available; otherwise multi-
regression models (Brath et al., 2001a, see also Sec. 1.2.3) can be built by referring to the
RoI pooling-group itself. When the identification of an effective regression model is not
possible, scaling laws available in the literature for the study area or the drainage-area
ratio method can be used (see Villi and Bacchi, 2001 for Triveneto; see also Farmer and
Vogel, 2013; Farmer et al., 2015).

Within the research agreement with DG Dighe, we applied the RoI approach to es-
timate the design flood for several artificial reservoirs (both gauged and ungauged) in
Triveneto. We report herein an application example for the Pieve di Cadore dam (Diga di
Pieve di Cadore, see station C52 in Tab. 3.1 and reservoir R24 in Tab. 3.2), for which a 49
AMS (from 1951 to 1999) has been compiled from inflow series to the artificial reservoir.
The RoI sample consists of 16 catchments, for a total of 567 observations, which enable
one to get a reliable prediction of the 100-year quantile according to the 5T -rule. We
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can observe the significant advantage of the RoI approach in terms of homogeneity: the
heterogeneity associated with the RoI sample (H1 ' 1.26) is much lower than that of the
total Triveneto sample (H1 ' 10). Therefore the corresponding RoI growth curve (green
line in in Fig. 3.6) is characteristic of a regional parent distribution that is suitable for pre-
dicting flood quantiles up to T = 100 years for Pieve di Cadore. Figure 3.6 also highlights
the significant difference with the VAPI growth curve (black line in in Fig. 3.6), which,
as well as being associated with a high heterogeneity degree, results in underestimating
the design flood for T > 10 years if compared to the more reliable RoI growth curve.
Note that Fig. 3.6 reports the dimensional growth curves for Pieve di Cadore, which were
obtained by multiplying the dimensionless growth curves for the index-flood estimated as
the mean value (287.1 m3 s−1) of the 49 AMS available for the target site.

Figure 3.6: Comparison between the dimensional growth curve proposed by the VAPI
project (black line) and the dimensional growth curve associated with the RoI pooling-
group of sites (green line) for Pieve di Cadore. The choice of the GLO distribution for the
RoI sample was made by applying the L-moment approach proposed by Hosking and Wallis
(see Hosking and Wallis, 1993, 1997). Green dots and blue circles indicate the empirical
growth curve for the RoI sample and for the AMS recorded at Pieve di Cadore, respectively.

The application of the RoI approach for the 24 artificial reservoirs in Triveneto which
were analysed within the research agreement with DG Dighe is summarised in Tab. 3.2,
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which reports the number of station-years of data included in the RoI sample (nRoI)
and values of H1 and H2, together with the catchment descriptors considered for the
identification of the RoI pooling-groups. The artificial reservoirs analysed in the study
included both gauged and ungauged cases; for gauged cases, information about the AMS
available for the target site is reported in Tab. 3.1.

Table 3.2: Artificial reservoirs for which the RoI approach was applied to estimate the 100-
year flood. For each considered dam, the catchment characteristics used for the definition
of the RoI pooling-group are reported together with the number of station-years of data
included in the RoI sample nRoI and the corresponding heterogeneity measures H1 and H2.

No. Station name nRoI H1 H2
Area
[km2]

MAP
[mm]

Hmin

[m a.s.l.]
Hmean

[m a.s.l.]
Xg

[m]
Yg

[m]

R01 Astico alla Diga di Leda 538 1.75 0.06 520.0 807.2 232 1200 684324.9 5083195.7
R02 Avisio a Stramentizzo 521 2.30 0.59 728.0 910.6 773 1831 702254.2 5135292.2
R03 Caorame (Piave) a La Stua (diga) 501 2.10 0.44 27.5 903.9 699 1569 728781.3 5114947.9
R04 Cellina a Ravedis (diga) 541 0.76 -0.21 445.0 1031.4 292 1255 771768.5 5129679.6
R05 Cellina alla Diga di Barcis 499 1.97 0.70 392.0 1019.5 382 1304 770830.0 5130642.1
R06 Cismon alla Diga del Corlo 534 1.95 0.09 628.0 877.9 253 1375 712574.9 5113386.4
R07 Diga di Ambiesta 507 1.44 0.99 9.1 1190.9 463 870 803884.7 5144004.9
R08 Diga di Fedaia 442 1.46 0.31 8.2 1160.5 2028 2454 720633.6 5148370.3
R09 Diga di Forte Buso 508 1.83 0.52 66.3 964.1 1407 2021 712909.5 5132574.4
R10 Diga di Mis 519 1.19 -0.45 108.0 890.3 398 1297 731123.2 5120213.2
R11 Diga di Pontesei 542 1.83 0.47 151.6 919.4 744 1590 742322.7 5139052.6
R12 Diga di San Valentino alla Muta 535 1.69 -0.51 176.0 1209.2 1487 2365 621844.7 5185761.1
R13 Diga di Santa Caterina 550 1.14 0.51 225.0 993.8 814 1750 755652.9 5161193.6
R14 Diga di Santa Giustina 529 2.21 0.61 1050.0 854.8 514 1765 644187.1 5137467.2
R15 Diga di Speccheri 512 2.48 0.69 13.8 776.5 764 1343 668099.3 5070253.2
R16 Diga di Tul 441 2.10 1.70 24.0 1206.1 272 706 798772.6 5127717.7
R17 Diga di Val d’Ega 515 2.22 0.15 154.0 812.5 544 1539 692656.6 5142657.7
R18 Diga di Val Gallina 480 2.47 0.27 14.4 949.0 646 1246 758291.5 5123578.4
R19 Diga di Val Noana 529 1.92 -0.18 31.1 878.3 969 1545 723109.4 5114872.1
R20 Diga di Val Schener 747 0.52 -0.78 203.0 885.1 538 1512 718720.5 5119203.4
R21 Diga di Valle di Cadore 510 1.74 0.81 380.2 981.7 699 1775 741768.5 5155916.9
R22 Diga Ponte Racli 441 2.12 1.70 217.6 1115.9 303 949 788075.1 5132709.0
R23 Isarco a Fortezza 477 1.59 1.75 680.0 1011.7 720 1862 686215.3 5196921.7
R24 Piave a Pieve di Cadore (diga) 567 1.26 1.05 818.0 1013.7 649 1645 765728.5 5160964.8

3.5 Results and discussion

As shown in Sec. 3.3, our update of Triveneto AMS dataset showed that the TCEV
growth curve proposed by Villi and Bacchi (2001) in the VAPI project for Triveneto needs
to be reconsidered, as it is not properly representative of the updated empirical regional
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sample (see Fig. 3.3). Moreover our analyses falsified the main assumption of the VAPI
project for Triveneto, showing the high heterogeneity degree (i.e. H1 ' 10) for the study
region, which cannot be regarded as homogeneous in terms of flood frequency regime.

The analyses reported in Sec. 3.4.1 confirmed the value of including physiographic
and climatic information, such as drainage area and mean annual precipitation (MAP),
in statistical regionalisation. In particular, climatic and scale controls on flood frequency
regime in Triveneto resulted to be similar to the controls that were recently found in
Europe by Salinas et al. (2014): the regional flood frequency regime of medium-sized
catchments associated with high to medium MAP is well described by the GEV distri-
bution and average L-moment ratio values are higher for smaller than larger catchments
and for drier than wetter ones.

Once proved the influence of climatic and scale characteristics on the regional flood
frequency regime in the study area, we tested the Region of Influence (RoI) approach
as possible candidate for updating the reference procedure for design flood estimation in
Triveneto. Sec. 3.4.2 provides a practical example for Pieve di Cadore (see Fig. 3.6), for
which the RoI approach has led to a pooling-group of sites with a number of station-
years of data (nRoI = 567) suitable for predicting flood quantiles up to T = 100 years,
and a much smaller heterogeneity (H1 ' 1.26 and H2 ' 1.05) than the overall regional
sample available for the entire study area (H1 ' 10 and H2 ' 5). The same behaviour
was detected for all the 24 artificial reservoirs analysed in Triveneto within the research
agreement with DG Dighe. Table 3.1 reports H1 values spanning from 0.52 to 2.48, H2

from -0.78 to 1.75, and nRoI from 441 to 747. The best case is represented by Diga di Val
Schener (reservoir R20; nRoI = 747, H1 ' 0.52, H2 ' −0.78), which resulted in being
"acceptably homogeneous" in the strict sense according to the Hosking and Wallis test,
and which will be used as reference homogeneous region for the analyses performed in
Chapter 4. Even if in many cases the identified RoI pooling-groups reported in Tab. 3.1
cannot be regarded as homogeneous in the strict sense according to the Hosking and
Wallis test (see e.g. artificial reservoirs R02, R03, etc.), the improvement in terms of
heterogeneity degree is significant if compared to the one of the total Triveneto sample
(i.e. H1 ' 10). These findings prove the effectiveness of the RoI approach in estimating
the T -year flood the study area, highlighting that focused-pooling approaches accounting
for the control of geomorphological and climatic characteristics on flood frequency regime
are preferable to approaches based on geographically contiguous regions, especially in
highly heterogeneous areas. In particular, the RoI approach represents a valid candidate
for updating the reference procedure for design flood estimation in Triveneto.
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3.6 Concluding remarks

This chapter focused on the first research question reported in Sec. 1.3. The need
of updating the reference procedure for design flood estimation in Triveneto (i.e. VAPI
project, see Villi and Bacchi, 2001) was highlighted: the updated AMS dataset for the
study region showed that Triveneto is not homogeneous in terms of flood frequency regime,
falsifying the main assumption of the VAPI project.

Therefore, we developed an updated reference procedure by using the Region of In-
fluence (RoI) approach, which delineates homogeneous pooling-groups of sites for any
given target site referring to selected climatic and geomorphological descriptors which
were shown to be particularly relevant for describing regional flood frequency. In par-
ticular, catchment descriptors as mean annual precipitation (MAP), basin area, mean
and minimum elevation and catchment location can be used as surrogates of climate and
scale controls. We observed that the regional samples obtained through the RoI approach
are characterised by homogeneity degrees which are much higher than the Triveneto one.
Focused-pooling approaches are therefore preferable to approaches based on geographi-
cally contiguous regions, especially in highly heterogeneous study areas. This behaviour
confirms the added value of explicitly accounting for catchment similarity (i.e. control
of geomorphological and climatic characteristics on flood frequency regime) in statistical
regionalisation.
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Chapter 4

Design-flood regionalisation: the
impact of spatial correlation

4.1 Introduction

While Chapter 3 highlighted the added value of including physiographic and climatic
information for properly identifying hydrologically homogeneous regions, the present chap-
ter addresses another fundamental issue in regional flood frequency analysis: the impact
of spatial correlation among concurrent flood flows on regional predictions. As illustrated
in Sec. 1.2.2, the effect of spatial correlation in regional flood frequency analysis has been
widely investigated in the literature (see e.g. Matalas and Langbein, 1962; Stedinger,
1983; Hosking and Wallis, 1988; Stedinger and Lu, 1995; Hosking and Wallis, 1997; Mad-
sen and Rosbjerg, 1997; Madsen et al., 2002; Castellarin et al., 2008), and mainly concerns
the reduction of the actual hydrological information content of the region, impacting the
prediction uncertainty of the classical index-flood approaches (not their bias) and the
assessment of the homogeneity of the region itself.

For this reason, the presence of spatial correlation is a very important issue when
predicting flood quantiles in ungauged basins, and the literature itself reports statistical
methods which have completely different ways of treating cross-correlation among flows.
For instance, Generalized Least Squares (GLS; i.e. Stedinger and Tasker, 1985; Tasker
and Stedinger, 1989, see also Sec. 2.1.3), which is the reference procedure for estimating
streamflow characteristics in ungauged catchments in the USA, accounts for sampling
variability and cross-correlation among concurrent streamflows in developing a regional
(multi-)regression model. On the other hand, in the last decade geostatistical approaches
which explicitly exploit spatial correlation (e.g. Canonical kriging, CK, see Ouarda et al.,
2001; Chokmani and Ouarda, 2004; Top-kriging, TK, see Skøien et al., 2006, see also
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Sec. 2.3.1) have been shown to be effective for predicting several streamflow indices and
hydrological signatures in ungauged sites (see e.g. Castiglioni et al., 2009; Archfield et al.,
2013; Pugliese et al., 2014, 2016).

In this context, a recent study by Archfield et al. (2013) compared the performances of
GLS, CK and TK in predicting empirical estimators of flood quantiles in ungauged sites for
a set of 61 gauged basins located in the Flint River basin in the South-eastern USA. Their
study highlighted that when the aim is the prediction of empirical flood quantiles in an
ungauged site, TK is likely to result in better predictive models than GLS. Nevertheless,
Archfield et al. (2013) also pointed out that, being entirely based on empirical data,
their analysis cannot address the fundamental science problem of understanding which
technique is better suited for predicting the true unknown flood quantiles in ungauged
catchments when the observed flood sequences are affected by cross-correlation: for a
limited set of cross-correlated streamflow observations, the true flooding potential at a
given site could be masked. Despite this aspect is crucial, its impact on the accuracy of
flood quantiles predictions has never been formally investigated in the literature.

In this context, this chapter investigates the impact of spatial correlation in flood data
on the prediction accuracy of both GLS and TK, the analysis of which is of particular
interest as neither of the two procedures are commonly used in Italy. To this aim, we
referred to a simplified situation consisting of a homogeneous region with nested catch-
ments: we considered a dataset of 20 AMS of peak flow discharges collected in Triveneto
which may be regarded as possibly homogeneous in terms of flood frequency regime (see
Hosking and Wallis, 1997; Castellarin et al., 2008). Considering this regional dataset, we
first repeated the same exercise performed in Archfield et al. (2013), to see to what extent
the results obtained then hold here. Second, based on the empirical characteristics of
this regional dataset (i.e. mainly regional flood frequency regime and spatial correlation
structure), we designed a Monte Carlo simulation framework to generate 1000 realisations
of the homogeneous region for three different levels of regional cross-correlation (i.e. 3000
realisations in total). For each realisation of the region and level of cross-correlation, we
applied GLS and TK to obtain predictions of at-site flood quantiles for return periods T
equal to 10, 30, 50 and 100 years in a leave-one-out cross-validation (LOOCV) scheme.
The performances of cross-validated GLS and TK were then quantified relative to the
prediction of (a) known theoretical values and (b) sample estimates of flood quantiles at
each and every site in the realisations. The objective was to understand, between the
two different ways of incorporating information on the cross-correlation structure of the
data featured by GLS and TK, which is the most effective one for estimating (a) the true
statistic of interest and (b) its empirical estimator. In particular, from the knowledge of
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the structure of the models (see Sec. 2.1.3 for GLS, and Sec. 2.3.1 for TK), we expect
TK to have better efficiencies in predicting the empirical estimator of the flood quantiles,
while GLS would theoretically better predict the true (unknown) values (looking behind
the cross-correlation).

It is important to highlight that, given the considerable nesting of catchments in the
study area, the ungauged sites considered within the LOOCV scheme are likely to have
other gauges upstream or downstream within the same catchment. For this reason, our
analyses do not refer to ungauged catchments in the strict sense and could therefore partly
favour TK relative to GLS (in which the impact of cross-correlation was considered very
explicitly for ungauged catchments in the strict sense by Stedinger and Tasker, 1985).
The better investigation of this aspect, as well as of the behaviour of GLS and TK in a
heterogeneous region, is suggested for future studies.

4.2 Study area

4.2.1 Flood frequency regime of the study region

The objective of this chapter was investigated by referring to a possibly homogeneous
group of catchments which was identified in the Italian Eastern Alps using the regionali-
sation approach based on L-moments (Hosking and Wallis, 1993, 1997, see Appendix A)
and the Region of Influence approach (RoI, see e.g. Burn, 1990; Zrinji and Burn, 1996) to
the detailed AMS database presented in Chapter 3. Consistently with the analyses pre-
sented in Chapter 3, the selected homogeneous pooling-group (see Fig. 4.1) was delineated
by referring to the climatic and geomorphological descriptors available for the study area
(i.e. basin area, mean annual precipitation, mean and minimum elevation, latitude and
longitude of catchment centroid). In particular, among the RoI pooling-groups of basins
identified in Tab. 3.2, we considered the best one in terms of number of station-years
of data and homogeneity (see artificial revervoir R20, Diga di Val Schener, in Tab. 3.2).
The identified homogeneous group consists of 20 annual sequences (AMS) of flood flows
with an average sample size approximately equal to 35, for a total of 747 station-years of
data, which ensure a reliable estimation of flood quantiles associated with return periods
T slightly higher than 100 years (i.e. 5T -rule proposed by Jakob et al., 1999).

The nested structure of the selected RoI pooling-group is shown in Fig. 4.2, which
reports the percentage of overlapping area between all possible pairs of catchments. Fig-
ure 4.2 highlights the considerable nesting of the catchments for the study area: except
for catchment C38 (i.e. Gadera a Mantana, see Tab. 3.1), all the other catchments in the
RoI pooling-group overlap with at least another one from the same group.
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Figure 4.1: Homogeneous pooling-group of 20 catchments in Triveneto: orange points and
black lines represent the gauging stations and their drainage area, respectively.

Figure 4.2: Nested structure of the selected RoI pooling-group. For each pair of catch-
ments, the percentage of overlapping area (relative to the bigger of the two) is represented
in blue colour scale (the higher the percentage, the deeper the blue).
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The application of the L-moments algorithm (i.e. Hosking and Wallis, 1993, 1997)
(see also Appendix A) to this pooling-group of sites returned an acceptable degree of
homogeneity (i.e. heterogeneity measures H1, H2 and H3 equal to 0.52, -0.78, and -1.06
in this order, see Hosking and Wallis, 1993) and showed that the LP3 (Log-Pearson type
III) family is a suitable parent for representing the flood frequency distribution within an
index-flood framework (i.e. Dalrymple, 1960). In particular, LP3 was fitted by referring to
the following procedure: (1) dimensionless flood data (i.e. annual flood sequences divided
by the corresponding sample means) were log10-transformed, (2) L-moment ratios were
estimated in log-space, (3) a Pearson type III distribution was fitted in log-space with
L-moments approach (i.e. Hosking and Wallis, 1997), (4) finally, the back-tranformation
from log-space to real-space was applied to obtain an LP3 distribution.

Figure 4.3: Regional growth curve (LP3 distribution, blue curve) obtained by applying
the L-moments algorithm (i.e. Hosking and Wallis, 1993, 1997) to the regional sample (grey
points). The true dimensionless regional quantiles of interest (i.e. return periods T = 10,
30, 50, 100 years) are represented with blue points.

The L-moments estimates of LP3 regional parameters in the log-space, µR , σR and
γR, were adopted as parameters of the theoretical parent distribution, and the corre-
sponding regional dimensionless quantiles qRT (with selected return periods T = 10, 30,
50, 100 years) were set to be the true theoretical dimensionless regional quantiles in the
Monte Carlo simulation experiment (see Fig. 4.3). Note that, while the LP3 distribution
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is the reference parent distribution in the USA (see e.g. Bulletin 17B of the Interagency
Advisory Committee on Water Data, 1982), it is not considered in Europe (see e.g. Castel-
larin et al., 2012), where the GEV (Generalized Extreme Value) distribution is generally
a common choice. Nevertheless, for the purposes of the present study, the choice of the
LP3 distribution enabled us to correctly apply the GLS procedure, which is indeed devel-
oped with reference to LP3 (see e.g Tasker and Stedinger, 1989; Farmer, 2017, see also
Sec. 2.1.3).

4.2.2 Cross-correlation structure of the study region

In order to characterise the cross-correlation structure of the study region, we first
applied quantile-quantile transformation to each series in order to obtain standard normal
distributions from the original annual flood sequences divided by their sample mean (i.e.
mean annual flood, MAF). Then, using the sample correlations between all pairs of sites i
and j in the normal space, we computed the cross-correlation estimators ρ̂ij and developed
a model of ρij as a function of distance di,j between the centroids of any two basins,
ignoring cases where basins were nested and where they were not (see Fig. 4.4(a)). For
the evaluation of the cross-correlation structure, all the pairs of basins having less than 10
concurrent observations were neglected. The relationship between cross-correlation and
distance between catchment pairs was modelled through the non-linear regression model
of Tasker and Stedinger (1989) already introduced in Eq. (2.11):

ρ̂ij = θ
dij

1+αdij = e
ln(θ) dij
1+αdij

where dij is the distance (expressed in miles) between centroids for catchments i and
j, and 0 < θ < 1 and α > 0 are the dimensionless model parameters estimated from data.
In the study region, ρ̄ was found to be 0.6 (i.e. θ ' 0.8, α ' 0.4).

Figure 4.4(a) shows that cross-correlation in the study region is almost constant for
larger distances between catchment centroids. Although, generally, one could expect
cross-correlation to decay more rapidly with distance, the specific behaviour observed for
the study region can be explained by its homogeneity and its limited spatial extension (i.e.
the maximum distance between catchment centroids is about 120 km). Indeed, Fig. 4.4(b)
highlights that for the entire Triveneto region, which is wider (i.e. distances are within
230 km) and highly heterogeneous (see Chapter 3), the decay of cross-correlation with
distance is more rapid (i.e. θ ' 0.97, α ' 0.01).

The identification of the cross-correlation structure of the homogeneous study region
in the standard-normal space was preparatory for the generation of the different cross-
correlated realisations of the region described in Sec. 4.4.
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Figure 4.4: Cross-correlation structure of the groups of AMS included in (a) the selected
homogeneous pooling-group, and (b) the entire Triveneto region analysed in Chapter 3. Cor-
relations between all pairs of sites in the normal space as a function of distances between their
centroids are indicated with circles (diameter reflects the size of simultaneous observations
between the two selected catchments), while the solid line depicts the adopted theoretical
model (i.e. Tasker and Stedinger, 1989). For the evaluation of the cross-correlation struc-
ture, all the pairs of basins having less than 10 concurrent observations were neglected.
Blue-filled circles in panel (a) indicate pairs of nested catchments.
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4.3 Preliminary application of GLS and TK in the
real-world study region

The preliminary analyses conducted in this chapter considered the above mentioned
regional dataset and repeated the same exercise performed in Archfield et al. (2013), to
see to what extent the results obtained in the South-eastern USA hold in our study area.

For this purpose, we performed an application of GLS and TK aimed at predicting
the at-site empirical flood quantiles for selected return periods T (i.e. T=10, 30, 50,
100 years). In particular, empirical quantiles were computed by combining at-site and
regional information: we referred to the LP3 distribution (i.e. no uncertainty on the
model) and estimated the LP3 parameters in log-space µ and σ locally by using the L-
moments method (i.e. Hosking and Wallis, 1997) (i.e. uncertainty from sampling error
only on the moments of order 1 and 2); the shape parameter in log-space γ was set equal
to γR (i.e. true shape parameter in log-space), instead (i.e. no uncertainty on the third
order moment). GLS and TK were then applied to the sample flood quantiles in order
to predict flood quantiles at ungauged locations using a leave-one-out cross-validation
(LOOCV) scheme (i.e. simulating ungauged conditions at each and every site in the
study region).

4.3.1 Application of Generalized Least Squares (GLS)

The GLS analysis was carried out by using the R-package WREG (i.e. Farmer, 2017;
see also Eng et al., 2009) in R (R Core Team, 2016). As illustrated in Sec. 2.1, in order
to apply the GLS procedure, estimates of standard deviation si, regional skew estimate
GRi for the gauge i, weighted skew G̃w,i, and LP3 distribution standard deviate Ki for
each ith site are required (see also Griffis and Stedinger, 2007b). These variables were
computed for the log-transformed samples, as follows:

• standard deviations si were evaluated as at-site sample standard deviations;

• as isoline maps for regional skew are not available in the study area, we used the
same value of regional skew GR for each and every catchment in the study region
(i.e. assumption of homogeneity); this value was computed as the sample skew of
the log-transformed regional dimensionless sample;

• weighted skews G̃w,i for each site were computed as indicated in Eq. (2.8), combining
the at-site sample skews gi with the regional skew GR; weights were computed as
indicated in Eq. (2.9), evaluating the estimated mean square errors MSE(gi) and
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MSE(GR) in accordance with Bulletin 17B of the Interagency Advisory Committee
on Water Data (1982);

• standard deviates Ki were computed as functions of non exceedance probability
(i.e. return period T ) and weighted skew G̃w,i, as indicated in Bulletin 17B of the
Interagency Advisory Committee on Water Data (1982).

Moreover, an estimate of the cross-correlation structure is required, in terms of the pa-
rameters θ and α of the model introduced by Tasker and Stedinger (1989) (see Eq. (2.11)).
In the present study, the cross-correlation model for the application of GLS was evaluated
with reference to the distances between catchment centroids computed with the Haversine
approximation, and the model parameters θ and α were estimated by OLS procedure.

GLS regressions employ different catchment descriptors, e.g. drainage area, precipita-
tion, elevation, etc. In the present study, we decided to implement a GLS regional model
in two different ways:

• monovariate-GLS (hereinafter referred to as 1v-GLS): the GLS quantile regression
analysis is performed by considering drainage area A only:

QT i = aT A
bT
i (4.1)

where QT i is the T -year flood for site i, Ai is the drainage area for site i, and aT

and bT are the GLS parameters;

• multivariate-GLS (hereinafter referred to as mv-GLS): the GLS quantile regression
analysis takes more catchment descriptors into account. In the context of the present
study, we referred to drainage area A, mean annual precipitation MAP, latitude of
catchment centroid Yg, mean elevation Hmean, and minimum elevation Hmin, which
were selected by performing a preliminary stepwise log-linear regression analysis (see
Draper and Smith, 1981; Weisberg, 1985; Chambers, 1992) aimed at identifying
the best possible descriptors (i.e. adjusted R-squared R2

adj ' 0.90 and normally
distributed standardised residuals) for estimating the mean annual flood (MAF) in
the study area. The resulting multivariate-GLS model can be described with the
following equation:

QT i = aT A
bT
i MAP cT

i Yg
dT
i Hmean

eT
i Hmin

fT
i (4.2)

where aT , bT , cT , dT , eT and fT are the GLS parameters.
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In the present study, both Eq. (4.1) and and Eq. (4.2) were reduced to linear additive
forms by means of a log-transformation of both sides of equation (see e.g. Thomas and
Benson, 1970; Pandey and Nguyen, 1999; Griffis and Stedinger, 2007a; Laio et al., 2011).

Both the 1v- and mv-GLS applications were performed in a LOOCV scheme, by
removing one site in turn from the dataset and referring to the other 19 sites for estimating:
(1) the cross-correlation structure (i.e. fitting of the model of Tasker and Stedinger, 1989),
(2) the GLS parameters, and (3) the flood quantiles QT at the discarded site.

4.3.2 Application of Top-kriging (TK)

In order to perform an ungauged application of TK for each realisation of the region,
in accordance with previous studies (see e.g. Pugliese et al., 2014, 2016), the first step
was the use of OLS for identifying a regional power-law model between flood quantile QT

and basin area. The OLS estimates were then used to standardise LP3 quantiles (i.e. QT

with T = 10, 30, 50, 100 years) at all sites: this fundamental step is necessary as TK
directly handles drainage area as a key variable of the model itself.

In this regard, to be coherent with the aforementioned application of GLS, we opted
for two different types of OLS regional power-law:

• monovariate-OLS (1v-OLS; i.e. considering only drainage area), resulting in a stan-
dard application of TK (hereinafter referred to as s-TK);

• multivariate-OLS (mv-OLS; i.e. considering the five descriptors identified via step-
wise regression analysis; see e.g. Eq. (4.2)), resulting in a TK with external drift
(hereinafter referred to as ed-TK; see e.g. Laaha et al., 2013, for the use of ed-TK
for predicting stream temperatures).

The TK interpolation was then applied by fitting the sample variogram of the stan-
dardised quantiles with the five-parameter fractal-exponential model suggested in Skøien
et al. (2006) through a modified version of Weighted Least Squares (WLS) regression
(see Cressie, 1993). The fitted variogram model was then used to compute the kriging
weights, referring to the 6 closest neighbouring stations (in line with recent studies con-
ducted for flow-duration curves, see e.g. Pugliese et al., 2014, 2016). The standardised
quantiles were then predicted site by site by using Eq. (2.18). Finally, the TK estimates
of the standardised quantiles were combined with the regression estimates resulting from
1v-OLS and mv-OLS to obtain the s-TK and ed-TK estimated T-year value at each site.

Both the s- and ed-TK analyses were performed in a LOOCV scheme, by removing
one site in turn from the dataset and referring to the remaining 19 sites for estimating:
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(1) the OLS regional power-law useful for standardising flood quantiles, (2) the variogram
(i.e. five-parameter fractal-exponential model suggested in Skøien et al., 2006), and (3)
the flood quantiles QT at the discarded site.

4.3.3 Performance metrics

The performance of the considered versions of GLS (i.e. 1v-GLS and mv-GLS) and
TK (i.e. s-TK and ed-TK) in predicting at-site flood quantiles QT (i.e. T = 10, 30, 50,
100 years) in a LOOCV scheme were evaluated with reference to different metrics.

Consistently with Archfield et al. (2013), we firstly looked at the at-site absolute errors,
computed as follows:

AEi = |x̂i − xi| (4.3)

where AEi indicates the absolute error for site i, x̂i the estimated variable at site i,
and xi the observed value of the variable of interest (i.e. QT , with T = 10, 30, 50, 100
years) at site i. As defined in Eq. (4.3), absolute errors are useful for evalutating the
performance site-by-site.

For this reason, to better evaluate the overall performance of GLS and TK in estimat-
ing QT (i.e. T = 10, 30, 50, 100 years) in the study region, we considered also two error
measures, Relative Bias (RBIAS) and Root Mean Square Normalized Error (RMSNE):

RBIAS = 1
N

N∑
j=1

(
x̂i − xi
xi

)
(4.4)

RMSNE =
 1
N

N∑
j=1

(
x̂i − xi
xi

)2
1/2

(4.5)

and a performance measure, Relative Nash-Sutcliffe Efficiency (RNSE):

RNSE = 1−

N∑
j=1

(
x̂i − xi
xi

)2

N∑
j=1

(
x̂i − x̄
x̄

)2
(4.6)

where N is the number of river cross-sections, x̂i the estimated variable at site i, xi the
observed value of the variable at site i, and x̄ its mean value. The choice of relative (i.e.
RBIAS, RNSE) and normalised (i.e. RMSNE) measures was done in order to quantify
errors and performance, regardless of the size of the drainage area of each catchment.
For a meaningful interpretation of results, note that the lower the value of RBIAS and
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RMNSE the better the performance, whereas the higher the value of RNSE the better
the performance of the model (i.e. RNSE can span from −∞ to 1, where 1 indicates
the perfect model). In particular, RNSE is a rescaling of RMSNE: while RMSNE is an
average fractional error, RNSE represents the fraction of variability explained.

4.3.4 Results and discussion

The evaluation of AEs was useful mainly for assessing the validity for our study area
of the results found by Archfield et al. (2013) in the South-eastern USA. At the same
time, the application of mv-GLS and ed-TK performed in this Thesis represents a further
extension of the analyses implemented in Archfield et al. (2013), who considered only the
monovariate versions (i.e. dependence on drainage area only) of GLS and TK. Fig. 4.5
shows AEs obtained site-by-site by applying (a) 1v-GLS and s-TK, and (b) mv-GLS and
ed-TK, for estimating the 100-year flood.

Figure 4.5: Comparison of the absolute error (AE) between empirical and predicted 100-
year flood quantiles resulting from (a) 1v- GLS and s-TK, and (b) mv-GLS and ed-TK.

Figure 4.5(a) highlights that s-TK results in smaller AEs than 1v-GLS for 17 out of
20 sites, and confirms what already observed in Archfield et al. (2013). At the same
time, Fig. 4.5(b) shows that, if more than one significant catchment descriptors (besides
drainage area) are taken into account, mv-GLS tends to have smaller AEs (see x-axis);
in particular mv-GLS has smaller AEs than ed-TK in 12 of the 20 sites. The fact that
1v-GLS has lower performance than 1v-TK, but mv-GLS does about the same as mv-TK
is explanatory of the fact that the mean annual flood (MAF) at each station depends
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upon more than just drainage area, and that 1v-TK seems to be able to capture some of
that, whereas 1v-GLS would not. AE diagrams for 10-, 30-, 50-year flood show analogous
results and are not reported here for the sake of conciseness.

Still regarding the prediction of the 100-year flood quantiles, results in terms of RBIAS,
RMSNE and RNSE (see Fig. 4.6) highlight that mv-GLS, s-TK, and ed-TK outperform
1v-GLS, which shows higher RBIAS and RMSNE, and lower RNSE (even under 0.6). At
the same time, mv-GLS, s-TK, and ed-TK show similar performance in terms of RMSNE
and RNSE. Concerning RBIAS, Fig. 4.6(a) shows that all the considered methodologies
resulted to be positively biased in the present application. As concluded also from the
analysis of AEs, this behaviour seems to be related with the ability of the considered
methods to reproduce the mean annual flood (MAF). In particular, the smallest bias is
associated with ed-TK. Analogous results were observed also for 10-, 30- and 50-year flood
quantiles.

Figure 4.6: Outcomes of the application (LOOCV scheme) of 1v-GLS (red circles), mv-
GLS (red dots), s-TK (blue-bordered triangles) and ed-TK (blue-filled triangles) for pre-
dicting at-site 100-year flood quantiles in the study area. Prediction performances are in
terms of (a) RBIAS, (b) RMSNE, and (c) RNSE.

In summary, the preliminary analyses performed for the study area highlighted a be-
haviour of 1v-GLS and s-TK which is consistent with the results in Archfield et al. (2013)
for a set of 61 gauged basins located across the South-eastern USA, wherein many basins
were nested, as in the present study area. The outstanding performances of s-TK com-
pared to 1v-GLS are expected as, in performing its estimates, TK refers to n neighbouring
sites and therefore is implicitly able to take some climate and geomorphological similari-
ties between catchments into account, especially in regions with preponderance of nested
catchments, as in the case considered here. Indeed, the preliminary application performed
here suggests that the inclusion of more catchment descriptors in the GLS analysis (i.e.
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mv-GLS) can lead to significantly improved performances (i.e. similar to s-TK). Smaller
differences are obtained moving from s-TK to ed-TK.

Although informative, this preliminary analysis does not address the main science
question of the present chapter, which is specifically tackled through the Monte Carlo
simulation experiment described in the following Sec. 4.4.

4.4 Application of GLS and TK to cross-correlated
realisations of the homogeneous region

4.4.1 Monte Carlo simulation framework

In order to assess the behaviour of GLS and TK under different cross-correlation
scenarios, we implemented a Monte Carlo simulation experiment for generating cross-
correlated realisations of the homogeneous region. The simulation framework and set of
analyses can be summarysed as follows:

1. we focused on the selected real-world study region to mimic regional flood frequency
regime and controls of relevant catchment descriptors, as well as spatial correlation
structure of flood flows, and define true flood quantiles at each and every site in the
region referring to a unique regional parent distribution;

2. we generated 1000 cross-correlated realisations of the region for three different de-
grees of regional cross-correlation; each realisation consists of 20 concurrent se-
quences for 20 sites of 35 annual floods (see Sec. 4.4.2 for the Monte Carlo simulation
algorithm);

3. we applied the L-moments algorithm (i.e. Hosking and Wallis, 1993, 1997) for pre-
dicting at-site flood quantiles associated with selected return periods (i.e. T =
10, 30, 50, 100 years) at each and every site in each realisation of the region (see
Sec. 4.4.3);

4. we then referred to at-site flood quantiles for predicting flood quantiles in un-
gauged locations by means of 1v-GLS, mv-GLS, s-TK and ed-TK within a leave-
one-out cross-validation (LOOCV) procedure for each realisation of the region (see
Sec. 4.4.4);

5. we finally compared TK and GLS cross-validated predictions with at-site and known
true flood in terms of the performance metrics illustrated in Sec. 4.3.3 (i.e. RBIAS,
RMSNE, RNSE; see Sec. 4.4.5 for the results).
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4.4.2 Cross-correlated realisations of the region

The objective of the study was investigated by referring to cross-correlated realisations
of the region generated in a Monte Carlo framework. To this aim, we mimicked the main
characteristics of the real-world homogeneous study region in terms of its flood frequency
regime: (1) unique regional parent distribution of annual flood flows (see Sec. 4.2.1) and
similar geomorphological and climatic controls on the annual flood; (2) cross-correlation
structure (see Sec. 4.2.2).

L-moments regional estimates of LP3 regional parameters, µR , σR and γR, presented
in Sec. 4.2.1 were adopted as parameters of the theoretical parent distribution for each
realisation, and the corresponding regional dimensionless quantiles qRT (with arbitrarily
selected return periods T = 10, 30, 50, 100 years) were selected as true dimensionless
regional quantiles (see Fig. 4.3). Note that the corresponding true dimensional quantiles
at each ith site, QR

T i, were obtained by multiplying qRT by the local empirical mean annual
flood, MAFi (i.e. mean value of the observed AMS at the ith site). No effect of the
cross-correlation structure was therefore considered on the mean annual flood.

The cross-correlation structure of the study region was modelled through the non-
linear model of Tasker and Stedinger (1989) (see Eq. (2.11)). This relationship was then
used for generating cross-correlated sequences of annual floods at the 20 sites in the
region. Together with the model fitted to our regional case study (see Fig. 4.4(a)), which
corresponds to an average cross-correlation between all pairs, ρ̄, equal to 0.6 (i.e. θ ' 0.8,
α ' 0.4), we also considered two alternative models that adopt similar decaying laws
between correlation and distance, but describe a lower and a higher spatial correlation
scenarios, resulting in ρ̄ equal to 0.2 (θ ' 0.3, α ' 0.7) and 0.8 (θ ' 0.9, α ' 0.3),
respectively.

For each cross-correlation scenario considered in our study (i.e. ρ̄ = 0.2, 0.6, 0.8),
1000 realisations of the study region were compiled by generating random annual flood
sequences. Flood sequences were simulated by first generating cross-correlated sequences
from a multivariate standard-normal distribution, and then by back-transforming the
standard normal variate to dimensionless LP3 flows through quantile-quantile transfor-
mations. Finally, to obtain the synthetic dimensional annual sequence of flood flows at
the ith site for any given realisation, the synthetic dimensionless annual sequence at the
ith site was multiplied by the local empirical mean annual flood, MAFi (i.e. we did not
model any synthetic generation of the MAF , in accordance with the hypothesis of ne-
glecting the effect of cross-correlation on the mean annual flood). Each realisation of the
region consists of 20 overlapping annual sequences with record length equal to 35 years
(average record length in the real-world dataset). Note that, due to sampling variability
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(i.e. limited record length), the mean value of each generated dimensionless series is not
exactly equal to 1; for this reason, the resulting dimensional series for the ith site shows
an actual mean value which is slightly different from the local empirical mean annual
flood (MAFi), and varies from realisation to realisation of the region.

Figure 4.7 illustrates the cross-correlation structure in the standard-normal space as
results from an empirical analysis of the 1000 realisations of the region that we generated
for each cross-correlation scenario: (a) ρ̄ = 0.2, (b) ρ̄ = 0.6, (c) ρ̄ = 0.8. In particular,
Fig. 4.7(d) highlights the effectiveness of the Monte Carlo procedure implemented in the
study: the dispersion of the average correlation values for each of the 1000 realisations
generated for each scenario results to be centered on the corresponding expected cross-
correlation value (i.e. median values of each box-plot are consistent with the imposed ρ̄
values).

Figure 4.7: Generation of 1000 realisations of the region for each of the three levels of
regional cross-correlation (i.e. ρ̄ = 0.2, 0.6, 0.8). Panels (a), (b) and (c) represent the dis-
persion of the synthetic series of empirical estimators (grey points) around the corresponding
cross-correlation model (black solid line) for ρ̄ = 0.2, 0.6, 0.8, in this order; the dashed lines
indicate the 90% confidence band (upper and lower lines represent 95th and 5th quantiles,
respectively). Box-plots in panel (d) show the dispersion of the average correlation values
for each of the 1000 realisations generated for each of the three cross-correlation scenarios
(ρ̄ = 0.2, 0.6, 0.8, in this order).
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4.4.3 Empirical flood quantiles

For each realisation and each site in the region, empirical flood quantiles were then
computed for the selected return periods T (i.e. T =10, 30, 50, 100 years). Quantiles
estimators were computed by combining at-site and regional information. In particular,
we referred to the LP3 distribution (i.e. no uncertainty on the model selection) and
estimated the LP3 parameters µ and σ locally by using the L-moments method (i.e.
Hosking and Wallis, 1997) (i.e. uncertainty from sampling error only on the moments of
order 1 and 2); while the shape parameter γ was set equal to γR (true shape parameter,
i.e. no uncertainty on the third order moment).

4.4.4 Prediction of flood quantiles in ungauged sites: applica-
tion of GLS and TK in cross-validation

GLS and TK were applied to the locally estimated (dimensional) empirical flood quan-
tiles for any of the realisations of the region that we generated as described above in
order to predict flood quantiles at ungauged locations. Ungauged conditions at each and
every site in each realisation of the region were simulated through a leave-one-out cross-
validation (LOOCV) scheme. For each realisation in each cross-correlation scenario, we
applied 1v-GLS, mv-GLS, s-TK and ed-TK with exactly the same settings and LOOCV
scheme illustrated in Sec. 4.3.1 and Sec. 4.3.2. Finally, the TK and GLS cross-validated
predictions were compared with at-site and known true flood quantiles in terms of RBIAS,
RMSNE, RNSE (see Sec. 4.3.3).

4.4.5 Results and discussion

The efficiencies of GLS and TK in estimating the empirical estimates of flood quantiles
(see Fig. 4.8) and the true flood quantiles (see Fig. 4.9) are represented by means of box-
plots. Each box-plot indicates the dispersion of the 1000 values (i.e. one value for each
realisation of the region) of the selected performance measure (panels (a), (b), and (c)
refers to RBIAS, RMSNE, and RNSE, in this order) for the selected method (i.e. 1v-
GLS, mv-GLS, s-TK, ed-TK), return period T (i.e. T = 10, 30, 50, 100 years) and
cross-correlation scenario ρ̄ (i.e. ρ̄ = 0.2, 0.6, 0.8). In order to allow a much easier and
direct visual comparison between the results obtained for empirical estimates of flood
quantiles and true flood quantiles, y-axes in the corresponding panels of Fig. 4.8 and
Fig. 4.9 are reported with the same scale.

Concerning the efficiencies in estimating the empirical estimates of flood quantiles,
Fig. 4.8 shows that TK results in generally better predictions of empirical quantiles (i.e.
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Figure 4.8: Prediction performance of 1v-GLS (red-bordered box-plots), mv-GLS (red-
filled box-plots), s-TK (blue-bordered box-plots) and ed-TK (blue-filled box-plots) in esti-
mating (LOOCV scheme) the empirical estimates of flood quantiles for the three degrees of
cross-correlation (i.e. ρ̄ = 0.2, 0.6, 0.8): box-plots represent the distribution of 1000 values
of each metric (i.e. RBIAS, RMSNE, and RNSE) computed for each realisation of the region
and for selected return periods (i.e. T = 10, 30, 50, 100 years).

lower RBIAS, lower RMSNE, higher RNSE) than the corresponding version of GLS: s-
TK outperforms 1v-GLS, and ed-TK shows similar median RMNSE and median RNSE,
but smaller RBIAS than mv-GLS. Moreover, the comparison between 1v-GLS versus mv-
GLS, and s-TK versus ed-TK confirms what observed in our preliminary analysis of the
real-world study area (see Sec. 4.3.4): the inclusion of more catchment descriptors in the
regression analysis (i.e. mv-GLS; mv-OLS for ed-TK) leads to significantly improved per-
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Figure 4.9: Prediction performance of 1v-GLS (red-bordered box-plots), mv-GLS (red-
filled box-plots), s-TK (blue-bordered box-plots) and ed-TK (blue-filled box-plots) in esti-
mating (LOOCV scheme) the true flood quantiles for the three degrees of cross-correlation
(i.e. ρ̄ = 0.2, 0.6, 0.8): box-plots represent the distribution of 1000 values of each metric (i.e.
RBIAS, RMSNE, and RNSE) computed for each realisation of the region and for selected
return periods (i.e. T = 10, 30, 50, 100 years).

formances; in particular, the weak performances of 1v-GLS can be explained with the fact
that drainage area alone is not enough for fully describing MAF (and therefore dimen-
sional flood quantiles) in the study region. Moreover, the similar behaviour of mv-GLS
and mv-TK can be explained with the fact that they both use the important physiographic
information needed to explain variations in the mean flood. In this regard, as already
observed for the real-world study area (see Sec. 4.3.4), all the considered procedures are
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positively biased, with median RBIAS values which are similar to the corresponding val-
ues obtained for the real-world application (see Fig. 4.6 for the 100-year flood quantiles),
and RBIAS significantly decreasing from 1v-GLS to ed-TK.

Another aspect shown in Fig. 4.8 is the weak dependence on T : for each ρ̄ and con-
sidered method, we observed that the higher the T value, the lower the performance (i.e.
the higher the bias or uncertainty). This behaviour is totally expected and confirms that
estimates of flood quantiles associated with lower probability of occurrence (i.e. higher
return period T ) are affected by higher uncertainties.

Finally, we observed a dependence of the performance on the average regional cross-
correlation ρ̄: for a given method and return period T , the higher the ρ̄ the better the
median of the performance and the lower the uncertainty, with much less dispersed per-
formance. This behaviour is totally expected, especially for TK, which explicitly exploits
cross-correlation in predicting flood quantiles.

With regards to the efficiencies of GLS and TK in estimating the true flood quantiles,
Fig. 4.9 confirms the trend already observed for empirical flood quantiles: s-TK, mv-GLS,
and ed-TK outperform 1v-GLS in predicting true flood quantiles (i.e. lower RBIAS, lower
RMSNE, higher RNSE), and, in particular, mv-GLS and ed-TK perform similarly, with
slightly less biased predictions for ed-TK. This confirms that incorporating multivari-
ate regression in mv-GLS and ed-TK improves significantly the prediction performances.
Moreover, the weak dependence on T is confirmed: the higher the T value, the higher the
uncertainty.

Notwithstanding the above mentioned similarities in the relative behaviour of the
methods, a significant difference is present in the extent of the performances: all the
considered methods show much lower performance in estimating true flood quantiles than
empirical quantiles. The only exception is observed for ρ̄ = 0.2, for which, even if a
higher dispersion of RBIAS is observed in predicting true flood quantiles (see panels (a) in
Fig. 4.8 and Fig. 4.9), RMNSE and RNSE indicate a better behaviour of all the considered
methods in predicting true flood quantiles than their empirical estimates. This can be
explained with the fact that the presence of cross-correlation masks the true flooding
potential in the region, and none of the considered methods is able to effectively overcome
this effect, unless the regional average cross-correlation is very limited (i.e. see results for ρ̄
= 0.2). In this regard, other important indications come from the dependence on ρ̄, which
is in this case the opposite to what observed for empirical flood quantiles: for estimating
true flood quantiles, we observed that the higher the ρ̄ the lower the performance. In
particular, as the spatial correlation has the effect of masking the flood magnitude for a
limited set of flood-flow observations, and TK exploits cross-correlation to performs its

78



Chapter 4. Design-flood regionalisation: the impact of spatial correlation

estimates, the decreasing performances and increasing uncertainty of s-TK and ed-TK
with increasing ρ̄ are expected. On the other hand, the increasing uncertainty of GLS
with increasing ρ̄ can be explained as follows: even if GLS is able to look behind cross-
correlation, we could expect a residual masking-effect with increasing levels of spatial
correlation.

In summary, the Monte Carlo experiment performed in this chapter enabled us to
address the unsolved issue raised by Archfield et al. (2013) regarding the ability of GLS
and TK in predicting the true unknown flood quantiles in ungauged sites when the ob-
served flood sequences are affected by cross-correlation. At the same time, it is important
to consider the extremely simplified situation which was represented in our analyses: we
referred to an acceptably homogeneous region with nested catchments. Indeed, as already
stated in the introduction to this chapter (see Sec. 4.1), given the considerable nesting
of catchments in the study area, the LOOCV scheme performed in our analyses refers to
ungauged sites which are likely to have other gauges upstream or downstream within the
same catchment, and therefore are not ungauged catchments in the strict sense. As Ste-
dinger and Tasker (1985) considered GLS very explicitly for ungauged catchments in the
strict sense (no nested sites), the analyses performed in this Thesis could have benefited
TK rather than GLS. The better investigation of this aspect is suggested for future stud-
ies, anyway bearing in mind that the total absence of nesting could be penalising for TK
(see Sec. 2.3.1, and Fig. 2.3 in particular, for further details). Another important aspect
is related to the homogeneity of our study region: we referred to a homogeneous region
for the sake of simplicity, but in general homogeneity is not a fundamental assumption for
the application of GLS and TK, which can indeed be applied to heterogeneous areas. For
this reason, future studies could consider the application of a Monte Carlo experiment
similar to the one considered here, but referring to a heterogeneous region (i.e. true flood
quantiles for each site referring to different distributions).

Another important issue is represented by the mean annual flood: the Monte Carlo
experiment implemented in this study (see Sec. 4.4.2) considered a direct effect of cross-
correlation only on the synthetic dimensionless quantiles, but no effect on the mean annual
floods (i.e. we referred to the mean value of the observed AMS at the ith site). In this
context, future studies could consider the generation of synthetic mean annual floods,
which may include the effect of spatial correlation.

Further issues could be addressed by future studies. Indeed, as explained in Sec. 4.3.1
and Sec. 4.3.2, we applied GLS and TK in a LOOCV scheme by removing one site in
turn and referring to the remaining 19 sites. In this procedure, the kriging weights for
TK were computed referring to the 6 closest neighbouring stations to the target one.
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Although that was in line with Pugliese et al. (2014, 2016), a sensitivity analysis could be
interesting for evaluating the effect of different numbers of closest neighbouring stations
in the application of TK. Moreover, we considered overlapping annual sequences with
record length equal to 35 years for every site, without investigating the sensitivity of the
methods to different record lengths: sample sizes can vary widely and, while GLS takes
this variation into account, TK does not. Finally, we considered the L-moments approach
(Hosking and Wallis, 1993, 1997) to fit the LP3 distribution, but we should consider that
the GLS procedure implements another approach for fitting LP3 (see Sec. 4.3.1), and this
difference could in part affects the results.

Despite the above mentioned constraints given by the assumptions of our analyses,
we believe that the study presented in this chapter represents an important contribute
for understanding the behaviour of GLS and TK in predicting empirical and true flood
quantiles when observed flood sequences are affected by cross-correlation.

4.5 Concluding remarks

The study reported in this chapter addressed the important issue raised by Archfield
et al. (2013) of understanding which technique between GLS and TK is better suited for
predicting the true unknown flood quantiles in ungauged sites when the observed flood
sequences are affected by cross-correlation.

The preliminary LOOCV analyses performed over the real-world study area (i.e. ho-
mogeneous region in Triveneto consisting of 20 nested cachtments) highlighted that the
behaviour of the monovariate (i.e. function of the drainage area only) versions of GLS
(i.e. 1v-GLS) and TK (i.e. s-TK) applied for predicting the 100-year flood is consistent
with the results reported in Archfield et al. (2013). The outstanding performances of
s-TK compared to 1v-GLS are totally expected: referring to n neighbouring sites, TK
is implicitly able to take some climate and geomorphological similarities between catch-
ments into account, especially in regions with preponderance of nested catchments. On
the other hand, the inclusion of more catchment descriptors in the analysis (i.e. mv-GLS,
ed-TK) can lead to significantly improved performances, especially for GLS.

Although informative, this preliminary analysis did not address the unsolved issue
raised by Archfield et al. (2013) either. In order to shed some light on which is better
suited between GLS and TK for predicting the true unknown flood quantiles in ungauged
sites, we performed the Monte Carlo simulation experiment described in Sec. 4.4. The
application of 1v-GLS, s-TK, mv-GLS and ed-TK in a LOOCV scheme for predicting
at-site flood quantiles (with return periods T equal to 10, 30, 50, 100 years) for the three
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different cross-correlation scenarios provided us with some significant information about
the ability of GLS and TK to predict empirical estimates of flood quantiles and true
flood quantiles. First, consistently with what already seen for the real-world region, we
observed that the multivariate versions of both GLS and TK are better suited than the
corresponding monovariate versions (i.e. functions of the drainage area only) for pre-
dicting both empirical and true flood quantiles. Moreover, the analyses highlighted an
analogous dependence of performances of GLS and TK on the degree of cross-correlation:
the higher the regional average cross-correlation, the higher the performance in predict-
ing empirical estimates of flood quantiles and the lower the performance in predicting
true flood quantiles. These findings highligted that the presence of cross-correlation in
the region introduces a masking-effect on the flood magnitude for both GLS and TK.
This behaviour is totally expected for TK (which explicitly exploits spatial correlation in
performing its estimates), whereas for GLS, which should be able to look behind cross-
correlation, can be explained by the presence of a residual masking-effect with increasing
levels of spatial correlation. In particular, the multivariate versions of GLS and TK show
very similar performances: the application of mv-GLS or ed-TK is almost equivalent when
significant catchment descriptors are available for describing mean annual flood; for prac-
tical estimation in cases like this, one could consider the application of a model-averaging
approach between the two candidate models. On the contrary, when only a monovariate
analysis with drainage area can be performed, the application of TK is recommended,
even in the presence of high degrees of spatial correlation.

The findings outlined are valid for the simplified situation which was investigated:
homogeneous region with nested catchments and no effect of cross-correlation on mean
annual flood. Further analyses regarding heterogeneous regions, no nested catchments,
the depedence of mean annual flood on cross-correlation, as well as sensitivity analyses
of the results to the presence of different record lengths in the AMS series, are suggested
for future studies.
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Chapter 5

Prediction of flow-duration curves in
ungauged sites across large
geographical areas: the potential of
geostatistical approaches

5.1 Introduction

Thanks to the increasing accessibility of global datasets on soil, land-cover, morphol-
ogy, and weather forcing, and enhanced computing capacity, progressively accurate macro-
scale rainfall-runoff models have been developed over the last decade (see e.g. Collischonn
et al., 2007; de Paiva et al., 2013; Bierkens et al., 2015). Their output can be open-access
and freely distributed, providing extremely useful hydrological information across data
scarce regions (e.g. Pechlivanidis and Arheimer, 2015) for the implementation of trans-
boundary policies for water resources management (e.g. de Roo et al., 2012) or flood-risk
mitigation (de Paiva et al., 2013; Sampson et al., 2015; Falter et al., 2016). However,
the local performances are highly variable (see e.g. de Paiva et al., 2013; Donnelly et al.,
2016), reflecting the quality of macro-scale input data and the adequacy of the concep-
tual scheme to accurately represent peculiar hydrological processes that locally drive the
rainfall-runoff transformation.

On the other hand, geostatistical procedures, such as Top-kriging (TK), have been
shown to provide reliable predictions of streamflow points indices over large study areas
(see e.g. Castiglioni et al., 2011; Parajka et al., 2015 for low flows, and Archfield et al.,
2013 for floods), especially if compared to regional regression models, whose accuracy
is generally unsatisfactory for large and highly heterogeneous study regions. The Total
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Negative Deviation Top-kriging (TNDTK) recently introduced by Pugliese et al. (2014)
has been shown to be reliable for predicting the entire streamflow regime (i.e. flow-
duration curves, FDCs) both in Europe (i.e. Pugliese et al., 2014) and in the USA (i.e.
Pugliese et al., 2016), but it has never been applied over large geographical areas, which
can be characterised by significant heterogeneities in terms of streamflow regimes.

In this context, the present chapter focuses on the use of TNDTK for FDCs in un-
gauged basins in the Danube region, the largest watershed in Europe. The analyses were
developed within a research project with the Joint Research Centre of the European Com-
mission (DG JRC), with the aim of generating a GIS (Geographic Information System)
layer reporting the predicted streamflow regime (i.e. FDCs) for about 4000 prediction
nodes within the watershed of the Danube River. The DG JRC provided streamflow
indices, empirical period-of-record FDCs, and a set of catchment descriptors for a compi-
lation of 511 discharge measurement stations across the Danube river basin.

We first conducted a comprehensive exploration of the relationships between stream-
flow regime descriptors and the characteristics of the basins. The identified relationships
were used to develop multi-regression models for predicting the streamflow indices of in-
terest and for quantifying their predictive accuracy. Subsequently, we interpolated the
streamflow regime over the whole Danube river basin, using TNDTK. Then, we discussed
the performance of TNDTK in the Danube region and the uncertainty of the interpolation.

The analyses presented in this chapter have been recently published in Castellarin
et al. (2018).

5.2 Study area and database

The database used for these analyses was compiled by the DG JRC and consists of
511 streamgauges across the Danube Basin (see Fig. 5.1). For each streamgauge, the DG
JRC database provides:

• streamflow indices, computed from the time series of streamflow at each gauge:
Mean Annual Streamflow (MAS) and 15 streamflow quantiles Qd associated with
durations d of 1, 5, 10, 20, 30, 40, 50, 60, 70, 75, 80, 90, 95, 97 and 99.7%;

• a set of catchment descriptors: basin area [km2]; minimum, maximum and mean
basin elevation (Hmin, Hmax and Hmean, in this order) [m a.s.l.]; maximum and min-
imum average daily temperature (Tmax and Tmin, respectively) [◦C]; mean annual
precipitation (MAP, rainfall) [mm]; mean annual potential evapotranspiration (ET0)
[mm]; mean annual number of rainy days (Nrd) [−]; population density for the years
1980, 1990, 2000 and 2005 [inhab km−2]; mean of population densities [inhab km−2];
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fractions of cropland, grassland, shrub, bare soil, forest, water, urban, fertilised
cropland and fertilised grassland within the total basin area [−].

Moreover, the DG JRC database classifies streamflow data into two different cate-
gories:

• high quality (DQ1, blue open circles in Fig. 5.1): gauging stations with a precise
positioning along the stream that are unique in their elementary sub-basin (i.e.
portion of basin directly drained by a river stretch, between two confluences, or
from the headwater to the first confluence);

• low quality (DQ2, red solid dots in Fig. 5.1): cases in which more streamgauges
are present in a single elementary basin, hence potentially affected by imprecise
positioning along the stream.

Figure 5.1: 511 streamgauges considered in the Danube region: blue open circles and red
solid dots represent high-quality data (DQ1, 138 gauges) and low-quality data (DQ2, 373
gauges), respectively.

The preliminary analyses performed in the present case study considered a selection
of streamflow indices and all catchment descriptors reported in the DG JRC database;
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a summary of their empirical values for the 511 gauged sites is reported in Tab. 5.1. In
particular, concerning streamflow indices, we referred to 95th, 50th and 1st unit streamflow
percentiles (i.e. Q1%/Area, Q50%/Area and Q95%/Area) [m3 s−1 km−2]; FDC slope between
70th and 30th streamflow percentiles at logarithmic scale (see e.g. Yaeger et al., 2012) [−];
TND: empirical Total Negative Deviation (a metric of empirical FDCs shape as defined in
Pugliese et al., 2014; see Sec. 2.3.2 for further details). Together with the above mentioned
streamgauges, the DG JRC identifies 4381 prediction nodes over the Danube region, for
which we performed the prediction of FDCs described herein. Note that the analyses
performed in this chapter considered streamflow indices without applying any correction
able to account for anthropic effects on the streamflow regime.

Table 5.1: Empirical values of a selection of streamflow indices and catchment descriptors
for the 511 gauged basins in the Danube region.

Q95%/Area
[m3 s−1 km−2]

Q50%/Area
[m3 s−1 km−2]

Q1%/Area
[m3 s−1 km−2]

FDC slope
[−]

TND
[−]

Area
[km2]

Hmin
[m a.s.l.]

Minimum 0.000026 0.000054 0.000501 0.53 0.83 100.0 -78
25th %ile 0.001505 0.004248 0.033688 1.43 1.57 298.5 151
Median 0.003582 0.008394 0.054243 1.90 1.85 814.6 315
Mean 0.004456 0.011060 0.087061 1.96 1.84 22352.8 322
75th %ile 0.006257 0.015250 0.096959 2.34 2.13 4371.5 439
Maximum 0.024340 0.142900 5.036927 6.84 3.10 802032.1 1711

Hmax
[m a.s.l.]

Hmean
[m a.s.l.]

Tmax
[◦C]

Tmin
[◦C]

MAP
[mm]

ET0
[mm]

Nrd
[−]

Minimum 101 88 2.46 -5.79 447.0 417.6 69
25th %ile 1025 476 11.21 2.24 699.0 621.9 112
Median 1704 623 12.53 3.69 875.5 672.3 129
Mean 1822 742 12.21 3.25 943.2 665.6 128
75th %ile 2492 949 13.48 4.5 1113.1 715.0 142
Maximum 3873 2434 17.61 7.25 2033.1 943.6 201

Population
density 1980
[inhab km−2]

Population
density 1990
[inhab km−2]

Population
density 2000
[inhab km−2]

Population
density 2005
[inhab km−2]

Population
density mean
[inhab km−2]

Cropland Grassland

Minimum 1.3 1.3 1.3 1.5 1.3 0.00% 0.00%
25th %ile 48.2 50.4 52.4 52.8 51.0 0.13% 0.00%
Median 76.7 80.9 82.7 84.2 81.7 3.46% 0.56%
Mean 87.7 92.1 94.9 95.5 92.6 7.28% 3.39%
75th %ile 109.3 114.4 120.3 119.8 115.3 10.91% 4.43%
Maximum 656.8 722.9 645.9 692.1 679.4 36.32% 41.60%

Shrub Bare soil Forest Water Urban Fertilised
cropland

Fertilised
grassland

Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
25th %ile 0.00% 0.00% 39.16% 0.00% 0.00% 4.20% 10.32%
Median 0.00% 0.00% 55.85% 0.00% 0.39% 14.24% 14.05%
Mean 0.11% 0.00% 55.10% 0.39% 0.75% 17.64% 15.34%
75th %ile 0.00% 0.00% 73.45% 0.02% 1.17% 28.98% 18.22%
Maximum 6.12% 0.00% 99.94% 13.52% 10.61% 66.36% 56.49%
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5.3 Relationships between streamflow indices and
catchment descriptors

5.3.1 Correlation analysis

The presence of statistically significant correlation between streamflow indices and
catchment descriptors was assessed using Pearson and Spearman (rank) correlation co-
efficients. The Spearman correlations for all 511 gauges (DQ1+DQ2) and for the 138
DQ1 gauges in the Danube region are represented in Fig. 5.2, where size and colours of
dots illustrate the empirical correlation coefficients between streamflow regime indices and
catchment descriptors, and numbers indicate the p-values associated with the null hypoth-
esis of no correlation between two variables, obtained with the R-function cor.test of
the package corrplot (Wei and Simko, 2016). The results of Pearson correlation (not
reported here for conciseness) show slightly lower absolute values of correlation coefficients
and generally higher p-values, as expected, since Pearson correlation quantifies the degree
of linear dependence between pairs of observations.

Figure 5.2: Spearman correlation between streamflow regime indices and catchment de-
scriptors of the basins in the Danube region. Colour and radius of each circle is proportional
to the value of the empirical correlation coefficient (see colour scale); numbers indicate p-
value of the null hypothesis (i.e. absence of correlation between the two variables). (a) 511
basins (DQ1+DQ2); and (b) 138 basins (DQ1), generated with R-package corrplot (Wei
and Simko, 2016).

As expected, Fig. 5.2 highlights that the correlations become stronger if the analysis
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is limited to high-quality data (DQ1 basins). In particular, 95th and 50th unit streamflow
quantiles show significant correlations with annual rainfall and number of rainy days,
and lower positive correlations can also be observed with reference to maximum and
mean catchment elevation, and fractions of total basin area characterised by grassland,
bare soil, forest and water. The positive correlation found between Q95%/Area (low-flow
index) and forested area seems to be in contradiction with empirical evidences (see e.g.
Brown et al., 2005), which show lower surface water availability during low-flow periods
for catchments with fully developed forested areas (i.e. higher evapotranspiration due to
deeper root zones characterising forests and tree plantations relative to field and crops).
However, the literature (see e.g. Calder, 1998; Moore and Heilman, 2011) shows that the
relation between basin forest cover and streamflow is not univocal.

The strong inverse correlations of streamflow quantiles with mean daily maximum and
minimum temperature, annual potential evapotranspiration and fraction of fertilised crop-
land, are all expected due to the inverse correlation between runoff production and poten-
tial evapotranspiration. Significant but weaker inverse correlations were found between
unit streamflow percentiles and cropland. The 1st percentile of unit daily streamflows
(Q1%/Area, representing high flow) shows a weak negative correlation with population
density (years 1980, 1990, 2000, 2005 and mean value), which is more unexpected. A
possible explanation could be the positive correlation between population density and
catchment area (large cities are usually found in the lower parts of the rivers), combined
with the well-known negative correlation between catchment size and unit flood associ-
ated with a low exceedance probability (see e.g. regional envelope curve of flood flows:
Castellarin et al., 2005; Castellarin, 2007), which is also found in the Danube region.

Concerning the selected descriptors of FDC shape (i.e. slope and TND, the smaller
the value the flatter the curve in both cases), we found significant positive correlation with
mean daily maximum and minimum temperature and annual potential evapotranspira-
tion, while negative correlations were observed with the fraction of water and urbanised
area. All positive correlations listed above were expected: usually higher temperature
and evapotranspiration correspond to more arid climates, where river basin water storage
is reduced, causing steeper FDCs; the larger the presence of inland water bodies (e.g.
lakes) the larger the natural capability to retard and dampen flood peaks, the flatter the
curve. The negative correlation between urbanised area and FDC slope or TND could be
analogous to what was observed between high-flow regime and population density; that
is, the larger the catchment, the larger the percentage of urbanised areas (big cities and
large urbanised area tend to cluster in floodplains, see e.g. Di Baldassarre et al., 2013)
the flatter the FDC, due to the increased capability of the catchment to store water (see
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Castellarin et al., 2013).
There are some additional statistically significant dependencies, which are particularly

pronounced if we limit our attention to DQ1 data (Fig. 5.2(b)). For instance, the anal-
ysis points out a significant positive correlation between all unit streamflow percentiles
(i.e. Q1%/Area; Q50%/Area and Q95%/Area) and minimum catchment elevation; it also
highlights an inverse correlation between Q1%/Area and population density, and a signifi-
cant inverse correlation between FDC slope and TND and maximum catchment elevation,
population density and fractions of grassland, shrub and water. This is a sensible result
as flatter flow-duration curves are associated with higher capability of the catchment to
temporarily store water volumes; and this capability generally increases with increasing
elevation (winter snow-pack), presence of waterbodies, or size of the catchment.

5.3.2 Multi-regression models

We used the above correlation analysis as a basis to identify log-linear multi-regression
models for predicting a given dependent variable (i.e. a streamflow index) using catchment
descriptors. This was done by applying a stepwise OLS regression analysis (see Draper
and Smith, 1981; Weisberg, 1985; Chambers, 1992) using the R-function lm in R (R
Core Team, 2016). We excluded multi-regression models associated with an adjusted
R-squared1 R2

adj ≤ 0 50.

5.3.3 Results and discussion

We were only able to derive acceptable (i.e. R2
adj > 0 50) regression models for stream-

flow indices Q50% (median discharge), Q1% (1st percentile) and Q95% (95th percentile),
using DQ1 class gauges only. Table 5.2 shows the details of all the acceptable models.

The multi-regression model analysis highlights the following aspects:

• it is not possible to identify effective (i.e. R2
adj > 0 50) multi-regression models for

all streamflow indices of interest in the Danube region;

• high- and low-flow percentiles (i.e. Q1% and Q95%, respectively) are more difficult
to predict than indices of typical streamflow conditions (i.e. Q50%);

1The adjusted R-squared is defined as R2
adj = 1− (1−R2) n− 1

n− p− 1 , where p is the total number of
explanatory variables (i.e. predictors; constant term excluded), and n is the sample size. Representing
an unbiased (or less biased) estimator of the population R2, R2

adj is more appropriate than the observed
sample R2 (which is positively biased) when evaluating model fit and comparing alternative models in
the feature selection stage of model building.
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• including lower quality streamflow data (DQ2 basins) has a negative impact on
model performance;

• multi-regression models are characterised by rather limited accuracy despite signif-
icant correlations between predictands and some of the predictors; and

• indices of the FDC shape (i.e. FDC slope and TND) cannot be effectively regressed
against any of the available catchment descriptors (predictors).

Table 5.2: Effective multi-regression models (i.e. adjusted R-squared R2
adj > 0 50) identi-

fied for the DQ1 class gauges in the Danube region.

No. Model R2
adj Scatterplot

1 Q95%

Area = 1.03 · 10−12 Nrd
3.46 Hmax

0.71 0.73

2 Q50%

Area = 3.74 · 10−10 MAP0.97 Hmean
0.53 Hmax

0.34 Nrd
0.92 0.80

3 Q1%

Area = 2.40 Nrd
2.19 ET0

−2.22 0.66

In other words, multi-regression models are not capable of accurately representing
streamflow quantiles across all durations (from high-flow to low-flow quantiles) and study
area (i.e. high- and low-quality gauges, DQ1+DQ2). Moreover, the unsupervised stepwise
regression procedure used in the analysis does not select any catchment descriptor (i.e.
predictor) associated with anthropogenic pressure or human presence in the catchment as
an explanatory variable in any of the models.

This makes rather evident that resorting to macro-scale multi-regression models is
not a viable approach for predicting the streamflow regime in ungauged basins located
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in the Danube region. For this reason, we interpolated the empirical FDCs over the
stream network of the Danube basin using the geostatistical method recently proposed
by Pugliese et al. (2014, 2016), briefly outlined in the next section.

5.4 Top-kriging interpolation of flow-duration curves

5.4.1 Implementation of TNDTK to the Danube region

We applied the procedure presented above to the entire Danube region. All analyses
were carried out by applying the R-package rtop (Skøien, 2014). We selected the mean
annual streamflow (MAS) as the reference streamflow value for standardising empirical
FDCs across the study region. The MAS values are available from the database as long-
term average daily discharges. Concerning DQ1 basins located in the Danube region, the
minimum value, 25th percentile, median, mean value, 75th percentile and maximum value
of empirical MAS are equal to 0.640, 5.90, 28.7, 527, 184 and 6380 m3/s, respectively.
Figure 5.3 illustrates the values of MAS standardised by catchment area as a function of
basin area for the study region. Based on values illustrated in Fig. 5.3 and some prelimi-
nary TNDTK runs, we regarded as highly discordant all values of MAS/Area outside the
interval 0.0015–0.08 m3 s−1 km−2. All basins with empirical MAS/Area values falling out-
side this interval were therefore excluded from further analyses. We can observe that all
but one of the 14 discarded basins are associated with low-quality (DQ2) streamgauges,
which further highlights the low reliability of these outlying values.

Therefore, as the Danube region includes a large number of low-quality measurement
points (i.e. DQ2 streamgauges, see Fig. 5.1), we decided to perform all analyses twice,
first by focusing only on high-quality data (i.e. DQ1 measuring points, or 137 catchments)
and then by considering low- and high-quality data combined (i.e. DQ1+DQ2 measuring
points, or 497 catchments). Note that, in order to properly investigate the effect of data
quality on the reliability of the estimates, the analysis of the DQ1+DQ2 dataset was
performed without adopting any specific weighting scheme relative to data quality (i.e.
high- and low-quality data were treated in the same way). The results of both analyses
are reported in the figures in double-panel layouts. Top-kriging has been applied by fitting
the sample variogram of the empirical TND values with a 5-parameter fractal-exponential
model (for details, see Skøien et al., 2006) through a modified version of weighted least
squares regression (WLS; Cressie 1993; for details, see also the neutral WLS method
in rtop , Skøien 2014). The fitted variogram model was then used to evaluate the
kriging weights for all ungauged sub-basins, based on the n closest neighbouring gauges.
Standardised FDCs were then predicted at locations of interest through Eq. (2.25). After
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Figure 5.3: Unit mean annual streamflow (MAS/Area) as a function of basin area for
high- (DQ1, blue open circles) and low-quality (DQ2, red solid dots) measurement points in
the Danube region. The points outside the highlighted interval (0.0015–0.08 m3 s−1 km−2;
dashed lines) identify extremely discordant sites.

a preliminary sensitivity analysis, we set n = 6 in line with previous studies, suggesting
to limit the size of the kriging neighbourhood when interpolating streamflow indices, and
standardised FDCs in particular (see e.g. Pugliese et al., 2014, 2016). The prediction
of dimensional FDCs at locations of interest via Eq. (2.26) requires prediction of the
local MAS value, which we achieved via a traditional application of Top-kriging that uses
the same settings listed above (i.e. a modified exponential variogram fitted via WLS
regression, neighbourhood size n = 6).

5.4.2 Cross-validation procedures

The reliability and robustness of (a) Top-kriging for predicting MAS values, and (b)
TNDTK for predicting FDCs in ungauged basins, were quantitatively assessed by means
of three different validation strategies, useful also for better understanding the dependence
of the prediction performance on the spatial density of the empirical data. In particular,
three leave-p-out cross-validation procedures (LPOCVs) were performed, in which p coin-
cides with 1 site (LPOCV-1), one third of the sites (LPOCV-1⁄3) and one half of the sites
(LPOCV-1⁄2). All three resampling procedures simulate ungauged conditions at each and
every site belonging to the network of N measuring points:
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• LPOCV-1 drops, in turn, one site at a time and performs the prediction of the
streamflow indices of interest in that very site on the basis of the remaining N − 1
measuring points;

• LPOCV-1⁄3 (or LPOCV-1⁄2) randomly subdivides the N gauged sites into three (or
two) subsets and predicts the streamflow indices of interest in all sites belonging to
one subset on the basis of the data available at the remaining 2⁄3 (or 1⁄2) sites.

LPOCV-1, LPOCV-1⁄3 and LPOCV-1⁄2 were applied for both DQ1 and DQ1+DQ2
subsets. Finally, we combined LPOCV predictions of MAS and dimensionless FDCs
by using Eq. (2.26) to obtain cross-validation predictions of dimensional FDCs at each
gauging site in the Danube region.

The performances were evaluated in terms of Nash-Sutcliffe efficiency between em-
pirical and predicted log-transformed (LNSE) and natural (NSE) values. The general
definition of NSE and LNSE is given by the following equations:

NSE = 1−

N∑
j=1

(
x̂i − xi

)2

N∑
j=1

(
x̂i − x̄

)2
(5.1)

LNSE = 1−

N∑
j=1

(
ln(x̂i)− ln(xi)

)2

N∑
j=1

(
ln(x̂i)− ln(x̄)

)2
(5.2)

where N is the number of observations, x̂i the estimated variable at site i, xi the
observed value of the variable at site i, and x̄ its mean value. NSE and LNSE can
range from −∞ to 1, where an efficiency of 1 corresponds to a perfect match of modeled
discharge to the observed data, and an efficiency of 0 indicates that the model predictions
are as accurate as the mean of the observed data. An efficiency less than zero (NSE < 0)
occurs when the observed mean is a better predictor than the model or, in other words,
when the residual variance (described by the numerator), is larger than the data variance
(denominator). Essentially, the closer the model efficiency is to 1, the more accurate the
model is. Threshold values to indicate a model of sufficient quality have been suggested
between 0.5 and 0.65.

Concerning the prediction of MAS, we quantified the regional accuracy in terms of re-
gional Nash-Sutcliffe efficiency between empirical and predicted log-transformed (LNSE)
and natural (NSE) MAS values; concerning the prediction of dimensionless and dimen-
sional FDCs we computed LNSE and NSE values either globally (i.e. assessing overall
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LNSE and NSE values across all sites and durations, or across all sites but duration-wise)
and locally (i.e. at each gauge on the basis of the 15 interpolated streamflow quantiles).
Note that the comparison between LNSE and NSE values is important for better under-
standing the efficiencies of TNDTK for low flows (LNSE) and high flows (NSE).

5.4.3 Results and discussion

Figures 5.4, 5.5 and 5.6 present, in a similar fashion, the results obtained relative to
MAS, dimensionless FDCs and dimensional FDCs (dimensionless and dimensional curves
are described through 15 streamflow quantiles). Scatter diagrams distinguish between
DQ1 and DQ1+DQ2 subsets and report empirical values vs predictions for the three
different resampling strategies used in the study.

Concerning cross-validated predictions of dimensional FDCs, Fig. 5.7 reports the dis-
tributions of local LNSE and NSE values for both DQ1 and DQ1+DQ2 subsets and all
resampling strategies, while Fig. 5.8 illustrates LNSE values computed across all DQ1 (or
DQ1+DQ2) sites as a function of duration and resampling strategy. Figure 5.9 shows the
comparison between observed and interpolated FDCs for the two gauges having the best
and the worst performances in terms of LNSE values for DQ1 - LPOCV-1.

Given the paramount importance of FDCs for many water-resources management
applications (see e.g. Vogel and Fennessey, 1995; Yaeger et al., 2012), the accuracy of
interpolated FDCs needs to be properly assessed.

Viability of geostatistical prediction of FDCs over large geographical regions

Figures 5.4, 5.5, 5.6, 5.7 and 5.8 illustrate an overall good agreement between empirical
indices of streamflow regimes and their predictions for all three resampling strategies used
in cross-validation. In particular, the scatter diagrams between empirical and predicted
MAS values in Fig. 5.4 highlight a very good agreement between observed and predicted
values, with the majority of points falling in the vicinity of the one-to-one line; as a re-
sult, LNSE and NSE values are rather high both for high-quality data (DQ1) and high-
and low-quality data (DQ1+DQ2). The overall prediction performance appears almost
independent on the resampling strategy, and the detriment of cross-validation predictions
remains limited when moving from LPOCV-1 to LPOCV-1⁄3, or to LPOCV-1⁄2. It is worth
stressing here that the three cross-validation procedures base all predictions only on 136,
68 and 45 measurement points if we consider the DQ1 subset, and a significantly larger
number of streamgauges (i.e. 496, 248 and 165) when DQ1+DQ2 subset is considered. As
Top-kriging is a geostatistical procedure, its prediction performance should increase with
the density of the gauging network. This effect is visible when looking at the LNSEs and
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NSEs obtained for a single data subset, where LNSE and NSE values slightly decrease for
DQ1 (or DQ1+DQ2) when moving from LPOCV-1 to LPOCV-1⁄3, and LPOCV-1⁄2. Yet,
the same consideration does not hold across datasets, that is, when comparing the results
of the same resampling strategy for DQ1 and DQ1+DQ2. The higher number of stream-
gauges included in the DQ1+DQ2 subset does not result in better MAS prediction due to
the lower quality of the streamflow data collected at the additional measuring points. Fig-
ure 5.5 illustrates the performance of TNDTK for predicting dimensionless FDCs. These
scatterplots show an excellent agreement between predictions and empirical data. Overall
LNSE and NSE values are well above 0.8 for both subsets and all three resampling strate-
gies. As for the results for MAS predictions, changing the resampling strategy shows a
very limited impact on predicted dimensionless FDCs. Including additional streamflow
data of lower quality (i.e. DQ2 basins) does not have any significant effect on predicted
MAS values and dimensionless FDCs, and therefore the empirical streamflow regime is
captured equally well by DQ1 and DQ2 subsets.

Figure 5.4: Top-kriging interpolation of mean annual streamflow (MAS) values in cross-
validation: empirical (x-axis) vs predicted (y-axis) MAS and Nash-Sutcliffe efficiency for log-
transformed (LNSE) and natural (NSE) streamflows. See Sec. 5.4.2 for the three different
resampling strategies used in cross-validation: LPOCV-1 (a, d), LPOCV-1⁄3 (b, e) and
LPOCV-1⁄2 (c, f). The LPOCV-1 cross-validated predictions of MAS for the six DQ1 gauges
associated with the worst prediction of dimensional FDCs are highlighted (red solid dots).
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Figure 5.5: Top-kriging interpolation of standardised FDCs (each empirical curve is
standardised by local mean annual streamflow) in cross-validation: empirical (x-axis) vs
predicted (y-axis) dimensionless streamflow quantiles and overall NSE for log-transformed
(LNSE) and natural (NSE) streamflows.

Figure 5.6: Top-kriging interpolation of dimensional FDCs in cross-validation: empirical
(x-axis) vs predicted (y-axis) dimensionless streamflow quantiles and overall Nash-Sutcliffe
efficiency for log-transformed (LNSE) and natural (NSE) streamflows.
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Figure 5.6 shows the relationship between empirical and predicted FDCs in a similar
fashion to Fig. 5.5. The cross-validation exercise shows outstanding performance, with
overall LNSE and NSE values above 0.9, and the detriment of prediction performance
associated with the reduction of gauging network density is, again, very limited. In fact,
the scatterplots of Fig. 5.6 show that the overall LNSE values might be significantly
impacted by a very limited number of dimensionless FDCs that are poorly predicted.
To further discuss this point, LPOCV-1 panels in Fig. 5.4, 5.5 and 5.6 highlight (in
red) the predictions of MAS, dimensionless and dimensional FDCs obtained for six DQ1
gauges associated with very poor prediction of dimensional FDCs (i.e. the six predicted
FDCs are associated with the lowest at-site LNSE values). Closer inspection reveals
that these six gauging points are all located in areas where the station density is high,
and therefore the low performance should not be attributed to the lack of hydrological
information. Figure 5.4 reveals that poor predictions in terms of dimensional FDCs are
mainly associated with poor prediction of MAS, and that five out of six catchments are
associated with low or very low empirical values of MAS. In fact, five out of six discordant
sites are headwater catchments, for which Top-kriging has been already shown to be less
effective than for medium to large catchments (see e.g. Castiglioni et al., 2011; Laaha et
al., 2014), and whose mean annual streamflow is likely to be altered by e.g. manmade
diversions. The same consideration (i.e. significantly altered streamflow regime) may
apply also to larger catchments.

Aside from a small number of peculiar sites, Fig. 5.4, 5.5 and 5.6 show a generalised
excellent agreement between empirical and predicted streamflow indices and flow-duration
curves.

Figure 5.7 details the local prediction performances through a box-plot representation
of the distributions of at-site LNSEs and NSEs between empirical and predicted dimen-
sional FDCs (LNSE and NSE values are computed on the basis of 15 streamflow quantiles;
box-plots are truncated at LNSE = 0 and NSE = 0, respectively). It can be seen that,
for both DQ1 and DQ1+DQ2 datasets and all three resampling strategies, more than
50% of the predictions are associated with at-site LNSE and NSE values that are above
0.8; in almost all cases 75% of predicted FDCs correspond to LNSE and NSE values
in excess of 0.5 (the one exception is for LNSEs in LPOCV-1⁄2 for the DQ1 dataset).
Figure 5.7 also shows that there are outlying sites with very low, and sometimes neg-
ative, LNSE and NSE values; in particular, negative LNSE (NSE) values are obtained
in a number of cases that varies from a minimum of 10.9% (12.3%) to a maximum of
16.3% (16.1%) of sites, corresponding to DQ1+DQ2-LPOCV-1⁄3 (DQ1+DQ2-LPOCV-1)
and DQ1-LPOCV-1⁄2 (DQ1-LPOCV-1⁄3), respectively. All these cases are associated with
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poor predictions of MAS (see also Fig. 5.4). The box-plots of Fig. 5.7 clearly illustrate
the decrease in prediction performance associated with the three considered resampling
procedures (and the corresponding reduction of gauging network resolution), which is
more evident if results are analysed on an at-site basis relative to the overall performance
illustrated in Fig. 5.6.

Figure 5.7: Cross-validation of predicted dimensional FDCs: box-plots of LNSE (red)
and NSE (blue) values computed for all (a) DQ1 and (b) DQ1+DQ2 measurement points
for three different resampling strategies used in the study (see Sec. 5.4.2). Each box shows
25th, 50th (i.e. median) and 75th percentiles; whiskers indicate the most extreme data points
that are no more than 1.5 times the inter-quartile range (difference between 75th and 25th
percentiles) from the box; outlying values are indicated as circles.

Finally, the LNSE values computed by comparing duration-wise predicted and em-
pirical streamflow quantiles across all sites for the 15 durations considered in the study
(Fig. 5.8) indicate very good performance in all cases, and slightly decreasing for increas-
ing durations but generally well above 0.9 and above 0.85 for all durations and both
subsets DQ1+DQ2 and DQ1. The results are similar in terms of NSE values, but are not
reported here for the sake of conciseness. Figure 5.8 confirms the limited impact of reduc-
ing the gauging network density through the different resampling strategies; it indicates a
high robustness of TNDTK and shows a limited dependence of prediction performance on
duration. A slightly worse performance can be noted in the low-flow section of the curves,
which was expected. The TNDTK approach features a homogeneous prediction accuracy
across all durations, differently from conventional quantile regression techniques (see e.g.
Castellarin et al., 2013; Blöschl et al., 2013), whose application to the study area resulted
in significantly lower efficiencies (see Tab. 5.2: LNSEs for 95th, 50th and 1st percentiles for
DQ1 class gauges).

98



Chapter 5. Regionalisation of flow-duration curves across large geographical areas

Figure 5.8: Cross-validation of predicted dimensional FDCs: LNSE values computed across
all (a) DQ1 and (b) DQ1+DQ2 measurement points as a function of duration; different
curves refer to the three different resampling strategies.

Figure 5.9: Observed and predicted dimensional FDCs for the two catchments having (a)
the best and (b) the worst performances in terms of LNSE in LPOCV-1 for DQ1 measure-
ment points.

99



Chapter 5. Regionalisation of flow-duration curves across large geographical areas

It is worth emphasising that the overall LNSE and NSE values are 0.923 and 0.930,
respectively, for 137 interpolated FDCs which were predicted in cross-validation on the
basis of 45 measuring points (i.e. less than one gauge per 17 500 km2 in the study area),
which proves the effectiveness of TNDTK for the interpolation of FDCs over large regions
(Pugliese et al., 2016).

Figures 5.4, 5.5, 5.6 and 5.7 do not show significant differences between efficiencies
computed in terms of LNSE or NSE, meaning that TNDTK performances for high and
low flows are equivalent. In particular, discharge values reported on y-axis in Fig. 5.9 allow
us to confirm that TNDTK performs best for larger catchments, while performances get
lower for smaller catchments, especially headwater ones (see e.g. Castiglioni et al., 2011;
Laaha et al., 2014). In both cases (best and worst LNSE), comparison between the lower
tails of observed and predicted FDCs confirms that TNDTK tends to overestimate low
flows (see Pugliese et al., 2016).

Indicators of the reliability of interpolated FDCs over large areas

Given the similarity between results in terms of LNSE and NSE, we decided to present
the assessment of the reliability of interpolated FDCs by referring to LNSE values only.
The maps in Fig. 5.10 highlight the LPOCV-1 for the gauged elementary sub-catchments
with an at-site efficiency of cross-validated FDCs (LNSE) lower than 0, between 0 and 0.7
or higher than 0.7. As expected, we can observe that the best performances are typically
obtained for nested catchments, large and very large Danube sub-catchments and nodes
where station density is higher, while lower performances are associated with headwater
catchments located in low station-density areas. It would be extremely useful if statements
on the expected accuracy were attached to all interpolated FDCs; unfortunately, LNSE
values for cross-validated flow-duration curves are available only for gauged elementary
catchments (see Fig. 5.10). A possible measure of prediction uncertainty is the kriging
variance (i.e. estimate of the interpolation error), which can be derived for any kriging
interpolation scheme and, as such, is an output of each Top-kriging application. This
statistic is a combination of model uncertainty and configuration of observation locations;
so that lower kriging variances are expected for large prediction catchments that are
surrounded by several streamgauges, whereas higher variances are expected for prediction
nodes located in data scarce subareas and in upstream catchments.
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Figure 5.10: Prediction variance and local cross-validation LNSE for Danube region ele-
mentary catchments: local LNSE values obtained in cross-validation (LPOCV-1 sampling
strategy) at (a) 137 DQ1 streamgauges and (b) 497 DQ1+DQ2 streamgauges are colour-
coded; kriging variance is also illustrated.
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Figure 5.11 illustrates standardised prediction variances (y-axis) resulting from Top-
kriging interpolation of empirical TND values as a function of LNSE values of cross-
validated FDCs (LPOCV-1 cross-validation, x-axis). Standardisation of kriging variances
was performed by dividing each value by 0.073, which is the maximum kriging variance
computed for the study region and refers to the DQ1+DQ2 dataset. Figure 5.11 also
reports the rolling mean for a subset of 30 catchments.

Figure 5.11: Standardised kriging variance for TNDTK interpolation procedure as a func-
tion of LNSE for (a) DQ1 and (b) DQ1+DQ2 subsets. LNSE values smaller than 0.7 are
omitted. Dashed (red) lines represent the rolling mean computed with a rolling window of
30 catchments.

Figure 5.11 confirms that higher LNSE values are associated with lower kriging vari-
ances; the relationship is clearer for the DQ1+DQ2 subset due to the larger sample
size, but it is visible also for DQ1. Moreover, despite the larger number of gauges, the
DQ1+DQ2 subset is associated with higher kriging variances relative to DQ1, which is
yet another indication of the higher uncertainty and noise of the streamflow information
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coming from DQ2 streamgauges (see Fig. 5.11).
Therefore, kriging variance can be used as a proxy for uncertainty of predicted FDCs.

Kriging variance is graphically illustrated in Fig. 5.10 for each ungauged elementary catch-
ment belonging to the Danube region using a colour scale (the darker the colour blue,
the higher the variance). It is evident that, in both cases, prediction variance tends to be
lower where station density is higher. The comparison between the two maps points out
that integrating the gauging network with DQ2 streamgauges may enable one to locally
reduce the prediction variance (see e.g. the North-eastern portion of the Danube region).
Nevertheless, a weighted average of the kriging variance that weights the information
proportionally to the size of the considered elementary catchment is equal to 0.042 for
DQ1 subset and to 0.060 for the DQ1+DQ2 subset, and therefore significantly larger for
the latter subset. This is consistent with what is reported in Fig. 5.10, which shows that
kriging variance for DQ1+DQ2 is significantly larger than for DQ1 in the central portion
of the Danube region. Therefore, adding catchments with less accurate streamflow data
(DQ2 subset, see Fig. 5.1) negatively impacts the capability of the geostatistical interpo-
lation procedure to represent the streamflow regime in the central portion of the study
region.

This behaviour is effectively illustrated in Fig. 5.12, which refers to 360 DQ2 catch-
ments and shows scatterplots of empirical vs geostatistically predicted MAS values (Top-
kriging), together with dimensional and dimensionless FDCs (TNDTK procedure). These
geostatistical predictions are entirely based on the data collected at 137 DQ1 measuring
points. As illustrated in Fig. 5.12, the overall performance is analogous to performances
illustrated in Fig. 5.4, 5.5 and 5.6.

Figure 5.12: Top-kriging interpolation in cross-validation, empirical (x-axes) vs pre-
dicted (y-axes): (a) mean annual streamflow (MAS), (b) dimensionless flow-duration curves
(FDCs), (c) dimensional FDCs. Predictions refer to 360 DQ2 catchments and are based on
observations collected at 137 DQ1 measuring points.

The slight decrease in terms of prediction accuracy relative to DQ1+DQ2-LPOCV-1⁄2
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(i.e. panel (f) in Fig. 5.4, 5.5 and 5.6) is to be expected, and results on the one hand
from the reduction of the available empirical data on which interpolation is based (e.g.
the ratio between measuring and prediction points is equal to 137/360 = 0.38 in this case,
while it is 1 for DQ1+DQ2-LPOCV-1⁄2), and on the other hand from the poorer quality
of streamflow data collected at DQ2 measuring points, which has been highlighted above.

On the basis of these considerations, we decided to use the DQ1 subset to predict
FDCs over the whole study region (i.e. 4381 prediction nodes), and we used the kriging
variance as an indicator of prediction uncertainty.

5.5 Concluding remarks

This chapter presented the statistical regionalisation of streamflow regimes in the
Danube region, the largest watershed in Europe, with the aim of testing regional re-
gression models and a geostatistical method for predicting the entire streamflow regime
(i.e. flow-duration curves) in ungauged basins over large and hydrologically heterogeneous
geographical areas.

The comprehensive exploration of the relationships between streamflow regime de-
scriptors and the characteristics of the basins highlighted that, even if streamflow indices
are significantly correlated to catchment characteristics within the Danube region, their
prediction using multi-regression models may not be satisfactory. A much improved re-
gionalisation of empirical flow-duration curves has been obtained for more than 4000
sub-basins in the Danube river basin by using the Total Negative Deviation Top-kriging
method (TNDTK; see Pugliese et al., 2014, 2016), which was shown to be an effective and
accurate interpolation technique across the entire study region. Although the spatial den-
sity of streamgauging network affects the estimation variance of interpolation, it has been
proven that the regionalisation becomes more accurate when low-quality measurements
are discarded. The maps of streamflow quantiles presented herein may be useful for the
evaluation of water resources availability at ungauged locations, and as a benchmark for
the development of hydrological macro-scale models.
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This Thesis focuses on the estimation of hydrological design variables in ungauged
or scarcely gauged basins and performs a threefold analysis, addressing three relavant
issues in statistical regionalisation of hydrometric information: the value of catchment
similarity in the regionalisation of flood flows, the impact of spatial correlation on regional
predictions of flood flows, and the potential of geostatistical approaches for predicting
flow-duration curves in ungauged sites across large geographical areas.

First, concerning the value of catchment similarity in regionalisation of flood flows, we
focused on Triveneto, a broad mountainous geographical area in North-eastern Italy, for
which the reference procedure for design flood estimation in ungauged or scarcely gauged
basins is available from the Italian CNR research project VAPI (Villi and Bacchi, 2001).
In particular, the VAPI project considered Triveneto as a single homogeneous region and
developed a regional model using annual maximum series (AMS) of peak discharges that
were collected up to the 1980s. Our analyses considered a very detailed AMS database
for 76 catchments located in the study area, including historical data together with more
recent data for the last 40 years (data spanning from 1913 to 2013). Considering this
significantly updated database, the aim was to test the viability of the unique growth
curve proposed for operational purposes by Villi and Bacchi (2001), who at the same time
warned about the possible presence of a not fully homogeneous behaviour of the region
itself. Our study confirms this last warning, showing that the hypothesis of homogeneity
does not hold for Triveneto and highlighting the need of updating the reference procedure
for design flood estimation in the study area. To this aim, we dispensed with the hy-
pothesis of a single homogeneous region, and the more general concept of geographically
contiguous homogeneous regions altogether, and referred to a focused-pooling approach
(i.e. Region of Influence, RoI Burn, 1990; Zrinji and Burn, 1994, 1996), which delineates
homogeneous pooling-groups of sites for any given target site referring to selected climatic
and geomorphological descriptors which result to be relevant for describing regional flood
frequency. In this context, we confirmed the value of including in statistical regionalisation
physiographic and climatic information, such as drainage area and mean annual precipi-
tation, showing the similiarity of climatic and scale controls on flood frequency regime in
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Triveneto with the controls recently found in Europe by Salinas et al. (2014). The test of
the RoI approach for the estimation of the 100-year flood in more than 20 artificial reser-
voirs in the study area highlighted the significant improvement in terms of heterogeneity
degree for the RoI pooling-groups compared to the entire Triveneto region, and confirmed
the RoI approach to be a valid candidate for updating the reference procedure for design
flood estimation in the study area. These analyses highlighted the added value of ex-
plicitly accounting for catchment similarity in statistical regionalisation: focused-pooling
approaches accounting for the control of geomorphological and climatic characteristics on
flood frequency regime are preferable to approaches based on geographically contiguous
regions, especially in highly heterogeneous areas.

Second, we addressed the impact of spatial correlation on regional predictions of flood
flows by referring to regional procedures proposed in the literature, such as some regression
methods and geostatistical methods, that do address the presence of spatial correlation
among streamflow series. For this reason, we considered Generalized Least Squares (GLS;
i.e. Stedinger and Tasker, 1985; Tasker and Stedinger, 1989) and Top-kriging (TK; i.e.
Skøien et al., 2006), procedures which are widely applied in several climatic and geo-
graphical contexts, but not commonly used in Italy. The preliminary cross-validated
application of GLS and TK performed over a homogeneous region in Triveneto consisting
of 20 nested cachtments highlighted that the behaviour of the monovariate (i.e. function
of the drainage area only) versions of GLS and TK applied for predicting the 100-year
flood is consistent with the results reported in Archfield et al. (2013) for the South-eastern
USA: TK outperforms GLS in predicting empirical estimates of flood quantiles. This re-
sult is expected as, referring to n neighbouring sites, TK implicitly accounts for some
climate and geomorphological similarities between catchments, especially in regions with
preponderance of nested catchments. On the other hand, we showed that the inclusion
of more catchment descriptors in the analysis (multivariate versions of GLS and TK) can
lead to significantly improved performances, especially for GLS. Moreover, the Monte
Carlo simulation experiment performed for the same study area enabled us to address
the important issue raised by Archfield et al. (2013) of understanding which technique
between GLS and TK is better suited for predicting the true unknown flood quantiles in
ungauged catchments when the observed flood sequences are affected by cross-correlation.
The application of monovariate and multivariate versions of GLS and TK for predicting
at-site flood quantiles (with return periods T equal to 10, 30, 50, 100 years) for three dif-
ferent cross-correlation scenarios highligted that the presence of cross-correlation in the
region introduces a masking-effect on the flood magnitude for both GLS and TK, and that
this masking-effect increases with increasing degrees of cross-correlation. This behaviour
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is totally expected for TK (which explicitly exploits spatial correlation in performing its
estimates), whereas for GLS, which should be able to look behind cross-correlation, can
be explained by the presence of a residual masking-effect with increasing levels of spatial
correlation. In particular, the multivariate versions of GLS and TK show very similar per-
formances: their performance is almost equivalent when significant catchment descriptors
for describing mean annual flood are found. On the contrary, when only a monovariate
analysis with drainage area can be performed, the application of TK is recommended,
even in the presence of high degrees of spatial correlation. These findings are valid for
the simplified situation of homogeneous region with nested catchments and no effect of
cross-correlation on mean annual flood. Further analyses able to overcome the simplifying
hypotheses adopted are suggested for future studies.

Finally, we focused on the potential of geostatistical approaches for predicting flow-
duration curves in ungauged sites across large geographical areas. Indeed, the above
mentioned analyses highlighted the reliability of TK for predicting flood quantiles in un-
gauged sites in the study area. In general, geostatistical procedures have been shown to
provide highly reliable predictions of streamflow indices over large study areas, especially
if compared to regional regression models, whose accuracy is generally unsatisfactory for
large study regions, which can be characterised by significant heterogeneities in terms
of streamflow regimes. In this context, we focused on the use of Total Negative Devia-
tion Top-kriging (TNDTK; i.e. Pugliese et al., 2014) for predicting flow-duration curves
(FDCs) in ungauged basins in the Danube region, the largest watershed in Europe, within
a research agreement with the Joint Research Centre of the European Commission (DG
JRC), with the aim of generating a GIS (Geographic Information System) layer reporting
the predicted streamflow regime (FDCs) for about 4000 prediction nodes within the water-
shed of the Danube River. Our analyses highlighted that, even though streamflow indices
are significantly correlated to catchment characteristics within the study region, their
prediction using multi-regression models may be not completely satisfactory. The cross-
validated application of TNDTK for about 500 discharge measurement stations across the
Danube river basin showed the effectiveness of TNDTK for predicting FDCs in ungauged
catchments for the entire region. Moreover, although the spatial density of streamgauging
network affects the estimation variance of interpolation, we proved that the regionalisa-
tion becomes more accurate when low-quality measurements are discarded. In particular,
we showed that kriging variance can be used as a proxy for uncertainty of predicted FDCs.
The maps of streamflow quantiles resulted from the analyses are useful for the evalua-
tion of water resources availability at ungauged locations, and as a benchmark for the
development of hydrological macro-scale models.
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Conclusions

In conclusion, this Thesis provides an important contribute for better undestanding the
added value and impacts of catchment similarity and spatial correlation on the prediction
of flood quantiles and flow-duration curves in ungauged basins. In particular, the analyses
performed in this study and presented herein confirm the added value of including climatic
and geomorphological descriptors in the identification of homogeneous pooling-groups of
sites, especially for highly heterogeneous areas. Concerning large geographical areas,
which can be characterised by significant heterogeneities in terms of streamflow regimes,
geostastisical procedures were shown to provide much more reliable estimates than re-
gression methods for predicting flow-duration curves. At the same time, with regards
to a small homogeneous study region, geostatistical procedures were shown to be more
effective in predicting both empirical estimates of flood quantiles and true flood quantiles
than regression methods accounting for spatial correlation but scaling flood quantiles with
drainage area alone. The corresponding versions accounting for more significant descrip-
tors than drainage area provide more reliable estimates and are characterised by much
more similar efficiencies, yet they are affected by an increasing masking-effect on the real
flood magnitude with increasing levels of cross-correlation in the region. In this context,
other relevant topics could be addressed in future studies, with particular reference to
the comparison of GLS and TK in heterogeneous regions with different levels of nesting
between catchments.
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Appendix A

Regional frequency analysis with
L-moments

A.1 Moments

Let X be a random variable taking values which are real numbers, F (x) its cumulative
distribution function, and, if F (x) is differentiable, f(x) = d

dx
F (x) its probability density

function. The shape of a probability distribution is traditionally described by the moments
of the distribution.

A.1.1 Moments

The moment of order 1 is the expected value of the random variable X:

µ = E(X) =
∞∫
−∞

x dF (x) =
∞∫
−∞

x f(x)dx (A.1)

The higher moments are defined as:

µr = E(X − µ)r, r = 2, 3, . . . (A.2)

The moment of order 1 (tipically the mean) represents the centre of location of the dis-
tribution. The dispersion of the distribution about its centre is measured by the standard
deviation:

σ = µ
1/2
2 = {E(X − µ)2}1/2 (A.3)

or the variance:

σ2 = µ2 = var(X) (A.4)
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A.1.2 Dimensionless moments

Usually, in order to compare samples from different gauging stations, dimensionless
moments are used. The coefficient of variation Cv expresses the dispersion of a distribution
as a proportion to the mean:

Cv = σ/µ (A.5)

Dimensionless higher moments µr/µr/2
2 are also used. In particular, the coefficient of

skewness Cs (or γ) is defined as:

Cs = γ = µ3/µ
3/2
2 (A.6)

while the coefficient of kurtosis Ck (or κ) is:

Ck = κ = µ4/µ
2
2 (A.7)

A.1.3 Sample moments

Moments have been defined for a probability distribution, but in practise must often
be estimated from a finite sample x1, x2, . . . , xi, . . . , xn. Therefore, sample estimates of
moments (i.e. sample moments) need to be computed.

The natural estimator of µ is the sample mean:

x̄ = 1
n

n∑
i=1

xi (A.8)

and the higher sample moments are defined as follows:

mr = 1
n

n∑
i=1

(xi − x̄)r (A.9)

Sample moments are reasonable estimates of moments µr, but are not unbiased. There-
fore, unbiased estimators are often used. For example the unbiased estimate of sample
variance can be obtained as:

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2 (A.10)

Sample estimates of the coefficient of variation and the coefficient of skewness can be
obtained as follows:

Ĉv = s

x̄
(A.11)

110



Appendix A. Regional frequency analysis with L-moments

γ̂ = g =

n

(n− 1)(n− 2)

n∑
i=1

(xi − x̄)3

s3 (A.12)

where the sample standard deviation, s =
√
s2, is an estimator of σ but is not unbiased.

Moreover, the estimators of skewness g and kurtosis k can be severely biased, having
algebraic bounds which depend on the sample size.

Inferences based on sample moments of skew distributions are therefore likely to be
very unreliable. A more satisfactory set of measures of distributional shape is obtained
from L-moments (Hosking, 1990; see also Hosking and Wallis, 1993, 1997), which are
described in App. A.2.

A.2 L-moments

L-moments are an alternative system of describing the shapes of probability distri-
butions. Historically, they arise as modifications of the probability weighted moments
(PWMs) of Greenwood et al. (1979).

A.2.1 Probability weighted moments

Given the random variable X with cumulative distribution function F (x) = P [X ≤ x],
PWMs are defined as:

Mp,r,s = E[Xp{F (X)}r{1− F (X)}s] (A.13)

where p, r, s are real numbers.
Particularly useful cases of PWMs are αr = M1,0,r and βr = M1,r,0:

αr =
1∫

0

X{1− F (X)}rdF (x) (A.14)

βr =
1∫

0

X{F (X)}rdF (x) (A.15)

While conventional moments (see App. A.1) involve successively higher powers of X,
PWMs involve successively higher powers of F (X) or 1 − F (X) and may be regarded
as integrals of X weighted by the polynomials {F (X)}r or {1 − F (X)}r. This means
that the relationships between PWMs and the parameters of distributions have a simpler
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mathematical form than the relationships between conventional moments and the param-
eters themselves. PWMs allow to compute parameters through linear combinations, while
conventional moments usually requires iterative methods. For this reason, αr and βr have
been used as the basis of methods for estimating parameters of distributions in several
studies (see e.g. Landwehr et al., 1987, and the other studies cited in Hosking and Wallis,
1997). However, they are difficult to interpet directly as measures of the scale and shape
of a probability distribution.

A.2.2 L-moments

L-moments can be expressed as linear combinations of PWMs:

λ1 = α0 = β0 (A.16)

λ2 = α0 − 2α1 = 2 β1 − β0 (A.17)

λ3 = α0 − 6α1 + 6α2 = 6 β2 − 6 β1 + β0 (A.18)

λ4 = α0 − 12α1 + 30α2 − 20α3 = 20 β3 − 30 β2 + 12 β1 − β0 (A.19)

and in general:

λr+1 = (−1)r
r∑

k=0
p?r,k αk =

r∑
k=0

p?r,k βk (A.20)

where

p?r,k = (−1)r−k
(
r

k

)(
r + k

k

)
= (−1)r−k (r + k)!

(k!)2 (r − k)!
(A.21)

L-moments have the great advantage of being interpeted directly as measures of the
scale and shape of a probability distribution. In particular, λ1, defined as L-location
(−∞ < λ1 < +∞), represents the expected value of the distribution (i.e. a measure of
central tendency of the distribution), while λ2, defined as L-scale (λ2 ≥ 0), is a measure
of variability of the random variable. Moreover, L-moments are less affected than PWMs
by sampling variability and distortion due to exponentiation.

A.2.3 L-moment ratios

As seen for conventional moments (see App. A.1), it is convenient to define dimen-
sionless versions of L-moments, called L-moment ratios. L-moment ratios are obtained
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by dividing the higher-order L-moments by the scale measure λ2:

τr = λr
λ2
, r = 3, 4, . . . (A.22)

where |τr| < 1 for r > 3.
L-moment ratios measure the shape of a distribution independently of its scale of

measurement. Similarly to dimensionless conventional moments, τ3 is named L-skewness
(L-coefficient of skewness, or coefficient of L-skewness, L-Cs), and τ4 is named L-kurtosis
(L-coefficient of kurtosis, or coefficient of L-kurtosis, L-Ck).

Moreover, the L-coefficient of variation (or coefficient of L-variation) L-Cv is defined
as follows:

τ = τ2 = λ2

λ1
(A.23)

whose meaning is the same of the conventional coefficient of variation Cv. For a
distribution with positive values, 0 ≤ τ2 < 1.

The L-moments λ1 and λ2, L-Cv (i.e. τ) and the L-moment ratios τ3 and τ4 are the
most useful quantities for summarising probability distributions (see e.g. Hosking and
Wallis, 1997).

A.2.4 Sample L-moments

As for conventional moments, L-moments are defined for a probability distribution,
but in practise need to be estimated from a finite sample. Estimation is based on a sample
of size n, arranged in ascending order. Let x1:n ≤ x2:n ≤ · · · ≤ xn:n be the ordered sample.

An unbiased estimator of the PWM βr (see Landwehr et al., 1987) is given by:

br = 1
n

(
n− 1
r

)−1 n∑
j=r+1

(
j − 1
r

)
xj:n (A.24)

which can be written also as follows:

br = 1
n

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)
(n− 1)(n− 2) . . . (n− r)xj:n (A.25)

Analogously to what seen for conventional moments, the sample L-moments are de-
fined by:

l1 = b0 (A.26)

l2 = 2 b1 − b0 (A.27)
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l3 = 6 b2 − 6 b1 + b0 (A.28)

l4 = 20 b3 − 30 b2 + 12 b1 − b0 (A.29)

and in general:

lr+1 =
r∑

k=0
p?r,k bk, r = 0, 1, . . . , n− 1 (A.30)

The sample L-moment lr is an unbiased estimator of λr.
Analogously to conventional moments, the sample L-moment ratios are defined by:

tr = lr
l2

(A.31)

and the sample L-Cv as follows:

t = t2 = l2
l1

(A.32)

tr and t are natural estimators of τr and τ , respectively.
These estimators are not unbiased, but their biases are very small in moderate or

large samples. This characteristic makes them the most used estimators, especially in
cases where the distribution from which the sample is drawn is already identified.

A.3 Hosking and Wallis test

Once a region has been defined, it is desiderable to assess its meaningfulness. This
involves testing if the proposed region may be accepted as being homogeneous, and if two
or more homogeneous regions are sufficiently similar that they should be combined into
a single region. The hypothetis of homogeneity is that the at-site frequency distributions
are the same except for a site-specific scale factor. A test of this hypothetis is naturally
based on whether the data at the N sites in the region are consistent with the relation
between the at-site frequency distributions. The test is most conveniently constructed as
a statistical significance test of the similarity of appropriately chosen statistics computed
from the at-site data (Hosking and Wallis, 1997).

In this context, Hosking andWallis (1993) (see also Hosking andWallis, 1997) proposed
a homogeneity test based on L-moments (see Hosking, 1990; see also App. A.2 for a concise
description of L-moments). The aim is to estimate the degree of heterogeneity in a group
of sites and to assess whether the sites might reasonably be treated as a homogeneous
region. Specifically, the heterogeneity measure compares the between-site variations in
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sample L-moments for the group of sites with what would be expected for a homogenous
region (Hosking and Wallis, 1997).

In particular, the Hosking and Wallis test assesses the homogeneity of a group of basins
at three different levels by focusing on three measures of dispersion for different orders of
the sample L-moments ratios:

1. a measure of dispersion for the L-Cv:

V1 =
N∑
i=1

ni (t2(i) − t̄2)2
/

N∑
i=1

ni (A.33)

2. a measure of dispersion for both the L-Cv and the L-Cs in the L-Cv – L-Cs space:

V2 =
N∑
i=1

ni[(t2(i) − t̄2)2 + (t3(i) − t̄3)2]1/2
/

N∑
i=1

ni (A.34)

3. a measure of dispersion for both the L-Cs and the L-Ck in the L-Cs – L-Ck space:

V3 =
N∑
i=1

ni[(t3(i) − t̄3)2 + (t4(i) − t̄4)2]1/2
/

N∑
i=1

ni (A.35)

where t̄2, t̄3 and t̄4 are the weighted average L-moments ratios L-Cv, L-Cs and L-
Ck, in this order (i.e. they are weighted proportionally to the sites’ record length; e.g.
t̄2 = ∑N

i=1 nit2(i)
/∑N

i=1 ni ); t2(i), t3(i), t4(i) and ni are the values of L-Cv, L-Cs, L-Ck and
the sample size for site i; N is the number of sites in the pooling-group.

The underlying concept of the test is to compare the sample variability of the L-
moment ratios to the variation that would be expected in a homogeneous group of sites.
The expected mean value µVk and standard deviation σVk of these dispersion measures
for a homogeneous group are assessed through repeated simulations, by generating ho-
mogeneous groups of basins having the same record lengths as those of the observed data
(Hosking and Wallis, 1993). The heterogeneity measures are then evaluated with the
following expression:

Hk = Vk − µVk
σVk

, for k = 1, 2, 3 (A.36)

Hosking and Wallis (1993) suggest that a group of sites may be regarded as:

• "acceptably homogeneous" if Hk < 1;

• "possibly heterogeneous" if 1 ≤ Hk < 2;
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• "definitely heterogeneous" if Hk ≥ 2.

Moreover, Hosking and Wallis (1993) observe that higher-order L-moments tend to be
more homogeneous in space that the lower-order ones. Therefore, the Hosking and Wallis
test presents a hierarchical feature.

A.4 Choice of a frequency distribution

In regional frequency analysis a single frequency distribution is fitted to data from sev-
eral sites. In general, the chosen distribution does not need to be the distribution which
gives the closest approximation to the observed data, as there is no guarantee that future
values will match those of the past. For this reason, it is preferable to use a robust ap-
proach based on a distribution that will yield reasonably accurate quantile estimates even
when the true at-site frequency distributions deviate from the fitted regional frequency
distribution (Hosking and Wallis, 1997).

Many families of distributions might be candidates to be fitted to a regional dataset.
Their suitability can be evaluated by considering their ability to reproduce feature of
the data which are of particular importance in a given application, i.e. upper (or lower)
bound of the distribution, upper (or lower) tail of the distribution, shape of the body of
the distribution, exact zero values. It can happen that several distributions fit the data
adequately; in this case, the best choice is the distribution that is most robust, i.e. most
capable of giving good quantiles estimates even though future data values may come from
a distribution somewhat different from the fitted distribution (Hosking and Wallis, 1997).

To this aim, Hosking and Wallis (1993) recommended a method for the selection of the
parent distribution based on the use of L-moments (see Hosking, 1990; see also App. A.2
for a concise description of L-moments). In particular, given a homogeneous group of sites
(see App. A.3 for a concise description of the Hosking and Wallis test), the aim is to choose
the candidate distribution which gives the best fit to the data. Assuming an acceptably
homogeneous region, the L-moment ratios of the sites are well summarised by the regional
average; the scatter of the at-site L-moment ratios about the regional average represents
sampling variability. For this reason, Hosking and Wallis (1993) propose a goodness-of-fit
test which judges the goodness of fit by considering how well the L-Cs and L-Ck of the
fitted distribution match the regional average L-Cs and L-Ck of the observed data. The
use of fifth- or higher-order L-moments was found to be not necessary.

The procedure proposed by Hosking and Wallis (1993) (see also Hosking and Wallis,
1997) reads as follows:
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1. assume a region consisting of N sites, with site i having record length ni, and sample
L-moment ratios t2(i), t3(i) and t4(i); denote by t̄2, t̄3 and t̄4 the regional average L-Cv,
L-Cs, L-Ck, weighted proportionally to the sites’ record length:

t̄k =
N∑
i=1

nitk(i)

/
N∑
i=1

ni k = 2, 3, 4 (A.37)

2. assemble a set of candidate three-parameters distributions (e.g. GLO, GEV, LN3,
PE3, etc.);

3. fit each distribution to the regional average L-moment ratios 1, t̄2 and t̄3; denote
by τDIST

4 the L-Ck of the fitted distribution, where DIST may refer to any of the
candidate distributions;

4. fit a kappa distribution to the regional average L-moment ratios 1, t̄2, t̄3 and t̄4;

5. simulate a large number Nsim (e.g. Nsim = 500, 1000) of realisations of a region
with N sites, each having the above mentioned kappa distribution as its frequency
distribution; the simulated regions are homogeneous and have no cross-correlation
or serial correlation, while sites have the same record lengths as their real-world
counterparts;

6. for the mth simulated region, compute the regional average L-Cs t[m]
3 and L-Ck t[m]

4 ;

7. calculate the bias of t̄4:

B4 = 1
Nsim

Nsim∑
m=1

(t[m]
4 − t̄4) (A.38)

and the standard deviation of t̄4:

σ4 =
 1
Nsim − 1


Nsim∑
m=1

(t[m]
4 − t̄4)2 −NsimB

2
4


1/2

(A.39)

8. for each candidate distribution, compute the goodness-of-fit measure ZDIST, as fol-
lows:

ZDIST = τDIST
4 − t̄4 +B4

σ4
(A.40)

9. declare the fit to be adequate if ZDIST is sufficiently close to zero; a reasonable
criterion for a small value is |ZDIST| ≤ 1.64.
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As stated by Hosking and Wallis (1997), the criterion |ZDIST| ≤ 1.64 is arbitrary
and corresponds to acceptance of the hypothesised distribution at a confidence level of
90% when the Z statistic has approximately a standard normal distribution. As the
assumptions necessary for Z to be standard normal include two that are unlikely to be
exactly satisfied in practise (i.e. exactly homogeneous region and no intersite dependence),
the criterion is a rough indicator of goodness of fit and is not recommended as a formal
test.

For an acceptably homogeneous region, all the candidate distributions for which the
goodness-of-fit measure satisfies the above mentioned criterion are flagged as "accept-
able". If the corresponding growth curves are approximately equal, then each one of them
is adequate and one can choose the most robust to the misspecification of the region.
On the other hand, if the growth curves are not approximately equal, there is a prob-
lem of scarcity of data and models show differences which are statistically insignificant
but operationally important. In this case, robustness is very important and, rather than
choose a three-parameter distribution, it may be better to use the four-parameter kappa
or five-parameter Wakeby distributions, which are more robust to misspecification of the
frequency distribution of a homogeneous region (Hosking and Wallis, 1997). Another case
is when none of the candidate distributions is accepted by the Z criterion; this can occur
when the number of sites in the region or the at-site record lenghts are large. If the L-
moment ratios diagram shows a regional average (t̄3, t̄4) point which falls between two or
more distributions having approximately equal growth curves, then there is superabun-
dance of data: two or more models display differences that are statistically significant
but operationally not important. In this case, any of the operationally equivalent distri-
butions can be reconsidered as "acceptable". On the other hand, if the regional average
point in the L-moment ratios diagram falls above or below all the considered distributions,
then three-parameter distributions are not acceptable and more general kappa or Wakeby
distributions should be used (Hosking and Wallis, 1997).

If the region is not acceptably homogeneous, there is no reason to suppose that a single
regional distribution gives a good fit to data site by site. At the same time, referring to
a single distribution can still yield much more accurate quantile estimates than fitting
separate at-site distributions. In this case, kappa and Wakeby distributions are recom-
mendable choices, considering their robustness to moderate heterogeneity in the at-site
frequency distributions. Finally, when the region is heterogeneous, Hosking and Wallis
(1997) recommend the use of the Wakeby distribution.
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