
Alma Mater Studiorum – Università di Bologna 

 
 

DOTTORATO DI RICERCA IN 

 

Ingegneria Biomedica, Elettrica e dei Sistemi 

 
Ciclo XXXI 

 

Settore Concorsuale: 09/E2 

 

Settore Scientifico Disciplinare: ING-IND/32 

 

 
 

 

 

TITOLO TESI 

Development of Grid-Connected and Front-End Converters for 

Renewable Energy Systems and Electric Mobility 
 

 

 

Presentata da: Albino Amerise 

 

 

 
Coordinatore Dottorato     Relatore 

Chiar.mo Prof. Daniele Vigo            Chiar.mo Prof. Luca Zarri 

 

 

 

 

Esame finale anno 2019 



 

 

 

 

This page was intentionally left blank. 

 



 

i 

 

Table of contents 

Preface ............................................................................................................................... 1 

 Grid-Connected Converters ............................................................................ 4 

Chapter 1 Active Power Filter ................................................................................... 5 

1.1 Mathematical Model of a Shunt APF ................................................................. 7 

 Operation Principles of a Shunt APF ............................................................. 7 

1.2 Control System ................................................................................................. 10 

 Phase Locked Loop (PLL) ............................................................................ 10 

 Control of the DC-link .................................................................................. 11 

 High Frequency Current Reference .............................................................. 13 

Chapter 2 Current Control ...................................................................................... 15 

2.1 Resonant Controller .......................................................................................... 16 

 Study of the Transfer Function of a Resonant Controller............................. 16 

 Implemented Multi-Resonant Current Control ............................................. 18 

 Tuning of the Current Controllers ................................................................ 19 

 Discretization of the Control System ............................................................ 23 

 Experimental Results ........................................................................................ 25 

2.2 Repetitive Controller ........................................................................................ 31 

 Relation between Resonant Controller and Repetitive Controller ............... 31 

 Stabilization of the Repetitive Control ......................................................... 35 

 Odds Harmonic Repetitive Controller (ODRC) ........................................... 41 

 Implemented Current Control ....................................................................... 45 

 Experimental Results ........................................................................................ 46 

 Effects of the Delay Compensation .................................................................. 54 

2.3 Considerations .................................................................................................. 55 

Chapter 3 Adaptative Voltage Saturation for an APF .......................................... 57 

3.1 Operation of an APF under Constraints............................................................ 57 



 

ii 

 Current and Voltage Constraint .................................................................... 57 

 Anti-Windup Technique................................................................................ 59 

3.2 Saturation Strategies.......................................................................................... 61 

 Strategy 1 ...................................................................................................... 61 

 Strategy 2 ...................................................................................................... 62 

 Strategy 3 ...................................................................................................... 63 

 Experimental Results .................................................................................... 67 

 Open-End Winding Motors ........................................................................ 70 

Chapter 4 Open-End Winding Motors Drive ......................................................... 71 

4.1 Introduction ....................................................................................................... 71 

4.2 Mathematical Model for an Open-End Winding Motor ................................... 74 

 Machine and Floating Bridge Capacitor Equations ...................................... 74 

 Voltage and Current Constraints ................................................................... 76 

4.3 Optimization of the Drive Performance ............................................................ 77 

 Optimization of the Mechanical Power......................................................... 77 

 Admissible Domain of the Stator Current ..................................................... 79 

 Resulting Speed Ranges ................................................................................ 81 

Chapter 5 Induction Motor with Open-End Windings ......................................... 83 

5.1 System Model ................................................................................................... 83 

 Machine Equations and Admissible Stator Current Domain ........................ 83 

 Drive Performance Improvements ................................................................ 85 

5.2 Control Scheme 1 – Base Scheme .................................................................... 89 

 Control of the Induction Machine ................................................................. 89 

 Control of the Floating Capacitor Bridge...................................................... 92 

 Remarks on the Control Scheme ................................................................... 92 

 Experimental Results .................................................................................... 93 

5.3 Control scheme 2 – Variable DC-Link Voltage ................................................ 96 

 Control of the Floating Inverter .................................................................... 97 

 Experimental Results .................................................................................... 98 



 

iii 

5.4 Control scheme 3 – Overmodulation of the Primary Inverter ........................ 101 

 Experimental Results .................................................................................. 103 

Chapter 6 Surface Permanent Magnet Synchronous Motor with Open-End 

Windings 106 

6.1 System Model ................................................................................................. 107 

 Mathematical Model and Admissible Domain of the Stator Current ......... 107 

 Resulting Speed Range ............................................................................... 109 

6.2 Control Scheme .............................................................................................. 110 

 Control of Flux, Speed and Stator Currents................................................ 110 

 Control of the Floating Capacitor and of the Reactive Power .................... 111 

 Experimental Results .................................................................................. 112 

6.3 Overmodulation of the Primary Inverter ........................................................ 114 

 Experimental Results .................................................................................. 115 

6.4 Six-step Operation of the Primary Inverter .................................................... 119 

 Experimental Results .................................................................................. 120 

Chapter 7 Synchronous Reluctance Motor with Open-End Windings ............. 123 

7.1 System Model ................................................................................................. 123 

 Mathematical Model and Admissible Domain of Stator Current ............... 123 

 Resulting Speed Range ............................................................................... 125 

7.2 Control Scheme .............................................................................................. 128 

 Control of Flux, Speed and Stator Currents................................................ 128 

 Control of the Floating Capacitor and of the Reactive Power .................... 129 

7.3 Experimental Results ...................................................................................... 129 

Conclusions ................................................................................................................... 131 

References ..................................................................................................................... 134 





Preface 

 

1 

PREFACE 

The spread of renewable energy sources and electric vehicles is increasing thanks to the 

greater awareness of the climate problems due to the large and long-lasting use of the non-

renewable energy sources. At the Paris climate conference (COP21) in December 2015, 195 

countries adopted the first-ever universal, legally binding global climate deal. The action plan 

defines a long-term goal of keeping the increase in global average temperature below 2°C 

above pre-industrial levels. Governments agreed to come together every 5 years to set more 

ambitious targets as required by science. Huge financial investments, hence, have been and 

will be allocated in order to promote further efforts in this direction. 

The power converters are the technology that enables the interconnection of different 

players (renewable energy generation, energy storage, flexible transmission and controllable 

loads) to the electric power system. The integration of renewable energy sources to the power 

grid, however, poses significant technical challenges, since it drastically changes its topology 

and nature. In fact, while the traditional power generation system is centralized and the power 

flow unidirectional, the renewable energy is distributed and intermittent. The 

uncontrollability of the renewable energy source is a cause of fluctuations of the generated 

power in terms of voltage and frequency, which is problematic to deal with in a power grid 

where synchronous electrical machines are leaving place to static converters, which cannot 

guarantee the same robustness to those fluctuations due to their lack of inertia. Great concern 

is also due to the harmonic distortion that comes from the increase of power electronic 

devices connected to the grid. For all these reasons, great efforts are devoted in the design 

and control of grid-connected converters, which can improve efficiency, reliability and 

flexibility of the new smart grid. 

The use of Power Conditioning Systems (PCSs) can be extended to motor drive 

applications as well. For example, it has been verified that the performance of the induction 

machine improves if it is fed from stator and rotor sides by two separate inverters. The rotor-

side inverter, which operates as PCS, allows compensating the rotor reactive power and 

introduces an additional degree of freedom in the control scheme. The same principle can be 

applied to squirrel-cage rotor induction machines with open-end stator windings. Initially, 

the open-ended configuration was developed for permanent-magnet synchronous machines 

to reduce the current ripple in high-speed applications. It is then clear how, the same 
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technologies, used to improve the flexibility, reliability and power quality of the power grid, 

can be usefully applied to motor drive applications in order to improve the performance and 

the quality of the currents. 

In this PhD thesis, different control systems for power converters have been developed for 

grid-connected and motor drive applications. 

In Part I, the operation of Active Power Filters (APFs), used working as power factor 

corrector and harmonic compensator to improve the power quality of the grid has been 

investigated. Particular attention was paid to the study of the current controller, which 

represents the core of an APF. On this topic, according to the state of the art, the most 

performant current controllers are represented by the resonant and repetitive controllers, 

which have been studied and tested on a laboratory prototype of APF.  

A problem that has been investigated in this PhD work is the exploitation of the DC-link 

voltage of the APF, in the case of voltage overmodulation or current saturation, when the 

reduction of the high frequency harmonics is performed by an array of resonant controllers. 

In this regard, three different saturation algorithms have been proposed and tested, with the 

goal to improve the overall performance of the filter in this critical condition while ensuring 

an adequate stability margin. 

In Chapter 1, the study and development of the control system for an APF has been 

developed. The main issue related to this application are the synchronization with the grid, 

the control of the floating capacitor and the current control. 

In Chapter 2, the current controller for an APF is investigated. In particular, two different 

kind of current controllers, the resonant and repetitive controllers, have been compared in 

terms of performance, stability and implementation issues. 

In Chapter 3, the problem of the saturation of a multi-resonant controller has been under 

study. 

Although it is believed that the theory of PCSs can be applied only in grid-connected 

applications, it can lead to remarkable results also when the voltage source are the 

electromotive forces of an electric motor. 

In Part II of this thesis, the control system developed for an APF has been applied to three 

kinds of electrical motors in open-end winding configurations. This configuration, in fact, 

allows the additional power converter to work as power factor corrector and harmonic 

compensator, making possible to extend the constant power speed range of the motor and to 
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work in linear and overmodulation zones, without compromising the quality of the motor 

currents. 

In Chapter 4, a general mathematical model for an open-end winding motor has been 

developed and, based on this study, the control system for this drive has been tested on three 

different electrical motors, such as: 

• Induction Motor (IM) in Chapter 5 , 

• Surface Permanent Magnet Synchronous Motor (SPMSM) in Chapter 6, 

• Synchronous Reluctance Motor (Sync-Rel) in Chapter 7. 

 

Finally, the conclusions are drawn and the results discussed. 

The main contributions of this PhD work can be summarized as follows: 

• development of control systems for repetitive current controllers, where the effects of 

the delay, introduced by the discretization process, on the performance and stability 

of the system are highlighted; 

• development of saturation algorithms in multi-resonant current controllers for the 

optimization of the DC-link voltage; 

• development of control systems for induction, SPM and Sync-Rel motors in open-

end windings configuration, which allows one to improve the drive performance over 

all the speed range. 
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Chapter 1   

 ACTIVE POWER FILTER 

The issues of grid connected converters are similar despite the differences of the 

applications, such as PV power systems and wind power systems [1]. These common 

problems are related to synchronization with the grid, harmonic control, detection and 

management of islanding conditions for several applications. 

In this PhD work, the focus is mostly on harmonic control. 

The circulation of current harmonics in the power grid generates voltage harmonics, due 

to the voltage drop on the power grid impedance. Such voltage harmonics are a problem 

especially in weak power grid conditions, i.e., with high impedance. This can be the cause of 

various damages to the power grid infrastructure of both supplier and users, such as: 

• overheating of cables and transformers, which leads to premature aging of the 

insulation and therefore higher maintenance costs; 

• reverse sequences in rotating machines, which causes torque fluctuations; 

• saturation of the magnetic cores of the transformers, caused by possible continuous 

components of the current, generated for example by asymmetries in the operation 

of the converters; 

• malfunction of the control devices. 

Concerning power quality, a further problem is represented by the phase displacement 

between power grid voltage and current, which causes an increase in the currents making 

therefore necessary the oversizing of cable and electrical devices. 

Among the possible solutions there are the passive filters, which can be classified 

depending on their cutting frequency as: 

• sine filter, designed to compensate low frequency harmonics (5, 7, ...,19). It can 

be of the first order, if it is composed of an inductance, or of the second order if a 

capacitor is added; 

• EMI filter, designed to compensate high frequency emissions; 

• Choke filter, used to reduce common mode currents. 

Those solutions, however, are not very flexible and their design has to change if the set of 

harmonics that should be compensated changes. These drawbacks can be overcome through 
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the use of Active Power Filters (APFs), which dynamically adapt to the power grid condition. 

They fall into the category of Power Conditioning Systems (PCSs) and are used to improve 

the power quality of the grid by working as a power factor corrector and harmonic 

compensator [2].  

There are mainly two possible configurations, shown in Fig. 1.1. The shunt configuration, 

Fig. 1.1 (a), is the most used since it can be installed without modifying the plant, as required 

by the series configuration, Fig. 1.1 (b). It is composed of an inverter connected to the Point 

of Common Coupling (PCC) through a passive filter.  

The inverter can store the electrostatic energy necessary for its operation as electrostatic 

energy in a capacitor, thus leading to the category of Voltage Source Inverters (VSI) shown 

in Fig. 1.2(a), or as magnetic energy in an inductor. This solution is referred to as Current 

Source Inverter (CSI) and it is shown in Fig. 1.2 (b). 

 

 (a)       (b) 

Fig. 1.2. Active Power Filter VSI type (a) and CSI type (b). 

(a)  (b) 

Fig. 1.1. Active Power Filter in shunt configuration (a) and series configuration (b). 
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In this chapter, the operation principles of an APF are discussed and the mathematical 

model is studied. The control system developed is explained in its part and the reference 

signal for the current controller, which represents the core of the APF, is derived. The design 

of the current controller, due to its importance, will be widely studied in Chapter 2. 

1.1 MATHEMATICAL MODEL OF A SHUNT APF 

In this PhD work a VSI type APF, connected through a decoupling inductance, is 

considered. It is shown in Fig 1.3. 

 Operation Principles of a Shunt APF 

The operation of an APF has to be consistent with the available voltage across the floating 

capacitor C. The voltage EF of the DC link depends on the electrostatic energy WC stored in 

the capacitor 

 
   21

2
C FW CE= , (1.1) 

whose rate of change is related to the instantaneous active power of the converter. If the 

losses of the APF are neglected, the following expressions can be written: 

 
   

21

2
F F

d
CE P

dt

 
= 

 
 (1.2) 
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Fig 1.3. Active Power Filter VSI type, connected to the power grid in shunt 

configuration through a decoupling inductance.  
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3

2
F F FP v i=   (1.3) 

 

where PF is the instantaneous active power at the input of the APF, Fv  and Fi  are respectively 

the space vectors of the output voltage and current of the APF, and "·" is the dot product 

operator, defined as the sum of the products of the corresponding components of the two 

vectors. 

In order to control the filter current, it is necessary to find the relationship between Fv  and 

Fi . In a reference frame aligned with the space vector of the grid voltage Gv , this relationship 

is given by the equation of the decoupling inductance: 

 
  F

G F F F F F F

di
v R i j L i L v

dt
= + + + , (1.4) 

where ω is the angular frequency of the space vector of the grid voltage Gv ,  RF and LF are 

respectively the filter resistance and inductance. 

It is straightforward to find the expression of the instantaneous active power PG exchanged 

by the grid with the APF through the dot product of (1.4) by 
3

2
Fi : 

 
  

2 23 3

2 4
G F F F F F

d
P R i L i P

dt

 
= + + 

 
, (1.5) 

where 

 
  

3 3

2 2
G G F G FdP v i v i=  = . (1.6) 

In (1.6), iFd is the d-axis component of the filter current Fi , and vG is the magnitude of the 

grid voltage Gv . 

Equation (1.5), combined with (1.2), can be rewritten to emphasize the derivative of the  

total electromagnetic energy of the system. 

 
  

2 2 21 3 3

2 4 2
F F F G F F

d
CE L i P R i

dt

 
+ = − 

 
. (1.7) 

If the Joule losses of the filter resistance are negligible, (1.7) shows that the rate of change 

of the energy stored in the reactive elements of the system depends on the instantaneous 

active power PG, which is proportional to iFd as shown in (1.6). Therefore, the voltage level 
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of the DC-link capacitor can be indirectly controlled by adjusting the total energy of the 

system through iFd, under the assumption that the magnetic energy of the filter inductance is 

regarded as a measurable disturbance, which can be properly compensated.  

A similar procedure can be used to find the relation between the reactive power exchanged 

by the power grid and the APF by considering the dot product between (1.4) and 
3

2
Fji : 

 
  23

2
G F F FQ L i Q= − + , (1.8) 

where 

 
   

3

2
G G FqQ v i= − . (1.9) 

From (1.8) and (1.9) it can be seen that it is possible to control the reactive power injected 

into the grid by the APF by acting on the q-component of the filter current iFq and 

compensating the reactive power of the decoupling inductance. 

With reference to Fig 1.3, if 
Li  and Gi  respectively denote the load and grid current 

vectors, the balance of the currents at the PCC leads: 

    
F G Li i i= − . (1.10) 

If the high frequency components, identified by the subscript “HF”, are considered, (1.10) 

allows finding the harmonic content of Fi  that nullifies 
,G HFi : 

    , , ,F HF ref L HFi i= − . (1.11) 

Equation (1.11) states that the shunt APF has to generate the high frequency components 

of the load current so as to relieve the grid from providing the undesired harmonics.  

Since the energy carried by the high-frequency harmonics of the voltages and currents is 

usually much lower than that of the fundamental components, it results that the low frequency 

components of the iFd and iFq can be used to control the average energy of the capacitor and 

the reactive power at the PCC, according to (1.6) and (1.9), while the high frequency 

components can be used to reduce the demand of distorted currents of the grid, according to 

(1.11). 
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1.2 CONTROL SYSTEM 

The control system has to: 

• provide the inverter with the reference voltages that allow to generate a filter 

current Fi necessary to compensate the power factor and the current harmonics in 

the power grid; 

• maintain control the floating bridge voltage EF at the reference value that 

guarantees the correct operation of the APF. 

The measurements required by the control system, as shown in Fig 1.4, are: 

• power grid voltages, used for the synchronization; 

• voltage across the floating capacitor; 

• filter current Fi , which is the one to be controlled, and one current between the 

grid and load current. It has been chosen to measure the grid current since it 

represents the target variable. 

 Phase Locked Loop (PLL) 

The mathematical model has been implemented on a rotating reference frame aligned with 

the space vector of the power grid voltage, Fig 1.5(a).  

Fig 1.5(b) shows the scheme of the PLL. It allows one to estimate the phase angle  that 

nullifies, instant by instant, the q-component of the fundamental component of the grid 

voltage. 
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Fig 1.4. APF control scheme  
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 Control of the DC-link 

Let us consider the expression of the active power balance (1.7) and develop the 

derivative: 

 
 

2
23 3 3

2 2 2

F F F
F F F G Fd F F

C

dE E di
CE L i v i R i

dt R dt

 
+ + = − 

 
. (1.12) 

where power loss on the bleeder resistor RC has also been considered. 

To find the transfer function of the DC-link voltage loop it is possible to apply small 

variations to the nominal values as follows: 

 
,

,

F F nom F

Fd Fd nom Fd

E E E

i i i

= + 

= + 
 (1.13) 

Substituting (1.13) in (1.12) and under the assumption that iFq =0, following expression 

can be written: 

 

( )
( ) ( )

( ) ( )

( )
( )

2

, ,

,

2

, ,

,

,

3 3

2 2

3

2

F nom F F nom F

F nom F

C

G Fd nom Fd F Fd nom Fd

Fd nom Fd

F Fd nom Fd

d E E E E
C E E

dt R

v i i R i i

d i i
L i i

dt

 +  + 
 +  + =
 
 

= +  − +  +

+ 
− + 

 
(1.14) 

It is possible to neglect the terms of a higher order, such as 2

FE , 2

Fdi , 
Fd

Fd

d i
i

dt


  and 

F
F

d E
E

dt


 . Equation (1.14) becomes: 

 a)
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Gdv
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Fig 1.5. Rotating reference frame aligned with the space vector of the grid voltage (a) and control scheme of the 

PLL (b). 
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 ( )
( )

( )

2

, ,

, ,

2

, , ,

2 3

2

3 3
2

2 2

F nom F nom FF
F nom G Fd nom Fd

C

Fd
F Fd nom Fd nom Fd F Fd nom

E E Ed E
CE v i i

dt R

d i
R i i i L i

dt

+ 
+ = +  +


− +  −

 (1.15) 

In addition, by considering the steady state equation 

 2
23 3

2 2

F
G Fd F F

C

E
v i R i

R
= −  (1.16) 

it is possible to rewrite (1.15) as follows: 

 
,

, , ,

3 3
3

2 2

F nom F FdF
F nom G Fd F Fd nom Fd F Fd nom

C

E E d id E
CE v i R i i L i

dt R dt

 
+ =  −  − . (1.17) 

Expression  (1.17) can be written in the Laplace domain as follows 

 

( ),

, , ,

2 3
2

2

F nom

F nom F G F Fd nom F Fd nom Fd

C

E
sCE E v R i sL i i

R

 
+  = − −   

 
 (1.18) 

And, finally, the transfer function for the DC-link voltage becomes: 

 ( ) ( )

( )
,

,

2 13

4 1

C G F Fd nom LF
DC

Fd F nom C

R v R i sE
G

i E s





− −
= =

 +
 (1.19) 

where 

 

2

C
C

CR
 =  (1.20) 

 
,

,2

F Fd nom

L

G F Fd nom

L i

v R i
 =

−
. (1.21) 

Equation (1.20) expresses is a time constant related to the floating capacitor, while (1.21) 

represents a time constant related to the transient of the decoupling inductance to reach the 

flux value set by the d-component current iFd,nom. It can be noted that (1.19) includes an 

unstable real zero, whose sign depends on the sign of iFd,nom, which is related to the condition 

of charge or discharge of the floating capacitor voltage. However, the value of τL is much 

smaller than τC and describes a fast transient. It is then possible to neglect its contribute for 

the DC-link voltage regulation, which can be achieved through a PI controller with an 

antiwind-up scheme, implemented in the reference frame synchronous with the power grid 



Active Power Filter 

13 

voltage, as shown in Fig 1.4. The reference value of the q-component of the filter current is 

a degree of freedom that can be used to exchange reactive power with the power grid. 

The reference values are then compared with the measurement of the filter current in order 

to get the input error at the fundamental frequency for the current controller. 

 High Frequency Current Reference 

The input error for the high frequency current is equal to: 

   
, , , ,F HF F HF ref F HFi i i = − . (1.22) 

By substituting (1.11) in (1.22) and taking into account (1.10) one finds 

    
, ,F HF G HFi i = − . (1.23) 

The high frequency content of the power grid current is obtained by means of a notch filter 

at the fundamental frequency. This kind of filter allows one to eliminate a frequency 

component from a signal. Its transfer function is: 

 
  

2 2

0

2 2

0 02
notch

s
G

s s



 

+
=

+ +
 (1.24) 

where ω0 is the frequency that should be eliminated and δ is the damping factor. It is possible 

to analyze its behavior through the study of the Bode diagram, shown in Fig 1.6, where the 

magnitude and phase variables are plotted for different values of the damping factor δ.  

 

  

Fig 1.6. Bode diagram of the magnitude and phase of a notch filter for different value of δ. 
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A decrease in the value of δ leads to a narrower frequency band around ω0. 

The expression for the high frequency input error for the current controller (1.23) can be 

written as: 

 
  ( ),

S S

F HF notch Gi G i = − . (1.25) 

where the superscript S means that the variables are written in the stationary reference frame. 

Equations (1.6), (1.9) and (1.25) define the reference current, in its frequency 

components, that has to be tracked by the current controller which is studied in the next 

chapter. 
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Chapter 2    

  CURRENT CONTROL 

Several approaches have been investigated and tested for the current control loop, which, 

usually, has to track a reference signal composed of several harmonic components. 

Proportional-integral controllers implemented in a reference frame rotating at the frequency 

of the disturbing harmonics can be used [3], [4], [5]. Dead-beat and hysteresis controllers [6], 

[7], [8] require less computational effort than PI controllers implemented in rotating reference 

frames, but they are not so effective in compensating the harmonic distortion. Recently, 

repetitive control has been proposed due to its excellent performance in terms of harmonic 

compensation and low computational burden [9], [10]. Another solution that has become 

popular in recent years is the use of resonant controllers implemented in the stationary 

reference frame, or in rotating reference frames, to cancel more harmonic components of the 

grid current at a time [11], [12]. In [13] several kinds of resonant controllers are compared, 

such as multiple rotating integrators, stationary frame resonant controllers, proportional-

sinusoidal signal integrators and vector PI controllers, in order to determine, for each method, 

the operating frequency range and the stability limit. A classification of the current control 

methods is shown in Fig 2.1. 

In this PhD work, the methods under investigation are the resonant current control and the 

repetitive current control. 

  

Fig 2.1 Current control methods. 
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2.1 RESONANT CONTROLLER 

The resonant regulators are able to track sinusoidal references, of direct and inverse 

sequence simultaneously, with zero steady-state error. They are equivalent to PI regulators 

implemented in two reference frames having equal and opposite angular frequencies. Their 

implementation in the stationary reference frame does not require the Park transform, thus 

allowing a substantial reduction in the computation time. Their use is widespread in power 

electronics, such as active filters, active rectifiers, wind turbines, hydraulic turbines, inverters 

for photovoltaic applications, uninterruptible power systems, etc.  

 Study of the Transfer Function of a Resonant Controller 

The transfer function of a Proportional Resonant (PR) controller in the Laplace domain is 

usually expressed as: 

 

2 2

0

( ) ( )p i p i R

s
R s K K K K I s

s 
= + = +

+
 (2.1) 

where Kp e Ki represent the proportional and integral gains respectively, while the function 

IR(s) is the resonant term, which has infinite gain at the angular frequency of resonance ±ω0. 

The integral gain Ki affects the band width around the resonance peak, and the amplitude of 

the resonance peak. The value of Kp defines the gain of R(s) in the remaining part of the 

frequency domain. Fig. 2.2 shows the Bode diagram of R(s), with ω0=2π50 rad s-1, Kp 

constant, for different values of Ki. 

 

Fig. 2.2 Bode diagram of the magnitude and phase of a PR for different values of Ki. 
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However, the transfer function in (2.1) is quite sensitive to any mismatch in the resonance 

frequency and this can be cause of instability, due to the infinite gain. In order to improve the 

controller robustness, the expression of IR(s) can be modified as follow: 

 

2 2

0 0

( )
2

R

s
I s

s s 
=

+ +
 (2.2) 

where δ is the dumping coefficient, whose increase corresponds to a decrease in the gain at 

the resonance frequency, as shown in Fig. 2.3. 

As the resonance frequency increases the delay introduced by the process of discretization, 

through the sample and hold, and the delay due to the computation time required by the 

inverter before generating the output signal, can cause a decrease of the performance or even 

the instability. It is hence necessary to modify the transfer function (2.2) so as to take into 

account these delays.  

According to [14], it can be rewritten as: 

 ( ) ( )0

2 2

0 0

cos sin
( )

2
R

s
I s

s s

  

 

−
=

+ +
 (2.3) 

where θ represents the delay that affects the regulator. Its value is: 

 
0CNT = . (2.4) 

The value of N represents the number of sampling periods TS, at the defined resonance 

 

Fig. 2.3 Bode diagram of the magnitude and phase of a PR for different value of δ. 
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angular frequency ω0. 

For the sake of clarity, it is useful to understand the changes that are brought to (2.3). 

Let us consider the time domain expression of IR(S) in (2.1) by applying the reverse 

Laplace transform 

 
( )1

02 2

0

( ) cosR

s
I t L t

s




−  
= = 

+ 

. (2.5) 

which represents a sinusoidal signal at the angular frequency of ω0. 

Applying the same procedure to the expression of IR(S) one finds: 

 ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

01

2 2

0 0

1 1 0

2 2 2 2

0 0

0 0 0

cos sin
( )

2

cos sin

cos cos sin sin cos

R

s
I t L

s s

s
L L

s s

t t t

  

 


 

 

     

−

− −

− 
= = 

+ + 

   
= − =   

+ +   

= − = +

. 
(2.6) 

which, as expected, gives a sinusoidal signal at the angular frequency of ω0 with initial phase 

θ. 

It is now possible to write the final form of the proportional-resonant controller as: 

 ( ) ( )0

2 2

0 0

cos sin
( )

2
p i

s
R s K K

s s

  

 

−
= +

+ +
. (2.7) 

 Implemented Multi-Resonant Current Control 

The control system developed for the control of the current is composed by an array of 

proportional-resonant regulators, consisting of a regulator for each harmonic in the set 1, 

2, …, N that are intended to be controlled. 

As it can be seen in Fig 2.4, the set of resonant controllers can be divided in two parts: 

• the first part consists in a proportional resonant regulator at the fundamental 

frequency, used to control the exchange of active and reactive power, 

 
( ) ( ) ( ) ( ) ( )1 1 1 1 1

1 2 2

1 1 1

cos sin

2
p i

s
R s K K

s s

  

  

−
= +

+ +
; (2.8) 

• the second part is composed of the remaining regulators, whose harmonic order is 

defined by the letter k, used to compensate the harmonic distortion in the power 

grid, 
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( ) ( ) ( ) ( ) ( )

2 2
2,... 2,...

cos sin

2

k k k k k

k p i

k n k n k k k

s
R s K K

s s

  

  = =

− 
= + 

+ + 
  . (2.9) 

The reference output voltage collects these two parts multiplied by the respective current 

input errors as follow: 

 
, 1, ,

2,...,

S S S

F ref F ref Fk ref

k n

v v v
=

= +   (2.10) 

 ( )1, 1 ,

S S S

F ref F fond Gv R s i v= −  +  (2.11) 

 ( ), ,

2,..., 2,...,

S S

Fk ref k F HF

k n k n

v R s i
= =

=    
(2.12) 

Each resonant controller needs an antiwind-up algorithm. The analysis of the saturation 

of a multi-frequency regulator is part of this PhD work and it will be widely discussed in the 

next chapter. 

 Tuning of the Current Controllers 

Let us focus on an example of the tuning of the PR controller of the fundamental 

component of the current and of the DC-link PI controller, shown in Fig 1.4, that defines the 

reference iFd. It is necessary to start the analysis from the inner loop, i.e. the current loop, 

shown in Fig 2.5. The current open loop transfer function is composed of three terms, which 

are the PR controller in (2.8), the transfer function of the inverter and the one of the plant 

 
, 1 * *curr ol INV PLANTG R G G= , (2.13) 

 

Fig 2.4 Current control methods. 
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where 

 3

2
ST s

INVG e
−

= , (2.14) 

 1
PLANT

F F

G
R L s

=
+

. (2.15) 

The value of the sampling time TC is 100 µs, while RF is 26 mΩ and LF is 2,36 mH in the 

experimental set-up. 

As already mentioned, a PR regulator is equivalent to two PIs implemented in two 

reference systems rotating at positive and negative speed. It is possible to tune the PR 

controller by exploiting this equivalence. In particular, it is possible to demonstrate that the 

gains of the PR regulator can be obtained from those of the PI controllers mentioned above, 

whose gain values are divided by two. 

The integrator of the PI guarantee zero steady-state error, but it also introduces a delay of 

90 degrees. This delay is partially compensated by the zero of the PI regulator, which can be 

placed in cancellation of the pole of the decoupling inductance, i.e. the plant. The only 

remaining degree of freedom is the integral gain, which can be increased until the phase 

margin of the open loop transfer function reaches 75 degrees.  

This tuning procedure leads to the values for the proportional and integral gains of the 

equivalent PI controllers, which (divided by two) give the required value for PR regulator 

 5.2pK =  , (2.16) 

 56.5 /iK s=  . (2.17) 

Fig 2.7 (a) and (b) show the Bode diagrams of the transfer function in open loop and in 

closed loop respectively, with the designed regulator, while in Fig 2.7 the step response of 

the system is shown. 

It is now possible to tune the PI regulator of the DC-link. Let us call ωc the cutting 

 

Fig 2.5 Current loop. 

R1 GINV GPLANT

iFd,ref

iFd

+

-

iFd
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frequency of the current loop previously tuned, which is equal to 1730 rad/s.  

The transfer function of the closed current loop can be written as 

 1

1
curr INV

c

G G
s



=

+

. 
(2.18) 

With reference to Fig 2.9, the transfer function of the voltage open loop can be expressed as 

follow: 

 * *
FE curr DCG PI G G= , (2.19) 

where GDC is given by (1.19). 

 

Fig 2.7 Step response of the current closed loop. 

a) b) 

Fig 2.6 Bode diagrams of the current open loop a) and the current closed loop b). 



Part I: Grid-Connected Converters 

22 

With the same procedure used for the tuning of controller R1, the zero of this PI regulator 

is placed in cancellation of the pole in  (1.19) and the gain increased to a value that guarantees 

a phase margin higher than 75 degrees. Fig. 2.8 (a) e (b) show the Bode diagrams of the 

transfer function in open loop and in closed loop respectively, and the step response of the 

system in  Fig. 2.10. 

 

Fig 2.9 DC-link voltage loop. 

PI GCURR GDC

EF,ref

EF

+

-

EF

a) b) 

Fig. 2.8 Bode diagrams of the voltage open loop a) and the voltage closed loop b). 

 

Fig. 2.10 Step response of the current closed loop. 
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The study of the stability and tuning of multi-resonant controllers are open topics, given 

the complexity of these regulators. The choice of the proportional gain Kp is made in such a 

way as to have a phase margin that guarantees stability; the optimal number N of delay 

periods is experimentally found to be equal to 2 [15]; the integral Ki gain and damping δ have 

been chosen in such a way as to have a fair compromise between dynamic response and 

selectivity.  

Theoretically the harmonics taken into consideration should be the odd ones until the 19th 

that are not multiple of three, since the system has three wires. However, due to the presence 

of single-phase loads connected to the power grid, a third harmonic can be present, making 

therefore necessary the use of PR regulator for this frequency. 

Fig. 2.11 shows the Bode diagrams of the magnitude and phase of the open loop transfer 

function of Fig 2.5 where the harmonic compensator is also included in this example, the 

phase margin is 25 degrees. 

 Discretization of the Control System 

In analog systems the input and output signals are continuous functions of time and the 

mathematical relationships that bind the input to the output are of integral-differential type. 

The Laplace transform transforms these relations into rational algebraic equations. In order 

to obtain implementable expressions on a micro-processor, the transform Z is used, which 

 

Fig. 2.11 Bode diagrams of the magnitude and phase of the open loop transfer function of the current 
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allows to pass from the algebraic equations obtained with Laplace transform to numerical 

iterative equations. The discretization process is fundamental for a resonant regulator, due to 

the high gain it presents in a narrow band of frequencies. Several discrete-time 

implementations are possible, but some of these cause discrepancies in resonance peaks 

compared to what is expected. These inaccuracies can lead to significant performance losses, 

especially for high-frequency signals. In fact, many of the existing discretization techniques 

cause a pole shift. This fact translates into a deviation of the resonance frequency and 

consequently the achievement of a null error is not guaranteed. The error becomes more 

significant as the sampling period and the resonance frequency increase. Discretization also 

has an effect on zeros, modifying their distribution with respect to the continuous time 

transfer function and this has a direct effect on the stability of the system. 

The conversion from the Laplace domain to that of the Z-transform can be obtained 

through the relationships shown in TABLE 1. In [16] an analysis of the performance of 

resonant controllers with the different discretization methods has been carried out, 

highlighting the ones with the best performances in terms of accuracy in the location of the 

resonant peaks matching of the zeros and poles. 

 TABLE 1 – DISCRETIZATION METHODS  

Zero-order Hold 𝑋(𝑧) = (1 − 𝑧−1)𝑍 {𝐿−1 (
𝑋(𝑠)

𝑠
)} 

First-order Hold 𝑋(𝑧) =
(𝑧 − 1)2

2𝑇𝑐
𝑍 {𝐿−1 (

𝑋(𝑠)

𝑠
)} 

Forward Euler 𝑠 =
𝑧 − 1

𝑇𝑐
   

Backward Euler 𝑠 =
𝑧 − 1

𝑧𝑇𝑐
   

Tustin 𝑠 =
𝑧 − 1

(𝑧 + 1)

2

𝑇𝑐
 

Tustin con pre-

warping 

𝑠 =
𝑧 − 1

(𝑧 + 1)

𝜔0

tan (
𝜔0𝑇𝑐
2 )

   

Zero-Pole matching 𝑧 = 𝑒𝑠𝑇𝑐    

Impulse invariant 𝑋(𝑧) = 𝑍 {𝐿−1 (
𝑋(𝑠)

𝑠
)} 
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In this PhD work, among those methods, the one called Tustin with pre-warping has been 

chosen. 

 Experimental Results 

Experimental results have been carried out with a laboratory prototype of a shunt APF, 

which is used to compensate the highly distorted current produced by a diode bridge feeding 

a RC impedance, connected to the power grid through a filter inductance. The control system 

is implemented on a dSpace DS1104 platform and compensates up to the 19th harmonic 

component of the grid currents. The switching frequency is 10 kHz and the parameters of the 

experimental system are described in Table 2. 

TABLE 2 – SYSTEM PARAMETERS 

EF = 200 VDC   RF = 50 m 

VF,max = 115 Vpeak   LF = 2.36 mH 

IF,max = 10 Apeak  CL = 0.6 mF 

 =2 50 rad/s   RL = 60   

CF = 2.2 mF  LL = 2.36 mH 

 

Fig. 2.12 Waveform of the grid currents and fundamental component of the phase voltage when the 

APF is off. Scale: current (2 A/div), voltage (40 V/div) 



Part I: Grid-Connected Converters 

26 

Without any compensation, the currents absorbed by the passive load are the ones shown 

in Fig. 2.12. The phase delay of the phase current and the phase voltage is due to the 

decoupling inductance through which the distorting load is connected to the grid. The perfect 

sinusoidal waveform of the phase voltage is due to a software filter that extracts the 

fundamental component used for the synchronization of the PLL. 

In Fig. 2.14 the spectrum of the grid current of Fig. 2.12 is shown in semi-logarithmic 

scale and normalized to the fundamental component. This spectrum is evaluated over a 1kHz 

band, which is wide enough to assess the most prominent current harmonics. The highest 

current harmonics are the fifth harmonic of the inverse sequence and the seventh harmonic 

of the direct sequence. Also, it can be noticed that a first inverse harmonic as well as a third 

direct harmonic are present. They 

are caused by the imbalance of the 

three currents of network. For this 

harmonic spectrum, the THDI is 

21,56%. 

As the APF turns on the DC-link 

control loop brings the voltage of 

the floating capacitor from the 

phase-to-phase peak voltage of 150 

V to the reference value of 200 V as 

shown in Fig. 2.13. 

 

Fig. 2.14 Normalized spectrum of the grid currents when the APF is off. 

 

Fig. 2.13 Transient of the floating bridge voltage to the reference 

value. Scale: voltage (100 V/div) 
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Fig. 2.16 Transient of the power grid currents due to the charge of the DC-link. Scale: current 

(2 A/div), voltage (40 V/div) 

 

Fig. 2.15 Transient due to the charge of the DC-link of the power grid phase voltage and 

current, load current and filter current. Scale: current (2 A/div), voltage (40 V/div) 
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Fig. 2.15 shows the transient of the grid voltage and current, load current and filter current 

due to the charge of the DC-link. The PI controller that regulates the floating capacitor 

voltage provides the reference value for the d-component of the filter current. The resonant 

controller at the fundamental frequency tracks the reference value of the current, which 

causes an increase in the active power absorbed by the APF in order to increase its DC-link 

voltage, hence an increase in the current coming from the power grid. In Fig. 2.16 the same 

transient is shown and the behavior of the power grid current is highlighted. 

Fig. 2.17 shows transient of the power grid phase voltage and current, load current and 

filter current due to the activation of the harmonic compensation. 

In Fig. 2.18 the steady-state waveform of the power grid currents is shown and their 

harmonic spectrum is represented in Fig. 2.19. The THD of the power grid currents when the 

APF is tuned on drops to the value of 2,60%, proving therefore the good performance of the 

developed control system. 

 

 

 

 

 

Fig. 2.17 Transient of the power grid phase voltage and current, load current and filter current 

due to the activation of the harmonic compensation. Scale: current (2 A/div), voltage (40 

V/div) 
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It is possible to notice in Fig. 2.18 that there is a delay of the power grid current to the 

power grid phase voltage. It is possible to compensate the reactive power of the grid by acting 

on the q-component of the filter current at the fundamental frequency. The results of the 

reactive power compensation are shown in Fig. 2.20. 

 

Fig. 2.19 Normalized spectrum of the grid currents when the APF is on. 

 

Fig. 2.18 Power grid currents before and after the harmonic compensation of the APF. Scale: 

current (2 A/div), voltage (40 V/div) 
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Fig. 2.20 Reactive power compensation of the power grid through the APF. Scale: current (2 

A/div), voltage (40 V/div) 
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2.2 REPETITIVE CONTROLLER 

 Relation between Resonant Controller and Repetitive Controller 

The relation between resonant and repetitive controllers (RCs) has been object of study in 

the literature of the last decade [17]- [18]. Both are based on the Internal Model Principle 

(IPM), which affirms that a sufficient condition for the asymptotic tracking of the reference 

signal is that the transfer function obtained by merging the controller and the controlled plant 

contains the generating polynomial of the reference signal in the denominator. 

Let us then consider a sinusoidal reference signal with angular frequency equal to kω0, 

where ω0 is considered as fundamental component and k represents the harmonic order, 

written in the Laplace domain: 

 
( )

( )
0 22

0

( ) cosref

s
I s L k t

s k



= =  

+
 (2.20) 

which is equal to the transfer function of a resonant controller with frequency kω0. Thanks to 

the IPM, the resonant controller at kω0 is able to track a sinusoidal signal at that frequency. 

If the reference signal is composed by the sum of N sinusoidal signals at multiple frequency 

of the fundamental one, 

 
( )0

0

( ) cos
N

ref

k

I t k t
=

=   (2.21) 

then the controller able to track it, has to have the sum of N resonant controllers, one for each 

sinusoidal signal that contributes to the reference signal, as follow: 

 

( )
22

0 0

N

i

k

s
K

s k= +
 . (2.22) 

If the number N of resonant controllers summed up in (2.22) tends to infinite, for the 

properties of the exponential functions, it can be written: 
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  (2.23) 

which, with few mathematical steps and by neglecting for the moment the gain in front of the 

transfer function, can be written as follow: 
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 0
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1

sT

RC sT

e
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e
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−

+
=

−
. (2.24) 

The (2.24) represents the transfer function of a repetitive controller, whose control scheme 

is shown in Fig 2.21. 

It sums to the input reference, the same signal delayed of a period T0. This cause an infinite 

number of resonances at multiple frequencies of the fundamental one f0 =1/T0, as can be 

found by nullifying the denominator of (2.24): 

 0 0

0 0

0 0

1 1 1 cos( ) sin( ) 0

2

sT j T

res

e e T j T

T k f kf k
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 

− −
− = − = − + = 

 =  = 
 (2.25) 

(2.25) confirms hence that the repetitive controller is equivalent to a sum of infinite 

resonant controllers. These resonances, obtained by buffering the reference input signal, 

imply a lower computational burden compared with the resonant controllers, but it requires 

a memory effort in order to store a whole period of the input signal. 

The feedforward contribute instead, causes an infinite number of zeroes in (2.24), located 

in between the resonance frequencies, as shown in (2.26). 
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( )

0 0

0 0

0 0

1 1 1 cos sin 0

1
2 1 , ,

2

sT j Ts j

zeros

e e T j T

T k f k f k
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 
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 
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 

 (2.26) 

The Bode diagrams of the magnitude and phase for the transfer function (2.24), are 

represented in Fig. 2.22. 

A simpler version of repetitive control can be obtained if the control scheme shown in Fig 

2.21 is modified by cutting away the feedforward path as shown in Fig. 2.23(a). 

 

Fig 2.21. Repetitive control scheme. 
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As already said during the study of the resonant controller, it is necessary to take into 

account the delay introduced by the process of discretization and compensate it with a phase 

lead. If Td represents this phase delay, the scheme Fig. 2.23(a) can be modified as shown in 

Fig. 2.23(b), which transfer function can be found with the following mathematical steps: 

 
( ) ( )

( )0 0

0

0 01 1

d

dd d

s T T sT
s T TsT sT

sT sT

e e
v i ve e i e i

e e

− − −
− −−

− −
=  + =  =  

− −
 (2.27) 

 0

0
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1
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sT
sT

FHRC sT

e
G e

e

−

−
 =

−
. (2.28) 

The transfer function (2.28) still presents the same resonance frequencies of (2.24), 

ensuring the harmonics tracking, and the delay on the direct path allows one to achieve also 

a phase lead, which is causal as long as 0dT T . 

This topology will be indicated with the superscript (1) hereafter, while the subscript 

 

Fig. 2.22 Bode diagrams of the repetitive controller base scheme. 

a) b) 

Fig. 2.23 Base scheme of a repetitive controller a) and base scheme with the phase lead b 

+

+
𝑒−𝑠𝑇 
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(FHRC) stands for “Full Harmonic Repetitive Controller” and will be used for those 

configurations that presents resonance frequencies for all the multiple frequencies of the 

fundamental one. 

The Bode diagrams of magnitude and phase for the transfer function in (2.28) are shown 

in Fig. 2.24. 

Taking into account the delay compensation of Td for the control scheme of Fig 2.21 is 

not as easy as for the topology 1, due to the fact that the delayed period T0 is not on the direct 

path. 

The phase lead has been achieved by adding a further period delay from which the phase 

lead is obtained. The term is represented by the function 𝑒−𝑠(𝑇 −𝑇𝑑) in the control scheme of 

 

Fig. 2.24 Bode diagrams of the base scheme transfer function 𝐺𝐹𝐻𝑅𝐶
(1)

. 

 

Fig 2.25. Repetitive control scheme – Topology 2, FHRC. 
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Fig 2.25. The transfer function modifies as follow: 
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 Stabilization of the Repetitive Control 

The high gain over a wide frequency band affects the system stability. Several solutions 

have been investigated in order to stabilize this kind of controllers. An interesting solution 

has been developed in [19], where a low pass filter with zero-phase shift has been used to 

reduce the contribution at high frequency of the repetitive controller. The general expression 

of a zero-phase filter can be written as follow: 

 lim lim

0

1 1

( )
n n

sn sn

n n

n n

Q s C e C C e −

= =

= + +  , (2.30) 

Whose first order approximation is: 

 

( )

lim lim

0 1 0 1

1 1

1 1 0

( )

2 2 cosh
2

n n
sn sn s s

n n

n n

s s

Q s C e C C e C e C C e

e e
C C s C

   

 



− −

= =

−

= + + + + =

+
= = +

 
 (2.31) 

The values for the coefficients C1 and C0 can be found by writing (2.31) in the domain of 

the angular frequency ω, 

 
( ) ( )1 0 1 0( ) 2 cosh 2 cosQ C j C C C  = + = + . (2.32) 

In order to have ( )0 1Q   , the constraint of the coefficient becomes: 

 
0 10 2 1C C +   (2.33) 

Equation (2.32) represents a real number, which behaves as a moving average low-pass 

filter variable with the frequency. Its magnitude has a minimum for  = . The frequency 

of this minimum can be found as: 

 
min

1

2
f


= . (2.34) 

Choosing τ = 𝑇s, where 𝑇s represents the sampling period, sets the system Shannon 

frequency as the frequency for which the filter has a minimum, obtaining a decreasing trend 

in the whole system band. In Fig 2.27 the trend of the gain of the filter is shown when its 
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coefficients vary; the sampling frequency has been assumed to be 10 kHz, so the trend of the 

module up to 5 kHz is shown.  

The cut-off frequency decreases as C1 increases. It is important to design this filter with a 

cut-off frequency above 1 kHz, where the harmonics of interest are, in order to not interfere 

with the current controller. The filter Q(s) strongly reduces high frequencies disturbances, 

which may be harmful and cause of instability. 

However, this filter topology is not implementable due to the lead phase term C1 e
sτ in its 

transfer function. Nevertheless, once again, it is possible to compensate the phase lead 

required by the filter by including it in the direct path, where it is multiplied by a delay 

operator. It is possible to write: 

 ( ) 2

1 0 1 1 0 1( ) ( ) s s s s s ssT sT sT sT s T sT
Q s Q s e C e C C e e C e C e C

− − − − = = + + = + + , (2.35) 

 ( )00( ) ( ) ss T TsT
Q s e Q s e

− +− = . (2.36) 

 

Fig 2.27. Bode diagram of the magnitude of the average moving low pass filter 

 

0.6

frequency

 

Fig 2.26. Repetitive control scheme implemented – Topology 1, FHRC. 
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The control scheme of the repetitive controller of Fig. 2.23(b) can be implemented as 

shown in Fig 2.26.  Its transfer function is: 

 
( ) ( ) ( )

( ) ( )
( )

0

0

1 1

, 1 1
1

s

d

s

s T T

sT

FHRC plug in s FHRCs T T

Q s e
G k e G

Q s e

− +

− − +
= + = +

−
. (2.37) 

In addition to the filter Q(s), a series gain ks has also been added. It is used to increase the 

controller gain overall the bandwidth. 

A “plug-in” path is added to control scheme of Fig 2.26. It sums the input error to the 

repetitive output and allows one to define a regulation loop that does not include the 

controller. This feature will helpful in the mathematical steps for the tuning of the series gain 

ks. 

Likewise (2.28), the repetitive controller 𝐺𝐹𝐻𝑅𝐶
(1)

 contains resonance frequencies for all the 

multiple harmonics of the fundamental one. 

The tuning of the series gain ks is accomplished by studying the stability of the closed-

loop (2.38), shown in Fig 2.28. 

 ( )( )
( )( )

( ) ( )( )( ) ( )
( ) ( ) ( )( )

0

0

1

, 1

1 11

1 11 1

d d

d d

s T T sT

sFHRC INV PLANT

current cl s T T sT

sFHRC INV PLANT

e Q s k e G sG G G
G

e Q s k e G sG G G

− −

− −

− −+
= =

− −+ +
. (2.38) 

According to [19], the current loop is stable if: 

• the transfer function (2.39), considering 𝐺𝐹𝐻𝑅𝐶
(1)

= 0, is stable, 

 

1

INV PLANT

INV PLANT

G G
G

G G
=

+
 (2.39) 

• the denominator of  (2.38) is not zero in the frequency band up to the Shannon 

 

Fig 2.28. Current control loop. 
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frequency 
2

sf , 

 ( ) ( )( )1 1dsT

sQ s k e G s−  . (2.40) 

By writing (2.40) in the frequency domain and Q and G in polar coordinates, the last 

condition becomes 

 ( ) ( ) ( ) ( )( )( )

( ) ( )( )( )
( )

1 1

1
1

Q G d

G d

j j T

s

j T

s

Q e k G e

k G e
Q

    

  

 




+

+

−  

 − 

 (2.41) 

By solving the last inequality, one finds the values of the series gain ks that satisfy the 

stability condition, 

 ( )

( ) ( )

( )( )
( )

2

2 2

1 2cos
0

G d

s

s

Q T
k

GQ k G

   

 

− +
  + . (2.42) 

The last condition can be approximated since the first term of upper limit tends to zero in 

the frequency band of the regulator, becoming: 

 ( )( )
( )

2cos
0

G d

s

T
k

G

  



+
  . (2.43) 

It can be noticed that there are admissible values of ks as long as ( )
2

G dT


  +  . It is 

then possible to choose the phase Td in order to maximize the upper bound of the series gain. 

In Fig 2.29 is shown the trend of the series gain ks for different values of the phase lead 

 

Fig 2.29. Trend of the series gain ks for different value of the phase lead Td. 
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Td, which depends on the number of sample time that have to be compensated. 

The Bode diagrams of magnitude and phase of 𝐺𝐹𝐻𝑅𝐶
(1)

 in (2.37) with the low-pass filter 

and the series gain so tuned become as shown in Fig. 2.30 

 

Similar techniques are used to stabilize the topology of repetitive controller shown in Fig 

2.25, which modifies as shown in Fig 2.31. 

The transfer function for this control scheme becomes: 

 

 

Fig. 2.30 Bode diagrams of the transfer function 𝐺𝐹𝐻𝑅𝐶
(1)

 stabilized. 

 

Fig 2.31. Repetitive control scheme implemented – Topology 2, FHRC. 
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( ) ( ) ( )

( ) ( )

( ) ( )
0

0

0

2 2

,

1
1 1

1

s

d

s

s T T

s T T

FHRC plug in s FHRCs T T

Q s e
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Q s e
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+
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−
. (2.44) 

 

The tuning of the gain series gives the following range of admissible values: 

 ( )

( ) ( )

( )( )
( )

( )( )
( ) ( )

2

1 2

2 2 * *

1 2cos 2cos
0 s

s

Q
k

G k G k QQ k G

    

   

−
  + + . (2.45) 

where the parameters k*, θ1, θ2 and θ3 stand for: 

 

( )
( )( )

( ) ( )
( )( )*

3

1 1 1
1 cos 1 1 cosQk

G Q Q
   

  

    
 = + + + + −   

    
    

, (2.46) 

 
1 G dT  = + , (2.47) 

 
2 G d QT   = + − , (2.48) 

 
3 1 2  = + . (2.49) 

 

The Bode diagrams of magnitude and phase of (2.44) are shown in Fig. 2.32. 

 

Fig. 2.32 Bode diagrams of the transfer function 𝐺𝐹𝐻𝑅𝐶
(2)

 stabilized. 
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 Odds Harmonic Repetitive Controller (ODRC) 

It is possible to change the set of resonance frequencies for both topologies shown, by 

acting on the sign of the feedback signal. The control scheme of Fig 2.26, modified as shown 

in Fig 2.33, has the following transfer function 

 

( ) ( )

( )

( )

0

0

2
1 1

,

2

1 1

1

s

d

s

T
s T

sT

ODRC plug in s OHRCT
s T

Q s e
G k e G

Q s e

 
− + 

 

−  
− + 

 

= − + = +

+

. (2.50) 

The set of resonance frequencies can be found equating to zero the denominator of 𝐺𝑂𝐷𝑅𝐶
(1)

, 

 

( ) ( )

0

0 02

0
0

1 1 cos sin 0
2 2

2 1 2 1 , ,
2

T
j

res

T T
e j

T
k f k f k



 

 

−    
+ = + − =    

   

 = +  = + 

 (2.51) 

The resonance frequencies are located at the odd harmonics of the fundamental frequency 

f0. 

The Bode diagrams of 𝐺𝑂𝐷𝑅𝐶
(1)

, without considering the effects of Q(s) and ks, are shown in 

Fig 2.33, while in Fig. 2.35 the same diagrams are shown after the stabilization procedure. 

 

Fig 2.33. Repetitive control scheme implemented – Topology 1, ODRC. 
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Fig. 2.34 Bode diagrams of the transfer function 𝐺𝑂𝐻𝑅𝐶
(1)

 not stabilized 

 

Fig. 2.35 Bode diagrams of the transfer function 𝐺𝑂𝐻𝑅𝐶
(1)

 stabilized. 
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Similar changes can be applied to the control scheme of the second topology in Fig 2.31, 

that becomes as shown in Fig 2.36. The transfer function becomes: 

 

( ) ( )

( )
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s
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s
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 
−  

− + 
 

−
= − + = +

+

, (2.52) 

which has the same set of resonance frequencies found in (2.51) for 𝐺𝑂𝐷𝑅𝐶
(1)

 and presents zeros 

at even harmonics: 

 0

0 02

0
0

1 1 cos sin 0
2 2

2 2 , ,
2
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j
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−    
− = − + =    
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 (2.53) 

Fig. 2.37 and Fig. 2.38 show the Bode diagrams for 𝐺𝑂𝐷𝑅𝐶
(2)

. 

 

Fig 2.36. Repetitive control scheme implemented – Topology 2, OHRC. 

 

-

-

𝑒
−𝑠

𝑇 
2  𝑇 

Δi v

𝑒
−𝑠

𝑇 
2 −𝑇𝑑

+

+
 𝑠

 (𝑠)

+

+



Part I: Grid-Connected Converters 

44 

 

 

 

Fig. 2.37 Bode diagrams of the base scheme transfer function 𝐺𝑂𝐻𝑅𝐶
(2)

. 

 

Fig. 2.38 Bode diagrams of the transfer function 𝐺𝑂𝐻𝑅𝐶
(2)

 stabilized. 



Current Control 

45 

 Implemented Current Control 

The whole current control scheme is shown in Fig 2.39. 

The regulation of the fundamental component of the current is obtained with a resonant 

controller which has been tuned as explained in section 2.1.C, while the harmonic 

compensation has been achieved by the means of the repetitive controllers. 

To discretize the repetitive controller, it is assumed that the sampling period is an integer 

fraction of the fundamental period Tp: 

 ( ) ( )( ) ,p s ssT s NT s NT pN

s

T
e e Z e z N

T

− − − −=  = =  (2.54) 

where N represents the number of samples stored by the digital processor. For the different 

repetitive controllers the samples stored are as follow: 

 (1) 1

(2) 1
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(2) 1
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s
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s
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T

= =

= =

= =

= =

 (2.55) 

Due to high number of samples required by the FHRC of the second topology, it has not 

been possible to test this configuration with the available laboratory setup. 

The value of the series gain ks has been settled to 5Ω for the first topology of repetitive 

and 2Ω for the second topology, while the coefficient for the filter Q(s) has been chosen 

C0=0.9 and C1=0.05 for all the different configurations. The phase lead compensation has 

been set to 4Ts. 

 

Fig 2.39. Implemented current control. 
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 Experimental Results 

The same laboratory setup used to test the multi-resonant current controller in the section 

2.1.E has been used to test the developed repetitive control. 

Since the control of the DC-link voltage is still based on a resonant controller, the 

following experimental results will show just the harmonic compensation achieved with the 

different types of repetitive controllers. 

 

• Full Harmonic Repetitive Control – Topology 1 (FHRC) 

Fig. 2.40 shows the transient due to the harmonic compensation achieved for this 

configuration. In particular, from the top of the figure to the bottom, one can see 

the waveforms of the power grid phase voltage and current, load current and filter 

currents. 

Fig. 2.41 shows the power factor correction of the power grid current. 

In Fig. 2.42 and Fig. 2.43, a closer look to the waveform of the power grid current 

and the related spectrum confirms the superior behavior of the repetitive control 

in terms of harmonic compensation.  

 

Fig. 2.40 Transient of the power grid phase voltage and current, load current and filter 

currents due to the activation of the harmonic compensation. Scale: current (2 A/div), voltage 

(40 V/div). Full Harmonic Repetitive Control – Topology 1 
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c 

Fig. 2.42 Waveform of the grid currents and fundamental component of the phase voltage when 

the APF is on. Scale: current (2 A/div), voltage (40 V/div). Full Harmonic Repetitive Control – 

Topology 1 

 

Fig. 2.41 Power factor correction. Scale: current (2 A/div), voltage (40 V/div). 

Full Harmonic Repetitive Control – Topology 1 



Part I: Grid-Connected Converters 

48 

This result is confirmed by the value of the THD that drops from the starting value of 

21.56% when the RC is off, to a value of 2,73% when it is on. 

 

 

 

  

 

Fig. 2.43 Normalized spectra of the grid currents when the APF is on. 

Full Harmonic Repetitive Control – Topology 1 
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•  Odd Harmonic Repetitive Control – Topology 1 (OHRC) 

Fig. 2.44 shows the transient of the power grid phase voltage and current, load 

current and filter currents after the activation of the harmonic compensation for 

the OHRC case. The same transient is shown in Fig. 2.45 while in Fig. 2.46 there 

is the waveform of the power grid current, when the power factor is unity. The 

spectrum of the currents after the compensation is shown in Fig. 2.47, with a THD 

of 2,29%. 

  

 

Fig. 2.44 Transient of the power grid phase voltage and current, load current and filter 

currents due to the activation of the harmonic compensation. Scale: current (2 A/div), voltage 

(40 V/div). Odd Harmonic Repetitive Control – Topology 1 
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Fig. 2.46 Waveform of the grid currents and fundamental component of the phase voltage 

when the APF is on. Scale: current (2 A/div), voltage (40 V/div). 

Odd Harmonic Repetitive Control – Topology 1 

 

Fig. 2.45 Transient of the power grid phase voltage and filter currents due to the activation 

of the harmonic compensation. Scale: current (2 A/div), voltage (40 V/div). Odd Harmonic 

Repetitive Control – Topology 1 
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Fig. 2.47 Normalized spectra of the grid currents when the APF is on. 

Odd Harmonic Repetitive Control – Topology 1 
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• Odd Harmonic Repetitive Control – Topology 2 (OHRC) 

Fig. 2.48 shows the transient of the power grid phase voltage and current, load 

current and filter currents after the activation of the harmonic compensation, while 

Fig. 2.49 focuses just on the power grid currents. 

Finally, the grid currents with unity power factor are shown in Fig. 2.50 and the 

harmonic spectrum in Fig. 2.51.The THD for this configuration drops to 2,21%. 

  

 

Fig. 2.48 Transient of the power grid phase voltage and current, load current and filter 

currents due to the activation of the harmonic compensation. Scale: current (2 A/div), voltage 

(40 V/div). Odd Harmonic Repetitive Control – Topology 2 
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Fig. 2.49 Transient of the power grid phase voltage and filter currents due to the activation 

of the harmonic compensation. Scale: current (2 A/div), voltage (40 V/div). Odd Harmonic 

Repetitive Control – Topology 2 

 

Fig. 2.50 Waveform of the grid currents and fundamental component of the phase voltage 

when the APF is on. Scale: current (2 A/div), voltage (40 V/div). 

Odd Harmonic Repetitive Control – Topology 2 
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 Effects of the Delay Compensation 

The effects of the phase lead Td = nTs on the harmonic compensation has been evaluated. 

The FHRC topology 1 has been used for this evaluation and the results are shown in TABLE 

3. 

 TABLE 3 – DELAY COMPENSATION  

n 𝑻𝑯𝑫 

0 Unstable 

0.5 Unstable 

1 Unstable 

1.5 3.72 

2 3.15 

2.5 2.81 

3 2.66 

3.5 2.70 

4 2.73 

4.5 2.51 

5 2.83 

 

Fig. 2.51 Normalized spectra of the grid currents when the APF is on. 

Odd Harmonic Repetitive Control – Topology 2 
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This configuration proved to be unstable for a delay compensation Td below one sample 

time Ts and above five, while it keeps an almost constant behavior, in terms of THD, from 3 

to 4.5. The oscillations of the THD are mostly due to random fluctuations of the grid voltage. 

Fig. 2.52 shows the trend of the THD as function of the delay compensation. 

2.3 CONSIDERATIONS 

In this chapter, the resonant and repetitive current controllers have been studied and tested. 

The experimental results have shown good performance in terms of harmonic compensation 

for both. The THD of the grid currents are shown in TABLE 4. 

 TABLE 4 – THD COMPARISON  

Current Controller THD 

Resonant 2,60% 

FHRC– Topology 1 2,73% 

OHRC– Topology 1 2,29% 

OHRC– Topology 2 2,21% 

 

 

Fig. 2.52 THD for different value of the delay compensation. 

Full Harmonic Repetitive Control – Topology 1 
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Both resonant and repetitive current controllers are able to keep the THD of the grid 

currents below 3% starting from a THD of 21,56% occurring without harmonic 

compensation. 

The similar results are easier to understand if the frequency response of the two regulators 

are taken into account. The resonant controller presents peaks at frequencies from the third 

to the nineteenth harmonics, while the repetitive control allows one to compensate all the 

harmonics of the fundamental one through a feedback loop of the reference signal delayed 

by a fundamental period or less, depending on the topology used. Thus, the latter should 

compensate harmonics of higher order up to the Shannon frequency of the control system, 

implying better performance compared to the resonant control. However, the zero-phase filter 

used to stabilize the repetitive controller has been designed to have a cut-off frequency around 

1 kHz, making therefore the compensation of high order harmonics less effective. 

Further considerations can be made on the implementation of the two controllers. The 

repetitive controller requires a memory effort to store all the needed samples in a buffer, but 

the computational burden is quite small, compared to the one required by the array of resonant 

controllers. It is then possible to increase the switching frequency and to reduce the current 

ripple. 

On the other hand, the features of selectivity provided by the resonant controllers has two 

advantages over nonselective solutions, such as the repetitive control. Firstly, the stability of 

the system can be enhanced because the gains of the regulators can be adjusted depending on 

the frequency of the cancelled harmonics. Secondly, in the case of voltage overmodulation 

or current saturation, the control system can choose which harmonics have to be compensated 

without compromising the overall performance. This topic is widely investigated in the next 

chapter. 
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Chapter 3         

 ADAPTATIVE VOLTAGE SATURATION 

FOR AN APF 

A problem that has been investigated in this PhD work is the exploitation of the DC-link 

voltage of the APF when the reduction of the high frequency harmonics is performed by an 

array of resonant controllers. Since the output voltage of the APF is obtained as a sum of 

several contributions, one for each harmonic component of the current disturbance, if the 

magnitude of the output voltage is greater than the maximum admissible voltage, the entire 

converter runs the risk of an uncontrolled reduction of performance, because the effect of 

voltage saturation on the compensation of each harmonic is unpredictable. 

3.1 OPERATION OF AN APF UNDER CONSTRAINTS 

 Current and Voltage Constraint 

The mathematical model of an APF has been already studied in Section 1.1. To complete 

the mathematical model, the voltage and current constraints have to be taken into account. 

In fact, the performance of an APF is limited by the rated current IF,max of the converter 

and the available voltage VF,max of the floating DC-link. These constraints can be expressed 

by the following inequalities: 

 F F,maxi I  (3.1) 

 ,maxF Fv V  (3.2) 

where VF,max is equal to 0.57EF if space vector modulation is used. 

If the current control is achieved by the means of an array of resonant controllers, as shown 

in “Implemented Multi-Resonant Current Control”, the output voltage vector of the APF 

consists in the sum of outputs of each resonant controller and can be written as follows: 

 , ,

1,...,

S S

F ref Fk ref

k n

v v
=

=  , (3.3) 

where 
,

S

Fk refv  (k=1, …, n) is the contribution to the output voltage produced by the kth 

regulator. 
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The output voltage given by (3.3) should comply with (3.2), so the kth regulator must 

exploit only a fraction of the DC-link voltage at disposal. Consequently, the output voltage 

of each proportional-resonant regulator is constrained by a saturation block, whose equation 

can be written as follows: 

 , ,

S S

Fk ref k Fk reqv c v= , (k=1, …, n) (3.4) 

where ck is a positive coefficient not greater than one, and 
,

S

Fk reqv  is the voltage requested by 

the kth resonant controller without saturation constraints. To analyze this problem, in 

practical applications, it is necessary to distinguish between the fundamental component and 

the high frequency component of voltage Fv . While the latter is used to reduce the distortion 

of the load currents, the former is necessary to control the average active and reactive powers 

and, consequently, the converter stability. 

Let’s consider the operation of an APF through a graphical analysis of the space vectors 

of the voltage applied and the current injected by it. The current absorbed by the filter is given 

by the equation of the voltage drop across the decoupling inductance LF (1.4). In steady state 

condition and by neglecting the drop on the resistance RF, (1.4) becomes 

    
G F F Fv v j L i− = . (3.5) 

In Fig. 3.1 some working condition are shown. 

 

Fig. 3.1 Example of different working condition for an APF 
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To nullify the current injected in the power grid, it is necessary to apply a voltage output 

equal to the power grid voltage as shown in Fig. 3.2(a). If the voltage available on the DC-

link is lower than the phase to phase peak voltage of the power grid, then it is not possible to 

nullify the current Fi . In this case, it is still possible control the active power exchanged but 

not the reactive one. The value of the reactive current absorbed depends on the difference 

between the grid and the APF voltage, as shown in Fig. 3.2(b). 

In this condition the APF in unable to work, therefore, the first goal of the control system 

is to ensure stable operation of the APF and, only later, to improve the quality of the line 

currents.  

The allocation of the DC-link voltage to each regulator should privilege the control of the 

fundamental component of the filter current, in order to ensure the basic operation of the 

converter, while the harmonic currents should be compensated with the residual voltage that 

is not used to control the fundamental component. As a consequence, coefficient c1 is 

normally equal to 1, provided that the magnitude of the fundamental voltage is below VF,max. 

Conversely, the other coefficients ck may be lower than 1, depending on whether the available 

DC-link voltage is sufficient or not to synthesize the resulting total voltage S

refFv , . 

 Anti-Windup Technique 

In case of saturation it is necessary to tackle the problem of wind-up, which may arise due 

to the integral action of the regulators. If the wind-up problem is not properly managed or it 

is partially treated, the system may become unstable. 

Among the possible solutions to the problem of wind-up, the basic one is to consider all 

regulators as a whole. Once the magnitude of 
S

Fv  exceeds the admissible voltage, it is 

necessary to sum a feedback signal to the input error (back-calculation), shown in Fig. 3.3(a). 

Unfortunately, the choice of the feedback gain to ensure the system stability is not always 

 

Fig. 3.2. Available voltage on the DC-link sufficient to nullify the filter current a) and available voltage not 

sufficient b) 
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simple and it has to be updated if the 

set of compensated harmonics 

changes. 

A possible remedy is to treat the 

wind-up problem of each regulator 

independently of the others, Fig. 

3.3(b). This solution is more flexible, 

but the number of back-tracking gains 

to be tuned increases, and the 

maximum voltage Vk,max has to be 

chosen for each regulator. 

In digital control systems, it is 

possible to invert the discrete-time 

equation of the regulator and re-

calculate the input error as a function 

of the saturated output, Fig. 3.4. This 

solution avoids the problem of 

choosing the back-tracking gains. 

The previous technique can be 

improved by calculating automatically 

Vk,max depending on the operating 

conditions. In addition Vk,max should be 

dynamically changed in such a way 

that the compensation of the most 

significant current harmonics is privileged. 

Consequently, Vk,max should be chosen in proportion to the corresponding voltage request, 

so that the regulators involved in the cancellation of high currents are less penalized: 

 ,max ,

s

k k Fk reqV c v=  (3.6) 

and this proportion is decided through the coefficient ck already defined in (3.4) 

Different strategies can be used for the repartition of the available voltage among the 

regulators and for the selection of the coefficients ck. 

a)

b) 

Fig. 3.3. Anti-windup configurations with back-tracking of the 

saturation signal for the whole array of PR controllers a) and 

separately for each PR controller b) 
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Fig. 3.4. Anti-windup Anti-windup configurations for 

proportional resonant controllers. With recalculation of the 

input error. 
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3.2 SATURATION STRATEGIES 

 Strategy 1 

The output 
,

S

Fk reqv  of each regulator Rk has to be limited to values with a magnitude not 

greater than the quantity Vk,max. The resulting equation of the saturation block is as follows: 

 

,

,max , ,max

,,

,

Fk req

k Fk req ks
Fk reqFk ref

Fk req

v
V if v V

vv

v




= 



 (3.7) 

Under the assumption that the magnitude of 1,F reqv  is less than VF,max, to satisfy (3.2), it is 

sufficient that the upper bounds Vk,max (k=1, 2, …, N) are chosen so that 

 1,

, 1

s

k,max F,max F ref

k N k

V V v
 

 −  (3.8) 

The simplest choice for Vk,max is to assume an equal repartition of the residual voltage 

among all regulators, 

 1,

1

s

F,max F ref

k,max

V v
V

N

−
=

−
. (3.9) 

However, this choice does not consider that the voltage request for the voltage harmonics 

is usually not uniform, because some current harmonics may be more prominent than the 

other, so Vk,max  is chosen as in (3.6). By substituting (3.6) in (3.8), considering it as an 

equality, it is possible to find a unique value for the coefficient ck, 

 
,max 1,

,

2,...,

S

F F ref

S

Fk req

k N

V v
c

v


−
=


. (3.10) 

As a consequence of this saturation strategy, the control system tends to ensure higher 

voltage margin to the regulators that are more overloaded, while the performance of the 

fundamental controller is preserved. 

It is worth to make some considerations about this strategy. As shown in (3.3), the total 

output voltage 
,

S

F refv  is composed of several contributes, rotating at different frequencies, 

meaning therefore that its magnitude is not constant on a period of the fundamental and it 

can be lower or higher than the upper voltage limit VF,max, as shown in Fig. 3.5(a) and (b) 

respectively, where for sake of simplicity, the total output voltage is composed just by the 



Part I: Grid-Connected Converters 

62 

first, the fifth and the seventh harmonics. 

The strategy 1 however, limits the output for the whole period, since it considers the worst 

case, when the harmonics sum up in phase, making the harmonics compensation less 

effective. This concept can be mathematically expressed by considering that the value of c in 

(3.10) can be also obtained from the following triangular inequality: 

 
1, , 1, ,

2,..., 2,...,

1, , ,max

2,...,

S S S S

F ref Fk ref F ref Fk ref

k n k n

S S

F ref Fk req F

k n

v v v v

v c v V

= =

=

+  + 

 + 

 


 (3.11) 

 Strategy 2 

Coefficients ck are assumed equal to each other, as in Strategy 1. Let us call this common 

value c'. This quantity differs from c, defined for Strategy 1, because it is calculated without 

the simplification introduced by the triangular inequality, but it considers also the phases of 

the resonant controller outputs. Substituting (3.3)-(3.4) in (3.2), and considering ck=c', leads 

to the following inequality: 

 1, , 1, , ,max

2,..., 2,...,

S S S S

F ref Fk ref F ref Fk req F

k n k n

v v v c v V
= =

+ = +   . (3.12) 

Squaring both sides, one obtains: 

 ( )
2

2 1 02 0a c a c a + +  . (3.13) 

where a0, a1 and a2 are defined as follows: 

 
2

2

0 1, ,max

S

F ref Fa v V= − . (3.14) 

a)   b) 

Fig. 3.5. Space vector representation of the total output voltage under the upper voltage limit a) and above it b) 
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 1 1, ,

2,...,

S S

F ref Fk req

k n

a v v
=

=   . (3.15) 

 

2

2 ,

2,...,

S

Fk req

k n

a v
=

=  . (3.16) 

Inequality (3.12) admits an explicit interval of solutions for c' if its discriminant is positive, 

as shown in (3.17). A sufficient condition to find a solution is that 1,

S

F refv  is lower than 

VF,max: 

 ( )
2 2

2
2

1, , ,max 1, ,

2,..., 2,...,

0S S S S

F ref Fk req F F ref Fk req

k n k n

v v V v v
= =

    + −      
  . (3.17) 

The maximum value of c' that satisfies (3.12) is 

 

2

1 2 0 1

2

a a a a
c

a

− −
 = . (3.18) 

It is worth noting that c' is a time-variant quantity because coefficients a1 and a2 depend 

on the phase angle of the voltage vectors 
,

S

Fk reqv  , as can be seen from (3.14)-(3.15). 

 Strategy 3 

A further improvement can be applied to the saturation algorithm if it is considered that, 

during the fundamental period, some harmonic components contribute to the total output 

voltage by increasing its magnitude, others by decreasing it, depending on the phase they 

sum up. The latter don’t need to be limited, since they usefully contribute to reduce the total 

output voltage requested. This feature can be evaluated by considering the derivative of the 

total output voltage magnitude with respect to the voltage harmonic under evaluation: 

 
1, ,

, 2,...,

, ,

S S
S F ref Fk req

F req k n

S S

Fk req Fk req

v v
v

v v

=

 +


=
 


. 

(3.19) 

In particular, it is necessary to evaluate the sign of (3.19), to understand if the kth harmonic 

is contributing to increase the magnitude of the total output voltage. It is then equivalent to 

consider the square of ,

S

F reqv , given by the following expression: 
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( ) ( )

2 2

1, , 1, , , ,

2,..., 2,..., 2,..., 2,...,

,

2S S S S S S

F ref Fk req F ref Fk req Fh req Fk req

k n k n h n k n

S

Fk req

v v v v v v

v

= = = =

 
 + +  +  

 



   
. 

(3.20) 

Developing the last derivative and considering the contribute of the first harmonic greater 

than the ones of higher harmonics, one finds: 

 ( )

2

,

, 1, ,

,

2 2 cos

S

F ref S S S

Fk ref F ref Fk ref kS

Fk req

v
v v v

v



+


. (3.21) 

where ψk represents the relative phase of the kth harmonic respect the fundamental one. 

The harmonics whose relation (3.21) gives a negative value, do not need to be saturated. 

Let us call Nn the set of indexes of the vectors that give a negative or null contribution to 

the magnitude of the output voltage, and Np the set of the indexes of the vectors that give a 

positive contribution. 

The coefficient ck is assumed equal to 1 if nk N . For the remaining vectors ( pk N ), ck 

is assumed equal to the maximum value of c'' that verifies the following inequality: 

 1, , , ,max

n p

S S S

F ref Fk req Fk req F

k N k N

v v c v V
 

+ +   . (3.22) 

Using the same procedure adopted for Strategy 2, one can calculate the explicit expression 

of c'', which is as follows: 

 

2

1 2 0 1

2

b b b b
c

b

− −
 = . (3.23) 

where 

 

2

2

0 1, , ,max

n

S S

F ref Fk req F

k N

b v v V
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1 1, , ,2
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S S S
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k N k N

b v v v
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 
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 
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 2

2 ,

p

S

Fk req

k N

b v


=  . (3.26) 
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A value for coefficient c'' exits if the discriminant 2

1 2 0b b b−  is positive or zero, and the 

denominator b2 is different from zero. The former condition is verified if 1,

S

F refv  is lower 

than VF,max, the latter is verified because b2 is usually a positive number different from zero. 

A graphical analysis of difference between strategy 2 and 3 can be useful to highlight the 

benefits introduced by the evaluation of the relation (3.21) in the saturation algorithm. 

Let us consider the same condition used before, when the total output voltage is composed 

by the first, the fifth and the seventh harmonics. In Fig. 3.6(a) the same condition of requested 

voltage over the boundary is limited by strategy 2 in Fig. 3.6(b) and strategy 3 in Fig. 3.6(c). 

In strategy 2, all the high frequency harmonics, fifth and seventh in this case, are reduced 

by the same factor given by (3.18), so that the output voltage ,

S

F refv  is brought inside the 

voltage limit imposed by VF,max, while the fundamental harmonic is unaffected as explained. 

Strategy 3, instead, reduces just the harmonics whose contribute increases the total output 

 a) 

         b)         c) 

Fig. 3.6. Space vector representation of the total output voltage over the voltage limit a) constrained by strategy 

2 b) and by strategy 3 c). 
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voltage according to (3.21), which in Fig. 3.6(a) is just the fifth harmonic. Due to the fact 

that the seventh harmonic is not reduced by strategy 3, all “its magnitude” contributes to 

reduce ,

S

F refv , hence the reduction of the fifth harmonic has to be less consistent to bring the 

total voltage inside the constraint. 

This can be also be appreciated in Fig. 3.7, where the magnitude of the fifth and seventh 

harmonics, normalized to the corresponding unconstrained request, are plotted as function of 

the phase over a fundamental period. The 7th harmonic, which is not reduced by strategy 3 

(red solid line) in Fig. 3.7(b), allows one to have a further voltage margin, compared with 

strategy 2 (blue dash line), which can be allocated for the other harmonics that need to be 

saturated, as the 5th harmonic, Fig. 3.7(a). 

a) b) 

Fig. 3.7. Normalized magnitude of 5th a) and 7th b) harmonics as function of fundamental phase with the second 

strategy, blue dash line, and the third strategy, red solid line. 
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Fig 3.8. APF control scheme with adaptative voltage saturation. 
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 Experimental Results 

By using the same laboratory setup as for all the grid connected applications covered so 

far, some experimental results have been obtained. The parameters of the drive are listed in 

TABLE 2. The control system of the filter 

includes an array of proportional-

resonant regulators to cancel the odd 

harmonics of the grid current from the 

3rd one up to the 19th one and is shown 

in Fig 3.8. 

Fig 3.9 shows the behavior of the grid 

currents for Strategies 1, 2, and 3, when 

the DC-link voltage is not sufficient to 

generate the requested compensation 

voltage. The grid currents are shown in 

the upper part of all figures. In the lower 

part, there are two sub-figures showing 

the details of the current waveforms 

without and with voltage saturation. 

Initially, the APF operates in normal 

conditions, and the THD of the grid 

current is just below 3%. Afterwards, a 

reduction by 15% in the DC-link voltage 

is caused to force the saturation of the 

voltage regulators. As can be seen, a 

distortion of the grid current appears. 

However, the effect of the reduction in 

the voltage level depends on the 

saturation strategy. 

Although Strategy 1 ensures that the 

coefficient c is constant over time, the 

resulting current is visibly distorted, and 

its waveform is nearly trapezoidal. 

 
Grid current 

No voltage saturation Voltage saturation 
a) 

 
Grid current 

No voltage saturation Voltage saturation 
b) 

 

Grid current 

No voltage saturation Voltage saturation 
c) 

Fig 3.9. Waveforms of the grid current when the requested 

voltage is greater than the available voltage. a) Strategy 1. 

b) Strategy 2. c) Strategy 3. Scale: current (2 A/div). 
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Conversely, Strategy 2 and 3 exhibit better performance and the distortion of the grid current 

is less perceptible. Overall, all strategies ensure a stable operation of the converter. 

Fig 3.10 shows the spectrum of the space vector of the grid current in different operating 

conditions. If the total output voltage is below the saturation threshold, the current harmonics 

are negligible, as shown in Fig 3.10 (a). Conversely, if the DC voltage becomes 85% of the 

rated value, some harmonics with orders -5, +7, -11, and +13 appear in the grid current. 

Comparing Fig 3.10. 4(b) and 4(c) leads to the conclusion that the amplitude of the 

harmonics generated by Strategy 2 is always lower than that of the harmonics generated by 

Strategy 1. In addition, Strategy 3 seems better than Strategy 2 because the harmonics with 

orders -5 and -11 have smaller amplitude. 

The curves of Fig 3.11 show the THD of the grid current when the DC-link voltage further 

decreases from 85% to 80% of the rated voltage. The THD of Strategies 2 and 3 does not 

change appreciably as long as the DC-link voltage is greater than 85% of the rated voltage, 

but below this threshold value, the performance reduction is more significant. Conversely, 

Strategy 1 sees a linear increase in the THD as long as the DC-link voltage decreases. 
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Fig 3.10. Waveforms of the grid current when the requested voltage is greater than the available voltage. a) 

Strategy 1. b) Strategy 2. c) Strategy 3. Scale: current (2 A/div). 
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Fig 3.11. THD of the grid currents when the DC-link voltage decreases causing voltage saturation. 
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Chapter 4   

 OPEN-END WINDING MOTORS DRIVE 

4.1 INTRODUCTION 

High performance electric machines require the use of permanent magnets in somarium-

cobalt or neodymium-iron-boron, i.e. based on rare-earth elements [20] - [21]. Although the 

17 chemical elements belonging to the "rare-earths" are widespread throughout the Earth's 

crust, deposits with sufficient concentration for exploitation are few in number. This shortage 

makes uncertain not only the future of the green economy and consumer electronics, but also 

of the renewable energies. Until the 1950s, most of the rare earths came from India and Brazil, 

then the dominance of exports was led by South Africa until the 1980s, when for a short time 

the US became the major producers. With the new millennium, China has taken a turnaround 

in the rare earth market, dropping prices to become virtually a monopolist and today they 

cover 95% of world production. However, in recent years, China has imposed on its rare 

earth industry increasingly stringent production and export ceilings, behind the official 

objective of protecting the environment, causing the explosion of prices of many minerals, 

which have increased tenfold the levels of 2010, before falling again. Although the Chinese 

decisions have been severely criticized by the World Trade Organization (WTO), it is 

undeniable that the growing use has made rare earths a first-rate geostrategic importance, 

turning them into an inescapable political lever. To date, rare earths are on the list of "critical 

raw materials" compiled by the European Commission in 2014. A recent report by the 

European Commission's Joint Research Center examined the rare metal requirements of the 

6 low-carbon technologies on which European Strategic Energy Technology Plan (SET-Plan) 

is founded: nuclear, wind, solar, CO2 capture, biomass energy and electricity grids. The JRC 

study showed that 5 metals (indium, gallium, tellurium, neodymium and dysprosium) will 

have supply problems, putting at risk technological sectors such as photovoltaics, electric 

traction and wind power. The JRC recommends, first of all, to promote the search for 

alternative solutions for the most efficient use of these elements. One of the salient aspects 

highlighted by the European Commission is the forecast for the development of demand for 

rare earths in the coming years. The spread of electric cars could drive the demand for rare 



Part II: Open-End Winding Motors 

72 

earths to double-digit growth levels. 

For these reasons, the scientific community has considered new configurations of electric 

drives for high speed applications that do not rely on permanent magnets. 

Some special configurations of electric drives, based on wound rotor induction machines, 

have already been investigated. It has been verified that the performance of the machine 

improves if it is fed from stator and rotor sides by two separate inverters. The rotor-side 

inverter allows compensating the rotor reactive power and introduces an additional degree of 

freedom in the control scheme [22]- [23]- [24]. Furthermore, if the rotor-side inverter is 

floating, it can be embedded in the rotor without using shaft brushes [25], which may limit 

the speed range. The same principle can be applied to squirrel-cage rotor induction machines 

with open-ended stator windings. Initially, the open-end configuration was developed for 

permanent-magnet synchronous machines to reduce the current ripple in high-speed 

applications [26]- [27]- [28], but later it was considered also for induction machines. The 

stator phases can be fed by inverters located at both sides of the stator windings, and the 

energy may come from a common dc link, from two separate dc links, or from a dc link and 

a floating bridge, as shown in Fig 4.1. Although all these topologies may be suitable for 

specific applications, this PhD work focuses only on the last one, because it avoids the 

 (a) 

(b) 

 (c) 

 Fig 4.1. Schemes based on dual inverters for open winding machines. 
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problem of the circulation of the zero-sequence current and does not need separate dc sources, 

which may be not available. In [29] and [30], it is shown that the floating inverter offers many 

other benefits, such as the compensation of the reactive power of zero-sequence currents. 

The voltage boost can improve the motor operation and extend the speed range. In [31], 

the floating inverter is used to increase the total voltage applied to an integrated starter-

generator for automotive applications.  

The analysis of the torque capability of the motor is presented in [32], which is focused 

specifically on the field-weakening speed range, whose extension is proved dependent on the 

voltage of the secondary DC-link bus. 

As regards to the low speed range, in [33], the multilevel behavior of the dual inverter 

system is analyzed and a modulation technique that uses the redundant switching states to 

control the voltage of the floating capacitor is developed. The efficiency of the system is 

analyzed in [34]. 

After focusing on the control problem, discussed in [29]- [31], [33], and [34], the 

international research has tried to introduce some changes in the topology of the drive or 

exploiting the multilevel structure of the converters. The control of the floating bridge to 

generate a multilevel stator voltage is also investigated in [35] and [36]. Other solutions, 

based on three-level flying capacitor inverters, are proposed in [37] and [38] to improve the 

current quality. In [39], a square wave controller is proposed for high-speed applications to 

overcome the limitations of traditional pulse-width modulators. The research community has 

recently also explored some unconventional solutions. In [40], the analysis is focused on a 

structure that is similar to that shown in Fig 4.1(c), but it includes a ground connection 

originating from the middle point of the secondary dc-bus, so zero-sequence currents are 

allowed to circulate. Finally, in [41], the feasibility of a multiphase drive is assessed with 

positive results. 
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4.2 MATHEMATICAL MODEL FOR AN OPEN-END WINDING MOTOR 

 Machine and Floating Bridge Capacitor Equations 

With reference to Fig. 4.2, the voltage applied to the motor is: 

    S A Bv v v= −  (4.1) 

where Sv , Av  and Bv are the voltage space vectors of motor, inverter A and inverter B 

respectively. 

The mathematical model of an electrical motor, in a d-q reference frame aligned generally 

with the rotor flux, independently for the type of motor, can be written as follows: 

   
Sd

Sd S Sd Sq

d
v R i

dt


= − +  (4.2) 

 

  

Sq

Sq S Sq Sd

d
v R i

dt


= + +

 

(4.3) 

    Sd Sd Sd eL i = +  (4.4) 

    Sq Sd SqL i =  (4.5) 

    ( )
3

2
S ST p j i=  . (4.6) 

where  is the angular frequency of the rotor speed in electric radians, p is the number of 

pole pairs, vSd and vSq are the d-q components of the stator voltage vector Sv , iSd and iSq are 

the d-q components of the stator current vector Si , Sd  and 
Sq  are the d-q components of 

the stator flux vector S , e  is the excitation flux, T is the electromagnetic torque, LSd and 

LSq are the stator inductances along d and q axes respectively, RS is the stator resistance and 

"" is the dot product, defined as the sum of the products of the corresponding d and q 

components of the first and second vector. 

If the inverter losses are neglected, the rate of change of the electromagnetic energy stored 

in the floating capacitor C is equal to the instantaneous power exchanged by inverter B: 
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21 3

2 2
B S B

d
CE i v

dt

 
=  

 
 (4.7) 

where EB is the DC-link voltage of inverter B. 

It is useful to express Bv  as the sum of two components, p

Bv  and q

Bv , respectively parallel 

and orthogonal to Si , which can be rewritten as follows: 

    ( )p q S
B B B

S

i
v v jv

i
= + . (4.8) 

In this reference frame, (4.7) becomes: 

   
21 3

2 2

p

B S B

d
CE i v

dt

 
= 

 
 (4.9) 

which shows that the electromagnetic energy stored in the floating capacitor C, and 

consequently its voltage, depends solely on the parallel component of Bv  to the stator current. 

At steady state the DC-link voltage of the floating capacitor bridge should be constant. 

Consequently, (4.9) leads to the conclusion that 

    0p

Bv = . (4.10) 

Equation (4.10) means that the voltage vector Bv  at steady state is orthogonal to the stator 

current vector. By substituting (4.10) in (4.8), it is possible to find the following steady-state 

expression of Bv : 

    q S
B B

S

ji
v v

i
= . (4.11) 

Therefore, orthogonal component q

Bv  is a degree of freedom that can be used to control 

 
Av Bv

BE
AE

Sv

Si

Inverter A Inverter B Motor 
 

Fig. 4.2. Schematic diagram of the open-end winding motor fed by inverter A 

and inverter B with a floating capacitor. 
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the reactive power of the drive. The use of the variable q

Bv , instead of the vector Bv , allows 

reducing the complexity of the optimization problem. 

 

 Voltage and Current Constraints 

The torque capability of the drive is limited by the rated thermal current of the machine 

and the rated current of the inverters. For the sake of simplicity it is assumed that the 

maximum current of the converters and the machine is represented by only one value, Imax. 

    maxSi I . (4.12)  

In addition, at high speed, the machine behavior is limited by the available voltage of 

inverters A and B, i.e, 

 ,maxA Av V  (4.13) 

 ,maxB Bv V  (4.14) 

where the upper bounds VA,max and VB,max depend on the dc-bus voltages EA and EB and on 

the modulation strategies of the inverters. If space vector modulation or pulse-width 

modulation with third-harmonic injection are used, the maximum voltages are 

 ,max
3

A
A

E
V =  (4.15) 

 ,max
3

B
B

E
V = . (4.16) 

Voltage EA is fixed by the input power source. Conversely, EB is a design choice, which 

may be equal or even greater than EA, depending on the blocking voltage of the switches of 

converter B.  

In the following, it is assumed that EB is much greater than EA, to take advantage of the 

voltage boost that the floating inverter can provide. The ratios EB/EA=2 and EB/EA=0.5 

produce a symmetric set of voltage vectors. For example, Fig. 4.3 shows the set of voltage 

vectors in the stator reference frame that may be generated by inverters A, B and the dual 

inverter system when EB=2EA (the superscript "S" identifies variables in the stator reference 

frame). The vertexes of the hexagons represent the admissible voltage vectors. As can be 
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seen, as regards the dual inverter system, they are equally distributed and the resulting grid 

of configurations is the same that can be found for a 4-level multiphase inverter fed by a total 

DC link voltage equal to 3EA. A similar distribution of vectors can be found if EB is equal to 

0.5 EA. However, in this case, the voltage boost would be limited, to the detriment of the 

performance, since the maximum stator voltage is half the previous one. 

 

4.3 OPTIMIZATION OF THE DRIVE PERFORMANCE 

 Optimization of the Mechanical Power 

The optimal control strategy of the drive should maximize the mechanical power delivered 

to the load and extend the constant-power speed range as much as possible. 

The power balance of the drive is defined by the following expressions: 

 S A B S SS S S P jQ= − = +  (4.17) 

 S A BP P P= −  (4.18) 

 S A BQ Q Q= −  (4.19) 

where 
SS , 

AS  and 
BS  are the apparent powers of the electrical motor, inverter A and 

inverter B respectively, PS , PA and PB are respectively the active power of the electrical 

motor, inverter A and inverter B while QS, QA and QB the respective reactive power values. 

Equation (1.19) shows that it is possible to nullify the reactive power of inverter A through 

the reactive power flow of inverter B. 

 

InverterA Dual inverter Inverter B 

S

Sdv

S

Sqv

AE2AE
3

2

S

Adv

S

Aqv

S

Bdv

S

Bqv

AE
3

4

 

Fig. 4.3. Voltage vectors, in the stator reference frame, generated by inverter A, the 

dual inverter system and inverter B when EB is 2EA.  



Part II: Open-End Winding Motors 

78 

The active and reactive powers flowing through inverter A are equal to: 

 
3

2
A A SP v i=   (4.20) 

 
3

2
A A SQ v ji=  . (4.21) 

Under the assumption that the converter losses are negligible, at steady state, the active 

power of inverter A is equal to the sum of Joule losses PJoule, iron losses, Piron, and the 

mechanical power delivered to the load, Pmech. 

 A Joule iron mechP P P P= + + . (4.22) 

The expression of the reactive power of inverter A can be found by combining (4.1) - 

(4.3), (4.11), (4.19) and (4.21). 

 ( )
3 3 3 3

2 2 2 2

q

A S S B S S S B SQ v ji v ji j ji v i=  +   + . (4.23) 

The first term in (4.23) is the reactive power exchanged by the motor, the second term is 

the reactive power exchanged by inverter B. 

By squaring (4.20) and (4.21) and summing side by side, it turns out that 

 

2

2 2 3

2
A A A SP Q v i

 
+ =  

 
. (4.24) 

In the field weakening speed region, vA and iS have to satisfy the constraints (4.12) - (4.13). 

Consequently, combining (4.22), (4.23) and (4.24), leads to the following inequality: 

 ( )
2

2 2

,max max

3

2
Joule iron mech A AP P P Q V I

 
+ + +   

 
. (4.25) 

Inequality (4.25) shows that, to extend the range of the active power of inverter A, it is 

necessary to reduce its reactive power to a minimum. 

Equating (4.23) to zero and solving for 
q

Bv  leads to the following result: 

 ,

q S S
B opt

S

i
v

i

 
= −  (4.26) 

Combining (4.8), (4.9) and (4.26) allows finding the expression of Bv  as a function of the 

rotor speed  and of the motor state 
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21

3

S S S
B B

S S

i id
v CE j

dt i i

  
= −     

. (4.27) 

Equation (4.27) shows that Bv  is orthogonal to the stator current at steady state. According 

to (4.14), Bv  cannot be greater than VB,max. In steady state condition,  (4.27) is valid only if 

the following inequality is verified: 

 ,max

S S

B

S

i
V

i

 
 . (4.28) 

If (4.28) is not satisfied, the expression for Bv  becomes: 

 ( ), ,maxsgn q S
B B opt B

S

i
v j v V

i
=  (4.29) 

and the reactive power QA becomes different from zero and equal to:  

 ( )( ), ,max

3
sgn

2

q

A S S B opt B SQ i v V i=  + . (4.30) 

In conclusion, choosing 
q

Bv  according to (4.26) allows improving the performance of the 

drive because inverter A operates at unity power factor at any speed and its power capability 

can be fully exploited. 

 Admissible Domain of the Stator Current 

Inequality (4.26) for inverter B can be rewritten as a function of the components iSd and 

iSq of the stator current vector by means of (4.4) - (4.5): 

 
( ) ( )( )

( )

,max

2 2

( ) ( )

( )

.
Sd Sq

Sd Sq Sd SqS S

B

S S

Sd Sd e Sd Sq Sq SqSd Sd Sq Sq

S S

Sd e Sd Sq

S

j i jii
V

i i

L i i L i ii i

i i

L i i L i

i

  

   

 

+  +
 = =

+ ++
= = =

+ +
=

 (4.31) 

It is useful to express the stator inductance along the d-q axes as a function of the magnetic 

anisotropy factor δ 
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Sq

Sd

L

L
 = . (4.32) 

By substituting (4.32) in (4.31), the following expression can be found: 

 
( )( )2 2

,max
2 2

Sd Sq

Sd Sq

S e Sd

B

L i i i
V

i i

  + +


+
. (4.33) 

Similarly, in steady state operating conditions, if the voltage drop due to the stator 

resistance is neglected, (4.13), combined with (4.1) - (4.5) and (4.27), leads to the following 

inequality for inverter A: 

 

( )

,max

2

2

( ) ( ) ( )
( )

( )( )
( )

( ) ( )

S S S
A S B S

S S

Sd Sq Sd Sq Sd Sq

Sd Sq

S S

Sd Sd Sq Sq Sd Sq

Sd Sq

S

Sd Sq Sq Sd Sq Sq Sd Sd Sq Sd
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V j v j j

i i

j i ji i ji
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i i

i i i ji
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i

i i i j i i i
i


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 
  

 
  
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   
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 +  + +
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 
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2
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2

( ) ( )

( ) ( ) 2( )( ) ( )

( )

Sq SdSd Sq Sq Sd Sq Sd Sd Sq

S

Sd Sq Sq Sd Sd Sq Sq Sd S Sd Sq Sq Sd

SS

Sd Sq Sq Sd S Sd e Sq S Sq Sd

S S
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i
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ii
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i i


   

 
     

 
   
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which leads to the following expression for the voltage constraint of inverter A: 

 ( )( ) ,max1
Sq

S Sd e A

S

i
L i V

i


 − +  . (4.34) 

It is worth noting that (4.34) is proportional to the torque expression, given by (4.6) by 

means of (4.4) – (4.5) and (4.32): 



Open-End Winding Motors Drive 

81 

 ( )( )
3

1 .
2

Sq S Sd eT pi L i = − +  (4.35) 

Therefore, combining equations (4.34) and (4.35) one comes to following equality: 

 ,max

3 3

2 2
A SV i T  (4.36) 

which confirms that, if Joule and iron losses are neglected and constraint (1.14) is satisfied, 

the electrical apparent power available at the AC side of inverter A is entirely used to generate 

active power at the motor output. 

 Resulting Speed Ranges 

Equation (4.36) is valid for each rotor speed ω for which (4.28) is satisfied. In nominal 

condition it becomes: 

 ,max max max

3 3

2 2
A baseV I T = . (4.37) 

In the same working condition, for a single inverter system, the relation between the 

electrical power delivered by the inverter and the electrical output power of the motor is: 

 ,max max max

3 3
cos '

2 2
A base baseV I T =  (4.38) 

where φ is the phase shift between inverter AC output voltage and the current flowing in the 

stator windings. 

Since the maximum torque Tmax value is not affected by the dual inverter configuration 

with a floating bridge, from (4.37) and (4.38) it is possible to find the relation between the 

base speeds of the single and dual inverter configuration: 

 ' cosbase base base  =  (4.39) 

which shows that the base speed of a single inverter drive is lower than that of a dual inverter 

drive and proportional to the input power factor at the base speed. 

Above the base speed the available voltage is not sufficient to compensate the back 

electromagnetic force and it is therefore necessary to weaken the stator flux. As consequence 

it is not possible to produce the maximum torque, which starts to decrease as the rotor speed 

increases. This speed range, above the base speed, is characterized by a nearly constant power 

level working condition. 

Inequality (4.25) shows that, if iron losses are neglected, the constant power speed range 
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is maintained as long as the current is at a maximum and the reactive power of inverter A is 

zero. While the maximum current working condition depends on the control strategy used 

for the electrical motor available, the maximum speed achievable by the proposed drive when 

the inverter A operates at unity power factor can be found independently to the of motor. 

If the current components iSd, iSq are rewritten in polar form, 

 cosSd maxi I =  (4.40) 

 sinSq maxi I =  (4.41) 

the expression for the maximum speed with inverter A at unity power factor is obtained by 

substituting (4.40) and (4.41) in (4.33) 

 ( )2 2

max cos sin cos

B,max

pow

S e

V

L I


    
=

+ +
. (4.42) 

Above the rotor speed given by (4.42), it is still possible to accelerate by losing the unity 

power factor condition. The maximum speed is reached when the torque, hence the 

mechanical power, reaches zero. In this condition, combining (4.25) and (4.30), by neglecting 

the joule and iron losses, the reactive power can be rewritten as follows: 

 ( ), ,max ,max max

3 3
sgn

2 2

q

A S S B opt B S AQ i v V i V I
 

=  + =  
 

. (4.43) 

Substituting (4.4), (4.5), (4.40) and (4.41) in (4.43) leads to the following expression for 

the maximum speed of a dual inverter drive: 

 ( )
max 2 2

max cos sin cos

A,max B,max

S e

V V

L I


    

+
=

+ +
. (4.44) 

Equation (4.44) shows how the maximum speed for the dual inverter drive is obtained 

when Av  and Bv  are summed with the same phase, hence the resulting vector Sv is 

orthogonal to the current space vector Si . 
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Chapter 5      

INDUCTION MOTOR WITH OPEN-END WINDINGS 

Although induction machines are not as efficient as PM machines and the torque density 

is lower, their robustness, cost and overload capability are appealing in mass-production 

applications [21]. Since the lower performance of induction motors in comparison to PM 

motors partially depends on the lower power factor, the improvement in performance 

achieved by adopting an open-ended stator winding is gaining more attention. 

5.1  SYSTEM MODEL 

 Machine Equations and Admissible Stator Current Domain 

The model of the induction machine can be described by the following equations written 

in a reference frame synchronous with the d-axis aligned to the rotor flux: 

   
S

S S S S

d
v R i j

dt


= + +  (5.1) 

    Sd S Sd Rd

R

M
L i

L
  = +  (5.2) 

    
Sq S SqL i =  (5.3) 

    
1

Rd Sd

R

M
i

s



=

+
 (5.4) 

    0Rq =  (5.5) 

    
3

2
Sq Rd

r

M
T p i

L
=  (5.6) 

where p is the pole pairs number,  is the angular frequency of the rotor flux vector, Sv  is 

the stator voltage, 
Si  is the stator current, 

S   is the stator flux vectors, LS and M are the 

self- and mutual inductances, τR is the rotor time constant ,  
Rd  and 

Rq  are the d-q 

components of the rotor flux and σ is the leakage coefficient, defined as:  
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2

1
S R

M

L L
 = − . (5.7) 

It can be seen that the induction mathematical model (5.1) – (5.6) is equal to the one 

expressed by equations (4.2) – (4.6) for a generic electrical motor if the following equality 

are assumed: 

 
Sd Sq SL L L= =  (5.8) 

 
e Rd

R

M

L
 = . (5.9) 

However, φRd is a low-pass function of iSd as written in (5.4), making the model more 

complicated in comparison to permanent magnet machines. 

Some simplification can be made to this model by considering the steady state condition. 

Equations (5.2), (5.4) and (5.6) become: 

 Sd S SdL i =  (5.10) 

 
Rd SdMi =  (5.11) 

 
( )

3
1

2
S Sq SdT pL i i= − . (5.12) 

The mathematical model of the induction machine at steady state can be found by 

replacing in (4.2) – (4.6) the following relationships: 

 Sd SL L=  (5.13) 

 Sq SL L=  (5.14) 

 0e = . (5.15) 

It can be seen that the model of the induction motor (5.1) – (5.6) is equivalent with that of 

a salient machine. 

It is straightforward to find the voltage constraints for inverter A and inverter B for an 

induction motor with open-end windings by substituting (5.13) – (5.15) in (4.33) and (4.34): 

 
( )2 2

,max
2 2

Sd Sq

Sd Sq

S B

i i
L V

i i

 +


+
 (5.16) 
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 ( ) ,max
2 2

1

Sd Sq

Sd Sq

S A

i i
L V

i i


− 

+
. (5.17) 

The expression (5.17) of the voltage limit for inverter A is valid as long as (5.16) is 

verified, otherwise (5.17) should be replaced by the following inequality, 

 , , ,(sgn ) s
S B opt B max A max

s

i
j j v V V

i
 +  . (5.18) 

 Drive Performance Improvements 

Fig. 5.1 graphically shows the meaning of the inequalities (5.16) - (5.17) for two values 

of ω, ωbase and ωpow, which represent the initial and final speeds of the constant power speed 

range. 

As long as the angular frequency increases, inequality (5.16) produces a set of curves, 

similar to hyperbolae in Fig. 5.1(a), which tend to become smaller. These curves are referred 

to as "voltage limit A" in Fig. 5.1. 

Similarly, (5.17) generates a set of curves, formed by two lobes, which becomes smaller 

as long as the angular frequency increases. These curves are referred to as "voltage limit B" 

in Fig. 5.1. 

For the sake of correctness, in Fig. 5.1(b), (5.16) has been replaced by (5.18) for operating 

states that do not satisfy (5.17). Consequently, the constant-voltage hyperbolae of inverter A 

have been replaced by closed curves. 

Overall, the admissible operating states in Fig. 5.1(b) and Fig. 5.1(c) are those in the 

dashed areas, satisfying the voltage constraints (5.18) and (5.17), and not exceeding the rated 

magnetizing current ISd,rated.  

The graphical representation of Fig. 5.1 can be used to identify the operating conditions 

corresponding to the maximum torque capability, since a constant-torque curve in the iSd - iSq 

plane is represented by a hyperbola. The closer the hyperbola is to the origin, the lower the 

torque. 
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For example, Fig. 5.1(b) represents the admissible operating conditions (dashed area 

constrained by the current limit, the voltage limits of inverters A and B, and the limit of the 

magnetizing current) when the speed is equal to the base speed. Two different torque loci are 

represented. The first one, drawn in solid line, passes through point B, and the second one, 

drawn in dashed line, passes through points G and H. In the operating conditions represented 

by the points of arc G-H the torque has the same value. It can be easily understood that the 

torque locus passing through G-H is generated by a torque value that is lower than that of the 

torque passing through B. Following this line of reasoning, it can be proved that the 

maximum torque at the base speed is produced when the drive operates in point B (rated 

torque). 

Analyzing Fig. 5.1 it is possible to conclude that the motor operation can be divided in 

three speed ranges. 

Below the base speed, the maximum torque is represented by point B (region I). The motor 
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Fig. 5.1. Representation of the motor operating conditions in the plane iSd-iSq for a dual inverter drive (a)-

(b)-(c) and a single inverter drive (d). (a) The voltage constrain of inverter A is plotted without considering 

(30) and =base (b) The voltage constraint of inverter A is plotted considering (30) and =base. (c) The 

voltage constraint of inverter A is plotted considering (30) and =pow. 
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performance is limited by Imax and the rated magnetizing current ISd,rated. It is straightforward 

to find the expression of the base angular frequency combining (4.37) and (5.12), which is as 

follows: 

 
( )

,

2 2
,,1

A max max
base

Sd ratedS max Sd rated

V I

IL I I



=

− −
. (5.19) 

As long as the speed increases, the operating point corresponding to the maximum torque 

moves from B to C (region II). However, the position of point C is a function of VB,max. In 

fact, considering (4.12), (5.16) and (5.17) as equalities, and solving the resulting set of 

equations, one can find the coordinates of point C. If the current components iSd, iSq are 

rewritten in polar form as in (4.40) and (4.41), the resulting equation is: 

 ( )
1

tan 1
tan

B,max

A,max

V

V
  


+ = − . (5.20) 

Under the assumption that  is near 2 , it is possible to find an asymptotic solution of 

(5.20), which turns out to depend only on the ratio VB,max/VA,max and on the parameter . 

 
1

tan
Sq B,max
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i V

i V






−
=  . (5.21) 

Finally, the maximum speed in region II, pow, can be found from equation (4.42), 

obtained for any kind of motor, imposing the relations given by (5.13)-(5.15) for the 

induction motor 

 
( )2 2cos sin

B,max B,max

pow

S maxS max

V V

L IL I


  
= 

+
. (5.22) 

It is worth noting that, despite  depends on VB,max/VA,max, (5.22) shows that pow is little 

sensitive to the variation of VA,max, and can be extended as desired by increasing VB,max. 

Above pow, (region III), the speed is too high and the voltage is not sufficient to inject 

the maximum current in the motor while maintaining the unity power factor for inverter A. 

In Fig. 5.1 the operating states of region III are represented by segment C-O. 

The base speed ωbase and the maximum speed of constant power speed range ωpow can be 

used to find the rotor speed in electric radians ωm by considering the rotor circuit equations: 



Part II: Open-End Winding Motors 

88 

 ( )0 R
R R m R

d
R i j

dt


  = + − +  (5.23) 

 
R R R SL i Mi = +  (5.24) 

where LR is the rotor self-inductance, 
Ri  is the rotor current and 

R the rotor flux. 

In steady state condition it is straightforward to verify that  

 
Sq

m

R Sd

i

i
 


= − . (5.25) 

Substituting (5.19) and (5.22) in (5.25) one finds the following expression: 
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(5.27) 

where the slip for the two speeds, sbase and spow are highlighted and they are equal to 
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For the sake of completeness, Fig. 5.1(d) shows the operating states of a single inverter 

drive under the same current and voltage constraints for inverter A. The constraint on the 

DC-link voltage is represented by an ellipse in iSd - iSq plane. 

The subdivision of the admissible speed range into three parts is well-known for induction 

machines fed by a single inverter [42]- [43]. In Region I the operating states of the motor 

correspond to the points of segment A-B. At higher speeds, the size of the ellipse decreases 

and the operating point is forced to move from B to C, while the magnitude of the stator 

current remains constant (region II). In Region III the current progressively tends to zero as 

long as the speed increases. 

The two paths ABCO of Fig. 5.1 (c) and (d) are similar, but there are some substantial 

differences. First of all, the angular frequencies 'base  in point B and 'pow  in point C are 
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lower than base  and 
pow  given by (5.19) and (5.22), respectively. 
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Comparing (5.22) and (5.31) one concludes that the constant power range is roughly 

extended by a factor of ,max ,max2 /B AV V  in the dual inverter system, while from  (5.19) and 

(5.30) it is possible to conclude that the base speed increases of a factor approximately equal 

to 
max

2 2

max ,Sd rated

I

I I−
. 

5.2 CONTROL SCHEME 1 – BASE SCHEME 

The control scheme of the open-ended induction machine fed by the dual-inverter system 

is shown in Fig. 5.2. 

It is basically a rotor-field oriented vector control, whose performance is analyzed 

extensively in [44] and compared to other robust control schemes for field weakening 

operation in [45].  

The control scheme requires estimating the phase angle  and the components of the stator 

and rotor fluxes, but the type of state estimator is not essential for the understanding of the 

drive operation. 

 Control of the Induction Machine 

The current references iSd,ref and iSq,ref are tracked by the PI controllers (a) and (b). 

The speed is adjusted by PI controller (c), which generates the request for the torque-

producing current iSq,req. The current reference iSq,ref may be different from iSq,req, depending 

on effect of saturation block (d). 

The signal iSq,max, which is used to generate the upper and the lower bounds of limitation 

block (d), is equal to 
2 2

max SdI i−  in region I and II, and to tan()Isd,ref in region III. 

To adjust the rotor flux, two nested control loops are used. The use of PI regulators 



Part II: Open-End Winding Motors 

90 

operating in closed control loops reduces the need of an accurate knowledge of the machine 

parameters. The reference value of rotor flux is set by PI regulator (e) on the basis of voltage 

request of inverters A and B. If vA is greater than VA,max or vB is greater than VB,max, the rotor 

flux is reduced. Conversely, if the voltage request is satisfied, the rotor flux is increased. 

Saturation block (f) ensures that the rotor flux cannot become lower than R,min or exceed the 

upper bound R,max.  

The value of R,max is calculated as the minimum between the rated rotor flux, MISd,rated, 

and the function 
B,max

S

V M

L
.  

 ,max ,min , B,max

R Sd rated

S

V
M I

L




 
=  

 
. (5.32) 
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Fig. 5.2 . Block diagram of the RFO control scheme for the open-ended induction machine fed by the dual-

inverter system. 
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The point of coordinates ,0B,max

S

V

L

 
 
 

 is point D in Fig. 5.1. Equation (5.32) is necessary to 

stabilize the dynamic performance of the drive when it operates at low torque values in the 

field weakening region or in case of regenerative braking. To illustrate this problem, Fig. 5.3 

shows the behavior of the motor when the motor torque is driven to zero in region II. The 

operating point at the beginning of the transient is B', which corresponds to the maximum 

achievable torque at the current speed. As soon as the torque decreases, the voltage margin 

varies and PI(e) tries to increase the rotor flux. If R is limited by (5.32), the stator current 

moves along the curve B'-E-D, which leads to a smooth transient of current iSd. Otherwise, if 

R were unconstrained, the stator current would move along the curve B'-E-F-D, and the 

crossing of the sharp corner ˆEFD  would produce an undesired overshoot of iSd, which has 

to be avoided for the proper operation of the drive.  

If the motor operates in region III or the current iSq is sufficiently very low, (28) is less 

strict than (29). In these operating conditions, the field weakening algorithm tries to keep vB 

equal to VB,max, i.e., the motor state moves on the segment C-O of Fig. 5.1. 

To complete the description of the control scheme, it is worth noting that the voltage 

request 
,A reqv  is obtained by adding to the output signals of the current regulators the stator 

back-electromotive force and the voltage at the input of the floating-capacitor bridge, i.e., 

S Bj v +  (feed-forward compensation). 
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Fig. 5.3. Representation of the motor states when the torque is driven to 

zero, from point B' to point D, in region II. 
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 Control of the Floating Capacitor Bridge 

The control of the dc-link voltage EB is done by proportional controller (i), which 

compares the actual voltage (squared) with the reference voltage EB,ref (squared). The voltage 

requested by the controller is 

 ( )( ) 2 2

, ,

p g

B req P B ref Bv K E E= − . (5.33) 

where ( )g

PK  is the proportional gain. 

If this voltage is in the range [-vB,max, vB,max] defined by limitation block (l), which is necessary 

to avoid the over-modulation of inverter B, substituting (5.33) in (4.9), one finds that the 

capacitor voltage squared is driven by a first-order differential equation, 

 
2 2 2

,( )2

B
B B B refg

P

C d
E E E
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whose time constant is 
( )2

B

g

P

C

K
. 

The set-point for voltage 
,

q

B reqv  should be equal to 
,

q

B optv  given by (5.16), however the use 

of PI (m) ensures that inverter A operates at unity power factor also in presence of parameter 

or model uncertainties. 

Finally, voltage vector Bv  is generated according to (4.8). 

 Remarks on the Control Scheme 

The field-weakening algorithm is not simply based on the reduction of the flux inversely 

to the speed, but it relies on the adaptive control of the flux level depending on the comparison 

of the requested voltage with the available voltage. In this way, the choice of the flux level 

is nearly optimal and does not depend on parameters, such as the resistance, which may vary 

during the motor operation. The control scheme can operate in the constant power speed 

range, and in the decreasing power speed range (region III) as well, a feature that is not 

available in other control schemes. As regards the power factor of inverter A, the control loop 

can compensate slight deviations of the control parameters from their nominal values, 

provided that this mismatching does not completely prevent the motor operation. In fact, the 

estimation of the reactive power of inverter A does not depend on the motor parameters, since 

it is measured as 
,

3

2
A ref Sv ji  . The misalignment of the reference frame does not affect the 
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calculation of the dot product, only the nonlinearities of the inverter and the sensors have 

some influence. 

 Experimental Results 

Some experimental tests have been carried out with a laboratory prototype to verify the 

feasibility of the proposed control scheme. The picture of the dual inverter prototype is shown 

in Fig. 5.4, while the parameters of the experimental setup are reported in TABLE 5 

Fig. 5.5 shows the acceleration transient of the open-end winding induction motor when 

the final speed belongs to region II. As can be seen in Fig. 5.5(a), initially the stator current 

is different from zero and the motor is magnetized (point A in Fig. 5.1). The current iSq 

abruptly increases up to the maximum admissible value (point B) when the speed step is 

applied. As soon as the available voltage is not sufficient to inject the current, the signal at 

the input of PI (e) becomes negative and the rotor flux decreases, while the current iSq slightly 

increases to fully exploit the current limit of inverter A (points of arc B-C). Finally, when the 

acceleration torque is not needed any more, at the end of the transient, the current iSq 

decreases to the steady-state value. 

Fig. 5.5(b) shows the behavior of the drive in the same operating conditions of Fig. 5.5(a). 

However, the maximum rotor flux R,max is calculated as MISd,rated and not by means of (5.32). 

 Inverter A 

Inverter B 

dSpace DC-link B Sensors 

 

Fig. 5.4. Laboratory prototype of the dual inverter system that feeds an open-ended induction machine.  

TABLE 5 – IM-OEW  PARAMETERS 

Prated = 0.69 kW   RS = 1.0  

IS,rated = 10 Apeak   RR = 1.2  

ISd,rated = 5.8 Apeak  LS = 0.112 H 

m,rated = 600 rpm   LR = 0.112 H 

 = 0.127   M = 0.102 H 

Jm = 0.03 Kg m2   p = 2 

EA = 150 V  EB = 300 V 
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As can be seen, the transient of the magnetizing current reveals an unexpected overshoot, 

which is avoidable if (5.32) is used, due to the crossing of the sharp corner ˆEFD  of Fig. 5.3. 

Fig. 5.6 shows the behavior of the open-ended induction machine during an acceleration 

transient up to ten times the base speed (the end of the transient is not visible). 

In Fig. 5.6a), region II and region III are clearly identified. In region II the amplitude of 

the motor current is constant, while it tends to decrease in region III.  

In Fig. 5.6(b) it is possible to verify that the power factor of inverter A is unity in all 

operating conditions, despite the unavoidable changes that occur in the parameters during the 
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Fig. 5.5. Experimental results. Behavior of the open-ended induction motor during a speed transient from 0 to 

1500 rpm, when (40) is used (a), or R,max is MISd,rated (b). Motor speed (250 rpm/div). Rotor flux (0.1 Wb/div). 

Current iSq (2 A/div). Line current (3 A/div).  
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Fig. 5.6. Experimental results. Behavior of the open-ended induction motor during a speed transient from 0 to 

5000 rpm. a) Motor speed (550 rpm/div). Rotor flux (0.1 Wb/div). Motor torque (2 Nm/div). Line current (3 

A/div); b) Motor speed (550 rpm/div). DC-link voltage EB (50 V/div). Power factor of inverter A (0.2 pu/div). 

Line current (3 A/div). 
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flux weakening, such as an increase in 

the inductances due to the reduction of 

the magnetic saturation, and the variation 

of the rotor resistance due to the high 

rotor frequency. Similarly, voltage EB is 

correctly kept constant by the control 

system. 

 

Fig. 5.7 shows the magnetization 

transient at stand-still, during which the 

DC-link of inverter B is charged and the 

rotor flux reaches the rated value. As can 

be seen, firstly the motor is magnetized and the flux increases up to the rated value. Then, 

there is the progressive charge of the DC-link of inverter B. 

Finally, Fig. 5.8 compares the torque and power capability of the dual inverter drive and 

the single inverter drive, measured at steady state, as a function of the normalized speed. The 

normalization weight is the base speed, i.e. the starting point of the field weakening speed 

range. As can be seen, the mechanical power of the dual inverter drive, is approximately 

constant, despite a progressive reduction that is presumably due to the increasing iron losses, 

which are not considered in the mathematical analysis. Overall, the mechanical power of the 

single inverter drive at high speed is significantly lower and during the test it was not possible 

to reach the same maximum speeds for both drives. 
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Fig. 5.7. Magnetization transient of the open-ended 

induction motor. Power factor (0.2 pu/div). Rotor flux (0.1 

Wb/div). DC-link voltage EB (50 V/div).  Stator current (3 

A/div). 
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Fig. 5.8. Normalized values of the motor torque and mechanical power as a function of the normalized speed. 

The normalized weights are respectively the torque and the power at the base speed, 13 Nm and 0.69 kW, 

respectively. The base speed is 600 rpm 



Part II: Open-End Winding Motors 

96 

5.3 CONTROL SCHEME 2 – VARIABLE DC-LINK VOLTAGE 

Since the losses of the secondary inverter are a drawback of the dual inverter topology, a 

control scheme with variable voltage of the DC link of the floating bridge has been 

investigated. Equation (4.27) shows that, in steady-state condition, inverter B has to generate 

a voltage that is substantially proportional to . Consequently, when  is not high, there is 

no need to keep the DC-link voltage of inverter B at the rated value. Since the switching 

losses of inverter B are proportional to the voltage level, the reduction of EB can be beneficial 

for the overall efficiency of the electric drive. 

Fig. 5.9 shows the control scheme developed and highlights the changes introduced to the 

base scheme of Fig. 5.2. In addition to the control of the floating bridge voltage, the upper 

limit of the flux level is now just the magnetizing current ISd,rated multiplied by the mutual 

inductance M. 

In the control scheme of Fig. 5.2, due to the particular shape of the voltage constraint 
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Fig. 5.9. Block diagram of the RFO control scheme for the open-ended induction machine fed by the dual-inverter 

system with variable voltage of the floating capacitor 
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curves, another upper value was imposed in order to avoid the sharp corner ˆEFD illustrated 

in Fig. 5.3, which can be easily avoided in this new control scheme by simply adjusting the 

DC-link voltage reference. 

 Control of the Floating Inverter 

With reference to Fig. 5.9, PI regulator (m) ensures that inverter A operates at unity power 

factor. The output of this regulator is the component 
,

q

B refv  of Bv   along the direction 

orthogonal to the stator current. To improve the dynamic performance, the value 
,

q

B optv  given 

by (4.27), is added to the output of regulator (m). The saturation block (n) limits 
,

q

B refv  so it 

remains in the range [ q

B,maxV− , q

B,maxV ], where 

 ( ) ( )
2 2

q p

B,max B,max B,maxV V V= − . (5.35) 

In (5.35) p

B,maxV  is a voltage margin that is necessary to ensure a satisfactory behavior in 

transient operation. 

The DC-link voltage EB is controlled by the proportional regulator (i), which compares 

the actual voltage (squared) with the reference voltage EB,ref (squared). The output of 

regulator (i) is 
,

d

B refv , which is zero in steady-state operating conditions but can be used in 

transient operating condition to vary the DC-link voltage of inverter B. 

However, the value of EB,ref  can significantly change not only with the speed but also with 

the torque, and may be less intuitive than expected. Fig. 5.10 shows the boundaries of the 

 

P' 

a)  

P" 

b)

  
P' 

P" 

c) 

Fig. 5.10. Representation of the motor operating conditions in the plane iSd-iSq for a dual inverter drive at 

=1.3base. (a) The voltage constrains of inverter A and B are plotted at =0.75base. (b) The voltage constrains 

of inverter A and B are plotted at =0.25base. (c) Normalized contour plot of ,

q

B optv . 
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stator current vector resulting from voltage constraints (4.13) and (4.14) at an angular 

frequency of 1.3 ωbase for two different values of the electromagnetic torque. The different 

values of torque lead to different DC-link voltages of inverter B. In Fig. 5.10(a) the 

electromagnetic torque is 75% of the rated torque. The control system drives the motor to 

operate in point P', which is the intersection of the curves resulting from the operating 

constraints on the stator current and the voltage of inverter A. The DC-link voltage of inverter 

B is adjusted by the control system so that the power factor of inverter A is unity. In essence, 

EB decreases until the corresponding constraint curve passes through point P' (20% of the 

rated voltage). In Fig. 5.10(b) the torque drops to 25% of the rated one. The control system 

increases the magnetizing current up to the rated value, and the operating point becomes P''. 

To preserve the unity power factor, the voltage of inverter B has to increase up to 50% of the 

rated value. This behavior is confirmed by Fig. 5.10(c), which depicts the contour plot of 

,

q

B optv , expressed by (16) and normalized by 
S maxL I . To plot this figure, σ is assumed equal 

to 0.11. As can be seen, the trajectory of the machine state from P' to P'', namely from a high 

torque level to a low torque level, leads to higher values of  
,

q

B optv  and to an increase in the 

DC-link voltage of inverter B. 

 Experimental Results 

The same lab setup shown in Fig. 5.4 and defined by the parameters of TABLE 5 has been 

used to carry out the following tests. 

Fig.5.11 illustrates the magnetization 

transient of the machine. Initially, the speed 

is zero. Then, the current iSd progressively 

increases while the machine is magnetized. 

Simultaneously, the DC link voltage of 

inverter B increases up to the value 

/ 3p

B,maxV . 

Fig. 5.12 illustrates the behavior of the 

induction machine during a start-up transient 

from zero to five time the base speed. The 

motor current, whose initial frequency is very 

low, rapidly changes after the speed step 

 

EB 

Speed 

iSq 

iSd 

 

Fig.5.11. Experimental behavior of the open-ended 

induction motor during a magnetization transient. 

Speed (2000 rpm/div), iSd (2A/div), iSq (2A/div), DC-

link voltage of inverter B (50 V/div). 
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command. The motor torque, proportional to iSq, rises to the maximum value, limited only by 

the inverter rated current. Then, iSq decreases due to the flux weakening operation. 

Fig. 5.12 (a) shows that the power factor of inverter A is equal to 1 at any speed, while the 

rotor flux smoothly decreases with speed. 

Fig. 5.12 (b) confirms that the DC-link voltage of inverter B changes depending on the 

motor operation. The value of EB depends not only on the stator angular frequency  but also 

on the components of the stator current. Consequently, as can be seen in Fig. 5.12 (b), the 

control system increases EB,ref  when the machine has to deliver high torque values to the 

load. 

Fig. 5.13 shows the contour maps of the floating bridge voltage and the ratio of the 

efficiency opt of the proposed drive to the efficiency of a similar drive that does not optimize 

the DC-link voltage of inverter B. In Fig. 5.13(a) it can be seen as the floating bridge voltage 

is higher for lower value of the torque, as explained in the example of Fig. 5.10(b). Fig. 

5.13(b) shows that the efficiency improvement of the adaptive control of EB is particularly 

significant around the rated torque and reaches 45% for the small-scale prototype. This 

notable result is unlikely to be obtained in industrial drives and is due to the low efficiency 

of the small-scale prototype, about 0.6, in the rated operating conditions. In flux weakening 

condition, although Fig. 5.13(a) shows a region when the voltage of inverter B is below the 

rated one, the efficiency improvement does not seem significant. 

 

 

Rotor flux 

iSq 

Power factor A 

Motor current 

a)

 

 

EB 

Speed 

iSq 

iSd 

b) 

Fig. 5.12 Experimental behavior of the open-ended induction motor during a speed transient from zero to five 

time the base speed. a): power factor (0.2/div), rotor flux (0.1 Wb), iSq (2A/div), motor current (4 A/div). b): speed 

(500 rpm/div), iSd (2A/div), iSq (2A/div), DC-link voltage of inverter B (50 V/div). 
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The efficiency of the drive is measured directly as a ratio of the output mechanical power 

to the input electrical power. Although the measurements can be inaccurate at low power 

levels, the results seem stable and repeatable in the rated operating conditions.  

 a)

 b) 

Fig. 5.13. Experimental results. a) Value of floating inverter voltage; b) ratio of the efficiency of the proposed 

drive to the efficiency of the same drive without optimizing the voltage of inverter B. Torque values are 

expressed in pu of the maximum torque, speed values are expressed in p.u. of the base speed. 
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5.4 CONTROL SCHEME 3 – OVERMODULATION OF THE PRIMARY 

INVERTER 

The control scheme of the dual inverter drive can be further improved by adding to the 

primary inverter the capability of operating in voltage overmodulation conditions. The output 

power increases by about 15% and, contextually, the waveform of the stator current does not 

worsen as long as the secondary inverter, acting as a series active filter, can compensate the 

voltage distortion. The base control scheme of  Fig. 5.2 modifies as shown in Fig. 5.14. 

The maximum voltage that inverter A can produce in the linear modulation range is 
3

AE
. 

This value corresponds to the radius of the circle inscribed in the hexagon shown in Fig. 5.15, 

which represents the domain of all admissible voltage vectors Av , expressed in terms of 
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Fig. 5.14 . Block diagram of the RFO control scheme for the open-ended induction machine fed by the dual-

inverter system, with the primary inverter operating in voltage overmodulation. 
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components vS and vS in the stationary reference frame. The same figure shows that the 

magnitude of Av  could be greater than 
3

AE
. When the phase angle of Av  is a multiple of 60°, 

the magnitude of Av  (average value over a switching period) can rise to 
2

3
AE . However, 

except for these angles, the magnitude of 
,A reqv  must be scaled so that 

,A refv  fits in the 

hexagonal shape. In this case, the magnitude of the fundamental component of Av  increases 

to VA,max, i.e., 
2

AE


. 

When the magnitude of the desired voltage, 
,A reqv , is greater than 

3

AE
, inverter A is said 

to operate in the overmodulation mode. When this happens, during each fundamental period, 

the resulting voltage vector Av  partially or totally moves on the sides of the hexagon. 

Consequently, the voltage is distorted by the irregular path of Av , which does not follow the 

same circular trajectory of 
,A reqv .  

The stator voltage can be written as follows: 

 ( ),S A B A req A Bv v v v v v= − = −  −  (5.36) 

where Av  is the resulting voltage disturbance, which reduces the requested voltage 
,A reqv . 

However,  (5.36) shows that the voltage applied to the machine can still be undistorted if 
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Sv
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Fig. 5.15. Admissible voltage vectors of inverter A represented 

in the complex plane. 
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Bv  can compensate the term Av , provided that this new task does not interfere with the 

fundamental operation of inverter B, whose voltage can be rewritten as follows: 

 1B B Bv v v= −  . (5.37) 

where 1Bv  is the fundamental component, and Bv  is the compensating term of Av . 

The fundamental component 1Bv  is not disturbed if Av  has a magnitude lower than 
2

3
AE  

because Av  does not contain a component at the fundamental angular frequency , but 

contains only components at frequencies multiples of 6n in the rotor reference frame. 

A bank of N resonant controllers can be used to cancel the voltage harmonics that are 

generated when inverter A operates in the overmodulation range and the voltage vector Av  

moves on the hexagonal boundary. The transfer function of the bank of resonant controllers 

is as follows: 

 6 2 2
1 1

2

(6 )

N N
n

res n

n n

K s
R R

s n= =

= =
+

  . (5.38) 

The resonant frequencies in (5.38) depend on the angular frequency of the rotor flux vector 

and are multiple of 6. Such a transfer function, in the stator reference frame, cancels the 

harmonic components of the phase currents at frequencies (6n1), with n = 1, 2, …, N. 

 

 Experimental Results 

 Fig. 5.16 shows the behavior of the motor during a start-up transient. At the beginning, 

the motor current is equal to the magnetizing current. Then, the motor current increases 

quickly to satisfy the torque request. In the constant power speed range the amplitude of the 

stator current is nearly constant, afterwards it starts decreasing. The power factor and the DC-

link voltage of inverter B remains constant over the entire speed range. 

Fig. 5.17 depicts the waveforms of the voltages and currents of the dual inverter drive 

operating in the high speed region. Fig. 5.17(a) shows that the waveforms of vA and vA are 

distorted when Av  moves on the border of the voltage hexagon, and Fig. 5.17(b) shows that 

the duty-cycle mA1 of the first leg of inverter A is nearly trapezoidal. As can be seen, voltage 

Bv  develops a compensating component that balances the distorting harmonics of Av  and 
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ensures a sinusoidal stator voltage. This is indirectly demonstrated by the undisturbed 

waveform of the stator current shown in Fig. 5.17(b). 

To appreciate the improvements in the performance due to the overmodulation algorithm, 

Fig. 5.18 shows the trends of the speeds for three different cases, namely the single-inverter 

system, the dual inverter system operating in the linear voltage range and the dual inverter 

system operating in overmodulation mode. 

As a result, the dual inverter system provides a higher accelerating power in comparison 

to the single inverter system, so, after the same amount of time from the beginning of the 

transient, the speed of the former drive is notably greater than that of the latter. The 

overmodulation algorithm increases further the motor power approximately by a factor 
2

3

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Rotor speed 
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Fig. 5.16. Behavior of the open-ended induction motor during a speed transient from zero to five time the base speed. 

Current iSd (1A/div), iSq (2A/div), rotor speed (1000 rpm/div), phase current (3 A/div), power factor (0.2/div), rotor 

flux (0.1 Wb), voltage EB (60 V/div).  
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Fig. 5.17 Comparison of the speed trends during an acceleration transient for the dual inverter with and without 

overmodulation of the primary inverter, and a single inverter system feeding the same induction motor.   
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( 1.10), and, consequently, the corresponding curve of the motor speed is above the other 

curves.  
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Fig. 5.18.  Comparison of the speed trends during an acceleration transient for the dual inverter with and 

without overmodulation of the primary inverter, and a single inverter system feeding the same induction 

motor.   
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Chapter 6   

 SURFACE PERMANENT MAGNET 

SYNCHRONOUS MOTOR WITH 

OPEN-END WINDINGS 

A high torque density makes Surface Permanent Magnet Synchronous Machines 

(SPMSMs) suitable for industrial applications, if they are not required to operate over a wide 

speed range. Interior Permanent Magnet Synchronous Machines (IPMSMs), which use ferrite 

magnets and compensate the resulting reduction in the flux level with the reluctance torque 

due to the rotor saliency, are preferred in spindle-drive applications. 

Nevertheless, the use of a solid rotor core in SPMSMs has several advantages, such as 

simplifying the manufacturing process, better robustness and efficiency, and lower costs, so 

several solutions to widen the motor speed range have been developed and can be found in 

the literature. The simplest one is the use of a step-up converter to boost the DC-link of the 

main inverter. However, this topology requires adding some bulk inductors at the input of 

the converter and the boost ratio is generally not greater than two [46]. Other solutions 

include the use of two inverters to feed a motor with open-end windings [47]. Two separated 

DC-links can supply both sides of the stator windings and double the phase voltage. If two 

separated power sources are not available, the inverters can share the same DC-link [48]. 

However, this solution causes the problem of the common mode current that can circulate in 

the drive. 

The control scheme of the configuration where the second inverter is a floating capacitor 

bridge has been analyzed in [49]. The modulation strategy of the dual inverter has been 

investigated in [50], where two different technologies (Si and SiC) have been adopted for the 

switches of the main inverter and the floating bridge, depending on the respective switching 

frequencies. Finally, some techniques to estimate the machine parameters have been 

proposed in [51]. 
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6.1 SYSTEM MODEL 

 Mathematical Model and Admissible Domain of the Stator Current 

The mathematical model of a SPM motor in a d-q reference frame with the d-axis aligned 

with the excitation field can be written as follows: 

   Sd
Sd S Sd Sq

d
v R i

dt


= − +  (6.1) 

   
Sq

Sq S Sq Sd

d
v R i

dt


= + +  (6.2) 

    Sd S Sd eL i = +  (6.3) 

    
Sq S SqL i =  (6.4) 

    
3

2
e SqT p i=  (6.5) 

where  is the angular frequency of the rotor speed in electric radians, p is the number of 

pole pairs, T is the electromagnetic torque, vSd and vSq are the d-q components of the stator 

voltage vector Sv , iSd and iSq are the d-q components of the stator current vector 
Si , 

Sd  and  

Sq are the d-q components of the stator flux vector 
S , e is the excitation flux, LS and RS 

are the stator inductance and resistance respectively. 

This mathematical model is equal to the one expressed by (4.2)-(4.6) if LSd = LSq. 

Therefore, the saliency factor of a surface PM motor, δ, is equal to 1. 

The voltage constraints of inverter A and inverter B in steady-state condition, given from 

(4.33) and (4.34) respectively, can be written for a PM motor with open-end stator windings 

as follow: 

   ,max
Sd

S S e B

S

i
L i V

i
 

 
+  

 
 

. (6.6) 

    ,max

Sq

e A

S

i
V

i


   (6.7) 

Inequality (6.7) is valid as long as (6.6) is verified, otherwise Bv  becomes the one in (4.29) 

and inverter A voltage constraint changes as shown in the following expression, obtained by 
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substituting (4.29) in (4.1): 

   
,max ,max

| | | | | |

B A

S S e

S

V V
L i

i


 

 
+ +  

 
. (6.8) 

The admissible domain of the stator current vector, resulting from the constraints of the 

inverter voltages and the stator current can be plotted in a complex plane, where the 

horizontal and vertical axes are respectively iSd and iSq, as shown in Fig. 6.1. 

The admissible current vectors are those delimited by a circle with constant radius Imax. 

The curves coming from the voltage constraints (6.7) and (6.6), which tend to change as  

increases and depend on the values of the system parameters, identify the current vectors that 

can be injected into the machine at a given speed. It is worth noting that these curves are very 

different from those of a traditional SPM motor drive and have a non-null intersection, 

highlighted in blue, even at high speed. At a given speed, the maximum torque is generated 

when the stator current is the vector with the highest value of iSq in the admissible domain. 

(a) (b) 

 (c) (d) 

Fig. 6.1 . Representation of the voltage and current constraints in plane iSd-iSq for a SPM motor in dual inverter 

configuration. The voltage constrains are plotted at ω=1.45·ωbase (a); at ω=2.2·ωbase (b); ω=9·ωbase (c) and 

ω=11·ωbase (d). 
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When the speed is not excessive, this domain, obtained by intersecting the areas delimited by 

the three curves, is a circular sector, as shown in Fig. 6.1(a) and (b). However, at higher 

speeds, Fig. 6.1(c) shows the existence of another region, in which the power factor is not 

unity, which allows extending the speed range further. 

 Resulting Speed Range 

The base speed ωbase of the dual inverter system can be calculated from (6.7) when iSq is 

equal to Imax and iSd is zero. 

    
,maxA

base

e

V



= . (6.9) 

The base speed base for the same motor fed by just one inverter can be found from (4.39). 

In the dual inverter drive with a SPM motor, the maximum speed where the maximum 

power is delivered is when iSq is zero (no-load condition) and iSd is equal to -Imax. (maximum 

demagnetization field) if the excitation flux φe exceeds the flux generated from the maximum 

current flowing on the stator inductance LSImax. Equation (4.42) provides the following result: 

    
,max

max

B

pow

e S

V

L I



=

−
. (6.10) 

Furthermore, it is possible to increase the maximum speed of the drive above 
pow  by 

abandoning the unity power factor condition. When iSq is zero and iSd is equal to -Imax, the 

maximum speed turns out to be: 

   
,max ,max

max

A B

pow

e S

V V

L I




+
=

−
. (6.11) 

If the DC-link voltage of inverter B is twice that of inverter A, the speed range of the dual 

inverter system is three times as wide as that of a single inverter drive. 

The resulting speed ranges are shown in Fig. 6.2, which has been plotted under the 

assumptions that the voltage drops on the stator resistances and the iron losses are negligible. 

The parameters adopted to draw the curves are those of a low-power prototype used to carry 

out the experimental results. The parameters are listed in TABLE 6. 
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6.2 CONTROL SCHEME 

The control scheme shown in Fig. 6.3 can be divided into two parts. The first part concerns 

the control of the inverter A, which is connected to the power supply. It includes the control 

loops for speed, flux and stator currents. The aim of the second part is to control the DC 

voltage of the floating bridge and to compensate the reactive power of the motor. 

 Control of Flux, Speed and Stator Currents 

PI regulators (a) and (b) control the d-q components of the stator currents. Feed-forward 

signals are added to the output of these regulators to compensate the back electromotive force 

of the motor and the voltage generated by inverter B. To reduce the effect of a mismatch in 

the machine parameters, a closed-loop flux weakening strategy is used to regulate the stator 

flux. PI regulator (c) defines the reference value of current iSd by comparing the voltage 

request of inverter A with VA,max. If this request overcomes the admissible threshold, the 

control system reduces iSd,ref, thus decreasing the stator flux. Finally controller (d) chooses 

  

 

Fig. 6.2. Performance of the drive fed by the dual inverter (red) and by a single inverter (blue) systems. 

TABLE 6 – SPM-OEW PARAMETERS 

Prated =  0.9 kW     RS = 0.24  

IS,rated =  13 Apeak    LS = 0.0012 H 

e =   0.0852 Wb   Jm = 0.03 Kg m2 

m,rated =  1600 rpm    JC = 0.19 Kg m2 

EA,max =  80 V    p = 3 

C =  160    µF    EB,max = 160V 
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the reference value iSq,ref on the basis of the speed error. This value is bounded by the value 

2 2

max ,Sd refI i−  in order to satisfy the current constraint in every operating condition. 

 Control of the Floating Capacitor and of the Reactive Power 

Regulator (e) keeps the DC-link voltage EB at the reference voltage EB,ref, whose level is 

adjusted depending on the voltage resulting from (16), which is necessary to compensate the 

reactive power of inverter A. A coefficient greater than one is used to take into account that 

the transient voltage term in (17) can require a significant voltage margin. Since 
q

Bv  is 

proportional to the motor speed, EB tends to zero as long as the speed decreases, thus reducing 

the switching losses of inverter B. PI (f) ensures that inverter A operates at unity power factor 

by zeroing its reactive power QA. The feed-forward signal 
q

Bv  given by (16) is added to the 

output of PI (f) to improve the dynamic performance. Both PI regulators (e) and (f) are 

implemented in the reference frame aligned with the stator current space vector. 
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Fig. 6.3. Block diagram of the control scheme for the open-ended permanent magnet machine fed by the dual-

inverter system. 



Part II: Open-End Winding Motors 

112 

 Experimental Results 

Some experimental results have been performed with a small laboratory prototype to 

verify the feasibility of the developed control scheme. The specifications of the control board 

can be found in [52]. The parameters of the drives are the same shown in TABLE 6. The 

measured signals have been acquired, transferred to a PC and plotted with Matlab. 

Fig. 6.4 compares the behavior of a single inverter drive with the dual inverter drive during 

a start-up transient. As long as the rotor speed is below the base speed, to generate the 

maximum torque, the current iSd is zero and the current iSq is equal to the maximum value 

Imax. The phase angle  between the stator current and voltage vectors is roughly constant 

a)

 

 

 

a)

b) b) 

Fig. 6.4. Experimental behavior of the SPM motor during a speed transient from zero to the maximum speed in 

case of single inverter (a) and dual inverter (b). Time scale: 1s/div. 

 

a)

b) 



Surface Permanent Magnet Synchronous Motor with Open-End Windings 

113 

with speed and can be calculated as follows: 

 
maxtan S

e

L I


 = . (6.12) 

In the flux weakening region, the power factor of a single inverter drive rapidly decreases, 

thus limiting the overall performance. 

Conversely, Fig. 6.4(b) shows that the compensation of the reactive power of inverter A 

allows producing higher torque values at high speed. The maximum speed achievable is 

 

Fig. 6.5. Performance of the drive fed by the dual inverter (red) and by a single inverter (blue) systems. 
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proportional to the ratio EB,max/EA,max. 

Fig. 6.5 compares the trend of the mechanical torque and the output power when the motor 

is fed by a single inverter and the dual inverter system, and the ratio EB,max/EA,max is equal to 

2. As can be seen, the dual inverter system allows obtaining a threefold increase in the 

maximum speed of the machine. As a result, the output power is almost constant in the entire 

flux weakening speed range. 

6.3 OVERMODULATION OF THE PRIMARY INVERTER 

A similar procedure used for the induction machine in open-end winding, which allows 

the inverter connected to the primary energy source to overmodulate, can be used for SPM 

synchronous machine in order to boost the performance of the drive. The harmonics 

generated by overmodulation can be compensated with the floating bridge inverter by the 

means of the same set of resonant controllers in the synchronous reference frame written in 

(5.38). Therefore, the control scheme modifies as shown in Fig. 6.6. 
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Fig. 6.6. Block diagram of the control scheme for the open-end winding surface permanent magnet machine 

fed by the dual-inverter system, with the primary inverter operating in voltage overmodulation 
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 Experimental Results 

Fig. 6.7 shows the start-up transient of the drive with the primary inverter in 

overmodulation. The control of the voltage across the floating capacitor increases with speed, 

while the power factor of inverter A is kept constant over all the speed range. However, these 

two variables are mostly influenced by the behavior of the fundamental component of the 

current, so it could be more of interest to evaluate the waveform of the phase currents in 

condition of overmodulation. 

Fig. 6.8 and Fig. 6.9 show the phase currents at steady state at the rotor speed of 2000 rpm 

without and with the harmonic compensation respectively. At this speed the drive is already 

in flux weakening region, hence the overmodulation has been already taken place. It can be 

seen how the resonant controllers are able to compensate the distortion introduced by the 

primary inverter and this can be also appreciated from the spectrum of the currents in the two 

cases, in Fig. 6.10 and Fig. 6.11 respectively. 

 

 

 

Fig. 6.7. Experimental behavior of the SPM motor during a speed transient from zero to the maximum speed of 

the dual inverter. 
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Fig. 6.8. Phase currents in steady-state at 2000 rpm when the harmonic compensation is off. 

 

Fig. 6.9. Phase currents in steady-state at 2000 rpm when the harmonic compensation is on. 
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Fig. 6.10. Spectrum of the Phase currents in steady-state at 2000 rpm when the harmonic compensation is off. 

 

Fig. 6.11. Spectrum of the Phase currents in steady-state at 2000 rpm when the harmonic compensation is not 

on. 
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The overmodulation allows the primary inverter to apply a fundamental component of 

voltage that tends to the theoretical upper limit of (2/π)EB when a six step modulation is used. 

This voltage allows to extend the constant torque speed range and the maximum power of 

11%, as shown in Fig. 6.12, compared with the dual inverter drive working in linear region. 

 

Fig. 6.12. Performance of the drive fed by the single inverter system (blue) by a dual inverter system 

working in linear modulation (red) and overmodulation (yellow). 
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6.4 SIX-STEP OPERATION OF THE PRIMARY INVERTER 

To further improve the performance of the dual inverter system, it is possible to make the 

primary inverter work in six-step modulation. This will allow the primary inverter to generate 

an higher voltage and in addition to drastically reduce the switching losses.  

The square wave reference signal is obtained from the sinusoidal reference signal given 

by the flux and speed control as for the previous schemes. This reference signal is limited to 

the maximum voltage at the fundamental component of (2/π)EB achievable with a square 

wave. The difference between the square wave generated and the sinusoidal reference signal 

represents the harmonic distortion introduced with the six-step modulation and is therefore 

feedforward to array of resonant controllers for a fast harmonic compensation. 

The control scheme used is shown in Fig. 6.13. 
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Fig. 6.13. Block diagram of the control scheme for the open-end winding surface permanent magnet machine 

fed by the dual-inverter system, with the primary inverter operating in voltage six-step modulation 
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 Experimental Results 

Fig. 6.14 shows the steady-state condition at 2000 rpm of the phase current, the square 

wave phase voltage of the primary inverter with the reference sinusoidal signal and the phase 

voltage of the floating bridge. The harmonic compensation achieved through the floating 

bridge, allows the inverter A to work in six-step modulation, while ensuring a low harmonic 

content in the phase current. 

Fig. 6.15 and Fig. 6.16 show the spectrum of the phase currents before and after the 

harmonic compensation. 

In Fig. 6.17 the performance improvements due to the six-step operation have brought an 

increase of the base speed of 17%, which causes an increase of the maximum power of the 

drive of the same amount. 

 

 

 

 

Fig. 6.14. Experimental behavior of the SPM motor with open-end windings in steady-state condition at 2000 

rpm, with the primary inverter working in six-step modulation. Time scale: 0.1 s/div. 
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Fig. 6.15. Spectrum of the Phase currents in steady-state at 2000 rpm when the harmonic compensation is off. 

Scale: Current 0.5 A/div, Frequency 500 Hz/div 

 

 

Fig. 6.16. Spectrum of the Phase currents in steady-state at 2000 rpm when the harmonic compensation is off. 

Scale: Current 0.5 A/div, Frequency 500 Hz/div 
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Fig. 6.17. Performance of the drive fed by the single inverter system (blue) by a dual inverter system 

working in linear modulation (red), overmodulation (yellow) and in six-step mode (purple) 
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Chapter 7   

 SYNCHRONOUS RELUCTANCE MOTOR 

WITH OPEN-END WINDINGS 

Despite the lower torque and power densities, synchronous reluctance motors have better 

efficiencies than induction motors and can operate at high speeds by adjusting the stator flux 

level. 

The dual inverter with a floating capacitor bridge not only extends the motor speed range 

but can supply the machine with a multi-level PWM voltage to reduce the current ripple, 

which can be quite significant for sync-rel machines designed for low phase voltages and 

with a low number of turns. 

7.1 SYSTEM MODEL 

 Mathematical Model and Admissible Domain of Stator Current 

The mathematical model of a sync-rel motor can be written in a d-q reference frame, 

with the d axis aligned with the direction of maximum reluctance, as follows: 

   Sd
Sd S Sd Sq

d
v R i

dt


= − +  (7.1) 

   
Sq

Sq S Sq Sd

d
v R i

dt


= + +  (7.2) 

    Sd Sd SdL i =  (7.3) 

    
Sq Sq Sq Sd SqL i L i = =  (7.4) 

  ( ) ( )
3 3

1
2 2

Sd Sq Sd Sq Sd Sd SqT p L L i i pL i i= − = −  (7.5) 

where  is the angular frequency of the rotor in electric radians, p is the number of pole 

pairs, T is the electromagnetic torque, vSd and vSq are the d-q components of the stator voltage 

vector Sv , iSd and iSq are the d-q components of the stator current vector 
Si , 

Sd  and 
Sq  are 

the d-q components of the stator flux vector 
S , LSd and LSq are the stator inductances, and 
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RS is the stator resistance. The saliency ratio  of the motor is defined as the ratio of LSq and 

LSd. 

It is straightforward to find the voltage constraints for inverter A and inverter B for a sync-

rel motor with open-end stator windings considering (7.1)-(7.5) in (4.33) and (4.34) 

   

2 2

,
2 2

Sd Sq

Sd B max

Sd Sq

i i
L V

i i




+


+
 (7.6) 

   ( ) ,
2 2

1
Sd Sq

Sd A max

Sd Sq

i i
L V

i i


 − 

+
. (7.7) 

Inequality (7.6) is valid only as long as (7.7) is verified. If Bv  is saturated, (7.6) must be 

replaced by the following inequality 

   , ,| | s
S B max A max

s

i
V V

i
  −  . (7.8) 

The admissible domain of the stator current vector, resulting from the constraints of the 

inverter voltages and the stator currents, can be plotted in a complex plane where the 

horizontal and vertical axes are respectively iSd and iSq, as shown in Fig. 7.1. 

The admissible current vectors are those delimited by a circle with constant radius Imax. 

Conversely, the curves coming from the voltage constraints (7.7) and (7.6), which depend on 

the motor parameters, delimit the set of current vectors that can be injected into the machine 

at a given speed.  
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Fig. 7.1. Representation of the constraints due to maximum inverter current (a), the maximum voltage of 

inverter B (b) and the maximum voltage of inverter A (c) in plane iSd-iSq for a dual inverter drive.  
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As long as the angular frequency increases, (7.6) generates a set of curves, which are 

formed by two lobes and tend to become smaller, shown in Fig. 7.1(b). Similarly, (7.6)-(7.8) 

produces a family of curves with four lobes, shown in Fig. 7.1(c). 

The graphical representation of Fig. 7.1 can be used to identify the operating conditions 

corresponding to the maximum torque capability, since a constant-torque curve in the iSd-iSq 

plane is represented by an hyperbola. The closer the hyperbola is to the origin, the lower the 

torque.  

Furthermore, Fig. 7.1(a) shows the torque locus corresponding to the break-down torque 

Tmax. The stator current is represented by a point of the plane that is the intersection of the 

current circle and the Maximum Torque Per Ampere (MTPA) curve, which is ideally a 

straight line with a slope of 45 degrees in sync-rel motors. 

Fig. 7.2 shows how the domain of the admissible stator current vectors changes as the 

speed increases, and the corresponding torque capability. Up to the base speed, base, the 

motor can generate the torque Tmax and the stator current is represented by point A on the 

complex plane. When the speed increases above the base speed, Fig. 7.2(b) shows that the 

operating point corresponding to the maximum torque moves on arc A-B.  

Finally, above pow, the operating point corresponding to the maximum torque capability 

at unity power factor is on the segment B-O, which is the Maximum Torque Per Volt (MTPV) 

curve of the motor. 

 Resulting Speed Range 

The base speed of the dual inverter system can be calculated from (7.7) when iSd is 

max / 2I−  and iSq is max / 2I . 

 

 

Tmax 

iSq 
=base 

maxIiS 
 

iSd 

max,BB Vv 
 

max,AA Vv 
 

A 

 

Tpow 

iSq 
=pow 

maxIiS 
 

iSd 

max,BB Vv 
 

max,AA Vv 
 

A 

B 

 

 

 

T 

iSq 
>pow 

maxIiS 
 

iSd 

max,BB Vv 
 

max,AA Vv 
 

MTPV curve 

A 

B 

O 

  (a)      (b)        (c) 

Fig. 7.2 . Representation of the admissible domain of the stator current at the base speed base (a), at speed pow 

(b) and above pow (c).  
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−
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Combing (7.1)-(7.4), (4.13) and neglecting the voltage drop on the stator resistance, it is 

possible to calculate the base speed of the same motor fed by a single inverter. When iSd is 

max / 2I−  and iSq is max / 2I , one finds 

   
,max
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2
'
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A
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V

L I



=

+
. (7.10) 

Consequently, the dual inverter system increases the base speed of the machine by a factor 

21
2

1





+

−
, which depends on the saliency ratio. This quantity is equal to the inverse of the 

motor power factor at the base speed of the single inverter solution as highlighted in (4.39) 

and shown in the following steps: 
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The current phase at the base speed is equal to 
3

4
 , therefore the power factor can be 

found as: 
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 (7.12) 

As long as the speed increases, the operating point corresponding to the maximum torque 

moves from A to B. The active power delivered by inverter A remains equal to 
,max max

3

2
AV I

so also the mechanical power of the motor is roughly constant (constant power speed range). 

The position of point B is a function of VB,max. If the current components iSd and iSq are 
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rewritten in polar form as in (4.40) and (4.41), treating (7.7) and (7.6) as equalities, and 

solving the resulting set of equations, one can find the value of  and the position of point B. 

The resulting equation for  is as follows: 

( )
1

tan 1
tan

B,max

A,max

V

V
  


+ = −  (7.13) 

The highest speed of the constant power speed range can be found from equation (4.42), 

where δ is equal to ξ and the excitation flux φe is equal to zero. 
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+
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Above pow, the speed is too high and the voltage is not sufficient to inject the maximum 

current in the motor. In Fig. 7.2(c), this operating condition is represented by segment B-O 

(MTPV curve). 

In an electric drive with a single inverter, it is straightforward to verify that the maximum 

current can be injected in the motor if the speed is lower than 'pow:  

2

,max

max

1
'

2

A

pow

Sd

V

L I


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+
= . (7.15) 

The ratio / 'pow pow   shows that the constant-power speed range is wider in the dual 

inverter system, roughly proportionally to the factor VB,max/VA,max.  

The resulting speed ranges of the single-inverter and dual-inverter systems are shown in 

Fig. 7.3, which has been plotted under the assumption that the voltage drops on the stator 

resistances and the iron losses are negligible. The parameters necessary to draw the curves 

are those of a low-power prototype used to carry out the experimental results. The parameters 

are listed in TABLE 7. The saliency ratio is 2.36. 

TABLE 7 – SYNC-REL OEW- PARAMETERS 

Trated =  5 Nm     RS = 0.20  

IS,rated =  21 Apeak    LSd = 0.0036 H 

Jm =  0.0038 Kg m2
   LSq = 0.0086 H 

EA,max =  100 V    p = 3 

EB,max =  300 V    C = 2.2 mF 
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As can be seen, the dual inverter system leads to a significant increase in the speed range 

of the drive. The base speed of the dual inverter drive is 3528 rpm, which is 2.7 times greater 

than that of the single inverter drive. Furthermore, the constant power speed range, which 

reaches 6510 rpm, becomes 3.5 times wider in comparison to the single inverter drive, with 

a noteworthy increase in the output power.  

7.2 CONTROL SCHEME 

The control scheme of the dual inverter system is shown in Fig. 7.4 and can be divided into 

two parts. The first part concerns the control of inverter A, which is connected to the power 

supply. It includes the control loops for speed, flux and stator currents. The aim of the second 

part is to control the DC voltage of the floating inverter B and to compensate the reactive 

power of inverter A. 

 Control of Flux, Speed and Stator Currents 

Two PI regulators control the d-q components of the stator currents. Feed-forward signals 

are added to the output of these regulators to compensate the back electromotive force of the 

motor and the voltage generated by inverter B. 

To reduce the effect of a mismatch in the machine parameters, a closed-loop flux 

weakening strategy is used to regulate the stator flux. A PI regulator defines the maximum 

value of current iSq by comparing the voltage request of inverter A with VA,max and the voltage 

request of inverter B with VB,max. If one of this signal overcomes the admissible threshold, 

 

Fig. 7.3. Performance of the drive fed by a dual inverter system (red) and a single inverter system (blue). 
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the control system reduces iSq,max. Since current iSd is calculated as 2 2

max SqI i− − , the stator 

flux decreases. Finally, another PI controller chooses the reference value of iSq on the basis 

of the speed error.  

  Control of the Floating Capacitor and of the Reactive Power 

A PI regulator keeps the DC-link voltage EB at the reference voltage EB,ref, whose level is 

adjusted depending on the voltage resulting from (4.26), which is necessary to compensate 

the reactive power of inverter A. Another PI regulator ensures that inverter A operates at 

unity power factor by zeroing its reactive power QA. The feed-forward signal q

Bv  given by 

(4.26) is added to the output of this regulator to improve the dynamic performance. 

7.3 EXPERIMENTAL RESULTS 

Some experimental results have been performed with a small laboratory prototype to 

verify the feasibility of the developed control scheme. The parameters of the drives are the 

same shown in TABLE 7.  
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Fig. 7.4. Block diagram of the control scheme for the open-ended sync-rel machine fed by the dual-inverter 

system. 
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Fig. 7.5 compares the behavior of a single inverter drive and a dual inverter drive during 

a speed transient up to the maximum speed. As can be noted, current iSq progressively 

decreases in both Fig. 7.5(a) and (b). Conversely, current iSd presents a initial reduction 

(constant power speed range) followed by a subsequent increase, as soon as the motor reaches 

the MTPV speed range. 

By comparing the peak value of the 

power delivered to the load shown in Fig. 

7.5(b) with the one shown in Fig. 7.5(a), 

one comes to the conclusion that the 

performance of the dual inverter system 

is remarkably greater. 

Finally, Fig. 7.6 compares the speed 

of both drives during the same transient 

of Fig. 7.5. As can be seen, after 900 ms, 

the dual inverter system reaches a speed 

that is nearly twice that of the single 

inverter system 
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Fig. 7.5. Experimental behavior of the sync-rel motor during a speed transient from zero to the maximum speed with 

a single inverter system (a) and a dual inverter system (b). iSd, iSq (5 A/div), rotor speed (1000 rpm/div), phase current 

(7 A/div), power (200 W/div), motor torque (1 Nm/div). 
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Fig. 7.6. Waveform of the speed of the sync-rel motor with 

a single inverter system and a dual inverter system during a 

speed transient from zero to the maximum speed. Speed 

(1000 rpm/div). 
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CONCLUSIONS 

This PhD work has concerned the development of the control system for grid-connected 

and front-end converters.  

In the first part the control system for an Active Power Filter (APF) has been developed, 

based on the mathematical model of the application. The current controller, which represents 

the core of the APF, has been widely investigated. Resonant and repetitive regulators, based 

on the Internal Model Principle (IMP), have been tested on a laboratory prototype of APF, 

connected to the power grid through a decoupling inductance, used to compensate the 

distortion in the line currents generated by a distorting load. Both the regulators have shown 

great performance in terms of harmonic compensation. The repetitive control has been able 

to compensate all the high harmonics of the fundamental component of the line currents, 

requiring quite lower computational burden compared to the resonant controllers. However, 

the selectivity of the resonant controllers, which uses a resonant regulator for each harmonic 

that is intended to be compensated, can be useful in case of voltage overmodulation or current 

saturation, since it allows the control system to choose which harmonics have to be 

compensated without compromising the overall performance. Therefore, this kind of 

regulator has been used to develop three different saturation algorithms that adaptively 

allocate the available voltage among the resonant controllers in such a way that the 

compensation of the most significant current harmonics is privileged. 

The same technologies used to correct the power factor and compensate the current 

harmonics of the power grid have been successfully applied to motor drives with open-end 

windings fed by two inverters, where one is a floating bridge. The introduction of a floating 

bridge allows one to improve the performance of the drive and the quality of the motor 

currents. 

A mathematical model, adaptable to the most common electrical motors, has been 

developed. On the basis of this model, a control strategy for three different motors has been 

implemented and tested. This control system has been firstly tested on an induction motor. 

The power factor correction made by the floating bridge has allowed the drive to extend the 

constant power speed range, ensuring higher power at high speed compared with the single-

inverter system. A further improvement has been achieved with the inverter connected to the 

primary energy source working in the overmodulation region and the floating bridge working 
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as a harmonic compensator, in order to cancel the distortion introduced by the non linear 

operation. This feature gives an additional voltage boost and, consequently, a power boost to 

the drive, without compromising the current quality of the motor. 

The same procedure has been adapted to a surface permanent magnet synchronous motor 

with open-end windings. In addition, for this motor, the six-step modulation has been tested 

for the primary inverter, while the floating bridge has been used to compensate the high order 

harmonics of the currents by means of an array of resonant controllers. 

Finally, the developed methods of power factor correction have been applied also to a 

Synchronous Reluctance Motor with open-end windings. 

As shown in Chapter 4, the working condition at unity power factor for an electrical motor 

allows one to extend the constant torque speed range, hence, to increase the absolute value 

of the output power depending on the power factor at the base speed. By ensuring the unity 

power factor in flux-weakening region, the dual inverter configuration allows extending the 

Constant Power Speed Range (CPSR) in proportion to the ratio of the voltage across the 

floating bridge and the primary inverter. 

From the experimental results, it is possible to conclude that the Sync-Rel motor is the 

one that showed the highest performance improvements in terms of output power, due to its 

low power factor over the entire speed range. The SPMSM, which works nearly at unity 

power factor in the constant torque speed range, does not benefit of a significant increase in 

the absolute value of the output power, but the open-end winding configuration allows 

extending considerably the constant power speed range and the maximum achievable speed. 

 

 TABLE 8 – PERFORMANCE IMPROVEMENTS  
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The induction motor usually presents better power factor, compared to the Synch-Rel 

motor, but still presents substantial improvements over all the speed range. 

In TABLE 8 the performance improvements for each motor are summarized as ratio 

between the dual inverter and single inverter cases. It is possible to note that the maximum 

speed ratio for the IM and Sync-Rel cases cannot be quantified since both are theoretically 

able to achieve infinite speed 
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